
DIFFERENTIAL PRIVACY IN DISTRIBUTED SETTINGS
by

Zitao Li

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

December 2022

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Ninghui Li, Chair

Department of Computer Science

Dr. Christopher W. Clifton

Department of Computer Science

Dr. Jean Honorio

Department of Computer Science

Dr. Jeremiah Blocki

Department of Computer Science

Approved by:

Dr. Kihong Park

2

ACKNOWLEDGMENTS

First and foremost, I would like to express my greatest gratitude to my advisor, Professor

Ninghui Li, for his continued guidance and support during my Ph.D. study. His insights and

vision in research always turn into valuable advice to me; his enthusiasm cheers me up along

the study; his great personality as an advisor makes him become a role model for me beyond

research. Without his support, I would not be able to finish this dissertation.

I also sincerely thank Professor Christopher W. Clifton and Professor Jean Honorio. They

are not only my committee members but also the ones who offered supervision and great

opportunities in my early Ph.D. student journey. Besides, I greatly appreciate Professor

Jeremiah Blocki for his constructive suggestions as an external member in my preliminary

and final exams.

I am grateful to my research internship mentor Dr. Bolin Ding at Alibaba for providing

me with a great research experience. Working with him broadens my horizons and inspires

me with many interesting research ideas.

Many thanks to Dr. Tianhao Wang. For me, he is not only a senior lab-mate and coau-

thor, but also a friend in life and a role model in research. I also thank my other coauthors,

Milan Lopuhaä-Zwakenberg, Xiaoguang Li, Professor Boris Skoric, Professor Wenhai Sun,

and Professor Ce Zhang, for the enjoyable collaborations on the projects. Besides, my ap-

preciation goes to my lab-mates and friends in Purdue, Huangyi Ge, Jiacheng Li, Weicheng

Wang, Mengyue Hang, Zixun Yu and others.

Last but not least, my deepest appreciation goes to my family. I sincerely thank my

parents for their love and support. And I want to say a heartfelt “thank you” to my wife for

her love, support, and company.

3

TABLE OF CONTENTS

LIST OF TABLES . 8

LIST OF FIGURES . 9

ABSTRACT . 11

1 INTRODUCTION . 12

2 BACKGROUND . 15

2.1 Differential Privacy . 15

2.2 Properties of DP . 16

2.2.1 Sequential composition . 17

3 ESTIMATING NUMERICAL DISTRIBUTION UNDER LOCAL DIFFEREN-

TIAL PRIVACY . 19

3.1 Introduction . 19

3.2 Problem Formulation and Existing Solutions 22

3.2.1 Categorical Frequency Oracles . 23

3.2.2 Handling Numerical Attributes . 24

3.3 Utility Metrics . 25

3.3.1 Metrics based on Distribution Distance 25

3.3.2 Semantic and Statistical Quantities 27

3.4 Using CFO Protocols for Numerical Domains 27

3.4.1 CFO with Binning . 28

3.4.2 Hierarchy-based Methods . 28

3.4.3 HH-ADMM . 30

3.5 Square Wave and Expectation Maximization with Smoothing 31

3.5.1 General Wave Reporting . 32

3.5.2 The Square Wave mechanism . 33

3.5.3 Choosing b . 36

4

3.5.4 Bucketizing . 38

3.5.5 Estimating Distribution from Reports 39

3.6 Experiments . 42

3.6.1 Experimental Setup . 42

3.6.2 Distribution Distance . 45

3.6.3 Semantic and Statistical Quantities 46

3.6.4 Wave Shapes and Parameters . 48

3.7 Related Work . 50

3.8 Conclusion . 52

4 FEDERATED MATRIX FACTORIZATION WITH PRIVACY GUARANTEE . . 53

4.1 Introduction . 53

4.1.1 Coordination and Trust Models . 53

4.1.2 Our Contributions . 56

4.2 Problem Formulation . 58

4.2.1 Matrix Factorization . 58

4.2.2 Differential Privacy in Matrix Factorization 58

4.3 Federated Matrix Factorization Computation Paradigm 60

4.3.1 Common FL Paradigm for MF Problem 62

FMF convergence proof . 65

4.4 Private VFL Matrix Factorization . 77

4.4.1 Private MF in VFL: VFL-SGDMF . 77

Bounding sensitivity. 77

Embedding clipping proof . 79

Amplifying privacy with mini-batches. 80

Private local updates. 80

VFL-SGDMF local fine-tuning. 81

4.4.2 Analysis of Privacy Guarantee . 81

Privacy proofs . 83

4.4.3 Empirical Evaluation for VFL . 86

5

4.5 Private HFL Matrix Factorization . 91

4.5.1 Private MF in HFL: HFL-SGDMF . 91

4.5.2 Analysis of Privacy Guarantee . 92

4.5.3 Empirical Evaluation for HFL . 94

4.6 To Cross-device Learning: LFL-SGDMF . 95

4.6.1 DP with Secure Aggregation . 96

4.6.2 Analysis of Privacy Guarantee . 98

4.6.3 Empirical Evaluation for LFL . 98

4.7 Related Work . 100

4.8 Conclusion . 101

5 DIFFERENTIALLY PRIVATE VERTICAL FEDERATED CLUSTERING 102

5.1 Introduction . 102

5.2 Problem Formulation and Overview of Approach 104

5.2.1 k-means Clustering . 104

5.2.2 VFL Clustering Problem Formulation 106

5.2.3 A Non-Private Baseline . 106

5.2.4 Challenge in the Privacy-preserving Setting 107

5.2.5 The Overall Framework . 108

5.2.6 Private Local Clustering . 109

5.3 Private Membership Encoding and Weight Estimate 110

5.3.1 Baselines . 111

5.3.2 Prerequisite: DP FM Sketch . 112

5.3.3 Sketch-based MemEnc and WeightEst 114

5.3.4 Privacy, Utility and Communication Cost 116

5.3.5 Privacy proofs . 119

5.3.6 Utility proofs . 119

5.4 Improving Utility of the Algorithm . 122

5.4.1 Improving Post-processing Estimation Algorithm for More than Two

Data Parties . 122

6

5.4.2 Auto-adjusted k′ . 125

5.5 Experiments . 125

5.5.1 End-to-end Comparison . 128

5.5.2 Ablation Study of Components . 131

5.6 Related work . 133

5.7 Conclusion . 135

6 SUMMARY . 136

REFERENCES . 137

VITA . 150

7

LIST OF TABLES

3.1 Notations. 22

3.2 Methods and evaluated metrics. 44

4.1 Communication cost examples . 54

5.1 Automatically chosen k′. 132

8

LIST OF FIGURES

3.1 Normalized frequencies of datasets for experiments. 41

3.2 Results of distribution distances (first row: Wasserstein distance, second row: KS
distance), varying ε. 43

3.3 MAE of random range query with range α = 0.1 (first row) and α = 0.4 (second
row). 46

3.4 MAE for estimating mean (first row), variance (second row), and quantiles (third
row). 47

3.5 Comparison of different shapes of wave in GW. Ratios are the upper/lower length
ratios for trapezoids. 49

3.6 Wasserstein distances between the true data and the estimation produced by EMS
algorithm with fixed ε values and varying b from 0.01 to 0.38. Dotted vertical
lines means the used bSW in Section 3.5.3 . 50

3.7 Wasserstein distance between estimated and true distribution with different buck-
etization granularity. 51

4.1 Different FL settings (a)-(c) with sensitive information exchanged on privacy
boundaries (the dashed lines). Each ui is a user embeddings, vj is an item em-
bedding. 54

4.2 Federated matrix factorization algorithms . 64

4.3 Embedding clip v.s. gradient clip. 86

4.4 Compare VFL-SGDMF (s=1), DP-SGLD and ObjPertb. 87

4.5 Per-rating and per-user privacy split by category v.s. split randomly on Movie-
Lens 10M dataset. 87

4.6 Results of randomly split items into different number of parties s. 88

4.7 Compare pre-train-U with vanilla train-both. 93

4.8 Horizontal random split with different number of parties (per-rating: left two
columns; per-user: right two columns). 93

4.9 Results under LFL setting with different dropout rates. 99

5.1 Vertical federated k-means clustering with two data parties. 105

5.2 k-means loss with final k centers. 126

5.3 V-measure scores. 126

5.4 Effect of unevenly split dataset. 130

5.5 Effect of different S on Loan dataset (m = 16). 130

9

5.6 relative error of estimate the intersection cardinalities. 131

5.7 Comparing the impact of (enforcing privacy on) different components. 132

5.8 Different local k′ with different privacy budget. 132

10

ABSTRACT

Data is considered the “new oil” in the information society and digital economy. While

many commercial activities and government decisions are based on data, the public raises

more concerns about privacy leakage when their private data are collected and used. In this

dissertation, we investigate the privacy risks in settings where the data are distributed across

multiple data holders, and there is only an untrusted central server. We provide solutions for

several problems under this setting with a security notion called differential privacy (DP).

Our solutions can guarantee that there is only limited and controllable privacy leakage from

the data holder, while the utility of the final results, such as model prediction accuracy, can

be still comparable to the ones of the non-private algorithms.

First, we investigate the problem of estimating the distribution over a numerical domain

while satisfying local differential privacy (LDP). Our protocol prevents privacy leakage in

the data collection phase, in which an untrusted data aggregator (or a server) wants to

learn the distribution of private numerical data among all users. The protocol consists of

1) a new reporting mechanism called the square wave (SW) mechanism, which randomizes

the user inputs before sharing them with the aggregator; 2) an Expectation Maximization

with Smoothing (EMS) algorithm, which is applied to aggregated histograms from the SW

mechanism to estimate the original distributions.

Second, we study the matrix factorization problem in three federated learning settings

with an untrusted server, i.e., vertical, horizontal, and local federated learning settings. We

propose a generic algorithmic framework for solving the problem in all three settings. We

introduce how to adapt the algorithm into differentially private versions to prevent privacy

leakage in the training and publishing stages.

Finally, we propose an algorithm for solving the k-means clustering problem in vertical

federated learning (VFL). A big challenge in VFL is the lack of a global view of each data

point. To overcome this challenge, we propose a lightweight and differentially private set

intersection cardinality estimation algorithm based on the Flajolet-Martin (FM) sketch to

convey the weight information of the synopsis points. We provide theoretical utility analysis

for the cardinality estimation algorithm and further refine it for better empirical performance.

11

1. INTRODUCTION

Many services and applications are data-driven in the information society. For example, a

government may decide annual funds allocation for disadvantaged children based on census

data [1], and insurance companies adjust premium rates based on customers’ personal finan-

cial situations [2]. However, it has been shown that collecting and using anonymized data

can still lead to significant private information leakage [3 , 4]. Even when the data are not

directly accessible, the adversaries can still conduct model inversion attacks [5], membership

inference attacks [6 , 7], or reconstruction attacks [8 , 9] to steal the sensitive private training

information from the published machine learning models. As a framework to balance the

data utility and privacy, differential privacy (DP) [10] has been accepted as the de facto

security notion for privacy protection. Differential private techniques have been studied

in research and deployed in many products, such as Google Chrome [11], Apple iOS [12],

Microsoft Windows [13], and LinkedIn audience engagements API [14].

In this dissertation, we focus on designing differentially private mechanisms in distributed

settings, where data are distributed across multiple parties, and a central server is required

by computation paradigms but untrusted. We further assume that those data owners share

some common interest in cooperation. They want to ensure their collaboration can lead to

useful knowledge derived by the central server based on their shared information. There are

several data allocation scenarios we consider in this dissertation.

First, one typical setting is the local setting, where users maintain their private data,

and an untrusted server wants to learn aggregated information from those private data. It

is also known as the cross-device setting in federated learning. Depending on the context,

we call it the local or local federated learning (LFL) setting in this dissertation.

The second common distributed setting is the cross-silo federated learning setting. In

this setting, some trustworthy data parties maintain parts of the user data but do not have

access to the full view of the data. The data parties are also responsible for protecting user

privacy and preventing other parties and the central server from inferring private information

about their local data. Depending on how the data are distributed, the federated learning

setting can be further categorized into horizontal and vertical variants. Horizontal federated

12

learning (HFL) assumes that all the data parties have data from different sets of users, but

all local datasets have the same attributes. On the other hand, vertical federated learning

(VFL) assumes that all data parties have data from the same set of users, but their data

attributes differ from each other. This dissertation’s contributions include solutions for

different problems from the local setting to the HFL and VFL settings.

After describing the distributed settings we consider, the following introduces the exact

problems and our solutions in each chapter.

In Chapter 3 , we study the problem of recovering the distribution over a numerical do-

main while satisfying local differential privacy (LDP). While one can discretize a numerical

domain and then apply the protocols developed for categorical domains, we show that taking

advantage of the numerical nature of the domain can result in a better trade-off of privacy

and utility. We propose a new reporting mechanism, the square wave (SW) mechanism. It

randomizes the user input satisfying LDP but exploits the numerical nature in reporting

by having higher probability to outputs close to the true inputs. We also develop an Ex-

pectation Maximization with Smoothing (EMS) algorithm, which is applied to aggregated

histograms from the SW mechanism to estimate the original distributions. Extensive exper-

iments demonstrate that our proposed approach, SW with EMS, consistently outperforms

other methods in a variety of utility metrics.

In Chapter 4 , we focus on the problem of matrix factorization in different federated

learning settings and provide differentially private solutions for those settings. Matrix fac-

torization (MF) approximates unobserved ratings in a rating matrix, whose rows correspond

to users and columns correspond to items to be rated. It has been serving as a fundamental

building block in recommendation systems. This chapter conducts an in-depth study on

the problem of matrix factorization when a set of parties want to cooperate in training but

refuse to share raw user data. We first propose a common algorithmic framework for various

settings of federated matrix factorization (FMF) and provide a theoretical convergence guar-

antee. We then systematically characterize privacy-leakage risks in data collection, training,

and publishing stages for three different settings and introduce privacy notions to provide

end-to-end privacy protections. The first one is VFL, where multiple parties have ratings

from the same set of users but on disjoint sets of items. The second one is HFL, where

13

parties have ratings from different sets of users but on the same set of items. The third

setting is LFL, where the ratings of the users are only stored on their local devices. We

introduce adapted versions of FMF with the privacy notions guaranteed in the three settings.

In particular, a sensitivity-bounding technique called embedding clipping is proposed and

used in all three settings to ensure differential privacy. For the LFL setting, we further com-

bine differential privacy with secure aggregation to protect the communication between user

devices and the server to avoid involving large noise with LDP. We perform experiments to

demonstrate the effectiveness of our approaches.

In Chapter 5 , we investigate another problem, k-means clustering in VFL. When the

user data are distributed vertically on multiple data parties, the correlation of the inter-

party attributes, one of the most important information for clustering, is hard to maintain

with differential privacy guarantees. We propose a practical solution for differentially private

vertical federated k-means clustering, where a set of global centers can be derived with a

provable differential privacy guarantee. Our algorithm assumes an untrusted central server

aggregating differentially private local centers and membership information from local data

parties. Our proposed method lets the server build a weighted grid as the synopsis of the

global dataset based on the received information. Final centers are generated by running

any k-means algorithm on the weighted grid. Our approach for grid weight estimation uses a

lightweight and differentially private set intersection cardinality estimation algorithm based

on the Flajolet-Martin sketch. To further improve the estimation accuracy in the setting

with more than two data parties, we propose a refined version of the weights estimation

algorithm and a parameter tuning strategy to reduce the final k-means cost to be close to

that in the central private setting. We provide theoretical utility analysis and experimental

evaluation results for the cluster centers computed by our algorithm and show that our

approach performs better both theoretically and empirically than the two baselines based

on existing techniques.

After a DP background introduction (Chapter 2), the content is organized following

a common road map in Chapter 3 - 5 . We first formalize the problems with more details

and provide additional background knowledge. Then we present our solutions and provide

experimental results, followed by a related work discussion.

14

2. BACKGROUND

In this dissertation, we consider differential privacy (DP) the main privacy notion to protect

users’ information from privacy leakage because DP is more powerful in resisting membership

inference attacks, re-identification or reconstruction attacks than other privacy notations,

such as k-anonymity [3 , 15]. In this chapter, we introduce the background of DP.

2.1 Differential Privacy

In the central setting, DP assumes that there is a trusted party holding all users’ data.

The trusted party can run a randomized mechanism A, taking the dataset as input and

releasing the output to the public. The mechanism is differentially private if and only if it

satisfies the following definition.

Definition 2.1.1 (Differential privacy [16]). A randomized algorithm A is (ε, δ)-differentially

private if for any pair of datasets X, X′ that differ in one record and for all possible subset

O of possible outputs of algorithm A,

Pr [A(X) ∈ O] ≤ eεPr [A(X′) ∈ O] + δ.

Intuitively speaking, DP requires that the outputs of an algorithm are the same with

similar probability after we add or remove any one user’s record in the dataset. A smaller ε

means a stronger privacy guarantee, and δ bounds the probability that a significant privacy

leak may occur. The (ε, δ) together are usually called privacy budget or privacy loss.

Laplace mechanism. One of the most classic DP mechanisms, the Laplace mechanism,

adds Laplace noise to the return of a function f to ensure the result is differentially private.

The variance of the noise depends on GSf , the global sensitivity or the L1 sensitivity of f ,

defined with a pair of neighboring datasets as, GSf = max
X'X′

||f(X) − f(X′)||1. The Laplace

mechanism mechanism A is formalized as Af (X) = f(X)+Lap
(

GSf
ε

)
, where Lap (·) denotes

15

a random variable sampled from the Laplace distribution Pr [Lap (b) = x] = 1
2b

e−|x|/b. When

f outputs a vector, A adds independent samples of Lap
(

GSf
ε

)
to each element of the vector.

Local differential privacy (LDP). The privacy notion can be further strengthen by

removing the trusted central party. Assume there are n users and one untrusted aggregator.

Each user possesses a value v ∈ D, and the aggregator wants to collect information from all

users. We further assume that those users share some common interest in the aggregated

information, and all of them want to ensure the aggregator can obtain useful knowledge

from the aggregated information. To protect privacy, each user randomizes the input value

v using an algorithm Ψ(·) : D → D̃, where D̃ is the set of all possible outputs, and sends

ṽ = Ψ(v) to the aggregator.

Definition 2.1.2 (ε-Local differential privacy). An algorithm Ψ(·) : D → D̃ satisfies ε-local

differential privacy (ε-LDP), where ε ≥ 0, if and only if for any input v1, v2 ∈ D, we have

∀O ⊆D̃ : Pr [Ψ(v1) ∈ O] ≤ eε Pr [Ψ(v2) ∈ O] ,

where D̃ denotes the set of all possible outputs of Ψ.

Since a user never reveals v to the aggregator and reports only ṽ = Ψ(v), the user’s

privacy is still protected even if the aggregator is malicious. Thus, it is a strictly strong

privacy notion compared with the central DP. However, while it provides stronger privacy

protection for users’ data, the aggregated and decoded information usually has larger noise

than the one produced by the central DP.

2.2 Properties of DP

Three properties of DP are frequently used to build complicated algorithms: post-

processing, parallel composition and sequential composition. The first two properties are

straightforward and well-studied. However, How to obtain the tightest privacy loss in the

sequential composition is still an open problem, and there are many ongoing works. We

introduce several sequential computation methods used in this thesis.

16

Proposition 2.2.1 (Post-processing). Any data independent operation on an (ε, δ)-DP al-

gorithm’s result still satisfies (ε, δ)-DP.

Proposition 2.2.2 (Parallel composition [17]). If all s mechanisms A1, . . . ,As are

(ε(1), δ(1)), . . . , (ε(s), δ(s)) differentially private and they are computed on disjoint datasets

X1, . . . ,Xs, then the overall privacy loss will be (maxk{ε(k)},maxk{δ(k)}).

2.2.1 Sequential composition

We consider three sequential composition for privacy loss in this thesis: naive sequential

composition, moment accountant and Rényi DP.

Naive sequential composition. Assume that there are two subroutines A1(·) and A2(·)

that can provides (ε1, δ1), (ε2, δ2)-DP protection. The naive sequential composition states

that A1(X,A2(X)) satisfies (ε1 + ε2, δ1 + δ2)-DP.
Sequential composition with moments accountant. The private dataset may be ac-
cessed multiple times. Moments accountant [18] can be used to provide tight analysis for the
privacy loss of a sequence of adaptive mechanisms. In general, let A(X, aux) be a function
that returns outputs from the dataset X and an auxiliary input aux. The auxiliary input
aux can include all intermediate results from previous steps. The logarithm of the moment
generating function (of privacy loss in A) evaluated at the value λ is defined as

αA(λ;X,X′, aux) = logEo∼A(X,aux)

[
exp(λ log

Pr [A(X, aux) = o]

Pr [A(X′, aux) = o]
)

]
,

which is upper bounded by αA(λ) = maxX,X′,aux αA(λ;X,X′, aux). Suppose there is a se-

quence of such adaptive mechanisms A1, . . . ,AT , where each At takes the dataset X ∈ X

and the outputs of all previous t−1 mechanisms as input. The moment accountant technique

bounds the total privacy loss in A1, . . . ,AT via composing the logarithms of the moment

generating functions, αAt(λ)’s for t ∈ [T].

Theorem 2.2.1 (Moment accountants (MA) [18]). Let a mechanism A be a sequence of

adaptive mechanisms A1, . . . ,AT defined as above. Then we have 1) for any λ, αA(λ) ≤∑T
t=1 αAt(λ); and 2) for any ε > 0, the mechanism A is (ε, δ)-differentially privacy for

δ = minλ exp(αA(λ)− λε).

17

In the experiments, we calculate the exact privacy loss using the package [19].

Sequential composition with Rényi Differential Privacy. Compare with MA, the

notion of Rényi Differential Privacy (RDP) [20] provides a succinct way to track the privacy

loss for a composition of multiple mechanisms when there is no subsampling operation. When

given a δ, there is a closed form conversion equation turning Rényi DP to DP.

Definition 2.2.1 (Rényi Differential Privacy [20]). A mechanism A : X → Y is said to

satisfy (ν, τ)-RDP if the following holds for any two neighboring datasets X,X′

1

ν − 1
logEo∼A(X)

[(
Pr [A(X) = o]

Pr [A(X′) = o]

)ν]
≤ τ.

Fact 2.2.1 (RDP Sequential Composition [20]). If A1 and A2 are (ν, τ1)-RDP and (ν, τ2)-

RDP respectively then the mechanism combining the two g(A1(X),A2(X)) is (ν, τ1+τ2)-RDP.

Fact 2.2.2 (RDP to (ε, δ)-DP [20]). If a mechanism is (ν, τ)-RDP, then it also satisfies

(τ + log 1/δ
ν−1

, δ)-DP.

18

3. ESTIMATING NUMERICAL DISTRIBUTION UNDER

LOCAL DIFFERENTIAL PRIVACY

(A version of this chapter has been previously published in SIGMOD 2020 [21].

There is also a public version [22] with additional information.)

3.1 Introduction

In local differential privacy (LDP), there are many users and one aggregator. Each user

sends randomized information to the aggregator, who can infer the aggregated information

based on users’ reports. LDP techniques enable the gathering of statistics while preserving

privacy of every user, without relying on trust in a single trusted third party. LDP techniques

have been deployed by companies like Apple [12], Google [23], and Microsoft [13].

Most existing work on LDP focuses on the situations collecting categorical attributes.

Existing research [23 – 27] has developed frequency oracle (FO) protocols for categorical do-

mains, where the aggregator can estimate the frequency of any chosen value in the specified

domain (fraction of users with that private value). We call these Categorical Frequency

Oracle (CFO) protocols.

Many attributes are ordinal or numerical in nature, e.g., income, age, the amount of time

viewing a certain page, the amount of communications, the number of times performing a

certain actions, etc. A numerical domain consists of values that have a meaningful total

order. One natural approach for dealing with ordinal and numerical attributes under LDP

is to first apply binning and then use CFO protocols. That is, one treats all values in a

range as one categorical value when reporting. This approach faces the challenge of finding

the optimal number of bins, which depends on both the privacy parameter and the data

distribution. One improvement over this approach is to apply Hierarchical Histogram-based

approaches [28 – 30], which uses multiple granularities at the same time, and exploit the

natural consistency relationships between estimations at different granularities. Recently,

Kulkarni et al. [31] studied the accuracy of answering range queries using this approach.

19

We note that the stronger privacy guarantee offered by LDP (as compared with DP)

comes with the cost of significantly higher noises. As a result, many estimated frequencies

will be negative. Existing approaches (such as [31]) do not correct this, and are sub-optimal.

We propose to apply Alternating Direction Method of Multipliers (ADMM) optimization [32]

to improve Hierarchical Histograms, utilizing the constraints that all estimations are non-

negative and sum up to 1. Experiments show that the improved version of hierarchy his-

togram, which we call HH-ADMM, has significantly better utility.

The above methods still use CFO protocols in a blackbox fashion, and existing CFO

protocols ignore any semantic relationship between different values. An intriguing research

question is whether one can design frequency oracle protocols that directly utilize the ordered

nature of the domain and produce better estimations. In this chapter, we answer this

affirmatively. We propose an approach that combines what we call a Square Wave reporting

mechanism with post-processing using Expectation Maximization and Smoothing.

The key intuition under the Square Wave mechanism is that given input v, one should

report a value close to v with higher probability than a value farther away from v. More

specifically, assuming the input domain of numerical values is D = [0, 1], the output domain

of Square Wave mechanism is D̃ = [− b, 1 + b], where b is a parameter depending on the

privacy parameter ε. A user with value v ∈ D reports a value ṽ randomly drawn from a

distribution with probability density function Mv. For any ṽ ∈ [v − b, v + b], probability

density is Mv(ṽ) = p, and any ṽ ∈ [−b, 1+b]\ [v−b, v+b], probability density is Mv(ṽ) = q,

where p
q
= eε. We define and study different wave shapes of General Wave mechanism other

than the above Square Wave, and conclude that Square Wave has the best utility. We also

study how to determine the key parameter b, the width of the wave. We propose to choose

b to maximize the upper bound of mutual information between the input and the output

variable, and can compute b when given the privacy parameter ε. Experiments demonstrate

the effectiveness of this approach.

Conceptually, the aggregator, after observing the reported values, without any prior

knowledge of the input distribution, should perform Maximum Likelihood Estimation (MLE)

to infer the input distribution, which can be carried out by the Expectation Maximization

(EM) algorithm. Through experiments, we have observed that the result of applying EM

20

is highly sensitive to the parameter controlling terminating condition. This is because the

observed distribution is a combination of the true distribution and the effect of random noise.

When EM terminates too early, the result does not fit the true distribution well. When EM

terminates too late, the result fits both the true distribution and the effect of noises. It is

unclear how one can set the parameter so that one fits the distribution, but not the noise,

across different datasets and privacy parameters.

To deal with this challenge, we propose to use smoothing together with the EM algorithm.

In each iteration, after the E step and the M step, we add an S (smoothing) step, which aver-

ages each estimation with its nearest neighbours, by binomial coefficients. The Expectation

Maximization with Smoothing approach was developed in the context of positron emission

tomography and image reconstruction [33 , 34], and was shown to be equivalent to adding

a regularization term penalizing the spiky estimation [33]. Intuitively, EMS uses the prior

knowledge that the observation is affected by noise and prefer a smoother distribution to a

jagged one. In the experiment, we observe that EMS is stable under different settings, and

requires no parameter tuning.

To compare different algorithms for reconstructing distributions of numerical attributes,

we first use two metrics measuring the distance of reconstructed cumulative distribution

from the true one, namely the Wasserstein distance and KolmogorovSmirnov distance (KS

distance). In addition, we also consider accuracy for answering range queries, and accuracy of

estimations of different statistics from the reconstructed distributions such as mean, variance

and quantiles.

The contributions of this chapter are as follows. (1) We define the problem of reconstruct-

ing distributions of numerical attributes under LDP (with non-negativity and sum-up-to-1

constraints) and propose multiple metrics for comparing competing algorithms. (2) We

introduce HH-ADMM, which improves upon existing hierarchy histogram based methods.

(3) We introduce the method of combining Square Wave (SW) reporting with Expectation

Maximization and Smoothing (EMS), and showed that Square Wave is preferable to other

wave shapes, and introduce techniques to choose the bandwidth parameter b using mutual

information. (4) We conduct extensive experimental evaluations, comparing the proposed

methods with state-of-the-art methods (e.g., [31]). Results demonstrate that SW with EMS

21

Table 3.1. Notations.
Symbol Description

v Private input
ṽ Randomized output
D Domain of private input
D̃ Domain of the randomized output
x True private input frequencies
x̂ Estimate of private input frequencies (normalized)
ṽ Randomized output frequencies (normalized)
P Cumulative distribution function (CDF)
Mv Probability density function given input v

and HH-ADAM significantly out-perform existing methods. In addition, SW with EMS gen-

erally performs the best under a wide range of metrics, and HH-ADMM performs better

than SW-EMS on a very spiking distribution under some of the metrics.

Roadmap. In Section 3.2 , we review the problem setting and existing LDP protocols. In

Section 3.3 , we discuss metrics for measuring the quality of the reconstructed distribution.

We describe CFO with binning and HH-ADMM in Section 3.4 . SW reporting and EMS

reconstruction are introduced in Section 3.5 . We show our experimental results in Section 3.6 .

We give an overview of the related work in Section 3.7 , and conclude in Section 3.8 .

3.2 Problem Formulation and Existing Solutions

Throughout this chapter, we use bold letters to denote vectors. For example, v =

〈v1, . . . , vn〉 is all users’ values, and x = 〈x1, . . . , xd〉 is frequencies of all values (i.e., xi =

|{j | vj = i}|/n). If the notation is associated with a tilde (e.g., ṽ), it is the value after LDP

perturbation; and a hat (e.g., x̂) denotes the value computed by the aggregator. Capital

bold letters denote matrices and functions that take more than one input. Table 3.1 gives

some of the frequently used symbols.

22

3.2.1 Categorical Frequency Oracles

A frequency oracle (FO) protocol enables the estimation of the frequency of any value

v ∈ D under LDP. Existing protocols are designed for situations where D is a categorical

domain. We call them categorical frequency oracle (CFO) protocols in this chapter. The

following are two commonly used CFO protocols.

Generalized Randomized Response (GRR). This CFO protocol generalizes the ran-

domized response technique [35], and uses D̃ = D. It uses as input perturbation function

GRR(·), where GRR(v) outputs the true value v with probability p = eε
eε+d−1

, and any value

v′ 6= v with probability q = 1−p
d−1

= 1
eε+d−1

, where d = |D| is the domain size.

To estimate the frequency of v ∈ D (i.e., the ratio of the users who have v as private

value to the total number of users), one counts how many times v is reported, and denote

the count as C(v), and then computes

x̃v =
(C(v)/n)− q

p− q
,

where n is the total number of users. In [36], it is shown that this is an unbiased estimate

of the true count, and the variance for this estimate is

Var[x̃v] =
d− 2 + eε
(eε − 1)2 · n

. (3.1)

The variance given in (3.1) is linear to d; thus when the domain size d increases, the accuracy

of this protocol is low.

Optimized Local Hashing (OLH) [36]. This protocol deals with a large domain size

d = |D| by first using a hash function to map an input value into a smaller domain of size g

(typically g � |D|), and then applying randomized response to the hashed value (which leads

to p = eε
eε+g−1

). In this protocol, both the hashing step and the randomization step result

in information loss. The choice of the parameter g is a tradeoff between losing information

during the hashing step and losing information during the randomization step. In [36], it is

found that the optimal choice of g that leads to minimal variance is (eε + 1).

23

In OLH, one reports 〈H,GRR(H(v))〉, where H is randomly chosen from a family of hash

functions that hash each value in D to {1 . . . g}, and GRR(·) is the perturbation function for

Generalized Randomized Response, while operating on the domain {1 . . . g}. Let 〈Hj, yj〉

be the report from the j’th user. For each value v ∈ D, to compute its frequency, one first

computes C(v) = |{j | Hj(v) = yj}|, and then transforms C(v) to its unbiased estimate

x̃v =
(C(v)/n)− (1/g)

p− 1/g
.

The approximate variance of this estimate is

Var[x̃v] =
4eε

(eε − 1)2 · n
.

Compared with (3.1), the factor d− 2 + eε is replaced by 4eε. This suggests that for smaller

|D| (such that |D| − 2 < 3eε), GRR is better; but for large |D|, OLH is better and has a

variance that does not depend on |D|.

3.2.2 Handling Numerical Attributes

Two methods have been proposed for mean estimation under LDP for numerical at-

tributes. Note that using these methods one can estimate the mean, and not the distribu-

tion.

Stochastic Rounding (SR) [37]. The main idea of Stochastic Rounding (SR) is that, no

matter what is the input value v, each user reports one of two extreme values, with prob-

abilities depending on v. Here we give an equivalent description of the protocol. Following

[37], we assume that the input domain is [− 1, 1]. Given a value v ∈ [− 1, 1], let p = eε
eε+1

and q = 1 − p = 1
eε+1

, the SR method outputs a random variable v′, which takes the value

−1 with probability q + (p−q)(1−v)
2

and value 1 with probability q + (p−q)(1+v)
2

. Since

E[v′] = (−1)
(
q +

(p− q)(1− v)

2

)
+ q +

(p− q)(1 + v)

2

= (p− q)v ,

24

let ṽ = v′

p−q
, we have E[ṽ] = v; thus the mean of ṽ provides an unbiased estimate of the mean

for the distribution.

Piecewise Mechanism (PM) [38]. In the Piecewise Mechanism, the input domain is

[− 1, 1], and the output domain is [− s, s], where s = eε/2+1
eε/2−1

. For each v ∈ [− 1, 1], there is

an associated range [`(v), r(v)] where −s ≤ `(v) < r(v) ≤ s, such that with input v, a value

in the range [`(v), r(v)] will be reported with higher probability than a value outside the

range. More precisely, we have `(v) = eε/2·v−1
eε/2−1

and r(v) = eε/2·v+1
eε/2−1

. The width of the range is

r(v)− `(v) = 2
eε/2−1

, and the center is `(v)+r(v)
2

= eε/2
eε/2−1

· v. Specifically, PM works as follows:

Pr [PM(v) = ṽ] =
eε/2
2
· e

ε/2 − 1

eε/2 + 1
if ṽ ∈ [`(v), r(v)],

Pr [PM(v) = ṽ] =
1

2eε/2 ·
eε/2 − 1

eε/2 + 1
otherwise.

It is shown that ṽ is unbiased, and has better variance than SR when ε is large [39].

3.3 Utility Metrics

When the private values are in a numerical domain, we need utility metrics that are

different from those in categorical domains. In particular, the metrics should reflect the

ordered nature of the underlying domain.

3.3.1 Metrics based on Distribution Distance

We want a metric to measure the distance between the recovered density distribution and

the true distribution. However, since the distribution is over a metric space, we do not want

to use point-wise distance metrics such as the L1 and L2 distance or the KullbackLeibler

(KL) divergence. For a simple example, consider the case where D = {1, 2, 3, 4}, the true

distribution is x = [0.7, 0.1, 0.1, 0.1]. The two estimations x̂1 = [0.1, 0.7, 0.1, 0.1] and x̂2 =

[0.1, 0.1, 0.1, 0.7] have the same L1, L2, and KL distance from x, but the distance between x̂1

and x should be smaller than the distance between x̂2 and x when we consider the numerical

25

nature. To capture this requirement, we propose to use two popular distribution distances

as metrics.

Wasserstein Distance (aka. Earth Mover Distance). Wasserstein distance measures

the cost of moving the probability mass (or density) from distribution to another distribution.

In this chapter, we use the one dimensional Wasserstein distance. For a discrete domain,

define the cumulative function P : [0, 1]d×D 7→ [0, 1] that takes a distribution x and a value

v, and output P(x, v) =
∑v

i=1 xv. Let x and x̂ be two distributions. The one dimensional

Wasserstein distance is the L1 difference between their cumulative distributions:

W1(x, x̂) =
∑
v∈D

|P(x, v)−P(x̂, v)| . (3.2)

For continuous domain, x is the probability density function with support on [0, 1], P(x, v) =∫ v

t=0
x(t)dt. The one dimensional Wasserstein distance is

W1(x, x̂) =

∫
v∈D
|P(x, v)−P(x̂, v)| dv .

Kolmogorov-Smirnov (KS) Distance. KS distance is the maximum absolute difference

at any point between the cumulative functions of two distributions:

dKS(x, x̂) = sup
v∈D
|P(x, v)−P(x̂, v)| .

Both of Wasserstein distance and KS distance can be considered as measures for the errors

of answering prefix range queries on numerical domains with constraints that the estimate

must be non-negative and sum up to 1. Wasserstein distance is the error of sum of all prefix

queries; and the KS distance is the maximum error of prefix queries.

26

3.3.2 Semantic and Statistical Quantities

Range queries have been used as the main utility metrics for research in this area [28 ,

 31 , 40 , 41]. Also, we consider the basic statistics from the estimated data distributions and

check whether they are accurate.

Range Query. Define the range query function R(x, i, α) = P(x, i + α)− P(x, i), where

α specifies the range size. Given the true distribution x and the estimated distribution x̂,

range queries reflect the quality of estimate with randomly sampling i and calculating the

following:

|R(x, i, α)−R(x̂, i, α)| .

Mean. We denote µ as the mean of the true distribution, and µ̂ as the estimated mean.

To measure mean accuracy, we use the absolute value of the difference between these two,

i.e. |µ− µ̂|.

Variance. We use σ2 to denote the variance of the true distribution, and σ̂2 for the

variance from the reconstructed distribution. To measure variance accuracy, we use the

absolute value of the difference between these two, i.e. |σ2 − σ̂2|.

Quantiles. Quantiles are cut points dividing the range of a probability distribution into

intervals with equal probabilities. Formally, Q(x, β) = argmaxv{P(x, v) ≤ β}. In the

experiment, define B = {10%, 20%, . . . , 90%}, we measure the following:

1

|B|
∑
β∈B

|Q(x, β)−Q(x̂, β)| .

3.4 Using CFO Protocols for Numerical Domains

In this section, we present two approaches that use CFO protocols to reconstruct distri-

butions over an discrete numerical domain D = {1, 2 · · · , d}. Continuous numerical domains

can be buckized into discrete ones.

27

3.4.1 CFO with Binning

Given a numerical domain, one can make it discrete using binning, and then have each

user report which bin the private value is in using a CFO protocol. For a given domain

size and privacy parameter ε, one chooses either OLH or GRR, based on which one gives

lower estimation variance. After obtaining density estimations for all the bins, one computes

a density distribution for the domain by assuming uniform distribution within each bin.

However, some estimated values may be negative, which does not lead to valid cumulative

distribution functions on the domain. In [41], it is shown that a post-processing method called

Norm-Sub can be applied to improve estimation. Norm-sub converts negative estimates to

0 and subtracts the same amount to all the positive estimates so that they sum up to 1. If

some positive estimates become negative after the subtraction, the process is repeated. This

results in an estimation such that each estimation is non-negative and all estimations sum

up to 1. It can thus be interpreted as a probability distribution.

Challenge of Choosing Bin Size. When using binning, there are two sources of errors:

noise and bias due to grouping values together. More bins lead to greater error due to

noises. Fewer bins lead to greater error due to biases. Choosing the bin size is a trading-

off of the above two sources of errors, and the effect of each choice depends both on the

privacy parameter ε, and on property of the distribution. For example, when a distribution

is smooth, one would prefer using less bins, as the bias error is small, and when a distribution

is spiky, using more bins would perform better. In our experiments, we observe that even

if we could choose the optimal bin size empirically for each dataset and ε value (which is

infeasible to do in practice due to privacy), the result would still be worse than the method

to be proposed in Section 3.5 . We thus chose not to develop ways to choose bin size based

on ε, and just report results of this method under several different bin sizes.

3.4.2 Hierarchy-based Methods

Hierarchy-based methods, including Hierarchy Histogram (HH) in [28 , 29] and Haar

in [30], were first proposed in the centralized setting of DP. In [31], Kulkarni et al. studied

28

the HH method and the Haar in the context of LDP. In order to adapt Haar method to the

local setting, they used Hadamard random response (HRR) as the frequency oracle. HRR is

similar to Local Hashing method introduced in the Section 3.2.1 , but fixing g = 2 and using

a Hadamard matrix as the family of hash functions. To make it clear in the context, we call

the LDP version of Haar as HaarHRR.

HH in LDP. Given a positive integer β and a discrete, ordered domain with size d = |D|,

one can construct a β-ary tree with d leaves corresponding to values in D. There are (h+1)

layers in the tree, where h = logβ d (for simplicity, we assume that logβ d is an integer). The

(h+ 1)-th layer is the root. A user with value v chooses a layer ` ∈ {1, . . . , h} uniformly at

random, and then reports ` as well as the perturbed value of v’s ancestor node at layer `. For

each node in the tree, the aggregator can obtain an estimate of its frequency. Assuming that

the distribution differences among the h groups are negligible, for each parent-child relation,

one expects that the sum of child estimations equals the that of the parent. Constrained

inference techniques [28] are applied to ensure this property.

HaarHRR. Similar to HH, one can use a binary tree to estimate distribution with Discrete

Haar Transform [31]. Specifically, each leaf represents the frequency of a value. Define the

height of a leaf node as 0; and the height of an inner nodes a is denotes as h(a). Each inner

node now represents the Haar coefficient ca =
C

(a)
l −C

(a)
r

2h(a)/2
, where C

(a)
l (or C

(a)
r) is the sum of

all leaves of left (or right) subtree of node a.

In the LDP setting, for a user with value v, the Haar coefficients on each layer has exactly

one element equal to −1 or 1, while others are all zeros. Similar to HH, each user chooses

a layer ` ∈ {1, . . . , h} uniformly at random, then apply Hadamard randomized response

(HRR) on layer ` which depends on Hadamard matrix φ ∈ {−1, 1}2h−`×2h−` . With HRR

reports from users, the aggregator can calculate unbiased estimates for the Haar coefficients

on layer `. Due the limit of space, more details can be found in [31].

Difference from the Centralized Setting. When using hierarchy-based method, there

are two ways to ensure the privacy constraint. One is to divide the privacy budget, where

one builds a single tree for all values. Since each value affects the counts at every level, one

splits the privacy budget among the levels. The other is to divide the population among the

29

layers, where each value contributes to the estimation of a single layer, and one can use the

whole privacy budget for each count. When dividing the population, the absolute level of

noise is less than the case of dividing privacy budget; however, the total count also decreases,

magnifying the impact of noise. In addition, dividing the population introduces sampling

errors, as users are divided into different groups, which may have different distribution from

the global one.

In the centralized setting, because the amount of added noise is low, it is better to

divide the privacy budget, as one avoids sampling errors. In [29], it was found that in the

centralized setting, the optimal branching factor for HH is around 16. And this results in

better performance than using the Haar method, which can be applied only to a binary

hierarchy. In the LDP setting, because the amount of noise is much larger, sampling errors

can be mostly ignored, and it is better to divide the population instead of privacy budget.

As a result, the optimal branching factor for HH is around 5, making it similar to the Haar

method. This was theoretically proved and empirically demonstrated in [31 , 40].

3.4.3 HH-ADMM

We note that there are other ways to improve hierarchy-based mechanism in the LDP

setting. First, the larger noise in the LDP setting results in negative estimates. We can

exploit the prior knowledge that the true counts are non-negative to improve the negative

estimates. Second, the total true count is known, as LDP protects privacy of reported values

and not the fact that one is reporting. These are not exploited in [31]. We propose to use

the Alternating Direction Method of Multipliers (ADMM) algorithm [32] to post-process the

hierarchy estimation. The usage of ADMM was proposed in [42] for the centralized setting.

Our method applies this to LDP, and has two additional differences from [42]. First, we

use L2 norm in the objective function because the noise by CFO is well approximated by

Gaussian noise, and minimizing L2 norm achieves MLE. In the centralized setting, Laplace

noise is used, and L1 norm is minimized in [42]. Second, we pose an additional constraint

30

that the estimates sum up to n, which is known in LDP setting. In the setting considered

in [42], n is unknown.

The HH-ADMM Algorithm. Given a constant vector x̃, ADMM is an efficient algorithm

that aims to find x̂ that satisfies the following optimization problem:

minimize 1

2
‖x̂− x̃‖22 (3.3)

subject to Ax̂ = 0, x̂ < 0, x̂0 = 1

In the hierarchy histogram case of LDP, x̃ represents the concatenation of estimates

from all the layers, where x̃0 is the root. x̂ is the post-processed estimates. The hierarchical

constraints state that the estimate of each internal node should be equal to the sum of

estimates of its children nodes. This can be represented by an equation Ax̂ = 0, where A

has one row for each internal node and one column for each node, and aij is defined as:

aij =


1, if i = j

−1, node j is a child of node i

0, otherwise

The optimization problem (3.3) improves the estimation by enforcing the non-negativity

(x̂ < 0) and sum-up-to-1 (x̂0 = 1) compared with [31]. Because of the limit of space, we

refer the readers who want to know the detail of derivation to [42] for more information.

3.5 Square Wave and Expectation Maximization with Smoothing

The methods we presented in Section 3.4 use CFO protocols as black-boxes and do not

fully exploit the ordered nature of the domains. We propose a new approach that uses a

Square Wave reporting mechanism with post-processing conducted using Expectation Max-

imization with Smoothing (EMS).

31

3.5.1 General Wave Reporting

We first study a family of randomized reporting mechanisms that we call General Wave

mechanisms. The intuition behind this approach is to try to increase the probability that a

noisy reported value carries meaningful information about the input. This is also the implicit

goal driving the development of CFO protocols beyond GRR. In GRR, one reports a value in

D. Intuitively, if the reported value is the true value, then the report is a “useful signal”, as

it conveys the extract correct information about the true input. If the reported value is not

the true value, the report is in some sense noise that needs to be removed. The probability

that a useful signal is generated is p = eε
eε+d−1

, where d = |D| is the size of the domain.

When d is large, p is small, and GRR performs poorly. The essence of OLH and other CFO

protocols is that one reports a randomly selected set of values, where one’s true value has

a higher probability of being selected than other values. In some sense, each “useful signal”

is less sharp, since it is a set of values, but there is a much higher probability that a useful

signal is transmitted.

Exploiting the ordinal nature of the domain, we note that a report that is different from

but close to the true value v also carries useful information about the distribution. Therefore,

given input v, we can report values closer to v with a higher probability than values that are

farther away from v.

Without loss of generality, we assume that D = [0, 1] consists of floating point numbers

between 0 and 1. The random reporting mechanism can be defined by a family of probability

density functions (PDF) over the output domain, with one PDF for each input value. We

denote the output probability density function for v as Mv(ṽ) = Pr [Ψ(v) = ṽ].

Following the above intuition, we want Mv(ṽ) to satisfy the property that Mv(ṽ) = q

when |ṽ − v| > b, and q ≤ Mv(ṽ) ≤ eεq when |ṽ − v| ≤ b, where b is a parameter to be

chosen. To ensure that for values close to the two ends, the range of near-by values is the

same, we enlarge the output domain D̃ = [− b, 1+ b]. We formalize the idea as the following

general wave mechanism.

Definition 3.5.1 (General Wave Mechanism (GW)). With input domain D = [0, 1] and

output domain D̃ = [− b, 1 + b], a randomization mechanism Ψ : D → D̃ is an instance

32

of general wave mechanism if for all v ∈ D, there is a wave function W : R → [q, eεq] with

constants q > 0 and ε > 0, such that the output probability density function Mv(ṽ) = W (ṽ−v)

:

1. W (z) = q for |z| > b ;

2.
∫ b

−b
W (z) dz = 1− q .

Theorem 3.5.1. GW satisfies ε-LDP.

Proof. For any two possible input value v1, v2 ∈ D and any set of possible output T ⊆ D̃ of

GW, we have Pr[GW(v1)∈T]
Pr[GW(v2)∈T]

=
∫
ṽ∈T Mv1 (ṽ)dṽ∫
ṽ∈T Mv2 (ṽ)dṽ

. By definition for all v1, v2 ∈ D and T ⊂ D̃ we

have Pr[GW(v1)∈T]
Pr[GW(v2)∈T]

≤
∫
ṽ∈T eεq dṽ∫
ṽ∈T q dṽ

= eε .

3.5.2 The Square Wave mechanism

GW can have different wave shapes. An intriguing question is what shape should be

used. Following the same intuition in [26], given different values v 6= v′, if Mv and Mv′ are

identical, then there is no way to distinguish those different input values. Therefore, the

hope is that the farther apart Mv and Mv′ are, the easier it is to tell them apart. We use

the difference between two output distributions, Wasserstein (a.k.a., earth-mover) distance

as the utility metric. Based on this, we find the Square Wave mechanism, where supports for

[v− b, v+ b] are the same, is optimal. We also empirically compare GW of other shapes with

Square Wave mechanism in Section 3.6.4 . The experimental results support our intuition.

Specification of Square Wave Reporting. The Square Wave mechanism SW is defined

as:

∀v ∈ D, ṽ ∈ D̃, Mv(ṽ)=

 p, if |v − ṽ| ≤ b ,

q, otherwise .
(3.4)

By maximizing the difference between p and q while satisfying the total probability adds

up to 1, the values p, q can be derived as:

p =
eε

2beε + 1
, q =

1

2beε + 1
.

33

For each input v, the probability mass distribution for the perturbed output looks like

a square wave, with the high plateau region centered around v. We thus call it the Square

Wave (SW) reporting mechanism.

Theorem 3.5.2. For any fixed b and ε, the SW is the GW that maximizes the Wasserstein

distance between any two output distributions of two different inputs.

Theorem 3.5.2 can be proved by using the following Lemma 1 and Lemma 2 .

Lemma 1. Given v1, v2 ∈ D as inputs to general wave mechanism, where v2 > v1 and let

∆ = v2 − v1 > 0, the Wasserstein distance between the output distributions of general wave

mechanism is ∆(1− (2b+ 1)q).

Proof. Given two different input values v1 and v2 which satisfy v2−v1 = ∆ > 0, let Mv1 and

Mv2 are the corresponding output distributions. Define a function diff(z) as the following:

diff(z) =


0 , if z ≤ −b

1− (2b+ 1)q , if z ≥ b∫ z

−b
(W (z′)− q) dz′ , otherwise.

The cumulative function of SW can be written as

P(Mv, ṽ) = (b+ ṽ)q + DIFF(ṽ − v)

Therefore,

∫ 1+b

−b

P(Mv, ṽ)dṽ =
q

2
(1 + 2b)2 +

∫ b

−b

DIFF(z)dz

+ (1− (2b+ 1)q)(1− v) .

34

Following the definition of Wasserstein distance of one dimensional data with `1 norm in

Section 3.3 , and as P(Mv1 , ṽ) ≥ P(Mv2 , ṽ) for all ṽ, it follows that

W1(Mv1 ,Mv2) =

∫
D̃
|P(Mv1 , ṽ)−P(Mv2 , ṽ)|dṽ

=

∫ 1+b

−b

(P(Mv1 , ṽ)−P(Mv2 , ṽ)) dṽ

= (1− (2b+ 1)q)∆ .

Lemma 1 shows that we need to minimize q if we want to maximize the Wasserstein

distance between any two output distributions. Thus, we have the following lemma.

Lemma 2. For any fixed b and ε, the minimum q for general wave mechanism is q = 1
2beε+1

,

which can be achieved if and only if the mechanism is SW.

Proof. By criteria of the definition of GW, we have

1 = q +

∫ b

−b

W (z)dz ≤ 1 + (2b)eεq

⇒ q ≥ 1

2beε + 1

We have equality iff Mv(ṽ) = eεq for all ṽ ∈ [v − b, v + b], which turns out to be SW.

Comparison with PM Mechanism. Square Wave (SW) reporting is similar to the

Piecewise Mechanism (PM) for mean estimation [39] (see Section 3.2.2). PM directly sums

up the randomized reports to estimate the mean of distribution, while the outputs of SW are

used to reconstruct the whole distribution (the reconstruction method will be described in

Subsection 3.5.5). Driven by the different focus, the reporting mechanisms are also different.

PM has to be unbiased for mean estimation, so the input values are not always at the center

35

of high probability region. For example, given input v = −1, the high probability range in

PM is [− eε/2+1
eε/2−1

,−1].

Communication cost. With SW, each report consists of a single floating point number.

The communication cost is thus a small constant for each user, similar to protocols such as

GRR and OLH.

3.5.3 Choosing b

An important parameter to choose for the Square Wave reporting mechanism is b. In

Square Wave reporting, a value that is within b of true input is reported with a probability

that is eε times the probability that a “far” value is reported. The optimal choice of b

depends on the privacy parameter ε. For a larger ε, a smaller b is preferred. When ε goes

to infinity, a value of b → 0 leads to total recovery of input distribution, and any b > 0

leads to information loss. Intuitively, the optimal choice of b also depends on the input

distribution. For a distribution with probability density concentrated at one point, one

would prefer smaller b. For a distribution with more or less evenly distributed probability

density, one would prefer a larger b. However, since we do not know the distribution of the

private values, we want to choose a b value independent of the distribution, but can perform

reasonably well over different distributions.

We choose b to maximize the upper bound of mutual information between the input and

output of the Square Wave reporting. We also empirically study the effect of varying b (see

Section 3.6.4). The experimental results show that choosing b by this method results in

optimal or close to optimal choices of b.

Let V and Ṽ be the input and output random variables representing the input and output

of SW, respectively. The mutual information between V and Ṽ can be represented by the

difference between differential entropy and conditional differential entropy of V and Ṽ :

I(V, Ṽ) = h(V)− h(V |Ṽ) = h(Ṽ)− h(Ṽ |V) .

36

The quantity I(V, Ṽ) depends on the input distribution, which we want to avoid. Therefore,

we consider an upper bound of I(V, Ṽ), which is achieved when Ṽ is uniformly distributed on

D̃. Let U be the random variable that is uniformly distributed in D̃. Because h(Ṽ) ≤ h(U),

we have:

I(V, Ṽ) ≤ h(U)− h(Ṽ |V). (3.5)

In (3.5), the first term of RHS is

h(U) = log(2b+ 1).

The second term of RHS only depends on SW:

h(Ṽ |V) = −
∫
v

Pr [V = v] (2bp log p+ q log q)

= −(2bp log p+ q log q)

= − 2bεeε
2beε + 1

+ log(2beε + 1) .

So the mutual information is determined by a function of b,

log

(
2b+ 1

2beε + 1

)
+

2bεeε
2beε + 1

.

By making its derivative to 0, we get

b =
εeε − eε + 1

2eε(eε − 1− ε)
.

Note that b is a non-increasing function with ε. When ε goes to ∞, b goes to 0. When ε

goes to 0, b goes to 1/2, which leads to an output domain that doubles the size of the input

domain, and for each input value, half of the output domain are considered “close” to the

input value.

37

3.5.4 Bucketizing

The aggregator receives perturbed reports from users and needs to reconstruct the dis-

tribution on D. Our approach performs this reconstruction on a discretized domain, i.e.,

histograms over the domain. The bucketization step can be performed either before or after

applying the randomization step. We discuss the two approaches below. In experiments, we

use the “randomize before bucketize” approach.

“Randomize before bucketize” (R-B). Here each user possesses a floating point number

in D̃ = [0, 1], applies the Square Wave mechanism in Section 3.5.2 , and sends the result to

the aggregator. The aggregator receives values in D̃ = [− b, 1 + b], discretizes the reported

values into d̃ buckets in D̃, and constructs a histogram with d̃ bins. Using the method in

Section 3.5.5 , the aggregator can reconstruct an estimated input histogram of d bins. In

experiments, we set d̃ = d for simplicity.

We compare the results of choosing different d̃ in Section 3.6.4 , and found that the results

are similar so long as d̃ does not deviate far from
√
N .

“Bucketize before randomize” (B-R) or discrete input domain. Alternatively, a

user can perform the discretization step first, and then perform randomization. The SW

mechanism can be naturally applied in a discrete domain as well. Assume input domain size

is d = |D|, discrete SW mechanism has output domain size d̃ = |D̃| = d+2b, and randomizes

input values as the following:

∀v ∈ D, ṽ ∈ D̃, Pr [SW(v) = ṽ]=

 p, if |v − ṽ| ≤ b

q, otherwise,

where p = eε
(2b+1)eε+d−1

and q = 1
(2b+1)eε+d−1

. In this case, one can set b =
⌊

εeε−eε+1
2eε(eε−1−ε)

d
⌋
.

The above discrete SW mechanism can also be applied when the input domain is already

discrete (e.g., age). We conducted experiments comparing doing R-B versus B-R, and found

that they are very similar.

38

3.5.5 Estimating Distribution from Reports

The aggregator receives perturbed values and faces an estimation problem. Note that

post-processing of the output of a mechanism that satisfies differential privacy (the perturbed

values from users) does not affect its privacy guarantee [43].

Without relying on any prior knowledge of the actual distribution, the natural approach

is to conduct Maximum Likelihood Estimation (MLE). We use a d̃ × d matrix M to char-

acterize the randomization process. More specifically, the matrix M ∈ [0, 1]d̃×d denotes the

transformation probabilities, where Mj,i represents the probability of output value falling in

bucket B̃j, j ∈ [d̃], given input in bucket Bi, i ∈ [d], (assuming the input data fall uniformly

at random within bucket Bi). Each column of M sums up to 1.

Expectation-Maximization (EM) Algorithm. Given the probability matrix M as

defined above, we can use an Expectation-Maximization (EM) algorithm to reconstruct the

distribution. The aggregator receives n randomized values from users, which are denoted as

ṽ = {ṽ1, . . . , ṽn}, and finds x̂ that maximizes the log-likelihood L(x̂) = lnPr [ṽ|x̂].

Let nj be the number of values in B̃j is reported. The EM algorithm for post-processing

the square wave reporting is shown in Algorithm 1 . Note that there are existing works that

use EM to post-process results of CFO (e.g., [44 , 45]), but our proposed EM algorithm takes

aggregated results and is thus more efficient. Because of limitation of space, we omit the

derivation of EM algorithm.

Theorem 3.5.3. The EM algorithm converges to the maximum-likelihood (ML) estimator

of the true frequencies x.

Proof. To prove EM algorithm converges to the maximum likelihood estimator, it is enough

to show the log-likelihood function is concave [46]. In the context of our problem

L(x) = lnPr [ṽ|x] = ln
n∏

k=1

Pr [ṽk|x]

=
n∑

k=1

ln

(
d∑

i=1

xiPr [ṽk|v ∈ Bi]

)
,

39

Algorithm 1 Post-processing EM algorithm
Input: M, ṽ
Output: x̂
while not converge do

E-step: ∀i ∈ {1, ..., d},

Pi = x̂i

∑
j∈[d̃]

nj

Pr
[
ṽ ∈ B̃j|v ∈ Bi, x̂

]
Pr
[
ṽ ∈ B̃j|x̂

]
= x̂i

∑
j∈[d̃]

nj
Mj,i∑d

k=1 Mj,kx̂k

M-step: ∀i ∈ {1, ..., d},

x̂i =
Pi∑d

k′=1 Pk′

end while
Return x̂

where Pr [ṽk|v ∈ Bi] are constants determined by SW method. Thus, L(x) is a concave

function.

Stopping Criteria. Through experiments, we have observed that the result of applying

EM is highly sensitive to the parameter controlling terminating condition. If EM terminates

too early, the reconstructed distribution is still far from the true one. If EM terminates too

late, while the reconstructed distribution does fit the observation better (higher likelihood),

it is also getting farther away from the true distribution to fit the noise. One of the most

common stopping criteria for EM algorithm is checking whether the relative improvement of

log-likelihood is small [44]. Namely, when
∣∣L(x̂(t+1))− L(x̂(t))

∣∣ < τ for some small positive

number τ , EM algorithm stops. The choice of τ depends on many factors, including the

smoothness of distribution and the amount of noise added by the square wave distribution.

Empirically, we find that if we set τ proportional to eε, EM algorithm generally performs

better than the one using a fixed τ . However, on some datasets that have a smoother

distribution, the recovered result still over-fits the noise. Several of our attempts at finding a

40

0 50 100 150 200 2500.000

0.002

0.004

0.006

0.008

0.010

(a) Beta(5, 2)
0 200 400 600 800 10000.0000

0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0016

(b) Taxi pickup time
0 200 400 600 800 10000.000

0.005

0.010

0.015

0.020

(c) Income
0 200 400 600 800 10000.0000

0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
0.0035
0.0040

(d) Retirement

Figure 3.1. Normalized frequencies of datasets for experiments.

stopping condition that make EM perform well consistently did not succeed. This motivates

us to apply smoothing in EM.

EMS Algorithm. Using prior knowledge in estimation can make results less sensitive

to the noise and more accurate than MLE solution. By the nature of numerical domain,

adjacent numerical values’ frequencies should not vary dramatically. With this observation,

we can add a smoothing step after the M-step in the EM algorithm, boosting the accuracy

with prior knowledge. We call the EM algorithm with smoothing steps as EMS algorithm.

The idea of adding smoothing step into EM algorithm dates back to 1990s [33 , 34] in the

context of positron emission tomography and image reconstruction. The authors showed

that a simple local smoothing method, the weight average with binomial coefficients of a bin

value and the values of its nearest neighbours, could improve the estimation dramatically.

We adopt this smoothing method. That is, after the M-step, the smoothing step will average

each estimate with its adjacent ones with binomial coefficients (1, 2, 1):

x̂i =
1

2
x̂i +

1

4
(x̂i−1 + x̂i+1) .

It was proved that adding the smoothing step is equivalent to adding a regularization

term penalizing the spiky estimation [33], which can be viewed as applying Bayesian inference

with a prior that prefers smoother distribution to jagged ones [47]. In more recent work, the

idea of EMS is also applied to spatial data [48] and biophysics data [49].

41

3.6 Experiments

3.6.1 Experimental Setup

Datasets. We use the following datasets to conduct our experiments. One of them is

synthetic, and the other three are real world datasets. All of them consist of numerical

values. For CFO based methods, we discretize the values to the same granularity as the

output of SW with EMS/EM method. Also, in order to compare with HH and HH-ADMM,

which have optimal branching factor close to 4 [31], we choose the granularity (number of

buckets in histogram) to be power of 4.

Synthetic Beta(5, 2) dataset. Originally, the distribution is in the continuous domain

[0, 1]. One hundred thousand samples are generated. In experiments, we reconstruct the

histogram with 256 buckets for all methods.

Taxi dataset’s attribute pick-up time. Taxi pickup time dataset comes from 2018 January

New York Taxi data [50]. Originally, the dataset contains the pickup time in a day (in

seconds). We map the values into [0, 1]. There are 2, 189, 968 samples in the dataset. In

experiments, all estimated histograms have 1024 buckets.

Income dataset. We use the income information of the 2017 American Community Sur-

vey [51]. The data range is [0, 1563000). We extract the values that are smaller than 524288

(i.e., 219) and map them into [0, 1]. There are 2, 308, 374 samples after pre-processing. We

choose to set the estimated histograms with 1024 buckets.

Retirement dataset. The San Francisco employee retirement plans data [52] contains

integer values from −28, 700 to 101, 000. We extract values that are non-negative and smaller

than 60, 000, and map them into [0, 1]. There are 178, 012 samples after post-processing. In

experiments, we reconstruct the histogram with 1024 buckets for all methods.

The income dataset is spiky because many people tend to report with precision up to

hundreds or thousands (e.g., people are more likely to report $3000 instead of more precise

value like $3050 or $2980.)

Competitors. In the experiments, we consider several existing methods, including meth-

ods that obtain mean (PM, SR) and Hierarchy-based Methods (HH, HaarHRR). We also

42

0.5 1.0 1.5 2.0 2.5
ε

10
−3

10
−2

W
1

(a) Beta(5, 2)
0.5 1.0 1.5 2.0 2.5

ε

10
−3

(b) Taxi pickup time
0.5 1.0 1.5 2.0 2.5

ε

10
−3

10
−2

(c) Income
0.5 1.0 1.5 2.0 2.5

ε

10
−2

(d) Retirement

0.5 1.0 1.5 2.0 2.5
ε

10
−2

10
−1

d K
S

(e) Beta(5,2)
0.5 1.0 1.5 2.0 2.5

ε

10
−2

(f) Taxi pickup time
0.5 1.0 1.5 2.0 2.5

ε

10
−2

(g) Income
0.5 1.0 1.5 2.0 2.5

ε

10
−2

10
−1

(h) Retirement
Figure 3.2. Results of distribution distances (first row: Wasserstein distance,
second row: KS distance), varying ε.

43

Table 3.2. Methods and evaluated metrics.

Methods
Metrics Wasserstein

and KS
distance

Range Query Mean & Variance Quantile

SW with EMS/EM
(this chapter) X X X X

HH-ADMM
(this chapter) X X X X

CFO binning X X X X

HH [31] and
HaarHRR [31] X

PM [39] and SR [37] X

consider CFO with binning methods, our proposed method HH-ADMM, and SW with EM-

S/EM. To the more specific, we summarize the methods and metrics evaluated in Table 3.2 .

• Piecewise Mechanism (PM) and Stochastic Rounding (SR) (See Section 3.2.2) are only

evaluated for mean and variance. They were designed for mean, and we adapted them

to also estimate variance.

• For CFO with binning, we partition D into c consecutive, non-overlapping chunks. We

consider c = 16, 32, 64, which are the best performing c values.

• For HH, HaarHRR and HH-ADMM, similar to [31], we use a branching factor of 4. HH

and HaarHRR are only evaluated for range queries as they produce estimation results

with negative values, which are not valid probability distributions. Other metrics are

defined for probability distributions.

• For SW with EM and EMS as post-processing, we set τ = 10−3eε for EM and τ = 10−3

for EMS.

As a brief overview of the experiment results, SW with EMS performs best with different

privacy budgets and different metrics. HH-ADMM performs best on the income dataset

44

under some of the metrics. We also experimentally demonstrate the better utility of SW

over other wave shapes in GW and the near-optimal choice of b for SW.

Evaluation methodology. The algorithms are implemented using Python 3.6 and Numpy

1.15; the experiments are conducted on a server with Intel Xeon 4108 and 128GB memory.

For each dataset and each method, we repeat the experiment 100 times and take the mean.

3.6.2 Distribution Distance

We first evaluate metrics that capture the quality of the recovered distributions. Note

that HH and haarHRR are not included (but HH-ADMM is) because HH or haarHRR does

not result in valid distributions.

Wasserstein Distance. Figure 3.2a - 3.2d shows the Wasserstein distance W1 of recon-

structed distribution and the true distribution. In most cases, SW with EMS performs best,

followed by EM and HH-ADMM. For the CFO-binning methods, when ε is small, larger

binning sizes (i.e., fewer number of bins) tend to give better performance. The lines for

larger binning sizes flatten as ε increases, showing that the errors are dominated by biases

due to binning. When ε becomes larger, CFO-binning with smaller bin sizes (i.e., more bins)

becomes better. We observe that even if we could choose the optimal bin size empirically

for each dataset and ε value, the result would still be worse than SW with EMS.

KS Distance. Figure 3.2e - 3.2h show the K-S distance. For Beta, taxi pickup time and

retirement datasets, SW with EMS generally performs the best, followed by EM. For the

income dataset, HH-ADMM performs better than EM and EMS under this metric, especially

under larger ε values. This is because the income dataset is more spiky, due to the fact that

people tend to report income using round numbers. HH-ADMM is better at preserving some

of the spikes in the distribution, whereas SW with EM or EMS will smooth the spikes. Since

KS distance measures maximum difference at one point in CDF, HH-ADMM results in lower

errors under KS distance, even though it produces higher error under Wasserstein Distance.

For similar reason, CFO with larger bin size also perform poorly on the income dataset under

KS distance.

45

0.5 1.0 1.5 2.0 2.5
ε

10
−2

M
AE

(ra
ng

e
qu

er
y)

(a) Beta(5,2)

0.5 1.0 1.5 2.0 2.5
ε

10
−3

10
−2

(b) Taxi pickup time

0.5 1.0 1.5 2.0 2.5
ε

10
−3

(c) Income

0.5 1.0 1.5 2.0 2.5
ε

10
−2

(d) Retirement

0.5 1.0 1.5 2.0 2.5
ε

10
−3

10
−2

M
AE

(ra
ng

e
qu

er
y)

(e) Beta(5,2)

0.5 1.0 1.5 2.0 2.5
10

3

(f) Taxi pickup time

0.5 1.0 1.5 2.0 2.5
ε

10
−2

(g) Income

0.5 1.0 1.5 2.0 2.5
ε

10
−2

(h) Retirement
Figure 3.3. MAE of random range query with range α = 0.1 (first row) and
α = 0.4 (second row).

3.6.3 Semantic and Statistical Quantities

We compare the results of different methods using the range query and statistic quantities

including mean, variance, quantiles. For mean and variance, we also consider the SR and

PM, which were designed for mean estimations. All results are measured by Mean Absolute

Error (MAE).

Range Query. The queries are randomly generated, but with fixed range sizes. Denote the

left and right of the range as i and i+α, we randomly generate i ∈ [0, 1−α] with α = 0.1 and

0.4. The results in Figure 3.3 shows that SW with EMS outperforms HH and HaarHRR [31].

In fact, it is the best in most cases, except when α = 0.1 in the taxi pickup time dataset and

in low privacy region of income dataset. However, SW with EMS has performance similar

to CFO-binning-64 when α = 0.1 and still outperforms all the hierarchy-based approaches

in taxi pickup time dataset. For the income dataset, EM and EMS performs well in high

46

0.5 1.0 1.5 2.0 2.5
ε

10
−3

10
−2

M
AE

(m
ea

n)

(a) Beta(5,2)
0.5 1.0 1.5 2.0 2.5

ε

10
−3

10
−2

(b) Taxi pickup time
0.5 1.0 1.5 2.0 2.5

ε

10
−3

10
−2

(c) Income
0.5 1.0 1.5 2.0 2.5

ε

10
−3

10
−2

(d) Retirement

0.5 1.0 1.5 2.0 2.5
ε

10
−3

10
−2

M
AE

(v
ar
ia
nc
e)

(e) Beta(5,2)
0.5 1.0 1.5 2.0 2.5

ε

10
−4

10
−3

(f) Taxi pickup time
0.5 1.0 1.5 2.0 2.5

ε

10
−3

(g) Income
0.5 1.0 1.5 2.0 2.5

ε

10
−3

10
−2

(h) Retirement

0.5 1.0 1.5 2.0 2.5
ε

10
−2

M
AE

(q
ua

nt
ile
)

(i) Beta(5,2)
0.5 1.0 1.5 2.0 2.5

ε

10
−3

10
−2

(j) Taxi pickup time
0.5 1.0 1.5 2.0 2.5

ε

10
−3

(k) Income
0.5 1.0 1.5 2.0 2.5

ε

10
−2

(l) Retirement
Figure 3.4. MAE for estimating mean (first row), variance (second row), and
quantiles (third row).

privacy range (i.e., ε ≤ 2), while HH-ADMM performs best in low privacy range, followed

by EM and EMS.

Mean Estimation. Results for mean estimation are showed in Figure 3.4a - 3.4d . SR

performs better than PM when ε is small, but worse when ε is larger. This is consistent

with the analysis in [39]. Note that SR and PM devote all privacy budget to estimate mean.

While SW with EMS can estimate the full distribution, it performs comparable to the best of

SR and PM for estimating the mean. We also see that HH-ADMM has better performances

than all other CFO-binning methods, but is still inferior to SW with EMS.

Variance Estimation. Although SR and PM are proposed for mean estimation, they can

be modified to support variance estimation as well. Specifically, we randomly sample 50% of

users to estimate mean first. The estimated mean is then broadcast to the remaining users.

47

Then each user compares his secret value and the received estimated mean, and reports the

squared difference (i.e., (vi − µ̃)2) to the server, who averages them to obtain variance.

The experimental results are showed in Figure 3.4e - 3.4h . As we can see, the error of

SR and PM is larger than EM or EMS in most cases. One reason is that only half of the

users are used for variance estimation (the other half is necessary for mean estimation). The

relative performance of other methods are similar to previous experiments.

Quantile Estimation. Experimental results are shown in Figure 3.4i - 3.4l . Ignoring

the spiky income dataset for now, our proposed SW with EMS performs best. Moreover,

we observe that SW with EM sometimes performs better but is not stable, because it is

sensitive to parameters. HH-ADMM performs worse than SW, but close to the best of CFO

with binning. For CFO with binning, because of the trade-off between estimation noise and

the bias within the bins, larger bin sizes typically perform better in smaller ε ranges, while

the smaller bin sizes narrows the gap as ε increases.

For the spiky income dataset, even for ε = 0.5, larger bin sizes give worse utility (1 to 2

orders of magnitude) than other mechanisms. This also demonstrates that the optimal bin

size is data-dependent. HH-ADMM successfully captures the spikiness of the dataset and

thus performs the best.

3.6.4 Wave Shapes and Parameters

Here we compare the different shapes of General Wave (GW) with SW, and different

parameters of SW.

Different shapes of wave in GW. In Section 3.5.2 , we analytically show that SW

is preferred because it maximizes the Wasserstein distance between output distributions.

We empirically compare SW with other wave forms. We consider 5 other GW mechanism

with different shape, including 4 trapezoid shapes and one triangle shape. The upper side

to bottom side length ratio of trapezoid wave are 0.2, 0.4, 0.6 and 0.8. The experimental

results in Figure 3.5 show when ε = 1, SW gives the best estimated distributions in terms

48

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
b

10
−2

10
−1

W
1

(a) Beta(5, 2) ε = 1.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35
b

2×10
−3

3×10
−3

4×10
−3

6×10
−3

(b) Taxi pickup time ε = 1.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35
b

10
−2

(c) Income ε = 1.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35
b

10
−2

(d) Retirement ε = 1.0

Figure 3.5. Comparison of different shapes of wave in GW. Ratios are the
upper/lower length ratios for trapezoids.

of Wasserstein distance, no matter how we change b. As the ratio decreases, the recovery

accuracy also degrades in general. The results support our intuition in Section 3.5.2 .

SW with different b. In Section 3.5.3 , we propose to use bSW = εeε−eε+1
2eε(eε−1−ε)

. Figure 3.6

reports experimental results with different b. Our choice of bSW, which is indicated as the

vertical dotted line, is among the ones that provide best utility. We have also evaluated

b on other metrics; the results give similar conclusion, and are omitted because of space

limitation.

Bucketization granularity. To see what is the optimal bucketization granularity on

different datasets, we choose 4 different numbers of buckets (256, 512, 1024 and 2048) then

compare the Wasserstein distance between the estimated distributions and the true distribu-

tions. For simplicity, we use same number of buckets for both D̃ and D. The experimental

results in Figure 3.7 show different datasets have different optimal bucketization granularity.

For Beta(5,2), we have best result when the number of buckets is 256. For the other 3

datasets, dividing D into 1024 buckets can give us best performance in most cases.

49

0.0 0.1 0.2 0.3
b

10
−2

W
1

(a) ε = 1.0, bSW = 0.256

0.0 0.1 0.2 0.3
b

10
−3

10
−2

(b) ε = 2.0, bSW = 0.129

0.0 0.1 0.2 0.3
b

10
−3

6×10
−4

2×10
−3

3×10
−3

4×10
−3

(c) ε = 3.0, bSW = 0.064

0.0 0.1 0.2 0.3
b

10
−3

6×10
−4

2×10
−3

(d) ε = 4.0, bSW = 0.030

Figure 3.6. Wasserstein distances between the true data and the estimation
produced by EMS algorithm with fixed ε values and varying b from 0.01 to
0.38. Dotted vertical lines means the used bSW in Section 3.5.3 .

3.7 Related Work

We summarize some existing literature focusing on LDP as the following.

Categorical Frequency Oracle. One basic mechanism in LDP is to estimate frequencies

of values. There have been several mechanisms [13 , 23 – 26 , 53] proposed for this task. Among

them, [25] introduces OLH, which achieves low estimation errors and low communication

costs. We develop new frequency oracles for numerical attributes.

Handling Ordinal/Numerical Data. When the data is ordinal, the straightforward

approach is to bucketize the data and apply categorical frequency oracles. [54] considers

distribution estimation, but with a strictly weaker privacy definition. There are also mecha-

nisms that can handle numerical setting, but focusing on the specific task of mean estimation,

i.e. SR [13 , 37] and PM [39]. These two approaches have been discussed in Section 3.2 and

compared in the experiments.

Post-processing. Given the result of a privacy-preserving algorithm, one can utilize the

structural information to post-process it so that the utility can be improved. In the setting

50

0.5 1.0 1.5 2.0 2.5
ε

10
−2

2×10
−3

3×10
−3

4×10
−3

6×10
−3

W
1

(a) Beta(5,2)

0.5 1.0 1.5 2.0 2.5
ε

10
−3

(b) Taxi Pickup time

0.5 1.0 1.5 2.0 2.5
ε

10
−3

2×10
−3

3×10
−3

4×10
−3

6×10
−3

(c) Income

0.5 1.0 1.5 2.0 2.5
ε

2×10
−3

3×10
−3

4×10
−3

6×10
−3

(d) Retirement
Figure 3.7. Wasserstein distance between estimated and true distribution
with different bucketization granularity.

of centralized DP, Hay et al. [28] propose an efficient hierarchical method to minimize L2

difference between the original result and the processed result. Besides that, the authors

of [42] also consider the non-negativity constraint and propose to use ADMM to obtain

result that achieves maximal likelihood. As ADMM is not efficient for high dimensional

case, a gradient descent based algorithm is proposed [55].

In the LDP setting, [39] and [31] also consider the hierarchy structure and apply the

technique of [28]. We propose to use ADMM instead of [28], which improves utility.

Without using the hierarchical constraint (only consider CFO), Jia et al. [56] propose to

utilize external information about the dataset (e.g., assume it follows a power-law distribu-

tion), and Wang et al. [41] consider the constraints that the distribution is non-negative and

sum up to 1. Bassily [57] and Kairouz et al. [58] study the post-processing for some CFO with

MLE. Compared with those existing methods, our work is also a post-processing method but

is applied to a new Square Wave reporting method and requires different techniques (such

as EMS algorithm).

Shuffling. Recently, shuffle-DP [59 – 61] is introduced as an intermediate framework be-

tween centralized DP and LDP. By assuming there is a trusted third party who shuffles the

51

reports of a ε-LDP protocol before sending them to the aggregator, it is proved in [59] that the

output of those shuffled reports will satisfy (ε′, δ)-DP, for some ε′ = O((1∧ε)eε
√
log(1/δ)/n).

Our SW mechanism is fully compatible with shuffling, and its privacy amplification effects

can be analyzed by the same tools introduced in [59].

3.8 Conclusion

We have studied the problem of reconstructing the distribution of a numerical attribute

under LDP. We introduce HH-ADMM as an improvement to existing hierarchy-based meth-

ods. Most importantly, we propose the method of combining Square Wave reporting with

Expectation Maximization and Smoothing. We show that Square Wave mechanism has

the best utility among general wave mechanisms, and introduce techniques to choose the

bandwidth parameter b by maximizing an upper bound of mutual information. Extensive

experimental evaluations demonstrate that SW with EMS generally performs the best un-

der a wide range of metrics. We expect these protocols and findings to help improving the

deployment of LDP protocols to collect and analyse numerical information.

52

4. FEDERATED MATRIX FACTORIZATION WITH PRIVACY

GUARANTEE

(A version of this chapter has been previously published in VLDB 2022 [62].)

4.1 Introduction

Federated learning (FL) has been applied as a paradigm for multiple parties to collabo-

ratively train a model without directly sharing their data. FL can be categorized according

to the data partition as summarized in [63]. Based on whether the data are partitioned by

features or users, there are vertical FL (VFL) and horizontal FL (HFL), respectively. Based

on how much users’ data each party can access, the HFL setting can be extended from the

cross-silo setting to the cross-device setting, which we call local FL (LFL) in this chapter.

This chapter investigates the matrix factorization problem (e.g., [64 – 67]) under the above

three settings of federated learning. Matrix factorization is an important building block in

recommendation systems. In its simplest form, with a rating matrix as the input, it learns

to represent users (rows) and items (columns or features) as low-dim vectors, called user

embeddings and item embeddings, respectively, so that the dot-product of a user embedding

and an item embedding measures how the user prefers the item. The embeddings, preferably

learned in a privacy-preserving way, can be used in downstream applications [68 , 69].

4.1.1 Coordination and Trust Models

For federated matrix factorization, we assume that the coordination pattern is the classic

server-client model [63 , 70]. There are three types of entities: n users, totally s parties holding

users’ data, and a coordination server. We assume that users’ ratings for items are fixed and

stored on parties beforehand; each party does not trust the server or other parties, and wants

to protect its users’ privacy.

It is challenging in FL to prevent privacy leakage. As shown in [71], users in the

anonymized rating matrices can still be identified. Without sharing the ratings directly,

training samples can still be recovered from shared gradients in FL [72]. Even if no local

53

(a) VFL setting (b) HFL setting (c) LFL setting

Figure 4.1. Different FL settings (a)-(c) with sensitive information exchanged
on privacy boundaries (the dashed lines). Each ui is a user embeddings, vj is
an item embedding.

Table 4.1. Communication cost examples .
Setting Dataset # of parties T Comm cost each sync

VFL-SGDMF MovieLens 10M
(120 MB)

n=69878, m=10677,
p=20

10 100 5.6MB (O(np))
HFL-SGDMF 10 100 1.7MB(O(mp))

LFL-SGDMF 69878 10 1.7MB + 1.7MB
(O(log n+mp))

• Our default experiment settings is sync iteration T = 100, local iteration T ′ = 10 and
embedding dimension p = 20.

• LFL-SGDMF relies on secure aggregation, requiring additional O(log n) for decoding .

data are shared explicitly and the secure multiparty computation techniques [73 , 74] are

applied in communication between parties, the final models are still vulnerable to inference

attacks [75]. To provide provable resistance to such attacks, efforts have been made to protect

federate learning with differential privacy (DP) [10].

In all following settings, we aim to ensure that all the information sent out by one party

satisfies DP relative to its user’s data. That is, the privacy boundary for each party is directly

surrounding that party. In other words, each party does not need to trust any other party

in order to protect the data it has. We identify whether a certain kind of information (e.g.,

user/item embeddings) cross such privacy boundaries depending on the settings below.

54

We give an overview of the coordination and trust models proposed in this chapter for

different FL settings in Figures 4.1a - 4.1c .

Vertical FL (VFL). The rating matrix is partitioned on columns across different parties.

All parties share the same set of users, but each owns a different subset of items. A typical

application scenario for VFL is that two companies, e.g., an online content platform and a

local retailer, have the same set of users, but each has different user-behavior information;

they want to cooperate in training a recommendation model, which learns from both users’

behavior on online contents (items such as videos) and items in local stores.

During the learning procedure, different parties exchange user embeddings with the co-

ordination server; the shared user embeddings are aggregated at the coordination server and

sent back to each party to refine local user/item embeddings for the next iterations. In the

trust model of this setting, the communication between parties and the coordination server

(purple arrows) and the output of final user/item embeddings (red/orange arrows) cross

the privacy boundary, and they need to be protected under DP. Note that since one user’s

data is split among multiple parties, the joint output satisfies DP relative to a user if all

parties follow the protocol.

Horizontal FL (HFL). In HFL, each party has a subset of users and all their ratings, so

the rating matrix is partitioned on rows across different parties. Different from distributed

learning, there is no i.i.d. assumption about the partitioning in HFL. A typical scenario for

HFL is that different hospitals have records for different groups of patients (users) about

the same set of diseases (items); hospitals want to train a patient-disease prediction model

cooperatively.

The coordination for HFL is symmetric to the one for VFL. As different parties have

different sets of users, a coordination server synchronizes all updates on item embeddings

periodically, and sends them back to each party to refine user embeddings learned for the

users in this party. The final user embeddings do not have to be published (within the privacy

boundary, following the similar assumptions as [76 , 77]); thus, only the shared updates

on item embeddings (purple arrows), as well as the aggregated item embeddings if to be

published, need to be protected with DP.

55

Local FL (LFL). LFL is a special case of HFL, where a user as one party by her/himself

has all her/his ratings. It is a common scenario in mobile applications: each user holds

the information about which items s/he visits only on her/his own mobile device, and does

not want to share it directly with other parties; LFL enables the service provider to train a

recommender without collecting the sensitive information about exact interactions between

users and items.

Each user’s device exchanges updates on item embeddings with the coordination server

who aggregates them for the shared item embeddings; afterwards, the shared item embed-

dings are broadcast to each user’s device to refine user embedding which is kept only locally.

Note that under the trust model similar to [78], the user embedding does not have to be

published, as the ranking procedure, e.g., calculating the dot-product of user embedding

and item embedding for a specific user, can be done locally in users device. Only the shared

updates on item embeddings (purple arrows) and the aggregated item embeddings, need to

be protected with DP.

Formal description about the coordination and trust models in these three FL settings

will be given in Sections 4.3 - 4.6 .

4.1.2 Our Contributions

This chapter comprehensively studies the matrix factorization problem under the three

FL settings (i.e., HFL, VFL and LFL). Our contributions in this chapter can be summarized

as the following:

• We introduce an abstracted computation paradigm in Section 4.3 for solving the matrix

factorization problem in FL settings. This paradigm is applicable for the three settings. We

prove the convergence of our proposed paradigm with limited communication and coordi-

nation between parties and no assumption on whether the data are distributed uniformly

across parties or not.

• Different FL settings confront different potential privacy-leakage risks. In the context

of matrix factorization, we systematically characterize privacy-leakage risks setting by set-

ting, and propose corresponding notions of privacy in different settings to prevent such risks.

Based on DP and secure aggregation, these privacy notions provide end-to-end privacy guar-

56

antees on the information across the privacy boundary. Depending on the protection granu-

larity and strength needed, there are two versions for each privacy notion, per-rating version

(protecting each rating at one time) and per-user version (protecting each user’s behavior as

a whole). We design FL algorithms based on these privacy notions for different settings.

• Gradient clipping is a standard technique in private optimization under DP when solving

problems with unbounded gradients, but it also has drawbacks as introducing additional bias

and requiring complicated hyper-parameter tuning [79 , 80]. In this chapter, instead of using

gradient clipping, we propose embedding clipping to bound the sensitivity of the embedding

updates: (intermediate) item/user embeddings are projected into a subspace so that their

norms and thus the sensitivity is bounded by a threshold, which is dependent on the range of

the ratings in the task and does not need to be tuned. We introduce our embedding clipping

technique under the VFL setting in Section 4.4 , and will repeatedly use it in other settings

as well. We show with experiments that embedding clipping can have more accurate updates

than gradient clipping and other approaches.

• Based on our proposed FL paradigm and embedding clipping, we design VFL-SGDMF

algorithm for matrix factorization under the VFL setting in Section 4.4 , providing privacy

protection for both user embeddings and item embeddings in both intermediate and final

outputs. Compared with training only locally with no communication, our experiments

show that our VFL-SGDMF algorithm can provide high accuracy in predictions by absorbing

heterogeneous information owned by different parties.

• We propose HFL-SGDMF algorithm for matrix factorization under the HFL setting in Sec-

tion 4.5 . In this setting, the communication between different parties is protected by DP, but

the parties can fine-tune the final results to obtain more accurate models. Our experiments

show VFL-SGDMF outperforms the non-private local training method and a strawman method

based on DPSGD [18 , 81] synchronizing privatized gradient from all parties in every iteration.

• Extending from the cross-silo HFL setting to cross-device LFL setting in Section 4.6 ,

we combine secure aggregation with differential privacy and propose LFL-SGDMF algorithm

to ensure the server can only obtain aggregated and privatized sum of gradients. A novel

two-round aggregation approach is introduced to ensure that our algorithm tolerates user

dropouts (disconnection of users’ devices) during training without introducing excessive DP

57

noise. With similar strength of privacy protection, our algorithm provides more accurate

predictions on the testing set than the approach purely based on local differential privacy.

4.2 Problem Formulation

4.2.1 Matrix Factorization

The input to the matrix factorization (MF) [64] problem is a matrix X ∈ (R ∪ {⊥})n×m

consisting of ratings from n users on m items (e.g., movies). An element Xij ∈ R is the

observed rating from user i on item j, and Xij =⊥ means that the rating is unobserved.

Although n and m can be very large, the matrix is sparse in the sense that only a small

fraction, e.g., 1%, of ratings, are observed. We denote the set of indices of observed ratings

as Ω = {(i, j)|Xij 6=⊥}. With the assumption that the rating matrix can be approximated

by the inner product of two low rank matrices, U ∈ Rn×p and V ∈ Rm×p where p� n,m, the

matrix factorization problem can be formalized as minimizing the loss function L (X, U, V):

1

|Ω|
∑

(i,j)∈Ω

Li,j (X, U, V) =
1

|Ω|
∑

(i,j)∈Ω

(Xij − 〈ui, vj〉)2 , (4.1)

where ui and vj are the row vectors of U and V , which are called user embeddings and item

embeddings, respectively. For a specific user i, ratings on items j ∈ [m] can be approximated

by the inner product of user embedding and item embeddings 〈ui, vj〉. We will formalize the

federated matrix factorization problem in Section 4.3 .

4.2.2 Differential Privacy in Matrix Factorization

In the federated learning settings, any non-trivial solution requires parties (or user devices

in the LFL setting) to share information distilled from local datasets with others. Recent

research results [72 , 82] have shown that sharing gradients directly can leak user privacy.

In this chapter, we employ DP [10] to protect user’s information from privacy leakage be-

cause DP is more powerful in resisting membership inference attacks, re-identification or

reconstruction attacks than other privacy notations, such as k-anonymity [3 , 15].

58

When we enforce DP on the MF problem in FL settings, some details need to be specified

as the following.

Privacy definitions related to MF. Different definitions of “neighboring datasets” imply

different privacy guarantees. In this chapter, we consider two types of guarantees, per-rating

privacy and per-user privacy. We formally define them as follows.

• Per-rating privacy. To provide per-rating privacy, two rating matrices X and X′ are

neighboring datasets if there is an index (i, j), such that either Xij =⊥ is unobserved and

X′
ij 6=⊥ is observed, or the reverse; and for any other index (i′, j′) 6= (i, j), Xi′j′ = X′

i′j′ . Thus,

per-rating privacy protects every single rating given by each user. The protection provided

by per-rating privacy on the overall behavior of a user can be weak if a user contributes a

large number of ratings due to the sequential composition of differential privacy.

• Per-user privacy. To provide per-user privacy, two rating matrices X and X′ are neigh-

boring datasets if and only if there exists a user i such that i) for any user i′ 6= i, Xi′· = X′
i′·,

and ii) either Xij =⊥ for all items j ∈ [m] or X′
ij =⊥ for all items j ∈ [m]. The same defi-

nition has been used in [83]. This definition helps prevent the adversary from distinguishing

any individual user i’s ratings from not rating anything. The “dummy row” is only used

to define neighboring rating matrix and sensitivity calculation, but it is never added in the

computation process. We use the above per-user definition in this chapter because it works

with moment accountants more naturally for composition. An alternative is to define X and

X′ as neighboring if they have the same number of rows and differ in at most one row. This

definition helps prevent the adversary from distinguishing any individual user i’s ratings

from any other behavior. Satisfy (ε, δ)-DP using the former satisfies (2ε, 2δ)-DP under the

latter.

Bounding sensitivity. In DP, the effect of adding/removing one record is called sensitivity.

Gradient clipping and trimming are two techniques to bound the sensitivities in MF.

• Gradient clipping. In differentially private optimization, when the gradient-based method

is applied (e.g., DPSGD) but the gradients are unbounded, gradient clipping is the technique

to bound the sensitivity of gradients [18]. For example, for per-rating privacy, the gradient

59

for the user embedding from a rating of user i on item j,∇ULi,j (U, V), is not bounded if there

are no additional constraints. Thus, the gradient has to be clipped as ∇ULi,j(U,V)

max{1,‖∇ULi,j(U,V)‖2/C} .

However, gradient clipping has several disadvantages in practice. Firstly, gradient clip-

ping limits the effect of each rating. So gradient clipping limits the effects of gradients with

large magnitudes in aggregation, the useful updates may be canceled out. Secondly, gradient

clipping requires extract space to store the gradients from each rating/user. In this chapter,

we propose embedding clipping (in Section 4.4) to bound the sensitivity of the gradient.

• Trimming [76]. The bounded gradients from a single rating are sufficient to derive the

sensitivity of per-rating privacy. However, a user can have many ratings, and the sensitivity

of per-user privacy is linear to the maximum number of ratings a user can have. An excessive

noise is required to provide per-user privacy because of the high sensitivity. Thus, when per-

user privacy is enforced, as the first step, each user’s record keeps at most θ(k) ratings in the

local rating matrix of party k, and turns the rest of ratings to ⊥.

• Privacy budget composition. Solving the federated MF problem requires multiple accesses

to the dataset. Based on different data partitions and privacy settings, both parallel com-

position and sequential composition can be used in this chapter. The privacy losses are

bounded for the three different settings in Section 4.4 to 4.6 .

4.3 Federated Matrix Factorization Computation Paradigm

The goal of federated matrix factorization is to let the involved parties learn some common

components cooperatively. In the VFL setting, the parties want to learn the user embeddings

together; in the HFL and LFL setting, the item embeddings are shared between the different

parties. This section formalizes the problems in VFL, HFL and LFL, then introduces a

non-private federated matrix factorization paradigm with convergence guarantees.

We assume there are s parties in the learning process. The party is an abstraction that

has different meanings in cross-silo FL and cross-device FL [63] scenarios. When a party has

more than one user’s data, it represents an organization, and the scenario is cross-silo FL;

when each party has only one user’s data, it represents a user device in practice, and the

scenario becomes cross-device FL.

60

MF in vertical federated learning (VFL). As described in Figure 4.1a , each party in

the VFL setting has data from the same set of n users U, corresponding to n rows in the

rating matrix X, but owns only a subset of items. Let {F1, . . . ,Fs} be a partition of the

set of all items [m] with |Fk| = mk, and each Fk be the subset of items owned by party

k ∈ [s]. Thus, the rating matrix is partitioned vertically into X = [XF1 , . . . ,XFs] with

XFk
∈ (R∪{⊥})n×mk as the rating information owned by party k. We assume that the users

in local rating matrices are aligned in the way that for all k ∈ [s], the ith rows (XFk
)i are

corresponds to the same user i. The s parties want to collaboratively learn user embeddings

U = [ui]i∈[n] ∈ Rn×p, and item embeddings VFk
= [vj]j∈Fk

∈ Rmk×p for the items owned by

each of them. In practice, the number of parties involved in the vertical federated learning

is limited in most scenarios, i.e. s ≤ 10.

• Loss functions in VFL. For each party k, the local loss function is L (XFk
, U, VFk

) =

1
|Ωk|

∑
(i,j)∈Ωk

(Xij − 〈ui, vj〉)2 . The global loss function can be rewritten as: L (X, U, V) =∑
k

|Ωk|
|Ω| L (XFk

, U, VFk
) = 1

|Ω|
∑

k

∑
(i,j)∈Ωk

(Xij − 〈ui, vj〉)2 .

Our algorithms in this chapter are based on stochastic gradient descent (SGD). Based

on the loss function, the gradients to the user/item embeddings are the following:

∇UL(X, U, V) =
∑
k

|Ωk|
|Ω|
∇UL(XFk

, U, VFk
), (4.2)

∇VFk
L(X, U, V) =

|Ωk|
|Ω|
∇VFk

L(XFk
, U, VFk

). (4.3)

Equation (4.2) indicates that the updates on the global user embeddings need to be the

weighted average of the updates of local user embedding; Equation (4.3) suggests that the

local updates on the item embeddings, although no need to be aggregated, need to be scaled

by the a different ratio |Ωk|/|Ω| for each party k.
When using the SGD, each party can sample a submatrix from the local rating matrix

consisting of n′ rows and m′
k columns. The observed ratings in this sampled submatrix is

denoted as Ik. We assume that all parties have about the same “density” of observed ratings,

61

τ = |Ω|/(nm). The normalized stochastic gradients on party k to user embeddings and item
embeddings are denoted as:

g
(k)
U =

1

n′m′
kτ

∑
(i,j)∈Ik

∇ULi,j
(
XFk

, U (k), VFk

)
≈ ∇UL(XFk

, U, VFk
),

g
(k)
VFk

=
1

n′m′
kτ

∑
(i,j)∈Ik

∇VFk
Li,j

(
XFk

, U (k), VFk

)
≈ ∇VFk

L(XFk
, U, VFk

).

MF in horizontal federated learning (HFL). As in Figure 4.1b , instead of partitioned

items, let {U1, . . . ,Us} be a partition of the set of all users [n], and Uk is the subset of users

belongs to party k. Compared with the vertical setting, data of a user are on a single party.

All parties potentially have ratings for all the items in F with size m. The rating matrix

X is thus partitioned horizontally as X = [XU1 ; . . . ;XUs] where each party k has the rating

information as a submatrix XUk
∈ (R∪{⊥})nk×m, in which we can observe a subset of ratings

Ωk. The goal of the s parties in the HFL setting is to learn item embeddings V = [vj]j∈F
if size m× p cooperatively with higher utility by exchanging privacy-preserved information,

and each party k ∈ [s] learns a set of user embeddings UUk
= [ui]i∈Uk

of size nk × p for the

users in their local dataset.

• Loss functions in HFL. Similar to the VFL, the local loss function is

L (XUk
, UUk

, V) = 1
|Ωk|

∑
(i,j)∈Ωk

(Xij − 〈ui, vj〉)2 , and the global loss function is

L (X, U, V) =
∑

k
|Ωk|
|Ω| L (XUk

, UUk
, V) . Similarly, we denote the gradients and the normal-

ized stochastic gradients on party k to user embeddings and item embeddings and denote

them as LUUk
(XUk

, UUk
, V), LV (XUk

, UUk
, V), g(k)

UUk
and g

(k)
V .

MF in horizontal federated learning (LFL). When formalized as an optimization prob-

lem, the LFL setting is an extreme case of the HFL setting with s = n and Ui = {i}. Thus,

the loss functions, the gradients and convergence can inherit naturally from HFL.

4.3.1 Common FL Paradigm for MF Problem

We introduce a paradigm for solving the MF problem in both VFL and HFL settings. It

consists of three stages: [Stage 1]: initialization and local pre-computation; [Stage

2] cooperative learning; [Stage 3] local fine-tuning. The paradigm is described as

62

vanilla FMF in Figure 4.2a . In VFL settings, the shared embeddings are the user embeddings,

while the local embeddings are item embeddings. The roles switch in the HFL setting,

where the shared embeddings are the item embeddings and the local embeddings are the user

embeddings. The first and the last stages are done locally by each party, while the second

stage requires communication.

The [Stage 2] cooperative learning of FMF consists of Step (c2) and (s2). The user em-

beddings and item embeddings are updated locally with SGD. The updating step are shown

as the following:

VFL: U (k) ← U (k) − γtg
(k)
U , VFk

← VFk
− γtmk

m
g
(k)
VFk

; (4.4)

HFL: UUk
← UUk

− γtnk

n
g
(k)
UUk

, V (k) ← VFk
− γtg

(k)

V (k) . (4.5)

Here we assume that all parties have about the same rating “density”, |Ωk|
|Ω| ≈

mk

m
or |Ωk|

|Ω| ≈
nk

n
.

As mentioned in the previous subsection, the global loss function is a weighted average of

the local ones. Thus, the weights are applied in (4.4) and (4.5) to match the global loss.

Besides, the global shared embeddings are updated as the weighted average of the local ones

in Step (s2) of FMF, which is either U =
∑s

k=1
mk

m
U (k) for VFL or V =

∑s
k=1

nk

n
V (k) for HFL.

Coordination and communication cost of FMF. Communication only happens in the

cooperative learning stage. The coordination logic behind (c2) and (s2) is that for each

iteration, the coordination server first requests the locally updated embeddings from each

party; after receiving the request, each party uploads their embeddings; the server aggregated

the updated embeddings from parties and broadcast the weighted average to all the parties.

The coordination server of FMF performs synchronization over all involved parties T times.

The total communication cost is O(Tnp) for VFL or O(Tmp) for HFL. Notice that there are

T ′ local iterations between each update. Compared with the gradient-aggregated methods

(e.g., [84 , 85]), FMF saves a factor of T ′ synchronizations. In practice, it suffices to have T

and T ′ no less than 100 and 10, respectively, for FMF to converge.

Convergence of FMF. To analyze the theoretical convergence ratio of FMF, the first condition

is that the sampled gradients are unbiased to the true gradients with bounded variance. We

further assume that 1) the true local gradients are bounded, 2) the global loss function is

63

Input: {X(1), . . . ,X(s)} owned by s different
parties; the total iteration T and local update
iterations T ′ .

Output: User embeddings and item embed-
dings
[Stage 1]: initialization and local pre-
computation
(s1) Server: Initialize {shared embeddings},
share to all parties;
(c1) All parties k ∈ [s]: Initialize {local em-
beddings};
[Stage 2]: cooperative learning
while t ∈ [T] do

(c2) All parties k ∈ [s]: Update local
version of {shared embeddings} and {local
embeddings} for T ′ local iterations; upload
{shared embeddings};

(s2) Server: Aggregate and weighted av-
erage the {shared embeddings}, and share the
average to all parties.
end while
[Stage 3] local fine-tuning
(c3) All parties k ∈ [s]: Pass.

(a) Vanilla FMF
Input: {XF1 , . . . ,XFs} owned by s different
parties; the total iteration T and local update
iterations T ′ .

Output: Private user embeddings and private
item embeddings

Define: shared embeddings = U ; local embed-
dings = VF1 , . . . VFs

Replace (c2) in FMF: Update U (k) and VFk

for T ′ local iterations with embedding clipping
and DP noise; upload U (k) to server;

Replace (c3) in FMF: Fine-tune VFk
locally

for κ iterations with embedding clipping and
DP noise;

(b) Changes FMF→ VFL-SGDMF

Input: {XU1 , . . . ,XUs} owned by s different
parties; the total iteration T and local update
iterations T ′ .

Output: Each party has its own version
user/item embeddings

Define: shared embeddings = V ; local embed-
dings = UU1 , . . . UUs

Replace (c1) in FMF: Initialize and pre-train
UUk

;
Replace (c2) in FMF: Update V (k) for T ′

local iterations with embedding clipping and
DP noise; upload V (k) to server;

Replace (c3) in FMF: Fine-tune UUk
and V (k)

locally;

(c) Changes FMF→ HFL-SGDMF
Input: {X1, . . . ,Xn} owned by n different
users; the total iteration T .

Output: Shared item embeddings V
Define: shared embeddings = V ; local embed-

dings = U1, . . . , Un

Replace (c1) in FMF: All parties i ∈ [n]:
Initialize and pretrain Ui;

Replace (c2) in FMF: (Round 1) Cal-
culate noise update g̃

(i,t)
V and invoke SAω-

report(g̃(i,t)
V); (Round 2) If receive |U(t,1)|

from server, upload ξ̄
(i,t)

= −ξ(i,t) + ξ′(i,t);
Replace (s2) in FMF: (Round 1) In-
voke SAω-agg to get g̃

(t)
V =

∑
i∈U(t,1) g̃

(i,t)
V ;

if |U(t,1)| ≤ (1 − ω)n then next iter-
ation; Send user i ∈ U(t,1) an integer
|U(t,1)|; (Round 2) Update V (t) = V (t−1) −

γt
|U(t,1)|

(
g̃
(t)
V +

∑
i∈[U(t,2)] ξ̄i

)
;

Replace (c3) in FMF: Fine-tune local Ui;

(d) Changes FMF→ LFL-SGDMF

Figure 4.2. Federated matrix factorization algorithms

64

smooth and 3) the initial loss is bounded by a constant D. These assumptions are practical

given a dataset and a proper initialization of the embeddings.

Theorem 4.3.1. If the aforementioned assumptions hold, Algorithm FMF converges in
1
T

∑T
t=1 E [‖∇L (X, U, V)‖] = O

(√
D
T (1 + c)

)
with fixed step size γ = O

(√
D

T ′
√
T

)
, and

c =
∑s

k=1

m2
k

m2 in VFL, c =
∑s

k=1

n2
k

n2 in HFL and c = 1
n

for LFL.

FMF convergence proof

We focus on the convergence of U ∈ Rn×p, V =


VF1

...,

VFs

 ∈ Rm×p and m =
∑s

k=1mk. To

simplify the notation, we use W = (U, V) in some place of the proof. Assume we know the

global rating density τ =
∑s

k=1 |Ωk|
nm

. The loss function of our problem is

L(W) =
1∑s

k=1 |Ωk|

s∑
k=1

∑
(i,j)∈Ωk

(Xij − 〈ui, vj〉)2 =
1

nmτ

s∑
k=1

∑
(i,j)∈Ωk

(Xij − 〈ui, vj〉)2

(4.6)

s.t.∀i ∈ [n], ‖ui‖22 ≤ a′, ui ≥ 0

∀k ∈ [s], j ∈ [m], ‖vj‖22 ≤ b′, vj ≥ 0

We denote ∇ULi,j (U, VFk
) (or, ∇VFk

Li,j (U, VFk
)) as the gradient for U (or, V) based on

data on index (i, j) of party k in the computation.

∇ULi,j (U, VFk
) = −2(Xij − 〈ui, vj〉)eni vj (4.7)

∇VFk
Li,j (U, VFk

) = −2(Xij − 〈ui, vj〉)emk
j ui (4.8)

where eni is the unit vector of size n× 1 with 1 on ith row and zeros elsewhere, similarly emk
i

is the unit vector of size mk × 1 with 1 on jth row and zeros elsewhere.

All parties will synchronize U for T times. We take each synchronization as the last step

of a meta iteration. In each meta iteration t ∈ [T], each party updates U for T ′ times. In

each local SGD iteration (t, t′), each party k samples a sub-matrix X̂
(t,t′)
Fk

of n′
k rows and m′

k

65

columns, and observed ratings with indices Ik Assume that the sampling rate is n′
k = qnnk,

m′
k = qmmk and η = qnqm.

We denote normalized gradient for U base on the all local data of party k for the t-th

meta iteration as the following:

ḡ
(k,t)
U = ∇UL

(
XFk

, U (k,t), V
(t)
Fk

)
=

1

nmkτ

∑
(i,j)∈Ωk

∇ULi,j

(
U (k,t), V

(t)
Fk

)
, (4.9)

ḡ
(k,t)
VFk

= ∇VFk
L
(
XFk

, U (k,t), V
(t)
Fk

)
=

1

nmkτ

∑
(i,j)∈Ωk

∇VFk
Li,j

(
U (k,t), V

(t)
Fk

)
(4.10)

For the normalized gradients of party k in (t, t′) iteration, we denoted them as ḡ
(k,t,t′)
U and

ḡ
(k,t,t′)
VFk

. Globally, we denote ḡU (or, ḡV) as the gradient to U (or, V) to average gradients

(over all parties’ data).

ḡ
(t)
U =

1

nmτ

s∑
k=1

∑
(i,j)∈Ωk

∇ULi,j

(
U (t), V

(t)
Fk

)

ḡ
(t)
V =

1

nmτ


∑

(i,j)∈Ω1
∇VF1
Li,j

(
U (t), V

(t)
F1

)
...∑

(i,j)∈Ωs
∇VFs
Li,j

(
U (t), V

(t)
Fs

)


We denote g
(k,t,t′)
U (or, g(k,t,t′)

VFk
) as the normalized gradient for U base on the subset of data

in Ik of party k for (t, t′) iteration.

g
(k,t,t′)
U =

1

n′m′
kτ

∑
(i,j)∈Ik

∇ULi,j

(
U (k,t,t′), V

(t,t′)
Fk

)
, (4.11)

g
(k,t,t′)
VFk

=
1

n′m′
kτ

∑
(i,j)∈Ik

∇VFk
Li,j

(
U (k,t,t′), V

(t,t′)
Fk

)
(4.12)

66

The sampled gradient of U and V are unbiased estimate to the true gradient (with

Ik = Ωk), that is

EIk

[
g
(k,t,t′)
U

]
= ḡ

(k,t,t′)
U , EI

[
g
(k,t,t′)
VFk

]
= ḡ

(k,t,t′)
VFk

(4.13)

ḡ
(t)
U =

1

m

s∑
k=1

mkḡ
(k,t)
U , ḡ

(t)
V =


m1

m
ḡ
(k,t)
VF1...

ms

m
ḡ
(k,t)
VFs

 (4.14)

Assume that the density of the observed ratings is the same for all sampled sub-matrix,

then each party samples approximately ηnmkτ observed rating for each batch. The sampling

process introduced bounded variance which will decrease as the size of I increases:

EIk

[∥∥∥g(k,t,t′)
U − ḡ

(k,t,t′)
U

∥∥∥2] ≤ σ2
SSub,U (4.15)

EIk

[∥∥∥g(k,t,t′)
VFk

− ḡ
(k,t,t′)
VFk

∥∥∥2] ≤ σ2
SSub,V (4.16)

The updating rule can be written as the following:

U (k,t,t′) = U (k,t,t′−1) − γg
(k,t,t′)
U (4.17)

V
(t,t′)
Fk

= V
(t,t′−1)
Fk

− γmk

m
g
(k,t,t′)
VFk

(4.18)

U (t+1) =
1

m

s∑
k=1

mkU
(k,t,T ′) (4.19)

V (t+1) =


V

(t,T ′)
F1

...

V
(t,T ′)
Fs

 (4.20)

(4.21)

We assume that both g
(k,t)
U and g

(k,t)
VFk

are unbiased to ḡ
(k,t)
U and ḡ

(k,t)
VFk

; the sampling variance

is bounded by σ2
SSub,U and σ2

SSub,V . Both σ2
SSub,U and σ2

SSub,V goes to 0 as n′m′
k

nmk
→ 1. To show

the convergence, we further make the following assumptions: 1) local gradients are bounded

∀k ∈ [s],
∥∥∥ḡ(k,t)

U

∥∥∥ ≤ LU ,
∥∥∥ḡ(k,t)

VFk

∥∥∥ ≤ LV ; 2) the global loss function is β smooth; and 3) the

67

initial loss is bounded as L
(
X, U (0), V (0)

)
− L (X, U∗, V ∗) ≤ D. These assumptions usually

hold in the MF problem, as the ratings are bounded.

To prove Theorem 4.3.1 in VFL case, we need to use the following two lemmas to bound

the updates of U and V for each meta-iteration.

Lemma 3. For Algorithm FMF in VFL case, with the same assumptions as Theorem 4.3.1

and assume the learning rate γ is unchanged within each meta-iteration, we have the following

bound for the change of U after each meta-iteration

− E
[〈

ḡ
(t)
U , U (t+1) − U (t)

〉
+

β

2

∥∥U (t+1) − U (t)
∥∥2
F

]
(4.22)

≤ −γT ′
∥∥∥ḡ(t)

U

∥∥∥2 + γ2βT ′
∥∥∥ḡ(t)

U

∥∥∥ s∑
k=1

mk

m

T ′−1∑
t′=1

E
[∥∥∥ḡ(k,t,t′)

U

∥∥∥] (4.23)

+
βγ2T ′2σ2

SSub,U

2
+

βγ2T ′

2

s∑
k=1

mk

m

T ′∑
t′=1

E
[∥∥∥ḡ(k,t,t′)

U

∥∥∥2] (4.24)

Lemma 4. For Algorithm FMF in VFL case, with the same assumptions as Theorem 4.3.1

and assume the learning rate γ is unchanged within each meta-iteration, we have the following

bound for the change of V after each meta-iteration

− E
[〈

ḡ
(t)
V , V (t+1) − V (t)

〉
+

β

2

∥∥V (t+1) − V (t)
∥∥2
F

]
(4.25)

≤ −γT ′
∥∥∥ḡ(t)

V

∥∥∥2 + s∑
k=1

T ′γ2m3
kβ

m3

∥∥∥ḡ(k,t)
VFk

∥∥∥ T ′−1∑
t′=0

E
[∥∥∥∥gV

(k,t,t′)
Fk

∥∥∥∥] (4.26)

+
s∑

k=1

βγ2m2
kT

′2σ2
SSub,V

2m2
+

s∑
k=1

βT ′m2
kγ

2

2m2

T ′−1∑
t′=0

E

[∥∥∥∥gV
(k,t,t′)
Fk

∥∥∥∥2
]

(4.27)

68

Proof of Theorem 4.3.1 . High level idea follows the proof in [86]. With smoothness condi-

tion,

L
(
X,W (t+1)

)
− L

(
X,W (t)

)
(4.28)

≤

〈
∇W (t)L

(
W (t)

)
,

U (t+1) − U (t)

V (t+1) − V (t)

〉+
β

2

∥∥∥∥∥∥
U (t+1) − U (t)

V (t+1) − V (t)

∥∥∥∥∥∥
2

F

(4.29)

=
〈
ḡ
(t)
U , U (t+1) − U (t)

〉
+

β

2

∥∥U (t+1) − U (t)
∥∥2
F

(4.30)

+
〈
ḡ
(t)
V , V (t+1) − V (t)

〉
+

β

2

∥∥V (t+1) − V (t)
∥∥2
F

(4.31)

By Lemma 3 and 4 :

E
[
L
(
X,W (t+1)

)]
− L

(
X,W (t)

)
(4.32)

≤ −γT ′
∥∥∥ḡ(t)

U

∥∥∥2 + γ2βT ′
∥∥∥ḡ(t)

U

∥∥∥ s∑
k=1

mk

m

T ′−1∑
t′=1

E
[∥∥∥ḡ(k,t,t′)

U

∥∥∥] (4.33)

+
βγ2T ′2σ2

SSub,U

2
+

βγ2T ′

2

s∑
k=1

mk

m

T ′∑
t′=1

E
[∥∥∥ḡ(k,t,t′)

U

∥∥∥2] (4.34)

− γT ′
∥∥∥ḡ(t)

V

∥∥∥2 + s∑
k=1

T ′γ2m3
kβ

m3

∥∥∥ḡ(k,t)
VFk

∥∥∥ T ′−1∑
t′=0

E
[∥∥∥ḡ(k,t,t′)

VFk

∥∥∥] (4.35)

+
s∑

k=1

βγ2m2
kT

′2σ2
SSub,V

2m2
+

s∑
k=1

βT ′m2
kγ

2

2m2

T ′−1∑
t′=0

E
[∥∥∥ḡ(k,t,t′)

VFk

∥∥∥2] (4.36)

= −γT ′
∥∥∥ḡ(t)

W

∥∥∥2+ (4.37)

γ2βT ′

(∥∥∥ḡ(t)
U

∥∥∥ s∑
k=1

mk

m

T ′−1∑
t′=1

E
[∥∥∥ḡ(k,t,t′)

U

∥∥∥]+ T ′σ2
SSub,U

2
+

1

2

s∑
k=1

mk

m

T ′∑
t′=1

E
[∥∥∥ḡ(k,t,t′)

U

∥∥∥2] (4.38)

+
s∑

k=1

m3
k

m3

∥∥∥ḡ(k,t)
VFk

∥∥∥ T ′−1∑
t′=0

E
[∥∥∥ḡ(k,t,t′)

VFk

∥∥∥]+ s∑
k=1

m2
kT

′σ2
SSub,V

2m2
+

s∑
k=1

m2
k

2m2

T ′−1∑
t′=0

E
[∥∥∥ḡ(k,t,t′)

VFk

∥∥∥2])
(4.39)

69

With the assumption that ‖ḡU‖ ≤ LU , ‖ḡV ‖ ≤ LV . We can have

E
[
L
(
X,W (t+1)

)]
− L

(
X,W (t)

)
(4.40)

≤ −γT ′
∥∥∥ḡ(t)

W

∥∥∥2 + γ2βT ′
(
(T ′ − 1)L2

U +
T ′σ2

SSub,U

2
+

T ′L2
U

2

)
(4.41)

+ γ2βT ′

(
(T ′ − 1)

s∑
k=1

m3
k

m3
L2
V +

s∑
k=1

T ′σ2
SSub,Vm

2
k

2m2
+

s∑
k=1

T ′L2
Vm

2
k

2m2

)
(4.42)

≤ −γT ′
∥∥∥ḡ(t)

W

∥∥∥2 + γ2βT ′
(
(T ′ − 1)L2

U +
T ′σ2

SSub,U

2
+

T ′L2
U

2

)
(4.43)

+ γ2βT ′

(
(T ′ − 1)L2

V

s∑
k=1

m3
k

m3
+

T ′σ2
SSub,V

2

s∑
k=1

m2
k

m2
+

T ′L2
V

2

s∑
k=1

m2
k

m2

)
(4.44)

≤ −γT ′
∥∥∥ḡ(t)

W

∥∥∥2 + γ2βT ′
(
(T ′ − 1)L2

U +
T ′σ2

SSub,U

2
+

T ′L2
U

2

)
(4.45)

+ γ2βT ′

(
(T ′ − 1)L2

V

s∑
k=1

m3
k

m3
+

T ′σ2
SSub,V

2

s∑
k=1

m2
k

m2
+

T ′L2
V

2

s∑
k=1

m2
k

m2

)
(4.46)

Let
∑s

k=1

m3
k

m3 = CV,1,
∑s

k=1

m2
k

m2 = CV,2. By definition, 1
s2
≤ CV,1 ≤ 1 and 1

s
≤ CV,2 ≤ 1.

So summing all the different from t = 1 to T , and have constant learning rate γ, we have

E
[
L
(
X,W (T)

)]
− L

(
X,W (1)

)
(4.47)

≤ −γT ′
T∑
t=1

E
[∥∥∥ḡ(t)

W

∥∥∥2]+ γ2βT ′T

(
(T ′ − 1)L2

U +
T ′σ2

SSub,U

2
+

T ′L2
U

2

)
(4.48)

+ γ2βT ′T

(
(T ′ − 1)L2

VCV,1 +
T ′σ2

SSub,VCV,2

2
+

T ′L2
VCV,2

2

)
, (4.49)

(4.50)

70

which implies

γT ′
T∑
t=1

E
[∥∥∥ḡ(t)

W

∥∥∥2] (4.51)

≤ L
(
X,W (1)

)
− E

[
L
(
X,W (T)

)]
+ γ2βT ′T

(
(T ′ − 1)L2

U +
T ′σ2

SSub,U

2
+

T ′L2
U

2

)
(4.52)

+ γ2βT ′T

(
(T ′ − 1)L2

VCV,1 +
T ′σ2

SSub,VCV,2

2
+

T ′L2
VCV,2

2

)
(4.53)

(4.54)

Taking the average of LHS:

1

T

T∑
t=1

E
[∥∥∥ḡ(t)

W

∥∥∥2] ≤L (X,W (1)
)
− E

[
L
(
X,W (T)

)]
γT ′T

(4.55)

+ γβ

(
(T ′ − 1)L2

U +
T ′σ2

SSub,U

2
+

T ′L2
U

2

)
(4.56)

+ γβ

(
(T ′ − 1)L2

VCV,1 +
T ′σ2

SSub,VCV,2

2
+

T ′L2
VCV,2

2

)
(4.57)

Assume L
(
X,W (1)

)
− L (X,W ∗) ≤ D. It is obvious that CV,1 ≤ CV,2. We set γ =

O

(√
D

βT (T ′)2(L2
U+L2

V CV,2+σ2
SSub,U

+σ2
SSub,V

CV,2)

)
, we can have

1

T

T∑
t=1

E
[∥∥∥ḡ(t)

W

∥∥∥2] = O


√

Dβ(L2
U + L2

VCV,2 + σ2
SSub,U + σ2

SSub,VCV,2)
√
T

 (4.58)

Because LU ≈ LV and σSSub,U ≈ σSSub,V are constants determined by the dataset, we can

further simplify the result as

1

T

T∑
t=1

E
[∥∥∥ḡ(t)

W

∥∥∥2] = O


√

Dβ(L2
U + L2

VCV,2 + σ2
SSub,U + σ2

SSub,VCV,2)
√
T

 (4.59)

= O

√√√√D

T
(1 +

s∑
k=1

m2
k

m2
)

 (4.60)

71

The proof for HFL setting is very similar, by switching the user embeddings with item

embedding in the derivations. The result will also be similar, the only different will be the

last term.

Proof of Lemma 3 . If the inner SGD steps have constant step size, i.e. γt′ = γ, for t′ =

1, . . . , T ′. Also assume that all party use the same sampling rates, then

〈
ḡ
(t)
U , U (t+1) − U (t)

〉
+

β

2

∥∥U (t+1) − U (t)
∥∥2
2

(4.61)

=
1

m

s∑
k=1

mk

T ′−1∑
t′=0

〈
ḡ
(t)
U ,
(
U (k,t,t′+1) − U (k,t,t′)

)〉
+

β

2m2

∥∥∥∥∥
s∑

k=1

mk

T ′−1∑
t′=0

(
U (k,t,t′+1) − U (k,t,t′)

)∥∥∥∥∥
2

(4.62)

= − γ

m

s∑
k=1

mk

T ′−1∑
t′=0

〈
ḡ
(t)
U ,g

(k,t,t′)
U

〉
+

βγ2

2m2

∥∥∥∥∥
s∑

k=1

mk

T ′−1∑
t′=0

g
(k,t,t′)
U

∥∥∥∥∥
2

(4.63)

By taking the expectation and the unbiased assumption, we have

E
[
EIk

[
g
(k,t,t′)
U |U (k,t,t′)

]]
= E

[
ḡ
(k,t,t′)
U

]
(4.64)

The expectation, (4.61) becomes

− γ

m

s∑
k=1

mk

T ′−1∑
t′=0

E
[〈

ḡ
(t)
U , ḡ

(k,t,t′)
U

〉]
+

βγ2

2m2
E

∥∥∥∥∥
s∑

k=1

mk

T ′−1∑
t′=0

g
(k,t,t′)
U

∥∥∥∥∥
2
 (4.65)

72

The inner product in first term of the above equation:

s∑
k=1

mk

m

T ′−1∑
t′=0

E
[〈

ḡ
(t)
U , ḡ

(k,t,t′)
U

〉]
(4.66)

=
s∑

k=1

mk

m

T ′−1∑
t′=0

E
[〈

ḡ
(t)
U , ḡ

(k,t,0)
U + ḡ

(k,t,t′)
U − ḡ

(k,t,0)
U

〉]
(4.67)

≥
T ′−1∑
t′=0

E

[〈
ḡ
(t)
U ,

s∑
k=1

mk

m
ḡ
(k,t,0)
U

〉]
+

s∑
k=1

mk

m

T ′−1∑
t′=0

E
[〈

ḡ
(t)
U , ḡ

(k,t,t′)
U − ḡ

(k,t,0)
U

〉]
(4.68)

≥ T ′
∥∥∥ḡ(t)

U

∥∥∥2 − ∥∥∥ḡ(t)
U

∥∥∥ s∑
k=1

mk

m

T ′−1∑
t=1

E
[∥∥∥ḡ(k,t,t′)

U − ḡ
(k,t,0)
U

∥∥∥] (4.69)

≥ T ′
∥∥∥ḡ(t)

U

∥∥∥2 − β
∥∥∥ḡ(t)

U

∥∥∥ s∑
k=1

mk

m

T ′−1∑
t=1

E
[∥∥∥U (k,t,t′) − U (k,t,0)

∥∥∥] (4.70)

= T ′
∥∥∥ḡ(t)

U

∥∥∥2 − γβ
∥∥∥ḡ(t)

U

∥∥∥ s∑
k=1

mk

m

T ′−1∑
t′=1

E

[∥∥∥∥∥
t′−1∑
g=0

ḡ
(k,t,g)
U

∥∥∥∥∥
]

(4.71)

≥ T ′
∥∥∥ḡ(t)

U

∥∥∥2 − γβ
∥∥∥ḡ(t)

U

∥∥∥ s∑
k=1

mk

m

T ′−1∑
t′=1

t′−1∑
g=0

E
[∥∥∥ḡ(k,t,g)

U

∥∥∥] (4.72)

≥ T ′
∥∥∥ḡ(t)

U

∥∥∥2 − γβT ′
∥∥∥ḡ(t)

U

∥∥∥ s∑
k=1

mk

m

T ′−1∑
t′=1

E
[∥∥∥ḡ(k,t,g)

U

∥∥∥] (4.73)

(4.74)

73

For another term in (4.65), similarly we can have

βγ2

2
E

∥∥∥∥∥
s∑

k=1

mk

m

T ′−1∑
t′=0

g
(k,t,t′)
U

∥∥∥∥∥
2
 (4.75)

≤ βγ2

2

s∑
k=1

mk

m
E

∥∥∥∥∥
T ′−1∑
t′=0

g
(k,t,t′)
U

∥∥∥∥∥
2
 (By convexity of L2 norm) (4.76)

≤ βγ2T ′

2

s∑
k=1

mk

m
E

[
T ′−1∑
t′=0

∥∥∥g(k,t,t′)
U

∥∥∥2] (By Cauchy-Schwartz inequality) (4.77)

=
βγ2T ′

2

s∑
k=1

mk

m
E

[
T ′−1∑
t′=0

∥∥∥(g(k,t,t′)
U − ḡ

(k,t,t′)
U + ḡ

(k,t,t′)
U

)∥∥∥2] (4.78)

=
βγ2T ′

2

s∑
k=1

mk

m

T ′−1∑
t′=0

E
[∥∥∥g(k,t,t′)

U − ḡ
(k,t,t′)
U

∥∥∥2] (4.79)

+
βγ2T ′

2

s∑
k=1

mk

m

T ′−1∑
t′=0

E
[∥∥∥ḡ(k,t,t′)

U

∥∥∥2] (By unbiased assumption) (4.80)

≤
βγ2T ′2σ2

SSub,U

2
+

βγ2T ′

2

s∑
k=1

mk

m

T ′∑
t′=1

E
[∥∥∥ḡ(k,t,t′)

U

∥∥∥2] (4.81)

The first inequality comes from the convexity of the square of `2-norm. We use Cauchy-

Schwartz for the the second inequality. The last equality is because of the unbiased assump-

tion. The last inequality is due to the bounded variance. Finally, expectation of (4.30)

should be

− γ

s∑
k=1

mk

m

T ′−1∑
t′=0

E
[〈

ḡ
(t)
U , ḡ

(k,t,t′)
U

〉]
+

βγ2

2m2
E

∥∥∥∥∥
s∑

k=1

mk

T ′−1∑
t′=0

g
(k,t,t′)
U

∥∥∥∥∥
2
 (4.82)

≤ −γT ′
∥∥∥ḡ(t)

U

∥∥∥2 + γ2βT ′
∥∥∥ḡ(t)

U

∥∥∥ s∑
k=1

mk

m

T ′−1∑
t′=1

E
[∥∥∥ḡ(k,t,t′)

U

∥∥∥] (4.83)

+
βγ2T ′2σ2

SSub,U

2
+

βγ2T ′

2

s∑
k=1

mk

m

T ′∑
t′=1

E
[∥∥∥ḡ(k,t,t′)

U

∥∥∥2] (4.84)

74

Proof of Lemme 4 . We look at the expecation of (4.31) for the update of V ,

E
[〈

ḡ
(t)
V , V (t+1) − V (t)

〉
+

β

2

∥∥V (t+1) − V (t)
∥∥2] (4.85)

=
s∑

k=1

−E [〈mk

m
ḡ
(t)
VFk

,
T ′−1∑
t′=0

γmk

m
g
(k,t,t′)
VFk

〉]
+

β

2
E

∥∥∥∥∥
T ′−1∑
t′=0

γmk

m
g
(k,t,t′)
VFk

∥∥∥∥∥
2
 (4.86)

=
s∑

k=1

− T ′−1∑
t′=0

γm2
k

m2
E
[〈

ḡ
(k,t)
VFk

,g
(k,t,t′)
VFk

〉]
+

β

2
E

∥∥∥∥∥
T ′−1∑
t′=0

γmk

m
g
(k,t,t′)
VFk

∥∥∥∥∥
2
 (4.87)

Similar as the previous part, for each k, the first term can be reduced to

T ′−1∑
t′=0

γm2
k

m2
E
[〈

ḡ
(k,t)
VFk

,g
(k,t,t′)
VFk

〉]
(4.88)

=
T ′−1∑
t′=0

γm2
k

m2
E
[〈

ḡ
(k,t)
VFk

,g
(k,t,0)
VFk

− g
(k,t,0)
VFk

+ g
(k,t,t′)
VFk

〉]
(4.89)

=
T ′−1∑
t′=0

γm2
k

m2
E
[〈

ḡ
(k,t)
VFk

,g
(k,t,0)
VFk

〉]
+

T ′−1∑
t′=0

γm2
k

m2
E
[〈

ḡ
(k,t)
VFk

,g
(k,t,t′)
VFk

− g
(k,t,0)
VFk

〉]
(4.90)

=
γT ′m2

k

m2

∥∥∥ḡ(k,t)
VFk

∥∥∥2 + T ′−1∑
t′=0

γm2
k

m2
E
[〈

ḡ
(k,t)
VFk

,g
(k,t,t′)
VFk

− g
(k,t,0)
VFk

〉]
(4.91)

≥ γT ′m2
k

m2

∥∥∥ḡ(k,t)
VFk

∥∥∥2 − γm2
k

m2

∥∥∥ḡ(k,t)
VFk

∥∥∥ T ′−1∑
t′=0

E
[∥∥∥g(k,t,t′)

VFk
− g

(k,t,0)
VFk

∥∥∥] (4.92)

≥ γT ′m2
k

m2

∥∥∥ḡ(k,t)
VFk

∥∥∥2 − γm2
kβ

m2

∥∥∥ḡ(k,t)
VFk

∥∥∥ T ′−1∑
t′=0

E
[∥∥∥V (k,t,t′) − V (k,t,0)

∥∥∥] (4.93)

=
γT ′m2

k

m2

∥∥∥ḡ(k,t)
VFk

∥∥∥2 − γ2m3
kβ

m3

∥∥∥ḡ(k,t)
VFk

∥∥∥ T ′−1∑
t′=0

E

[∥∥∥∥∥
t′−1∑
g=0

ḡ
(k,t,g)
VFk

∥∥∥∥∥
]

(4.94)

≥ γT ′m2
k

m2

∥∥∥ḡ(k,t)
VFk

∥∥∥2 − γ2m3
kβ

m3

∥∥∥ḡ(k,t)
VFk

∥∥∥ T ′−1∑
t′=0

t′−1∑
g=0

E
[∥∥∥ḡ(k,t,g)

VFk

∥∥∥] (4.95)

≥ γT ′m2
k

m2

∥∥∥ḡ(k,t)
VFk

∥∥∥2 − T ′γ2m3
kβ

m3

∥∥∥ḡ(k,t)
VFk

∥∥∥ T ′−1∑
t′=0

E
[∥∥∥ḡ(k,t,t′)

VFk

∥∥∥] (4.96)

(4.97)

75

The second term can be bounded as

β

2
E

∥∥∥∥∥
T ′−1∑
t′=0

γmk

m
g
(k,t,t′)
VFk

∥∥∥∥∥
2
 (4.98)

=
βγ2m2

k

2m2
E

∥∥∥∥∥
T ′−1∑
t′=0

g
(k,t,t′)
VFk

∥∥∥∥∥
2
 (4.99)

≤ βγ2m2
kT

′

2m2
E

[
T ′−1∑
t′=0

∥∥∥g(k,t,t′)
VFk

∥∥∥2] (4.100)

=
βγ2m2

kT
′

2m2
E

[
T ′−1∑
t′=0

∥∥∥g(k,t,t′)
VFk

− ḡ
(k,t,t′)
VFk

+ ḡ
(k,t,t′)
VFk

∥∥∥2] (4.101)

=
βγ2m2

kT
′

2m2

T ′−1∑
t′=0

E
[∥∥∥g(k,t,t′)

VFk
− ḡ

(k,t,t′)
VFk

∥∥∥2 + ∥∥∥ḡ(k,t,t′)
VFk

∥∥∥2] (4.102)

≤
βγ2m2

kT
′2σ2

SSub,V

2m2
+

βT ′m2
kγ

2

2m2

T ′−1∑
t′=0

E
[∥∥∥ḡ(k,t,t′)

VFk

∥∥∥2] (4.103)

Thus, we have

− E
[〈

ḡ
(t)
V , V (t+1) − V (t)

〉
+

β

2

∥∥V (t+1) − V (t)
∥∥2
2

]
(4.104)

≤ −γT ′
s∑

k=1

m2
k

m2

∥∥∥ḡ(k,t)
VFk

∥∥∥2 + s∑
k=1

T ′γ2m3
kβ

m3

∥∥∥ḡ(k,t)
VFk

∥∥∥ T ′−1∑
t′=0

E
[∥∥∥g(k,t,t′)

VFk

∥∥∥] (4.105)

+
s∑

k=1

βγ2m2
kT

′2σ2
SSub,V

2m2
+

s∑
k=1

βT ′m2
kγ

2

2m2

T ′−1∑
t′=0

E
[∥∥∥ḡ(k,t,t′)

VFk

∥∥∥2] (4.106)

= −γT ′
∥∥∥ḡ(k,t)

V

∥∥∥2 + s∑
k=1

T ′γ2m3
kβ

m3

∥∥∥ḡ(k,t)
VFk

∥∥∥ T ′−1∑
t′=0

E
[∥∥∥ḡ(k,t,t′)

VFk

∥∥∥] (4.107)

+
s∑

k=1

βγ2m2
kT

′2σ2
SSub,V

2m2
+

s∑
k=1

βT ′m2
kγ

2

2m2

T ′−1∑
t′=0

E
[∥∥∥ḡ(k,t,t′)

VFk

∥∥∥2] (4.108)

(4.109)

76

4.4 Private VFL Matrix Factorization

Although the parties in FMF algorithm do not share the local rating matrices directly

with others, the shared embeddings still carry users’ recoverable private information. The

VFL privacy leakage risks and expected protections are formalized as the following.

VFL privacy leakage and protection. In this setting, as shown in Figure 4.1a ,

we assume that users trust the party as long as their data are handled properly later on,

so there is no need to protect the privacy of the information exchange between users and

parties. During the learning process of VFL, the exchanged intermediate results, such as

locally updated embeddings, may leak users’ private information to other parties and the

server. A naive privacy leakage is that when a party never updates a user embedding, the

coordination server can easily conclude that the user has no rating with that party. Besides,

the learned user/item embeddings are used in public services (e.g., recommendation systems),

so privacy protection needs to be provided for both user/item embeddings. Thus, privacy

protect is expected for information exchange between parties and coordination server, and

user/item embeddings in VFL.

4.4.1 Private MF in VFL: VFL-SGDMF

Compared with the non-private FMF, a few additional steps are required in [Stage 2] (s2)

to change it into a differentially private mechanism, called VFL-SGDMF.

Bounding sensitivity.

In order to bound the sensitivity of the loss function (4.1), [76] sets constraints on the

inner product of ui and vj. Gradient clipping method in [18] can be for MF problem and

[78] projects each element of the gradient to [− 1, 1]. Unlike the previous works, we propose

embedding clipping, which imposes hard constraints on the norms of user/item embeddings

in order to bound the gradients from a single rating. Extending for per-user privacy, we

also adapt the same strategy, random trimming, as [76] in addition to bound the user level

sensitivity.

77

Embedding clipping. We notice that the scores in rating matrices are usually in a bounded
range [0, R] where R is some finite number (e.g., 5 or 10). This property motivates the non-
negative matrix factorization [87 , 88], in which the user embeddings and item embeddings
are restricted to be non-negative. In this work, we enforce stronger constraints that the
norm of the user embeddings and item embeddings are also bounded. That is,

U : ∀i ∈ [n], ‖ui‖22 ≤ R, ui ≥ 0, V : ∀j ∈ [m], ‖vj‖22 ≤ R, vj ≥ 0. (4.110)

With constraints in (4.110) and CauchySchwarz inequality, we have 〈ui, vj〉 ≤ R. The gra-

dient with respect to ui from the j-th item is ∇ui
Li,j (U, V) = −2vj (Xij − 〈ui, vj〉) if Xij is

observed, otherwise is 0. For per-rating privacy, a pair of neighbouring dataset X and X′ dif-

fer at index (i∗, j∗) with Xi∗j∗ 6=⊥ and X′
i∗j∗ =⊥. With ui and vj bounded as (4.110), then the

sensitivity of the gradient to a user embedding is ∆2,u = ‖−2vj∗ (Xi∗j∗ − 〈ui∗ , vj∗〉)− 0‖2 ≤

2R3/2. Similarly, we can obtain sensitivity ∆2,v = 2R3/2 for ∇vjLi,j (U, V).

We denote the embedding clipping on user embeddings ΠU (U), a projection functions

that first turns all negative entries of U into 0, then normalizes each row vector with
ui

max{1,‖ui‖2/
√
R} to satisfy (4.110); ΠV (V) performs the same projection for V to satisfy

(4.110). We provide proof that this two-step operation indeed can project each row vec-

tor to the closest point in U or V in our full version.

Although the additional restrictions may affect user embeddings and item embeddings’

expressiveness, it can provide regularization to prevent overfitting and provide a nice

bounded-gradient property. While gradient clipping method clips the gradient from different

records, then aggregates the gradient and updates the embeddings, embedding clipping is

equivalent to first aggregating the gradients then clip. Both methods introduce bias in the

update, but embedding clipping has advantages over the gradient clipping in the MF as

shown in our experiments.

78

Embedding clipping proof

Lemma 5. The embedding clipping operation that first turn all negative entries of U into

0, then normalize each row vector with ui

max{1,‖ui‖2/
√
R} projects the embedding to the closest

vector in U in terms of `2 distance.

Proof. Let ui be a row vector, the vector u∗ is the output of the projection operation given

u as input. We try to proof u∗
i is the solution for the following optimization problem.

min ‖x− ui‖22

s.t. x ≥ 0 and ‖x‖22 ≤ R

The projection will gives results such that ∀j ∈ [p], u∗
ij = 0 if uij < 0; otherwise u∗

ij =

uij

max{1,
√∑

j,uij>0 u
2
ij/

√
R}

. We will show that u∗
i satisfies the KKT conditions.

• By definition, ∀j ∈ [p], u∗
ij ≥ 0 and ‖u∗

i ‖
2
2 ≤ R, so u∗

i satisfies primal feasibility.

• In order to satisfy the dual feasibility and complementary slackness, we need to show

that µju
∗
ij = 0 and µ0(

∑
j(u

∗
ij)

2 − R) = 0 , where µj are the dual variables. By the

projection operation µj = 0 when uij > 0.

• To satisfy stationary condition, we have
∑

j 2(u
∗
ij − uij)− µj + 2µ0u

∗
ij = 0.

∑
j∈[p]

2(u∗
ij − uij)− µj + 2µ0u

∗
ij = 0

with dual feasibility
===========⇒

 ∑
j:uij<0

−2uij − µj

+

 ∑
j:uij≥0

2(u∗
ij − uij) + 2µ0u

∗
ij

 = 0

It’s easy to see, for the case
√∑

j,uij>0 u
2
ij/
√
R ≤ 1, we can set µj = −2uij for j : uij < 0

and µ0 = 0 so that stationary condition and all the conditions holds.

For the case
√∑

j,uij>0 u
2
ij/
√
R > 1, we can set µj = −2uij for j : uij < 0 and

µ0 =
−

∑
j:uij≥0(u

∗
ij−uij)∑

j:uij≥0 uij
= 1 −

√
R√∑

j,uij>0 u
2
ij

so that stationary condition and all the

conditions also holds.

79

• Based on the previous analysis, the project is generating the embedding that is closest

to the original embedding in terms of `2 norm.

Random trimming. To bound the sensitivity in per-user privacy, each party trims their

local dataset so that there are at most θ(k) ratings per user remaining in the local rating

matrix of party k, and turns the others to ⊥.

Amplifying privacy with mini-batches.

It has been proven in other literature that sampling can amplify privacy. Notice that per-

user privacy has a stronger constraint on sampling to achieve privacy amplification compared

with per-rating privacy. Because all ratings from the same user are considered as one record

in per-user privacy, the sampling needs to be applied on user-level when per-user privacy

is required; sampling on columns has no privacy amplification. That is, n′ rows from the

local (trimmed) rating matrix are sampled , and the sampling rate is η = n′

n
. To be more

consistent and easy to compare, we apply this user-level sampling under both the per-rating

and per-user privacy.

Private local updates.

To protect both intermediate and final results, both U and V need to be perturbed with
random noise and projected back to the feasible domain as defined as (4.110). The locally
updates on user embeddings and item embeddings becomes:

U (k) = ΠU

(
U (k) − γtg̃

(k)
U

)
, VFk

= ΠV

(
VFk
− γtmk

m
g̃
(k)
VFk

)
, (4.111)

where g̃
(k)
U = g

(k)
U + ξ

(k,t,t′)
U , g̃

(k)
VFk

= g
(k)
VFk

+ ξ
(k,t,t′)
VFk

. The noise ξ
(k,t,t′)
U and ξ

(k,t,t′)
VFk

have the

same shape as the gradients, and their elements are sampled independently from zero-mean

Gaussian distribution for each local update, with variance depending on privacy definitions

and privacy parameters. Details are discussed later.

80

VFL-SGDMF local fine-tuning.

We notice that compared with the convergence of the non-private and fully centralized

matrix factorization algorithm, the convergence of the VFL-SGDMF algorithm mainly suffers

from two aspects: the DP noise and the non-convexity of the problem. In our experiments,

the user embeddings change little in the final iterations, and the loss decreases very slow in

the final iterations. Thus, we can add a local fine-tuning (c3) as the following: for the last

κ iterations, user embeddings are fixed, only item embeddings are updated locally on each

party. So each party accesses the local rating matrices TT ′ + κ times in training.

The benefit of fixing the users embedding and training item embeddings locally is that

the problem becomes a convex optimization problem, and the sensitivity of each local update

is smaller as only item embeddings change in the final iterations. Turning the problem into

a convex problem and the smaller noise for each update, we can obtain smaller and more

stable losses in training.

4.4.2 Analysis of Privacy Guarantee

To analysis both per-rating and per-user privacy, quantifying privacy loss of a party is

an intermediate step. So we use (ε(k), δ(k)) to characterize the privacy loss of party k after

participating in the VFL computation. Although these quantities are not our final goal,

(ε(k), δ(k)) can be understood as the privacy loss of party k when the other s − 1 parties

collude or controlled by an adversary.

• Sensitivity of per-rating privacy. When each party updates local U and VFk
together

in VFL-SGDMF, the `2 sensitivity of the gradient to (U, VFk
) will be ∆rating = 2

√
2R3/2 if

adding/removing one rating; in the final κ iterations where only local item embeddings are

updated, the sensitivity of each iteration is ∆rating = ∆2,v = 2R3/2.

• Sensitivity for per-user privacy after trimming. After trimming, for any pair of neighboring

database XFk
and X′

Fk
, we have a user i such that ratings (XFk

)ij =⊥ for all items j ∈ [Fk]

in XFk
while at most θ(k) ratings (X′

Fk
)ij 6=⊥. Thus, the per-user `2-sensitivity is ∆user =

θ(k)∆rating on party k when updating U and V together, and ∆user = θ(k)∆2,v if only updating

item embeddings.

81

Composition of privacy across iterations. The standard deviation of the Gaussian

distribution, from which ξ
(k,t,t′)
U and ξ

(k,t,t′)
VFk

are sampled from, is determined by the sensi-

tivity and the privacy budget. It can be written as σ(k) = z∆rating for per-rating privacy

or σ(k) = z∆user for per-user privacy, where z is called noise multiplier. Based on mo-

ment accountants [18], the relation between noise multiplier z and privacy budget is as the

following:

Proposition 4.4.1. Let the sampling rate be η in each local iteration. After running TT ′+κ

local iterations, VFL-SGDMF introduces at most (ε(k), δ(k)) per-rating or per-user privacy loss

for party k if the noise multiplier z2 = c1
η2(TT ′+κ) ln 1/δ(k)(

ε(k)
)2 with some constant c1.

End-to-end privacy guarantees. The per-rating and per-user privacy of VFL-SGDMF can

be bounded as the following.

• Per-rating privacy composition in VFL. Notice that the parallel composition property holds

in the context of moment accountants as well. In per-rating setting, global privacy loss can

be bounded with the following theorem derived based on the parallel composition:

Theorem 4.4.1 (Global per-rating privacy). If the noise multiplier is set as above, then

VFL-SGDMF is (maxk∈[s] ε
(k),maxk∈[s] δ

(k)) per-rating differentially private globally.

• Per-user privacy composition in VFL. Users may have ratings distributed across multi-

ple parties, so the parallel composition property does not hold when composing per-user

privacy loss. A naive composition gives ε =
∑s

k=1 ε
(k). However, composing with moment

accountants can give a tighter loss:

Theorem 4.4.2 (Global per-user privacy). If for each party k has per-user privacy loss at

most (ε(k), δ(k)) and δ = δ(1) = . . . = δ(s), then overall per-user privacy loss of VFL-SGDMF is

(
√∑s

k=1 (ε
(k))

2
, δ).

Notice that we only consider one-time training in this work. The privacy budget and the

hyper-parameters are predefined, so that privacy budget will not run out during the training.

However, the real-world DP applications often provide a privacy guarantee within a given

time period (i.e. a day) [89]. Following the same spirit, our algorithm can also be executed

daily.

82

Privacy proofs

Proof of Theorem 4.4.1 . For XFk
, let X′

Fk
as its neighbour dataset by changing an element at

index (i∗, j∗) from ⊥ to an observed rating. In another word, Ωk∪{(i∗, j∗)} = Ω′
k. With the

same U, VFk
, only the gradients to ui∗ and vj∗ can be affected by the difference of neighbour

dataset. For every local iteration, each party k in VFL-SGDMF samples a sub-matrix. The

cell (i∗, j∗) is sampled by probability η =
n′m′

k

nmk
.

Let M(k)
SSub(·) be the function of sampling and computing the differentially private gradients

to all parameters of party k, W = (U, VFk
). With (4.111), it is easy to see that if M(k)

SSub(XFk
) ∼

µ0, then M
(k)
SSub(X

′
Fk
) ∼ (1−η)µ0+ηµ1 for some distribution µ0 and µ1. Following the proof of

Lemma 3 in [18], the log of moment generating function αM(k),t,t′(λ) ≤
η2λ(λ+1)
(1−η)σ2 +O (η2λ2/σ3).

Then follow the proof of Theorem 1 in [18], it can be shown that when σ(k) = (∆2)2η2TT ′ ln 1/δ(k)(
ε(k)

)2 ,

the algorithm is (ε(k), δ(k)) per-rating DP for party k.

When we consider the global per-rating privacy loss of all s parties, VFL-SGDMF is equiv-

alent to a centralized setting where the dataset X is partition into s disjoint sub-datasets

by items, XF1 , . . . ,XFk
. An mechanism M has s subroutines, M(1), . . . ,M(s), where M(k)

only accesses XFk
. After every T ′ iterations, part of the outputs (i.e., local versions of U) of

all subroutines will be averaged. Since the averaging is a post-processing step, it does not

introduce any additional privacy loss. The local computation and global averaging happen

T times. The composition of the moments is αM(λ) =
∑T

t=1

∑T ′

t′=1 αM,t,t′(λ).

Same as traditional DP language, moment accountants also has parallel composi-

tion property (Proposition 4.4.2). With Proposition 4.4.2 , we can have αM(λ) =∑T
t=1

∑T ′

t′=1 maxk∈[s]{αM(k),t,t′(λ)}. If αM(k),t,t′(λ) are the same for all t and t′, then αM(λ) =

maxk∈[s]{
∑T

t=1

∑T ′

t′=1 αM(k),t,t′(λ)}.

So VFL-SGDMF is also (maxk∈[s]
{
ε(k)
}
,maxk∈[s]

{
δ(k)
}
) per-rating differentially privacy

globally.

83

Proposition 4.4.2 (Parallel composition of moment accountants). If the dataset X is parti-

tioned into s parts, X1, . . . ,Xs, where all the partitions are disjoint, and M has s subroutines,

M(1), . . . ,M(s), where M(k) can only access Xk, then

αM(1:s)(λ) = max
k∈[s]
{αM(k)(λ)}

Proof. A pair of dataset is neighbouring data if on only if there is one rating is different,

which also means there is only one pair of partitions Xk∗ and X′
k∗ are different. Then

c(o(1:s);M(1:s), aux(1:s),X,X′)

= log
s∏

k=1

Pr
[
M(k)(Xk∗) = o(k)|aux(k)

]
Pr [M(k)(X′

k∗) = o(k)|aux(k)]

=
s∑

k=1

log
Pr
[
M(k)(Xk∗) = o(k)|aux(k)

]
Pr [M(k)(X′

k∗) = o(k)|aux(k)]

= log
Pr
[
M(k∗)(Xk∗) = o(k

∗)|aux(k∗)
]

Pr [M(k∗)(X′
k∗) = o(k∗)|aux(k∗)]

= c(o(k
∗);M(k∗), aux(k

∗),Xk∗ ,X
′
k∗)

Then

αM(λ;X,X′, aux(1:s))

= logEo′(1:s)∼M(1:s)(X)

[
exp

(
λc(o(1:s);M(1:s), aux(1:s),X,X′)

)]
= logEo′(1:s)∼M(1:s)(X)

[
exp

(
λc(o(k

∗);M(k∗), aux(k
∗),Xk∗ ,X

′
k∗)
)]

= αM(k∗)(λ, o(k
∗),Xk∗ ,X

′
k∗)

≤ max
k
{αM(k)(λ, o(k),Xk,X

′
k)}

Proof of Theorem 4.4.2 . The per-user privacy loss from from a global view can be analyzed

by the composition of moments. If we take the union of all parties’ rating matrices as a whole,

X = ∪k∈[s]Xk, then VFL-SGDMF is equivalent to a centralized mechanism M′(X) which queries

84

the large rating matrix sTT ′ times. Each iteration tg ∈ [sTT ′], M′ only samples from Xk

where k = tg mod TT ′, then updates the local versions of U (k) and VFk
. The sensitivity of

the computation based on Xk is bounded by θ(k)∆2.

So by composability Theorem 2.2.1 , the moment is bounded by

αM,total(λ) =
T∑
t=1

s∑
k=1

T ′∑
t′=1

αM,k,t,t′(λ) ≤
s∑

k=1

TT ′η2λ2

z2
.

By the tail bound in Theorem 2.2.1 , to ensure VFL-SGDMF is (ε, δ)-per user DP, it is sufficient

to show

s∑
k=1

TT ′η2λ2

z2
≤ λ

2
ε

exp(−λε/2) ≤ δ

That is equivalent to find a smallest ε such that ε2 ≥
∑s

k=1
TT ′η2 log(1/δ)

z2
. For each party k, if

it already satisfies (ε(k), δ(k))-DP for party level, it means

TT ′η2λ2

z2
≤ λ

2
ε(k)

exp(−λε(k)/2) ≤ δ(k)

⇒ (ε(k))2 ≥ TT ′η2 log(1/δ(k))

z2

Thus, if we set δ = δ(1) = . . . = δ(s), the ε is sufficiently large when

ε2 ≥
s∑

k=1

(ε(k))2
log(1/δ)

log(1/δ(k))
=

s∑
k=1

(ε(k))2

85

(a) Per-rating privacy (b) Per-user privacy, θ = 10

Figure 4.3. Embedding clip v.s. gradient clip.

4.4.3 Empirical Evaluation for VFL

Datasets. We use three datasets in our experiments. The first one is the MovieLens 10M

(ML10M) dataset [90], the second one is MovieLens 25M (ML25M) and the other one is

the LibimSeTi [91] dataset. MovieLens 10M is a dataset with 10 million ratings on 10, 681

movies by 71, 567 users from the MovieLens website. MovieLens 25M dataset has 25 million

ratings on 62,000 movies by 162,000 users. ML10M and ML25M are similar as their ratings

are all between 0.5 to 5. LibimSeTi contains more than 17 million anonymous ratings of

168, 791 profiles made by 135, 359 LibimSeTi users, and the scores in LibimSeTi are between

0 to 10. We also pre-process the LibimSeTi dataset with the same process as [78].

We split the datasets into s disjoint sub-datasets by movie/profiles, such that the ratings

of each movie/profile can appear in only one dataset. Each of the sub-dataset simulates the

local dataset for a party. We keep 10% of the ratings for testing in each local dataset and

use the remaining for training. To measure the quality of the embeddings, we use the mean

squared error (MSE) to measure the closeness between the inferences and the true ones in

testing sets.

Because the existing DP MF methods are mainly in central setting, so we first compare

[18 , 76 , 77] with VFL-SGDMF and set s = 1. To show the benefit of the communication

in VFL-SGDMF, we also use local-only as a baseline. In the local-only method, each party

trains locally with TT ′ iterations DP-SGD [18] to get local private user embeddings U (k)

and private item embeddings VFk
, but they never communicate with each other during the

training process.

86

(a) Per-rating privacy (b) Per-user privacy, θ = 10

Figure 4.4. Compare VFL-SGDMF (s=1), DP-SGLD and ObjPertb.

(a) Split by category, s=18 (b) Split randomly, s=18

(c) Split by category, s=18 (d) Split randomly, s=18

Figure 4.5. Per-rating and per-user privacy split by category v.s. split ran-
domly on MovieLens 10M dataset.

87

(a) MovieLens 10M (per-rating) (b) MovieLens 10M (per-user)

(c) MovieLens 25M (per-user) (d) LibimSeTi (per-user)

Figure 4.6. Results of randomly split items into different number of parties s.

Hyper-parameters. We fix p = 20 for the embeddings in all experiments. Although there

are possible trade-offs between T , T ′, sampling rate and variance of Gaussian noise for a

fixed ε, we fix TT ′ = 1000 (each party access local dataset 1000 times), sampling rate 0.01

and adjust the variance of Gaussian noise for different ε for the experiments in this work.

Also, the best trimming threshold θ(k) for per-user privacy may vary for different numbers

of parties, different datasets and different privacy budgets. For per-user privacy, we fix the

trimming threshold θ = 10 when s = 1, θ(k) = 5 when s ∈ {2, 5, 10}, and set θ(k) = 2 when

s = 18. Because a too large θ(k) requires large noise to protect privacy, a too-small θ(k)

abandons too much information. We tune the learning rates for different privacy budgets

based on the training loss and pick the one giving the lowest training loss. The learning

rates decrease linearly as [18] for the first 80% iterations and stay the same for the final 20%

iterations. While we only report the results with the fixed setting mentioned above, there

may be multiple optimal combinations. One can also tune the hyper-parameters with part

of the privacy budget in a differentially private way as [18 , 92].

88

Experiment results. We evaluate the VFL-SGDMF against gradient clipping and other

methods [76 , 77] with s = 1. We also analyze the effect of data partition and the effect of

different parameters, i.e., synchronization frequencies and number of parties.

• Non-private central (s=1) results. For references, the embeddings trained in the non-

private central setting with SGD have MSE of 0.83012, 0.8631, 4.23981 on testing sets of

ML10M, ML25M and LibimSeTi datasets, respectively.

• Comparing embedding clipping with gradient clipping. To exclude the effect of trimming,

we first show the per-rating setting and compare gradient clipping with embedding clipping

in the central setting (s=1). We show in Figure 4.3a that if we only do the clipping but do

not add noise, we observe that the gradient clipping method can easily overfit the training

dataset so that the final results are bad, especially when the grading clipping threshold

C = 50. With per-rating privacy, embedding clipping has MSEs slightly lower than the

gradient clipping method with the best threshold C = 10. Gradient clipping has slightly

worse performance because gradients have similar magnitudes and cancel out with each other

after clipping. We can observe similar comparison result in Figure 4.3b for per-user privacy

with trimming θ = 10. The best clipping threshold is again C = 10, while embedding clipping

still slightly outperforms it in different privacy levels. A lesson from these experiments is that

embedding clipping is better than the gradient clipping approach regardless of the additional

effort needed to pick the optimal C.

• Comparing VFL-SGDMF with [76 , 77]. In Figure 4.4 , we compare our embedding clipping

method with DP-SGLD in [76] and the objective perturbation (ObjPertb) approach in [77]

with both per-rating and per-user privacy. We show that VFL-SGDMF can do better in both

per-rating and per-user privacy. Compared with the DP-SGLD, our privacy composition is

based on moment accountants, which shows a tighter composition of privacy loss so that

smaller noise is required for each iteration. Besides, the DP-SGLD approach bounds the

sensitivity by bounding the difference between predicted ratings and true ratings, introducing

huge computation and communication overhead in the FL setting. The ObjPertb method

performs poorly in our experiments, especially for per-user privacy. The main reason could

be that the noise added in the objective function biases the gradients and the algorithm

never has a chance to correct the errors.

89

• Comparing different data partition. We split the dataset ML10M in two different ways. 1)

There are 18 categories of movies in ML10M, so we assume each party owns only one of those

categories. When splitting by category, if a movie belongs to multiple categories, we assign

it to the category with fewest movies to prevent the case that a category has too few movies.

2) We also randomly assign a movie to one of the 18 parties in a random split setting.

Comparing Figure 4.5a with Figure 4.5b for per-rating privacy, or comparing Figure 4.5c

with Figure 4.5d for per-user privacy setting, with our VFL-SGDMF method and set T =

100 and T ′ = 10, there is no significant difference for per-rating privacy between those

two split settings except for most cases; for per-user privacy, MSEs with random-split are

slightly smaller than the split-by-category setting. The local-only method has no significant

difference between the two splitting methods and per-rating privacy, but the MSEs are

significantly higher with split-by-category than the one of random-split with per-user privacy.

The results suggest that with appropriate private synchronization frequencies, VFL-SGDMF

can learn the embeddings regardless of how items are distributed.

• Comparing different synchronization frequencies. In Figure 4.5 , we also compare the results

of different T and T ′ but fixing the total local update iteration as TT ′ = 1000. When

T = 1000, T ′ = 1, the algorithm becomes similar to the method aggregating private gradient

in each iteration; when T = 1, T ′ = 1000, the algorithm becomes similar to model average

as it only averages the local user embedding of different parties finally. Comparing different

settings of T and T ′, we find that the setting T = 100, T ′ = 10 and T = 20, T ′ = 50 are

usually the two with the best results. All settings of VFL-SGDMF have smaller MSE than the

local-only method. The results indicate that frequent synchronization prevents the parties

from learning good embeddings. It is because each local update step is noisy, and each party

needs a few local steps to make meaningful progress; aggregating the noisy updates improves

the quality of embeddings less than aggregating the one with meaningful progress.

• Comparing the number of parties and the value of cooperation. We compare our

VFL-SGDMF to the local-only method with different numbers of parties (s = 2, 5, 10)

and fix T = 100, T ′ = 10 for the experiments in Figure 4.6 . In all levels of privacy

guarantees and different numbers of parties, our VFL-SGDMF has smaller MSEs than the

local-only methods. We observe that when the number of parties increases, the MSEs of our

90

VFL-SGDMF algorithm decrease as the number of parties increases. In the per-rating privacy

context, as the number of parties increases, the total number of local updates also increases,

but the noise added to each update remains the same. Although as the number of parties

increases in the per-user privacy, the noise in each local update increases, but the maximum

number of ratings from the same user after trimming also increases as we fix θ(k) = 5, and

the total number of local updates increase as well. These benefits may outweigh the increase

of noise in our algorithm VFL-SGDMF. LibimSeTi MSEs are higher because the range of the

LibimSeTi (0 to 10) is larger than the one of MovieLens (0.5 to 5).

4.5 Private HFL Matrix Factorization

This section considers solving the MF problem in HFL setting. The use cases of HFL

are different from the VFL setting, so we summarize different privacy risks and expected

protection as following.

HFL privacy leakage and protection. The exchange of information under the HFL

setting is described in Figure 4.1b . Each party manages the ratings of a subset of users. The

privacy risks are different for user/item embeddings in the HFL setting. Because each user

has all his/her data stored on only one party and the embeddings are only used internally,

the users have higher trust levels on the parties in our specification. Therefore, we assume

that the users allow the parties to learn non-private embeddings locally as long as they are

unpublished and only for internal usage. The main privacy leakage risk is in the commu-

nication between the coordinate server and the parties. Thus, our algorithm is designed to

protect privacy for the communication between parties and the coordinate server, and limit

the sensitive information learned by others.

4.5.1 Private MF in HFL: HFL-SGDMF

In order to provide the expected protection, we propose HFL-SGDMF with privacy guaran-

tee. We denote g̃
(k)
V as the noisy gradients with DP noise. We observed that when updating

both user/item embeddings together and the updates of item embeddings are protected by

DP noise, the user embeddings make limited progress in our experiments. It is because when

91

the user embeddings are optimized together with noisy item embeddings, item embeddings

updated noisily transmit the noise to user embeddings. We show how to convert FMF into

HFL-SGDMF in Figure 4.2c , and summarize as below.

• [Stage 1]: initialization and local pre-computation. Besides randomly initializing the em-

beddings in (1c), each party pre-trains their user embeddings locally with embedding clipping

but without trimming and noise, and not updating item embeddings.

• [Stage 2]: cooperative learning. Same as the VFL-SGDMF, embedding clipping and random

trimming are used to bound the privacy in the privacy context in (2c). Each party updates

the local item embedding with differential privacy protection: V (k) = ΠV

(
V (k) − γtg̃

(k)
V

)
,

where g̃
(k)
V is the privatized gradients of item embeddings from mini-batch with sampling

rate η = n′
k/nk and fixed UUk

. The parties in this HFL process synchronize and averaging

the item embeddings after every T ′ local iterations in Step (2s).

• [Stage 3]: local fine-tuning. After Stage 2, each party further fine-tunes their local version

of user/item embeddings to get more accurate local inference results with untrimmed local

data.

4.5.2 Analysis of Privacy Guarantee

In HFL-SGDMF, only the communication in the second stage and {V (k)|k ∈ [s]} are pro-

tected by differential privacy. The final local user/item embeddings after fine-tuning are

unpublished.

DP sensitivity and necessary noise. Notice that since we only need to protect privacy

on the exchange of item embeddings in the HFL stage, the sensitivity is ∆rating = ∆2,v for

per-rating privacy or ∆user = θ(k)∆2,v for per-user privacy for each local update.

Per-rating privacy and per-user privacy. The required standard deviation for per-rating

or per-user privacy can be written in the same way as σ(k) = z∆rating for per-rating privacy

or σ(k) = z∆user for per-user privacy with noise multiplier z. The parallel composition can

be applied to both the per-rating and per-user privacy. So similar to the privacy analysis in

Section 4.4.2 , the following proposition can conclude the privacy loss in the HFL-SGDMF.

92

(a) per-rating privacy ε = 0.055 (b) per-user privacy ε = 1.0

Figure 4.7. Compare pre-train-U with vanilla train-both.

(a) MovieLens 10M, s=10 (b) MovieLens 10M, s=40 (c) MovieLens 10M, s=10 (d) MovieLens 10M, s=40

(e) LibimSeTi, s=10 (f) LibimSeTi, s=40 (g) LibimSeTi, s=10 (h) LibimSeTi, s=40

Figure 4.8. Horizontal random split with different number of parties (per-
rating: left two columns; per-user: right two columns).

Proposition 4.5.1 (HFL-SGDMF privacy). HFL-SGDMF ensures that the shared information

from party k satisfies (ε(k), δ(k)) per-rating/ per-user privacy , if the noise in each local update

is sampled from Gaussian distribution with zero mean and noise multiplier z2 = c2
η2TT ′ ln 1/δ(k)(

ε(k)
)2

with some constant c2. The overall HFL-SGDMF is (maxk∈[s]
{
ε(k)
}
,maxk∈[s]

{
δ(k)
}
) per-

rating/per-user private.

93

4.5.3 Empirical Evaluation for HFL

We use the same two datasets as in the VFL setting, MovieLens 10M and LibimSeTi. We

horizontally partition these datasets into s subsets randomly to simulate the HFL setting in

our experiments.

• HFL Baselines. For the HFL setting, we compare HFL-SGDMF with two baselines: one is

non-private local training with SGD; the other one is the adaptation of DPSGD in HFL

setting, called HFL-synSGD, where the noisy gradients g̃
(k)
V are aggregated every iteration.

• Hyper-parameters. For HFL-SGDMF, we set T = 100 and T ′ = 10 as the previous section,

which means each party queries the local dataset 1000 times during the HFL on item em-

beddings stage. To make it a fair comparison, we set the number synchronization iteration

in HFL-synSGD to be 1000, and we let HFL-SGDMF and HFL-synSGD have the same number

of iteration in the fine-tuning stage as well. For per-user privacy, we set θ(k) = 10 for all

experiments with both HFL-synSGD and HFL-SGDMF and for all datasets. We set θ(k) larger

than the one in the VFL setting because all ratings of a user are stored on one party in

the HFL setting. The learning rates in the experiments are tuned in the same way as in

Section 4.4.3 .

Empirical results. We show the experiments how the pretrain-U approach outperform the

train-both approach, and compare our HFL-SGDMF with the HFL-synSGD for s = 10 and 40.

• Improvement with pre-train U. In Figure 4.7 , we provide experiments comparing the pre-

train-U approach and the vanilla train-both (user/item embeddings together) approach with

numbers of parties from 2 to 40, with or without fine-tuning. The results show that pre-train

U can significantly improve the prediction quality compared to the vanilla approach training

user and item embedding in the same iteration. The main intuition is that if we update

the user embedding and the item embedding in the same iteration, the user embeddings are

largely affected by the noisy item embedding. The user embedding updates do not make

much progress because the item embeddings oscillate with the DP noise, and the progress

made on the user embeddings may be canceled out in the next iteration. However, when the

user embeddings are pre-trained, the item embeddings are fixed so that every update in the

pre-train phase can very likely improve the quality of user embeddings. In the cooperative

94

learning stage, fixing the user embedding can convert the problem into a convex problem,

so that item embeddings’ privacy preserved learning process is easier.

• Comparing with gradient-average. The horizontal dotted lines in Figure 4.8 are the MSE

of training locally and non-privately with SGD. We show that after fine-tuning, the final

embeddings given by HFL-SGDMF have lower MSEs than local non-private training in most

cases. It means that each party can benefit from the privacy-preserving HFL process with

our HFL-SGDMF. When the number of parties becomes 40, the MSEs of HFL-SGDMF before the

fine-tuning stage are already lower than the non-private local training ones in both ML10M

and LibimSeTi datasets, which means the differentially private item embeddings have better

utility than the ones trained non-privately only from local data when s = 40. Figure 4.8

also compares the results of HFL-synSGD. It shows that the HFL-synSGD gives higher MSE

in all settings, no matter before or after fine-tuning. Thus, the experiments show that our

HFL-SGDMF, in which user embeddings and item embedding are updated separately in the

first two stages, can provide better utility compared to the HFL-synSGD, while has smaller

communication cost.

4.6 To Cross-device Learning: LFL-SGDMF

In the previous section, we focused on the HFL setting, which can be categorized as the

cross-silo setting in FL. The HFL setting can be naturally extended from to cross-device

setting with the number of parties the same as number of users, s = n. That is, each party

in the LFL setting is just a proxy of a user holding one user’s ratings.

LFL privacy leakage and protection. As analyzed in Section 4.1.1 , the user embed-

dings are trained and used only locally, so there is no risk of privacy leakage. LFL privacy

leakage happens in the information exchange with the coordination server about the item

embeddings training. A coordination server controls the item embeddings, so all the users

share the same item embeddings. Although the coordination server has no access to the user

data directly, the updates of item embeddings can reveal users’ sensitive information. Thus,

we need to ensure the shared updates of item embeddings are protected by privacy in our

LFL setting.

95

• MF with LDP and its limitation. Compared with the centralized privacy setting, LDP

considers a strictly stronger privacy-preserved model such that any output shared by a user

device should be about as likely regardless of the actual user data. With LDP protocols, user

data are randomized on local devices before being sent to the data aggregator. However,

given the large number of items and the sparsity of the ratings, hiding which items are rated

and protecting the exact ratings require large noise. An LDP method for the MF problem

was proposed in [78], Private-GD-DR, which uses an LDP mean-estimation protocol and a

dimension reduction technique. However, their algorithm can provide limited improvement

on embeddings as shown in Section 4.6.3 .

• Secure aggregation and its limitation. Secure aggregation [73 , 93] was proposed to aggregate

numerical data and reveals only the aggregated sum of the user updates to the server.

Because user dropout is unavoidable in the LFL setting, the SA protocols in [73 , 93] are

designed to tolerate at most ω fraction of dropout users during the execution. An individual

user’s input is protected by composition of masks, but after summing up all reports, the

symmetric masks are canceled out if less than ωn users drop out, and only the true sum

remains. We denote the user reporting process as SAω-report, and the server aggregation

process as SAω-agg. However, secure aggregation protocols are vulnerable to membership

attacks or re-identification attacks.

4.6.1 DP with Secure Aggregation

Different from the HFL setting, user devices in LFL may become unavailable and/or the

communication between user devices and the central party may be disconnected from time

to time – a user is said to drop out if either of the two cases happens. For example, if a user

device is in an area where the internet connection is not stable, its update may be lost; or a

user device can be busy with local tasks and refuses to be involved in the computation. So

we need to ensure that the privacy guarantees of algorithms in the LFL setting hold even

when a significant amount of users drop out in one or multiple iterations during the federated

training process.

96

To overcome the limitations of both LDP and secure aggregation, we propose a new

algorithm with the central DP guarantee, LFL-SGDMF, which is adapted from the FMF as shown

in Figure 4.2d . The changes from FMF in [Stage 1] initialization and local pre-computation

and [Stage 3] local fine-tuning are similar to HFL-SGDMF, where the user embeddings are

pre-trained after initialization, and the item embeddings are fixed. Somewhat surprisingly,

only pre-training U can already outperform the reported results in [78] with LDP as shown

in our experiments in Section 4.6.3 .

The main changes are in the steps of [Stage 2] cooperative learning. The basic idea

here is to aggregate the update of item embeddings through SA but ensure the aggregated

gradients satisfy DP, while introducing noise as small as possible. If we consider SA as an

oracle, there are two rounds of communication in each iteration.

• Round 1 coordination pattern. In the first round of communication, the coordination

server initiates the SAω and request update from each party. After receiving the requests

from the server, each party i samples one rating, Xij and reports noisy update is g̃
(i,t)
V =

∇V Li,j
(
ui, V

(t)
)
+ ξ(i,t). The elements of noise ξ(i,t) are sampled from Gaussian distribution

(0, ζ1σ
2
v). Then the party invokes the oracle SAω- report(g̃(i,t)

V). The server aggregates the

reported updates by invoking SAω-agg. We denote the set of survivors in the first round as

U(t,1). SAω is designed with a tolerable dropout rate ω. If less than (1 − ω)n users survive

in this iteration, the SAω protocol halts, and the server learns nothing in this iteration

and execute next iteration. Otherwise, the aggregated gradients decoded from SAω can be

decomposed as g̃
(t)
V =

∑
i∈U(t,1) ∇V Li,j

(
ui, V

(t)
)
+
∑

i∈U(t,1) ξ(i,t).

• Round 2 coordination pattern. The coordination server first broadcasts |U(t,1)| to the
survivors and requests replacing noise from them. After notified by the coordination server,
the survive party i sends ξ̄

(i,t)
= −ξ(i,t) + ξ′(i,t) to the server, where the elements of ξ′(i,t)

are sampled from Gaussian distribution (0, ζ2σ
2
v). Dropout can also happen in Round 2, so

we denote the set of survivors as U(t,2). The server aggregates the replacing noise and the
aggregated noisy gradients after this two-round exchange are decomposed as:

g̃
(t)
V =

∑
i∈Ut

∇V Li,j
(
ui, V

(t)
)
+

∑
i∈U(t,1)−U(t,2)

ξ(i,t) +
∑

i∈U(t,2)

ξ′(i,t)

97

With such information, the coordination server updates the item embeddings and broadcasts

the updated embedding to all parties.

• Communication cost. The first round aggregation in every iteration depends on the SA

oracle, which requires O(log n+mp) for each user, and it dominate the cost for each iteration.

So the total communication cost of LFL-SGDMF is O(T (log n+mp)) per user.

4.6.2 Analysis of Privacy Guarantee

There are three parameters directly affecting the privacy privacy guarantee, σ2
v , ζ1 and

ζ2. σ2
v is the nob for (ε, δ)-DP guarantee when there is no dropout. When SAω finishes

successfully, the sum is composed of at least |U(t,1)| ≥ (1−ω)n users and ζ1 makes sure that

the aggregated sum obtained by the server through SAω should be at least (ε, δ)-DP. Another

parameter ζ2 is used to reduce “unnecessary” noise added in the SAω round. By setting σ2
v ,

ζ1 and ζ2 properly, LFL-SGDMF has the following privacy guarantee.

Theorem 4.6.1. If σ2
v = c3(∆2,v)

2 Tv ln 1/δ
ε2

, ζ1 = 1
(1−ω)n

and ζ2 = 1
|U(t,1)| and a constant c3,

the LFL-SGDMF can satisfy (ε, δ)-DP and tolerate at most ω fraction of user dropping out in

each iteration.

Whenever the serve can decode the aggregated sum with SAω, the aggregated sum

contains noise with variance |U(t,1)|
(1−ω)n

σ2
v ≥ σ2

v . If there is a set U(t,2) users survived

in the second round, the final noise variance is
(

|U(t,2)|
|U(t,1)| +

|U(t,1)|−|U(t,2)|
(1−ω)n

)
σ2
v . Notice that

|U(t,2)|
|U(t,1)| +

|U(t,1)|−|U(t,2)|
(1−ω)n

≥ 1, which means the noise is still sufficient to provide (ε, δ)-DP on

the aggregated sum.

4.6.3 Empirical Evaluation for LFL

Our experiments in the LFL setting still use the two datasets: MovieLens 10M and

LibimSeTi. We faithfully implement the GD-DR method in [78] for comparison. To make it

a fair comparison, we amplify the privacy budget of LDP to the central DP with the best-

known result [94]. We also use the stage 1 of LFL-SGDMF as a baseline to show the MSEs

without learning item embeddings. Because communication between user devices and the

98

(a) MovieLens 10M, ω = 0.3 (b) MovieLens 10M, ω = 0.6 (c) LibimSeTi, ω = 0.3 (d) LibimSeTi, ω = 0.6

Figure 4.9. Results under LFL setting with different dropout rates.

central server is expensive in the LFL setting in LFL, we set T = 10 for both LFL-SGDMF

and GD-DR, which is the same as [78].

• Comparing with LDP methods. In Figure 4.9 , we first compare our LFL-SGDMF with the

LDP algorithm, GD-DR, from [78]. The main observation is that LFL-SGDMF can outperform

the GD-DR method even with the local training part (Stage 1) only. It means pre-training

the local user embeddings can significantly improve the quality of predictions. We also

conduct experiments applying the LDP level noise with LFL-SGDMF. The figures show that

with such large noise, cooperation can not help improve the result. Although our proposed

method, LFL-SGDMF, has a higher communication cost than the GD-DR, it shows significant

improvement over the GD-DR because of the adaptive noise with central DP guarantee.

• Comparing different dropout rates. Figure 4.9 also shows the empirical evaluation of the

two datasets. We set the tolerable dropout rate ω to be either 0.3 or 0.6. We vary the actual

dropout rate from 0 to 0.2 when ω = 0.3 and we also show additional results of dropout

rate 0.3, 0.4, 0.5 when ω = 0.6. From the result, as the dropout rate increases, the MSE also

increases a little.

When comparing the results with different ω, our method with different ω gives almost

the same MSEs for different epsilons when there is no dropout. When there are dropout

users, the MSEs of ω = 0.6 are higher than those of ω = 0.3. This is because with the same

dropout rate, a similar number of users drop out in the second rounds, the higher ω means

larger noise remains.

99

4.7 Related Work

The majority of the work enforcing DP in FL is under the HFL setting [63 , 70], and

they can be categorized into two classes. One class of works, such as DP-FedSGD [84 , 85],

are extensions based on the DPSGD [18 , 81], in which a server aggregates the (privatized)

gradients from each party and updates models centrally. Another class of techniques, like

DP-FedAvg [95 , 96], performs model average periodically, where local parties send their

(privatized) updated local models to the server, and the server updates the centralized model

by averaging those local models. DP-FedAvg has less communication cost than DP-FedSGD,

by avoiding sharing gradients in every iteration. Our chapter has the following differences in

the HFL setting compared with those existing works. 1) Different from [84 , 95], we assume

that there is no fully trusted coordinator, and all the information shared by the parties

must be differentially private. 2) Compared with [85 , 96], MF is a non-convex optimization

problem with unbounded norm of gradient. 3) Different from the DPSGD [18], we propose

embedding clipping for this problem. Embedding clipping can maintain the aggregated

gradient information better than the gradient clipping approaches, as shown in Section 4.4 .

There are also results under non-private HFL setting [97 , 98].

Existing work about other problems in the VFL setting includes learning tree models

with secure multiparty computation techniques [74 , 99] and training composed models [100].

A recent work [101] studies the generalized linear model with distributed features under the

ADMM framework. Another paper [102] discussing asynchronous supervised learning with

VFL assumes the labels are public accessible. According to our knowledge, we are the first

to discuss the MF problem in VFL setting with a privacy guarantee.

Existing work of privacy-preserving learning under the LFL setting aligns with the local

differential privacy (LDP), such as [11 , 94 , 103 , 104]. There are cryptographic methods in

the LFL setting called secure aggregation [73 , 93] in parallel. The authors of [78] proposed a

algorithm to learn item embeddings with the local differential privacy (LDP). However, we

show that their algorithm is not better than training only the user embeddings locally.

Some work about matrix factorization with DP in a centralized setting includes [76 , 77 ,

 83 , 105]. Also, the MF problem was studied with homomorphic encryption [106]. Without

100

privacy protection, federated matrix factorization was studied as a multi-view learning prob-

lem in [107]. Some other work focuses on the tensor factorization in HFL, like [108] with

non-private aggregation and [109] solving the problem with EASGD and output perturbation

for DP.

4.8 Conclusion

This chapter comprehensively investigates and provides solutions for the MF problem

under three different FL settings, namely, VFL, HFL, and LFL, with provable privacy guar-

antees, based on the common algorithmic framework FMF. We demonstrate the utility of

our proposed methods with extensive experiments. Challenging future tasks can be gener-

alizing the algorithms to solve the problem with continuous updating ratings with privacy

guarantees, and providing solutions to handle the new coming users and items.

101

5. DIFFERENTIALLY PRIVATE VERTICAL FEDERATED

CLUSTERING

(A public version of this chapter has been previously published [110].)

5.1 Introduction

This chapter focuses on an important federated learning setting, the vertical federated

learning (VFL) setting. Its difference from the horizontal federated learning (HFL) setting

is that all parties have data from the same set of users, but their data attributes are different

from each other. VFL has been an interesting topic in the research area since the early 2000s

[74 , 111 – 114]. The papers are usually motivated by medical or financial use cases, where the

users’ private data are not allowed to be shared between data parties. More recently, VFL has

been adapted by some fintech companies for more real-world services. For example, WeBank

demonstrates how they do risk-control for car insurance with VFL techniques [2]. In the use

case, WeBank, which has data including users’ personal financial situations, cooperates with

car rental companies, which have the users’ car-rental-related data, to train a risk control

model giving the most reasonable insurance premium rate. In generally, cooperation among

data parties with different information about the same set of users can help them discover

more correlations and potentially increase the utility with a more comprehensive model.

How to perform VFL while not leaking private information has been an interesting topic

in the security and privacy community. Many existing VFL works are based on secure

multiparty computation (SMC), including algorithms learning classification tree models [74 ,

 99 , 112], regression models [115] and clustering models [111]. However, the SMC-based

methods’ final results cannot provide provable resistance to membership attacks or recon-

struction attacks, and they usually have high computation and communication overheads.

Other literature employs DP as the security notion to provide resistance to the membership

and reconstruction attacks. Privacy-preserving data mining on the statistics from vertically

distributed databases can be dated back to [116], when the idea of DP had not yet been

formalized. More recently, researchers have developed VFL algorithms with DP guarantee

102

for matrix factorization [117], regression [118], and boosting model [102]. We provide the

first solution for the DP VFL clustering problem in this chapter.

Notice that the VFL setting is more challenging than the HFL setting because of the

following factors. 1) The correlations between the distributed attributes are harder to detect

and require carefully distilled information sharing even in non-private VFL. In contrast,

a data party in HFL can at least have some understanding of the correlations among all

attributes based on its local dataset. The correlation detection becomes even harder in the

privacy-preserving VFL setting. Because learning the correlation requires “connecting” a

user’s records in different local datasets, which either leaks user privacy or ruins the utility

without carefully designed protocols. 2) The VFL setting that a user’s information is spread

into different parties also means privacy loss accumulates when a user’s record is accessed by

each data party locally. On the contrary, in HFL, a user’s record only appears in one data

party’s dataset, and we only need to argue the privacy guarantee for each individual data

party (with a property of DP called parallel composition, more details later). Our solution

proposed in this work solves the challenges while providing DP as the privacy guarantee for

the clustering problem.

Our contributions. This work proposes a novel solution for the differentially private

vertical federated k-means. We assume there are multiple data parties and an untrusted

central server. All the information shared by each data party in the training process as well

as the final result satisfy DP. The key idea is to have the data parties generate differentially

private “data synopsis” that describes local k-means results (based on a party’s partial

view). The server then runs a central k-means on the Cartesian product of all partial centers

considering the weights of them, where the weight for each joint center is calculated based on

our novel algorithm to estimate the cardinality of intersection among user indices belonging

to each partial center. Our main contributions are summarized as follows:

• We propose the first (according to our knowledge) differentially private VFL k-means

algorithm with an untrusted central server. We innovatively introduce the Flajolet-Martin

sketch into the VFL setting and build our brand new intersection cardinality estimation

algorithm (Algorithm 4 and Algorithm 5) based on it. We show a theoretical utility guarantee

103

and empirical evaluations for the final k centers derived by the central server. Our proposed

method has a small computation overhead, formal DP guarantees on the shared information

and the final results, and reasonable accuracy.

• To improve the accuracy in the scenario with more than two data parties, we further

improve the algorithm for the central server to estimate the intersection cardinalities (Algo-

rithm 6). The improved algorithm outperforms the basic one and all other baselines when

the number of data parties is greater than 2. We also introduce a rule to choose the local

clustering granularity automatically.

• Our experiments show that our proposed methods can outperform the other baseline

methods and even approach the non-private VFL k-means algorithm when sufficient users

are in the dataset. We also conduct ablation studies to empirically demonstrate the impact

and effectiveness of each component of our algorithm.

Roadmap. The rest of the chapter is organized as the following: we revisit the necessary

background information and an overview of the VFL clustering problem for this work in

Section 5.2 ; we illustrate our solution and provide more details of the key components in

Section 5.3 and 5.4 ; experimental results are shown in Section 5.5 ; Section 5.6 discusses the

related work from different perspectives, followed by a conclusion in Section 5.7 .

5.2 Problem Formulation and Overview of Approach

In this section, we define the problem of differentially private k-means under vertical

federated leaning (VFL), provide an overview of our proposed approach, and discuss the

first phase solution. The problem of VFL k-means (without DP) has been studied before by

Ding et al. [119]. We thus describe the approach in [119], the new challenges when we need

to satisfy DP, and our framework.

5.2.1 k-means Clustering

Clustering algorithms have a long history in computer science research, and k-means [120]

is one of the most well-known clustering problems. With a parameter k and a dataset X,

104

Figure 5.1. Vertical federated k-means clustering with two data parties.

the goal of the problem is to output a set of k centers that can minimize the distance of data

points to their nearest centers. The problem can be formalized as to minimize the cost of

k-means for a set of k centers C and an input dataset X ∈ Rn×m, which is defined as

costX(C) :=
∑
x∈X

(min
c∈C
‖x− c‖22).

The problem can be extended to a weighted point set, where each data point x ∈ X

also has a weight w(x) associated with it. It can be considered as a general version for the

scenario where there are w(x) copies of the same data point x in X. In this case, the k-means

cost is defined as costX(C) :=
∑

x∈X w(x) · (minc∈C ‖x− c‖2).

Theoretically, there is always a set of optimal k centers and the cost is denoted as

OPTk,X = min|C|=k costX(C). However, finding the optimal set of centers for a dataset

is NP-hard [121]. Thus, researchers have developed efficient but heuristic algorithms that

do not guarantee optimality. For example, the most commonly used algorithm, Lloyds

algorithm [122] has time complexity O(nmk).

Given X and k, a set of k centroids is called a (β, λ)-approximate solution if costX(C) ≤

β · OPTkX + λ. In the non-private setting, the best known proven approximation is β ≈

6.357, λ = 0 [123].

105

5.2.2 VFL Clustering Problem Formulation

We formalize the VFL k-means clustering as the following.

Vertical federated learning (VFL). Federated learning (FL) [124] focuses on learning

tasks among multiple data parties without directly sharing their local data. Vertical FL

(VFL) assumes that each data party’s data are from different features of the same set of users.

Consider a dataset X where each row corresponds to a user, and each column corresponds

to a feature. The setting of VFL is that X is vertically split into X = [X(1)| . . . , |X(S)], so

that each data party ` ∈ [S] has a local dataset X(`) with some features. We assume each

user is labeled with a unique id (e.g., MAC address) and is consistent across all the data

parties.

Security model. Our model assumes that a central server orchestrates the process and

obtains the results. For each party, any information shared is protected with the DP guar-

antee. The central server is untrusted because it is curious to learn extra private information

during the computation process. We assume that the central server does not collude with

any data party, which is the same as the previous work [125 , 126]. Because all the informa-

tion received by the central party is differentially private, then the final deliverable (i.e., the

k centers) generated by the central server can be considered a post-processing output in DP.

Goal. All the S parties want to cooperatively generate differentially private k centers C

in the full domain (with all attributes) that can approximately minimize the k-means loss

costX(C). The challenge is that each party only has its local view (a few attributes), where

the final centers are evaluated with a full view (all attributes).

5.2.3 A Non-Private Baseline

Ding et al. [119] consider VFL k-means, and aim to avoid the data communication cost

of sending all data to a server. The challenge here is that each party has only the local

view. A natural approach is thus first to construct a global approximation of the data points

and then perform k-means clustering on the approximation. In the approach taken in [119],

each data party first finds local cluster centers, then reports to the server these local cluster

106

centers together with which local cluster each data point belongs to. The central server

can assemble the local centers and local clustering memberships to create a set of weighted

pseudo data points of the full dataset. We provide more details below.

Each party ` performs clustering to find k′ local cluster centers C(`) =
{
c
(`)
1 , . . . , c

(`)
k′

}
; and

then sends the k′ centers together with membership information I(`) =
{
M(`)

1 , . . . ,M(`)
k′

}
to

the central server, where M(`)
a =

{
id | a = argmin

∥∥∥x(`)
id − c

(`)
a

∥∥∥2
2

}
. The server constructs

(k′)S pseudo data points as a grid from the Cartesian product of the local centers received

from S parties, i.e., G = {(c(1)a1 , . . . , c
(S)
aS) | ∀(a1, . . . , aS) ∈ [k′]S}; and assigns the cardinality

of the intersection of the corresponding clusters as weights to them such that w(G(a1,...,aS)) =∣∣∣M(1)
a1 ∩ . . . ∩M(S)

aS

∣∣∣.
This algorithm with only one round of communication can perform well because the grid

built by the central server actually maintains most of the necessary information about the

local datasets: each local center c(`)a` is the exact average of the user data inM(`)
a` ; moreover,

data points in the intersectionM(1)
a1 ∩. . .∩M

(S)
aS are expected to distribute around the pseudo

point (c
(1)
a1 , . . . , c

(S)
aS). If the intersection has a small cardinality or even is an empty set, we

can know that the pseudo point can be ignored. The weighted grid is similar to a useful data

synopsis in the k-means cost analysis, called coreset [127], which approximates the original

dataset information. As long as the weighted grid nodes are representative enough for a

subset of points, the central server can find final centers without accessing the distributed

datasets.

5.2.4 Challenge in the Privacy-preserving Setting

The approach described in Section 5.2.3 does not consider the privacy leakage problem,

as the local cluster centers and membership information sent to the server contain sensitive

information. To protect users’ private information, all the information sent to the central

server, including (1) local cluster centers C(`) and (2) local membership information, should

be differentially private.

107

For the clustering centers, there already exists comprehensive research of the k-means

algorithm in the central DP setting [128 – 135]. Thus we can choose a method that works

well.

Sending local membership information while satisfying DP is, however, very challenging.

To the best of our knowledge, there is no effective DP algorithm for sharing membership

information, especially in the scenario with more than two parties. Fortunately, the reason

that we need to share the membership information is to estimate the weights of each pseudo

data point. Thus, we do not need to share precise membership information, and just need a

private way to estimate the cardinality of the intersection among multiple parties. The main

technical contribution of this work is a solution to this problem, which we will described in

Section 5.3 . Our proposed approach leverages DP FM sketch and is extended to support the

intersection operation among parties.

5.2.5 The Overall Framework

Figure 5.1 is a visualized workflow of Algorithm 2 with two data parties (note that our

algorithm/analysis work with the general case of multiple parties). The formal description

is given in Algorithm 2 , which consists of four phases:

Phase 1: Each party clusters local data and generates differentially private local centers

(sub-procedure LocCluster).

Phase 2: Each party encodes the differentially private “membership information” of each

local cluster with the private centers and user data points (sub-procedure MemEnc).

Phase 3: The central server first randomly queries a party for an estimate of the total

number of users with the Laplace mechanism and a small privacy budget ε0

1
 . Then

the central server receives the private local clustering centers and local membership

information of the local clusters. It builds a weighted grid, where grid nodes are

the Cartesian product of different parties’ local centers, and have the estimate of
1

 ↑ We set ε0 = 0.02ε unless we specify in the following text.

108

intersection cardinality of the corresponding clusters as their weights (Line 3(c) and

sub-procedure WeightEstimate).

Phase 4: The central server runs a known central k-means algorithm on the weighted grid

to generate the final k centers.

Algorithm 2 Private Vertical Federated Clustering
Input: Local datasets {X(`) ∈ Rn×m` | ` ∈ [S]}, total privacy budget (ε, δ) is divided as

ε0 = (1 − b)ε, ε1 = bε
2S

, ε2 = bε
2S
, δ2 = δ

S
for each data party, k and k′ for clustering, and

auxiliary membership encoding parameters aux.
Output: A set of k centers {c1, . . . , ck} ∈ Rk×m

1: Each data party ` ∈ [S]:
(a): {c(`)1 , . . . , c

(`)
k′ } ← LocCluster(X(`), ε1, k

′)
2: Each data party ` ∈ [S]:

(a): I(`) ← MemEnc(X(`), {c(`)1 , . . . , c
(`)
k′ }, ε2, δ2, aux)

(b): sends C(`) = {c(`)1 , . . . , c
(`)
k′ } and I(`) to server

3: Central server:
(a): uses ε0 to estimate the total number of user n̂
(b): receives {(C(`), I(`))|` ∈ [S]} from all parties
(c): computes grid by Cartesian product G← C(1) × . . .×C(S)

(d): computes w(G)← WeightEst(n̂, ε2, δ2, {I(`)|` ∈ [S]})
4: Central server:

(a): computes and outputs {c1, . . . , ck} ← k-means(G,w(G), k)

In what follows, Section 5.2.6 describes our approach for Phase 1, and Section 5.3 de-

scribes our approach for Phase 2 and 3.

5.2.6 Private Local Clustering

We review some existing solutions to generate private centers in the central setting and

then explain our adaptation to our VFL setting.

DPLloyd. A straight-forward differentially private central k-means is the DPLloyd [131 ,

 136]. In each iteration, the assignment step is the same as the non-private Lloyd algorithm,

where each data point is assigned to the closest center produced from the previous iteration.

The updating step ensures DP by 1) using the Laplace mechanism with sensitivity 1 to get

the noisy count of data points assigned to the center, 2) using the Laplace mechanism with

109

sensitivity r (it requires that all attributes are bounded in [−r, r]) and a split privacy budget

for each dimension to get the noisy sums of the data points assigned to the same center.

The centers are updated as the averages of all data points in the same cluster with the noisy

count and noisy sum. Every iteration consumes privacy budget for computing noisy sums

and noisy counts.

DPLSF. There are two recently proposed algorithms for differentially private k-means with

theoretical performance guarantees, one for the central setting [137] and one for the local

setting [138]. Both algorithms are built on a theoretical concept called efficiently decodable

net. But how to implement the efficiently decodable net in practice is still unclear. There-

fore, the authors also propose a DP k-means algorithm based on locality sensitive hashing

(LSH) forest to approximate the effect of the efficiently decodable net. The central DP im-

plementation is open-sourced [139]. The high-level idea is to partition the data points based

on their LSH outputs, generate differentially private means and counts for these partitions,

and finally run a (non-private) k-means algorithm on the means with counts as weights. We

call this method DPLSF. We choose DPLSF as the instantiation of LocCluster in this work

because it is shown to outperform other existing methods in experiments [139].

Adapting DPLSF to VFL setting. The implementation in [139] requires a known L2

norm upper bound for the data points because of the usage of the Gaussian mechanism.

However, assuming the L2 norm upper bound for each user’s data may be unreasonable in

the VFL setting because a user’s data are spread in different data parties’ datasets. Thus,

we enforce the domain of all attributes to be [− 1, 1] by letting the local party project the

original domain to this range before running the algorithm. Consequentially, we calculate

the noisy sum of the data points in the partition by splitting the privacy budget to all

dimensions and applying the Laplace mechanism on each dimension with sensitivity 1.

5.3 Private Membership Encoding and Weight Estimate

As mentioned in Section 5.2.4 , directly sharing the membership information

{M(`)
1 , . . . ,M(`)

k′ } with the central server leaks user’s private information. We introduce

our private instantiations of MemEnc and WeightEst together in this section because how

110

the central server can estimate the weights with WeightEst depends on how data parties en-

code the membership information with MemEnc. With our instantiations, the data parties

generate differentially private membership information and share it with the central server,

and the central server estimates the weights of the grid nodes, which are estimates of the

cardinalities of the intersections
∣∣∣M(1)

a1

⋂
. . .
⋂
M(S)

aS

∣∣∣, for all (a1, . . . , aS) ∈ [k′]S.

5.3.1 Baselines

Baseline 1: Estimate weights assuming independence among attributes. In this

approach, we assume that the distributions of attributes from one party are independent

of those from all other parties. Under this assumption, we can compute the intersection

cardinality using
∣∣∣M(1)

a1

⋂
. . .
⋂
M(S)

aS

∣∣∣ ≈ n̂
∏

`∈[S]
|M(`)

a`
|

n̂
.

Following this idea, the private MemEnc only needs to generate a histogram of[∣∣∣M(`)
1

∣∣∣ , . . . , ∣∣∣M(`)
k′

∣∣∣] with Laplace mechanism and privacy budget ε2. Denote the random-

ized histogram vector as f̃ (`). The central server’s sub-procedure WeightEst is w(G(a1,...,aS)) =

n̂
∏

`∈[S]
f̃
(`)
a`

n̂
. We call this baseline as IND-LAP because it makes the independence assumption

and uses the Laplace mechanism.

However, when the assumption of inter-party attributes independence fails, this cardinal-

ity estimation can be far from the ground truth and make the final centers far from optimal.

The key reason is that the correlation information between the attributes across different

data parties is completely ignored. Thus, maintaining the inter-party attribute correlations

is the main focus of improving the utility in general scenarios.

Baseline 2: Estimate weights based on local differential privacy protocols. An-

other choice for aggregating the cardinality information is to let the parties report each user’s

membership information separately, instead of aggregating the membership information first

and then reporting. When such reporting satisfies local differential privacy (LDP) for each

user, it also satisfies DP for the whole local dataset. In this work, we apply either the opti-

mized local hashing (OLH) or the general random response (GRR) protocol in [140] (which

is used depends on the privacy parameter ε2 and the domain size), and name this approach

111

as LDP-AGG. We set ε0 = 0 because LDP-AGG does not need to estimate the number of

users.

Local memberships of a user in S different data parties can be seen as an S-dimension

record. Thus, it is equivalent to randomizing each “dimension” of a user record independently

with LDP protocols. After receiving all the local memberships of a user, the server first

computes the probability vector of this user in all possible intersections M(1)
a1 ∩ . . . ∩M(S)

aS .

Then the server sums the probability vectors of all users to get the desired weights. The

correlation of each user’s attributes is preserved because the server first aggregates all local

memberships of each user.

However, the reported memberships are very noisy. Based on the known LDP protocol

error analysis [40 , Proposition 10], the variance of an estimated cardinality with LDP-AGG

is in the order O
(

n
ε2S2

)
for each intersection. The noise can easily overwhelm the true counts

when ε2 is small or S is large.

5.3.2 Prerequisite: DP FM Sketch

As is shown, neither baseline is satisfactory. An effective approach for private MemEnc

and WeightEst should accurately maintain most of the correlation information between the

inter-party attributes. We propose a new approach based on the Flajolet-Martin (FM)

sketch because it can satisfy DP with a little additional overhead and support the set union

operation.

Cardinality estimation sketches When handling a large amount of data, sketch is a

popular succinct data structure that can store some basic information of the data with very

low space and time complexity. One of the most well-known sketches is the Flajolet-Martin

(FM) sketch [141], which is designed to estimate the cardinality (i.e., the number of distinct

elements) of a (multi)setM. In FM sketch, all the elements inM are hashed with Hζ(·). The

estimate of the cardinality is (1+γ)α, where α = max{Hζ(x)|x ∈M} and γ is the parameter

for an ideal geometric-value hash function H. Typically, multiple (e.g., 1000) hash functions

(H with different hash keys ζ) are used and we take the harmonic/geometric average as the

final α. One appealing advantage of FM Sketch is that it is mergeable. With the same hash

112

key, sketches from different (multi)sets can be merged by taking the maximum, and we can

derive the estimate of the cardinality of the union of those (multi)sets. With this property,

we can estimate the cardinalities of the union/intersection of the set in the federated setting

without leaking private information.

FM sketch achieves DP. Recently, some research results show that a family of hash-

based, order-invariant sketches, including FM sketch, satisfy DP as long as the cardinality is

large enough and the hash keys are unknown to the adversary [125 , 126 , 142 , 143]. The DP

version of the FM sketch algorithm is described as Algorithm 3 . We follow the description

of the FM sketch in Smith et al. [125], where the FM sketch is implemented using an ideal

geometric-value hash function H : X × Z → N+ with parameter γ
1+γ

. That is, given any

finite set of distinct inputs x1, . . . , x` ∈ X , with a hash key ζ ∼ Uniform(Z), the hashed

values Hζ(x1), . . . , Hζ(x`) follow i.i.d. Geometric
(

γ
1+γ

)
distribution.

Algorithm 3 DP FM Sketch Generation DPFM [125]
Input: a (multi)set M, privacy parameter ε′, and Geometric distribution parameter γ, an

ideal random hash function Hζ(x) ∼ Geometric(γ
1+γ

) when ζ ∼ Uniform(Z)
Output: Sketch α for cardinality of M

1: np = d 1
eε′−1
e, αmin = dlog1+γ

1
1−e−ε′ e

2: αp = max{Y1, . . . , Ynp} where Yi ∼ Geometric(γ
1+γ

)

3: αreal = max{Hζ(id)|id ∈M}
4: Return α = max{αp, αreal, αmin}

Algorithm 3 generates a DP FM sketch. The intuition of the non-private FM sketch is

that when elements in M are encoded as a set of geometric random variables and αreal =

max{Hζ(id)|id ∈ M}, we can expect (1 + γ)αreal ∈
[
|M|
1+γ

, (1 + γ) · |M|
]

with reasonable

probability. Compared with the non-private version, the DP FM sketch needs two additional

steps to ensure privacy: adding phantom elements, and lower-bounding the output by αmin.

The phantom elements are used to ensure that the cardinality estimated by the final output

is at least np; the αmin, which is at the e−ε′−quantile of the Geometric distribution, is used

to ensure a probability that none of the items affects the output. It has been shown that

the harmonic/geometric mean of M runs of Algorithm 3 satisfies DP:

113

Lemma 6 (Privacy guarantee of DPFM [125]). Given an ideal geometric-value hash function

H, Algorithm 3 is ε′-DP. Besides, repeating it M times with different hash keys and ε′ =

ε

4
√

M log(1/δ)
satisfies (ε, δ)-DP as long as ε ≤ 2 log(1/δ).

5.3.3 Sketch-based MemEnc and WeightEst

Unlike the DP FM sketch [125] which aims to estimate the cardinality of a single set,

our task is to encode the partitions, namely multiple local clusters consisting of user ids

assigned to different local centers. Thus, we extend the FM sketch to encode the partition

memberships, called Differentially Private Flajolet-Martin Partition Sketch (DPFMPS). We

call an FM sketch vector for
{
M(`)

1 , . . . ,M(`)
k′

}
as a set of FM sketches. The sketch generation

function, DPFMPS-Gen (Algorithm 4), is an instantiation of MemEnc. The data parties

need to share a set of auxiliary parameters, aux = {γ,M, ζ = {ζ1, . . . , ζM}}, where γ is

the Geometric distribution parameter, M is the number of sets of sketches and each ζi ∼

Uniform(Z) is the hash key to an ideal geometric-value hash function for the i-th set of

sketch. Notice that all data parties need to share the same set of hash keys. Algorithm 4

generates M sets of FM partition sketches and has the following privacy guarantee.

Theorem 5.3.1. Given an ideal geometric-value hash function H, DPFMPS-Gen (Algo-

rithm 4) generating M sets of partition sketches satisfies (ε2, δ2)-differential privacy.

The above theorem is based on the following lemma about the privacy guarantee for each

set of sketch, namely Ai in Algorithm 4 .

Lemma 7. Given an ideal geometric-value hash function H, each set of the partition sketch

(i.e. a row Ai) is ε′-DP.

With Lemma 7 , the privacy guarantee claimed in Theorem 5.3.1 can be derived with the

sequential composition of RDP [20] and converted back to (ε, δ)-DP following the same proof

as in [125].

Estimate intersection cardinality. One key observation of the local partition is that an

id can be clustered to one and only one M(`)
a by each data party `. Thus, the intersection

114

Algorithm 4 DPFMPS-Gen
Input: A set of k′ centers C(`), dataset X(`), privacy parameter ε2 and δ2, Geomet-

ric distribution paramter γ, number of sketches M and the corresponding hash keys
ζ = {ζ1, . . . , ζM}

Output: M sets of sketches A
1: ε′ = ε2

4
√

M log(1/δ2)

2: Generate
{
M(`)

1 , . . . ,M(`)
k′

}
where id ∈M(`)

j based on C(`)

3: A← 0M×k′

4: for i ∈ [M], a ∈ [k′] do
5: Ai,a = DPFM(M(`)

a , ε′, γ, ζi)
6: end for
7: Return A

Algorithm 5 DPFMPS-BasicEst
Input: Estimate of the total number of users n̂, Privacy parameter ε2 and δ2, the FM

partition sketches {A(1), . . . ,A(s)}
Output: Estimate of the weights w(G)

1: U← 0M×(k′)s , w′ ← 0(k′)s

2: ε′ = ε2
4
√

M log(1/δ2)
, np = d 1

eε′−1
e

3: for i ∈ [M], (a1, . . . , as) ∈ [k′]s do
4: Ui,(a1,...,as) = max{A(`)

i,a | ` ∈ [s], a 6= a`}
5: end for
6: for (a1, . . . , as) ∈ [k′]s do
7: α(a1,...,as) = HarmonicMean

(
U:,(a1,...,as)

)
8: w′

(a1,...,as) = (1 + γ)α(a1,...,as) − s(k′ − 1)np

9: w(G(a1,...,as)) = n̂−w′
(a1,...,as)

10: end for
11: Ensure

∑
(a1,...,as)

w(G(a1,...,as)) = n̂ and w(G)(a1,...,as) ≥ 0

12: Return w(G)

115

problem can be transformed into the union problem by an extension of the inclusion-exclusion

principle:

S⋂
`=1

M(`)
a`

=
S⋃

`=1

M(`)
a` =

S⋃
`=1

(⋃
a6=a`

M(`)
a

)
. (5.1)

Algorithm 5 gives the detailed procedure. There are (k′)S possible intersections that

need to be estimated, and there are M sets of FM sketches. In Line 2 , U is initialized to

store the FM sketches for the cardinalities of the complementary set of intersections; w′ is an

intermediate vector representing the cardinalities of union of complements, i.e.
∣∣∣⋃s

`=1M
(`)
a`

∣∣∣.
To estimate the cardinalities of the intersection with Equation (5.1), we first need to cal-

culate the sketch of their complementary set, i.e.,M(`)
a` . The corresponding FM sketch can be

obtained by taking the max of all other elements in the same sketch set, max
{
A

(`)
i,a|a 6= a`

}
,

according to the union property of FM sketch. Next, we need to derive the sketch for the

union of the complementary partition of all data parties, i.e.
⋃s

`=1M
(`)
a` . This union’s FM

sketches can be obtain by max
{
max

{
A

(`)
i,a|a 6= a`

}
|` ∈ [s]

}
. Merging the two max opera-

tions give us the operation in Line 4 .

We use the Harmonic mean over the M FM sketches to estimate the cardinality of⋃s
`=1M

(`)
a` in Line 7 , because it is shown [125] that the harmonic mean estimate is more stable

and accurate. As this sketch is obtained after s(k′− 1) union operations, totally s(k′− 1)np

phantom elements are taken into account. Therefore, we need to subtract s(k′−1)np elements

from the final estimation in Line 8 . Finally, the intersection cardinality can be calculated by

subtracting the cardinalities of
⋃s

`=1M
(`)
a` from the total number of users n̂. Before finally

returning the weights, we need to make sure the output is valid by enforcing non-negativity

and total-sum equal to n̂ on the weights (Line 11).

5.3.4 Privacy, Utility and Communication Cost

Privacy cost. According to the privacy spitting strategy in the Algorithm 2 , Theorem 5.3.1

and the sequential composition of DP, the following privacy statement can directly derived.

116

Theorem 5.3.2. Algorithm 2 is (ε, δ)-DP with DPFMPS-Gen and DPFMPS-BasicEst as the

implementation of MemEnc and WeightEst.

Error analysis of the weights. The cardinality estimate with Algorithm 3 approximates

the real cardinality within a factor of 1± γ and an additive error of O
(√

ln(1/δ)/ε
)

[125].

The additive error is because of the phantom elements, and αmin also slightly increases the

expectation of the sketch. We provide a refined result to show that the utility of the private

FM sketches generated from Algorithm 3 is similar to the non-private FM sketch when the

real cardinality is large enough, in order to use the more advanced results from non-private

FM sketch research.

Lemma 8. Let α̂ = max{αreal, αp} and α be the return of Algorithm 3 . If H is

an ideal geometric-value hash function and ε′ is fixed, we have E [α] /E [α̂] → 1 and

Var [α] /Var [α̂]→ 1 when |M| is sufficiently large.

With Lemma 8 , we can claim that the lower bound αmin does not affect the mean and

variance of the sketch α̂ too much. So we can treat the α returned by Algorithm 3 approxi-

mately the same as the vanilla non-private FM sketch, and we can use the standard deviation

results of the non-private FM sketch to analyze the error of DPFM in a more fine-grained

way.

The standard deviation of a non-private FM sketch estimation can be represented as

ρN/
√
M , where ρ is a constant, N is the cardinality and M is the repetition [141 , 144 ,

 145]. Our algorithm has s(k′ − 1) union operations to derive an element of U, and each set

has np phantom elements. So the cardinality estimated by U:,(a1,...,aS) becomes N(a1,...,aS) =∣∣∣⋃`∈[S] ∪j 6=a`M
(`)
j

∣∣∣+s(k′−1)np = n̂−w∗(Ga1,...,aS)+s(k′−1)np, where w∗(Ga1,...,aS) represent

the true intersection cardinality |M(1)
a1 ∩. . .∩M

(S)
aS |. Based on the property of the non-private

FM sketch and the value of M and np, we can state the following theorem.

117

Theorem 5.3.3. Given a constant ρ such that the non-private FM sketch’s standard devia-

tion is ρN/
√
M where N is the cardinality, and M is number of repetitions. With np and ε′

set as in Algorithm 5 , each intersection cardinality estimate generated has standard deviation

σ(a1,...,as) =
ρ(n− w∗(G(a1,...,as)))√

M
+

4ρs(k′ − 1)
√

log(1/δ)

ε2

The result is directly derived after plugging in the value of N(a1,...,aS) and np, and use the

approximation ey ≈ y + 1 when y is a small positive number.

Final utility cost. When we set k′ = k as indicated in the non-private setting [119], we can

show that Algorithm 2 is a (β, λ)-approximation algorithm with assumption of accessibility

to some guaranteed central (private) k-means algorithm.

Theorem 5.3.4. Assume the data parties have access to a differentially private (βpriv , λpriv)-

approximate k-means algorithm, and the central server has access to a (non-private) (βo, 0)-

approximate k-means algorithm. Algorithm 2 with DPFMPS-Gen and DPFMPS-BasicEst is a

(β, λ)-approximation algorithm with probability 1− ω, where

β = 2βpriv + 4β0 + 4β0βpriv ,

λ = 2(β0 + 1)Sλpriv +O

(
β0m

2k1.5S

√
ω

(
n√
M

+
S(k − 1)

√
log(1/δ)

ε2

))

The multiplicative error β is composed of βpriv from the LocCluster and β0 from the

final non-private clustering on central server. The first term of the additive error λ can be

understood as the cumulative error of S local DP k-means algorithm results

2
 , and the second

term comes from the cardinality estimation error. The second term can dominate the error

when the number of centers k or the number of data parties S is not small. The exponential

factor 1.5S comes from Chebyshevs inequality with the union bound.

Communication cost. There is only one round of communication between the data

parties and the central server. Each data party sends local centers together with M sets
2

 ↑ The best theoretical results of DP k-means in central setting [137] states that λpriv =

Oβ,η

(
km+kOη(1)

ε1
polylogn

)
with a small positive constant η.

118

of sketches to the server, with communication cost O
(
(m(`) +M)k′). The central server

receives all these messages from all local parties with space in O (mk′ + SMk′).

5.3.5 Privacy proofs

Proof of Lemma 7 . To prove the privacy guarantee of Algorithm 4 , we denote a set of

identities as M = {id1, . . . , idn}, where id is not necessarily a integer, but any input

that is hash-able. For clustering, M is divided into {M(`)
1 , . . . ,M(`)

k′ } according to the

differentially private C(`) from the previous phase: For any id, the partition index is

argminj∈[k′]

∥∥∥x(`)
id − c

(`)
j

∥∥∥2
2
. Now given a pair of neighboring datasetsM andM′, where there

is an id such that id′ 6∈ M but idi′ ∈ M′, their clustering memberships, {M1, . . . ,Mk′}

and {M′
1, . . . ,M′

k′}, differing at exactly one partition j ∈ [k′], such that id ∈M′
j, id 6∈ Mj;

for all other subsets ∀j′ 6= j,Mj′ = M′
j′ . Thus, the following proof can be considered as

following the parallel composition property.

5.3.6 Utility proofs

To simplify the description, we denote φC(`)(·) as a partition function mapping a user

record in the local dataset of party ` to the closest center’s index in C(`) = {c(`)1 , . . . , c
(`)
k′ }

generated in the previous phase, i.e., φC(`)

(
x
(`)
id

)
= argmina∈[k′]

∥∥∥x(`)
id − c

(`)
a

∥∥∥2
2
. With the

partition function, each data party partitions the users into disjoint sets {M(`)
1 , . . . ,M(`)

k′ }

such that user id ∈M(`)
a if and only if a = φC(`)

(
x
(`)
id

)
.

Proof of Lemma 8 . Consider the output of the geometric-valued hash function H, Z =

max{Y1, . . . , Yñ}, where Yi ∼ Geometric(γ
1+γ

). The cumulative mass function of Z is

Pr [Z ≤ z] =

(
1−

(
1− γ

1 + γ

)z)ñ

=

(
1− 1

(1 + γ)z

)ñ

.

119

The probability Pr [Z ≤ αmin] =
1

eε′ñ . Based on this result, the ratio of expectation can be

written as

E [α]

E [α̂]
=1−

∑
z≤αmin

Pr [Z = z] (αmin − z)

E [α̂]

≥1−
∑

z≤αmin
Pr [Z = z]αmin

E [α̂]
≥ 1−

log1+γ(1/(1− e−ε′))

eε′ñE [α̂]

Let ñ = |M| + np. When |M| is large enough, the denominator dominants and the value

will go to 0 very quickly. Similar analysis can also be applied to the variance.

Proof of Theorem 5.3.4 . For simplicity, we denote the virtual global dataset as X =

[X(1)| . . . |X(S)], the optimal global centers as C∗ = {c∗1, . . . , c∗k}, and the membership of

grid g as Mg We also denote φ∗(·) as the optimal partition function mapping a data point

to a closest center index. We first can bound the costX as the following:

costX(C) =
∑
i∈[n]

∥∥xi − cφ∗(xi)

∥∥2
2

≤
∑
g∈G

∑
i∈Mg

∥∥xi − g + g − cφ∗(g)
∥∥2
2

≤ 2
∑
g∈G

∑
i∈Mg

‖xi − g‖22 +
∥∥g − cφ∗(g)

∥∥2
2

We first analysis the first term. Notice that every local data party runs a (βpriv, λpriv)-

approximate algorithm, and g consists of S local centers [c(1)a1 | . . . | c
(S)
aS]

∑
g∈G

∑
i∈Mg

‖xi − g‖22 =
∑
`∈[S]

∑
i∈[n]

(x
(`)
i − c(`)a`

)2

≤
∑
`∈[S]

(βprivOPT
(`)

k,X(`) + λpriv)

= βpriv

∑
`∈[S]

OPT
(`)

k,X(`) + Sλpriv

≤ βprivOPTk,X + Sλpriv

120

Notice that w(g) is only an estimation of |Mg| in our algorithm. So we denote κ =∑
g∈G |w(g)− |Mg||. The second term can be relaxed as the following:

∑
g∈G

∑
i∈Mg

∥∥g − cφ∗(g)
∥∥2
2
=
∑
g∈G

|Mg|
∥∥g − cφ∗(g)

∥∥2
2

≤
∑
g∈G

|w(g)|
∥∥g − cφ∗(g)

∥∥2
2
+ 4m2κ

As the central server finally runs an (β0, 0)-approximate k-means algorithm, we also

denote Ĉ = {ĉ1, . . . , ĉk} as the set of optimal k centers for k-means given (G, w(G) as the

dataset. Thus, it follows that

∑
g∈G

|w(g)|
∥∥g − cφ∗(g)

∥∥2
2

≤ β0

∑
g∈G

|w(g)|
∥∥g − ĉφ∗(g)

∥∥2
2

≤ β0

∑
g∈G

|Mg|
∥∥g − ĉφ∗(g)

∥∥2
2
+ 4β0m

2κ

≤ β0

∑
g∈G

∑
i∈Mg

∥∥g − xi + xi − c∗φ∗(xi)

∥∥2
2
+ 4β0m

2κ

≤ 2β0

∑
g∈G

∑
i∈Mg

‖g − xi‖22 + 2β0

∑
g∈G

∑
i∈Mg

∥∥xi − c∗φ∗(xi)

∥∥2
2
+ 4β0m

2κ

We have bounded the first term above and can reuse the result here. The second term is the

exactly 2β0OPTk,X by definition. So when we put every thing together, we have

costX(C) ≤ (2βpriv + 4β0 + 4β0βpriv) OPTk,X

+ 2(β0 + 1)Sλpriv

+ 8(β0 + 1)m2κ

To bound the t, we can use Chebyshev’s inequality with the union bound of all grid

nodes and the results of Lemma 5.3.3 , the standard σ = O
(

n√
M

+
S(k−1)

√
log(1/δ)

ε2

)
. Because

121

there are totally kS intersection cardinality estimates in the grid, the probability of the

odd scenario for each intersection cardinality estimate we want to bound is ω
kS

because of

the union bound. According to the Chebyshevs inequality, for one intersection estimation,

Pr

[
|w(g)− |Mg|| ≥ σ

√
kS

ω

]
≤ ω

kS
. Plug in the standard deviation result and consider the

there are totally kS intersection, we can have the result shown in our theorem with k1.5S.

Thus, with probability at least 1− ω,

κ ≤ k1.5S

√
ω
σ = O

(
nk1.5S

√
ωM

+
S(k − 1)k1.5S

√
log(1/δ)

ε2
√
ω

)

Plugin the result so that

costX(C) ≤ (2βpriv + 4β0 + 4β0βpriv) OPTk,X

+ 2(β0 + 1)Sλpriv

+O

(
(β0 + 1)m2

(
nk1.5S

√
ωM

+
S(k − 1)k1.5S

√
log(1/δ)

ε2
√
ω

))

5.4 Improving Utility of the Algorithm

We showed that DPFMPS-BasicEst has advantages over the baseline methods theoretically

in the previous section. However, we empirically find that there is still large room to improve

to the basic estimation. We focus on two different aspects of the algorithms and propose our

improved versions with higher utility.

5.4.1 Improving Post-processing Estimation Algorithm for More than Two
Data Parties

As the number of data parties increases, the accuracy of the weight estimation will

decrease dramatically. From the error analysis of the cardinality estimation (Theorem 5.3.3),

one can see that the second term in standard deviation σ(a1,...,aS) increases proportionally

with the number of data parties S. Furthermore, the total possible intersection combinations

122

grow exponentially as (k′)S, which decreases the expected number of data points in the

intersection, i.e., the expected w∗(G(a1,...,aS)). The combination of the two factors means

that the relative error of the intersection estimation will rapidly increase as the number of

parties grows.

Two observations give us hope to lessen the negative effect. The first observation is

that estimation of two-party intersection cardinalities is relatively accurate. The second

observation is based on the distributive property of set intersection:

∣∣∣M(`1)

a′`1

⋂
M(`2)

a′`2

∣∣∣ = ∑
(a1,...,aS)∈[k′]S
a`1=a′`1

,a`2=a′`2

∣∣∣⋂M(`)
a`

∣∣∣ , (5.2)

which give the connection between the all-party intersection cardinality (i.e., w(G)) and the

two-party version (i.e., w(G(`1,`2))). Thus, we propose to deal with this challenge by 1) com-

puting only all pair-wise intersection cardinalities, and 2) using these two-party intersection

cardinalities with Equation (5.2) as constraints, and iteratively update the w(G) to fulfill

all this constraints.
The improved estimation is described in Algorithm 6 DPFMPS-2PEst. The cen-

tral server first estimates the single-party cardinality of all local clusters with only A(`)

(Line 3). Namely, w
(`)
a is an estimate for |M(`)

a |. Then the server initializes the full
grid weights w(G) with only the single-party cardinality information assuming no corre-
lation between the inter-party attributes (Line 5). Next, the server estimates all two-party
weights with DPFMPS-BasicEst as a sub-procedure (Line 7). To be more detailed, the grid
weights w(G(`1,`2)) returned by DPFMPS-BasicEst with A(`1) and A(`2) are the estimates
for
{∣∣∣M(`1)

a`1

⋂
M(`2)

a`2

∣∣∣ | a`1 , a`2 ∈ [k′]
}

. With all pairs of w(G(`1,`2)), the server iteratively
updates the grid weights w(G) to make them consistent with all the two-party intersection
cardinalities w(G(`1,`2)). In each iteration, the server first randomly selects a pair of data
parties (Line 10), groups the current full grid weights w(G) by the cluster indices of the

123

chosen two parties, and sums the weights in the same group to generate a two-party grid
weights w̃(G(`1,`2)) according to Equation (5.2):

w̃(G
(`1,`2)
(a′`1

,a′`2
)
) =

∑
(a1,...,aS)∈[k′]S
a`1=a′`1

,a`2=a′`2

w(G(a1,...,aS))

We use the differences between w(G(`1,`2)) and w̃(G(`1,`2)) to update the weight evenly with

a step size ηt (Line 15). After sufficient update iterations, the full-party grid weight w(G) is

expected to approximately satisfy the constraints (Equation (5.2)) with all two-party weights

w(G(`1,`2)).

Because both DPFMPS-2PEst and DPFMPS-BasicEst are post-processing components in

DP definition, the privacy guarantee in Theorem 5.3.2 still holds when DPFMPS-2PEst is

used.

Algorithm 6 DPFMPS-2PEst
Input: Estimated total number of users n̂, privacy parameter ε2 and δ2, the FM partition

sketches {A(1), . . . ,A(s)}
Output: Estimate of the weights w(G)

1: ε′ = ε2
4
√

M log(1/δ2)
, np = d 1

eε′−1
e

2: for ` ∈ [S], a ∈ [k′] do
3: w

(`)
a ← (1 + γ)

HarmonicMean
(
A

(`)
:,a

)
− np.

4: end for
5: ∀{a1, . . . , aS} ∈ [k′]S, w(G(a1,...,aS))← n̂×

∏
`∈[S]

w
(`)
a`

n̂

6: for (`1, `2) ∈ [S] and `1 6= `2 do
7: w(G(`1,`2))← DPFMPS-BasicEst(n̂, ε2, δ2, {A(`1),A(`2)})
8: end for
9: for t ∈ [T] do

10: Randomly select a pair (`1, `2) ∈ [S]× [S]
11: w̃(G(`1,`2))← Proj(w(G), `1, `2)
12: ∆(`1,`2) ← w̃(G(`1,`2))− w(G(`1,`2))
13: for (a′`1 , a

′
`2
) ∈ [k′]2 do

14: ∀(a1, . . . , aS) ∈ [k′]S, a`1 = a′`1 , a`2 = a′`2
15: w(G(a1,...,aS))← w(G(a1,...,aS))−

ηt
(k′)S−2∆

(`1,`2)

(a′`1
,a′`2

)

16: end for
17: end for
18: Return w(G)

124

5.4.2 Auto-adjusted k′

The utility result of Theorem 5.3.4 is given by assuming the number of local and central

clusters is the same, i.e., k′ = k. However, we can see a trade-off on the value of k′. In the

non-private setting, the larger the k′ is, the more local dataset information is preserved for

the final central clustering. On the other hand, the larger the k′ is, the more fine-grained the

grid becomes, and the fewer records (or smaller w∗(Ga1,...,aS)) are expected to be assigned

to the grid node. According to Theorem 5.3.3 , a larger k′ can make the error of w(Ga1,...,aS)

larger and increase the final cost.

Giving a closed form solution for the local k′ to minimize the final loss is difficult. How-

ever, as we can see from the error bound of Theorem 5.3.4 , the grid quality reflected by

the second term of γpriv plays an important role. We propose an empirical rule to set

k′ = max{k0, k1/S} for DPFMPS-2PEst to prevent the true cardinalities from being over-

whelmed by the noise, where k0 is the smallest integer that satisfies 2σ(a1,...,as) ≥ n̂
k20

. Because

w∗(G(a1,...,aS)) in Theorem 5.3.3 is unknown, we approximate it as n̂
k20

; we set s = 2 in the

standard deviation because DPFMPS-2PEst only decodes pairs of intersection cardinalities;

and we set ρ = 0.649 according to [144]. We experimentally demonstrate that such a choice

of k′ can be good choices for the datasets in our experiments in Section 5.5.2 .

5.5 Experiments

Datasets. In this work, we use four different datasets to empirically verify the advantages

of our proposed methods for private vertical federated clustering. To simulate the verti-

cal federated learning, we split the datasets by attributes into S partitions evenly, and all

attributes are normalize to [− 1, 1] before clustering.

Synthetic mixed Gaussian dataset with k centers. To echo the implicit assumption of k-

means problem, we first synthesize a mixed Gaussian dataset with m = 8 for evaluation.

We generated this data in a similar way as [138] but enforced each dimension’s range to be

[− 1, 1] instead of in a L2 ball. We first randomly sample k = 5 centers in the domain, then

125

(a) Mixed Gaussian S = 2 (b) Taxi S = 2 (c) Loan S = 2 (d) Letter S = 2

(e) Mixed Gaussian S = 4 (f) Taxi S = 4 (g) Loan S = 4 (h) Letter S = 4

Figure 5.2. k-means loss with final k centers.

(a) Mixed Gaussian S = 2 (b) Taxi S = 2 (c) Loan S = 2 (d) Letter S = 2

(e) Mixed Gaussian S = 4 (f) Taxi S = 4 (g) Loan S = 4 (h) Letter S = 4

Figure 5.3. V-measure scores.

126

randomly sample n = 20, 000 data points from the Gaussian distribution with the means at

those k centers.

New York Taxi dataset [146]. This taxi dataset contains 8 attributes and 100,000 records

of taxi trips information, including pick-up/drop-off times and locations. We preprocess the

pick-up/drop-off time to make them a number indicating the time in a week, ranging from

0 to 60× 60× 24× 7 before normalizing them.

Loan dataset [147]. The original Loan dataset has 120 attributes. We extract the first 60k

records and 16 numerical attributes of the applicant’s credit information and apartment in-

formation. We clipped these attributes’ values and made them upper-bounded their original

95% quantile to eliminate the outliers.

Letter dataset [148]. This dataset consists of information about black-and-white rectangular

pixels displayed as the letters in the English alphabet. There are 16 attributes and 20,000

records in the datasets.

Parameter settings. There are different methods to decide the best k value for the real-

world datasets. The Silhouette method [149] is one of the most commonly used. Silhouette

measures how closely data points are matched to data within its cluster and how loosely

they are matched to data of the neighboring cluster. The datasets we use in this work all

have relatively high Silhouette scores when k is smaller. Thus, we fix k = 5 for experiments

in this work to eliminate the effect of k unless we explicitly mention it.

According to the experimental results in [125], a larger number of repeated FM sketches

(hyper-parameter M in our work) leads to a smaller relative error of cardinality estimation.

Thus, we fix M = 4096 in different experiments, making the communication cost reasonable

in the cross-silo FL setting and achieving stable accuracy. We vary ε values for different

levels of privacy protection strengths, and we fix δ = 1/n for the experiments.

Evaluation Metric. We evaluate the quality of the final output by two metrics. The

first is the sum of central k-means loss with all the data points, i.e.,
∑

x∈X(minc∈C ‖x− c‖2).

The second is the V-measure [150] in the scikit-learn package [151], which measures how

“close” the clustering results of VFL algorithms are when compared to the ground truth

classes (for the synthetic dataset) or central non-private k-means result (for the real word

127

datasets). The V-measure is the harmonic mean of two conditional entropy scores measuring

the homogeneity and completeness. It is a scores between 0 and 1, and the closer to 1 the

better. Because of the space limitation, we refer readers to [150] for detail formulas.

Compared methods. The adapted DPLSF is used as instantiation of LocCluster in all

private VFL experiments. So we name the end-to-end private VFL clustering method based

on their MemEnc and WeightEst instantiations. We compare the following methods in our

experiments:

• our proposed method DPFMPS-BasicEst and DPFMPS-2PEst;

• two baseline methods IND-LAP and LDP-AGG-2PEst (LDP-AGG-2PEst is an improved

version of LDP-AGG using the same technique in Section 5.3.1 ; because directly applying the

LDP-AGG gives us a very large loss when S > 2);

• the central private k-means method (central) DPLSF from [139];

• the central non-private k-means from the scikit-learn package [151]

• a nonprivate VFL implementation VFL non-private following [119].

5.5.1 End-to-end Comparison

We first demonstrate the end-to-end performance of the algorithm and show the advan-

tages of our proposed algorithms.

k-means loss results. Figure 5.2 shows the loss of the final centers produced by different

algorithms. As we can see, the losses of non-private vertical federated k-means are higher

than the that of the central version in most cases. Notice that we set k′ = k = 5 for the non-

private VFL algorithm, so there are 25 or 625 grid nodes when S = 2 or S = 4 accordingly.

It means some information is lost when we building the grid, and more fine-grained grid can

improve the utility in the non-private setting if we compares the figures in the first rows with

the ones in the second row.

Comparing our proposed method, DPFMPS-2PEst, with the two baseline methods and

DPFMPS-BasicEst, we can see that our proposed method can produce final centers with con-

sistently lower losses for most settings. When there is only two parties (S = 2), DPFMPS-

128

BasicEst has the same performance as DPFMPS-2PEst because they are the same; but

DPFMPS-2PEst largely improve over DPFMPS-BasicEst when S = 4. The exception is the

results of the IND-LAP results of the Letter dataset (Figure 5.2d and 5.2h), where IND-LAP

approach has slightly better performance when ε is small. That is because the attributes of

the Letter dataset are relatively independent of each other does not follow the underlying

assumption of k-means algorithm. As for the LDP baseline, LDP-AGG-2PEst, we can see

that it’s performances is close to our proposed method only with large privacy budget but

is inferior when ε is small, which echoes with the theoretical results in Sections 5.3 . When

the privacy budget is large enough, the LDP protocol has little randomness to perturb the

local membership of a user. In contrast, the FM sketch has its inherent randomness, even

with large privacy budgets.

Moreover, comparing the private central with the private VFL algorithms, we can see

that the private central VFL method almost always has a higher cost than the central one.

The gap between the two exists because of two different reasons. The first reason is that

compared with the central setting, only the local centers, and the sketches are shared with

the central server, and part of the information is lost. The second reason is that when we

use sketches to estimate the cardinalities of the intersections, part of the privacy budget is

spent on the estimation.

V-measure scores. When generating the synthetic mixed Gaussian dataset, we assign

the same label for the data points drawn from the same center. However, the real-world

datasets have no label, or the number of labels is different from our experiment setting, so

we apply the central non-private k-means algorithm to generate the labels for the dataset.

Thus, the closer the score is to 1, the more similar the clustering are to the real labels (for

Mixed Gaussian) or the central non-private k-means clustering (Taxi, Loan and Letter).

Figure 5.3 presents the result. The results align with the k-means loss results. In most

settings, we can observe that DPFMPS-2PEst outperforms the other two VFL private baseline

methods in Figure 5.3 . For the Letter dataset, we can see that all three methods have lower

scores than the other two. We believe it is because the data in Letter have very independent

attributes and bring advantage to the IND-LAP. However, DPFMPS-2PEst still outperforms

129

(a) Mixed Guassian ε = 1 (b) Loan ε = 1

Figure 5.4. Effect of unevenly split dataset.

(a) Loan ε = 1 (b) Loan ε = 2

Figure 5.5. Effect of different S on Loan dataset (m = 16).

other methods with S = 4 with most privacy budgets, and it also has performance close to

best when S = 2.

Effect of uneven number of attributes. The previous results show how DPFMPS-2PEst

outperforms other baselines method when the attributes are evenly split. We also explore

how the methods perform when the each party has different number of attributes. Denote

m(i) as the number of attributes in the i-th party’s dataset. We split the mixed Gaussian

dataset so that m(1) : m(2), is 3 : 5 or 2 : 6, and split the Loan dataset to 6 : 10 and 4 : 12.

The results shown in Figure 5.4 indicate that our DPFMPS-2PEst work consistently well in

the sense that the losses of different split ratios do not change much. Besides, DPFMPS-2PEst

losses are smaller than the other two baselines in the figure.

Effect of number of parties S. We also compare how the number of parties S can affects

the final clustering results in Figure 5.5 . The loss generally increases as S increases. This

is mainly because the WeightEst component introduces a larger error because of the random

noise for privacy. However, DPFMPS-2PEst always provides the lowest loss among the three.

130

(a) Mixed Gaussian S = 2 (b) Mixed Gaussian S = 4 (c) Loan S = 2 (d) Loan S = 4

Figure 5.6. relative error of estimate the intersection cardinalities.

5.5.2 Ablation Study of Components

To further demonstrate the impact of enforcing privacy on different components in the

vertical clustering algorithm, we perform ablation studies.

Intersection cardinality accuracy comparison. To break-down the error, the first

interesting metric is the relative accuracy of the intersection cardinality estimation. The

relative error is defined as

1

n

∑
(a1,...,aS)

∥∥w(G(a1,...,aS))− w∗(G(a1,...,aS))
∥∥
1

We fix k = k′ = 5 for fair comparison of all methods and the results are shown as Figure 5.6 .

Because the evaluation is based on the intermediate results of the end-to-end private algo-

rithm, so only half of the privacy budgets are spend on the intersection estimation. We can

see that our proposed method DPFMPS-2PEst can outperform other methods in most ex-

periment settings. The DPFMPS-BasicEst performs similar as DPFMPS-2PEst in the S = 2

setting as expected, DPFMPS-2PEst can significantly improve the accuracy when there are

more parties (S = 4). The LDP baseline LDP-AGG-2PEst still have relative error larger

than the DPFMPS-2PEst, even with the 2-way iterative updating. Moreover, as we can see

from the figure, the error of the 1-way approach IND-LAP is dominated by loss of dependency

information between the attributes and barely going down as we increase the privacy budget.

Distinguishing the impact of private LocCluster from private intersection car-

dinality estimation. In Figure 5.7 , we compare the impact of enforcing privacy on

131

(a) Mixed Gaussian S = 2 (b) Mixed Gaussian S = 4 (c) Loan S = 2 (d) Loan S = 4

Figure 5.7. Comparing the impact of (enforcing privacy on) different components.

(a) Mixed Gaussian, S = 2 (b) Mixed Gaussian, S = 4

Figure 5.8. Different local k′ with different privacy budget.

Table 5.1. Automatically chosen k′.
S = 2 S = 4

n
ε

0.5 1 2 3 4 0.5 1 2 3 4

20000 4 5 5 6 6 4 4 5 5 5
60000 5 6 6 7 7 4 5 6 6 6
100000 6 6 7 7 7 5 6 6 7 7

132

either the local clustering component or the intersection estimation component. For “non-

priv kmeans + DPFMPS-2PEst” experiments, each data party uses non-private central k-

means to generate local centers and spends ε2 on the intersection estimation algorithm. For

“DPLSF + non-priv intersection” experiments, each data party spends ε1 privacy budget

on DPLSF to generate local centers, and the intersection cardinalities are computed exactly

without enforcing any privacy.

As shown Figure 5.7 , enforcing the LocCluster private but using the non-private intersec-

tion cardinality estimation gives the cost closer to the end-to-end private ones when S = 2.

However, when S = 4, making either component non-private while enforcing the other pri-

vate has a similar effect on the final loss. These results show that when S is small, the private

LocCluster (related to the first term of additive error λ of Theorem 5.3.4) is the component

that introduces the majority error. However, they also support our analysis in Section 5.3.4

that the intersection component will introduce a larger error when the number of parties S

increases.

Impact of different local k′. As we discuss in Section 5.4.2 , in order to trade-off

between the error introduce in the membership intersection cardinality estimation with the

information loss of local clustering, we can vary the number of local clusters, namely k′.

In Figure 5.8 , we compare the impact of different numbers of local clusters on the final

cost. To give a summary, if ε is large, larger k′ can benefit the final result by keeping more

local information; if S is large, then it would be better to choose a smaller k′ to limit the

exponentially grown number of grid nodes. We show the automatic decided k′ in Table 5.1 ,

which is close to empirical optimal k′.

5.6 Related work

To our knowledge, this is the first work that targeting at solving the clustering prob-

lem under vertical federated learning with end-to-end differential privacy guarantee. We

summarize the related work from the following three axes.

Vertical federated learning. VFL has been studied in the recent years, sometimes

under the name of vertical distributed learning. The most relevant paper is [119], which

133

proposes a solution for the clustering problem but does not consider the privacy leakage

issue. Existing work about other problems in the VFL setting includes learning tree models

with secure multiparty computation techniques [74 , 99] and training composed models [100].

Some recent papers [101 , 152] apply the ADMM framework in the VFL setting. Another

paper [102] discussing asynchronous supervised learning with VFL assumes the labels are

public accessible.

Data sketches with privacy and private set intersection cardinality estimation. It

is originally claimed in [153] that cardinality estimators, including FM sketch as its variants,

do not preserve privacy, and any accurate sketch leaks the membership of a user in a set.

However, their result assumes that the adversary knows the hash key, which is not a very

common DP security setting. Because DP security is based on the assumption that the

adversary does not know the random seed; otherwise the adversary can re-generate the

random result (i.e., Laplace noise) by itself and recover the true result. Recently, several

papers [125 , 126 , 142 , 143] reveal that hash-based, order-invariant sketches satisfy differential

privacy as long as the cardinality set is large enough. An earlier paper [154] uses linear

sketch and perturbs the sketch with random response, but it has larger relative error [125]

and assumes no duplicate.

While the private set intersection cardinality (PSI-CA) problem is an traditional cryp-

tographic problem and has been studies in series of literature [155 – 160], there is few paper

discuss how to solve it under DP. To solve the PSI-CA problem with DP guarantee, the

existing solutions also rely on some kinds of data sketch. For example, [161] proposes a

solution to support set union or intersection with an untrusted third party based on Bloom

filters. However, their solution uses bit-flipping, which introduces large randomness and

unable to scale to the setting with more than 2 parties. Other similar work includes using

cryptographic tools to encrypt the sketches as [162]. Some other cryptography oriented re-

search [163 , 164] use DP definition as a relaxation of the traditional security definition, and

develop secure private set intersection protocol resisting malicious adversary. However, their

134

protocol is only designed for two-party case and can not be easily extended to support more

parties.

Differential private k-means. In the central DP setting, some earlier papers in-

cludes [128 – 135] contribute to the theoretical bound for the k-means cost. A practical

implementation [165] with cost bounded is based on privately selecting a candidate center

set and gradually swapping in better centers into the final k centers. Another open-source

implementation of the DP k-means implementation is [139] which is based on locality sen-

sitive hashing. Our algorithm is based on [139] because the authors shows it outperforms

[165] on some datasets.

5.7 Conclusion

In this work, we propose the first differentially private solutions for the vertical federated

clustering problem. We demonstrate that our solution can outperform other baselines while

having strong privacy protection and little communication and computation overhead. The

DP intersection cardinality estimation method proposed in this work can be potentially

extended and customized to other VFL problems, which can be one of the future research

directions.

135

6. SUMMARY

In this dissertation, we investigate and propose solutions for several problems in distributed

settings with differential privacy guarantees.

Firstly, we focus on task estimating numerical value distribution while satisfying local

differential privacy. We improve the existing hierarchy histogram data structure by enforc-

ing valid distribution on the estimates and solving it with an efficient ADMM algorithm.

We further propose a tailored randomization algorithm for the LDP numerical frequency

estimation, the square wave algorithm. We couple the randomization algorithm with a

post-processing algorithm based on the EM algorithm with a smoothing step to enable the

aggregator to derive the numerical distribution with high accuracy from the noisy reports.

Our experimental results show that our proposed methods outperform the existing solution

based on categorical frequency oracle with different metrics.

Secondly, we investigate the matrix factorization on sparse rating matrices in all three

most popular federated learning settings: VFL, HFL and LFL. We propose a common com-

putation paradigm for the matrix factorization problem in these settings and show the con-

vergence rate with non-private SGD. Based on this, we show how to adapt the common

computation paradigm with additional operations, such as embedding clipping, so that it

can satisfy different privacy requirements in the three settings.

Finally, our contribution falls in providing a practical solution for the k-means clustering

problem in the vertical federated learning setting while satisfying DP. Our main contributions

to this problem are the intersection cardinality encoding and estimation algorithms based

on FM sketch. We provide theoretical and empirical evidence to show that our methods

outperform other baselines.

Base on the explorations in this dissertation, we believe that there are still many in-

teresting open problems in the distributed setting with requirements on privacy protection.

For example, generating synthetic data can be a challenging but meaningful problem in the

VFL setting; solving the matrix factorization problem with continuous updating ratings is

an attractive task for the industry.

136

REFERENCES
[1] D. Pujol, R. McKenna, S. Kuppam, M. Hay, A. Machanavajjhala, and G. Miklau, “Fair

decision making using privacy-protected data,” in Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency, 2020, pp. 189–199.

[2] WeBank, Webank use case, https://www.fedai.org/cases/a-case-of-traffic-violations-
insurance-using-federated-learning/ , WeBank, 2022. [Online]. Available: https://ww
w.fedai.org/cases/a-case-of-traffic-violations-insurance-using-federated-learning/ .

[3] C. Dwork, A. Smith, T. Steinke, and J. Ullman, “Exposed! a survey of attacks on
private data,” Annual Review of Statistics and Its Application, vol. 4, pp. 61–84, 2017.

[4] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse datasets,”
in 2008 IEEE Symposium on Security and Privacy (sp 2008), IEEE, 2008, pp. 111–
125.

[5] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit con-
fidence information and basic countermeasures,” in Proceedings of the 22nd ACM
SIGSAC conference on computer and communications security, 2015, pp. 1322–1333.

[6] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks
against machine learning models,” in 2017 IEEE symposium on security and privacy
(SP), IEEE, 2017, pp. 3–18.

[7] J. Li, N. Li, and B. Ribeiro, “Membership inference attacks and defenses in classifica-
tion models,” in Proceedings of the Eleventh ACM Conference on Data and Application
Security and Privacy, 2021, pp. 5–16.

[8] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The secret sharer: Evaluating
and testing unintended memorization in neural networks,” in 28th USENIX Security
Symposium (USENIX Security 19), 2019, pp. 267–284.

[9] Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li, and D. Song, “The secret revealer: Gen-
erative model-inversion attacks against deep neural networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 253–
261.

[10] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity
in private data analysis,” in Theory of Cryptography, S. Halevi and T. Rabin, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 265–284.

[11] Ú. Erlingsson, V. Pihur, and A. Korolova, “Rappor: Randomized aggregatable
privacy-preserving ordinal response,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’14, Scottsdale,
Arizona, USA: Association for Computing Machinery, 2014, pp. 1054–1067, isbn:
9781450329576. doi: 10.1145/2660267.2660348 . [Online]. Available: https://doi.org/
10.1145/2660267.2660348 .

[12] A. D. P. Team, Differential privacy overview, 2022.

137

https://www.fedai.org/cases/a-case-of-traffic-violations-insurance-using-federated-learning/
https://www.fedai.org/cases/a-case-of-traffic-violations-insurance-using-federated-learning/
https://www.fedai.org/cases/a-case-of-traffic-violations-insurance-using-federated-learning/
https://www.fedai.org/cases/a-case-of-traffic-violations-insurance-using-federated-learning/
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/2660267.2660348

[13] B. Ding, J. Kulkarni, and S. Yekhanin, “Collecting telemetry data privately,” in NIPS,
2017.

[14] R. Rogers et al., “Linkedin’s audience engagements api: A privacy preserving data
analytics system at scale,” arXiv preprint arXiv:2002.05839, 2020.

[15] N. Li, W. Qardaji, and D. Su, “On sampling, anonymization, and differential privacy
or, k-anonymization meets differential privacy,” in Proceedings of the 7th ACM Sym-
posium on Information, Computer and Communications Security, New York, NY,
USA: Association for Computing Machinery, 2012, pp. 32–33.

[16] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in
private data analysis,” in TCC, 2006, pp. 265–284.

[17] F. D. McSherry, “Privacy integrated queries: An extensible platform for privacy-
preserving data analysis,” in Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, New York, NY, USA: Association for Computing
Machinery, 2009, pp. 19–30.

[18] M. Abadi et al., “Deep learning with differential privacy,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, ser. CCS ’16,
Vienna, Austria: Association for Computing Machinery, 2016, pp. 308–318, isbn:
9781450341394. doi: 10.1145/2976749.2978318 . [Online]. Available: https://doi.org/
10.1145/2976749.2978318 .

[19] TensorFlow-Privacy, TensorFlow Privacy, https://github.com/tensorflow/privacy ,
Accessed: 2021-12-01, 2021.

[20] I. Mironov, “Rényi differential privacy,” 2017 IEEE 30th Computer Security Founda-
tions Symposium (CSF), pp. 263–275, 2017.

[21] Z. Li, T. Wang, M. Lopuhaä-Zwakenberg, N. Li, and B. koric, “Estimating numer-
ical distributions under local differential privacy,” in Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, 2020, pp. 621–635.

[22] Z. Li, T. Wang, M. Lopuhaä-Zwakenberg, B. Skoric, and N. Li, “Estimating numerical
distributions under local differential privacy,” arXiv preprint arXiv:1912.01051, 2019.

[23] Ú. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: randomized aggregatable
privacy-preserving ordinal response,” in CCS, 2014.

[24] R. Bassily and A. D. Smith, “Local, private, efficient protocols for succinct his-
tograms,” in STOC, 2015.

[25] T. Wang, J. Blocki, N. Li, and S. Jha, “Locally differentially private protocols for
frequency estimation,” in USENIX Security, 2017.

[26] J. Acharya, Z. Sun, and H. Zhang, “Hadamard response: Estimating distributions pri-
vately, efficiently, and with little communication,” arXiv preprint arXiv:1802.04705,
2018.

[27] M. Ye and A. Barg, “Optimal schemes for discrete distribution estimation under
locally differential privacy,” IEEE Transactions on Information Theory, 2018.

138

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://github.com/tensorflow/privacy

[28] M. Hay, V. Rastogi, G. Miklau, and D. Suciu, “Boosting the accuracy of differentially
private histograms through consistency,” PVLDB, vol. 3, no. 1, 2010.

[29] W. H. Qardaji, W. Yang, and N. Li, “Understanding hierarchical methods for differ-
entially private histograms,” PVLDB, vol. 6, no. 14, 2013.

[30] X. Xiao, G. Wang, and J. Gehrke, “Differential privacy via wavelet transforms,” in
ICDE, 2010.

[31] T. Kulkarni, G. Cormode, and D. Srivastava, “Answering range queries under local
differential privacy,” PVLDB, 2019.

[32] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed optimization
and statistical learning via the alternating direction method of multipliers,” Founda-
tions and Trendső in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

[33] D. Nychka, “Some properties of adding a smoothing step to the em algorithm,” Statis-
tics & probability letters, vol. 9, no. 2, pp. 187–193, 1990.

[34] B. Silverman, M. Jones, J. Wilson, and D. Nychka, “A smoothed em approach to
indirect estimation problems, with particular reference to stereology and emission to-
mography,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 52,
no. 2, pp. 271–303, 1990.

[35] S. L. Warner, “Randomized response: A survey technique for eliminating evasive
answer bias,” Journal of the American Statistical Association, vol. 60, no. 309, 1965.

[36] T. Wang, N. Li, and S. Jha, “Locally differentially private frequent itemset mining,”
in SP, 2018.

[37] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Minimax optimal procedures for
locally private estimation,” Journal of the American Statistical Association, vol. 113,
no. 521, pp. 182–201, 2018.

[38] N. Wang et al., “Collecting and analyzing multidimensional data with local differential
privacy,” in 2019 IEEE 35th International Conference on Data Engineering (ICDE),
IEEE, 2019, pp. 638–649.

[39] N. Wang et al., “Privtrie: Effective frequent term discovery under local differential
privacy,” in ICDE, 2018.

[40] T. Wang et al., “Answering multi-dimensional analytical queries under local differen-
tial privacy,” in Proceedings of the 2019 International Conference on Management of
Data, ACM, 2019, pp. 159–176.

[41] T. Wang, Z. Li, N. Li, M. Lopuhaä-Zwakenberg, and B. Skoric, “Locally differentially
private frequency estimation with consistency,” in NDSS, 2020.

[42] J. Lee, Y. Wang, and D. Kifer, “Maximum likelihood postprocessing for differential
privacy under consistency constraints,” in Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ACM, 2015,
pp. 635–644.

139

[43] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Founda-
tions and Trends in Theoretical Computer Science, vol. 9, no. 3-4, 2014, issn: 1551-
305X. doi: 10.1561/0400000042 . [Online]. Available: http://dx.doi.org/10.1561/
0400000042 .

[44] G. C. Fanti, V. Pihur, and Ú. Erlingsson, “Building a RAPPOR with the unknown:
Privacy-preserving learning of associations and data dictionaries,” PoPETs, vol. 2016,
no. 3, 2016.

[45] X. Ren et al., “Lopub: High-dimensional crowdsourced data publication with local
differential privacy,” IEEE Trans. Information Forensics and Security, vol. 13, no. 9,
2018.

[46] J. A. Bilmes et al., “A gentle tutorial of the em algorithm and its application to
parameter estimation for gaussian mixture and hidden markov models,” International
Computer Science Institute, vol. 4, no. 510, p. 126, 1998.

[47] D. Ormoneit and V. Tresp, “Averaging, maximum penalized likelihood and bayesian
estimation for improving gaussian mixture probability density estimates,” IEEE
Transactions on Neural Networks, vol. 9, no. 4, pp. 639–650, 1998.

[48] C.-P. S. Fan, J. Stafford, and P. E. Brown, “Local-em and the ems algorithm,” Journal
of Computational and Graphical Statistics, vol. 20, no. 3, pp. 750–766, 2011.

[49] Q. J. Huys and L. Paninski, “Smoothing of, and parameter estimation from, noisy
biophysical recordings,” PLoS computational biology, vol. 5, no. 5, e1000379, 2009.

[50] N. Taxi and L. Commission, Tlc trip record data, https://www1.nyc.gov/site/tlc/
about/tlc-trip-record-data.page , 2018.

[51] S. Ruggles et al., Integrated public use microdata series: Version 9.0 [database], 2019.
[52] S. F. C. Office, Sf employee compensation. [Online]. Available: %5Curl%7Bhttps :

//www.kaggle.com/san-francisco/sf-employee-compensation#employee-compensati
on.csv%7D .

[53] R. Bassily, K. Nissim, U. Stemmer, and A. G. Thakurta, “Practical locally private
heavy hitters,” in NIPS, 2017.

[54] S. Wang, Y. Nie, P. Wang, H. Xu, W. Yang, and L. Huang, “Local private ordinal data
distribution estimation,” in IEEE INFOCOM 2017-IEEE Conference on Computer
Communications, IEEE, 2017, pp. 1–9.

[55] R. McKenna, D. Sheldon, and G. Miklau, “Graphical-model based estimation and
inference for differential privacy,” ICML, 2019.

[56] J. Jia and N. Z. Gong, “Calibrate: Frequency estimation and heavy hitter identifica-
tion with local differential privacy via incorporating prior knowledge,” INFOCOM,
2019.

[57] R. Bassily, “Linear queries estimation with local differential privacy,” in AISTATS,
2019.

140

https://doi.org/10.1561/0400000042
http://dx.doi.org/10.1561/0400000042
http://dx.doi.org/10.1561/0400000042
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
%5Curl%7Bhttps://www.kaggle.com/san-francisco/sf-employee-compensation#employee-compensation.csv%7D
%5Curl%7Bhttps://www.kaggle.com/san-francisco/sf-employee-compensation#employee-compensation.csv%7D
%5Curl%7Bhttps://www.kaggle.com/san-francisco/sf-employee-compensation#employee-compensation.csv%7D

[58] P. Kairouz, K. Bonawitz, and D. Ramage, “Discrete distribution estimation under
local privacy,” in ICML, 2016.

[59] B. Balle, J. Bell, A. Gascón, and K. Nissim, “The privacy blanket of the shuffle
model,” in Annual International Cryptology Conference, Springer, 2019, pp. 638–667.

[60] A. Cheu, A. D. Smith, J. Ullman, D. Zeber, and M. Zhilyaev, “Distributed differential
privacy via shuffling,” in EUROCRYPT, 2019, pp. 375–403.

[61] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, K. Talwar, and A. Thakurta,
“Amplification by shuffling: From local to central differential privacy via anonymity,”
arXiv preprint arXiv:1811.12469, 2018.

[62] Z. Li, B. Ding, C. Zhang, N. Li, and J. Zhou, “Federated matrix factorization with
privacy guarantee,” Proceedings of the VLDB Endowment, vol. 15, no. 4, pp. 900–913,
2021.

[63] P. Kairouz et al., Advances and open problems in federated learning, 2021. arXiv:
 1912.04977 [cs.LG] .

[64] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender
systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[65] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale matrix fac-
torization with distributed stochastic gradient descent,” in Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’11, San Diego, California, USA: Association for Computing Machinery,
2011, pp. 69–77, isbn: 9781450308137. doi: 10 . 1145 / 2020408 . 2020426 . [Online].
Available: https://doi.org/10.1145/2020408.2020426 .

[66] S. Zhang, W. Wang, J. Ford, and F. Makedon, “Learning from incomplete ratings
using non-negative matrix factorization,” Proceedings of the 2006 SIAM international
conference on data mining, vol. 1, pp. 549–553, 2006.

[67] Y.-X. Wang and Y.-J. Zhang, “Nonnegative matrix factorization: A comprehensive
review,” IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 6,
pp. 1336–1353, 2012.

[68] O. Barkan and N. Koenigstein, “Item2vec: Neural item embedding for collaborative
filtering,” in 2016 IEEE 26th International Workshop on Machine Learning for Signal
Processing (MLSP), IEEE, New York, NY, USA: IEEE, 2016, pp. 1–6. doi: 10.1109/
MLSP.2016.7738886 .

[69] H. Zhao, Z. Ding, and Y. Fu, “Multi-view clustering via deep matrix factorization,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1, 2017.
[Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/10867 .

[70] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and ap-
plications,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 10,
no. 2, pp. 1–19, 2019.

[71] A. Narayanan and V. Shmatikov, How to break anonymity of the netflix prize dataset,
2006.

141

https://arxiv.org/abs/1912.04977
https://doi.org/10.1145/2020408.2020426
https://doi.org/10.1145/2020408.2020426
https://doi.org/10.1109/MLSP.2016.7738886
https://doi.org/10.1109/MLSP.2016.7738886
https://ojs.aaai.org/index.php/AAAI/article/view/10867

[72] L. Zhu and S. Han, “Deep leakage from gradients,” Federated Learning, vol. 12500,
pp. 17–31, 2020.

[73] K. Bonawitz et al., “Practical secure aggregation for privacy-preserving machine learn-
ing,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, ser. CCS ’17, Dallas, Texas, USA: Association for Computing Ma-
chinery, 2017, pp. 1175–1191, isbn: 9781450349468. doi: 10.1145/3133956.3133982 .
[Online]. Available: https://doi.org/10.1145/3133956.3133982 .

[74] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy preserving vertical federated
learning for tree-based models,” Proceedings of the VLDB Endowment, vol. 13, no. 11,
pp. 2090–2103, 2020.

[75] I. Dinur and K. Nissim, “Revealing information while preserving privacy,” in Proceed-
ings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems, ser. PODS ’03, San Diego, California: Association for Com-
puting Machinery, 2003, pp. 202–210, isbn: 1581136706. doi: 10.1145/773153.773173 .
[Online]. Available: https://doi.org/10.1145/773153.773173 .

[76] Z. Liu, Y.-X. Wang, and A. Smola, “Fast differentially private matrix factorization,”
in Proceedings of the 9th ACM Conference on Recommender Systems, ser. RecSys
’15, Vienna, Austria: Association for Computing Machinery, 2015, pp. 171–178, isbn:
9781450336925. doi: 10.1145/2792838.2800191 . [Online]. Available: https://doi.org/
10.1145/2792838.2800191 .

[77] J. Hua, C. Xia, and S. Zhong, “Differentially private matrix factorization,” in Pro-
ceedings of the 24th International Conference on Artificial Intelligence, ser. IJCAI’15,
Buenos Aires, Argentina: AAAI Press, 2015, pp. 1763–1770.

[78] H. Shin, S. Kim, J. Shin, and X. Xiao, “Privacy enhanced matrix factorization for
recommendation with local differential privacy,” IEEE Transactions on Knowledge
and Data Engineering, vol. 30, no. 9, pp. 1770–1782, 2018.

[79] E. Bagdasaryan, O. Poursaeed, and V. Shmatikov, “Differential privacy has disparate
impact on model accuracy,” Advances in Neural Information Processing Systems,
vol. 32, pp. 15 479–15 488, 2019.

[80] X. Chen, S. Z. Wu, and M. Hong, “Understanding gradient clipping in private sgd:
A geometric perspective,” in Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds., vol. 33, Red
Hook, NY, USA: Curran Associates, Inc., 2020, pp. 13 773–13 782. [Online]. Available:

 https://proceedings.neurips.cc/paper/2020/file/9ecff5455677b38d19f49ce658ef0608-
Paper.pdf .

[81] S. Song, K. Chaudhuri, and A. D. Sarwate, “Stochastic gradient descent with differ-
entially private updates,” in 2013 IEEE Global Conference on Signal and Information
Processing, New York, NY, USA: IEEE, 2013, pp. 245–248. doi: 10.1109/GlobalSIP.
2013.6736861 .

142

https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/773153.773173
https://doi.org/10.1145/773153.773173
https://doi.org/10.1145/2792838.2800191
https://doi.org/10.1145/2792838.2800191
https://doi.org/10.1145/2792838.2800191
https://proceedings.neurips.cc/paper/2020/file/9ecff5455677b38d19f49ce658ef0608-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9ecff5455677b38d19f49ce658ef0608-Paper.pdf
https://doi.org/10.1109/GlobalSIP.2013.6736861
https://doi.org/10.1109/GlobalSIP.2013.6736861

[82] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting unintended feature
leakage in collaborative learning,” in 2019 IEEE Symposium on Security and Privacy
(SP), New York, NY, USA: IEEE, 2019, pp. 691–706. doi: 10.1109/SP.2019.00029 .

[83] P. Jain, O. D. Thakkar, and A. Thakurta, “Differentially private matrix completion
revisited,” in Proceedings of the 35th International Conference on Machine Learning,
J. Dy and A. Krause, Eds., ser. Proceedings of Machine Learning Research, vol. 80,
USA: PMLR, Jul. 2018, pp. 2215–2224. [Online]. Available: https://proceedings.mlr.
press/v80/jain18b.html .

[84] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning differentially private
recurrent language models,” in International Conference on Learning Representations,
OpenReview.net, 2018. [Online]. Available: https : / / openreview . net / forum ? id =
BJ0hF1Z0b .

[85] N. Wu, F. Farokhi, D. Smith, and M. A. Kaafar, “The value of collaboration in convex
machine learning with differential privacy,” in 2020 IEEE Symposium on Security and
Privacy (SP), New York, NY, USA: IEEE, 2020, pp. 304–317. doi: 10.1109/SP40000.
2020.00025 .

[86] F. Zhou and G. Cong, “On the convergence properties of a k-step averaging stochas-
tic gradient descent algorithm for nonconvex optimization,” Proceedings of the 27th
International Joint Conference on Artificial Intelligence, pp. 3219–3227, 2018.

[87] Y.-X. Wang and Y.-J. Zhang, “Nonnegative matrix factorization: A comprehensive
review,” IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 6,
pp. 1336–1353, 2012.

[88] C. C. Aggarwal et al., Recommender systems. New York, USA: Springer, 2016, vol. 1.
[89] A. D. P. Team. “Differential privacy overview - apple,” Apple. inc. (2021), [Online].

Available: https://www.apple.com/privacy/docs/Differential_Privacy_Overview.
pdf .

[90] F. M. Harper and J. A. Konstan, “The movielens datasets: History and context,”
ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, Dec. 2015, issn: 2160-6455. doi:

 10.1145/2827872 . [Online]. Available: https://doi.org/10.1145/2827872 .
[91] L. Brozovsky and V. Petricek, Recommender system for online dating service, 2007.
[92] A. Gupta, K. Ligett, F. McSherry, A. Roth, and K. Talwar, “Differentially private

combinatorial optimization,” in Proceedings of the 2010 Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA). Philadelphia, PA, USA: SIAM, 2010, pp. 1106–
1125. doi: 10.1137/1.9781611973075.90 . eprint: https://epubs.siam.org/doi/pdf/10.
1137/1.9781611973075.90 . [Online]. Available: https://epubs.siam.org/doi/abs/10.
1137/1.9781611973075.90 .

143

https://doi.org/10.1109/SP.2019.00029
https://proceedings.mlr.press/v80/jain18b.html
https://proceedings.mlr.press/v80/jain18b.html
https://openreview.net/forum?id=BJ0hF1Z0b
https://openreview.net/forum?id=BJ0hF1Z0b
https://doi.org/10.1109/SP40000.2020.00025
https://doi.org/10.1109/SP40000.2020.00025
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.1137/1.9781611973075.90
https://epubs.siam.org/doi/pdf/10.1137/1.9781611973075.90
https://epubs.siam.org/doi/pdf/10.1137/1.9781611973075.90
https://epubs.siam.org/doi/abs/10.1137/1.9781611973075.90
https://epubs.siam.org/doi/abs/10.1137/1.9781611973075.90

[93] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova, “Secure single-
server aggregation with (poly)logarithmic overhead,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS ’20, Vir-
tual Event, USA: Association for Computing Machinery, 2020, pp. 1253–1269, isbn:
9781450370899. doi: 10.1145/3372297.3417885 . [Online]. Available: https://doi.org/
10.1145/3372297.3417885 .

[94] V. Feldman, A. McMillan, and K. Talwar, Hiding among the clones: A simple and
nearly optimal analysis of privacy amplification by shuffling, 2021. arXiv: 2012.12803
[cs.LG] .

[95] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas,
“Communication-Efficient Learning of Deep Networks from Decentralized Data,”
in Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics, A. Singh and J. Zhu, Eds., ser. Proceedings of Machine Learning Re-
search, vol. 54, USA: PMLR, Apr. 2017, pp. 1273–1282. [Online]. Available: https:
//proceedings.mlr.press/v54/mcmahan17a.html .

[96] K. Wei et al., “Federated learning with differential privacy: Algorithms and perfor-
mance analysis,” IEEE Transactions on Information Forensics and Security, vol. 15,
pp. 3454–3469, 2020.

[97] J. Konený, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,
Federated learning: Strategies for improving communication efficiency, 2017. arXiv:

 1610.05492 [cs.LG] .
[98] J. Konený, H. B. McMahan, D. Ramage, and P. Richtárik, Federated optimization:

Distributed machine learning for on-device intelligence, 2016. arXiv: 1610 . 02527
[cs.LG] .

[99] Y. Liu et al., “Federated forest,” IEEE Transactions on Big Data, no. 01, pp. 1–1,
2020. doi: 10.1109/TBDATA.2020.2992755 .

[100] Y. Hu, D. Niu, J. Yang, and S. Zhou, “Fdml: A collaborative machine learning frame-
work for distributed features,” in Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, ser. KDD ’19, Anchor-
age, AK, USA: Association for Computing Machinery, 2019, pp. 2232–2240, isbn:
9781450362016. doi: 10.1145/3292500.3330765 . [Online]. Available: https://doi.org/
10.1145/3292500.3330765 .

[101] Y. Hu, P. Liu, L. Kong, and D. Niu, Learning privately over distributed features: An
admm sharing approach, 2019. arXiv: 1907.07735 [cs.LG] .

[102] T. Chen, X. Jin, Y. Sun, and W. Yin, Vafl: A method of vertical asynchronous feder-
ated learning, 2020. arXiv: 2007.06081 [cs.LG] .

[103] B. Ding, J. Kulkarni, and S. Yekhanin, “Collecting telemetry data privately,” in
Proceedings of the 31st International Conference on Neural Information Processing
Systems, ser. NIPS’17, Long Beach, California, USA: Curran Associates Inc., 2017,
pp. 3574–3583, isbn: 9781510860964.

144

https://doi.org/10.1145/3372297.3417885
https://doi.org/10.1145/3372297.3417885
https://doi.org/10.1145/3372297.3417885
https://arxiv.org/abs/2012.12803
https://arxiv.org/abs/2012.12803
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.02527
https://arxiv.org/abs/1610.02527
https://doi.org/10.1109/TBDATA.2020.2992755
https://doi.org/10.1145/3292500.3330765
https://doi.org/10.1145/3292500.3330765
https://doi.org/10.1145/3292500.3330765
https://arxiv.org/abs/1907.07735
https://arxiv.org/abs/2007.06081

[104] A. Girgis, D. Data, S. Diggavi, P. Kairouz, and A. Theertha Suresh, “Shuffled model
of differential privacy in federated learning,” in Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics, A. Banerjee and K. Fukumizu,
Eds., ser. Proceedings of Machine Learning Research, vol. 130, USA: PMLR, Apr.
2021, pp. 2521–2529. [Online]. Available: https://proceedings.mlr.press/v130/girgis
21a.html .

[105] Y. Shen and H. Jin, “Privacy-preserving personalized recommendation: An instance-
based approach via differential privacy,” in 2014 IEEE International Conference on
Data Mining, New York, NY, USA: IEEE, 2014, pp. 540–549.

[106] D. Chai, L. Wang, K. Chen, and Q. Yang, “Secure federated matrix factorization,”
IEEE Intelligent Systems, vol. 36, no. 5, pp. 11–20, 2021. doi: 10.1109/MIS.2020.
3014880 .

[107] A. Flanagan, W. Oyomno, A. Grigorievskiy, K. E. Tan, S. A. Khan, and M. Ammad-
Ud-Din, “Federated multi-view matrix factorization for personalized recommenda-
tions,” in Machine Learning and Knowledge Discovery in Databases, Cham: Springer
International Publishing, 2021, pp. 324–347, isbn: 9783030676612. doi: 10.1007/978-
3-030-67661-2_20 . [Online]. Available: http://dx.doi.org/10.1007/978-3-030-67661-
2_20 .

[108] Y. Kim, J. Sun, H. Yu, and X. Jiang, “Federated tensor factorization for computa-
tional phenotyping,” in Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, New York, NY, USA: Association
for Computing Machinery, 2017, pp. 887–895.

[109] J. Ma, Q. Zhang, J. Lou, J. C. Ho, L. Xiong, and X. Jiang, “Privacy-preserving tensor
factorization for collaborative health data analysis,” in Proceedings of the 28th ACM
International Conference on Information and Knowledge Management, ser. CIKM
’19, Beijing, China: Association for Computing Machinery, 2019, pp. 1291–1300, isbn:
9781450369763. doi: 10.1145/3357384.3357878 . [Online]. Available: https://doi.org/
10.1145/3357384.3357878 .

[110] Z. Li, T. Wang, and N. Li, “Differentially private vertical federated clustering,” arXiv
preprint arXiv:2208.01700, 2022.

[111] J. Vaidya and C. Clifton, “Privacy-preserving k-means clustering over vertically par-
titioned data,” in Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, 2003, pp. 206–215.

[112] J. Vaidya and C. Clifton, “Privacy-preserving decision trees over vertically partitioned
data,” in IFIP Annual Conference on Data and Applications Security and Privacy,
Springer, 2005, pp. 139–152.

[113] H. Yunhong, F. Liang, and H. Guoping, “Privacy-preserving svm classification on
vertically partitioned data without secure multi-party computation,” in 2009 fifth
international conference on natural computation, IEEE, vol. 1, 2009, pp. 543–546.

[114] O. Gupta and R. Raskar, “Distributed learning of deep neural network over multiple
agents,” Journal of Network and Computer Applications, vol. 116, pp. 1–8, 2018.

145

https://proceedings.mlr.press/v130/girgis21a.html
https://proceedings.mlr.press/v130/girgis21a.html
https://doi.org/10.1109/MIS.2020.3014880
https://doi.org/10.1109/MIS.2020.3014880
https://doi.org/10.1007/978-3-030-67661-2_20
https://doi.org/10.1007/978-3-030-67661-2_20
http://dx.doi.org/10.1007/978-3-030-67661-2_20
http://dx.doi.org/10.1007/978-3-030-67661-2_20
https://doi.org/10.1145/3357384.3357878
https://doi.org/10.1145/3357384.3357878
https://doi.org/10.1145/3357384.3357878

[115] B. Gu, Z. Dang, X. Li, and H. Huang, “Federated doubly stochastic kernel learning for
vertically partitioned data,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp. 2483–2493.

[116] C. Dwork and K. Nissim, “Privacy-preserving datamining on vertically partitioned
databases,” in CRYPTO, 2004, pp. 528–544.

[117] Z. Li, B. Ding, C. Zhang, N. Li, and J. Zhou, “Federated matrix factorization with
privacy guarantee,” Proc. VLDB Endow., vol. 15, no. 4, pp. 900–913, Dec. 2021, issn:
2150-8097. doi: 10.14778/3503585.3503598 . [Online]. Available: https://doi.org/10.
14778/3503585.3503598 .

[118] C. Wang, J. Liang, M. Huang, B. Bai, K. Bai, and H. Li, “Hybrid differentially private
federated learning on vertically partitioned data,” arXiv preprint arXiv:2009.02763,
2020.

[119] H. Ding, Y. Liu, L. Huang, and J. Li, “K-means clustering with distributed dimen-
sions,” in International Conference on Machine Learning, PMLR, 2016, pp. 1339–
1348.

[120] J. MacQueen et al., “Some methods for classification and analysis of multivariate ob-
servations,” in Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, Oakland, CA, USA, vol. 1, 1967, pp. 281–297.

[121] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “Np-hardness of euclidean sum-
of-squares clustering,” Machine learning, vol. 75, no. 2, pp. 245–248, 2009.

[122] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering algorithm,”
Journal of the royal statistical society. series c (applied statistics), vol. 28, no. 1,
pp. 100–108, 1979.

[123] S. Ahmadian, A. Norouzi-Fard, O. Svensson, and J. Ward, “Better guarantees for
k-means and euclidean k-median by primal-dual algorithms,” SIAM Journal on Com-
puting, vol. 49, no. 4, FOCS17–97, 2019.

[124] P. Kairouz et al., “Advances and open problems in federated learning,” Foundations
and Trendső in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[125] A. Smith, S. Song, and A. Thakurta, “The flajolet-martin sketch itself preserves differ-
ential privacy: Private counting with minimal space,” Advances in Neural Information
Processing Systems 33 pre-proceedings (NeurIPS 2020), 2020.

[126] C. Hu et al., “How to make private distributed cardinality estimation practical, and
get differential privacy for free,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 965–982.

[127] S. Har-Peled and S. Mazumdar, “On coresets for k-means and k-median clustering,”
in Proceedings of the thirty-sixth annual ACM symposium on Theory of computing,
2004, pp. 291–300.

[128] U. Stemmer and H. Kaplan, “Differentially private k-means with constant multiplica-
tive error,” in NeurIPS, 2018.

146

https://doi.org/10.14778/3503585.3503598
https://doi.org/10.14778/3503585.3503598
https://doi.org/10.14778/3503585.3503598

[129] K. Nissim and U. Stemmer, “Clustering algorithms for the centralized and local mod-
els,” in Algorithmic Learning Theory, PMLR, 2018, pp. 619–653.

[130] Z. Huang and J. Liu, “Optimal differentially private algorithms for k-means clus-
tering,” in Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, 2018, pp. 395–408.

[131] A. Blum, C. Dwork, F. McSherry, and K. Nissim, “Practical privacy: The SuLQ
framework,” in Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, 2005, pp. 128–138.

[132] K. Nissim, S. Raskhodnikova, and A. Smith, “Smooth sensitivity and sampling in
private data analysis,” in Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing, 2007, pp. 75–84.

[133] D. Feldman, A. Fiat, H. Kaplan, and K. Nissim, “Private coresets,” in Proceedings of
the forty-first annual ACM symposium on Theory of computing, 2009, pp. 361–370.

[134] Y. Wang, Y.-X. Wang, and A. Singh, “Differentially private subspace clustering,”
Advances in Neural Information Processing Systems, vol. 28, 2015.

[135] K. Nissim, U. Stemmer, and S. Vadhan, “Locating a small cluster privately,” in Pro-
ceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, 2016, pp. 413–427.

[136] D. Su, J. Cao, N. Li, E. Bertino, and H. Jin, “Differentially private k-means cluster-
ing,” in Proceedings of the sixth ACM conference on data and application security and
privacy, 2016, pp. 26–37.

[137] B. Ghazi, R. Kumar, and P. Manurangsi, “Differentially private clustering: Tight
approximation ratios,” Advances in Neural Information Processing Systems, vol. 33,
2020.

[138] A. Chang, B. Ghazi, R. Kumar, and P. Manurangsi, “Locally private k-means in one
round,” arXiv preprint arXiv:2104.09734, 2021.

[139] Google, Differentially private k-means clustering (experimental), https : / / github .
com/google/differential-privacy/tree/main/learning/clustering , Google LLC, 2022.
[Online]. Available: https ://github.com/google/differential -privacy/tree/main/
learning/clustering .

[140] T. Wang, J. Blocki, N. Li, and S. Jha, “Locally differentially private protocols for
frequency estimation,” in 26th USENIX Security Symposium, USENIX Security 2017,
Vancouver, BC, Canada, August 16-18, 2017., 2017, pp. 729–745. [Online]. Available:

 https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentatio
n/wang-tianhao .

[141] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data base ap-
plications,” Journal of computer and system sciences, vol. 31, no. 2, pp. 182–209,
1985.

147

https://github.com/google/differential-privacy/tree/main/learning/clustering
https://github.com/google/differential-privacy/tree/main/learning/clustering
https://github.com/google/differential-privacy/tree/main/learning/clustering
https://github.com/google/differential-privacy/tree/main/learning/clustering
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tianhao
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tianhao

[142] S. G. Choi, D. Dachman-soled, M. Kulkarni, and A. Yerukhimovich, “Differentially-
private multi-party sketching for large-scale statistics,” Proceedings on Privacy En-
hancing Technologies, vol. 3, pp. 153–174, 2020.

[143] C. Dickens, J. Thaler, and D. Ting, (nearly) all cardinality estimators are differentially
private, 2022. doi: 10.48550/ARXIV.2203.15400 . [Online]. Available: https://arxiv.
org/abs/2203.15400 .

[144] K. J. Lang, “Back to the future: An even more nearly optimal cardinality estimation
algorithm,” arXiv preprint arXiv:1708.06839, 2017.

[145] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: The analysis of a
near-optimal cardinality estimation algorithm,” in Discrete Mathematics and Theo-
retical Computer Science, Discrete Mathematics and Theoretical Computer Science,
2007, pp. 137–156.

[146] New york city taxi trip, https://www.kaggle.com/c/nyc-taxi-trip-duration , NYC.gov,
2016. [Online]. Available: https://www.kaggle.com/c/nyc-taxi-trip-duration .

[147] Home credit default risk, https : / / www . kaggle . com / competitions / home - credit -
default-risk/overview , Home Credit, 2018. [Online]. Available: https://www.kaggle.
com/competitions/home-credit-default-risk/overview .

[148] D. J. Slate, Letter recognition data set, https://archive.ics.uci.edu/ml/datasets/
letter+recognition , Odesta Corporation, 1991. [Online]. Available: https://archive.
ics.uci.edu/ml/datasets/letter+recognition .

[149] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis,” Journal of computational and applied mathematics, vol. 20, pp. 53–
65, 1987.

[150] A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-based external
cluster evaluation measure,” in Proceedings of the 2007 joint conference on empirical
methods in natural language processing and computational natural language learning
(EMNLP-CoNLL), 2007, pp. 410–420.

[151] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[152] C. Xie, P.-Y. Chen, C. Zhang, and B. Li, “Improving privacy-preserving ver-
tical federated learning by efficient communication with admm,” arXiv preprint
arXiv:2207.10226, 2022.

[153] D. Desfontaines, A. Lochbihler, and D. Basin, “Cardinality estimators do not preserve
privacy,” Proceedings on Privacy Enhancing Technologies, vol. 2, pp. 26–46, 2019.

[154] R. Pagh and N. M. Stausholm, “Efficient differentially private F0 linear sketching,”
in 24th International Conference on Database Theory, ICDT 2021, March 23-26,
2021, Nicosia, Cyprus, ser. LIPIcs, vol. 186, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021, 18:1–18:19. doi: 10.4230/LIPIcs.ICDT.2021.18 . [Online]. Available:

 https://doi.org/10.4230/LIPIcs.ICDT.2021.18 .

148

https://doi.org/10.48550/ARXIV.2203.15400
https://arxiv.org/abs/2203.15400
https://arxiv.org/abs/2203.15400
https://www.kaggle.com/c/nyc-taxi-trip-duration
https://www.kaggle.com/c/nyc-taxi-trip-duration
https://www.kaggle.com/competitions/home-credit-default-risk/overview
https://www.kaggle.com/competitions/home-credit-default-risk/overview
https://www.kaggle.com/competitions/home-credit-default-risk/overview
https://www.kaggle.com/competitions/home-credit-default-risk/overview
https://archive.ics.uci.edu/ml/datasets/letter+recognition
https://archive.ics.uci.edu/ml/datasets/letter+recognition
https://archive.ics.uci.edu/ml/datasets/letter+recognition
https://archive.ics.uci.edu/ml/datasets/letter+recognition
https://doi.org/10.4230/LIPIcs.ICDT.2021.18
https://doi.org/10.4230/LIPIcs.ICDT.2021.18

[155] E. D. Cristofaro, P. Gasti, and G. Tsudik, “Fast and private computation of cardinality
of set intersection and union,” in International Conference on Cryptology and Network
Security, Springer, 2012, pp. 218–231.

[156] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching and set inter-
section,” in International conference on the theory and applications of cryptographic
techniques, Springer, 2004, pp. 1–19.

[157] L. Kissner and D. Song, “Privacy-preserving set operations,” in Annual International
Cryptology Conference, Springer, 2005, pp. 241–257.

[158] C. Hazay and Y. Lindell, “Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries,” in Theory of Cryptography
Conference, Springer, 2008, pp. 155–175.

[159] S. Jarecki and X. Liu, “Efficient oblivious pseudorandom function with applications
to adaptive ot and secure computation of set intersection,” in Theory of Cryptography
Conference, Springer, 2009, pp. 577–594.

[160] C. Hazay and K. Nissim, “Efficient set operations in the presence of malicious ad-
versaries,” in International Workshop on Public Key Cryptography, Springer, 2010,
pp. 312–331.

[161] R. Stanojevic, M. Nabeel, and T. Yu, “Distributed cardinality estimation of set oper-
ations with differential privacy,” in 2017 IEEE Symposium on Privacy-Aware Com-
puting (PAC), IEEE, 2017, pp. 37–48.

[162] B. Kreuter, C. W. Wright, E. S. Skvortsov, R. Mirisola, and Y. Wang, “Privacy-
preserving secure cardinality and frequency estimation,” 2020.

[163] A. Groce, P. Rindal, and M. Rosulek, “Cheaper private set intersection via differ-
entially private leakage,” Proceedings on Privacy Enhancing Technologies, vol. 2019,
no. 3, 2019.

[164] B. Kacsmar et al., “Differentially private two-party set operations,” in 2020 IEEE
European Symposium on Security and Privacy (EuroS&P), IEEE, 2020, pp. 390–404.

[165] M.-F. Balcan, T. Dick, Y. Liang, W. Mou, and H. Zhang, “Differentially private clus-
tering in high-dimensional euclidean spaces,” in International Conference on Machine
Learning, PMLR, 2017, pp. 322–331.

149

VITA

Zitao Li was born in Guangzhou, China. He was admitted to a 2+2 collage program held

jointly by the Sun Yat-sen University (SYSU) and the Chinese University of Hong Kong

(CUHK). He graduated with a Bachelor of Science in computer science in 2016 from CUHK

and entered Purdue University in the fall of the same year. Zitao’s research was in the area

of differential privacy for data processing, under the supervision of Dr. Ninghui Li.

150

	TITLE PAGE
	COMMITTEE APPROVAL
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	BACKGROUND
	Differential Privacy
	Properties of DP
	Sequential composition

	ESTIMATING NUMERICAL DISTRIBUTION UNDER LOCAL DIFFERENTIAL PRIVACY
	Introduction
	Problem Formulation and Existing Solutions
	Categorical Frequency Oracles
	Handling Numerical Attributes

	Utility Metrics
	Metrics based on Distribution Distance
	Semantic and Statistical Quantities

	Using CFO Protocols for Numerical Domains
	CFO with Binning
	Hierarchy-based Methods
	HH-ADMM

	Square Wave and Expectation Maximization with Smoothing
	General Wave Reporting
	The Square Wave mechanism
	Choosing b
	Bucketizing
	Estimating Distribution from Reports

	Experiments
	Experimental Setup
	Distribution Distance
	Semantic and Statistical Quantities
	Wave Shapes and Parameters

	Related Work
	Conclusion

	FEDERATED MATRIX FACTORIZATION WITH PRIVACY GUARANTEE
	Introduction
	Coordination and Trust Models
	Our Contributions

	Problem Formulation
	Matrix Factorization
	Differential Privacy in Matrix Factorization

	Federated Matrix Factorization Computation Paradigm
	Common FL Paradigm for MF Problem
	FMF convergence proof

	Private VFL Matrix Factorization
	Private MF in VFL: VFL-SGDMF
	Bounding sensitivity.
	Embedding clipping proof
	Amplifying privacy with mini-batches.
	Private local updates.
	VFL-SGDMF local fine-tuning.

	Analysis of Privacy Guarantee
	Privacy proofs

	Empirical Evaluation for VFL

	Private HFL Matrix Factorization
	Private MF in HFL: HFL-SGDMF
	Analysis of Privacy Guarantee
	Empirical Evaluation for HFL

	To Cross-device Learning: LFL-SGDMF
	DP with Secure Aggregation
	Analysis of Privacy Guarantee
	Empirical Evaluation for LFL

	Related Work
	Conclusion

	DIFFERENTIALLY PRIVATE VERTICAL FEDERATED CLUSTERING
	Introduction
	Problem Formulation and Overview of Approach
	k-means Clustering
	VFL Clustering Problem Formulation
	A Non-Private Baseline
	Challenge in the Privacy-preserving Setting
	The Overall Framework
	Private Local Clustering

	Private Membership Encoding and Weight Estimate
	Baselines
	Prerequisite: DP FM Sketch
	Sketch-based MemEnc and WeightEst
	Privacy, Utility and Communication Cost
	Privacy proofs
	Utility proofs

	Improving Utility of the Algorithm
	Improving Post-processing Estimation Algorithm for More than Two Data Parties
	Auto-adjusted k'

	Experiments
	End-to-end Comparison
	Ablation Study of Components

	Related work
	Conclusion

	SUMMARY
	REFERENCES
	VITA

