
A GRAYBOX DEFENSE THROUGH BOOTSTRAPPING
DEEP NEURAL NETWORK

by

Kirsen Sullivan

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Statistics

West Lafayette, Indiana

December 2022

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Bowei Xi, Chair

Department of Statistics

Dr. Mark Ward

Department of Statistics

Dr. Tom Sellke

Department of Statistics

Dr. Chris Clifton

Department of Computer Science

Approved by:

Dr. Jun Xie

2

To Andrew, Sloane and Heidi

3

ACKNOWLEDGMENTS

Purdue University’s Department of Statistics and Graduate School helped fund this

work.

4

TABLE OF CONTENTS

LIST OF TABLES . 8

LIST OF FIGURES . 10

ABSTRACT . 18

1 INTRODUCTION . 19

1.1 Vulnerability in machine learning . 19

2 LITERATURE REVIEW . 21

2.1 Adversarial Learning . 21

2.1.1 White Box Attacks . 22

L-BFGS . 22

Fast Gradient Sign Method (FGSM) and its variations 23

Carlini and Wagner (C&W) . 24

Jacobian-based Saliency Map Attack (JSMA) 25

DeepFool . 25

CPPN EA Fool . 25

Hot/Cold . 26

Natural GAN . 26

2.1.2 Black Box attacks . 27

Model-based Ensembling Attack . 27

Zeroth Order Optimization (ZOO) 27

One-pixel . 28

Surrogate Model & Real World Attacks 28

Adversarial poisoning and Backdoor attacks 28

2.1.3 Existing Defense Strategies . 30

Adversarial training . 30

Network distillation . 30

Adversarial detecting . 31

5

Image Pre-processing . 31

Different model structures . 31

3 BOOTSTRAP CNN . 32

3.1 Convolutional Neural Networks (CNN) . 32

3.2 Inference for CNN Parameters . 35

3.3 Data and Bootstrapped CNN Models . 36

3.3.1 Benchmark Datasets . 36

3.3.2 Bootstrap 3-Layer Convolutional Neural Network (CNN3) 37

3.3.3 Bootstrap VGG16 . 39

3.3.4 Bootstrap Inception v3 . 41

3.4 Models Generated Using Full Training Dataset by Varying Random Initial

Seeds . 44

3.5 Bootstrapped CNN Model Parameter Distribution 48

3.6 CNN Model Parameter Distribution by Varying the Random Initial Seeds . . 70

3.7 Distance Between Two Distributions . 85

3.8 Regression Model for Estimating Parameters Based on Bootstrap 96

4 RANDOMIZED CNN ENSEMBLE . 98

4.1 Adversarial images for ensemble . 98

4.2 Adversarial images for ensemble . 100

4.3 Randomization . 101

4.4 Testing the ensembles . 103

4.5 Plots with normal randomization . 103

4.6 Plots with uniform randomization . 112

4.7 Comparisons . 157

5 CANCER DATA PROJECT . 159

5.1 Experiment . 162

5.1.1 Reagents . 162

5.1.2 Clinical samples . 162

6

5.1.3 Sample preparation . 163

5.2 Preliminary analysis . 164

5.3 Metabolite selection using likelihood ratio approach 169

5.4 SVM accuracies and ROC . 170

5.5 CNN accuracies and ROC . 173

5.6 Discussion . 175

6 CONCLUSION . 177

REFERENCES . 178

7

LIST OF TABLES

3.1 Experiment setup summary for bootstrap. 45

3.2 Experiment setup summary for random ordering of full training data. 48

3.3 Kolmogorov-Smirnov test statistic quantiles of weights from bootstrapped neural
networks. Up to 1000 weights were selected randomly from each layer. 63

3.4 Kolmogorov-Smirnov test p-value quantiles of weights from bootstrapped neural
networks. Selected weights match those in Table 3.3 64

3.5 Kolmogorov-Smirnov test statistic quantiles of biases from bootstrapped neural
networks. Up to 1000 biases were selected randomly from each layer. 65

3.6 Kolmogorov-Smirnov test p-value quantiles of biases from bootstrapped neural
networks. Selected biases match those in Table 3.5 65

3.7 Kolmogorov-Smirnov test statistic quantiles from neural networks generated by
varying the initial random seed. Up to 1000 weights were selected from each
layer. For layers which are also represented in Table 3.3 , the same weights are
represented in both tables. For layers not represented in Table 3.3 , the weights
were selected randomly. 76

3.8 Kolmogorov-Smirnov test p-value quantiles from neural networks generated by
varying the initial random seeds. Selected weights match those in Table 3.7 . . . 76

3.9 Kolmogorov-Smirnov test statistic quantiles of bias values from neural networks
generated by varying the initial random seeds. Up to 1000 biases were selected
from each layer. For layers which are also represented in Table 3.5 , the same
biases are represented in both tables. For layers not represented in Table 3.5 , the
biases were selected randomly. 77

3.10 Kolmogorov-Smirnov test p-value quantiles of bias values from neural networks
generated by varying the initial random seeds. Selected biases match those in
Table 3.9 . 77

3.11 Wasserstein 1 distance between weights neural networks generated by varying the
initial random seeds and bootstrapped neural networks. Up to 1000 weights were
selected from each layer, with weights matching those represented in Tables 3.3 ,

 3.7 . 87

3.12 Wasserstein 1 distance between bias values of neural networks generated by vary-
ing the initial random seeds and bootstrapped neural networks. Up to 1000 biases
were selected from each layer, with biases matching those represented in Tables

 3.5 , 3.9 . 89

8

3.13 Kolmogorov-Smirnov 2-sample test statistic quantiles between weights generated
by varying the initial random seeds and bootstrapped neural networks. Up to 1000
weights were selected from each layer, with weights matching those represented
in Tables 3.3 , 3.7 . 94

3.14 Kolmogorov-Smirnov 2-sample test p-value quantiles between weights generated
by varying the initial random seeds and bootstrapped neural networks. Selected
weights match those in Table 3.13 . 95

3.15 Kolmogorov-Smirnov 2-sample test statistic quantiles between biases generated
by varying the initial random seeds and bootstrapped neural networks. Up to
1000 biases were selected from each layer, with biases matching those represented
in Tables 3.5 , 3.9 . 95

3.16 Kolmogorov-Smirnov 2-sample test p-value quantiles between biases generated
by varying the initial random seeds and bootstrapped neural networks. Selected
biases match those in Table 3.15 . 95

3.17 Linear Regression results for estimating interval ranges in bootstrap neural net-
works. Here trans(Y) = β0 + β1*log2 (number of nodes) 97

4.1 Accuracy of undefended neural networks on clean and adversarial images 101

4.2 Average L2 distance between clean and adversarial examples. 158

4.3 Accuracy of BaRT defense on clean and adversarial images 158

4.4 Accuracy of adversarial training defense on clean and adversarial images 158

5.1 Clinical and characteristics of study subjects. 164

5.2 Univariate Metabolite Performance Based on Healthy vs Benign 168

5.3 Selected Metabolites Based on Likelihood Ratio and Fold Change 170

5.4 SVM validation accuracies. All accuracies are shown for models including 17
biomarkers. 173

5.5 CNN leave-one-out cross validation accuracies. 174

9

LIST OF FIGURES

3.1 Model structure for CNN3 . 38

3.2 Model structure for VGG-16 . 40

3.3 Model structure for Inception v3 . 43

3.4 Proportion OOB images for bootstrap networks. 45

3.5 Model structure for ResNet-18 . 47

3.6 Distribution of weights selected from bootstrap CNN3, first convolutional layer. 48

3.7 Distribution of biases selected from bootstrap CNN3, first convolutional layer. . 49

3.8 Distribution of weights selected from bootstrap CNN3, fully connected layer. . . 49

3.9 Distribution of biases selected from bootstrap CNN3, fully connected layer. . . . 50

3.10 Distribution of weights selected from bootstrap Inception v3, first convolutional
layer. 50

3.11 Distribution of weights selected from bootstrap Inception v3, second convolutional
layer. 51

3.12 Distribution of weights selected from bootstrap Inception v3, third convolutional
layer. 51

3.13 Distribution of weights selected from bootstrap Inception v3, fourth convolutional
layer. 52

3.14 Distribution of weights selected from bootstrap Inception v3, fifth convolutional
layer. 52

3.15 Distribution of weights selected from bootstrap Inception v3, sixth convolutional
layer. 53

3.16 Distribution of weights selected from bootstrap VGG-16, first convolutional layer. 54

3.17 Distribution of biases selected from bootstrap VGG-16, first convolutional layer. 54

3.18 Distribution of weights selected from bootstrap VGG-16, final fully connected layer. 55

3.19 Distribution of biases selected from bootstrap VGG-16, final fully connected layer. 55

3.20 KS test results for selected weights in bootstrap CNN3, first convolutional layer. 57

3.21 KS test results for selected biases in bootstrap CNN3, first convolutional layer. 57

3.22 KS test results for selected weights in bootstrap CNN3, fully connected layer. . 58

3.23 KS test results for selected biases in bootstrap CNN3, fully connected layer. . . 58

10

3.24 KS test results for selected weights in bootstrap Inception v3, first convolutional
layer. 58

3.25 KS test results for selected weights in bootstrap Inception v3, second convolu-
tional layer. 59

3.26 KS test results for selected weights in bootstrap Inception v3, third convolutional
layer. 59

3.27 KS test results for selected weights in bootstrap Inception v3, fourth convolutional
layer. 60

3.28 KS test results for selected weights in bootstrap Inception v3, fifth convolutional
layer. 60

3.29 KS test results for selected weights in bootstrap Inception v3, sixth convolutional
layer. 60

3.30 KS test results for selected weights in bootstrap VGG-16, first convolutional layer. 61

3.31 KS test results for selected biases in bootstrap VGG-16, first convolutional layer. 61

3.32 KS test results for selected weights in bootstrap VGG-16, final fully connected
layer. 62

3.33 KS test results for selected biases in bootstrap VGG-16, final fully connected
layer. 62

3.34 QQ Plots of individual non-normal weights selected from Incept-v3, first convo-
lutional layer. 65

3.35 QQ Plots of individual non-normal weights selected from Incept-v3, second con-
volutional layer. 66

3.36 QQ Plots of individual non-normal weights selected from Incept-v3, third convo-
lutional layer. 66

3.37 QQ Plots of individual non-normal weights selected from Incept-v3, fourth con-
volutional layer. 67

3.38 QQ Plots of individual non-normal weights selected from Incept-v3, fifth convo-
lutional layer. 67

3.39 QQ Plots of individual non-normal weights selected from Incept-v3, sixth convo-
lutional layer. 68

3.40 QQ Plots of individual non-normal biases selected from bootstrapped VGG-16,
first convolutional layer. 68

3.41 QQ Plots of individual non-normal weights selected from bootstrapped VGG-16,
final fully connected layer. 69

11

3.42 QQ Plots of individual non-normal biases selected from bootstrapped VGG-16,
final fully connected layer. 69

3.43 Distribution of weights selected from CNN3 generated from varying initial seed,
first convolutional layer. 70

3.44 Distribution of biases selected from CNN3 generated from varying initial seed,
first convolutional layer. 71

3.45 Distribution of weights selected from CNN3 generated from varying initial seed,
fully connected layer. 71

3.46 Distribution of biases selected from CNN3 generated from varying initial seed,
fully connected layer. 72

3.47 Distribution of weights selected from VGG-16 generated from varying initial seed,
first convolutional layer. 72

3.48 Distribution of biases selected from VGG-16 generated from varying initial seed,
first convolutional layer. 73

3.49 Distribution of weights selected from VGG-16 generated from varying initial seed,
final fully connected layer. 73

3.50 Distribution of biases selected from VGG-16 generated from varying initial seed,
final fully connected layer. 74

3.51 Distribution of weights selected from ResNet-18 generated from varying initial
seed, first convolutional layer. 74

3.52 Distribution of weights selected from ResNet-18 generated from varying initial
seed, fully connected layer. 75

3.53 Distribution of biases selected from ResNet-18 generated from varying initial seed,
fully connected layer. 75

3.54 KS test results for selected weights when varying the initial random seed in CNN3,
first convolutional layer. 77

3.55 KS test results for selected biases when varying the initial random seed in CNN3,
first convolutional layer. 78

3.56 KS test results for selected weights when varying the initial random seed in CNN3,
fully connected layer. 78

3.57 KS test results for selected biases when varying the initial random seed in CNN3,
fully connected layer. 78

3.58 KS test results for selected weights when varying the initial random seed in
VGG16, first convolutional layer. 79

3.59 KS test results for selected biases when varying the initial random seed in VGG-
16, first convolutional layer. 79

12

3.60 KS test results for selected weights when varying the initial random seed in
VGG16, final fully connected layer. 80

3.61 KS test results for selected biases when varying the initial random seed in VGG-
16, final fully connected layer. 80

3.62 KS test results for selected weights when varying the initial random seed in
ResNet-18, first convolutional layer. 81

3.63 KS test results for selected weights when varying the initial random seed in
ResNet-18, fully connected layer. 81

3.64 KS test results for selected biases when varying the initial random seed in ResNet-
18, fully connected layer. 82

3.65 QQ Plots of individual non-normal biases selected from VGG-16 varying initial
seeds, first convolutional layer. 82

3.66 QQ Plots of individual non-normal weights selected from VGG-16 varying initial
seeds, final fully connected layer. 83

3.67 QQ Plots of individual non-normal weights selected from ResNet-18 varying the
initial random seed, first convolutional layer. 83

3.68 QQ Plots of individual non-normal weights selected from ResNet-18 varying the
initial random seed, fully connected layer. 84

3.69 Histogram of Wasserstein 1 distance for selected weights in CNN3, first convolu-
tion layer. 86

3.70 Histogram of Wasserstein 1 distance for selected biases in CNN3, first convolution
layer. 86

3.71 Histogram of Wasserstein 1 distance for selected weights in CNN3, fully connected
(fc) layer. 87

3.72 Histogram of Wasserstein 1 distance for selected biases in CNN3, fully connected
layer. 87

3.73 Histogram of Wasserstein 1 distance for selected weights in VGG16, first convo-
lution layer. 88

3.74 Histogram of Wasserstein 1 distance for selected biases in VGG16, first convolu-
tion layer. 88

3.75 Histogram of Wasserstein 1 distance for selected weights in VGG16, final fully
connected (fc) layer. 88

3.76 Histogram of Wasserstein 1 distance for selected biases in CNN3, first convolution
layer. 89

3.77 2 sample KS test results for selected weights in CNN3, first convolutional layer. 91

13

3.78 2 sample KS test results for selected biases in CNN3, first convolutional layer. . 91

3.79 2 sample KS test results for selected weights in CNN3, fully connected layer. . . 91

3.80 2 sample KS test results for selected biases in CNN3, fully connected layer. . . . 92

3.81 2 sample KS test results for selected weights in VGG-16, first convolutional layer. 92

3.82 2 sample KS test results for selected biases in VGG-16, first convolutional layer. 93

3.83 2 sample KS test results for selected weights in VGG-16, final fully connected layer. 93

3.84 2 sample KS test results for selected biases in VGG-16, final fully connected layer. 94

3.85 Scatterplots of mean standard deviation by number of parameters, including re-
gression line. 97

4.1 Ensemble results for Gaussian randomization of CNN3, first convolutional layer 104

4.2 Ensemble results for Gaussian randomization of Incept v3, first convolutional layer 105

4.3 Ensemble results for Gaussian randomization of Incept v3, second convolutional
layer . 106

4.4 Ensemble results for Gaussian randomization of Incept v3, third convolutional layer 107

4.5 Ensemble results for Gaussian randomization of Incept v3, fourth convolutional
layer . 108

4.6 Ensemble results for Gaussian randomization of Incept v3, fifth convolutional layer 109

4.7 Ensemble results for Gaussian randomization of ResNet-18, first convolutional layer 110

4.8 Ensemble results for Gaussian randomization of VGG-16, first convolutional layer 111

4.9 Ensemble results for Uniform randomization of CNN3, first convolutional layer,
on C&W attack images . 113

4.10 Ensemble results for Uniform randomization of CNN3, first convolutional layer,
on DeepFool attack images . 114

4.11 Ensemble results for Uniform randomization of CNN3, first convolutional layer,
on FGSM attack images . 115

4.12 Ensemble results for Uniform randomization of CNN3, first convolutional layer,
on PGD attack images . 116

4.13 Ensemble results for Uniform randomization of CNN3, fully connected layer, on
C&W attack images . 117

4.14 Ensemble results for Uniform randomization of CNN3, fully connected layer, on
DeepFool attack images . 118

4.15 Ensemble results for Uniform randomization of CNN3, fully connected layer, on
FGSM attack images . 119

14

4.16 Ensemble results for Uniform randomization of CNN3, fully connected layer, on
PGD attack images . 121

4.17 Ensemble results for Uniform randomization of VGG16, first convolutional layer,
on C&W attack images . 122

4.18 Ensemble results for Uniform randomization of VGG16, first convolutional layer,
on DeepFool attack images . 123

4.19 Ensemble results for Uniform randomization of VGG16, first convolutional layer,
on FGSM attack images . 124

4.20 Ensemble results for Uniform randomization of VGG16, first convolutional layer,
on PGD attack images . 125

4.21 Ensemble results for Uniform randomization of ResNet18, first convolutional
layer, on C&W attack images . 126

4.22 Ensemble results for Uniform randomization of ResNet18, first convolutional
layer, on DeepFool attack images . 127

4.23 Ensemble results for Uniform randomization of ResNet18, first convolutional
layer, on FGSM attack images . 129

4.24 Ensemble results for Uniform randomization of ResNet18, first convolutional
layer, on PGD attack images . 130

4.25 Ensemble results for Uniform randomization of Inception v3, first convolutional
layer, on C&W attack images . 131

4.26 Ensemble results for Uniform randomization of Inception v3, first convolutional
layer, on DeepFool attack images . 132

4.27 Ensemble results for Uniform randomization of Inception v3, first convolutional
layer, on FGSM attack images . 133

4.28 Ensemble results for Uniform randomization of Inception v3, first convolutional
layer, on PGD attack images . 135

4.29 Ensemble results for Uniform randomization of Inception v3, second convolutional
layer, on C&W attack images . 136

4.30 Ensemble results for Uniform randomization of Inception v3, second convolutional
layer, on DeepFool attack images . 137

4.31 Ensemble results for Uniform randomization of Inception v3, second convolutional
layer, on FGSM attack images . 138

4.32 Ensemble results for Uniform randomization of Inception v3, second convolutional
layer, on PGD attack images . 139

4.33 Ensemble results for Uniform randomization of Inception v3, third convolutional
layer, on C&W attack images . 140

15

4.34 Ensemble results for Uniform randomization of Inception v3, third convolutional
layer, on DeepFool attack images . 141

4.35 Ensemble results for Uniform randomization of Inception v3, third convolutional
layer, on FGSM attack images . 142

4.36 Ensemble results for Uniform randomization of Inception v3, third convolutional
layer, on PGD attack images . 143

4.37 Ensemble results for Uniform randomization of Inception v3, fourth convolutional
layer, on C&W attack images . 144

4.38 Ensemble results for Uniform randomization of Inception v3, fourth convolutional
layer, on DeepFool attack images . 145

4.39 Ensemble results for Uniform randomization of Inception v3, fourth convolutional
layer, on FGSM attack images . 146

4.40 Ensemble results for Uniform randomization of Inception v3, fourth convolutional
layer, on PGD attack images . 148

4.41 Ensemble results for Uniform randomization of Inception v3, fifth convolutional
layer, on C&W attack images . 149

4.42 Ensemble results for Uniform randomization of Inception v3, fifth convolutional
layer, on DeepFool attack images . 150

4.43 Ensemble results for Uniform randomization of Inception v3, fifth convolutional
layer, on FGSM attack images . 151

4.44 Ensemble results for Uniform randomization of Inception v3, fifth convolutional
layer, on PGD attack images . 152

4.45 Ensemble results for Uniform randomization of Inception v3, sixth convolutional
layer, on C&W attack images . 153

4.46 Ensemble results for Uniform randomization of Inception v3, sixth convolutional
layer, on DeepFool attack images . 154

4.47 Ensemble results for Uniform randomization of Inception v3, sixth convolutional
layer, on FGSM attack images . 155

4.48 Ensemble results for Uniform randomization of Inception v3, sixth convolutional
layer, on PGD attack images . 156

5.1 Volcano plot of (A) benign/healthy comparison, (B) cancer/healthy comparison,
and (C) cancer/benign comparison. Fold change (FC) threshold: 2.0; FDR-
adjusted p-value threshold: 0.05. Unequal group variance was assumed, non-
parametric test was used. 166

16

5.2 Evaluation of logistic regression model performance constructed using a 50% test-
ing data set of benign and cancer samples [AUC = 0.753, sensitivity = 0.641 when
specificity = 0.840]. 167

5.3 Box plots of candidate plasma markers (all p < 0.05 and FC > 2 or < 0.50) for
detection of cancer from benign samples. Data were log10 normalized. 168

5.4 Selected biomarkers from both fold change and likelihood ratio approach. . . . 169

5.5 ROC curve of Cancer/Benign CNN, 17 markers. 171

5.6 ROC curve of Cancer(UA2)/Healthy SVM, 17 markers. 171

5.7 ROC curve of Cancer(UA1)/Benign SVM, 17 markers. 172

5.8 ROC curve of Cancer/Healthy SVM, 17 markers. 172

5.9 ROC curve of Cancer/Non-Cancer SVM, 17 markers. 173

5.10 ROC curve of Cancer/Benign CNN, 17 markers. 174

5.11 ROC curve of Cancer(UA2)/Healthy CNN, 17 markers. 174

5.12 ROC curve of Cancer(UA1)/Benign CNN, 17 markers. 175

5.13 ROC curve of Cancer/Healthy CNN, 17 markers. 175

5.14 ROC curve of Cancer/Non-Cancer CNN, 17 markers. 176

17

ABSTRACT

Building a robust deep neural network (DNN) framework turns out to be a very difficult

task as adaptive attacks are developed that break a robust DNN strategy. In this work

we first study the bootstrap distribution of DNN weights and biases. We bootstrap three

DNN models: a simple three layer convolutional neural network (CNN), VGG16 with 13

convolutional layers and 3 fully connected layers, and Inception v3 with 42 layers. Both

VGG16 and Inception v3 are trained on CIFAR10 in order for bootstrapping networks to

converge. We then compare the bootstrap NN parameter distributions with those from

training DNN with different random initial seeds. We discover that the bootstrap DNN

parameter distributions change as the DNN model size increases. And the bootstrap DNN

parameter distributions are very close to those obtained from training with different random

initial seeds. The bootstrap DNN parameter distributions are used to create a graybox

defense strategy. We randomize a certain percentage of the weights of the first convolutional

layers of a DNN model, and create a random ensemble of DNNs. Based on one trained DNN,

we have infinitely many random DNN ensembles. The adaptive attacks lose the target. A

random DNN ensemble is resilient to the adversarial attacks and maintains performance on

clean data.

18

1. INTRODUCTION

1.1 Vulnerability in machine learning

In a resilient cyber physical system, the algorithms implemented in the software to process

the data must be secured against adversaries as well as other elements of the cyber physical

system. For example, an autonomous vehicle has cameras, radar and/or lidar sensors. The

sensors receive information from the surrounding environment. The sensor data are processed

to identify objects, classify these objects, and determine their distance and speed with regard

to the vehicle. Each type of the sensors has its pros and cons. As machine learning (ML) and

artificial intelligence (AI) gain widening implementation in transportation, some autonomous

vehicle manufacturers prefer the less expensive camera sensors over the more expensive lidar

sensors. However cameras are less reliable because the weather condition, the background

of the objects and the image quality could potentially lead to a wrong decision and increase

the odds of an accident. Therefore building resilient AI is crucial to process the image sensor

data correctly and ensure the safety of self-driving cars.

Making AI resilient is an important task. Soon after AlexNet won the ImageNet Large

Scale Visual Recognition Challenge in 2012, which led to the third wave of AI, researchers

discovered that deep neural network (DNN) can be fooled by adding targeted minor per-

turbations to clean images, i.e., the adversarial examples. Subsequently numerous attack

algorithms were developed. This demonstrates the severity of AI vulnerabilities.

In this work, we focus on the full precision DNN models, because the large pre-trained

models such as Inception models are very popular for transfer learning tasks, and a smaller

convolutional neural network (CNN) is easy to train and capable of handling many clas-

sification tasks with high accuracy. Our approach does not involve a drastically different

training process or model structure. We begin with a DNN model trained through the stan-

dard training process. Then a certain portion of the weights on a selected layer are replaced

by random numbers generated from a Gaussian or Uniform distribution. The distribution

parameters are determined through bootstrap. Bootstrapping several deep neural network

models with different structure reveal that an increasingly large percentage of the bootstrap

weight distributions and the bootstrap bias distributions become non-normal.

19

We utilize this information to form a graybox defense strategy against adversarial attacks.

The adversary knows the trained model’s structure and parameters. We build a random

ensemble of the DNN models to classify the test data.

Since even a smaller CNN has a large number of parameters for each layer, replacing

some weights by random numbers in a DNN model only slightly reduces the accuracy of the

model on clean test data. Then an ensemble of DNN models with some random weights

can achieve the same accuracy as the trained model without random weights. A random

ensemble also achieves robust performance over adversarial examples. We further discover

that randomizing the first convolutional layers in a DNN model produces the most robust

results over adversarial examples, while randomizing the last several convolutional layers or

the fully connected layers is less effective.

Given one trained DNN model, we can have infinitely many DNN random ensembles

which all maintain the same accuracy over the clean test data as the trained model itself,

and achieve robust performance over adversarial examples. We design this strategy to address

the adaptive attacks. An adaptive attack will attack the defense strategy itself. By having

infinitely many ensembles, we can frequently switch to a different ensemble without incurring

additional training time. Thus the adaptive attack loses the target to attack. Although

we cannot break the cycle of attacks and defenses, we can manage to stay ahead of the

adversaries in the cycle.

20

2. LITERATURE REVIEW

2.1 Adversarial Learning

The most popular form of attacks against machine learning algorithms are evasion at-

tacks. In this attack style, malicious adversaries generate adversarial samples with slight

perturbations which can cause misclassification by a classifier. The perturbations can be

small enough that they are not detectable to the human eye. The adversarial samples can

also be used to evade detection by a learning algorithm at the test time. Examples of eva-

sion attacks include spam emails, spoofing of biometric verification systems, and evading a

deployed system at test time.

In the past several years, many evasion attack algorithms have been developed to generate

adversarial samples that lead to misclassification by Deep Neural Networks (DNNs) in image

classification. An evasion attack against DNN typically adds minor perturbation to the input

to a DNN. In some cases, evasion attacks can be employed which creates minor perturbations

to physical objects. This is much less common, and this review will focus only on digital

attacks.

Evasion attack algorithms against DNN were first published in 2014 (Szegedy, Zaremba,

Sutskever, et al.). Several survey articles are published providing the detailed timeline of

adversarial attacks against DNNs, e.g., Yuan, He, Zhu, et al. [2]; Akhtar and Mian [3]; Biggio

and Roli [4]: Akhtar, Mian, Kardan, et al. [5]. An influx of attack algorithms and effective

defenses were devised in response to a 2017 NIPS competition organized by Google Brain.

The winning teams’ results are documented in Kurakin, Goodfellow, Bengio, et al. [6].

Attack algorithms are generated based on differing levels of the attacker’s knowledge of

the target system. Elements of the target system include the training data, the set of input

features, and the full DNN structure including gradients, trained parameters, and hyper-

parameters. In a white box attack, the attacker has full knowledge of all elements of the

DNN under attack. A gray box attack may have knowledge of certain elements, such as

the feature representation and the type of learning algorithm, but not of the training data

or trained weights. In a black box attack, the attacker does not have knowledge about the

DNN’s structure, but may have access to confidence scores or labeled outputs. If the target

21

DNN is available as an oracle, black box attacks are often executed by querying the oracle.

The attacker then uses the confidence scores or labels returned by the oracle to train a local

model and generates adversarial samples against the local model.

Beyond the attacker’s knowledge, the attacker’s goal and ability to manipulate input

data further define the optimization problem which the attack strategy aims to solve. There

are several security violations which may be the aim of the attacker. These include privacy

violations, integrity violations and availability violations. Privacy violations aim to obtain

private information about the data, system or users. An integrity violation is one in which

detection is evaded and normal operation of the system is maintained. An availability viola-

tion aims to make the system malfunction for the legitimate users. A second class of attack

goal is error specificity. The aim here is to cause the system to misclassify input. The goal

can be either targeted or untargeted, where in the former case, a specific (incorrect) target

classification is desired. An untargeted attack simply wishes to make the classifier select any

incorrect class. In a final category of attack goals, the aim is to maximize attack specificity.

As with error specificity, this specificity can be either in terms of a targeted set of inputs

(e.g., a specific user), or indiscriminately applied to all input samples. The capability of the

attackers also help define the optimization function. An attack which can influence both

training and test data is sometimes known as a poisoning, backdoor or trojaning attack [7].

In an evasion attack, the attacker can only influence the test set.

2.1.1 White Box Attacks

L-BFGS

Evasion attack algorithms were first reported in [1]. Adding perturbation δ to an image

x can cause a DNN to misclassify the adversarial image, even when the perturbation is

imperceptible. This non-random perturbation is found by maximizing the DNN’s prediction

error. For a given image x of dimensionality m and a target class label t, δ was obtained by

22

finding an approximate solution to the following box constraint optimization problem using

L-BFGS.

min ‖δ‖2 s.t. C(x+ δ) = t, x+ δ ε [0, 1]m (2.1)

The paper also observed the transferability of adversarial images to other networks. The

specific adversarial image can be misclassified by a second DNN which was trained using a

different subset of the data.

Fast Gradient Sign Method (FGSM) and its variations

As a one-step attack, FGSM has a low computation cost and can find an adversarial

image quicker than L-BFGS. Let J(x, y) be the cross-entropy cost function and y be the

true label of an image x. Using the sign of the gradient of the cost function, Goodfellow,

Shlens, and Szegedy [8], generated adversarial image x+ δ with perturbation δ as

δ = ε ∗ sign(∇xJ(x, y)) (2.2)

Since the initial introduction of FGSM, several modifications have been presented. By

using the scaled gradient instead of the sign of the gradient, Rozsa, Rudd, and Boult [9]

produced more diverse adversarial images. (Tramèr et al., 2018) suggested a small random-

ized single-step attack. Instead of a simpler one step attack, adversarial samples can be

generated by iteratively following the direction of the gradient while clipping the generated

image to stay inside an ε-neighborhood of the original image x as in the iterative FGSM

(I-FGSM) in Kurakin, Goodfellow, and Bengio [10]. Projected Gradient Descent (PGD)

attack is an I-FGSM with many random starting points in the L∞ ε-neighborhood. This

yielded stronger adversarial samples, and is the strongest adversarial attack which utilizes

only first order information about the DNN (Madry, Makelov, Schmidt, et al. [11]). Further

attacks have been developed which add momentum to an iterative FGSM (MI-FGSM) to

boost attack strength and maintain transferability of adversarial images. The update with

momentum is the following,

23

ht+1 = β ∗ ht + ∇xJ(xt, y)
‖∇xJ(xt, y)‖1

(2.3)

xt+1 = xt + α ∗ sign(ht+1) (2.4)

Where α = ε/T , T being the predetermined number of iterations (Dong, Liao, Pang, et

al. [12]). This method has been applied to an ensemble of DNNs by averaging the logits of

DNNs in the ensemble to compute the cross-entropy J(x, y).

Carlini and Wagner (C&W)

C&W attack (Carlini and Wagner [13]) is a modification of L-BFGS attack. In order to

address the issue of the classifier constraint in L-BFGS attack being highly non-linear, C&W

modify the objective function making it better suited to optimization. Their L2 attack is

sufficiently strong to bypass a number of detection and defense methods. They solved the

following box constraint optimization problem to find an adversarial perturbation δ.

minimize
∥∥∥∥1

2(tanh(w) + 1)− x
∥∥∥∥2

2
+ c ∗ f(1

2(tanh(w) + 1) (2.5)

With f defined as

f(x′, t) = max (max {Z(x′)i : i 6= t} − Z(x′)t′ − κ) (2.6)

where Z(x)i is the output of the softmax for class i. After optimization, δ is retrieved

from w by the following change of variable.

δ = 1
2(tanh(w) + 1)− x (2.7)

24

Inspired by the C&W attack, Elastic-net attacks (EAD) in Chen, Sharma, Zhang, et

al. [14] used the same loss function f(x, t), but introduced elastic-net regularization. This

further encouraged similarity to the original image. EAD’s L1 attack achieved comparable

performance as the C&W L2 attack.

Jacobian-based Saliency Map Attack (JSMA)

JSMA computed the Jacobian of either the logits as in Papernot, McDaniel, Jha, et

al. [15] or the outputs of the softmax as in Papernot, McDaniel, Jha, et al. [15] for an

image x, and built a saliency map. This saliency map was used to characterize the input-

output relation of DNNs. From there, the algorithm is a greedy attack algorithm which

iteratively updates the most influential pixel to generate adversarial images. This method is

an effective attack which only modifies small portions of the input image. However, it has a

high computational cost.

DeepFool

Moosavi-Dezfooli, Fawzi, and Frossard [16] introduced an iterative attack algorithm to

efficiently search for adversarial samples. At each iteration, a classifier f(xt) was linearized

at the current point xt and an update was computed by finding the closest projection of xt on

a hyperplane of the adversarial classes. DeepFool attack can also be used to find a universal

adversarial perturbation that causes almost all images to fool a classifier (Moosavi-Dezfooli,

Fawzi, Fawzi, et al. [17]).

CPPN EA Fool

Compositional pattern-producing network encoded evolutionary algorithm (CPPN EA)

[18] can be classified as a false positive attack. The adversarial images are designed to be

unrecognizable to humans as having been tampered with. Adversarial images generated by

this method were accepted into an art competition at a rate of 35.5% [2]. The authors were

able to show that this method can identify significant features similar to JSMA, but with

less computational requirements.

25

Hot/Cold

While FGSM considers the gradient of the loss function, the Hold/Cold algorithm of

Rozsa, Rudd, and Boult [9] considers earlier layers, particularly the layer immediately pre-

ceding the softmax layer. In CNNs this layer is a fully connected linear layer with layer

outputs still corresponding to class assignments. An inverted one-hot vector is applied at

this penultimate layer, with the goal of creating both features in the earlier layers which cor-

respond to the designated adversarial (hot) class and features which decrease the likelihood

of being associated with the non-hot classes. In addition to the ’hot’ class, a ’cold’ class is

introduced in the penultimate layer. Now the imposed feature vector for the penultimate

layer is defined for the hot class: the absolute value of the network’s feature output for the

hot class; for the cold class: the negative value of the network’s feature output for the cold

class; and 0 for all other classes. Using backpropagation, a new image is computed with the

necessary changes needed to move the input image from the original (cold) class to the new

desired (hot) class.

The optimization to compute the adversarial example is then performed using the so-

called PASS method. The Perceptual Adversarial Similarity Score (PASS) measure created

by [9] acts as a similarity measure which quantifies how adversarial a misclassified image is.

Natural GAN

Zhao, Dua, and Singh [19] generated adversarial images and texts using Generative Ad-

versarial Networks (GANs). This has the advantage of making the adversarial examples,

more natural, for example, the texts produced follow semantic rules. Other methods search

for some adversary x∗ which is similar to x but produces a different classification. The goal

of natural GAN is to search for an x∗ which meets the above criteria, but also fits the under-

lying data distribution Px. This is done by finding an adversary in the Px space, and then

mapping it back to x∗ with the help of a generative model, G. G is trained to map random

noise back to the input distribution.

26

min
z
‖ z − Px ‖ (2.8)

s.t. f(G(z)) 6= f(x) (2.9)

2.1.2 Black Box attacks

Model-based Ensembling Attack

Liu et al proposed a Model-based Ensembling Attack for targeted adversarial images

[20]. The authors argued that it is more difficult to targeted adversarial images are less

transferable over deep models than non-targeted adversarial images. To that end, they

designed a transferable targeted attack technique which can be used in black box attacks,

or attacks in which the CNN structure is unknown. The targeted adversarial example is

derived using k deep networks by the following optimization problem.

arg min
x′

− log((
k∑

i=1
αifi(x′, l′))) + γ‖x′ − x‖ (2.10)

where fi is the function of each of the k networks and αi is the weight of the ith ensemble

(weights sum to 1). x is the input image and l′ is the target class.

Zeroth Order Optimization (ZOO)

ZOO Chen, Zhang, Sharma, et al. [21] is a modification of C&W’s L2 norm attack,

under the assumption that both the gradients and model structure are unknown to the

attacker. The loss function in ZOO replaces the output of the softmax in C&W’s loss

function with the log output of the DNN. The optimization on the loss function does not

require knowledge of the gradients, instead it estimates them using the symmetric difference

quotient, implementing stochastic gradient descent. This adds greatly to the computation

cost compared with C&W.

27

One-pixel

The One-pixel attack proposed in Su, Vargas, and Sakurai [22] operated under the con-

straint of changing the value of a single pixel of an image to fool a DNN. These perturbations

are based on differential evolution. Differential evolution does not require a differentiable

optimization problem, thus it can be employed in a black box scenario where the attacker

only knows confidence scores.

Surrogate Model & Real World Attacks

White box attacks can be employed in black box environments with some success due

to the transferability of adversarial images to models on which they were not trained. The

scenario in which the attacker does not have full knowledge of the DNN is more likely in

real world attacks. Kurakin, Goodfellow, and Bengio [23] showed that adversarial images

can be generated using the predicted labels in FGSM instead of the true labels. (Papernot

et al., 2017) trained and generated adversarial images against a local substitute model using

probes. With 800 queries sent to Amazon Web Services and Google Cloud Prediction, most

of the adversarial samples were misclassified by the target models hosted by Amazon and

Google. Liu, Chen, Liu, et al. [20] generated a targeted attack against k networks in the

white box fashion, and showed the adversarial images can transfer to an additional black

box network. Ilyas, Engstrom, Athalye, et al. [24] further developed a black box attack

under limited queries and partial output knowing only the top k class probabilities. Unlike

previous attacks against image level classifiers, Liu, Yang, Liu, et al. [25] developed a black

box attack against state-of-the-art object detectors.

Adversarial poisoning and Backdoor attacks

There are multiple ways to train a hidden, unexpected classification behavior into a CNN.

First, a bad actor with access to the CNN can insert an incorrect label association (e.g. an

image of Obama’s face labeled as Bill Gates), either at training time or with modifications

on a trained model. We consider this type of attack adversarial poisoning. In contrast, we

28

define a CNN backdoor as a hidden pattern trained into a CNN, which produces unexpected

behavior if and only if a specific trigger is added to an input. Such a backdoor does not

affect the model’s normal behavior on clean inputs without the trigger.

In the context of classification tasks, a backdoor misclassifies arbitrary inputs into the

same specific target label, when the associated trigger is applied to inputs. Inputs samples

that should be classified into any other label could be “overridden” by the presence of the

trigger. In the vision domain, a trigger is often a specific pattern on the image (e.g., a

sticker), that could misclassify images of other labels (e.g., wolf, bird, dolphin) into the

target label (e.g., dog). It is important to note that adding the same backdoor trigger causes

arbitrary samples from different labels to be misclassified into the same target label.

Gu et al. proposed BadNets, which injects a backdoor by poisoning the training dataset

[26]. The attacker first chooses a target label and a trigger pattern, which is a collection

of pixels and associated color intensities. Patterns may resemble arbitrary shapes, e.g., a

square. Next, a random subset of training images are stamped with the trigger pattern and

their labels are modified into the target label. Then the backdoor is injected by training

CNN with the modified training data. Since the attacker has full access to the training

procedure, she can change the training configurations, e.g., learning rate, ratio of modified

images, to get the backdoored CNN to perform well on both clean and adversarial inputs.

Using BadNets, authors show over 99% attack success (percentage of adversarial inputs that

are misclassified) without impacting model performance in MNIST [26].

Another approach (Trojan Attack) was proposed by Liu et al. [27]. They do not rely on

access to the training set. Instead, they improve on trigger generation by not using arbitrary

triggers, but by designing triggers based on values that would induce maximum response

of specific internal neurons in the CNN. This builds a stronger connection between triggers

and internal neurons, and is able to inject effective (¿ 98%) backdoors with fewer training

samples.

Backdoor attacks and adversarial poisoning assume the attacker has modification level

access to the training set and/or the trained CNN. In contrast, our work focuses on evasion

attacks, i.e., assumes a clean training set. The attacker has full knowledge of training set,

model structure and parameters, etc., but does not have editing access of these features.

29

2.1.3 Existing Defense Strategies

Naturally, many defense strategies were developed to counter the attack algorithms. It

is unfortunate that developing resilient AI proves to be extraordinarily difficult. A defense

strategy could reduce the effectiveness of existing attacks. But a newer adaptive attack fine

tuned to target the key components of the defense strategy could discover the vulnerabilities

of the defense and render the defense less effective. This seems to become a never ending

cycle of attacks and defenses.

Although currently there is no perfect defense which is able to correctly classify the

adversarial examples generated by the existing attacks and the adaptive attacks, several

defense strategies are shown to provide a degree of robustness. We summarize them as

follows.

Adversarial training

There are several variants of adversarial training. In general the procedure includes

adversarial examples in the training process. As the network is being trained, additional

adversarial images are created at each step. This technique was found to lead to the learner

overfitting the generated adversarial examples, a phenomenon known as ’label leaking’. One

approach to avoid this is to introduce an ensemble strategy. The adversarial examples are

generated against other pre-trained models rather than the learner being trained [10].

Network distillation

In another adversarial training technique, called defensive distillation (Papernot, Mc-

Daniel, Wu, et al. [28]), one model is trained to predict the output probabilities of another

model which was trained on an earlier, baseline standard. The first model is trained with

hard labels, the second is trained with the output from the first model, or ’soft’ labels.

Adversarial training is a flexible strategy which can be combined with another defense

strategy. It has been shown that adaptive attacks can significantly reduce the effectiveness

of this training method. (Tramer, Carlini, Brendel, et al. [29])

30

Adversarial detecting

Many researchers have focused on attempting to detect adversarial examples at the testing

stage [30]–[34], [35]–[39]. This is done through a variety of methods. Some trained deep

neural networks with two classes: adversarial or clean. Others used the original classes, but

also added an additional outlier class. Others compare the distribution of the images to the

distribution of clean images, or the uncertainty of input images to that of clean data.

Image Pre-processing

In 2017, Google Brain organized a Competition on Adversarial Attacks and Defenses [6].

Several winning teams applied pre-processing techniques, such as JPEG compression and

image denoising, to adversarial examples to reduce the impact of adversarial perturbations,

which are high frequency noises to the human eyes. Subsequently other pre-processing

techniques were proposed too. It is also a flexible strategy which can be combined with

another defense strategy. However if the adversary is aware of the pre-processing technique,

an adaptive attack is able to reduce its effectiveness.

Different model structures

One example of a different model structure is binarized neural network (BNN), where

activations and weights only use binary values. When a neural network model is implemented

in a cyber physical system, accuracy may not be the only concern. For example, autonomous

vehicle requires a resilient, fast, and energy efficient algorithm to process the large amount of

sensor data. There are three different types of hardware computation platforms. While GPU

or TPU is typically used for CNN, BNN is a suitable candidate for field-programmable gate

array (FPGA). Binarized networks have been shown to be competitive with full-precision

models [40] and has demonstrated to use less battery power and less time. Meanwhile, BNN

is relatively robust [41]. Adversarially trained BNN can achieve reasonable accuracy over

adversarial examples.

31

3. BOOTSTRAP CNN

The random ensemble defense strategy described in Chapter 4 begins with a DNN model

trained through the standard training process. Then a certain portion of the weights on

a selected layer are replaced by random numbers generated from a Gaussian or Uniform

distribution. The distribution parameters are determined through bootstrap. Bootstrapping

several deep neural network models with different structure reveal that an increasingly large

percentage of the bootstrap weight distributions and the bootstrap bias distributions become

non-normal. This chapter describes the network architectures, bootstrapping strategies and

contains results pertaining to the NN weight distribution properties.

3.1 Convolutional Neural Networks (CNN)

Convolutional neural networks (CNN) are a class of neural networks which has been used

heavily in image analysis. CNN architecture includes a number of convolutional layers, as

well as pooling and fully connected layers. In a convolutional layer, a grid is convolved across

the width and height of an image. This grid, or filter, performs a dot product between the

filter and the input. As the network learns, this kernel can extract features from images.

The output feature maps can then be passed on to more convolutional layers for higher levels

of feature extraction. Pooling layers are used to down sample the output feature map size as

well as increase local translational invariance. Finally, the output feature map is flattened

and a fully connected layer is implemented to classify the images.

During training, the network is learning the kernel parameter values. There are also

predetermined hyperparameters for a convolutional layer, including kernel size, padding, and

stride. Kernel size refers to the grid size that is being convolved over the input. Typical grid

sizes are 3x3 and 5x5, but they may also be one-dimensional or three-dimensional. Smaller

kernel sizes are able to detect features within a smaller local area, whereas larger kernel sizes

may be useful for extraction of larger features. Smaller kernel sizes also decrease the total

number of trainable parameters in the network, decreasing computational cost associated

with training the model. As a 3x3 kernel slides over the image, the outermost pixels will

never be in the center of the kernel. A way to address this is to introduce padding to the

32

outer edge of the image. Stride is another hyperparameter, which determines how far apart

kernels are from one another in an image. A typical stride value is one, but sometimes larger

values are used in order to downsample the output feature map size.

A convolution is ultimately a linear transformation. So even if many convolutions are

stacked on top of each other, it would simply reduce to a linear transformation without some

non-linearity being introduced into the network. A nonlinear activation function after the

convolutional layer achieves this and greatly increases the complexity of tasks the network

can learn. One important activation function is rectified linear unit, or ReLU. This function

reassigns all negative values to 0.

The output feature maps from the convolution and activation function are sensitive to

the local position of the feature. Pooling is implemented to down sample the feature map

and increase the local translational invariance. Max pooling and average pooling are both

common techniques and are used in the networks discussed below. Pooling is used to down

sample feature maps by summarizing information in a local region. Max pooling selects the

highest pixel value within a specific kernel size and applies it to all pixels in the kernel.

The effect creates sharp contrast between features and emphasizes light features on dark

backgrounds. Average pooling is another useful pooling technique. Pixel values are smoothed

as values take on the average value of their close neighbors. This pooling method may not be

as successful at identifying sharp features as max pooling. The kernel size is most commonly

2x2, with a stride of 2. Thus, the output of the pooling layer is one-quarter the size of its

input feature map.

Convolutional layers are designed to decrease the chance of overfitting by greatly reducing

the number of parameters as compared with fully connected architectures. Pooling further

reduces the number of potential parameters. An additional layer known as the dropout

layer is often employed before the final output layer to further reduce the risk of overfitting.

During the dropout layer, each node has a certain predetermined probability, p, of being set

to 0 or ’dropped’. Typical dropout rates are around 0.5. The nodes which are not set to 0

are scaled up to 1/(1-p), so the sum over all nodes is unchanged.

The final step of a CNN is the classification function, performed by a fully connected layer.

The output of the convolutional layers is flattened and then passed to a linear transformation.

33

For each image, a value is output for each of the classes in the dataset. A softmax layer can

be applied following the linear transformaion. The softmax function normalizes the output

to a probability distribution over the potential classes. These probabilities are proportional

to the exponentials of the output.

CNNs are trained by sending the inputs through the network, known as the forward pass,

followed by a backward pass, or back propagation. In the backward pass, the CNN adjusts

its parameters proportionate to the error in its guess. It does this by traversing backwards

from the output, collecting the derivatives of the error with respect to the parameters of

the functions (gradients), and optimizing the parameters using gradient descent. There

are many important optimization techniques utilized, but only two are employed in the

architectures considered in this work. The first is Stochastic Gradient Descent (SGD), and

the second is Adaptive Moment Estimation, or Adam Kingma and Ba [42]. SGD updates

the parameters by following the gradient, with updates happening in mini-batches. There

is one pre-determined, static learning rate which is used throughout training. Due to the

algorithm being sensitive to the order of the data, for each epoch of training, the training

data should will be randomly shuffled.

The Adam algorithm estimates an adaptive learning rate for all parameters involved in

the training of gradients. It is computationally more efficient than SGD. Rather than a

fixed learning rate, the rates are different for each parameter and are based on the average

first moment and the average of the second moments of the gradients. Adam is a popular

technique because it is fast and achieves good results.

As with other optimization problems, CNNs are sensitive to initialization, and may not

be able to converge with poor initialization. For many well-known neural networks, pre-

trained weights are available which have been trained on the ImageNet dataset. Using these

pretrained weights greatly increases training speed, even when using a novel dataset. With-

out pretrained weights, another initialization technique is required. In 2015, He, et al. [43]

introduced a random weight initialization scheme which takes into account the non-linearity

of the ReLU function. Weights are initialized according to a zero-mean Gaussian distribu-

tion with standard deviation
√

(2/n), with n being the number of connections in the layer.

34

An adaptation using a Uniform distribution has also been developed, known as the Kaiming

uniform method.

A number of CNN attack and defense strategies were introduced in Chapter 2 . Adap-

tive attacks make it particularly difficult to implement robust defense strategies [29]. Our

approach is to build a random ensemble to address adaptive attacks. The ensemble of ran-

domized learners, discussed in detail in Chapter 4 , requires a certain portion of the weights

from a selected layer to be replaced with random numbers from either a Uniform or Gaussian

distribution. The distribution parameters of the weights in a CNN are unknown, but can

be estimated by bootstrapping. All networks were trained using the PyTorch framework in

Python, and with GPU computing resources.

3.2 Inference for CNN Parameters

The effort to understand the theoretical properties of CNN models can trace back to

the late 1980s. Interesting there are limited work on bootstrap CNN [44]–[54] and also very

limited work on understanding CNN parameter distributions [55]–[61].

Boostrapped NNs were often used to build an ensemble to enhance the performance.

Bootstrapping a NN was also conducted to quantify the uncertainty of NN output. In the

literature, bootstrapping a NN was never intended to study NN parameter distribution.

Several papers said that NN weights have heavy tails during the training process. These

work did not take into consideration of the randomness of the training data-set. We dis-

covered that for NN models with smaller model structure, the bootstrap NN parameter

distributions are mostly normal. For bigger and more complex NN models, a percentage of

the bootstrap NN parameter distributions are still normal, although as the model size and

complexity increases, more bootstrap parameter distributions becomes heavier tailed than

normal.

35

3.3 Data and Bootstrapped CNN Models

3.3.1 Benchmark Datasets

Two datasets are utilized in the bootstrap experiments. Both datasets are available as

built-in PyTorch subclasses of the class torch.utils.data.Dataset. The first is MNIST, a

database of handwritten digits. There are a total of 70000 black and white images of size 28

x 28. The database includes 60,000 training images and 10,000 test images. There are ten

classes, one for each of the digits 0 to 9, inclusive. The digits in the training set were written

by approximately 250 writers. Half of the digits were written by Census Bureau employees,

the other half by high school students. The digits have been size-normalized and centered

in the image. The data is in four GZ files, one each for training images, training labels, test

images and test labels.

The second dataset used for the CNN bootstrap experiments is CIFAR-10 [62]. This

dataset consists of 60,000 32x32 color images. There are a total of 10 classes, with 6000

images per class. The images are divided as 50000 training images and 10000 testing images.

The ten classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck.

The data is available as a GZ archive file. The archive contains five files with train image

data and one file of test image data. Each of these files are Python ’pickled’ objects. These

files contain a dictionary with two elements. The first, ’data’, is a numpy array of size

10000x3072. This contains pixel values for 10,000 images of size 3*32*32. The first 1024

values in each row represent the red channel, the next 1024 represent the green values, and

the final 1024 represent the blue channels. The second element in the dictionary is ’labels’,

a list of 10000 labels 0-9 corresponding to the order of ’data’. The final file in the archive

also contains a Python dictionary, this one with ’label names’, a 10-element list which gives

meaningful names to the numeric labels in the labels array described above. For example,

label names[0] == ”airplane”, label names[1] == ”automobile”, etc.

Bootstrapping, first introduced in 1979 [63], is a resampling algorithm. It is a computa-

tionally intensive algorithm with straightforward implementation and powerful implications

in estimation. An important question is how many times the data should be resampled.

Efron suggests that number of resamplings of the order of 100 is enough to get reasonable

36

estimates [64]. [65] considers a resampling of 500 very large. In practice today, many

researchers use 5000, 10,000 or more because computational capacities easily allow for it. In

our case, we have selected 150 iterations. We are training a mature neural network at each

resampling, and performing this thousands of times is not practical or recommended.

Bootstrapping the neural network included training 150 unique learners for each of the ar-

chitectural designs considered. There is no shared information between the learners, and thus

the computational cost scales linearly with the number of learners. However, the indepen-

dence of the models allowed for them to be trained in parallel as much as the computational

resources allowed. The models were all trained on the Gilbreth cluster at Purdue University.

Gilbreth is a community cluster optimized for communities running GPU intensive applica-

tions such as machine learning. It has 66 Dell compute nodes with Intel Xeon processors

and 136 Nvidia Tesla GPUs. Gilbreth is named in honor of Lillian Moller Gilbreth, Purdue’s

first female engineering professor. The advanced computing resources are maintained and

operated by Information Technology at Purdue (ITaP).

3.3.2 Bootstrap 3-Layer Convolutional Neural Network (CNN3)

Three networks were bootstrapped, on a total of two image datasets. Network architec-

tures were selected for different datasets based on what is already known to work well for the

datasets. The first network is a three layer convolutional neural network, which we will call

CNN3. This model takes as input 2-dimensional, n x n black and white images. The input

goes through a 2d convolution, followed by a rectified linear unit activation function and a

max pooling. This is repeated three times. After these three convolutional layers, there is

a dropout layer and finally a fully connected layer. The output of the fully connected layer

is that of a linear transformation, with each image being assigned a value for each of the

classes. The image will be classified as whichever class has the maximum value.

The CNN3 network was used to classify the MNIST dataset, described above. The

images were preprocessed prior to training. Each image was transformed to a tensor image

and normalized. Transformation to a tensor image takes the 28*28 = 784 input integer values

within the range [0, 255] and outputs a 3-dimensional tensor of size (1, 28, 28) with values

37

in the range [0, 1). Normalization then occurs by subtracting the mean and dividing by the

standard deviation, 0.1307 and 0.3081, respectively. With an image input size of only 28 by

28 pixels, it was determined that each of the convolutions in the network would performed

using the relatively small kernel size of 3, a stride of 1, and padding was set to 2. The max

pooling was performed with a kernel size of 2 and a stride of 2. The dropout was performed

during training at a rate of 0.5.

Figure 3.1. Model structure for CNN3

Training was performed by iterating through the training dataset 10 times. The data was

randomly ordered during training, with a different randomization for each of the 10 epochs.

Network parameters were initialized according to the Kaiming Uniform initialization. The

data went through the model in batches of size 100. Optimization was done via the Adam

algorithm, with a learning rate of 0.001. This same training technique was performed 150

times using 150 distinct training datasets selected via bootstrap sampling. 60,000 images

were selected with replacement from the available 60,000 images. All parameter values were

stored for each of the 150 networks.

Distribution of node values were visualized as both a boxplot and a histogram with a

density curve. There were 320 parameters for the first convolutional layer, 18,496 for the

38

second, 36,928 for the third, and 16,010 for the fully connected layer, for a total of 71,754

trainable parameters. The distribution of a selected number of the 71,754 parameters can

be seen below. The plots are seen to be unimodal, therefore the sample size of 150 seems

sufficient to use the results for parameter estimation.

3.3.3 Bootstrap VGG16

The second network is the VGG16 network proposed by Simonyan and Zisserman [66].

This network is comprised of 13 convolution layers and 3 fully connected layers, followed by

a softmax layer. The 13 convolutional layers, and their corresponding activation functions,

are separated into 5 blocks. Each block is followed by a max pooling layer. Following the

five blocks, an adaptive average pooling is performed, followed by the fully connected block.

The fully connected block proceeds with two repetitions of: dropout layer, linear function,

activation function. A final linear transformation is applied with softmax, resulting in one

value for each of the classes, with all values summing to 1.

The VGG16 network is used to train the CIFAR10 image dataset, described above. The

images were preprocessed prior to training. Random images were flipped horizontally at a

rate of 50%. Each image was then padded with 4 pixels on every side and randomly cropped

to back to 32x32. Each image was also transformed to a tensor image and normalized.

Transformation to a tensor image takes the 3*32*32 = 3072 input integer values within the

range [0, 255] and outputs a 3-dimensional tensor of size (3, 32, 32) with values in the range

[0, 1). Normalization then occurs by subtracting the mean and dividing by the standard

deviation, [0.485, 0.456, 0.406] and [0.229, 0.224, 0.225], respectively.

The convolutions all use a 3 x 3 kernel size, as in the CNN3 above. This small kernel size

was necessary in order to achieve this network depth on a sequential convolutional neural

network [66]. The number of trainable parameters can be seen in the following chart.

The first two convolutional layers have 1,792 and 36,928 trainable parameters. This value

increases as the model progresses, with a maximum of 2,359,808 parameters seen in the

last five convolutional layers. The first fully connected layer jumps to 12,845,568 trainable

parameters, with the second containing 262,656, and the final fully connected layer including

39

Figure 3.2. Model structure for VGG-16

5,130 trainable parameters. With a total of 27,828,042 trainable parameters, this is the

slowest of the models considered in this work.

Prior to training on CIFAR-10, the weights were set to pre-trained values available in

the Torchvision library. The weights were learned from the ImageNet database. PyTorch

reports a Top-1 accuracy of 71.592% on the ImageNet dataset. However, ImageNet has 1000

classes as compared with CIFAR-10’s ten. Thus, the three fully connected layers must be

reset to the correct size to accommodate the correct output size. Resizing the linear layers

also loses the pretrained weights. Weights are then initialized via the Keiming algorithm,

described above. During training, all weights are updated, including both the pre-trained

and newly initialized weights.

40

Training was performed by iterating through the training dataset 180 times. As with

the training of the MNIST data on CNN3, the data was randomly assigned during training,

with a different randomization for each of the 180 epochs. The data went through the

model in batches of size 256. Optimization was done using stochastic gradient descent, with

momentum 0.9, weight decay of 0.0005, and an initial learning rate of 0.05. The learning

rate decayed by a factor of 0.1 every 5 epochs. The same hyperparameters were used to

train 150 unique networks, each using a bootstrapped sampling of the full CIFAR10 training

data as the training data for the particular instance of the network. 50,000 images were

selected with replacement from the 50,000 CIFAR10 training image dataset. The 27,828,042

trainable parameters had their values stored for each of the 150 models.

The generation of plots for each of the 27.8 million parameters was not feasible. In this

case, a random selection of plots were generated. Ten weight values and ten bias values

were selected randomly without replacement from each layer. The plots of these randomly

selected nodes were generated, and a selection of them are shown in Section 3.5 .

3.3.4 Bootstrap Inception v3

The third network is the third iteration of the Inception framework Szegedy, Vanhoucke,

Ioffe, et al. [67], so named for the ’network in network’ set-up as well as a popular (at the time)

meme based on the movie of the same name. Utilizing a ’network in network’ framework,

called Inception modules, Inception v3 contains 42 layers, making it the most complex of

the models considered in this work.

The motivation for the inception modules is to have a sparsely connected architecture,

even within the convolutional layers. The inception modules make heavy use of 1 x 1 convo-

lution filters. These 1 x 1 layers are applied before a larger filter size. The authors included

these layers as a means of dimension reduction, as well as to increase representational power

of the network [67]. This allows for more layers with a fewer number of overall parameters.

Inception v3 uses three Inception modules, which we will label as modules A, B, and C.

Modules B and C are more complex than Module A and can be seen in the Figure below.

Module A consists of four parallel 1 x 1 convolution layers. The first of which is then passed

41

to two 3 x 3 filters sequentially. The second is passed to a single 3 x 3 filter, the third

undergoes max pooling before the 1 x 1 layer, and the final one is just a single 1 x 1 layer.

The results of these four parallel networks are then placed into a single output filter bank

and become the input for the next module. Thus the subsequent modules are focusing on

the local regions of interest from the previous module. The different layer types and filter

sizes are designed to capture different parts of the input image. The 1 x 1 filters focus on the

correlation in local regions. The larger filter sizes are designed to identify features of higher

abstraction.

The first five layers are traditional convolution layers, each of which is followed by a

batch normalization. The third and fifth are also followed by max pooling. After the first

five convolution layers, there are three repetitions of Inception module A, five repetitions of

Inception module B, and two repetitions of Inception module C. The output of these layers

are input to an adaptive average pooling layer, following by a dropout layer with rate 0.4.

and finally a fully connected linear transformation with softmax.

The Inception v3 architecture also makes use of an auxiliary classifier after the final round

of Inception module B, near the end of the model. The auxiliary classifier, used only during

training, acts as a regularizer and helps with convergence in late training [67]. During

training, the total loss is computed as loss1 + 0.4*loss2, where loss1 is the loss associated

with the full network, and loss2 is the loss associated with the auxiliary branch.

PyTorch’s Inception v3 network has the constraint that the input image size must be 299

x 299 color images. This network was used to learn the CIFAR-10 dataset, with image size of

32x32 color images. In order to use this dataset, it was necessary to first increase the image

size. This was performed by first resizing the images to 325x325 by padding the images

on all sides, then taking the center crop of the required 299x299. The resultant images are

surrounded by large black borders. Each image was also transformed to a tensor image and

normalized. Transformation to a tensor image takes the 3*299*299 = 268,203 input integer

values within the range [0, 255] and outputs a 3-dimensional tensor of size (3, 299, 299) with

values in the range [0, 1). Normalization then occurs by subtracting the mean and dividing

by the standard deviation, [0.485, 0.456, 0.406] and [0.229, 0.224, 0.225], respectively.

42

Figure 3.3. Model structure for Inception v3

The strategic filtering technique keep the number of parameters in this network relatively

small as compared the VGG framework. Although there are over 2.5 times the number

of layers, Inception v3 has 21,806,058 trainable parameters as compared with over 27.8

million for VGG16. Similarly, the computational efficiency is superior as compared with the

more straightforward VGG framework. There is the additional benefit that the number of

parameters will be unchanged for any image size up to 299x299 in the Inception v3 network.

43

Meanwhile, the number of trainable parameters for VGG16 would jump to over 138 million

for an image of this size.

Prior to training on CIFAR-10, the weights were set to pre-trained values available in

the Torchvision library. The weights were ported in directly from the Inception v3 paper.

PyTorch reports a Top-1 accuracy of 77.294% on the ImageNet dataset. As above, the

number of parameters in the fully connected layer is incorrect because the number of classes

differs between the pretrained dataset and our dataset. After creating linear transformation

layers of the correct dimension, weights are initialized via the Keiming algorithm, described

above. During training, all weights are updated, including both the pre-trained and newly

initialized weights.

Training was performed by iterating through the training dataset 180 times. As with

the training of the previously mentioned networks, the data was randomly assigned during

training, with a different randomization for each of the 180 epochs. The data went through

the model in batches of size 64. Optimization was done using stochastic gradient descent,

with momentum 0.9, weight decay of 0.0005, and an initial learning rate of 0.05. The learning

rate decayed by a factor of 0.1 every 5 epochs. The same hyperparameters were used to train

150 unique networks, each using a bootstrapped sampling of the full CIFAR10 training data

as the training data for the particular instance of the network. 50,000 images were selected

with replacement from the 50,000 CIFAR10 training image dataset. The values of each of

the 21,806,058 trainable parameters were stored for each of the 150 models.

As with the VGG16 results, only a random selection of plots were generated. As above,

ten weight values and ten bias values were selected randomly without replacement from each

layer. The plots of these randomly selected nodes were generated, and a selection of them

are shown in Section 3.5 .

3.4 Models Generated Using Full Training Dataset by Varying Random Initial
Seeds

In addition to bootstrapped neural networks, networks were also trained using the full

training data. The network structure is fixed and multiple copies of the models are trained

by varying the random initial seeds. This shows the stochastic nature of the non-convex

44

Table 3.1. Experiment setup summary for bootstrap.

Dataset Models Layers trainable
param

Training
epochs

Batch
size

CNN3 MNIST 150 4 71,754 10 100
VGG16 CIFAR-10 150 16 27,828,042 180 256
Incept v3 CIFAR-10 150 42 21,806,058 180 64

Figure 3.4. Proportion OOB images for bootstrap networks.

optimization training process. As with the bootstrapped networks, 150 models were gener-

ated for each network type. These included CNN3 trained on MNIST and VGG16 trained

on CIFAR-10, as before, as well as ResNet-18 traind on CIFAR-10. The CNN3 and VGG16

networks follow the same strategies as outlined in sections 3.3.2 and 3.3.3 , with one noted

exception. Rather than selecting bootstrapped samples of the training data, the entire train-

ing set is used in each of the 150 fully trained networks. The data is still going through the

model in a random order with different initial seeds, but the model is seeing the full training

set in every network.

The third network, ResNet-18 [68] was developed to address a problem of degradation

identified in other ’very deep’ models (those with 16 or more layers), such as VGG. The

excessive depth of the models were observed to degrade the accuracy. Such degradation

45

was not due to overfitting, because the training errors were also increasing [68]. If layers

of identity mapping are injected into a shallower model to create a deeper model which

would have no lower training accuracy than the shallow model. In practice, the ResNet

architecture injects layers which fit a residual mapping. Each residual learning building

block is essentially an identity mapping, and it has been observed that models composed of

such blocks can have over 100 layers without degradation of training accuracy.

In this work, we consider the 18 layer architecture, ResNet-18. The model begins with

a convolutional layer with 7x7 filter size, stride of 2 and padding of 3. This layer outputs a

mapping with channel depth 64. After batch normalization, a ReLU activation layer and max

pooling, a series of eight residual building blocks are trained. Each residual building block

is comprised of two convolutional layers. The convolutional layers increase from channel

depth 64 in the first two blocks to 128 in the next two, 256 in the next two, and 512 in

the final two. A downsampling is performed each time the channel depth increases. Each of

the convolutional layers in the residual building blocks have kernel size 3x3, with padding

and stride of 1. Finally, there is an adaptive pooling layer and a fully connected layer. The

network structure and residual building block can be visualized in Figure 3.5 .

The ResNet-18 model was trained on the CIFAR-10 dataset. Using the 3x32x32 image

size results in a total of 11,181,642 total trainable parameters. This is approximately 2.5

times fewer parameters than the similarly deep VGG16 model. The accuracy on clean

CIFAR-10 images is also found to be superior on our re-trained ResNet-18 model as compared

with our re-trained VGG16 model. This was done using the ResNet-18 model available from

Python’s Torchvision library. This model has been pre-trained on ImageNet and PyTorch

reports a Top-1 accuray of 69.758 on ImageNet. After correcting the linear output layer

dimension to accommodate the class size of 10, weights are initialized via the Kaiming

Uniform algorithm.

This pretrained model was trained on CIFAR-10 using similar methods as with retraining

VGG16 (section 3.3.3) and Inception v3 (section 3.3.4). The images were first preprocessed

with random horizontal flipping, padding with random cropping, transformation to tensor

and normalization, as with other networks trained on CIFAR10. The full database of 50,000

training images was used in retraining. There were 300 epochs of training, and a batch size

46

Figure 3.5. Model structure for ResNet-18

of 256. Optimization was performed with SGD, with momentum of 0.9 and weight decay

0.0005. The initial learning rate of 0.05 which decayed by a factor of 0.5 every 30 epochs.

This process was repeated 150 times.

47

Table 3.2. Experiment setup summary for random ordering of full training data.

Dataset Models Layers trainable
param

Training
epochs

Batch
size

CNN3 MNIST 150 4 71,754 5 100
VGG16 CIFAR-10 150 16 27,828,042 300 256
ResNet18 CIFAR-10 150 18 11,181,642 300 256

(a) (b) (c)

(d) (e) (f)

Figure 3.6. Distribution of weights selected from bootstrap CNN3, first con-
volutional layer.

3.5 Bootstrapped CNN Model Parameter Distribution

The bootstrap weight distributions of the first convolutional layer for the CNN3 model

trained on MNIST data are approximately symmetric, as shown in Figure 3.6 with selected

ones. The bootstrap bias distributions of the first convolutional layer are approximately

symmetric too, as shown in Figure 3.7 . Both the weights and the biases are in the +/- 0.4

range.

The bootstrap weight distributions of the fully connected layer for the CNN3 model

trained on MNIST data are approximately symmetric, as shown in Figure 3.8 with selected

ones. The bootstrap bias distributions of the fully connected layer are approximately sym-

48

(a) (b) (c)

(d) (e) (f)

Figure 3.7. Distribution of biases selected from bootstrap CNN3, first con-
volutional layer.

(a) (b) (c)

(d) (e) (f)

Figure 3.8. Distribution of weights selected from bootstrap CNN3, fully connected layer.

metric too, as shown in Figure 3.9 . Weights are primarily in in the +/- 0.15 range, while

the biases are in the +/- 0.05 range.

The bootstrap weight distributions of the first convolutional layer for the Inception v3

model trained on CIFAR10 data are approximately symmetric, as shown in Figure 3.10 with

selected ones. Heavy tails are also observed in a few of the selected examples, as in (b), (c),

49

(a) (b) (c)

(d) (e) (f)

Figure 3.9. Distribution of biases selected from bootstrap CNN3, fully connected layer.

(a) (b) (c)

(d) (e) (f)

Figure 3.10. Distribution of weights selected from bootstrap Inception v3,
first convolutional layer.

(d) and (f). Weights without heavy tails are approximately in the +/- 0.4 range, while the

ranges of the heavy-tailed weights are sometimes smaller.

The bootstrap weight distributions of the second convolutional layer for the Inception v3

model trained on CIFAR10 data are approximately symmetric, as shown in Figure 3.11 with

selected ones. Heavy tails are also observed in the selected figures. Weights are approximately

0 with most ranges less than +/- 0.01.

50

(a) (b) (c)

(d) (e) (f)

Figure 3.11. Distribution of weights selected from bootstrap Inception v3,
second convolutional layer.

(a) (b) (c)

(d) (e) (f)

Figure 3.12. Distribution of weights selected from bootstrap Inception v3,
third convolutional layer.

The bootstrap weight distributions of the third convolutional layer for the Inception v3

model trained on CIFAR10 data are approximately symmetric, as shown in Figure 3.12 with

selected ones. Heavy tails are observed in several weights, as seen in sub-figures (b), (c), (d),

and (f). Weights are approximately in the +/- 0.15 range.

51

(a) (b) (c)

(d) (e) (f)

Figure 3.13. Distribution of weights selected from bootstrap Inception v3,
fourth convolutional layer.

The bootstrap weight distributions of the fourth convolutional layer for the Inception v3

model trained on CIFAR10 data are approximately symmetric, as shown in Figure 3.13 with

selected ones. Weights are approximately in the +/- 0.15 range.

(a) (b) (c)

(d) (e) (f)

Figure 3.14. Distribution of weights selected from bootstrap Inception v3,
fifth convolutional layer.

The bootstrap weight distributions of the fifth convolutional layer for the Inception v3

model trained on CIFAR10 data are approximately symmetric, as shown in Figure 3.14 with

52

selected ones. Weights are approximately in the +/- 0.05 range, with the exception of some

heavy tails.

(a) (b) (c)

(d) (e) (f)

Figure 3.15. Distribution of weights selected from bootstrap Inception v3,
sixth convolutional layer.

The bootstrap weight distributions of the sixth convolutional layer for the Inception v3

model trained on CIFAR10 data are approximately symmetric, as shown in Figure 3.15 with

selected ones. Weights are approximately in the +/- 0.1 range, with the exception of some

heavy tails.

The bootstrap weight distributions of the first convolutional layer for the VGG16 model

trained on CIFAR-10 data are approximately symmetric, as shown in Figure 3.16 with se-

lected ones. The bootstrap bias distributions of the first convolutional layer are approxi-

mately symmetric too, as shown in Figure 3.17 . Both the weights and the biases are in the

+/- 0.1 range.

The bootstrap weight distributions of the final fully connected layer for the VGG16

model trained on CIFAR-10 data are approximately symmetric, as shown in Figure 3.18

with selected ones. The bootstrap bias distributions of the final fully connected layer are

approximately symmetric too, as shown in Figure 3.19 . Both the weights and the biases are

in the +/- 0.15 range, with the exception of some heavy tails.

53

(a) (b) (c)

(d) (e) (f)

Figure 3.16. Distribution of weights selected from bootstrap VGG-16, first
convolutional layer.

(a) (b) (c)

(d) (e) (f)

Figure 3.17. Distribution of biases selected from bootstrap VGG-16, first
convolutional layer.

A goodness of fit test must be performed to determine whether the assumption that

individual weights are distributed according to a normal distribution is appropriate. The

Kolmogorov-Smirnov test [69] for goodness of fit (KS test) was presented in 1951, expanding

on the work of Andrey Kolmogorov and Nikolai Smirnov. The test statistic is a quantification

of the distance between the empirical distribution of a sample and the cumulative distribution

54

(a) (b) (c)

(d) (e) (f)

Figure 3.18. Distribution of weights selected from bootstrap VGG-16, final
fully connected layer.

(a) (b) (c)

(d) (e) (f)

Figure 3.19. Distribution of biases selected from bootstrap VGG-16, final
fully connected layer.

of a comparison distribution. The test statistic is the largest observed difference between

the empirical cumulative distribution and the reference cumulative distribution. KS test

statistics are therefore bounded between 0 and 1. Two identical distributions will observe a

value of 0. In this section and 3.6 , the empirical distribution of individual weights will be

55

compared to a univariate Gaussian. The KS test can also be used to measure the distance

between two empirical samples, as in Section 3.7 .

The null hypothesis of the test is that the empirical sample is drawn from the same

distribution as the comparison distribution. In the two sample case, the null hypothesis is

that the two samples are drawn from the same distribution. A cutoff of largest allowable

distance is defined for a given confidence level. If the largest distance exceeds that value,

the null hypothesis is rejected. Null hypotheses may also be defined as one-way tests, but in

our work, all tests will be two-way, i.e., non-directional equality between the distributions.

In the one sample case with sample size n, the Kolmogorov-Smirnov statistic, Dn, is

computed as

Dn = sup
x
|Fn(x)− F (x)| (3.1)

where F (x) is the cumulative distribution function of the reference distribution, and

Fn(x) is the empirical cumulative distribution of the sample. In this work, the reference

distribution is a standard univariate Gaussian. The empirical cumulative distribution is

defined as

Fn(x) = number of elements in the sample ≤ x

x
= 1
n

n∑
i−1

1(−∞,x](Xi) (3.2)

where 1(−∞,x](Xi) is the indicator function, equal to 1 if Xi ≤ x, otherwise equal to 0.

The KS test is a goodness of fit test which can be constructed from the Kolmogorov

distribution, K, as described in [69]. The distribution of K is defined as the supremum of

a Brownian bridge. This test rejects the null hypothesis that the sample comes from the

reference distribution at level α if

√
nDn > Kα (3.3)

where Kα is defined as the value at which the cumulative distribution of K is equal to

1− α. All tests in this work are evaluated at level α = 0.05.

56

For all bootstrapped networks, the KS test statistic was computed for up to 1000 weights

and biases in all layers. Any layer with fewer than 1000 weights (or 1000 biases) has all

weights (or biases) included in the following tables and plots. For layers with more than

1000 weights or biases, a random sampling of 1000 weights and biases was taken.

(a) KS test statistic (b) KS test p-value

Figure 3.20. KS test results for selected weights in bootstrap CNN3, first
convolutional layer.

Figure 3.20 shows that over 95% of the bootstrap weight distributions of the first con-

volutional layer of CNN3 are normal as confirmed by the KS test, with a p-value threshold

of 0.05.

(a) KS test statistic (b) KS test p-value

Figure 3.21. KS test results for selected biases in bootstrap CNN3, first
convolutional layer.

Figure 3.21 shows that over 99% of the bootstrap bias distributions of the first convolu-

tional layer of CNN3 are normal as confirmed by the KS test, with a p-value threshold of

0.05.

Figure 3.22 shows that over 90% of the bootstrap weight distributions of the fully

connected layer of CNN3 are normal as confirmed by the KS test, with a p-value threshold

of 0.05.

57

(a) KS test statistic (b) KS test p-value

Figure 3.22. KS test results for selected weights in bootstrap CNN3, fully
connected layer.

(a) KS test statistic (b) KS test p-value

Figure 3.23. KS test results for selected biases in bootstrap CNN3, fully
connected layer.

Figure 3.23 shows that all 10 of the bootstrap bias distributions of the fully connected

layer of CNN3 are normal as confirmed by the KS test, with a p-value threshold of 0.05.

(a) KS test statistic (b) KS test p-value

Figure 3.24. KS test results for selected weights in bootstrap Inception v3,
first convolutional layer.

Figure 3.24 shows that over 75% of the bootstrap weight distributions of the first con-

volutional layer of Inception v3 trained on CIFAR10 are non-normal as determined by the

KS test, with a p-value threshold of 0.05.

58

(a) KS test statistic (b) KS test p-value

Figure 3.25. KS test results for selected weights in bootstrap Inception v3,
second convolutional layer.

Figure 3.25 shows that over 95% of the bootstrap weight distributions of the second

convolutional layer of Inception v3 trained on CIFAR10 are non-normal as determined by

the KS test, with a p-value threshold of 0.05.

(a) KS test statistic (b) KS test p-value

Figure 3.26. KS test results for selected weights in bootstrap Inception v3,
third convolutional layer.

Figure 3.26 shows that over 95% of the bootstrap weight distributions of the third

convolutional layer of Inception v3 trained on CIFAR10 are non-normal as determined by

the KS test, with a p-value threshold of 0.05.

Figure 3.27 shows that over 90% of the bootstrap weight distributions of the fourth

convolutional layer of Inception v3 trained on CIFAR10 are non-normal as determined by

the KS test, with a p-value threshold of 0.05.

Figure 3.28 shows that over 75% of the bootstrap weight distributions of the fifth con-

volutional layer of Inception v3 trained on CIFAR10 are non-normal as determined by the

KS test, with a p-value threshold of 0.05.

59

(a) KS test statistic (b) KS test p-value

Figure 3.27. KS test results for selected weights in bootstrap Inception v3,
fourth convolutional layer.

(a) KS test statistic (b) KS test p-value

Figure 3.28. KS test results for selected weights in bootstrap Inception v3,
fifth convolutional layer.

(a) KS test statistic (b) KS test p-value

Figure 3.29. KS test results for selected weights in bootstrap Inception v3,
sixth convolutional layer.

Figure 3.29 shows that over 50% of the bootstrap weight distributions of the sixth

convolutional layer of Inception v3 trained on CIFAR10 are non-normal as determined by

the KS test, with a p-value threshold of 0.05.

60

(a) KS test statistic (b) KS test p-value

Figure 3.30. KS test results for selected weights in bootstrap VGG-16, first
convolutional layer.

Figure 3.30 shows that approximately half of the bootstrap weight distributions of the

first convolutional layer of VGG-16 trained on CIFAR10 are non-normal as determined by

the KS test, with a p-value threshold of 0.05.

(a) KS test statistic (b) KS test p-value

Figure 3.31. KS test results for selected biases in bootstrap VGG-16, first
convolutional layer.

Figure 3.31 shows that over half of the bootstrap bias distributions of the first convolu-

tional layer of VGG-16 trained on CIFAR10 are non-normal as determined by the KS test,

with a p-value threshold of 0.05.

61

(a) KS test statistic (b) KS test p-value

Figure 3.32. KS test results for selected weights in bootstrap VGG-16, final
fully connected layer.

Figure 3.32 shows that over 99% of the bootstrap weight distributions of the final fully

connected layer of VGG-16 trained on CIFAR10 are non-normal as determined by the KS

test, with a p-value threshold of 0.05.

(a) KS test statistic (b) KS test p-value

Figure 3.33. KS test results for selected biases in bootstrap VGG-16, final
fully connected layer.

Figure 3.33 shows that over half of the bootstrap bias distributions of the final fully

connected layer of VGG-16 trained on CIFAR10 are non-normal as determined by the KS

test, with a p-value threshold of 0.05.

62

The Tables 3.3 and 3.4 summarize the KS test statistics and the p-values for the weights

and the biases of the different CNN models. The Tables 3.5 and 3.6 summarize the KS test

statistics and the p-values for the biases of the different CNN models.

Table 3.3. Kolmogorov-Smirnov test statistic quantiles of weights from boot-
strapped neural networks. Up to 1000 weights were selected randomly from
each layer.

Layer 1st 5th 10th 25th 50th 75th 90th 95th 99th

CNN3, 1st conv 0.051 0.060 0.065 0.074 0.083 0.093 0.102 0.109 0.117
CNN3, last fc 0.035 0.041 0.046 0.055 0.070 0.088 0.106 0.119 0.138
VGG16, 1st conv 0.038 0.049 0.056 0.071 0.091 0.118 0.140 0.160 0.268
VGG16, last fc 0.124 0.146 0.157 0.177 0.207 0.237 0.264 0.275 0.301
Incept v3, 1st conv 0.057 0.075 0.096 0.164 0.249 0.366 0.427 0.445 0.469
Incept v3, 2nd conv 0.090 0.127 0.157 0.205 0.280 0.359 0.414 0.441 0.470
Incept v3, 3rd conv 0.075 0.110 0.132 0.186 0.280 0.339 0.367 0.386 0.418
Incept v3, 4th conv 0.085 0.104 0.114 0.139 0.173 0.202 0.228 0.247 0.302
Incept v3, 5th conv 0.066 0.084 0.097 0.119 0.149 0.180 0.208 0.225 0.256
Incept v3, 6th conv 0.043 0.054 0.063 0.082 0.118 0.148 0.175 0.190 0.211

63

Table 3.4. Kolmogorov-Smirnov test p-value quantiles of weights from boot-
strapped neural networks. Selected weights match those in Table 3.3 .

Layer 1st 5th 10th 25th 50th 75th 90th 95th 99th

CNN3,
1st conv

0.030 0.054 0.084 0.143 0.243 0.374 0.535 0.631 0.813

CNN3,
last fc

0.006 0.027 0.065 0.185 0.439 0.728 0.901 0.955 0.991

VGG16,
1st conv

1.4e-10 5.0e-4 3.3e-3 0.022 0.134 0.390 0.686 0.819 0.971

VGG16,
last fc

2.9e-13 3.8e-11 2.9e-10 2.3e-8 1.9e-6 7.6e-5 7.2e-4 1.9e-3 0.014

Incept,
1st conv

2.3e-31 3.5e-28 7.5e-26 6.9e-19 7.5e-9 4.5e-4 0.110 0.346 0.691

Incept,
2nd conv

1.8e-31 1.4e-27 2.6e-24 3.8e-18 4.1e-11 4.3e-6 9.7e-4 0.014 0.153

Incept,
3rd conv

1.1e-24 4.9e-21 5.3e-19 3.1e-16 4.1e-11 4.0e-5 9.0e-3 0.045 0.345

Incept,
4th conv

7.5e-13 1.1e-8 1.8e-7 5.8e-6 1.8e-4 4.9e-3 0.034 0.066 0.208

Incept,
5th conv

2.4e-9 2.8e-7 2.9e-6 8.0e-5 2.0e-3 0.025 0.105 0.218 0.495

Incept,
6th conv

1.8e-6 2.6e-5 1.5e-4 2.1e-3 0.026 0.244 0.563 0.749 0.928

We then examine the shape of the non-normal weights and biases from each layer of

VGG16 and Inception V3. Below we create QQ plots for selected non-normal weights and

biases. Note Inception V3 first six convolutional layers do not have bias parameters. Unfor-

tunately we do not see one distribution that can fit all the non-normal weights or biases.

Figure 3.34 shows some bootstrap weight distributions are heavier tailed than normal

as in (b), (c), (d) for the first convolutional layer of Incept v3. The other three bootstrap

distributions become non-normal due to a handful of very large or small values.

Figure 3.35 shows some bootstrap weight distributions are heavier tailed than normal as

in (a), (c), (d) for the second convolutional layer of Incept v3. The other three bootstrap

distributions become non-normal due to a handful of very large or small values.

64

Table 3.5. Kolmogorov-Smirnov test statistic quantiles of biases from boot-
strapped neural networks. Up to 1000 biases were selected randomly from each
layer.

Layer 1st 5th 10th 25th 50th 75th 90th 95th 99th

CNN3, 1st conv 0.048 0.051 0.053 0.0590 0.067 0.073 0.080 0.088 0.091
CNN3, last fc 0.049 0.051 0.055 0.065 0.073 0.078 0.080 0.081 0.082
VGG16, 1st conv 0.052 0.062 0.071 0.088 0.114 0.146 0.173 0.177 0.200
VGG16, last fc 0.091 0.093 0.096 0.105 0.132 0.150 0.172 0.179 0.185

Table 3.6. Kolmogorov-Smirnov test p-value quantiles of biases from boot-
strapped neural networks. Selected biases match those in Table 3.5 .

Layer 1st 5th 10th 25th 50th 75th 90th 95th 99th

CNN3, 1st conv 0.156 0.184 0.271 0.379 0.497 0.652 0.779 0.802 0.864
CNN3, last fc 0.253 0.261 0.271 0.312 0.385 0.530 0.732 0.799 0.852
VGG16, 1st conv 2.6e-5 8.0e-5 1.3e-4 2.1e-3 0.029 0.163 0.377 0.560 0.755
VGG16, last fc 3.9e-5 8.7e-5 1.5e-4 1.4e-3 8.3e-3 0.055 0.100 0.121 0.137

(a) (b) (c)

(d) (e) (f)

Figure 3.34. QQ Plots of individual non-normal weights selected from Incept-
v3, first convolutional layer.

Figures 3.36 , 3.37 , 3.38 , 3.39 shows some bootstrap weight distributions which are heav-

ier tailed than normal for the third, fourth, fifth and sixth convolutional layers of Inception

v3 trained on CIFAR10.

65

(a) (b) (c)

(d) (e) (f)

Figure 3.35. QQ Plots of individual non-normal weights selected from Incept-
v3, second convolutional layer.

(a) (b) (c)

(d) (e) (f)

Figure 3.36. QQ Plots of individual non-normal weights selected from Incept-
v3, third convolutional layer.

Figures 3.40 shows some bootstrap bias distributions which are heavier tailed than normal

for the first convolutional layer of VGG-16.

Figures 3.41 , 3.42 show some bootstrap weight and bias distributions which are heavier

tailed than normal for the final fully connected layer of VGG16.

66

(a) (b) (c)

(d) (e) (f)

Figure 3.37. QQ Plots of individual non-normal weights selected from Incept-
v3, fourth convolutional layer.

(a) (b) (c)

(d) (e) (f)

Figure 3.38. QQ Plots of individual non-normal weights selected from Incept-
v3, fifth convolutional layer.

67

(a) (b) (c)

(d) (e) (f)

Figure 3.39. QQ Plots of individual non-normal weights selected from Incept-
v3, sixth convolutional layer.

(a) (b) (c)

(d) (e) (f)

Figure 3.40. QQ Plots of individual non-normal biases selected from boot-
strapped VGG-16, first convolutional layer.

68

(a) (b) (c)

(d) (e) (f)

Figure 3.41. QQ Plots of individual non-normal weights selected from boot-
strapped VGG-16, final fully connected layer.

(a) (b) (c)

(d) (e) (f)

Figure 3.42. QQ Plots of individual non-normal biases selected from boot-
strapped VGG-16, final fully connected layer.

69

3.6 CNN Model Parameter Distribution by Varying the Random Initial Seeds

In this section, we train CNN3 on MNIST, VGG16 and ResNet18 on CIFAR10 with

different random initial seeds without bootstrapping the training dataset. All the models

are trained 150 times. We then examine the distributions of the weights and the biases.

We also compare the parameter distributions with the bootstrap distribution in the next

Section.

(a) (b) (c)

(d) (e) (f)

Figure 3.43. Distribution of weights selected from CNN3 generated from
varying initial seed, first convolutional layer.

The weight distributions when varying the initial random seed of the first convolutional

layer for the CNN3 model trained on MNIST data are approximately symmetric, as shown

in Figure 3.43 with selected ones. The bias distributions of the fully connected layer are

approximately symmetric too, as shown in Figure 3.44 . Weights and biases are primarily in

the +/- 0.4 range.

The weight distributions when varying the initial random seed of the fully connected

layer for the CNN3 model trained on MNIST data are approximately symmetric, as shown

in Figure 3.45 with selected ones. The bias distributions of the fully connected layer are

approximately symmetric too, as shown in Figure 3.46 . Weights are primarily in the +/-

0.15 range, while biases are in the +/- 0.05 range.

70

(a) (b) (c)

(d) (e) (f)

Figure 3.44. Distribution of biases selected from CNN3 generated from vary-
ing initial seed, first convolutional layer.

(a) (b) (c)

(d) (e) (f)

Figure 3.45. Distribution of weights selected from CNN3 generated from
varying initial seed, fully connected layer.

The weight distributions when varying the initial random seed of the first convolutional

layer for the VGG16 model trained on CIFAR10 data are approximately symmetric, as

shown in Figure 3.47 with selected ones. Weights are primarily in the +/- 0.1 range. The

bias distributions of the fully connected layer are approximately symmetric too, as shown in

71

(a) (b) (c)

(d) (e) (f)

Figure 3.46. Distribution of biases selected from CNN3 generated from vary-
ing initial seed, fully connected layer.

(a) (b) (c)

(d) (e) (f)

Figure 3.47. Distribution of weights selected from VGG-16 generated from
varying initial seed, first convolutional layer.

Figure 3.48 , with the exception of sub-figure (d). Many of the biases shown are centered on

-0.2, and in the -0.3/-0.1 range.

The weight distributions when varying the initial random seed of the final fully connected

layer for the VGG16 model trained on CIFAR10 data are approximately symmetric, with

the exception of a few extreme values, as shown in Figure 3.49 with selected ones. The

72

(a) (b) (c)

(d) (e) (f)

Figure 3.48. Distribution of biases selected from VGG-16 generated from
varying initial seed, first convolutional layer.

(a) (b) (c)

(d) (e) (f)

Figure 3.49. Distribution of weights selected from VGG-16 generated from
varying initial seed, final fully connected layer.

bias distributions of the fully connected layer are approximately symmetric too, as shown in

Figure 3.50 . Weights and biases are primarily in the +/- 0.3 range.

The weight distributions when varying the initial random seed of the first convolutional

layer for the ResNet model trained on CIFAR10 data are approximately symmetric, with

73

(a) (b) (c)

(d) (e) (f)

Figure 3.50. Distribution of biases selected from VGG-16 generated from
varying initial seed, final fully connected layer.

(a) (b) (c)

(d) (e) (f)

Figure 3.51. Distribution of weights selected from ResNet-18 generated from
varying initial seed, first convolutional layer.

the exception of a few extreme values, as shown in Figure 3.51 with selected ones. Weights

are primarily in the +/- 0.3 range.

The weight distributions when varying the initial random seed of the final fully connected

layer for the ResNet model trained on CIFAR10 data are approximately symmetric, as shown

in Figure 3.52 with selected ones. The bias distributions of the fully connected layer are

74

(a) (b) (c)

(d) (e) (f)

Figure 3.52. Distribution of weights selected from ResNet-18 generated from
varying initial seed, fully connected layer.

(a) (b) (c)

(d) (e) (f)

Figure 3.53. Distribution of biases selected from ResNet-18 generated from
varying initial seed, fully connected layer.

approximately symmetric too, as shown in Figure 3.53 . Weights are primarily in the +/- 0.2

range. Biases are primarily in the +/- 0.03 range.

75

Table 3.7. Kolmogorov-Smirnov test statistic quantiles from neural networks
generated by varying the initial random seed. Up to 1000 weights were selected
from each layer. For layers which are also represented in Table 3.3 , the same
weights are represented in both tables. For layers not represented in Table 3.3 ,
the weights were selected randomly.

Layer 1st 5th 10th 25th 50th 75th 90th 95th 99th

CNN3, 1st conv 0.045 0.059 0.064 0.073 0.084 0.092 0.101 0.107 0.119
CNN3, last fc 0.033 0.040 0.045 0.054 0.069 0.086 0.106 0.117 0.137
VGG16, 1st conv 0.034 0.040 0.045 0.056 0.072 0.094 0.131 0.176 0.266
VGG16, last fc 0.121 0.141 0.151 0.174 0.203 0.232 0.256 0.275 0.297
ResNet18, 1st conv 0.035 0.045 0.052 0.066 0.092 0.149 0.477 0.477 0.477
ResNet18, last fc 0.038 0.046 0.054 0.069 0.089 0.117 0.142 0.156 0.185

Table 3.8. Kolmogorov-Smirnov test p-value quantiles from neural networks
generated by varying the initial random seeds. Selected weights match those
in Table 3.7 .

Layer 1st 5th 10th 25th 50th 75th 90th 95th 99th

CNN3, 1st
conv

0.026 0.058 0.088 0.148 0.230 0.385 0.559 0.655 0.911

CNN3,
last fc

0.006 0.031 0.064 0.207 0.448 0.763 0.905 0.962 0.996

VGG16,
1st conv

5.5e-10 1.4e-4 9.8e-3 0.124 0.385 0.710 0.908 0.961 0.992

VGG16,
last fc

2.3e-12 1.1e-10 2.9e-9 1.2e-7 5.9e-6 1.8e-4 1.7e-3 4.1e-3 0.022

ResNet18,
1st conv

6.9e-32 7.0e-32 7.2e-32 2.2e-3 0.150 0.503 0.795 0.906 0.990

ResNet18,
last fc

5.9e-5 1.1e-3 4.2e-3 0.031 0.175 0.448 0.745 0.887 0.978

Figure 3.54 shows that over 95% of the weight distributions of the first convolutional

layer of CNN3 trained on MNIST, by varying initial seed, are normal as determined by the

KS test, with a p-value threshold of 0.05.

Figure 3.55 shows that over 99% of the bias distributions of the first convolutional layer

of CNN3 trained on MNIST, by varying initial seed, are normal as determined by the KS

test, with a p-value threshold of 0.05.

76

Table 3.9. Kolmogorov-Smirnov test statistic quantiles of bias values from
neural networks generated by varying the initial random seeds. Up to 1000
biases were selected from each layer. For layers which are also represented
in Table 3.5 , the same biases are represented in both tables. For layers not
represented in Table 3.5 , the biases were selected randomly.

Layer 1st 5th 10th 25th 50th 75th 90th 95th 99th

CNN3, 1st conv 0.043 0.044 0.048 0.057 0.068 0.078 0.084 0.090 0.097
CNN3, last fc 0.048 0.050 0.052 0.056 0.060 0.069 0.080 0.087 0.093
VGG16, 1st conv 0.036 0.042 0.058 0.069 0.099 0.143 0.180 0.212 0.256
VGG16, last fc 0.045 0.047 0.048 0.053 0.067 0.072 0.083 0.093 0.102
ResNet18, last fc 0.039 0.039 0.040 0.047 0.055 0.061 0.071 0.072 0.072

Table 3.10. Kolmogorov-Smirnov test p-value quantiles of bias values from
neural networks generated by varying the initial random seeds. Selected biases
match those in Table 3.9 .

Layer 1st 5th 10th 25th 50th 75th 90th 95th 99th

CNN3, 1st conv 0.112 0.172 0.228 0.312 0.476 0.698 0.867 0.920 0.930
CNN3, last fc 0.145 0.203 0.276 0.461 0.628 0.706 0.788 0.826 0.857
VGG16, 1st conv 8.5e-9 1.9e-6 9.7e-5 3.5e-3 0.096 0.438 0.655 0.936 0.979
VGG16, last fc 0.087 0.158 0.246 0.392 0.492 0.770 0.854 0.879 0.900
ResNet18, last fc 0.392 0.401 0.413 0.619 0.736 0.875 0.965 0.969 0.972

(a) KS test statistic (b) KS test p-value

Figure 3.54. KS test results for selected weights when varying the initial
random seed in CNN3, first convolutional layer.

Figure 3.56 shows that over 90% of the weight distributions of the fully connected layer

of CNN3 trained on MNIST, by varying initial seed, are normal as determined by the KS

test, with a p-value threshold of 0.05.

77

(a) KS test statistic (b) KS test p-value

Figure 3.55. KS test results for selected biases when varying the initial
random seed in CNN3, first convolutional layer.

(a) KS test statistic (b) KS test p-value

Figure 3.56. KS test results for selected weights when varying the initial
random seed in CNN3, fully connected layer.

(a) KS test statistic (b) KS test p-value

Figure 3.57. KS test results for selected biases when varying the initial
random seed in CNN3, fully connected layer.

Figure 3.57 shows that all 10 of the bias distributions of the fully connected layer of

CNN3 trained on MNIST, by varying initial seed, are normal as determined by the KS test,

with a p-value threshold of 0.05.

78

(a) KS test statistic (b) KS test p-value

Figure 3.58. KS test results for selected weights when varying the initial
random seed in VGG16, first convolutional layer.

Figure 3.58 shows that over 75% of the weight distributions of the first convolutional

layer of VGG16 trained on CIFAR10, by varying initial seed, are normal as determined by

the KS test, with a p-value threshold of 0.05.

(a) KS test statistic (b) KS test p-value

Figure 3.59. KS test results for selected biases when varying the initial
random seed in VGG-16, first convolutional layer.

Figure 3.59 shows that over half of the bias distributions of the first convolutional layer

of VGG16 trained on CIFAR10, by varying initial seed, are normal as determined by the KS

test, with a p-value threshold of 0.05.

79

(a) KS test statistic (b) KS test p-value

Figure 3.60. KS test results for selected weights when varying the initial
random seed in VGG16, final fully connected layer.

Figure 3.60 shows that over 99% of the weight distributions of the final fully connected

layer of VGG16 trained on CIFAR10, by varying initial seed, are non-normal as determined

by the KS test, with a p-value threshold of 0.05.

(a) KS test statistic (b) KS test p-value

Figure 3.61. KS test results for selected biases when varying the initial
random seed in VGG-16, final fully connected layer.

Figure 3.61 shows that all 10 of the bias distributions of the final fully connected layer

of VGG16 trained on CIFAR10, by varying initial seed, are normal as determined by the KS

test, with a p-value threshold of 0.05.

80

(a) KS test statistic (b) KS test p-value

Figure 3.62. KS test results for selected weights when varying the initial
random seed in ResNet-18, first convolutional layer.

Figure 3.62 shows that over half of the weight distributions of the first convolutional

layer of ResNet-18 trained on CIFAR10, by varying initial seed, are normal as determined

by the KS test, with a p-value threshold of 0.05.

(a) KS test statistic (b) KS test p-value

Figure 3.63. KS test results for selected weights when varying the initial
random seed in ResNet-18, fully connected layer.

Figure 3.63 shows that over half of the weight distributions of the fully connected layer

of ResNet-18 trained on CIFAR10, by varying initial seed, are normal as determined by the

KS test, with a p-value threshold of 0.05.

Figure 3.64 shows that all 10 of the bias distributions of the fully connected layer of

ResNet-18 trained on CIFAR10, by varying initial seed, are normal as determined by the KS

test, with a p-value threshold of 0.05.

81

(a) KS test statistic (b) KS test p-value

Figure 3.64. KS test results for selected biases when varying the initial
random seed in ResNet-18, fully connected layer.

(a) (b) (c)

(d) (e) (f)

Figure 3.65. QQ Plots of individual non-normal biases selected from VGG-16
varying initial seeds, first convolutional layer.

82

(a) (b) (c)

(d) (e) (f)

Figure 3.66. QQ Plots of individual non-normal weights selected from VGG-
16 varying initial seeds, final fully connected layer.

(a) (b) (c)

(d) (e) (f)

Figure 3.67. QQ Plots of individual non-normal weights selected from
ResNet-18 varying the initial random seed, first convolutional layer.

83

(a) (b) (c)

(d) (e) (f)

Figure 3.68. QQ Plots of individual non-normal weights selected from
ResNet-18 varying the initial random seed, fully connected layer.

84

3.7 Distance Between Two Distributions

The weights and the biases selected in the section for varying the random initial seeds,

 3.6 , match the parameters selected in the bootstrap section, 3.5 . Hence we can compute

the distance between two sets of selected parameters from different training procedures. Dis-

tances are evaluated using the Wasserstein 1 distance, as well as the two sample Kolmogorov-

Smirnov test.

The Wasserstein distance [70] is a metric based on the real world task of moving dirt. It

is defined as the amount of earth that would need to be moved multiplied by the distance

it would move, in order to turn one pile of earth into a different pile of earth. Here we use

the one-dimensional metric to compare the distributions of weights and biases derived from

bootstrapping neural networks with those derived from networks generated by varying initial

seeds. The Wasserstein 1-distance, W1(u, v) for probability measures u, v ∈ Pp(R) is

W1(u, v) = inf
π∈Γ(u,v)

∫
R×R
|x− y|dπ(x, y) (3.4)

where Γ(u, v) is the set of probability distributions on R×R whose marginals are u and

v. This definition is equivalent [71] to

W1(u, v) =
∫
R
|U − V | (3.5)

where U and V are the cumulative distribution functions of u and v, respectively.

Figures 3.69 and 3.70 show the distance between the weight distributions are within 0.1

and the distance between the bias distributions are within 0.035, for the first convolutional

layer of CNN3.

Figures 3.71 and 3.72 show the distance between the weight distributions are within 0.025

and the distance between the bias distributions are within 0.005, for the fully connected layer

of CNN3.

Figures 3.73 and 3.74 show the distance between the weight and bias distributions are

within 0.1 for the first convolutional layer of VGG16.

85

Figure 3.69. Histogram of Wasserstein 1 distance for selected weights in
CNN3, first convolution layer.

Figure 3.70. Histogram of Wasserstein 1 distance for selected biases in CNN3,
first convolution layer.

Figures 3.75 and 3.76 show the distance between the weight and bias distributions are

within 0.2 and the distance between the bias distributions are within 0.1, for the final fully

connected layer of VGG16.

86

Figure 3.71. Histogram of Wasserstein 1 distance for selected weights in
CNN3, fully connected (fc) layer.

Figure 3.72. Histogram of Wasserstein 1 distance for selected biases in CNN3,
fully connected layer.

Table 3.11. Wasserstein 1 distance between weights neural networks gener-
ated by varying the initial random seeds and bootstrapped neural networks.
Up to 1000 weights were selected from each layer, with weights matching those
represented in Tables 3.3 , 3.7 .

Layer 1st 5th 10th 25th 50th 75th 90th 95th 99th

CNN3, 1st conv 0.013 0.017 0.019 0.023 0.029 0.040 0.050 0.056 0.071
CNN3, last fc 0.003 0.004 0.004 0.005 0.006 0.008 0.011 0.012 0.016
VGG16, 1st conv 0.002 0.004 0.005 0.008 0.014 0.023 0.034 0.044 0.064
VGG16, last fc 0.004 0.004 0.005 0.006 0.007 0.009 0.010 0.011 0.014

87

Figure 3.73. Histogram of Wasserstein 1 distance for selected weights in
VGG16, first convolution layer.

Figure 3.74. Histogram of Wasserstein 1 distance for selected biases in
VGG16, first convolution layer.

Figure 3.75. Histogram of Wasserstein 1 distance for selected weights in
VGG16, final fully connected (fc) layer.

88

Figure 3.76. Histogram of Wasserstein 1 distance for selected biases in CNN3,
first convolution layer.

Table 3.12. Wasserstein 1 distance between bias values of neural networks
generated by varying the initial random seeds and bootstrapped neural net-
works. Up to 1000 biases were selected from each layer, with biases matching
those represented in Tables 3.5 , 3.9 .

Layer 1st 5th 10th 25th 50th 75th 90th 95th 99th

CNN3, 1st conv 9.2e-3 9.9e-3 0.010 0.014 0.018 0.024 0.030 0.031 0.033
CNN3, last fc 1.6e-3 1.7e-3 1.8e-3 1.9e-3 2.5e-3 3.4e-3 4.0e-3 4.0e-3 4.0e-3
VGG16, 1st conv 8.5e-3 0.011 0.015 0.019 0.044 0.058 0.069 0.075 0.085
VGG16, last fc 0.011 0.012 0.014 0.017 0.029 0.054 0.059 0.070 0.079

89

Here we also perform the KS test to measure the distance between two empirical samples.

The test statistic is a quantification of the distance between the empirical distributions of

two samples. The test statistic is the largest observed difference between the two empirical

cumulative distributions. KS test statistics are therefore bounded between 0 and 1. Two

identical distributions will observe a value of 0.

The null hypothesis of the test is that the two empirical samples are drawn from the same

distribution. A cutoff of largest allowable distance is defined for a given confidence level. If

the largest distance exceeds that value, the null hypothesis is rejected.

Formally, the Kolmogorov-Smirnov statistic, Dn,m, for two samples of sizes n and m,

respectively, is computed as

Dn,m = sup
x
|F1,n(x)− F2,m(x)| (3.6)

where F1,n(x) is the empirical cumulative distribution of first sample, and F1,m(x) is

the empirical cumulative distribution of second. The empirical cumulative distributions are

defined as in Equation 3.2 .

All tests in this work are evaluated at level α = 0.05. For n and m sufficiently large, the

null hypothesis that the two samples come from the same distribution is rejected if

Dn,m > c(α)
√
n+m

nm
(3.7)

where c(α) is the inverse of the Kolmogorov distribution, K and is estimated formulaically

by

c(α) =
√
−ln(α2) ∗ 1

2 (3.8)

Figure 3.77 shows that over 99% of the weight distributions of the first convolutional

layer of CNN3 trained on MNIST, fail to reject the null hypothesis of the 2-sample KS test,

with a p-value threshold of 0.05.

90

(a) KS test statistic (b) KS test p-value

Figure 3.77. 2 sample KS test results for selected weights in CNN3, first
convolutional layer.

(a) KS test statistic (b) KS test p-value

Figure 3.78. 2 sample KS test results for selected biases in CNN3, first
convolutional layer.

Figure 3.78 shows that over 99% of the bias distributions of the first convolutional layer

of CNN3 trained on MNIST, fail to reject the null hypothesis of the 2-sample KS test, with

a p-value threshold of 0.05.

(a) KS test statistic (b) KS test p-value

Figure 3.79. 2 sample KS test results for selected weights in CNN3, fully
connected layer.

91

Figure 3.79 shows that over 99% of the weight distributions of the fully connected layer

of CNN3 trained on MNIST, fail to reject the null hypothesis of the 2-sample KS test, with

a p-value threshold of 0.05.

(a) KS test statistic (b) KS test p-value

Figure 3.80. 2 sample KS test results for selected biases in CNN3, fully connected layer.

Figure 3.80 shows that all 10 of the bias distributions of the fully connected layer of

CNN3 trained on MNIST, fail to reject the null hypothesis of the 2-sample KS test, with a

p-value threshold of 0.05.

(a) KS test statistic (b) KS test p-value

Figure 3.81. 2 sample KS test results for selected weights in VGG-16, first
convolutional layer.

Figure 3.81 shows that over 75% of the weight distributions of the first convolutional

layer of VGG16 trained on CIFAR10, fail to reject the null hypothesis of the 2-sample KS

test, with a p-value threshold of 0.05.

92

(a) KS test statistic (b) KS test p-value

Figure 3.82. 2 sample KS test results for selected biases in VGG-16, first
convolutional layer.

Figure 3.82 shows that over 75% of the bias distributions of the first convolutional layer

of VGG16 trained on CIFAR10, fail to reject the null hypothesis of the 2-sample KS test,

with a p-value threshold of 0.05.

(a) KS test statistic (b) KS test p-value

Figure 3.83. 2 sample KS test results for selected weights in VGG-16, final
fully connected layer.

Figure 3.83 shows that over half of the weight distributions of the final fully connected

layer of VGG16 trained on CIFAR10, fail to reject the null hypothesis of the 2-sample KS

test, with a p-value threshold of 0.05.

93

(a) KS test statistic (b) KS test p-value

Figure 3.84. 2 sample KS test results for selected biases in VGG-16, final
fully connected layer.

Figure 3.83 shows that over 75% of the weight distributions of the final fully connected

layer of VGG16 trained on CIFAR10, fail to reject the null hypothesis of the 2-sample KS

test, with a p-value threshold of 0.05.

Table 3.13. Kolmogorov-Smirnov 2-sample test statistic quantiles between
weights generated by varying the initial random seeds and bootstrapped neural
networks. Up to 1000 weights were selected from each layer, with weights
matching those represented in Tables 3.3 , 3.7 .

Layer 1st 5th 10th 25th 50th 75th 90th 95th 99th

CNN3, 1st conv 0.040 0.047 0.047 0.053 0.067 0.073 0.087 0.093 0.108
CNN3, last fc 0.040 0.047 0.053 0.060 0.073 0.087 0.100 0.107 0.120
VGG16, 1st conv 0.047 0.056 0.064 0.075 0.097 0.125 0.157 0.182 0.312
VGG16, last fc 0.059 0.072 0.082 0.104 0.147 0.209 0.267 0.298 0.338

94

Table 3.14. Kolmogorov-Smirnov 2-sample test p-value quantiles between
weights generated by varying the initial random seeds and bootstrapped neural
networks. Selected weights match those in Table 3.13 .

Layer 1st 5th 10th 25th 50th 75th 90th 95th 99th

CNN3, 1st conv 0.352 0.532 0.628 0.816 0.894 0.984 0.997 0.997 0.999
CNN3, last fc 0.230 0.361 0.443 0.628 0.816 0.951 0.984 0.997 0.999
VGG16, 1st conv 3.4e-7 9.5e-3 0.038 0.158 0.419 0.727 0.882 0.951 0.991
VGG16, last fc 2.2e-8 1.3e-6 2.1e-5 1.8e-3 0.061 0.334 0.631 0.779 0.927

Table 3.15. Kolmogorov-Smirnov 2-sample test statistic quantiles between
biases generated by varying the initial random seeds and bootstrapped neu-
ral networks. Up to 1000 biases were selected from each layer, with biases
matching those represented in Tables 3.5 , 3.9 .

Layer 1st 5th 10th 25th 50th 75th 90th 95th 99th

CNN3, 1st conv 0.040 0.044 0.047 0.053 0.060 0.073 0.085 0.087 0.096
CNN3, last fc 0.047 0.050 0.053 0.055 0.060 0.072 0.074 0.077 0.079
VGG16, 1st conv 0.050 0.058 0.067 0.088 0.123 0.151 0.184 0.238 0.361
VGG16, last fc 0.082 0.086 0.091 0.094 0.113 0.142 0.193 0.205 0.214

Table 3.16. Kolmogorov-Smirnov 2-sample test p-value quantiles between
biases generated by varying the initial random seeds and bootstrapped neural
networks. Selected biases match those in Table 3.15 .

Layer 1st 5th 10th 25th 50th 75th 90th 95th 99th

CNN3, 1st conv 0.500 0.628 0.647 0.816 0.951 0.984 0.997 0.998 0.999
CNN3, last fc 0.733 0.766 0.807 0.836 0.951 0.976 0.985 0.991 0.996
VGG16, 1st conv 1.1e-8 3.6e-4 8.5e-3 0.052 0.172 0.548 0.845 0.937 0.983
VGG16, last fc 1.5e-3 3.3e-3 5.5e-3 0.092 0.249 0.458 0.497 0.575 0.638

95

3.8 Regression Model for Estimating Parameters Based on Bootstrap

In some instances, it may not be practical or possible to bootstrap the target neural net-

work. Using the distribution information observed in the Bootstrap experiments described

in Section 3.3 , a method has been created to estimate the distribution parameters in these

situations. Rather than estimating node-specific distribution parameters, a single distribu-

tion is estimated per layer and is applied to each weight in the layer. Using a regression

model, the weight distribution parameters are estimated with number of nodes in a layer

being the predictor variable. Regression models were created for both Gaussian and Uniform

distributions.

For the Gaussian distribution, the mean is set to the average value of all nodes in a given

layer of the network. Variance is then estimated using linear regression. Standard deviations

of each weight was taken for the bootstrap experiments run on Inception v3 and VGG-16,

described in Sections 3.3.4 , 3.3.3 . The bootstrap experiments from CNN3 were excluded

from the analysis due to the small number of parameters in this neural network. The mean

standard deviation was then taken for each layer. Separate regression models were created

for convolutional layers and fully connected layers. The formulas for the regression models

can be seen in Equations 3.9 and 3.10 , where Y is the mean standard deviation of the nodes

in the layer and x is the number of nodes in the layer.

Y = 0.048585− 0.002251 log2 x (3.9)

log2 Y = 2.9492− 0.5451 log2 x (3.10)

For the Uniform distribution, the interval ranges are estimated for various interval sizes

using linear regression. For various interval sizes (e.g., 70% interval, 95% interval) the

interval range of each weight was taken for the bootstrap experiments run on Inception v3

and VGG-16, described in Sections 3.3.4 , 3.3.3 . As above, the bootstrap experiments from

CNN3 were excluded from the analysis due to the small number of parameters in this neural

network. The mean interval range was then taken for each layer. Separate regression models

96

(a) Convolutional layers (b) Fully connected layers

Figure 3.85. Scatterplots of mean standard deviation by number of parame-
ters, including regression line.

were created for convolutional layers and fully connected layers, for each of four interval

sizes: 70%, 80%, 90%, and 95%. The formulas for the regression models are summarized in

Table 3.17 , where Y is the mean interval range of the nodes in the layer and x is the number

of nodes in the layer. The upper bound parameter of the Uniform distribution is then set

to half of the interval range. The lower bound distribution parameter is the negative of the

upper bound.

Table 3.17. Linear Regression results for estimating interval ranges in boot-
strap neural networks. Here trans(Y) = β0 + β1*log2 (number of nodes)

Interval size Layer type Y transform β0 β1 adj R2

70 conv - 0.078455 -0.003597 0.3596
80 conv - 0.104027 -0.004782 0.3874
90 conv - 0.14747 -0.006802 0.4234
95 conv - 0.19050 -0.008812 0.4507
70 fc log2 4.3143 -0.5988 0.8312
80 fc log2 4.6128 -0.5922 0.864
90 fc log2 4.8530 -0.5742 0.9092
95 fc log2 4.7749 -0.5420 0.9402

97

4. RANDOMIZED CNN ENSEMBLE

The goal of bootstrapping the network is to learn distribution information about the nodes

in the convolutional layers and the fully connected layer. In particular, we wish to estimate

percentiles, mean and variance. Armed with this information, parameters for random dis-

tributions can be estimated, and nodes can be randomized according to these distributions.

With a portion of the nodes randomized, the individual learner has been weakened. Since

even a smaller CNN has a large number of parameters for each layer, replacing some weights

by random numbers in a CNN model only slightly reduces the accuracy of the model on

clean test data. Then an ensemble of CNN models with some random weights can achieve

the same accuracy as the trained model without random weights. A random ensemble also

achieves robust performance over adversarial examples.

Given one trained CNN model, we can have infinitely many CNN random ensembles

which all maintain the same accuracy over the clean test data as the trained model itself,

and achieve robust performance over adversarial examples. We design this strategy to address

the adaptive attacks. An adaptive attack will attack the defense strategy itself. By having

infinitely many ensembles, we can frequently switch to a different ensemble without incurring

additional training time. Thus the adaptive attack loses the target to attack. Although

we cannot break the cycle of attacks and defenses, we can manage to stay ahead of the

adversaries in the cycle.

4.1 Adversarial images for ensemble

The networks used to implement the ensemble strategy include CNN3, VGG16, Inception

v3 and ResNet-18. These network structures are introduced in Chapter 3 . The CNN3

architecture will once again be used to test MNIST images, specifically those images which

have been adversarially altered. The VGG16 and ResNet18 architectures will again be used

to test CIFAR-10 images, both clean and adversarially altered. The Inception v3 architecture

will this time be used to test clean and adversarial images generated from the Tiny ImageNet

database, which is a subset of the ImageNet database. Tiny ImageNet training data consists

98

of 100,000 images from 200 classes. Each class has 500 training images, 50 test images, and

50 validation images. The images are all 64x64 color images.

The Tiny ImageNet database can be downloaded from ”http://cs231n.stanford.edu/tiny-

imagenet-200.zip”. The folder structure is organized into separate folders for train, validation

and test images. Within the train folder, there is a folder for each of the 200 classes. Within

each class folder, there is an image folder which contains the 500 train images for the class.

The test folder contains 10,000 unlabeled images. These images are not used in this work.

The validation folder also contains 10,000 unlabeled images. However, there is an annotation

text file which names each image and its corresponding class label. In order to get the images

into a format which could be used for validating the model, an updated validation folder

was created which mimics the structure of the train directory. That is, one folder for each

image label, and within that folder, an image folder which contains 50 validation images for

that class.

Inception v3 was initialized using the pre-trained weights available on Python. After

resetting the fully connected module to have to correct number of output classes, that layer

was initialized using Kaiman’s uniform method. The Tiny ImageNet images were scaled to

299x299, as required by Torchvision’s implementation of Inception v3. This was performed by

first resizing the images to 325x325 by padding the images on all sides, then taking the center

crop of the required 299x299. During training, a random horizontal flip was implemented,

as well as transformation to tensor and normalization. The full database of 100,000 training

images was used in retraining. One potential challenge in Tiny ImageNet is that the data

size is much larger than MNIST and CIFAR-10. The network was trained with a batch size

of 64, but the data was only moved to the GPU in blocks of 100, effectively making batch

size jump between 64 and 36. There were 24 epochs of training. Optimization was performed

with SGD, with momentum of 0.9 and weight decay 0.0005. The initial learning rate was

0.05 and decayed by a factor of 0.5 every 30 epochs. The final model used for the random

ensemble has Top-1 accuracy of 80.0% on 10,000 Tiny ImageNet validation images.

99

4.2 Adversarial images for ensemble

For each of the four networks, a set of 4000 adversarial examples was generated. Four

white-box attack methods were implemented, with 1000 examples generated from each. Each

attack generated adversarial examples based on the same 1000 clean images, with an even

distribution of examples from each class from the original datasets. This amounts to 100

images per class for MNIST and CIFAR10 databases, and 5 images per class for Tiny Ima-

geNet. The attacks used were Fast gradient sign method (FGSM), Projected gradient descent

(PGD), DeepFool (DP), and Carlini-Wagner L2 (C&W). Details of these methods are dis-

cussed in Section 2.1.1 . Adversarial examples were generated using the ’foolbox’ Python

library. Attack accuracies are summarized in Table 4.1 .

For the FGSM and PGD attacks, ε is a hyperparameter which dictates how far the

adversarial example can be from the clean image. For the one-step FGSM attack, it is the

only hyperparameter. PGD is an iterative FGSM which stays within a ε-neighborhood of

the original image, and has many starting points. It has hyperparameters controlling the

number of steps and the relative size of each step compared with ε. DP uses projections

onto a hyperplane of possible classes and has hyperparameters of number of iterations, and

the number of candidate projections, or the number of candidate adversarial classes. It also

has a hyperparameter dictating how far to overshoot the boundary. C&W’s L2 attack solves

a box constraint optimization problem, with hyperparameters for the initialization of the

training constant and number of binary search steps, number of steps within each binary

step, step size, confidence with which classification occurs. Although an ε may be enforced

when searching for DP and C&W solutions, it has no effect on the decisions being made by

the algorithms.

The baseline CNN3 model achieved 99.4% accuracy on the 1000 clean MNIST images

prior to introdution of adversarial perturbation. The PGD attack decreased the accuracy to

0.8% on these same images, with an L2-distance of 10. The accuracies, average L2-distances

and training hyperparameters of the adversarial examples from all attack types can be viewed

in the following table.

100

The baseline VGG16 and ResNet-18 models achieved 93.7% and 88.7% accuracy on the

1000 clean CIFAR-10 images prior to introduction of adversarial perturbation. The C&W

attack on ResNet decreased the accuracy to 8.5% on these same images, with an average L2-

distance of 0.91. This same attack decreased accuracy on VGG16 to 1.5% with an average

L2-distance of 0.83. Full attack details are available below.

The baseline Inception v3 models achieved 80.0% accuracy on the 1000 clean Tiny Im-

ageNet images prior to introduction of adversarial perturbation. The DP attack decreased

the accuracy to 3.3% on these same images, with an average L2-distance of 0.72. As the

number of candidate classes was set to 10 and this is the only network with more than 10

classes, this is the only network example which utilized the computation decreasing feature

available in the DP implementation. It can be seen that it did not negatively effect the over-

all performance of the attack algorithm. Full attack details for Inception v3 are available

below.

Table 4.1. Accuracy of undefended neural networks on clean and adversarial images

Model Clean images PGD FGSM DeepFool C&W2

CNN3 0.991 0.029 0.082 0.148 0.275
VGG16 0.889 0.013 0.043 0.067 0.016
ResNet18 0.834 0.032 0.027 0.053 0.081
Incept v3 0.773 0.079 0.203 0.075 0.137

4.3 Randomization

Ensembles are generated from a single fully trained network. One layer of the architecture

is selected to be randomized. For ensemble size n, there are n copies of the randomized

layer. The reminder of the parameters in the network remain unchanged. For each of the

n versions of the selected layer, each weight in the layer is updated to a random number

with a predetermined probability, p. The decision to update a specific node is made using

a Bernoulli distribution. The selected layer and the update rate, p, remain constant for all

learners in the ensemble.

101

The random number to which nodes are updated follow a distribution with parameters

learned from bootstrap. CNN3 trained on MNIST and VGG16 trained on CIFAR-10 were

used for both bootstrap and generating ensembles. For these networks, the updated weight

distribution for the ensemble will be based directly on the information from bootstrap.

Ensembles with Gaussian distributed weights and ensembles with Uniformly distributed

weights are both included. A univariate Gaussian is used, with the mean being equal to

the mean of the bootstrap parameter means. The standard deviation is the mean of the

bootstrap parameter standard deviations. Several Uniform distributions are used. The

Uniform distribution is zero-centered, with the upper and lower bounds equal to +/-range,

where range is the distance between 97.5th percentile and the 2.5th percentile, corresponding

to the middle 95% of the data. Ensembles were also created with Uniform distributions with

parameters estimated from the middle 90%, middle 80%, etc. The middle ranges were

estimated per parameter via bootstrap and then the average was taken for the layer.

We also generate ensembles for ResNet-18 trained on CIFAR-10 and Inception v3 trained

on Tiny ImageNet. For these networks, rather than using bootstrap information directly, we

infer from other bootstrap networks and design a linear model to estimate the distribution

parameter values. Details for the linear regression are given in Section 3.8 . Univariate

Gaussian and Uniform distributions are used as with the other networks. However, rather

than using an estimate for the mean, the mean is set to the average weight observed in the

layer.

Preliminary results indicated that randomization of the earliest convolutional layers

demonstrated a greater robustness than randomizing later convolutional layers or fully con-

nected layers. All ensembles presented here have layers selected from the beginning of the

network. For each layer presented here, factorial experiments were run for all values p = 0.1,

0.2, ... 0.9 and distributions based on standard deviation and middle range = 70%, 80%,

90% and 95%. Each design setting was repeated 5 times. Sometimes additional values of p

and additional middle range values were also included.

102

4.4 Testing the ensembles

For each input image, a neural network produces a probability of the input belonging to

each class. The output is averaged across all networks in the ensemble, and the assigned

class corresponds to the class index with the maximum value.

Effect of L2-distance on ensemble performance. A design choice was made to prioritize

adversarial examples with low L2 rather than maximizing the attack success. In a real world

setting, where L2-distance of an adversarial image is unknown, this step could be estimated

by utilizing a ’selective prediction’ algorithm to detect out of distribution samples. Examples

of these techniques can be found in [39] and Section 2.1.3 .

4.5 Plots with normal randomization

Parameters for the Gaussian distributions were determined using the method described

in Section 4.3 . We achieve the best performance on randomizing Inception v3 which has

the most complex model structure. We randomize only one layer for building the ensemble.

We discover that using random weights at the front of the model achieves the best results on

correctly classify the adversarial images and maintain the accuracy on the clean data. For

smaller DNN models, the performance of the random ensemble on the adversarial images

with larger perturbations start to drop. Every accuracy result reported here is based on the

average of 5 runs with the same setup.

103

(a) CW attack (b) DP attack

(c) FGSM attack (d) PGD attack

Figure 4.1. Ensemble results for Gaussian randomization of CNN3, first
convolutional layer

Figure 4.1 shows ensemble results for the first convolutional layer of CNN3, using Gaus-

sian randomization. It includes four adversarial attacks, and ensemble sizes ranging from

3 to 8 randomized models. For the C&W attack and DeepFool attack, randomizing 10%

of the weights of the convolutional layer achieves the highest accuracy. For both attacks,

ensemble size 7 achieves the highest accuracy of 88.0% and 78.4% respectively. For FGSM

and PGD attacks, randomizing 80% of the weights of the convolutional layer achieves the

highest accuracy. For FGSM and PGD, ensemble size 3 has the highest accuracy of 23.1%

and 24.9%.

Figure 4.2 shows ensemble results for the first convolutional layer of Inception v3, using

Gaussian randomization. It includes four adversarial attacks, and ensemble sizes ranging

from 3 to 8 randomized models. For the DeepFool attack, randomizing 10% of the weights

of the convolutional layer achieves the highest accuracy. Ensemble size 7 achieves the highest

accuracy of 78.0%. For the C&W attack, randomizing 20% of the weights of the convolutional

layer achieves the highest accuracy. Ensemble size 3 achieves the highest accuracy of 77.0%.

104

(a) CW attack (b) DP attack

(c) FGSM attack (d) PGD attack

Figure 4.2. Ensemble results for Gaussian randomization of Incept v3, first
convolutional layer

For FGSM, randomizing 60% of weights with ensemble size 7 achieves accuracy 47.2%. For

PGD, randomizing 50% of weights with ensemble size 8 achieves accuracy 58.5%.

Figure 4.3 shows ensemble results for the second convolutional layer of Inception v3, using

Gaussian randomization. It includes four adversarial attacks, and ensemble sizes ranging

from 3 to 8 randomized models. For the DeepFool attack, randomizing 1% of the weights of

the convolutional layer achieves the highest accuracy. Ensemble size 7 achieves the highest

accuracy of 77.4%. For the C&W attack, randomizing 1% of the weights of the convolutional

layer achieves the highest accuracy. Ensemble size 5 achieves the highest accuracy of 76.3%.

For FGSM and PGD attacks, randomizing 5% of weights with ensemble size 8 achieves the

highest accuracy of 43.7% and 57.7%, respectively.

Figure 4.4 shows ensemble results for the third convolutional layer of Inception v3, us-

ing Gaussian randomization. It includes four adversarial attacks, and ensemble sizes ranging

from 3 to 8 randomized models. For the C&W and DeepFool attacks, randomizing 10% of the

105

(a) CW attack (b) DP attack

(c) FGSM attack (d) PGD attack

Figure 4.3. Ensemble results for Gaussian randomization of Incept v3, second
convolutional layer

weights of the convolutional layer achieves the highest accuracy. For both attacks, ensemble

size 6 achieves the highest accuracy of 77.2% and 77.7%, respectively. For FGSM, random-

izing 30% of weights with ensemble size 3 achieves accuracy 49.7%. For PGD, randomizing

20% of weights with ensemble size 7 achieves accuracy 60.4%.

Figure 4.5 shows ensemble results for the fourth convolutional layer of Inception v3, us-

ing Gaussian randomization. It includes four adversarial attacks, and ensemble sizes ranging

from 3 to 8 randomized models. For the C&W and DeepFool attacks, randomizing 10% of the

weights of the convolutional layer achieves the highest accuracy. For both attacks, ensemble

size 8 achieves the highest accuracy of 74.1% and 75.1%, respectively. For FGSM, random-

izing 30% of weights with ensemble size 6 achieves accuracy 42.4%. For PGD, randomizing

20% of weights with ensemble size 7 achieves accuracy 50.0%.

Figure 4.6 shows ensemble results for the fifth convolutional layer of Inception v3, using

Gaussian randomization. It includes four adversarial attacks, and ensemble sizes ranging

106

(a) CW attack (b) DP attack

(c) FGSM attack (d) PGD attack

Figure 4.4. Ensemble results for Gaussian randomization of Incept v3, third
convolutional layer

from 3 to 8 randomized models. For the C&W and DeepFool attacks, randomizing 10%

of the weights of the convolutional layer achieves the highest accuracy. For both attacks,

ensemble size 8 achieves the highest accuracy of 74.9% and 76.2%, respectively. For FGSM,

randomizing 30% of weights with ensemble size 8 achieves accuracy 41.7%. For PGD, ran-

domizing 30% of weights with ensemble size 7 achieves accuracy 48.2%.

Figure 4.7 shows ensemble results for the first convolutional layer of ResNet-18, using

Gaussian randomization. It includes four adversarial attacks, and ensemble sizes ranging

from 3 to 8 randomized models. For the C&W attack, randomizing 5% of the weights of

the convolutional layer achieves the highest accuracy. Ensemble size 6 achieves the highest

accuracy of 75.6%. For DeepFool, randomizing 10% of weights with ensemble size 8 achieves

accuracy 62.7%. For FGSM, randomizing 30% of weights with ensemble size 7 achieves ac-

curacy 29.7%. For PGD, randomizing 40% of weights with ensemble size 4 achieves accuracy

36.0%.

107

(a) CW attack (b) DP attack

(c) FGSM attack (d) PGD attack

Figure 4.5. Ensemble results for Gaussian randomization of Incept v3, fourth
convolutional layer

Figure 4.8 shows ensemble results for the first convolutional layer of VGG16, using

Gaussian randomization. It includes four adversarial attacks, and ensemble sizes ranging

from 3 to 8 randomized models. For the C&W attack, randomizing 10% of the weights of

the convolutional layer achieves the highest accuracy. Ensemble size 8 achieves the highest

accuracy of 76.4%. For DeepFool, randomizing 30% of weights with ensemble size 5 achieves

accuracy 45.6%. For FGSM, randomizing 70% of weights with ensemble size 3 achieves ac-

curacy 18.9%. For PGD, randomizing 60% of weights with ensemble size 8 achieves accuracy

33.7%.

108

(a) CW attack (b) DP attack

(c) FGSM attack (d) PGD attack

Figure 4.6. Ensemble results for Gaussian randomization of Incept v3, fifth
convolutional layer

109

(a) CW attack (b) DP attack

(c) FGSM attack (d) PGD attack

Figure 4.7. Ensemble results for Gaussian randomization of ResNet-18, first
convolutional layer

110

(a) CW attack (b) DP attack

(c) FGSM attack (d) PGD attack

Figure 4.8. Ensemble results for Gaussian randomization of VGG-16, first
convolutional layer

111

4.6 Plots with uniform randomization

For CNN3 trained on MNIST and VGG16 trained on CIFAR-10, the weight distribution

for the ensemble will be based directly on the information from bootstrap. Several Uniform

distributions are used. The Uniform distribution is zero-centered, with the upper and lower

bounds equal to +/-range, where range is the distance between 97.5th percentile and the

2.5th percentile, corresponding to the middle 95% of the data. Ensembles were also created

with Uniform distributions with parameters estimated from the middle 90%, middle 80%,

etc. The middle ranges were estimated per parameter via bootstrap and then the average

was taken for the layer.

We also generate ensembles for ResNet-18 trained on CIFAR-10 and Inception v3 trained

on Tiny ImageNet. For these networks, rather than using bootstrap information directly, we

infer from other bootstrap networks and design a linear model to estimate the distribution

parameter values. Details for the linear regression are given in Section 3.8 .

Again we achieve the best performance on randomizing Inception v3 using uniform ran-

dom weights which has the most complex model structure. We randomize only one layer for

building the ensemble. For smaller DNN models, the performance of the random ensemble

on the adversarial images with larger perturbations start to drop. Every accuracy result

reported here is based on the average of 5 runs with the same setup.

In Figure 4.9 , for the CW attack, for all ensemble sizes, 10% random weights on the first

convolutional layer achieves the highest accuracy. Ensemble size 3 has the highest accuracy

83.7%, with 30% interval. Ensemble size 4 has the highest accuracy 88.8% with 70% interval.

Ensemble size 5 has the highest accuracy 88.6% with 70% interval. Ensemble size 6 has the

highest accuracy 93.6% with 30% interval. Ensemble size 7 has the highest accuracy 88.0%

with 40% interval. Ensemble size 8 has the highest accuracy 89.9% with and 40% interval.

In Figure 4.10 , we see accuracy on the DeepFool attack images with CNN3 Uniform

ensembles. Ensemble size 3 has the highest accuracy 74.4%, with 10% of weights in the first

convolutional layer randomized and 95% interval. Ensemble size 4 has the highest accuracy

77.7%, with 10% of weights in the first convolutional layer randomized and 70% interval.

Ensemble size 5 has the highest accuracy 78.1%, with 20% of weights in the first convolutional

112

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.9. Ensemble results for Uniform randomization of CNN3, first con-
volutional layer, on C&W attack images

layer randomized and 30% interval. Ensemble size 6 has the highest accuracy 84.2%, with

10% of weights in the first convolutional layer randomized and 30% interval. Ensemble

size 7 has the highest accuracy 79.2%, with 30% of weights in the first convolutional layer

randomized and 40% interval. Ensemble size 8 has the highest accuracy 80.1%, with 10% of

weights in the first convolutional layer randomized and 40% interval.

In Figure 4.11 , we see accuracy on the FGSM attack images with CNN3 Uniform en-

sembles. Ensemble size 3 has the highest accuracy 19.7%, with 70% of weights in the first

113

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.10. Ensemble results for Uniform randomization of CNN3, first
convolutional layer, on DeepFool attack images

convolutional layer randomized and 50% interval. Ensemble size 4 has the highest accuracy

19.9%, with 60% of weights in the first convolutional layer randomized and 80% interval.

Ensemble size 5 has the highest accuracy 21.5%, with 90% of weights in the first convolu-

tional layer randomized and 30% interval. Ensemble size 6 has the highest accuracy 20.2%,

with 80% of weights in the first convolutional layer randomized and 30% interval. Ensemble

size 7 has the highest accuracy 21.7%, with 90% of weights in the first convolutional layer

114

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.11. Ensemble results for Uniform randomization of CNN3, first
convolutional layer, on FGSM attack images

randomized and 30% interval. Ensemble size 8 has the highest accuracy 22.0%, with 90% of

weights in the first convolutional layer randomized and 60% interval.

In Figure 4.12 , we see accuracy on the PGD attack images with CNN3 Uniform ensembles.

Ensemble size 3 has the highest accuracy 21.2%, with 90% of weights in the first convolutional

layer randomized and 50% interval. Ensemble size 4 has the highest accuracy 21.8%, with

90% of weights in the first convolutional layer randomized and 70% interval. Ensemble

size 5 has the highest accuracy 22.3%, with 90% of weights in the first convolutional layer

115

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.12. Ensemble results for Uniform randomization of CNN3, first
convolutional layer, on PGD attack images

randomized and 30% interval. Ensemble size 6 has the highest accuracy 20.7%, with 80% of

weights in the first convolutional layer randomized and 30% interval. Ensemble size 7 has

the highest accuracy 23.1%, with 90% of weights in the first convolutional layer randomized

and 30% interval. Ensemble size 8 has the highest accuracy 23.5%, with 90% of weights in

the first convolutional layer randomized and 60% interval.

In Figure 4.13 , we see accuracy on the C&W attack images with CNN3 Uniform ensembles

which randomize the fully connected layer. Ensemble size 3 has the highest accuracy 58.3%,

116

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.13. Ensemble results for Uniform randomization of CNN3, fully
connected layer, on C&W attack images

with 30% of weights in the fully connected layer randomized and 30% interval. Ensemble

size 4 has the highest accuracy 57.7%, with 30% of weights in the fully connected layer

randomized and 40% interval. Ensemble size 5 has the highest accuracy 59.0%, with 20% of

weights in the fully connected layer randomized and 80% interval. Ensemble size 6 has the

highest accuracy 56.9%, with 60% of weights in the fully connected layer randomized and

30% interval. Ensemble size 7 has the highest accuracy 57.2%, with 10% of weights in the

117

fully connected layer randomized and 60% interval. Ensemble size 8 has the highest accuracy

57.3%, with 60% of weights in the fully connected layer randomized and 30% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.14. Ensemble results for Uniform randomization of CNN3, fully
connected layer, on DeepFool attack images

In Figure 4.14 , we see accuracy on the DeepFool attack images with CNN3 Uniform

ensembles which randomize the fully connected layer. Ensemble size 3 has the highest accu-

racy 54.5%, with 20% of weights in the fully connected layer randomized and 60% interval.

Ensemble size 4 has the highest accuracy 54.7%, with 30% of weights in the fully connected

layer randomized and 40% interval. Ensemble size 5 has the highest accuracy 56.2%, with

118

50% of weights in the fully connected layer randomized and 90% interval. Ensemble size

6 has the highest accuracy 55.3%, with 70% of weights in the fully connected layer ran-

domized and 30% interval. Ensemble size 7 has the highest accuracy 55.9%, with 10% of

weights in the fully connected layer randomized and 30% interval. Ensemble size 8 has the

highest accuracy 55.9%, with 10% of weights in the fully connected layer randomized and

80% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.15. Ensemble results for Uniform randomization of CNN3, fully
connected layer, on FGSM attack images

119

In Figure 4.15 , we see accuracy on the FGSM attack images with CNN3 Uniform ensem-

bles which randomize the fully connected layer. Ensemble size 3 has the highest accuracy

16.3%, with 80% of weights in the fully connected layer randomized and 95% interval. En-

semble size 4 has the highest accuracy 16.6%, with 90% of weights in the fully connected layer

randomized and 30% interval. Ensemble size 5 has the highest accuracy 17.5%, with 90% of

weights in the fully connected layer randomized and 70% interval. Ensemble size 6 has the

highest accuracy 16.6%, with 90% of weights in the fully connected layer randomized and

70% interval. Ensemble size 7 has the highest accuracy 19.0%, with 90% of weights in the

fully connected layer randomized and 90% interval. Ensemble size 8 has the highest accuracy

17.6%, with 90% of weights in the fully connected layer randomized and 80% interval.

In Figure 4.16 , we see accuracy on the PGD attack images with CNN3 Uniform ensembles

which randomize the fully connected layer. For all ensemble sizes, the highest accuracies were

achieved with 90% of weights in the fully connected layer randomized, with randomization

to 95% interval size. Highest accuracies for ensembles sizes 3 to 8 are 13.3%, 12.7%, 12.2%,

9.8%, 12.2%, and 11.3%.

120

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.16. Ensemble results for Uniform randomization of CNN3, fully
connected layer, on PGD attack images

121

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.17. Ensemble results for Uniform randomization of VGG16, first
convolutional layer, on C&W attack images

In Figure 4.17 , we see accuracy on the C&W attack images with VGG16 Uniform en-

sembles which randomize the first convolutional layer. For all ensemble sizes, the highest

accuracy is achieved when randomizing 10% of the weights in the first convolutional layer.

Ensemble size 3 has the highest accuracy 75.3%, with 40% interval. Ensemble size 4 has the

highest accuracy 75.3%, with 30% interval. Ensemble size 5 has the highest accuracy 76.0%,

with 60% interval. Ensemble size 6 has the highest accuracy 76.1%, with 80% interval. En-

122

semble size 7 has the highest accuracy 76.3%, with 95% interval. Ensemble size 8 has the

highest accuracy 76.8%, with 50% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.18. Ensemble results for Uniform randomization of VGG16, first
convolutional layer, on DeepFool attack images

In Figure 4.18 , we see accuracy on the DeepFool attack images with VGG16 Uniform

ensembles which randomize the first convolutional layer. For all ensemble sizes, the highest

accuracy is achieved when randomizing 30% of the weights in the first convolutional layer.

Ensemble size 3 has the highest accuracy 44.8%, with 80% interval. Ensemble size 4 has the

highest accuracy 46.8%, with 70% interval. Ensemble size 5 has the highest accuracy 45.7%,

123

with 70% interval. Ensemble size 6 has the highest accuracy 45.7%, with 90% interval.

Ensemble size 7 has the highest accuracy 45.1%, with 60% interval. Ensemble size 8 has the

highest accuracy 45.1%, with 90% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.19. Ensemble results for Uniform randomization of VGG16, first
convolutional layer, on FGSM attack images

In Figure 4.19 , we see accuracy on the FGSM attack images with VGG16 Uniform en-

sembles which randomize the first convolutional layer. For all ensemble sizes, the highest

accuracy is achieved when randomizing 70% of the weights in the first convolutional layer.

Ensemble size 3 has the highest accuracy 19.2%, with 95% interval. Ensemble size 4 has the

124

highest accuracy 18.9%, with 80% interval. Ensemble size 5 has the highest accuracy 18.8%,

with 95% interval. Ensemble size 6 has the highest accuracy 19.3%, with 95% interval. En-

semble size 7 has the highest accuracy 19.0%, with 30% interval. Ensemble size 8 has the

highest accuracy 18.7%, with 40% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.20. Ensemble results for Uniform randomization of VGG16, first
convolutional layer, on PGD attack images

In Figure 4.20 , we see accuracy on the PGD attack images with VGG16 Uniform en-

sembles which randomize the first convolutional layer. For all ensemble sizes, the highest

accuracy is achieved when randomizing 60% of the weights in the first convolutional layer.

125

Ensemble size 3 has the highest accuracy 33.2%, with 95% interval. Ensemble size 4 has the

highest accuracy 33.8%, with 95% interval. Ensemble size 5 has the highest accuracy 33.5%,

with 80% interval. Ensemble size 6 has the highest accuracy 34.3%, with 95% interval. En-

semble size 7 has the highest accuracy 33.5%, with 80% interval. Ensemble size 8 has the

highest accuracy 33.4%, with 70% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.21. Ensemble results for Uniform randomization of ResNet18, first
convolutional layer, on C&W attack images

In Figure 4.21 , we see accuracy on the C&W attack images with ResNet-18 Uniform

ensembles which randomize the first convolutional layer. For all ensemble sizes, the highest

126

accuracy is achieved when randomizing 10% of the weights in the first convolutional layer.

Ensemble size 3 has the highest accuracy 72.6%, with 95% interval. Ensemble size 4 has the

highest accuracy 72.3%, with 90% interval. Ensemble size 5 has the highest accuracy 74.2%,

with 90% interval. Ensemble size 6 has the highest accuracy 74.6%, with 70% interval.

Ensemble size 7 has the highest accuracy 73.7%, with 70% interval. Ensemble size 8 has the

highest accuracy 74.4%, with 70% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.22. Ensemble results for Uniform randomization of ResNet18, first
convolutional layer, on DeepFool attack images

127

In Figure 4.22 , we see accuracy on the DeepFool attack images with ResNet-18 Uniform

ensembles which randomize the first convolutional layer. Ensemble size 3 has the highest

accuracy 62.4%, with 10% of weights in the fully connected layer randomized and 95% in-

terval. Ensemble size 4 has the highest accuracy 62.1%, with 20% of weights in the fully

connected layer randomized and 90% interval. Ensemble size 5 has the highest accuracy

63.5%, with 10% of weights in the fully connected layer randomized and 90% interval. En-

semble size 6 has the highest accuracy 63.1%, with 10% of weights in the fully connected

layer randomized and 95% interval. Ensemble size 7 has the highest accuracy 62.5%, with

20% of weights in the fully connected layer randomized and 70% interval. Ensemble size 8

has the highest accuracy 64.0%, with 10% of weights in the fully connected layer randomized

and 90% interval.

In Figure 4.23 , we see accuracy on the FGSM attack images with ResNet-18 Uniform

ensembles which randomize the first convolutional layer. Ensemble size 3 has the highest

accuracy 29.2%, with 30% of weights in the fully connected layer randomized and 95% in-

terval. Ensemble size 4 has the highest accuracy 29.2%, with 30% of weights in the fully

connected layer randomized and 95% interval. Ensemble size 5 has the highest accuracy

29.3%, with 20% of weights in the fully connected layer randomized and 70% interval. En-

semble size 6 has the highest accuracy 29.6%, with 20% of weights in the fully connected

layer randomized and 80% interval. Ensemble size 7 has the highest accuracy 29.7%, with

30% of weights in the fully connected layer randomized and 95% interval. Ensemble size 8

has the highest accuracy 29.4%, with 30% of weights in the fully connected layer randomized

and 95% interval.

In Figure 4.24 , we see accuracy on the PGD attack images with ResNet-18 Uniform

ensembles which randomize the first convolutional layer. Ensemble size 3 has the highest

accuracy 35.1%, with 30% of weights in the fully connected layer randomized and 90% in-

terval. Ensemble size 4 has the highest accuracy 35.7%, with 40% of weights in the fully

connected layer randomized and 95% interval. Ensemble size 5 has the highest accuracy

35.0%, with 30% of weights in the fully connected layer randomized and 70% interval. En-

semble size 6 has the highest accuracy 35.9%, with 40% of weights in the fully connected

layer randomized and 80% interval. Ensemble size 7 has the highest accuracy 35.6%, with

128

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.23. Ensemble results for Uniform randomization of ResNet18, first
convolutional layer, on FGSM attack images

30% of weights in the fully connected layer randomized and 95% interval. Ensemble size 8

has the highest accuracy 35.7%, with 40% of weights in the fully connected layer randomized

and 90% interval.

129

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.24. Ensemble results for Uniform randomization of ResNet18, first
convolutional layer, on PGD attack images

130

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.25. Ensemble results for Uniform randomization of Inception v3,
first convolutional layer, on C&W attack images

In Figure 4.21 , we see accuracy on the C&W attack images with Inception v3 Uniform

ensembles which randomize the first convolutional layer. Ensemble size 3 has the highest

accuracy 76.7%, with 10% of weights in the fully connected layer randomized and 80% in-

terval. Ensemble size 4 has the highest accuracy 77.0%, with 20% of weights in the fully

connected layer randomized and 70% interval. Ensemble size 5 has the highest accuracy

76.9%, with 10% of weights in the fully connected layer randomized and 90% interval. En-

semble size 6 has the highest accuracy 76.7%, with 10% of weights in the fully connected

131

layer randomized and 90% interval. Ensemble size 7 has the highest accuracy 76.9%, with

20% of weights in the fully connected layer randomized and 95% interval. Ensemble size 8

has the highest accuracy 76.9%, with 20% of weights in the fully connected layer randomized

and 90% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.26. Ensemble results for Uniform randomization of Inception v3,
first convolutional layer, on DeepFool attack images

In Figure 4.26 , we see accuracy on the DeepFool attack images with Inception v3 Uniform

ensembles which randomize the first convolutional layer. For all ensemble sizes, the highest

accuracy is achieved when randomizing 10% of the weights in the first convolutional layer.

132

Ensemble size 3 has the highest accuracy 78.0%, with 80% interval. Ensemble size 4 has the

highest accuracy 78.0%, with 80% interval. Ensemble size 5 has the highest accuracy 78.2%,

with 90% interval. Ensemble size 6 has the highest accuracy 78.1%, with 90% interval.

Ensemble size 7 has the highest accuracy 78.1%, with 90% interval. Ensemble size 8 has the

highest accuracy 78.0%, with 90% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.27. Ensemble results for Uniform randomization of Inception v3,
first convolutional layer, on FGSM attack images

In Figure 4.23 , we see accuracy on the FGSM attack images with Inception v3 Uniform

ensembles which randomize the first convolutional layer. Ensemble size 3 has the highest

133

accuracy 46.6%, with 60% of weights in the fully connected layer randomized and 95% in-

terval. Ensemble size 4 has the highest accuracy 46.9%, with 60% of weights in the fully

connected layer randomized and 70% interval. Ensemble size 5 has the highest accuracy

49.3%, with 60% of weights in the fully connected layer randomized and 95% interval. En-

semble size 6 has the highest accuracy 47.2%, with 50% of weights in the fully connected

layer randomized and 95% interval. Ensemble size 7 has the highest accuracy 48.2%, with

60% of weights in the fully connected layer randomized and 80% interval. Ensemble size 8

has the highest accuracy 48.0%, with 60% of weights in the fully connected layer randomized

and 90% interval.

In Figure 4.24 , we see accuracy on the PGD attack images with Inception v3 Uniform

ensembles which randomize the first convolutional layer. Ensemble size 3 has the highest

accuracy 56.2%, with 40% of weights in the fully connected layer randomized and 80% in-

terval. Ensemble size 4 has the highest accuracy 57.0%, with 50% of weights in the fully

connected layer randomized and 95% interval. Ensemble size 5 has the highest accuracy

58.4%, with 50% of weights in the fully connected layer randomized and 90% interval. En-

semble size 6 has the highest accuracy 58.5%, with 50% of weights in the fully connected

layer randomized and 95% interval. Ensemble size 7 has the highest accuracy 58.1%, with

50% of weights in the fully connected layer randomized and 80% interval. Ensemble size 8

has the highest accuracy 58.1%, with 50% of weights in the fully connected layer randomized

and 95% interval.

In Figure 4.29 , we see accuracy on the C&W attack images with Inception v3 Uniform

ensembles which randomize the second convolutional layer. For all ensemble sizes, the highest

accuracy is achieved when randomizing 10% of the weights in the second convolutional layer.

Ensemble size 3 has the highest accuracy 58.2%, with 70% interval. Ensemble size 4 has the

highest accuracy 46.5%, with 95% interval. Ensemble size 5 has the highest accuracy 51.9%,

with 90% interval. Ensemble size 6 has the highest accuracy 51.9%, with 95% interval.

Ensemble size 7 has the highest accuracy 47.9%, with 80% interval. Ensemble size 8 has the

highest accuracy 51.0%, with 80% interval.

In Figure 4.30 , we see accuracy on the DeepFool attack images with Inception v3 Uniform

ensembles which randomize the second convolutional layer. For all ensemble sizes, the highest

134

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.28. Ensemble results for Uniform randomization of Inception v3,
first convolutional layer, on PGD attack images

accuracy is achieved when randomizing 10% of the weights in the second convolutional layer.

Ensemble size 3 has the highest accuracy 58.7%, with 70% interval. Ensemble size 4 has the

highest accuracy 46.7%, with 95% interval. Ensemble size 5 has the highest accuracy 52.2%,

with 90% interval. Ensemble size 6 has the highest accuracy 52.2%, with 95% interval.

Ensemble size 7 has the highest accuracy 48.2%, with 80% interval. Ensemble size 8 has the

highest accuracy 51.4%, with 80% interval.

135

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.29. Ensemble results for Uniform randomization of Inception v3,
second convolutional layer, on C&W attack images

In Figure 4.31 , we see accuracy on the FGSM attack images with Inception v3 Uniform

ensembles which randomize the second convolutional layer. For all ensemble sizes, the highest

accuracy is achieved when randomizing 10% of the weights in the second convolutional layer.

Ensemble size 3 has the highest accuracy 43.9%, with 70% interval. Ensemble size 4 has the

highest accuracy 38.4%, with 95% interval. Ensemble size 5 has the highest accuracy 42.2%,

with 90% interval. Ensemble size 6 has the highest accuracy 42.5%, with 95% interval.

136

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.30. Ensemble results for Uniform randomization of Inception v3,
second convolutional layer, on DeepFool attack images

Ensemble size 7 has the highest accuracy 40.3%, with 80% interval. Ensemble size 8 has the

highest accuracy 42.6%, with 80% interval.

In Figure 4.32 , we see accuracy on the PGD attack images with Inception v3 Uniform

ensembles which randomize the second convolutional layer. For all ensemble sizes, the highest

accuracy is achieved when randomizing 10% of the weights in the second convolutional layer.

Ensemble size 3 has the highest accuracy 51.8%, with 70% interval. Ensemble size 4 has the

highest accuracy 43.5%, with 95% interval. Ensemble size 5 has the highest accuracy 47.3%,

137

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.31. Ensemble results for Uniform randomization of Inception v3,
second convolutional layer, on FGSM attack images

with 90% interval. Ensemble size 6 has the highest accuracy 47.3%, with 95% interval.

Ensemble size 7 has the highest accuracy 44.3%, with 80% interval. Ensemble size 8 has the

highest accuracy 47.3%, with 80% interval.

138

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.32. Ensemble results for Uniform randomization of Inception v3,
second convolutional layer, on PGD attack images

139

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.33. Ensemble results for Uniform randomization of Inception v3,
third convolutional layer, on C&W attack images

In Figure 4.33 , we see accuracy on the C&W attack images with Inception v3 Uniform

ensembles which randomize the third convolutional layer. For all ensemble sizes, the highest

accuracy is achieved when randomizing 10% of the weights in the third convolutional layer.

Ensemble size 3 has the highest accuracy 75.7%, with 80% interval. Ensemble size 4 has the

highest accuracy 76.9%, with 80% interval. Ensemble size 5 has the highest accuracy 76.5%,

with 70% interval. Ensemble size 6 has the highest accuracy 76.9%, with 80% interval.

140

Ensemble size 7 has the highest accuracy 77.0%, with 95% interval. Ensemble size 8 has the

highest accuracy 77.1%, with 90% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.34. Ensemble results for Uniform randomization of Inception v3,
third convolutional layer, on DeepFool attack images

In Figure 4.34 , we see accuracy on the DeepFool attack images with Inception v3 Uniform

ensembles which randomize the third convolutional layer. For all ensemble sizes, the highest

accuracy is achieved when randomizing 10% of the weights in the third convolutional layer.

Ensemble size 3 has the highest accuracy 76.3%, with 80% interval. Ensemble size 4 has the

highest accuracy 77.4%, with 80% interval. Ensemble size 5 has the highest accuracy 76.9%,

141

with 70% interval. Ensemble size 6 has the highest accuracy 77.3%, with 80% interval.

Ensemble size 7 has the highest accuracy 77.3%, with 95% interval. Ensemble size 8 has the

highest accuracy 77.5%, with 90% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.35. Ensemble results for Uniform randomization of Inception v3,
third convolutional layer, on FGSM attack images

In Figure 4.35 , we see accuracy on the FGSM attack images with Inception v3 Uniform

ensembles which randomize the third convolutional layer. For all ensemble sizes, the highest

accuracy is achieved when randomizing 30% of the weights in the third convolutional layer.

Ensemble size 3 has the highest accuracy 44.3%, with 90% interval. Ensemble size 4 has the

142

highest accuracy 48.1%, with 95% interval. Ensemble size 5 has the highest accuracy 47.6%,

with 80% interval. Ensemble size 6 has the highest accuracy 47.1%, with 90% interval.

Ensemble size 7 has the highest accuracy 47.8%, with 95% interval. Ensemble size 8 has the

highest accuracy 48.0%, with 80% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.36. Ensemble results for Uniform randomization of Inception v3,
third convolutional layer, on PGD attack images

In Figure 4.36 , we see accuracy on the PGD attack images with Inception v3 Uniform

ensembles which randomize the third convolutional layer. For all ensemble sizes, the highest

accuracy is achieved when randomizing 20% of the weights in the third convolutional layer.

143

Ensemble size 3 has the highest accuracy 58.1%, with 80% interval. Ensemble size 4 has the

highest accuracy 59.1%, with 95% interval. Ensemble size 5 has the highest accuracy 59.5%,

with 90% interval. Ensemble size 6 has the highest accuracy 60.7%, with 80% interval.

Ensemble size 7 has the highest accuracy 61.2%, with 80% interval. Ensemble size 8 has the

highest accuracy 60.9%, with 70% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.37. Ensemble results for Uniform randomization of Inception v3,
fourth convolutional layer, on C&W attack images

In Figure 4.37 , we see accuracy on the C&W attack images with Inception v3 Uniform

ensembles which randomize the fourth convolutional layer. For all ensemble sizes, the highest

144

accuracy is achieved when randomizing 10% of the weights in the fourth convolutional layer.

Ensemble size 3 has the highest accuracy 72.3%, with 70% interval. Ensemble size 4 has the

highest accuracy 74.3%, with 95% interval. Ensemble size 5 has the highest accuracy 73.4%,

with 95% interval. Ensemble size 6 has the highest accuracy 74.5%, with 70% interval.

Ensemble size 7 has the highest accuracy 74.1%, with 80% interval. Ensemble size 8 has the

highest accuracy 74.3%, with 90% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.38. Ensemble results for Uniform randomization of Inception v3,
fourth convolutional layer, on DeepFool attack images

145

In Figure 4.38 , we see accuracy on the DeepFool attack images with Inception v3 Uniform

ensembles which randomize the fourth convolutional layer. For all ensemble sizes, the highest

accuracy is achieved when randomizing 10% of the weights in the fourth convolutional layer.

Ensemble size 3 has the highest accuracy 73.4%, with 70% interval. Ensemble size 4 has the

highest accuracy 75.5%, with 95% interval. Ensemble size 5 has the highest accuracy 74.6%,

with 80% interval. Ensemble size 6 has the highest accuracy 75.2%, with 70% interval.

Ensemble size 7 has the highest accuracy 75.2%, with 80% interval. Ensemble size 8 has the

highest accuracy 75.1%, with 90% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.39. Ensemble results for Uniform randomization of Inception v3,
fourth convolutional layer, on FGSM attack images

146

In Figure 4.39 , we see accuracy on the FGSM attack images with Inception v3 Uniform

ensembles which randomize the fourth convolutional layer. For all ensemble sizes with the

exception of ensemble size 4, the highest accuracy is achieved when randomizing 30% of the

weights in the fourth convolutional layer. Ensemble size 3 has the highest accuracy 41.5%,

with 95% interval. Ensemble size 4 has the highest accuracy 40.3%, with randomization

of 20% of weights in fourth convolutional layer and 95% interval. Ensemble size 5 has the

highest accuracy 41.9%, with 70% interval. Ensemble size 6 has the highest accuracy 43.9%,

with 70% interval. Ensemble size 7 has the highest accuracy 42.2%, with 80% interval.

Ensemble size 8 has the highest accuracy 41.3%, with 95% interval.

In Figure 4.40 , we see accuracy on the PGD attack images with Inception v3 Uniform

ensembles which randomize the fourth convolutional layer. For all ensemble sizes with the

exception of ensemble size 6, the highest accuracy is achieved when randomizing 20% of the

weights in the fourth convolutional layer. Ensemble size 3 has the highest accuracy 49.0%,

with 70% interval. Ensemble size 4 has the highest accuracy 49.3%, with 95% interval.

Ensemble size 5 has the highest accuracy 49.5%, with 95% interval. Ensemble size 6 has

the highest accuracy 50.4%, with randomization of 30% of weights in fourth convolutional

layer and 70% interval. Ensemble size 7 has the highest accuracy 50.2%, with 95% interval.

Ensemble size 8 has the highest accuracy 50.9%, with 95% interval.

147

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.40. Ensemble results for Uniform randomization of Inception v3,
fourth convolutional layer, on PGD attack images

148

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.41. Ensemble results for Uniform randomization of Inception v3,
fifth convolutional layer, on C&W attack images

In Figure 4.41 , we see accuracy on the C&W attack images with Inception v3 Uniform

ensembles which randomize the fifth convolutional layer. For all ensemble sizes, the highest

accuracy is achieved when randomizing 10% of the weights in the fifth convolutional layer.

Ensemble size 3 has the highest accuracy 73.7%, with 90% interval. Ensemble size 4 has the

highest accuracy 74.1%, with 70% interval. Ensemble size 5 has the highest accuracy 74.5%,

with 95% interval. Ensemble size 6 has the highest accuracy 74.6%, with 80% interval.

149

Ensemble size 7 has the highest accuracy 74.8%, with 70% interval. Ensemble size 8 has the

highest accuracy 74.8%, with 70% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.42. Ensemble results for Uniform randomization of Inception v3,
fifth convolutional layer, on DeepFool attack images

In Figure 4.42 , we see accuracy on the DeepFool attack images with Inception v3 Uniform

ensembles which randomize the fifth convolutional layer. For all ensemble sizes, the highest

accuracy is achieved when randomizing 10% of the weights in the fifth convolutional layer.

Ensemble size 3 has the highest accuracy 75.4%, with 90% interval. Ensemble size 4 has the

highest accuracy 75.3%, with 70% interval. Ensemble size 5 has the highest accuracy 75.6%,

150

with 95% interval. Ensemble size 6 has the highest accuracy 76.0%, with 70% interval.

Ensemble size 7 has the highest accuracy 75.9%, with 70% interval. Ensemble size 8 has the

highest accuracy 76.1%, with 70% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.43. Ensemble results for Uniform randomization of Inception v3,
fifth convolutional layer, on FGSM attack images

In Figure 4.43 , we see accuracy on the FGSM attack images with Inception v3 Uniform

ensembles which randomize the fifth convolutional layer. For all ensemble sizes, the highest

accuracy is achieved when randomizing 30% of the weights in the fifth convolutional layer.

Ensemble size 3 has the highest accuracy 41.2%, with 80% interval. Ensemble size 4 has the

151

highest accuracy 40.8%, with 80% interval. Ensemble size 5 has the highest accuracy 42.1%,

with 90% interval. Ensemble size 6 has the highest accuracy 41.4%, with 95% interval.

Ensemble size 7 has the highest accuracy 41.5%, with 95% interval. Ensemble size 8 has the

highest accuracy 41.3%, with 80% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.44. Ensemble results for Uniform randomization of Inception v3,
fifth convolutional layer, on PGD attack images

In Figure 4.44 , we see accuracy on the PGD attack images with Inception v3 Uniform

ensembles which randomize the fifth convolutional layer. For all ensemble sizes, the highest

accuracy is achieved when randomizing 30% of the weights in the fifth convolutional layer.

152

Ensemble size 3 has the highest accuracy 47.9%, with 90% interval. Ensemble size 4 has the

highest accuracy 46.9%, with 90% interval. Ensemble size 5 has the highest accuracy 49.1%,

with 90% interval. Ensemble size 6 has the highest accuracy 47.8%, with 95% interval.

Ensemble size 7 has the highest accuracy 47.9%, with 95% interval. Ensemble size 8 has the

highest accuracy 48.1%, with 80% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.45. Ensemble results for Uniform randomization of Inception v3,
sixth convolutional layer, on C&W attack images

In Figure 4.45 , we see accuracy on the C&W attack images with Inception v3 Uniform

ensembles which randomize the sixth convolutional layer. For all ensemble sizes, the highest

153

accuracy is achieved when randomizing 10% of the weights in the sixth convolutional layer.

Ensemble size 3 has the highest accuracy 68.9%, with 90% interval. Ensemble size 4 has the

highest accuracy 69.6%, with 90% interval. Ensemble size 5 has the highest accuracy 70.9%,

with 80% interval. Ensemble size 6 has the highest accuracy 71.1%, with 95% interval.

Ensemble size 7 has the highest accuracy 70.9%, with 70% interval. Ensemble size 8 has the

highest accuracy 71.6%, with 80% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.46. Ensemble results for Uniform randomization of Inception v3,
sixth convolutional layer, on DeepFool attack images

154

In Figure 4.46 , we see accuracy on the DeepFool attack images with Inception v3 Uniform

ensembles which randomize the sixth convolutional layer. For all ensemble sizes, the highest

accuracy is achieved when randomizing 10% of the weights in the sixth convolutional layer.

Ensemble size 3 has the highest accuracy 71.0%, with 90% interval. Ensemble size 4 has the

highest accuracy 72.1%, with 90% interval. Ensemble size 5 has the highest accuracy 73.2%,

with 80% interval. Ensemble size 6 has the highest accuracy 73.1%, with 95% interval.

Ensemble size 7 has the highest accuracy 73.2%, with 70% interval. Ensemble size 8 has the

highest accuracy 73.6%, with 90% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.47. Ensemble results for Uniform randomization of Inception v3,
sixth convolutional layer, on FGSM attack images

155

In Figure 4.47 , we see accuracy on the FGSM attack images with Inception v3 Uniform

ensembles which randomize the sixth convolutional layer. For all ensemble sizes, the highest

accuracy is achieved when randomizing 30% of the weights in the sixth convolutional layer.

Ensemble size 3 has the highest accuracy 34.5%, with 90% interval. Ensemble size 4 has the

highest accuracy 34.6%, with 95% interval. Ensemble size 5 has the highest accuracy 35.4%,

with 95% interval. Ensemble size 6 has the highest accuracy 34.9%, with 95% interval.

Ensemble size 7 has the highest accuracy 34.9%, with 90% interval. Ensemble size 8 has the

highest accuracy 34.8%, with 80% interval.

(a) Ensemble size 3 (b) Ensemble size 4

(c) Ensemble size 5 (d) Ensemble size 6

(e) Ensemble size 7 (f) Ensemble size 8

Figure 4.48. Ensemble results for Uniform randomization of Inception v3,
sixth convolutional layer, on PGD attack images

156

In Figure 4.48 , we see accuracy on the PGD attack images with Inception v3 Uniform

ensembles which randomize the sixth convolutional layer. For all ensemble sizes with the

exception of ensemble size 4, the highest accuracy is achieved when randomizing 30% of the

weights in the sixth convolutional layer. Ensemble size 3 has the highest accuracy 34.6%,

with 90% interval. Ensemble size 4 has the highest accuracy 34.9%, with randomization of

40% of weights in sixth convolutional layer and 70% interval. Ensemble size 5 has the highest

accuracy 35.6%, with 95% interval. Ensemble size 6 has the highest accuracy 35.7%, with

95% interval. Ensemble size 7 has the highest accuracy 35.4%, with 95% interval. Ensemble

size 8 has the highest accuracy 35.5%, with 80% interval.

4.7 Comparisons

We compare the performance of the random ensembles with two defense methods: ad-

versarial training and Barrage of Random Transforms (BaRT) [72]. Adversarial training,

the most popular defense strategy, is introduced in Chapter 2. BaRT is a defense strategy

based on image pre-processing. Chapter 2 has a general discussion regarding using image

pre-processing as a defense. BaRT includes ten image transformations: denoising, JPEG

compression, image swirling, Fourier transform perturbations, noise injection, color space

changes, zooming, histogram equalization, and grayscale transformations. For every batch

of images, BaRT randomly selects five transformations and apply them sequentially to the

images. Then the transformed images are handled by a DNN model. BaRT is a more

sophisticated preprocessing defense.

Compared with BaRT and adversarial training, the best random ensembles have higher

accuracy for CW2 attack and DeepFool attack. This happens to the different DNN models

and image data-sets. The random ensembles have worse performance against PGD attack

and FGSM, as in Tables 4.3 and 4.4 . We compute the average amount of perturbations

introduced by different attacks, in Table 4.2 . DeepFool and CW2 attacks introduced the

smallest amount of adversarial perturbations. PGD attack generate much larger adversarial

perturbations. FGSM attack, one of the earliest, generate the largest amount of adversar-

ial perturbation. One measure to evaluate the effectiveness of an attack is to measure the

157

amount of adversarial perturbations. The attack that requires the smallest adversarial per-

turbation is considered a strong attack. In this sense, CW2 is a strong benchmark attack,

where the random ensembles out-perform. The random ensembles become less accurate

when very large adversarial perturbations are added to the samples.

The random ensembles of Inception V3 have very strong performance on Tiny ImageNet

against all four attacks. Using random weights at the front of a DNN model has the best

result for DNN with big and complex model structure.

Table 4.2. Average L2 distance between clean and adversarial examples.

Model PGD FGSM DeepFool C&W2

CNN3 9.999 13.088 5.379 4.411
VGG16 2.999 7.955 1.559 0.825
ResNet18 2.999 7.970 1.634 0.913
Incept v3 2.999 7.999 0.715 1.106

Table 4.3. Accuracy of BaRT defense on clean and adversarial images

Model Clean images PGD FGSM DeepFool C&W2

CNN3 0.988 0.000 0.049 0.444 0.293
VGG16 0.865 0.592 0.439 0.820 0.834
ResNet18 0.806 0.545 0.373 0.750 0.764
Incept v3 0.721 0.105 0.166 0.316 0.188

Table 4.4. Accuracy of adversarial training defense on clean and adversarial images

Model Clean images PGD FGSM DeepFool C&W2

CNN3 0.981 0.338 0.861 0.713 0.530
VGG16 0.880 0.631 0.417 0.800 0.836
ResNet18 0.806 0.584 0.398 0.731 0.750
Incept v3 0.748 0.589 0.498 0.635 0.713

158

5. CANCER DATA PROJECT

Ovarian cancer (OC) is the second most common form of gynecologic cancer and is the

most fatal among all forms of gynecologic malignancies [73]. Despite the important role of

metabolic processes in the molecular pathogenesis of OC, robust metabolic markers to en-

able effective screening, rapid diagnosis, accurate surveillance, and therapeutic monitoring

of OC are still lacking. In this study, we present a targeted liquid chromatography-tandem

mass spectrometry (LC-MS/MS)-based metabolic profiling approach for the identification of

both lipid and metabolite biomarker candidates that could enable expedited, highly sensitive

and specific OC detection. Using this targeted approach, 90 plasma metabolites from many

metabolic pathways of potential biological significance were reliably detected and monitored

in 218 plasma samples taken from three groups of subjects (78 OC patients, 50 benign

samples, and 90 healthy controls). Univariate significance testing and receiver operating

characteristic (ROC) analysis revealed 7 metabolites with high predictive accuracy [area un-

der curve (AUC) > 0.90] for distinguishing healthy controls from OC patients. The results

of our multivariate model development informed the construction of a 5-metabolite panel of

potential plasma biomarkers for enhanced discrimination of OC samples from benign spec-

imens, exhibiting roughly 75% predictive accuracy using a 50% random-split training set.

ROC analysis that was generated based on a logistic regression classifier showed enhanced

classification performance relative to individual metabolites, with more than 75% accuracy

using a testing data set for external validation. Pathway analysis revealed significant distur-

bances in glycine, serine, and threonine metabolism; glyoxylate and dioxylate metabolism;

the pentose phosphate pathway; and histidine metabolism. The results expand basic knowl-

edge of the metabolome related to OC pathogenesis relative to healthy controls and benign

samples, revealing potential pathways or markers that can be targeted therapeutically. This

study also provides a promising basis for the development of larger multi-site projects to vali-

date our findings across population groups and further advance the development of improved

clinical care for OC patients.

It is reported that OC has an annual incidence rate of 239,000 and accounts for a total

of 152,000 deaths each year, ranking it the seventh most common form of cancer among

159

women worldwide.[74] Unlike other forms of cancers where there are recommended screening

techniques available with high sensitivity to detect the early development of tumors, there are

currently no effective routine screening tests recommended for OC.[75] Thus, due to either

similarities in symptoms between OC and other diseases or lack of symptoms altogether,

most cases are diagnosed in late stages of disease progression when 5-year survival rates

are only 29%, whereas only a mere 15% of OC cases are diagnosed in stage 1 when 5-year

survival rates are reported as high as 92%.[74] Current screening techniques used regularly

in the clinical diagnosis of symptomatic OC, such as pelvic examination and transvaginal

ultrasound, are invasive and have been found vastly inaccurate.[76], [77] To date, the cancer

antigen 125 (CA-125) blood biomarker remains one of the most commonly used tests for

symptomatic OC diagnosis owing to its nonintrusive sampling, but is reported to produce

high rates of false-positive diagnoses and is nonspecific to OC, as it can be reflective of

various other malignant and nonmalignant conditions ranging from pancreatic cancer to liver

cirrhosis.[78], [79] Therefore, a critical demand exists for a noninvasive diagnostic method

high in both sensitivity and specificity, which would allow for the prompt diagnosis and

effective treatment of OC.

Recent efforts focused on advanced methods for OC detection have borne promising re-

sults. The human epididymis protein 4 (HE4), a glycoprotein overly expressed in forms of

female reproductive cancers, and mesothelin (MES), an antigen on the mesothelium that is

shown to be elevated in OC, have been found to increase the accuracy of the CA-125 blood

biomarker test when used in conjunction with the Risk of Ovarian Malignancy Algorithm

(ROMA).[80], [81] Additionally, analyses of genetic alterations, such as using comparison

genome hybridization (CGH) with cDNA and mRNA, have found interesting amplifications

and deletions in certain genes that suggest mechanisms of early stages of OC tumor de-

velopment and potential targets for pharmacological interventions.[82], [83] Specifically, the

BRCA1/2 gene has become an increasingly popular target of genetic testing, as it has been

linked to both OC and breast cancer, although only 22% of OC cases have been characterized

as hereditary.[C] Hence, these methods, among many others, have failed to assert narrow

diagnostic accuracies to encompass the complexities of OC.

160

Metabolic disturbances, downstream of altered genetic and proteomic factors, ultimately

contribute to tumor malignancy and are a signature hallmark of cancer,[84] providing ra-

tionale for discovery and validation of tumorigenic biomarkers and possible therapeutic tar-

gets.[85] Indeed, increased metabolic activity, specifically glucose uptake via the Warburg

Effect, is a signature mark of cancer. Consequently, metabolomics, the study of comprehen-

sive arrays of small molecule metabolites and their interactions in biological systems, holds

great potential in cancer detection given its high sensitivity and specificity in detecting var-

ious aspects of cellular metabolism.[84], [86] Of specific note is the ability to investigate

lipid metabolites, which have proven auspicious in studies investigating cancer metabolism

due to their functions in cellular membrane maintenance, energy storage, and molecular

signaling pathways. Furthermore, the aptitudes of metabolomics and lipidomics to test pa-

tients via noninvasive methods, such as urine or blood sampling, make these methods highly

desirable tools for biomarker discovery and early diagnoses. Several studies have employed

various mass-spectrometry based metabolomics approaches to analyze altered metabolic phe-

notypes and biological pathways associated with cancer, leading to significant progress in

understanding cancer pathogenesis, developing advanced diagnostic methods, and identifying

novel drug targets for clinical practice.[85], [87], [88] Previous studies investigating metabolic

phenotypes suggestive of OC malignancies compared to healthy controls and benign tumors

have employed an assortment of approaches, including high-performance liquid chromatog-

raphy mass spectrometry (HPLC-MSMS), ultraperformance liquid chromatography mass

spectrometry (UPLC-MS), and rapid resolution liquid chromatography mass spectrometry

(RRLC-MS), from which significant alterations in metabolic profiles specific to OC have

been reported.[76],[89]–[91] A few notable patterns have emerged in the phenotypic makeup

of metabolites associated with OC, namely, alterations in metabolites related to amino acid

metabolism, where elevated concentrations of known energy substrates such as glutamine

and glutamate have been reported,[92]–[94] and in carbohydrate metabolism, where byprod-

ucts of anaerobic respiration such as lactate have been found to be decreased in aqueous

samples[95] and elevated in tissue samples.[96] Thus, the production of novel biomarkers of

disease from metabolomics-based research could be used as a diagnostic tool in the early

detection of OC and differentiation of OC from benign specimens.

161

While results of metabolomics studies for improved OC diagnosis are encouraging,[86],

[89]–[92], [95], [97] most of the previous studies investigating OC biomarkers for improved

diagnosis have, to date, have focused on discernment of cancer patients from healthy controls,

limiting the clinical applicability of such tests in distinguishing benign tumors from cancerous

malignancies. As such, there remains a critical need to examine a broad array of metabolites

for accurate identification of OC from both benign and control samples. In this study, a

large-scale, targeted metabolomics approach in addition to advanced multivariate statistics

was applied to the analysis of OC, benign, and control samples for the purposes of biomarker

discovery.

5.1 Experiment

5.1.1 Reagents

Acetonitrile (ACN), methanol (MeOH), ammonium acetate (NH4OAc), and acetic acid

(AcOH), all LC-MS grade, were purchased from Fisher Scientific (Pittsburgh, PA). Am-

monium hydroxide (NH4OH) was bought from Sigma-Aldrich (Saint Louis, MO). DI water

was provided in-house by a Water Purification System from EMD Millipore (Billerica, MA).

Phosphate buffered saline (PBS) was bought from GE Healthcare Life Sciences (Logan,

UT). Standard compounds corresponding to the measured metabolites were purchased from

Sigma-Aldrich (Saint Louis, MO) and Fisher Scientific (Pittsburgh, PA).

5.1.2 Clinical samples

The samples were collected under a previously approved IRB protocol with waived con-

sent. Clinical samples were purchased from the Fred Hutchinson Cancer Research Center

(FHCRC; Seattle, WA) and Bloodworks Northwest (Seattle, WA). Informed consent was

obtained from all participants (OC patients, patients with benign samples, and healthy con-

trols) before sample collection at the aforementioned research institutes. All participants

were evaluated, and blood samples were obtained following an overnight fast. De-identified

aliquots were provided to the Arizona Metabolomics Laboratory (College of Health Solutions,

Arizona State University) for processing.

162

5.1.3 Sample preparation

Samples had been frozen under –80°C prior to analysis. Frozen plasma samples were

first thawed overnight under 4°C. Afterward, 50 µL of each plasma sample was placed in a

2 mL Eppendorf vial. The initial step for protein precipitation and metabolite extraction

was performed by adding 500 µL MeOH and 50 µL internal standard solution (containing

1,810.5 µM 13C3-lactate and 142 µM 13C5-glutamic acid). The mixture was then vortexed

for 10 s and stored at –20°C for 30 min, followed by centrifugation at 14,000 RPM for

10 min at 4°C. The supernatants (450 µL) were collected into new Eppendorf vials and

dried using a CentriVap Concentrator (Labconco, Fort Scott, KS). The dried samples were

reconstituted in 150 µL of 40% PBS/60% ACN and centrifuged again at 14,000 RPM at

4°C for 10 min. After that, 100 µL of supernatant was collected from each sample into an

LC autosampler vial for subsequent analysis. A pooled sample, which was a mixture of all

plasma samples, were used as the internal quality-control (QC) sample and injected once

every 10 experimental samples.

The targeted LC-MS/MS method used here was modeled after that developed and used in

a growing number of studies. [98]–[103] Briefly, all LC-MS/MS experiments were performed

on an Agilent 1290 UPLC-6490 QQQ-MS system (Santa Clara, CA). Each sample was in-

jected twice, 10 µL for analysis using negative ionization mode and 4 µL for analysis using

positive ionization mode. Both chromatographic separations were performed in hydrophilic

interaction chromatography (HILIC) mode on a Waters XBridge BEH Amide column (150

x 2.1 mm, 2.5 µm particle size, Waters Corporation, Milford, MA). The flow rate was 0.3

mL/min, auto-sampler temperature was kept at 4°C, and the column compartment was set

to 40°C. The mobile phase was composed of Solvents A (10 mM ammonium acetate, 10 mM

ammonium hydroxide in 95% H2O/5% ACN) and B (10 mM ammonium acetate, 10 mM

ammonium hydroxide in 95% ACN/5% H2O). After an initial 1 min isocratic elution of 90%

B, the percentage of Solvent B decreased to 40% at t = 11 min. The composition of Solvent

B was maintained at 40% for 4 min (t = 15 min), after which the percentage of B gradually

returned to 90%, in preparation for the next injection.

163

The mass spectrometer was equipped with an electrospray ionization (ESI) source. Tar-

geted data acquisition was performed in multiple-reaction-monitoring (MRM) mode. We

monitored 118 and 160 MRM transitions in negative and positive mode, respectively (278

transitions in total). The whole LC-MS system was controlled by Agilent MassHunter Work-

station software (Santa Clara, CA). The extracted MRM peaks were integrated using Agilent

MassHunter Quantitative Data Analysis software (Santa Clara, CA).

5.2 Preliminary analysis

Univariate testing was performed using SPSS 22.0 (SPSS Inc., Chicago, IL). Multivariate

statistical analyses were performed using open-source R software and SIMCA-P (Umetrics,

Ume̊a, Sweden). The data were log10-transformed prior to significance testing and model

construction. Pathway analysis and integrating enrichment analysis were performed and

visualized using the online MetaboAnalyst software.[104]

A total of 78 OC patients, 90 healthy controls, and 50 benign samples were included in

the study. There was no statistically significant difference in age (p > 0.05) between OC,

control, and benign groups as calculated by the Mann-Whitney U test. Table 5.1 shows the

clinical characteristics of subjects included in the study.

Table 5.1. Clinical and characteristics of study subjects.

Ovarian Cancer Benign Healthy Control

N 78 50 90
Age (mean±SD) 66.88±8.49 63.57±9.72 65.37±10.63
Stage I and II 56 (72%)
Stage III and IV 22 (28%)
Serous cystadenoma 14 (28%)
Ovary 8 (16%)
Leiomyomata 8 (16%)
Mature cystic teratoma 5 (10%)
Others 15 (30%)

In the current study, we used a large-scale, targeted LC-MS/MS approach for reliable

and comprehensive OC plasma metabolic profiling.[87] Using this metabolic profiling system,

164

targeted analysis of 278 MRM transitions was achieved for metabolites spanning over 20

different chemical classes (such as amino acids, carboxylic acids, pyridines, etc.) from more

than 35 metabolic pathways (e.g., TCA cycle, amino acid metabolism, glycolysis, purine and

pyrimidine metabolism, urea cycle, etc.) in both positive and negative ionization modes. In

total, we found that 90 plasma metabolites were reliably detected with relative abundances

> 1,000 in more than 80% of all samples. After normalization by averaged values from

QC injection data, relative levels of the 90 plasma metabolites had a median coefficient of

variation (CV) value of 11.53% (range: 3.37%-19.95%) with 75% of metabolites having CV

< 15%.

Of the 90 reliably detected plasma metabolites, 32 showed statistical significance between

OC patients, benign samples, and healthy controls as determined by Kruskal-Wallis one-way

ANOVA testing. Volcano plots of the tested plasma metabolites showing significance and

fold change values for each post-hoc comparison is presented in Figure 5.1 . Comparatively,

24 metabolites were found to be significant and have a high degree of fold-change (FC)

between cancer/healthy samples, while 20 metabolites met these criteria when comparing

benign/healthy samples. For comparison of cancerous and benign samples, 5 metabolites had

p<0.05 and FC>2 or <0.50. The 5 significant metabolites found to have a high magnitude

of fold change were 4-pyridoxic acid, azelaic acid, biotin, sorbitol, and glycine.

To further explore potential biomarkers for discrimination between OC patients, non-OC

benign samples, and healthy controls, levels of the 90 reliably detected plasma metabolites

were subjected to receiver operating characteristic (ROC) analysis and results summarized in

Table 5.2 . When comparing healthy and benign samples, 5 metabolites had area under curve

(AUC) > 0.90, whereas 6 metabolites had AUC > 0.90 for the comparison of healthy controls

and OC patients. However, for discernment of benign and OC samples, no metabolites

satisfied this criterion, with the highest metabolites showing 70% accuracy. In an effort to

increase the predictive accuracy and meet an important clinical need, logistic regression was

applied using levels of the 5 significant metabolites found to have a high magnitude of fold

change [4-pyridoxic acid, azelaic acid, biotin, sorbitol, glycine]. Benign and cancer samples

were randomly assigned to either a training set (50%) or testing set (50%) for external cross

165

Figure 5.1. Volcano plot of (A) benign/healthy comparison, (B) can-
cer/healthy comparison, and (C) cancer/benign comparison. Fold change (FC)
threshold: 2.0; FDR-adjusted p-value threshold: 0.05. Unequal group variance
was assumed, non-parametric test was used.

166

Figure 5.2. Evaluation of logistic regression model performance constructed
using a 50% testing data set of benign and cancer samples [AUC = 0.753,
sensitivity = 0.641 when specificity = 0.840].

validation. Construction of the logistic model using testing set data is given in Equation

 5.1 .

Logit(p) = −26.104 + 0.31 ∗ 4-Pyridoxic acid + 0.619 ∗ Azelaic acid

+ 0.194 ∗ Biotin) + 0.26 ∗ Sorbitol + 0.557 ∗Glycine (5.1)

Performance of the logistic training model was evaluated using ROC analysis. The model

showed improved accuracy for discrimination of cancer from benign samples in comparison

to the univariate performance of any individual metabolite [AUC = 0.791, sensitivity =

0.638 when specificity = 0.838]. The training set derived algorithm (Equation 5.1) was

applied to testing set data in order to evaluate external validity and predictive performance.

As depicted in Figure 5.2 , the model proved to be robust when evaluating new samples,

167

demonstrating predictive accuracy still higher than that of univariate classifiers [AUC =

0.753, sensitivity = 0.641 when specificity = 0.840].

Table 5.2. Univariate Metabolite Performance Based on Healthy vs Benign

Comparison Metabolite AUC

Healthy vs. Benign N’N-Dicyclohexylurea 0.996
Carnitine 0.991
Creatine 0.952
Acetylcholine 0.914
Biotin 0.907

Healthy vs. Cancer Biotin 0.957
N’N-Dicyclohexylurea 0.949
HIAA 0.914
Kynurenine 0.906
Acetylcholine 0.906
9-Octadecynoic acid 0.901

Levels of the 5 significant metabolites with high fold factor change [4-pyridoxic acid,

azelaic acid, biotin, sorbitol, glycine] to detect cancer from benign are shown as box plots

in Figure 5.3 . Unfortunately both the univariate selection and the selection based on fold

change does not work sufficiently well for separating cancer from benign. Next we introduce

a likelihood ratio biomarker selection method.

Figure 5.3. Box plots of candidate plasma markers (all p < 0.05 and FC
> 2 or < 0.50) for detection of cancer from benign samples. Data were log10
normalized.

168

5.3 Metabolite selection using likelihood ratio approach

A likelihood ratio approach was implemented to discover additional metabolites of great-

est statistical significance to be used in further analysis. This approach was implemented on

pareto-scaled data from the UA 2 testing site. A test statistic based on the likelihood ratio

was assigned to each metabolite, as the quotient of the likelihood of a bimodal distribution

and the likelihood of a unimodal distribution. The test statistic, Rj , for the jth metabolite

is the following.

Rj =
L[µ̂1, µ̂2, σ̂2

1, σ̂
2
2 |n1, x

1
1,j, ..., xn1,j1, n2, x

2
1,j, ..., x

2
n2,j]

L[µ̂, σ̂2 |n, x1
1,j, ..., x

1
n1,j, x

2
1,j, ..., x

2
n2,j]

(5.2)

The plot of the test statistics is shown in Figure 5.4 . Natural breaks in the plot can be

seen at several points, including 8, 12, and 24 markers. The 12 metabolites with the highest

likelihood ratio test statistic, in order, are PC (18:1/18:1), Oleic acid, PC 34:1, PC 34:2, PC

36:4, L-Alloisoleucine/Leucine/Norleucine, PC 34:0, Palmitic acid, PC 38:4, Acetylcarnitine,

Betaine, and Isoleucine. Table 5.3 outlines all metabolites used in further analyses including

Support Vector Machine (SVM) and Convolutional Neural Networks (CNNs).

Figure 5.4. Selected biomarkers from both fold change and likelihood ratio approach.

169

Table 5.3. Selected Metabolites Based on Likelihood Ratio and Fold Change

Selection strategy Biomarker Biomarker type

Fold change 4-pyridoxic acid Metabolite
Azelaic acid Metabolite
Biotin Metabolite
Sorbitol Metabolite
Glycine Metabolite

Likelihood ratio PC (18:1/18:1) Lipid
Oleic acid Lipid
PC 34:1 Lipid
PC 34:2 Lipid
PC 36:4 Lipid
L-Alloisoleucine/Leucine/Norleucine Metabolite
PC 34:0 Lipid
Palmitic acid Lipid
PC 38:4 Lipid
Acetylcarnitine Metabolite
Betaine Metabolite
Isoleucine Metabolite

5.4 SVM accuracies and ROC

SVM was performed using R for Pareto scaled AML Ovarian Cancer data. The five

markers identified by fold change analysis were used in all models. Additional markers were

determined using the likelihood ratio approach on Pareto scaled data from testing site UA2.

Up to 12 additional metabolites were considered when developing SVM models. A cut-off of

12 was selected based on a natural break visible in Figure 5.4 . Different SVM models were

run for several different subsets of the data. The data from UA 2 was considered to be the

training dataset. Leave-one-out cross validation and radial kernel were used.

The highest level of validation accuracy in the training set is achieved when all 17 metabo-

lites are in the model, with 77.2% accuracy. For all future analyses, the full 17 metabolites

were considered in each model. Several group combinations of the dataset were considered,

summarized in Table 5.4 . The lowest SVM validation accuracies are achieved when compar-

ing the cancerous and benign, regardless of cancer site. Accuracies above 90% were achieved

when comparing Cancer and Healthy (regardless of cancer site), and both cancer sites com-

170

bined compared to a combination of healthy and benign. ROC curves for each of the five

two-way comparisons are shown in Figures 5.5 - 5.9 .

Figure 5.5. ROC curve of Cancer/Benign CNN, 17 markers.

Figure 5.6. ROC curve of Cancer(UA2)/Healthy SVM, 17 markers.

171

Figure 5.7. ROC curve of Cancer(UA1)/Benign SVM, 17 markers.

Figure 5.8. ROC curve of Cancer/Healthy SVM, 17 markers.

172

Figure 5.9. ROC curve of Cancer/Non-Cancer SVM, 17 markers.

Table 5.4. SVM validation accuracies. All accuracies are shown for models
including 17 biomarkers.

Comparison Groups n accuracy

Cancer(UA2)/Benign 79 0.772
Cancer(UA2)/Healthy 117 0.983
Cancer(BioIVT)/Benign 93 0.774
Cancer(BioIVT)/Healthy 131 0.916
Cancer(UA2)/Benign/Healthy 165 0.8364
Cancer/Non-cancer 210 0.9095

5.5 CNN accuracies and ROC

Neural networks were used to classify the data. Models were created using 17 metabolites,

including the 5 identified by fold change and the top 12 identified by the likelihood ratio

approach. There were also networks trained using all 203 biomarkers. The following models

were run in Matlab using trainNetwork. The accuracies listed in Table 5.5 are that of leave-

one-out cross validation. A single layer convolutional neural network (CNN) was employed

with an initial learn rate of 1e-5.

173

Figure 5.10. ROC curve of Cancer/Benign CNN, 17 markers.

Figure 5.11. ROC curve of Cancer(UA2)/Healthy CNN, 17 markers.

Table 5.5. CNN leave-one-out cross validation accuracies.

Comparison Groups n 17 markers 203 markers

Cancer(UA2)/Benign 79 0.6329 0.5443
Cancer(UA2)/Healthy 117 0.9060 0.5470
Cancer(BioIVT)/Benign 93 0.6452 0.4731
Cancer(BioIVT)/Healthy 131 0.5267 0.4962
Cancer(UA2)/Benign/Healthy 165 0.5818 0.3394
Cancer/Non-cancer 210 0.5476 0.5095

174

Figure 5.12. ROC curve of Cancer(UA1)/Benign CNN, 17 markers.

Figure 5.13. ROC curve of Cancer/Healthy CNN, 17 markers.

5.6 Discussion

We present the CNN along with SVM results even though the CNN results are under-

whelming. The field of metabolomics and bioinformatics in general is researching on how

deep learning can advanced the field beyond the traditional machine learning techniques.

However we witness that the small sample size is a major hurdle when applying CNN to

metabolomics data for feature extraction or classification. Even a shallow neural network

requires a large sample size to avoid overfitting. [105] has demonstrated that network struc-

tures could be developed specific to the data types to help overcome the issue of small data.

175

Figure 5.14. ROC curve of Cancer/Non-Cancer CNN, 17 markers.

A second issue is when the omics data are naturally highly noisy. CNN or fully connected

networks are successful when the different classes in omics data are well separated, e.g., Fig-

ure 5.11 , even when sample size is small. On the other hand, highly mixed classes combined

with small sample size would require further development of deep learning models for the

omics field.

176

6. CONCLUSION

Building a random ensemble of DNNs has its advantage – the adaptive attacks lose the

target. The random ensembles are also able to maintain the same level of accuracy on the

clean data as the baseline DNN model. A random ensemble approach is not perfect, as we

see the performance against the attacks that add much large amount of perturbations are

much lower. Building a robust DNN framework merits more effort. Meanwhile as we have

a smaller and more noisy metabolomics data, we see the more classical methods based on

biomarker selection and SVM achieves better results than NN. Extending NN model to noisy

and small samples will expand its application to a broad set of applications, but also merit

more efforts.

177

REFERENCES

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus,
“Intriguing properties of neural networks,” in Proceedings of the International Conference
on Learning Representations (ICLR), 2014, pp. 1–10.

[2] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and defenses for
deep learning,” IEEE transactions on neural networks and learning systems, pp. 1–20, 2019.

[3] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning in computer
vision: A survey,” IEEE Access, vol. 6, pp. 14 410–14 430, 2018.

[4] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of adversarial machine
learning,” Pattern Recognition, vol. 84, pp. 317–331, 2018.

[5] N. Akhtar, A. Mian, N. Kardan, and M. Shah, “Advances in adversarial attacks and
defenses in computer vision: A survey,” IEEE Access, vol. 9, pp. 155 161–155 196, 2021.

[6] A. Kurakin, I. Goodfellow, S. Bengio, Y. Dong, F. Liao, M. Liang, T. Pang, J. Zhu,
X. Hu, C. Xie, et al., “Adversarial attacks and defences competition,” in The NIPS’17 Com-
petition: Building Intelligent Systems, Springer, 2018, pp. 195–231.

[7] X. Zhang, H. Chen, and F. Koushanfar, “Tad: Trigger approximation based black-box
trojan detection for ai,” arXiv preprint arXiv:2102.01815, 2021.

[8] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” in International Conference on Learning Representations, 2015, pp. 1–12.

[9] A. Rozsa, E. M. Rudd, and T. E. Boult, “Adversarial diversity and hard positive gener-
ation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2016, pp. 25–32.

[10] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning at scale,” in
Proceedings of the 6th International Conference on Learning Representations (ICLR), 2017,
pp. 1–10.

[11] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning
models resistant to adversarial attacks,” in Proceedings of the 6th International Conference
on Learning Representations (ICLR), 2018, pp. 1–10.

[12] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting adversarial
attacks with momentum,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 9185–9193.

178

[13] N. Carlini and D. Wagner, “Adversarial examples are not easily detected: Bypassing
ten detection methods,” in Proceedings of the 10th ACM Workshop on Artificial Intelligence
and Security, ACM, 2017, pp. 3–14.

[14] P.-Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh, “Ead: Elastic-net attacks
to deep neural networks via adversarial examples,” in Thirty-second AAAI conference on
artificial intelligence, 2018, pp. 1–9.

[15] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The
limitations of deep learning in adversarial settings,” in 2016 IEEE European Symposium on
Security and Privacy (EuroS&P), 2016, pp. 372–387.

[16] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple and accurate
method to fool deep neural networks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR), 2016, pp. 2574–2582.

[17] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adversarial
perturbations,” in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, 2017, pp. 1765–1773.

[18] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images,” in Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), 2015, pp. 427–436.

[19] Z. Zhao, D. Dua, and S. Singh, “Generating natural adversarial examples models,”
arXiv, vol. 1710.11342, 2017.

[20] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial exam-
ples and black-box attacks,” in Proceedings of the 6th International Conference on Learning
Representations (ICLR), 2017, pp. 1–10.

[21] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth order optimiza-
tion based black-box attacks to deep neural networks without training substitute models,” in
Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, 2017, pp. 15–
26.

[22] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural networks,”
IEEE Transactions on Evolutionary Computation, 2019.

[23] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical world,”
in Proceedings of the 6th International Conference on Learning Representations (ICLR),
2017, pp. 1–10.

179

[24] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial attacks with
limited queries and information,” in Proceedings of the 6th International Conference on
Learning Representations (ICLR), 2018, pp. 1–10.

[25] X. Liu, H. Yang, Z. Liu, L. Song, H. Li, and Y. Chen, “Dpatch: An adversarial patch at-
tack on object detectors,” in The AAAI’s Workshop on Artificial Intelligence Safety (SafeAI
2019), 2019, pp. 1–8.

[26] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnerabilities in the ma-
chine learning model supply chain,” arXiv, vol. 1708.06733, 2017.

[27] Y. Li, S. Ma, Y. AAfer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang, “Trojaning attack
on neural networks,” Department of Computer Science Technical Reports, vol. 1781, 2017.

[28] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a defense
to adversarial perturbations against deep neural networks,” in 2016 IEEE Symposium on
Security and Privacy, 2016, pp. 582–597.

[29] F. Tramer, N. Carlini, W. Brendel, and A. Madry, “On adaptive attacks to adversarial
example defenses,” Advances in Neural Information Processing Systems, vol. 33, pp. 1633–
1645, 2020.

[30] Y.-C. Lin, M.-Y. Liu, M. Sun, and J.-B. Huang, “Detecting adversarial attacks on neural
network policies with visual foresight,” arXiv, vol. 1710.00814, 2017.

[31] D. Meng and H. Chen, “Magnet: A two-pronged defense against adversarial examples,”
CCS, 2017.

[32] D. Hendrycks and K. Gimpel, “Early methods for detecting adversarial images,” 2017.

[33] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel, “On the (statis-
tical) detection of adversarial examples,” arXiv, vol. 1702.06280, 2017.

[34] Z. Gong, W. Wang, and W.-S. Ku, “Adversarial and clean data are not twins,” arXiv,
vol. 1704.04960, 2017.

[35] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting adversarial samples
from artifacts,” arXiv, vol. 1703.00410, 2017.

[36] A. N. Bhagoji, D. Cullina, and P. Mittal, “Dimensionality reduction as a defense against
evasion attacks on machine learning classifiers,” arXiv, vol. 1704.02654, 2017.

[37] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting adversarial
perturbations,” 2017.

180

[38] J. Lu, T. Issaranon, and D. Forsyth, “Safetynet: Detecting and rejecting adversarial
examples robustly,” arXiv, vol. 1704.00103, 2017.

[39] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for detecting out-of-
distribution samples and adversarial attacks,” arXiv, vol. 1807.03888, 2018.

[40] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bangio, “Binarized neural
networks: Training neural networks with weights and activations constrained to +1 or 1,”
arXiv, vol. 1602.02830, 2016.

[41] A. Nguyen, J. Yosinski, and J. Clune, “Attacking binarized neural networks,” in Pro-
ceedings of the 6th international conference on learning representations (iclr), 2018.

[42] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” arXiv,
vol. 1412.6980v9, 2017.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” arXiv, vol. 1502.01852, 2015.

[44] M. Shin, H. Cho, H.-s. Min, and S. Lim, “Neural bootstrapper,” Advances in Neural
Information Processing Systems, vol. 34, pp. 16 596–16 609, 2021.

[45] S. E. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A. Rabinovich, “Training
deep neural networks on noisy labels with bootstrapping,” in ICLR Workshop, 2015.

[46] G. Paass, “Assessing and improving neural network predictions by the bootstrap algo-
rithm,” Advances in Neural Information Processing Systems, vol. 5, 1992.

[47] J. Nixon, B. Lakshminarayanan, and D. Tran, “Why are bootstrapped deep ensembles
not better?” In ”I Can’t Believe It’s Not Better!”NeurIPS 2020 workshop, 2020.

[48] J. Franke and M. H. Neumann, “Bootstrapping neural networks,” Neural computation,
vol. 12, no. 8, pp. 1929–1949, 2000.

[49] J. Lee, Y. Lee, J. Kim, E. Yang, S. J. Hwang, and Y. W. Teh, “Bootstrapping neural
processes,” Advances in neural information processing systems (NIPS), vol. 33, pp. 6606–
6615, 2020.

[50] M. K. Tiwari and C. Chatterjee, “Uncertainty assessment and ensemble flood forecasting
using bootstrap based artificial neural networks (banns),” Journal of Hydrology, vol. 382,
no. 1-4, pp. 20–33, 2010.

181

[51] E. Zio, “A study of the bootstrap method for estimating the accuracy of artificial neural
networks in predicting nuclear transient processes,” IEEE Transactions on Nuclear Science,
vol. 53, no. 3, pp. 1460–1478, 2006.

[52] J. Ji, Y. Sun, F. Kong, and Q. Miao, “A construction approach to prediction intervals
based on bootstrap and deep belief network,” IEEE Access, vol. 7, pp. 124 185–124 195, 2019.

[53] H. Du, E. Barut, and F. Jin, “Uncertainty quantification in cnn through the bootstrap
of convex neural networks,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, 2021, pp. 12 078–12 085.

[54] E. Nalisnick and P. Smyth, “The amortized bootstrap,” in ICML 2017 Workshop on
Implicit Models, 2017.

[55] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable predictive
uncertainty estimation using deep ensembles,” Advances in neural information processing
systems, vol. 30, 2017.

[56] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty in
neural network,” in International conference on machine learning, 2015, pp. 1613–1622.

[57] U. Simsekli, L. Sagun, and M. Gurbuzbalaban, “A tail-index analysis of stochastic gra-
dient noise in deep neural networks,” in Proceedings of the 36th International Conference on
Machine Learning, 2019, pp. 5827–5837.

[58] G. Franchi, A. Bursuc, E. Aldea, S. Dubuisson, and I. Bloch, “Tradi: Tracking deep
neural network weight distributions,” in European Conference on Computer Vision, 2020,
pp. 105–121.

[59] M. Mahoney and C. Martin, “Traditional and heavy tailed self regularization in neural
network models,” in International Conference on Machine Learning, PMLR, 2019, pp. 4284–
4293.

[60] C. H. Martin and M. W. Mahoney, “Implicit self-regularization in deep neural networks:
Evidence from random matrix theory and implications for learning.,” J. Mach. Learn. Res.,
vol. 22, no. 165, pp. 1–73, 2021.

[61] M. Vladimirova, J. Arbel, and P. Mesejo, “Bayesian neural networks become heavier-
tailed with depth,” in NeurIPS 2018-Thirty-second Conference on Neural Information Pro-
cessing Systems, 2018, pp. 1–7.

[62] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,”
University of Toronto, Toronto, Ontario, Tech. Rep. 0, 2009.

182

[63] B. Efron, “Bootstrap Methods: Another Look at the Jackknife,” The Annals of Statistics,
vol. 7, no. 1, pp. 1–26, 1979. doi: 10 . 1214 / aos / 1176344552 . [Online]. Available: https :
//doi.org/10.1214/aos/1176344552 .

[64] B. Efron, “Better bootstrap confidence intervals,” Journal of the American Statistical
Association, vol. 82, no. 397, pp. 171–185, 1987. doi: 10.2307/2289144 . [Online]. Available:

 https://doi.org/10.2307/2289144 .

[65] M. R. Chernick, Bootstrap Methods: A Practitioner’s Guide. New York: Wiley, 1999.

[66] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv, vol. 1409.1556, 2015.

[67] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception
architecture for computer vision,” arXiv, vol. 1512.00567v3, 2015.

[68] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
arXiv, vol. 1512.03385, 2015.

[69] F. J. Massey, “The kolmogorov-smirnov test for goodness of fit,” Journal of the Ameri-
can Statistical Association, vol. 46, no. 253, pp. 65–78, 1951. doi: 10.2307/2280095 . [Online].
Available: https://doi.org/10.2307/2280095 .

[70] L. N. Vaserstein, “Markov processes over denumerable products of spaces, describing
large systems of automata,” Problems Inform. Transmission, vol. 5, no. 3, pp. 47–52, 1969.

[71] A. Ramdas, N. Garcia, and M. Cuturi, “On wasserstein two sample testing and re-
lated families of nonparametric tests,” 2015. doi: 10.48550/ARXIV.1509.02237 . [Online].
Available: https://arxiv.org/abs/1509.02237 .

[72] E. Raff, J. Sylvester, S. Forsyth, and M. McLean, “Barrage of random transforms for
adversarially robust defense,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 6528–6537.

[73] R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics,” CA Cancer J Clin, vol. 62,
pp. 10–29, 2012.

[74] B. M. Reid, J. B. Permuth, and T. Sellers, “Epidemiology of ovarian cancer: A review,”
Cancer Biology Medicine, vol. 14, pp. 9–32, 2017.

[75] R. A. Smith, D. Manassaram-Baptiste, D. Brooks, M. Doroshenk, S. Fedewa, D. Saslow,
O. W. Brawley, and R. Wender, “Cancer screening in the united states, 2015: A review of
current american cancer society guidelines and current issues in cancer screening,” CA Cancer
J Clin, vol. 65, pp. 30–54, 2015.

183

https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.2307/2289144
https://doi.org/10.2307/2289144
https://doi.org/10.2307/2280095
https://doi.org/10.2307/2280095
https://doi.org/10.48550/ARXIV.1509.02237
https://arxiv.org/abs/1509.02237

[76] N. Kozar, K. Kruusmaa, M. Bitenc, R. Argamasilla, A. Adsuar, N. Goswami, D. Arko,
and I. Takač, “Metabolomic profiling suggests long chain ceramides and sphingomyelins as
a possible diagnostic biomarker of epithelial ovarian cancer,” Clin. Chim. Acta, vol. 481,
pp. 108–114, 2018.

[77] J. T. Henderson, E. M. Webber, and G. F. Sawaya, “Screening for ovarian cancer up-
dated evidence report and systematic review for the us preventive services task force,” JAMA,
vol. 319, pp. 595–606, 2018.

[78] I. A. Yakasai and L. A. Bappa, “Diagnosis and management of adnexal masses in preg-
nancy,” J Surg Tech Case Report, vol. 4, pp. 79–85, 2012.

[79] K. Pepin, M. G. del Carmen, A. K. Brown, and D. S. Dizon, “Ca 125 and epithelial
ovarian cancer: Role in screening, diagnosis, and surveillance,” Am. J. Hematol. / Oncol.,
vol. 10, pp. 22–29, 2014.

[80] T. S. Hillard, “The impact of mesothelin in the ovarian cancer tumor microenvironment,”
Cancers (Basel), vol. 10, p. 277, 2018.

[81] S. Wei, H. Li, and B. Zhang, “The diagnostic value of serum he4 and ca-125 and roma
index in ovarian cancer,” Biomed Rep, vol. 5, pp. 41–44, 2016.

[82] N. Husseinzadeh, “Status of tumor markers in epithelial ovarian cancer has there been
any progress? a review,” Gynecol. Oncol, vol. 120, pp. 152–157, 2011.

[83] D. Caserta, M. Benkhalifa, M. Baldi, F. Fiorentino, M. Qumsiyeh, and M. Moscarini,
“Genome profiling of ovarian adenocarcinomas using pangenomic bacs microarray compara-
tive genomic hybridization,” Mol. Cytogenet, vol. 1, p. 10, 2008.

[84] S. Patel and S. Ahmed, “Emerging field of metabolomics: Big promise for cancer biomarker
identification and drug discovery,” J Pharm Biomed Anal, vol. 107, pp. 63–74, 2015.

[85] A. K. Kaushik and R. J. DeBerardinis, “Applications of metabolomics to study cancer
metabolism,” Biochim Biophys Acta Rev Cancer, vol. 1870, pp. 2–14, 2018.

[86] O. Turkoglu, A. Zeb, S. Graham, T. Szyperski, J. B. Szender, K. Odunsi, and R. Bahado-
Singh, “Metabolomics of biomarker discovery in ovarian cancer: A systematic review of the
current literature,” Metabolomics, vol. 12, p. 60, 2016.

[87] P. Jasbi, D. Wang, S. L. Cheng, Q. Fei, J. Y. Cui, L. Liu, Y. Wei, D. Raftery, and H.
Gu, “Breast cancer detection using targeted plasma metabolomics,” J Chromatogr B Analyt
Technol Biomed Life Sci, vol. 1105, pp. 26–37, 2019.

184

[88] M. R. Cardoso, J. C. Santos, M. L. Ribeiro, M. C. R. Talarico, L. R. Viana, and S. F. M.
Derchain, “A metabolomic approach to predict breast cancer behavior and chemotherapy
response,” Int J Mol Sci, vol. 19, p. 617, 2018.

[89] T. Zhang, X. Wu, M. Yin, L. Fan, H. Zhang, F. Zhao, W. Zhang, C. Ke, G. Zhang, Y.
Hou, X. Zhou, G. Lou, and K. Li, “Discrimination between malignant and benign ovarian tu-
mors by plasma metabolomic profiling using ultra performance liquid chromatography/mass
spectrometry,” Clin Chim Acta, vol. 413, pp. 861–868, 2012.

[90] C. Ke, A. Li, Y. Hou, M. Sun, K. Yang, J. Cheng, J. Wang, T. Ge, F. Zhang, Q. Li,
J. Li, Y. Wu, G. Lou, and K. Lia, “Metabolic phenotyping for monitoring ovarian cancer
patients,” Scientific Reports, vol. 6:23334, pp. 1–9, 2016.

[91] L. Fan, W. Zhang, M. Yin, T. Zhang, X. Wu, H. Zhang, M. Sun, Z. Li, Y. Hou, X.
Zhou, G. Lou, and K. Li, “Identification of metabolic biomarkers to diagnose epithelial
ovarian cancer using a uplc/qtof/ms platform,” Acta Oncologica, vol. 51, pp. 473–479, 2012.

[92] C. Denkert, J. Budczies, T. Kind, W. Weichert, P. Tablack, J. Sehouli, S. Niesporek,
D. Könsgen, M. Dietel, and O. Fiehn, “Mass spectrometry-based metabolic profiling reveals
different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors,”
Cancer Research, vol. 66, pp. 10 795–10 804, 2006.

[93] M. Y. Fong, J. McDunn, and S. S. Kakar, “Identification of metabolites in the normal
ovary and their transformation in primary and metastatic ovarian cancer,” PLoS One, vol. 6,
pp. 1–12, 2011.

[94] E. I. Braicu, S. Darb-Esfahani, W. D. Schmitt, K. M. Koistinen, L. Heiskanen, P. Pöhö,
J. Budczies, M. Kuhberg, M. Dietel, C. Frezza, C. Denkert, J. Sehouli, and M. Hilvo, “High-
grade ovarian serous carcinoma patients exhibit profound alterations in lipid metabolism,”
Oncotarget, vol. 8, pp. 102 912–102 922, 2017.

[95] C. M. Slupsky, H. Steed, T. H. Wells, K. Dabbs, A. Schepansky, V. Capstick, W. Faught,
and M. B. Sawyer, “Urine metabolite analysis offers potential early diagnosis of ovarian and
breast cancers,” Clin Cancer Res, vol. 16, pp. 5835–5841, 2010.

[96] M. Kyriakides, N. Rama, J. Sidhu, H. Gabra, H. C. Keun, and M. El-Bahrawy, “Metabo-
nomic analysis of ovarian tumour cyst fluid by proton nuclear magnetic resonance spec-
troscopy,” Oncotarget, vol. 7, pp. 7216–7226, 2016.

[97] M. F. Buas, H. Gu, D. Djukovic, J. Zhu, C. W. Drescher, N. Urban, D. Raftery, and C. I.
Li, “Identification of novel candidate plasma metabolite biomarkers for distinguishing serous
ovarian carcinoma and benign serous ovarian tumors,” Gynecol. Oncol, vol. 140, pp. 138–144,
2016.

185

[98] J. Zhu, D. Djukovic, L. Deng, H. Gu, F. Himmati, E. G. Chiorean, and D. Raftery,
“Colorectal cancer detection using targeted serum metabolic profiling,” J. Proteome Res,
vol. 13, pp. 4120–4130, 2014.

[99] P. A. Carroll, D. Diolaiti, L. McFerrin, H. Gu, D. Djukovic, J. Du, P. F. Cheng, S.
Anderson, M. Ulrich, J. B. Hurley, D. Raftery, D. E. Ayer, and R. N. Eisenman, “Deregulated
myc requires mondoa/mlx for metabolic reprogramming and tumorigenesis,” Cancer Cell,
vol. 27, pp. 271–285, 2015.

[100] H. Gu, P. Zhang, J. Zhu, and D. Raftery, “Globally optimized targeted mass spectrom-
etry: Reliable metabolomics analysis with broad coverage,” Anal. Chem, vol. 87, pp. 12 355–
12 362, 2015.

[101] H. Gu, P. A. Carroll, J. Du, J. Zhu, F. C. Neto, R. N. Eisenman, and D. Raftery,
“Quantitative method to investigate the balance between metabolism and proteome biomass:
Starting from glycine,” Angew. Chemie Int. Ed Engl, vol. 55, pp. 15 646–15 651, 2016.

[102] R. Li, S. A. Grimm, D. Mav, H. Gu, D. Djukovic, R. Shah, B. A. Merrick, D. Raftery,
and P. A. Wade, “Transcriptome and dna methylome analysis in a mouse model of diet-
induced obesity predicts increased risk of colorectal cancer,” Cell Reports, vol. 22, pp. 624–
637, 2018.

[103] M. F. Buas, H. Gu, D. Djukovic, J. Zhu, L. Onstad, B. J. Reid, D. Raftery, and T. L.
Vaughan, “Candidate serum metabolite biomarkers for differentiating gastroesophageal re-
flux disease, barrett’s esophagus, and high-grade dysplasia/esophageal adenocarcinoma,”
Metabolomics, vol. 13, p. 23, 2017.

[104] J. Chong, O. Soufan, C. Li, I. Caraus, S. Li, G. Bourque, D. S. Wishart, and J. Xia,
“Metaboanalyst 4.0: Towards more transparent and integrative metabolomics analysis,” Nu-
cleic Acids Res, vol. 46, W486–W494, 2018.

[105] R. N. D’souza, P.-Y. Huang, and F.-C. Yeh, “Structural analysis and optimization of
convolutional neural networks with a small sample size,” Scientific Reports, vol. 10, 2020.

186

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Vulnerability in machine learning

	LITERATURE REVIEW
	Adversarial Learning
	White Box Attacks
	L-BFGS
	Fast Gradient Sign Method (FGSM) and its variations
	Carlini and Wagner (C&W)
	Jacobian-based Saliency Map Attack (JSMA)
	DeepFool
	CPPN EA Fool
	Hot/Cold
	Natural GAN

	Black Box attacks
	Model-based Ensembling Attack
	Zeroth Order Optimization (ZOO)
	One-pixel
	Surrogate Model & Real World Attacks
	Adversarial poisoning and Backdoor attacks

	Existing Defense Strategies
	Adversarial training
	Network distillation
	Adversarial detecting
	Image Pre-processing
	Different model structures

	BOOTSTRAP CNN
	Convolutional Neural Networks (CNN)
	Inference for CNN Parameters
	Data and Bootstrapped CNN Models
	Benchmark Datasets
	Bootstrap 3-Layer Convolutional Neural Network (CNN3)
	Bootstrap VGG16
	Bootstrap Inception v3

	Models Generated Using Full Training Dataset by Varying Random Initial Seeds
	Bootstrapped CNN Model Parameter Distribution
	CNN Model Parameter Distribution by Varying the Random Initial Seeds
	Distance Between Two Distributions
	Regression Model for Estimating Parameters Based on Bootstrap

	RANDOMIZED CNN ENSEMBLE
	Adversarial images for ensemble
	Adversarial images for ensemble
	Randomization
	Testing the ensembles
	Plots with normal randomization
	Plots with uniform randomization
	Comparisons

	CANCER DATA PROJECT
	Experiment
	Reagents
	Clinical samples
	Sample preparation

	Preliminary analysis
	Metabolite selection using likelihood ratio approach
	SVM accuracies and ROC
	CNN accuracies and ROC
	Discussion

	CONCLUSION
	REFERENCES

