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ABSTRACT

Computer vision applications such as image classification and object detection often

suffer from adversarial examples. For example, adding a small amount of noise to input

images can trick the model into misclassification. Over the years, many defense mechanisms

have been proposed, and different researchers have made seemingly contradictory claims

on their effectiveness. This dissertation first presents an analysis of possible adversarial

models and proposes an evaluation framework for comparing different more powerful and

realistic adversary strategies. Then, this dissertation proposes two randomness-based defense

mechanisms Random Spiking (RS) and MoNet to improve the robustness of image classifiers.

Random Spiking generalizes dropout and introduces random noises in the training process in

a controlled manner. MoNet uses the combination of secret randomness and Floyd-Steinberg

dithering. Specifically, input images are first processed using Floyd-Steinberg dithering to

reduce their color depth, and then the pixels are encrypted using the AES block cipher under

a secret, random key. Evaluations under our proposed framework suggest RS and MoNet

deliver better protection against adversarial examples than many existing schemes. Notably,

MoNet significantly improves the resilience against transferability of adversarial examples,

at the cost of a small drop in prediction accuracy. Furthermore, we extend the usage of

MoNet to the object detection network and use it to align with model ensemble strategies

(Affirmative and WBF (weighted fusion boxes)) and Test Time Augmentation (TTA). We

call such a strategy 3MIX. Evaluations found that 3Mix can significantly improve the mean

average precision (mAP) on both benign inputs and adversarial examples. In addition, 3Mix

is a lightweight approach to migrate the adversarial examples without training new models.
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1. INTRODUCTION

Modern society increasingly relies on classification models trained by machine learning (ML)

techniques. Many ML techniques, however, were designed under the implicit assumption

that both the training and testing data follow the same static (although possibly unknown)

distribution. In the presence of intelligent and resourceful adversaries, this assumption no

longer holds. Such an adversary can deliberately manipulate a test instance, and cause the

trained models to behave unexpectedly. For example, it is found that existing image clas-

sifiers based on Convolutional Neural Networks (CNN) are highly vulnerable to adversarial

examples [ 1 ,  2 ]. Often times, by modifying an image in a way that is barely noticeable by

humans, the classifier will confidently classify it as something else. This phenomenon also

exists for classifiers that do not use neural networks, and has been called “optical illusions for

machines”. Understanding why adversarial examples work and how to defend against them

is becoming increasingly important, as machine learning techniques are a key component of

transformative technologies such as autonomous cars, unmanned aerial vehicles, and so on.

Many approaches have been proposed to help defend against adversarial examples. Good-

fellow et al. [ 1 ] proposed adversarial training, in which one trains a neural network using

both the original training dataset and the newly generated adversarial examples. In region-

based classification [  3 ], one aggregates predictions on multiple perturbed versions of an input

instance to make the final prediction. Some approaches attempt to train additional neural

network models to identify and reject adversarial examples [  4 ,  5 ].

We point out that since the adversary can choose instances and shift the test distribution

after a model is trained, adversary examples exist so long as ML models differ from human

perception on some instances. (These instances can be used as adversarial examples.) Thus

adversarial examples are unlikely to be completely eliminated. What we can do is to reduce

the number of such instances by training ML models that better match human perceptions,

and by making it more difficult for the attacker to find adversarial examples.

While the research community has seen a proliferation in proposals of defense mecha-

nisms, conducting a thorough evaluation and a fair head-to-head comparison of different

mechanisms remains challenging. In Chapter  3 , we analyze possible adversarial models,

12



and propose to conduct evaluation in a variety of models, including both white-box and

translucent-box attacks. In translucent-box attacks, the adversary is assumed to know the

defense mechanism, model architecture, and distribution of training data, but not the precise

parameters of the target model. With this knowledge, the adversary can train one or more

surrogate models, and to generate adversarial examples leveraging such surrogate models.

While other research efforts have attempted to generate adversarial examples based on

surrogate models and then assess transferability, existing application of this method does

not fully exploit the potential of surrogate models. As a result, one can overestimate the

effectiveness of defenses. We propose two improvements. First, one can train many surrogate

models under the same configuration, and then generate adversarial examples that can si-

multaneously fool multiple surrogate models at the same time. Second, one can reserve some

surrogate models as “validation models”. These validation models are not used when gen-

erating adversarial examples; however, generated adversarial examples are first run against

them, and only those examples that are able to fool a certain percentage of the validation

models are used in evaluation against the target model. This models a more determined

and resourceful attacker who is willing to spend more resources to find more effective ad-

versarial examples to deploy, a scenario that is certainly realistic. Our experimental results

demonstrate that these more sophisticated adversary strategies lead to significantly higher

transferability rates.

Furthermore, in Chapter  4 , we propose a new defense mechanism called Random Spiking,

where random noises are added to one or more hidden layers during training. Random

Spiking generalizes the idea of dropout [  6 ], where hidden units are randomly dropped during

training. In Random Spiking, the outputs of some randomly chosen units are replaced by a

random noise during training.

In Chapter  5 , we present extensive evaluations of several existing defense mechanisms and

Random Spiking (RS) under both white-box and translucent-box attacks, and empirically

show that RS, especially when combined with adversarial training, improve the resiliency

against adversarial examples.

In addition to Random Spiking, which add random noises to one more hidden layers

during the training, we explore using randomness to defend against a translucent-box at-
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(a) (b)

Figure 1.1. Original image vs Encrypted output of AES-ECB

tacker, since it is natural to take advantage of randomness that is unknown to the adversary.

We note that security of cryptographic schemes generally depends on randomness that is

unknown to the adversary. An intriguing question is whether we can effectively use secret

randomness to defend against the transfer of adversary examples.

Consider the images shown in Fig.  1.1a , which is an example used in some textbooks

on cryptography. Fig.  1.1b is the result of directly encrypting the image of Fig.  1.1a using

AES under the Electronic Code Book (ECB) mode. As can be seen, while the original color

information of the penguin has been altered significantly, the overall outline of the penguin

is still discernible in the encrypted version. This was used to illustrate that encryption using

the ECB mode is insecure, because the same plaintext block will be encrypted to the same

ciphertext block. This property, however, suggests that the “transformed” (or “encrypted”)

image can still be used to train classifiers.

We propose the following approach. Each CNN is trained with a secret key K. For each

input image, it is first transformed using quantization so that the domain size of colors for

each pixel is small. After that each image is transformed using the AES block cipher with a
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secret key K. That is, each pixel with value v is replace with AESK [v]. Since the key K can

be randomly chosen, it can be kept secret so long as the model does not need to be shared,

which is the case when one provides access to the model as a service.

We have observed that directly applying AES results in very low test accuracy, because

when adjacent pixels have a similar (but not the exact same) color, they will be mapped to

random color values that are not similar. We thus propose to first reduce the color depth by

quantization.

Simply applying quantization, however, results in color banding, where there are large

patches of the same color, and visible sharp boundary where the color changes. In image

processing, dithering is a technique for solving this problem. When using dithering, one

intentionally adds noises to randomize quantization error, preventing large-scale patterns

such as color banding in images. We use the Floyd-Steinberg dithering algorithm [  7 ], which is

the most widely used dithering algorithm. We find that using Floyd-Steinberg dithering alone

(without using AES) can also improve the resistance to adversarial examples. We conduct

extensive experiments to evaluate these defenses, and show that they improve resiliency

against adversary examples with small reduction of accuracy and low computational cost.

Because we were able to train neural network models using transformed images that

appears impressionistic, we named our approach MoNet as an homage to Claude MoNet,

the father of impressionism.

In Chapter  6 , we present the implementation detail of MoNet. In Chapter  7 , we evaluate

and compare MoNet with Random Spiking and other defense mechanisms. The evalua-

tion shows that MoNet further improves the model robustness against adversarial examples

comparing with Random Spiking More specifically, we show that CNNs for image data

can be trained on images that are processed using Floyd-Steinberg dithering, and this pro-

vides some added protection against adversary examples. Also, combining Floyd-Steinberg

dithering with applying pseudo-random permutation using a secret randomness help reduce

transferability of adversarial examples.

In addition to image classification, Objection detection is an important task in computer

vision, where semantic objects of interests are detected and classified to facilitate further

processing. Existing object detection networks are mainly based on Convolutional Neural
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Networks (CNN) and can be classified into two approaches: two-stage and one-stage. The

two-stage approach, represented by the R-CNN family [  8 – 10 ], first uses a region proposal

network (RPN) to generate a set of region proposals. Then, for each region proposal, the

classification network further refines the bounding box and predicts the class label. The

alternative approach is to directly predict the bounding box and class label in one-stage,

represented by the YOLO family [ 11 – 15 ] and SSD [ 16 ].

Similar to image classifiers, it is found that existing object detectors are highly vulnerable

to adversarial examples [  17 – 22 ]. For example, Unified and Efficient Adversary (UEA) [  20 ]

trains a Generative Adversarial Network (GAN) for generating adversarial examples that

have high transferability. Robust Adversarial Perturbation (RAP) [ 21 ] and Dense Adversary

Generation (DAG) [ 22 ] use iterative gradient-based approach to generate adversarial exam-

ples in order to attack the region proposal network (RPN) in two-stage models. Targeted Ad-

versarial Objectness Gradient (TOG) Attacks [ 17 – 19 ] also uses the iterative gradient-based

approach to generate adversarial examples, but the attack is applicable to both one-stage

and two-stage models. In this dissertation, we consider the TOG attack as the TOG attack

generates stronger adversarial examples comparing with other attacks.

To evaluate the adversarial examples for object detection, we consider the same adversar-

ial models used in analyzing image classification: the white-box attack and the translucent-box

attack.

We argue that defending against white-box attack for object detection is more challenging

than image classification, because adversaries have more space to exploit object detection

networks than image classification networks. First, object detection network outputs not only

the label for each detection but also the position and the confidence of the detected bounding

box. Therefore, adversaries can attack any combinations of these exploitable spaces. For

example, the TOG attack [  17 – 19 ] uses such property to proposed new attacks such as ob-

jection vanishing, fabrication, mislabeling, and untargeted which is the combination of the

first three attacks. Second, the input resolution of images for object detection network is

generally larger than that of image classification network. For example, the input dimension

for YoloV3 [ 13 ] is 416×416, and the latest YoloV5 [ 15 ] uses 640×640 as the default input

size and up to 1280×1280 for large scaled version. In contrast, image classification network
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such as ResNet-50 [  23 ], Inception-v3 [  24 ], and VGG-19 [  25 ] typically uses inputs of 224×224

resolution. The larger input size makes defending against adversarial examples even harder.

In this dissertation, we focus on defending against adversarial examples for object de-

tection in translucent-box attacks. We explore three approaches to defend against transfer-

ability of adversarial examples in object detection: MoNet, Model Ensemble, and Test Time

Augmentation (TTA).

In experiments, we found that MoNet models and standard models behave differently,

in the sense that adversarial examples generated against one kind of models do not transfer

well to the other. We thus explore the possibilities of combining their prediction outputs to

further improve resistance to adversarial examples. Specifically, we explore different model

ensemble strategies to determine which ones perform better. Note that simple model aver-

aging, a strategy often used in image classification, is not applicable here, because object

detection generates 0 or more predictions for a given input image. Instead, we evaluate model

ensemble strategies designed for object detection network, such as Affirmative, Consensus,

Unanimous [  26 ], and Weighted Boxes Fusion (WBF) [  27 ]. (See definitions in Sec  8.2.1 .)

To better defend against adversarial transferability, ideally one should train multiple stan-

dard and MoNet models so that it becomes more difficult for adversaries to generate trans-

ferable adversarial examples, as each model behaves slightly differently. However, training

an object detection network from scratch is more time consuming than image classification

network due to the additional task complexity of objection detection and the significantly

increased input dimension. Hence, we further explore other techniques that can imitate

prediction models with different behaviours, but are cost-effective to users with limited com-

putational resources. Instead of training multiple models from scratch, it has been suggested

that Test Time Augmentation (TTA) can be used along with model ensemble without the

needs of training new models [  26 ]. Specifically, TTA generates additional inputs such as

equalized and flipped images in test times and feed them into the network. We empirically

confirm that in the context of object detection, combining MoNet and model ensemble with

TTA can further improve the prediction accuracy.

In Chapter  8 , we present the strategies to defend against transferability of adversarial

examples in object detection. In Chapter  9 , we evaluate proposed strategies. We confirm
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that the benefits of dithering and AES encryption can also apply to object detection network.

In addition, we found the best strategy to defend against adversarial examples in object

detection is Model Ensemble + TTA.

In this dissertation, we make five contributions. (1) The proposed evaluation method-

ology, especially the more powerful and realistic adversary strategy of attacking multiple

surrogates in parallel and using validation models to filter. (2) The idea of Random Spiking,

which is demonstrated to offer additional resistance to adversarial examples. (3) The idea

of MoNet helps to reduce the transferability of adversarial examples by using the secret

randomness. (4) The idea of using MoNet, Model Ensemble, and Test Time Augmentation

(TTA) can reduce the transferability of adversarial examples in object detection (5) We

provide a thorough evaluation of several defense mechanisms against adversarial examples,

improving our understanding of them.
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2. BACKGROUND

2.1 Adversarial Examples for Classification

We consider neural networks that are used as m-class classifiers, where the output of

a network is computed using the softmax function. Given such a neural network used

for classification, let z(x) denote the vector output of the final layer before the softmax

activation, and C(x) denote the classifier defined by the neural network. Then,

C(x) = arg max
i

( exp(z(x)i)/(
n∑

j=1

exp(z(x)j))). (2.1)

Oftentimes, exp(z(x)i)/(
∑n

j=1 exp(z(x)j) is interpreted as the probability that the input x

belongs to the i-th category, and the classifier chooses the class with the highest probability.

Under this interpretation, the output z(x) is related to log of odds ratios, and is thus called

the logits output.

2.1.1 Attacks for Generating Adversarial Examples

Given a dataset D of instances, each of the form (x, y), where x gives the features of the

instance, and y the label, and a classifier C(·) trained using a subset of D, we say that an

instance x′ is an adversarial example if and only if there exists an instance (x, y) ∈ D

such that x′ is close to x, C(x) = y, and C(x′) 6= y.

Note that in the above we did not define what “x′ is close to x” means. Intuitively, when

x represents an image, by closeness we mean human perceptual similarity. However, we are

unaware of any mathematical distance metric that accurately measures human perceptual

similarity. In the literature Lp norms are often used as the distance metric for closeness. Lp

is defined as

Lp(x, x′) = ‖x− x′‖p= (
n∑

i=1

|xi − x′
i|p)1/p. (2.2)

The commonly used Lp metrics include: L0, the number of changed pixels [  28 ]; L1, the sum

of absolute values of the changes in all pixels [  29 ]; L2, the Euclidean norm [  1 ,  30 – 32 ]; and
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L∞, the maximum absolute change [ 2 ]. In this dissertation, we use L2 and L∞ to measure

the distortion of the adversarial example x′.

When generating an adversarial example against a classifier C(·), one typically starts

from an existing instance (x, y) and generates x′. In an untargeted attack, one generates

x′ such that C(x′) 6= y. In a targeted attack, one has a desired target label t 6= y and

generates x′ such that C(x′) = t. In this dissertation, we use the following two state-of-the-art

attacks.

2.1.2 C&W Attack.

Carlini and Wagner [  30 ] proposed an attack, which we call the C&W attack. Given a

neural network with logits output z, an input x, and a target class label t, the C&W attack

tries to solve the following optimization problem:

arg min
x
′

(‖x− x′‖p+c · l(x′)) (2.3)

where the loss function l is defined as

l(x′) = max (max {z(x′)i : i 6= t} − z(x′)t,−K) . (2.4)

Here, K is called the confidence value, and is a positive number that one can choose.

Intuitively, we desire z(x′)t to be higher than any z(x′)i where i 6= t so that the neural

network predicts label t on input x′. Furthermore, we prefer the gap in the logit of the class

t and the highest of any class other than t to be as large as possible (until the gap is K, at

which point we consider the gap to be sufficiently large). In general, choosing a large value

K would result in adversarial examples that have a higher distortion, but will be classified to

the desired label with higher confidence. The parameter c > 0 in Eq. (  2.3 ) is a regularization

constant to adjust the relative importance of minimizing the distortion versus minimizing the

loss function l. In the attack, c is initially set to a small initial value, and then dynamically

adjusted based on the progress made by the iterative optimization process. The C&W attack
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uses the Adam algorithm [  33 ] to solve the optimization problem in Eq. (  2.3 ). Adam performs

iterative gradient-based optimization, based on adaptive estimates of lower-order moments.

2.1.3 Projected Gradient Descent (PGD) Attack

Goodfellow et al. [ 2 ] proposed the fast gradient sign (FGS) attack, which generates

adversarial examples based on the gradient sign of the loss value according to the input

image. The Projected Gradient Descent (PGD) Attack [ 34 ] generates adversarial examples

by iteratively applying FGS attack and projecting the output to a valid constrained space.

In each iteration, PGD attack computes:

xt+1 =
∏
x+S

(xt + α sign(∇xL(θ, x, y))) (2.5)

where xt+1 denotes the output of i+ 1-th iteration, and x+ S denotes all images whose L∞

distance to the input x is bounded by a given parameter).

2.2 Existing Defenses for Image Classification

Here we give an overview of some approaches that have been proposed to help defend

against adversarial examples.

2.2.1 Adversarial Training.

Goodfellow et al. [ 2 ] proposed to train a neural network using both the training dataset

and newly generated adversarial examples. In [  2 ], it is shown that models that have gone

through adversarial training provide some resistance against adversarial examples generated

by the FGS method.

2.2.2 Defensive Distillation.

Distillation training was originally proposed by Hinton et al. [ 35 ] for the purpose of

distilling knowledge out of a large model (one with many parameters) to train a more compact
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model (one with fewer parameters). Given a model whose knowledge one wants to distill,

one applies the model to each instance in the training dataset and generates a probability

vector, which is used as the new label for the instance. This is called the soft label, because,

instead of a single class, the label includes probabilities for different classes. A new model is

trained using instances with soft labels. The intuition is that the probabilities, even those

that are not the largest in a vector, encode valuable knowledge. To make this knowledge

more pronounced, the probability vector is generated after dividing the logits output with a

temperature constant T > 1. This has the effect of making the smaller probabilities larger

and more pronounced. The new model is trained with the same temperature. However,

when deploying the model for prediction, temperature is set to 1.

Defensive Distillation [ 36 ] is motivated by the original distillation training proposed by

Hinton et al. [ 35 ]. The main difference between the two training methods is that defensive

distillation uses the same network architecture for both initial network and distilled network.

This is because the goal of using Distillation here is not to train a model that has a smaller

size, but to train a more robust model.

2.2.3 Dropout.

Dropout [ 6 ] was introduced to improve generalization accuracy through the introduction

of randomness in training. The term “dropout” refers to dropping out units, i.e., temporarily

removing the units along with all its incoming and outgoing connections. In the simplest

case, during each training epoch, each unit is retained with a fixed probability p independent

of other units, where p can be chosen using a validation set or can simply be set to 0.5, which

was suggested by the authors of [  6 ].

There are several intuitions why Dropout is effective in reducing generalization errors.

One is that after applying Dropout, the model is always trained with a subset of the units

in the neural network. This prevents units from co-adapting too much. That is, a unit

cannot depend on the existence of another unit, and needs to learn to do something useful

on its own. Another intuition is that training with Dropout approximates simultaneous

training of an exponential number of “thinned” networks. In the original proposal, dropout
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is applied in training, but not in testing. During testing, without applying Dropout, the

prediction approximates an averaging output of all these thinned networks. In Monte Carlo

dropout [ 37 ], dropout is also applied in testing. The NN is run multiple times, and the

resulting prediction probabilities are averaged for making prediction. This more directly

approximates the behavior of using the NN as an ensemble of models.

Since Dropout introduces randomness in the training process, two models that are trained

with Dropout are likely to be less similar than two models that are trained without using

Dropout. Defensive Dropout [  38 ] explicitly uses dropout for defense against adversarial

examples. It applies dropout in testing, but runs the network just once. In addition, it tunes

the dropout rate used in testing by iteratively generating adversarial examples and choosing

a drop rate to both maximize the testing accuracy and minimize the attack success rate.

2.2.4 Region-based Classification.

Cao and Gong [  3 ] proposed region-based classification to defend against adversarial ex-

amples. Given an input, region-based classification first generates m perturbed inputs by

adding bounded random noises to the original input, then computes a prediction for each

perturbed input, and finally use voting to make the final prediction. This method slows

down prediction by a factor of m. In [  3 ], m = 10, 000 was used for MNIST and m = 1, 000

was used for CIFAR. Evaluation in [  3 ] shows that this can withstand adversarial examples

generated by the C&W attack under low confidence value K. However, if one slightly in-

creases the confidence value K when generating the adversarial examples, this defense is no

longer effective.

2.2.5 MagNet.

Meng and Chen [  4 ] proposed an approach that is called MagNet. MagNet combines two

ideas to defend against adversarial examples. First, one trains detectors that attempt to

detect and reject adversarial examples. Each detector uses an autoencoder, which is trained

to minimize the L2 distance between input image and output. A threshold is then selected

using validation dataset. The detector rejects any image such that the L2 distance between
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it and the encoded image is above the threshold. Multiple detectors can be used. Second,

for each image that passes the detectors, a reformer (another autoencoder) is applied to the

image, and the output (reformed image) is sent to the classifier for classification.

The evaluation of MagNet in [  4 ] considers only adversarial examples generated without

knowledge of the MagNet defence. Since one can combine all involved neural networks into

a single one, one can still apply the C&W attack on the composite network. In [  32 ], an

effective attack is carried out against MagNet by adding to the optimization objective a

term describing the goal of evading the detectors.

2.2.6 Feature Squeezing.

Xu et al. [ 5 ] proposed feature squeezing (FS) for detecting adversarial examples. Feature

squeezing uses image pre-processing techniques such as bit-depth reduction as well as local

and non-local image smoothing (Gaussian, median filtering etc.) to reduce the search space

available to an adversary. By comparing the model prediction on the benign input and

squeezed input, feature squeezing can detect adversarial examples with high accuracy and

few false positives.

2.3 Adversarial Examples for Object Detection

Table 2.1. Visualization of generated TOG adversarial examples
Benign Untargeted Vanishing Fabrication Mislabeling (ML)Mislabeling (LL)
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In image classification, one assumes that each images has a single primary object and

predicts the object’s class label. In object detection, there may be multiple objects in one

image, and one aims to identify, for each object, the bounding box containing the object

and its class label. Specifically, given an image as the input, an object detection model M

returns a list of detections D = {d1, . . . , dn}. Each di represents a detected object using a

3-tuple (bi, ci, si), where bi is the object’s bounding box, ci the corresponding class label, and

si the confidence score which determines the existence of an object.

In object detection, the prediction output is more complex compared to classification. As

a result, there are also more types of adversarial attacks. More specifically, the loss function

for object detection network includes contributions from the location and the dimension of the

bounding box Lbbox (x,O), the class label Lclass(x,O), and the confidence score Lconf (x,O),

and can be described as the following formula:

L(x,O) = Lbbox (x,O) + Lclass(x,O) + Lconf (x,O). (2.6)

Chow et al. [  17 – 19 ] proposed a suite of Targeted Adversarial Objectness Gradient Attacks,

named the TOG family of attacks. The object-vanishing attack aims to generate adversarial

examples have zero detected objects, and achieves this by manipulating Lconf (x,O) to reduce

the confidence values for all detected objects. The object-fabrication attack aims to create

detection of non-existing object, increasing the confidence of such objects. The mislabeling

attack aims to replaces the detected class label with a label chosen by the adversary. Two

kinds of mislabeling attacks were considered: the most-likely (ML) and the least-likely (LL)

attack, which adversaries chose the incorrect class label of an object detected on benign

input with the highest and the lowest prediction confidence respectively. Mislabeling ML

attack replaces the class label to the most likely targeted label, whereas mislabeling LL

attack replaces the class label to the least likely targeted label.

Although each of proposed targeted attacks only exploits proportional loss function,

adversary can exploit the whole loss function L(x,O). We call such attack as TOG untargeted

attack. Table  2.1 shows examples of TOG attack generated adversarial examples VS their

benign images. To generate adversarial examples, both TOG targeted and untargeted attacks

25



iteratively apply the fast gradient sign (FGS) attack [ 2 ] and project the output to a valid

constrained space. Specifically, in each iteration, the TOG attack first computes the gradient

sign of the targeted loss value and then computes:

xt+1 =
∏
x+S

(xt + α sign(∇xL(θ, x, y))) (2.7)

where xt+1 denotes the output of i+1-th iteration, and x+S denotes all images whose L∞

distance to the input x is bounded by a given parameter).

There are other attack algorithms such as UEA [  20 ], RAP [  21 ], and DAG [ 22 ]. UEA

(Unified and Efficient Adversary) [  20 ] trained a Generative Adversarial Network (GAN)

framework based adversarial example generator and showed that the transfer attack is more

effective. RAP (Robust Adversarial Perturbation) [  21 ] and DAG (Dense Adversary Gener-

ation) [  22 ] iterative gradient-based approach to generate adversarial examples in order to

attack the region proposal network (RPN) in two-phase models.

2.4 Methods to Improve Model Robustness

There are various methods can be apply to improve the robustness of a neural network

model and help defend against adversarial examples. Dropout was introduced to improve

generalization accuracy through the introduction of randomness in training [  6 ], which can

help defend against adversarial examples [  3 ]. [  39 – 42 ] showed that dithering can be used

in training to improve the robustness of image classifier and reduce the transferability of

adversarial examples. Model ensemble combines the prediction results from multiple models

in order to produce a final output [  26 ,  27 ,  43 ]. Such methods have been widely used in

machine learning (ML) applications for improving model accuracy and stability as the final

output relies on multiple prediction results. [  26 ] further proposed Test Time Augmentation

(TTA) which can be used along with model ensemble and [  44 ] showed this approach was

effective in defending against adversarial examples for image classifiers.
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3. SYSTEMATIC EVALUATION METHODOLOGY OF

DEFENSES AGAINST ADVERSARIAL EXAMPLES

We discuss several important factors for evaluation, and introduce the translucent-box model

to supplement white-box evaluation.

3.1 Adversary Knowledge

Adversary model plays an important role in any security evaluations. One important

part of the adversary model is the assumption on adversary’s knowledge.

3.1.1 Knowledge of Model (white-box).

The adversary has full knowledge of the target model to be attacked, including the model

architecture, defense mechanism, and all the parameters, including those used in the defense

mechanisms. We call such an attack a white-box attack.

3.1.2 Complete Knowledge of Process (translucent-box).

The adversary does not know the exact parameters of the target model, but knows the

training process, including model architecture, defense mechanism, training algorithm, and

distribution of the training dataset. With this knowledge, the adversary can use the same

training process that is used to generate the target model to train one or more surrogate

models. Depending on the degree of randomness involved in the training process, the

surrogate models may be similar or quite different from the target model, and adversarial

examples generated by attacking the surrogate model(s) may or may not work very well. The

property of whether an adversarial example generated by attacking one or more surrogate

models can also work against another target model is known as transferability. We call

such an attack a translucent-box attack.

Technically, it is possible for a white-box adversary to know less than a translucent-box

adversary in some aspects. For example, a white-box adversary may not know the distri-

bution of the training data. However, for the purpose of generating adversarial examples,
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knowing all details of the target model (white-box) is strictly more powerful than knowing

the training process (translucent-box).

3.1.3 Oracle access only (black-box).

Some researchers have considered adversary models where an adversary uses only ora-

cle accesses to the target model. That is, the adversary may be able to query the target

model with instances and receive the output. This is also called “decision-based adversarial

attack” [ 45 ,  46 ]. We call such an attack a black-box attack.

Some researchers also use black-box attack to refer to what we call translucent-box at-

tacks. We choose to distinguish translucent-box attacks from black-box attacks for two

reasons. First, an adversary will have some knowledge about the target model under attack,

e.g., the neural network architecture and the training algorithm. Thus the box is not really

“black”. Second, the two kinds of attacks are very different. One relies on training surrogate

models, and the other relies on issuing a large number of oracle queries.

Other researchers use “black-box attack” to refer to the situation that the adversary

carries out the attack without specifically targeting the defense mechanism. We argue that

such an evaluation has limited values in understanding the security benefits of a defense

mechanism, as it is a clear deviation from the Kerckhoffs’s principle.

3.1.4 Our Choice of Adversary Model.

We argue that defense mechanisms should be evaluated under both white-box and

translucent-box attacks. While developing attacks that can generate adversarial examples

using only oracle access is interesting, for a defense mechanism to be effective, one must

assume that the adversary cannot break it even if it has the knowledge of the defense mech-

anism.

Evaluation under white-box attack can be carried out by measuring the level of dis-

tortion needed to attack a model. Effective defense against white-box attacks is the

ultimate objective. Until defense in the white-box model is achieved, effective defense

against translucent-box attacks is valuable and help the research community make progress.
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Translucent-box is a realistic assumption especially in an academic setting, as published pa-

pers generally include descriptions of the architecture, training process, defense mechanisms

and the exact dataset used in their experiments. Robustness and security evaluations under

this assumption is also consistent with the Kerckhoffs’s principle.

We also note that there are two possible flavors of attacks. Focusing on image classifiers,

the goal of an untargeted attack is to generate adversarial examples such that the classifier

would give any output labels different from what human perception would classify. A targeted

attack would additionally require the working adversarial examples to induce the classifier

into giving specific output labels of the attacker’s choosing. In this dissertation, we consider

only targeted attacks when evaluating defense mechanisms, as it models an adversary with

a more specific objective.

3.2 Adversary Strategy

Even after the assumption about the adversary’s knowledge is made, there are still possi-

bilities regarding what strategy the adversary takes. For example, when evaluating a defense

mechanism under the translucent-box assumption, a standard method is to train m models,

and, for each model, generate n adversarial examples. Then for each of the m model, treat it

as the target model, and feed the (m− 1)n adversarial examples generated on other models

to it, and report the percentage of success among the m(m− 1)n trials.

Such an evaluation method is assessing the success probability of the following naive

adversary strategy: The adversary trains one surrogate model, generates an adversarial ex-

ample that works against the surrogate model, and then deploy that adversarial example.

We call this a one-surrogate attack. A real adversary, however, can use a more effec-

tive strategy. It can try to generate adversarial examples that can fool multiple surrogate

models at the same time. After generating them, it can first test whether the adversarial

examples can fool surrogate models that are not used in the generation. We call this a

multi-surrogate attack.

For any defense mechanism that is more effective against adversarial examples under the

translucent-box attack than under the white-box model, the additional effectiveness must be
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due to the randomness in the training process. When that is the case, the above adversary

strategy would have much higher success rate than the naive adversary strategy. Evaluation

should be done against this adversary strategy.

We thus propose the following procedure for evaluating a defense mechanism in the

translucent-box setting. One first trains t+ v surrogate models. Then a set of t models are

randomly selected, and adversarial examples are generated that can simultaneously attack

all t of them; that is, the optimization objective of the attack includes all t models. For

the remaining v models, we use leave-one-out validation. That is, for each model, we use

v−1 model as validation models, and select only adversarial examples that can fool a certain

fraction of the validation models. Only for the examples that pass this validation stage, do

we record whether it successfully transfer to the target model or not. We call such an attack

a multi-surrogate with validation attack. The percentage of the successful transfer is

used for evaluation. In our experiments, we use t = v = 8, and an example is selected when

it can successfully attack at least 5 out of 7 validation models.

3.3 Parameters and Data Interpretation

Training a defense mechanism often requires multiple parameters as inputs. For example,

a defense mechanism may be tuned to be more vigilant against adversarial examples, at the

cost of reduced classification accuracy. When comparing defense mechanisms, one should

choose parameters in a way that the classification accuracy on test dataset is similar.

At the same time, when using the C&W attack to generate adversarial examples, an

important parameter is the confidence value K. A defense mechanism may be able to resist

adversarial examples generated under a low K value, but may prove much less effective

against those generated under a higher value K (see, e.g., [ 3 ]). Using the same K value

for different defenses, however, may not be sufficient for providing a level playing field for

comparison. The K value represents an input to the algorithm, and what really matters

is the quality of the adversarial examples. We propose to run the C&W attack against a

defense mechanism under multiple K values, and group the resulting adversarial examples

based on their distortion. We can then compare how well a defense mechanism performs
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against adversarial examples with similar amount of distortion. That is, we group adversarial

examples based on the L2 distance and compute the average transferability for each group.

When using the PGD attack to generate adversarial examples, we group adversarial examples

based on the L∞ distance, which is the important parameter to control the upbound of the

distortion of generated adversarial examples.
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4. PROPOSED DEFENSE:RANDOM SPIKING

From a statistical point of view, the problem with adversarial examples is that of classi-

fication under covariate shifts [ 47 ]. A covariate shift happens when the training and test

observations follow different distributions. In the case of adversarial examples, this is clearly

the case, as new adversarial examples are generated and added to the test distribution. If

the test distribution with adversarial examples can be known, a simple and optimal way for

dealing with covariate shifts is training the model with samples from the test distribution,

rather than using the original training data [ 47 – 50 ], assuming that we have access to enough

such examples. Training with adversarial examples can be viewed as a robust optimization

procedure [  34 ] approximating this approach.

Unfortunately, training with adversarial examples does not fully solve the defense prob-

lem. Adversaries can adapt the test distribution (a new covariate shift) to make the new

classifier perform poorly again on test data. That is, given a model trained with adversarial

examples, the adversary can find additional adversarial examples and use them. In this min-

imax game, where the adversary is looking for a covariate shift and the defender is training

with the latest covariate shift, the odds are stacked against the defender, who is always one

step behind the attacker [ 51 ,  52 ].

Fundamentally, to win this game, the defender needs to mimic human perception. That

is, as long as there are instances (real or fabricated) where humans and ML models classify

differently, these can be over represented in the test data by the adversary’s covariate shift.

Models that either underfit or overfit both make mistakes by definition, and these mistakes

can be used in the adversary’s covariate shift. Only a model with no training or generalization

errors under all covariate shifts is not vulnerable to attacks.

4.1 Motivation of Our Approach

While it is impossible to completely eliminate classification errors, several things can be

done to help defend against adversarial examples by making them harder to find.

One approach is to reduce the number of instances that the ML models disagree with

human perception. Training with adversarial examples help in this regard. Using more
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robust model architecture and training procedure can also help. When giving an image

to train the model, intuitively we want to say that “all instances that look similar to this

instance from a human’s perspective should also have the same label”. Unfortunately, finding

which images humans will consider to be “similar to this instace” and thus should be of the

same class is not a well-defined procedure. Today, the best we can hope for is that for some

mathematical distance measure (such as L2 distance) and with a smaller enough threshold,

humans will consider the images to be similar. If we substitute “look similar to ... from a

human’s perspective” with “within a certain L2 distance”, this is a precise statement. This

suggests that one training instance should be interpreted as a set of instances (e.g., those

within a certain L2 distance of the given one) all have the same given label. Our proposed

defense is to some extent motivated by this intuition.

Another way is to make it more difficult for adversaries to discover adversarial examples,

even if they exist. One approach is to use an ensemble model, wherein multiple models are

trained and applied to an instance and the results are aggregated in some fashion. For an

adversarial example to work, it must be able to fool a majority of the models in the ensemble.

If we consider defense in the translucent box adversary model, another approach is to

increase the degree of randomness in the training process, so that adversarial examples

generated on the surrogate models do not transfer well.

Our proposed new defense against adversarial examples are motivated by these ideas,

which are recapped below. First, each training instance should be viewed as representatives of

instances within a certain L2 distance. Second, we want to increase the degree of randomness

in the training process. Third, we want to approximate the usage of an ensemble of models

for decision.

4.2 Random Spiking

As discussed in Section  2.2 , Dropout has been proposed as a way to defend against

adversarial examples. Dropout can be interpreted as a way of regularizing a neural network

by adding noise to its hidden units. The idea of adding noise to the states of units has also

been used in the context of Denoising Autoencoders (DAEs) by Vincent et al. [  53 ,  54 ], where
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noise is added to the input units of an autoencoder and the network is trained to reconstruct

the noise-free input. Dropout changes the behavior of the hidden units. Furthermore, instead

of adding random noises, in Dropout, values are set to zero.

Our proposed approach generalizes both Dropout and Denoising Autoencoders. Instead

of training with removed units or injecting random noises into the input units, we inject ran-

dom activations into some hidden units near the input level. We call this method Random

Spiking. Similar to Dropout, there are two approaches at inference time. The first is to

use random spiking only in training, and does not use it at inference time. The second is to

use a Monte Carlo decision procedure. That is, at decision time, one runs the NN multiple

times with random spiking, and aggregate the result into one decision.

The motivations for random spiking are many-fold. First, we are simulating the inter-

pretation that each training instance should be treated as a set of instances, each with some

small changes. Injecting random perturbations at a level near the input simulates the effect of

training with a set of instances. Second, adversarial examples make only small perturbations

on benign images that do not significantly affect human perception. These perturbations

inject noises that will be amplified through multiple layers and change the prediction of the

networks. Random Spiking trains the network to be more robust to such noises. Third,

if one needs to increase the degree of randomness in the training process beyond Dropout,

using random noises instead of setting activations to zero is a natural approach. Fourth,

when we use the Monte Carlo decision procedure, we are approximating the behavior of a

model ensemble.

More specifically, random spiking adds a filtering layer in between two layers of nodes

in a DNN. The effect of the filtering layer may change the output values of units in the

earlier layer, affecting the values going into the later layer. With probability p, a unit’s

value is kept unchanged. With probability 1− p, a unit’s value is set to a randomly sampled

noise. If a unit has its output value thus randomly perturbed, in back-propagation we do

not propagate backward through this unit, since any gradient computed is related to the

random noise, and not the actual behavior of this unit. For layers after the Random Spiking

filtering layer, back-propagation update would occur normally.
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We use the Random Spiking filtering layer just once, after the first convolutional layer

(and before any max pooling layer if one is used). This is justified by the design intuition.

We also experimented with adding the Random Spiking filtering layer later in the NN, and

test accuracy drops. There are two explanations for that. First, since units chosen to have

random noises stop back-propagation, having them later in the network has more impact

on training. Second, when random noises are injected early in the network, there are more

layers after it, and there is sufficient capacity in the model to deal with such noises without

too much accuracy cost. When random noises are injected late, fewer layers exist to deal

with their effect, and the network lacks the capacity to do so.

4.2.1 Generating Random Noises.

To implement Random Spiking, we have to decide how to sample the noises that are

to be used to replace the unit outputs. Sampling from a distribution with a fixed range is

problematic because the impact of noise depends on the distribution of other values in the

same layer. If a random perturbation is too small compared to other values in the same

layer, then its randomization effect is too small. If, on the other hand, the magnitude of

the noise is significantly larger than the other values, it overwhelms the network. In our

approach, we compute the minimum and maximum value among all values in the layers to

be filtered, and sample a value uniformly at random in that range. Since training NN is

often done using mini-batches, the minimum and maximum values are computed from the

whole batch.

4.2.2 Monte Carlo Random Spiking as a Model Ensemble.

For testing, we can use the Monte Carlo decision procedure of running the network

multiple times and use the average. This has attractive theoretical guarantees, at the cost

of overhead for decision time, since the NN needs to be computed multiple times for one

instance. We now show that the Monte Carlo Random Spiking approximates a model en-

semble. Let (x, y) be a training example, where x is an image and y is the image’s one-hot

encoded label. Consider a RS neural network with softmax output ŷ(x, b, ε,W ), neuron
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weights W , and spike parameters b and ε, where bit vector bi = 1 indicates that the i-th

hidden neuron of the RS layer gives out a noise output εi ∈ R sampled with density f(ε),

otherwise bi = 0 and the output of the RS layer is a copy of its i-th input from the previous

layer (i.e., the original value of the neuron). By construction, bi = 1 with probability 1− p

independent of other RS neurons. Let L(y, ŷ) be a convex loss function over ŷ, such as the

cross-entropy loss, the negative log-likelihood, or the square error loss. Then, the following

proposition holds:

Proposition 1. Consider the ensemble RS model

ŷ(x,W ) ≡
∑
∀b

∫
ε

ŷ(x, b, ε,W )p(b)f(ε)dε, (4.1)

where f is a density function, p(b) is the probability that bit vector b is sampled, and ŷ is a

RS neural network with one spike layer. Then, by stochastically optimizing the original RS

neural network ŷ by sampling bit vectors and noises, we are performing the minimization

W ? = argmin
W

L(y, ŷ(x,W ))

through a variational approximation model using an upper bound of the loss L(y, ŷ(x,W )).

Proof of Proposition  1 

Proof sketch. The Monte Carlo sampling used in the RS neural network optimization gives

an unbiased estimate of the gradient

∑
∀b

∫
ε

∂

∂W
L (y, ŷ(x, b, ε,W )) p(b)f(ε)dε

=
∂

∂W

∑
∀b

∫
ε

L (y, ŷ(x, b, ε,W )) p(b)f(ε)dε,
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with the above equality given by the linearity of the expectation and integral operators. That

is, the RS neural network optimization is a Robbins-Monro stochastic optimization [  55 ] that

minimizes

W ′ = argmin
W

∑
∀b

∫
ε

L(y, ŷ(x,W ))p(b)f(ε)dε.

L is convex on ŷ, then by Jensen’s inequality

∑
∀b

∫
ε

L (y, ŷ(x, b, ε,W )) p(b)f(ε)dε ≥

L

(
y,
∑
∀b

∫
ε

ŷ(x, b, ε,W )p(b)f(ε)dε

)
≡ L

(
y, ŷ(x,W )

)
.

Thus, the RS neural network minimizes an upper bound of the loss of the ensemble RS model

ŷ(x,W ), yielding a proper variational inference procedure [ 56 ].

Definition 2 (MC Avg. Inference). At inference time, we use Monte Carlo sampling to

estimate the RS ensemble

ŷ(x,W ) =
∑
∀b

∫
ε

ŷ(x, b, ε,W )p(b)f(ε)dε,

where f is a density function, p(b) is the probability that bit vector b is sampled.

4.2.3 Adaptive Attack against Random Spiking.

Since Random Spiking introduces randomness during training, an adaptive attacker

knowing that Random Spiking has been deployed but is unaware of the exact parameters

of the target model can train multiple surrogate models, and try to generate adversarial

examples that can simultaneously cause all these models to misbehave. That is, the multi-

surrogate with validation is a natural adaptive attack against Random Spiking, and any

other defense mechanisms that rely on randomness during training. In this attack, one uses

probabilities from all surrogate models to generate the adversarial example. This is simi-

lar to the Expectation over Transformation (EOT) [  57 ] approach for generating adversarial

examples.
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5. EXPERIMENTAL EVALUATION OF RANDOM SPIKING

BY USING SYSTEMATIC EVALUATION METHODOLOGY

We present experimental results comparing the various defense mechanisms using our pro-

posed approach Random Spiking.

5.1 Dataset and Model Training

For our experiments, we use the following 3 datasets: MNIST [ 58 ], Fashion-MNIST [  59 ],

and CIFAR-10 [  60 ]. Table  5.1 gives an overview of their characteristics.

Table 5.1. Overview of datasets

Dataset Image size Training
Instances

Test
Instances

Color
space

MNIST 28× 28 60,000 10,000 8-bits Gray-scale
Fashion-MNIST 28× 28 60,000 10,000 8-bits Gray-scale

CIFAR-10 32× 32 50,000 10,000 24-bits True-Color

We consider 9 schemes equipped with different defense mechanisms, all of which share

the same network architectures and training parameters. For MNIST, we follow the archi-

tecture given in the C&W paper [  30 ]. Fashion-MNIST was not studied in the literature

in an adversarial setting, and the model architectures used for CIFAR-10 in previous pa-

pers delivered a fairly low accuracy. Thus for Fashion-MNIST and CIFAR-10, we use the

state-of-the-art WRN-28-10 instantiation of the wide residual networks [  61 ]. We are able to

achieve state-of-the-art test accuracy using these architectures. Some of these mechanisms

have adjustable parameters, and we choose values for these parameters so that the resulting

models have a comparable level of accuracy on the testing data. As the result, all 9 schemes

result in small accuracy drop.

Table  5.2 gives the test errors, and Tables  5.3 and  5.4 give details of the model architec-

ture, and training parameters. When a scheme uses either Dropout or Random Spiking, we

consider 3 possible decision procedures at test time. By “Single pred.”, we mean Dropout and

Random Spiking are not used at test time. By “Voting”, we mean running the network with
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Table 5.2. Test errors (mean±std).

MNIST Fashion-MNIST CIFAR-10
Standard Single pred. 0.77± 0.05% 4.94± 0.19% 4.38± 0.21%

Dropout MC Avg. 0.67± 0.07% 4.75± 0.09% 4.46± 0.25%

Distillation MC Avg. 0.78± 0.05% 4.81± 0.18% 4.33± 0.27%

RS-1 MC Avg. 0.88± 0.09% 5.34± 0.10% 5.59± 0.22%

RS-1-Dropout MC Avg. 0.71± 0.07% 5.32± 0.17% 5.81± 0.27%

RS-1-Adv MC Avg. 0.98± 0.11% 5.49± 0.16% 6.20± 0.40%

Magnet Det. Thrs. 0.001 0.004 0.004

MC Avg. 0.87± 0.06% 5.36± 0.17% 5.52± 0.24%

Dropout-Adv MC Avg. 0.69± 0.07% 4.76± 0.11% 4.71± 0.19%

RC L2 noise 0.4 0.02 0.02

Voting 0.77± 0.11% 5.39± 0.23% 5.72± 0.46%

Dropout and/or Random Spiking 10 times, and use majority voting for decision (with ties

decided in favor of the label with smaller index). By “MC Avg.”, we mean using Definition  2 

by running the network with Dropout and/or Random Spiking 10 times, and averaging the

10 probability vectors. For each scheme, we train 16 models (with different initial parameter

values) on each dataset, and report the mean and standard deviation of their test accuracy.

We observe that using Voting or MC Avg, one can typically achieve a slight reduction in test

error.

5.1.1 Adversarial training

Two defense mechanisms require training with adversarial examples, which are generated

by applying the C&W L2 targeted attack on a target model, using randomly sampled training

instances and target class labels.

5.1.2 Upper Bounds on Perturbation.

For each dataset, we generated thousands of adversarial examples with varying confidence

values for each training scheme, and have them sorted according to the added amount of
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Table 5.3. Mode Architectures. We use WRN-28-10 for Fashion-MNIST and
CIFAR-10 (k = 10, N = 4).

MNIST Fashion-MNIST CIFAR-10

Group Output
Size Kernel, Feature Output

Size Kernel, Feature

Conv.ReLU 3× 3× 32 Conv1 28× 28 [3× 3, 16] 32× 32 [3× 3, 16]

Conv.ReLU 3× 3× 32

Conv2 28× 28

[
3× 3, 16× k

3× 3, 16× k

]
×N 32× 32

[
3× 3, 16× k

3× 3, 16× k

]
×NMax Pooling 2× 2

Conv.ReLU 3× 3× 64

Conv.ReLU 3× 3× 64

Conv3 14× 14

[
3× 3, 32× k

3× 3, 32× k

]
×N 16× 16

[
3× 3, 32× k

3× 3, 32× k

]
×NMax Pooling 2× 2

Dense.ReLU 200

Dense.ReLU 200 Conv4 7× 7

[
3× 3, 64× k

3× 3, 64× k

]
×N 8× 8

[
3× 3, 64× k

3× 3, 64× k

]
×N

Softmax 10 Softmax 10 10

perturbation, measured in L2. We have observed that from instances that have high amount

of perturbation one can visually observe the intention of adversarial example. We thus chose

a cut-off upper bound on L2 distance. The chosen L2 cut-off bounds are included in Table  5.5 ,

and used as upper limits in many of our later experiments. With the bounds on L2 fixed,

we then empirically determine an upper bound for the confidence value to be used in the

C&W-L2 attacks for generating adversarial examples for training purposes. To diversify the

set of generated adversarial examples, we sample several different confidence values within

the bound, which are also reported in Table  5.5 .

5.1.3 Magnet.

We use the trained Dropout model as the prediction model, and train the Magnet defen-

sive models (reformers and detectors) [  4 ] based on the publicly released Magnet implementa-

tion 

1
 . Identical to the settings  

2
 presented in the original Magnet paper [  4 ], for MNIST, we use

Reformer I, Detector I/L2 and Detector II/L1, with detection threshold set to 0.001. Since
1

 ↑  https://github.com/Trevillie/MagNet 

2
 ↑ Regarding the Detector settings, a small discrepancy exists between the paper and the released source

code. After confirming with the authors, we follow what is given by the source code.
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Table 5.4. Training Parameters.

Parameters MNIST Fashion-MNIST & CIFAR-10
Optimization Method SGD SGD
Learning Rate 0.01 0.1 initial, multiply by 0.2

at 60, 120 and 160 epochs
Momentum 0.9 0.9
Batch Size 128 128
Epochs 50 200
Dropout (Optional) 0.5 0.1
Data Augmentation - Fashion-MNIST: Shifting + Horizontal Flip

CIFAR-10: Shifting + Rotation +
Horizontal Flip + Zooming + Shear

Table 5.5. Parameters used for generating adversarial examples. The values
for K reported here were chosen so that the generated examples would fit a
predetermined L2 cut-off.

Dataset L2

cut-off
Working confidence

values (K)
Examples for

each K (n)

MNIST 3.0 {0, 5, 10, 15} 3000
Fashion-MNIST 1.0 {0, 20, 40, 60} 3000

CIFAR-10 1.0 {0, 20, 40, 60, 80, 100} 2000

Fashion-MNIST was not studied in [ 4 ], we use the same model architecture as CIFAR-10

presented in the original Magnet paper [  4 ]. For Fashion-MNIST and CIFAR-10, we use

Reformer II, Detector II/L1, Detector II/T10 and Detector II/T40, and with a detection

threshold (rate of false positive) of 0.004, which results in test error rates comparable to

those of the other schemes.

5.1.4 Random Spiking with standard model (RS-1).

A Random Spiking (RS) layer is added after the first convolution layer in the standard

architecture. We choose p = 0.8, so that 20% of all neuron outputs are randomly spiked.
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5.1.5 Random Spiking with Dropout (RSD-1).

We add the RS layer to the Dropout scheme. All other parameters are identical to what

we used for RS-1. We also use RSD-1 as a shorthand to refer to this scheme.

5.1.6 Distillation.

We use the same network architecture and parameters as we did for the training of

Dropout models. Identical to the configuration used in [  30 ], we train with temperature

T = 100 and test with T = 1 for all three datasets.

5.1.7 Region-based Classification (RC).

We use the Dropout models for RC. For each test example, we generate t additional

examples, where for each pixel, a noise was randomly chosen from (−r, r) and added to

it. Prediction is then made with majority voting on the t input examples. Identical to the

original RC paper [ 3 ], we use t = 10, 000 for MNIST and t = 1, 000 for CIFAR-10. We also

use t = 1, 000 for Fashion-MNIST. We choose values for r (r = 0.4 for MNIST, and r = 0.02

for Fashion-MNIST and CIFAR-10) so that the test errors would be comparable to the other

mechanisms.

5.1.8 Adversarial Dropout (Dropout-Adv).

To use adversarial training with Dropout, we leverage the trained Dropout model from

before as the target model for generating adversarial examples. We generated 12, 000 ad-

versarial examples for each Dropout model by perturbing training instances. To ensure that

the adversarial examples indeed should be classified under the original label, we sort the

adversarial examples according to their L2 distances in ascending order, and add only the

first 10, 000 examples into the training dataset. These examples have L2 distances lower than

the cutoff mentioned earlier. We then apply the Dropout training procedure as described

before on the new training dataset.
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Table 5.6. C&W targeted Adv Examples L2 (mean±std) when attacking a single model.

MNIST Fashion-MNIST CIFAR-10
Standard 2.12± 0.69 0.12± 0.08 0.17± 0.08

Dropout 1.80± 0.52 0.14± 0.07 0.17± 0.08

Distillation 2.02± 0.63 0.13± 0.07 0.17± 0.07

RS-1 2.06± 0.76 0.31± 0.16 0.32± 0.14

RSD-1 1.79± 0.86 0.36± 0.21 0.32± 0.15

RS-1-ADV 2.36± 0.80 0.56± 0.30 0.39± 0.18

Magnet 2.22± 0.65 0.28± 0.15 0.29± 0.21

Dropout-Adv 2.44± 0.66 0.33± 0.15 0.18± 0.07

Table 5.7. C&W Adv Examples L2 (mean±std) with Multi 8 attack strategy.

MNIST Fashion-MNIST CIFAR-10
Standard 2.50± 0.77 0.22± 0.15 0.25± 0.10

Dropout 2.29± 0.65 0.25± 0.13 0.26± 0.10

Distillation 2.37± 0.71 0.24± 0.14 0.33± 0.13

RS-1 2.77± 0.82 0.54± 0.25 0.49± 0.18

RSD-1 2.77± 0.93 0.61± 0.30 0.51± 0.18

RS-1-ADV 3.18± 0.88 1.04± 0.44 0.64± 0.23

Magnet 2.68± 0.75 0.54± 0.25 0.47± 0.24

Dropout-Adv 2.93± 0.70 0.57± 0.23 0.29± 0.10

5.1.9 Adversarial Random Spiking (RS-1-ADV).

For this adversarial training method, we use RS-1 as the target model. The training

parameters and procedure are largely identical to what were described for Dropout-Adv

above.

5.2 White-box Evaluation

We first evaluate the effectiveness of the defense mechanisms under white-box attacks.

We apply the C&W white-box attack with confidence 0 to generate targeted adversarial

examples, and measure the L2. distance of the generated adversarial examples. We consider
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both single-model attack, where the adversarial example targets a single model, and multi-8

attack, where the adversarial example aims at attacking 8 similarly trained model at the

same time. This can be considered as a form of ensemble white-box attack [  62 ].

Tables  5.6 and  5.7 present the average L2 distances of the generated examples for those

generated adversarial examples. RS-1-Adv results in models that are more difficult to attack,

requires on average the highest perturbations (measured in L2 distance) among all evaluated

defenses. Comparing to other methods, adversarial examples generated by RS-1 and RSD-

1 have either higher or comparable amount of distortion. These again suggest RS offers

additional protection against adversarial examples.

5.3 Model Stability

Given a benign image and its variants with added noise, a more robust model should

intuitively be able to tolerate a higher level of noise without changing its prediction results.

We refer to this property as model stability. Here we evaluate whether models from a de-

fense mechanism can correct label instances that are perturbed. This serves several purposes.

First, in [  63 ], it is suggested that vulnerability to adversarial examples and low performance

on randomly corrupted images, such as images with additive Gaussian noise, are two mani-

festations of the same underlying phenomenon. Hence it is suggested that adversary defenses

should consider robustness under such perturbations, as robustness under such perturbations

are also indications of resistance against adversary attacks. Second, evaluating stability is

identified in [  64 ,  65 ] as a way to check whether a defense relies on obfuscated gradients

to achieve its defense. For such a defense, random perturbation may discover adversarial

examples when optimized search based on gradients fail. Third, some defense mechanisms

(such as Magnet) rely on detecting whether an instance belongs to the same distribution as

the training set, and consider an instance to be an adversarial example if it does. However,

when an input instance goes through some transformation that has little impact on human

visual detection (such as JPEG compression), it will be considered as an adversarial example

by the defense. This will impact accuracy of deployed systems, as the encountered instances

may not always follow the training distribution.
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Standard Dropout Distillation Dropout-Adv RC Magnet RS-1 RSD-1 RS-1-ADV
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Magnet’s stability ≈ 0 when L2 ≥ 1

(b) Prediction Stability (Fashion-MNIST)

0.0 0.5 1.0 1.5 2.0 2.5

Amount of Guassian Noise Added (L2 distance)

0

20

40

60

80

100

U
n

ch
an

ge
d

P
re

d
ic

ti
on

s
(%

)

(c) Prediction Stability (CIFAR-10)
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Figure 5.1. Evaluating model stability with Gaussian Noise

5.3.1 Stability with Added Gaussian Noise

We measure how many predictions would change if a certain amount of Gaussian noise is

introduced to a set of benign images. For a given dataset and a model, we use the first 1, 000

images from the test dataset. We first make a prediction on those selected images and store

the results as reference predictions. Then, for each selected image and chosen L2 distance,

we sample Gaussian noise, scale it to the desired L2 value, and add the noise to the image.

Pixel values are clipped if necessary, to make sure the new noisy variant is a valid image.

We repeat this process 20 times (noise sampled independently per iteration).

Fig. ?? shows the effect of Gaussian noise on prediction stability for each training method

(averaged over the 16 models trained in Sec.  5.1 ). Model stability inevitably drops for each

scheme as the amount of Gaussian noise as measured by L2 increases. However, different

schemes behave differently when L2 increases.

For MNIST, most schemes have stability above 99%, even when L2 is as large as 5.

However, Magnet has stability approaching 0 when the L2 distance is greater than 1, because

majority of those instances are rejected by Magnet.

For Fashion-MNIST, we see more interesting differences among the schemes. The two

approaches that have highest stability are the two with adversarial training. When L2 = 2.5,

RS-1-ADV has stability 87.4%, and Dropout-Adv has stability 86%. Other schemes have

stability around 60%; among them, RS-1 and RSD-1 have slightly higher stability than

others.
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Magnet’s stability ≈ 50 when JPEG QUALITY≤ 70

(b) Prediction Stability (Fashion-MNIST)

100 80 60 40 20 0

JPEG Compression Quality

0

20

40

60

80

100

U
n

ch
an

ge
d

P
re

d
ic

ti
on

s
(%

)

(c) Prediction Stability (CIFAR-10)
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Figure 5.2. Evaluating model stability with JPEG compression

For CIFAR-10, we see that RS-1-ADV, RSD-1, and RS-1 have the highest stability as

the amount of noise increases. When L2 = 2.5, they have stability 87.9%, 81.7%, 83%,

respectively. The other schemes have stability 70% or lower.

Furthermore, on all datasets, RS-1-ADV, RSD-1, and RS-1 give consistent results. Recall

that we trained 16 models for each scheme, Fig.  5.1 also plots the standard deviation of

the stability result of the 16 models. RS-1-ADV, RSD-1, and RS-1 have very low standard

deviation, which in turn also suggest more consistent behavior when facing perturbed images.

5.3.2 Stability with JPEG compression

Given a set of benign images, we measure how many predictions would change if JPEG

compression is applied to images. For a given test dataset and a model, we compare the

prediction on the benign test dataset (reference predictions) with the prediction on JPEG

compressed test dataset with a fixed chosen JPEG compression quality (JCQ). For the sake

of time efficiency, for this particular set of experiments, we reduced the number of iterations

used by RC to one-tenth of its original algorithm.

Fig.  5.2 shows the effect of JPEG compression on prediction stability for each training

method (averaged over the 16 models trained). Model stability decreases for each scheme as

the JCQ (ranges 10− 100) decreases.

For MNIST, most schemes achieve stability over 99, even if the JCQ is 10. Magnet is

the outlier, which has a stability of around 50 when the JCQ is 70, and has a stability
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Figure 5.3. Transferability of adversarial examples found by the 3 attack strategies

of less than 20 when the JCQ is less than or equal to 40, because of the high rejection

rate of MagNet. We believe that both of these results are related to the fact that MNIST

images have black backgrounds that span most of the image. Noises introduced by JPEG

compression result mostly in perturbations in the background that are ignored by most NN

models. Since Magnet uses autoencoders to detect deviations from the input distributions,

these noises trigger detection. Since Magnet aims at detecting perturbed images, this should

not be considered as a weakness of Magnet.

For Fashion-MNIST, we see that RS-1-ADV, RSD-1, and RS-1 outperform other schemes

on the stability as the JCQ decreases. When JCQ = 10, they have stability 85.2%, 80.9%,

84.4%, respectively. The other schemes have stability 80% or lower; The closest to the

RS-class among other schemes is ADV.

For CIFAR-10, we see that RS-1-ADV, RSD-1, and RS-1 have the highest stability as

the JCQ decreases. When JCQ = 10, they have stability 60.9%, 55.6%, 55.4%, respectively.

The other schemes have stability 50% or lower; the highest among the other schemes is RC.

5.4 Evaluating Attack Strategies

Here we empirically show that our proposed attack strategy, as presented in Sec.  3.2 , can

indeed generate adversarial examples that are more transferable. In attacks like the C&W

attack, a higher confidence value will typically lead to more transferable examples, but

the amount of perturbation would usually increase as well, sometimes making the example

noticeably different under human perception.
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Intuitively, a better attack strategy should give more transferable adversarial examples

using less amount of distortion. Hence we use Distortion vs Transferability to compare

3 possible attack strategies. Similar to previous experiments, we measure the amount of

distortion using L2 distance. In Fig.  5.3 we present the effectiveness of each attack strategy,

averaged across the 9 schemes.

The first strategy we evaluated is a standard C&W attack which generates adversarial

examples using only one surrogate model, dubbed ‘Single’. Recall that for each training/de-

fense method, we have 16 models that are surrogates of each other (Sec.  5.1 ). For each

surrogate model, we randomly select half of the original dataset as the training dataset,

since the adversary may not have full knowledge of the training dataset under the transfer

attack setting. For the Single strategy, we apply the C&W attack on 4 of the models indepen-

dently to generate a pool of adversarial examples. The transferability of those examples are

then measured and averaged on the remaining 12 target models. Regardless of the training

methods and defense mechanisms in place, adversarial examples generated using the Single

strategy often have limited transferability, especially when the allowed amount of distortion

(L2 distance) is small.

The second attack strategy that we evaluate is to generate adversarial examples using

multiple surrogate models. For this, we use 8 of the 16 surrogate models for generating attack

examples. The C&W attack can be adapted to handle this case with a slightly different loss

function. In our experiments, we use the sum of the loss functions of the 8 surrogate models

as the new loss function. We also use slightly lower confidence values than in Sec.  5.1.1 

({0, 10, 20, 30} for Fashion-MNIST, {0, 20, 40, 60} CIFAR-10). The transferability of the

generated adversarial examples are then measured and averaged on the remaining 8 models

as the target. We refer to this as ‘Multi 8’. As shown in Fig.  5.3 , given the same limit on the

amount of distortion (L2 distance), a significantly higher percentage of examples generated

using the Multi 8 strategy are transferable than those found using the Single strategy.

Additionally, we evaluate a third attack strategy that is based on Multi 8. As discussed

in Sec.  3.2 , given enough surrogate models, one can further use some of them for validating

adversarial examples. For those adversarial examples generated by the Multi 8 strategy, we

keep them only if they can be transferred to at least 5 of the 7 validation models, hence
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we refer to this strategy Multi 8 & Passing 5/7 Validation. The remaining model is used

as the attack target, and we measure the transferability of examples that passed the 5/7

Validation. For this attack strategy, the measurements shown in Fig.  5.3 is the average of

8 rotations between target model and validation models. Comparing to Multi 8 and Single,

adversarial examples that passed the 5/7 Validation are significantly more likely to transfer

to the target model, even when the amount of perturbation is small.

This shows that simple strategies like Single are indeed not realizing the full potential

of a resourceful attacker, and our proposed attack strategy of using multiple models for

the generation and validation of adversarial examples is indeed superior. In the reset of

this section, we will be using the most effective attack strategy of Multi 8 & Passing 5/7

Validation.

5.5 Translucent-box Evaluation

Here we evaluate the effectiveness of different schemes based on the transferability of

adversarial examples generated using the Multi 8 & Passing 5/7 Validation attack strategy.

The results of our translucent-box evaluation are shown in Fig.  5.4 . Adversarial examples

are grouped into buckets based on their L2 distance. For each bucket, we use grayscale

to indicate the average validation passing rate for each scheme. Passing rate from 0% to

100% are mapped to pixel value from 0 to 255 in a linear scale. There are four rows, each

correspond to adversarial examples with a certain L2 range. Each column illustrates to what

extent a target defense scheme resist adversarial examples generated from attacking different

methods.

Examining the columns for Standard and Dropout, we can see that Standard and Dropout

are in general most vulnerable. Distillation and RC are almost equally vulnerable. Magnet

can often resist adversarial examples generated by targeting other defenses, but are vulner-

able to ones generated specifically targeting it.

Overall, across the three datasets, RS-1-ADV performs the best, and is significantly

better than Dropout-Adv. This suggests that Random Spiking offers additional protection

against adversarial examples. RS-1 and RSD-1 also perform consistently well across the three
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datasets. RC performs noticeably well on MNIST and Fashion-MNIST, likely because the

images were all in 8-bit grayscale, and its advantages diminish on CIFAR-10 which contains

images of 24-bit color.
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(c) CIFAR-10
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Figure 5.4. Average passing rate of 5/7 validation
This heat map shows the resilience of each scheme against the adversarial examples generated
from all schemes, under a fixed allowance of L2. Each column illustrates to what extent a tar-
get defense scheme resists adversarial examples generated from attacking different methods.
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6. MONET: IMPRESSIONISM AS A DEFENSE AGAINST

ADVERSARIAL EXAMPLES

In Chapter  4 , we propose a new defense mechanism Random Spiking, which generalizes

dropout and introduces random noises in the training process in a controlled manner. Ran-

dom Spiking shows its effectiveness against a translucent-box attacker by injecting the ran-

domness noise in the early layer of the network. When defending against a translucent-box

attacker, it is natural to take advantage of randomness that is unknown to the adversary.

We note that security of cryptographic schemes generally depends on randomness that is

unknown to the adversary. In this chapter, we explore the idea of using secret random-

ness to defend against the transfer of adversarial examples. Security of encryption is based

on a secret key that can be randomly chosen and kept secret.

(a) (b)

Figure 6.1. Original image vs Encrypted output of AES-ECB

6.1 Intuition

Consider the images shown in Fig.  6.1a , which is an example used in some textbooks

on cryptography. Fig.  6.1b is the result of directly encrypting the image of Fig.  6.1a using
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AES under the Electronic Code Book (ECB) mode. As can be seen, while the original color

information of the penguin has been altered significantly, the overall outline of the penguin

is still discernible in the encrypted version. This was used to illustrate that encryption using

the ECB mode is insecure, because the same plaintext block will be encrypted to the same

ciphertext block. This property, however, suggests that the “transformed” (or “encrypted”)

image can still be used to train classifiers.

6.2 Reducing color depth and quantization errors

While the example in Fig.  6.1 shows that a direct AES-ECB encryption can produce an

intelligible ciphertext for images without fine-grained color information, this is not true in

general. A direct application of AES-ECB to photographs, which are commonly used as

training data and test inputs for classifiers, would often lead to unintelligible outputs. This

is because typical photographs have a color depth of 24 bits, which can deliver high precision

gradients of colors. Encrypt each pixel individually would have a better chance at preserving

visible patterns in the image. However, the output quality would still be poor if the input

has rich color depth.

An example of this can be found in Fig.  6.2 , which is based on the photo of a snow leopard

from the IMAGENET dataset. Here we apply the transformation to each pixel separately.

Since each pixel in the bitmap has 24 bits of color level information, and the block size of

AES-128 is 16 bytes, we add bits of zeros to the input as padding, and truncate the cipher

output to keep only the first 24 bits, so that it can be plugged back to the bitmap as a pixel.

As can be seen from Fig.  6.2a and  6.2d , even this more fine-grained transformation renders

the image unintelligible. The fur of the snow leopard is completely replaced by pseudo-

random noises, and the only discernible patterns remain are the blocks of neighboring pixels

that are exactly the same in the background. This makes the transformed image hardly

usable for an image classifier.

One possibility to deal with the challenge of fine-grained color levels is to reduce the

color depth of the image. This can be easily implemented as setting the least significant bits

of the value of each color channel to zero. Fig.  6.2b shows an example of this, with half of
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(a) Original (b) 4 Bits (c) Dth6

(d) Orig AES (e) 4 Bits AES (f) Dth6-AES

Figure 6.2. IMAGENET Snow Leopard

the bits for each color channel being set to zero. While this helps to improve the overall

intelligibility of the transformed image as shown in Fig.  6.2e , the snow leopard itself is still

not very recognizable, and the background exhibits dramatic splashes of color blocks, due to

the problem of color banding in the depth reduced image.

Color banding introduces inaccurate color presentation, and is a form of quantization

error. To resolve color banding, we apply dithering, which intentionally adds noises to

randomize quantization errors. Dithering is able to accurately present an image with a

limited color palette. For those colors not available in the color palette, we choose the

closest color with the palette by a diffusion of colored pixels. Floyd-Steinberg dithering [ 7 ]

is an error diffusion technique to achieve the dithering effect by quantizing the pixel color
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within the available palette and diffusing the error to the neighboring pixels. The algorithm

scans the pixel from left to right, top to bottom, and quantizing pixel values one by one, for

each color channel, and then diffusing the error to the neighboring pixels by multiplying the

diffusion coefficient defined in the following matrix. ∗ 7
16 . . .

. . . 3
16

5
16

1
16 . . .

 (6.1)

The star (*) pixel in Eq.  6.1 indicates the current scanned pixel, and the blank pixels indicates

the previously-scanned pixels. For the scanned pixel, the algorithm rounds up the value of

each of its color channels to the closest value in {0, 51, 102, 153, 204, 255} (6 shades of the

historic “web-safe” colors). In the end, the dithered image (Fig.  6.2c ) uses at most 63 = 216

colors, which is approximately log2 6 ≈ 2.58 bits per channel. Comparing to the 4-bit depth-

reduced image (Fig.  6.2b ), this further reduces the bit depth but can more accurately present

the image, because human eyes perceive diffusion as a mixture of the colors within it. As the

result, Fig.  6.2f , an AES-ECB encrypted dithered image, intelligibly present the shape of the

snow leopard. In Fig.  6.3 , we present other selected IMAGENET examples, and MoNet (last

two columns) consistently and intelligibly present the semantic information of the image.

6.3 The MoNet Approach

We specifically propose the following two approaches to be used for MoNet.

6.3.1 Dthn

We preprocess the image with Floyd-Steinberg dithering before feeding the image into the

DNN. n refers to the number of discrete value chosen within each color channel, where the

chosen values form an arithmetic sequence ranging from [0, 255]. Dthn uses dithered images

in both training and testing. Dthn-N uses dithered images in training but not testing, that

is, the network is trained using dithered images, but classifies non-dithered images.
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Original Orig AES 4 Bits 4 Bits AES Dth6 Dth6-AES

Figure 6.3. IMAGENET MoNet Examples

6.3.2 Dthn-AES

We apply the AES encryption on dithered image before using the image as input the

CNN. For each pixel in the dithered image, we group the color value from three channels

and then append zero to fill an AES plaintext block. Then, we apply the AES block cipher

to the plaintext and use the first three bytes of the result as the pixel value. Dthn-AES

requires the use of encrypted dithered image in both training and testing.
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7. EVALUATION OF MONET

We evaluate and compare MoNet with Random Spiking and other existing defensive mech-

anism by using the systematic evaluation methodology presented in Chapter  3 .

7.1 Dataset and Model Training

For our experiments, we use the following 2 datasets: CIFAR-10 [  60 ] and IMAGENET [  66 ].

Table  7.1 gives an overview of their characteristics.

Table 7.1. Overview of datasets

Dataset Image size Training
Instances

Test
Instances

Color
space

CIFAR-10 32× 32 50,000 10,000 24-bits True-Color
IMAGENET Clip to 299× 299 1,281,167 50,000 24-bits True-Color

For CIFAR-10, we use the state-of-the-art WRN-28-10 instantiation of the wide residual

networks [ 61 ]. We consider 13 schemes equipped with different defense mechanisms, all of

which share the same network architectures and training parameters. For 9 of 13 schemes,

we reuse the training parameter in  5.1 . The remaining 4 schemes include FS [ 5 ], and the

3 schemes from our MoNet proposal: Dth6, Dth6-N, and Dth6-AES. We choose n = 6 for

MoNet since model trained with n = 6 delivers better testing accuracy and similar model

stability comparing with n = 4 or 5. Some defensive mechanisms have adjustable parameters,

and we choose values for these parameters so that the resulting models have a comparable

level of accuracy on the test instances. As the result, all 13 schemes result in a small accuracy

drop. Table  7.2 gives the test errors for CIFAR-10. The numbers in the parentheses for

MagNet and FS are the detection threshold (rate of false positive) for detecting adversarial

examples. The number in the parentheses for RC is the L0 bound for adding random noise.

Recall the evaluation of Random Spiking in Sec  5.1 , when a scheme uses either Dropout or

Random Spiking, we use MC Avg to make a prediction, which typically achieves a slight

reduction in test error. By “MC Avg.”, we mean using Definition  2 by running the network

with Dropout and/or Random Spiking 10 times, and averaging the 10 probability vectors.
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For each scheme, we train 16 models (with different initial parameter values), and report the

mean and standard deviation of their test accuracy. We observe that Dth6 scheme achieves

similar test error comparing to other defensive schemes, while Dth6-AES incurs an additional

accuracy drop of 1.2%.

Table 7.2. Cifar Test Errors (mean±std).

Standard Dropout Distillation RS-1
4.38± 0.21% 4.46± 0.25% 4.33± 0.27% 5.59± 0.22%

RS-1-Dropout RS-1-Adv Magnet (0.004) Dropout-Adv
5.81± 0.27% 6.20± 0.40% 5.52± 0.24% 4.71± 0.19%

RC (0.025) FS (0.008) Dth6 Dth6-N
6.52± 0.58% 6.54± 0.62% 6.63± 0.21% 6.33± 0.23

Dth6-AES
7.87± 0.35%

Table 7.3. ImageNet Test Error (mean±std), image size 299× 299

Method Top-1 Err Top-5 Error

Inception-V3

Standard 22.04± 0.09% 5.99± 0.08%

Dth6-N 23.45± 0.14% 6.74± 0.07%

Dth6 22.55± 0.07% 6.30± 0.06%

Dth6-AES 24.60± 0.17% 7.44± 0.09%

FS-0.014 23.56± 0.15% 7.55± 0.12%

ResNet-50

Standard 22.59± 0.11% 6.23± 0.07%

Dth6-N 24.58± 0.11% 7.31± 0.08%

Dth6 23.09± 0.01% 6.53± 0.07%

Dth6-AES 25.93± 0.16% 8.15± 0.12%

FS-0.022 24.71± 0.08% 8.45± 0.13%

For IMAGENET, we use two state-of-the-art model architectures: Inception-V3 [ 67 ] and

ResNet-50 [  23 ]. For each network architecture, we consider 5 schemes equipped with different

defense mechanisms, all of which share the same training parameters. Table  7.3 gives the

test errors on IMAGENET. For each architecture under each scheme, we train 16 models

(with different initial parameter values), and report the mean and standard deviation of

their test accuracy. We observe that all network architecture achieve a Top-5 test error
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Table 7.4. C&W targeted Adv Examples L2 (mean±std).

CIFAR-10 Single IMAGENET Single
Standard 0.17± 0.08 Inception-V3 0.58± 0.27

Dropout 0.17± 0.08 Inception-V3-FS (0.014) 0.58± 0.27

Distillation 0.17± 0.07 Inception-V3-Dth6 1.51± 0.44

RS-1 0.32± 0.14 ResNet-50 0.64± 0.30

RS-1-Dropout 0.32± 0.15 ResNet-50-FS (0.022) 0.63± 0.29

RS-1-Adv 0.39± 0.18 ResNet-50-Dth6 1.49± 0.42

Magnet 0.29± 0.21

Dropout-Adv 0.18± 0.07

FS (0.008) 0.52± 0.23

Dth6 0.45± 0.20

of approximately 6% by using the standard training method. Using dithered images in

testing (Dth6) achieves lower test error if we use dithered images in training. Dth6 has a

0.3% accuracy drop comparing to standard training. Dth6-AES has an additional 1.1-1.6%

accuracy drop depending on the network architecture.

7.2 White-box Evaluation

We first evaluate the effectiveness of the defense mechanisms under white-box attacks.

7.2.1 C&W L2 White-box Evaluation

We apply the C&W white-box attack with a confidence value of 0 to generate targeted

adversarial examples, and measure the L2 distance of the generated adversarial examples.

We consider single-model attacks, where the adversarial example targets a single model.

For CIFAR-10, the left two columns of Table  7.4 present the average L2 distances of

the generated examples for those generated adversarial examples. Dth6 (gray rows) results

in models that are more difficult to attack, requiring on average the highest amount of

perturbations (measured in L2 distance) among all evaluated defenses except for FS (0.008).

For FS, since adversarial examples need to bypass multiple FS detectors in order to work, it
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can be considered as attacking multiple models, which requires more noises to be added to

the generated adversarial examples.

For IMAGENET, the right two columns of Table  7.4 present the average L2 distances of

the generated examples for those generated adversarial examples. Training with Dth6 (gray

rows) results in models that are more difficult to attack, requiring on average the highest

amount of perturbations (measured in L2 distance) among all the evaluated schemes.

7.2.2 PGD L∞ White-box Evaluation

We apply the PGD L∞ white-box attack to generate targeted adversarial examples, and

measure the bounded L∞ distance of the generated adversarial examples against the attack

success rate. We consider single-model attacks, where the adversarial examples target a

single model.

Table 7.5. PGD targeted Adv Examples L∞ VS attack success rate
(mean±std) on CIFAR-10 dataset using Single attack strategy.

L∞ 1 2 3 4 5 6 7 8
Standard 13.40± 0.88 42.47± 2.45 68.08± 2.34 84.13± 2.19 92.88± 1.94 97.01± 1.50 98.87± 0.85 99.60± 0.45

Dropout 12.18± 0.62 41.38± 1.69 69.74± 1.95 87.38± 2.25 95.94± 1.56 98.83± 0.84 99.67± 0.31 99.89± 0.12

Distillation 10.55± 2.11 36.14± 4.85 62.47± 5.87 81.13± 4.85 91.81± 3.14 96.94± 1.72 98.83± 0.98 99.55± 0.54

Dropout-Adv 10.42± 1.06 36.69± 2.93 66.46± 3.37 87.21± 3.24 96.38± 1.80 99.09± 0.71 99.76± 0.26 99.94± 0.09

RS-1 4.06± 0.35 17.78± 2.02 43.68± 3.90 68.41± 4.11 84.61± 3.42 93.31± 2.30 97.25± 1.40 98.89± 0.72

RS-1-Dropout 3.65± 0.44 14.02± 2.12 36.48± 4.68 61.39± 4.52 79.42± 3.54 90.22± 2.35 95.80± 1.40 98.32± 0.75

RS-1-Adv 3.13± 0.36 10.86± 1.74 28.93± 5.00 53.25± 7.34 74.29± 6.79 88.13± 4.98 95.10± 2.73 98.11± 1.33

Dth6 2.94± 0.13 9.64± 0.30 24.27± 1.00 45.03± 1.21 63.73± 0.88 76.40± 0.64 83.67± 0.59 87.35± 0.63

For CIFAR-10, Table  7.5 presents the average attack success rate and its standard de-

viation under bounded L∞. Dth6 has the lowest attack success rate among all defense

methods. When L∞ = 8, Dth6 has an attack success rate of only 87.4%, while the other

defensive schemes all have an attack success rate of more than 98%.

For IMAGENET, Table  7.6 presents the average attack success rate and its standard

deviation under bounded L∞. When L∞ = 1, models trained with Dth6 (gray rows) have a

much lower attack success rate (< 14%) than the others (attack success rate > 80%).
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Table 7.6. PGD targeted Adv Examples L∞ VS attack success rate
(mean±std) on ImageNet dataset using Single attack strategy.

L∞ 1 2 3 4 5 6 7 8
Inception-V3 87.29± 0.67 99.76± 0.10 99.95± 0.07 99.95± 0.07 99.98± 0.04 99.99± 0.03 99.99± 0.03 99.98± 0.07

Inception-V3-Dth6 13.44± 0.38 64.69± 0.78 77.75± 0.76 82.16± 0.42 84.51± 0.49 85.69± 0.45 86.61± 0.24 87.08± 0.37

ResNet-50 81.97± 0.72 99.55± 0.12 99.98± 0.04 100.00± 0.00 100.00± 0.00 99.99± 0.03 99.96± 0.05 99.98± 0.04

ResNet-50-Dth6 12.46± 0.73 64.66± 0.81 79.84± 0.55 84.30± 0.65 86.60± 0.44 87.85± 0.29 88.81± 0.24 89.86± 0.38

7.3 Model Stability

Given a benign image and its variants with added noise, a more robust model should

intuitively be able to tolerate a higher level of noise without changing its prediction results.

We refer to this property as model stability. Here we evaluate whether models of different

defensive schemes can correctly label instances that are perturbed.

7.3.1 Stability with Added Gaussian Noise:

We measure how many predictions would change if a certain amount of Gaussian noise

is introduced to a set of benign images. For a given dataset and a model, we use the first

1, 000 images from the test dataset. We first make a prediction on those selected images

and store the results as reference predictions. Then, for each selected image and a chosen L2

distance, we sample Gaussian noise, scale it to the desired L2 value, and add the noise to

the image. Pixel values are clipped if necessary, to make sure the new noisy variant remains

a valid image. We repeat this process 20 times (noise sampled independently per iteration).

Fig.  7.1a shows the effect of Gaussian noise on prediction stability for each training

method on CIFAR-10 (averaged over the 16 models trained in Sec.  7.1 ). Model stability

inevitably drops for each scheme as the amount of Gaussian noise, measured by L2, increases,

though different schemes behave differently.

We see that Dth6, Dth6-N, and Dth6-AES have the highest stability as the amount of

noise increases. When L2 = 2.5, they have stability 89.9%, 93.1%, 89.7%, respectively. RS

schemes have stability between 81-88%, and the other schemes have stability 70% or lower.

Fig.  7.1a also plots the standard deviation of the stability result of the 16 models. Dth6,
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(b) Prediction Stability on JPEG Compressed Images
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Figure 7.1. Evaluating CIFAR-10 model stability

Dth6-N, and Dth6-AES have very low standard deviation, which in turn also suggest a more

consistent behavior when facing perturbed images.

7.3.2 Stability with JPEG compression:

Given a set of benign images, we measure how many predictions would change if JPEG

compression is applied to images. For a given test dataset and a model, we compare the

prediction on the benign test dataset (reference predictions) with the prediction on JPEG

compressed test dataset under a chosen JPEG compression quality (JCQ). For the sake of

time efficiency, for this particular set of experiments, we reduced the number of iterations

used by RC to one-tenth of its original algorithm.

For CIFAR-10, Fig.  7.1b shows the effect of JPEG compression on prediction stability

for each training method (averaged over the 16 models trained). As JCQ (ranges 70 − 10)

decreases, model stability decreases for all schemes, but we we see that Dth6, Dth6-N, and

Dth6-AES have the highest prediction stability. When JCQ = 10, they have a stability of

64.6%, 65.9%, and 67.8%, respectively. The other schemes have a stability of ≤ 61%, and

the most stable among them is RS-1-ADV.

For IMAGENET, Fig.  7.2 shows the effect of JPEG compression on prediction stability

for each training method and model architecture (averaged over the 16 models trained).
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(b) Pred Stability (ResNet-50)
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Figure 7.2. Evaluating IMAGENET model stability with JPEG compression

Model stability decreases for each scheme as the JCQ (ranges 100 − 10) decreases. We see

that although Dth6-AES has a lower model stability when JCQ = 100, it has a much slower

drop in model stability as JCQ decreases. When JCQ ≤ 40, Dth6-AES has the highest

model stability among all training methods, and this result is consistent across all model

architectures.

7.4 Translucent-box Evaluation

Here we evaluate the effectiveness of different schemes based on the transferability of

adversarial examples generated using the Multi 8 & Passing 5/7 Validation attack strategy

presented in Chapter  5.4 . For each scheme, we train 16 surrogate models, each with half

of the dataset randomly selected and randomly initialized model parameters. We use 8

of the 16 surrogate models for generating adversarial examples. To fool all 8 surrogate

models, we use the sum of the loss functions of the 8 surrogate models as the new loss

function to generate adversarial examples. To improve transferability, experimental result in

Chapter  5.4 suggests to use additional surrogate models for validating adversarial examples.

We use 7 of the remaining 8 surrogate models as validation models, and the last model as

the targeted model to evaluate transferability. For those adversarial examples which can

62



fool all 8 surrogate models, we keep them only if they can be transferred to at least 5 of

the 7 validation models. We measure the average of 8 rotations between target model and

validation models.

For CIFAR-10, the results of our translucent-box evaluation are shown in Fig.  7.3 . Adver-

sarial examples are grouped into buckets based on their L2 and L∞ distance for adversarial

examples generated by the C&W attack (Fig.  7.3a ) and PGD attack (Fig.  7.3b ) respectively.

For each bucket, we use grayscale to indicate the average validation passing rate for each

scheme. Passing rate from 0% to 100% are mapped to pixel value from 0 to 255 in a linear

scale. There are four rows, each corresponds to adversarial examples within a certain Lp

range. Each column illustrates to what extent a target defense scheme resist adversarial

examples generated from attacking different methods. Comparing to non-dithered models,

dithered models (column Dth6 and Dth6-N) achieve significantly lower transferability (close

to 0) on adversarial examples excluding those generated on dithered model. Dithered models

are vulnerable to adversarial examples targeting dithered models, but those are less likely to

transfer to non-dithered models. AES-ECB models (column Dth6-AES) performs the best

among all defense methods, which further reduce the transferability for adversarial examples

generated on dithered models.

For IMAGENET, the results of our translucent-box evaluation are shown in Fig.  7.4 .

AES-ECB models (last 2nd and 3rd columns ending with AES) achieves near 0 transferabil-

ity, which perform the best among all training methods and are consistent among different

model architecture and attack algorithms.
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Figure 7.3. Average passing rate of 5/7 validation (CIFAR-10 dataset)
This heat map shows the resilience of each scheme against the adversarial examples generated
from all schemes, under a fixed allowance of Lp. Each column illustrates to what extent a tar-
get defense scheme resists adversarial examples generated from attacking different methods.
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Figure 7.4. Average passing rate of 5/7 validation (IMAGENET dataset)
This heat map shows the resilience of each scheme against the adversarial examples gen-
erated from all schemes, under a fixed allowance of L∞. Each column illustrates to what
extent a target defense scheme resists adversarial examples generated from attacking different
methods.
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8. DEFEND AGAINST ADVERSARIAL EXAMPLES IN

OBJECT DETECTION WITH MONET + MODEL

ENSEMBLE + TTA

In Chapter  8 , we consider the TOG adversarial attacks against object detection, and study

different defense mechanisms. We first consider three existing defense methods, MoNet [ 39 ],

Model Ensemble [  26 ,  27 ], and Test Time Augmentation (TTA) [  26 ], to reduce the trans-

ferability of adversarial examples for object detection. We also propose to combine these

methods, which further reduces the transferability.

8.1 MoNet

In Chapter  7 , we have shown that MoNet significantly reduces the transferability of

adversarial examples for image classification network. In this dissertation, we study whether

this property holds for the object detection network.

(a) Orig (256 val) (b) 4 Bits (16 val) (c) Dth (6 val)

(d) Orig AES (e) 4 Bits AES (f) Dth AES

Figure 8.1. MS-COCO-2017 Highway (number of discrete values used per channel)

66



We apply MoNet on MS-COCO-2017, a dataset for object detection, and compare the

example with the original image, 4 bit depth reduction as well as their encrypted images

(see Fig.  8.1 ). We found that Floyd-Steinberg dithering has to be used before applying AES

encryption, because a direct application of AES produces unintelligible outputs, which is

consistent with the result on image classification. Fig.  8.1d , the result of directly applying

AES on Fig.  8.1a lost most of its intelligible information. Using such unintelligible images

in training would give the object detector a very low testing accuracy. Although 4 bit depth

reduction helps improve the intelligibility of encrypted image as shown in Fig  8.1e , the figure

is not very recognizable for small cars. Comparing to two previous encrypted images, MoNet

processed image as shown in Fig.  8.1f is significantly better in visualization as all cars and

bridge can be clearly recognized. One can even read the text "Ventura" on the bridge. More

examples of MoNet can be found in Fig.  A.1 (See Appendix).

8.2 Model Ensemble

MoNet models and standard models behave differently, in the sense that adversarial

examples generated against one kind of models do not transfer well to the other. We thus

explore the possibilities of combining their prediction outputs to further improve the accuracy

in the face of adversarial examples.

Model ensemble combines the prediction results from multiple models to produce a final

output [ 43 ]. Ensemble methods have been widely used in machine learning (ML) applica-

tions to improve model accuracy and stability. For ML applications that generate a single

output for each input (e.g. image classifiers), model ensemble can be viewed as model aver-

aging [ 3 ,  68 ]. However, raw object detection generates 0, 1, or more predictions for a given

input image. Therefore, simple model averaging is not directly applicable. Although there

are methods that combine the output of detection models such as NMS (Non-Maximum

Suppression) [ 69 ], Soft-NMS [  70 ], NMW [  71 ], and fusion [  72 ], these methods are mainly to

eliminate redundant bounding boxes and do not fully utilize the given information such as

the label of each detected bounding box, the number of models that can be grouped by

overlapped bounding boxes, and the labels. A better ensemble approach can use these dif-
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ferent kinds of information to extract the relationship between prediction outputs so that it

can make a better detection on bounding boxes and avoid false positives, and thus deliver

a higher prediction accuracy on the validation dataset. In this dissertation, we consider

two model ensemble approaches that fully utilize the information from multiple predictions:

voting and Weighted Boxes Fusion (WBF).

8.2.1 Ensemble Object detection by Voting

Casado-Garcia and Heras proposed a four-step, voting-based approach to ensemble the

prediction outputs of multiple models [ 26 ]. The input of the algorithm is a list LD =

{D1, . . . , Dm} where each Di is a list of detections produced by model Mi (defined in Sec-

tion  2.3 ), i ∈ {1, . . . ,m}. Given the input LD, the algorithm first flattens LD to a list of

detections defined as F = {d1, . . . , dk}. Then, detections di ∈ F are grouped into clusters

based on the overlapping of bounding boxes and their category. More specifically, this step

outputs a list G = {DG
1 , . . . , D

G
m} where each DG

i is a list of detections such that any pairs

d̄ = {b̄, c̄, s̄}, d̂ = {b̂, ĉ, ŝ} ∈ DG
i have the same category c̄ = ĉ and the overlapping of two

bounding boxes, formally called the interaction of union (IoU), IoU(b̄, b̂) > 0.5, where

IoU(b1, b2) =
area(b1 ∩ b2)

area(b1 ∪ b2)

In short, we have a list of clusters G, where each cluster DG
i is a list of detections dGi,j that

focus on the same region and predict the same category.

The third step is to vote whether the cluster will be included in the final prediction and

outputs a valid list G′ ⊆ G. Notice that each list DG
k ∈ G has at most m detections if the

input is given by m models. The original paper considers DG
k ∈ G′ is valid if DG

k has at least

m′ elements given total m/2. Therefore, the original paper proposes three voting strategies:

• Affirmative implies at least one model produces the prediction (m′ ≥ 1 ).

• Consensus implies voting by the majority (m′ ≥ m/2).

• Unanimous implies all models have to agree to the prediction (m′ = m).
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The last step of the algorithm is to output the most appropriate bounding boxes among

G′ and their confidence score. We compute the non-maximum suppression (NMS) [ 69 ] for

each valid DG′

k as NMS serves best for eliminating redundant bounding boxes for this case.

The corresponding confidence score of DG′

k is the average of all elements in DG′

k .

Table 8.1. Visualization of Predictions from Two Benign Models St0 & St1
(left) Vs. Voting Based Model Ensemble Strategies (right).

St0

St1

Affirmative

Consensus

Unanimous

Regarding model ensemble strategies, the original paper suggests that the affirmative

strategy performs better than two other strategies if detection models produce fewer numbers

of false positives compared to the number of false negatives. For example, Table  8.1 shows

Affirmative and Consensus include the predicted detections which are missed in one benign

model and thus discarded by the Unanimous strategy. This suggests that the Affirmative

and Consensus strategy can better utilize the prediction output from multiple models to
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improve prediction accuracy, whereas the Unanimous strategy tends to worsen the prediction

accuracy. In our experiments (see Sec.  9.1 ), we found that the affirmative strategy generally

performs best on the validation dataset among the three strategies.

8.2.2 Ensemble Object detection by Weighted Boxes Fusion (WBF)

WBF

NMS / 
soft-NMS

Figure 8.2. NMS/soft-NMS vs. WBF outputs. model predictions (blue), the
ground truth (red)

While both NMS [  69 ] and soft-NMS [  70 ] exclude redundant bounding boxes and require

that the final box must be among detections obtained from the model, Weighted Boxes Fusion

(WBF) [  27 ] uses information of all boxes to generate more accurate boxes. Therefore, WBF

could find boxes that are closer to the ground truth even though all predicted boxes are

inaccurate.

Similar to the model ensemble approach described in Section  8.2.1 , WBF first clusters

all detections and generates G = {DG
1 , . . . , D

G
m} where each detection in the cluster DG

i has

the same category and the box has significant overlaps with other boxes in the cluster (Note:

WBF changes the overlap from IoU > 0.5 to IoU > 0.55). Then, for each cluster DG
i , WBF

computes the confidence score, box coordinates with the following formulas:

s =

∑T
j=1 sj

T
× min(T,M)

M
,

(X1, X2, Y1, Y2) =

∑T
j=1 sj × (Xj1, Xj2, Yj1, Yj2)∑T

j=1 si
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where the cluster DG
i has T valid detections obtained from M model outputs and weight sj

is the confidence score from the j-th detection.

The main difference between the voting and WBF is that the voting approach chooses

the most appropriate bounding boxes among all detections, whereas WBF uses a weighted

function to compute new bounding boxes based on detections within the same cluster, (See

Fig.  8.2 ). WBF tends to generate a bounding box that which is much closer to the ground

truth. This suggests that WBF should perform better than Affirmative, which is confirmed

by our evaluation. Despite the difference, both approaches use clustering to find the valid

cluster for overlapping bounding boxes. This step can effectively eliminate false positives

and redundant bounding boxes, thus leading to high prediction accuracy.

8.3 Test Time Augmentation

Although model ensemble can improve model accuracy and stability, the drawback is

that it requires more resources to train different models from scratch. In addition, image

augmentation such as flipping and changing the brightness and contrasts can change the

model input. This can affect the prediction output, leading to model instability. To overcome

these two issues, Casado-Garcia and Heras [  26 ] further proposed Test Time Augmentation

which can be used together with the model ensemble technique. The method first applies the

model to both the original and augmented images (equalized and flipped), and then applies

one of the model ensemble strategies described in Section  8.2.1 . For example, Table  8.2 shows

the model detects one remote controller in the woman’s hands in the flipped image and three

remote controllers in the equalized image (two in the woman’s hands and one in the man’s

hands). However, all these detections are missed given the benign image. Therefore, using

the Affirmative and WBF model ensemble strategy with TTA can immediately improve the

model accuracy on existing models without training extra models from scratch.

8.4 Proposed Strategies

We consider several combinations of the ideas introduced so far to reduce the transferabil-

ity of adversarial examples targeting object detection, and group them into four categories.
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Table 8.2. Visualization of Prediction on Augmented Images (left) with. the
Result of applying Model Ensemble Strategies (right).

s

Benign

Flip

Equalization

Affirmative

WBF

8.4.1 Single models

We first consider training a single model without using TTA or model ensemble.

• St This is the baseline with no specific defense, and considers standard models trained

with images without modification.

• Dth We preprocess the image with Floyd-Steinberg dithering and use such dithered

images in both training and deployment.
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• AES We apply the AES encryption to each pixel of the dithered image before feeding

the image to a CNN. AES models requires the use of the encrypted dithered image in

both training and testing.

8.4.2 Single Model with TTA

TTA generates additional input images. Using TTA with appropriate model ensemble

methods such as Affirmative and WBF can immediately improve the model accuracy on

existing models without training extra models. Therefore, we propose to apply TTA to the

aforementioned single models.

8.4.3 Multi

Model ensemble is to improve model accuracy and stability as models usually behave

slightly differently given the same input even though they are trained with the same pro-

cedure. This is because models are trained with different random initial parameters. Intu-

itively, model ensemble can defend against transfer attack if we have two or more models

behaving differently on adversarial examples, but quite similar on benign examples. For

example, one model is vulnerable to an adversarial example, but another is not vulnerable

to the same example. Therefore, we propose to include at least two different types of models

in an ensemble, resulting in 4 multi-model combinations: St + Dth, St + AES, Dth + AES,

and 3Mix (St + Dth + AES).

8.4.4 Model Ensemble + TTA

As we mentioned in Sec.  8.3 , model ensemble and TTA can be used together to improve

the prediction accuracy of existing models without training extra models from scratch. We

argue that such a strategy will perform even better than Model Ensemble strategy. Notice

that TTA can generate multiple slightly different predictions as each input is slightly different

but has the same semantic information. Therefore, one prediction has the potential of

catching the prediction that the other model missed, which is the same reason we explained
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in Sec.  8.3 . Therefore, we propose to use Test Time Augmentation with 4 different Model

Ensemble combinations described in Sec.  8.4.3 .
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9. EVALUATION OF MONET + MODEL ENSEMBLE + TTA

TO DEFEND AGAINST ADVERSARIAL EXAMPLES FOR

OBJECT DETETION

We present experimental results comparing proposed strategies described in Chapter  8 to

defend against adversarial examples for object detection network.

9.1 Dataset and Model Training

For our experiments, we consider one-stage object detection network YoloV3 [ 13 ] and use

ResNet-50 [ 23 ] as its backbone network. To train St, Dth, and AES models from scratch, we

first duplicate the same training procedure in [  73 ] to train the backbone network ResNet-50

on IMAGENET [ 66 ]. Then, we use an open source implementation 

1
 to train YoloV3 on

MS-COCO-2017 [  74 ] with a two-stage training procedure. The characteristics of training

and testing datasets IMAGENET and MS-COCO-2017 are presented in Table  9.1 .

Specifically, we train ResNet-50 with 90 epochs. All images are randomly clipped and

resized to 416×416, and then sent into the network. The training procedure uses Stochastic

Gradient Descent (SGD) as the optimizer. The reference learning rate is η = 0.1 per 256

mini-batch. To ensure the training is stable at the beginning, the learning rate starts with

0 and is linearly increased to the targeted reference learning rate over 5 epochs. Then, the

learning rate is reduced by 1/10 at the 30-th, 60-th, and 80-th epoch. For each model type,

we train 2 models respectively with different initial parameters and report the Top-1 and

Top-5 test error in Table  9.2 . We observe that St and Dth models achieve similar Top-1
1

 ↑ https://github.com/Adamdad/keras-YOLOv3-mobilenet

Table 9.1. Overview of datasets

Dataset Image size Training
Instances

Test
Instances

IMAGENET Clip to 416× 416 1,281,167 50,000 (test)
MS-COCO-2017 Resize & Pad to 416× 416 118,287 5,000 (validation)
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Table 9.2. ImageNet Test Error (mean±std) for ResNet-50, image size 416× 416

ResNet-50 St 0 St 1 Dth 0 Dth 1 AES 0 AES 1
Top-1 Err 25.27% 25.22% 25.59% 25.37% 27.46% 27.76%

Top-5 Error 8.22% 8.19% 8.33% 8.12% 9.30% 9.41%

Table 9.3. MS-COCO-2017 mAP (mean average precision) for YoloV3, image
size 416× 416

YoloV3 St 0 St 1 Dth 0 Dth 1 AES 0 AES 1
mAP 34.29 34.14 33.83 34.51 29.47 28.22

(≈ 25.3%) and Top-5 (≈ 8.2%) error, whereas AES models drop roughly 2% Top-1 accuracy

and 1% Top-5 accuracy.

Then, we use a two-stage training procedure  1 to train YoloV3 on MS-COCO-2017 [  74 ].

We use ResNet-50 as the backbone network and the pre-trained ResNet-50 model as its initial

model parameters. In the first training stage, we freeze the parameters of the backbone

network and only train the parameter for the rest of the feature extraction network. We

train the network 50 epochs with global batch size 64 and optimize the network with Adam

optimizer [  75 ]. The learning rate starts with 0.001 per 16 mini-batch, and is reduced by 1/10

if the average loss value does not get improved for 3 consecutive epochs when evaluating the

validation dataset. In the second training stage, we repeat the same procedure as the first

training stage. However, the backward propagation updates all parameters in the model,

and the training procedure stops early if the average loss value does not get improved for

10 consecutive epochs when evaluating the validation dataset. In addition, for both training

stages, we retain most of the default tuning parameters including parameters for image

preprocessing and thresholds for feature extraction used in processing YoloV3 outputs (IoU,

confidence score, and maximum valid bounding boxes).

After training, we evaluate YoloV3 models on MS-COCO-2017 validation dataset and

report the Mean Average Precision (mAP) in Table  9.3 . The evaluation uses IoU threshold

0.5 and confidence score threshold 0.45 to find valid bounding boxes. Specifically, the IoU
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threshold requires each bounding box to have an over 50 percent overlap with a bounding

box in ground truth detection. The Confidence score threshold ensures the model reports the

existence of every valid bounding box over 0.45. We found that both St and Dth models have

similar mAP on benign inputs, ranging from 33.83 to 34.51, whereas AES models experience

an mAP drop of around 5 to 6.

9.2 TTA and Model Ensemble Improvements

We are interested in how much improvement each proposed strategy described in Sec.  8.4 

can deliver on benign examples. Thus, we first present how we measure each strategy and

report the mAP (measured on MS-COCO-2017 validation dataset) in Fig.  9.1 . Then, we

present key findings.

9.2.1 Single TTA

Given a single model, TTA can help to improve mAP but has to be used with model

ensemble. Recall 4 model ensemble methods described in Sec.  8 : Affirmative, Consensus,

Unanimous, and WBF. We evaluate which model ensemble method is the best to use with

TTA. To measure this, we first use TTA to generate predictions for benign, flipped, and

equalized images. Then, we apply one of four model ensemble methods on TTA-generated

predictions and plot the mAP to compare which ensemble strategy can better utilize TTA-

generated predictions (See Fig.  9.1a ). mAP for different ensemble methods is sorted in

ascending order.

9.2.2 Ensemble with Multi-Models

Given multiple models, one can generate predictions for each model and then apply a

model ensemble method. We compare 4 ensemble methods described previously where each

strategy is measured on 4 different multi-model combinations described in Sec.  8.4.3 : St

+ Dth, St + AES, Dth + AES, and 3Mix (St + Dth + AES). In total, we get 16 mAP data

points which are then grouped by the model ensemble method. We sort the group by overall

mAP in ascending order and plot them as the first 4 bar groups in Fig.  9.1b .
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Figure 9.1. mAP for Different Proposed Strategies on MS-COCO-2017 Val-
idation Dataset (Higher is Better)

9.2.3 TTA+Model Ensemble on Multi-Models

We repeat the same evaluation as we did above for Ensemble with Multi-Models. The

difference is that, for each model in a multi-model combination, we use TTA to generate

predictions for benign, flipped, and equalized images. Therefore, the total predictions that

the model ensemble method needs to ensemble is the number of models in the combination

multiple by 3. The final result is presented as the last 4 bar groups in Fig.  9.1b .
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9.2.4 Key Findings:

1. WBF and Affirmative are the best ensemble methods (See Fig.  9.1a and

Fig.  9.1b ), whereas Unanimous is the worst model ensemble method, and Consen-

sus is the second worst model ensemble method. This property is consistent for any

given multi-model combination regardless of whether TTA is used. Because of this, we

only use WBF and Affirmative in our later experiments.

2. mAP drops when using TTA with Unanimous or Consensus. Fig. 9.1b shows

that the group Multi TTA Unanimous and Multi TTA Consensus have lower mAP than

the group Multi Unanimous and Multi Consensus. We attribute this to high agreement

requirements imposed by the ensemble strategies of Unanimous and Consensus.

3. AES model performs the worst on the validation dataset. Fig.  9.1a shows

that, when the prediction only uses a single model, the AES model always performs

the worst, no matter which model ensemble method is used and whether TTA is

used or not. Such property holds when the prediction uses two model combinations.

Specifically, all 8 bar groups in Fig.  9.1b shows the combination having one AES model

(St +AES and Dth +AES) always performs worse than the combination without an

AES model (St +Dth)

4. 3Mix is the best model combination. Fig.  9.1b shows that when using WBF

and Affirmative, which are the best ensemble methods, the 3Mix combination always

outperforms the other two model combinations regardless of whether TTA is used or

not. This suggests including more diverse types of models can improve mAP, as their

different behaviors lead to a better chance of covering the mistakes each other.

9.3 Evaluation of Single Model’s Resistance to white-box and translucent-box
attacks

Before evaluating the proposed strategies described in Sec.  8.4 , it is important to un-

derstand how well single models can defend against adversarial examples. We use the TOG

attack to generate adversarial examples and evaluate how well single model approaches can
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defend against the white-box and translucent-box attack. Meanwhile, we evaluate how TTA

helps a single model defend against adversarial examples as TTA can be used with the single

model strategy to improve prediction accuracy.

9.3.1 white-box Evaluation

For each image in the MS-COCO-2017 validation dataset, we use 5 different TOG white-

box attacks to generate adversarial examples on 2 St and 2 Dth models respectively as

described in the original paper [  18 ]. Therefore, we get 20 adversarial datasets. For each

adversarial dataset, we measure the mean prediction accuracy mAP. Then, we group the

mAP that is from the same model type and report the average mAP for each group. To

understand how TTA helps defend against the white-box attack, we apply TTA Affirmative

and TTA WBF in predicting generated adversarial examples and report the average mAP

as we did previously.

9.3.2 translucent-box Evaluation

We assume the adversary knows the type of the targeted model type. We use the same

adversarial examples generated in the white-box evaluation. For each model type, notice

that we have trained two different models. To measure the transferability, we use one model

to predict the adversarial examples generated by the other model and report the average

mAP. Fig.  9.3 shows the mAP for a single model in predicting adversarial examples under

the translucent-box setting by using different prediction strategies.

9.3.3 Key Findings

1. Dithering improves model robustness and reduces the transferability. Fig.  9.2 

and Fig.  9.3 show the Dth model always delivers higher mAP in predicting adversarial

examples for both white-box and translucent-box settings regardless of whether TTA

is used or not. This suggests the Dth model is more robust against the white-box

attack and transferability of adversarial examples.
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Figure 9.3. mAP for single model in predicting adversarial under the
translucent-box setting. (Higher mAP is better.)

2. TTA improves mAP in predicting adversarial examples. The trend in Fig.  9.2 

and Fig.  9.3 shows that Single TTA delivers higher mAP in predicting adversarial

examples implying to reduce the transferability of adversarial examples.

The raw data we use in Fig.  9.1 is in Table  A.1 which reports the mAP for every single

model with it strategy in predicting adversarial examples (See Appendix). Columns are

grouped by the prediction strategy and then the model type. Columns having the same

model types are rendered with the same color. Each cell illustrates the mAP for an inference

model in the column using different strategies to predict the adversarial examples generated

from the attack method and targeted model on each row. The lower the number means the
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attack is more effective. To get a sense of how effective the defense is, we add a baseline row

"Benign" which is the reference mAP for a model using the strategy to predict the original

MS-COCO-2017 validation dataset. In a column, if a number in a cell is close to the cell in

the benign row, the model using the strategy is resistant to the corresponding adversarial

dataset.

9.4 Tranferability Evaluation

We evaluate the effectiveness of the 4 proposed strategies described in Sec.  8.4 . We

use the same adversarial examples generated in the white-box evaluation. In addition, we

assume the adversary does not know either the model type or the model parameter used in

the prediction. Therefore, for each model combination (1-3 models) and prediction strategy,

we evaluate the prediction accuracy on adversarial datasets that are not generated from

any models used in the prediction. Then, we group the result by the same strategy and

the model combination having the same model type, and compute the average mAP in the

group. Notice that except for the Single Model strategy, the other 3 strategies use model

ensemble which can be either Affirmative or WBF. Therefore, we have 7 total prediction

strategies and sort the strategy by overall mAP in ascending order. The result is plotted in

Fig.  9.4 . The legend shows the actual types of models we use for the corresponding bar. The

raw data we use in Fig.  9.4 can be found in Table  A.1 , Table  A.2 , and Table  A.3 . Table  A.2 

and Table  A.3 represent the data reported by Multi and Model Ensemble + TTA strategies.

Notice that The data format of Table  A.2 and Table  A.3 is consistent with Table  A.1 as

described in previous key findings.

9.4.1 Key Findings

1. St < AES < Dth First three column groups in Fig.  9.4 shows the Dth model achieves

the highest mAP in predicting adversarial examples. This indicates the Dth model is

more resistant to the tranferability of adversarial examples than the other two model

type. AES performs second best. The reason that the model AES is better than

the St model is because the AES model uses dithering in both training and testing,
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Figure 9.4. mAP for different strategies in predicting adversarial examples
which are generated on models not used in predition (Higher mAP is better.)

indicating more robustness than the St model in defending against the tranferability

of adversarial examples. The reason that AES performs worse than Dth is because

the AES model has a lower prediction accuracy than Dth in predicting benign inputs

which affect the AES in predicting adversarial examples.

2. Single < Two Models < Three Models. Fig.  9.4 shows that, in general, the

ensemble that uses more diverse types of models achieves higher mAP in predicting

adversarial examples. This is coherent with the previous key finding of 3Mix being the

best model combination.

3. Single < Single TTA; Multi < Multi TTA Strategies using TTA is more robust

against the tranferability of adversarial examples. Notice that TTA can generate two

extra inputs which are different from the original input but have the same semantic

information. This is coherent with the previous key finding on the benefits of including

more models in an ensemble.

9.5 Attack the AES Model

We found it is infeasible to generate effective adversarial examples on AES models by

attacking the gradient. Since the AES layer is non-differentiable, we studied attacks using
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ated on different targeted models. (Lower mAP imples adversarial examples
are more effective)

the gradient approximation approach such as EOT (Expectation over Transformation) [  57 ]

and BPDA (Backwards Pass Differentiable Approximations) [  65 ]. We found that EOT attack

is not applicable on attacking the AES model since EOT assumes a random function f(x)

is used in model inference, which is contradict to the fact that the AES block cipher is

a deterministic but pseudo-random permutation (on the mappings between plaintext and

ciphertext). For the BPDA attack, our experiments found that BPDA attack on the AES

model is not effective. We first measure the difference of accuracy (mAP) between predicting

the benign example and adversarial example. Fig.  9.5 shows that BPDA attack on the AES

model has the least reduction on mAP under the white-box setting comparing with attacking

the St and Dth model, meaning that BPDA attack is not effective in attacking the AES
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model. Then, we measure mAP of using the AES model in predicting adversarial examples

generated on the St, Dth, and AES model respectively under the translucent-box setting.

Fig.  9.6 shows that adversarial examples generated on the AES model achieves the highest

mAP, implying those adversarial examples are less effective. The reason that BPDA attack

is not effective is that BPDA method assumes the non-differentiable pre-processing function

g has the property g(x) ≈ x. Therefore, the derivative g′(x) ≈ 1. However, such assumption

does not hold for using AES encryption as the mapping from the original pixel value to

the encrypted pixel value is pseudo-random. This implies that one has to figure out the

right direction and the amount of noise to add to the image purely based on the gradient

information instead of adding noise directly to the image. As the gradient approximation

attack not applicable on attacking the AES model, the gradient free attack such as Zoo

(Zeroth Order Adversarial Attacks) [ 76 ] needs to be studied.

85



10. CONCLUSION

In this dissertation, we present a careful analysis of possible adversarial models for studying

the phenomenon of adversarial examples in computer vision. We first propose an evaluation

methodology that can better illustrate the strengths and limitations of different mechanisms.

As part of the method, we introduce a more powerful and meaningful adversary strategy.

Then, we present various approaches that use randomness to defend against adversar-

ial examples for image classifiers. We introduce Random Spiking, a randomized technique

that generalizes dropout. We have conducted extensive evaluation of Random Spiking and

several other defense mechanisms, and demonstrate that Random Spiking, especially when

combined with adversarial training, offers better protection against adversarial examples

when compared with other existing defenses. In addition to Random Spiking, we present

MoNet, an image pre-processing method, which uses the combination of using secret ran-

domness and Floyd-Steinberg dithering. We use MoNet to generate input images which are

first processed using Floyd-Steinberg dithering, and then each pixel is encrypted using the

AES block cipher. The encrypted input images would protect the model parameters. Our

evaluation shows that image classifiers trained with MoNet significantly improves model sta-

bility and robustness against adversarial examples, especially reduce the transferability of

adversarial examples.

Moreover, we present the lightweight approach to defend against adversarial examples

for object detectors by using the combination for existing methods. We explore three defense

methods MoNet, Model Ensemble, and TTA. We present 4 strategies that combine these

methods to further reduce transferability. Our evaluation shows that models trained with

MoNet behave different from benign models in predicting adversarial examples and are robust

against adversarial transferability. In addition, our evaluation shows that model ensemble

strategies such as Affirmative and WBF not only improve mAP on benign input but also

on transfered adversarial examples. We found ensemble more diverse models reduce more

transferability, thus recommending 3Mix Affirmative or 3Mix WBF strategy. Moreover,

our evaluation shows that Model Ensemble + TTA strategy further reduces transferability.

Therefore, the best strategy is 3Mix TTA Affirmative or 3Mix TTA WBF.
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A. APPENDIX

The appendix includes more MoNet examples on MS-COCO-2017 dataset and the raw data

used in Chapter  9 . Each row in Table  A.1 , Table  A.2 , and Table  A.3 represents the attack

algorithm and the targeted model used in generating adversarial examples. Each column

represents the prediction model. Each cell represents the mAP of using the tuple {attack

algorithm, targeted model, prediction model}. Notice the first row in the table is the baseline

result obtained on benign examples. If the number in the cell is closer to the baseline number,

it implies the prediction model is more robust.

Table A.1. mAP for Single model and Single Model + TTA Predicting
Adversarial examples Underlined numbers are for white-box attack.

Single Model Single TTA Affirmative Single TTA WBF
St 0 St 1 Dth 0 Dth 1 AES 0 AES 1 St 0 St 1 Dth 0 Dth 1 AES 0 AES 1 St 0 St 1 Dth 0 Dth 1 AES 0 AES 1

Benign 34.29 34.14 33.83 34.51 29.47 28.22 36.89 36.89 37.18 37.57 32.77 31.43 37.74 37.78 37.71 38.23 33.39 31.99
St 0 1.33 19 23.87 24.46 25.23 24.94 5.33 21.88 26.44 26.87 27.85 27.53 6.01 22.52 27.12 27.72 28.56 27.82
St 1 19.68 1.24 23.81 25.09 25.24 24.81 22.17 4.85 26.59 27.82 28.35 27.3 22.97 5.61 27.24 28.58 28.82 27.92
Dth 0 20.93 20.15 2.21 21.65 24.21 24.01 22.99 22.46 6.94 24.63 27.04 26.23 23.75 23.19 7.94 25.46 27.69 26.93untargeted

Dth 1 20.04 20.27 20.18 2.33 23.77 23.57 22.06 22.62 23.14 7.05 26.62 26.21 22.89 23.52 23.79 7.93 27.16 26.68
St 0 0.08 23.98 27.06 27.43 26.09 25.39 19.67 27.41 30.11 30.72 29.04 27.66 19.77 27.95 30.48 31.25 29.47 28.15
St 1 23.98 0.11 26.78 27.51 26.15 25.45 27.41 20.7 30 30.75 29.04 27.79 27.82 20.8 30.42 31.22 29.57 28.37
Dth 0 24.09 23.8 0.18 24.86 24.68 24.31 27.21 27.27 20.23 28.57 27.67 26.9 27.57 27.77 20.33 28.99 28.08 27.26vanish

Dth 1 23.78 24.16 23.82 0.24 24.66 24.16 26.98 27.37 27.35 20.04 27.54 26.68 27.53 28 27.92 20.21 28.19 27.13
St 0 1.41 25.91 28.74 29.38 26.73 25.46 20.8 29.29 31.43 32.44 29.57 28.25 20.93 30 31.99 33.1 30.13 28.67
St 1 26.31 1.2 28.81 29.78 26.42 25.48 29.18 21.53 31.57 32.56 29.33 28.18 29.79 21.71 32.06 33.15 29.99 28.74
Dth 0 26.08 25.8 3 27.42 25.29 24.64 28.8 29.15 21.73 30.54 28.4 27.14 29.55 29.74 22.01 31.18 28.76 27.66fabrication

Dth 1 25.44 25.43 25.67 3.25 25.27 24.56 28.57 28.92 28.78 22.39 28.22 27.19 29.08 29.5 29.42 22.61 28.65 27.7
St 0 0.29 25.86 28.78 28.83 26.64 25.73 14.5 28.82 31.47 31.85 29.42 28.36 14.64 29.45 32.06 32.53 30.03 28.91
St 1 25.88 0.29 28.63 29.36 26.86 25.88 28.78 15.24 31.45 32.23 29.67 28.34 29.37 15.32 31.95 32.97 30.18 28.91
Dth 0 26.15 25.55 0.6 26.56 25.4 24.93 28.78 28.94 17.12 30.06 28.55 27.45 29.37 29.47 17.22 30.64 28.97 27.96mislabelling ll

Dth 1 25.49 25.9 26.02 0.69 25.39 24.91 28.4 29.21 29.14 17.63 28.39 27.26 29.11 29.85 29.84 17.82 28.94 27.72
St 0 3.66 29.35 31.05 31.85 27.77 26.82 16.18 32.09 33.48 34.37 30.44 29.35 16.59 32.8 34.17 35.11 31.08 29.94
St 1 28.94 3.41 30.8 31.64 28.07 26.68 31.6 16.15 33.25 34.51 30.73 29.09 32.31 16.48 33.94 35.22 31.32 29.72
Dth 0 29.31 29.46 4.64 30.05 27.26 26.26 31.83 32 18.24 33 30.02 28.85 32.63 32.81 18.74 33.69 30.53 29.33mislabelling ml

Dth 1 29.14 29.33 29.38 4.8 27.14 26.18 31.52 32.13 32.19 19.33 30.03 28.89 32.21 32.88 32.86 19.59 30.48 29.33
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Table A.2. mAP for Multi Model Affirmative and WBF in Predicting Ad-
versarial examples Underlined numbers means that adversarial examples are
generated on one of the prediction models.

Multi WBF Multi Affirmative
StDth0 StDth1 StAES0 StAES1 DthAES0 DthAES1 3Mix0 3Mix1 StDth0 StDth1 StAES0 StAES1 DthAES0 DthAES1 3Mix0 3Mix1

Benign 37.95 38.15 36.64 36.19 36.62 36.21 39.11 38.89 37.49 37.62 36.3 35.65 35.96 35.57 38.31 38.12
St 0 9.84 25.31 9.35 26.85 29.16 29.86 20.17 29.42 8.97 24.97 8.86 26.29 28.69 29.3 18.99 28.59
St 1 25.39 10.11 27.35 8.86 29.36 30.07 29.4 20.67 24.68 9.24 26.91 8.32 28.82 29.61 28.44 19.18
Dth 0 10.28 24.02 27.16 26.81 10.78 27.97 18.33 28.22 9.58 23.4 26.56 26.27 10.06 27.3 16.94 27.12untargeted

Dth 1 23.13 10.19 26.18 26.78 26.24 10.89 26.96 18.03 22.54 9.57 25.83 26.15 25.86 10.19 26.23 16.83
St 0 27.05 30.13 26.08 29.6 31.32 31.26 31.32 32.59 27.03 29.82 26.07 29.3 30.94 30.99 30.92 32.13
St 1 29.68 27.5 29.89 25.44 31.23 31.43 32.61 31.41 29.45 27.47 29.77 25.41 30.81 31.06 32 31.03
Dth 0 24.08 28.34 29.19 28.74 24.68 29.35 29.19 31.12 24.06 28.15 28.88 28.5 24.65 29.14 28.88 30.62vanish

Dth 1 27.97 24.17 29.05 28.84 28.9 24.18 30.9 28.86 27.65 24.16 28.85 28.48 28.39 24.18 30.3 28.49
St 0 26.44 32.12 24.48 31.09 32.49 32.73 31.05 34.27 26.33 31.94 24.38 30.66 32.16 32.16 30.64 33.62
St 1 31.81 27.2 31.39 23.38 32.46 32.8 34.1 31.26 31.53 27.05 31.26 23.29 32.06 32.5 33.52 30.89
Dth 0 24.07 30.71 30.72 30.35 23.65 31.45 29.41 33.16 24.03 30.45 30.45 29.97 23.58 31.12 29.09 32.52fabrication

Dth 1 29.68 23.29 30.33 30.11 30.31 23.06 32.21 28.74 29.28 23.22 30.02 29.78 29.88 22.98 31.75 28.33
St 0 23.26 31.59 20.13 30.77 32.46 32.21 29.92 33.78 23.21 31.2 20.1 30.37 32.13 31.94 29.58 33.12
St 1 31.52 23.95 31.26 19.46 32.35 32.65 33.8 30.06 31.23 23.89 30.94 19.42 31.85 32.14 33.17 29.53
Dth 0 21.41 30.19 30.5 30.18 19.94 30.62 28.22 32.51 21.33 29.9 30.26 29.68 19.9 30.39 27.98 31.93mislabelling ll

Dth 1 29.74 21.01 30.28 30.35 30.36 19.57 32.21 27.94 29.39 20.96 30.07 29.96 29.98 19.55 31.67 27.56
St 0 21.22 34.67 19.08 33.11 34.07 34.48 28.9 36.07 20.86 34.12 18.85 32.68 33.59 33.93 28.33 35.18
St 1 33.68 21.36 33.49 18.12 34.07 34.24 35.69 28.99 33.37 21.05 33.05 17.87 33.76 33.73 35.03 28.16
Dth 0 20.87 33.57 33.13 32.8 19.58 32.95 28.21 34.96 20.62 33.07 32.71 32.33 19.45 32.8 27.65 34.43mislabelling ml

Dth 1 33.21 20.81 32.9 32.67 32.94 19.38 34.93 27.96 32.67 20.53 32.52 32.3 32.54 19.03 34.21 27.43

Table A.3. mAP for Multi Model TTA Affirmative and TTA WBF in Pre-
dicting Adversarial examples Underlined numbers means that adversarial ex-
amples are generated on one of the prediction models.

Multi TTA WBF Multi TTA Affirmative
StDth0 StDth1 StAES0 StAES1 DthAES0 DthAES1 3Mix0 3Mix1 StDth0 StDth1 StAES0 StAES1 DthAES0 DthAES1 3Mix0 3Mix1

Benign 40.9 41.13 39.66 39.22 39.73 39.34 41.75 41.67 39.68 39.75 38.4 37.8 38.41 37.95 40.07 39.92
St 0 17.48 28.2 18.19 29.59 31.74 32.26 24.55 31.61 15.53 26.78 16.54 28.54 30.47 30.91 22.15 29.95
St 1 28.18 18.09 30.24 17.91 32.23 32.84 31.81 25 26.7 16.17 29.02 16.33 30.96 31.53 30.26 22.54
Dth 0 16.97 27.06 29.64 29.35 19.16 30.81 23.39 30.56 14.53 25.66 28.4 27.94 17.24 29.22 20.83 28.65untargeted

Dth 1 25.82 16.71 28.86 29.25 29.32 18.88 29.41 23.03 24.56 14.52 27.54 27.75 28.14 17.16 27.9 20.45
St 0 31.42 33.46 30.99 32.36 34.05 34.05 34.43 35.23 30.81 32.26 30.36 31.42 33.2 33.02 33.45 33.84
St 1 32.76 32.17 33.04 30.39 34.25 34.33 35.22 34.63 31.75 31.52 32.27 29.61 33.16 32.96 33.87 33.29
Dth 0 28.82 31.78 32.02 31.68 29.87 32.45 32.58 33.86 28.18 30.94 31.01 30.92 29.09 31.6 31.27 32.75vanish

Dth 1 31.26 29.25 32.13 31.74 32.31 29.29 33.69 32.33 30.33 28.31 31.01 30.7 30.94 28.5 32.21 31.07
St 0 32.12 35.33 31.49 34.11 35.17 35.68 34.9 36.84 31.24 34.18 30.52 32.86 34.08 34.38 33.54 35.15
St 1 34.46 33.11 34.37 30.8 35.29 35.6 36.4 35.36 33.31 32.11 33.21 29.76 34.1 34.44 34.97 33.82
Dth 0 30.41 34.1 33.56 33.39 30.79 34.3 33.6 35.86 29.54 33.05 32.56 32.44 30.17 33.07 32.51 34.33fabrication

Dth 1 32.75 30.66 33.27 33.18 33.35 30.76 34.91 33.58 31.58 29.67 32.22 32.12 32.14 29.74 33.33 32.27
St 0 30.99 34.6 29.53 33.5 35.1 35.14 34.24 36.21 30.24 33.35 28.73 32.39 33.98 33.99 33.03 34.58
St 1 34.29 32.04 34.08 29.03 35.03 35.39 36.15 34.59 33.02 31.22 33.14 28.3 34.07 33.96 34.84 33.16
Dth 0 29.46 33.48 33.28 33.06 29.41 33.69 32.89 35.11 28.56 32.64 32.52 31.89 28.85 32.56 32.04 33.75mislabelling ll

Dth 1 32.87 29.72 33.27 33.14 33.42 28.75 34.9 32.71 31.7 28.76 32.31 32.2 32.4 28.13 33.6 31.68
St 0 30.34 37.01 28.69 35.78 36.69 37.12 34.03 38.15 28.98 35.65 27.66 34.51 35.38 35.8 32.36 36.39
St 1 36.16 30.93 35.92 28.24 36.62 37.09 37.69 34.23 34.88 29.7 34.88 27.3 35.57 35.76 36.22 32.6
Dth 0 30.12 36.09 35.36 35.32 29.36 35.75 33.44 37.16 28.72 34.8 34.35 34.09 28.39 34.65 31.94 35.71mislabelling ml

Dth 1 35.76 30.77 35.4 35.29 35.73 29.52 37.14 33.85 34.33 29.53 34.28 34.14 34.42 28.55 35.41 32.37

95



Original Orig AES 4 Bits 4 Bits AES Dth Dth-AES

Figure A.1. MS-COCO-2017 MoNet Examples
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