
NONLINEAR DIFFUSIONS ON GRAPHS FOR CLUSTERING,
SEMI-SUPERVISED LEARNING AND ANALYZING

PREDICTIONS
by

Meng Liu

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

December 2022

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. David F. Gleich, Chair

School of Computer Science

Dr. Petros Drineas

School of Computer Science

Dr. Ananth Y. Grama

School of Computer Science

Dr. Tamal K. Dey

School of Computer Science

Approved by:

Dr. Kihong Park

2

To my dad Changxin Liu and mom Yuanqiu Chen, and my beloved partner, Dr. Xu Zhang.

3

ACKNOWLEDGMENTS

It has been an honor to study for a Ph.D at Purdue University. And the journey of my

Ph.D will never be successful without the help from many people.

First of all, I would like to express my deepest gratitude to my advisor, Dr. David F.

Gleich, for all the inspirations of research ideas, patient guidance on designing experiments,

writing papers and improving programming skills as well as continuous encouragement when

I encounter academic difficulties. I would also like to thank my thesis committee members

and other faculty, Dr. Petros Drineas, Dr. Ananth Y. Grama, Dr. Tamal K. Dey and Dr.

Pan Li, for their valuable feedback to help improve my research. Thanks should also go to all

my co-authors and collaborators for their knowledge, insights, guidance and hard working.

I am also thankful to all the former and present student colleagues in the research group,

Nate Veldt, Nicole Eikmeier, Huda Nassar, Tao Wu, Yangyang Hou, Yanfei Ren, Charlie

Colley, Rania Ibrahim, Omar Eldaghar, Yufan Huang and Disha Shur for their insightful

discussions and unconditional help.

Last but not least, I would like to send my special thanks to my family. Especially I want

to thank my parents, Changxin Liu, Yuanqiu Chen, for their endless love, encouragement

and unconditional support to pursue my dream throughout my life. And I want to thank my

wife Dr. Xu Zhang - no matter where I am and what decisions I make, you will always be

there to support me. It is you that I share my happiness with when I accomplish something

and cheer me up when I feel struggled and frustrated. Marrying you is the luckiest thing

that has happened in my life!

4

TABLE OF CONTENTS

LIST OF TABLES . 9

LIST OF FIGURES . 11

ABSTRACT . 20

1 INTRODUCTION . 22

2 PRELIMINARY . 26

3 BACKGROUND . 29

3.1 Linear graph diffusions . 29

3.2 Nonlinear graph diffusions . 30

3.3 Nonlinear diffusions as generalized min-cut optimization 31

4 EMPIRICAL STUDY OF FLOW-BASED ALGORITHMS FOR IMPROVING

LOCAL CLUSTERS . 34

4.1 Chapter Overview and Motivation . 34

4.2 Unifying Objectives of Flow-based Algorithms 35

4.3 Flow-based Cluster Improvement Algorithms Reduce Conductance 39

4.4 Finding Nearby Targets by Growing and Shrinking 40

4.5 Using Flow-based Algorithms for Semi-supervised Learning 42

4.6 Using Flow-based Methods for Local Coordinates 45

4.7 Scalable Implementation of Local Graph Clustering Algorithms 48

5 STRONGLY LOCAL P-NORM DIFFUSIONS ON GRAPHS FOR CLUSTERING

AND SEMI-SUPERVISED LEARNING . 53

5.1 Chapter Overview and Motivation . 53

5.2 Beyond P-norm Cut . 56

5.3 Strongly Local Algorithms . 60

5.4 More details on ρ . 66

5

5.5 Cut Quality Analysis . 66

5.6 Experimental Results . 75

6 STRONGLY LOCAL HYPERGRAPH DIFFUSIONS FOR CLUSTERING AND

SEMI-SUPERVISED LEARNING . 79

6.1 Chapter Overview and Motivation . 79

6.2 A Motivating Case Study with Yelp Reviews 80

6.3 Hypergraph-to-graph reduction . 82

6.4 Localized Quadratic Hypergraph Diffusions 85

6.5 A Strongly Local Solver for LHQD . 86

6.6 Local Conductance Approximation . 96

6.7 Generalization to P-norms . 97

6.8 Experimental Results . 99

6.8.1 Detecting Amazon Product Categories 100

6.8.2 Detecting Stack Overflow Question Topics 102

6.8.3 Varying Number of Seeds . 103

6.8.4 Selecting δ . 103

7 COMBINING TOPOLOGICAL DATA ANALYSIS AND DIFFUSIONS FOR AN-

ALYZING PREDICTIONS . 106

7.1 Motivation and background on TDA . 106

7.1.1 Background: Topological Data Analysis and the Mapper Algorithm . 107

7.1.2 Reeb graph vs. Reeb space vs. Reeb network 108

7.1.3 Existing work of using topology in neural networks 108

7.1.4 Chapter Overview . 110

7.2 The Reeb network construction on a prediction function using a graph . . . 112

7.2.1 Demonstration of GTDA . 116

7.2.2 Other details . 117

7.3 Error estimation using diffusion on the Reeb network 121

7.4 Demonstration in Graph-based prediction 122

7.4.1 Central results . 124

6

7.4.2 Dataset and GNN model . 126

7.4.3 Inspecting another advanced model predictions with GTDA 127

7.4.4 GTDA visualization on the original Amazon dataset 128

7.5 Understanding image predictions . 128

7.5.1 Central results . 128

7.5.2 Dataset and CNN model . 130

7.5.3 Details on selecting images to embed 133

7.5.4 Statistical validation . 135

7.5.5 Comparing to influence functions . 135

7.5.6 Understanding model generalization on other labels 136

7.5.7 Comparing to a Reeb net from original TDA framework 136

7.6 Understanding Malignant Gene Mutation Predictions 142

7.6.1 Central results . 142

7.6.2 Dataset and model . 145

7.6.3 Validating GTDA visualization . 148

7.6.4 Estimating and correcting prediction errors 148

7.6.5 Extracting insights about mutation types and single nucleotide variants 149

7.6.6 Incorrect GTDA error estimation implies unreliable labels 151

7.6.7 Comparison with other methods . 154

7.7 Comparing models on ImageNet-1k predictions 156

7.7.1 Dataset and CNN models . 156

7.7.2 Building graphs and initial results of GTDA 157

7.7.3 Highlighting subgroups where advanced models perform better 157

7.7.4 Understanding different models’ predictions 159

7.8 Inspecting chest X-ray images . 159

7.8.1 Dataset and model . 163

7.8.2 GTDA finds incorrect normal vs abnormal labels 164

7.9 Parameter selection of GTDA . 164

7.9.1 Selecting component size threshold 166

7.9.2 Select overlapping ratio . 167

7

7.9.3 Notes on other parameters . 167

7.10 Performance and scaling . 169

7.11 Comparing to tSNE and UMAP . 170

8 SUMMARY AND FUTURE DIRECTIONS . 172

8.1 Conclusions in using nonlinear diffusions for local clustering 172

8.1.1 Future opportunities in local clustering 173

8.2 Conclusions in using diffusions for analyzing predictions 173

8.2.1 Future opportunities in GTDA . 174

REFERENCES . 176

8

LIST OF TABLES

5.1 Cluster recovery results from a set of 7 Facebook networks [69]. Students with
a specific graduation class year are used as target cluster. We use a random set
of 1% of the nodes identified with that class year as seeds. The class year 2009
is the set of incoming students, which form better conductance groups because
the students had not yet mixed with the other classes. Class year 2008 is already
mixed and so the methods do not do as well there. The values are median F1
and the violin plots show the distribution over choices of the seeds. 77

5.2 Total running time of methods in this experiment. 78

6.1 Statistics on Amazon product categories . 101

6.2 Median F1 scores on detecting Amazon product categories over 30 trials, the
small violin plots show variance. 101

6.3 Median runtime in seconds on detecting Amazon product categories 102

6.4 This table summarizes the median of median runtimes in seconds for the Stack
Overflow experiments as well as median Precision, Recall and F1 over the 40
clusters. 103

7.1 List of parameters in GTDA. 116

7.2 Number of products for each category in our own version of Amazon Computers
dataset. 126

7.3 Number of training and testing images for each label. 132

7.4 For each component in the Reeb networks, 2 contingency tables are computed,
where the left table only considers variants in the coding regions of 1JNX and the
right table considers all variants. Only components where each cell of the right
table has a count 3 or higher are included. Chi-square p-values are computed for
tables where each cell has a count larger than 0. 152

7.5 The ks statistics and p-value of the one tailed KolmogorovSmirnov test. The null
assumption is that the ecdf of GTDA is larger than the ecdf of other methods at
all locations. 155

7.6 Statistics on Reeb nets. Reeb node size is the number of samples represented in a
Reeb net node. Average Reeb components for each class is the average number of
Reeb net components where the most frequent predicted label (by one of the two
models) is that class. The maximum Reeb component just has a few hundred
of nodes, which guarantees that any component of the Reeb net can be easily
visualized and analyzed. 158

9

7.7 Detailed precision and recall on different components when using GTDA to find
likely incorrect testing labels of ChestX-ray14 dataset. Components are ordered
by decreasing number of incorrect labels identified by experts they contain. Re-
sults for components with less than 3 incorrect labels are reported together. . . 166

7.8 Statistics on datasets and running time in seconds. Predicting and embedding
represents the time used to generate prediction and extract embedding for all
samples from a trained model. Preprocessing time includes PCA, normalization
as well as building a KNN graph if the original dataset is not in graph format.
GTDA time is the time to compute Reeb network given the input graph and the
lens. 170

10

LIST OF FIGURES

1.1 An example of local clustering on Fashion MNIST dataset. (a) The graph is
constructed by connecting each image to its 5 nearest neighbors. (b) We select
some "pants" nodes as seed nodes. (c) We run one of our local graph clustering
algorithm [18] to find the other "pants" nodes. Blue nodes are the ground truth.
Lighter nodes are more likely to be "pants" nodes. 24

3.1 An example of localized cut graph. 32

4.1 The Main Galaxy Sample (MGS) dataset has 517,182 nodes and 32,229,812 edges.
This display shows an eigenvector embedding of the graph along with edges shown
in blue. The node color is determined by the horizontal coordinate, which will
be re-used in plots in subsequent sections. The right part of the visualization
(orange coordinates) hints at structure hidden within the upper band, which we
will study in Section 4.6 . 40

4.2 A summary of 2585 experiments in the MGS dataset that show (i) that reducing
δ in lfi produces sets of smaller conductance, when the input set is a 2-hop BFS
set, and also (ii) that lfi and fi always find smaller conductance sets than mqi. 41

4.3 A summary of 2526 experiments in the MGS dataset that show flow-based methods
can still reduce conductance even when the input set is the result of another
conductance minimizing procedure. 42

4.4 We turn an image into a graph by adding a node for every pixel (b). Then we
connect the nodes if the associated pixels are close by (distance less than r) as well
has have similar pixel values). We weight the edge by the degree of similarity. The
resulting graph has small conductance sets when there are regions with similarly
colored pixels. 43

4.5 Illustration of finding targets within an image (a) corresponding to the three low-
conductance regions shown in (b). The reference sets given to mqi, fi, and lfi are
given by the yellow regions, which either need to be grown or shrunk to find the
target. For growing, we compare against seeded PageRank, which is a spectral
analogue of fi and lfi; for shrinking, we compare against a local Fiedler vector,
a spectral analogue of MQI, as well as simple greedy approaches for both. The
flow-based methods capture the borders nicely and give high recall for growing
and high precision for shrinking. Among other things, in this case, fi grows too
large on the right person (c) whereas lfi (e) captures this target better. RC
stands for recall and PR stands for precision. 44

4.6 The results of the semi-supervised learning experiments show that the flow-based
methods lfi-0.1 and fi are more sensitive to the number of known true labels
included in the reference seed sets compared with seeded PageRank. 46

11

4.7 Local spectral and local flow embeddings of the large, 201,252 node, seed region –
shown in green in (a) – that is compressed in the global spectral embedding from
Figure 4.1 . In (b), the local spectral shows the nodes colored with the same color
as in Figure 4.1 . Nodes that were not touched by the local embedding are shown
with the big node on the right hand side. In (c), the local flow embedding with
the same color scheme and same big node on the right hand side. Note that the
spectral embedding does not show any clear sub-structure besides a top-bottom
split. In contrast, the flow embedding shows a number of pockets of structure
indicative of small conductance subsets. 48

4.8 A histogram of cluster conductance scores that come from using k-means on the
two-dimensional local spectral and local flow embeddings from Figure 4.7 49

4.9 An example of NCP plot. 52

5.1 A simple illustration of the benefits of our p-norm methods. In this problem, we
generate a graph from an image with weighted neighbors as described in [57]. We
intentionally make this graph consider large regions, so each pixel is connected
to all neighbors within 40 pixels away. (Full details in the supplement.) The
target in this problem is the cluster defined by the interior of the window and
we select a single pixel inside the window as the seed. The three colors (yellow,
orange, red) show how the non-zero elements of the solution fill-in as we decrease
a sparsity penalty in our formulation (yellow is sparsest, red is densest). The
2-norm result exhibits a typical phenomenon of over-expansion, whereas the 1.1-
norm accurately captures the true boundary. We tried running various 1-norm
methods, but they were unable to grow a single seed node, as has been observed
in many past experiments and also theoretically justified in [19 , Lemma 7.2]. . . 54

5.2 The graph is a 50-by-50 regular grid-graph with 4 axis-aligned neighbors, the
seed is in the center. The diffusions localize before the boundary so we only
show the relevant region and the quantile contours of the values. We selected
the parameters to give similar-sized outputs. (Top row) At left (a), we have
seeded PageRank; (b)-(d) show our q-norm objectives; (b) is a 2-norm which
closely resembles PageRank; (c) is a 5-norm that has diamond-contours; and
(d) is a 1.25-norm that has square contours. (Bottom row) Existing work with
the (e) heat kernel diffusion [26 , 27], (f) CRD [8], (g) nonlinear diffusions [7]
(with a simple (g) p-norm nonlinearity in the diffusion or a (h) p-Laplacian) show
that similar results are possible with existing methods, although they lack the
simplicity of our optimization setup and often lack the strongly local algorithms. 55

5.3 The left figure shows the median running time for the methods as we scale the
graph size keeping the cluster sizes roughly the same. As we vary cluster mixing
µ for a graph with 10, 000 nodes, the middle figure shows the median F1 score
(higher is better) along with the 20-80% quantiles; the right figure shows the
conductance values (lower is better). These results show SLQ is better than ACL
and competitive with CRD while running much faster. 76

12

5.4 A replication of an experiment from [71] with SLQ on DBLP [72 , 73] (with 1M
edges) and edges LiveJournal [74] (with 65M edges). The plot shows median
recall over 600 groups of roughly the same size as we look at the top k entries in
the solution vector (x axis). The envelope represents 2 standard error. This shows
SLQ with q > 2 gives better performance than ACL (PageRank), and all improve
on the degree-normalized (DN) versions used for conductance-minimizing sweep
cuts. 78

6.1 This figure shows locations of the ∼7,300 restaurants of Las Vegas that are re-
viewed on Yelp and how often algorithms recover them from a set of 10 random
seeds; our hypergraph PageRank (LHPR) methods has the highest accuracy and
finds the result by exploring only 10000 vertices total compared with a fully dense
vector for QHPR giving a boost to scalability on larger graphs. The colors show
the regions that are missed (red or orange) or found (blue) by each algorithm
over 15 trials. HyperLocal is a flow-based method that is known to have trouble
growing small seed sets as in this experiment. (The parameters for HyperLocal
were chosen in consultation its authors; other parameters were hand tuned for
best case performance.) . 81

6.2 A simple illustration of hypergraph reduction (Section 6.3) and localization (Sec-
tion 6.4). (a) A hypergraph with 8 nodes and 5 hyperedges. (b) An illustration
of the hyperedge transformation gadget for δ-linear splitting function. (c) The
hypergraph is reduced to a directed graph by adding a pair of auxiliary nodes for
each hyperedge and this preserves hypergraph conductance computations (The-
orem 6.3.1). (d) The localized directed cut graph is created by adding a source
node s, a sink node t and edges from s to hypergraph nodes or from hypergraph
nodes to t to localize a solution. 84

6.3 The upper plot shows median F1 scores of different methods over 40 clusters from
the Stack Overflow dataset. The lower plot shows median running time. LH-2.0
achieves the best balance between speed and accuracy; LH-1.4 can sometimes
be slower than the flow method when the target cluster contains many large
hyperedges. 104

6.4 This plot shows the median of median F1 scores on detecting those 6 clusters in
the Amazon data when varying the seed size. The envelope represents 1 standard
error over the 6 median F1 scores. Without OneHop, the flow based method
is not able to grow from seed set even for the largest seeds. Our hypergraph
diffusion (LH) methods outperforms others, especially for small seeds. 105

6.5 Selecting proper δ for Amazon and Stack Overflow. 105

7.1 This illustrates the difference between a Reeb graph and a Reeb network on a
topologically interesting object. The lenses we use here are the x and z coordi-
nates. The inspiration for the object is [110]. 109

13

7.2 Consider a prediction scenario with three classes in a Swiss roll structure and an
underlying graph (A). Graph neural network predictions show reasonable accu-
racy (B). The 3-dimensional prediction lens from the neural network is shown in
(C) and gives a guide to class predictions. The Reeb network is shown in (D).
Each node maps to a small cluster of similar values of the lens. Nodes are colored
by the fraction of points in each predicted class. Regions with mixed predictions
indicate potential ambiguities in the results. Further study of two such connected
regions (E) shows many datapoints where there are training points with different
labels closer to the given test points. This situation motivates an algorithmic
error estimate for each datapoint without ground truth (F). This estimate is
nevertheless highly correlated with true errors and better than class uncertainty
estimates. The topological simplification highlights datapoints with confusing or
ambiguous predictions given the totality of predictions. 111

7.3 A detailed illustration of applying GTDA to build a Reeb net on a 3-class Swiss
roll dataset. The original data graph and “ground truth” values are in (A). We
show the model prediction for a simple GCN and the three prediction lenses (after
smoothing) in (B). The first splitting iteration over lens 1 finds 2 components,
(C). At the second split, for each component, we choose the lens with the largest
difference, which means the outer ring is split over lens 2 and the inner ring is
split over lens 3. The second splitting finds 7 components in total. We continue
to split until no more components larger than 20 and get the initial Reeb net, (D).
Then small nodes are merged to neighbors iteratively as shown by the red dashed
lines in (E). Similarly, small components in the Reeb net are iteratively connected
to get the final Reeb net in (F). As a comparison, two Reeb nets from the original
mapper using 10 lens or 5 lens have many isolated nodes or components and are
not suitable for the subsequent inspection. The figure (F) uses predicted classes
for training and validation points instead of the actual training and validation
classes as in fig. 7.2 (D). 118

7.4 This figure demonstrates the procedure of estimating errors from the Reeb net
produced by GTDA. In comparison with Figure 7.3 , we show the training data
labels in the pie charts instead of the predicted values. If we zoom in on two com-
ponents and mark training and validation samples (red circles) with true labels,
we see many orange predictions without any training or validation data nearby
to support them (inset box nearby) (A), which suggests potential errors – note
that the model may be using additional features to predict these values, but these
examples do merit closer inspection. We develop an error estimation procedure
in Algorithm 12 to automate this inspection. Overall, GTDA estimated errors
have a AUC score of 0.95 with true errors (B), while using model uncertainty
(one minus prediction probability) only has a AUC score of 0.87 (C). 123

14

7.5 Reeb network of a standard 2-layer graph convolutional network model trained
and validated on 10% labels of an Amazon co-purchase dataset (A) and estimated
errors shown in red (B). The map highlights ambiguity between “Networking
Products” and “Routers”. Checking these products shows wireless access points,
repeaters or modems as likely ambiguities (C). Additional label ambiguities in-
volve “Networking Products” and “Computer Components” regarding network
adapters (D); likewise “Data Storage” and “Computer Components” are ambigu-
ous for internal hard drives (E). These findings suggest that the prediction quality
is limited by arbitrary subgroups in the data, which Reeb networks helped locate
quickly. 125

7.6 We provide GTDA results on inspecting the prediction on the GPRGNN method
instead of the GCN used in Figure 7.5 in the main text. We list a detailed break-
down of categories and subcategories for a few components. For the two “Routers”
components in (A), there are many estimated errors because of ambiguous sub-
groups of “Networking Products” like “Wireless Access Points”, “Modems” or
“Repeaters”. The estimated errors are much less in (B) because “Networking
Products” has dominant less ambiguous subgroups. Similarly, for two “Data
Storage” components in (C), the one with more estimated errors has dominant
ambiguous subgraphs like “Internal Drives” or “Network Attached Storage” which
is confusing with “Computer Components” or “Networking Products”. 129

7.7 GTDA visualization of GPRGNN’s prediction on the original Amazon Comput-
ers dataset [122]. Similar to Figure 7.6 , “Routers” is mixed with “Networking
Products” and some components of “Data Storage” are mixed with “Computer
Components”. 130

7.8 We take a pretrained ResNet50 model and retrain the last layer to predict 10
classes in Imagnette (A). In (B), we zoom into the Reeb network group of “gas
pump” predictions and display images at different local regions (C). This shows
gas pump images with distinct visual features. Examining these subgroups can
provide a general idea on how the model will behave when predicting future
images with similar features as well as help us quickly identify potential labeling
issues in the dataset. For instance, we find a group of images in (D) whose true
labels are “cassette player” even though they are really images of “cars”. 131

7.9 This figure demonstrates the procedure of embedding images on a Reeb net com-
ponent. For each pair of adjacent nodes, we select images from one end that
are closest to the other end and fill in those images in half of the edge and vice
versa. Browsing around embedded images at different regions can help us quickly
identify 7 ambiguous “cassette player” images that are really just “cars”. 134

7.10 This figure compares the top 30 most confusing training images of “cassette
player” from influence functions [100] or GTDA. Both method can find some
common training images that are indeed ambiguous. However, it will take influ-
ence functions almost 4 hours to compute influence for all 12,894 training images
while GTDA only takes about 1 minute to process the entire dataset. 137

15

7.11 We embed images on components that are mostly “English Springer” predictions
(A). While most “English Springer” images are easy to classify, we also find some
groups where the background information is dominant in (B) and (D) or the
images are ambiguous (C). Consider zooming in to see the micropictures. 138

7.12 By embedding images on “cassette player” components (A) can help us find “cas-
sette player” in various shapes. 139

7.13 By embedding images on “church” components (A), we find one component has
images that depicts the inside decorations of church (B) while the other compo-
nents are images showing different outside landscapes of church. 140

7.14 We embed images on “golf ball” components (A). We can find images with only
one large golf ball (B), or images with lots of small golf balls (C), or images where
a person is playing golf ball (D), or images with a golf ball placed on grass (E). 141

7.15 We embed images on “parachute” components (A). We can mainly see parachutes
in two different shapes (B and C). Some images are ambiguous as they are really
just “sky” (D). We also find images where a person is standing on the ground
wearing a parachute (E) or a person that jumps into the sky (F). 142

7.16 Reeb net on the 10 easy classes of ImageNet created by the original TDA frame-
work. TDA is directly applied to the ResNet image embedding matrix without
transforming into KNN graph. Unlike GTDA visualization, we cannot find any
obvious subgroups other than 10 major components representing 10 classes or the
labeling issues of some “cassette player” images. Moreover, no information can
be extracted at all for around 28% images as they are either in some very small
Reeb net components or simply considered as noise by the clustering scheme. . . 143

7.17 We find GTDA output is strongly correlated to the mutation starting coordinates.
Such correlation is not immediately obvious in the visualization of other methods.
We could find other known biological structures like exons are localized into
different Reeb net components too, which is also weaker for other methods. In
both cases, GTDA performs significantly better than other methods (p < 0.001,
see Table 7.5) in two metrics we designed to measure such correlation. 144

16

7.18 We use Reeb networks to visualize harmful (likely pathogenic) and potentially
non-harmful (no evidence of pathogenicity) predictions of gene variants in BRCA1.
Other than the strong location sensitivity, some Reeb net components also map
to several secondary structures on part of the protein (1JNX) as shown in (A).
We further check the model predictions on variants targeting one secondary struc-
ture (B). Our error estimate shows a number of likely erroneous predictions, and
we flip these expected errors (a final analysis showed these errors were correctly
identified). We continue to see variants with distinct prediction in a small region
of a few amino acids. Close examination shows a strong association between mu-
tation types and model predictions where deletion or insertion is more likely to
be harmful than a single nucleotide variant. Additional insights when using the
full label set show some estimated errors are completely wrong (C). These predic-
tion mistakes involve gene mutation experiments with insignificant or conflicting
results and indicate underlying uncertainty. 146

7.19 (A) shows components found by GTDA, where each node is colored by median
hg38 coordinates of mutation starting positions. Different components are or-
dered by the averaged median coordinates in a zig-zag fashion from lower right
to upper left. We zoom in a few components where the gene variants have the
highest overlap ratio with the coding regions of 1JNX (B). Different node colors
are assigned based on which consecutive protein coding region they overlap with.
Nodes for gene variants not in the coding regions of 1JNX are not plotted. We
can find that different secondary structures of the crystal of 1JNX (C) are also
well separated in the GTDA visualization. 149

7.20 In the top part, we zoom in a component and mark training data using green
circles. Then we show GTDA estimated errors and model uncertainty on this
component. We flip predicted labels if the estimated error is larger than the
prediction probability. In the lower part, we can see GTDA error estimation has
much better overall AUC score and the corrected labels have higher training and
testing accuracy. 150

7.21 We zoom in one component GTDA finds and only show mutation records that
happen in the protein coding regions (non-coding regions are not shown as colored
dots, but do impact the Reeb net structure). After correcting prediction based
on GTDA error estimation, we still see records that happen in a small region of
the protein but still get different predictions. By checking these records, such
difference can be well explained by different mutation types. 153

7.22 Checking false error estimations of GTDA in some components reveals that they
are likely to be caused by variants experiments with insignificant or conflicting
results. 154

17

7.23 Overall GTDA performs the best on both metrics, while the other methods are
not clearly better or even worse than the original graph. This suggests (1) the
strong location sensitivity of mutation samples indeed exist in the original graph
(2) GTDA can not only preserve and enhance such location sensitivity, but also
visualize such property easily. 156

7.24 In this figure, we analyze the prediction of “screwdriver” from both ResNet and
AlexNet. We can see AlexNet can only predict “screwdriver” with high accuracy if
both handle and the tip are clearly visible in the image (see B and C). Otherwise,
if only the tip (D) or a small part of the handle (E) is shown or the image is
about a person using a screwdriver (F), AlexNet will likely fail while ResNet still
maintains high accuracy. 160

7.25 In this figure, we analyze the prediction of “hook” from both ResNet and VOLO.
VOLO has much higher training and validation accuracy on this class than ResNet
(A). We first find subgroups of images that shows a single hook where both model
have high accuracy (B). Then we find ResNet model often prefers to predict chain
instead of hook if they are both present in the image (C). ResNet model also has
difficulty predicting hook if only part of the hook is shown (D), or the shape of
the hook is not common (G) and (F), or there are lots of hooks in the image (E). 161

7.26 In this figure, we analyze the prediction of “desktop computer” from both ResNet
and VOLO. In (A), we show all components GTDA has found where “desktop
computer” is the most frequent predictions. ResNet and VOLO show very close
training and validation accuracy on these components. By embedding images on
them, we can first find subgroups of images that look confusing. For instance,
some images in (B) have labels like “space bar” or “screen” despite they are
just old fashioned desktop computers. Images in (C) show some “CD player”
or “hard disc” that look very similar to PC chassis. Images in (D) have desk,
desktop computer and monitor at the same time. And some images in (E) are
labeled as “mouse” even if they also contain a monitor or a keyboard. We can also
notice how ResNet and VOLO handle these confusing images differently. Overall,
VOLO’s prediction on “desktop computer” is more robust and less affected by
other objects in the image or similar objects from other classes. 162

7.27 We give a demonstration on how to use GTDA results to find which testing labels
are likely to be problematic. We first zoom in a component found by GTDA and
use green circles to mark testing images where we have expert labels (A). Then
we use GTDA to estimate prediction errors on circled images (B). Comparing
GTDA estimation with original testing labels can identify a few places with false
estimations (C). We consider these false estimations are due to problematic testing
labels and do a simple thresholding of 0.5, which flags 17 problematic testing
labels in this component (D). Comparing to expert labels can find 14 true positives
with a precision of 0.82 and a recall of 0.78 (E). 165

18

7.28 We show different GTDA visualizations as we vary the component size threshold.
The overlapping ratio is fixed as 1%. Using a large threshold will cause different
classes to be mixed together and the structure of small class like “Routers” or
“Webcams” will be over simplified. As we gradually reduce the thresholds, the
number of nodes and edges in the visualization will increase as well and differ-
ent classes will be separated into several components. The results look similar
between 100 and 200, which suggests GTDA structure are stable with respect to
small change in parameters. 168

7.29 We show different GTDA visualizations as we vary the overlapping ratio. The
component size threshold is fixed as 100. Using a large overlapping ratio will
cause different classes to be mixed together and some components too large to be
properly visualized. As we gradually reduce the overlapping ratio, different classes
will be separated into several components with each one easier to be plotted.
Similar ambiguity in “Networking Products” v.s. “Routers” and some part of
“Data Storage” v.s. “Computer Components” can be observed for overlapping
ratio between 0.5% and 1.5%. 168

7.30 Comparing the results of the dimension reduction techniques tSNE and UMAP
on 4 datasets to the topological Reeb net structure from GTDA shows similarities
and differences among summary pictures generated by these methods. The graph
created by GTDA permits many types of analysis not clearly possible with tSNE
and UMAP output. For running time comparison, since we also need to extract
model embeddings and predictions just like GTDA, we exclude such time and only
report the time of the actual execution of tSNE or UMAP or GTDA (including
Kamada-Kawai). 171

19

ABSTRACT

Graph diffusion is the process of spreading information from one or few nodes to the rest

of the graph through edges. The resulting distribution of the information often implies latent

structure of the graph where nodes more densely connected can receive more signal. This

makes graph diffusions a powerful tool for local clustering, which is the problem of finding

a cluster or community of nodes around a given set of seeds. Most existing literatures on

using graph diffusions for local graph clustering are linear diffusions as their dynamics can

be fully interpreted through linear systems. They are also referred as eigenvector, spectral,

or random walk based methods. While efficient, they often have difficulty capturing the

correct boundary of a target label or target cluster. On the contrast, maxflow-mincut based

methods that can be thought as 1-norm nonlinear variants of the linear diffusions seek to

“improve” or “refine” a given cluster and can often capture the boundary correctly. However,

there is a lack of literature to adopt them for problems such as community detection, local

graph clustering, semi-supervised learning, etc. due to the complexity of their formulation.

We addressed these issues by performing extensive numerical experiments to demonstrate

the performance of flow-based methods in graphs from various sources. We also developed

an efficient LocalGraphClustering Python Package that allows others to easily use these

methods in their own problems. While studying these flow-based methods, we find that they

cannot grow from small seed set. Although there are hybrid procedures that incorporate

ideas from both linear diffusions and flow-based methods, they have many hard to set pa-

rameters. To tackle these issues, we propose a simple generalization of the objective function

behind linear diffusion and flow-based methods which we call generalized local graph min-cut

problem. We further show that by involving p-norm in this cut problem, we can develop

a nonlinear diffusion procedure that can find local clusters from small seed set and capture

the correct boundary simultaneously. Our method can be thought as a nonlinear generaliza-

tion of the Anderson-Chung-Lang push procedure to approximate a personalized PageRank

vector efficiently and is a strongly local algorithm-one whose runtime depends on the size

of the output rather than the size of the graph. We also show that the p-norm cut func-

tions improve on the standard Cheeger inequalities for linear diffusion methods. We further

20

extend our generalized local graph min-cut problem and the corresponding diffusion solver

to hypergraph-based machine learning problems. Although many methods for local graph

clustering exist, there are relatively few for localized clustering in hypergraphs. Moreover,

those that exist often lack flexibility to model a general class of hypergraph cut functions

or cannot scale to large problems. Our new hypergraph diffusion method on the other hand

enables us to compute with a wide variety of cardinality-based hypergraph cut functions and

still maintains the strongly local property. We also show that the clusters found by solving

the new objective function satisfy a Cheeger-like quality guarantee.

Besides clustering, recent work on graph-based learning often focuses on node embeddings

and graph neural networks. Although these GNN based methods can beat traditional ones

especially when node attributes data is available, it is challenging to understand them because

they are highly over-parameterized. To solve this issue, we propose a novel framework that

combines topological data analysis and diffusion to transform the complex prediction space

into human understandable pictures. The method can be applied to other datasets not in

graph formats and scales up to large datasets across different domains and enable us to find

many useful insights about the data and the model.

21

1. INTRODUCTION

Many datasets important to machine learning either start as a graph or have a simple

translation into graph data. For instance, relational network data naturally starts as a

graph. Arbitrary data vectors become graphs via nearest-neighbor constructions, among

other choices. Graph structures naturally exist in many domains. To name a few, (1) in

social graphs, nodes can be users and edges can represent friendship (2) in co-purchasing

graphs, nodes can be products, edges can represent whether two products are commonly

purchased together (3) in biology datasets, nodes can be disease or medicine and edges can

be the relation that whether a medicine can cure a disease and many more. Consequently,

understanding graph-based learning algorithms – those that learn from graphs – is a recurring

problem.

Graph diffusion is the process of spreading the information from one or a few nodes to

the rest of the graph via edges. By analyzing the distribution of where the information is

information after many steps, insights can be obtained about the underlying structure of

the graph. If the information is mostly concentrated nearby the starting nodes, it means

there is a local cluster in the neighborhood where there are fewer edges leaving the cluster

than edges within the cluster. If there is a homophily property for edges in the network,

i.e. nodes connected by edges are more likely to be similar in terms of node attributes, the

information spread is also important for semi-supervised learning. This is because nearby

nodes with more information obtained imply better chances of sharing the same label as the

starting nodes. Consequently, local clustering and semi-supervised learning are probably the

two most common applications of graph diffusions (See Figure 1.1 as an example). Other

useful applications of diffusions include searching and ranking over nodes [1], predicting

missing links in Biological networks [2 – 4], generating low dimensional node embeddings for

visualization [5 , 6] and many more.

The existing literature on diffusions for local clustering are predominantly linear diffu-

sions. They are called linear because the underlying dynamics is equivalent to solving a

linear system defined over the adjacency matrix of the graph. They are often referred as

eigenvector, spectral, random walk or PageRank based methods. Linear diffusions are pow-

22

erful at finding local clusters as they can be efficiently computed over graphs in very large

scale and they can do so by only visiting a small portion of the graph. Consequently, there

exists strongly local algorithms for linear diffusions whose runtime only depends on the size

of the target cluster instead of the size of the entire graph. More importantly, there is a

theoretical guarantee over the quality of the local cluster, called the Cheeger inequality.

Comparing to linear diffusions, nonlinear diffusions are less widely used and studied.

Some existing reseasrch simply replaces the linear equations by nonlinear functions without

further understanding on which kind of optimization problems the new process is trying to

solve [7 , 8]. There is another line of research that uses maxflow-mincut computations to find

local clusters by improving upon a given input cluster that presumes to have substantial

overlap with the target cluster [9 – 11]. We categorize these flow-based methods as a special

type of nonlinear diffusion because some existing work shows the optimizations problems

they are trying to solve are a 1-norm variant of the optimization problems behind linear

diffusions [12].

Although local clustering has been an active research topic for a long time, challenges

remain with using these tools in diverse data. In our own study of the existing methods,

we find they all have different drawbacks. Linear diffusions often have difficulty capturing

the correct boundary of a target label or target cluster. In contrast, 1-norm or maxflow-

mincut based methods capture the boundary, but cannot grow from small seed set. Some

nonlinear diffusions that incorporate both have many hard to set parameters [8]. To address

these issues, we propose a set of nonlinear diffusions that are based on generalized min-cut

optimization problem. Especially, by involving p-norms, we can combine the advantages of

linear diffusion and flow-based methods. More importantly, we can develop a strongly local

nonlinear diffusion procedure to solve these problems which enable them to be used on large

scale real world datasets in time comparable to linear diffusions.

Other than local clustering, recent work in graph-based learning has often focused on

embeddings [13 , 14] and graph neural networks [15 – 17]. These models are motivated by the

huge success of using neural networks in tasks from other domains such as natural language

processing and computer vision. Not surprisingly, they also perform well in graph-based

learning problems and can easily beat traditional methods especially when there is a lot of

23

node features data as well besides the graph structure. However, it is very challenging to

understand these algorithms because they are highly over-parameterized and behave largely

like a black-box model. To tackle this issue, we propose a novel framework that combines

topological data analysis and diffusion to analyze these complex predictions by transforming

them into pictures representing a topological view. The result is a map of the predictions

that enables inspection and can often provide human understandable insights over the model

and the dataset. Other than graph-based learning, our method is general enough to be used

for datasets in other formats like images or DNA sequences and can scale up easily.

(a) Fashion MNIST graph (b) Seed set (c) A local cluster

Figure 1.1. An example of local clustering on Fashion MNIST dataset. (a)
The graph is constructed by connecting each image to its 5 nearest neighbors.
(b) We select some "pants" nodes as seed nodes. (c) We run one of our local
graph clustering algorithm [18] to find the other "pants" nodes. Blue nodes
are the ground truth. Lighter nodes are more likely to be "pants" nodes.

In summary, this thesis explores new opportunities of using nonlinear diffusion on graphs

for clustering, semi-supervised learning and analyzing predictions. The specific constructions

are listed below:

• Chapter 3 introduces our generalized min-cut problem in formal as well as other related

work in nonlinear diffusions [18].

• Chapter 4 will provide a comprehensive study on maxflow-mincut based local graph

clustering algorithms which corresponds to a 1-norm variant of the linear diffusion [19].

24

• Chapter 5 will provide a new strongly local nonlinear diffusion that can solve a set of

our generalized local min-cut problem as long as the cut functions satisfy a few criteria,

such as p-norms or p-norm variants of Berhu or Huber functions [18].

• Chapter 6 will further extend our generalized local min-cut problem to hypergraphs

that can model local hypergraph clustering problems associated with a broad family of

hyperedge cut functions. It will also provide another strongly local diffusion algorithm

to solve the generalized equation [20].

• Chapter 7 will introduce our novel framework that combines topological data analysis

and diffusion to inspect the prediction space of complex models [21].

• Chapter 8 summarizes the results in this thesis and proposes a few directions that

can further improve our nonlinear diffusion framework for clustering and the topology

based method for analyzing predictions.

The research in this thesis has been joint work with my adviser David F. Gleich. The

results in Chapter 4 are joint with Kimon Fountoulakis and Michael W. Mahoney. The

ideas in Chapter 6 are also joint with Nate Veldt, Haoyu Song and Pan Li. The material in

Chapter 7 is joint with Tamal K. Dey.

25

2. PRELIMINARY

This chapter will introduce some definitions that will be repeatedly used in the following

chapters.

Graphs:

We consider graphs that are undirected, connected, and weighted with positive edge

weights lower-bounded by 1. Let G = (V,E,w) be such a graph, where n = |V | and

m = |E|. The adjacency matrix A has non-zero entries w(i, j) for each edge (i, j), and

all other entries are zero. This is symmetric because the graph is undirected. The degree

vector d is defined as the row sum of A and D is a diagonal matrix defined as diag(d). The

incidence matrix B ∈ {0,−1, 1}m×n measures the differences of adjacent nodes. The kth

row of B represents the kth edge and each row has exactly two nonzero elements, i.e. 1 for

start node of kth edge and −1 for end node of kth edge. For undirected graphs, either node

can be the start node or end node and the order does not matter. We use i ∼ j to represent

that node i and node j are adjacent.

Hypergraphs:

Let H = (V, E) be a hypergraph where each hyperedge e ∈ E is a subset of V . Let

ζ = maxe∈E |e| be the maximum hyperedge size. With each hyperedge, we associate a splitting

function fe that we use to assess an appropriate penalty for splitting the hyperedge among

two labels or splitting the hyperedge between two clusters. Formally, let S be a cluster and

let A = e ∩ S be the hyperedge’s nodes inside S, then fe(A) penalizes splitting e.

26

Graph conductance:

Graph conductance is one of the common metrics that has been used to measure the

quality of a cluster. Given a partition (S, S̄), the cut of the partition is the sum of weights

of edges between S and S̄, which can be denoted by either

cut(S, S̄) =
∑

i∈S,j∈S̄

Aij, or cut(S) =
∑

i∈S,j∈S̄

Aij. (2.1)

The graph conductance is defined as

φ(S) =
cut(S)

min(vol(S), vol(S̄))
(2.2)

Hypergraph conductance:

With a splitting function identified, the cut value of any given set S can be written

as cutH(S) =
∑

e∈E fe(e ∩ S). The node degree in this case can be defined as di =∑
e:i∈e fe({i}) [22 , 23], though other types of degree vectors can also be used in both the

graph and hypergraph case. This gives rise to a definition of conductance on a hypergraph

φH(S) =
cutH(S)

min(vol(S),vol(S̄))
(2.3)

where vol(S) =
∑

i∈S di. This reduces to the standard definition of graph conductance when

each edge has only two nodes (ζ = 2) and we use the all-or-nothing penalty.

Relative volume:

The relative volume of S with respect to R and κ is

rvol(S;R, κ) = vol(S ∩R)− κvol(S ∩ R̄). (2.4)

27

Sweep cut:

The results of graph diffusion is usually a real-valued vector that induces a cluster. Given

such a vector x, a sweep cut process can convert x to a cluster by sorting x in decreasing

order and evaluating the conductance of each prefix set Sj = {[1], [2], ..., [j]} for each j ∈ [n],

where [j] is the index of the j-th largest element. The set with the smallest conductance will

be returned.

28

3. BACKGROUND

Diffusions are an intuitive procedure that have been widely used on various graph-based

learning problems. These applications include: (1) detecting communities in graphs [24 –

 27], (2) semi-supervised learning [28], (3) searching and ranking [1], (4) predicting protein

functions in biology networks [2 – 4], (5) node embeddings for visualization [5 , 6], and many

more. However, most theoretical results about graph diffusions focus on finding clusters or

communities in a graph with graph conductance as small as possible.

3.1 Linear graph diffusions

Most existing algorithms for graph diffusions are linear diffusions and they are closely

related to the personalized PageRank problem as defined by the following equation

(I − αAD−1)x = (1− α)s. (3.1)

In this equation, A is the adjacency matrix of the graph, D is the diagonal degree matrix,

I is the identity matrix, s is the initial distribution vector and x is the resulting diffusion

vector. Also, 0 < α < 1 is a user defined teleportation parameter. The solution of this

formulation is:

x = (1− α)
∞∑
k=0

αk(AD−1)ks (3.2)

It is also the same as the stationary distribution of a random walk with restart or lazy

random walk [29].

This formulation can also be thought as a locally biased version of the global spectral

optimization programs [30 , 31].

Perhaps the most well known algorithm for approximating the results of equation 3.1

is Andersen-Chung-Lang push procedure [24], which is motivated by a local spectral par-

titioning algorithm called Nibble [32]. Given an initial distribution s, the ACL algorithm

maintains a residual vector for all nodes. Then at each iteration, it finds a node whose resid-

ual is larger than a given threshold and it pushes value into that node so that its residual

29

will be smaller than the threshold. This process continues until no residual is larger than the

given threshold. This method is closely related to a coordinate descent method except that

only a partial step is taken at each iteration [12]. A better formulation of this residual vector

can be found in the next section. The most appealing part of ACL is speed, it can be proven

that at each step, the sum of residual will at least decrease by a constant value, which then

upper bounds the total number of iterations needed. Consequently, ACL is a strongly local

method, one whose running time only depends on the size of the target cluster instead of the

entire graph. Once the vector x has been computed or approximated, a sweepcut procedure

can convert this vector into a cluster of the graph.

The global spectral method of partitioning a graph into two clusters comes with a theo-

retical guarantee called Cheeger inequality [33], which states that the global cluster obtained

from spectral partitioning has a conductance not larger than a quadratic factor of the op-

timal value. Such theoretical guarantee also exists for local clusters found by ACL. Some

other work [34] further improves such guarantee by connecting the conductance of the re-

sulting cluster to the relative connectedness of the target cluster with respect to all the other

clusters in this graph.

3.2 Nonlinear graph diffusions

Although most existing diffusions are linear, a recent work introduces nonlinearity in dif-

fusions [7] and shows improvement comparing to linear diffusion in semi-supervised learning.

The node feature updating rule of the increasingly popular graph neural network models

can also be thought as nonlinear diffusions on graphs [14 , 35]. Some other work in GNN

have incorporated diffusion equations more directly and achieved good performance in graph

based learning problems [36 – 38]. Other than diffusions on graphs, nonlinear diffusions have

arisen in other domains like physics or ecology [39 – 42].

Another set of algorithms aim to improve an existing local cluster by solving a series of

mincut-maxflow optimization problems [9 – 11]. These methods can find improved clusters

with conductance within constant factor of the optimum assuming the input cluster has

substantial overlap with the target cluster. Although their approach looks quite different

30

to the linear diffusions, some work shows that these maxflow-mincut based methods can

actually be unified with linear diffusions involving 1-norm or 2-norm [12]. More details on

this part can be found in the next section. Some other work [8] tries to combine linear

diffusion and flow based cluster improving method into a single algorithm, which can be

thought as nonlinear diffusion as well and can improve Cheeger inequality.

The ongoing p-Laplacian research [43 – 47] tries to generalize the global spectral par-

titioning into p-norms and doing so can improve the standard Cheeger inequality to the

corresponding p-norm variant. A more recent work [48] also introduces p-norm into the

mincut-maxflow based algorithms and shows that the resulting local clusters can improve

the Cheeger inequality from linear diffusion approach as well. Using a simple nonlinearity

on a Laplacian pseudoinverse is also competitive with complex embedding procedures [49].

3.3 Nonlinear diffusions as generalized min-cut optimization

This section will present a key result of this thesis, which is to formulate a set of nonlinear

diffusion as a generalized min-cut optimization. Solving this optimization with different cut

functions can lead to new strongly local solvers that find better local clusters both empirically

and theoretically. This optimization problem originates from an important link between

between linear diffusion methods and the mincut-maxflow computations, which is that they

correspond to 1-norm and 2-norm variations on a general objective function (see [12]) that is

defined on a localized cut graph. The localized cut graph is constructed by adding an extra

source node s and an extra sink node t, and edges from s to seed nodes and from non-seed

nodes to t. Formally, given a graph G = (V,E) with adjacency matrix A, a seed set R ⊂ V

and two non-negative constants γs and γt, the adjacency matrix of the localized cut graph

is:

AR =


0 γsd

T
R 0

γsdR A γtdR̄

0 γtd
T
R̄ 0

 (3.3)

and a small illustration is:

31

s t

R1

R2
R3

R4

R5

a1
a2

a3

U1

U2U3

U4

3�
s 5�s

4�s

3�s

3�s

3�t
3�t

4�t

4�t

3�
t3�t

4�t

R R̄

Figure 3.1. An example of localized cut graph.

Here dR = DeR, dR̄ = DeR̄, and eR is an indicator vector for R. Formally, the general-

ized graph cut problem is defined as:

Definition 3.3.1 (Generalized local graph cut). Fix a set S of seeds and a value of γ.

Let B, w be the incidence matrix and weight vector of the localized cut graph. Then the

generalized local graph cut problem is:

minimize
x

wT `(Bx) + κγdTx =
∑

ij wi,j`(xi − xj) + κγ
∑

i xidi

subject to xs = 1, xt = 0,x ≥ 0.
(3.4)

Here `(x) is an element-wise cut function and κ ≥ 0 is a sparsity-promoting term.

Linear diffusion or PageRank-based algorithm is equivalent to solve equation 3.4 with

`(x) = 1
2
x2 and flow-based algorithm will solve a series of equation 3.4 with `(x) = |x|.

Moreover, suppose the objective function becomes L(x) when `(x) = 1
2
x2, then the residual

vector of ACL algorithm is nothing but − 1
γ
· dL/dx. At the optimum, the KKT conditions

require that r = 0, however, the result of ACL only approximately satisfies this condition by

requiring 0 < r < κd along with some other approximations.

Most importantly, in chapter 5 , we will show that we can design strongly local solver to

approximately solve equation 3.4 as long as the cut functions satisfy a few properties (See

Section 5.2 for more details). Our algorithm is closely related to ACL. We also show that for

cut functions that are p-norms, i.e. `(x) = 1
p
|x|p, where 1 < p < 2. Solving equation 3.4 can

produce better local clusters both empirically and theoretically. Our method is different from

32

the p-norm flow approach [48] as we directly solve the dual cut optimization problem. We

also include the localizing set S in our nonlinear penalty. Also, our solver uses the cut values

instead of the flow dual on the edges and our formulation can be easily adapted to solve

other nonlinear cut functions beyond p-norm such as p-norm variants of Huber or Berhu

functions. Moreover, a further generalized version of equation 3.4 can be used to solve local

hypergraph clustering problems which will be discussed in detail in Chapter 6 .

33

4. EMPIRICAL STUDY OF FLOW-BASED ALGORITHMS

FOR IMPROVING LOCAL CLUSTERS

4.1 Chapter Overview and Motivation

In this chapter, we discuss empirical studies on maxflow-mincut based local graph clus-

tering algorithms that can improve existing clusters. We see these algorithms as a special

type of nonlinear “diffusion” on graphs as they are solving a series of equation 3.4 with

`(x) = |x| and other minor modifications. However, these algorithms indeed have some key

difference comparing to other diffusion methods like PageRank as the results are no longer

a real valued vector, but a binary vector with 1 indicating the node is included in the final

cluster and 0 otherwise. Also, unlike other diffusion methods which usually grow from a

seed set, these flow-based algorithms can both grow and shrink a seed set. As a result, the

flow-based algorithms are usually phrased as cluster improving methods which are used to

refine the outputs from other graph clustering approaches like PageRank-based methods.

The resulting improved clusters often come with strong guarantee on conductance. For in-

stance, MQI can find the subset of the input cluster with the minimum conductance [9]. The

results and more details from this chapter can also be found in our paper [19].

Despite these flow-based algorithms are powerful both in theory and in practice. They are

not widely adopted due to reasons including the lack of comprehensive comparison from the

optimization point of view, the lack of examples demonstrating the power of these algorithms

in various applications and the lack of user friendly software to deploy them. To resolve

this, we first briefly talk about how the objective functions of various flow based cluster

improvement algorithms can be unified. (Section 4.3) Then we provide detailed empirical

studies on how to apply these methods to solve problems like (i) reducing conductance,

(Section 4.3) (ii) growing or shrinking input sets to identify hidden target sets when seeded

nearby by improving precision or recall, (Section 4.4) (iii) predicting labels of nodes when the

nearby nodes share the same label and when given a set of true labels (Section 4.5) and (iv)

generating locally-biased flow-based coordinates to highlight subtle hidden structure that is

hidden from other visualization techniques like spectral methods. (Section 4.6) Finally, we

34

implement a user friendly open source software to facilitate future potential work on this

topic of local graph clustering. (Section 4.7)

4.2 Unifying Objectives of Flow-based Algorithms

The three flow-based algorithms we will mainly discuss include MQI [9], FlowImprove [10]

and LocalFlowImprove [11]. These three algorithms all seek to solve the following optimiza-

tion problems subject to different parameter δ ≥ 0.

minimize
S⊂V

cut(S)
rvol(S;R,vol(R)/vol(R̄) + δ)

subject to rvol(S; . . .) > 0

(4.1)

More specifically, MQI solves δ = ∞ which implies that its solution set S ⊂ R. In

another word, MQI can find the set S with the smallest conductance among all sets that are

strictly within the seed set. FlowImprove solves δ = 0 and LocalFlowImprove interpolates

between FlowImprove and MQI by solving δ ≥ 0.

To understand better the connections between these three objectives, the following the-

orem states that conductance gets smaller, i.e., better, as we move from MQI to LocalFlow-

Improve to FlowImprove.

Theorem 4.2.1. Let G be an undirected, connected graph with non-negative weights. Let

R ⊂ V have vol(R) ≤ vol(R̄), where R̄ is the complement of R. Let SMQI, SFI, SLFI be

the optimal solution of the MQI, FlowImprove, and LocalFlowImprove(δ) objectives, respec-

tively. If the solutions of FlowImprove and LocalFlowImprove satisfy vol(SFI) ≤ vol(S̄FI)

and vol(SLFI) ≤ vol(S̄LFI) (that is, the solution set is on the small side of the cut), then for

any δ > 0, we have that

φ(SFI) ≤ φ(SLFI) ≤ φ(SMQI).

Proof. The first piece, that φ(SLFI) ≤ φ(SMQI) is a simple, useful exercise we briefly repeat

from Theorem 4 of [11]. Note that if S ⊆ R then φ(S) = cut(S)
rvol(S;R,κ)

for any κ. Now, for any

κ ≥ vol(R)/vol(R̄) > 0 we have

φ(SLFI) =
cut(SLFI)

vol(SLFI)
≤ cut(SLFI)

rvol(SLFI;R, κ)
.

35

Next, note that for the chosen setting of κ, we have that rvol(S;R, κ) > 0 for all S ⊆ R.

Thus, we have

φ(SLFI) ≤ min
S⊆R

cut(S)
rvol(S;R, κ)

≤ min
S⊆R

φ(S) = φ(SMQI).

This shows that both LocalFlowImprove and FlowImprove give better conductance sets than

MQI.

For the second piece, we use an alternative characterization of LocalFlowImprove as

discussed in [50]. LocalFlowImprove(δ) is equivalent to solving the following optimization

problem for some constant C:

minimize
S⊂V

cut(S)
rvol(S;R,vol(R)/vol(R̄))

subject to vol(S∩R)
vol(S) ≥ C, rvol(S; . . .) > 0

while FlowImprove solves the same problem without the constraint involving C. Then we

have:
cut(SFI)

rvol(SFI ;R, vol(R)/vol(R̄))
≤ cut(SLFI)

rvol(SLFI ;R, vol(R)/vol(R̄))

cut(SFI)

cut(SLFI)
≤ rvol(SFI ;R, vol(R)/vol(R̄))

rvol(SLFI ;R, vol(R)/vol(R̄))
.

If φ(SFI) > φ(SLFI), we have

cut(SFI)

cut(SLFI)
>

vol(SFI)

vol(SLFI)
.

Thus,
rvol(SFI ;R, vol(R)/vol(R̄))
rvol(SLFI ;R, vol(R)/vol(R̄))

≥ cut(SFI)

cut(SLFI)
>

vol(SFI)

vol(SLFI)
.

By substituting the definition of rvol and vol(S ∩ R̄) = vol(S)− vol(S ∩R),

(1 + vol(R)/vol(R̄)) · vol(SFI ∩R)− vol(R)/vol(R̄) · vol(SFI)

(1 + vol(R)/vol(R̄)) · vol(SLFI ∩R)− vol(R)/vol(R̄) · vol(SLFI)
>

vol(SFI)

vol(SLFI)

vol(SFI ∩R)
vol(SFI)

>
vol(SLFI ∩R)

vol(SLFI)
≥ C.

36

This means that SFI also satisfies the additional constraint in the optimization problem of

LFI. But SFI has smaller objective value, which is a contradiction to the fact that SLFI is

the optimal solution of LFI optimization problem.

Theorem 4.2.1 would suggest that one should always use FlowImprove to minimize the

conductance around a reference set R. However, FlowImprove is not a strongly local al-

gorithm while MQI and LocalFlowImprove are. Indeed, the following example shows that

FlowImprove will return one fourth of the graph even when started with a set R that is a

singleton.

Lemma 4.2.2. Consider a cycle graph (illustrated

on the right) with 4N + 8 nodes in 4 major re-

gions. Each set A and B has N nodes of degree 4

corresponding to a cycle graph with neighbors and

neighbors of neighbors connected. Each set C and

D has N degree 2 nodes. This introduces two extra

nodes, of degree 3, between each pair of adjacent

degree 2 and degree 4 regions. Consider using any

node of degree 4 as the seed node to FlowImprove

algorithm. Then, at optimality, FlowImprove will

return a set with N + 4 nodes that is a continu-

ous degree 4 region plus the four adjacent degree 3

nodes.

E0

E1

B0

B1

B2

B3

B4

F1

F0

F0

F1

A0

A1

A2

A3

A4

G0

G1

C0 C1 C2 C3 C4

D0 D1 D2 D3 D4

set C,
N nodes of degree 2

set D,
N nodes of degree 2

set B,
N nodes

of
degree 4

set A,
N nodes

of
degree 4

Proof. Without loss of generality, suppose we seed on a node from set A. According to

Lemma 7.2 of [19], when FlowImprove proceeds from iteration to iteration, it must return a

set with a strictly smaller cut value or the seed set R was optimal. This means FlowImprove

will only return one of the following sets. (Due to symmetry, there may be equivalent sets

that we don’t list.)

1. The seed node with cut 4.

2. A continuous subset of the A region, G0, G1, and a continuous subset of the set D,

with cut 3.

37

3. All of the A region, two adjacent degree 3 nodes (without loss of generality, G0 and

G1) on one end and one adjacency degree 3 node on the other edge (F1), with cut 3.

4. All of the A region and all adjacency degree 3 nodes (G0, G1, F0, F1), with cut 2.

5. All of the A region and all adjacency degree 3 nodes (G0, G1, F0, F1 and additional

nodes from sets C and D), with cut 2.

The goal is to show that case (4) is optimal, i.e., has the smallest objective value. Obviously,

case (5) cannot be optimal since it has the same cut value as case (4) but smaller relative

volume. Similarly, case (3) has the same cut value as case (2) but smaller relative volume.

So case (3) won’t be optimal either. So we only need to compare φR(S1), φR(S2) and φR(S4).

Observe that in this setting, θ = vol(R)

vol(R̄)
= 4

(2N−1)4+2N ·2+8·3 = 1
3N+5

, so we can compute that

φR(S4) =
2

4− θ(4(N − 1) + 3 · 4)
=

3N + 5

4N + 6
< 1 = φR(S1).

On the other hand, suppose in case (2), there are 1 ≤ k < N A nodes and m ≥ 0 D nodes,

then we can write

φR(S2) =
3

4− θ(4(k − 1) + 3 · 2 + 2m)
≥ 3

4− 6θ
=

9N + 15

12N + 14
> φR(S4).

So case (4) is optimal.

The connection to equation 3.4

The reason these algorithms are called “flow-based” algorithms is that their objectives

can all be minimized by solving a series of maxflow-mincut subproblems. Specifically, they

will all solve the following problem iteratively starting with S0 = R and θ0 = φR(R) until θ0
no longer decreases, here σ = δ + vol(R)/vol(R̄).

Sk+1 := argminS cut(S)− θk
(
vol(S ∩R)− σvol(S ∩ R̄)

) (4.2)

38

which is equivalent to the following optimization problem:

minimize
x

∑
i∼j wij|xi − xj|+ δ(e− x)TdR + σθkx

TdR̄

subject to x ∈ {0, 1}n.
(4.3)

And problem 4.3 is equivalent to problem 3.4 with `(x) = |x|, γ = κ = 0, γs = δ and γt = σθk.

Note that for LocalFlowImprove, to achieve strong locality, one must either construct this

localized cut graph in an augmented way [11] or use a modified Dinic’s maxflow algorithm [50]

while for MQI and FlowImprove, any standard maxflow computations will work.

4.3 Flow-based Cluster Improvement Algorithms Reduce Conductance

In the first set of results, we will demonstrate how MQI, FlowImprove, and LocalFlowIm-

prove can reduce the conductance of the input reference set in a real world graph. We will use

fi and lfi-δ to denote FlowImprove and LocalFlowImprove. The dataset is a k = 16-nearest

neighbor graph constructed on the Main Galaxy Sample (MGS) in SDSS Data Release 7.

This data begins with the emission spectra of 517,182 galaxies in 3841 bands. We create

a node for each galaxy and connect vertices if either is within the 16 closest vertices to

the other based on a Euclidean distance-like measure). The graph is then weighted pro-

portional to this distance. The result is a weighted undirected graph with 517,182 nodes

and 15,856,315 edges (and 517,182 self-loops) representing nearest neighbor relationships

among galaxy spectra. Figure 4.1 provides a visualization of a global Laplacian eigenvector

embedding of this graph. For more details on this dataset, we refer readers to [51 , 52].

Starting from a random node, we compute reference sets with 2-hop BFS. Then we run

mqi, lfi-1, lfi-0.1, and lfi-0.01 on the results. We repeat this experiment 2526 times.

The output to input conductance ratio is shown in Figure 4.3 with reference to the original

reference conductance (Figure 4.2a) and also with reference to the MQI conductance (Fig-

ure 4.2b). From these results, we can see that reducing δ results in improved conductance

for lfi and lfi always reduces the conductance more than mqi which verifies Theorem 4.2.1 .

We repeat the experiment above, but in this time, we compute reference sets with seeded

PageRank followed by a sweepcut procedure by [24] to locally optimize the conductance of

39

(a) The full graph (b) Zoom into top-right

Figure 4.1. The Main Galaxy Sample (MGS) dataset has 517,182 nodes and
32,229,812 edges. This display shows an eigenvector embedding of the graph
along with edges shown in blue. The node color is determined by the horizontal
coordinate, which will be re-used in plots in subsequent sections. The right
part of the visualization (orange coordinates) hints at structure hidden within
the upper band, which we will study in Section 4.6 .

the result. Consequently, the reference sets we start with are already fairly high quality. The

results with these new reference sets are in Figure 4.3a and Figure 4.3b . We can see that

even when starting from reference sets that are already fairly high quality, mqi, fi and lfi

can still improve their conductance.

4.4 Finding Nearby Targets by Growing and Shrinking

In this section, we will demonstrate cluster improvement methods can be used to recover

a hidden target set of vertices from a nearby reference set, e.g. a coherent section of an

image. The goal here is accuracy in returning the vertices of this set, and we can measure

this in terms of precision and recall. Let T be a target set we seek to find and let S be the

set returned by the algorithm. Then the precision score is |T ∩ S|/|S|, which is the fraction

40

0.0 0.2 0.4 0.6 0.8 1.0
(Improved) / (2-hop BFS)

0

1

2

3

4

5

6
Pr

ob
ab

ilit
y

de
ns

ity

0.0 0.5 1.0
0

1
CDF MQI

LFI (= 0.01)
LFI (= 0.1)
LFI (= 1)

(a) Conductance improvement relative to 2-hop
BFS

0.0 0.2 0.4 0.6 0.8 1.0
(LocalFlowImprove) / (MQI)

0

1

2

3

4

5

6

Pr
ob

ab
ilit

y
de

ns
ity

0.0 0.5 1.0
0

1
CDF

LFI (= 0.01)
LFI (= 0.1)
LFI (= 1)

(b) Conductance improvement relative to MQI

Figure 4.2. A summary of 2585 experiments in the MGS dataset that show
(i) that reducing δ in lfi produces sets of smaller conductance, when the
input set is a 2-hop BFS set, and also (ii) that lfi and fi always find smaller
conductance sets than mqi.

of results that were correct, and the recall score is |T ∩ S|/|T |, which is the fraction of all

results that were obtained. The ideal scenario is that both precision and recall are near 1.

We begin by looking at the simple scenario when the initial reference R is entirely con-

tained within T , and also a scenario when R is a strict superset of T . This setting allows us

to see how the flow-based algorithms grow or shrink sets to find these targets T , and it gives

us a useful comparison against simple greedy improvement algorithms as well as against

spectral graph-based approaches. To view the results conveniently, we examine these algo-

rithms on weighted graphs constructed from images. The construction of a graph based on

an image is explained in Figure 4.4 .

The results of the experiment are shown in Figure 4.5 . We consider three distinct targets

within a large image, as shown in Figure 4.5a and Figure 4.5b : the left dog, middle dog, and

right person. In our first case, the reference is entirely contained within the target. In this

case, we can use either fi or lfi to attempt to enlarge to the target. (Note that we cannot use

mqi, as the target set is larger than the seed set.) For comparison, we use a seeded PageRank

algorithm as well. We use two seeded PageRank scenarios that correspond to both fi and

lfi, see Figure 4.5c to Figure 4.5f . ρ is a parameter to control the level of regularization

similar to κ in equation 3.4 . These show that spectral methods that grow tend either find

41

0.0 0.2 0.4 0.6 0.8 1.0
(Improved) / (Seeded PR)

0

1

2

3

4

5

6
Pr

ob
ab

ilit
y

de
ns

ity

0.0 0.5 1.0
0

1
CDF MQI

LFI (= 0.01)
LFI (= 0.1)
LFI (= 1)

(a) Conductance improvement relative to seeded
PageRank

0.0 0.2 0.4 0.6 0.8 1.0
(LocalFlowImprove) / (MQI)

0

1

2

3

4

5

6

Pr
ob

ab
ilit

y
de

ns
ity

0.0 0.5 1.0
0

1
CDF

LFI (= 0.01)
LFI (= 0.1)
LFI (= 1)

(b) Conductance improvement relative to MQI

Figure 4.3. A summary of 2526 experiments in the MGS dataset that show
flow-based methods can still reduce conductance even when the input set is
the result of another conductance minimizing procedure.

a region that is too big or fail to grow large enough to capture the entire region. This is

quantified by a substantial drop in precision compared with the flow method. In neither

case, spectral methods fail to capture the correct boundary of the target object. Second, we

consider the case when the target is contained within the reference set. This corresponds

to the mqi setting as well as a variation of spectral clustering that called Local Fiedler [53]

(because it uses the eigenvector with minimal eigenvalue in a submatrix of the Laplacian).

The results are in Figure 4.5g and Figure 4.5h , and they show a small precision advantage for

the flow-based methods (see the text below each image). Finally, for reference, in Figure 4.5i

and Figure 4.5j , we also include the results of a purely greedy strategy that grows or shrinks

the reference set R to improve the conductance. This is able to find reasonably good results

for only one of the test cases and shows that these sets are not overly simple to identify, e.g.,

since they cannot be detected by algorithms that trivially grow or expand the seed set.

4.5 Using Flow-based Algorithms for Semi-supervised Learning

In this section, we will evaluate the performance of flow-based algorithms in the semi-

supervised learning setting. There are three datasets we use to evaluate the algorithm for

42

0.82

0.97

0.70

0.12

0.43

0.82

0.92

0.00

0.00

0.11

(a) Input Image (b) Add nodes for each pixel

(d) Each pixel adds edges to nearby pixels to reflect the similarity of intensity values

(c) Add edges between pixels

Distance is small

Intensity and distance are close

Add weighted edge (u,v)

if d(u,v) is small and

w(u,v) is large s

Figure 4.4. We turn an image into a graph by adding a node for every pixel
(b). Then we connect the nodes if the associated pixels are close by (distance
less than r) as well has have similar pixel values). We weight the edge by
the degree of similarity. The resulting graph has small conductance sets when
there are regions with similarly colored pixels.

semi-supervised learning: a synthetic stochastic block model, the MNIST digits data, and a

citation network.

The experiment goes as follows: for each class, we randomly select a small subset of

nodes, and we fix the labels of these nodes as known. We then run a spectral method or

flow method where this set of nodes is the reference. We vary the number of labeled nodes

included from 0.5% to 15% of the class size. For each fixed number of labeled nodes, we

43

(a) The full image

right
 personleft

 dog
middle
 dog

(b) The targets

PR=0.970, RC=0.930
=0.0035

PR=0.975, RC=0.898
=0.0017

PR=0.627, RC=0.937
=0.0001

(c) fi

PR=0.706, RC=0.916
=0.0170

PR=0.932, RC=0.836
=0.0201

PR=0.887, RC=0.917
=0.0017

(d) Seeded PageRank, ρ = 10−12

PR=0.970, RC=0.930
=0.0035

PR=0.975, RC=0.898
=0.0017

PR=0.938, RC=0.913
=0.0008

(e) lfi-0.3

PR=0.839, RC=0.794
=0.0358

PR=0.937, RC=0.796
=0.0234

PR=0.972, RC=0.664
=0.0368

(f) Seeded PageRank, ρ = 10−6

PR=0.970, RC=0.930
=0.0035

PR=0.975, RC=0.898
=0.0017

PR=0.916, RC=0.933
=0.0008

(g) mqi

PR=0.959, RC=0.944
=0.0040

PR=0.975, RC=0.899
=0.0018

PR=0.929, RC=0.923
=0.0009

(h) LocalFiedler

PR=0.965, RC=0.502
=0.0367

PR=0.987, RC=0.407
=0.0361

PR=0.939, RC=0.772
=0.0166

(i) Greedy Grow

PR=0.356, RC=0.999
=0.0626

PR=0.272, RC=0.999
=0.0595

PR=0.234, RC=0.999
=0.0367

(j) Greedy Shrink

Figure 4.5. Illustration of finding targets within an image (a) corresponding
to the three low-conductance regions shown in (b). The reference sets given
to mqi, fi, and lfi are given by the yellow regions, which either need to
be grown or shrunk to find the target. For growing, we compare against
seeded PageRank, which is a spectral analogue of fi and lfi; for shrinking,
we compare against a local Fiedler vector, a spectral analogue of MQI, as well
as simple greedy approaches for both. The flow-based methods capture the
borders nicely and give high recall for growing and high precision for shrinking.
Among other things, in this case, fi grows too large on the right person (c)
whereas lfi (e) captures this target better. RC stands for recall and PR stands
for precision.

44

repeat this 30 times to get a distribution of precision, recall, and F1 scores (where F1 is the

harmonic mean of precision and recall), and we represent an aggregate view of this. For the

flow methods, the output is a binary vector with 1 suggesting the node belongs to the class

of reference nodes. Thus, it’s possible that some nodes are classified into multiple classes,

while some other nodes remain unclassified. We consider the first case as false positives and

the second case as false negatives when computing precision and recall. For the spectral

method, we use the real-valued solution vector to uniquely assign a node to a class. To

robustify the process of rounding diffusion vector to class labels, we use a strategy from [28],

which involves rounding to classes based on the node with the smallest rank in the ranked-list

of each diffusion vector.

The results are in Figure 4.6 and show that the flow-based methods have uniformly high

precision but extremely low recall when seed set is small. As the set of known labels increases,

the recall increases, yielding a higher overall F1 score. Furthermore, the regularization in

lfi-0.1 causes the set sizes to be smaller than fi, which manifests as a decrease in recall

compared with fi. MNIST is the only exception where fi over-expands and classify one set

of nodes into two labels.

The performance of fi and lfi in semi-supervised learning can be theoretically justified

by the following lemma, which is a special case of Lemma 3.5 in our paper [19]:

Lemma 4.5.1. If LFI or FI proceeds to iteration k+1 in equation 4.2 , then it satisfies both

0 ≤ rvol(Sk+1) < rvol(Sk) and cut(Sk+1) < cut(Sk).

Here rvol(Sk+1) ≥ 0 restricts that lfi cannot expand too far away from the seed set and

cut(Sk+1) < cut(Sk) restricts that fi won’t stop expanding until it finds a set with smaller

cut value.

4.6 Using Flow-based Methods for Local Coordinates

In this section, we investigate how flow-based methods can be used to compute real-

valued coordinates that can show different types of structure within data compared with

spectral methods.

45

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PubMed MNIST SBM

0.560.54 0.53 0.51 0.53 0.59SPR 0.76 0.73 0.75 0.79 0.74 0.76 0.880.86 0.87 0.87 0.88 0.86
0.04 0.28 0.57 0.67 0.70 0.71LFI

F1
 S

co
re

0.01 0.88 0.96 0.96 0.96 0.96 0.10 0.36 0.77 0.98 0.99 0.99
0.04 0.40 0.67 0.70 0.71 0.71FI 0.24 0.86 0.87 0.87 0.87 0.87 0.10 0.36 0.98 0.99 0.99 0.99

0.5 1.5 3 4.5 6 7.5

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

0.5 1.5 3 4.5 6 7.5 1 3 6 9 12 15Ratio (%)
99 296 592 887 1183 1479 300 900 1800 2700 3600 4500 60 180 360 540 720 900No. labels

True labels included in seeds

SPR (Seeded PageRank) LFI (LocalFlowImprove) FI (FlowImprove)

Figure 4.6. The results of the semi-supervised learning experiments show
that the flow-based methods lfi-0.1 and fi are more sensitive to the number
of known true labels included in the reference seed sets compared with seeded
PageRank.

Given a reference set R, we randomly choose N subsets of R with exactly k entries; for

each subset we add all nodes within distance d and call the resulting sets called R1, . . . , RN .

These serve as inputs to the flow algorithms. For each subset, we compute the result of a

flow-based improvement algorithm, which gives us sets Si. For each Si, we form an indicator

vector over the vertices, xi, where the entry is 1 if the vector is in the set and 0 otherwise.

We assemble these vectors as columns of a matrix X, and we use the coordinates of the

dominant two left singular vectors as flow-based coordinates. This procedure is given as an

algorithm in Algorithm 1 . Note also that this procedure can be performed with spectral

algorithms as well. The main intuition behind this procedure is that spectral method like

46

Algorithm 1 The local flow-based algorithm to generate flow-based coordinates.
Require: A graph G, a set R and parameters

• N : the number of sets to sample

• k: the size of each subset

• d: the expansion distance

• c: the dimension of the final embedding

• improve: a cluster improvement algorithm

Ensure: An embedding of the graph into c coordinates for each node
1: Let n be the number of vertices.
2: Allocate X, an n-by-N matrix of zeros.
3: for i in 1 to n do
4: Let T be a sample of k entries from R at random without replacement
5: Let Ri be the set of T and also all vertices within distance d from T
6: Let Si be the set that results from improve(G,Ri)
7: Set X[Si, i] = 1
8: end for
9: Compute the rank-c truncated SVD of X and let U be the left singular vectors.

10: Return U , each row gives the c coordinates for a node

PageRank is solving a linear system. So the solution of a seeded PageRank can be thought

as a stationary distribution of a lazy random walk with a uniform seed distribution over

R. [24] Similarly, the first singular vector of X is also an approximation to the probability

that one node shows up in the cluster of each iteration. To get the second coordinate, we

want some orthogonal information, i.e. the second singular vector of X.

We perform this analysis on the Main Galaxy Sample (MGS) dataset to highlight the

local structure in a particularly dense region of the spectral embedding that was used for

Figure 4.1 . The seed region we use is shown in Figure 4.7a and has 201,252 vertices, which

represents almost half the total graph. We use Algorithm 1 to get local spectral (Figure 4.7b)

and local flow embeddings (Figure 4.7c). We find that the local flow embedding shows

considerable substructure that is useful for future analysis.

47

(a) The seed region (b) Local spectral embedding (c) Local flow embedding

Figure 4.7. Local spectral and local flow embeddings of the large, 201,252
node, seed region – shown in green in (a) – that is compressed in the global
spectral embedding from Figure 4.1 . In (b), the local spectral shows the nodes
colored with the same color as in Figure 4.1 . Nodes that were not touched by
the local embedding are shown with the big node on the right hand side. In
(c), the local flow embedding with the same color scheme and same big node
on the right hand side. Note that the spectral embedding does not show any
clear sub-structure besides a top-bottom split. In contrast, the flow embedding
shows a number of pockets of structure indicative of small conductance subsets.

As a simple validation that this substructure is real, we use the 2d embedding coordi-

nates as input to a k-means clustering procedure on both the local spectral and local flow

coordinates. For each cluster that results from this procedure, we compute its conductance.

Histograms of conductance values are shown in Figure 4.8 for k = 50 and k = 100. Both of

these histograms show consistently smaller conductance values for the flow-based embedding.

4.7 Scalable Implementation of Local Graph Clustering Algorithms

In this section, we will introduce a open source framework localgraphclustering. The goal

of this framework is:

48

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
(kmeans clusters)

0

2

4

6

Pr
ob

ab
ilit

y
de

ns
ity Local Flow Embedding

Local Spectral Embedding

(a) k = 50

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
(kmeans clusters)

0

2

4

6

8
Pr

ob
ab

ilit
y

de
ns

ity Local Flow Embedding
Local Spectral Embedding

(b) k = 100

Figure 4.8. A histogram of cluster conductance scores that come from using
k-means on the two-dimensional local spectral and local flow embeddings from
Figure 4.7 .

49

Convenience:

It provides a unified and friendly interface in Python to compare different local graph

clustering algorithms conveniently. This framework is used to perform all the analysis in this

chapter. Currently, our framework includes global graph partitioning algorithms like com-

puting Fiedler vector [53], PageRank-based local graph clustering algorithms like ACL [24]

or l1-regularized PageRank [54], flow-based algorithms like MQI or LocalFlowImprove and

some more advanced routines that combines ideas of PageRank and flow like CRD [55].

Scalability:

It provides scalable implementations for every local graph clustering algorithm. To avoid

the overhead of Python, the algorithm is written in C++ and compiled into a shared object

library which is then called by Python API. To reduce memory overhead, we represent the

graph in its compressed sparse row format. And one can choose to store graph indices in 32

bit or 64 bit integers.

Exploration:

It provides convenient tools to explore characteristics of new datasets by generating its

network community profile plot (NCP) [56]. Intuitively, NCP plot measures the quality of

the best possible community at various community sizes. It can be formally defined as:

Definition 4.7.1. Given a graph G with adjacency matrix A, the NCP plot plots Φ(k) as a

function of k, where

Φ(k) = min
S⊂V,f(S)=k

g(S) (4.4)

Here f(S) can be the effective size or volume of set S and g(S) can be the conductance or

expansion of set S.

To show the simplicity of our framework, in the following code segment, we use our

framework to read a graph, perform ACL to find a local cluster and refine the local cluster

with lfi.

50

� �
import localgraphclustering as lgc

Read a graph

g = lgc.GraphLocal('./datasets/JohnsHopkins.graphml','graphml','\t')

Select seed nodes

ref_node = [2767]

Run ACL

p = lgc.approximate_PageRank(g,ref_node,method="acl")

Generate partition

partition = lgc.sweep_cut(g,p)[0]

Compute statistics of this partition

g.set_scores(partition)

Refine partition

refined_par = lgc.SimpleLocal(g,partition)

Compute statistics of refined partition

g.set_scores(refined_par)� �
The following code segment shows how to generate NCP plot on the same dataset.

� �
import localgraphclustering as lgc

Read a graph

g = lgc.GraphLocal('./datasets/JohnsHopkins.graphml','graphml','\t')

Create NCP data object

ncp_instance = lgc.NCPData(g)

Call NCP with a method of choice

ncp_instance.approxPageRank(ratio=0.5,timeout=7200,nthreads=100)

Check results in a data frame

ncp_instance.as_data_frame()

Create NCP plot object

ncp_plots = lgc.NCPPlots(ncp_instance,method_name = "acl")

Plot NCP results

fig, ax, min_tuples = ncp_plots.cond_by_size()

fig� �
The results of this code segment is shown in Figure 4.9 . We use a hexagonal binning plot

where the color of the points represent the number of experiments in that bin. If one area

is brighter, it means more experiments lie in that area. The blue line marks the minimum

y-axis value at each level of community size.

51

Figure 4.9. An example of NCP plot.

52

5. STRONGLY LOCAL P-NORM DIFFUSIONS ON GRAPHS

FOR CLUSTERING AND SEMI-SUPERVISED LEARNING

5.1 Chapter Overview and Motivation

In this chapter, we will present a strongly local diffusion procedure to solve equation 3.4

with `(x) = 1
p
|x|p for any p > 1, especially 1 < p < 2. The results and more details from

this chapter can also be found in our paper [18].

The motivation of exploring these p-norm variants other than 1-norm or 2-norm which

corresponds to flow-based or PageRank-based methods is that in our study of these two

types of algorithms, we find that they often exhibit in some sense opposite behavior from

each other. The flow based methods cannot grow from a small seed set. The linear diffusions

or PageRank based methods on the other hand, often "expand" or "bleed out" over natural

boundaries in the data. This can be seen in Figure 4.5 and Figure 4.6 . This finding motivates

us to look at p-norm variants of graph cut problems with 1 < p < 2. Figure 5.1 is an example

to show what these p-norm variants are capable of, where our p-norm variant can not only

grow from a single seed but also capture the boundary of the target cluster nicely.

We are not the first to notice the usefulness or effects of p-norm as a solution. For instance,

the p-Laplacian [43] and related ideas [45] has been widely studied as a way to improve results

in spectral clustering [44] and semi-supervised learning [46]. This has recently been used to

show the power of simple nonlinearities in diffusions for semi-supervised learning as well [7].

As the most related work, a similar p-norm variant of the flow dual problem is recently

proposed [48] for local graph clustering. In Figure 5.2 , we compare using power functions

`(x) = 1
p
|x|p to a variety of other techniques for semi-supervised learning and local clustering.

(For various reasons, we interchangbly switch between p-norm and q-norm in the subsequent

sections of this chapter.)

The major rationale for our approach is that our algorithmic techniques are closely related

to those used for 2-norm optimization. It remains the case that spectral (2-norm) approaches

are far more widely used in practice, partly because they are simpler to implement and use,

whereas the other approaches involve more delicate computations.

53

(a) Seed node and the target. (b) 2-norm problem. (c) 1.1-norm problem.

Figure 5.1. A simple illustration of the benefits of our p-norm methods. In
this problem, we generate a graph from an image with weighted neighbors as
described in [57]. We intentionally make this graph consider large regions, so
each pixel is connected to all neighbors within 40 pixels away. (Full details
in the supplement.) The target in this problem is the cluster defined by the
interior of the window and we select a single pixel inside the window as the
seed. The three colors (yellow, orange, red) show how the non-zero elements of
the solution fill-in as we decrease a sparsity penalty in our formulation (yellow
is sparsest, red is densest). The 2-norm result exhibits a typical phenomenon of
over-expansion, whereas the 1.1-norm accurately captures the true boundary.
We tried running various 1-norm methods, but they were unable to grow a
single seed node, as has been observed in many past experiments and also
theoretically justified in [19 , Lemma 7.2].

54

(a) PageRank (α = 0.85) (b) q=2, γ= κ =10−3 (c) q=5, γ=10−5, κ=10−4 (d) q=1.25, γ= κ =10−3

(e) heat kernel [26 , 27]
t = 10, ε = 0.003

(f) CRD [8]
U = 60, h = 60, w = 5

(g) p = 1.5-diffusion [7],
h=0.002, k = 35000

(h) 1.5-Laplacian [7], h =
0.0001, n = 7500

Figure 5.2. The graph is a 50-by-50 regular grid-graph with 4 axis-aligned
neighbors, the seed is in the center. The diffusions localize before the boundary
so we only show the relevant region and the quantile contours of the values.
We selected the parameters to give similar-sized outputs. (Top row) At left
(a), we have seeded PageRank; (b)-(d) show our q-norm objectives; (b) is a
2-norm which closely resembles PageRank; (c) is a 5-norm that has diamond-
contours; and (d) is a 1.25-norm that has square contours. (Bottom row)
Existing work with the (e) heat kernel diffusion [26 , 27], (f) CRD [8], (g) non-
linear diffusions [7] (with a simple (g) p-norm nonlinearity in the diffusion or a
(h) p-Laplacian) show that similar results are possible with existing methods,
although they lack the simplicity of our optimization setup and often lack the
strongly local algorithms.

In Section 5.3 , we will show that our formulations are amenable to similar computa-

tion techniques as used for 2-norm problems, which makes them also easier to understand

or implement and runs much faster than other nonlinear approaches 5.6 . Moreover, our

approach can solve other types of `(x) functions as long as certain constraints are satis-

fied in Section 5.2 . We also provide a theoretical analysis of finding planted target clusters

55

with our method and show that the p-norm cut functions improve on the standard Cheeger

inequalities for random walk and spectral methods under certain assumptions 5.5 .

5.2 Beyond P-norm Cut

If `(x) is convex, then the problem 3.4 is convex and can be solved via general-purpose

solvers such as CVX. An additional convex solver is SnapVX [58], which studied a general

combination of convex functions on nodes and edges of a graph, although neither of these

approaches scale to the large graphs we study in subsequent portions of this paper (65 million

edges). To produce a specialized, strongly local solver, we found it necessary to restrict the

class of functions `(x) to have similar properties to the power function `(x) = 1
p
|x|p and its

derivative `′(x).

Definition 5.2.1. In the [− 1, 1] domain, the loss function `(x) should satisfy (1) `(x) is

convex; (2) `′(x) is an increasing and anti-symmetric function; (3) For ∆x > 0, `′(x) should

satisfy either of the following condition with constants k > 0 and c > 0 (3a) `′(x + ∆x) ≤

`′(x) + k`′(∆x) and `′′(x) > c or (3b) `′(x) is strictly increasing, c-Lipschitz continuous and

`′(x+∆x) ≥ `′(x) + k`′(∆x) when x ≥ 0.

Remark. If `′(x) is Lipschitz continuous with Lipschitz constant to be L and `′′(x) > c, then

constraint 3(a) can be satisfied with k = L/c. However, `′(x) can still satisfy 3(a) even if it

is not Lipschitz continuous. A simple example is `(x) = |x|1.5, −1 ≤ x ≤ 1. In this case,

k = 1 but it is not Lipschitz continuous at x = 0. On the other hand, when `′(x) is Lipschitz

continuous, it can satisfy constraint 3(b) even if `′′(x) = 0. An example is `(x) = |x|3.5,

−1 < x < 1. In this case `′′(x) = 0 when x = 0 but `′(x)(x + ∆x) ≥ `′(x)(x) + `′(x)(∆x)

when x ≥ 0.

Lemma 5.2.1. The power function `(x) = 1
p
|x|p, −1 < x < 1 satisfies definition 5.2.1 for

any p > 1. More specifically, when 1 < p < 2, `(x) satisfies 3(a) with c = p−1 and k = 22−p,

when p ≥ 2, `(x) satisfies 3(b) with c = p− 1 and k = 1.

56

Proof. First, we know `′(x) = |x|p−1 sgn(x) and `′′(x) = (p − 1) |x|p−2. And we define

`′′(0) =∞.

For 3(a), since −1 < x < 1, 1 < p < 2, we have `′′(x) > (p− 1). On the other hand

`′(x+∆x)− `′(x)
`′(∆x)

=
∣∣∣ x
∆x

+ 1
∣∣∣p−1

sgn
(x

∆x
+ 1
)
−
∣∣∣ x
∆x

∣∣∣p−1

sgn
(x

∆x

)
Define a new function f(x) = |1 + x|p−1 sgn(1+x)−|x|p−1 sgn(x). f ′(x) = |1 + x|p−2−|x|p−2.

So the maximum of f(x) is achived at f(−0.5) = 22−p.

For 3(b), since −1 < x < 1, p > 2, we have `′′(x) < (p− 1). And when x ≥ 0, (x+∆x)p−1 ≥

xp−1 +∆xp−1 is obvious.

Note that the `(x) = |x| does not satisfy either choice for property (3). Consequently,

our theory will not apply to mincut problems. We note that p-norm generalizations of the

Huber and Berhu loss functions [59] do satisfy these definitions.

Definition 5.2.2. Given 1 < q < 2 and 0 < δ < 1, the “q-Huber” and “Berq” function are

q-Huber `(x) = =

1
2
δq−2x2 if |x| ≤ δ

1
q
|x|q + (q−2

2q
)δq otherwise

Berq `(x) = =

1
q
δ2−q |x|q if |x| ≤ δ

1
2
x2 + (2−q

2q
)δ2 otherwise.

Lemma 5.2.2. When −1 ≤ x ≤ 1, both “q-Huber” and “Berq” satisfy Definition 5.2.1 . The

value of k for both is 22−q, the c for q-Huber is q − 1 while the c for “Berq” is 1.

Proof. Obviously, both condition (1) and (2) are satisfied for “q-Huber” and “Berq”. Now

we show 3(a) is also satisfied for “q-Huber” based on the proof of lemma 5.2.1 . The proof of

“Berq” is also similar.

57

When ∆x > δ (∆x ≤ δ is similar)

k =
`′(x+∆x)− `′(x)

∆xq−1

=



∣∣∣ x
∆x

+ 1
∣∣∣q−1

sgn
(x

∆x
+ 1
)
−
∣∣∣ x
∆x

∣∣∣q−1

sgn
(x

∆x

)
, |x| > δ, |x+∆x| > δ

δq−2(x+∆x)− |x|q−1 sgn(x)
∆xq−1

, |x| > δ, |x+∆x| ≤ δ

|x+∆x|q−1 sgn(x+∆x)− δq−2x

∆xq−1
, |x| ≤ δ, |x+∆x| > δ

∆x2−q

δ2−q
, |x| ≤ δ, |x+∆x| ≤ δ

Case 1:

Same as the proof of lemma 5.2.1 .

Case 2:

In this case, x can only be negative, i.e. x < −δ. After some simplification,

k =

(
∆x

δ

)2−q

−

((
−x
δ

)2−q

− 1

)(
−x
∆x

)q−1

Note that the right hand side is an increasing function of ∆x and −δ − x ≤ ∆x ≤ δ − x.

Replacing ∆x by −δ − x yields

k =
(−x)q−1 − δq−1

(−x− δ)q−1
> 0

Replacing ∆x by δ − x yields

k =
δq−1 + (−x)q−1

(δ − x)q−1
≤ 22−q

Here the last inequality is due to Jensen’s inequality.

Case 3:

Its proof is very similar to case 2.

Case 4:

Since 0 < ∆x ≤ 2δ, 0 ≤ k ≤ 22−q.

58

We now state uniqueness.

Theorem 5.2.3. Fix a set S, γ > 0, κ > 0. For any loss function satisfying Defini-

tion 5.2.1 , then the solution x of (3.4) is unique. Moreover, define a residual function

r(x) = − 1
γ
BTdiag(`′(Bx))w. A necessary and sufficient condition to satisfy the KKT con-

ditions is to find x∗ where x∗ ≥ 0, r(x∗) = [rs,gT , rt]T with g ≤ κd (where d reflects the

original graph), k∗ = [0, κd− g, 0]T and xT (κd− g) = 0.

Proof. We first prove uniqueness. The Hessian of the objective in (3.4) is:

H(i, j) =


`′′(xi − (eS)i) if i = j

`′′(xi − xj) if i ∼ j

0 otherwise

(5.1)

Thus xTHx =
∑

i∈V x
2
i `

′′(xi − (eS)i) +
∑

i,j,i∼j xixj`
′′xi − xj). If 3(a) is satisfied, we have

`′′(x) > 0 which means xTHx > 0. So the objective 3.4 is strictly convex and the uniqueness

is guaranteed. When 3(b) is satisfied, `′(x + ∆x) ≥ `′(x) + k`′(∆x) guarantees that `′′(x)

can only become zero in a range around zero, i.e. `′(x) = `′′(x) = 0 when x ∈ [− ψ, ψ],

where 0 ≤ ψ ≤ 1. Then xTHx = 0 implies xi ≥ 1− ψ when i ∈ S, xi ≤ ψ when i /∈ S and

−ψ ≤ xi − xj ≤ ψ or xixj = 0. In this case, the uniqueness is implied by κγd in (3.4), i.e.

each xi will be the smallest feasible value.

Next, we will show the KKT condition of (3.4). If we translate problem (5.2.1) to add

the constraint u = Bx, then the loss is `(u). The Lagrangian is

L = wT `(u) + κγdTx− fT (Bx− u)− λs(xs − 1)− λtxt − kTx

59

Standard optimality results give the KKT of (5.2.1) as

∂L

∂x
= κd− 1

γ
BT f − λses − λtet − k = 0

∂L

∂u
= diag(`′(u))w + f = 0

kTx = 0

Bx = u

k ≥ 0, xs = 1, xt = 0

(5.2)

Thus, combining the first and second equations, r = 1
γ
BT f . Since k ≥ 0, from the first

equation, we have g ≤ κd. And from kTx = 0, we have xT (κd− g) = 0.

5.3 Strongly Local Algorithms

In this section, we will provide a strongly local algorithm to approximately optimize

equation (3.4) with `(x) satisfying definition 5.2.1 . The simplest way to understand this

algorithms is as a nonlinear generalization of the Andersen-Chung-Lang push procedure for

PageRank [24], which we call ACL. (The ACL procedure has strong relationships with Gauss-

Seidel, coordinate solvers, and various other standard algorithms.) The overall algorithm

is simple: find a vertex i where the KKT conditions from Theorem 5.2.3 are violated and

increase xi on that node until we approximately satisfy the KKT conditions. Update the

residual, look for another violation, and repeat. The ACL algorithm targets `(x) = 1
2
x2 case,

which has a closed form update. We simply need to replace this with a binary search.

Algorithm 2 nonlin-cut(γ, κ, ρ, ε) for set S and graph G where 0<ρ<1 and 0<ε determine
accuracy

1: Let x(i) = 0 except for xs = 1 and set r = − 1
γ
BTdiag[`′(Bx)]w

2: While there is any vertex i where ri > κdi, or stop if none exists (find a KKT violation)
3: Apply nonlin-push at vertex i, updating x and r
4: Return x

For ρ < 1, we only approximately satisfy the KKT conditions, as discussed further

in the Section 5.4 . We have the following strongly local runtime guarantee when 3(a) in

60

Algorithm 3 nonlin-push(i, γ, κ,x, r, ρ, ε)
1: Use binary search to find ∆xi such that the ith coordinate of the residual after adding

∆xi to xi, r′i = ρκdi, the binary search stops when the range of ∆x is smaller than ε
(satisfy KKT at i).

2: Change the following entries in x and r to update the solution and residual
3: (a) xi ← xi +∆xi
4: (b) For each neighbor j in the original graphG, rj ← rj+

1
γ
wi,j`

′(xj−xi)−1
γ
wi,j`

′(xj−xi−∆xi)

61

definition 5.2.1 is satisfied. (This ignores binary search, but that only scales the runtime by

log(1/ε) because the values are in [0, 1].)

Theorem 5.3.1. Let γ > 0, κ > 0 be fixed and let k and c be the parameters from 3(a)

of Definition 5.2.1 for `(x). For 0 < ρ < 1, suppose nonlin-cut stops after K iterations,

and di is the degree of node updated at the i-th iteration, then K must satisfy:
∑K

i=1 di ≤

vol(S)/c`′−1 (γ(1− ρ)κ/k(1 + γ)) = O(vol(S)).

The notation `′−1 refers to the inverse functions of `′(x), This function must be invertible

under the the definition of 3(a). Note that this sum of degrees bounds the total work because

a push step at node i is O(di) work (ignoring the binary search). Also note that if κ = 0,

γ = 0, or ρ = 1, then this bound goes to ∞ and we lose our guarantee. However, if these

are not the case, then the bound shows that the algorithm will terminate in time that is

independent of the size of the graph. This is the type of guarantee provided by strongly local

graph algorithms and has been extremely useful to scalable network analysis methods [11 ,

 26 , 60 – 62]. We also show that a similar runtime guarantee holds when `(x) satisfies 3(b) of

Definition 5.2.1 . To prove this theorem, we first give the following lemmas.

Lemma 5.3.2. During algorithm 2 , for any i ∈ {V \{s, t}}, gi will stay nonnegative and

0 ≤ xi ≤ 1.

Proof. We can show this by induction. At the initial step, for node i ∈ S, gi = di, and for

node i ∈ S̄, gi = 0. And after a nonlin-push step, every gi will stay nonnegative.

To prove 0 ≤ xi ≤ 1, by expanding gi, we have

gi = −
1

γ

∑
j∼i

wi`
′(xi − xj)− di`′(xi − (eS)i)

xi ≥ 0 because we only increase x and it starts at zero. Suppose xi is the largest element of

x and xi > 1, then we will have `′(xi− xj) ≥ 0 for j ∼ i and `′(xi− (eS)i) > 0. Then gi < 0,

which is a contradiction.

62

Lemma 5.3.3. When 3(a) is satisfied, after calling nonlin-push on node i, the decrease of∥∥g∥∥1 will be strictly larger than

cdi(`
′)−1

(
γ(1− ρ)κ
k(1 + γ)

)

Proof. We use g′ to denote g after calling nonlin-push on node i. At any intermediate step

of nonlin-cut procedure,

∥∥g∥∥1 =∑ gi = −
∑
i∈S

di`
′(xi − 1)−

∑
i∈S̄

di`
′(xi)

This is because for any edge (i, j) ∈ E, gi has a term 1
γ
w(i, j)`′(xi − xj) while gj has a term

1
γ
w(j, i)`′(xj − xi). Since our graph is undirected, w(i, j) = w(j, i), so these two terms will

cancel out. What remains are the terms corresponding to the edges connecting to s or t. So

after calling nonlin-push on node i,

∥∥g∥∥1 − ∥∥g′
∥∥
1 = di`

′(xi +∆xi − (eS)i)− di`′(xi − (eS)i)

≥ dimin{l′′(xi +∆xi − (eS)i), l
′′(xi − (eS)i)}∆xi

≥ cdi∆xi

On the other hand, we need to choose ∆xi such that g′i = ρκdi. We know

g′i = −
1

γ

∑
j∼i

w(i, j)`′(xi +∆xi − xj)− di`′(xi +∆xi − (eS)i)

63

is a decreasing function of ∆xi. And when ∆xi = 0, g′i = κdi > ρκdi, when ∆xi = 1,

g′i < 0 < ρκdi, since `′(x) is a strictly increasing function, there exists a unique ∆xi such

that g′i = ρκdi. Moreover, we can lower bound ∆xi. To see that,

g′i = ρκdi

= −1

γ

∑
j∼i

w(i, j)`′(xi +∆xi − xj)− di`′(xi +∆xi − (eS)i)

≥ −1

γ

∑
j∼i

w(i, j)`′(xi − xj)− di`′(xi − (eS)i)−
k(1 + γ)

γ
di`

′(∆xi)

= gi −
k(1 + γ)

γ
di`

′(∆xi)

Thus, we have

∆xi ≥ (`′)−1

(
γ(gi − ρκdi)
k(1 + γ)di

)
> (`′)−1

(
γ(1− ρ)κ
k(1 + γ)

)
which means ∥∥g∥∥1 − ∥∥g′

∥∥
1 > cdi(`

′)−1

(
γ(1− ρ)κ
k(1 + γ)

)
.

The only step left to prove Theorem 5.3.1 is that at the beginning, we have
∥∥g∥∥1 = vol(S).

Then the theorem follows by Lemma 5.3.3 .

The runtime bound when 3(b) holds is slightly different, see below.

Theorem 5.3.4. Let γ > 0, κ > 0 be fixed and let k and c be the parameters from 3(b)

of Definition 5.2.1 for `(x). For 0 < ρ < 1, suppose nonlin-cut stops after T iterations,

and di is the degree of node updated at the i-th iteration, then T must satisfy:
∑T

i=1 di ≤

vol(S)/k`′ (γ(1− ρ)κ/c(1 + γ)) = O(vol(S)).

Note that in 3(b) of Definition 5.2.1 , there is an extra strictly increasing condition so that

`′(γ(1−ρ)κ
c(1+γ)

) is positive. When `′ is not strictly increasing, i.e. `′(x) = 0 in a small range round

0, it is our conjecture that the algorithm will still finish in a strongly local time, although

we have not yet proven that. Note that this strictly increasing criteria is true for all the loss

64

functions used in the experiments. Similar to the case of 3(a), we have the following lemma

to lower bound the decrease of
∥∥g∥∥1 after each nonlin-push.

Lemma 5.3.5. When 3(b) is satisfied and `′(x) is strictly increasing, then after calling

nonlin-push on node i, the decrease of
∥∥g∥∥1 will be strictly larger than

kdi`
′
(
γ(1− ρ)κ
c(1 + γ)

)

Proof. Similarly to the proof of lemma 5.3.3 , after calling nonlin-push on node i,

∥∥g∥∥1 − ∥∥g′
∥∥
1 = di`

′(xi +∆xi − (eS)i)− di`′(xi − (eS)i)

≥ kdi`
′(∆xi)

On the other hand,

g′i = ρκdi

= −1

γ

∑
j∼i

w(i, j)`′(xi +∆xi − xj)− di`′(xi +∆xi − (eS)i)

≥ −1

γ

∑
j∼i

w(i, j)`′(xi − xj)− di`′(xi − (eS)i)−
c(1 + γ)

γ
di∆xi

= gi −
c(1 + γ)

γ
di∆xi

Thus, we have

∆xi ≥
γ(ri − ρκdi)
c(1 + γ)di

>
γ(1− ρ)κ
c(1 + γ)

which means ∥∥g∥∥1 − ∥∥g′
∥∥
1 > kdi`

′
(
γ(1− ρ)κ
c(1 + γ)

)
.

65

Lemma 5.3.5 along with the same type of analysis as before give the following result

when 3(b) is satisfied.

5.4 More details on ρ

When ρ < 1, then we only approximately satisfy the KKT conditions. Here, we do some

quick analysis of the difference in the idealized slackness condition kTx = 0 compared to

what we get from our solver. Note that by choosing ρ close to 1, we do produce a fairly

accurate solution when 3(a) is satisfied.

Lemma 5.4.1. When Algorithm 4 returns, if `(x) satisfies 3(a) we have

kTx ≤ κk`′(1)(1− ρ)vol(S)
c

Proof. We know k = [0, κd − r, 0]T . Every time algorithm 3 is called at node i, it will set

gi = ρκdi. In the following iterations, gi can only increase until algorithm 3 is called at node

i again. This means k ≤ (1− ρ)κd.

On the other hand, when 3(a) is satisfied, `′(1− xi) ≤ −`′(xi) + k`′(1)

∥∥g∥∥1 = −∑
i/∈S

di`
′(xi)−

∑
i∈S

di`
′(xi−1) ≤ −

∑
i∈V

di`
′(xi)+k`

′(1)vol(S) ≤ −cdTx+k`′(1)vol(S)

Thus

dTx ≤ k`′(1)

c
vol(S)

Combining the two inequality gives this lemma.

When 3(b) is satisfied, it is easy to see kTx ≤ (1− ρ)κdTx, however, there isn’t a closed

form equation on the upper bound of kTx in terms of vol(S).

5.5 Cut Quality Analysis

A common use for the results of these localized cut solutions is as localized Fiedler vectors

of a graph to induce a cluster [24 , 30 , 34 , 60 , 63]. And a real-valued “clustering hint” vector

66

x can be converted into clusters by a sweep cut process (see Chapter 2 for a definition). This

computation is a key piece of Cheeger inequalities [64 , 65].

In the following, we seek a slightly different type of guarantee. We posit the existence of

a target cluster T and show that if T has useful clustering properties (small conductance, no

good internal clusters), then a sweep cut over a q-norm or q-Huber localized cut vector seeded

inside of T will accurately recover T . The key piece is understanding how the computation

plays out with respect to T inside the graph and T as a graph by itself. We use volT (S),

φT (S) to be the volume or conductance of set S in the subgraph induced by T and ∂T ⊂ T to

be the boundary set of T , i.e. nodes in ∂T has at least one edge connecting to T̄ . Quantities

with tildes, e.g., d̃, reflect quantities in the subgraph induced by T . In the rest of this section,

we assume κ = 0 and ρ = 1.

To begin with, we give the following observation. It is not directly related to the proof

of main theorem, but we still find it useful in understanding the problem in general.

Lemma 5.5.1. Suppose that κ = 0. When `(x) = 1
p
|x|p, 1 < p < 2, we can compute the

exact solution of problem (3.4) under two extreme cases γ →∞ and γ → 0,

• When γ →∞, xi = 1 for i ∈ S and xi = 0 for i ∈ S̄.

• When γ → 0, xi ≥ (vol(S))
1

p−1

(vol(V))
1

p−1
for any i ∈ V .

Proof. Considering two nonlin-cut processes P1, P2 using S1 or S2 as input correspondingly,

suppose we set the initial vector of P2 to be the solution of P1, i.e. x1, then for nodes i /∈

S2\S1, its residual stays zero, while for nodes i ∈ S2\S1, its residual becomes positive. This

means P2 needs more iterations to converge. And each iteration can only add nonnegative

values to x1. Thus, x1 ≤ x2.

What this lemma suggests is that if the seed nodes are sampled from the target cluster,

then for large γ, the solution stays mostly within the target set. But we would also like γ

not to be too large, so that the value can be "mixed well" over all nodes. Otherwise, we will

end up spreading almost no information which will result in a low recall. Formally, we will

need the following two assumptions.

67

Assumption 1. The seed set S satisfies S ⊆ T , S ∩ ∂T = ∅ and
∑

i∈∂T (di − d̃i)x
q−1
i ≤

2φ(T)vol(S).

We call this the leaking assumption, which roughly states that the solution with the

set S stays mostly within the set T . As some quick justification for this assumption, we

note that when when q = 2, [34] shows by a Markov bound that there exists Tg where

vol(Tg) ≥ 1
2
vol(T) such that any node i ∈ Tg satisfies

∑
i∈∂T (di− d̃i)xi ≤ 2φ(T)di. So in that

case, any seed sets S ⊆ Tg meets our assumption. For 1 < q < 2, it is straightforward to see

any set S with vol(S) ≥ 1
2
vol(T) satisfies this assumption since the left hand side is always

smaller than cut(T). However, such a strong assumption is not necessary for our approach.

The above guarantee allows for a small vol(S) and we simply require Assumption 1 holds.

We currently lack a detailed analysis of how many such seed sets there will be.

Our second assumption regards the behavior within only the set T compared with the

entire graph. To state it, we wish to be precise. Consider the localized cut graph associated

with the hidden target set T on the entire graph and let B,w be the incidence and weights

for this graph. We wish to understand how the solution x on this problem

minimize
x

wT `(Bx)

subject to xs = 1, xt = 0,x ≥ 0
(5.3)

compares with one where we consider the problem only on the subgraph induced by T .

Let B̃, w̃ be the incidence matrix of the localized cut graph on the vertex induced subgraph

corresponding to T and seeded on T (so the tilde-problem is seeded on all nodes). So formally,

we wish to understand how x̃ in

minimize
x̃

w̃T `(B̃x̃)

subject to x̃s = 1, x̃t = 0, x̃ ≥ 0
(5.4)

compares to x. For these comparisons, we assume we are looking at values other than

xs, xt and x̃s, x̃t.

68

Assumption 2. A relatively small γ should be chosen such that the solution of localized

q-norm cut problem in the subgraph induced by target cluster T can satisfy min(x̃T) ≥
(0.5volT (S))1/(q−1)

(volT (T))1/(q−1) =M .

The second part of Lemma 5.5.1 guarantees the existence of such γ. To better understand

this assumption, when `(x) = 1
q
|x|q and q = 2, a solution of the nonlin-cut process

(Algorithm 4) will be equivalent to a Markov process. In this case, one can lower bound

min(x̃) by the well known infinity-norm mixing time of Markov chain. In fact, as shown in

the proof of lemma 3.2 of [34], when γ ≤ O (φ(T) ·Gap), they show that min(x̃T) ≥ 0.8volT (S)
volT (T)

.

Here Gap is defined as the ratio of internal connectivity and external connectivity and often

assumed to be Ω(1). Formally:

Definition 5.5.1. Given a target cluster T such that vol(T) ≤ 1
2
vol(V), φ(T) ≤ Ψ and

minA⊂TφT (A) ≥ Φ, the Gap is defined as:

Gap =
Φ2/logvol(T)

Ψ

1
 We refer to [34] for a detailed explanation of this. In the case of q = 2, by using the

infinity-norm mixing time of a Markov chain, any γ ≤ O(φ(T)·Gap) satisfies this assumption

as shown in lemma 3.2 of [34]. For 1 < q < 2, it will be more difficult to derive a closed form

solution on how small γ needs to be. However, we can show that this assumption still holds

for subgraphs with small diameters, i.e. O(log(|T |)) (This is reasonable because we expect

good clusters and good communities to have small diameters.).

Lemma 5.5.2. Assume the subgraph induced by target cluster T has diameter O(log(|T |))

and when we uniformly randomly sample points from T as seed sets, the expected largest
1

 ↑ The proof of lemma 3.2 in [34] proves that the teleportation probability β = 1 − α needs to be smaller
than O (φ(T) ·Gap). When q = 2, as shown in [12], β = γ2

1+γ2
, which means γ2 = β

1−β . Since we assume
γ2 < 1, we have β < γ2 < 2β. In other words, γ2 and β are only different by a constant factor.

69

distance of any node in S̄ to S is O
(

log(|T |)
|S|

)
. Also define γ2 to be the largest γ such that

assumption 2 is satisfied at q = 2 and assume γ2 < 1, if we set γ = γq−1
2 for 1 < q < 2, and

volT (S)
volT (T)

≤ 2

 γ2
1 + γ2

· 1

|T |
1
|S| log

(
1+l

1
q−1

)


q−1

where l ≤ (1 + γ)max(d̃i). Then the solution of 5.4 can satisfy assumption 2 .

Proof. Given a seed set S, we can partition the S̄ into disjoint subsets L1 ∪L2 ∪L3 . . .∪Ln,

where Li contains nodes that are i distance away from S. For any node i ∈ Lk, we denote

douti to be

douti =
∑

j∼i,j∈Lk∪Lk+1

w(i, j)

And dini = d̃i − douti . Also define l = (1 + γ)
douti

dini
≤ (1 + γ)max(d̃i). Suppose x̃i ≥ c for any

node i with distance at most k − 1, then we can show for node i ∈ Lk, x̃i ≥ c

1+l
1

q−1
. To see

this, if x̃i < c, then by the KKT condition,

dini (c− x̃i)q−1 ≤ douti xq−1
i + γdix

q−1
i

Here for j ∼ i, if j is closer to S, we set x̃j to be c, otherwise, we set x̃j to be 0. This means

x̃i ≥
c(dini)

1
q−1

(douti + γdi)
1

q−1 + (dini)
1

q−1

≥ c

l
1

q−1 + 1

Also, for node i ∈ S, the first iteration of q-norm process will add at least γ
1

q−1

1+γ
1

q−1
to x̃i

(This follows from unrolling the first loop of our algorithm and checking that this satisfies

the binary search criteria.), which means x̃i ≥ γ
1

q−1

1+γ
1

q−1
. Thus, for node i ∈ Lk,

x̃i ≥
γ

1
q−1

1 + γ
1

q−1

· 1(
1 + l

1
q−1

)k =
γ2

1 + γ2
· 1(

1 + l
1

q−1

)k

70

Since the subgraph induced by target cluster T has diameter O(log(|T |)) and when we

uniformly randomly sample points from T as seed sets, the expected largest distance r of

any node in S̄ to S is O
(

log(|T |)
|S|

)
, we have r = O

(
log(|T |)

|S|

)
, which means

min(x̃) ≥ γ2
1 + γ2

· 1

|T |
1
|S| log

(
1+l

1
q−1

)

Assumption 2 requires min(x̃) ≥ (0.5volT (S))
1

q−1

(volT (T))
1

q−1
. So we just need

volT (S)
volT (T)

≤ 2

 γ2
1 + γ2

· 1

|T |
1
|S| log

(
1+l

1
q−1

)


q−1

,

which was the final assumption.

Lemma 5.5.3. Under the previous assumptions, we can now define a sweep cut set Sc as{
i ∈ V | xi ≥ c(0.5vol(S))

1
q−1

(vol(T))
1

q−1

}
, then for any 0 < c ≤ 1

2
,

vol(Sc\T) = O

(
φ(T)

γcq−1

)
vol(T) vol(T\Sc) = O

(
φ(T)

γ

)
vol(T)

Proof. The proof is mostly a generalization to the proof of Lemma 3.4 in [34]. For any i ∈ T̄ ,

by the KKT condition and Assumption 1

0 = ri(x)

= −1

γ

∑
j∼i

w(i, j)`′(xi − xj)− dixq−1
i

= −1

γ

∑
j∼i,j∈T̄

w(i, j)`′(xi − xj)−
1

γ

∑
j∼i,j∈T

w(i, j)`′(xi − xj)− dixq−1
i

= −1

γ

∑
j∼i,j∈T̄

w(i, j)`′(xi − xj) +
1

γ

∑
j∼i,j∈T

w(i, j)`′(xj − xi)− dixq−1
i

< −1

γ

∑
j∼i,j∈T̄

w(i, j)`′(xi − xj) +
1

γ

∑
j∼i,j∈T

w(i, j)`′(xj)− dixq−1
i .

71

By summing the inequality above over all nodes in T̄ , the first term will all cancel out, it

yields that ∑
i∈T̄

dix
q−1
i <

1

γ

∑
i∈∂T

(di − d̃i)xq−1
i ≤ 2φ(T)vol(S)

γ
.

Now by the definition of our sweep cut set, we know that for i ∈ Sc\T , xq−1
i ≥ cq−1uvol(S)

vol(T)
,

thus
cq−1vol(S)
2vol(T) vol(Sc\T) ≤

∑
i∈Sc\T

dix
q−1
i ≤ 2φ(T)vol(S)

γ

which means

vol(Sc\T) = O

(
φ(T)

γcq−1

)
vol(T).

In the following, we define xi = x̃i + vi and `′(xi − (eS)i) = `′(x̃i − (eS)i) + ki`
′(vi). For any

node i ∈ T , by KKT condition,

0 = ri(x)

= −1

γ

∑
j∼i

w(i, j)`′(xi − xj)− di`′(xi − (eS)i)

= −1

γ

∑
j∼i,j∈T

w(i, j)`′(xi − xj)−
1

γ

∑
j∼i,j∈T̄

w(i, j)`′(xi − xj)− di`′(xi − (eS)i)

> −1

γ

∑
j∼i,j∈T

w(i, j)`′(xi − xj)−
1

γ

∑
j∼i,j∈T̄

w(i, j)`′(xi)− d̃i`′(xi − (eS)i)− (di − d̃i)`′(xi)

= −1

γ

∑
j∼i,j∈T

w(i, j)`′(xi − xj)− d̃i`′(x̃i − (eS)i)− kidi`′(vi)− (1 +
1

γ
)(di − d̃i)`′(xi)

= −1

γ

∑
j∼i,j∈T

w(i, j)`′(xi − xj)−

1

γ

∑
j∼i,j∈T

w(i, j)`′(x̃i − x̃j)− kidi`′(vi)− (1 +
1

γ
)(di − d̃i)`′(xi).

By summing the inequality above over all nodes in T , the first and the second terms cancel

out, so it yields: ∑
i∈T

kidi`
′(vi) > −

2(1 + γ)

γ
φ(T)vol(S).

72

For nodes i ∈ T\Sc, xi < cx̃i, which means vi < (c − 1)x̃i. And `′(vi) = −(−vi)q−1 <

−(1− c)q−1 0.5volT (S)
volT (T)

≤ −(1− c)q−1 0.5vol(S)
vol(T)

. (Here we use the fact that volT (T) ≤ vol(T) and

S ∩ ∂T = ∅). From the proof of lemma 5.5.2 , we know that S will be included in Sc. When

i /∈ S,

ki =

(
− x̃i
vi

+ 1

)q−1

−
(
− x̃i
vi

)q−1

>
(2− c)q−1 − 1

(1− c)q−1
.

Thus, we have

vol(T\Sc) = O

(
φ(T)

γ

)
vol(T).

Lemma 5.5.4. Under the same assumptions as lemma 5.5.3 , among sweep cut sets Sc ∈

{Sc | 14 ≤ c ≤ 1
2
}, there exsits one R such that φ(R) = O

(
φ(T)

1
q

Gap
q−1
2

)
.

Proof. Our proof is mostly a generalization to the proof of Lemma 4.1 in [34]. If cut(Sc, S̄c) ≥

E0 holds for all 1
4
≤ c ≤ 1

2
, then we just need to upper bound E0.

We introduce values k(i, j) that allow us to break `′(xi − xj) into `′(xi) − k(i, j)`′(xj).

The specific choice k(i, j) > 0 is uniquely determined by xi and xj. For any node i ∈ Sc, by

KKT condition,

0 =
1

γ

∑
j∼i

w(i, j)`′(xi − xj) + di`
′(xi − (eS)i)

=
1

γ

∑
j∼i

(w(i, j)`′(xi)− w(i, j)k(i, j)`′(xj)) + di`
′(xi)− kidi(eS)i.

Define K to be the matrix induced by k(i, j). Rearranging the equation above yields:

(K ◦Axq−1)i = (1 + γ)dix
q−1
i − γkidi(eS)i.

Also for two adjacent nodes i, j that are both in Sc, we have

k(i, j)`′(xj) + k(j, i)`′(xi) = `′(xi) + `′(xj).

73

This is because `′(xi−xj)+ `′(xj −xi) = 0. And for two adjacent nodes i, j such that i ∈ Sc

and j /∈ Sc, xi > xj, k(i, j) < 1. Define a Lovasz-Simonovits curve y over dixq−1
i , then we

have

∑
i∈Sc

(K ◦Axq−1)i +
∑
i∈Sc

dix
q−1
i = 2

∑
i∈Sc

∑
j∼i,j∈Sc

w(i, j)xq−1
j +

∑
i∈Sc

∑
j∼i,j /∈Sc

k(i, j)w(i, j)xq−1
j

< 2
∑
i∈Sc

∑
j∼i,j∈Sc

w(i, j)xq−1
j +

∑
i∈Sc

∑
j∼i,j /∈Sc

w(i, j)xq−1
j

≤ y[vol(S)− cut(Sc, S̄c)] + y[vol(S) + cut(Sc, S̄c)]

≤ y[vol(S)− E0] + y[vol(S) + E0]

here the second inequality is due to the definition of Lovasz-Simonovits curve and the third

inequality is due to y(x) is concave. This means

y[vol(S)− E0] + y[vol(S) + E0] ≥
∑
i∈Sc

(K ◦Axq−1)i +
∑
i∈Sc

dix
q−1
i

≥ (2 + γ)
∑
i∈Sc

dix
q−1
i − γ

∑
i∈Sc

kidi(eS)i

≥ (2 + γ)
∑
i∈Sc

dix
q−1
i − γ

∑
i∈S

kidi

= (2 + γ)
∑
i∈Sc

dix
q−1
i − γ

∑
i∈V

dix
q−1
i

= 2
∑
i∈Sc

dix
q−1
i − γ

∑
i/∈Sc

dix
q−1
i

≥ 2y[vol(Sc)]−O(φ(T)vol(S)).

Thus,

y[vol(Sc)]− y[vol(Sc − E0)] ≤ y[vol(Sc + E0)]− y[vol(Sc)] +O(φ(T)vol(S)).

74

Similarly to the proof of Lemma 4.1 in [34], we can then derive

0.5E0vol(S)
4q−1vol(T) ≤ y[vol(S1/4)]− y[vol(S1/4)− E0]

≤
vol(S1/8\S1/4)

E0

O(φ(T)vol(S)) + y[vol(S1/8)]− y[vol(S1/8)− E0]

≤
vol(S1/8\T) + vol(T\S1/4)

E0

O(φ(T)vol(S)) + 0.5E0vol(S)
8q−1vol(T)

≤ O(φ(T)/γ)vol(T)
E0

O(φ(T)vol(S)) + 0.5E0vol(S)
8q−1vol(T) .

Hence, E0 ≤ O

(
φ(T)
√
γ

)
vol(T).

And from lemma 5.5.3 , we know vol(Sc) = 1±O
(

φ(T)
γ

)
vol(T), since we choose γ = (γ2)

q−1

and γ2 = Θ(φ(T) ·Gap), vol(Sc) = Θ(vol(T)). So there exists R such that

φ(R) = O

(
φ(T)
√
γ

)
= O

(
φ(T)

3−q
2

Gap(q−1)/2

)
≤ O

(
φ(T)

1
q

Gap(q−1)/2

)
.

Here the last inequality uses the fact that (3− q)/2 > 1/q when 1 < q < 2.

Combining all these lemmas will give us the following theorem.

Theorem 5.5.5. Assume the subgraph induced by target cluster T has diameter O(log(|T |)),

when we uniformly randomly sample points from T as seed sets, the expected largest distance

of any node in S̄ to S is O
(

log(|T |)
|S|

)
. Assume volT (S)

volT (T)
≤ 2
(
(γ2
1+γ2

)/ |T |
1
|S| log

(
1+l1/(q−1)

))q−1 where

l ≤ (1 + γ)max(d̃i), then we can set γ = γq−1
2 to satisfy assumption 2 for 1 < q < 2. Then a

sweep cut over x will find a cluster R where φ(R) = O
(
φ(T)

1
q /Gap

q−1
2

)
.

5.6 Experimental Results

In the experiments section, we will mainly show that our algorithm (i) outperforms

flow-based methods especially when the seed set is small (ii) outperforms PageRank-based

methods by producing higher accuracy (iii) outperforms other nonlinear methods by running

much faster and providing more intuitive ways to tune parameters.

75

We perform three experiments that are designed to compare our method to others de-

signed for similar problems. We call ours SLQ (strongly local q-norm) for `(x) = (1/q) |x|q

with parameters γ for localization and κ for the sparsity. We call it SLQδ with the q-Huber

loss. Existing solvers are (i) ACL [24], that computes a personalized PageRank vector ap-

proximately adapted with the same parameters [12]; (ii) CRD [8], which is hybrid of flow and

spectral ideas; (iii) FS is FlowSeed [66], a 1-norm based method; (iv) HK is the push-based

heat kernel [26]; (v) NLD is a recent nonlinear diffusion [7]; (vi) GCN is a graph convolutional

network [67]. Parameters are chosen based on defaults or with slight variations designed to

enhance the performance within a reasonable running time. All experiments in this section

are performed on a server with Intel Xeon Platinum 8168 CPU and 5.9T RAM. (Nothing

remotely used the full capacity of the system and these were run concurrently with other

processes.) We evaluate the routines in terms of their recovery performance for planted sets

and clusters. The bands reflect randomizing seeds choices in the target cluster.

The first experiment uses the LFR benchmark [68]. We vary the mixing parameter µ

(where larger µ is more difficult) and provide 1% of a cluster as a seed, then we check how

much of the cluster we recover after a conductance-based sweep cut over the solutions from

various methods. Here, we use the F1 score (harmonic mean of precision and recall) and

conductance value (cut to volume ratio) of the sets to evaluate the methods. The results are

in Figure 5.3 .

104 105 nodes

10 2

100

102
Running time (seconds)

0.1 0.2 0.3 0.4 0.5
0.2
0.4
0.6
0.8
1.0

F1 score
SLQ (q=1.2) SLQ (q=1.4) SLQ (q=1.6) CRD (h=3) CRD (h=5) ACL heat kernel

0.1 0.2 0.3 0.4 0.5

0.2
0.4
0.6
0.8

conductance

Figure 5.3. The left figure shows the median running time for the methods as
we scale the graph size keeping the cluster sizes roughly the same. As we vary
cluster mixing µ for a graph with 10, 000 nodes, the middle figure shows the
median F1 score (higher is better) along with the 20-80% quantiles; the right
figure shows the conductance values (lower is better). These results show SLQ
is better than ACL and competitive with CRD while running much faster.

76

The second experiment uses the class-year metadata on Facebook [69], which is known to

have good conductance structure for at least class year 2009 [70] that should be identifiable

with many methods. The class year 2009 is the set of incoming students, which form better

conductance groups because the students had not yet mixed with the other classes. Class

year 2008 is already mixed and so the methods do not do as well there. Here, we use F1

values alone. We use 1% of the true set as seed. (For GCN, we also use the same number of

negative nodes.) The results are in Table 5.1 , 5.2 and show SLQ is as good, or better than,

CRD and much faster.

Table 5.1. Cluster recovery results from a set of 7 Facebook networks [69].
Students with a specific graduation class year are used as target cluster. We use
a random set of 1% of the nodes identified with that class year as seeds. The
class year 2009 is the set of incoming students, which form better conductance
groups because the students had not yet mixed with the other classes. Class
year 2008 is already mixed and so the methods do not do as well there. The
values are median F1 and the violin plots show the distribution over choices
of the seeds.

Year Alg UCLA MIT Duke UPenn Yale Cornell Stanford
F1 & Med. F1 & Med. F1 & Med. F1 & Med. F1 & Med. F1 & Med. F1 & Med.

2009 SLQ 0.9 0.9 1.0 1.0 1.0 0.9 0.9
SLQδ 0.9 0.8 1.0 0.9 0.9 0.9 0.9
CRD-3 0.3 0.7 0.7 0.6 0.7 0.5 0.5
CRD-5 0.9 0.9 1.0 1.0 1.0 0.9 0.9
ACL 0.9 0.8 0.9 0.9 0.9 0.9 0.9
FS 0.4 0.4 0.9 0.9 0.5 0.5 0.4
HK 0.9 0.5 0.9 0.9 0.9 0.9 0.9
NLD 0.2 0.2 0.3 0.3 0.3 0.3 0.3
GCN 0.3 0.2 0.3 0.3 0.2 0.3 0.2

2008 SLQ 0.7 0.5 0.8 0.8 0.8 0.8 0.8
SLQδ 0.6 0.5 0.7 0.7 0.7 0.7 0.7
CRD-3 0.6 0.5 0.7 0.7 0.7 0.6 0.6
CRD-5 0.5 0.5 0.5 0.5 0.7 0.6 0.5
ACL 0.5 0.5 0.7 0.7 0.7 0.7 0.7
FS 0.5 0.5 0.7 0.6 0.7 0.6 0.7
HK 0.5 0.5 0.0 0.5 0.5 0.5 0.5
NLD 0.3 0.3 0.3 0.3 0.3 0.3 0.2
GCN 0.3 0.3 0.3 0.3 0.3 0.3 0.3

77

Table 5.2. Total running time of methods in this experiment.

Method SLQ SLQδ CRD-3 CRD-5 ACL FS HK NLD GCN
Time (seconds) 123 80 3049 9378 12 1593 106 10375 16534

The final experiment evaluates a finding from [71] on the recall of seed-based community

detection methods. For a group of communities with roughly the same size, we evaluate the

recall of the largest k entries in a diffusion vector. Minimizing conductance is not an objec-

tive in this experiment. They found PageRank (ACL) outperformed many different methods.

Also, ACL – with the standard degree normalization for conductance based sweepcuts per-

formed worse than ACL without degree normalization in this particular setting, which is

different from what conductance theory suggests. Here, with the flexibility of q, we see the

same general result with respect to degree normalization and found that SLQ with q > 2

gives the best performance even though the conductance theory suggests 1 < q < 2 for the

best conductance bounds. (See Figure 5.4)

(a) DBLP (b) LiveJournal

0 100 200 300 400
0.0
0.1
0.2
0.3

SLQ (q=1.5)

SLQ-DN (q=1.5)

SLQ (q=4.0)

SLQ-DN (q=4.0)

SLQ (q=8.0)

SLQ-DN (q=8.0)
ACL

ACL-DN
HK-DNHK
CRD

0 1000200030004000
0.0
0.1
0.2
0.3

SLQ (q=1.5)

SLQ-DN (q=1.5)

SLQ (q=8.0)

SLQ-DN (q=4.0)

SLQ (q=4.0)

SLQ-DN (q=8.0)
ACL

ACL-DNHK-DNHK

CRD

Figure 5.4. A replication of an experiment from [71] with SLQ on DBLP
[72 , 73] (with 1M edges) and edges LiveJournal [74] (with 65M edges). The
plot shows median recall over 600 groups of roughly the same size as we look
at the top k entries in the solution vector (x axis). The envelope represents
2 standard error. This shows SLQ with q > 2 gives better performance than
ACL (PageRank), and all improve on the degree-normalized (DN) versions
used for conductance-minimizing sweep cuts.

78

6. STRONGLY LOCAL HYPERGRAPH DIFFUSIONS FOR

CLUSTERING AND SEMI-SUPERVISED LEARNING

6.1 Chapter Overview and Motivation

In this chapter, we will further extend our generalized local graph cut framework to

hypergraphs. The results and more details from this chapter can also be found in our paper

in our paper [20].

Hypergraphs, indeed, enable a flexible and rich data model that has the potential to

capture subtle insights that are difficult or impossible to find with traditional graph-based

analysis [23 , 62 , 75 – 77]. But, hypergraph generalizations of graph-based algorithms often

struggle with scalability and interpretation [78 , 79] with ongoing questions of whether partic-

ular models capture the higher-order information in hypergraphs. Existing techniques that

rely on simple clique/star expansion or Lovász extension either only model one type of cut

function or are not strongly local. [76 , 77 , 80 – 82]

To solve these problems, we will introduce, to our knowledge, the first local hypergraph

clustering algorithm that includes all of the following features: it is (1) strongly-local, (2)

can grow a cluster from a small seed set, (3) models flexible hyperedge cut penalties, and

(4) comes with a conductance guarantee. Our algorithm starts by reducing hypergraphs

to directed graphs using carefully constructed directed graph gadgets, along with a set of

auxiliary nodes, to encode the properties of a general class of cardinality based hypergraph

cut functions. Similar transformations have been adapted to generalize flow-based local

graph clustering algorithms to hypergraphs [23] by solving a series of related problem of 3.4

with `(x) = (x)+ = max(x, 0). Here the "+" sign is implied by edge directions. However, as

stated earlier in previous sections, for local graph clustering, flow-based methods often have

difficulty growing from small seed sets. This phenomenon still exists in local hypergraph

clustering. This motivates us to extend this framework to incorporate other types of norms.

(see Section 6.2 for a case study of comparing different strategies)

In this chapter, we first show that these transformations can not only preserve minimum

cuts, but also preserve the hypergraph conductance values. (Section 6.3) Then we consider

equation 3.4 with `(x) = 1
2
(x)2+ akin to personalized PageRank on graphs. Once we have

79

the framework in place, we are able to show that an adaptation of the push method for

personalized PageRank will compute an approximate solution in strongly local time. (Sec-

tion 6.5) We also prove that the clusters found by solving the new objective function satisfy

a Cheeger-like quality guarantee. (Section 6.6) Similar to Chapter 5 , the extended frame-

work and the corresponding algorithm can also be generalized to p-norm, which can produce

more accurate results in some cases. (Section 6.7) Experiments show that our new algorithm

is not only efficient, but also produces results with much larger F1 scores than alternative

methods. In particular, it is much faster and performs much better with extremely limited

label information comparing to its flow-based alternative. (Section 6.8)

6.2 A Motivating Case Study with Yelp Reviews

We begin by illustrating the need and utility for the methods instead with a simple

example of the benefit to these spectral or PageRank-style hypergraph approaches. For this

purpose we consider a hypothetical use case with an answer that is easy to understand in

order to compare our algorithm to a variety of other approaches. We build a hypergraph

from the Yelp review dataset (https://www.yelp.com/dataset). Each restaurant is a vertex

and each user is a hyperedge. This model enables users, i.e. hyperedges, to capture subtle

socioeconomic status information as well as culinary preferences in terms of which types of

restaurants they visit and review. The task we seek to understand is either an instance

of local clustering or semi-supervised learning. Simply put, given a random sample of 10

restaurants in Las Vegas Nevada, we seek to find other restaurants in Las Vegas. The overall

hypergraph has around 64k vertices and 616k hyperedges with a maximum hyperedge size

of 2566. Las Vegas, with around 7.3k restaurants, constitutes a small localized cluster.

We investigate a series of different algorithms that will identify a cluster nearby a seed

node in a hypergraph: (1) Andersen-Chung-Lang PageRank on the star and clique expan-

sion of the hypergraph (ACL-Star, ACL-Clique, respectively), these algorithms are closely

related to ideas proposed in [78 , 83] (2). HyperLocal, a recent maximum flow-based hy-

pergraph clustering algorithm [23], (3) quadratic hypergraph PageRank [77 , 82] (which is

also closely related to [79]), and (4) our Local Hypergraph-PageRank (LHPR). These are all

80

https://www.yelp.com/dataset

strongly local except for (3), which we include because our algorithm LHPR is essentially

the strongly local analogue of (3). The results are shown in Figure 6.1 . Our strongly local

(a) ACL-Clique
P=0.80, R=0.99, F1=0.876

(b) ACL-Star
P=0.76, R=0.98, F1=0.85

(c) HyperLocal [23]
P=0.92, R=0.05, F1=0.10

(d) QHPR [77 , 82]
P=0.83, R=0.95, F1=0.886

(e) LHPR (Ours)
P=0.83, R=0.98, F1=0.900

Figure 6.1. This figure shows locations of the∼7,300 restaurants of Las Vegas
that are reviewed on Yelp and how often algorithms recover them from a set of
10 random seeds; our hypergraph PageRank (LHPR) methods has the highest
accuracy and finds the result by exploring only 10000 vertices total compared
with a fully dense vector for QHPR giving a boost to scalability on larger
graphs. The colors show the regions that are missed (red or orange) or found
(blue) by each algorithm over 15 trials. HyperLocal is a flow-based method
that is known to have trouble growing small seed sets as in this experiment.
(The parameters for HyperLocal were chosen in consultation its authors; other
parameters were hand tuned for best case performance.)

hypergraph PageRank (LHPR) slightly improves on the performance of a quadratic hyper-

81

graph PageRank (QHPR) that is not strongly local. In particular, it has 10k non-zero entries

(of 64k) in its solution.

This experiment shows the opportunities with our approach for large hypergraphs. We

are able to model a flexible family of hypergraph cut functions beyond those that use clique

and star expansions and we equal or outperform all the other methods. (We also tried

another recently proposed method [84], although this was unable to finish in a reasonable

time (e.g. hours) on this hypergraph as it was designed for hypergraphs with small hyperedge

size.)

6.3 Hypergraph-to-graph reduction

Minimizing conductance is NP-hard even in the case of simple graphs, though numerous

techniques have been designed to approximate the objective in theory and practice [24 , 64 ,

 85]. A common strategy for searching for low-conductance sets in hypergraphs is to first

reduce a hypergraph to a graph, and then apply existing graph-based techniques. This

sounds “hacky” or least “ad-hoc” but this idea is both principled and rigorous. The most

common approach is to apply a clique expansion [22 , 75 , 78 , 83 , 86], which explicitly models

splitting functions of the form fe(A) ∝ |A| |e\A|. For instance Benson et al. [75] showed

that clique expansion can be used to convert a 3-uniform hypergraph into a graph that

preserves the all-or-nothing conductance values. For larger hyperedge sizes, all-or-nothing

conductance is preserved to within a distortion factor depending on the size of the hyperedge.

Later, Li et al. [22] were the first to introduce more generalized notions of hyperedge splitting

functions, focusing specifically on submodular functions.

Definition 6.3.1. A splitting function fe is submodular if

fe(A) + fe(B) ≥ fe(A ∪B) + fe(A ∩B) ∀A,B ⊆ e. (6.1)

These authors showed that for this submodular case, clique expansion could be used to

define a graph preserving conductance to within a factor O(ζ) (ζ is the largest hyperedge

size).

82

More recently, Veldt et al. [81] introduced graph reduction techniques that exactly pre-

serve submodular hypergraph cut functions which are cardinality-based.

Definition 6.3.2. A splitting function fe is cardinality-based if

fe(A) = fe(B) whenever |A| = |B|. (6.2)

Cardinality-based splitting functions are a natural choice for many applications, since

node identification is typically irrelevant in practice, and the cardinality-based model pro-

duces a cut function that is invariant to node permutation. Furthermore, most previous

research on applying generalized hypergraph cut penalties implicitly focused on cut func-

tions are that are naturally cardinality-based [75 , 76 , 79 , 82 , 86 , 87]. Because of their ubiquity

and flexibility, in this work we also focus on hypergraph cut functions that are submodular

and cardinality-based. We briefly review the associated graph transformation and then we

build on previous work by showing that these hypergraph reductions can be used to preserve

the hypergraph conductance objective, and not just hypergraph cuts.

Reduction for Cardinality-Based Cuts

Veldt et al. [81] showed that the cut properties of a submodular, cardinality-based hyper-

graph could be preserved by replacing each hyperedge with a set of directed graph gadgets.

Each gadget for a hyperedge e is constructed by introducing a pair of auxiliary nodes a and

b, along with a directed edge (a, b) with weight δe > 0. For each v ∈ e, two unit-weight

directed edges are introduced: (v, a) and (b, v). The entire gadget is then scaled by a weight

ce ≥ 0. The resulting gadget represents a simplified splitting function of the following form:

fe(A) = ce ·min{|A| , |e\A| , δe}. (6.3)

Figure 6.2 (b) illustrates the process of replacing a hyperedge with a gadget. The cut prop-

erties of any submodular cardinality-based splitting function can be exactly modeled by

introducing a set of O(|e|) or fewer such splitting functions [81]. If an approximation suf-

fices, only O(log |e|) gadgets are required [88].

83

1
2

3 5

6

7

8

4

(a) original hypergraph

5

6

7

8

5

6

7

8

D

d

(b) single hy-
peredge reduc-
tion gadget

1
2

3 5

6

7

8

4

A a

E

D

C

B

e

d

c

b

(c) expanded graph

1
2

3 5

6

7

8

4

A a

E

D

C

B

e

d

c

b

s

t

γ

2γ

2γ

γ

2γ3γ

2γ

2γ

(d) localized directed cut graph

Figure 6.2. A simple illustration of hypergraph reduction (Section 6.3) and
localization (Section 6.4). (a) A hypergraph with 8 nodes and 5 hyperedges.
(b) An illustration of the hyperedge transformation gadget for δ-linear splitting
function. (c) The hypergraph is reduced to a directed graph by adding a pair of
auxiliary nodes for each hyperedge and this preserves hypergraph conductance
computations (Theorem 6.3.1). (d) The localized directed cut graph is created
by adding a source node s, a sink node t and edges from s to hypergraph nodes
or from hypergraph nodes to t to localize a solution.

An important consequence of these reduction results is that in order to develop reduction

techniques for any submodular cardinality-based splitting functions, it suffices to consider

hyperedges with splitting functions of the simplified form given in (6.3). In the remainder of

the text, we focus on splitting functions of this form, with the understanding that all other

cardinality-based submodular splitting functions can be modeled by introducing multiple

hyperedges on the same set of nodes with different edge weights.

In Figure 6.2 , we illustrate the procedure of reducing a small hypergraph to a directed

graph, where we introduce a single gadget per hyperedge. Formally, for a hypergraph H =

(V,E), this procedure produces a directed graph G = (V̂ , Ê), with directed edge set Ê, and

node set V̂ = V ∪ Va ∪ Vb, where V is the set of original hypergraph nodes. Sets Va, Vb
store auxiliary nodes, in such a way that for each pair of auxiliary nodes a, b where (a, b)

is a directed edges, we have a ∈ Va and b ∈ Vb. This reduction technique was previously

developed as a way of preserving minimum cuts and minimum s-t cuts for the original

hypergraph. Here, we extend this result to show that for a certain choice for node degree,

this reduction also preserves hypergraph conductance.

84

Theorem 6.3.1. Define a degree vector d for the reduced graph G = (V̂ , Ê) such that

d(v) = dv is the out-degree for each node v ∈ V , and d(u) = du = 0 for every auxiliary

node u ∈ Va ∪ Vb. If T ∗ is the minimum conductance set in G for this degree vector, then

S∗ = T ∗ ∩ V is the minimum hypergraph conductance set in H = (V,E).

Proof. From previous work on these reduction techniques [81 , 88], we know that the cut

penalty for a set S ⊆ V in H equals the cut penalty in the directed graph, as long as

auxiliary nodes are arranged in a way that produces the smallest cut penalty subject to the

choice of node set S ⊆ V . Formally, for S ⊆ V ,

cutH(S) = minimize
T⊂V̂ : S=T∩V

cutG(T), (6.4)

where cutG denotes the weight of directed out-edges originating inside S that are cut in

G. By our choice of degree vector, the volume of nodes in G equals the volume of the non-

auxiliary nodes in H. That is, for all T ⊆ V̂ , volG(T) =
∑

v∈V dv +
∑

u∈Va∪Vb
du = volG(T ∩

V) = volH(T ∩ V). Let T ∗ ⊆ V̂ be the minimum conductance set in G, and S∗ = T ∗ ∩ V .

Without loss of generality we can assume that volG(T ∗) ≤ volG(T̄ ∗). Since T ∗ minimizes

conductance, and auxiliary nodes have no effect on the volume of this set, cutG(T ∗) =

minimizeT⊂V̂ : T∩S∗ cutG(T) = cutH(S∗), and so cutG(T ∗)/volG(T ∗) = cutH(S∗)/volH(S∗).

Thus, minimizing conductance in G minimizes conductance in H.

6.4 Localized Quadratic Hypergraph Diffusions

Having established a conductance-preserving reduction from a hypergraph to a directed

graph, we will define a localized directed cut graph by adding a source and sink nodes and

new weighted edges in the same way as Section 3.3 . The key conceptual difference is that we

apply this construction directly to the reduced graph G, which by Theorem 6.3.1 preserves

conductance of the original hypergraph H. Formally, we assume we are given a set of nodes

R ⊆ V around which we wish to find low-conductance clusters, and a parameter γ > 0. The

localized directed cut graph is defined by applying the following steps to G:

• Add a source node s, and for each r ∈ R define a directed edge (s, r) of weight γdr.

85

• Add a sink node t, and for each v ∈ R̄ define a directed edge (v, t) with weight γdv.

We do not connect auxiliary nodes to the source or sink, which is consistent with the

fact that their degree is defined to be zero in order for Theorem 6.3.1 to hold. We illustrate

the construction of the localized directed cut graph in Figure 6.2 (d). It is important to note

that in practice we do not in fact form this graph and store it in memory. Rather, this

provides a conceptual framework for finding localized low-conductance sets in G, which in

turn correspond to good clusters in H.

Definition: Local hypergraph quadratic diffusions.

Let B and w be the incidence matrix and edge weight vector of the localized directed

cut graph with γ. The objective function for our hypergraph clustering diffusion, which we

call local hypergraph quadratic diffusion or simply local hypergraph PageRank, is

minimize
x

1
2
wT (Bx)2+ + κγ

∑
i∈V xidi

subject to xs = 1, xt = 0,x ≥ 0.
(6.5)

We use the function (x)+ = max{x, 0}, applied element-wise to Bx, to indicate we only

keep the positive elements of this product. This is analogous to the fact that we only view

a directed edge as being cut if it crosses from the source to the sink side; this is similar to

previous directed cut minorants on graphs and hypergraphs [89].

6.5 A Strongly Local Solver for LHQD

Although Equation 6.5 looks very similar to Equation 3.4 , Alogrithm 2 cannot be di-

rectly applied because: (1) `(x) = 1
2
(x)2+ doesn’t satisfy Definition 5.2.1 (2) we set the

degree of auxilary nodes to be zero, which will break the strong locality of Theorem 5.3.1 or

Theorem 5.3.4 . Thus, a new strongly local algorithm needs to be developed to solve Equa-

tion (6.5). We will first state the optimality conditions in Theorem 6.5.1 , and then present

the algorithm to solve them.

We begin with the optimality conditions for (6.5).

86

Theorem 6.5.1. Fix a seed set R, γ > 0, κ > 0, define a residual function r(x) =

− 1
γ
BTdiag((Bx)+)w. A necessary and sufficient condition to satisfy the KKT conditions

of (6.5) is to find x∗ where x∗ ≥ 0, r(x∗) = [rs,gT , rt]T with gi ≤ κdi (where d reflects the

graph before adding s and t but does include the 0 degree nodes), (κdi− gi)Tx∗i = 0 for i ∈ V

and gi = 0 for all auxiliary nodes added.

Proof. We will directly derive the KKT condition for the p-norm generalized version of

equation (6.5), which is equation (6.19). Introduce a new set of variables u ∈ R|E| and

transform equation (6.19) into the following equivalent problem.

minimize
x,u

wT `(u) + κγ
∑

i∈V xidi

subject to xs = 1, xt = 0,x ≥ 0.

Bx ≤ u,u ≥ 0

(6.6)

Here Bx ≤ u, u ≥ 0 and `(x) is an increasing function imply that u = (Bx)+ at the

optimality. The Lagrangian of equation (6.6) can written as

L = wT `(u) + κγd̂
T
x+ fT (Bx− u)− zTu+ λs(xs − 1) + λtxt − kTx (6.7)

Here d̂i = di when i ∈ V and d̂i = 0 when i ∈ Va∪Vb. Standard optimality results show that

the KKT conditions for equation (6.7) are:

∂L
∂x

= κγd̂+BT f + λses + λtet − k = 0

∂L
∂u

= diag(`′(u))w − f − z = 0

Bx ≤ u,u ≥ 0

fT (Bx− u) = 0

zTu = 0

kTx = 0

k ≥ 0, xs = 1, xt = 0

f ≥ 0.

87

Setting u = (Bx)+, which will be true at optimality, we get

∂L

∂u
= diag(`′(u))w − f − z = 0 =⇒ f = diag `((Bx)+)w − z

which means that for an edge i→ j,

fij = wij · `((xi − xj)+)− zij. (6.8)

Since fT (Bx− u) = 0, we also have that for each edge i→ j,

fij · ((xi − xj)− (xi − xj)+) = 0 (6.9)

⇐⇒ (−zij + wij · `((xi − xj)+)) · ((xi − xj)− (xi − xj)+) = 0. (6.10)

Similarly, zTu = 0 means that for edge i→ j,

zij · (xi − xj)+ = 0. (6.11)

If xi ≥ xj, then (6.10) holds automatically, but we need zij = 0 for (6.11) to hold. If xi < xj,

then (6.11) holds automatically, but we need zij = 0 in order for (6.10) to hold. Either

way, at optimality we simply have z = 0. So line 2 of KKT condition can be simplified into

f = diag(`′(u))w, which implies f ≥ 0. Then line 4 is automatically satisfied by combining

f = diag(`′(u))w and u = (Bx)+. Therefore, the simplified KKT condition can be written

as

κγd̂+BTdiag(`′((Bx)+))w + λses + λtet − k = 0

kTx = 0

k ≥ 0, xs = 1, xt = 0

Since the residual vector r is defined as − 1
γ
BTdiag(`′((Bx)+))w, from k ≥ 0 and d̂i = 0 for

i ∈ Va ∪ Vb, d̂i = di for i ∈ V , we have gV ≤ κd and gVa∪Vb
= 0. Also for i ∈ Va ∪ Vb, from

88

gi = d̂i = 0, we have ki = 0. Thus kTx = 0 can be reduced to (κd − gV)
TxV = 0. Now by

replacing `(x) with x2/2, we can get theorem 6.5.1 .

We further note that solutions x∗ are unique because the problem is strongly convex due

to the quadratic.

In Section 6.3 , we have shown that the reduction technique of any cardinality submodular-

based splitting function suffices to introduce multiple directed graph gadgets with different

δe and ce. In order to simplify our exposition, we assume that each hyperedge has a δ-

linear threshold splitting function [23] fe = min{|A| , |e\A| , δ} with δ ≥ 1 to be a tunable

parameter. This splitting function can be exactly modeled by replacing each hyperedge with

one directed graph gadget with ce = 1 and δe = δ. (This is what is illustrated in Figure 6.2 .)

Also when δ = 1, it models the standard unweighted all-or-nothing cut [90 – 92] and when δ

goes to infinity, it models star expansion [86]. Thus this splitting function can interpolate

these two common cut objectives on hypergraphs by varying δ.

By assuming that we have a δ-linear threshold splitting function, this means we can asso-

ciate exactly two auxiliary nodes with each hyperedge. We call these a and b for simplicity.

We also let Va be the set of all a auxiliary nodes and Vb be the set of all b nodes.

At a high level, the algorithm to solve this proceeds as follows: whenever there exists an

graph node i ∈ V that violates optimality, i.e. ri > κdi, we first perform a hyperpush at

i to increase xi so that the optimality condition is approximately satisfied, i.e., ri = ρκdi

where 0 < ρ < 1 is a given parameter that influences the approximation. This changes the

solution x only at the current node i and residuals at adjacency auxiliary nodes. Then for

adjacent auxiliary we immediately push on them, which means to increase their value so

that the residuals remain zero. After pushing each pair (a, b) of associated auxiliary nodes,

we then update residuals for adjacent nodes in V . Then we search for another optimality

violation. (See Algorithm 4 for a formalization of this strategy.) When ρ < 1, we still only

approximately satisfy the optimality conditions (see Section 5.4 for more explanation).

We have the following lemmas on x and r.

Lemma 6.5.2. At any iteration of Algorithm 4 , for each pair of auxiliary nodes, a ∈ Va,

b ∈ Vb and a→ b, xa ≥ xb.

89

Proof. If xa < xb, from gb = wab(xa − xb)+ −
∑

i∈V wbi(xb − xi)+ = 0 we have for any i ∈ V

where b→ i, xb ≤ xi. This means ga = −wab(xa − xb)+ +
∑

i∈V wia(xi − xa)+ > 0, which is

a contradiction because ga is zero for all iterations.

Lemma 6.5.3. At any iteration of Algorithm 4 , for any i ∈ V ∪ Va ∪ Vb, gi will stay

nonnegative and 0 ≤ xi ≤ 1.

Proof. The nonnegativity of gi is obvious. At any iteration of Algorithm 4 , we either change

gi to ρκdi or add some nonnegative values to the residual of adjacent nodes or keep gi as

zero. For each original node i ∈ V , to prove 0 ≤ xi ≤ 1, recall ri = gi expands to

gi =
1

γ

∑
b∈Vb

wbi(xb − xi)+ −
1

γ

∑
a∈Va

wia(xi − xa)+ + di[Ind(i ∈ R)− xi]

Suppose xi is the largest element and xi > 1, then Ind(i ∈ R) − xi < 0. Since gi ≥ 0, this

means there exists b ∈ Vb such that xb > xi > 1. Assume a ∈ Va is adjacent to b, then

ga = −wab(xa − xb)+ +
∑

i∈V wia(xi − xa)+ = 0

gb = wab(xa − xb)+ −
∑

i∈V wbi(xb − xi)+ = 0

Since xi is the largest among all nodes i ∈ V , the only way to satisfy both equations is

xa = xb = xi. Thus, we have xi = xb > xi, which is a contradiction. To prove xi ≤ 1 for

i ∈ Va∪Vb, from Lemma 6.5.2 , we only need to show xi ≤ 1 for i ∈ Va. If there exists a ∈ Va
such that xa > 1, since xi ≤ 1 for any i ∈ V , then from ga = 0, we have xa = xb > 1 where

a→ b. This means gb < 0, which is a contradiction.

Notes on optimizing the procedure.

Algorithm 4 describes a general strategy to approximately solve these diffusions. We

now note a number of optimizations that we have found to greatly accelerate this strategy.

First, note that x and r can be kept as sparse vectors with only a small set of entries stored.

Second, note that we can maintain a list of optimality violations because each update to x

90

Algorithm 4 LHQD(γ, κ, ρ) for set R and hypergraph H with δ-linear penalty where 0 <
ρ < 1 determines accuracy

1: Let x=0 except for xs=1 and set r=−γ−1BTdiag((Bx)+)w(δ, γ).
2: While there is any vertex i ∈ V where ri > κdi, or stop if none exists (find an optimality

violation)
3: Perform LHQD-hyperpush at vertex i so that ri = ρκdi, updating x and r. (satisfy

optimality at i)
4: For each pair of adjacent auxiliary nodes a, b where a ∈ Va, b ∈ Vb and a→ b, perform

LHQD-auxpush at a and b so that ra = rb = 0, then update x and r after each auxpush.
5: Return x

only causes r to increase, so we can simply check if each coordinate increase creates a new

violation and add it to a queue. Third, to find the value that needs to be “pushed” to each

node, a general strategy is to use a binary search procedure as we will use for the p-norm

generalization in Section 6.7 . However, if the tolerance of the binary search is too small, it

will slow down each iteration. If the tolerance is too large, the solution will be too far away

from the true solution to be useful. In the remaining of this section, we will show that in

the case of quadratic objective (6.5), we can (i) often avoid binary search and (ii) when it is

still required, make the binary search procedure unrelated to the choice of tolerance in those

iterations where we do need it. Note that these detailed techniques will not change the time

complexity of the overall algorithm, but make a large difference in practice.

We will start by looking at the expanded formulations of the residual vector. When

i ∈ V , ri expands as:

ri =
1

γ

∑
b∈Vb

wbi(xb − xi)+ −
1

γ

∑
a∈Va

wia(xi − xa)+ + di[Ind(i ∈ R)− xi]. (6.12)

Similarly, for each a ∈ Va, b ∈ Vb where a→ b, they will share the same set of original nodes

and their residuals can be expanded as:

ra = −wab(xa − xb) +
∑

i∈V wia(xi − xa)+

rb = wab(xa − xb)−
∑

i∈V wbi(xb − xi)+
(6.13)

91

Note here we use lemma 6.5.2 .

The goal in each hyperpush is to first find ∆xi such that r′i = ρκdi and then in auxpush,

for each pair of adjacent auxiliary nodes (a, b), find ∆xa and ∆xb such that r′a and r′b remain

zero. (∆xi, ∆xa and ∆xb are unique because the quadratic is strongly convex.) Observe

that ri, ra and rb are all piecewise linear functions, which means we can derive a closed form

solution once the relative ordering of adjacent nodes is determined. Also, in most cases,

the relative ordering won’t change after a few initial iterations. So we can first reuse the

ordering information from last iteration to directly solve ∆xi, ∆xa and ∆xb and then check

if the ordering is changed.

Given these observations, we will record and update the following information for each

pushed node. Again, this information can be recorded in a sparse fashion. When the pushed

node i is a original node, for its adjacent a ∈ Va and b ∈ Vb, we record:

• s
(i)
a : the sum of edge weights wia where xa < xi

• s
(i)
b : the sum of edge weights wbi where xb > xi

• a
(i)
min: the minimum xa where xa ≥ xi

• b
(i)
min: the minimum xb where xb > xi

Now assume the ordering is the same, r′i can be written as r′i = ri− 1
γ
(s

(i)
a + s

(i)
b)∆xi = ρκdi,

so

∆xi = γ(ri − ρκdi)/(s(i)a + s
(i)
b). (6.14)

Then we need to check whether the assumption holds by checking

xi +∆xi ≤ min
(
a
(i)
min, b

(i)
min

)
(6.15)

If not, we need to use binary search to find the new location of xi + ∆xi (Note ∆xi here

is the true value that is still unknown), update s(i)a , s(i)b , a(i)min and b
(i)
min and recompute ∆xi.

This process is summarized in LQHD-hyperpush.

Similarly, when the pushed nodes a ∈ Va, b ∈ Vb where a → b, are a pair of auxiliary

nodes, for its adjacent nodes i ∈ V , we record:

92

Algorithm 5 LQHD-hyperpush(i, γ, κ,x, r, ρ)

1: Solve ∆xi with s(i)a , s(i)b , a(i)min and b(i)min using (6.14). (assume the order of i doesn’t change
among its adjacent nodes)

2: if (6.15) doesn’t hold (adding ∆xi changed the order of i) then
3: Binary search on ∆xi until we find the smallest interval among all adjacent nodes of

i that will include xi +∆xi, update s(i)a , s(i)b , a(i)min and b
(i)
min.

4: Solve ∆xi with the found interval by setting ri = ρκdi in (6.12).
5: end if
6: Update x and r, xi ← xi +∆xi, ri ← ρκdi

• za: the sum of edge weights wia where xa < xi

• zb: the sum of edge weights wbi where xb > xi

• x
(a)
min: the minimum xi where xa < xi

• x
(b)
min: the minimum xi where xb < xi

Then we solve ∆xa, ∆xb by solving the following linear system (here we assume xb ≥ xi)
−wab(∆xa −∆xb) +

wia

γ
((x′i − xa)+ − (xi − xa)+)− za∆xa = 0

wab(∆xa −∆xb)−
wbi

γ
((xb − x′i)+ − (xb − xi)+) + zb∆xb = 0

(6.16)

where x′i refers to the updated xi after applying LQHD-hyperpush at node i. And the as-

sumption will hold if and only if the following inequalities are all satisfied:

x′i ≤ xb, xa +∆xa ≤ x
(a)
min, xb +∆xb ≤ x

(b)
min (6.17)

If not, we also need to use binary search to update the locations of xa +∆xa and xb +∆xb,

update za, zb, x(a)min, x(b)min and recompute ∆xa and ∆xb.

93

Algorithm 6 LQHD-auxpush(i, a, b, γ,x, r,∆xi)

1: Solve ∆xa, ∆xb with za, zb, x(a)min and x
(b)
min using (6.16).

2: if (6.17) doesn’t hold. (adding ∆xa,∆xb altered the order) then
3: Binary search on ∆xa until we find the smallest interval among all adjacent original

nodes of a that will include xa +∆xa, update za, x(a)min, similarly for zb, x(b)min.
4: Solve ∆xa,∆xb with the found intervals by setting ra = rb = 0 in (6.13).
5: end if
6: Change the following entries in x and r to update the solution and the residual
7: (a) xa ← xa+∆xa and xb ← xb+∆xb
8: (b) For each neighboring node i → a where i ∈ V , ri ← ri+

1
γ
wia(xi−xa)+− 1

γ
wia(xi−

xa−∆xa)+ − 1
γ
wbi(xb− xi)++ 1

γ
wbi(xb+∆xb− xi)+

Establishing a runtime bound.

The key to understand the strong locality of the algorithm is that after each LQHD-

hyperpush, the decrease of
∥∥g∥∥1 can be lower bounded by some number that is independent

of the total size of the hypergraph, while LHQD-auxpush doesn’t change
∥∥g∥∥1. Formally, we

have the following theorem:

Theorem 6.5.4. Given γ > 0, κ > 0, δ > 0 and 0 < ρ < 1. Suppose the splitting function

fe is submodular, cardinality-based and satisfies 1 ≤ fe({i}) ≤ δ for any i ∈ e. Then

calling LQHD-auxpush doesn’t change
∥∥g∥∥1 while calling LQHD-hyperpush on node i ∈ V

will decrease
∥∥g∥∥1 by at least γκ(1− ρ)di/(γκ+ δ).

Suppose LHQD stops after T iterations and di is the degree of the original node updated at

the i-th iteration, then T must satisfy:

∑T
i=1 di ≤ (γκ+ δ)vol(R)/γκ(1− ρ) = O(vol(R)).

Proof. By using Lemma 6.5.3 , |g|1 becomes

|g|1 =
∑

i∈V ∪Va∪Vb
gi =

∑
i∈R di(1− xi)−

∑
i∈R̄ dixi

94

This implies that any change to the auxiliary nodes will not affect
∥∥g∥∥1. Thus calling LHQD-

auxpush doesn’t change
∥∥g∥∥1. When there exists i ∈ V such that gi > κdi, then hyper-push

will find ∆xi such that g′i = ρκdi. Then the new g′i can be written as

g′i =
1

γ

∑
b∈Vb

wbi(xb − xi −∆xi)+ −
1

γ

∑
a∈Va

wia(xi +∆xi − xa)++

κdi(Ind[i ∈ R]− xi −∆xi) (6.18)

Note g′i is a decreasing function of ∆xi and g′i > 0 when ∆xi = 0, g′i < 0 when ∆xi = 1 by

using Lemma 6.5.3 . This suggests that there exists a unique ∆xi that satisfies g′i = ρκdi.

Moreover, (xb − xi −∆xi)+ ≥ (xb − xi)+ −∆xi and (xi + ∆xi − xa)+ ≤ (xi − xa)+ + ∆xi,

thus we have

ρκdi = g′i ≥ gi − 1
γ
(
∑

b∈Vb
wbi +

∑
a∈Va

wia)∆xi − κdi∆xi

From equation (4.9) of [81],

∑
b∈Vb

wbi =
∑

a∈Va
wai =

∑
e∈E,i∈e fe({i}) ≤ δdi

Thus, we have di∆xi ≥ gi−g′i
κ+δ/γ

> γκ(1−ρ)
γκ+δ

di So the decrease of
∥∥g∥∥1 will be at least γκ(1 −

ρ)di/(γκ+ δ). Since
∥∥g∥∥1 = vol(R) initially, we have

∑T
i=1 di ≤ (γκ+ δ)vol(R)/γκ(1−ρ) =

O(vol(R)).

Similar to Theorem 5.3.1 , this theorem only upper bounds the number of iterations

Algorithm 4 requires. Each iteration of Algorithm 4 will also take O(
∑

e∈E,i∈e |e|) amount of

work. This ignores the binary search, which only scales it by log(max{di,maxe∈E,i∈e{|e|}})

factor in the worst case. Putting these pieces together shows that if we have a hypergraph

with independently bounded maximum hyperedge size, then we can treat this additional work

as a constant. Consequently, our solver is strongly local for graphs with bounded maximum

hyperedge size; this matches the interpretation in [23].

95

6.6 Local Conductance Approximation

We give a local conductance guarantee that results from solving (6.5). For simplicity,

we focus on the case κ = 0. We prove that a sweepcut on the solution x of (6.5) leads

to a Cheeger-type guarantee for conductance of the hypergraph H even when the seed-set

size |R| is 1. It is extremely difficult to guarantee a good approximation property with an

arbitrary seed node, and so we first introduce a seed sampling strategy P with respect to a

set S∗ that we wish to find. Informally, the seed selection strategy says that the expected

solution mass outside S∗ is not too large, and more specifically, not too much larger than if

you had seeded on the entire target set S∗.

Definition 6.6.1. Denote x(γ,R) as the solution to (6.5) with κ = 0. A good sampling

strategy P for a target set S∗ is

Ev∈P

 1

dv

∑
u∈V \S∗

duxu(γ, {v})

 ≤ c

vol(S∗)

∑
u∈V \S∗

duxu(γ, S
∗)

for some positive constant c.

Note that vol(S∗) is just to normalize the effect of using different numbers of seeds. For

an arbitrary S∗, a good sampling strategy P for the standard graph case with c = 1 is to

sample nodes from S∗ proportional to their degree. Now, we provide our main theorem.

Its proof requires some understanding on Lovász-Simonovits Curve (LSC) as well as tons of

analysis in linear algebra. We refer to our paper [20] for the full proof.

Theorem 6.6.1. Given a set S∗ of vertices s.t. vol(S∗) ≤ vol(H)
2

and φH(S
∗) ≤ γ

8c
for some

positive constant γ, c. If we have a seed sampling strategy P that satisfies Def. 6.6.1 , then

with probability at least 1
2
, sweepcut on (6.5) with find Sx with

φ(Sx) ≤
√

32γδ̄ ln (100vol(S∗)/dv),

where δ̄ = maxe∈∂Sx min{δe, |e| /2} where ∂Sx = {e ∈ E | e∩Sx 6= ∅, e∩ S̄x 6= ∅} and v is the

seeded node.

96

This implies that for any set S∗, if we have a sampling strategy that matches S∗ and tune

γ, our method can find a node set with conductance O(
√
φH(S∗)δ̄ log(vol(S∗))). The term

δ̄ is the additional cost that we pay for performing graph reduction. The dependence on δ̄

essentially generalizes the previous works that analyzed the conductance with only all-or-

nothing penalty [77 , 82], as our result matches these when δ̄ = 1. But our method gives the

flexibility to choose other values δe and while δ̄ in the worst case could be as large as |e| /2,

in practice, δ̄ can be chosen much smaller (See Section 6.8). Also, although we reduce H

into a directed graph G, the previous conductance analysis for directed graphs [82 , 89] is not

applicable as we have degree zero nodes in G. Those degree zero nodes introduce challenges.

The detailed proof can be found in our paper [20].

6.7 Generalization to P-norms

Similar to Chapter 5 , our hypergraph diffusion framework can be easily generalized to

p-norm.

Definition: p-norm local hypergraph diffusions.

Given a hypergraph H = (V, E), seeds R, and values γ, κ. Let B,w again be the

incidence matrix and weight vector of the localized reduced directed cut graph. A p-norm

local hypergraph diffusion is:

minimize
x

wT `(Bx) + κγ
∑

i∈V xidi

subject to xs = 1, xt = 0,x ≥ 0.
(6.19)

Here `(x) = 1
p
(x)p+, 1 < p ≤ 2.

The idea of solving (6.19) is similar to the quadratic case, where the goal is to iteratively

push values to xi as long as node i violates the optimality condition, i.e. ri > κdi. The

challenge of solving a more general p-norm cut objective is that we no longer have a closed

form solution even if the ordering of adjacent nodes is known. Thus, we need to use binary

search to find ∆xi, ∆xa and ∆xb up to ε accuracy at every iteration. This means that in

97

the worst case, the general push process can be slower than 2-norm based push process by

a factor of O(log(1/ε)).

Algorithm 7 p-norm-hyperpush(i, γ, κ,x, r, ρ, ε)
1: Use binary search to find ∆xi such that the ith coordinate of residual after adding ∆xi

to xi, r′i = ρκdi, the binary search stops when the range of ∆xi is smaller than ε (satisfy
KKT at i).

2: Update x and r, xi ← xi +∆xi, ri ← ρκdi,
3: For each pair of adjacent auxiliary nodes a ∈ Va, b ∈ Vb where a → b, update the

corresponding residuals
ra ← ra− 1

γ
wia`

′((xi− xa)+)+
1
γ
wia`

′((xi+ ∆xi− xa)+) rb ← rb+
1
γ
wbi`

′((xb− xi)+)+
1
γ
wbi`

′((xb− xi−∆xi)+)

Algorithm 8 p-norm-auxpush(i, a, b, γ,x, r, ε)

1: Use binary search to find ∆xa, ∆xb up to accuracy ε such that r′a = 0 and r′b = 0 (satisfy
KKT at a, b).

2: xa ← xa+∆xa and xb ← xb+∆xb
3: For each adjacent node i where i ∈ V , ri ← ri+

1
γ
wia`

′((xi−xa)+)− 1
γ
wia`

′((xi− xa−
∆xa)+)− 1

γ
wbi`

′((xb− xi)+)+ 1
γ
wbi`

′((xb+∆xb− xi)+)

Runtime guarantee.

Bounding the number of times to call p-norm-hyperpush (7) is similar. Whenever there

exists g′i > κdi, we need to find ∆xi such that g′i = ρκdi. And g′i can be rewritten as:

g′i =
1

γ

∑
b∈Vb

wbi(xb − xi −∆xi)
p−1
+ − 1

γ

∑
a∈Va

wia(xi +∆xi − xa)p−1
+ +

κdi |(1R)i − xi −∆xi|p−1 sgn((1R)i − xi −∆xi) (6.20)

Here 1R is a binary vector where (1R)i = 1 if i ∈ R and (1R)i = 0 otherwise. For 1 <

p < 2, from lemma 4 of [18], we know (xb − xi − ∆xi)
p−1
+ ≥ (xb − xi)

p−1
+ − 22−p(∆xi)

p−1,

98

(xi +∆xi− xa)p−1
+ ≤ (xi− xa)p−1

+ + 22−p(∆xi)
p−1 and |(1R)i − xi −∆xi|p−1 sgn((1R)i− xi−

∆xi) ≥ |(1R)i − xi|p−1 sgn((1R)i−xi)−22−p(∆xi)
p−1. Thus we have the following inequality:

g′i ≥ gi −
22−p

γ
(
∑
b∈Vb

wbi +
∑
a∈Va

wia)(∆xi)
p−1 − 22−pκdi(∆xi)

p−1

which gives ∆xi ≥ (γκ(1 − ρ))1/(p−1)/(γκ + δ)1/(p−1). On the other hand,
∥∥g∥∥1 now can be

written as: ∥∥g∥∥1 =∑
i∈R

di(1− xi)p−1 −
∑
i∈R̄

dix
p−1
i

Also from lemma 4 of [18], (1−xi−∆xi)
p−1 ≤ (1−xi)p−1− (p− 1)∆xi and (xi+∆xi)

p−1 ≥

xp−1
i + (p− 1)∆xi so the decrease of

∥∥g∥∥1 will be at least (p− 1)di(γκ(1− ρ))1/(p−1)/(γκ+

δ)1/(p−1). If we need to call p-norm-hyperpush (7) T times, then

T∑
i=1

di ≤
(γκ+ δ)1/(p−1)

(p− 1)(γκ(1− ρ))1/(p−1)
vol(R) = O(vol(R))

6.8 Experimental Results

In the experiments, we will investigate both the LHQD (2-norm) and 1.4-norm cut objec-

tives with the δ-linear threshold as the splitting function (more details about this function

in Section 6.5). Our focus in this experimental investigation is on the use of the methods

for semi-supervised learning. Consequently, we consider how well the algorithms identify

“ground truth” clusters that represent various known labels in the datasets when given a

small set of seeds. (We leave detailed comparisons of the conductances to a longer version.)

In the plots and tables, we use LH-2.0 to represent our LHQD or LHPR method and

LH-1.4 to represent the 1.4 norm version from Section 6.7 . The other methods we are

comparing against include: (i) ACL [24], which is initially designed to compute approximated

PageRank on graphs. Here we transform each hypergraph to a graph using three different

techniques, which are star expansion (star+ACL), unweighted clique expansion (UCE+ACL)

and weighted clique expansion (WCE+ACL) where a hyperedge e is replaced by a clique

where each edge has weight 1/ |e| [83]. We chose to run ACL on the expanded graphs

99

because ACL is known as one of the fastest and most successful local graph clustering

algorithm in several benchmarks [11 , 18] and has a similar quadratic guarantee on local

graph clustering [24 , 34]. (ii) flow [23], which is the maxflow-mincut based local method

designed for hypergraphs. Since the flow method has difficulty growing from small seed set

as illustrated in the yelp experiment in Section 6.2 , we will first use the one hop neighborhood

to grow the seed set. (OneHop+flow) To limit the number of neighbors included, we will

order the neighbors using the BestNeighbors as introduced in [23] and only keep at most

1000 neighbors. (Given a seedset R, BestNeighbors orders nodes based on the fraction of

hyperedges incident to v that are also incident to at least one node fromR.) (iii) LH-2.0+flow,

this is a simple combination of LH-2.0 and flow where we use the output of LH-2.0 as the

input of the flow method to refine it. (iv) HGCRD [84], this is a hypergraph generalization

of CRD [8], which is a hybrid diffusion and flow.

1

In order to select an appropriate δ for different datasets, Veldt et al. found that the

optimal δ is usually consistent among different clusters in the same dataset [23]. Thus, the

optimal δ can be visually approximated by varying δ for a handful of clusters if one has

access to a subset of ground truth clusters in a hypergraph. We adapt the same procedure

in our experiments and report the results in Section 6.8.4 . Other parameters are in the

reproduction details footnote.

2

6.8.1 Detecting Amazon Product Categories

In this experiment, we use different methods to detect Amazon product categories [93].

The hypergraph is constructed from Amazon product review data where each node represents

a product and each hyperedge is set of products reviewed by the same person. It has 2,268,264
1

 ↑ Another highly active topic for clustering and semi-supervised learning involves graph neural networks
(GNN). Prior comparisons between GNNs and diffusions shows mixed results in the small seed set regime
we consider [7 , 18] and complicates doing a fair comparison. As such, we focus on comparing with the most
directly related work.
2

 ↑ Reproduction details. We fix the LH locality parameter γ to be 0.1, approximation parameter ρ to be 0.5
in all experiments. We set κ = 0.00025 for Amazon and κ = 0.0025 for Stack Overflow based on cluster
size. For ACL, we use the same set of parameters as LH. For LH-2.0+flow, we set the flow method’s locality
parameter to be 0.1. For OneHop+flow, we set the locality parameter to be 0.05, 0.0025 on Amazon and
Stack Overflow accordingly. For HGCRD, we set U = 3 (maximum flow that can be send out of a node),
h = 3 (maximum flow that an edge can handle), w = 2 (multiplicative factor for increasing the capacity of
the nodes at each iteration), α = 1 (controls the eligibility of hyperedge), τ = 0.5 and 6 maximum iterations.

100

nodes and 4,285,363 hyperedges. The average size of hyperedges is around 17. We select 6

different categories with size between 100 and 10000 as ground truth clusters used in [23].

The statistics of these 6 clusters are summarized in table 6.1 where the conductance is

computed under the standard all-or-nothing penalty. We set δ = 1 for this dataset (more

details about this choice in § 6.8.4). We select 1% nodes (at least 5) as seed set for each

cluster and report median F1 scores and median runtime over 30 trials in Table 6.2 and 6.3 .

Overall, LH-1.4 has the best F1 scores and LH-2.0 has the second best F1. The two fastest

methods are LH-2.0 and star+ACL. While achieving better F1 scores, LH-2.0 is 20x faster

than HyperLocal (flow) and 2-5x faster than clique expansion based methods.

Table 6.1. Statistics on Amazon product categories

Cluster label Cluster name Size Conductance
12 Gift Cards 148 0.132
18 Magazine Subscriptions 157 0.132
17 Luxury Beauty 1581 0.109
25 Software 802 0.137
15 Industrial & Scientific 5334 0.142
24 Prime Pantry 4970 0.097

Table 6.2. Median F1 scores on detecting Amazon product categories over
30 trials, the small violin plots show variance.

Alg 12 18 17 25 15 24
F1 & Med. F1 & Med. F1 & Med. F1 & Med. F1 & Med. F1 & Med.

LH-2.0 0.77 0.65 0.25 0.19 0.22 0.62
LH-1.4 0.9 0.79 0.32 0.22 0.27 0.77
LH-2.0+flow 0.95 0.82 0.15 0.16 0.16 0.87
star+ACL 0.64 0.51 0.19 0.15 0.2 0.49
WCE+ACL 0.64 0.51 0.2 0.14 0.21 0.51
UCE+ACL 0.27 0.09 0.06 0.05 0.11 0.14
OneHop+flow 0.52 0.6 0.16 0.12 0.09 0.22
HGCRD 0.56 0.4 0.05 0.06 0.07 0.17

101

Table 6.3. Median runtime in seconds on detecting Amazon product categories

Alg 12 18 17 25 15 24
LH-2.0 0.9 0.7 2.8 1.0 5.6 13.3
LH-1.4 8.0 6.3 32.3 9.8 53.8 127.3
LH-2.0+flow 3.5 5.1 421.1 17.8 34.9 151.5
star+ACL 0.2 0.2 0.3 0.2 0.5 0.8
WCE+ACL 18.6 17.2 19.0 16.5 21.5 20.1
UCE+ACL 9.8 10.9 11.2 10.7 13.3 15.5
OneHop+flow 308.8 141.7 359.2 224.9 81.5 82.4
HGCRD 120.3 56.4 78.1 21.2 239.4 541.3

6.8.2 Detecting Stack Overflow Question Topics

In the Stack Overflow dataset, we have a hypergraph with each node representing a

question on “stackoverflow.com” and each hyperedge representing questions answered by the

same user [23]. Each question is associated with a set of tags. The goal is to find questions

having the same tag when seeding on some nodes with a given target tag. This hypergraph

is much larger with 15,211,989 nodes and 1,103,243 edges. The average hyperedge size is

around 24. We select 40 clusters with 2,000 to 10,000 nodes and a conductance score below

0.2 using the all-or-nothing penalty. (There are 45 clusters satisfying these conditions, 5 of

them are used to select δ in § 6.8.4 .) In this dataset, a large threshold can give better results.

For diffusion based method, we set the δ-linear threshold to be 1000 (more details about this

choice in § 6.8.4), while for flow based method, we set δ = 5000 based on Figure 3 of [23].

In Table 6.4 , we summarize some recovery statistics of different methods on this dataset.

In Figure 6.3 , we report the performance of different methods on each cluster. Overall,

LH-2.0 achieves the best balance between speed and accuracy, although all the diffusion

based methods (LH, ACL) have extremely similar F1 scores (which is different from the last

experiment). The flow based method still has difficulty growing from small seed set as we

can see from the low recall in Table 6.4 .

102

Table 6.4. This table summarizes the median of median runtimes in seconds
for the Stack Overflow experiments as well as median Precision, Recall and F1
over the 40 clusters.

Alg. LH2 LH1.4 LH2 ACL ACL ACL Flow HG-
+flow +star +WCE +UCE +1Hop CRD

Time 3.69 39.89 43.84 1.54 15.25 13.71 48.28 72.31
Pr 0.65 0.66 0.74 0.66 0.65 0.66 0.83 0.46
Rc 0.67 0.67 0.59 0.6 0.66 0.65 0.11 0.01
F1 0.66 0.66 0.66 0.63 0.65 0.65 0.19 0.02

6.8.3 Varying Number of Seeds

Comparing to the flow-based method, an advantage of our diffusion method is that it

expands from a small seed set into a good enough cluster that detects many labels correctly.

Now, we use the Amazon dataset to elaborate on this point. We vary the ratio of seed set

from 0.1% to 10%. At each seed ratio, denoted as r, we set κ = 0.025r. And for each

of the 6 clusters, we take the median F1 score over 10 trials. To have a global idea of

how different methods perform on this dataset, we take another median over the 6 median

F1 scores. For the flow-based method, we also consider removing the OneHop growing

procedure. The results are summarized in Figure 6.4 . We can see our hypergraph diffusion

based method (LH-1.4, LH-2.0) performs better than alternatives for all seed sizes, although

flow dramatically improves for large seed sizes.

6.8.4 Selecting δ

To select δ for each dataset, we run LH-2.0 on a handful of alternative clusters as we

vary δ. In Figure 6.5 , we show F1 scores on those clusters and pick δ = 1 for Amazon and

δ = 1000 for Stack Overflow.

103

marklogic
xpages

plone
wso2esb

wolfram-mathematica
site

coreaemdax
sapui5

spring-integration
statavhdl

lotus-notes

system-verilog
netsuite tcljuliaabap

openerp
xslt-2

.0

codenameone
alfrescoprolog

docusignapi
mule jq

racket

google-bigquery

apache-nifi
netlogo

cypher
office

-js

google-sheets-fo
rmula

wso2
typo3

ocaml
sparql

ibm-mobilefirstaxapta

data.table

0.0

0.2

0.4

0.6

0.8

F1

LH-2.0
LH-1.4

LH-2.0+flow
star+ACL

WCE+ACL
UCE+ACL

OneHop+flow
HGCRD

marklogic
xpages

plone
wso2esb

wolfram-mathematica
site

coreaemdax
sapui5

spring-integration
statavhdl

lotus-notes

system-verilog
netsuite tcljuliaabap

openerp
xslt-2

.0

codenameone
alfrescoprolog

docusignapi
mule jq

racket

google-bigquery

apache-nifi
netlogo

cypher
office

-js

google-sheets-fo
rmula

wso2
typo3

ocaml
sparql

ibm-mobilefirstaxapta

data.table

100

101

102

103

ru
nt

im
e

Figure 6.3. The upper plot shows median F1 scores of different methods over
40 clusters from the Stack Overflow dataset. The lower plot shows median
running time. LH-2.0 achieves the best balance between speed and accuracy;
LH-1.4 can sometimes be slower than the flow method when the target cluster
contains many large hyperedges.

104

10 3 10 2 10 1

ratio

0.0
0.2
0.4
0.6
0.8

F1
LH-2.0
LH-1.4

OneHop+flow
flow

star+ACL
UCE+ACL

WCE+ACL
HGCRD

Figure 6.4. This plot shows the median of median F1 scores on detecting
those 6 clusters in the Amazon data when varying the seed size. The envelope
represents 1 standard error over the 6 median F1 scores. Without OneHop,
the flow based method is not able to grow from seed set even for the largest
seeds. Our hypergraph diffusion (LH) methods outperforms others, especially
for small seeds.

100 101 102 103 1040.2
0.4
0.6
0.8

F1

(a) Amazon

100 101 102 103 104
0.2
0.4
0.6

F1

(b) Stack Overflow

Figure 6.5. Selecting proper δ for Amazon and Stack Overflow.

105

7. COMBINING TOPOLOGICAL DATA ANALYSIS AND

DIFFUSIONS FOR ANALYZING PREDICTIONS

7.1 Motivation and background on TDA

Deep learning is a successful strategy where a highly parameterized model makes human-

like predictions across many fields [94 – 97].

Yet challenges in generalization may keep deep learning from use in practice [98 , 99].

Detailed prediction mechanisms are also difficult to assess directly due to the large collection

of model parameters.

Prior work on analyzing deep learning methods for errors focuses on a single result

list [100]. Other research work seeks to explain model predictions by highlighting areas that

make the most contribution to the final prediction [101 – 105] and the user needs to check if

the highlighted areas make sense. Another set of studies take a different approach by training

a simple and explainable model (i.e. a linear classifier) to mimic the prediction functions

of the original model [106]. However, all these approaches can only explain the model’s

prediction on a single sample each time instead of model’s prediction ability in the entire

dataset. The dataset can have millions of training or testing samples, which makes checking

the explanation or interpretation of all samples impossible. An alternate approach is to select

representative samples from the entire dataset [106], but checking each selected sample is

still required and the quality of the conclusion highly depends on how representative the

selected samples are.

In this chapter, we attempt to address this issue by transforming the prediction space of

complex models into a prediction map, represented in a graph. Subsequent analysis using

diffusion on this graph can enable easy inspection over the original dataset. Before diving

into our method, we will first introduce topological data analysis (TDA) and the mapper

algorithm [107].

106

7.1.1 Background: Topological Data Analysis and the Mapper Algorithm

Topological methods of data analysis excel at distilling representation invariant infor-

mation from large datasets [107 – 109]. Mapper builds a discrete approximation of a Reeb

graph or Reeb space (see Figure 7.1). It begins with a set of datapoints (x1, . . . , xn), along

with a single or multi-valued function sampled at each datapoint. The set of all these values

{f1, . . . , fn} samples a map f : X → Rk on a topological space X. The map f is called

a filter or lens. The idea is that when f is single valued, a Reeb graph shows a quotient

topology of X with respect to f and mapper discretizes this Reeb graph using the sampled

values of f on points x1, . . . , xn. Algorithmically, mapper consists of the steps:

• Sort the values fi and split them into overlapping bins B1, . . . , Br of the same size.

• For each bin of values Bj, let Sj denote the set of datapoints with that same value

and cluster the datapoints in each Sj independently. (That is, we run a clustering

algorithm on each Sj as if it was the entire dataset.)

• For each cluster found in the previous step, create a node in the Reeb graph.

• Connect nodes of the Reeb graph if the clusters they represent share a common point.

The resulting graph is a discrete approximation of the Reeb graph and represents a

compressed view of the shape underlying the original dataset.

In this chapter, we will propose a framework to extract a type of topological description

similar to mapper to analyze the prediction space of complex models. Our framework can be

easily adapted to models and datasets from various sources like images, DNA sequences or

co-purchasing graphs etc. We will mainly use lenses that come from the prediction function

and that are multi-valued, which we interpret as a collection of single-valued lenses (See

Figure 7.2 C as an example). The input to our method is no longer a point cloud, but a

graph. Comparing to point cloud, graphs are even more general and datasets not in graph

format like images or DNA sequences can be easily transformed into graphs first extracting

intermediate outputs of the model as embeddings and then building a nearest neighbor graph

from the embedding matrix. Another advantage is graph format facilitates easy clustering:

107

for each subset of points, we extract the subgraph induced by those points and then use

a parameter-free connected components analysis to generate clusters. The resulting graph

of our graph-based topological data analysis (GTDA), called Reeb network, is a discrete

approximation of topological structures called Reeb spaces, which generalize Reeb graphs

(See Figure 7.1 as an example).

7.1.2 Reeb graph vs. Reeb space vs. Reeb network

The main difference between a Reeb graph and Reeb network is the number of lenses used

because the Reeb net involves a multivalued map which can be thought of as a collection of

single valued maps. A demonstration to show this difference can be found in Figure 7.1 .

Formally, let f : X → Rk map a topological space X to a k-dimensional real space. Two

points x, y ∈ X are called equivalent if (i) f(x) = f(y) and (ii) they belong to the same

connected component of the level set f−1(f(x)). Denoting this equivalence relation with ∼,

we obtain the quotient space Rf
X = X/ ∼. When the range of f is R, Rf

X is a one-dimensional

space called the Reeb graph of f . When f is multi-valued, that is, k > 1, Rf
X becomes a

space called Reeb space. By choosing the bins in Rk, we discretize this Reeb space with a

graph which we call the Reeb net here. We choose the term Reeb net to distinguish it from

discretized Reeb graph because both are graphs but one discretizes a one-dimensional space

(a graph) and the other discretizes a quotient space that need not be one-dimensional.

7.1.3 Existing work of using topology in neural networks

Despite its success in extracting insights from the shape of complex data [107], topological

data analysis (TDA) of complex predictive models such as deep learning remains in its

infancy and lack comprehensive studies in real world problems. Naitzat et al. [111] studies

how the topology of a two class classification dataset changes as it passes through different

layers of a neural network and finds some activation functions can simplify the topology

faster than others. TopoAct [112] studies the shape of activation space at a given layer

of a neural network to provide insights on the learned representations and mainly focuses

on images and NLP. Hence each sample in the space is just a randomly chosen activation

108

Figure 7.1. This illustrates the difference between a Reeb graph and a Reeb
network on a topologically interesting object. The lenses we use here are the
x and z coordinates. The inspiration for the object is [110].

109

vector that only represents a part of the input. Gabrielsson et al. [113] studies the topology

of the learned weights in a neural network, especially convolutional neural networks, and

shows that its topological structure strongly correlates with the models generalization ability

on unseen data. Some other work like TDA-Net [114] or TCNN [115] tries to improve a

models performance by incorporating the topological features into the training process of a

traditional convolutional neural network.

7.1.4 Chapter Overview

In this chapter, we developed a graph-based topological data analysis (GTDA) frame-

work to inspect the predictions of complex models (See Figure 7.2 as an example). The

first step is to construct a Reeb net to visualize the interactions between predictions and

data (Figure 7.2 D), which is then followed by a diffusion process on the resulting Reeb net

(Figure 7.2 F). The framework has the following properties:

• it can produce a topological view of the original dataset through pictures

• the visualization can provide clues for any sample of interest to be inspected

• it is highly scalable and can process large datasets with thousands of classes

• it can provide intuitive insights and suggest places that are worth a further study for

users without any prior knowledge on the model or the data

More specifically, this chapter is organized as the following sections:

• Section 7.2 presents the algorithmic details on how to build a Reeb network from a

graph and a prediction function.

• Section 7.3 demonstrates how we use apply diffusion on the resulting Reeb net to

highlight areas of the original dataset that are worth looking.

• Sections 7.4 to 7.8 provide comprehensive experiments by applying GTDA to multiple

real world datasets and models. We show that our method can scale up to large

dataset across different domains and enable us to detect labeling issues in training

110

Figure 7.2. Consider a prediction scenario with three classes in a Swiss
roll structure and an underlying graph (A). Graph neural network predictions
show reasonable accuracy (B). The 3-dimensional prediction lens from the
neural network is shown in (C) and gives a guide to class predictions. The
Reeb network is shown in (D). Each node maps to a small cluster of similar
values of the lens. Nodes are colored by the fraction of points in each pre-
dicted class. Regions with mixed predictions indicate potential ambiguities
in the results. Further study of two such connected regions (E) shows many
datapoints where there are training points with different labels closer to the
given test points. This situation motivates an algorithmic error estimate for
each datapoint without ground truth (F). This estimate is nevertheless highly
correlated with true errors and better than class uncertainty estimates. The
topological simplification highlights datapoints with confusing or ambiguous
predictions given the totality of predictions.

111

data, understand generalization in image classification, inspect predictions of likely

pathogenic mutations in the BRCA1 gene and many more.

• Section 7.9 discusses parameter selection of GTDA.

• Section 7.10 reports the runtime and scaling of GTDA on datasets in various sizes with

different number of lenses.

• Section 7.11 compares GTDA to other visualization techniques including tSNE and

UMAP. The results show that our framework can permit many types of analysis not

clearly possible with tSNE and UMAP output and is faster.

7.2 The Reeb network construction on a prediction function using a graph

We take as input:

1. an n-node graph G

2. a set of m lenses based on a prediction model as an n×m matrix P

The lenses we use are the prediction matrix P of a model where Pij is the probability that

sample i belongs to class j. Key differences from existing studies of TDA frameworks on

graphs include using the connected components of each bin [116 , 117] as clusters and also

additional steps to improve the analysis of prediction functions by adding weak connections

from a minimum spanning tree.

Problems with straightforward algorithmic adaptation

Mapper does extend to multidimensional lens functions by using a tensor product bin

construction. We found issues with a straightforward adaptation of mapper to such multidi-

mensional input for prediction functions. In our extensive trials, we found that most of the

resulting Reeb networks end up with too many tiny components or even singletons where no

prediction-specific insights were possible. This is especially so when the dataset has many

classes, most multi-dimensional bins will just contain very few samples because the space

112

grows exponentially, limiting the potential of overlap to find relationships. Simply reducing

the dimension of P with PCA will lose the interpretability of the lens. Moreover, classic

mapper uses a fixed bin size and density-based or multi-scale alternatives [118] were unsuc-

cessful in our investigations although they solve this problem from a theoretical perspective.

(We note this is a potential area for followup work to better understand why.)

Preprocessing to smooth the predictions

As a preprocessing step, we apply a few steps (usually four or five) of the smoothing

iteration: P (i+1) = (1 − α)P + αD−1AP (i). Here P (0) = P , A is the adjacency matrix of

the input graph, D is the diagonal degree matrix and 0 < α < 1. This helps to prevent

prevent sharp changes between adjacent nodes. This equation is a diffusion-like equation

closely related to the PageRank vector that is known to smooth data over graphs and has

many uses [25]. The iteration keeps all the prediction data non-negative and the smoothed

P will also be min-max column normalized so that each value is between 0 and 1. As is

standard, this setup can use any weights associated with the adjacency matrix, or remove

them and use an unweighted graph.

Our graph-based construction for a prediction function

Our GTDA approach uses a recursive splitting strategy to build the bins in the multi-

dimensional space. For each subgroup of data, the idea is that we find the lens that has

the maximum difference on those data. Then split the component by putting nodes into

two approximately equal sized overlapping bins based on the values in this lens. Then if the

resulting groups are big enough, we add them back as sets to consider splitting.

Detailed pseudo code can be found in Algorithm 9 . We give a quick outline here. The

recursive splitting starts with the set of connected components in the input graph. This is a

set of sets: S. The key step is when the algorithm takes a set Si from S, it splits Si into new

(possibly) overlapping sets T1, . . . ,Th based on the lens with maximum difference in value

on Si and also connected components. Each Ti is then either added S if it is large enough

113

(with more than K vertices) and where there exists a lens with maximum difference larger

than d. Otherwise, Ti goes into the set of finalized sets F.

Once we have the final set of sets, F, then we do have two final merging steps, along with

building the Reeb net. The first is to merge sets in F if they are too small (Algorithm 10).

The second is to add edges to the Reeb net to promote more connectivity (Algorithm 11).

In the first merging (Algorithm 10), which occurs before the Reeb net is constructed, we

check and see if any set in F is too small (smaller or equal to s1). If so, then we find nearby

nodes based on the input graph G and based on a user-provided distance measure f and

merge the small component with the closest component (giving preference to the smallest

possible set to merge into). This could be a simple graph-distance measure (e.g. shortest

path), something suggested by the domain, or a weight based on the prediction values (what

we use). The algorithm is closely related to Borůvka’s algorithm for a minimum spanning

tree.

Next, we build the Reeb net Ĝ from this set of sets F. Each group Fi becomes a node,

and nodes are connected if they share any vertex.

In the second merging (Algorithm 11) we seek to improve the overall connectivity of

the Reeb net by connecting small disconnected pieces of the Reeb net Ĝ. This step is

designed to enhance the ability to work with predictions by adding weaker connections to

the more strongly connected topological pieces. It uses the same distance measure f to find

components and uses a similar Borůvka-like strategy. We save the set of edges added at this

step to study in the error estimation procedures noted below.

Choices for the parameters

As a result, GTDA has 8 parameters as in Table 7.1 . Tuning of the parameters is

straightforward, and we often use the default choice or values from a small set. The values

K, d and s1 provide direct control about the number of nodes in the final group visualization,

while r and s2 control how connected we want the visualization to be. In practice, we could

first tune K and d to determine the number of nodes, then tune r so that no component in

the Reeb net is too large and finally tune s1, s2 to remove any tiny nodes or components.

114

We leave the smoothing parameters fixed at α = 0.5 and S = 5 or 10 (very smooth). A

detailed discussion on these parameters can be found in Section 7.9 .

Choice of distance function for merging

Possibly the hardest parameter to pick is the merging function f . The user can choose any

distance metric f in the merging step, in our experiments, we use `∞ norm of the difference

between rows of the preprocessed P as the distance between 2 samples, which roughly means

how much larger the bin containing one of those 2 samples should be in order to include the

other sample. Put another way, this choice makes us less sensitive to the exact choice for

r because we will add small connections that would have been included in a slightly larger

bin.

Drawing the graph

Unless otherwise specified, all coordinates of any layout we show are computed with

Kamada-Kawai algorithm [119].

Showing the Reeb network and explorations

In the Reeb net of a prediction function, we draw each node as a small pie-chart. The

size of the pie-chart represents the number of nodes. The pieces of the pie show the local

prediction distribution. In some cases, we find it useful to study the predicted labels directly,

such as when studying mechanisms underlying the prediction. In other cases, we find it

useful to study predictions and training data, such as when studying possible errors. These

visualizations facilitate exploring regions of the prediction landscape based on interactions

among predicted values and training data. By mapping these small regions back to the

original data, it suggests what the model is utilizing to make the predictions. Examples

on this can be found in the experiments in the main text as well as in the supplemental

information.

115

Table 7.1. List of parameters in GTDA.

parameter description suggested choices
K component size threshold to stop splitting 5% of smallest class size
d lens difference threshold to stop splitting 0 or 0.001
r overlapping ratio 0.01
s1 Reeb node size threshold 5
s2 Reeb component size threshold 5
α lens smoothing parameter 0.5 (used in all experiments)
S lens smoothing steps 5 or 10
f distance function in the merging step `∞ difference of row i, j of P (S)

7.2.1 Demonstration of GTDA

We use a 3 class Swiss roll dataset to demonstrate each step of our GTDA framework

(plot (A) of figure 7.3). For the GTDA parameters, we set K = 20, d = 0, r = 0.1, s1 = 5,

s2 = 5, α = 0.5, and S = 5. In (B), we show the three prediction lenses we use in the

top plot as well as the predicted labels of the model we use. We also add additional edges

based on nearest neighbors from node embeddings to take node features into account. This

is standard practice in graph neural network methods. Details on the dataset and the model

can be found in Section 7.2.2 . Each lens is just the prediction probability of a class after

smoothing and normalization. In (C), we pick the lens with the largest min-max difference

and split it into 2 bins with 10% overlap (we pick the one with smaller index to break ties).

This round of splitting finds 2 components. For each component found in the first iteration,

we pick the lens with the largest min-max difference and split it again. In this case, the

inner component is split along lens 3 while the outer component is split along lens 2. This

round of splitting further divides the graph into 7 components. We repeat the splitting until

no component has more than 20 vertices of the original graph.

In the end, we find 247 unique components. As noted above, we use a pie chart to

represent each Reeb node and connect Reeb nodes with black lines if they have any samples

in common to get the initial Reeb net, (D). Node size is proportional to the number of

samples it represents, the pie chart shows the distribution over predicted values. This initial

116

Reeb net has many tiny components or even singletons that are a barrier to deeper insights;

the merging steps address this issue. In (E), we use red dashed lines to mark how we will

merge those small Reeb nodes so that all nodes will contain more than 5 samples. Similarly,

we use red dashed lines to mark extra edges that will be added so that each connected

component in the Reeb net will contain more than 5 Reeb nodes. The final Reeb net is

shown in (F) with the original graph embedded in the background. We can see that all

important structures found in (D) are also preserved in (F) such as the mixing of nodes from

different classes. And what merging does is to estimate how the tiny nodes and components

are connected in the original graph or via the prediction lens so that we have a clear view

of predictions over the entire dataset. This supports an inspection of the model’s prediction

on any sample we want.

As a comparison, in plot (G), we show two Reeb nets that are constructed by the original

mapper algorithm with different number of bins along each lens. These Reeb nets are not

useful to understand the prediction structure. Most samples from the green class are grouped

into a few nodes because prediction probability distribution on this class is more skewed,

which makes the inspection hard.

7.2.2 Other details

Swiss Roll dataset construction

We use scikit-learn package to build the Swiss Roll dataset. We use 1000 samples in total

and the noise parameter is set to be 1.2. The initial Swiss Roll dataset is a 1000-by-3 matrix

X and a vector y which represents the position of each sample in the main dimension of the

manifold. We only keep the first and the third columns of X and use them as node features.

And we sort samples based on y and consider the first 33% samples as the first class, the

second 33% samples as the second class and all the other samples as the third class. The

graph is a nearest neighbor graph with each node connecting to its 5 closest neighbors using

Euclidean metric on X. We use a random set of use 10% samples as training, another 10%

samples as validation and all the other points as testing.

117

Figure 7.3. A detailed illustration of applying GTDA to build a Reeb net
on a 3-class Swiss roll dataset. The original data graph and “ground truth”
values are in (A). We show the model prediction for a simple GCN and the
three prediction lenses (after smoothing) in (B). The first splitting iteration
over lens 1 finds 2 components, (C). At the second split, for each component,
we choose the lens with the largest difference, which means the outer ring is
split over lens 2 and the inner ring is split over lens 3. The second splitting
finds 7 components in total. We continue to split until no more components
larger than 20 and get the initial Reeb net, (D). Then small nodes are merged
to neighbors iteratively as shown by the red dashed lines in (E). Similarly,
small components in the Reeb net are iteratively connected to get the final
Reeb net in (F). As a comparison, two Reeb nets from the original mapper
using 10 lens or 5 lens have many isolated nodes or components and are not
suitable for the subsequent inspection. The figure (F) uses predicted classes
for training and validation points instead of the actual training and validation
classes as in fig. 7.2 (D).

118

Algorithm 9 GTDA(G,P , K, d, r, s1, s2, α, S, f) See Table 7.1 for parameters description
1: Smooth P for S steps with P (i+1) = (1− α)P + αD−1AP (i) and P (0) = P
2: Perform a min-max normalization along each column of P
3: Find connected components in G and put all components with size larger than K and

maximum lens difference larger than d in S, otherwise in F
4: while S is not empty do
5: Let S(iter) be a copy of S
6: for each Si in S(iter) do
7: Remove Si from S
8: Find column ci (for a lens) such that P (S)[Si, ci] has the largest min-max difference
9: Split interval [min(P [Si, ci]),max(P (S)[Si, ci])] into two halves of the same length

and extend the left half by a ratio of r to give overlapping groups R1 and R2 based
on which vertices had values in the left and right parts of the interval.

10: Create sets T1, . . . ,Th based on the connected components in R1,R2.
11: for each Ti do
12: If there are more than K vertices in Ti and if there is a lens with a maximum

difference larger than d, then add Ti to S. Otherwise, add Ti to F.
13: end for
14: end for
15: end while
16: Run node-merging(F, G, s1, f) to get the updated F
17: Generate Reeb net Ĝ by considering each component of F as a Reeb net node and

connecting two Reeb net nodes if their corresponding components have overlap
18: Run component-merging(F, G, Ĝ, s2, f) to get the updated Ĝ and the extra set of edges

E
19: Return Ĝ, E

Model and parameters

We use a standard 2-layer GCN model to predict labels of testing samples. The dimension

of the hidden layer is 64, learning rate is 0.01 and weight decay is 10−5. Once the model

is trained, we use outputs of the first layer as node embeddings. The embedding matrix is

reduced to 16 dimension using PCA with whitening and then each row is `2 normalized. We

build another 2-NN graph using the preprocessed embedding matrix and cosine similarity to

encode any information from node features. This graph is combined with the original graph.

GTDA framework is then applied on the combined graph. For GTDA parameters, we set

119

Algorithm 10 node-merging(F, G, s1, f)
1: while there exists components in F with at most s1 vertices do
2: Set C to be empty.
3: for each component Fi in F where |Fi| ≤ s1 do
4: for each edge (vi, vj) in G where vi ∈ Fi and vj ∈ Fj 6= Fi, compute f(vi, vj)
5: Select the pair of nodes vi, vj with the smallest f(vi, vj). Let Fj be the set associated

with vj and choose the smallest size Fj if vj is in multiple such sets. Add (Fi,Fj) to
C.

6: end for
7: View the choices in C as edges of an undirected graph H where vertices are Fi.
8: Compute connected components of H.
9: for each connected component Hi of H of size larger than 1 do

10: Let F1, . . . ,Fh be the underlying sets of Hi from F. Remove each Fi from F. Then
add F1 ∪ . . . ∪ Fh to F.

11: end for
12: end while
13: Return the updated F

Algorithm 11 component-merging(F, G, Ĝ, s2, f)
1: Initialize the set of extra edges E to be empty
2: Compute connected components of Reeb net Ĝ
3: Let D be the set of connected components of Ĝ.
4: while there exists any Di ∈ D where Di has at most s2 Reeb nodes do
5: for each Di ∈ D where Di has at most s2 Reeb nodes do
6: Let C be the union of vertices in G (not Ĝ) for Reeb nodes in Di.
7: For each edge (vi, vj) ∈ G where vi ∈ C and vj 6∈ C, compute f(vi, vj).
8: Select the pair of nodes vi, vj with the smallest f(vi, vj). Let Fi and Fj be the Reeb

nodes associated with vi and vj and choose the smallest size Fj if vj is in multiple
such sets. Pick an arbitrary Fi (we used smallest index in our data structure) if Fi

in multiple such sets.
9: Add (Fi,Fj) to E.

10: Connect the Reeb nodes for Fi,Fj in Ĝ
11: end for
12: Recompute connected components analysis of Ĝ and update D
13: end while
14: Return Ĝ and E

K = 20, d = 0, r = 0.1, s1 = 5, s2 = 5, α = 0.5 and S = 5. We use 10 steps of iterations for

GTDA error estimation.

120

7.3 Error estimation using diffusion on the Reeb network

The model often highlights places where there is no reasonable basis for a prediction,

e.g. where there is training data with a different label closer to a prediction. This scenario

admits an estimate where the model will likely make mistakes by checking the relative

locations between predictions and training data. In this section, we will use diffusion on the

projected Reeb net to find places where prediction errors are the most likely to happen.

Using the Swiss roll example, in plot (A) of figure 7.4 , we zoom in on two components

GTDA. We then look at the induced subgraph of this region in a projection of the Reeb

network. The Reeb network projection expands each Reeb node into the original set of

input vertices with duplicated nodes merged and also adds in edges that we put into study

predictions (the extra set E in the algorithms). A detailed projection procedure can be found

in Algorithm 13 .

Put formally: Given a set of Reeb network nodes in Ĝ, find the union of all vertices

in G these nodes represent and call that T . We look at the induced subgraph of T in the

projection of the Ĝ from Algorithm 13 .

To show these induced subgraphs, we can either use Kamada Kawai layout or, as an

alternative to Kamada Kawai, we can also compute coordinates for each projected Reeb

node and then combine different layouts using their relative coordinates in Reeb net.

Then we use red circles to mark training and validation data and color them with the

true labels. Unknown data points are still colored with predicted labels.

One can immediately notice the problem: There are some orange predictions in the grey

box, but there is no orange training or validation data nearby to support them. Thus, either

the model or the dataset itself have issues with these prediction and merit a second look. In

this case, it is just the model that cannot classify some parts of the graph correctly due to

noisy links.

We developed an intuitive algorithm based on diffusion to automatically highlights which

parts of the visualization will likely contain prediction errors, Algorithm 12 . The core part

of this algorithm is to perform a few steps of random walk starting from nodes with known

labels. Predictions that are close to training data with the same labels in the Reeb net will

121

have higher scores in the column of predicted labels and hence have smaller error estimates.

Although this algorithm is a linear diffusion over the projected Reeb net, it certainly can

still be seen as a nonlinear diffusion over the original graph.

Applying this algorithm can successfully find other places where mistakes will happen

(see plot (B) of figure 7.4). As a simple comparison, we also include another plot where we

directly use model uncertainty (i.e. 1 minus model prediction probability) to estimate errors

(see plot (C) of figure 7.4). This metric has been previously used to estimate uncertainty

of dataset labels [120]. Clearly, GTDA is able to localize model errors much better and has

a higher AUC score (0.95 vs 0.87). There always exists other methods [121] that can also

give similar error estimations or even correct predicted labels. But explaining why those

methods should work or be trusted to a user without background knowledge is a challenge,

while our method offers a map-like justification that can give a rough rationale. Moreover,

any results from Algorithm 12 can always be validated and supported through pictures

similar to plot (A) of figure 7.4 . Also, other than finding possible errors, as shown in the

following experiments sections, we can often get many other insights about the model and

the dataset by checking abnormal areas of GTDA visualization, ranging from labeling issues

to strong correlation between model predictions and a particular dataset property. These

are explored in subsequent case studies.

7.4 Demonstration in Graph-based prediction

In this section, we apply our GTDA framework on an Amazon co-purchase graph [122]

constructed from Amazon reviews data [123]. Each node in this graph is a product, edges

connect products that are purchased together and node features are bag-of-words from prod-

uct reviews. The goal is to predict product category. The original dataset [122] that has

been used in several GNN papers does not have information for each specific product. To

better understand the visualization from GTDA, we build a similar dataset directly from

the Amazon reviews data [123]. We use the 2014 year version of reviews data and extract

products with the same set of labels as in the original [122].

122

Figure 7.4. This figure demonstrates the procedure of estimating errors from
the Reeb net produced by GTDA. In comparison with Figure 7.3 , we show
the training data labels in the pie charts instead of the predicted values. If we
zoom in on two components and mark training and validation samples (red
circles) with true labels, we see many orange predictions without any training
or validation data nearby to support them (inset box nearby) (A), which sug-
gests potential errors – note that the model may be using additional features
to predict these values, but these examples do merit closer inspection. We
develop an error estimation procedure in Algorithm 12 to automate this in-
spection. Overall, GTDA estimated errors have a AUC score of 0.95 with true
errors (B), while using model uncertainty (one minus prediction probability)
only has a AUC score of 0.87 (C).

123

Algorithm 12 error_estimation(Ĝ,E, `, n, α) where Ĝ and E is the Reeb net and extra
set of edges from algorithm 9 , ` are the original predicted labels, S is an integer for the
number of steps (10, or 20 were used), and 0 < α < 1 (we use α = 0.5 in all experiments).

1: Compute G(R), the projection of the Reeb net back to a graph from Algorithm 13 .
2: Let A(R) be the adjacency matrix of G(R)

3: Compute a diagonal matrix D(R) where D
(R)
ii is the degree of node i in G(R) and 0

elsewhere.
4: Initialize matrix P̂ (0) where P̂ (0)

ij = 1 iff node i is a training node with label j, otherwise
P̂

(0)
ij = 0.

5: for i = 1...S do
6: P̂

(i)
= (1− α)P̂

(0)
+ αD(R)−1

A(R)P̂
(i−1)

7: end for
8: Row normalize P̂

(S) so that each row sums to 1.
9: Compute estimated prediction error for node i to be ei = 1− P̂

(S)[i, `i]
10: Return estimated errors e.

Algorithm 13 Reeb-graph-projection(F,E, G) where F, E is the final set of components
and extra set of edges from Algorithm 9 and G is the original graph

1: Initialize G(R) with the same dimension of G and no edges
2: for Each Fi of F do
3: Add the set of edges of Fi from G to G(R)

4: end for
5: Add edges in E to G(R)

6: Return G(R)

7.4.1 Central results

Our framework identifies a key ambiguity in product categories that limits prediction

accuracy (Figure 7.5). Specifically, “Networking Products” and “Routers” overlap (a Router

is a specific type of Network Product) and show high levels of confusion as do “Data Stor-

age” and “Computer Components” (an internal data storage drive is a computer component).

These results suggest that large improvements are unlikely with better algorithms and would

require label improvements to differentiate categories or other divisions in a hierarchy [124].

This was verified by checking another graph neural network [38] with similar behavior (Sec-

tion 7.4.3).

124

Figure 7.5. Reeb network of a standard 2-layer graph convolutional net-
work model trained and validated on 10% labels of an Amazon co-purchase
dataset (A) and estimated errors shown in red (B). The map highlights ambi-
guity between “Networking Products” and “Routers”. Checking these products
shows wireless access points, repeaters or modems as likely ambiguities (C).
Additional label ambiguities involve “Networking Products” and “Computer
Components” regarding network adapters (D); likewise “Data Storage” and
“Computer Components” are ambiguous for internal hard drives (E). These
findings suggest that the prediction quality is limited by arbitrary subgroups
in the data, which Reeb networks helped locate quickly.

125

Table 7.2. Number of products for each category in our own version of
Amazon Computers dataset.

category number
Desktops 1,757

Data Storage 7,297
Laptops 4,590
Monitors 1,710

Computer Components 15,167
Video Projectors 804

Routers 1,086
Tablets 1,919

Networking Products 4,869
Webcams 548

7.4.2 Dataset and GNN model

Our own version of the Amazon co-purchase graph has the same set of the labels as the

original one [122]. We download all products and reviews in the category of “Electronics”

by following the link provided in [123]. We use the 2014 version as we can find the exact

same set of labels in this version. In the Amazon reviews dataset, each product is associated

with a list of categories. To assign labels, for each product, we check from the most general

category (i.e. Electronics) to the most specific one (i.e. Routers). And if we find a match to

the set of labels we choose, we directly assign the matched label to that product and ignore

the other categories in the list. Two products will be connected if they are marked as “also

bought”, “bought together” or “buy after viewing”. After we get the initial graph, we first

make the graph undirected and then filter out components that are smaller than 100. We use

bag-of-words node features with TF-IDF term weighting constructed from each product’s

review text. The final graph we get has 39,747 products and 798,820 edges. The number of

products for each category is listed in table 7.2 .

To get the prediction results used in Figure 2, we use the same 2-layer GCN model as

the Swiss Roll experiment to predict product categories (Section 7.2.2). The dimension of

the hidden layer is 64, learning rate is 0.01 and weight decay is 10−5. We randomly use 10%

126

samples as training, another 10% samples as validation and all the other samples as testing.

We extract the output of the first layer as node embeddings and we also build a 2-NN graph

using cosine similarity to combine with the original graph. This will let GTDA show the

impact of the feature similarity on the GNN. For GTDA parameters, we set K = 100, d = 0,

r = 0.01, s1 = 5, s2 = 5, α = 0.5 and S = 5. We use 20 steps of iterations for GTDA

error estimation. For the more advanced GPRGNN model used below, we use the same set

of parameters as suggested by its authors [38] and node embeddings are extracted from the

first layer output as well. We also use the same GTDA parameters as GCN.

7.4.3 Inspecting another advanced model predictions with GTDA

In Figure 7.5 , we found ambiguous subgroups inside “Data Storage” and “Networking

Products” with the help of GTDA visualization. Similar ambiguities persist after switching

to the more advanced GPRGNN model as shown in Figure 7.6 . Here, we also notice many

estimated errors in “Routers” and “Data Storage” as before. We show a detailed breakdown

of products true categories for some components. For each component highlighted, we list

top 2 most common categories. The other categories are put in “Others”. For “Networking

Products” and “Data Storage”, we also list the top 3 most common subcategories. For

the two “Routers” components in (A), we see many “Modems” or “Wireless Access Points”

from “Networking Products”. These should be frequently bought together, and “Routers”

should be considered as another subcategory of “Networking Products”. As a comparison,

for the other “Networking Products” component that is less mixed (B), the most common

subcategories are “Network Adapters” and “Hubs”, which are more precise than the more

ambiguous “Routers”. Similarly, for the two “Data Storage” components in (C), the mixed

one has many “Internal Drives” such as solid state drives (SSDs). These are essential parts of

a PC and should be considered as a part of “Computer Components” as well. There are also

a small portion of “Network Attached Storage”, which may be confused with “Networking

Products”. On the contrary, the less mixed one mostly contains “External Drives” like USB

drives, which are common additions to an already built PC. These results suggest that for

this dataset, no matter which model we choose, the performance on some portion of the

127

dataset will always be limited by the same type of underlying labeling issues. GTDA helps

capture those issues in both cases.

7.4.4 GTDA visualization on the original Amazon dataset

As a final check on our results, in Figure 7.7 , we apply GTDA to inspect GPRGNN’s

prediction on the original Amazon dataset built by [122] with the same setting. We can ob-

serve similar behavior to Figure 7.6 , that is “Routers” is mixed with “Networking Products”

and components of “Data Storage” are mixed with “Computer Components”.

7.5 Understanding image predictions

One of the most successful applications for complex neural network models is detecting

objects in images. Image classifiers based on convolutional neural networks (CNN) can

achieve extremely high accuracy, sometimes even higher than humans. What remains not

entirely understood is how to explain a model’s prediction and whether it will generalize

well beyond the training scenario. In this section, we will use GTDA framework to tackle

this issue by showing a visual taxonomy of images. Our hope is that by checking various

local regions in this visualization, one should be able to find images with very similar visual

properties, which then provides clues on the generalization ability of the model on other

similar images it may see in the future. Comparing to other research work that tries to

justify image predictions through saliency maps on each image [101 – 104], our approach can

provide insights over the entire dataset efficiently. We note that our GTDA analysis could

assist such efforts by studying the topology of the saliency maps, along with the predictions,

although we have not pursued this direction. Also note that, since the image dataset is not

in graph format, a KNN graph needs to be built first from the embedding matrix of the

images. More details on this can be found in Section 7.5.2 .

7.5.1 Central results

When our GTDA framework is applied to a pretrained ResNet50 model [125] on the

Imagnette dataset [126], it produces a visual taxonomy of images suggesting what ResNet50

128

Data Storage: 52.6%
 — Internal Drives: 31.6%
 — External Drives: 15.5%
 — Network Attached Storage: 5.4%
 — Other Data Storage: 0.2%
Computer Components: 42.1%
Others: 5.2%

Data Storage: 99.3%
 — External Drives: 88.3%
 — Internal Drives: 9.1%
 — Network Attached Storage: 1.1%
 — Other Data Storage: 0.9%
Computer Components: 0.5%
Others: 0.2%

Networking Products: 86.2%
 — Network Adapters: 44.0%
 — Hubs: 28.1%
 — Print Servers: 7.8%
 — Other Networking Products: 6.3%
Computer Components: 12.1%
Others: 1.7%

Routers: 53.0%
Networking Products: 43.9%
 — Wireless Access Points: 19.4%
 — Modems: 11.7%
 — Switches: 5.1%
 — Other Networking Products: 7.7%
Others: 3.1%

Routers: 51.5%
Networking Products: 46.5%
 — Wireless Access Points: 13.3%
 — Modems: 10.8%
 — Repeaters: 9.6%
 — Other Networking Products: 12.7%
Others: 2.0%

Prediction of GPRGNN

A

B

C

GTDA estimated errors
AUC score is 0.82

Training accuracy: 0.97
Validation accuracy: 0.89

Testing accuracy: 0.89

Figure 7.6. We provide GTDA results on inspecting the prediction on the
GPRGNN method instead of the GCN used in Figure 7.5 in the main text. We
list a detailed breakdown of categories and subcategories for a few components.
For the two “Routers” components in (A), there are many estimated errors be-
cause of ambiguous subgroups of “Networking Products” like “Wireless Access
Points”, “Modems” or “Repeaters”. The estimated errors are much less in (B)
because “Networking Products” has dominant less ambiguous subgroups. Sim-
ilarly, for two “Data Storage” components in (C), the one with more estimated
errors has dominant ambiguous subgraphs like “Internal Drives” or “Network
Attached Storage” which is confusing with “Computer Components” or “Net-
working Products”.

129

(1) predicted labels (2) GTDA estimated errors (3) true labels

Desktops
Data Storage
Laptops
Monitors
Computer Components
Video Projectors
Routers
Tablets
Networking Products
Webcams

Figure 7.7. GTDA visualization of GPRGNN’s prediction on the original
Amazon Computers dataset [122]. Similar to Figure 7.6 , “Routers” is mixed
with “Networking Products” and some components of “Data Storage” are
mixed with “Computer Components”.

is using to categorize the images (Figure 7.8). This taxonomy is built by placing images

directly on the layout of Reeb net. It was inspired by Tufte’s work on image quilts and small

multiples [127]. This example also highlights a region where the ground truth labels of the

datapoints are incorrect and cars are erroneously labeled as “cassette player”. We conjecture

a car labeled as “cassette tape” may be due to images of cars listed for sale including the

string “cassette tape player”.

7.5.2 Dataset and CNN model

The dataset we use is Imagenette [126], which is a subset of the entire ImageNet con-

taining 10 easily classified classes, “tench” (a type of fish), “English springer” (a type of

dog), “cassette player”, “chain saw”, “church”, “French horn”, “garbage truck”, “gas pump”,

“golf ball” and “parachute”. This dataset can be directly downloaded from a Github reposi-

tory [126]. The author uses a different training and testing split from the original ImageNet

dataset so we first restore the original split before model training. This choice is because

the pretrained model from the full ImageNet dataset may have had access to images in the

Imagenette test set. The number of training and testing images for each class is shown in

table 7.3 .

130

Figure 7.8. We take a pretrained ResNet50 model and retrain the last layer
to predict 10 classes in Imagnette (A). In (B), we zoom into the Reeb network
group of “gas pump” predictions and display images at different local regions
(C). This shows gas pump images with distinct visual features. Examining
these subgroups can provide a general idea on how the model will behave
when predicting future images with similar features as well as help us quickly
identify potential labeling issues in the dataset. For instance, we find a group
of images in (D) whose true labels are “cassette player” even though they are
really images of “cars”.

131

Table 7.3. Number of training and testing images for each label.

label training testing
tench 1,300 50

English springer 1,300 50
cassette player 1,300 50

chain saw 1,194 50
church 1,300 50

French horn 1,300 50
garbage truck 1,300 50

gas pump 1,300 50
golf ball 1,300 50

parachute 1,300 50

132

We use a pretrained ResNet50 model that is included in the PyTorch package and retrain

the last fully connected layer to make predictions on these 10 classes only. We use a batch

size of 128, learning rate of 0.01 and run for 5 epochs. We also use the common image

transform during training and testing. That is, each training image will be randomly cropped

into 224-by-224, randomly horizontally flipped and normalized by the mean and standard

deviation computed over the entire ImageNet dataset, while each testing image will be resized

to 256 along the shorter edge, center cropped to 224-by-224 and then normalized. We

modify the pooling of the last convolutional layer from average pooling to maximum pooling

and extract its output as node embeddings. Similar techniques are used in the context of

image retrieval [128]. Initially, the embedding dimension is 2048. We first PCA reduce the

dimension to 128 with PCA whitening. Then each row is `2 normalized. A 5-NN graph

is constructed on the preprocessed embedding matrix with cosine similarity. For GTDA

parameters, we set K = 25, d = 0.001, r = 0.01, s1 = 5, s2 = 5, α = 0.5 and S = 10. We

use 10 steps of iterations for GTDA error estimation.

7.5.3 Details on selecting images to embed

We provide more details on how we embed images on a Reeb net component to get

Figure 7.8 . For each pair of adjacent Reeb net nodes, for each image in one end, we measure

its smallest distance in the projected Reeb net to some node in the other end. Note some

images can be duplicated in two ends, in such case, we consider the distance to be zero. If

two images have the same distance, we include the one with larger degree in the projected

Reeb net. Then we fill in the closest images to one half of the edge and vice versa. A simple

demo can be found in Figure 7.9 . We also apply a background removal algorithm [129] for

each image we embed. After embedding selected images, we can then easily browse around

different regions of the component to understand the model’s behavior of predicting “gas

pumps”. Then we can simply select a few Reeb net nodes at different places and check them

in detail by listing all images it contains to look for the most common patterns. Eventually,

this can help us quickly identify 7 ambiguous “cassette player” images that are really just

“cars”.

133

Figure 7.9. This figure demonstrates the procedure of embedding images on
a Reeb net component. For each pair of adjacent nodes, we select images from
one end that are closest to the other end and fill in those images in half of the
edge and vice versa. Browsing around embedded images at different regions
can help us quickly identify 7 ambiguous “cassette player” images that are
really just “cars”.

134

7.5.4 Statistical validation

Firstly, we verify that GTDA is stable in detecting those 7 confusing “cassette player”

images as shown in Figure 7.8 . We randomly train 100 models in the same way as described

before and check the visualization using each of these 100 models. On average, only 1.3 of

these 7 images are predicted wrong, which means simply iterating through all the prediction

errors is not enough. We define that this labeling issue can be detected in a visualization if

the following criteria can be met:

• All or most of these 7 images are in the same component

• Some neighbors of these images are from a different class

• These images are well localized in the component with small pairwise path length

In our results, we find the visualization from all 100 models can meet these criteria. More

specifically, for 74 models, all 7 images can meet these 3 criteria. In the other 26 models,

for 22 of them, 6 images can meet all 3 criteria, for 2 models, 5 images can meet and for

the rest 2 models, 4 images can meet. Also the maximum pairwise path length for images

meeting the criteria is 4 (for most models, this maximum length is 2). Secondly, we verify

that a random group of 7 images will be very unlikely to satisfy these criteria. We pick one

of the 100 models and randomly sample 7 images from each Reeb net component. We cannot

find any randomly sampled group in 10000 Monte Carlo experiments that can satisfy these

criteria simultaneously.

7.5.5 Comparing to influence functions

Influence functions [100] is a framework recently proposed to extract the most influential

training samples on any specific testing sample. It can also be used to find adversarial

or mislabeled training data. We used an existing implementation of influence functions

from https://github.com/nimarb/pytorch_influence_functions to find ambiguous training

samples of Imagenette. The biggest issue of influence functions is scalability. Computing

influence for all 12,894 images will take almost 4 hours while our GTDA framework only

135

https://github.com/nimarb/pytorch_influence_functions

takes about 1 minute to process the entire dataset. Figure 7.10 compares the top 30 most

confusing training images of “cassette player” from influence functions or GTDA. For GTDA,

we directly take top 30 images with the largest estimated errors using Algorithm 12 . Both

methods find training images that indeed look confusing. However, another advantage of

GTDA is we get more insights by grouping these ambiguous training images based on their

locations in the visualization and checking nearby images in the visualization. For instance,

we can conclude from Figure 7.9 that some “cassette player” images can be confused with

“gas pump” or “chain saw” images with cars in them.

7.5.6 Understanding model generalization on other labels

Other than the detailed analysis for “gas pump” component, we provide similar figures

(Figures 7.11 to 7.15) for components of other labels. We embed images on each component

in the same way as above. GTDA can always find groups of images with different visual

features. For instance, it can find “church” images that are either the inside decorations of a

church or the outside landscapes in Figure 7.13 . It can also find images that are ambiguous

like group (C) in Figure 7.11 or group (D) in Figure 7.15 . All these results can help us

understand how the model is utilizing different features of an image to make the prediction

and when it might make mistakes.

7.5.7 Comparing to a Reeb net from original TDA framework

Since the original format of the image representations is an embedding matrix, we get

another Reeb net from the original TDA framework (i.e. mapper) without transforming the

embedding matrix into a KNN graph. The embedding matrix is still PCA reduced to 128,

whitened and `2 normalized. We also use the prediciton lens without softmax as the softmax

function will make lens highly skewed, i.e. most lens will be close to 0 or 1. We split each

lens into 10 bins with 10% overlap. Then we apply density based spatial clustering [130] for

samples in each bin so that we don’t need to select the number of clusters. This clustering

scheme will consider some samples as noise and not clustering them. We set the maximum

distance between two points to be in the same cluster as 3. The Reeb net is shown in

136

Figure 7.10. This figure compares the top 30 most confusing training images
of “cassette player” from influence functions [100] or GTDA. Both method can
find some common training images that are indeed ambiguous. However, it
will take influence functions almost 4 hours to compute influence for all 12,894
training images while GTDA only takes about 1 minute to process the entire
dataset.

137

Figure 7.11. We embed images on components that are mostly “English
Springer” predictions (A). While most “English Springer” images are easy
to classify, we also find some groups where the background information is
dominant in (B) and (D) or the images are ambiguous (C). Consider zooming
in to see the micropictures.

138

Figure 7.12. By embedding images on “cassette player” components (A) can
help us find “cassette player” in various shapes.

139

Figure 7.13. By embedding images on “church” components (A), we find
one component has images that depicts the inside decorations of church (B)
while the other components are images showing different outside landscapes
of church.

140

Figure 7.14. We embed images on “golf ball” components (A). We can find
images with only one large golf ball (B), or images with lots of small golf balls
(C), or images where a person is playing golf ball (D), or images with a golf
ball placed on grass (E).

Figure 7.16 , which doesn’t show any obvious subgroups other than 10 major components

representing 10 classes or any labeling issues previously discovered by GTDA. We also find

that no information can be extracted at all for around 28% images as they are either in some

very small Reeb net components or simply considered as noise by the clustering scheme.

141

Figure 7.15. We embed images on “parachute” components (A). We can
mainly see parachutes in two different shapes (B and C). Some images are
ambiguous as they are really just “sky” (D). We also find images where a
person is standing on the ground wearing a parachute (E) or a person that
jumps into the sky (F).

7.6 Understanding Malignant Gene Mutation Predictions

In this section, we apply our method to inspect model predictions of gene sequence

variants effects. A gene sequence variant means that some part of the DNA sequence for

this gene is mutated compared with the reference sequence. Modifications include single

nucleotide variation, deletion, duplication, etc.

7.6.1 Central results

Reeb networks (see Figure 7.18) from a proposed DNA prediction method [94], when

applied to the BRCA1 gene, show Reeb components that are localized in the DNA sequence

142

Figure 7.16. Reeb net on the 10 easy classes of ImageNet created by the origi-
nal TDA framework. TDA is directly applied to the ResNet image embedding
matrix without transforming into KNN graph. Unlike GTDA visualization,
we cannot find any obvious subgroups other than 10 major components rep-
resenting 10 classes or the labeling issues of some “cassette player” images.
Moreover, no information can be extracted at all for around 28% images as
they are either in some very small Reeb net components or simply considered
as noise by the clustering scheme.

(Figure 7.17 A). Such location sensitivity is not very obvious in the visualization of other

methods like mapper, tSNE or UMAP (Figure 7.17 B, C, D). We can also find known

biological structures of DNA, like exons, are also localized in different Reeb net components

(Figure 7.17 E). Such structures are also difficult to detect in the output of mapper, tSNE

or UMAP ((Figure 7.17 F, G, H)).

When we examine one particular protein encoding region of BRCA1, i.e. in the 1JNX

repeat region, we find that different Reeb net components in the result of GTDA also map

143

Figure 7.17. We find GTDA output is strongly correlated to the mutation
starting coordinates. Such correlation is not immediately obvious in the visu-
alization of other methods. We could find other known biological structures
like exons are localized into different Reeb net components too, which is also
weaker for other methods. In both cases, GTDA performs significantly better
than other methods (p < 0.001, see Table 7.5) in two metrics we designed to
measure such correlation.

144

to secondary structures (Figure 7.18 A). For one of the helix structures, this analysis shows

regions where insertions and deletions are harmful (pathogenic) and single nucleotide variants

lack evidence of harm (Figure 7.18 B). In an analysis of a component with many harmful

predictions, these results show that places where the framework incorrectly predicts errors

are strongly associated with insignificant results in the underlying data (Figure 7.18 C).

In the following subsections, we will provide details on this analysis, including the model

and the dataset we use, how we extract and validate the insights from GTDA results and

how we quantify the difference between GTDA and other methods.

7.6.2 Dataset and model

The model we use is recently proposed to predict gene expression from DNA sequence

by integrating long-range interactions [94]. In this model, a consecutive DNA sequence

of 196,608bp is used to predict 5,313 human genome tracks. For each gene variant, we

follow the same steps as proposed by [94] to compute its embedding. First, we extract

the reference and alternate DNA sequences from homo sapiens (human) genome assembly,

either hg19 or hg38 as specified by the gene variant record. This gives a 393,216bp long

DNA sequence with the centered on the VCF position (Variant Call Format). Note that

for the alternate sequence, the gene variant is applied first before extracting the modified

sequence. Then, we directly use the pretrained model from [94] to make predictions on

the reference and alternate sequences. This model will aggregate the center 114,688bp into

128-bp bins of length 896. The prediction for each 128bp bin is a 5,313 vector, where

each element represents the predicted gene expression in one of the 5,313 genome tracks for

the human genome (including 2,131 transcription factor chromatin immunoprecipitation and

sequencing tracks, 1,860 histone modification tracks, 684 DNase-seq or ATAC-seq tracks and

638 CAGE tracks). The prediction vector of the 4 128bp bins located in the center is then

summed together to get a prediction vector for the reference or alternate sequence. After

that, the elements in each prediction vector corresponding to the CAGE tracks is log(1+ x)

transformed. Finally, we compute the difference of preprocessed prediction vectors between

reference and alternate sequences as the final embedding for the gene variant. In total, we

145

Figure 7.18. We use Reeb networks to visualize harmful (likely pathogenic)
and potentially non-harmful (no evidence of pathogenicity) predictions of gene
variants in BRCA1. Other than the strong location sensitivity, some Reeb net
components also map to several secondary structures on part of the protein
(1JNX) as shown in (A). We further check the model predictions on variants
targeting one secondary structure (B). Our error estimate shows a number of
likely erroneous predictions, and we flip these expected errors (a final anal-
ysis showed these errors were correctly identified). We continue to see vari-
ants with distinct prediction in a small region of a few amino acids. Close
examination shows a strong association between mutation types and model
predictions where deletion or insertion is more likely to be harmful than a sin-
gle nucleotide variant. Additional insights when using the full label set show
some estimated errors are completely wrong (C). These prediction mistakes
involve gene mutation experiments with insignificant or conflicting results and
indicate underlying uncertainty.

146

get a 23,376-by-5,313 embedding matrix for 23,376 gene variant records. Then, a linear

classifier will be trained on this 5,313 difference vector to predict variants effects. The

original paper uses the training and testing datasets from CAGI5 competition [131], where a

Lasso regression is trained to predict a label of -1 (significant downregulating effect), 0 (very

little to no effect on expression) or +1 (significant upregulating effect). We were not able to

download the dataset from the official CAGI5 competition website. Therefore, we use similar

procedure to predict harmful (label 1) v.s non-harmful (label 0) gene mutations from ClinVar.

We download gene variants experiments from the official ClinVar website [132]. We choose

all experiments that are targeting BRCA1 as it is one of the genes with the most number

of experiments and part of the protein it encodes has known 3D structures (i.e. 1JNX).

Gene variants without a valid VCF (variant call format) position are removed. As for the

labels, we directly use the “ClinSigSimple” field as the label of each gene variant record. An

integer 1 means at least one current record indicates “Likely pathogenic” or “Pathogenic”,

but doesn’t necessarily mean this record includes assertion criteria or evidence. An integer

0 means there are no current records of “Likely pathogenic” or “Pathogenic”. An integer -1

means no clinic significance and is replaced by label 0 in our experiments. And we use a

logistic regression with L1 penalty since this is a binary prediction. We include 23,376 gene

variants where 50% of them are used as training, and the other 50% are used as testing.

To build the graph for GTDA, the embedding matrix is PCA reduced to 128 dimensions

with PCA whitening and then each row is `2 normalized. A 5-NN graph is constructed on

the preprocessed embedding matrix with cosine similarity. This 5-NN graph has some small

components smaller than the threshold set by s1 and s2. As a result, 338 out of 23,376 gene

variants (∼ 1.4%) are not included in the final Reeb net; this is not expected to impact

the results. We use 2 prediction lens and the first 2 PCA lens of the embedding matrix for

GTDA analysis. For GTDA parameters, we set K = 30, d = 0, r = 0.05, s1 = 5, s2 = 5,

α = 0.5 and S = 10. We use 20 iterations for GTDA error estimation.

147

7.6.3 Validating GTDA visualization

The visualization we get from this dataset is shown in Figure 7.19 . The first finding is

that different components in this visualization are strongly related to different regions of

the DNA sequence. Such a result is not surprising because this model aims to predict gene

expressions from a long range of DNA sequence while most gene variants will only change

one or two base pairs. Therefore, it is expected that gene variants close to each other in

coordinates will also get similar embeddings. To further validate whether this visualization

can capture finer 3D protein structures, we check the crystal structure of the BRCT repeat

region (PDB id is 1JNX), also shown in plot (C) of Figure 7.19 . In total, BRCA1 encodes

a protein with 1863 amino acids. And 1JNX covers amino acids from 1646 to 1849. In the

color bar of Figure 7.19 , we mark the protein coding regions (exons) of 1JNX in green. In

(B) of Figure 7.19 , we check a few components in detail that contains gene mutation locations

overlapped with the green area. Different node colors are assigned based on which exon they

overlap with. We can find that different local structures of this crystal are also very well

localized in our visualization. All these findings suggest that the model’s embedding space

has a strong correlation with VCF (variant call format) positions of gene variants and GTDA

can capture such property successfully.

7.6.4 Estimating and correcting prediction errors

We apply Algorithm 12 to estimate errors of model prediction Figure 7.20 . Overall,

GTDA estimated errors (after normalizing to 0 to 1) achieve an AUC score of 0.90. In

comparison, using model uncertainty gives an AUC score of 0.66. Since this is a binary

classification, we can also flip predicted labels if they are more likely to be errors. Instead

of setting a single threshold, we flip predicted labels when the estimated errors are larger

than the probability of the current prediction. The corrected labels can improve training

accuracy from 0.87 to 0.98 and testing accuracy from 0.78 to 0.86.

148

Figure 7.19. (A) shows components found by GTDA, where each node is
colored by median hg38 coordinates of mutation starting positions. Different
components are ordered by the averaged median coordinates in a zig-zag fash-
ion from lower right to upper left. We zoom in a few components where the
gene variants have the highest overlap ratio with the coding regions of 1JNX
(B). Different node colors are assigned based on which consecutive protein cod-
ing region they overlap with. Nodes for gene variants not in the coding regions
of 1JNX are not plotted. We can find that different secondary structures of
the crystal of 1JNX (C) are also well separated in the GTDA visualization.

7.6.5 Extracting insights about mutation types and single nucleotide variants

As we explore model predictions for gene mutations happening inside protein encoding

regions, i.e., green boxes in Figure 7.19 , we find different predicted labels for mutations that

target a small area of the protein structure. One such example is Figure 7.21 , where records

in the grey box happen in a small region of the protein structure with around 17 amino

acids. So there should be other aspects that help the model make different predictions.

149

Figure 7.20. In the top part, we zoom in a component and mark training
data using green circles. Then we show GTDA estimated errors and model
uncertainty on this component. We flip predicted labels if the estimated error
is larger than the prediction probability. In the lower part, we can see GTDA
error estimation has much better overall AUC score and the corrected labels
have higher training and testing accuracy.

150

By checking the actual mutation record, we find the non-harmful mutations are all single

nucleotide variant (SNV), while harmful mutations are other types of mutations including

deletion, insertion or duplication. This makes sense as the latter types will not only affect the

current amino acid, but also the subsequent amino acids and hence cause more substantial

changes to the final protein structure.

Overall, we find for gene mutations that are predicted harmful (after GTDA correction)

and target gene encoding regions, 70% of them are mutations like deletion, insertion or du-

plication. For gene mutations that are predicted as non-harmful and target gene encoding

regions, only 6% are mutations like deletion, insertion or duplication. When including gene

mutations outside protein encoding regions as well, 72% of harmful predictions are muta-

tions like deletion, insertion or duplication, while that number drops to 5% for non-harmful

predictions.

We assess the statistical significance of the relationship between single nucleotide variants

(SNV) and harmful predictions for each component GTDA identifies in Table 7.4 . The

associated Chi-square p-values highlight a few components where this association is missing,

such as component 100 with 34 non-harmful non-SNV results throughout the entire BRCA1

structure (coding and non-coding regions), with a p value of 0.22. This suggests a difference

in behavior for this component in comparison with the remainder of the components. Other

large p-values include the nearby components 99 and 101, along with component 3, 26.

Overall, this highlights another way these GTDA results could be used.

7.6.6 Incorrect GTDA error estimation implies unreliable labels

When we compared the GTDA error estimation with true errors, we found a few places

where GTDA estimate is entirely wrong.

To understand this abnormality, in Figure 7.22 we zoom in a few components and use

green circles to mark training and validation data. We show the GTDA estimated errors

as well as the false estimations when comparing to the true errors. We can see a few false

error estimates in each of these components. And on checking those false estimations, we

151

Table 7.4. For each component in the Reeb networks, 2 contingency tables
are computed, where the left table only considers variants in the coding regions
of 1JNX and the right table considers all variants. Only components where
each cell of the right table has a count 3 or higher are included. Chi-square
p-values are computed for tables where each cell has a count larger than 0.

Prediction and Type (coding regions of 1JNX) Prediction and Type (all)

Harmful Harmful non-Harm non-Harm
Chi-square

p-value Harmful Harmful non-Harm non-Harm
Chi-square

p-value

Component SNV non-SNV SNV non-SNV SNV non-SNV SNV non-SNV

0 11 6 83 4 5.1e-04 13 6 167 8 1.2e-04
2 0 0 0 0 - 17 264 49 16 1.2e-36
3 1 3 99 5 1.8e-05 12 3 230 9 2.5e-02
4 0 0 0 0 - 13 14 181 4 1.2e-16
6 0 10 10 2 - 24 38 298 20 2.7e-27
7 0 0 0 0 - 6 42 152 24 1.5e-22
8 0 4 0 0 - 16 82 96 22 6.2e-21
9 0 0 0 0 - 6 23 44 11 4.9e-07

10 0 0 0 0 - 17 102 129 22 1.0e-30
14 0 2 2 0 - 13 31 297 19 7.6e-30
15 6 2 40 0 - 25 146 437 24 8.7e-90
16 0 0 0 0 - 6 155 136 13 3.9e-53
17 5 14 49 4 6.5e-08 55 93 485 23 2.7e-59
18 0 0 2 0 - 9 7 115 3 7.5e-08
19 0 8 0 2 - 36 70 422 32 1.0e-44
21 0 6 64 2 - 20 31 376 17 4.7e-33
22 12 16 102 2 4.2e-13 32 20 188 6 1.1e-12
25 0 0 0 0 - 15 17 19 3 7.7e-03
26 0 0 0 0 - 34 4 256 12 2.4e-01
28 0 1 0 1 - 29 42 63 12 1.7e-07
29 3 6 193 18 8.1e-07 9 9 339 31 1.3e-07
30 0 0 0 0 - 19 57 93 9 6.4e-19
31 0 0 0 0 - 16 18 68 8 4.3e-06
32 0 4 2 0 - 5 23 51 5 1.0e-10
33 10 55 64 11 5.5e-16 16 55 204 23 1.1e-28
34 16 18 32 0 - 32 70 66 12 3.5e-12
36 2 4 250 6 1.8e-12 8 11 314 23 3.2e-12
37 0 0 0 0 - 40 76 26 14 1.5e-03
38 0 0 0 0 - 21 37 137 19 8.6e-14
39 0 0 0 0 - 14 198 24 14 3.4e-18
40 0 2 6 0 - 50 81 488 13 1.5e-63
41 0 0 2 0 - 16 14 158 6 1.1e-11
44 0 0 0 0 - 27 29 423 17 4.2e-30
46 0 16 30 2 - 19 36 51 10 2.0e-07
48 0 4 20 4 - 30 14 220 16 3.1e-06
50 0 0 62 0 - 4 36 262 10 2.2e-45
52 0 4 18 2 - 60 67 830 79 5.7e-40
53 0 0 0 0 - 15 27 303 25 2.7e-22
54 0 0 10 0 - 19 27 365 13 2.5e-32
55 0 0 0 0 - 21 19 109 3 2.8e-11
56 0 0 0 0 - 5 34 29 4 9.4e-10
57 0 0 0 0 - 40 18 78 6 4.5e-04
58 2 2 0 0 - 25 30 157 10 2.3e-15
59 0 0 0 0 - 17 44 163 6 6.6e-28
60 6 0 36 2 - 6 7 130 13 2.8e-05
62 2 33 12 7 1.9e-05 12 69 218 35 8.1e-33
64 2 25 114 7 5.0e-22 6 25 192 17 4.4e-22
66 0 4 24 0 - 27 23 165 9 1.9e-12
67 0 6 0 0 - 9 30 111 4 1.0e-20
68 21 13 87 9 3.3e-04 76 108 570 92 3.8e-36
69 2 3 78 7 4.4e-03 4 11 314 35 8.6e-12
70 0 0 0 0 - 40 48 6 6 1.0e+00
71 0 0 0 0 - 17 8 269 18 4.4e-05
72 0 0 12 0 - 6 5 318 21 1.7e-05
73 0 0 0 0 - 12 9 142 3 3.1e-10
74 0 0 0 0 - 19 11 119 15 1.5e-03
77 6 20 14 4 1.1e-03 13 33 213 11 6.0e-28
78 0 0 2 0 - 3 8 181 6 4.1e-16
79 10 4 52 0 - 33 10 203 6 3.3e-06
81 0 0 0 0 - 9 57 95 15 9.5e-21
82 0 0 0 0 - 8 4 212 6 1.5e-05
85 0 1 38 1 - 14 61 496 29 5.3e-65
88 0 0 0 0 - 3 34 269 16 6.8e-41
90 2 4 76 2 4.4e-07 10 4 162 4 1.0e-04
99 0 0 8 0 - 6 3 100 7 3.3e-02

100 0 0 2 0 - 4 6 64 34 2.2e-01
101 0 2 2 0 - 6 4 60 6 2.8e-02
102 0 0 0 0 - 7 9 109 5 5.3e-09

Overall 148 344 2114 122 2.9e-259 1506 3986 16208 1338 0.0e+00

152

Figure 7.21. We zoom in one component GTDA finds and only show mu-
tation records that happen in the protein coding regions (non-coding regions
are not shown as colored dots, but do impact the Reeb net structure). After
correcting prediction based on GTDA error estimation, we still see records
that happen in a small region of the protein but still get different predictions.
By checking these records, such difference can be well explained by different
mutation types.

find they are either testing experiments with insignificant or conflicting results or affected

by nearby insignificant training experiments.

To understand this effect across all components found by GTDA, we use the difference

between the true presence of an error and our estimate. For instance, if GTDA estimation

on whether a prediction is wrong is 0.3 and the prediction is indeed wrong based on its true

label, such difference will be 1 minus 0.3. In total, we can find 2,031 GTDA error estimations

where such difference is larger than 0.5. These are spread over 771 Reeb nodes. Since an

error estimation being wrong can be due to either its own label being unreliable or training

samples nearby have unreliable labels, we study how many of those 771 Reeb nodes have at

least 1 insignificant or conflicting samples (either training or testing sample). We find 662

153

Figure 7.22. Checking false error estimations of GTDA in some components
reveals that they are likely to be caused by variants experiments with insignif-
icant or conflicting results.

of them (81%) have at least one problematic label. Consequently, the intuition from Figure

24 would hold across much of the dataset.

7.6.7 Comparison with other methods

To quantify the difference in performance between GTDA and other methods as shown

in Figure 7.17 , we first convert UMAP and tSNE visualizations into graphs by building a

5-NN graph on top of the 2 dimensional embedding. For GTDA and Mapper, we project

each Reeb net node using 13 to get the corresponding graphs. We also add the original

154

Table 7.5. The ks statistics and p-value of the one tailed KolmogorovSmirnov
test. The null assumption is that the ecdf of GTDA is larger than the ecdf of
other methods at all locations.

GTDA v.s. tSNE GTDA v.s. UMPA GTDA v.s. Mapper
ratio within the same exon (0.23, p < 10−10) (0.35, p < 10−10) (0.99, p < 10−10)
ratio within a small range (0.33, p < 10−10) (0.40, p < 10−10) (0.97, p < 10−10)

graph that has been used as input to GTDA and 100 random graphs by shuffling edges for

comparison. Then we design the following metrics:

• ratio of samples within the same exon: in this metric, for each mutation sample that

overlaps with an exon, we search the neighbors within 3 hops on each graph and

compute the ratio of mutation samples that overlap with the same exon. Note that we

only consider exons that encodes 1JNX.

• ratio of samples within a small range: in this metric, for each mutation sample, we

search the neighbors within 3 hops on each graph and compute the ratio of mutation

samples whose mutation starting coordinates are within 1000 base pairs of the starting

coordinate of the selected mutation sample.

We also consider the corresponding ratio to be zero if the number of neighbors within 3 hops

is smaller than 5. This is because the visualization of Mapper has too many single nodes or

tiny components which could result in better metrics despite the visualization itself is much

worse. In Figure 7.23 , we compare the empirical cumulative distribution function of the

ratio distributions. For each of the 100 random graphs, we compute the ecdf and report the

average of the 100 ecdf curves. We can first notice that comparing to random graphs, the

ratio in both metrics is much higher in the original graph, which means mutation samples

are indeed significantly localized in the original graph. Also, GTDA performs the best on

both metrics., which can be verified by the KolmogorovSmirnov test in Table 7.5 .

155

ratio of samples within the same exon ratio of samples within a small range

Figure 7.23. Overall GTDA performs the best on both metrics, while the
other methods are not clearly better or even worse than the original graph.
This suggests (1) the strong location sensitivity of mutation samples indeed
exist in the original graph (2) GTDA can not only preserve and enhance such
location sensitivity, but also visualize such property easily.

7.7 Comparing models on ImageNet-1k predictions

In this section, we apply GTDA framework on the entire ImageNet dataset with 1000

classes from 2012 [133] to compare performance between state of the art CNN models and

historical models in any individual class. The results in the later sections show that GTDA

can highlight which subgroups inside a class the more advanced models can have improved

performance. It also shows how models predict when the image itself has confusing labels.

7.7.1 Dataset and CNN models

We use the training and validation images of entire ImageNet dataset with 1000 classes

that was released in 2012 [133]. We use 3 different CNN models for comparison, AlexNet,

ResNet-50 and VOLO. AlexNet is one of the historical CNN models, with around 60% top-

1 testing accuracy. ResNet is one of the most widely used CNN models nowadays with

156

a better performance of about 75% top-1 testing accuracy. Finally, VOLO is one of the

state of art CNN models that achieves about 87% top-1 testing accuracy without using any

additional training data. Then, for each CNN model, we extract the prediction matrix and

the image embeddings. For AlexNet and ResNet, the image embeddings are the outputs

of the layer before final prediction layer. Similar to the previous section, we replace the

average pooling by max pooling in the last convolutional layer. For VOLO, we directly used

the dedicated feature forwarding function to get image embeddings. Similar to previous

sections, all image embeddings are PCA reduced to 128 with whitening and normalization.

For GTDA parameters, we set K = 25, d = 0.001, r = 0.01, s1 = 5, s2 = 5, α = 0.5 and

S = 10. We use 10 steps of iterations for GTDA error estimation.

7.7.2 Building graphs and initial results of GTDA

We first compare AlexNet and ResNet. To do so, we build a 5-NN graph using the

image embeddings of ResNet only. Then we concatenate the prediction matrix of AlexNet

and ResNet to get 2,000 lens. GTDA framework is then applied using the same set of

parameters as Section 7.5 . Similarly, to compare ResNet and VOLO, we build a 5-NN graph

using the image embeddings of VOLO and concatenate the prediction matrix of ResNet and

VOLO. In Table 7.6 , we provide some initial statistics on the final Reeb nets. We can see

that despite the Reeb net has tens of thousands of nodes, the maximum Reeb component size

is just a few hundred of nodes, which guarantees that we can easily visualize any component

of the Reeb net.

7.7.3 Highlighting subgroups where advanced models perform better

Figure 7.24 shows the results on one class, “screwdriver”, from GTDA when comparing

AlexNet with ResNet. AlexNet and ResNet have huge difference in terms of training or

validation accuracy as shown in (A) of Figure 7.24 . By embedding images on top of each

component, we can find different subgroups inside the “screwdriver” class, where some groups

like (B) or (C) can be predicted with high accuracy by both models, while for some other

groups like (D), (E) or (F), only ResNet can maintain the high accuracy. By showing some

157

Table 7.6. Statistics on Reeb nets. Reeb node size is the number of samples
represented in a Reeb net node. Average Reeb components for each class is the
average number of Reeb net components where the most frequent predicted
label (by one of the two models) is that class. The maximum Reeb component
just has a few hundred of nodes, which guarantees that any component of the
Reeb net can be easily visualized and analyzed.

AlexNet v.s. ResNet ResNet v.s. VOLO
original graph nodes 1,331,167 1,331,167
original graph edges 5,954,900 5,805,714

Reeb nodes 63,239 68,354
Reeb edges 59,881 64,360

Reeb components 3,395 4,046
max Reeb component size 169 79

max Reeb node size 330 643
average Reeb components for each class 3.5 4.0

158

example images from each group, we can see that in general, AlexNet can only find the

screwdriver if both the handle and the tip are clear enough in the image. Showing only some

part of the screwdriver or having a slightly complex background will likely cause AlexNet to

fail. Similarly, Figure 7.25 compares with prediction of ResNet and VOLO on the “hook”

class. We first find subgroups of images that shows a single hook where both model have high

accuracy in group (B). Then we find ResNet model often prefers to predict chain instead of

hook if they are both present in the image from group (C). ResNet model also has difficulty

predicting hook if only part of the hook is shown (D), or the shape of the hook is not common

(G) and (F), or there are lots of hooks in the image (E).

7.7.4 Understanding different models’ predictions

In Figure 7.26 , we compare the the predictions between ResNet and VOLO on “desktop

computer”. Both models have very similar training or validation accuracy on this class. But

they make mistakes in different places. We highlight a few subgroups where we can see lots

of difference in predicted labels. These subgroups contain images that are indeed confusing.

For instance, images in group (D) clearly have a desk, a monitor and a desktop computer at

the same time. We can see VOLO tends to predict all these confusing images as “desktop

computer”, even though the true labels for some of those images are different. This suggests

the VOLO prediction of “desktop computer” is more robust, while the ResNet prediction is

more likely to be affected by other objects in the image.

7.8 Inspecting chest X-ray images

In this section, we apply our GTDA framework to inspect the prediction of disease on

112,120 images of chest X-rays [134]. Each X-ray image might be either normal or indicating

one or more diseases. Our results show that GTDA is very useful to help radiologists detect

images with incorrect normal and abnormal labels.

159

Figure 7.24. In this figure, we analyze the prediction of “screwdriver” from
both ResNet and AlexNet. We can see AlexNet can only predict “screwdriver”
with high accuracy if both handle and the tip are clearly visible in the image
(see B and C). Otherwise, if only the tip (D) or a small part of the handle (E)
is shown or the image is about a person using a screwdriver (F), AlexNet will
likely fail while ResNet still maintains high accuracy.

160

Figure 7.25. In this figure, we analyze the prediction of “hook” from both
ResNet and VOLO. VOLO has much higher training and validation accuracy
on this class than ResNet (A). We first find subgroups of images that shows a
single hook where both model have high accuracy (B). Then we find ResNet
model often prefers to predict chain instead of hook if they are both present
in the image (C). ResNet model also has difficulty predicting hook if only part
of the hook is shown (D), or the shape of the hook is not common (G) and
(F), or there are lots of hooks in the image (E).

161

Figure 7.26. In this figure, we analyze the prediction of “desktop computer”
from both ResNet and VOLO. In (A), we show all components GTDA has
found where “desktop computer” is the most frequent predictions. ResNet and
VOLO show very close training and validation accuracy on these components.
By embedding images on them, we can first find subgroups of images that look
confusing. For instance, some images in (B) have labels like “space bar” or
“screen” despite they are just old fashioned desktop computers. Images in (C)
show some “CD player” or “hard disc” that look very similar to PC chassis.
Images in (D) have desk, desktop computer and monitor at the same time.
And some images in (E) are labeled as “mouse” even if they also contain a
monitor or a keyboard. We can also notice how ResNet and VOLO handle
these confusing images differently. Overall, VOLO’s prediction on “desktop
computer” is more robust and less affected by other objects in the image or
similar objects from other classes.

162

7.8.1 Dataset and model

The NIH ChestX-ray14 dataset we use comprises 112,120 de-identified frontal-view X-

ray images of 30,805 unique patients [134]. Among these images, 86,524 images are used as

training or validation and the others are used as testing. Images are split at the patient level,

which means images belonging to the same patient will be put in the same group. Among

the 86,524 images, we randomly choose 20% patients and use their associated images as

validation data while images for the other patients are used as training data. In the original

dataset, a text mining approach is used on the associated radiological reports to find the

existence of 14 possible diseases and one image can have multiple disease labels. As a result,

it is expected that many of the labels assigned are incorrect. In some other studies of these

data, expert labels are solicited for 810 selected testing images from multiple experienced

radiologists [135].

The model we use GTDA to study is called CheXNet [136] which is a 121-layer Dense

Convolutional Network (DenseNet) [137]. When applying our GTDA framework, we first

reduce the 14 disease predictions to a simple normal (label 0) vs abnormal (label 1) predic-

tion. To do so, we first take a row wise maximum to reduce the prediction matrix for 14

disease into a vector v with values ranging 0 to 1. Then we consider each individual value

as a threshold and generate predicted labels by treating values larger than this threshold as

1 or 0 otherwise. Then we compute the F1 score using the union of training and validation

data. The threshold that gives the largest F1 score will be kept, denoted as t. Similar

procedures have been used in other papers that predict ontological annotations [138 , 139].

Finally, we transform each value of v using vi = min(1, 0.5vi/t). The transformed v also

ranges from 0 to 1 and is considered as the probability of being abnormal. As a result, the

row wise maximum column index of the new prediction matrix P = [1 − v, v] will give the

same largest F1 score. Other than the abnormal vs normal lens, we also include the original

disease prediction matrix as the extra lenses. This process gives 16 lenses in total. For

GTDA parameters, we set K = 50, d = 0, r = 0.005, s1 = 5, s2 = 5, α = 0.5 and S = 10.

We use 10 iterations for GTDA error estimation.

163

7.8.2 GTDA finds incorrect normal vs abnormal labels

Out of the 810 images in the test set with expert labels, 222 images have incorrect normal

vs abnormal labels. Our goal is to use the GTDA visualization to find images in this set

(i.e. those that are more likely to an incorrect label). The procedure of finding those images

is similar to find insignificant or conflicting gene mutation experiments from the previous

section.

We first use GTDA to estimate prediction errors. The estimation is normalized to a

number between 0 and 1. Then we use the original testing labels (i.e. without the correction

from experts) to find which of these error estimates are wrong. We can then sort the test

samples in the order of descending absolute difference between estimated error and true

error.

For simplicity, images in the test set where such differences are larger than 0.5 are consid-

ered to have incorrect labels. A demonstration on this process can be found in Figure 7.27 .

Overall, out of the 810 testing images with expert labels, GTDA highlights 265 images are

likely to have incorrect normal vs abnormal labels and 138 of them are confirmed by the

expert labels, which gives a precision of 0.52 and a recall of 0.62. As a comparison, randomly

sampling 265 images for experts to check can only find around 73 images with incorrect la-

bels in average. More detailed results on each component are shown in Table 7.7 . By testing

multiple thresholds instead of 0.5, we get an AUC score of 0.75. As a comparison, using self

confidence [120] gives an overall AUC score of 0.60.

7.9 Parameter selection of GTDA

In this section, we will discuss how to select parameters for our GTDA framework, es-

pecially the component size threshold and overlapping ratio in Algorithm 9 . Currently, we

manually focus the Reeb net’s structure by varying these parameters. It remains an open

question on how one might automatically select parameters for our GTDA framework as

proposed for other TDA frameworks [140]. Although GTDA has 8 parameters (Table 7.1),

the two most important are the component size threshold and the overlapping ratio.

164

abnormal

normal

GTDA estimated errors
on testing images with

expert labels

false estimation when
comparing to original

testing labels

consider difference bigger
than 0.5 as problematic

testing labels

compare to incorrect
testing labels marked

by experts

17 images are
flagged as

problematic

14 true positives
precision is 0.82

recall is 0.78

testing images in
green circle have

expert labels

model prediction
on a component

A B C

DE

Figure 7.27. We give a demonstration on how to use GTDA results to find
which testing labels are likely to be problematic. We first zoom in a compo-
nent found by GTDA and use green circles to mark testing images where we
have expert labels (A). Then we use GTDA to estimate prediction errors on
circled images (B). Comparing GTDA estimation with original testing labels
can identify a few places with false estimations (C). We consider these false
estimations are due to problematic testing labels and do a simple thresholding
of 0.5, which flags 17 problematic testing labels in this component (D). Com-
paring to expert labels can find 14 true positives with a precision of 0.82 and
a recall of 0.78 (E).

165

Table 7.7. Detailed precision and recall on different components when using
GTDA to find likely incorrect testing labels of ChestX-ray14 dataset. Com-
ponents are ordered by decreasing number of incorrect labels identified by
experts they contain. Results for components with less than 3 incorrect labels
are reported together.

Type
Expert Labels
in Component

Incorrect
by Experts

Flagged as
Problematic Precision Recall

Single Component 53 18 17 0.82 0.78
Single Component 10 5 5 1.0 1.0
Single Component 9 5 4 0.25 0.2
Single Component 19 4 7 0.57 1.0
Single Component 9 4 5 0.8 1.0
Single Component 10 4 3 0.33 0.25
Single Component 7 4 2 1.0 0.5
Single Component 8 4 5 0.6 0.75
Single Component 14 4 4 1.0 1.0
Single Component 4 4 2 1.0 0.5
Single Component 7 4 3 0.33 0.25
Single Component 10 3 2 0.0 0.0
Single Component 6 3 1 0.0 0.0
Single Component 4 3 2 0.5 0.33
Single Component 6 3 3 0.33 0.33
Single Component 3 3 2 1.0 0.67
Single Component 5 3 3 1.0 1.0
Single Component 5 3 2 0.5 0.33
Single Component 8 3 5 0.4 0.67
Single Component 7 3 4 0.5 0.67
Single Component 19 3 8 0.25 0.67
Single Component 9 3 8 0.38 1.0
Single Component 8 3 3 0.33 0.33
Single Component 8 3 4 0.5 0.67

Components with 2 incorrect labels 135 56 50 0.74 0.66
Components with 1 incorrect label 219 67 78 0.5 0.58
Components with 0 incorrect label 208 0 33 0.0 NaN

Overall 810 222 265 0.52 0.62

7.9.1 Selecting component size threshold

Recall that the component size threshold is the smallest component where we stop split-

ting. Choosing a good component size threshold depends on the dataset we want to analyze.

If the threshold is too small, we will end up with too many nodes to make the subsequent

visualization and analysis difficult. On the other hand, if the threshold is too large, the

166

topological structure of some small classes might be over simplified and components from

different classes can be mixed. Figure 7.28 shows how the Reeb net will change as we vary

component size threshold. In general, we start from a larger component size threshold and

then check the Reeb net we get, especially the size of the largest Reeb net component as

well as whether different classes are mixed. If we have a component that is too large to be

easily visualized or different classes are clearly mixed, we reduce this value. If the class sizes

are highly skewed, we usually choose the threshold based on the smallest class. In this case,

we the lower bound on the absolute difference of the lens parameter becomes useful. This

is to avoid oversplitting class with large size, i.e., if the difference is smaller than the lower

bound, we stop splitting as well.

We find the results are stable to the choices and in particular, for uses to find clues

of possible predicting errors or labeling issues from the visualization. As we can see in

Figure 7.28 , choosing a threshold between 100 and 200 or choosing an overlapping ratio

between 0.5% and 1.5% can all show the ambiguity in “Networking Products” v.s. “Routers”

and some part of “Data Storage” v.s. “Computer Components” allowing human insight into

the predictions.

7.9.2 Select overlapping ratio

The selection of overlapping ratio is similar to select component size threshold, we can

start from a larger ratio like 10% and then check the Reeb net to see if there is any component

that is too large or too mixed. If so, we need to gradually reduce the ratio until every

component can be properly visualized by a simple layout algorithm like spring layout [141] or

Kamada Kawai algorithm [119]. Figure 7.29 shows different Reeb nets as we vary overlapping

ratio.

7.9.3 Notes on other parameters

Other than component size threshold and overlapping ratio, Algorithm 9 has several other

parameters. Two important ones are the smallest node size and the smallest component size.

167

Figure 7.28. We show different GTDA visualizations as we vary the com-
ponent size threshold. The overlapping ratio is fixed as 1%. Using a large
threshold will cause different classes to be mixed together and the structure of
small class like “Routers” or “Webcams” will be over simplified. As we gradu-
ally reduce the thresholds, the number of nodes and edges in the visualization
will increase as well and different classes will be separated into several compo-
nents. The results look similar between 100 and 200, which suggests GTDA
structure are stable with respect to small change in parameters.

Figure 7.29. We show different GTDA visualizations as we vary the over-
lapping ratio. The component size threshold is fixed as 100. Using a large
overlapping ratio will cause different classes to be mixed together and some
components too large to be properly visualized. As we gradually reduce the
overlapping ratio, different classes will be separated into several components
with each one easier to be plotted. Similar ambiguity in “Networking Prod-
ucts” v.s. “Routers” and some part of “Data Storage” v.s. “Computer Com-
ponents” can be observed for overlapping ratio between 0.5% and 1.5%.

168

In our experiments, we can get consistently good visualizations by requiring the size of any

Reeb net node or Reeb net component larger than 5.

7.10 Performance and scaling

Our GTDA framework scales to predictions with thousands of classes and millions of

datapoints. We only split along the lens with the maximum difference at each iteration,

which can be easily recomputed in linear time in the data or even more efficiently updated.

After each split, we immediately check all the connected components we have found, which

can be done in O(N +M) where N is the number of nodes and M is the number of edges.

It is difficult to estimate how many splitting iterations are needed. Assuming we have L

lenses, initially the min-max difference across all lenses is 1 and the overlapping ratio is 0, then

we will need at most L iterations before the largest min-max difference across all components

is reduced to 0.5, which means at most O(tL) iterations are needed to reduce such difference

below 2−t. If after a sufficient number of iterations, we still see large components with size

bigger than K, it means new lenses are needed to further distinguish those nodes or a lower

bound on the difference is needed to stop the splitting early.

Another step is to find out which pairs of components have overlap. This can be easily

done in the original mapper algorithm by checking the adjacent bins of each bin. In our

GTDA framework, we first build a bipartite graph with all component indices on one side,

all samples on the other side and connecting each component index to all samples it includes.

Then identifying the overlapping components is equivalent to find 2-hop neighbors of each

component index, which can also be done in O(N +M). Finally, for the merging step, since

the size of each super node or the size of Reeb net component will be at least doubled, it

needs at most O(M(log(s1s2))) time. Also note that, many steps of our GTDA algorithm

can be easily parallelized. In our code, we mainly parallelize the merging steps using 10

cores, which has already given reasonable running time on graphs with millions of nodes and

edges.

169

Detailed running time for all datasets we have tested can be found in the table 7.8 . All

running time are reported on a server with 2 AMD EPYC 7532 processors (128 cores in

total), 512 GB memory and one A100 GPU.

Table 7.8. Statistics on datasets and running time in seconds. Predicting
and embedding represents the time used to generate prediction and extract
embedding for all samples from a trained model. Preprocessing time includes
PCA, normalization as well as building a KNN graph if the original dataset is
not in graph format. GTDA time is the time to compute Reeb network given
the input graph and the lens.

dataset nodes edges classes lens predicting &
embedding (s) preprocessing (s) GTDA time (s)

Swiss Roll 1,000 3,501 3 3 0.003 0.3 1

Amazon Computers 39,747 399,410 10 10 0.17 7 10

Subset of ImageNet 13,394 51,520 10 10 27 5 7

ImageNet-1k
(ResNet vs AlexNet) 1,331,167 5,954,900 1,000 2,000 2,379 717 26,036

ImageNet-1k
(VOLO vs ResNet) 1,331,167 5,805,714 1,000 2,000 13,426 617 18,894

BRCA1 Gene Variants 23,376 83,096 2 4 18,583 21 3

Chest X-rays 112,120 431,893 2 16 821 35 26

7.11 Comparing to tSNE and UMAP

The goals of the Reeb net analysis from GTDA are distinct from the goals of dimension

reduction techniques such as tSNE and UMAP. We seek the topological information identified

by the Reeb net. The Reeb net is both useful for generating pictures or maps of the data as

well as the algorithmic error estimate. We use the Kamada-Kawai [119] method to compute

a visualization of the Reeb net, which does have many similarities with summary pictures

from tSNE and UMAP. We compare here GTDA results with visualization from tSNE [142]

and UMAP [143 , 144] on all 4 datasets of the main text. For tSNE, we directly use the

implementation from scikit-learn. For UMAP, we use the implementation from https://

umap-learn.readthedocs.io . The inputs to tSNE and UMAP are the concatenation of neural

model embedding and prediction probability. We keep all parameters as default except

setting the number of final dimension as 2. The results are shown in Figure 7.30 .

170

https://umap-learn.readthedocs.io
https://umap-learn.readthedocs.io

Figure 7.30. Comparing the results of the dimension reduction techniques
tSNE and UMAP on 4 datasets to the topological Reeb net structure from
GTDA shows similarities and differences among summary pictures generated
by these methods. The graph created by GTDA permits many types of anal-
ysis not clearly possible with tSNE and UMAP output. For running time
comparison, since we also need to extract model embeddings and predictions
just like GTDA, we exclude such time and only report the time of the actual
execution of tSNE or UMAP or GTDA (including Kamada-Kawai).

These pictures support different uses and purposes. Reeb nets from GTDA offer a number

of compelling advantages as described throughout the main text and supplement. Among

others, note that GTDA is faster than tSNE (2 to 15 times faster) and UMAP (2 to 8 times

faster) in all 4 datasets. It also scales easily to datasets with millions of datapoints.

171

8. SUMMARY AND FUTURE DIRECTIONS

This thesis explores nonlinear graph diffusions for clustering, semi-supervised learning

and analyzing complex predictions.

8.1 Conclusions in using nonlinear diffusions for local clustering

In the first part,we propose a generalized min-cut optimization problem 3.4 that uni-

fies the objective functions behind some commonly used local graph clustering algorithms.

When `(x) = |x|, this relates to flow-based algorithms for improving clusters which can also

be though as the 1-norm variant of linear diffusions. The goal is to “refine” or “improve” local

clusters assuming the target cluster has a substantial overlap with the input cluster. The ob-

jectives of the 3 specific flow-based algorithms (MQI, FLowImprove and LocalFlowImprove)

can be further unified by equation 4.1 under different δ. We then illustrated how these

flow-based algorithms can use applied in reducing conductance, semi-supervised learning or

generating local coordinates to highlight local structures of graphs. We have also shown that

these algorithms can scale to very large graphs as they are designed as outputting clusters

without even touching most of the graph. These appealing features of flow-based algorithms

motivate us to develop a software package to open the door for novel analyses of large graphs.

This software can be freely obtained from https://github.com/kfoynt/LocalGraphClustering .

Although flow-based algorithms have very good theoretical guarantee in terms of cluster

conductance, in practice, they often suffer from the fact that they cannot grow from small

seed sets and can only work well when the input cluster has already had substantial overlap

with target cluster. Linear diffusions or PageRank-based method can grow, but have dif-

ficulty finding the correct boundaries. These motivate us to design an algorithm that sits

between flow-based methods and PageRank based methods. We have shown that by solving

equation 3.4 with `(x) = 1
p
|x|p, where 1 < p < 2, we can often get clusters from small seed

set that can capture the boundaries accurately as well. We then developed a strongly local

nonlinear diffusion procedure based on Andersen-Chung-Lang push procedure for PageRank

to approximately solve the new p-norm cut objective. Our nonlinear diffusion procedure

is general enough that can be used to solve other types of cut functions like q-Huber or

172

https://github.com/kfoynt/LocalGraphClustering

Berq. We have then demonstrated that the new algorithm is every efficient and can achieve

better performance in both local graph clustering and semi-supervised learning in real world

datasets.

Comparing to graphs, hypergraphs provide more information. But it is not easy to

directly adapt local graph clustering algorithms to the context of hypergraphs due to the

complexities of possible hypergraph cut functions. Following some recent work [23] that

generalizes flow-based local graph clustering algorithms to hypergraphs by reducing them to

directed graphs, we have proposed a hypergraph version of the quadratic graph cut objective

(equation 6.5). We have developed another strongly local diffusion procedure that can solve

the new objective for all cardinality based hypergraph cut functions. This algorithm shares

some similarity to the nonlinear diffusion process that is used for solving p-norm graph cut

objective and can also grow a cluster from a small seed set and come with a conductance

guarantee.

8.1.1 Future opportunities in local clustering

Although our nonlinear diffusions for solving p-norm cut objective has already achieved

strongly local runtime guarantee, there are faster converging (in theory) solvers using dif-

ferent optimization procedures [145] for 2-norm problems as well as parallelization strate-

gies [146]. It will be also interesting to further extend our hypergraph algorithm to solve

objectives with hypergraph cut functions that are not cardinality based. As we were writing

this thesis, some progress has already been made along this line [147].

8.2 Conclusions in using diffusions for analyzing predictions

It is always difficult to diagnose a machine learning model especially when the model is

highly parameterized like the recent deep learning models. Prior work on analyzing deep

learning methods for errors focuses on a single result list [100], without the associated topo-

logical structure provided by Reeb nets. Our graph-based topological data analysis frame-

work that combines TDA with diffusion has made some progress towards this direction by

transforming the complex predictions into a comprehensible prediction map to aid naviga-

173

tion of a large space of predictions to those most interesting areas. Beyond identifying that

there is a problem, the insights from the topology suggest relationships to nearby data and

thereby suggest mechanisms that could be addressed through future improvements. Con-

sidering the ability of these topological inspection techniques to translate prediction models

into actionable human level insights from label issues to protein structure we expect them

to be applicable to new models and predictions, broadly, as they are created and to be a

critical early diagnostic of prediction models. The interaction of topology and prediction

may provide a fertile ground for future improvements in prediction methods.

8.2.1 Future opportunities in GTDA

Other than the case studies we have shown, there are multiple variations that would be

easy to adapt. For instance, we could easily combine multiple graphs from different sources

to reveal potential errors that might hidden in a single source.

Areas for future improvement

Our current GTDA framework does rely on some tuning of parameters and manually

finding any interesting local structures in the visualization, especially the component size

threshold, which behaves similarly to bin size in the original TDA algorithm. While we

designed the algorithm to be as robust as possible, it remains an open question on whether

we can automatically select a good set of parameters and identify structures worth looking

at. Existing work selects parameters for the original TDA framework based on statistical

analysis [140]. But it is not clear how to extend such technique to our GTDA framework.

Areas for additional topology

Another direction is to study the outputs of GTDA under perturbations or filtrations over

parameters. Alternatively, there are opportunities to utilize additional topological insights

to improve the graph drawing. Consider that a study of persistence of structures in the graph

should suggest their placement, i.e. two components that will be connected more easily by

174

perturbing parameters should be put closer. This can then lead to a better overall view of

the entire dataset.

175

REFERENCES
[1] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,”

Computer networks and ISDN systems, vol. 30, no. 1-7, pp. 107–117, 1998.
[2] A. M. Lisewski et al., “Supergenomic network compression and the discovery of exp1

as a glutathione transferase inhibited by artesunate,” Cell, vol. 158, no. 4, pp. 916–
928, 2014.

[3] B. Jiang, K. Kloster, D. F. Gleich, and M. Gribskov, “Aptrank: An adaptive pagerank
model for protein function prediction on bi-relational graphs,” Bioinformatics, vol. 33,
no. 12, pp. 1829–1836, 2017.

[4] C.-H. Lin et al., “Multimodal network diffusion predicts future disease-gene-chemical
associations,” Bioinformatics, J. Wren, Ed., bty858, Oct. 2018. doi: 10.1093/bioinfo
rmatics/bty858 .

[5] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data
representation,” Neural Computation, vol. 15, no. 6, pp. 1373–1396, Jun. 2003. doi:

 10.1162/089976603321780317 . eprint: http://www.mitpressjournals.org/doi/pdf/10.
1162/089976603321780317 .

[6] R. R. Coifman and S. Lafon, “Diffusion maps,” Applied and computational harmonic
analysis, vol. 21, no. 1, pp. 5–30, 2006.

[7] R. Ibrahim and D. F. Gleich, “Nonlinear diffusion for community detection and semi-
supervised learning,” in The World Wide Web Conference, ser. WWW ’19, San Fran-
cisco, CA, USA: ACM, 2019, pp. 739–750, isbn: 978-1-4503-6674-8. doi: 10.1145/
3308558.3313483 .

[8] D. Wang, K. Fountoulakis, M. Henzinger, M. W. Mahoney, and S. Rao, “Capacity
releasing diffusion for speed and locality,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70, JMLR. org, 2017, pp. 3598–3607.

[9] K. Lang and S. Rao, “A flow-based method for improving the expansion or con-
ductance of graph cuts,” in IPCO 2004: Integer Programming and Combinatorial
Optimization, 2004, pp. 325–337.

[10] R. Andersen and K. J. Lang, “An algorithm for improving graph partitions,” in Pro-
ceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms,
2008, pp. 651–660.

[11] L. N. Veldt, D. F. Gleich, and M. W. Mahoney, “A simple and strongly-local flow-
based method for cut improvement,” in International Conference on Machine Learn-
ing, 2016, pp. 1938–1947. [Online]. Available: http://jmlr.org/proceedings/papers/
v48/veldt16.html .

[12] D. Gleich and M. Mahoney, “Anti-differentiating approximation algorithms: A case
study with min-cuts, spectral, and flow,” in International Conference on Machine
Learning, 2014, pp. 1018–1025.

176

https://doi.org/10.1093/bioinformatics/bty858
https://doi.org/10.1093/bioinformatics/bty858
https://doi.org/10.1162/089976603321780317
http://www.mitpressjournals.org/doi/pdf/10.1162/089976603321780317
http://www.mitpressjournals.org/doi/pdf/10.1162/089976603321780317
https://doi.org/10.1145/3308558.3313483
https://doi.org/10.1145/3308558.3313483
http://jmlr.org/proceedings/papers/v48/veldt16.html
http://jmlr.org/proceedings/papers/v48/veldt16.html

[13] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of social repre-
sentations,” in Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’14, New York, New York, USA:
ACM, 2014, pp. 701–710, isbn: 978-1-4503-2956-9. doi: 10.1145/2623330.2623732 .

[14] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,” in
Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, ser. KDD ’16, San Francisco, California, USA: ACM, 2016,
pp. 855–864, isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.2939754 .

[15] N. Yadati, M. R. Nimishakavi, P. Yadav, V. Nitin, A. Louis, and P. Talukdar, “Hy-
pergcn: A new method for training graph convolutional networks on hypergraphs,”
in NeurIPS, 2019.

[16] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate: Graph neu-
ral networks meet personalized pagerank,” in International Conference on Learning
Representations (ICLR), 2019.

[17] Q. Li, X.-M. Wu, H. Liu, X. Zhang, and Z. Guan, “Label efficient semi-supervised
learning via graph filtering,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 9582–9591.

[18] M. Liu and D. F. Gleich, “Strongly local p-norm-cut algorithms for semi-supervised
learning and local graph clustering,” in Proceedings of NeurIPS, Accepted, 2020.

[19] K. Fountoulakis, M. Liu, D. F. Gleich, and M. W. Mahoney, “Flow-based algorithms
for improving clusters: A unifying framework, software, and performance,” arXiv,
vol. cs.LG, p. 2004.09608, 2020.

[20] M. Liu, N. Veldt, H. Song, P. Li, and D. F. Gleich, “Strongly local hypergraph dif-
fusions for clustering and semi-supervised learning,” in TheWebConf 2021, vol. cs.SI,
2021.

[21] M. Liu, T. K. Dey, and D. F. Gleich, “Topological structure of complex predictions,”
arXiv preprint arXiv:2207.14358, 2022.

[22] P. Li and O. Milenkovic, “Inhomogeneous hypergraph clustering with applications,” in
NeurIPS, 2017, pp. 2308–2318. [Online]. Available: http://papers.nips.cc/paper/6825-
inhomogeneous-hypergraph-clustering-with-applications.pdf .

[23] N. Veldt, A. R. Benson, and J. Kleinberg, “Minimizing localized ratio cut objectives
in hypergraphs,” in KDD, 2020, pp. 1708–1718.

[24] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning using pagerank vec-
tors,” in 2006 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), IEEE, 2006, pp. 475–486.

[25] D. F. Gleich, “Pagerank beyond the web,” SIAM Review, vol. 57, no. 3, pp. 321–363,
2015.

177

https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2939672.2939754
http://papers.nips.cc/paper/6825-inhomogeneous-hypergraph-clustering-with-applications.pdf
http://papers.nips.cc/paper/6825-inhomogeneous-hypergraph-clustering-with-applications.pdf

[26] K. Kloster and D. F. Gleich, “Heat kernel based community detection,” in Proceedings
of the 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ser. KDD ’14, New York, NY, USA: ACM, 2014, pp. 1386–1395, isbn:
978-1-4503-2956-9. doi: 10.1145/2623330.2623706 .

[27] F. Chung, “The heat kernel as the PageRank of a graph,” Proceedings of the National
Academy of Sciences, vol. 104, no. 50, pp. 19 735–19 740, Dec. 2007. doi: 10.1073/
pnas.0708838104 .

[28] D. F. Gleich and M. W. Mahoney, “Using local spectral methods to robustify graph-
based learning algorithms,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’15, Sydney, NSW,
Australia: ACM, 2015, pp. 359–368, isbn: 978-1-4503-3664-2. doi: 10.1145/2783258.
2783376 .

[29] A. N. Langville and C. D. Meyer, “Google’s pagerank and beyond,” in Google’s PageR-
ank and Beyond, Princeton university press, 2011.

[30] M. W. Mahoney, L. Orecchia, and N. K. Vishnoi, “A local spectral method for graphs:
With applications to improving graph partitions and exploring data graphs locally,”
Journal of Machine Learning Research, vol. 13, pp. 2339–2365, Aug. 2012. [Online].
Available: http://www.jmlr.org/papers/volume13/mahoney12a/mahoney12a.pdf .

[31] D. F. Gleich, “PageRank beyond the web,” SIAM Review, vol. 57, no. 3, pp. 321–363,
Aug. 2015. doi: 10.1137/140976649 .

[32] D. A. Spielman and S.-H. Teng, “Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems,” in Proceedings of the thirty-sixth
annual ACM symposium on Theory of computing, 2004, pp. 81–90.

[33] F. R. Chung, Spectral graph theory. American Mathematical Soc., 1997, vol. 92.
[34] Z. A. Zhu, S. Lattanzi, and V. S. Mirrokni, “A local algorithm for finding well-

connected clusters.,” in ICML (3), 2013, pp. 396–404.
[35] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social repre-

sentations,” in Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM, 2014, pp. 701–710.

[36] J. Klicpera, S. Weißenberger, and S. Günnemann, “Diffusion improves graph learn-
ing,” arXiv preprint arXiv:1911.05485, 2019.

[37] J. Zhao, Y. Dong, M. Ding, E. Kharlamov, and J. Tang, “Adaptive diffusion in
graph neural networks,” Advances in Neural Information Processing Systems, vol. 34,
pp. 23 321–23 333, 2021.

[38] E. Chien, J. Peng, P. Li, and O. Milenkovic, “Adaptive universal generalized pager-
ank graph neural network,” in International Conference on Learning Representations,
2021. [Online]. Available: https://openreview.net/forum?id=n6jl7fLxrP .

[39] F. Henderson and R. Wooding, “Overland flow and groundwater flow from a steady
rainfall of finite duration,” Journal of Geophysical Research, vol. 69, no. 8, pp. 1531–
1540, 1964.

178

https://doi.org/10.1145/2623330.2623706
https://doi.org/10.1073/pnas.0708838104
https://doi.org/10.1073/pnas.0708838104
https://doi.org/10.1145/2783258.2783376
https://doi.org/10.1145/2783258.2783376
http://www.jmlr.org/papers/volume13/mahoney12a/mahoney12a.pdf
https://doi.org/10.1137/140976649
https://openreview.net/forum?id=n6jl7fLxrP

[40] J. L. Vázquez, “Perspectives in nonlinear diffusion: Between analysis, physics and
geometry,” in Volumes II and III were printed before the Congress and distributed to
the partici-pants in Madrid. They gather the articles written by the invited speakers in
the different scientific sections of the Congress. The on-line version of these volumes
is accessible at the address http://www. icm2006. org/proceedings, 2007, p. 609.

[41] J. G. Berryman and C. J. Holland, “Nonlinear diffusion problem arising in plasma
physics,” Physical Review Letters, vol. 40, no. 26, p. 1720, 1978.

[42] J. King, “Extremely high concentration dopant diffusion in silicon,” IMA journal of
applied mathematics, vol. 40, no. 3, pp. 163–181, 1988.

[43] S. Amghibech, “Eigenvalues of the discrete p-laplacian for graphs,” Ars Comb., vol. 67,
2003.

[44] T. Bühler and M. Hein, “Spectral clustering based on the graph p-laplacian,” in
Proceedings of the 26th Annual International Conference on Machine Learning, 2009,
pp. 81–88.

[45] M. Alamgir and U. V. Luxburg, “Phase transition in the family of p-resistances,” in
Advances in Neural Information Processing Systems 24, J. Shawe-Taylor, R. S. Zemel,
P. L. Bartlett, F. Pereira, and K. Q. Weinberger, Eds., Curran Associates, Inc., 2011,
pp. 379–387. [Online]. Available: http://papers.nips.cc/paper/4185-phase-transition-
in-the-family-of-p-resistances.pdf .

[46] N. Brindle and X. Zhu, P-voltages: Laplacian regularization for semi-supervised learn-
ing on high-dimensional data. Workshop on Mining and Learning with Graphs, 2013.
[Online]. Available: http : / / snap . stanford . edu / mlg2013 / submissions / mlg2013 _
submission_6.pdf .

[47] P. Li and O. Milenkovic, “Submodular hypergraphs: P-laplacians, Cheeger inequali-
ties and spectral clustering,” in Proceedings of the 35th International Conference on
Machine Learning, J. Dy and A. Krause, Eds., ser. Proceedings of Machine Learn-
ing Research, vol. 80, Stockholm Sweden: PMLR, Jul. 2018, pp. 3014–3023. [Online].
Available: http://proceedings.mlr.press/v80/li18e.html .

[48] K. Fountoulakis, D. Wang, and S. Yang, “P-norm flow diffusion for local graph clus-
tering,” in Proceedings of the International Conference on Machine Learning, 2020,
pp. 5619–5629.

[49] S. Chanpuriya and C. Musco, Infinitewalk: Deep network embeddings as laplacian
embeddings with a nonlinearity, 2020. arXiv: 2006.00094 [cs.LG] .

[50] L. Orecchia and Z. A. Zhu, “Flow-based algorithms for local graph clustering,” in
Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, 2014,
pp. 1267–1286.

[51] D. Lawlor, T. Budavári, and M. W. Mahoney, “Mapping the similarities of spec-
tra: Global and locally-biased approaches to SDSS galaxy data,” arXiv, Tech. Rep.
1609.03932, 2016, Preprint with expanded information.

179

http://papers.nips.cc/paper/4185-phase-transition-in-the-family-of-p-resistances.pdf
http://papers.nips.cc/paper/4185-phase-transition-in-the-family-of-p-resistances.pdf
http://snap.stanford.edu/mlg2013/submissions/mlg2013_submission_6.pdf
http://snap.stanford.edu/mlg2013/submissions/mlg2013_submission_6.pdf
http://proceedings.mlr.press/v80/li18e.html
https://arxiv.org/abs/2006.00094

[52] D. Lawlor, T. Budavári, and M. W. Mahoney, “Mapping the similarities of spectra:
Global and locally-biased approaches to SDSS galaxies,” The Astrophysical Journal,
vol. 833, no. 1, p. 26, 2016.

[53] F. Chung, “Random walks and local cuts in graphs,” Linear Algebra and its Applica-
tions, vol. 423, pp. 22–32, 2007.

[54] K. Fountoulakis, F. Roosta-Khorasani, J. Shun, X. Cheng, and M. W. Mahoney,
“Variational perspective on local graph clustering,” Mathematical Programming B,
pp. 1–21, 2017.

[55] D. Wang, K. Fountoulakis, M. Henzinger, M. W. Mahoney, and S. Rao, “Capac-
ity releasing diffusion for speed and locality,” Proceedings of the 34th International
Conference on Machine Learning, vol. 70, pp. 3607–2017, 2017.

[56] J. Leskovec, K.J. Lang, and M.W. Mahoney, “Empirical comparison of algorithms for
network community detection,” in WWW ’10: Proceedings of the 19th International
Conference on World Wide Web, 2010, pp. 631–640.

[57] J. Shi and J. Malik, “Normalized cuts and image segmentation,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 22, no. 8, pp. 888–905, Aug.
2000, issn: 0162-8828. doi: 10.1109/34.868688 .

[58] D. Hallac et al., “Snapvx: A network-based convex optimization solver,” The Journal
of Machine Learning Research, vol. 18, no. 1, pp. 110–114, 2017.

[59] A. B. Owen, “A robust hybrid of lasso and ridge regression,” Contemporary Mathe-
matics, vol. 443, no. 7, pp. 59–72, 2007.

[60] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community structure in
large networks: Natural cluster sizes and the absence of large well-defined clusters,”
Internet Mathematics, vol. 6, no. 1, pp. 29–123, Sep. 2009. doi: 10.1080/15427951.
2009.10129177 .

[61] L. G. S. Jeub, P. Balachandran, M. A. Porter, P. J. Mucha, and M. W. Mahoney,
“Think locally, act locally: Detection of small, medium-sized, and large communities
in large networks,” Phys. Rev. E, vol. 91, p. 012 821, 1 Jan. 2015. doi: 10 .1103/
PhysRevE.91.012821 .

[62] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich, “Local higher-order graph
clustering,” in Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’17, Halifax, NS, Canada: ACM,
2017, pp. 555–564, isbn: 978-1-4503-4887-4. doi: 10.1145/3097983.3098069 .

[63] L. Orecchia and Z. A. Zhu, “Flow-based algorithms for local graph clustering,” in
Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms,
Society for Industrial and Applied Mathematics, 2014, pp. 1267–1286.

[64] F. R. L. Chung, Spectral Graph Theory. American Mathematical Society, 1992.
[65] M. Mihail, “Conductance and convergence of markov chains-a combinatorial treat-

ment of expanders,” in Foundations of Computer Science, 1989., 30th Annual Sym-
posium on, Oct. 1989, pp. 526–531. doi: 10.1109/SFCS.1989.63529 .

180

https://doi.org/10.1109/34.868688
https://doi.org/10.1080/15427951.2009.10129177
https://doi.org/10.1080/15427951.2009.10129177
https://doi.org/10.1103/PhysRevE.91.012821
https://doi.org/10.1103/PhysRevE.91.012821
https://doi.org/10.1145/3097983.3098069
https://doi.org/10.1109/SFCS.1989.63529

[66] N. Veldt, C. Klymko, and D. F. Gleich, “Flow-based local graph clustering with
better seed set inclusion,” in Proceedings of the SIAM International Conference on
Data Mining, 2019, pp. 378–386. doi: 10.1137/1.9781611975673.43 .

[67] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” arXiv preprint arXiv:1609.02907, 2016.

[68] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for testing com-
munity detection algorithms,” Phys. Rev. E, vol. 78, p. 046 110, 4 Oct. 2008. doi:

 10.1103/PhysRevE.78.046110 .
[69] A. L. Traud, P. J. Mucha, and M. A. Porter, “Social structure of facebook networks,”

Physica A: Statistical Mechanics and its Applications, vol. 391, no. 16, pp. 4165–4180,
2012, issn: 0378-4371. doi: 10.1016/j.physa.2011.12.021 .

[70] N. Veldt, A. Wirth, and D. F. Gleich, “Learning resolution parameters for graph
clustering,” in The World Wide Web Conference, ser. WWW ’19, San Francisco, CA,
USA: ACM, 2019, pp. 1909–1919, isbn: 978-1-4503-6674-8. doi: 10.1145/3308558.
3313471 .

[71] I. M. Kloumann and J. M. Kleinberg, “Community membership identification from
small seed sets,” in Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’14, New York, New York, USA:
ACM, 2014, pp. 1366–1375, isbn: 978-1-4503-2956-9. doi: 10.1145/2623330.2623621 .
[Online]. Available: http://doi.acm.org/10.1145/2623330.2623621 .

[72] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group formation in large
social networks: Membership, growth, and evolution,” in Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, ser. KDD
’06, Philadelphia, PA, USA: ACM, 2006, pp. 44–54, isbn: 1-59593-339-5. doi: 10.
1145/1150402.1150412 . [Online]. Available: http://doi.acm.org/10.1145/1150402.
1150412 .

[73] J. Yang and J. Leskovec, “Defining and evaluating network communities based on
ground-truth,” in Data Mining (ICDM), 2012 IEEE 12th International Conference
on, Dec. 2012, pp. 745–754. doi: 10.1109/ICDM.2012.138 .

[74] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee, “Mea-
surement and analysis of online social networks,” in Proceedings of the 7th ACM SIG-
COMM Conference on Internet Measurement, ser. IMC ’07, San Diego, California,
USA: ACM, 2007, pp. 29–42, isbn: 978-1-59593-908-1. doi: 10.1145/1298306.1298311 .

[75] A. Benson, D. F. Gleich, and J. Leskovec, “Higher-order organization of complex
networks,” Science, vol. 353, no. 6295, pp. 163–166, 2016. doi: 10 . 1126 / science .
aad9029 .

[76] P. Li and O. Milenkovic, “Submodular hypergraphs: P-laplacians, Cheeger inequalities
and spectral clustering,” in ICML, vol. 80, 2018, pp. 3014–3023. [Online]. Available:

 http://proceedings.mlr.press/v80/li18e.html .

181

https://doi.org/10.1137/1.9781611975673.43
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1016/j.physa.2011.12.021
https://doi.org/10.1145/3308558.3313471
https://doi.org/10.1145/3308558.3313471
https://doi.org/10.1145/2623330.2623621
http://doi.acm.org/10.1145/2623330.2623621
https://doi.org/10.1145/1150402.1150412
https://doi.org/10.1145/1150402.1150412
http://doi.acm.org/10.1145/1150402.1150412
http://doi.acm.org/10.1145/1150402.1150412
https://doi.org/10.1109/ICDM.2012.138
https://doi.org/10.1145/1298306.1298311
https://doi.org/10.1126/science.aad9029
https://doi.org/10.1126/science.aad9029
http://proceedings.mlr.press/v80/li18e.html

[77] Y. Takai, A. Miyauchi, M. Ikeda, and Y. Yoshida, “Hypergraph clustering based on
pagerank,” in KDD, 2020, pp. 1970–1978.

[78] S. Agarwal, K. Branson, and S. Belongie, “Higher order learning with graphs,” in
ICML, 2006, pp. 17–24, isbn: 1-59593-383-2. doi: 10.1145/1143844.1143847 . [Online].
Available: http://doi.acm.org/10.1145/1143844.1143847 .

[79] M. Hein, S. Setzer, L. Jost, and S. S. Rangapuram, “The total variation on hy-
pergraphs - learning on hypergraphs revisited,” in NeurIPS, 2013, pp. 2427–2435.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2999792.2999883 .

[80] S. Agarwal, J. Lim, L. Zelnik-Manor, P. Perona, D. Kriegman, and S. Belongie, “Be-
yond pairwise clustering,” in CVPR, 2005, pp. 838–845, isbn: 0-7695-2372-2. doi: 10.
1109/CVPR.2005.89 . [Online]. Available: http://dx.doi.org/10.1109/CVPR.2005.89 .

[81] N. Veldt, A. R. Benson, and J. Kleinberg, Hypergraph cuts with general splitting
functions, 2020. arXiv: 2001.02817 [cs.DS] .

[82] P. Li, N. He, and O. Milenkovic, “Quadratic decomposable submodular function min-
imization: Theory and practice,” JMLR, vol. 21, pp. 1–49, 2020. [Online]. Available:

 http://jmlr.org/papers/v21/18-790.html .
[83] D. Zhou, J. Huang, and B. Schölkopf, “Learning with hypergraphs: Clustering, clas-

sification, and embedding,” in NeurIPS, 2006, pp. 1601–1608. [Online]. Available:
 http://dl.acm.org/citation.cfm?id=2976456.2976657 .

[84] R. Ibrahim and D. F. Gleich, “Local hypergraph clustering using capacity releasing
diffusion,” arXiv, vol. cs.SI, p. 2003.04213, 2020.

[85] R. Andersen and K. J. Lang, “An algorithm for improving graph partitions,” in SODA,
2008, pp. 651–660. [Online]. Available: http://dl.acm.org/citation.cfm?id=1347082.
1347154 .

[86] J. Y. Zien, M. D. F. Schlag, and P. K. Chan, “Multilevel spectral hypergraph parti-
tioning with arbitrary vertex sizes,” IEEE TCAD, vol. 18, no. 9, pp. 1389–1399, 1999.
doi: 10.1109/43.784130 .

[87] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hypergraph parti-
tioning: Applications in vlsi domain,” VLSI, vol. 7, no. 1, pp. 69–79, Mar. 1999, issn:
1063-8210. doi: 10.1109/92.748202 .

[88] A. R. Benson, J. Kleinberg, and N. Veldt, “Augmented sparsifiers for generalized
hypergraph cuts,” arXiv preprint arXiv:2007.08075, 2020.

[89] Y. Yoshida, “Nonlinear laplacian for digraphs and its applications to network analy-
sis,” in WSDM, 2016, pp. 483–492.

[90] S. W. Hadley, “Approximation techniques for hypergraph partitioning problems,”
Discrete Applied Mathematics, vol. 59, no. 2, pp. 115–127, 1995, issn: 0166-218X.
doi: https://doi .org/10.1016/0166-218X(93)E0166-V . [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/0166218X93E0166V .

182

https://doi.org/10.1145/1143844.1143847
http://doi.acm.org/10.1145/1143844.1143847
http://dl.acm.org/citation.cfm?id=2999792.2999883
https://doi.org/10.1109/CVPR.2005.89
https://doi.org/10.1109/CVPR.2005.89
http://dx.doi.org/10.1109/CVPR.2005.89
https://arxiv.org/abs/2001.02817
http://jmlr.org/papers/v21/18-790.html
http://dl.acm.org/citation.cfm?id=2976456.2976657
http://dl.acm.org/citation.cfm?id=1347082.1347154
http://dl.acm.org/citation.cfm?id=1347082.1347154
https://doi.org/10.1109/43.784130
https://doi.org/10.1109/92.748202
https://doi.org/https://doi.org/10.1016/0166-218X(93)E0166-V
http://www.sciencedirect.com/science/article/pii/0166218X93E0166V
http://www.sciencedirect.com/science/article/pii/0166218X93E0166V

[91] E. Ihler, D. Wagner, and F. Wagner, “Modeling hypergraphs by graphs with the same
mincut properties,” Information Processing Letters, vol. 45, pp. 171–175, 1993, issn:
0020-0190. doi: https://doi.org/10.1016/0020-0190(93)90115-P . [Online]. Available:

 http://www.sciencedirect.com/science/article/pii/002001909390115P .
[92] E. L. Lawler, “Cutsets and partitions of hypergraphs,” Networks, vol. 3, no. 3, pp. 275–

285, 1973. doi: 10.1002/net.3230030306 .
[93] J. Ni, J. Li, and J. McAuley, “Justifying recommendations using distantly-labeled

reviews and fine-grained aspects,” in EMNLP-IJCNLP, 2019.
[94] . Avsec et al., “Effective gene expression prediction from sequence by integrating

long-range interactions,” Nature methods, vol. 18, no. 10, pp. 1196–1203, 2021.
[95] A. Esteva et al., “Dermatologist-level classification of skin cancer with deep neural

networks,” Nature, vol. 542, no. 7639, pp. 115–118, Jan. 2017. doi: 10.1038/nature
21056 . [Online]. Available: https://doi.org/10.1038/nature21056 .

[96] M. Reichstein et al., “Deep learning and process understanding for data-driven earth
system science,” Nature, vol. 566, no. 7743, pp. 195–204, Feb. 2019. doi: 10.1038/
s41586-019-0912-1 . [Online]. Available: https://doi.org/10.1038/s41586-019-0912-1 .

[97] R. J. L. Townshend et al., “Geometric deep learning of RNA structure,” Science,
vol. 373, no. 6558, pp. 1047–1051, Aug. 2021. doi: 10.1126/science.abe5650 . [Online].
Available: https://doi.org/10.1126/science.abe5650 .

[98] J. R. Zech, M. A. Badgeley, M. Liu, A. B. Costa, J. J. Titano, and E. K. Oermann,
“Variable generalization performance of a deep learning model to detect pneumonia
in chest radiographs: A cross-sectional study,” PLOS Medicine, vol. 15, no. 11, A.
Sheikh, Ed., e1002683, Nov. 2018. doi: 10 .1371/ journal .pmed .1002683 . [Online].
Available: https://doi.org/10.1371/journal.pmed.1002683 .

[99] L. Oakden-Rayner et al., “Validation and algorithmic audit of a deep learning sys-
tem for the detection of proximal femoral fractures in patients in the emergency
department: A diagnostic accuracy study,” The Lancet Digital Health, vol. 4, no. 5,
e351–e358, May 2022. doi: 10 . 1016 / s2589 - 7500(22) 00004 - 8 . [Online]. Available:

 https://doi.org/10.1016/s2589-7500(22)00004-8 .
[100] P. W. Koh and P. Liang, “Understanding black-box predictions via influence func-

tions,” in International conference on machine learning, PMLR, 2017, pp. 1885–1894.
[101] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplic-

ity: The all convolutional net,” in ICLR (workshop track), 2015. [Online]. Available:
 http://lmb.informatik.uni-freiburg.de/Publications/2015/DB15a .

[102] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features
for discriminative localization,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 2921–2929.

183

https://doi.org/https://doi.org/10.1016/0020-0190(93)90115-P
http://www.sciencedirect.com/science/article/pii/002001909390115P
https://doi.org/10.1002/net.3230030306
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1126/science.abe5650
https://doi.org/10.1126/science.abe5650
https://doi.org/10.1371/journal.pmed.1002683
https://doi.org/10.1371/journal.pmed.1002683
https://doi.org/10.1016/s2589-7500(22)00004-8
https://doi.org/10.1016/s2589-7500(22)00004-8
http://lmb.informatik.uni-freiburg.de/Publications/2015/DB15a

[103] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-
cam: Visual explanations from deep networks via gradient-based localization,” in Pro-
ceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618–
626.

[104] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks:
Visualising image classification models and saliency maps,” in ICLR (workshop track),
Y. Bengio and Y. LeCun, Eds., 2014. [Online]. Available: http://arxiv.org/abs/1312.
6034 .

[105] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnexplainer: Generating
explanations for graph neural networks,” Advances in neural information processing
systems, vol. 32, 2019.

[106] M. T. Ribeiro, S. Singh, and C. Guestrin, “" why should i trust you?" explaining the
predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 2016, pp. 1135–1144.

[107] P. Y. Lum et al., “Extracting insights from the shape of complex data using topology,”
Scientific reports, vol. 3, no. 1, pp. 1–8, 2013.

[108] G. Singh, F. Mémoli, and G. E. Carlsson, “Topological methods for the analysis of
high dimensional data sets and 3d object recognition.,” SPBG, vol. 91, p. 100, 2007.

[109] M. Nicolau, A. J. Levine, and G. Carlsson, “Topology based data analysis identifies a
subgroup of breast cancers with a unique mutational profile and excellent survival,”
Proc. Natl. Acad. Sci., vol. 108, no. 17, pp. 7265–7270, Apr. 2011. doi: 10.1073/pnas.
1102826108 . [Online]. Available: https://doi.org/10.1073/pnas.1102826108 .

[110] B. Strodthoff and B. Jüttler, “Layered reeb graphs for three-dimensional manifolds in
boundary representation,” Computers & Graphics, vol. 46, pp. 186–197, 2015, Shape
Modeling International 2014, issn: 0097-8493. doi: https://doi.org/10.1016/j.cag.
2014.09.026 . [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0097849314001149 .

[111] G. Naitzat, A. Zhitnikov, and L. Lim, “Topology of deep neural networks,” J. Mach.
Learn. Res., vol. 21, 184:1–184:40, 2020. [Online]. Available: http://jmlr.org/papers/
v21/20-345.html .

[112] A. Rathore, N. Chalapathi, S. Palande, and B. Wang, “Topoact: Visually exploring
the shape of activations in deep learning,” in Computer Graphics Forum, Wiley Online
Library, vol. 40, 2021, pp. 382–397.

[113] R. B. Gabrielsson and G. Carlsson, “Exposition and interpretation of the topology
of neural networks,” in 2019 18th ieee international conference on machine learning
and applications (icmla), IEEE, 2019, pp. 1069–1076.

[114] M. Hajij, G. Zamzmi, and F. Batayneh, “Tda-net: Fusion of persistent homology and
deep learning features for covid-19 detection from chest x-ray images,” in 2021 43rd
Annual International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC), IEEE, 2021, pp. 4115–4119.

184

http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
https://doi.org/10.1073/pnas.1102826108
https://doi.org/10.1073/pnas.1102826108
https://doi.org/10.1073/pnas.1102826108
https://doi.org/https://doi.org/10.1016/j.cag.2014.09.026
https://doi.org/https://doi.org/10.1016/j.cag.2014.09.026
https://www.sciencedirect.com/science/article/pii/S0097849314001149
https://www.sciencedirect.com/science/article/pii/S0097849314001149
http://jmlr.org/papers/v21/20-345.html
http://jmlr.org/papers/v21/20-345.html

[115] E. R. Love, B. Filippenko, V. Maroulas, and G. Carlsson, “Topological deep learning,”
arXiv preprint arXiv:2101.05778, 2021.

[116] C. Bodnar, C. Cangea, and P. Liò, “Deep graph mapper: Seeing graphs through the
neural lens,” Frontiers in big Data, vol. 4, 2021.

[117] M. Hajij, P. Rosen, and B. Wang, “Mapper on graphs for network visualization,”
arXiv preprint arXiv:1804.11242, 2018.

[118] T. K. Dey, F. Mémoli, and Y. Wang, “Multiscale mapper: Topological summarization
via codomain covers,” in Proceedings of the twenty-seventh annual acm-siam sympo-
sium on discrete algorithms, SIAM, 2016, pp. 997–1013.

[119] T. Kamada, S. Kawai, et al., “An algorithm for drawing general undirected graphs,”
Information processing letters, vol. 31, no. 1, pp. 7–15, 1989.

[120] C. G. Northcutt, L. Jiang, and I. L. Chuang, “Confident learning: Estimating uncer-
tainty in dataset labels,” Journal of Artificial Intelligence Research (JAIR), vol. 70,
pp. 1373–1411, 2021.

[121] Q. Huang, H. He, A. Singh, S.-N. Lim, and A. Benson, “Combining label propagation
and simple models out-performs graph neural networks,” in International Conference
on Learning Representations, 2021. [Online]. Available: https : / / openreview . net /
forum?id=8E1-f3VhX1o .

[122] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of graph neural
network evaluation,” arXiv preprint arXiv:1811.05868, 2018.

[123] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, “Image-based recommenda-
tions on styles and substitutes,” in Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval, 2015, pp. 43–52.

[124] B. Zhao, F. Li, and E. Xing, “Large-scale category structure aware image categoriza-
tion,” in Advances in Neural Information Processing Systems, vol. 24, 2011. [Online].
Available: https://proceedings.neurips.cc/paper/2011/file/d5cfead94f5350c12c322b
5b664544c1-Paper.pdf .

[125] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
IEEE, Jun. 2016. doi: 10.1109/cvpr.2016.90 . [Online]. Available: https://doi.org/10.
1109/cvpr.2016.90 .

[126] J. Howard, Imagenette dataset, https://github.com/fastai/imagenette , 2021.
[127] E. Tufte, Seeing with fresh eyes: Meaning, Space, Data, Truth. Graphics Press, 2020.
[128] A. S. Razavian, J. Sullivan, S. Carlsson, and A. Maki, “Visual instance retrieval with

deep convolutional networks,” ITE Transactions on Media Technology and Applica-
tions, vol. 4, no. 3, pp. 251–258, 2016.

[129] X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. R. Zaiane, and M. Jagersand, “U2-net:
Going deeper with nested u-structure for salient object detection,” Pattern Recogni-
tion, vol. 106, p. 107 404, 2020.

185

https://openreview.net/forum?id=8E1-f3VhX1o
https://openreview.net/forum?id=8E1-f3VhX1o
https://proceedings.neurips.cc/paper/2011/file/d5cfead94f5350c12c322b5b664544c1-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/d5cfead94f5350c12c322b5b664544c1-Paper.pdf
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/cvpr.2016.90
https://github.com/fastai/imagenette

[130] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm for
discovering clusters in large spatial databases with noise.,” in KDD, vol. 96, 1996,
pp. 226–231.

[131] D. Shigaki et al., “Integration of multiple epigenomic marks improves prediction of
variant impact in saturation mutagenesis reporter assay,” Human mutation, vol. 40,
no. 9, pp. 1280–1291, 2019.

[132] M. J. Landrum et al., “Clinvar: Improving access to variant interpretations and sup-
porting evidence,” Nucleic acids research, vol. 46, no. D1, pp. D1062–D1067, 2018.

[133] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Inter-
national Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015. doi:

 10.1007/s11263-015-0816-y .
[134] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “Chestx-ray8:

Hospital-scale chest x-ray database and benchmarks on weakly-supervised classifica-
tion and localization of common thorax diseases,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 2097–2106.

[135] Z. Nabulsi et al., “Deep learning for distinguishing normal versus abnormal chest
radiographs and generalization to two unseen diseases tuberculosis and covid-19,”
Scientific reports, vol. 11, no. 1, pp. 1–15, 2021.

[136] P. Rajpurkar et al., “Chexnet: Radiologist-level pneumonia detection on chest x-rays
with deep learning,” arXiv preprint arXiv:1711.05225, 2017.

[137] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in CVPR, 2017, pp. 4700–4708.

[138] W. T. Clark and P. Radivojac, “Information-theoretic evaluation of predicted onto-
logical annotations,” Bioinformatics, vol. 29, no. 13, pp. i53–i61, 2013.

[139] M. Kulmanov and R. Hoehndorf, “Deepgoplus: Improved protein function prediction
from sequence,” Bioinformatics, vol. 36, no. 2, pp. 422–429, 2020.

[140] M. Carriere, B. Michel, and S. Oudot, “Statistical analysis and parameter selection
for mapper,” The Journal of Machine Learning Research, vol. 19, no. 1, pp. 478–516,
2018.

[141] W. T. Tutte, “How to draw a graph,” Proceedings of the London Mathematical Society,
vol. 3, no. 1, pp. 743–767, 1963.

[142] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine
Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008. [Online]. Available: http :
//jmlr.org/papers/v9/vandermaaten08a.html .

[143] E. Becht et al., “Dimensionality reduction for visualizing single-cell data using UMAP,”
Nature Biotechnology, vol. 37, no. 1, pp. 38–44, Dec. 2018. doi: 10.1038/nbt.4314 .
[Online]. Available: https://doi.org/10.1038/nbt.4314 .

186

https://doi.org/10.1007/s11263-015-0816-y
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/nbt.4314

[144] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation and
projection for dimension reduction,” arXiv, vol. stat.ML, p. 1802.03426, 2018. doi:

 10.48550/ARXIV.1802.03426 .
[145] K. Fountoulakis, F. Roosta-Khorasani, J. Shun, X. Cheng, and M. W. Mahoney,

“Variational perspective on local graph clustering,” Mathematical Programming, Dec.
2017, issn: 1436-4646. doi: 10.1007/s10107-017-1214-8 .

[146] J. Shun, F. Roosta-Khorasani, K. Fountoulakis, and M. W. Mahoney, “Parallel local
graph clustering,” Proceedings of the VLDB Endowment, vol. 9, no. 12, pp. 1041–
1052, 2016.

[147] N. Veldt, A. R. Benson, and J. Kleinberg, “Hypergraph cuts with general splitting
functions,” SIAM Review, vol. 64, no. 3, pp. 650–685, 2022.

187

https://doi.org/10.48550/ARXIV.1802.03426
https://doi.org/10.1007/s10107-017-1214-8

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	PRELIMINARY
	BACKGROUND
	Linear graph diffusions
	Nonlinear graph diffusions
	Nonlinear diffusions as generalized min-cut optimization

	EMPIRICAL STUDY OF FLOW-BASED ALGORITHMS FOR IMPROVING LOCAL CLUSTERS
	Chapter Overview and Motivation
	Unifying Objectives of Flow-based Algorithms
	Flow-based Cluster Improvement Algorithms Reduce Conductance
	Finding Nearby Targets by Growing and Shrinking
	Using Flow-based Algorithms for Semi-supervised Learning
	Using Flow-based Methods for Local Coordinates
	Scalable Implementation of Local Graph Clustering Algorithms

	STRONGLY LOCAL P-NORM DIFFUSIONS ON GRAPHS FOR CLUSTERING AND SEMI-SUPERVISED LEARNING
	Chapter Overview and Motivation
	Beyond P-norm Cut
	Strongly Local Algorithms
	More details on ρ
	Cut Quality Analysis
	Experimental Results

	STRONGLY LOCAL HYPERGRAPH DIFFUSIONS FOR CLUSTERING AND SEMI-SUPERVISED LEARNING
	Chapter Overview and Motivation
	A Motivating Case Study with Yelp Reviews
	Hypergraph-to-graph reduction
	Localized Quadratic Hypergraph Diffusions
	A Strongly Local Solver for LHQD
	Local Conductance Approximation
	Generalization to P-norms
	Experimental Results
	Detecting Amazon Product Categories
	Detecting Stack Overflow Question Topics
	Varying Number of Seeds
	Selecting δ

	COMBINING TOPOLOGICAL DATA ANALYSIS AND DIFFUSIONS FOR ANALYZING PREDICTIONS
	Motivation and background on TDA
	Background: Topological Data Analysis and the Mapper Algorithm
	Reeb graph vs. Reeb space vs. Reeb network
	Existing work of using topology in neural networks
	Chapter Overview

	The Reeb network construction on a prediction function using a graph
	Demonstration of GTDA
	Other details

	Error estimation using diffusion on the Reeb network
	Demonstration in Graph-based prediction
	Central results
	Dataset and GNN model
	Inspecting another advanced model predictions with GTDA
	GTDA visualization on the original Amazon dataset

	Understanding image predictions
	Central results
	Dataset and CNN model
	Details on selecting images to embed
	Statistical validation
	Comparing to influence functions
	Understanding model generalization on other labels
	Comparing to a Reeb net from original TDA framework

	Understanding Malignant Gene Mutation Predictions
	Central results
	Dataset and model
	Validating GTDA visualization
	Estimating and correcting prediction errors
	Extracting insights about mutation types and single nucleotide variants
	Incorrect GTDA error estimation implies unreliable labels
	Comparison with other methods

	Comparing models on ImageNet-1k predictions
	Dataset and CNN models
	Building graphs and initial results of GTDA
	Highlighting subgroups where advanced models perform better
	Understanding different models' predictions

	Inspecting chest X-ray images
	Dataset and model
	GTDA finds incorrect normal vs abnormal labels

	Parameter selection of GTDA
	Selecting component size threshold
	Select overlapping ratio
	Notes on other parameters

	Performance and scaling
	Comparing to tSNE and UMAP

	SUMMARY AND FUTURE DIRECTIONS
	Conclusions in using nonlinear diffusions for local clustering
	Future opportunities in local clustering

	Conclusions in using diffusions for analyzing predictions
	Future opportunities in GTDA

	REFERENCES
	INDEX
	COLOPHON

