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ABSTRACT

This study examines data-driven contract design in the small data regime and large data

regime respectively, and the implications from contract pricing in the pharmaceutical supply

chain. We provide below a brief description of the results obtained for the specific problems

considered in this study.

In the first problem discussed in Chapter  2 , we study supply chain contract design under

uncertainty. In this problem, the retailer has full information about the demand distribution,

while the supplier only has partial information drawn from past demand realizations and

contract terms. The supplier wants to optimize the contract terms, but she only has limited

data on the true demand distribution. We apply a distributionally robust optimization

approach. We show that the classical approach for optimizing the contract terms is fragile

in the small data-driven regime by identifying several cases where it incurs a large loss. We

propose a robust model for contract design where the uncertainty set requires little prior

knowledge from the supplier, and effectively combines the supplier’s information from past

demand realizations and past interactions with the retailer. We show how to optimize the

supplier’s worst-case profit based on this uncertainty set. In single product case, the worst-

case order quantity can be found through bisection search. In the multi-product case, we

give a cutting plane algorithm for finding the worst-case order quantity and the worst-case

distribution. We also demonstrate the asymptotic optimality of our uncertainty set. Our

model offers a versatile framework for combining different sources of information into a single

distributionally robust optimization problem. We demonstrate the advantage of our robust

model by comparing it against the classical data-driven approaches. This comparison sheds

light on the value of information from interactions between agents in a game-theoretic setting,

and suggest that such information should not be neglected in data-driven decision-making.

In the second problem discussed in Chapter  3 , we investigate the supply chain contract

design problem faced by a data-driven supplier who needs to respond to the inventory de-

cisions of the downstream retailer. Both the supplier and the retailer are uncertain about

the market demand and need to learn about it sequentially. The goal for the supplier is

to develop data-driven pricing policies with sublinear regret bound under a wide range of
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retailer’s inventory learning policies for a fixed time horizon. To capture the dynamics in-

duced by the retailer’s learning strategy, we first make a connection to nonstationary online

learning by following the notion of variation budget. The variation budget quantifies the

impact of the retailer’s learning strategy on the supplier’s decision-making environments.

We then propose dynamic pricing policies for the supplier for both discrete and continuous

demand. We also note that our proposed pricing policy only requires access to the support

of demand distribution, but critically, does not require the supplier to have any prior knowl-

edge about the retailer’s inventory policy or the demand realizations. We examine several

well known data-driven policies for the retailer, including sample average approximation,

distributionally robust optimization, and parametric approaches, and show that our pricing

policies lead to sublinear regret bounds under these retailer policies. At the managerial level,

we answer affirmatively that there is a pricing policy with a sublinear regret bound under

a wide range of retailer’s learning policies, even though she faces a learning retailer and an

unknown demand distribution. Our work also provides a novel perspective in data-driven

operations management where the principal has to learn to react to the learning policies

employed by other agents in the system.

In the third problem discussed in Chapter  4 , we investigate the implications from sup-

ply chain contract pricing from the pharmaceutical supply chain. This implication uncovers

the intricate relationship between drug reimbursement shortage and drug shortage problem.

Generic drug shortages have been a major challenge for the U.S. pharmaceutical industry and

the government, causing severe consequences and drawing widespread attention. Recogniz-

ing that the reimbursement policies affect shortages through affecting supply chain parties’

contract pricing decisions, we investigate the link between drug reimbursement policies and

drug shortages for generic drugs by analyzing a drug supply model that captures the elements

and tradeoffs in the drug wholesale price decisions under the reimbursement policies. We

find that under the current policy, the interplay of two opposing effects, the free-ride effect

and the coordination effect, determines the pricing decisions and shortage occurrences. We

capture key factors influencing these effects and show that the current reimbursement policy

actually possesses resilience to shortages of these generic drugs. In the end we also provide
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data-driven solutions to the contract pricing decisions for the GPOs under uncertainty to

mitigate drug shortages.
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1. INTRODUCTION

Contracting is a longstanding topic in OM. In supply chain, the seller (for example, manu-

faturer or upstream supplier) sells products to and get payment from the buyer (usually the

downstream retailer) through setting up a contract. The contract terms specify how many

units the buyer is going to purchase from the seller and how much the buyer is going to pay

to the seller. Contracts guarantee the proper operations inside a supply chain, and also serve

as tools for the supply chain parties to leverage for their own independent interest. When

the supply chain parties design contract, they may face several sources of uncertainties. For

example, they have uncertainty about the market demand, they are uncertain about their

upstream suppliers or downstream retailers’ decisions, and they are uncertain about their

competitors’ decisions. In this study, we examine contract designing problem under these

sources of uncertainties.

In Chapter  2 , we study data-driven approaches for the supplier to price a supply chain

contract under market demand uncertainty. The development of this chapter is motivated

by the fact that sometimes supply chain contract data is very limited because contract

terms usually last for a long time [ 1 ]. Based on this fact, we identify senarios where the

classical data-driven approaches do not work well, and we propose a distributionally robust

optimization approach to effectively combine different sources of information into a versatile

decision making framework for the supplier.

In Chapter  3 , we study data-driven approaches for the supplier to price a supply chain

contract under uncertainties in its downstream retailer’s inventory learning policies as well

as market demand. We consider a fixed time horizon, and design dynamic pricing policies

for the supplier to maintain a balance between exploration of the uncertainties and the

exploitation about a potentially good price. The proposed pricing policies lead to sublinear

regret bound for the supplier under a wide range of retailers’ inventory learning policies.

In Chapter  4 , we study a practical supply chain contracting problem originated from the

pharmaceutical supply chain, where the GPOs (representatives of healthcare provides) need

to make pricing decisions in purchasing drugs from drug manufacturers. While the GPOs

face intense competitions from each other and they are uncertain about each other’s pricing
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strategies, we adopt Nash equilibrium as a solution concept. Under the Nash equilbrium, we

uncover the impact of the reimbursement policy change taking place in 2005 for Medicare

Part B drugs on drug shortages. In the end, we also provide data-driven solutions to the

contract pricing decisions for the GPOs under supply uncertainty to mitigate drug shortages.

A brief introduction of this dissertation is provided below.

1.1 Data-driven Supply Chain Contract in the Small Data Regime

We study a two tier supply chain with uncertain market demand. The supply chain is

decentralized and the retailer has better knowledge of market demand than the supplier.

The supplier (she) and the retailer (he) set contracts for the transfer of money and goods,

and the supplier is the price setter. This situation may arise, for example, when the supplier

is a major corporation or monopoly that is far from the local market, and the retailer is

small but can easily track local demand. For example, Ecuador and Columbia are widely

recognized for their cut flower industry. Large vertically integrated firms in these countries

like Floratrading grow flowers at the production bases, and then export them to rural florists

in other countries [ 2 ]. In Columbia, 40 flower producers with a size greater than 50 hectares

account for 50% of exports, which are distributed through various channels to small retailers

including traditional florist shops, roadside vendors, and gas stations [ 3 ].

We study the supplier’s pricing problem. One salient feature of supply chain contracts is

their duration - the contract terms may extend for a long time. [ 1 ] collected data on 22, 039

unique contracts, for which the mean contract duration is 40.22 months with a standard

deviation of 31.65 months, so the supplier may not have much past contract data. Thus, we

focus on the situation where it is time consuming or costly for the supplier to obtain both

market demand data and historical contract records.

1.2 Learning to Price Supply Chain Contract against a Learning Retailer

Rapid development of big data analytics has enabled data-driven supply chain manage-

ment for companies in different industries. According to a survey conducted by [ 4 ] with 212

supply chain leaders from varying sections and company sizes, around 18% of the respon-
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dents have already pivoted to big data analytics and 61% of the respondents plan to adopt

big data analytics in the next 12-36 months. Big data analytics has also automated the

decision-making of companies, and strengthened the agility of the upstream supply chain

(e.g., suppliers) to respond to downstream (e.g., retailers and market demand) changes. Mo-

tivated by this observation, we study the supply chain contract design problem faced by a

data-driven supplier that needs to respond to a downstream retailer who is uncertain about

market demand and employs big data analytics tools to make inventory decisions.

We study this problem through the lens of the supplier. The supplier (she) sells a

product to a retailer (he) who faces uncertain market demand over a selling horizon of

T periods, where the supplier sets a wholesale price (i.e., contract) for the retailer in each

period. Then, the retailer makes a decision on the order quantity accordingly, which also

determines the supplier’s profit. The retailer does not know the market demand distribution

in advance, and may employ a data-driven inventory learning policy that is unknown to the

supplier. The supplier does not know the market demand distribution either, and she has to

sequentially balance the trade-off between exploring the retailer’s response to different prices

and exploiting profitable prices found so far. This situation may arise in many scenarios.

For example, when selling newly introduced products, both the supplier and the retailer are

uncertain about the demand of the product and thus have to learn it on the fly.

The supplier’s goal is to choose the price to maximize her total profit over the selling

horizon. We measure her performance through the notion of regret with respect to a clair-

voyant benchmark who has the same information as the retailer (and can predict his orders)

and thus chooses the optimal wholesale prices in each period. This problem is challenging

due to the following two sources of uncertainty:

1. Unknown Market Demand: In the full information case, when both the supplier

and retailer have full knowledge about the market demand distribution, the supplier

can directly infer the ordering decisions from the retailer using knowledge about the

market demand (assuming the retailer is profit-driven). However, when neither the

supplier nor retailer has information about the market demand, the retailer has to

learn the demand distribution over time, and the supplier cannot directly infer the
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retailer’s ordering decisions in each period without knowing the retailer’s observations

and inventory learning policy.

2. Uncertain Retailer Inventory Learning Policy: In addition, uncertainty on the

retailer’s inventory learning policy makes it particularly challenging to optimize the

supplier’s profit function, since the retailer can employ a variety of learning policies,

and each policy is a mapping from the information received by the retailer to an order

quantity. That is, the retailer makes inventory decisions as a response to the supplier’s

wholesale prices, the observed demand realizations, and his particular inventory learn-

ing policy. In this case, even if the supplier had known the market demand (yet the

retailer still does not know it), inferring the retailer’s learning policy from his ordering

decisions is not an easy task.

To this end, we ask the following main question: Does there exist a pricing policy for the

supplier with a sublinear regret bound that does not require knowledge of the specific data-

driven inventory learning policy used by the retailer? If there is such a pricing policy with

a sublinear regret bound, then this policy will have no optimality gap with respect to a

clairvoyant benchmark’s profit asymptotically.

The setting in our paper is novel as well as relevant. The data-driven newsvendor has

been studied extensively in the OM literature, but the impact of a data-driven newsvendor

on its upstream supplier’s decisions has not yet been thoroughly investigated. We approach

the supplier’s problem by formulating it as a non-stationary online optimization problem.

However, the non-stationarity in our supplier’s problem is different than in conventional sin-

gle agent non-stationary online problems. In our problem, the non-stationarity lies in the

retailer’s inventory decisions which depend on his inventory learning policy and the informa-

tion he receives. In our case, the non-stationarity of the problem is bounded sublinearly in

T , but the non-stationarity of the retailer’s decisions is not necessarily bounded sublinearly

in T . In addition, the supplier’s online problem has a continuous decision set instead of a

finite one. The literature has studied non-stationary online problems with infinitely many

decisions, but with the assumption that the objective function is strongly convex or at least

continuous. However, we will see that the supplier’s profit function in our problem is not
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necessarily convex/concave or even continuous. Due to these challenges, we need a novel

data-driven policy to achieve sublinear regret for the supplier.

1.3 Contracting in the Pharmaceutical Supply Chain

Drug shortages have posed a major public health threat in the U.S. in recent years. The

number of drug shortages tripled from 2005 to 2010 [ 5 ] and reached 456 in 2012 [ 6 ]. In

2011, 99.5% of U.S. hospitals experienced drug shortages and nearly 50% experienced more

than 20 shortages in the prior 6 months [ 7 ]. Unfortunately, the situation seems to be quite

persistent. After declining from a peak around 2012, the number of ongoing drug shortages

has increased again [ 8 ] and has been generally above 200 at any point of time since 2018

according to the University of Utah Drug Information Service. A recent survey [ 9 ] of nearly

300 pharmacy directors, managers, and purchasing agents shows that 55% of the respondents

experienced more than 20 drug shortages in the prior 6 months.

The persistent drug shortages have led to significant losses in healthcare outcomes due to

medication safety issues or errors, delays or cancellations of patient care, patients receiving

a less effective drug, and even deaths [ 9 ]–[ 11 ]. They have also led to significant annual

labor cost for shortage management, estimated at $216 million in 2011 [ 12 ] and increased

to $360 million by 2019 [ 13 ]. As a result, the drug shortages have spurred legislation efforts

in Congress, a special FDA Drug Shortage Program around 2012, and an FDA task force

in 2018 [ 14 ]–[ 16 ]. Indeed, the complexity of drug shortages has made it one of the biggest

challenges facing the FDA and the pharmaceutical industry:

“As the Congressional letters noted, drug shortages, including those that arise

during emergencies, have been a persistent problem despite public and private

sector efforts to prevent and mitigate them.” [ 8 ]

FDA has been working continuously to find long-term solutions.

The current drug shortages primarily concern generic drugs [ 5 ], [ 6 ], [ 8 ], [ 17 ]–[ 19 ], which

are the focus of investigation in this study. 

1
 Given the severity of these drug shortages, a

1
 ↑ The limited number of brand-name drug shortages usually have quite different causes to which our analysis

does not apply.
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vast number of reports and news articles attempted to identify their causes, with one opinion

linking the shortages to a change in Medicare’s reimbursement policy that affected many of

these drugs (see, e.g., [ 6 ], [ 18 ], [ 20 ]). In the supply chain of these drugs, healthcare providers

(e.g., hospitals), typically represented by group purchasing organizations (GPOs), purchase

drugs from manufacturers at wholesale prices negotiated by the GPOs, and then receive

reimbursement from Medicare based on the reimbursement policy. Before 2005, Medicare

employed an Average Wholesale Price (AWP) policy, where the reimbursement prices were

set according to published list prices. These list prices were not related to actual wholesale

prices and in fact often outdated and sometimes much higher than actual wholesale prices

paid. Hence, the AWP policy was jokingly called “Ain’t What’s Paid” [ 21 ]. In 2005, with the

enactment of the Medicare Prescription Drug Improvement and Modernization Act, Medicare

changed to an Average Sales Price (ASP) policy that reimburses a drug in Medicare Part B

(including most shortage drugs) at 106% of the drug’s actual average wholesale price from

the previous two quarters. Obviously, the ASP policy is more grounded on actual drug

wholesale prices.

While the ASP policy better reflects healthcare providers’ payment for drugs, some schol-

ars and analysts link it to the increasing number of drug shortages. Those holding this

opinion believe that the ASP policy leads to lower drug prices, and hence discourages man-

ufacturers from producing these drugs, contributing to their shortages [e.g.,  20 ], [  22 ]. Some

other scholars, however, disagree with this opinion, reasoning that the policy does not di-

rectly regulate drug prices, but rather requires the reimbursement price to be 6% above

the average wholesale price, which preserves the drug supply chain’s flexibility to adopt any

desired wholesale price [e.g.,  23 ]. While both opinions seem reasonable and contribute to a

long-standing debate, few rigorous studies have been conducted to help clear the doubts on

either side [see, e.g., the related discussion in  8 , p. 84]. More importantly, there has been

limited research on the impact of reimbursement policies on drug pricing decisions, which

is the basis for analyzing the policy impact on drug shortages. Therefore, the objective of

this study is to capture the essential elements and tradeoffs in drug wholesale pricing deci-

sions under the reimbursement policies and investigate the policy impact on drug shortages.
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Throughout our research, we have actively interacted with FDA staff, who have provided

valuable comments and insights, some of which will be discussed in this chapter.

1.4 Organization of the Dissertation

In Chapter  2 , we propose a distributionally robust optimization model for the supplier to

seamlessly integrate the information obtained from demand realizations and from historical

transactions with the retailer. We detail the solution approach for our robust optimization

model, and also conduct numerical analysis on synthetic and semi-synthetic data set to

compare the performance of our model with classical robust optimization models.

In Chapter  3 , we develop pricing policies for the supplier under discrete and continuous

demand distributions respectively. We derive an upper bound on the regret, and demonstrate

that the pricing policies have sublinear regret bound under a wide range of retailer’s inventory

policies. We also compare our pricing policies with other algorithms designed for the non-

stationary bandit problem, and show that our pricing policy leads to better performance.

In Chapter  4 , we formulate a Nash competition model for the GPOs facing uncertainties

in their competitors’ pricing decisions when they purchase drugs from the drug manufacturer.

We investigate the impact of reimbursement policy change in Medicare Part B drugs on drug

shortages. In the end, we also provide data-driven solutions to the contract pricing decisions

for the GPOs under supply uncertainty.

Finally, we conclude our study and provide future research directions in Chapter  5 .

Chapter  2 is based on [  24 ], Chapter  3 is based on [  25 ], and Chapter  4 is based on

[ 26 ]. I would like to express my sincere appreciation to my coauthors for their invaluable

contributions.
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2. DATA-DRIVEN DISTRIBUTIONALLY ROBUST SUPPLY

CHAIN CONTRACTS WITH SMALL DATA

2.1 Synopsis

We study a two tier supply chain with uncertain market demand. The supply chain is

decentralized and the retailer has better knowledge of market demand than the supplier.

The supplier (she) and the retailer (he) set contracts for the transfer of money and goods,

and the supplier is the price setter. We propose a robust approach to address the supplier’s

uncertainty in market demand, and we emphasize the small data regime where the supplier’s

data is limited. In the small data regime, we show that some widely studied policies can

perform badly, and our proposed robust approach leads to better performance. We focus

our study on wholesale price contracts [ 27 ]–[ 29 ]. We summarize our main findings in the

following:

1. To motivate our robust approach, we show that SAA and parametric estimation can

perform poorly in the small data regime. For instance, a supplier who uses SAA is

likely to set the wholesale price equal to the retailer’s selling price and earn zero profit.

The parametric approach can fail to distinguish between two parametric distributions

that are close to each other (in the Kullback-Leibler divergence) and then incur up to

100% relative loss.

2. Motivated by the shortcomings of the classical approach, we develop a distributionally

robust model for the supplier’s problem [ 30 ], [ 31 ]. Like classical DRO, our uncertainty

set consists of distributions that are close to a nominal distribution. However, we

differ from classical DRO because the nominal distribution in our uncertainty set must

reflect both the demand data and the contract history. Although we focus on the small

data regime, we show that our model is asymptotically optimal as the supplier collects

more data.

3. We optimize the supplier’s worst-case profit over the uncertainty set. In the single

product case, the retailer’s robust optimal order quantity can be found through bisec-
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tion search. In the multi-product case, the retailer’s robust order quantities can be

found using cutting plane algorithms.

4. In our numerical experiments, we compare our model with benchmarks based on de-

mand data only and contract history only. We find that our robust model gives a more

accurate estimate of the supplier’s actual profit, and that it is generally less conserva-

tive, than the two benchmarks. We also find that the relative benefit of our model to

SAA is highest when the cost/price ratio c/s is of intermediate value.

2.1.1 Organization and Notation

This paper is organized as follows. In Section  2.3 , we introduce the supplier’s problem

in the contract design when both the supplier and retailer have full information about the

demand distribution. In Section  2.4 , we consider the effectiveness of classical data-driven

policies, and we demonstrate that these methods can perform poorly in the small data regime.

In Section  2.5 we introduce the DRO approach for the supplier’s problem in the data-driven

regime. Then, in Sections  2.6 and  2.7 , we solve the supplier’s robust problem for the single

product and multi-product cases, respectively. Section  2.8 reports numerical experiments,

and we conclude the paper in Section  3.8 . All proofs are organized in the Appendix.

Notation

We let R denote the real numbers and R+ denote the nonnegative real numbers. The

p−norm on Rn for 1 ≤ p ≤ ∞ is denoted ∥ · ∥p. For any x ∈ Rn, we use δx to denote

the Dirac measure at x. For an integer n ≥ 1, let [n] ≜ {1, 2, . . . , n} be the running index

set. Throughout this paper, we adopt the conventions of extended arithmetic, whereby

∞× 0 = 0×∞ = 0/0 = 0 and ∞−∞ = −∞+∞ = 1/0 =∞.

Let ξ and ξ′ be random variables with common support Ξ ⊂ Rn, let Π(ξ, ξ′) be their

joint distribution on Ξ × Ξ, and let Π(Ξ, ξ′) and Π(ξ,Ξ) be the corresponding marginal

distributions of ξ′ and ξ respectively. For probability measures Pi defined on measurable

spaces (Ωi,Fi) for i ∈ [n], we use ×n
i=1Pi to denote the product measure with marginal

distributions {Pi}i∈[n]. For any x ∈ R, let ⌈x⌉ denote the smallest integer that is larger than
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or equal to x. Let U [a, b] denote the uniform distribution with support on [a, b], and let

T N (µ,Σ,Ξ) denote a truncated Gaussian distribution with mean µ and covariance matrix

Σ truncated to Ξ.

Throughout this chapter, we write ’max’ instead of ’sup’ and ’min’ instead of ’inf’. When

the optimal solution to the optimization problem does not exist, an ”optimal solution” means

an ϵ−optimal solution for ϵ > 0 arbitrarily small.

2.2 Literature Review

Supply chain contracts and information asymmetry

Our work is related to contract design with information asymmetry [  32 ]–[ 34 ]. The typical

approach is to model the information asymmetry as an unknown parameter, and then to pro-

pose a mechanism design framework. Compared to this approach, we model the information

asymmetry through an unknown distribution (which is essentially an infinite-dimensional

parameter). Wholesale price contracts are particularly well studied. [ 29 ] study the price

of anarchy for price-only contracts. [ 35 ] find that price-only contracts perform sufficiently

well under information asymmetry about the demand distribution. [  28 ] and [ 36 ] consider

contracting with moral hazard, and prove the worst-case optimality of price-only contracts.

Robust game theory and robust contracts

Robust game theory has been studied in the literature [ 37 ]–[ 39 ]. The previous literature

has modeled supply chain contracts with information asymmetry as a Stackelberg game.

[ 40 ] studies wholesale price contracts when either the supplier or the retailer faces demand

uncertainty with fixed first and second moments. [ 41 ] study design of a robust profit shar-

ing contract where the retailer faces random demand and random selling price with moment

uncertainty. They derived the relationship between the robust wholesale prices, order quanti-

ties, and profit shares. We also study supply chain contract design, but from the data-driven

perspective, and we construct the uncertainty set based on the information that is revealed

through the interactions between the supplier and the retailer.
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Data-driven decision-making

[ 42 ] and [  43 ] propose operational data analytics for the newsvendor problem with para-

metric demand distributions. [ 44 ] provide an exact finite sample analysis for the relative

expected regret of SAA, and derive an optimal policy for the newsvendor problem in this

setting. [ 45 ] study the advantage of data pooling for large-scale systems with unrelated op-

timization problems and limited data. [ 46 ] introduce bias corrected policies for optimization

problems with a linear objective and uncertain parameters, based on Stein’s Lemma in the

small-data large-scale regime. [ 47 ] uses the estimated gradient of the optimal objective value

to debias the out-of-sample performance of a class of affine plug-in policies for optimization

problems with a linear objective when data is limited. [ 48 ] study tail behavior when data

is limited using robust optimization and [ 49 ] study quantile optimization when simulations

are expensive.

2.3 The Supplier’s Classical Problem

The supplier offers a wholesale price contract to a retailer for the sale of n products with

random demand. A wholesale price contract specifies the wholesale prices w = (wi)i∈[n] for

all n products. The supplier’s production costs are c = (ci)i∈[n], and the retailer’s selling

prices are s = (si)i∈[n]. We assume c ≤ s so that it is possible for both the retailer and

supplier to make a profit, and we let W ⊂ [c, s] be the set of admissible wholesale prices.

Let ξ = (ξi)i∈[n] be the vector of random demand for all n products defined on an

underlying measurable space (Ω,F), where ξi is the demand for product i ∈ [n]. We assume

the demand has compact support.

Assumption 2.3.1. Demand ξ has support Ξ ≜ [0, ξ̄]n for 0 ≤ ξ̄ <∞.

We let P(Ξ) be the set of all probability measures on Ξ, with respect to the Borel σ−algebra

on Ξ. A generic demand distribution is denoted P ∈ P(Ξ), with ξi−marginal of P denoted

Pi ∈ P([0, ξ̄]). Throughout this paper, we let P̄ ∈ P(Ξ) denote the true demand distribution

of ξ. The (true) ith marginal of P̄ is denoted P̄i ∈ P([0, ξ̄]).
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Under a wholesale price contract, when the supplier offers w and the retailer orders q,

the supplier’s profit is (w − c)⊤q (which does not depend on the demand realization). Let

πr(q; ξ,w) ≜
∑

i∈[n] (si min{ξi, qi} − wiqi) be the retailer’s profit when the demand realiza-

tion is ξ, and let EP̄ [πr(q; ξ,w)] be the retailer’s expected profit. For product i ∈ [n],

given wholesale price wi, the retailer knows the true demand distribution is P̄ and will order

qi(wi; P̄i) ≜ minqi≥0{q : P̄i(ξi ≤ qi) ≥ 1 − wi/si}. We let q(w; P̄) ≜ (qi(wi; P̄i))i∈[n] denote

the vector of retailer optimal order quantities corresponding to w and P̄.

In the classical approach, the supplier also knows that the true demand distribution is

P̄ and so she knows how the retailer will respond to any wholesale price w ∈ W via the

mapping q(w; P̄). For wholesale prices w, the supplier knows her corresponding profit will

be π(w; P̄) ≜ (w − c)⊤q(w; P̄), and she wants to solve:

max
w∈W

π(w; P̄). (2.1)

We let w∗ ∈ W denote an optimal solution to Problem ( 2.1 ).

2.4 Classical Approach in the Data-Driven Regime

In this paper, we are concerned with the supplier’s problem when she has historical data

but does not precisely know the demand distribution. We first ask how the classical approach

performs in the data-driven setting (for n = 1) based on SAA and the parametric approach.

We consider the relative loss of the wholesale price w given by both methods with respect

to the one given by the true demand distribution P̄, which is (π(w∗; P̄)− π(w; P̄))/π(w∗; P̄).

We show that both SAA and the parametric approach can have high relative loss, especially

when the number of samples is small.

2.4.1 Sample Average Approximation

The empirical distribution corresponding to historical demand realizations (ξt)t∈[T ] is

P̂e
T ≜ 1

T

∑
t∈[T ] δξt . Based on P̂e

T , the supplier predicts the retailer will order q(w; P̂e
T ) when

given wholesale price w. Let ξ[k] denote the kth order statistic of (ξt)t∈[T ], then the retailer’s
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optimal order quantity given w and P̂e
T is q(w; P̂e

T ) = ξ[⌈(1−w/s)T ⌉] [ 50 ], [ 51 ]. The supplier’s

corresponding profit is π(w; P̂e
T ) = (w − c)ξ[⌈(1−w/s)T ⌉], and the supplier solves:

wSAA
T ∈ arg max

w∈[c,s]
π(w; P̂e

T ). (2.2)

We show that if the supplier makes predictions using P̂e
T , then she is likely to set w = s

(when the set of admissible wholesale prices is [c, s]) and not make any profit.

In our first experiment, we suppose demand satisfies ξ ∼ T N (µ, σ2,Ξ) where µ = 500,

σ = 150, and Ξ = [0, 1000]. We let selling price s = 50 and production cost c = 10.

In Figure  2.1 , we compare the profit π(w; P̄) under the true demand distribution and the

profit π(w; P̂e
T ) based on the empirical distribution for different wholesale prices. We use

500 replications (where for each replication, T = 5 demand samples are randomly drawn)

to compute the expected value of π(w; P̂e
T ). Figure  2.1 shows the average of the supplier’s

profit π(w; P̂e
T ) over the 500 replications. We see that the supplier’s true profit function

is smooth, but her SAA-based profit is piecewise linear. Indeed, this unusual feature of

the SAA-based solution is not a coincidence for this particular demand distribution. The

retailer’s best response function q(w; P̂e
T ) is piecewise constant in w. However, the supplier’s

profit function is bilinear in w and q. This explains why the SAA-based profit function is

piecewise linear in w. Figure  2.1 also shows that if the supplier maximizes the SAA-based

profit, she will eventually set the wholesale price close to w = s, and make almost no profit.

In our second experiment, suppose demand satisfies ξ ∼ U [0, 1]. In Figure  2.2 , we plot

the relative loss of wSAA
T as a function of T for different c/s ratios. Still we generate 500

replications (for each replication T demand realizations are drawn). For each replication,

we calculate the relative loss of wSAA
T and Figure  2.2 shows the averaged relative loss over

the 500 sample paths. We see that when T is small (i.e., T ≤ 5), the relative loss of wSAA
T

is 100%. As in our previous experiment, the supplier has a tendency to set w = s based on

P̂e
T , particularly for T small. Furthermore, this tendency to set w = s is stronger for larger

c/s ratios.
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2.4.2 Parametric Approach

Now suppose that demand follows either the exponential distribution Pλ (with mean 1/λ

for λ > 0) or the Pareto distribution P(θ,α) (with scale parameter θ > 0 and shape parameter

α > 0). The supplier first needs to distinguish if the true demand distribution is exponential

or Pareto, and then estimate the corresponding parameters. However, these two distributions

can be close enough to each other that it is statistically hard to distinguish between them

based on the demand samples, and the supplier can possibly choose the wrong distribution.

Under the exponential distribution, the retailer’s optimal order quantity is q(w;Pλ) =

1
λ
ln(s/w) [ 42 ]. In this case, the supplier’s optimal wholesale price is the maximizer of

(w − c) ln(s/w), which is independent of λ. Under the Pareto distribution, the retailer’s

optimal order quantity is q(w;Pθ,α) = θ(s/w)1/α [ 52 ]. In this case, the supplier’s optimal

wholesale price is w = s and the corresponding retailer order quantity is θ.

If the supplier sets prices based on the Pareto distribution when the true demand dis-

tribution is exponential, she will incur a 100% relative loss. Suppose the supplier wants to

conduct a statistical test to see if the true distribution is exponential or Pareto based on

demand samples (ξt)t∈[T ]. Table  2.1 shows the probability that the supplier fails to distin-

guish between the two as a function of T (we explain how to compute these probabilities in

Appendix  A.2.1 ). From Table  2.1 , we see that when T is small (e.g., T ≤ 10), the probability

of miss-specifying the distribution is close to 0.5, which is not much better than just flipping

a coin.

Table 2.1. Probability of failing to distinguish between Pλ and P(θ,α) (λ = 0.1,
θ = 300, α = 30)

T 2 5 10 20 50 100

Probability 0.483 0.473 0.462 0.446 0.415 0.380

2.5 Robust Approach in the Data-Driven Regime

In practice, the retailer may get close access to the market (e.g., by launching marketing

campaigns or learning from consumer sales data) and know the true demand distribution.
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In contrast, the supplier may be far from the local market and so may experience uncer-

tainty about the demand distribution. Then, the case where the retailer knows the demand

distribution P̄, but the supplier has only partial demand information, is important.

The previous section demonstrated that the classical approach may not perform well in

the data-driven setting because it does not account for the inherent estimation uncertainty

in the small data regime. In this section, we propose a robust approach that explicitly

accounts for this uncertainty, and additionally exploits the information from the retailer to

help mitigate this uncertainty.

2.5.1 Uncertainty Set

The main ingredient to the robust approach is an uncertainty set, based on the supplier’s

data, that she believes contains all reasonable candidates for the demand distribution. Let

wt
i , qti , and ξti be the wholesale price, corresponding retailer order quantity, and demand

realization for product i ∈ [n], respectively, in period t. The supplier’s data consist of

T historical data points {(wt, qt, ξt)}t∈[T ] where wt = (wt
i)i∈[n] are the wholesale prices,

qt = (qti)i∈[n] are the retailer order quantities, and ξt = (ξti)i∈[n] is the demand realization for

period t ∈ [T ].

First we identify those distributions that are compatible with the past retailer data. The

retailer has full knowledge of the demand distribution and will always order optimally. So,

for each t ∈ [T ], we know that qt has to be a maximizer of the retailer’s expected profit

corresponding to wt. We need only consider demand distributions P for which this is the

case, i.e., qt ∈ argmaxq≥0 EP[πr(q, ξ;w
t)], which is a condition on P. We then define Do

T ≜

{P ∈ P(Ξ) : qt ∈ argmaxq≥0 EP[πr(q, ξ;w
t)], ∀t ∈ [T ]} to be the set of demand distributions

compatible with all past retailer orders.

We can characterize Do
T explicitly using the retailer’s first-order optimality conditions.

We get simpler conditions under the following assumption (which is only a condition on the

true demand distribution P̄, not on all admissible distributions).

Assumption 2.5.1. The true demand distribution P̄ is continuous (i.e., there are no atoms).
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This assumption is not strictly necessary, since if P̄ is discrete, one can derive the first-order

necessary and sufficient conditions using the perturbation method, see, e.g., [ 53 , Theorem

3]. We impose this assumption just to simplify the exposition.

Under Assumption  2.5.1 , the necessary and sufficient conditions for the retailer’s optimal

order quantities are:

Pi(ξi ≤ qi) = 1− wi/si, ∀i ∈ [n]. (2.3)

When q and w are fixed, Eq. ( 2.3 ) is a condition on P, and we can write

Do
T =

{
P ∈ P(Ξ) : Pi(ξi ≤ qti) = 1− wt

i/si, ∀i ∈ [n], t ∈ [T ]
}
.

In particular, Do
T is the intersection of the probability simplex P(Ξ) with linear constraints

(and so it is convex).

We now choose a center distribution P̂T ∈ P(Ξ), which represents our nominal belief

about the true distribution. Our uncertainty set will consist of all distributions in Do
T that

are close enough to P̂T , so we need a notion of distance on P(Ξ). We will use the Wasserstein

distance.

Definition 2.5.1. (Wasserstein distance, [  54 ]) Let C(P, P′) denote the set of all joint dis-

tributions Π on Ξ × Ξ with marginals P and P′, respectively. The Wasserstein distance

W2 : P(Ξ)× P(Ξ)→ R+ with respect to the 2−norm is:

W2(P,P′) ≜

(
inf

Π∈C(P,P′)

∫
ξ,ξ′∈Ξ

∥ξ − ξ′∥22Π(dξ, dξ′)
)1/2

. (2.4)

We require P̂T to reflect both the retailer and the demand information. The retailer

information is captured by Do
T , and the demand information is captured by the empirical

distribution P̂e
T ≜ 1

T

∑
t∈[T ] δξt . To synthesize this information we take the projection of P̂e

T

onto Do
T :

P̂T ∈ arg min
P∈Do

T

W 2
2 (P, P̂e

T ). (2.5)

Problem ( 2.5 ) is a convex optimization problem since W2 is a metric and Do
T is a convex set.
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To complete the construction of our uncertainty set, we need a confidence parameter

θ ≥ 0 which controls its size. When we are very confident, we would choose a small θ

corresponding to a smaller uncertainty set, while when we lack confidence, we would choose

a large θ corresponding to a larger one. The confidence parameter θ can be chosen using

cross validation [e.g.,  55 ], [  56 ], see Appendix  A.3.1 .

Finally, we define our uncertainty set to be Dθ(P̂T ) = {P ∈ Do
T : W2(P, P̂T ) ≤ θ}. The

retailer data enters through Do
T , and the demand and retailer data both enter through P̂T .

We also note that Dθ(P̂T ) is convex by convexity of W2 (as a metric) and the fact that Do
T

is convex.

2.5.2 Supplier’s Robust Problem

In our robust approach, the supplier’s problem is to maximize the worst-case profit among

admissible distributions in Dθ(P̂T ). For fixed wholesale prices w, the supplier’s worst-case

profit is

πT,θ(w) ≜ min
P∈Dθ(P̂T )

(w − c)⊤q(w;P). (2.6)

Unlike classical DRO problems, the unknown distribution P does not directly enter the

objective here. Rather, it indirectly influences the supplier’s objective through the retailer’s

order quantity q(w;P). When the minimum in Eq. ( 2.6 ) is attained by some Pw,θ ∈ Dθ(P̂T ),

the supplier’s worst-case profit is precisely πT,θ(w) = (w− c)⊤q(w;Pw,θ), i.e., the supplier’s

profit when the demand distribution is Pw,θ. In this case, we refer to Pw,θ as the worst-

case distribution corresponding to w. In Theorem  2.6.1 (Section  2.6 ) and Theorem  2.7.2 

(Section  2.7 ), we establish the existence of Pw,θ (when θ is small enough) and show how to

compute it.

The supplier’s corresponding robust problem is:

max
w∈W

min
P∈Dθ(P̂T )

(w − c)⊤q(w;P). (2.7)
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In practice, the wholesale prices may be taken from a menu, and the monetary values them-

selves are discrete (e.g., $1, $2, . . .), so we suppose W is finite. When W is finite (and

moderately sized), we can solve Problem ( 2.7 ) by iterating over w ∈ W .

When W is continuous, it is known that even for n = 1 in the full information setting,

the supplier’s profit function is not necessarily concave and is difficult to optimize. If the

demand distribution has the increasing generalized failure rate (IGFR) property, then the

supplier’s profit function is unimodal [ 27 ]. In our case, the worst-case distribution does

not necessarily enjoy the IGFR property, so the worst-case profit is not guaranteed to be

unimodal. [ 57 ] studies moment problems which require the worst-case distribution to have

IGFR, but it is unclear how to incorporate their idea into our framework. Furthermore, we

allow n ≥ 1, so even unimodality in any single wi does not guarantee tractability of the

supplier’s robust problem. WhenW is continuous, Problem ( 2.7 ) becomes a bilevel program

(see Appendix  A.3.2 ). In general, a deterministic bilevel program with linear upper and

lower level objectives and constraints is NP-hard [ 58 ]. Thus, finding the robust optimal

solution in our model when W is continuous can be rather challenging.

2.5.3 Reformulations of the Supplier’s Robust Problem

Problem ( 2.7 ) emphasizes uncertainty from the perspective of the demand distribution.

We can also emphasize uncertainty from the perspective of the retailer order quantities,

which leads to two useful reformulations of Problem ( 2.7 ). These reformulations provide

different interpretations of the distributionally robust Stackelberg game. In addition, they

facilitate the computation of the worst-case profits. Through Reformulation (  2.9 ), the worst-

case profit for n = 1 can be found by bisection search. Through Reformulation ( 2.8 ), the

worst-case profit can be found by a cutting plane algorithm (see Section  2.7 ).

Given w, we define the set Qθ(w; P̂T ) ≜ {q : ∃P ∈ Dθ(P̂T ) : Pi(ξi ≤ qi) ≥ 1−wi/si, ∀i ∈

[n]} of retailer order quantities. The set Qθ(w; P̂T ) includes all retailer order quantities that

are optimal for w, for which Pi(ξi ≤ qi) = 1− wi/si holds for all i ∈ [n] as per the retailer’s
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FOC ( 2.3 ). Since each Pi(ξi ≤ qi) is non-decreasing in qi, Qθ(w; P̂T ) includes all larger order

quantities as well. We can then reformulate the worst-case profit equivalently as:

min
q∈Qθ(w; P̂T )

(w − c)⊤q, (2.8)

where we optimize over the retailer’s order quantities. When the minimum is attained in

Eq. (  2.8 ) by some q(w, θ) ≥ 0, the supplier’s worst-case profit is πT,θ(w) = (w−c)⊤q(w, θ).

We refer to q(w, θ) as the worst-case retailer order quantity corresponding to w. Eq. ( 2.8 )

constructs an uncertainty set Qθ(w; P̂T ) for the possible retailer order quantities, and the

worst-case profit is w.r.t. the uncertainty in retailer orders. The literature has also studied

robust Stackelberg game when the uncertainty is w.r.t. the lower level decisions, for example,

see [ 59 ], [  60 ].

We can also model the uncertainty with respect to both the unknown demand distribution

and the retailer’s order quantities, which are connected by the FOC conditions. For given

w, we obtain:

πT,θ(w) = min
P∈Dθ(P̂T ), q≥0

{
(w − c)⊤q : Pi(ξi ≤ qi) ≥ 1− wi/si, ∀i ∈ [n]

}
. (2.9)

In Eq. ( 2.9 ), the supplier has uncertainty over the demand distribution as well as the retailer’s

order quantity.

The corresponding reformulations of the supplier’s robust problem are:

max
w∈W

min
q≥0

{
(w − c)⊤q : ∃P ∈ Dθ(P̂T ) s.t. Pi(ξi ≤ qi) ≥ 1− wi/si, ∀i ∈ [n]

}
. (2.10)

max
w∈W

min
P∈Dθ(P̂T ), q≥0

{
(w − c)⊤q : Pi(ξi ≤ qi) ≥ 1− wi/si, ∀i ∈ [n]

}
. (2.11)

We connect all three formulations of the supplier’s robust problem in the following propo-

sition.

Proposition 2.5.1. The optimal values of Problems ( 2.7 ), ( 2.10 ), and ( 2.11 ) are equal.

Furthermore, if all problems attain their optimal values, then the sets of optimal wholesale

prices of Problems ( 2.7 ), ( 2.10 ), and ( 2.11 ) are equal.
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Proposition  2.5.1 says that the three formulations of the supplier’s robust problem are equiv-

alent. Additionally, the worst-case profit can be obtained either from the worst-case distri-

bution through Eq. ( 2.6 ), from the worst-case order quantity through Eq. (  2.8 ), or from

Eq. (  2.9 ) which computes both.

2.5.4 Asymptotics

For T ≥ 1 data points, we solve Problem ( 2.7 ) with optimal value πT,θ = maxw∈W πT,θ(w)

and optimal solution w∗
T,θ ∈ argmaxw∈W πT,θ(w). We will show that when θ is allowed to

depend on T ≥ 1 appropriately, πT,θ converges almost surely to π∗ and w∗
T,θ has a sub-

sequence that converges almost surely to an optimal solution of Problem ( 2.1 ) as T →∞.

We let αT ∈ (0, 1) be a pre-specified confidence level for all T ≥ 1. Corresponding to

each T ≥ 1 and αT , we define the confidence parameter:

θT (αT ) ≜

2
(

log(c1α
−1
T )

c2T

)1/max{n,2}
, T ≥ log(c1α

−1
T )

c2
,

2
(

log(c1α
−1
T )

c2T

)
, T <

log(c1α
−1
T )

c2
.

(2.12)

The following theorem summarizes the asymptotic optimality of our model when the confi-

dence parameters are chosen according to Eq. ( 2.12 ).

Theorem 2.5.1. Suppose Assumptions  2.3.1 and  2.5.1 hold, and let {αT}T≥1 be a sequence

of confidence levels αT ∈ (0, 1) such that
∑∞

T=1 αT <∞ and limT→∞ θT (αT ) = 0.

(i) πT,θT (αT ) ↑ π∗ as T →∞, P̄∞−almost surely.

(ii) Any accumulation point of {wT,θT (αT )}T≥1 is an optimal solution for Problem ( 2.1 ),

P̄∞−almost surely.

2.6 Single Product Case

We develop the details of the single product case (n = 1) in this section. First we show

how to construct the center and formulate our uncertainty set. Then, we show how to

compute the worst-case profit πT,θ(w) for given w.
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When n = 1, WLOG we can arrange the past wholesale prices in descending order as

s ≥ w1 > · · · > wt > wt+1 > · · · > wT (where we assume that there are no repeats). Then,

the retailer’s corresponding past order quantities in ascending order are 0 ≤ q1 < · · · < qt <

qt+1 < · · · < qT .

We now explain how to solve Problem ( 2.5 ) when n = 1 to construct the center. While

Problem ( 2.5 ) is infinite-dimensional (it is optimizing over P(Ξ)), we can reformulate it as a

tractable finite-dimensional convex optimization problem. The past orders (qt)t∈[T ] partition

Ξ into T+1 subsets [0, q1], (q1, q2], . . . , (qT−1, qT ], (qT , ξ̄], that we index with s = 1, . . . , T+1.

We will show that the center has the form P̂T =
∑T

t=1

∑T+1
s=1 βstδpst/βst , and Problem ( 2.5 )

can be reformulated as:

min
β,p

T∑
t=1

T+1∑
s=1

βst

(
pst/βst − ξt

)2 (2.13a)

s.t.
T+1∑
s=1

βst = 1/T,∀t ∈ [T ], (2.13b)

T∑
t=1

t′∑
s=1

βst = 1− wt′

s
,∀t′ ∈ [T ], (2.13c)

0 ≤ p1t ≤ q1β1t,∀t ∈ [T ], (2.13d)

qs−1βst < pst ≤ qsβst,∀2 ≤ s ≤ T, t ∈ [T ], (2.13e)

qTβT+1,t < pT+1,t ≤ ξ̄ βT+1,t,∀t ∈ [T ], (2.13f)

βst ≥ 0,∀s ∈ [T + 1], t ∈ [T ], (2.13g)

for p = (pst)s∈[T+1],t∈[T ] and β = (βst)s∈[T+1],t∈[T ]. Problem ( 2.13 ) is convex, and the only

nonlinearity appears in the objective function. We let (β∗,p∗) denote an optimal solution of

Problem (  2.13 ). We then take the center to be

P̂T =
T∑
t=1

T+1∑
s=1

β∗
stδp∗st/β∗

st
. (2.14)

As shown in the following Proposition  2.6.1 , the center has support on p∗st/β
∗
st for s ∈

[T +1] with probability mass β∗
st, and each support point p∗st/β∗

st falls into one of the subsets
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partitioned by (qt)t∈[T ] (see Eqs. ( 2.13d )-( 2.13f )). The quantity β∗
st is the probability mass

transported from ξt to p∗st/β
∗
st so that the total probability mass transported from ξt sums

up to 1/T (see Eq. ( 2.13b )) and the first-order conditions are satisfied (see Eq. ( 2.13c )).

Proposition 2.6.1. Suppose n = 1, and let (β∗,p∗) be an optimal solution of Problem ( 2.13 ).

Then, the optimal values of Problems ( 2.5 ) and ( 2.13 ) are equal, and P̂T as constructed in

Eq. ( 2.14 ) is an optimal solution of Problem ( 2.5 ).

Our uncertainty set is then: Dθ(P̂T ) = {P ∈ P(Ξ) : W2(P, P̂T ) ≤ θ and P (ξ ≤ qt) =

1− wt/s : t ∈ [T ]}. Given w and θ, the supplier’s worst-case profit for n = 1 is

πT,θ(w) = min
P∈Dθ(P̂T ),q≥0

{(w − c)q : P(ξ ≤ q) ≥ 1− w/s} . (2.15)

In Eq. (  2.15 ), we let Pw,θ denote the worst-case demand distribution and q(w, θ) denote

the worst-case retailer order quantity. The supplier’s worst-case profit is then πT,θ(w) =

(w − c)q(w, θ).

For each wholesale price w, we define a threshold θ̄(w) on the parameter θ (see Eq. ( A.9 )

in Appendix  A.4 ). Based on the threshold θ̄(w), when θ ≥ θ̄(w), the worst-case order

quantity and distribution do not exist, but we can still characterize the worst-case profit

(which is not attained). Alternatively, when θ < θ̄(w), the worst-case order quantity and

distribution exist and have closed form.

Theorem 2.6.1. Fix c ≤ w ≤ s.

(i) If θ ≥ θ̄(w), then πT,θ(w) = (w − c)q(w) where q(w) is given in Eq. ( 2.16 ):

q(w) = arg max
q∈(qt)t∈[T ]

{
q : P̄(ξ ≤ q) < 1− w/s

}
(2.16)

(ii) If θ < θ̄(w), then πT,θ(w) = (w − c)q(w, θ) where q(w, θ) is the unique solution to

Eq. ( A.10 ). In this case, Pw,θ is given by Eq. ( A.12 ) (see Appendix  A.4 ).

Theorem  2.6.1 shows that the worst-case profit πT,θ(w) is constant for θ ≥ θ̄(w) (q(w)

is constant as θ increases). This indicates that even as θ becomes large, the worst-case

order quantity is still lower bounded by q(w). As mentioned before, θ reflects the supplier’s
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confidence that the center P̂T is a good model, and larger θ corresponds to lower supplier

confidence. The supplier’s worst-case profit πT,θ(w) is minimized over θ by choosing θ = θ̄(w).

Thus, she can restrict her choice of confidence parameter to θ ∈ [0, θ̄(w)], since no additional

robustness is obtained from larger θ > θ̄(w). For this reason, we call θ̄(w) the maximum

level of uncertainty.

When θ < θ̄(w), q(w, θ) can be efficiently computed using bisection search (see Eq. ( A.10 )

in Appendix  A.4 ). In the classical problem with known demand distribution P̄, the retailer’s

order quantity q(w; P̄) for any w is also computed using bisection search on the CDF of P̄.

This indicates finding the worst-case order quantity q(w, θ) is no more difficult than finding

q(w; P̄) under full information.

2.7 Multi-Product Case

Now we consider the multi-product case. In the supplier’s classical problem with full

information, the supplier can choose optimal wholesale prices separately for each product.

However, the uncertainty set in our robust model is based on the joint demand distribution

which couples the robust sub-problems for each product. We first allow dependent demand

and propose a cutting plane algorithm for computing the worst-case profit. Then we consider

the special case of independent demand, and we show that the center and worst-case profit

have special structure and can be computed more easily.
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2.7.1 Dependent Demand

In the multi-product setting, we will continue to work with centers of the form P̂T =∑T
t=1

∑S
s=1 βstδpst/βst . Problem (  2.5 ) can then be reformulated as:

min
β≥0,p

T∑
t=1

S∑
s=1

βst

∥∥pst/βst − ξt
∥∥2
2

(2.17a)

s.t.
S∑

s=1

βst = 1/T,∀t ∈ [T ], (2.17b)

T∑
t=1

S∑
s=1

βstzis(q
t′) =

si − wt′
i

si
,∀i ∈ [n], t′ ∈ [T ], (2.17c)

Aspst ≤ βstds,∀s ∈ [S], t ∈ [T ]. (2.17d)

We give the detailed derivation of Problem ( 2.17 ) in Appendix  A.5.1 . We denote the optimal

solutions of this problem by β∗ = (β∗
st)s∈[S],t∈[T ] and p∗ = (p∗

st)s∈[S],t∈[T ], and we construct

the center:

P̂T =
T∑
t=1

S∑
s=1

β∗
stδp∗

st/β
∗
st
. (2.18)

Proposition 2.7.1. The optimal value of Problem ( 2.17 ) is equal to the optimal value of

Problem ( 2.5 ). Furthermore, P̂T as constructed in Eq. ( 2.18 ) is an optimal solution of Prob-

lem ( 2.5 ).

We propose a cutting plane algorithm (see Appendix  A.5.2 ) based on Eq. (  2.8 ) (for the

worst-case order quantity) to compute the supplier’s worst-case profit. Roughly speaking,

we initialize with Qθ(w; P̂T ) = Ξ. We then gradually prune order quantities in Ξ that are

either sub-optimal or do not belong to Qθ(w; P̂T ). That is, each time we pick an order q

that has not yet been pruned, and evaluate whether q ∈ Qθ(w; P̂T ) by solving a convex

optimization problem. If q ∈ Qθ(w; P̂T ), then orders that yield higher profit than q cannot

be optimal and are pruned. On the other hand, if q /∈ Qθ(w; P̂T ), then we can also discard

a set of order quantities that do not belong to Qθ(w; P̂T ) according to the FOC ( 2.3 ).

Theorem 2.7.1. For any ϵ > 0, Algorithm  4 will converge to an ϵ−optimal solution to

Eq. ( 2.8 ) after a finite number of iterations.
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2.7.2 Independent Demand

Now we consider the special case where the true demand distribution P̄ has independent

marginal distributions. In this case the worst-case profit becomes a resource allocation

problem, where the resource is the Wasserstein budget.

Assumption 2.7.1. The true distributions of all products i and j ̸= i are independent, i.e.,

P̄ = ×n
i=1P̄i, where P̄i ∈ P([0, ξ̄]) is the marginal distribution for product i ∈ [n].

Assumption  2.7.1 is reasonable when all pairs of products are neither substitutes nor com-

pliments, since then the demand for one product is generally not affected by the demand for

the others. We introduce the set D× ≜ {P ∈ P(Ξ) : P = ×i∈[n]Pi,Pi ∈ P([0, ξ̄]),∀i ∈ [n]} of

demand distributions on Ξ with independent marginals.

Under Assumption  2.7.1 , we modify Dθ(P̂T ) to restrict to distributions satisfying P ∈ D×.

For each product i ∈ [n], let P̂e,i
T ≜ 1

T

∑
t∈[T ] δξti be the corresponding empirical marginal

distribution.

We now modify the construction of the center so that P̂T ∈ D× will hold. Notice that

P̂e
T does not necessarily belong to D×, but Q̂e

T ≜ ×i∈[n]P̂e,i
T automatically belongs to D×. We

construct the center by projecting Q̂e
T onto Do

T ∩D×, instead of P̂e
T . We obtain the following

projection problem:

min
P∈P(Ξ)∩D×

{
W 2

2 (P, Q̂e
T ) s.t.Pi

(
ξi ≤ qti

)
= 1− wt

i/si,∀i ∈ [n], t ∈ [T ]
}
. (2.19)

Problem ( 2.19 ) finds the distribution in Do
T ∩ D× that has the smallest 2−Wasserstein dis-

tance to Q̂e
T . We let Q̂T denote the center found using Problem (  2.19 ), to distinguish from

P̂T (which is for the general case). The set D× is non-convex in P so Problem ( 2.19 ) is

a non-convex optimization problem. However, we can decompose it into separate convex

optimization problems for each i ∈ [n] to solve it efficiently.

Proposition 2.7.2. (i) Problem ( 2.19 ) decomposes into separate linear programming prob-

lems in Pi for each i ∈ [n] (see Problem ( 2.20 )):

min
Pi∈P([0,ξ̄])

{
W 2

2

(
Pi, P̂e,i

T

)
s.t. Pi

(
ξi ≤ qti

)
= 1− wt

i/si,∀t ∈ [T ]
}
. (2.20)
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(ii) Let Q̂T,i be an optimal solution of Problem ( 2.20 ) for each i ∈ [n], then Q̂T =

×i∈[n]Q̂T,i is an optimal solution of Problem ( 2.19 ).

The modified uncertainty set Dθ,×(Q̂T ) ≜ {P ∈ Do
T ∩ D× : W2(P, Q̂T ) ≤ θ} requires

admissible distributions to have independent marginals. We want to compute the corre-

sponding overall worst-case profit πT,θ(w). This computation depends on how much of the

total uncertainty budget θ2 is allocated to each product. For each i ∈ [n], let ri ≥ 0 be

the uncertainty budget allocated to product i, then we define the corresponding uncertainty

sets Di
ri
(Q̂T,i) ≜

{
P ∈ P([0, ξ̄]) : W2(P, Q̂T,i) ≤ ri : P (ξ ≤ qti) = 1− wt

i/s,∀t ∈ [T ]
}

for each

product i ∈ [n]. The worst-case profit for product i, given budget ri, is then:

πi
T,

√
ri
(wi) = min

Pi∈Di√
ri
(Q̂T,i), qi≥0

{
(wi − ci)qi s.t. Pi(ξi ≤ qi) ≥ 1− wi/si

}
. (2.21)

Notice that Eq. ( 2.21 ) matches the form of the single product case.

The following proposition characterizes the dependence of the worst-case profit on ri.

Proposition 2.7.3. For any wi, πi
T,

√
ri
(wi) is decreasing and convex in ri for all i ∈ [n].

In total we have θ2 uncertainty budget to allocate to all products. According to Proposi-

tion  2.7.3 , the worst-case profit for each product i is decreasing in ri. Therefore, finding the

worst-case profit πT,θ(w) is equivalent to finding an allocation plan r = (ri)
n
i=1 to minimize

the total cost:

πT,θ(w) = min
r≥0

∑
i∈[n]

πi
T,

√
ri
(wi) s.t.

∑
i∈[n]

ri ≤ θ2

 . (2.22)

Problem ( 2.22 ) determines how much of the uncertainty budget θ2 to allocate to each product.

By the same reasoning as Theorem  2.6.1 , πi
T,

√
ri
(wi) is constant for any ri ≥ θ̄2i (wi) and so

we can restrict to ri ≤ θ̄2i (wi) when solving Problem ( 2.22 ).

For any w, Problem ( 2.22 ) is convex by Proposition  2.7.3 , and can be solved by the

analytic center cutting plane method (see Appendix  A.5.6 ). We utilize the results from the

single product case to derive the subgradient for the objective and generate specific cuts (see

Proposition  A.5.3 ).
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We can use the special form of Problem ( 2.22 ) to identify the worst-case order quantities

and worst-case distribution. That is, we first find the optimal allocation plan r∗ = (r∗i )i∈[n]

which solves Problem (  2.22 ). Then, under r∗, we derive the worst-case order quantity

qi(wi,
√

r∗i ) and the worst-case distribution Pi

wi,
√

r∗i
for product i as in the single product

case.

Theorem 2.7.2. Fix w ∈ W.

(i) Problem ( 2.22 ) has an optimal solution r∗ = (r∗i )i∈[n].

(ii) Let (Pi

wi,
√

r∗i
, qi(wi,

√
r∗i )) be the worst-case distribution and order quantity corre-

sponding to πi

T,
√

r∗i
(wi) for all i ∈ [n]. Then, the worst-case distribution is Pw,θ = ×i∈[n]Pi

wi,
√

r∗i

and the worst-case profit is πT,θ(w) =
∑

i∈[n](wi − ci)q
i(wi,

√
r∗i ).

2.8 Numerical Experiments

In this section, we explore the behavior of our robust model numerically on both simulated

and real data sets. We pose three questions: (i) Does our robust model give a less conservative

estimate of the true optimal profit compared with benchmark robust models based on retailer

information only and demand information only? (ii) Will the supplier achieve higher actual

profit if she uses our model instead of the benchmark models? (iii) How does the performance

of our model compare with SAA as a function of the profit margin c/s?

Recall πT,θ(w) is the worst-case profit based on Dθ(P̂T ) (see Eq. ( 2.6 )), and w∗
T,θ ∈

argmaxw∈W πT,θ(w) are the optimal wholesale prices for our robust model. We now formally

introduce the benchmarks. We first define the uncertainty set De
θ(P̂e

T ) ≜ {P ∈ P(Ξ) :

W2(P, P̂e
T ) ≤ θ} corresponding to demand data only. Given w ∈ W , the worst-case profit

corresponding to De
θ(P̂e

T ) is

πe
T,θ(w) ≜ min

P∈De
θ(P̂

e
T ),q≥0

{
(w − c)⊤q : Pi(ξi ≤ qi) ≥ 1− wi/si,∀i ∈ [n]

}
,

and the supplier’s corresponding DRO problem is πe
T,θ ≜ maxw∈W πe

T,θ(w) with optimal

wholesale prices we∗
T,θ ∈ argmaxw∈W πe

T,θ(w) (when they exist).
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The set Do
T captures all the supplier’s information about the retailer. Given w, the

worst-case profit corresponding to Do
T is

πo
T (w) ≜ min

P∈Do
T ,q≥0

{
(w − c)⊤q : Pi(ξi ≤ qi) ≥ 1− wi/si, ∀i ∈ [n]

}
.

The supplier’s DRO problem based only on Do
T is πo

T ≜ maxw∈W πo
T (w) with optimal whole-

sale prices wo∗
T ∈ argmaxw∈W πo

T (w) (when they exist). We first give an example showing

that the uncertainty set based only on the retailer data does not necessarily enjoy asymptotic

convergence.

(2.23) Suppose n = 1 and suppose the true demand distribution on Ξ = [0, 1] is uniform so

P̄(ξ ≤ x) = x for all x ∈ [0, 1]. Let s = 1 and c = 1/2, then the supplier’s true optimal

profit is π∗ = 1/16. Suppose the past wholesale prices and retailer order quantities

are {(wt, qt)}Tt=1 = {1− t/(8T ), t/(8T ))}Tt=1 for some T ∈ N. Then, the worst-case

profit is πo
T = 3/64 for all T ∈ N.

Example  2.23 shows that when the past wholesale prices are concentrated in certain regions

(in this example, 7/8 ≤ wt ≤ 1 for all t ∈ [T ]), then there may be a constant bias between

limT→∞ πo
T and π∗. We infer that when one has no control over the data generating process,

it is necessary to incorporate the demand data into the construction of the uncertainty set

to correct this bias.

2.8.1 Simulated Data Set

Conservatism of the uncertainty sets

We first confirm that our model leads to less conservative estimates of the actual profit

than the benchmarks. To show this, we fix w and compare the worst-case profit ob-

tained from the different models to the true profit. We measure the degree of conser-

vatism in terms of the absolute relative difference of the worst-case profit with respect to

the true profit π(w; P̄) via (π(w; P̄) − πT,θ(w))/π(w; P̄), (π(w; P̄) − πe
T,θ(w))/π(w; P̄), and

(π(w; P̄)− πo
T (w))/π(w; P̄). We use 100 replications to compute the averaged absolute rela-

tive difference. For each replication, we randomly draw T samples of past wholesale prices,
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order quantities, and demand realizations. The past order quantities are obtained for the

corresponding wholesale prices under full information. Figures  2.3 -  2.7 compare the average

absolute relative difference for different θ as T varies. Figures  2.3 -  2.5 report the results for

n = 1, and Figures  2.6 -  2.7 report the results for n = 2 taking into account the asymmetry

between the products.

As shown in Figures  2.3 -  2.7 , our model leads to smaller absolute relative differences,

especially for small T (e.g., T ≤ 20). At the same time, all three models result in smaller

absolute relative differences as T increases. The model based on demand information only

is a possible exception. Here, when θ is large, the absolute relative difference first deceases

when T increases to 10 but then stays constant as T increases further. In addition, the

performance for the order only model depends heavily on how the past wholesale prices are

distributed. For example, in Figures  2.3 -  2.5 parts (a)-(b), the order only model has a small

relative difference. However, in Figures  2.3 parts (c)-(d), we see the order only model has a

large relative difference. This difference in the performance of the order only model comes

from the difference in the distribution of past wholesale prices.

Performance of the uncertainty sets

We now compare the actual profit earned (with respect to the true demand distribution)

when the wholesale price is chosen according to each model. The confidence parameter

θ is chosen by three-fold cross validation (see Section  A.3.1 ). Figures  2.8 -  2.12 compare

the actual profit for w∗
T,θ, we∗

T,θ, and wo∗
T based on the average profit obtained from 100

replications. Here, again, each replication consists of T randomly drawn samples of past

wholesale prices and demand realizations. We compare both the average robust optimal

profits (left panel), as well as the standard deviation of the optimal profits (right panel) over

these 100 replications.

In the first place, as T increases, the robust optimal profit increases and the standard

deviation decreases for all three models. This is consistent with our intuition that as T

increases, the supplier obtains more accurate and complete information and can thus make

47



10 20 30 40
T

0.2

0.4
(a) = 0.5

10 20 30 40
T

0.2

0.4
(b) = 2.0

10 20 30 40
T

0.25

0.50

(c) = 0.5

10 20 30 40
T

0.25

0.50

(d) = 2.0

10 20 30 40
T

0.2

0.4
(e) = 0.5

10 20 30 40
T

0.2

0.4
(f) = 2.0

Figure 2.3. Absolute relative
difference of both (blue solid
line), demand (orange dashed
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(n = 1).
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Figure 2.4. Absolute relative
difference of both (blue solid
line), demand (orange dashed
line) and order (green triangle)
(n = 1).
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Figure 2.5. Absolute relative
difference of both (blue solid
line), demand (orange dashed
line) and order (green triangle)
(n = 1).

Notes: (Figure  2.3 ) ξ ∼ T N (50, 202,Ξ) where Ξ = [0, 100]. (Figure  2.4 ) True profit π(w; P̄) is two modal.
(Figure  2.5 ) log(ξ) ∼ T N (3, 1, (−∞, log(100)]). Past wholesale prices w have different modes in the

subfigures.

better pricing decisions. As T increases, the robust optimal wholesale prices not only give

higher actual profit, but also have less variation.
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Figure 2.7. Absolute relative
difference of both (blue solid
line), demand (orange dashed
line) and order (green triangle)
(n = 2).

Notes: (Figure  2.6 ) ξ ∼ T N (µ,Σ,Ξ) where Ξ = [0, 100]× [0, 100] and Σ =
(
202 0
0 202

)
. (Figure  2.7 )

ξ ∼ T N (µ,Σ,Ξ) where Ξ = [0, 100]× [0, 100] and Σ =
(
202 0
0 202

)
. The data for the subfigures of each figure

are generated so that they have different asymmetries in mean demand level, profit margin, and past
wholesale price distribution.

For these experiments, we have to simulate the past wholesale prices. Through com-

paring Figures  2.8 -  2.10 when the past wholesale prices are simulated following different

distributions, we see that the performance of wo∗
T varies. For example, in Figures  2.8 (a)-(b),

(e)-(f), Figures  2.9 (a)-(b), (c)-(d), and Figures  2.10 (a)-(b), (e)-(f), wo∗
T has superior or

comparable performance (higher average actual profit and lower standard deviation) with

respect to w∗
T,θ. On the other hand, in Figures  2.8 (c)-(d), Figures  2.9 (e)-(f), and Fig-

ures  2.10 (c)-(d), wo∗
T performs worst compared to the other two models. Recall that the

model based only on order information can perform poorly asymptotically, depending on the

distribution of past wholesale prices (see Example  2.23 ). When the past wholesale prices

are generated uniformly, or when they are concentrated around the optimal wholesale price

(this is the case for Figures  2.8 (a)-(b), (e)-(f), Figures  2.9 (a)-(b), (c)-(d), and Figures  2.10 

(a)-(b), (e)-(f)), wo∗
T can have good performance.
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Figure 2.8. Average and stan-
dard deviation of profit for both
(blue dashed line), demand (or-
ange solid line) and order (green
triangle) (n = 1).
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Figure 2.9. Average and stan-
dard deviation of profit for both
(blue solid line), demand (or-
ange dashed line) and order
(green triangle) (n = 1).
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Figure 2.10. Average and
standard deviation of profit for
both (blue solid line), demand
(orange dashed line) and order
(green triangle) (n = 1).

Notes: (Figure  2.8 ) ξ ∼ T N (50, 202,Ξ) where Ξ = [0, 100]. (Figure  2.9 ) True profit π(w; P̄) is two modal.
(a) and (b) w ∼ U [c, s]. (Figure  2.10 ) log(ξ) ∼ T N (3, 1, (−∞, log(100)]). Past wholesale prices w have

different modes in the subfigures.

50



10 20 30
T

800

900
(a) Average profit

10 20 30
T

0

100

(b) Standard deviation of profit

10 20 30
T

800

900
(c) Average profit

10 20 30
T

50

100

(d) Standard deviation of profit

10 20 30
T

1000

1200
(e) Average profit

10 20 30
T

0

200
(f) Standard deviation of profit
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Figure 2.12. Average and
standard deviation of profit for
both (blue solid line), demand
(orange dashed line) and order
(green triangle) (n = 2).

Notes: (Figure  2.11 ) ξ ∼ T N (µ,Σ,Ξ) where Ξ = [0, 100]× [0, 100] and Σ =
(
202 0
0 202

)
. (Figure  2.12 )

ξ ∼ T N (µ,Σ,Ξ) where Ξ = [0, 100]× [0, 100] and Σ =
(
202 0
0 202

)
. The data for the subfigures of each figure

are generated so that they have different asymmetries in mean demand level, profit margin, and past
wholesale price distribution.

Given that the supplier does not know if the past wholesale prices are concentrated around

the optimal wholesale price, we suggest they first conduct a goodness of fit test (for exam-

ple, the Kolmogorov-Smirnov test) to see whether the past wholesale prices are generated

uniformly. If there is insufficient evidence to reject the hypothesis that the past wholesale

prices are uniformly distributed, the supplier can set wholesale prices wo∗
T . However, if such

evidence is found, the supplier is routed to use our main model.

2.8.2 Performance on Semi-synthetic Data Set

In this subsection, we evaluate the performance of our model on a data set of demand

for dairy products obtained from the Economic Research Service of the U.S. Department

of Agriculture (USDA). This data set contains the U.S. monthly domestic consumption (in

millions of pounds) of dairy products from January 1995 to December 2010, for a total of
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192 months. We focus on the dry skim dairy product. To simulate the retailer’s ordering

decisions, we suppose the retailer optimizes his profit based on the empirical demand dis-

tribution constructed from the demand data of the whole data set. Then we bootstrap T

samples from the data set and take them to be the demand realizations seen by the retailer

and the supplier. The past wholesale prices are generated randomly.

We compare the performance of w∗
T,θ with wo∗

T and we∗
T as T increases (see the average

profit and standard deviation calculated based on the bootstrap samples in Figures  2.13 

-  2.14 ). In these experiments, we choose the confidence parameters by three-fold cross

validation. By testing on this real demand data set, we get further confirmation that the

performance of wo∗
T depends on the distribution of the past wholesale prices (see Figures  2.13 -

 2.14 ). As can be seen in Figure  2.13 , when past wholesale prices are generated uniformly,

wo∗
T has the highest average profit, compared with the other two models. In contrast, in

Figure  2.14 , wo∗
T has an average profit that is biased below the other two models.

Now let wSAA∗
T ∈ argmaxw∈W π(w; P̂e

T ) be the optimal wholesale price based on SAA.

In Figure  2.15 , we compare w∗
T,θ to wSAA∗

T and wo∗
T in terms of the relative differences

with respect to the actual profit: (π(w∗
T,θ; P̄) − π(wSAA∗

T ; P̄))/π(wSAA∗
T ; P̄) and (π(w∗

T,θ; P̄) −

π(wo∗
T ; P̄))/π(wo∗

T ; P̄), as the cost/price ratio c/s varies (see the relative difference in Fig-

ure  2.15 ).

In Figure  2.15 , we see that the relative performance of w∗
T,θ with respect to wSAA∗

T first

increases as c/s increases, and then it decreases as c/s increases further. We suspect that this

is because as c/s first increases, the performance of SAA deteriorates as it has a tendency

to choose an overly high wholesale price (see the discussion in Section  2.4 ). So, the relative

benefit of setting w∗
T,θ at first increases. However, as c increases further, the relative benefit

of w∗
T,θ decreases as the value of combining order information decreases (the relative perfor-

mance of w∗
T,θ w.r.t. wo∗

T increases as c/s increase when c/s is large enough). In summary, we

find that the relative benefit of our model is the highest when c/s is of intermediate value.
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Notes: (Figure  2.13 ) w ∼ U [c, s] and c/s = 1/2. (Figure  2.14 ) w ∼ T N (c+ 0.2(s− c), 0.04(s− c)2, [c, s])
and c/s = 1/2. (Figure  2.15 ) w ∼ U [c, s].
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2.9 Conclusion

In this paper, we have proposed a new model for data-driven supply chain contract design,

when the retailer has better knowledge about the demand distribution than the supplier.

We found that classical data-driven approaches such as SAA and parametric estimation may

perform poorly in this context. Instead, we proposed a distributionally robust optimization

approach where the uncertainty set incorporates both past demand information and past

retailer ordering information. Our uncertainty set does not require any prior knowledge

about the demand distribution from the supplier, and is more informative than those based

on demand information alone. We derived a closed form expression for the supplier’s worst-

case profit for the single product case, and designed a cutting plane algorithm to find the

worst-case profit in the multi-product case. We compared its performance with benchmark

uncertainty sets numerically, and found that it is less conservative than the benchmark based

only on demand information.

This work suggests that in a game-theoretic setting, interactions between agents can

reveal important information about the underlying uncertainty (in addition to observations

of the uncertainty itself). Our framework combines different sources of information into a

single distributionally robust optimization problem. In the contract design problem, we have

shown that by incorporating the retailer order data into the construction of the uncertainty

set (along with demand information), we improve performance over the classical DRO model

based on demand information alone.

Our framework can be extended to other types of contracts, e.g., buy-back contracts.

Supply chain coordination can be achieved if the buy-back price is appropriately chosen with

full knowledge of the demand distribution. When the supplier has incomplete knowledge

about the demand distribution, she can employ our method to learn about the demand

distribution through interactions with the retailer. In this case, the supplier can observe

the retailer’s order quantity as well as the number of unsold units, since the supplier has to

buy back unsold units from the retailer. The supplier can then directly infer the demand

realization in each period and set the buy-back price to achieve better performance.
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At the same time, we acknowledge some limitations of this work and directions for future

research. First, it is worth investigating the supplier’s problem when the retailer also only

has partial information about the demand. Second, we leave development of algorithms for

the supplier’s robust problem when W is continuous to future work.
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3. LEARNING TO PRICE SUPPLY CHAIN CONTRACTS

AGAINST A LEARNING RETAILER

3.1 Synopsis

We study a supplier (she) selling a product to a retailer (he) who faces uncertain market

demand over a selling horizon of T periods, where the supplier sets a wholesale price (i.e.,

contract) for the retailer in each period. Then, the retailer makes a decision on the order

quantity accordingly, which also determines the supplier’s profit. The retailer does not know

the market demand distribution in advance, and may employ a data-driven inventory learning

policy that is unknown to the supplier. The supplier does not know the market demand

distribution either, and she has to sequentially balance the trade-off between exploring the

retailer’s response to different prices and exploiting profitable prices found so far.

The supplier’s goal is to choose the price to maximize her total profit over the selling

horizon. We measure her performance through the notion of regret with respect to a clair-

voyant benchmark who has the same information as the retailer (and can predict his orders)

and thus chooses the optimal wholesale prices in each period.

We provide an affirmative answer that there exist pricing policies for the supplier facing

a learning retailer. We emphasize that our policy does not require the supplier to have any

knowledge on the past demand realizations or the retailer’s inventory policy. Instead, she

only uses her past interactions with the retailer, and knowledge of the support of the demand

distribution.

We propose the supplier’s policies for both discrete and continuous demand distributions.

When the demand distribution is discrete, the supplier’s profit function admits a special

structure that our policy exploits. When the demand distribution is continuous, this special

structure vanishes, but we give a policy that approximates the supplier’s profit function and

still attains sublinear regret. We summarize the major results for this chapter as follows:

1. Note that the retailer’s ordering decisions depend on the supplier’s wholesale prices and

also on the data-driven inventory learning policies used, this can create non-stationarity

in the supplier’s decision environment. To capture this effect, we follow the notion of
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variation budget in the non-stationary bandit (see Section  3.2 ) to quantify the difficulty

of the supplier’s learning problem. With that, even if the retailer switches policies

dynamically and/or use a mixture of them, we can encapsulate the impact through

the variation budget. Different than prior literature on non-stationary bandits [ 61 ]–

[ 63 ], we define the variation budget in terms of the Kolmogorov distance between

the distributions that determine the retailer’s inventory decisions. Here, the use of

Kolmogorov distance turns out to be natural as it conveniently translates the variation

on retailer’s inventory decisions to the variation on the supplier’s profit functions,

and enables the development of pricing policies with provable regret bound for our

setting. We also remark that Kolmogorov distance can be upper bounded by many

other commonly used distance metrics or divergences, e.g., total variation distance,

relative entropy, Helinger distance, Wasserstein distance, etc. [  64 ].

2. We propose a pricing policy πLUNA for the supplier that achieves sublinear regret when

the market demand distribution is discrete. In this case, the supplier’s profit function

is discontinuous and non-stationary. In spite of this, we identify special structure in the

supplier’s profit function to resolve the challenge. We emphasize that our policy does

not require any knowledge of the variation budget or the retailer’s inventory learning

policy. Instead, our policy automatically adjusts to a wide range of retailer policies

and variation budgets.

3. When the market demand distribution is continuous, the unique structure in the sup-

plier’s profit function vanishes and one cannot directly apply πLUNA. To overcome this

challenge, we work on an approximation of the supplier’s profit function. At a high

level, our policy πLUNAC for continuous demand is based on an approximate profit func-

tion for the supplier which inherits the desired structure. Then, our previous policy

πLUNA for discrete demand can be employed as a sub-routine for πLUNAC.

4. We show that our proposed pricing policy leads to sublinear regret bounds for the

supplier under a wide range of retailer inventory policies. We examine: (i) sample

average approximation (SAA); (ii) distributionally robust optimization (DRO); and
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(iii) some parametric approaches (maximum likelihood estimation (MLE), operational

statistics, and Bayesian estimation). Under these policies, we compute the respective

variation budgets and derive the corresponding regret bounds.

5. We also conduct numerical experiments to compare our pricing policy with several

algorithms from the literature on non-stationary bandits, including the Exp3.S algo-

rithm by [  61 ], the deterministic non-stationary bandit algorithm proposed by [ 65 ], and

the Master+UCB1 algorithm proposed by [  66 ] where each price is treated as an arm to

pull. We show that our pricing policy has the best performance among all these bench-

marks. Our results demonstrate the importance of exploiting structural properties in

data-driven operations.

6. At the managerial level, we establish that there is an asymptotically optimal policy

for the supplier even though she faces a learning retailer and an unknown (possibly

non-stationary) demand distribution More generally, our work shows the importance

of data-driven operations management where the principal has to learn to react to the

learning policies employed by other agents in the system. These results also further

support the use of wholesale price contracts in practice.

3.1.1 Organization

This work is organized as follows. In Section  3.3 , we introduce the problem formulation

which consists of the supplier’s dynamic pricing problem and the class of retailer inventory

learning policies. In Section  3.4 , we present a preliminary analysis of the regret of the

supplier’s pricing policy when the retailer has full knowledge about the demand distribution.

Then, in Section  3.5 we develop the supplier’s pricing policy and its regret upper bound under

a learning retailer. We first develop the pricing policy for discrete distributions and then

extend it to continuous distributions. In Section  3.6 , we study several examples of retailer

inventory policies under which our pricing policy achieves sublinear regret. In Section  3.7 

we conduct numerical experiments and we conclude the paper in Section  3.8 .
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3.2 Literature Review

Contract Design under Uncertainty and MAB: Supply chain contract design is a

longstanding topic, we refer to the survey by [ 67 ]. In particular, there is an increasing

interest in studying contract design under uncertainty [ 28 ], [ 41 ]. We consider the design of

wholesale price contracts. There have been efforts in the literature to justify the prevalence

of wholesale price contracts in practice [ 28 ], [  29 ], [  35 ]. They suggest that wholesale price

contracts are arguably the most natural form of contract for us to investigate when faced

with a learning retailer.

Our work lies at the interface between contract design and multi-armed bandit (MAB)

problems (see [ 68 ] and [ 69 ]). MAB problems have also been extensively studied. In particular,

they have been used to model contract design problems. For example, [ 70 ] study repeated

principle-agent interactions where the principle offers a contract to induce the efforts of i.i.d.

arriving agents.

Dynamic Pricing and Inventory Control: Dynamic pricing and online revenue manage-

ment has been studied widely in the OM literature [ 71 ]–[ 79 ]. Also see [  80 ] for an overview of

studies on dynamic pricing. More recently, a line of works also integrate inventory control

into pricing decisions (see, e.g., [ 81 ], [ 82 ] and references therein). In this stream of literature,

the decision maker is unknown about the demand function, and has to balance the trade-off

of learning and earning while dynamically adjusting the pricing and/or inventory decisions.

Almost all the above works focus exclusively on the stationary demand environment, but

in our case, due to the retailer’s learning strategy, the decision environment could be dy-

namically changing. In this regime, [ 77 ], [ 83 ], [ 84 ] study dynamic pricing in a non-stationary

environment. [ 62 ] study the online non-stationary newsvendor problem when the L2−norm

of the variation in mean demand is bounded. [  77 ] study a dynamic joint inventory and pricing

problem with perishable products where the price-demand relationship is piecewise station-

ary. They derive regret bound of Õ(T 2/3(log(T ))1/2) for nonparametric noise distributions

and Õ(T 1/2(log(T ))) for parametric noise distributions, respectively.

Unlike the previous studies whose goals are to learn the unkown demand functions, the

learning in our problem is with respect to the retailer’s data-driven inventory learning poli-
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cies. Furthermore, the non-stationarity in our problem is mostly driven by the learning

policies of the self-interested retailer.

Non-stationary Online Learning: Many bandit problems are inherently non-stationary.

One approach is to model the non-stationarity as a drifting environment, where some metric

is used to measure the variation of the environments. The regret analysis is done by restrict-

ing to environments with bounded variation [ 63 ], [ 65 ], [ 85 ]–[ 90 ]. Different metrics have been

considered, which result in different regret bounds. [ 85 ] study a K-armed bandit problem

where the mean reward of the arms is changing. They derive a near-optimal policy with

regret Õ((KV )1/3T 2/3) when the supremum norm of the change in mean rewards is bounded

by a known variation budget V . [ 86 ] study non-stationary stochastic optimization problems

where the cost function is convex and the supremum norm of the deviations in the cost func-

tion in each period is bounded. [ 91 ] extends the previous work to use the Lp,q−variational

functional, which better reflects local spatial and temporal changes in the objective cost

functions. These works mostly require the DM to know the variation budget. In order to

relax this requirement, [  65 ] propose a restarting algorithm for the K−armed bandit problem

that restarts whenever a large variation in the environment has been detected by a statistical

test.

We build our supplier pricing policy based on the deterministic bandit setting in [ 65 ].

Their algorithm is epoch-based where each epoch consists of an exploration and an exploita-

tion phase. In the exploration phase, the algorithm samples from each arm once and observes

the noiseless bandit reward. In the exploitation phase, the algorithm randomly selects an

arm to sample, where the sampling distribution is calibrated to balance the trade-off between

exploration and exploitation. If the variation of the sampled arm is detected to be above

some detection threshold OVB, then the algorithm starts the next epoch. Otherwise, the

algorithm continues the exploitation phase. This algorithm relaxes the assumption that the

DM knows the variation budget by sequentially decreasing the detection threshold OVB in

the exploitation phase.

In another approach, one can model non-stationarity in a piecewise fashion where the

bandit remains stationary in each interval and varies across intervals. The total number of

intervals is bounded by S, but the start and end time of each interval is unknown to the
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DM. Some algorithms have been proposed for known S [ 89 ], [ 92 ]–[ 95 ] and unknown S [ 65 ],

[ 77 ], [ 89 ], [ 96 ]–[ 99 ]. We note the difference between this approach for non-stationarity and

the first one based on a variation budget. In the first approach, only a constraint on the

total variation is imposed and the total number of intervals (where the bandit is stationary)

can be linear in T as long as the total variation is bounded. On the other hand, the second

approach requires the number of intervals to be bounded, but the variation within intervals

can be substantial. Nevertheless, [ 66 ] generalize many reinforcement learning algorithms that

work optimally in stationary environments to work optimally in non-stationary environments

without any knowledge of the variation budget V or the total number of changes S. We

also refer to [ 100 ], [ 101 ] for a discussion of the Markovian bandit and [ 102 ] for bandits with

seasonality.

The non-stationary bandit is especially relevant to revenue management and dynamic

pricing. [ 63 ], [ 90 ] propose a sliding window upper confidence bound algorithm for the linear

bandit where the Euclidean norm of the variation in the cost coefficients is upper bounded

(but the upper bound is unknown to the DM). Their results cover advertisement allocation,

dynamic pricing, and traffic network routing.

Multi-Agent Learning: There is a rich literature on multi-agent learning, particularly fo-

cusing on online simultaneous games and online Stackelberg games. See [ 103 ] for an overview

on multi-agent reinforment learning. In particular, [ 104 ] consider a platform on which mul-

tiple sellers offer products, where sellers’ pricing decisions are incentivized by the platform’s

contract, and both the sellers and the platform do not have full knowledge about the de-

mand price relationship. Unlike ours where the retailer has more information on market

demand than the supplier and the latter needs to leverage her interactions with the former

to learn the market demand and maximize profit, they focus on the information advantage

of the platform over the sellers and study whether and when the platform should release its

information advantage.
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3.3 Problem Formulation

Throughout, we let [N ] ≜ {1, . . . , N} be the running index for any integer N ≥ 1. We

adopt the asymptotic notations O(·), o(·), Ω(·), and Θ(·) [ 105 ]. When logarithmic factors

are omitted, we use Õ(·), õ(·), Ω̃(·), and Θ̃(·). We write ‘max’ instead of ‘sup’ and ‘min’

instead of ‘inf’. When the optimal solution to the optimization problem does not exist, an

“optimal solution” means an ϵ−optimal solution for ϵ > 0 arbitrarily small.

We consider a wholesale price contract between one supplier (she) and one retailer (he)

for a single product, where the retailer faces random demand. Let c be the supplier’s unit

production cost and s be the retailer’s unit selling price. We use W = [0, s] to denote the

set of admissible wholesale prices, i.e., the supplier cannot sell for more than the retailer

selling price (we extend to the case where the supplier’s set of admissible decisions W has

finite cardinality in the appendix). Notice that the supplier will gain a negative profit if she

sells for less than her production cost c, however we allow this possibility since occasionally

pricing for less than c may help the supplier explore.

The supplier and retailer interact over a series of time periods indexed by t ∈ [T ] with

T ≥ 1. Let ξt be the random demand in period t ∈ [T ] with support Ξ ⊂ R+. Let P(Ξ)

be the set of probability distributions on Ξ. We denote the cumulative distribution function

(CDF) of demand ξt as Ft ∈ P(Ξ) and whose density is ft (if it exists). We introduce the

shorthand F1:t ≜ (Fi)
t
i=1 for t ∈ [T ] for the sequences of true market demand distributions.

In each period t, the supplier first offers the retailer the wholesale price wt ∈ W . Then,

the retailer observes wt, determines his order quantity qt, and the supplier earns profit

φ(wt; qt) ≜ (wt−c)qt. Finally, demand ξt is realized and the retailer earns profit R(qt;wt, ξt) ≜

smin{qt, ξt} − wtqt.

The supplier only has access to past wholesale prices and corresponding retailer order

quantities. We define Gt ≜ {(wi, qi)}ti=1 to be the history of prices and order quantities by

the end of period t (we let G0 ≜ ∅). The supplier’s (possibly randomized) pricing policy

is a sequence of mappings from Gt to the set of probability distributions on W (denoted

P({W})). We denote the supplier’s (possibly randomized) pricing policy by π ≜ (πt)
T
t=1
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where π1 ∈ P(W) and πt : Gt−1 → P(W) for all t ≥ 2. The wholesale prices under π then

follow:

w1 ∼ π1, (3.1a)

wt ∼ πt (Gt−1) , ∀t ≥ 2. (3.1b)

Now we characterize the retailer’s policy. Let Ht ≜ {(wi, qi, ξi)}ti=1 be the retailer’s

information by the end of period t which consists of the history of wholesale prices, order

quantities, and demand realizations up to period t (we simply let H0 ≜ ∅). Then, the

retailer has access to information Ht−1∪{wt} right before his ordering decision is made. We

let µ = (µt)
T
t=1 denote the retailer’s (possibly randomized) inventory learning policy, where

µ1 : w1 → P(Ξ) and µt : Ht−1 ∪ {wt} → P(Ξ) for t ∈ [2, T ]. The retailer’s order quantities

under µ are then determined by:

qµ1 ∼ µ1(w1), (3.2a)

qµt ∼ µt (Ht−1 ∪ {wt}) , ∀t ≥ 2. (3.2b)

We write qµt (wt;Ht−1) to denote the retailer’s period t ∈ [T ] response to wholesale price wt

under policy µ.

We measure the performance of the supplier’s pricing policy π in terms of its dynamic

regret. We use a clairvoyant benchmark who can predict the retailer’s true order quantity

given any wholesale price, and the clairvoyant does not necessarily know the true market

demand distribution. For example, if the benchmark has the demand data received by the

retailer and knows the policy in use by the retailer, then it can perfectly predict the retailer’s

order quantity given any wholesale price.

Since the retailer’s policy is unknown, we identify a class M (which depends on T and

other model parameters, we will specify M shortly) of reasonable retailer policies. If the

retailer’s policy is allowed to be completely arbitrary, then we cannot always expect to get
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a sublinear regret for the supplier. We then consider the supplier’s worst-case regret over

policies in µ ∈M. Let

w∗
t ∈ argmax

w∈W
(w − c)qµt (w;Ht−1) (3.3)

be the benchmark’s optimal wholesale price with full knowledge of how the retailer will

respond under qµt . Then, the regret in period t when the supplier prices at wt is (w∗
t −

c)qµt (w
∗
t ;Ht−1) − (wt − c)qµt (wt;Ht−1). The overall dynamic regret over the entire planning

horizon is then:

Reg(π, T ) ≜ max
µ∈M

E

[
T∑
t=1

((w∗
t − c)qµt (w

∗
t ;Ht−1)− (wt − c)qµt (wt;Ht−1)

]
,

where the expectation is taken with respect to both the supplier and retailer’s possibly

randomized policies, and the underlying random demand. The clairvoyant benchmark in the

dynamic regret is able to adjust its strategy dynamically in response to the non-stationarity

of the retailer response functions qµt (·;Ht−1).

Dynamic regret is a stronger concept than stationary regret. In the definition of the sta-

tionary regret, the clairvoyant must set the same wholesale price w∗ ∈ argmaxw∈W
∑T

t=1(w−

c)qµt (w;Ht−1) for the entire planning horizon and the supplier’s stationary regret is

Regstat(π, T ) ≜ max
µ∈M

E

[
T∑
t=1

((w∗ − c)qµt (w
∗;Ht−1)− (wt − c)qµt (wt;Ht−1))

]
.

It is immediate that the stationary regret is always upper bounded by the dynamic regret.

3.3.1 Retailer Model

Now we present a specific model for how the retailer makes his ordering decisions. For

demand distribution F ∈ P(Ξ), given wholesale price w the retailer’s expected profit from

ordering q is EF [R(q;w, ξ)]. If the retailer believes the demand distribution is F , then his

best response to wholesale price w is to order

q(w;F ) ≜ argmax
q≥0

EF [R(q;w, ξ)],
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or equivalently

q(w;F ) = min {q : F (q) ≥ 1− w/s} , (3.4)

which maximizes his expected profit with respect to F .

In our setting the retailer does not know F1:T , and has to implement some inventory

learning policy as mentioned before. We now characterize µ by supposing that the retailer’s

ordering decisions are all best responses to a sequence of perceived distributions.

Assumption 3.3.1. Let µ be the retailer’s inventory learning policy. For all t ∈ [T ], there

exists a perceived distribution F̂ µ
t that is adapted to Ht−1 ∪ {wt}, such that qµt (wt;Ht−1) =

q(wt; F̂
µ
t ).

We let F̂ µ
1:t ≜ (F̂ µ

1 , . . . , F̂
µ
t ) for all t ∈ [T ] denote the sequences of perceived distributions.

We say a stationary retailer is one who has full knowledge about the demand distribution,

and the true distribution is stationary (F̂ µ
t = Ft ≜ F0 for all t ∈ [T ]). Otherwise, we

have a learning retailer. A learning retailer introduces non-stationarity into the supplier’s

decision-making environment, even if the true market demand distribution is stationary.

Assumption  3.3.1 says that, at any period t ≥ 1, the retailer’s order quantity q(wt; F̂
µ
t )

is a best response to some data-driven CDF F̂ µ
t that only depends on the information that

has been revealed to the retailer up to period t (i.e., Ht−1 ∪ wt). In other words, the

retailer’s ordering decisions and thus its entire policy are completely determined by F̂ µ
1:T .

This assumption is without loss of generality, since qµt must be adapted to Ht−1∪wt anyway.

If we are given a rule for constructing qµt directly from the data, we can always find F̂ µ
t for

which qµt is the best response. There may exist more than one F̂ µ
t in period t that satisfies

Assumption  3.3.1 .

We also assume that the retailer knows the support of the true sequence of demand

distributions, and thus the retailer will construct F̂ µ
t whose support is contained in the

support of Ft.

Assumption 3.3.2. Let µ be the retailer’s inventory policy. For all t ∈ [T ], the support of

F̂ µ
t is contained in the support of Ft.
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In Section  3.6 we show that many inventory policies satisfy Assumptions  3.3.1 and  3.3.2 .

For example, under SAA, the retailer’s perceived distribution is the empirical distribution

of the observed demand samples.

3.3.2 Supplier’s Regret

Since the retailer’s order quantities are fully determined by F̂ µ
1:T , the supplier’s task of

minimizing regret is equivalent to learning F̂ µ
1:T . However, it is well known that if F̂ µ

1:T

can vary arbitrarily, then there is no pricing policy that achieves sublinear regret for the

supplier. Our main question only makes sense if we restrict the retailer’s inventory policy

(or equivalently, the sequence of F̂ µ
1:T ) to belong to a reasonable class. In this case, we expect

the variation in F̂ µ
1:T to be more limited since the retailer accumulates information about the

demand distribution incrementally over time, and so their perceived distributions should not

change too much from period to period.

We need a metric to quantify this variation in F̂ µ
1:T . Recall the Kolmogorov distance dK

between CDFs F and G with support on Ξ ⊂ R+ is defined by dK(F,G) = maxx∈Ξ |F (x)−

G(x)|. The variation in the retailer’s perceived distributions from period t to period t + 1

is then dK(F̂
µ
t , F̂

µ
t+1), and the total variation of the sequence F̂ µ

1:T is
∑T−1

t=1 dK(F̂
µ
t , F̂

µ
t+1).

We note that dK is computable for a wide range of possible perceived distributions. In

addition, dK is used in the well-known Kolmogorov-Smirnov test and thus has an intuitive

appeal for measuring the similarity between two distributions. Furthermore, dK can be

upper bounded by many other distance metrics or divergences, e.g., total variation distance,

relative entropy, Helinger distance, Wasserstein distance, etc. [ 64 ]. This feature of dK greatly

facilitates connecting the retailer’s policy with the regret analysis for the supplier.
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We restrict attention to the class of retailer policies for which the total variation of F̂ µ
1:T

(given by
∑T−1

t=1 dK(F̂
µ
t , F̂

µ
t+1)) is bounded. Specifically, let V ≥ 0 (where V is a function of

T ) be a budget for the total variation and define the class of retailer policies:

M(V, T ) ≜

{
µ : for any (wt)

T
t=1 ∈ W , exists F̂ µ

1:T satisfying Assumptions  3.3.1 and  3.3.2 

such that
T−1∑
t=1

dK(F̂
µ
t , F̂

µ
t+1) ≤ V

}
.

The set M(V, T ) includes all µ such that the total variation of F̂ µ
1:T does not exceed V

for any sequence of wholesale prices. Notice that M(V, T ) also implicitly depends on F1:T

(since the demand samples are generated from F1:T ), but we suppress this dependence for

brevity.

With some abuse of the notation, we write the supplier’s profit in period t as a function

of wt and F̂ µ
t as φ(wt; F̂

µ
t ) ≜ (wt − c)q(wt; F̂

µ
t ), when the retailer orders optimally based on

the perceived distribution F̂ µ
t . The supplier’s learning problem can then be framed in terms

of the sequence of her profit functions {φ(wt; F̂
µ
t )}Tt=1.

The previous learning literature always considers bounded variation of the profit func-

tions, and proposes learning algorithms specific to this type of variation [  61 ], [ 85 ], [ 86 ]. In

the following example, we show that the variation of F̂ µ
1:T does not directly translate into

the variation of {φ(wt; F̂
µ
t )}Tt=1. Thus, these previously proposed learning algorithms do not

apply to our setting.

(3.5) Let c = 0 and s = 1. Let F̂ µ
t be the CDF of a Bernoulli random variable which takes

values 0 and 1 with probabilities pt and 1− pt, respectively, for all t ∈ [T ]. Let

pt =


1
2
− ϵ, for t odd,

1
2
+ ϵ, for t even,
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where ϵ = 1/T . It is straightforward to see that
∑T−1

t=1 dK(F̂
µ
t , F̂

µ
t+1) ≤ 2Tϵ = 2 but

that
T−1∑
t=1

max
w∈[c,s]

|φ(w; F̂ µ
t )− φ(w; F̂ µ

t+1)| =
T

2
.

We see that even if F̂ µ
1:T has constant total variation that does not grow in T , the

sequence of profit functions (φ(w; F̂ µ
t ))

T
t=1 can have variation that grows linearly in T .

For the specific classM(V, T ) of retailer policies, the overall regret is then:

Reg(π, T ) ≜ max
µ∈M(V,T )

E

[
T∑
t=1

(
(w∗

t − c)q(w∗
t ; F̂

µ
t )− (wt − c)q(wt; F̂

µ
t )
)]

,

where the expectation is taken with respect to the supplier’s possibly randomized policy

and any randomization in F̂ µ
t (i.e., F̂ µ

t is random in general because it usually depends on

the random demand realizations, and the retailer may also use a randomized policy). For

comparison, we define the stationary regret to be:

Regstat(π, T ) ≜ max
µ∈M(V,T )

E

[
T∑
t=1

(
(w∗ − c)q(w∗; F̂ µ

t )− (wt − c)q(wt; F̂
µ
t )
)]

.

If the demand distribution is stationary, then intuitively we expect F̂ µ
1:T to exhibit some

type of convergence since the retailer is accumulating more information about the same dis-

tribution. Yet, our results also apply when the true market demand distribution is changing

over time. For example, the demand distribution may have a seasonal pattern. In this case,

F̂ µ
1:T may still have bounded variation that is sublinear in T .

3.4 Stationary Retailer

We first consider the special case of the supplier’s problem for a stationary retailer to

help us understand the structure of the supplier’s profit function.

Assumption 3.4.1. The true demand distribution is stationary, i.e., F̂ µ
t = Ft = F0 for all

t ∈ [T ].
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Since W is a continuum of allowable prices, this setting is a continuous bandit treating

each price as an arm to pull. The literature typically imposes some structure on the DM’s

objective function, e.g., convexity or unimodality, Lipchitz continuity or Holder continuity,

etc. (see [  86 ], [ 106 ]). However, the supplier’s profit function is not necessarily continuous in

our setting. Nevertheless, we will show that we can find pricing policies that have sublinear

regret bounds for general demand distributions.

We make the following boundedness assumption on the demand distribution to continue.

Assumption 3.4.2. The sequence F1:T has bounded support on Ξ = [0, ξ̄] for 0 < ξ̄ < ∞,

and both the retailer and the supplier know ξ̄.

Under Assumption  3.5.2 , we can always relate the values of the supplier’s profit function

at wt and w′
t. Without loss of generality, suppose w′

t < wt, then for any demand distribution

F we have

φ(wt;F )− φ(w′
t;F ) = (wt − c)q(wt;F )− (w′

t − c)q(w′
t;F )

≤ (wt − c)q(wt;F )− (w′
t − c)q(wt;F )

≤ (wt − w′
t)ξ̄.

(3.6)

This inequality holds regardless of whether the true distribution is discrete or continuous.

In particular, we can discretize W with a finite set of prices, and then bound sub-optimality

of this discretization using Eq. ( 3.6 ).

We consider the following simple pricing policy for the stationary retailer that we denote

by πstat. The supplier first discretizes W into
⌈√

T
⌉

equally sized intervals, and then takes

W̄⌈√T⌉ to be the wholesale prices at the breakpoints of these intervals. In the first
⌈√

T
⌉

periods, the supplier sets each price in W̄⌈√T⌉ once and collects the corresponding profit. Let

w∗
stat ∈ argmaxw∈W̄⌈

√
T⌉

φ(w;F0) be the wholesale price in W̄⌈√T⌉ with the highest profit.

In all of the remaining periods, the supplier sets the wholesale price wt = w∗
stat for all

t = T −
⌈√

T
⌉
+ 1, . . . , T .
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Since F̂1:T is stationary in this case, the supplier’s profit function does not change from

period to period. Then, the dynamic and stationary regret coincide and are:

Reg(πstat, T ) =
T∑
t=1

E [(w∗ − c)q(w∗;F0)− (wt − c)q(wt;F0)] ,

where w∗ ∈ maxw∈W(w − c)q(w;F0). Our proposed policy πstat gives the supplier O(
√
T )

regret. We emphasize that this result holds for both discrete and continuous demand distri-

butions.

Theorem 3.4.1. Suppose Assumptions  3.4.1 and  3.5.2 hold. For all T ≥ 1, we have

Reg(πstat, T ) = O(
√
T ).

3.5 Supplier’s Pricing Policy

The supplier’s profit function is generally multi-modal, and it is also changing shape since

the retailer is updating their perceived distribution. Towards solving the supplier’s problem

in this setting, we start with the case of a discrete demand distribution and then handle

the continuous case via an approximation argument. In both cases, we establish a sublinear

regret for the supplier’s pricing policy.

3.5.1 Discrete Demand Distributions

We first assume that the demand in all time periods has common finite support.

Assumption 3.5.1. The sequence F µ
1:T has common support on M points: yM(≜ ξ̄) >

yM−1 > yM−2 > · · · > y1 > 0. The support YM ≜ {ym}m∈[M ] is known to both the supplier

and the retailer.

Combined with Assumption  3.3.2 , the sequence of perceived distributions F̂ µ
1:T also has sup-

port on YM . Let pt,m ≜ F̂ µ
t (ym) for m ∈ [M ] denote the values of the retailer’s perceived
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distribution in period t ∈ [T ] (where pt,0 ≜ 0 and pt,M ≜ 1). The retailer’s order quantity

given by Eq. ( 3.4 ) is then

qt =

y1, if 0 ≤ 1− wt/s ≤ pt,1,

ym, if pt,m−1 < 1− wt/s ≤ pt,m, for m ∈ {2, . . . ,M}.
(3.7)

We see that the retailer’s optimal order quantity is a piecewise constant function of the

wholesale price wt. According to Eq. ( 3.7 ), the retailer’s order quantity will always be in the

support of the discrete distribution and satisfy:

qt ∈ YM . (3.8)

Consequently, the supplier’s profit function in period t is:

φ(wt; F̂
µ
t ) =

(wt − c)y1, if 0 ≤ 1− wt/s ≤ pt,1,

(wt − c)ym, if pt,m−1 < 1− wt/s ≤ pt,m for m ∈ [M ].
(3.9)

We see it is a piecewise linear function of wt, with discontinuities at the breakpoints {s(1−

pt,m)}m∈[M ].

We propose a pricing policy for the supplier called πLUNA, where LUNA stands for Learn-

ing under a Nonstationary Agent. It is based on the deterministic bandit algorithm proposed

in [ 65 ]. πLUNA works by taking advantage of the special structure of the supplier’s profit

function, as characterized in Eq. ( 3.9 ). In particular, the performance of the pricing policy

depends on accurate estimation of the probabilities pt ≜ (pt,1, . . . , pt,M). πLUNA indirectly

estimates pt by observing the retailer’s order quantity and the supplier’s profit through

Eq. (  3.9 ). A good policy is expected to maintain a somewhat accurate estimate of pt, but

must also hedge against large variation in pt. If pt has varied a lot, then the optimal wholesale

price may be different, and a large regret will be incurred if the supplier fails to adapt.

The full details of πLUNA are presented in Algorithm  1 . It consists of multiple epochs,

where each epoch consists of an exploration phase followed by an exploitation phase. We

let i ≥ 1 index epochs, but we usually omit dependence on i except when necessary since
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each epoch follows the same pattern. Let τ 0i+1 denote the last period of epoch i ≥ 1 (where

τ 01 = 0). Then, epoch i ≥ 1 covers periods t ∈ [τ 0i + 1, . . . , τ 0i+1]. Each time πLUNA starts

the exploration phase of a new epoch, it discards all previous information and estimates pt

from scratch (since pt is nonstationary, it is the estimate for some particular period t). It

also constructs a set of exploratory wholesale prices, tries each price once, and records the

optimal exploratory price which led to the highest observed supplier profit.

Once it has an initial estimate of pt and an optimal exploratory wholesale price has been

found, πLUNA will enter the exploitation phase. It first constructs a new set of wholesale

prices for the exploitation phase. Then, in each period, a wholesale price is drawn randomly

from this set according to some distribution which balances the exploration-exploitation

trade-off. Most of the time, πLUNA prices at the nearly optimal wholesale price found in

the exploration phase, while also occasionally detecting whether the previously identified

optimal wholesale price is no longer optimal. If that is the case, then πLUNA quantifies a

lower bound on the variation of F̂ µ
t in the current epoch and begins the next epoch.

Exploration Phase of πLUNA

The goal of the exploration phase is to obtain an initial estimate of pt and to find

the optimal wholesale price corresponding to this initial estimate. As a first step, πLUNA

discretizes W into K + 1 equal-length intervals with K ≥ 1 equally spaced wholesale prices

(where K is an input parameter to be specified later, which is the same for every epoch),

and we let W̄K ≜ {w̄k}Kk=1 where:

w̄k ← (k − 1)
(s− c)

K
+ c, ∀k ∈ [K]. (3.10)

Then in each period τ 0i + k for all k ∈ [K], πLUNA sets the wholesale price w̄k and the

corresponding retailer order quantity is q(w̄k; F̂
µ

τ0i +k
). Upon setting w̄k, πLUNA earns profit

φk given by:

φk ← (w̄k − c)q(w̄k; F̂
µ

τ0i +k
). (3.11)
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Let k∗ ∈ argmaxk∈[K] φk, so w̄k∗ is the wholesale price that maximizes the observed profit

among W̄K . By Eq. ( 3.8 ), we must have q(w̄k∗ ; F̂
µ

τ0i +k∗
) ∈ YM , so we also let m∗ ∈ [M ] be

such that ym∗ ≜ q(w̄k∗ ; F̂
µ

τ0i +k∗
). With w̄k∗ and ym∗ in hand, we begin the exploitation phase

of epoch i.

Exploitation Phase of πLUNA

If the retailer is stationary, then w̄k∗ will remain nearly optimal for the rest of the planning

horizon (this is exactly the supplier’s pricing policy for a stationary retailer, see Section  3.4 ).

However, as the retailer is also learning the demand distribution, we expect F̂ µ
t to vary. If F̂ µ

t

has varied a lot and the supplier still prices at w̄k∗ , then she is likely to suffer a large regret.

The supplier’s pricing policy has to balance between exploitation (stick to the optimal w̄k∗

found in the exploration phase) and exploration (hedge against the risk that F̂ µ
t has changed

a lot since the exploration phase).

We show that this balance can be achieved during the exploitation phase by randomly

choosing from a carefully constructed finite set of prices. This set of prices will in fact

be different for each period t, and is constructed based on the structure of the supplier’s

profit function through Eq. ( 3.9 ). We first construct this set of prices, and then explain the

intuition behind it.

We allow the pricing policy in period t to have a margin of sub-optimality ∆t > 0

compared with φk∗ , the highest profit observed in the exploration phase. The sequence

{∆t}t≥1 will be decreasing in t (in particular, we will take ∆t = O(
√
1/t)). Then, in each

period t, we construct a set of prices based on ∆t to sample from.

There are two cases where w̄k∗ becomes sufficiently sub-optimal to end the current epoch,

either: (i) the supplier’s profit at some w ̸= w̄k∗ has increased a lot since the exploration

phase; or (ii) the supplier’s profit at w̄k∗ has decreased a lot since the exploration phase. We

discuss the details of these two cases separately.
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Case one:

In the first case, some w ∈ W with w ̸= w̄k∗ now earns greater profit for the supplier

than w̄k∗ . This w can be an arbitrary member ofW as long as w ̸= w̄k∗ . However, we cannot

check every price in W , so we construct a specialized finite set of prices to check as follows.

We recall that qt ∈ YM holds for all t ∈ [T ] under Assumption  3.5.1 , so we ask the

question: Suppose the retailer’s order quantity is ym ∈ YM for some m ∈ [M ], then what

wholesale price (denoted by wt
m) would give the supplier a profit that is equal to φk∗ +∆t? If

the retailer’s order quantity q(wt
m; F̂

µ
t ) under wt

m turns out to be larger than (smaller than)

ym, then wt
m will give a higher (lower) profit than φk∗ + ∆t. We now construct a set of

wholesale prices in this way corresponding to each ym ∈ YM . In period t, for each m ∈ [M ],

we set the corresponding wholesale price according to:

(wt
m − c)ym = φk∗ +∆t +

yms

K
, which gives wt

m ≜
(
φk∗ +∆t +

yms

K

)
/ym + c, (3.12)

where the term yms
K

is introduced to account for the error introduced by discretizing W to

W̄K .

If the supplier prices at wt
m in period t, and if q(wt

m; F̂
µ
t ) ≥ ym, then w̄k∗ is no longer

nearly optimal since the optimality gap now exceeds ∆t (i.e., we have (wt
m−c)ym ≥ φk∗+∆t).

We summarize this discussion in Lemma  3.5.1 .

Lemma 3.5.1. If q(wt
m; F̂

µ
t ) ≥ ym, then pt,m−1 ≤ 1−wt

m/s and φ(wt
m; F̂

µ
t ) ≥ (wt

m− c)ym =

φk∗ + ∆t +
yms
K

. Otherwise, if q(wt
m; F̂

µ
t ) < ym, then pt,m−1 ≥ 1 − wt

m/s and φ(wt
m; F̂

µ
t ) <

(wt
m − c)ym = φk∗ +∆t +

yms
K

.

In addition, if q(wt
m; F̂t) ≥ ym, then F̂ µ

t has varied a lot since the exploration phase.

Lemma 3.5.2. If q(wt
m; F̂

µ
t ) ≥ ym, then

∑
j∈[τ0i +1,t−1] dK(F̂

µ
j , F̂

µ
j+1) ≥ ∆t/(s ξ̄).

Case two:

In the second case, the supplier’s profit from pricing at w̄k∗ has decreased a lot since the

exploration phase. This can happen if the retailer’s order quantity q(w̄k∗ ; F̂
µ
t ) in period t
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during the exploitation phase is much smaller than the order quantity q(w̄k∗ ; F̂
µ

τ0i +k∗
) observed

during the exploration phase. Since w̄k∗ is the optimal price found during the exploration

phase, the policy should price frequently at w̄k∗ to exploit what is best. However, pricing at

w̄k∗ does not give useful information about the variation in F̂t. Even if F̂t has only varied

by a small amount, the profit at w̄k∗ can still change drastically (recall Example  3.5 ). If we

restart the epoch each time the profit at w̄k∗ has decreased a lot, we will end up with too

many epochs and a high overall regret.

Therefore, instead of pricing at w̄k∗ , we determine a surrogate price wt
0 which achieves

two purposes: (i) the profit at wt
0 is not much lower than the profit at w̄k∗ , so we can still

exploit the optimality of w̄k∗ from the exploration phase (see Eq. (  3.14 )); and (ii) unlike w̄k∗ ,

when the profit at wt
0 is sufficiently low, we can quantify a lower bound on the variation of

F̂ µ
t (see Lemma  3.5.4 ) and correctly restart the epoch. We define the surrogate price wt

0 in

period t to satisfy:

(wt
0 − c)ym∗ = φk∗ −∆t and wt

0 ≥ 0, otherwise wt
0 = 0,

which gives

wt
0 ≜ max{w̄k∗ −∆t/ym∗ , 0}. (3.13)

Note we require wt
0 ≥ 0 instead of wt

0 ≥ c. By allowing wt
0 < c, the policy is able to detect

variation of F̂ µ
t that would otherwise not be detected.

By Eq. ( 3.6 ), the difference in profit between pricing at wt
0 and w̄k∗ is lower bounded by:

φ(wt
0; F̂

µ
t )− φ(w̄k∗ ; F̂

µ
t ) ≥ −∆t. (3.14)

We make the following inferences based on the surrogate price.

Lemma 3.5.3. If q(wt
0; F̂

µ
t ) ≥ ym∗, then pt,m∗−1 ≤ 1−w0/s and φ(wt

0; F̂
µ
t ) ≥ (wt

0− c)ym∗ ≥

φk∗ − ∆t. Otherwise, if q(wt
0; F̂

µ
t ) < ym∗, then pt,m∗−1 ≥ 1 − wt

0/s and φ(wt
0; F̂

µ
t ) < (wt

0 −

c)ym∗ = φk∗ −∆t.
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If the retailer’s order quantity satisfies q(wt
0; F̂

µ
t ) < ym∗ , then we know that F̂ µ

t has varied a

lot since the exploration phase.

Lemma 3.5.4. If q(wt
0; F̂

µ
t ) < ym∗, then

∑
j∈[τ0i +1,t−1] dK(F̂

µ
j , F̂

µ
j+1) ≥ ∆t/(s ξ̄).

Algorithm and regret bound

In each period t, we construct the set of wholesale prices {wt
0, w

t
1, . . . , w

t
M}, and πLUNA

will randomly sample from {wt
0, w

t
1, . . . , w

t
M} according to a distribution that is changing over

time. Based on the discussion of the previous two cases, the exploitation phase continues

until q(wt
m; F̂

µ
t ) ≥ ym for some m ∈ [M ], or q(wt

0; F̂
µ
t ) < ym∗ . In both cases, F̂ µ

t is guaranteed

to have varied a lot since the exploration phase, and πLUNA starts the next epoch. Let U([M ])

denote the uniform distribution on {1, 2, . . . ,M}.
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Algorithm 1 Learning under Nonstationary Agent (LUNA)
Require: Time horizon T , supplier production cost c, retailer selling price s, support YM ,

grid size K

Update current period t← 1

Set epoch i← 1 and τ 01 ← 0

for epoch i = 1, 2, · · · do

Exploration:

Price at w̄k (see Eq. ( 3.10 )) and observe φk (see Eq. ( 3.11 )) for the first K periods in

epoch i

Let k∗ ∈ argmaxk∈[K] φk and m∗ be such that ym∗ = q
(
w̄k∗ ; F̂

µ

τ0i +k∗

)
Exploitation:

In period t, set ∆t ←
√
M/(t− τ 0i )

Compute prices wt
m for m ∈ [M ] and wt

0 according to Eq. ( 3.12 ) and Eq. ( 3.13 ),

respectively

Select wholesale price wt ← wt
mt

according to the distribution

mt =


0, w.p. 1−

√
M

t−τ0i
,

U([M ]), w.p.
√

M
t−τ0i

Observe retailer’s order q(wt; F̂
µ
t )

if q(wt
mt
; F̂ µ

t ) ≥ ymt for mt ∈ [M ] or q(wt
mt
; F̂ µ

t ) < ym∗ for mt = 0 then

τ 0i+1 ← t and start the next epoch i← i+ 1

Theorem  3.5.1 upper bounds the regret of Algorithm  1 as a function of V and K (notice

that πLUNA does not need to know V , but K is an input). When in addition V is known,

the decision maker can choose K optimally as a function of V to minimize the regret.

Theorem 3.5.1. Suppose Assumption  3.5 holds.

(i) For all K ≥ 1, Reg(πLUNA, T ) = Õ(ξ̄
4
3V

1
3M

1
3T

2
3 + ξ̄ T

K
+ ξ̄

5
3KV

2
3M− 1

3T
1
3 ).

(ii) If the supplier knows V , then K can be chosen optimally as K∗ =
⌈
T

1
3V − 1

3 ξ̄−
1
3

⌉
, and

the minimized regret is Reg(πLUNA, T ) = Õ(ξ̄
4
3V

1
3M

1
3T

2
3 ).
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(iii) If the supplier does not know V , then K can be chosen obliviously as K̂ =
⌈
ξ̄−

1
3T

1
3

⌉
,

and the regret is Reg(πLUNA, T ) = Õ(ξ̄
4
3V

1
3M

1
3T

2
3 + ξ̄

4
3V

2
3M− 1

3T
2
3 ).

According to Theorem  3.5.1 , using our pricing policy πLUNA, the supplier can achieve a

sublinear regret bound if V = õ(T ) and if V = õ(
√
T ) when the supplier knows V and does

not know V respectively.

3.5.2 Proof Outline of Theorem  3.5.1 (πLUNA)

Here we overview the proof of Theorem  3.5.1 , all detailed expressions and derivations

referenced here appear in Appendix  B.2 . We first do the regret analysis for a single epoch i

(which consists of periods t ∈ [τ 0i + 1, τ 0i+1]), and then assemble these into an overall regret

bound. To begin, we decompose the regret in epoch i into:

τ0i+1∑
t=τ0i +1

{
φ(w∗

t ; F̂
µ
t )− φ(wt; F̂

µ
t )

}
=

τ0i+1∑
t=τ0i +1

{
φ(w∗

t ; F̂
µ
t )− φ(wt

0; F̂
µ
t )

}

+

{
φ(wt

0; F̂
µ
t )− φ(wt; F̂

µ
t )

}
,

where the first part Regci(πLUNA) ≜
∑τ0i+1

t=τ0i +1
{φ(w∗

t ; F̂
µ
t ) − φ(wt

0; F̂
µ
t )} (the superscript ‘c’

is for ‘clairvoyant’) is the regret incurred by always pricing at wt
0 compared to the clair-

voyant benchmark, and the second part Reg0i (πLUNA) ≜
∑τ0i+1

t=τ0i +1
{φ(wt

0; F̂
µ
t ) − φ(wt; F̂

µ
t )}

(the superscript ‘0’ corresponds to the surrogate price) is the regret incurred compared with

the benchmark of always pricing at the surrogate price wt
0. We analyze these two parts

separately.
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Part I of the regret

To upper bound Regci(πLUNA), we define the following subset of periods of epoch i:

E i ≜
{
t ∈ [τ 0i +max{M + 2, K}+ 1, τ 0i+1] : q(w

t
m; F̂

µ
t ) < ym, ∀m ∈ [M ], and

q(wt
0; F̂

µ
t ) ≥ ym∗

}
.

If t ∈ E i, then F̂ µ
t has not varied a lot within epoch i and pricing at wt

0 remains nearly

optimal. On the other hand, if t /∈ E i, then pricing at wt
0 is no longer nearly optimal either

because the profit at wt
0 has gone down, or the profit at some wt

m ̸= wt
0 has gone up. We can

further decompose

φ(w∗
t ; F̂

µ
t )− φ(wt

0; F̂
µ
t ) =

(
φ(w∗

t ; F̂
µ
t )− φ(wt

0; F̂
µ
t )
)
1(t ∈ E i)

+
(
φ(w∗

t ; F̂
µ
t )− φ(wt

0; F̂
µ
t )
)
1(t /∈ E i),

and then upper bound these expressions separately. First we upper bound the regret

φ(w∗
t ; F̂

µ
t ) − φ(wt

0; F̂
µ
t ) for periods t ∈ E i. The next result takes effect after period τ 0i +K

and only applies to the exploitation phase.

Lemma 3.5.5. For all t ∈ [τ 0i + max{M + 2, K} + 1, τ 0i+1] ∩ E i, we have φ(w∗
t ; F̂

µ
t ) −

φ(wt
0; F̂

µ
t ) ≤ 2∆t +

ξ̄s
K

.

Next we upper bound Ei ≜
∑τ0i+1

t=τ0i +max{M+2,K}+1
1(t /∈ E i), the number of periods when

t /∈ E i (during the exploitation phase of epoch i).

Lemma 3.5.6. With probability at least 1− 1/T 2, Ei ≤ 2 log(T )
√

M(τ 0i+1 − 1− τ 0i ) + 1.

We combine Lemmas  3.5.5 and  3.5.6 , and summarize the resulting bound on Regci(πLUNA)

in Eq. ( B.8 ) in Appendix  B.2 .
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Part II of the regret

To upper bound Reg0i (πLUNA), we note

φ(wt
0; F̂

µ
t )− φ(wt; F̂

µ
t ) =

(
φ(wt

0; F̂
µ
t )− φ(wt; F̂

µ
t )
)
1(wt ̸= wt

0)

for all t. That is, the supplier can only incur regret with respect to the benchmark of always

pricing at wt
0 if wt ̸= wt

0. Let

Ti(K) ≜
∣∣{t ∈ [τ 0i +K + 1, τ 0i+1] : mt ̸= 0}

∣∣
be the number of periods in the exploitation phase of epoch i when πLUNA does not select

mt = 0 (and price at wt
0). The next lemma upper bounds Ti(K).

Lemma 3.5.7. ([ 65 , Lemma A.2]) For all K ≥ 1, Ti(K) ≤
√

11 log(T )M(τ 0i+1 − 1− τ 0i )

with probability at least 1− 1/T 2.

We summarize the resulting bound for Reg0i (πLUNA) in Eq. ( B.9 ) in Appendix  B.2 .

Combining the two parts of the regret

We combine Eq. ( B.8 ) and Eq. ( B.9 ) to upper bound the regret for epoch i in Eq. ( B.10 ).

To derive the supplier’s total regret over the entire planning horizon T , we also need an

upper bound on the total number of epochs I. In Lemmas  3.5.2 and  3.5.4 , we showed that

when an epoch ends, F̂t has varied a lot within the current epoch. Since the total variation

of F̂1:T over the entire planning horizon is bounded, the total number of epochs I must be

bounded by the variation budget.

Lemma 3.5.8. We have I ≤ (s ξ̄)
2
3V

2
3M− 1

3T
1
3 + 1 almost surely.

Based on Lemma  3.5.8 and Eq. (  B.10 ), we obtain our final regret bound in Eq. (  B.11 ),

concluding the proof.
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3.5.3 Continuous Demand Distributions

We now turn to the continuous case. We may also use the upcoming approach when the

support of demand is finite but very large, so we do not specifically require F1:T and F̂ µ
1:T to

have a density for this treatment.

We first make the following boundedness assumption on the demand distribution.

Assumption 3.5.2. The sequence F1:T has bounded support on [0, ξ̄] for 0 < ξ̄ < ∞, and

both the retailer and the supplier know ξ̄.

When F̂ µ
t is continuous, under Assumption  3.5.2 , qt can take any value in the interval [0, ξ̄]. In

contrast, when F̂ µ
t has support on YM , the retailer’s order quantity always satisfies qt ∈ YM .

πLUNA used this fact to track the variation of F̂ µ
1:T when demand has support on YM , but it

is much harder to infer the behavior of F̂ µ
t in the continuous case.

Our strategy is based on approximating [0, ξ̄] with a finite subset of equally spaced points.

Let N ≥ 1 be the size of this subset, and let ZN ≜ {zn}n∈[N ] be equally spaced points on

[0, ξ̄] defined by: z1 = 0 and zn = n ξ̄/(N − 1) for all n ∈ [N − 1].

We call our pricing policy for the continuous case Learning under Nonstationary Agent

with Continuous Distribution (LUNAC), denoted πLUNAC, which calls πLUNA as a subroutine

on ZN .

The details of πLUNAC are outlined in Algorithm  2 . In each period, πLUNAC enacts the

wholesale price wt suggested by πLUNA and receives the feedback q(wt; F̂
µ
t ). πLUNAC then

maps the feedback q(wt; F̂
µ
t ) to some zn ∈ ZN , which is then given to πLUNA, which then

outputs a recommended price.

Algorithm 2 Learning Under Nonstationary Agent with Continuous Distribution
(LUNAC)
Require: ZN for N ≥ 1

Initialize πLUNA with ZN

while t ≤ T do
Set the wholesale price wt suggested by πLUNA and observe retailer’s order q(wt; F̂

µ
t )

Find n such that zn−1 < q(wt; F̂
µ
t ) ≤ zn for some 2 ≤ n ≤ N , and take zn as the

feedback to πLUNA
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The retailer’s order quantities are determined by the perceived distributions F̂ µ
1:T (which

may have support on all of [0, ξ̄]), while we are running πLUNA as a subroutine on ZN . To

analyze the behavior of the πLUNA subroutine, we introduce a sequence of fictitious perceived

distributions with support on ZN . Let F̃t be the fictional distribution on ZN for period t,

which satisfies

F̃t(zn) = F̂ µ
t (zn), ∀n ∈ [N ], (3.15)

for all t ∈ [T ]. We introduce the shorthand F̃1:t ≜ (F̃i)
t
i=1 for t ∈ [T ] for the partial sequences

of fictitious perceived distributions.

We will establish that, under Eq. ( 3.15 ), the wholesale prices output by πLUNAC under

F̂ µ
1:t coincide with the wholesale prices output by πLUNA on ZN under F̃1:t. Let ω be a sample

path of the randomization of πLUNA, and let Ω be the set of all such sample paths. All the

randomization in πLUNAC comes from the randomization in πLUNA on ZN , so we can compare

both algorithms on Ω. Let wLUNAC
t (F̂ µ

1:t−1;ω) be the wholesale price output by πLUNAC given

the ex post distributions F̂ µ
1:t−1 under ω, and let wLUNA

t (F̃1:t−1;ω) be the wholesale price

output by πLUNA given the ex post distributions F̃1:t−1 under ω (here, by ‘ex post’ we mean

the entire sequences F̂ µ
1:t−1 and F̃1:t−1 have been observed).

Lemma 3.5.9. For all t ∈ [T ] and ω ∈ Ω, wLUNAC
t (F̂ µ

1:t−1;ω) = wLUNA
t (F̃1:t−1;ω).

Loosely speaking, Proposition ?? says that πLUNAC sets wholesale prices by approximating

F̂ µ
t with F̃t in each period. It then suggests the wholesale prices given by πLUNA, which

pretends the retailer’s perceived distribution is actually F̃t. This interpretation also suggests

that if F̂ µ
1:T has bounded variation, then F̃1:T should have bounded variation, as shown in

Lemma  3.5.10 .

Lemma 3.5.10. For all t ∈ [T − 1], dK(F̃t, F̃t+1) ≤ dK(F̂
µ
t , F̂

µ
t+1).

Theorem  3.5.2 below bounds the regret of πLUNAC (see Algorithm  2 ). πLUNAC does not

require the variation budget V as an input, but we get an improved regret bound with

knowledge of V .

Theorem 3.5.2. Suppose Assumptions  3.3.1 and  3.5.2 hold.

82



(i) Suppose the supplier knows V , then N can be chosen optimally as N∗ =
⌈
ξ̄−

1
4V − 1

4T
1
4

⌉
,

and Reg(πLUNAC , T ) = Õ(ξ̄
5
4V

1
4T

3
4 + ξ̄

17
12V

3
4T

7
12 ).

(ii) Suppose the supplier does not know V . Then N can be chosen obliviously as N̂ =⌈
ξ̄−

1
4T

1
4

⌉
, and Reg(πLUNAC , T ) = Õ(ξ̄

5
4V

1
3T

3
4 + ξ̄

17
12V

2
3T

7
12 ).

According to Theorem  3.5.2 , the supplier can achieve a sublinear regret bound if V =

õ(T ) and if V = õ(T
5
8 ) when the supplier knows V and does not know V respectively.

Theorem  3.5.1 shows that without discrete approximation, the supplier has sublinear regret

bound only if V = õ(T
1
2 ). The improvement achieved from V = õ(T

1
2 ) to V = õ(T

5
8 ) lies

in that through approximating the distribution, the supplier indirectly controls the number

of epochs of the pricing policy, and thus the discrete approximation may give better regret

bound when V is large. The results indicate that the supplier can use πLUNAC not only when

the distribution is continuous, but also when the supplier supposes the unknown V to be

large under the discrete distribution.

Remark 3.5.1. When the supplier does not know V , she can combine LUNAC with the

BOB framework, which we refer to as LUNAC-N. The implementation details of πLUNAC-N

are presented in Appendix  B.4 , and the upper bound on the regret of πLUNAC-N is presented

in Theorem  B.4.1 .

Remark 3.5.2. We have shown in Theorem  3.5.1 and Theorem  3.5.2 that the pricing policies

lead to sublinear regret bound only if the variation budget V grows sublinear in T . Here we

comment that when the the variation budget is sublinear, we must have the Kolmogorov

distance between Ft converges to 0.

Lemma 3.5.11. For each time horizon T = 1, 2, · · · , let
∑T

t=1 dK(Ft−1, Ft) = VT and VT =

Õ(Tα) for some 0 ≤ α < 1. Then we must have limT→∞ dK(FT−1, FT ) = 0.

Before we end this section, we comment on the difference between our discretization

approach and those approaches used for the continuous bandit. The decision set is continuous

in a continuous bandit, and it is common to approximate the decision set with a finite set.

Instead of finding the optimal decision in the original continuous decision set, an optimal

decision is found from the finite set, and then the regret is established through a regularity
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assumption (e.g., Lipschitz or Holder continuity) on the reward/cost function. We do not

directly approximate the continuous decision set. Instead, we approximate the supplier’s

profit function by finding an approximate distribution F̃t for F̂ µ
t (albeit both the true profit

function and F̂ µ
t are unknown). Our approach relies on the bilinearity of the supplier’s profit

function in w and q, and it does not require the regularity assumptions on the objective from

the continuous bandit literature.

3.6 Examples of Retailer’s Strategies

We investigate several well known data-driven retailer inventory learning policies in this

section, and show that our proposed pricing policies achieve sublinear regret for all of them.

We emphasize that we do not need to know the retailer’s exact inventory policy to achieve

sublinear regret, we only mean to illustrate that these popular inventory policies satisfy our

key assumption on the total variation of F̂ µ
1:T . In addition, the examples in this section

suppose that the retailer does not have prior knowledge of V . Instead, these examples help

provide guidance on refining V in practice.

3.6.1 Sample Average Approximation (SAA)

SAA is arguably the most widely studied approach for data-driven optimization [ 51 ],

[ 107 ]. We let µe denote the retailer’s inventory policy based on SAA. For all t ∈ [T ], let F̂ e
t

be the empirical CDF constructed from the (not necessarily i.i.d.) demand samples (ξi)
t−1
i=1

defined by F̂ e
t (x) ≜ 1

t−1

∑t−1
i=1 1(ξi ≤ x) for all x ≥ 0 (note that in period t, the retailer

only got access to the demand realizations in the previous t − 1 periods). Under µe, given

wholesale price wt, the retailer’s order quantity satisfies qe
t = qt(wt; F̂

e
t ).

We can upper bound the total variation V of the sequence F̂ e
1:T for arbitrary F1:T (i.e.,

the true distribution can be changing arbitrarily).

Proposition 3.6.1. µe ∈M(log(T ) + 1, T ).

Next we bound the supplier’s regret under πLUNA (if the distribution has finite support) or

πLUNAC (if the distribution has continuous support). The proof follows from Theorem  3.5.1 

and Proposition  3.6.1 .
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Theorem 3.6.1. Suppose the retailer follows µe.

(i) Suppose F1:T have support on YM , then Reg(πLUNA, T ) = Õ(ξ̄
4
3M

1
3T

2
3 ).

(ii) Suppose F1:T have support on [0, ξ̄], then Reg(πLUNAC, T ) = Õ(ξ̄
5
4T

3
4 + ξ̄

17
12T

7
12 ).

3.6.2 Distributionally Robust Optimization (DRO)

We suppose Assumption  3.4.1 holds for this subsection. The DRO approach is based on

the worst-case expected profit over an uncertainty set of demand distributions. We let µr

denote the retailer’s inventory learning policy based on DRO. In each period t, the retailer has

an uncertainty set Dt ⊂ P(Ξ) that he believes contains the true market demand distribution.

We consider uncertainty sets which consist of distributions that are “close” to the empirical

distribution F̂ e
t , and we measure closeness on P(Ξ) with the ϕ−divergence. Recall the

ϕ−divergence, denoted dϕ, for distributions F, G ∈ P(Ξ) with F ≪ G (where F ≪ G means

F is absolutely continuous with respect to G) is defined by dϕ(F,G) =
∫
Ξ
ϕ (dF/dG) dG for

a convex function ϕ such that ϕ(1) = 0. Let ϵt ≥ 0 be the retailer’s confidence level in

period t. The retailer’s data-driven uncertainty sets under µr are Dϕ
ϵt(F̂

e
t ) ≜ {F ∈ P(Ξ) :

dϕ(F, F̂
e
t ) ≤ ϵt}. A retailer who is more confident that F̂ e

t is close to the true distribution F0

should choose a smaller ϵt, and vice versa.

The DRO literature has proposed multiple methods for choosing the confidence level ϵt,

see the review by [ 108 ]. One way is to leverage the asymptotic or finite sample performance

of the uncertainty set. In other words, we would choose ϵt so that the optimal value of the

DRO problem gives a finite sample guarantee on the retailer’s original stochastic optimization

problem.

[ 109 ] uses the optimal value of a DRO problem based on smooth ϕ−divergences to pro-

vide asymptotic confidence intervals for the optimal value of the original (full information)

stochastic optimization problem. We will evaluate the performance of πLUNA and πLUNAC

when ϵt is chosen by this method. Let χ2
1 be a Chi-squared random variable with degree of

freedom one.

Theorem 3.6.2. ([ 109 , Theorem 4]) Suppose the following conditions hold:
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(i) The function ϕ : R+ → R is convex, three times differentiable in a neighborhood of 1,

and satisfies ϕ(1) = ϕ′(1) = 0.

(ii) There exists a measurable function M : Ξ→ R+ such that for all ξ ∈ Ξ, R(·;w, ξ) is

M(ξ)−Lipschitz with respect to some norm ∥ · ∥ on Ξ.

(iii) The function R(·;w, ξ) is proper and lower semi-continuous for F0-almost all ξ ∈ Ξ.

For any ρ ≥ 0, let ϵt = ρ/t for all t ≥ 1. Then,

lim
t→∞

P
(
max
q∈Ξ

EF0 [R(q;w, ξ)] ≥ lt

)
= 1− 1

2
P(χ2

1 ≥ ρ), (3.16)

where lt ≜ maxq∈Ξ infF∈Dϕ
ϵt (F̂

e
t )
EF [R(q;w, ξ)].

Theorem  3.6.2 says that the optimal value of the retailer’s problem with knowledge of F0

can be lower bounded by lt (the optimal value of the DRO problem for uncertainty set

Dϕ
ϵt(F̂

e
t )) with probability 1 − 1

2
P(χ2

1 ≥ ρ), as t → ∞ for confidence levels ϵt = ρ/t. Note

that Assumption  3.4.1 must be satisfied for this result to hold.

Let α ∈ [0, 1] be a confidence level and χ2
1,β denote the β−quantile of the χ2

1 distribution.

Theorem  3.6.2 suggests that in order to ensure the asymptotic coverage of the optimal value

as in Eq. ( 3.16 ), the confidence levels should be chosen as

ϵt = χ2
1,1−2α/(t− 1), ∀t ≥ 2. (3.17)

Confidence levels chosen in this way are usually overly conservative, and the retailer may

choose a smaller ϵt in practice. In this case, we get a conservative estimate of V by this

method.

Under µr, in period t the retailer orders

qrt ∈ argmax
q≥0

min
F∈Dϕ

ϵt (F̂
e
t )

EF [R(q;wt, ξ)]. (3.18)

86



The objective in Eq. (  3.18 ) is the retailer’s worst-case expected profit. Then, corresponding

to qrt , the perceived distribution

F̂ d
t ∈ arg min

F∈Dϕ
ϵt (F̂

e
t )

EF [R(qrt ;wt, ξ)],

is the distribution inDϕ
ϵt(F̂

e
t ) which attains the worst-case expected profit (which also depends

on wt).

We consider three widely used ϕ−divergences: the KL-divergence dKL (where ϕ(x) =

x log(x)), the χ2−distance dχ2 (where ϕ(x) = (x−1)2), and the Hellinger distance dH (where

ϕ(x) = (
√
x− 1)

2). For these three, Proposition  3.6.2 upper bounds the total variation V of

the sequence F̂ d
1:T as a function of ϵ1:T = (ϵt)

T
t=1.

Proposition 3.6.2. Under Assumption  3.4.1 , suppose the retailer follows µr with confidence

levels ϵ1:T .

(i) If dϕ = dKL, then µr ∈M
(
log(T ) + 1 +

∑T
t=1

√
2ϵt, T

)
.

(ii) If dϕ = dχ2, then µr ∈M
(
log(T ) + 1 +

∑T
t=1

√
ϵt, T

)
.

(iii) If dϕ = dH , then µr ∈M
(
log(T ) + 1 + 2

∑T
t=1 ϵt, T

)
.

Using the specific choice of ϵ2:T in Eq. ( 3.17 ) and ϵ1 = 1, Theorem  3.6.3 characterizes the

performance of πLUNA and πLUNAC for dϕ ∈ {dKL, dχ2 , dH}. Theorem  3.6.3 follows directly

from Theorem  3.5.1 , Theorem  3.5.2 , and Proposition  3.6.2 .

Theorem 3.6.3. Suppose Assumptions  3.4.1 and  3.5.2 hold, and suppose the retailer follows

µr where ϵ1:T are chosen as in Eq. ( 3.17 ).

(i) If dϕ ∈ {dKL, dχ2}, then Reg(πLUNAC, T ) = Õ
(
ξ̄

17
12T

11
12

)
.

(ii) If dϕ = dH and F0 has support on YM , then Reg(πLUNA, T ) = Õ(ξ̄
4
3M

1
3T

2
3+ξ̄

4
3M− 1

3T
2
3 ).

(iii) If dϕ = dH and F0 has support on [0, ξ̄], then Reg(πLUNAC, T ) = Õ(ξ̄
5
4T

3
4 + ξ̄

17
12T

7
12 ).

3.6.3 Parametric Approach

We continue to suppose Assumption  3.4.1 is in force for this subsection. We additionally

suppose that the retailer has a parametric model for F0 determined by the parameter θ ∈ Rd.
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Let Θ ⊂ Rd be the set of admissible parameter values, and let {Fθ}θ∈Θ be the corresponding

parametric family. If F0 belongs to a parametric family, then Assumption  3.5.2 is not likely

to be satisfied (since many parametric distributions such as the normal and exponential

distributions have unbounded support). In this case, we relax to the following assumption.

Assumption 3.6.1. The retailer’s order quantity is upper bounded by q̄. That is, for any

wt and F̂ µ
t , the retailer’s order satisfies q(wt; F̂

µ
t ) = min{min{q : F̂ µ

t (q) ≥ 1− wt/s}, q̄}.

Assumption  3.6.1 states that even if the supplier’s price wt is low enough and the perceived

distribution F̂ µ
t has unbounded support, the retailer will not place arbitrarily large orders.

Assumption  3.6.1 is also consistent with practical constraints, e.g., warehouse and trans-

portation capacity.

We consider three specific methods for the parametric setting: (i) maximum likelihood

estimation (MLE); (ii) operational statistics; and (iii) the parametric Bayesian approach.

Maximum likelihood Estimation (MLE)

We focus on MLE for the exponential family, where a distribution belongs to the expo-

nential family if its probability density function f(x; θ) for x in its support can be written

as:

f(x; θ) = h(x) exp
(
η(θ)T · T (x)− A(θ)

)
. (3.19)

In Eq. (  3.19 ), η(θ) is the natural parameter, T (x) is the sufficient statistic, h(x) is the base

measure, and A(θ) is the log-partition function which normalizes the density function. The

exponential family includes the Poisson and Categorical distributions (for discrete demand),

and the Normal and Exponential distributions (for continuous demand).

We let µm denote the retailer policy based on MLE. Under µm, the retailer produces an

estimate θt of θ in each period t by maximizing the likelihood function of the past demand

samples. This procedure has a special form for the exponential family. Let µ ≜ EFθ
[T (ξ)],

then the MLE for µ based on demand samples (ξi)
t−1
i=1 is:

µt =

∑t−1
i=1 T (ξi)

t− 1
, t ≥ 2.
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One can then obtain the estimator θt for θ through the estimator µt for µ by the relationship

between µ and θ, which depends on the particular distribution. Under µm, in each period

t ∈ [T ], the retailer’s perceived distribution is the fitted distribution

F̂m
t (x) =

Fθt(x), 0 ≤ x < q̄;

1, x ≥ q̄.

(3.20)

This sequence satisfies Assumption  3.3.1 and the discontituity in F̂m
t is introduced by As-

sumption  3.6.1 . The retailer then orders qm
t = qt(wt, F̂

m
t ) where qt(wt, F̂

m
t ) = min{min{q :

Fθt(q) ≥ 1− w/s}, q̄}.

We will investigate the variation of F̂m
1:T for some canonical distributions in the expo-

nential family. Let P(λ) denote the Poisson distribution with mean λ; let C(M) denote the

categorical distribution with support size M ; let E(λ) denote the exponential distribution

with rate λ; and let N(µ, σ2) denote the normal distribution with mean µ and variance σ2.

In Proposition  3.6.3 , we derive the total variation of F̂m
1:T . Note the categorical distribu-

tion has bounded support so it automatically satisfies Assumption  3.6.1 .

Proposition 3.6.3. Suppose the retailer follows µm.

(i) If F0 = P(λ), then µm ∈ M ((ln (T ) + 1) (4 ln (T ) + 2λ) , T ) with probability at least

1− 1/T .

(ii) If F0 = C(M), then µm ∈M (ln (T + 1), T ).

(iii) If F0 = E(λ), then µm ∈ M (16 ln (2T 2)− 1 + (1 + 2 ln (2T 2)) (ln (T ) + 1), T ) with

probability at least 1− 1/T .

(iv) If F0 = N(µ, σ2), with σ2 known and µ unknown to the retailer, then

µm ∈M
(
1 + 1

σ

√
(ln(T ) + 1) (µ2 + 2σ2 ln (2T 2)), T

)
with probability at least 1− 1/T .

The next result on the supplier’s regret bound follows directly from Theorem  3.5.1 , The-

orem  3.5.2 , and Proposition  3.6.3 .

Theorem 3.6.4. Suppose the retailer follows µm.

(i) Suppose F0 = P(λ), then Reg(πLUNAC, T ) = Õ(q̄
5
4T

3
4 + q̄

17
12T

7
12 ) with probability at least

1− 1/T .
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(ii) Suppose F0 = C(M), then Reg(πLUNA, T ) = Õ(q̄
4
3M

1
3T

2
3 ).

(iii) Suppose F0 = E(λ), then Reg(πLUNAC, T ) = Õ(q̄
5
4T

3
4 + q̄

17
12T

7
12 ) with probability at

least 1− 1/T .

(iv) Suppose F0 = N(µ, σ2), then Reg(πLUNAC, T ) = Õ(q̄
5
4T

3
4 + q̄

17
12T

7
12 ) with probability

at least 1− 1/T .

Operational Statistics

Here we suppose F0 = E(λ), the exponential distribution with an unknown rate λ >

0. [ 42 ], [ 43 ] propose the operational statistics approach for the retailer facing exponential

demand with unknown rate. In this approach, the retailer first specifies a class of admissible

policies, then finds a policy within this class to maximize his out-of-sample expected profit.

We let µo denote the retailer’s inventory policy based on operational statistics, which

is implemented as follows. According to [ 42 ], given wholesale price wt and i.i.d. demand

samples (ξi)t−1
i=1, the retailer’s order quantity that maximizes his out-of-sample expected profit

is (t − 1)

((
s
wt

) 1
t − 1

) ∑t−1
i=1 ξi
t−1

for t ≥ 2. The order quantity is directly determined by the

data, and its derivation does not involve estimating λ. However, we still can find a sequence

of distributions F̂ o
2:T satisfying Assumption  3.3.1 that map wt to the order quantity under

operational statistics. For all t ≥ 2, define the rates λt so that 1
λt

=
(t−1)

((
s
wt

) 1
t −1

)(∑t−1
i=1

ξi
t−1

)
ln
(

s
wt

) ,

and then set the perceived distribution to be

F̂ o
t (x) =

E(λt)(x), 0 ≤ x < q̄,

1, x ≥ q̄.

Then, under µo the retailer equivalently solves qo
t = q(wt, F̂

o
t ) where q(wt, F̂

o
t ) = min{min{q :

E(λt)(q) ≥ 1− w/s}, q̄} for all t ≥ 2.

We now derive the total variation of F̂ o
1:T .

Proposition 3.6.4. Suppose F0 = E(λ), and the retailer follows µo. Then,

µo ∈M (21 + 40 ln (T ) + 4(ln (T ))2, T ) with probability at least 1− 1/T .
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Theorem 3.6.5. Suppose F0 = E(λ), and the retailer follows µo. Then, Reg(πLUNAC, T ) =

Õ(q̄
5
4T

3
4 + q̄

17
12T

7
12 ) with probability at least 1− 1/T .

Parametric Bayesian approach

We now suppose demand is E(Λ) where the rate Λ is random and has a gamma prior

distribution fΛ with parameter α, β > 0, i.e., fΛ(λ) = (β/λ)α+1

βΓ(α)
exp{−β/λ}. Exponential

demand distributions with a gamma prior are widely studied in the OM literature [  110 ].

We let µb denote the retailer’s inventory learning policy under the Bayesian approach.

Given wt, the retailer orders

argmax
q≥0

∫ ∞

0

EE(Λ) [R(q;wt, ξ)]fΛ|(ξi)t−1
i=1

(λ) dλ, (3.21)

where fΛ|(ξi)t−1
i=1

is the posterior density function with respect to the demand samples from

the previous t−1 periods. [  111 ] show that the retailer’s optimal order quantity as a solution

to Eq. ( 3.21 ) is
(
β +

∑t−1
i=1 ξi

)((
s
wt

)1/(α+t−1)

− 1

)
. For all t ∈ [T ], define the rates λt so

that

1

λt

=

(
β +

∑t−1
i=1 ξi

) (
(s/wt)

1
α+t−1 − 1

)
ln (s/wt)

,

and then set

F̂ b
t =

E(λt)(x), 0 ≤ x < q̄,

1, x ≥ q̄.

Then, F̂ b
t is the retailer’s perceived distribution that maps the supplier’s wholesale price wt to

the retailer’s order quantity qbt via qbt = q(wt, F̂
b
t ) where q(wt, F̂

b
t ) = min{min{q : E(λt)(q) ≥

1− w/s}, q̄}.

We derive the total variation of F̂ b
1:T similarly to Proposition  3.6.4 , and so we omit the

proof.

Proposition 3.6.5. Suppose demand is exponentially distributed with mean 1/λ and the

retailer follows µb. Then, µb ∈M(18(α+ 1) + (40α+ 39) ln (T ) + 4(α+ 1)(ln (T ))2, T ) with

probability at least 1− 1/T .
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Next we bound the regret of πLUNAC when the retailer follows µb.

Theorem 3.6.6. Suppose the retailer follows µb. Then, Reg(πLUNAC, T ) = Õ(q̄
5
4T

3
4+q̄

17
12T

7
12 )

with probability at least 1− 1/T .

3.7 Numerical Experiments

3.7.1 Empirical Performance

We evaluate the empirical performance of πLUNA when the true market demand distribu-

tions F1:T are discrete. In order to control the total variation of F̂ µ
1:T , we directly construct

F̂ µ
1:T as follows. For t ∈ [T ], we set F̂ µ

t to be the CDF of a Bernoulli random variable which

takes values 0 and 1 with probabilities pt,0 and pt,1 = 1− pt,0, respectively, and let

pt,0 =
1

2
+

3

10
sin

5V πt

3T
, t ∈ [T ], (3.22)

for fixed V > 0. Then, the total variation satisfies

T−1∑
t=1

dK(F̂
µ
t , F̂

µ
t+1) = C V,

for some constant C > 0.
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Figure 3.1. Perfor-
mance of πLUNA for dis-
crete distributions
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Figure  3.1 shows the dynamic regret of πLUNA as a function of the number of rounds

when K is optimally chosen (assuming the supplier knows V , with shorthand ‘opt-K’) and

obliviously chosen (assuming the supplier does not know V , with shorthand ‘obl-K’). We

take different values of V to compare the growth rate of the regret for the same pricing

policy. The regrets are plotted on a log-log scale, so the slope in this plot corresponds to the

exponent of the regret, i.e., the slope is α if the regret grows in Θ(Tα).

We see that the slope roughly matches our theoretical results (see Theorem  3.5.1 ). When

V = 1, the regret bounds corresponding to opt-K and obl-K overlap. When V = T 1/3, opt-

K grows more slowly than obl-K but has a smaller constant term than opt-K (we did not

optimize for the constant terms). Also notice that the gap in the regret bounds between opt-

K and obl-K is small (i.e., the regret bounds for opt-K and obl-K are respectively Õ(V
1
3T

2
3 )

and Õ(V
2
3T

2
3 ), and the gap is V

1
3 ). Even when K is optimally chosen, obl-K can have better

performance than opt-K within a large range of T (in our case, T ≤ 2× 105) because of the

constant terms dominating the regret bounds.

3.7.2 Comparison between Different Algorithms

In this subsection, we compare πLUNA with some pricing policies that are designed for

non-stationary bandits. Specifically, we compare πLUNA with the following benchmarks:

1. The Exp3.S algorithm by [  61 ], which is designed for non-stationary multi-armed bandits

with known variation budget BT . Notice we distinguish BT from our variation budget

V because BT refers to the norm of variation in the mean bandit feedback and V refers

to the total Kolmogorov variation in the sequence F̂ µ
1:T . The regret upper bound for

Exp3.S is Õ(d
1
3B

1
3
T T

2
3 ) with d arms, see [ 61 ].

2. The deterministic non-stationary bandit algorithm proposed by [ 65 ] for multi-armed

bandits with unknown variation budget BT . The regret upper bound for this algorithm

is Õ(d
1
2T

1
2 + d

1
3B

1
3
T T

2
3 ).

3. The Master+UCB1 algorithm proposed by [ 66 ] for non-stationary stochastic bandits

with unknown variation budget BT . The regret upper bound is Õ(B
1
3
T T

2
3 ).
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We note that all of these pricing policies are designed for problems with finitely many ad-

missible decisions. For fair comparison, we developed a version of πLUNA that works when

W is finite which we call πLUNAF (see Appendix  B.5 ). Since Exp3.S requires the variation

budget BT as an input, we calculate V in our problem and simply let BT = V .
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Figure 3.2. Perfor-
mance comparison
when pm,t is simulated
according to ( 3.22 )
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Figure 3.3. Perfor-
mance comparison
when Ft is simulated
according to (  3.23 ) and
the retailer’s policy is
µe

We compare the regret of these benchmark algorithms with πLUNAF in Figure  3.2 and

Figure  3.3 . In Figure  3.2 , we directly simulated the retailer’s ordering decisions by setting

F̂ µ
t as in Eq. ( 3.22 ). In Figure  3.3 , we set the true distribution Ft to be Bernoulli which

takes values 0 and 1 with probabilities pt and 1− pt respectively where pt is also determined

by Eq. (  3.22 ), i.e.,

pt =
1

2
+

3

10
sin

5V πt

3T
, t ∈ [T ], (3.23)

in which case the true market demand distribution is non-stationary. We also suppose the

retailer follows µe. In both experiments, we let W contain d =
⌈
T

1
2

⌉
equally spaced prices

lying in [0, s].

From Figures  3.2 and  3.3 , we see that πLUNAF outperforms the benchmarks, and the

performance of the benchmarks is relatively close to each other. These results suggest that

the supplier benefits from using the structure of the profit function in her pricing policy,

instead of applying a black box algorithm. In addition, based on the results in Figure  3.3 ,
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we see πLUNAF still performs well even when the true market demand distribution is non-

stationary.

3.7.3 Experiment on Semi-synthetic Data Set

For our final experiment, we collected the weekly sales data of avocados in California from

2020 to 2022 [ 112 ]. Avocado sales can be non-stationary and vary from month to month,

see, e.g., [  62 ]. In order to approximate this non-stationarity, we first group the weekly sales

data by month m = {1, . . . , 12}. Then, to generate the daily sales in month m, we divide

the weekly sales in month m by 7 and treat it as a sample of daily demand in month m.

We repeat this procedure for all the weeks from 2020 to 2022 to get demand samples for

each month of the year. Finally, we divide the daily sales by 1, 000, 000 and round it to the

nearest integer to build an approximate discrete daily demand distribution for avocados (in

millions of units). Given the daily demand samples for each month, we then bootstrap the

daily demand for a planning horizon of T days (assuming the first day in the horizon starts

on Jan 1st). In this way, we generate random demand realizations for the retailer.
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Figure 3.4. Perfor-
mance comparison on
semi-synthetic data

We suppose the retailer follows µe, and W has cardinality d =
⌈
T

1
2

⌉
. We compare

the performance of the pricing policies for this setting in Figure  3.4 . We see that πLUNAF

outperforms the other policies in this setting as well. Exp3.S and Master-UCB1 have almost

identical performance here, and the deterministic non-stationary bandit algorithm by [ 65 ]
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outperforms both Exp3.S and Master-UCB1. This application further demonstrates that

our pricing policy performs well even for non-stationary demand distributions.

3.8 Conclusion

In this paper, we studied the supplier’s pricing problem facing a retailer who is learning

the demand distribution and employs data-driven inventory learning policies. We model

the non-stationarity of the retailer’s inventory decisions through the non-stationarity of his

“perceived" distributions. Then, we use the Kolmogorov distance to measure the variation

of the retailer’s perceived distributions and identify a tractable class of retailer policies.

For both discrete and continuous demand distributions, we proposed pricing policies for

the supplier and derived sublinear regret upper bounds. Our main conclusion is that the

supplier can achieve asymptotically vanishing regret, even when the retailer is also learning

the demand distribution, as long as the retailer’s inventory policies belong to a reasonable

class with bounded variation.

Much of the literature on optimization and learning in OM focuses on learning the ran-

dom demand or unknown demand-price relationship. However, our work investigates the

important problem of learning the learning policies implemented by a secondary agent in a

multi-agent setting. This study brings new perspectives into learning in multi-agent prob-

lems in supply chain and inventory management, where the controller must learn to react to

the learning policies by other agents in the system.

At the same time, we acknowledge some directions for future research. First, it is worth

investigating information-theoretic lower bounds on the supplier’s regret in our problem

setting. Second, it may be possible to improve the supplier’s regret bound when the non-

stationarity has additional structure (e.g., seasonal demand patterns).
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4. REIMBURSEMENT POLICY AND DRUG SHORTAGES:

IMPLICATIONS FROM PHARMACEUTICAL SUPPLY CHAIN

CONTRACTING

4.1 Synopsis

We investigate the link between shortage on generic injectable drugs and the reimburse-

ment policy change in Medicare Part B taking place in 2005. The investigation of the policy

impact entails a detailed examination of the drug supply chain, which involves multiple par-

ties including drug manufacturers, GPOs, healthcare providers, and reimbursement programs

(such as Medicare). Central to the drug supply chain are the GPOs, who represent their

healthcare provider members to set wholesale prices with manufacturers for these generic

drugs. Unlike for brand-name drugs, whose manufacturers generally dominate the whole-

sale pricing decisions due to their monopolistic position in the market, for generic drugs,

GPOs possess high bargaining power, and hence generally dominate the wholesale pricing

decisions (see Section  4.3 for a detailed discussion). The wholesale prices are key decisions

affecting drug shortages. In modeling the drug supply chain, we capture important features

such as GPOs’ self-serving and member-serving characteristics, which derive from a major

comment from the FDA staff. We also model supply allocations from drug manufacturers.

The analytical model serves as a basis for examining the policy impact on drug shortages.

Based on the model, we first conduct theoretical analysis to uncover the underlying

impact of the reimbursement policies on the wholesale pricing decisions and derive insights

on the equilibrium drug wholesale prices and shortage statuses. We find that under the ASP

policy, two effects, the free-ride effect and the coordination effect, work in opposite directions

in determining the wholesale price decisions and the corresponding shortage statuses. The

interplay between these effects determines the overall impact of the ASP policy on drug

shortages. Further, we capture key factors that influence the interplay of these two effects.

These factors, i.e., drug supply difficulty and demand-side market concentration, are shown to

be highly influential on drug shortages. Overall, our results show that the ASP policy actually

possesses resilience to drug shortages as a consequence of the interplay between the free-ride
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and coordination effects. In addition, we examine how the drug shortage changes with respect

to drug-specific parameters and industry/policy parameters. While the former provides

insights about characteristics that put a drug more at risk of shortages under different

reimbursement policies, the latter provides important industry and policy implications.

In addition to the theoretical analysis, we further conduct numerical analysis that incor-

porates real data to deepen our insights. To overcome the challenge of non-transparency in

pharmaceutical data, especially GPO-related data, we compile a novel dataset with the aid

of machine learning techniques, based on which, we estimate the number of GPOs in the

market of each shortage drug to understand the degree of the free-ride effect in the market.

We further examine multiple levels of supply difficulty to understand the degree of the co-

ordination effect. Given the limited work on quantifying the impact of the reimbursement

policies, our numerical study provides quantitative insights on the policy impact, especially,

the ASP policy’s resilience to drug shortages.

Through the theoretical and numerical analyses, our study contributes to the under-

standing of the reimbursement policies, their impact on drug shortages, and the complex

drug shortage problem in general. Furthermore, our study also examines how industry/pol-

icy parameters, such as the reimbursement markup percentage (currently set at 6%) and

the GPOs’ price consciousness, affect drug shortages, which provides important insights re-

garding the current industry practices and potential policy guidance, as discussed in the

conclusion section.

4.2 Industry Context and Related Literature

While other industries often aim at revenue maximization and hence some supply short-

ages are commonly accepted if they lead to a higher revenue, persistent drug shortages in

the pharmaceutical industry often lead to significant social welfare loss, such as delayed or

canceled treatments, undesired treatment outcomes, and even patient deaths. This is espe-

cially true for many of the shortage drugs that are medically necessary and lack desirable

substitutes (e.g., pertinent cancer drugs). Indeed, drug shortages have been one of the most

challenging problems for the pharmaceutical industry and the government, drawing tremen-
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dous attention from the society. There have been extensive white papers and government

reports discussing the situations and possible causes, e.g., [ 5 ]–[ 7 ], [  14 ], [  17 ], [  113 ]–[ 119 ], and

[ 120 ].

Academic literature on drug shortages has been limited although there has been increas-

ing interest from the operations and supply chain field. [ 121 ] studied inventory policies to

mitigate the impact of drug shortages. [  122 ] provided a review of the drug shortages problem

and used analytical and data analyses to show that shortages can be mitigated by properly

designed Pareto-improving drug procurement contracts. [  19 ] developed stochastic programs

to compare several supply chain designs to reduce shortages. [ 123 ] empirically showed that

the FDA’s mandated reporting of foreseeable production disruptions alleviates shortages.

The FDA encouraged more research on this subject [ 5 ], and launched a drug shortage pro-

gram around 2012 and another task force in 2018 to continue efforts to resolve the problem

[ 16 ]. Our interactions with FDA staff revealed that these efforts are only the starting point

of the solution process since the problem is complex and many issues are not yet explored.

For the heavily regulated pharmaceutical industry, the Medicare drug reimbursement

policy is one of the most important regulations affecting drug wholesale pricing decisions.

Since the introduction of the ASP policy, there have been some analyses on its impact. A

large body of these studies focused on evaluating the policy’s impact on medical practices,

e.g., [ 124 ], [ 125 ]. Some health economics studies examined the policy’s impact on drug

markets, e.g., [ 126 ], [ 127 ]. More related to our paper are the few studies that compared drug

prices under the AWP and ASP policies, but they yielded mixed messages. Specifically, [ 128 ]

analyzed price data and concluded that drug prices under ASP are substantially lower. [ 129 ],

in contrast, argued that wholesale prices are higher under ASP than AWP because (1) drugs

are reimbursed at fixed prices under AWP, hence incentivizing providers to lower wholesale

prices to increase profit margins; and (2) this indicates a more intensive price competition

under AWP compared to ASP, and hence the wholesale prices under ASP would be higher.

However, this study lacks theoretical modeling, and the argument only includes part of the

picture captured by our model. [ 130 ] conducted modeling and data analysis, also concluding

that the wholesale prices under ASP are higher, but they attributed the reason to the lagged

markup of the wholesale price as the reimbursement price.
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While there is a lack of consensus on the impact of the reimbursement policy on drug

prices, further inquiries about the link between the reimbursement policy and drug shortages

are even scarcer. [ 18 ] concluded that the policy change leads to lower prices (for which, as

just discussed, the literature still lacks consensus) and lower prices cause more shortages.

However, the high-level economic model in [ 18 ] does not consider GPOs nor their interactions

with other supply chain parties, and in fact does not differentiate wholesale prices and

reimbursement prices, the two key parameters in the reimbursement policy. In contrast,

recognizing that the reimbursement policy affects shortages through affecting supply chain

parties’ decisions, our model captures the details in the drug supply chain and the tradeoffs in

the wholesale price decisions. This realistic granularity allows us to derive new insights, such

as the free-ride and coordination effects and the key influential factors of supply difficulty

and demand-side market concentration. Correspondingly, we believe that our model and

analysis provide a more comprehensive picture of the reimbursement policy’s impact on

drug wholesale prices and shortages.

It is worth noting that our analysis focuses on shortage drugs reimbursed through the

Medicare program. While shortage drugs may be reimbursed through private insurers, Medi-

care covers a significant portion of these drugs’ reimbursement. For example, [ 17 ] examined

a major type of shortage drugs, the sterile injectable oncology drugs, and stated “in most

cases,..., reimbursement for these drugs is under Medicare Part B.” The study then used

Medicare Part B data to analyze the drug shortage problem. The close link between Medi-

care’s drug reimbursement policy and drug shortages has also been discussed in reports such

as [ 20 ] and [ 6 ], as well as a listening session organized by the FDA drug shortage task force

in 2019. In addition, “it is quite common for private insurers to mimic Medicare reimburse-

ment, albeit with a lag [  18 ], [ 131 ].” Since private insurers’ data are often unavailable and

Medicare data are public, government and academic research often use Medicare’s practice

and data when examining drug reimbursement [e.g.,  17 ]–[ 19 ], [  122 ], [  130 ].

Finally, our study is also related to the limited literature on pharmaceutical supply

chains. For example, [ 132 ], [ 133 ], [ 134 ], and [ 135 ] provided extensive reviews of pharma-

ceutical supply chains. [ 136 ] and [ 137 ] investigated the impact of information transparency

and information sharing through contracts in pharmaceutical distribution. [ 138 ] compared
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distribution agreements. [ 139 ] and [ 140 ] examined drug manufacturers’ quality performance

issues.

4.3 Model

In this section, we develop a parsimonious model to capture the most essential elements

pertaining to the impact of the reimbursement policy on drug shortages. The model focuses

on a generic drug on shortage reimbursed through Medicare. The model considers its supply

chain, which consists of drug manufacturers, GPOs, which represent their respective health-

care provider members to determine the wholesale prices with the drug manufacturers, and

the government, which provides the healthcare providers with reimbursement through the

Medicare program according to the reimbursement policy. Central to the supply chain are

the GPOs. While for brand-name drugs, manufacturers usually have pricing power, for the

generic drugs that the shortages primarily concern, GPOs typically have high bargaining

power as the top five GPOs in the U.S. possess 85-90% of the market [ 17 ]. Such high bar-

gaining power “... allows GPOs to negotiate lower prices [ 6 ]” and, hence, the GPOs largely

serve as the wholesale price setters for these generic drugs. Once the GPOs set the wholesale

prices with manufacturers in drug procurement contracts, the wholesale prices usually re-

main the same during the contract durations that typically last 2-3 years [ 122 ], [ 141 ]. Since

the wholesale prices are fixed over a relatively long period of time, we herein consider a

single-period model, with the period corresponding to the contract duration. 

1
 

The reimbursement policy affects drug shortages through interactions of the supply chain

parties: Under the government’s reimbursement policy, the GPOs pool demands from their

respective members and set the wholesale prices. Based on the wholesale prices, manufactur-

ers determine their supply levels and allocations to the GPOs. The relationship between the

supplies and demands determines the shortage occurrences. Figure  4.1 illustrates the drug

supply chain model and parameters that will be detailed next. For convenience of exposition,

we next introduce the model in a backward manner from downstream supply chain parties

to upstream parties.
1

 ↑ Contracts in reality often have different start and end dates. For tractability, we focus on a single contract
period, which is common in supply chain contract studies (see, e.g., the studies reviewed in [ 142 ]).
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Figure 4.1. Model and Parameters

4.3.1 Government

The government reimburses drug sales at healthcare providers according to the reimburse-

ment policy. Before 2005, the government used the AWP policy, where the reimbursement

price of a drug was a fixed published price, denoted by p, which is independent of the drug’s

actual wholesale prices. After 2005, the government switched to the ASP policy, where the

reimbursement price is 6% above the average of the drug’s wholesale prices in the market.

In other words, if w̄ denotes the average wholesale price, then the reimbursement price is

106%× w̄. More generally, in our model, we write the reimbursement price under the ASP

policy as θw̄, where θ stands for the reimbursement percentage. While θ = 106% currently,

this general expression allows flexibility to examine the impact of varying values of θ.

4.3.2 Healthcare Providers

Healthcare providers procure drugs through their respective GPOs’ contracts to treat

patients. Since most of the shortage drugs are medically necessary and lack substitutes (oth-

erwise, shortages would not be a serious issue), their demand naturally lacks price-elasticity.

The fact that drugs are typically not paid by patients but by patients’ insurance or other
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reimbursement mechanisms further reduces patients’ price sensitivity. Thus, drug demand is

essentially more driven by need than price and it is reasonable to assume a price-independent

demand in our analysis (see also [  5 ], [ 17 ], [ 122 ], [ 143 ], [ 144 ] for similar discussions). In addi-

tion, demand for the medically necessary shortage drugs typically has low variability. [ 122 ]

examined some representative shortage drugs and found that the average standard deviation

to mean ratio (i.e., coefficient of variation) is only about 10%. Therefore, without loss of

generality and for model parsimony, we assume a deterministic demand in our analysis.

Facing patients’ demand, healthcare providers purchase the drug through their respective

GPOs. In the long run (i.e., a typical contract duration of 2-3 years), the providers’ purchase

quantity matches the patients’ demand. In reality, a drug’s market is often dominated by

a few large GPOs. We assume that n symmetric GPOs command the market, and each

GPO faces a demand volume of d. This symmetry assumption maintains tractability and

allows us to focus on the most important tradeoffs. Later, we will show that this symmetry

consideration is consistent with real data and an asymmetry case would most likely enhance

our results (Section  4.6 ).

4.3.3 GPOs

Facing the demand volume d, a GPO represents its members to set a wholesale price

with manufacturers. It is important to recognize that in setting the wholesale price, a GPO

must consider not only its own benefit, but also its members’ benefit (an important point

raised by FDA staff during our discussion of this research). Correspondingly, we model a

GPO’s objective function to comprise two parts, one reflecting its own profit and the other,

its members’ profit. A GPO’s own profit mainly derives from a contract administration

fee as a percentage commission on purchases of the GPO’s members ([ 122 ], [ 132 ]; see also

the “safe harbor” provisions of the 1987 amendment that governs the commission). Thus, a

higher wholesale price and the resultant higher purchase payment would increase a GPO’s

own profit. In the meantime, considering its members’ profit, a GPO must also be price

conscious because a GPO’s main function is to pool members’ purchasing volumes to secure

a favorable wholesale price for them, and the fulfillment of this function is tied to a GPO’s
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reputation (see, e.g., the discussion in [ 6 ]). Notably, a higher price consciousness does not

merely mean that a GPO should make the maximum effort to push down the wholesale price:

An excessively low wholesale price hinders the GPO’s members from obtaining sufficient

supply (i.e., manufacturers may allocate the supply to members of other GPOs), hence

hurting the members. Further, under the ASP policy, a lower wholesale price also implies

a lower average wholesale price and, consequently, a lower reimbursement price. Therefore,

while a GPO’s motive to raise its own profit exerts an upward pressure on the wholesale

price, the price consciousness is not a pure downward pressure on the wholesale price, but

a motive for a GPO to secure a wholesale price considering its members’ profit. Hence, to

capture a comprehensive picture of a GPO’s decision making in setting the wholesale price,

we must incorporate the nuances in both motives. We do so through a price consciousness

parameter, expressing a GPO’s objective as a weighted sum of a GPO’s own profit and its

members’ profit.

Specifically, let wi denote the wholesale price set by GPO i, w denote the vector of the

wholesale prices set by all GPOs, and w̄ denote the average wholesale price of all GPOs. Each

GPO i faces a demand of d and obtains a supply of Si(w) for its members. Si(w) is random

and dependent on the wholesale prices, whose detailed expression is delayed to the next

subsection where we discuss how manufacturers allocate supplies. Thus, the total expected

sales volume at GPO i is E[Si(w) ∧ d], where ∧ represents the minimum of the components

(i.e., sales are the minimum of supply and demand). Correspondingly, the total purchase

payment made by GPO i’s members is wiE[Si(w)∧d], the product of the unit wholesale price

and the expected sales. The total profit of GPO i’s members is [r(w)−wi]E[Si(w)∧d], where

r(w) represents the reimbursement price, so r(w)−wi is the profit for the GPO’s members

per unit of sales. Clearly, under AWP, r(w) = p, the exogenously published reimbursement

price, and under ASP, r(w) = θw̄, the marked-up average wholesale price.
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Since a GPO’s own profit is proportional to the purchase payment made by the GPO’s

members and a GPO’s price consciousness is based on its members’ total profit, we capture

the two motives by modeling a GPO’s payoff as a weighted sum:

α[r(w)− wi]E[Si(w) ∧ d] + (1− α)wiE[Si(w) ∧ d]

=α[r(w)− (2α− 1)wi/α]E[S(w) ∧ d],
(4.1)

where 0 ≤ α ≤ 1 is the weight a GPO places on its members’ profit and 1− α is the weight

a GPO places on the total purchase payment.

Let πi(wi,w-i) denote GPO i’s payoff when the GPO’s wholesale price is wi and the

vector of other GPOs’ wholesale prices is w-i. GPO i then sets the wholesale price wi to

maximize its expected payoff:

max
wi≥0

πi(wi,w−i) = [r(w)− βwi]E[Si(w) ∧ d], (4.2)

which is strategically equivalent (i.e., yielding the same pricing decisions and shortage sta-

tuses) to equation ( 4.1 ) with β = (2α− 1)/α. We refer to β as a GPO’s price consciousness

parameter, with a higher β indicating a higher price consciousness. That 0 ≤ α ≤ 1 implies

β ≤ 1. In addition, β > 0 (otherwise, the payoff function ( 4.2 ) would be monotonically in-

creasing in wi, leading to an unrealistic, arbitrarily large wholesale price). To avoid triviality

and maintain realisticity, we further require the unit profit and supply to be non-negative,

i.e., r(w) − βwi ≥ 0 and Si(w) ≥ 0 everywhere, and that this constraint set contains at

least one interior point. In addition, under the ASP policy, the coefficient of wi in the unit

profit θw̄ − βwi, i.e., θ/n− β, must be negative; otherwise the payoff function would again

be monotonically increasing in wi, leading to trivial and unrealistic decisions. We relegate

the technical details of these requirements to Appendix  C.1 .

4.3.4 Manufacturers

Given the wholesale prices set by the GPOs, w, manufacturers decide the supply Si(w)

allocated to each GPO i. This decision involves drug supply allocations, which can be
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quite complicated and not purely driven by profit maximization in reality. For example,

[ 145 ]–[ 147 ], and [ 148 ] discussed a variety of principles guiding medical supply allocations

in various practices. Given the complicated nature of the allocation, purely grounding the

allocation on profit maximization is inappropriate, while an exact characterization of all

allocation specifics through a tractable model also seems unachievable. Thus, we adopt an

approximation and develop a simple model that captures the most essential dynamics. We

note that manufacturers’ supply to a GPO i, Si(w), should possess two basic properties:

the supply should increase in GPO i’s own wholesale price and decrease in other GPOs’

wholesale prices, reflecting the fact that manufacturers are inclined to provide more supply

to GPOs that offer higher wholesale prices. If we let w̄-i =
∑

j ̸=i wj/(n − 1) represent the

average wholesale price of the GPOs excluding GPO i, then a simple model that satisfies

these basic properties is:

Si(w) = (wi − bw̄-i − a)︸ ︷︷ ︸
allocation

× ϵi︸︷︷︸
random factor

, (4.3)

where a > 0, 0 < b < 1, and ϵi is a nonnegative random factor with a mean of µi.

In this supply expression, the random factor ϵi captures the randomness beyond the

dynamics explained by the supply allocation, and reflects the fact that, unlike drug demand,

drug supply can be variable [  17 ], [  117 ]. The factor has a multiplicative relationship with

the allocation component to ensure a proper form of supply: The allocation component

could be small or large depending on the specific wholesale prices. If we used an additive

random factor in the expression, then the scale of the additive factor might not match

that of the allocation component and might even cause negative supply; The scale of the

supply might not match that of the demand either. The multiplicative form resolves all

these issues. Across different GPOs, the random factors ϵi’s are assumed to be identically

distributed (as previously discussed, we consider symmetric GPOs) and independent (i.e., the

dependence between the random supplies Si(w)’s is reflected in the allocation component,

so the remaining randomnesses are independent). We assume that the random factors are
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continuous and have a survival function of F̄ , and let ϵ denote a generic random factor

following the same distribution.

While real drug supply allocation practices are clearly more complicated, this tractable

parsimonious approximation helps us capture the most essential elements and tradeoffs in

the problem and uncover key effects and influential factors through the comparison between

the AWP and ASP policies. Another benefit of the supply model ( 4.3 ) is that the parameters

a and b have realistic meanings in drug shortages. The parameter a represents the attractive-

ness of producing other drugs. In drug production, manufacturers often make multiple drugs

on the same lines via different batches [ 149 ]; in an example reported by [  6 ], 30 to 50 different

drugs were manufactured on one line. If other drugs have more attractive profits, then a

manufacturer is more likely to allocate more capacity to other drugs and less capacity to the

shortage drug. In fact, capacity issues are the direct cause for most drug shortages [ 17 ], [ 122 ].

Thus, in this model, the higher a is, the more attractive it is to produce other drugs, and

the less capacity manufacturers would allocate to produce the focal drug. In other words, a

GPO must set a sufficiently high wholesale price to ensure a desirable supply. The parameter

b indicates manufacturers’ price sensitivity, where a higher b indicates manufacturers’ higher

sensitivity to other GPOs’ price offers. Further, the constraint b < 1 captures the fact that

a GPO’s own wholesale price has a higher impact than other GPOs’ wholesale prices on the

GPO’s supply. Both a and b reflect the difficulty to secure the focal drug’s supply, although

from different perspectives, with a higher a or a higher b indicating a greater difficulty to

secure the supply. We thus call these parameters supply difficulty parameters.

4.4 Theoretical Analysis

Given the formulated model, in this section, we derive the equilibrium to gain insights

about the reimbursement policies’ impact on drug shortages. We first show the existence

and uniqueness of an equilibrium for GPOs’ wholesale price decisions.
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Theorem 4.4.1 (Existence and uniqueness of equilibrium). Under either the AWP or ASP

policy, there exists a unique symmetric interior equilibrium wholesale price. Specifically,

under the AWP policy, each GPO adopts an equilibrium wholesale price w that satisfies:

[(b− 2)βw + aβ + p]E{[(1− b)w − a]ϵ ∧ d} − d(p− βw)F̄ (d/[(1− b)w − a]) = 0.

Under the ASP policy, each GPO adopts an equilibrium wholesale price w that satisfies:

{(θ/n−β)[(1−b)w−a]+(θ−β)w}E{[(1−b)w−a]ϵ∧d}−d(θ−β)wF̄ (d/[(1−b)w−a]) = 0.

To further study the equilibrium shortages, we now define a shortage measure. Intu-

itively, a shortage occurs when supply is insufficient to meet demand. However, drug short-

ages in reality are of great concerns because they are systematic and chronic (see, e.g., [ 6 ],

[ 8 ], [ 117 ]). The average drug shortage duration was over 9 months in 2011 and increased

to nearly 14 months by 2015 [ 118 ], [ 119 ]. It is clear that merely supply randomness and

minor insufficiency of the mean supply would not have caused the systematic and chronic

(long-term) shortages. Those may cause backorders, for which manufacturers typically could

inform buyers of estimated delivery times and buyers could often accommodate the waiting.

However, the persistent shortages in reality are far more severe than backorders. Only sys-

tematic insufficiency in the mean supply (capacity) would cause the systematic and chronic

shortages, see the discussions in [ 122 ], [ 150 ], [ 151 ]. Indeed, the causes of the mean supply/ca-

pacity insufficiency are what the FDA’s shortage task force and much research try to identify

and resolve. Correspondingly, our study investigates the long-term shortages across multiple

years of a contract duration, and hence adopts a shortage measure based on the mean supply

insufficiency: I{(wi− bw̄-i−a)µi ≤ γd}, where 0 < γ < 1, and I is an indicator function that

takes the value of 1 when the condition is satisfied (indicating a shortage occurrence) and

0 otherwise (indicating no shortage occurrence). This measure reflects that a (long-term)

shortage occurs when the mean supply is considerably lower than the demand (i.e., lower

than γ percent of the demand). In addition, this measure indicates shortage status (i.e.,

occurrence or no occurrence), not shortage magnitude, because our research question is on
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whether or not the policy is a major cause of the long-term drug shortages, instead of how

great the shortages are for each drug. Finally, since GPOs are symmetric, the measure of

one GPO’s shortage suffices.

Based on the equilibrium in Theorem  4.4.1 and the defined shortage measure, we next

analyze the policy impact on drug shortages. We note that different drugs have different pa-

rameter values, and hence their equilibrium shortage statuses are also different. In addition,

the equilibrium shortage statuses are also clearly different under different policy parameter

values. Therefore, in our analysis, we examine how the equilibrium shortage status changes

with respect to different parameter values. To this end, we group the parameters into two cat-

egories: drug-specific parameters and industry parameters. The former category contains a,

b and n, with a and b describing the difficulty in securing the drug’s supply, and n represent-

ing the number of major GPOs in the drug’s market. A small n implies a more concentrated

demand-side market, and correspondingly, a larger weight of each GPO in the calculation

of the average wholesale price under the ASP policy. Clearly, these parameters (a, b and

n) take different values for different drugs, and by examining these parameters we can gain

insights about characteristics that make a drug prone to shortages. The industry parameters

contain θ and β, where θ is Medicare’s reimbursement percentage (currently θ = 106%) and

β represents GPOs’ price consciousness. These parameters do not vary by drug, and the

study of these parameters can yield important industry and policy implications.

We first examine the drug-specific parameters. Throughout the paper, we use the terms

“increasing” and “decreasing” in a non-strict sense. We say shortage “increases” or “decreases”

to indicate that shortage is more likely or less likely to occur under the specified situation.

Theorem 4.4.2 (Impact of drug-specific parameters).

(i) At equilibrium, the wholesale price increases in a and b under either AWP or ASP.

However, while shortage increases in a and b under AWP, it decreases in a and b under

ASP.

(ii) At equilibrium, the wholesale price and shortage do not depend on n under AWP, while

the wholesale price is lower and shortage is higher for a drug with a larger n under ASP.
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As mentioned, the parameters a and b represent the difficulty in obtaining supplies. The

first half of Theorem  4.4.2 (i) states that the more difficult it is to obtain supplies, the higher

the wholesale price buyers need to pay to secure their supplies. This result is intuitive and it

holds for both AWP and ASP. The second half of Theorem  4.4.2 (i), however, states that the

shortage under AWP and that under ASP change in completely opposite directions with the

change of a and b. While the supply difficulty aggravates shortage under AWP, it surprisingly

alleviates shortage under ASP.

To understand these results, we first uncover two important effects under the ASP policy:

the free-ride effect and the coordination effect. Given that the reimbursement price is marked

up from the average wholesale price, each GPO has an incentive to set a low wholesale price,

while hoping that other GPOs set high wholesale prices to sustain the reimbursement price.

This is the free-ride effect. In other words, each GPO hopes to take a “free ride” on other

GPOs’ high wholesale prices. On the other hand, if all GPOs increase their wholesale prices,

then all can benefit from the resultant higher average wholesale and reimbursement prices.

This is the coordination effect. However, this coordination effect is usually not the natural

outcome of an equilibrium, because at an equilibrium, any single GPO may have the incentive

to deviate by lowering its wholesale price. Thus, the coordination effect requires some outside

stimulus. The aforementioned supply difficulty (parameters a and b) serves as a stimulus for

the coordination effect.

Specifically, supply difficulty affects the shortages in both direct and indirect ways. Di-

rectly, a higher supply difficulty makes it harder to secure supplies (e.g., manufacturers

allocate more capacity to other more attractive drugs), thus aggravating shortages. Indi-

rectly, however, a higher supply difficulty also drives up wholesale prices (as stated in the

first half of Theorem  4.4.2 i), which reduces shortages. From the result in Theorem  4.4.2 (i),

we know that under ASP, the indirect effect dominates the direct effect, i.e., the supply

difficulty drives up the wholesale prices so much that shortages are reduced. This is due

to the coordination effect: The supply difficulty incentivizes GPOs to increase wholesale

prices to secure supplies, which raises the average wholesale price, and consequently, the

reimbursement price. The higher reimbursement price then implies a higher profit margin,
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which motivates GPOs to further increase wholesale prices to secure more supplies. This

reinforcing feedback loop that accelerates price increases mitigates drug shortages.

In addition to the supply difficulty, another influential factor is the number of GPOs in a

drug’s market, n. Different drugs typically have different n values (i.e., the number of GPOs

dominating a drug’s market varies from drug to drug). Theorem  4.4.2 (ii) shows that while

the AWP price and shortage are unaffected by the n value, the ASP wholesale price is lower

and shortage is higher for drugs with larger n values. This is because for a drug with a larger

n, each GPO has a smaller impact on the average wholesale price (and the reimbursement

price). Hence, each GPO considers the reimbursement price more as exogenous and the free-

ride effect would be stronger, leading to a lower wholesale price and a more likely shortage

occurrence. On the other hand, for a drug with a small n, each GPO represents a large

weight in the average wholesale price calculation and is thus less likely to take a free ride. In

the extreme case when only one GPO exists, the average wholesale price is just this GPO’s

wholesale price, and there is no free ride at all. 

2
 

As previously discussed, the generic drugs that the shortages primarily concern have

two prominent features: they usually have very few GPOs dominating their markets [i.e.,

a small n, as discussed in  5 ], [ 17 , and our later numerical analysis] and they often exhibit

greater supply difficulty (i.e., large a and b as these generic drugs are typically unattractive

to manufacturers due to their low profit margins). According to Theorem  4.4.2 , the small

number of GPOs discourages the free-ride effect and the supply difficulty encourages the

coordination effect, both of which help mitigate drug shortages under the ASP policy. In

other words, the ASP policy possesses resilience to shortages of these generic drugs, which
2

 ↑ When examining the impact of n, a related question might be how a GPO’s supply Si(w) and de-
mand d scale with n: a larger n may lead to a smaller supply allocation to each GPO, as well as
a smaller market share (demand) of each GPO. In this case, the supply and demand are both ap-
proximately scaled by a factor of 1/n, so the coefficient 1/n can be factored out of a GPO’s payoff
(i.e., (1/n×supply)∧(1/n×demand)=1/n×(supply∧demand)). Correspondingly, a GPO’s equilibrium payoff
would become 1/n of its original payoff, but the equilibrium wholesale price decisions and shortage statuses
would not be affected. It is also worth noting that our focus here is on how different drugs with different n
values have different shortage situations (i.e., what drugs are more prone to shortages), instead of on how a
change in the number of GPOs for a specific drug affects this drug’s shortage situation. The latter involves
market entry and exit of GPOs, a much longer-term and complicated process which is beyond the scope
of this analysis. In addition, in the market of a mature generic drug that the current shortages primarily
concern, n does not change much from year to year.
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is a special property of the ASP policy that has not been discovered by any prior studies.

Consequently, the ASP policy’s impact on drug shortages may not be as high as some scholars

originally thought.

Our analysis so far has yielded insights into the impacts of the policies on drug short-

ages. We next further analyze how some important industry/policy parameters affect drug

shortages to obtain industry/policy implications. Such parameters include θ, Medicare’s

reimbursement percentage (currently θ = 106%), and β, GPOs’ price consciousness.

Theorem 4.4.3 (Impact of industry/policy parameters).

(i) Under either the AWP or ASP policy, the equilibrium wholesale price decreases and short-

age increases as the GPOs’ price consciousness parameter β increases.

(ii) Under the ASP policy, the equilibrium wholesale price increases and shortage decreases

as the reimbursement percentage θ increases.

Theorem  4.4.3 (i) shows that when GPOs are more price conscious, they set lower whole-

sale prices, which aggravate shortage. As discussed in Section  4.3 .3, a GPO’s self-serving

motive exerts an upward force on the wholesale price, whereas its member-serving motive is

not a pure downward pressure on the wholesale price. A larger β implies a smaller weight on

the upward force exerted by the self-serving motive and hence reduces the wholesale price.

In practice, it is commonly understood that the main function of GPOs is to secure lower

wholesale prices and GPOs are often evaluated by the wholesale prices they bring to their

members. This result shows that overemphasizing this function may increase shortage.

Theorem  4.4.3 (ii) states that, as expected, a higher reimbursement markup percentage

under ASP leads to higher wholesale prices and reduces shortage. Since the markup percent-

age is central in Medicare’s reimbursement policy, it is critical to understand its influence on

shortages. In the numerical analysis next, we will examine various levels of θ (as well as β)

to gain additional industry/policy insights.
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4.5 Numerical Analysis

In addition to our theoretical analysis which has revealed key effects and influential

factors concerning the policy impact on drug shortages, in this section, we further conduct

numerical analysis to quantify the impact and obtain additional insights. Such analysis is

challenging because of the data non-transparency in the pharmaceutical industry; much of

the data related to this analysis, especially GPO data, are unavailable. Although Medicare

collects data on GPOs, such data are confidential as restricted by Section 1927(b)(3)(D) of

the Social Security Act. In fact, the restriction has spurred advocacy for more transparency

in the pharmaceutical industry [ 152 ]–[ 154 ]. To overcome these data challenges, we identify

multiple public and private data sources, based on which we implement a multi-step process

to compile a novel data set, with the aid of machine learning. This helps us to estimate the

number of GPOs, n, in each shortage drug’s market. As n is the underlying driver of the free-

ride effect, this estimation sheds light on the degree of the effect in the market. In addition,

the data also allow us to justify a major assumption in our model, i.e., the symmetry among

GPOs (details in Section  4.6 ). We then evaluate the impact of the combinations of n and

different levels of the supply difficulty parameters a and b (the underlying driver of the

coordination effect) and characterize the sets of drugs prone to shortages under each policy.

Finally, we test multiple levels of industry/policy parameters to derive policy implications.

In the following, we first discuss our data sources and how we integrate the data before we

detail the analysis and the results.

4.5.1 Data Sources and Data Integration

In this analysis, we focus on drugs that have experienced shortages since 2005, in which

year drug shortages started to emerge as a serious issue (see, e.g., the discussion in [ 17 ]).

We implement a multi-step process to merge four datasets. First, we identify the drugs

on shortage since 2005 by using two authoritative drug shortage lists commonly used in

prior studies, e.g., [ 18 ], [ 123 ]: the ASHP shortage list and the FDA shortage list, that is, we

include a drug in our analysis if it shows up in either list. Here, drugs are defined by using the

Healthcare Common Procedure Coding System (HCPCS) code provided by the Centers for
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Medicare & Medicaid Services (CMS). We then identify and access the Medicare Provider

Utilization and Payment Data: Physician and Other Supplier Public Use File (Medicare

PUP), which contains reimbursement requests submitted by physicians for the usage of

each shortage drug from 2012 to 2016. Further, we identify and acquire a dataset from the

American Hospital Association (AHA), which surveyed hospitals for the GPOs they used

from 2012 to 2016. This allows us to link the physicians in the Medicare PUP data to

hospitals by using their addresses, and then link hospitals to GPOs through the hospital–

GPO affiliation in the AHA data. This yields a dataset that contains the usage information

of each shortage drug by GPOs.

In this data integration process, a challenge is that the AHA dataset is much smaller

than the Medicare PUP dataset, and hence, only around 10% of the physicians can be

assigned to a GPO. We overcome this challenge by using supervised machine learning to

assign the remaining 90% of the physicians to GPOs, utilizing the GPO labels of the 10%

already-assigned physicians. This learning is based on features such as provider type, place of

service, entity code, average submitted charge amount, etc.. We test three common machine

learning methods: random forest, support vector machine, and neural network, with their

parameters tuned through cross validation. The support vector machine method delivers the

best performance, and we thus adopt this method. The final outcome of this data integration

process is the usage volume per drug per GPO for a total of 201 shortage drugs. Table  4.1 

provides summary statistics for the data by years. Appendix  C.5 contains additional details

of this data integration process.

Table 4.1. Summary Statistics
2016 2015 2014 2013 2012

Number of drugs 157 158 163 164 162
Average number of physicians per drug 968.2 938.4 898.3 881.5 909.5
Average number of services per drug 1758.6 1611.2 1402.9 1324.7 1329.7
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4.5.2 Analysis and Results

Estimation of n for Free-Ride Effect

The GPO drug usage data that we assembled above allow us to estimate the number of

GPOs in the market for each shortage drug. Our analysis discovers that on average, about

3 GPOs dominate 80% of the market for each drug, while the remaining 20% of the market

is represented by various small GPOs that are used for ad-hoc or one-time purchases. This

finding is in line with statistics in prior reports that the top 5 GPOs command 85-90% of

the market of all shortage drugs [  17 ], which further indicates that the number of GPOs

dominating the market of each drug is likely to be even less than 5, since different GPOs

may dominate the markets of different drugs. Our result is also consistent with the Pareto

principle (i.e., the 80/20 rule). Since the 20% small GPOs play ad-hoc and minor roles in the

policy effect, we focus on the major GPOs that account for 80% of the market. Figure  4.2 

shows the number of major GPOs that dominate the markets of the shortage drugs.
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Figure 4.2. Number of GPOs

This figure well indicates a potentially low degree of free-ride effect in the markets of

these shortage drugs. First, more than 25% of the shortage drugs only have one major GPO

dominating their markets. As previously discussed, with only one major GPO, the free-

ride effect would be very limited, ensuring a high wholesale price and, correspondingly, an
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unlikely shortage occurrence under ASP. Overall, on average, each shortage drug’s market is

dominated by only 3 major GPOs by volume, and the number of major GPOs rarely exceeds

5. Since the ASP policy possesses resilience to shortages of drugs with few GPOs, the result

shows that the ASP policy is unlikely a major cause for the shortages of these drugs.

Examination of a and b for Coordination Effect

While we were able to find a way to estimate n from the data we assembled, the non-

transparency of the pharmaceutical data makes the estimation of a and b, the supply difficulty

parameters, prohibitive. Specifically, such an estimation would require data on each GPO’s

wholesale price, supply and demand, which, as previously discussed, are confidential as

restricted by Section 1927(b)(3)(D) of the Social Security Act and challenging to estimate.

Therefore, we test a large variety of the parameter values of a and b, and numerically evaluate

whether there would be shortages under the combinations of these parameters based on our

model of different reimbursement policies. This allows us to visualize the regions of the

parameter values within which a drug would be prone to shortage under each policy. In

doing this, we note that 0 < b < 1, and we normalize a by the list price under AWP p

(i.e., a/p), which also falls in about the same range according to our preliminary numerical

analysis. As we know, higher values of a or b indicate a higher degree of supply difficulty.

Figure  4.3 shows the shortage regions corresponding to the ASP policy with different

n values (Figure  4.3a ) and the AWP policy (Figure  4.3b ), which is unaffected by n. It is

worth noting that these shortage regions do not indicate whether the corresponding drugs

had shortages in reality. Instead, they show whether the corresponding drugs would be on

shortage under a reimbursement policy based on our model (in this case, we say the drugs

are prone to shortages under the reimbursement policy). If a drug already had shortages

in reality, but our analysis found it not prone to shortages under a reimbursement policy,

then the reimbursement policy would be unlikely the major cause of the drug’s shortages in

reality.

Figure  4.3a demonstrates that the shortage region under ASP (the area below the cor-

responding line) expands as n increases due to the higher free-ride effect under a larger n.

When n = 1, the free-ride effect would be very limited (nominally zero), and hence the
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coordination effect dominates, leading to an empty shortage region (i.e., the line for n = 1

overlaps the horizontal axis). As n increases, the expansion of the shortage region is very

fast initially and then slows down when n becomes larger, indicating a diminishing impact

of n on shortages. The explanation is that as n increases, each GPO’s weight in the average

wholesale price calculation first drops sharply (e.g., from 1 to 1/2) and then decreases at a

slower rate (e.g., from 1/4 to 1/5).
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Figure 4.3. Shortage Regions With Respect to Supply Difficulty Parameters

A comparison of Figure  4.3a and Figure  4.3b clearly shows the opposite impacts of supply

difficulty (parameters a and b) on AWP and ASP, as stated in Theorem  4.4.2 . While supply

difficulty aggravates shortages under AWP as expected, it alleviates shortages under ASP

due to the coordination effect and the resultant higher wholesale prices. Since drugs on

shortage are primarily generic drugs with relatively low profit margins, manufacturers are

naturally more attracted by producing other drugs (indicating a high value for a) and more

sensitive to higher wholesale price offers from GPOs (indicating a high value for b). Drugs

with such supply difficulty (i.e., high values for a and b), as shown in Figure  4.3a , tend not

to have shortages under ASP. Hence, the current ASP policy is unlikely the major cause of

the shortages of these generic drugs.
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It is also worth noting that while in this figure, we set θ = 106% and β = 1, we will next

explore the impact of changes in the values of θ and β. By Theorem  4.4.3 , we know that

shortage decreases in θ and increases in β. Hence, the current θ and β values (i.e., θ = 106%

and β = 1) serve as the worst case for shortages.

Impact of Industry Parameters and Policy Implications

In addition to examining shortages under the current policy, we now explore whether changes

in the industry/policy parameters (i.e., whether an increase in the reimbursement markup

percentage, θ, and whether a decrease in GPOs’ price consciousness, β) lead to significant

shortage mitigation.

For the reimbursement percentage θ = 106% under the current ASP policy, Figure  4.4 

shows what if government is able to reimburse a higher percentage, i.e., θ = {106%, 107%,

108%, 109%, 110%, 111%}. Note that θ is only a parameter in ASP and hence the figure

only contains the ASP result. In this figure, we can see that an increase in θ reduces the

shortage region, as stated in Theorem  4.4.3 , and the shrinkage of the region slows down as θ

becomes larger, indicating a likely diminishing return from increasing θ. Thus, while a policy

adjustment that increases θ helps reduce shortages, government has to be cautious about

whether the benefit from this increase could justify the presumably much higher Medicare

spending for reimbursement due to this increase, especially at a much higher θ level.

We next test the impact of the GPOs’ price consciousness β. We examine β = {0.5, 0.6,

0.7, 0.8, 0.9, 1.0}, where β = 0.5 means that a GPO places α = 1/(2 − β) = 2/3 weight

on its members’ profit and 1/3 on its own profit, and β = 1 indicates that a GPO places

100% weight on members’ profit. Note that by definition, β cannot be too small: a GPO

only caring about its own profit would attempt to adopt an arbitrarily high wholesale price

to maximize its commission (technically, the payoff function in equation ( 4.2 ) would be

monotonically increasing in the wholesale price), which is evidently unrealistic.

Figure  4.5 shows the result for β. In this figure, while a decrease in β from the full price

consciousness case (β = 1) reduces the shortage regions under both AWP and ASP (as stated

in Theorem  4.4.3 ), the two policies have very different sensitivities to β. The shortage region

under ASP is very sensitive to the change in β, whereas the shortage region under AWP is
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quite insensitive to the change. This indicates that β plays a critical role in determining

the shortages under the ASP policy. Furthermore, the shortage region under ASP expands

sharply as β increases. Thus, an overemphasis on GPOs’ function to lower wholesale prices

hinders shortage mitigation. On the other hand, ignoring the GPOs’ function of securing

low wholesale prices is also impractical, as it may incur significant welfare loss for GPO

members. Thus, properly balancing these aspects is necessary. In practice, such balancing

may be influenced by policy guidance. As discussed in [ 122 ], while GPOs and their healthcare

provider members are currently mainly concerned with obtaining lower wholesale prices,

incorporating more other metrics in their purchasing decisions, such as product quality as

advocated by [ 8 ] and service quality (i.e., service levels suppliers can provide) as advocated

in [  122 ], would have a greater impact on shortage mitigation.

Shortage

No shortage

(a) ASP

Shortage

No shortage

(b) AWP
Notes: In the (a) ASP plot, the line for β = 0.7 is very close to the horizontal axis and those for

β = 0.6, 0.5 do not show up in the plot, indicating that no shortages would occur. In the (b) AWP plot,
only lines for β = 0.5 and β = 1 are shown in order not to overcrowd the figure; lines for other β values are

in between these two lines.

Figure 4.5. Impact of β on Shortages

4.6 Variations of the Model

While we believe our study captures the major elements and tradeoffs of the problem

through a parsimonious model, we have made some simplifying assumptions to maintain

120



tractability. In this section, we provide further justifications for some assumptions, while

relaxing some other assumptions to extend our results.

Asymmetry Among GPOs

In our model, we have assumed that the major GPOs in a drug’s market are symmetric. To

check whether this is realistic, we estimate the degree of asymmetry among GPOs’ volumes

from our data by using two common asymmetry measures: the Gini index and the coefficient

of variation (CV). The Gini index, widely used to measure inequality among the incomes of a

nation’s residents, ranges theoretically from 0 (complete equality) to 1 (complete inequality).

For real countries, the range is between 0.24 and 0.63 [ 155 ]. The CV is the ratio of the stan-

dard deviation to the mean of GPOs’ volume distribution and can assume any nonnegative

value. Though lacking a consensus, a general rule of thumb for a low CV value is CV<1.

In our data, the drug-average Gini index and CV of major GPOs (i.e., those taking 80% of

the market) are 0.137 and 0.267, respectively, indicating a quite low degree of asymmetry,

which validates our assumption.

It is worth noting that, with asymmetric GPOs, the ASP policy’s resilience to shortages

would likely be even stronger. The intuition is as follows. Imagine an asymmetric situation

where one GPO has a dominant market share. This GPO then represents a dominant weight

in the average wholesale price calculation and thus would be keen to raise the wholesale

price. This higher wholesale price and the dominant GPO’s large purchase volume would

help shortage mitigation.

Price Consciousness Depending on Number of GPOs

In our model, GPOs’ price consciousness is assumed to be a fixed value. In practice, GPOs’

price consciousness may be related to the number of GPOs in the market: more GPOs in the

market could intensify the competition between GPOs, which might result in GPOs’ higher

price consciousness. While we cannot verify this relationship due to the opacity of GPOs’

data, we examine such a case with the price consciousness depending on n. Specifically, we

replace the original price consciousness parameter β with a function 0 ≤ g(n, β) ≤ 1, where

g(n, β) increases in the number of GPOs, n, and the price consciousness parameter, β, with
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0 ≤ β ≤ 1. In this case, Proposition  4.6.1 next shows that our theoretical results still hold

with some minor modifications.

Proposition 4.6.1. When price consciousness increases in n, the existence and uniqueness

of the equilibrium (wholesale price and shortage) captured in Theorem  4.4.1 and the mono-

tonic impact of model parameters (a, b, n) captured in Theorem  4.4.2 still hold, except that

the impact of n under AWP is updated as follows: the AWP equilibrium wholesale price is

lower and shortage is higher for a drug with a larger n.

The above proposition shows that our results on ASP still hold. This is because the

dependence of the price consciousness on n would make the resilience of the ASP policy to

shortages even more evident: if n is larger, then each GPO not only has an incentive to take

a free ride by lowering the wholesale price, but also is more price conscious now, which would

further lower the wholesale price. This would aggravate shortages for drugs with larger n

values under ASP. On the other hand, since shortage drugs typically have small n values

as previously discussed, the resilience of the ASP policy to these drugs’ shortages would be

more evident.

In addition, while the AWP equilibrium wholesale price and shortage do not depend on n

in Theorem  4.4.2 , n now affects the AWP equilibrium through affecting the price conscious-

ness: when n becomes larger, GPOs are more price conscious, hence reducing their wholesale

prices and aggravating shortages. The proof of Proposition  4.6.1 is in Appendix  C.6 .

4.7 Data-driven Analytics in the Drug Pricing Decisions

In the previous analysis, we have assumed that each GPO has perfect knowledge about

a, b and the randomness ϵ in the supply function, as well as the demand facing each GPO.

While the GPOs are able to directly observe demand from the past selling data, for example,

through IMS or CMS data sources, it is unlikely they can observe a, b and ϵ for manufacturers’

decisions. Therefore, in this section, we discuss how should the GPOs make pricing decisions

given some historical observed transaction data with the drug manufacturers.

In the following discussion, we relax the assumption that GPOs are symmetric in their

demand volume: Instead, we let di be the demand facing GPO i and we assume this is public
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information. We still assume that each GPO’s demand di is constant across the years. Let

wi,t be the wholesale price offered by GPO i in year t = 1, · · · , T , and wi,t for i = 1, · · · , n

and t = 1, · · · , T is public information. In addition to observing di and wi,t, GPOs can also

obtain 1i,t as an indicator of whether GPO i has a drug shortage in year t, where 1i,t = 1

indicates a drug shortage and 1i,t = 0 indicates no drug shortage, and GPOs can observe

min{Si,t(wt), di} which is the sales of GPO i in year t where wt = (wi,t)
n
i=1 are the wholesale

prices and Si,t(wt) is the supply obtained by GPO i in year t. Besides that, GPO i can

observe its own supply Si,t(wt). The unknown information to GPOs are therefore a, b and

distribution of ϵ.

4.7.1 Application of Data-driven Robust Optimization Approach

In this subsection, we discuss how we can apply the robust optimization approach for the

GPOs to make data-driven decisions. We will consider an estimate-then-optimize approach.

That is, GPOs first use the past data to obtain an estimate for the unknown parameters,

and then based on the unknown parameters, GPOs can optimize for data-driven prices by

solving a robust optimization problem with uncertainty sets constructed for the unknown

parameters.

In the first place, estimators â, b̂ and F̂ for a, b, F respectively can be obtained based on

past data. If the GPOs know the parametric form of F but are unknown about the parame-

ters of it, then they can use maximization-expectation approach [ 156 ] for the estimation. If

the GPOs are unknown of the parametric form of F , then they can resort to, for example,

[ 157 ] for the nonparametric estimation approach with censored data.

Upon obtaining the estimates for â, b̂, and F̂ , GPOs can construct some uncertainty sets

for their estimates, i.e., a ∈ A, b ∈ B, and the true distribution ϵ, F ∈ D(F̂ ) where D(F̂ )

contains distributions which the GPO believe to be candidates for the true distribution based

on its estimate of F̂ . Then given w−i, the robust optimization model for GPO i’s pricing

decision is

max
wi≥0

min
a∈A,b∈B,F∈D(F̂ )

[r(w)− βwi]E[Si(w) ∧ di].
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We consider robust-optimization equilibrium as the solution to the game.

Definition 4.7.1 (Robust-optimization Equilibrium, [  37 ]). w∗ is a robust-optimization equi-

librium of the game if and only if for all i ∈ {1, 2, · · · , n},

w∗
i ∈ argmax

wi≥0
min

a∈A,b∈B,F∈D(F̂ )
[r(w)− βwi]E[Si(w) ∧ di].

4.7.2 Application of Dynamic Learning Approach

The robust optimization approach sets the single period profit as the goal for the GPO

to optimize. If the GPOs’ goal is to optimize for a planning horizon of multiple periods,

they can use the dynamic learning approach. The problem protocol for a multi-period game

between GPOs is presented as follows.

Protocol 4.1. Repeated Game between GPOs
In each round t = 1, 2, · · · , T :

1. Each GPO i simultaneously choose their optimal wholesale price wi,t to offer to the
manufacturer.

2. Each GPO i obtains their supply Si,t(wt).

3. The wholesale prices wt, drug shortage information (1i,t)
n
i=1 and all GPOs’ sales infor-

mation {min{Si,t(wt), di}}ni=1 becomes public information.

Let Ht̄ ≜
{
wt, (1i,t)

n
i=1, {min{Sj,t(wt), dj}}nj=1,j ̸=i , Si,t(wt)

}t̄

t=1
be the information that

has been revealed to GPO i by the end of period t̄. Then the GPO’s pricing policy πi sets

a price wπ
i,t according to the information that has been revealed to GPO i:

wπ
i,t ∼ πi(Ht), for i = 1, · · · , n and t ≥ 2.
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Each GPO’s objective is to maximize the total profit it received through the planning

horizon. Let π−i = (πj)nj=1,j ̸=i be all GPOs’ pricing policies except for GPO i’s and wπ
t =

(wπ
i,t)

n
i=1. Then the total profit for GPO i across the planning horizon is

Vi(π
i,π−i) =

T∑
t=1

[r(wπ
t )− βwπ

i,t]E[Si,t(w
π
t ) ∧ di].

We consider the equilibrium concept as follows:

Definition 4.7.2 (Nash equilibrium of the dynamic game between GPOs). A joint pol-

icy π∗ = (π1,∗, π2,∗, · · · , πn,∗) is a Nash equilibrium of the game if and only if for all

i ∈ {1, 2, · · · , n},

Vi(π
i,∗,π−i,∗) ≥ Vi(π

i,π−i,∗),∀ admissable πi.

There is a rich literature on multi-agent dynamic learning. Interested readers can refer

to the survey by [ 103 ].

4.8 Ending Remarks

Drug shortages remain a critical public health issue for the U.S. government and pharma-

ceutical industry. In this study, we investigate the impact of Medicare’s drug reimbursement

policy on drug shortages. To achieve this goal, we develop an analytical model of drug supply

to capture the main tradeoffs and nuances in GPOs’ pricing decisions, derive the equilibrium

wholesale prices and shortage statuses, and analyze the impacts of influential parameters.

Our analysis uncovers two opposing effects on the drug wholesale price decisions under the

ASP policy: the free-ride effect (a GPO tends to lower its wholesale price while hoping other

GPOs will maintain high wholesale prices to sustain a high reimbursement price) and the co-

ordination effect (the reimbursement price is higher when all GPOs increase their wholesale

prices). The interplay of these two effects determines the overall impact of ASP on wholesale

prices and drug shortages. We capture key factors influencing these effects and show that

125



the current ASP policy in fact possesses resilience to shortages of the generic drugs that the

current shortages primarily concern.

In addition to the theoretical analysis, we further conduct numerical analysis for ad-

ditional insights. We compile a novel dataset, integrating data from multiple sources, to

estimate critical model parameters. We find that very few GPOs dominate markets of the

drugs that experienced shortages, indicating a low degree of free-ride effect under which the

ASP policy is unlikely to be the major cause for these shortages. In addition, we further

visualize regions of the supply difficulty parameter values of drugs prone to shortages under

each reimbursement policy. The visualization again confirms the ASP policy’s resilience to

shortages of the generic drugs which typically have a high degree of supply difficulty.

Furthermore, an examination of the impact of industry and policy parameters brings us

additional insights. First, increasing the reimbursement percentage from the current 106%

reduces shortages, but with likely diminishing returns. Given that such an increase would

significantly increase government spending on reimbursement, a more detailed investigation

is necessary before such a policy adjustment. Second, GPOs’ price consciousness has a signif-

icant impact on shortages under ASP. Too much emphasis from GPOs and their healthcare

provider members on lowering the wholesale prices leads to negative consequences. Interest-

ingly, while [ 122 ] stated that GPOs and their members’ focus on lowering wholesale prices

may bring them a short-term benefit but hinder them from gaining a long-term benefit of a

stable drug supply, our analysis indicates that such a focus may not even bring the short-

term benefit: If all GPOs lower their wholesale prices, the reimbursement prices will be

lower, which will in turn lower the income of the providers. In other words, too much focus

on lowering wholesale prices hurts the providers not only in the long term due to drug short-

ages, but also in the short term due to lower reimbursement prices. GPOs and their members

should shift some of the focus to non-price factors such as product quality, as advocated in

[ 8 ], and suppliers’ service quality (i.e., failure-to-supply clauses), as advocated in [  122 ], to

reduce shortages. The current FDA’s initiatives in the development of a Quality Manage-

ment Maturity (QMM) rating system, in collaboration with industry, academia, and other

stakeholders, to facilitate such a focus shift in drug sourcing decisions [ 158 ] is a promising

direction.
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Finally, an interesting point arose during our discussion with FDA staff. As heard from

many of the listening sessions organized by the FDA drug shortage task force in 2019, man-

ufacturers blame GPOs for pushing the wholesale prices too low and GPOs blame providers

for only focusing on low wholesale prices. While providers do care about patients as well as

their budget, it seems that they have not considered these two aspects in a more integrated

manner. Our research shows that these two aspects do not have to contradict each other

— balancing between price and other non-price factors in drug procurement can lead to

both short-term and long-term gains as discussed earlier. The main stakeholders of the drug

supply chain (e.g., manufacturers, GPOs, and providers) need to adopt this new perspective

to unite to tackle the drug shortage problem.

We conclude by noting that the non-transparency of pharmaceutical data (as restricted

by Section 1927(b)(3)(D) of the Social Security Act) has made the numerical analysis chal-

lenging, as described. With the ongoing effort to improve transparency in the pharmaceutical

industry [e.g.,  152 ]–[ 154 ], an updated evaluation incorporating future available data would

be helpful to refine our understanding of the reimbursement policies’ impact on shortages.
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5. CONCLUSION AND DIRECTION FOR FUTURE RESEARCH

This chapter concludes findings of this study and points out future research directions. In

this study, we have examined data-integrated supply chain contract pricing problems under

uncertainties. In comparison to data-driven or data-integrated decision making problems for

a single agent, for example, the newsvendor problem, or a platform selling products to se-

quentially coming customers, the intricacy in the interactions between supply chain parties

with the unknown environment underlying the data-integrated contract pricing problems

have provided much more challenges as well as opportunities for us to explore. We investi-

gate this problem under uncertainty in the market demand (Chapter  2 ), uncertainty in the

downstream retailer’s inventory policies (Chapter  3 ), and uncertainty in the competitors’

pricing decisions as well as the uncertainty in the upstream manufacturer’s supply decisions

(Chapter  4 ). Specifically,

1. Uncertainty in the Market Demand: We study the data-driven contract design

problem of a price-only contract for a supplier who has uncertainty in the market de-

mand distribution. We propose a distributionally robust optimization model to seam-

lessly integrate the information obtained from the demand realizations and retailer’s

historical ordering information.

2. Uncertainty in the Downstream Retailer’s Inventory Learning Strategies:

We study the dynamic pricing strategies of a data-driven supplier in designing the

price-only contract. Both the supplier and retailer are uncertain about the market

demand. Besides that, the supplier also has uncertainty in the retailer’s inventory

learning policies. We propose dynamic pricing policies for the supplier and show that

it leads to sublinear regret bound for the supplier under a wide range of retailer’s

inventory learning policies.

3. Uncertainty in the Competitor’s Pricing Decisions: We study a practical prob-

lem of GPOs (representatives of healthcare providers) purchasing drugs from the man-

ufacturers. GPOs have to decide contract prices appropriately considering their own

and their healthcare providers’ interest. In deciding their pricing decisions, GPOs
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have to compete with each other and price under the uncertainty about each other’s

decisions. We adopt Nash equilibrium as the solution concept, and investigate the im-

pact of reimbursement policy on drug shortages under Nash equilibrium of the pricing

decisions.

We also provide several future research directions along this stream:

• Data-driven Contract Design with Strategic Retailer: In this study, we have

mostly consider the situation that the retailer maximizes his single period profit, and

the retailer does not manipulate the supplier’s decisions. However, a strategic and

intelligent retailer may send wrong signals to the supplier and induce the supplier to

set wholesale prices favorable for the retailer. A future direction is to investigate the

contract pricing problem along this line.

• Data-driven Contract under Uncertainty in Risk Preferences: In this study,

we have considered that the decision makers are risk neural. However, there is an

increasing evidence that decision makers are not risk neural, and furthermore, their

risk attitudes may also be changing across time [ 159 ]. Therefore, how to elicit and

hedge against the uncertainty under the unknown risk preferences of other supply

chain parties is worth future investigation.

• Data-driven Contract with Time Series Data: In this problem, we have mostly

assume that demand realizations are identically and independently distributed. How-

ever, in practice, demand observations are not identically nor independently distributed.

With inter-correlated time series data, many of the classical results in the data-driven

problems no longer hold. Therefore, it is challenging to study how time series data can

influence the decision making framework for the contract problems.

• Data-driven Contract with Dynamic Competition: In source supplies or selling

products, supply chain parties usually face competition from each other. In Chapter  4 ,

we mainly consider this competition for a single period. However, there may be com-

petitions over some periods of time. For a long time horizon, the supply chain parties
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are more aware of their long term profit and have to be more strategic in their decision

making.

There are much more real life constraints and considerations we will face when we apply

such methodologies in the real life problems. Such considerations make the direction more

fruitful and challenging, which are worth our future exploration.
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A. APPENDICES FOR CHAPTER  2 

A.1 Additional Material for Section  2.3 (supplier’s classical problem)

A.1.1 Zero Salvage Value

We may assume zero salvage value for the retailer, having a positive salvage value does

not materially change our analysis. To see this, let bi be the per unit salvage value for product

i, then πr(q; ξ,w) =
∑

i∈[n](simin{ξi, qi}−wiqi− bi max{0, qi− ξi}) = (si + bi)min{ξi, qi}−

(wi + bi)qi =
∑

i∈[n](s
′
i min{ξi, qi} − w′

iqi) where s′i = si + bi and w′
i = wi + bi.

A.2 Additional Material for Section  2.4 (supplier’s classical problem in the
data-driven regime)

A.2.1 Hardness of Distinguishing the Exponential Distribution and the Pareto
Distribution

Let Pλ denote the exponential distribution with mean 1/λ and let Pθ,α denote the Pareto

distribution with scale parameter θ > 0 and shape parameter α > 0. The probability density

function of Pλ is f(x;λ) = λ exp (−λx) for λ > 0 and x ≥ 0. The probability density function

of Pθ,α is f(x; θ, α) = αθα

xα+1 for α, θ > 0 and x ≥ θ.

We calculate the probability of failing to distinguish between the exponential distribution

and the Pareto distribution, as a function of number of samples T . The Kullback-Leibler

divergence between Pλ and P(θ,α) is DKL

(
P(θ,α)∥Pλ

)
= log

(
α
λθ

)
+ λθ

α−1
− α+1

α
, see [ 160 ].

Let PT
λ ≜ ×t∈[T ]Pλ be the distribution of (ξt)t∈[T ] when the data are generated from the

exponential distribution, and let PT
(θ,α) ≜ ×t∈[T ]P(θ,α) be the distribution of (ξt)t∈[T ] when the

data are generated from the Pareto distribution.

Let H : (ξt)t∈[T ] → {0, 1} be a statistical test where H
(
(ξt)t∈[T ]

)
= 0 indicates that the

samples are drawn from an exponential distribution, and H
(
(ξt)t∈[T ]

)
= 1 indicates that the
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samples are drawn from a Pareto distribution. Then, according to Pinsker’s inequality, we

have

PT
λ

(
H
(
(ξt)t∈[T ]

)
= 1
)
+ PT

(θ,α)

(
H
(
(ξt)t∈[T ]

)
= 0
)
≥ 1−

√
1

2
DKL

(
PT
(θ,α)∥PT

λ

)
= 1−

√
T

2
DKL

(
P(θ,α)∥Pλ

)
.

Therefore, the probability that the statistical test H fails to identify the true distribution is

max
{
PT
λ

(
H
(
(ξt)t∈[T ]

)
= 1
)
,PT

(θ,α)

(
H
(
(ξt)t∈[T ]

)
= 0
)}
≥ 1/2− 1/2

√
T

2
DKL

(
P(θ,α)∥Pλ

)
.

A.3 Additional Material for Section  2.5 (supplier’s robust problem)

A.3.1 Cross-Validation

Let Θ ≜ {θ1, . . . , θm} be a finite set of admissible confidence parameter values. We want

to choose θcv ∈ Θ to optimize the out-of-sample performance of the robust model.

We let H = {(wt, qt, ξt)}Tt=1 denote the historical data consisting of T data points. To

run k−fold cross validation, we first partition H into k subsets, where k is chosen as an

input. For example, we choose k = 3 in our numerical experiments. In each run, we hold out

one subset to be the validation data set, and merge the remaining sets into the training data

set. On the ith run, using the training set, we first obtain the center distribution denoted

P̂−i. Then, for each value θj ∈ Θ, we compute the corresponding robust optimal decision

w∗
i (θj) ∈ W and evaluate this decision using the empirical distribution constructed from the

ith validation data set.

For each validation data set, we obtain an out-of-sample profit for each θj ∈ Θ. We take

the average of out-of-sample profit across the k runs, and then choose the θj which gives the

best average out-of-sample profit.

Algorithm  3 illustrates the k-fold cross validation procedure to find the confidence pa-

rameter θcv that maximizes the out-of-sample performance for the robust model.
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Algorithm 3 k-fold cross validation
Input: history data H; finite set of confidence parameter values Θ = {θ1, . . . , θm}

Shuffle H, partition it into k subsets, and denote each subset by Hi for i ∈ [k]

for i = 1, · · · , k do

Hold-out Hi as the test set, and merge the remaining subsets as the training set,

denoted as H−i

Let P̂e
−i be the empirical distribution corresponding to demand samples in H−i

Find the center P̂−i ← argminP∈Do
T
W 2(P, P̂e

−i)

for j = 1, · · · ,m do

Find w∗
i (θj)← argmaxw∈W minP∈Dθj

(P̂−i)
(w − c)⊤q(w;P)

Let P̂e
i be the empirical distribution corresponding to demand samples in Hi

Evaluate the corresponding profit π
(
w∗

i (θj); P̂e
i

)
← (w∗

i (θj)− c)⊤ q
(
w∗

i (θj); P̂e
i

)
θcv ← argmaxj∈[m] 1/k

∑k
i=1 π

(
w∗

i (θj); P̂e
i

)
.

A.3.2 Bilevel Programming Reformulation

We can reformulate Problem ( 2.7 ) (or Problem ( 2.10 ) or Problem ( 2.11 )) as a bilevel

program with upper level decision variable w and lower level decision variable q.

Recall Pw,θ is the worst-case distribution, i.e., the optimal solution to Eq. ( 2.6 ). Here we

view Pw,θ as a function that depends on w. Let S(w) ≜ argmaxq≥0 EPw,θ
[πr(q; ξ,w)] be

the set of solutions of the lower level problem, we observe that S(w) is always a singleton.

Notice that S(w) depends on w both through the retailer’s objective function πr(q; ξ,w)

and the mapping Pw,θ. We then obtain the bilevel programming problem:

max
c≤w≤s

{
(w − c)⊤q : q ∈ S(w)

}
, (A.1)

where the dependence on w is absorbed into S(w).

Problem ( A.1 ) is a bilevel programming problem with a convex lower level problem. To

solve for the optimal wholesale price, we refer to the literature on bilevel programs where

the lower level optimal solution is a singleton [ 161 ], [  162 ], or where the lower level problem is
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convex [ 163 ], [ 164 ]. However, we point out that Problem ( A.1 ) is still hard to solve because

of the complex dependence introduced by the mapping Pw,θ.

A.3.3 Value-at-risk

For n = 1, we can connect the supplier’s worst-case profit with the worst-case value-at-risk

of demand. Recall the value-at-risk for loss ξ at level ϵ is VaRϵ(ξ) ≜ min {x : P(x ≤ ξ) ≤ ϵ}.

For n = 1, Problem ( 2.6 ) is equivalent to:

min
P∈Dθ(P̂T )

q(w;P) = min
P∈Dθ(P̂T )

VaRw/s(ξ), (A.2)

which is the worst-case value-at-risk for ξ at level w/s with uncertainty set Dθ(P̂T ) (see,

e.g., [ 165 ], [ 166 ]). We can interpret Do
T as the set of distributions for which we know the

value-at-risk of the random loss at certain levels (since the retailer’s optimal order quantity is

a quantile function of the true demand distribution). Then, Problem ( A.2 ) is the worst-case

value-at-risk at level w/s among distributions in Do
T .

A.3.4 Proof of Proposition  2.5.1 (equivalence of supplier’s robust problems)

It is sufficient to show that the inner minimization problems to compute the worst-case

profit within Problems (  2.7 ), ( 2.10 ), and ( 2.11 ) are all equivalent. For any wholesale price

w ∈ W and any δ > 0, define

v1(w) ≜ inf
P∈D

(w − c)⊤q(w;P), (A.3)

with δ−optimal solution P∗
(1); define

v2(w) ≜ inf
P∈D,q≥0

{(w − c)⊤q : Pi(ξi ≤ qi) ≥ 1− wi/si,∀i ∈ [n]}, (A.4)

with δ−optimal solution (P∗
(2), q

∗
(2)); and define

v3(w) ≜ inf
q≥0
{(w − c)⊤q : ∃P ∈ D : Pi(ξi ≤ qi) ≥ 1− wi/si,∀i ∈ [n]}, (A.5)

146



with δ−optimal solution q∗
(3) = (q∗(3),i)i∈[n], and let P∗

(3) ∈ D be the corresponding distribution

such that P∗,i
(3)(ξi ≤ q∗(3),i) ≥ 1 − wi/si for all i ∈ [n], where P∗,i

(3) is the i−th marginal

distribution of P∗
(3). We will show the following parts:

(i) For any wholesale price c ≤ w ≤ s, v1(w) = v2(w). Furthermore, (P∗
(1), q(w;P∗

(1))) is

δ−optimal to Problem ( A.4 ) and P∗
(2) is δ−optimal to Problem ( A.3 ).

(ii) For any wholesale price c ≤ w ≤ s, v2(w) = v3(w). Furthermore, (P∗
(3), q(w;P∗

(3)))

is δ−optimal to Problem ( A.4 ) and q(w;P∗
(2)) is δ−optimal to Problem ( A.5 ).

To prove Part (i), notice that (P∗
(1), q(w;P∗

(1))) is feasible to Problem ( A.4 ), since by

definition qi(wi;P∗,i
(1)) = min{q ≥ 0 : P∗,i

(1)(ξi ≤ q) ≥ 1 − wi/si,∀i ∈ [n]}. Thus v1(w) + δ ≥

v2(w). At the same time, P∗
(2) is feasible to Problem ( A.3 ) since P∗

(2) ∈ Dθ(P̂T ). Furthermore,

q(w;P∗
(2)) ≤ q∗

(2) by the definition of q(w;P∗
(2)). Thus, we have (w − c)⊤q(w;P∗

(2)) ≤

(w − c)⊤q∗
(2) ≤ v2(w) + δ. Since δ > 0 is arbitrary, the desired result follows.

To prove Part (ii), first notice that q∗
(2) is feasible to Problem ( A.5 ) and thus v2(w)+ δ ≥

v3(w). On the other hand, (P∗
(3), q

∗
(3)) is also feasible to Problem (  A.4 ). Thus v3(w) + δ ≥

v2(w), and since δ was arbitrary this part follows.

A.3.5 Proof of Theorem  2.5.1 (asymptotics)

The sequence of i.i.d. demand samples is generated by P̄∞ ≜ ×∞
t=1P̄. Our uncertainty

set Dθ(P̂T ) is a random variable that depends on P̄T (through the supplier’s first T ≥ 1

data points). We want to estimate the probability that Dθ(P̂T ) ∋ P̄. This is related to

the probability that W2(P̄, P̂T ) ≤ θ (with respect to the sampling distribution P̄T ). By

the triangle inequality (which is applicable because W2 is a metric), we have W2(P̄, P̂T ) ≤

W2(P̄, P̂e
T ) + W2(P̂e

T , P̂T ). Since P̂T satisfies W2(P̂T , P̂e
T ) ≤ W2(P̄, P̂e

T ) by construction, we

have W2(P̄, P̂T ) ≤ 2W2(P̄, P̂e
T ).

The next result (Theorem  A.3.1 ) upper bounds the probability that W2(P̂T , P̄) ≥ θ.
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Theorem A.3.1. (Proof in Appendix II,  A.7.5 ) Suppose Assumption  2.3.1 holds. Then for

any θ > 0,

P̄T
{
W2(P̄, P̂T ) ≥ θ

}
≤

c1 exp
(
−c2T

(
θ
2

)max{n,2}
)
, θ/2 ≤ 1,

c1 exp
(
−c2T

(
θ
2

)a)
, θ/2 > 1,

where a, c1, c2 are positive constants that only (possibly) depend on n.

The Wasserstein ball centered at P̂T with radius θT (αT ) includes the true distribution

P̄ with probability no less than 1 − αT . Specifically, this definition of θT (αT ) ensures that

P̄T{W2(P̂T , P̄) ≥ θT (αT )} ≤ αT for all T ≥ 1. Furthermore, limT→∞ θT (αT ) = 0. It then

follows immediately from Theorem  A.3.1 that the probability that DθT (α)(P̂T ) contains the

true distribution P̄ is lower bounded by

P̄T
{
DθT (αT )(P̂T ) ∋ P̄

}
= P̄T

{
P̄ ∈ Do

T ,W2(P̄, P̂T ) ≤ θT (αT )
}

= P̄T
{
W2(P̄, P̂T ) ≤ θT (αT )

}
≥ 1− αT ,

where the second equality follows since P̄ ∈ Do
T by definition.

Now we proceed to prove Theorem  2.5.1 . Define the value functions

v(w, q,P) =

(w − c)⊤q, Pi(ξi ≤ qi) ≥ 1− wi/si, ∀i ∈ [n],

+∞, otherwise,

and

v(w,P) = min
q≥0

v(w, q,P). (A.6)

Also define h(λ,w, q, ξ) ≜
∑

i∈[n](wi − ci)qi −
∑

i∈[n] λi (1(ξi ≤ qi)− 1 + wi/si).

According to [ 30 , Lemma A.1], as 1(ξ ≤ q) is upper semicontinuous in ξ and 1(ξ ≤

q) ≤ L(1 + |ξ|) for some L > 0, there exists a non-increasing sequence of Lipschitz con-
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tinuous functions (gk(q, ·))k∈N that converges pointwise to 1(· ≤ q). We thus also define

hk(λ,w, q, ξ) ≜
∑

i∈[n](wi − ci)qi −
∑

i∈[n] λi (gk(qi, ξi)− 1 + wi/si),

vk(w, q,P) =

(w − c)⊤q, EPi [gk(q, ξ)] ≥ 1− wi/si ∀i ∈ [n],

+∞, otherwise,

and vk(w,P) = minq≥0 vk(w, q,P).

We need the following auxiliary lemma to prove Theorem  2.5.1 .

Lemma A.3.1. Suppose Assumptions  2.3.1 and  2.5.1 hold.

(i) We have: v(w,P) = inf{qi}≥0 sup{λi}≥0 EP[h(λ,w, q, ξ)] and

vk(w,P) = inf{qi}≥0 sup{λi}≥0 EP[hk(λ,w, q, ξ)].

(ii) v(w, P̄) is continuous in w.

(iii) There exists w∗ ≥ c such that (w∗ − c)⊤q(w∗; P̄) = π∗.

(iv) There exists an optimal solution q∗(w;P) = (q∗i (wi;Pi))i∈[n] ≥ 0 to Problem ( A.6 )

that satisfies v(w, q∗(w;P),P) = v(w,P).

(v) We have limk→∞ vk(w,P) = v(w,P).

Proof of Lemma  A.3.1 . (i) This part follows since these are equivalent forms of the primal

minimization problems, using an indicator function for constraint violation.

(ii) This part follows from the Berge Maximum Theorem [ 167 ], which applies because

(w − c)⊤q is continuous in (w, q) and the correspondence

Γ(w) =
{
q : P̄i(ξi ≤ qi) ≥ 1− wi/si, ∀i ∈ [n]

}
is continuous in w, which holds because of the atomlessness of P̄.

(iii) Notice that π∗ = supc≤w≤s v(w, P̄). By the continuity of v(·, P̄) (from Part (ii)) and

the compactness of the feasible region, there exists w∗ ≥ c such that v(w∗, P̄) = π∗.

(iv) Since Pi(ξ ≤ q) is upper semicontinuous in q, Γ(w) is closed. Plus, we can restrict

the feasible region of Problem ( A.6 ) to Ξ. Then the existence of q∗(w;P) follows from

Weierstrass theorem, which states that a continuous function attains its maximum/minimum

over a compact set.
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(v) Notice that v(w,P) =
∑

i∈[n] minqi≥0{(wi − ci)qi : Pi(ξi ≤ qi) ≥ 1 − wi/si} and

vk(w,P) =
∑

i∈[n] minqi≥0{(wi − ci)qi : EPi [gk(q, ξ)] ≥ 1 − wi/si}. Thus, it suffices to show

that limk→∞ vk(w,P) = v(w,P) for the one-dimensional case.

Since gk(q, ξ) ≥ 1(ξ ≤ q), we always have vk(w,P) ≤ v(w,P). Now consider any order

quantity q′ < q∗(w;P) − ϵ/(w − c). Thus, q′ is not feasible to Problem ( A.6 ) (for the one-

dimensional case), since otherwise q∗(w;P) would not be optimal. We then have P(ξ ≤ q′) <

1−w/s. Let δ = 1−w/s−P(ξ ≤ q′) > 0. Since limk→∞ EP[gk(q, ξ)] = P(ξ ≤ q) (which follows

from the Monotone Convergence Theorem [ 168 ], which applies because |EP[gk(q, ξ)]| < ∞),

then it follows that there exists K ′ such that for all k ≥ K ′, 0 ≤ EP[gk(q′, ξ)]−P(ξ ≤ q′) < δ,

implying that EP[gk(q′, ξ)] < δ + P(ξ ≤ q′) = 1 − w/s. It follows that q′ is infeasible to

vk(w,P), and vk(w,P) > (w − c)q′ = v(w,P) − ϵ. We have shown that for all ϵ > 0, there

exists K ′ > 0 such that vk(w,P) > v(w,P)− ϵ for all k ≥ K ′.

The proof of Theorem  2.5.1 uses techniques from [ 30 , Theorem 3.6] with some adjustments

to our problem instance. For our results to be self-contained, we outline the complete proof

here. We will also need the following results.

Theorem A.3.2. ([ 54 ]) For any distributions P,P′ ∈ P(Ξ), we have

W2(P,P′) = sup
f∈L

{∫
Ξ

f(ξ)P(dξ)−
∫
Ξ

f(ξ)P′(dξ)

}
,

where L denotes the space of all Lipschitz functions with |f(ξ) − f(ξ′)| ≤ ∥ξ − ξ′∥2 for all

ξ, ξ′ ∈ Ξ.

Lemma A.3.2. ([ 30 , Lemma 3.7]) Suppose Assumption  2.3.1 holds, that αT ∈ (0, 1) for

T ∈ N satisfies
∑

T∈N αT < ∞, and that limT→∞ θT (αT ) = 0. Then, any sequence PT ∈

DθT (αT )(P̂T ) for T ∈ N converges under the Wasserstein metric to P̄, P̄∞−almost surely.

Proof of Theorem  2.5.1 . We first prove Part (i). As c ≤ wT,θT (αT ) ≤ s, we have v(wT,θT (αT ), P̄)

≤ π∗. On the other hand, if P̄ ∈ DθT (αT )(P̂T ), we have v(wT,θT (αT ), P̄) ≥ infP∈DθT (αT )(P̂T )

v(wT,θT (αT ),P) = πT . Thus by the choice of θT (αT ), we have P̄T
{
πT ≤ v(wT,θT (αT ), P̄) ≤ π∗} ≥
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P̄T
{
P̄ ∈ DθT (αT )(P̂T )

}
≥ 1 − αT for all T ∈ N. As

∑
T∈N αT < ∞, according to the Borel-

Cantelli Lemma we have P̄∞ {πT ≤ v(wT,θT (αT ), P̄) ≤ π∗ for all sufficiently large T
}
= 1.

To show that πT → π∗, it remains to show that lim infT→∞ πT ≥ π∗. According to

Lemma  A.3.1 (iii), the optimal solution w∗ to Problem (  2.1 ) exists. For each T ≥ 1, we can

find the δ−optimal distribution Pδ
T ∈ DθT (αT )(P̂T ) such that v(w∗,Pδ

T ) ≤ infP∈DθT (αT )(P̂T )

v(w∗,P) + δ. We then have

lim inf
T→∞

πT ≥ lim inf
T→∞

inf
P∈DθT (αT )(P̂T )

v(w∗,P)

≥ lim inf
T→∞

v(w∗,Pδ
T )− δ

= lim inf
T→∞

inf
{qi}≥0

sup
{λi}≥0

EPδ
T
[h(λ,w∗, q, ξ)]− δ

≥ lim
k→∞

lim inf
T→∞

inf
{qi}≥0

sup
{λi}≥0

EPδ
T
[hk(λ,w

∗, q, ξ)]− δ

≥ lim
k→∞

lim inf
T→∞

inf
{qi}≥0

sup
{λi}≥0

EP̄[hk(λ,w
∗, q, ξ)]− LkW2(P̄,Pδ

T )− δ

= lim
k→∞

inf
{qi}≥0

sup
{λi}≥0

EP̄[hk(λ,w
∗, q, ξ)]− lim

k→∞
lim inf
T→∞

LkW2(P̄,Pδ
T )− δ

= lim
k→∞

inf
{qi}≥0

sup
{λi}≥0

EP̄[hk(λ,w
∗, q, ξ)]− δ P̄∞ − almost surely

= lim
k→∞

vk(w
∗, P̄)− δ

= v(w∗, P̄)− δ

= π∗ − δ.

In the above display, the first equality follows from Lemma  A.3.1 (i). The third inequality

holds because hk(λ,w
∗, q, ξ) converges from below to h(λ,w∗, q, ξ) by construction. The

fourth inequality follows from Theorem  A.3.2 . The third equality follows from Lemma  A.3.2 .

The fourth equality again follows from Lemma  A.3.1 (i) and the second last equality follows

from Lemma  A.3.1 (v). Since δ is arbitrary, we have established that lim infT→∞ πT ≥ π∗.

We now prove Part (ii). Fix an arbitrary realization of the stochastic process (ξ̂T )T∈N

such that limT→∞ πT = π∗. From Part (i), for all sufficiently large T , we have πT ≤

v(wT,θT (αT ), P̄) ≤ π∗, P̄∞−almost surely. Now by the closedness of [c, s], (wT,θT (αT ))T∈N
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has an accumulation point w̄ ≥ c. Thus, we have π∗ ≥ v(w̄, P̄) = limT→∞ v(wT,θT (αT ), P̄) ≥

limT→∞ πT = π∗, where the first equality follows from the continuity of v(·, P̄)

(see Lemma  A.3.1 ). We conclude that v(w̄, P̄) = π∗.

A.3.6 Alternative Uncertainty Sets

In classical DRO, the center of the uncertainty set is usually the empirical distribu-

tion P̂T = P̂e
T . We can center our uncertainty set at P̂e

T to obtain Dθ(P̂e
T ) = {P ∈ Do

T :

W2(P, P̂e
T ) ≤ θ}, where we also restrict to distributions in Do

T . However, P̂e
T may not be

compatible with the retailer’s past orders so that P̂e
T /∈ Do

T . In addition, it may be that

Dθ(P̂e
T ) is empty when θ is too small (i.e., when θ < W (P̂e

T , P̂T )). Furthermore, P̂T rather

than P̂e
T better represents our ‘nominal’ belief about the true demand distribution. When

the empirical distribution P̂e
T is not consistent with Do

T , we know it will not be the true

demand distribution. In contrast, we chose the center P̂T specifically to be the best match

to P̂e
T within Do

T .

The literature has considered other types of uncertainty sets in addition to the Wasser-

stein distance, e.g., moment-based [e.g.,  169 ]–[ 171 ] and divergence-based [e.g.,  55 ], [ 172 ]–

[ 174 ]. Moment-based uncertainty sets constructed using mean and variance information can

lead to conservative solutions [  170 ], and divergence-based uncertainty sets restrict the sup-

port of the random variable in question to the observed samples. The Wasserstein distance

[e.g.,  30 ], [ 31 ] does not have these drawbacks and possesses other favorable properties. For

example, the Wasserstein distance is a metric on P(Ξ) and it metrizes weak convergence

[ 64 ]. Thus we consider the Wasserstein distance to be the most suitable for our model.

A.4 Additional Material for Section  2.6 (single product case)

A.4.1 Proof of Proposition  2.6.1 (center for n = 1)

Proposition  2.6.1 follows from the proof of the upcoming more general Proposition  2.7.1 

which covers all n ≥ 1.
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A.4.2 Details of Theorem  2.6.1 (worst-case profit for n = 1)

We present the details about the worst-case order quantities q(w, θ) and q(w), and the

worst-case distribution Pw,θ in this subsection. We can express the center more compactly

by ignoring zero terms. Let (ξ̂k)k∈[K] be the support of P̂T , and let ηk = P̂T (ξ = ξ̂k)

for all k ∈ [K] (in particular, (ηk)k∈[K] correspond to all the strictly positive elements of

(β∗
st)s∈[T+1],t∈[T ]). Then, we can write P̂T =

∑K
k=1 η

kδξ̂k .

Fix w ∈ [c, s], let

ξ(w) = arg min
x∈(ξ̂k)Kk=1

{x : P̂T (ξ ≤ x) ≥ 1− w/s} (A.7)

be the minimum element in the support of P̂T where the value of the CDF at this element

is no smaller than 1− w/s, and let

q(w) = arg max
q∈(qt)t∈[T ]

{
q : P̄(ξ ≤ q) < 1− w/s

}
(A.8)

be the maximum past order quantity such that the value of the CDF of P̄ at this order size

is smaller than 1− w/s.

We introduce the threshold

θ̄(w) ≜

√√√√√ ∑
{k:q(w)<ξ̂k<ξ(w)}

ηk
(
q(w)− ξ̂k

)2
+

1− w/s−
∑

{k:ξ̂k<ξ(w)}

ηk

 (q(w)− ξ(w))2

(A.9)

on the Wasserstein distance θ. When θ ≥ θ̄(w), the worst-case order is q(w). When θ < θ̄(w),

the worst-case order quantity q(w, θ) is the unique solution to

1− w/s =
∑

{k:ξ̂k<ξ(w)}

ηk +
θ2 −

∑
{k:q<ξ̂k<ξ(w)} η

k
(
q − ξ̂k

)2
(q − ξ(w))2

. (A.10)
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Note that the left hand side of Eq. ( A.10 ) is constant and the right hand side of Eq. ( A.10 )

is an increasing function in q ∈ [q(w), ξ(w)]. Thus, we can solve for q(w, θ) efficiently with

bisection search.

For q ≥ 0, let l(q) ≜ argminx∈{qt}t∈[T ] {x : x ≥ q} be the smallest past order quantity that

is larger than q. Given θ, let z(q, θ) ∈ (q, l(q)] ∩ (ξ̂k)Kk=1 denote the smallest element of the

set (q, l(q)] ∩ (ξ̂k)Kk=1 (if this set is nonempty) that satisfies θ2 ≤
∑

{k:q<ξ̂k≤z(q,θ)} η
k(q − ξ̂k)2.

That is, for z(q, θ), the transportation budget θ2 is just enough to transport the probability

mass from samples lying between q and z(q, θ) to q.

According to the definition of z(q, θ), there must exist some k∗ such that z(q, θ) = ξ̂k
∗ .

Let ηk∗ be the corresponding value of the PDF of P̂T at ξ̂k∗ , i.e., ηk∗ ≜ P̂T (ξ = ξ̂k
∗
). Also let

γ(q) ≜
θ2 −

∑
{k:q<ξ̂k<z(q,θ)} η

k
(
q − ξ̂k

)2
(q − z(q, θ))2

. (A.11)

Then, the worst-case distribution is

Pw,θ =
∑

{k:0≤ξ̂k<q}

ηkδξ̂k +

 ∑
{k:q≤ξ̂k<z(q,θ)}

ηk + γ(q)

 δq + (ηk
∗ − γ(q))δz(q,θ) +

∑
{k:ξ̂k>z(q,θ)}

ηkδξ̂k

for q = q(w, θ).

(A.12)

A.4.3 Proof of Theorem  2.6.1 (worst-case profit for n = 1)

For order quantity q ≥ 0, we define

ρ(q) ≜ max
P∈Dθ(P̂T )

P(ξ ≤ q) (A.13)

to be the worst-case overstock probability corresponding to the uncertainty set Dθ(P̂T ).

With some abuse of notation, let Pq,θ be the distribution that attains the maximum in Prob-

lem ( A.13 ) (we will show this maximizer exists in the proof of the upcoming Lemma  A.4.1 ).
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Using the definition of ρ(q), the supplier’s worst-case profit for wholesale price w can be

expressed as πT,θ(w) = infq≥0{(w − c)q : ρ(q) ≥ 1− w/s}.

For any w and θ, when we take q = q(w, θ) (the worst-case order quantity for the supplier),

Pq(w,θ),θ is the distribution that induces the retailer to order q(w, θ). Therefore, Pq(w,θ),θ is

the worst-case distribution for any w and θ.

We will give closed form expressions for ρ(q) and Pq,θ, which are useful in the derivation

of q(w), q(w, θ), and Pw,θ. Let w(q) ≜ s− s P̄(ξ ≤ q) be the wholesale price that induces the

retailer to order q under the true demand distribution P̄ by the retailer first-order conditions

Eq. ( 2.3 ). In particular, w(l(q)) is the wholesale price that induces the retailer to order l(q).

Lemma  A.4.1 gives closed form expressions for ρ(q) and Pq,θ.

Lemma A.4.1. (Proof in Appendix II,  A.7.1 ) Recall γ(q) defined in Eq. ( A.11 ). We have

(i)

ρ(q) =

1− w(l(q))/s, θ2 ≥
∑

{k:q<ξ̂k≤l(q)} η
k(q − ξ̂k)2,∑

{k:ξ̂k<z(q,θ)} η
k + γ(q), θ2 <

∑
{k:q<ξ̂k≤l(q)} η

k(q − ξ̂k)2.

(ii)

Pq,θ =



∑
{k:0≤ξ̂k<q} η

kδξ̂k +
∑

{k:q≤ξ̂k≤l(q)} η
kδq

+
∑

{k:ξ̂k>l(q)} η
kδξ̂k , θ2 ≥

∑
{k:q<ξ̂k≤l(q)} η

k(q − ξ̂k)2,∑
{k:0≤ξ̂k<q} η

kδξ̂k +
(∑

{k:q≤ξ̂k<z(q,θ)} η
k + γ(q)

)
δq

+(ηk
∗ − γ(q))δz(q,θ) +

∑
{k:ξ̂k>z(q,θ)} η

kδξ̂k , θ2 <
∑

{k:q<ξ̂k≤l(q)} η
k(q − ξ̂k)2.

Proof of Theorem  2.6.1 . First we show that the worst-case order quantity satisfies q(w, θ) ∈

(q(w), ξ(w)]. Notice ρ(ξ(w)) ≥ P̂T (ξ ≤ ξ(w)) ≥ 1−w/s, and thus πT,θ(w) ≤ (w−c)ξ(w) and

q(w, θ) ≤ ξ(w). On the other hand, we have ρ(q(w)) < 1− w/s since P(ξ ≤ q(w)) = P̄(ξ ≤

q(w)) < 1− w/s holds for any P ∈ Dθ(P̂T ). Thus, we have q(w, θ) > q(w). In summary, we

have shown that πT,θ(w) = infq∈(q(w),ξ(w)]{(w − c)q : ρ(q) ≥ 1− w/s}.
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Now define the sets

Q1(w, θ) ≜

q : 1− w/s ≤ 1− w(l(q))/s, θ2 ≥
∑

{k:q<ξ̂k≤l(q)}

ηk(q − ξ̂k)2


and

Q2(w, θ) ≜

{
q : 1− w/s ≤

∑
{k:ξ̂k<z(q,θ)}

ηk +
θ2 −

∑
{k:q<ξ̂k<z(q,θ)} η

k
(
q − ξ̂k

)2
(q − z(q, θ))2

,

θ2 ≤
∑

{k:q<ξ̂k≤l(q)}

ηk(q − ξ̂k)2
}
.

By plugging in the expression for ρ(q) into πT,θ(w), we have

πT,θ(w) = inf
q∈(q(w),ξ(w)]

{(w − c)q : q ∈ Q1(w, θ) ∪Q2(w, θ)}. (A.14)

When θ < θ̄(w), we show that the optimal solution for Problem (  A.14 ) is equal to the optimal

solution q̃(w, θ) of the following problem:

min
q∈[q(w),ξ(w)]

(w − c)q : 1− w/s ≤
∑

{k:ξ̂k<ξ(w)}

ηk +
θ2 −

∑
{k:q<ξ̂k<ξ(w)} η

k(q − ξ̂k)2

(q − ξ(w))2

 . (A.15)

To streamline notation, we define f(q, z) ≜
∑

{k:ξ̂k<z} η
k +

θ2−
∑

{k:q<ξ̂k<z} ηk(q−ξ̂k)2

(q−z)2
and

c(q, z) ≜
∑

{k:q<ξ̂k≤z} η
k(q − ξ̂k)2. For any fixed q ∈ (q(w), ξ(w)], l(q) is also fixed, and we

can just use the shorthand l ≜ l(q). We have l ≥ ξ(q), and so f(q, z) is strictly increasing

on (q(w), ξ(w)] and c(q, l) is strictly decreasing on (q(w), ξ(w)].

Lemma A.4.2. (Proof in Appendix  A.7.2 ) Suppose θ < θ̄(w).

(i) The optimal solution q̃(w, θ) to Problem ( A.15 ) satisfies

1− w/s =
∑

{k:ξ̂k<ξ(w)}

ηk +
θ2 −

∑
{k:q̃(w,θ)<ξ̂k<ξ(w)} η

k(q̃(w, θ)− ξ̂k)2

(q̃(w, θ)− ξ(w))2
.
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(ii) The optimal solution q̃(w, θ) to Problem ( A.15 ) is also an optimal solution of Prob-

lem ( A.14 ).

By Lemma  A.4.2 , q(w, θ) is the unique solution to 1− w/s =
∑

{k:ξ̂k<ξ(w)} η
k

+
θ2−

∑
{k:q(w,θ)<ξ̂k<ξ(w)} ηk(q(w,θ)−ξ̂k)2

(q(w,θ)−ξ(w))2
for θ < θ̄(w).

Now we show that πT,θ(w) = (w − c)q(w) when θ ≥ θ̄(w). Notice that for arbitrary

θ, πT,θ(w) ≥ (w − c)q(w) since any q ≤ q(w) is not feasible for Problem ( A.14 ). At the

same time, when θ ≥ θ̄(w), q(w) + δ is feasible for Problem ( A.14 ) for arbitrary δ > 0. It

follows that πT,θ(w) ≤ (w − c)(q(w) + δ) for any δ > 0, and we conclude that πT,θ(w) =

(w − c)q(w).

A.5 Additional Material for Section  2.7 (multi-product case)

A.5.1 Proof of Proposition  2.7.1 (center for n ≥ 1)

We show how to reformulate Problem ( 2.5 ) as a tractable finite-dimensional optimization

problem, and then solve for P̂T . This subsection covers both dependent and independent

demand. WLOG, for each i ∈ [n] we can arrange the past wholesale prices in descending

order as si ≥ w1
i > · · · > wt

i > wt+1
i > · · · > wT

i (where we assume there are no repeats),

and we can arrange the retailer’s corresponding past order quantities in ascending order as

0 ≤ q1i < · · · < qti < qt+1
i < · · · < qTi . We set q0i ≡ 0 and qT+1

i ≡ ξ̄ for all i ∈ [n].

The Lagrangian dual to Problem (  2.5 ) is:

sup
µ,γ

 1

T

T∑
t=1

γt : ∥ξ − ξt∥22 +
∑
i∈[n]

T∑
t′=1

µt′

i

(
1(ξi ≤ qt

′

i )−
si − wt′

i

si

)
≥ γt,∀ξ ∈ Ξ, t ∈ [T ]

 ,

(A.16)

where µ ≜ (µt
i)i∈[n],t∈[T ] and γ ≜ (γt)

T
t=1 are the dual variables (we give the formal derivation

of Problem (  A.16 ) in the proof of Proposition  A.5.1 ). Proposition  A.5.1 establishes the

existence of the optimal solution P̂T to Problem ( 2.5 ), and also demonstrates that strong

duality holds between Problem ( 2.5 ) and its dual Problem ( A.16 ).

Proposition A.5.1. (Proof in Appendix  A.7.3 ) (i) The minimizer P̂T in Problem ( 2.5 ) is

attained. (ii) The optimal values of Problems ( 2.5 ) and ( A.16 ) are equal.
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Problem (  A.16 ) has a semi-infinite constraint indexed by ξ ∈ Ξ. We can characterize this

constraint more precisely as follows. The past orders (qt)Tt=1 partition Ξ into (T+1)n squares

Rs ≜ {ξ : ξi ∈ (qti−1
i , qtii ], ∀i ∈ [n]} indexed by s ∈ [(T +1)n] where (ti)

n
i=1 ∈ {1, . . . , T +1}n.

Then, for some ξ ∈ Rs, 1(ξi ≤ qt
′
i ) = 0 if qti−1

i ≥ qt
′
i and 1(ξi ≤ qt

′
i ) = 1 if qtii ≤ qt

′
i . In other

words, 1(ξi ≤ qt
′
i ) is constant for ξ ∈ Rs. We define zis(q

t′) ≜ 1(ξi ≤ qt
′
i |ξ ∈ Rs), and we

represent Rs as Rs = {ξ : Asξ ≤ ds} where As is a matrix and ds is a vector of appropriate

dimension. Problem ( A.16 ) can then be reformulated as:

sup
µ,γ

1

T

T∑
t=1

γt,

s.t. ∥ξ − ξt∥22 +
∑
i∈[n]

T∑
t′=1

µt′

i

(
zis(q

t′)− si − wt′
i

si

)
≥ γt,∀ξ : Asξ ≤ ds,∀t ∈ [T ],∀s ∈ [S],

(A.17)

where the constraints are grouped by subsets of the partition. The Lagrangian dual of

Problem (  A.17 ) is Problem ( 2.17 ), and the optimal solutions of Problem ( 2.17 ) are denoted

(β∗
st)s∈[S],t∈[T ] and (p∗

st)s∈[S],t∈[T ].

Proposition A.5.2. (Proof in Appendix II,  A.7.4 ) The optimal values of Problems ( 2.17 )

and ( A.17 ) are equal.

We now prove that P̂T defined by

P̂T =
T∑
t=1

S∑
s=1

β∗
stδp∗

st/β
∗
st

(A.18)
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is feasible and optimal for Problem ( 2.5 ). By Eq. ( 2.17d ), we have p∗
st/β

∗
st ∈ Ξ. By

Eq. ( 2.17b ), P̂T =
∑T

t=1

∑S
s=1 β

∗
stδp∗

st/β
∗
st

is a valid probability distribution supported on

Ξ. Furthermore, by Eq. (  2.17c ), P̂T satisfies the retailer’s first-order conditions since

P̂T

(
ξi ≤ qt

′

i

)
=

S∑
s=1

P̂T

(
ξi ≤ qt

′

i |ξ ∈ Rs

)
P̂T (ξ ∈ Rs)

=
S∑

s=1

EP̂T

[
zis(qt′ )

]
P̂T (ξ ∈ Rs)

=
S∑

s=1

T∑
t=1

β∗
stzis(q

t′)

=
si − wt′

i

si
.

The first equality follows from the law of total probability since (Rs)
S
s=1 is a partition

with empty pair-wise intersection, the second equality follows from the definition of zis(qt′),

the third equality follows because zis(q
t′) is constant and by the definition of P̂T , and the

last equality follows by Eq. ( 2.17c ). Thus, we see that P̂T ∈ Do
T and so P̂T is feasible for

Problem (  2.5 ). Furthermore, by the definition of Wasserstein distance,

W 2
2 (P̂T , P̂e

T ) = min
(λs,t,t′ )≥0

{
T∑

t′=1

T∑
t=1

S∑
s=1

λs,t,t′

∥∥∥p∗
st/β

∗
st − ξt

′
∥∥∥2
2
:

T∑
t′=1

λs,t,t′ = β∗
st,

T∑
t=1

S∑
s=1

λs,t,t′ = 1/T

}
.

Let λ∗
s,t,t′ = 0 if t′ ̸= t, and λ∗

s,t,t′ = β∗
st if t′ = t. Then (λ∗

s,t,t′)s∈[S],t∈[T ],t′∈[T ] is feasible to

the above problem. Thus, we have W 2
2 (P̂T , P̂e

T ) ≤
∑T

t′=1

∑T
t=1

∑S
s=1 λ

∗
s,t,t′

∥∥p∗
st/β

∗
st − ξt

′∥∥2
2
=∑T

t=1

∑S
s=1 β

∗
st ∥p∗

st/β
∗
st − ξt∥22.

At the same time, according to Propositions  A.5.1 and  A.5.2 , the optimal values of

Problem (  2.5 ) and Problem ( 2.17 ) are equal. Thus, we have

inf
P∈Do

T

W 2
2 (P, P̂e

T ) =
T∑
t=1

S∑
s=1

β∗
st

(
p∗
st/β

∗
st − ξt

)⊤ (
p∗
st/β

∗
st − ξt

)
.

So, by the first part of this proposition, P̂T achieves the minimum in Problem ( 2.5 ) and so

is an optimal solution to Problem ( 2.5 ).
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A.5.2 Solving for Retailer’s Worst-case Order Quantities (dependent demand)

We now show how to compute the worst-case distribution and worst-case order quantity

for an arbitrary demand distribution P. Specifically, we develop a cutting plane method for

Problem ( 2.8 ). Given any w, we can check if q ∈ Qθ(w; P̂T ) by checking feasibility of the

following system of linear inequalities in P:

P ∈ Dθ(P̂T ), Pi(ξi ≤ qi) ≥
si − wi

si
, ∀i ∈ [n]. (A.19)

We have q ∈ Qθ(w; P̂T ) if and only if Eq. ( A.19 ) is satisfied. Eq. ( A.19 ) consists of nT+n+1

linear inequalities/equalities in P (including the inequalities/equalities corresponding to P ∈

Do
T and W2(P, P̂T ) ≤ θ). In order to find a δ−optimal solution for Problem ( 2.8 ), we can

construct an ϵ-net Ξ̂ of [0, ξ̄]n for ϵ = δ/maxi∈[n]{si − wi}. Then, for any ξ ∈ Ξ, there

exists ξ′ ∈ Ξ̂ with ∥ξ − ξ′∥1 ≤ ϵ. Since the worst-case order satisfies q(w, θ) ∈ Ξ, there

must exist q ∈ Ξ̂ such that ∥q − q(w, θ)∥1 ≤ ϵ, and thus the worst-case profit satisfies

(w − c)⊤q(w, θ) ≥ (w − c)⊤q − δ. It follows that there must exist a δ−optimal solution

in Ξ̂ for Problem ( 2.8 ). We can check optimality of each q ∈ Ξ̂ which requires solving |Ξ̂|

linear feasibility problems to identify a δ−optimal solution. After constructing Qθ(w; P̂T ),

the supplier can compare the worst-case profit for all q ∈ Qθ(w; P̂T ).

However, checking all elements in Ξ̂ is computationally expensive when |Ξ̂| is large. To

accelerate this process, we show that checking optimality of any order quantity q ∈ Ξ yields

information about other potentially optimal order quantities. On one hand, if Eq. (  A.19 ) is

feasible, then we have identified a particular distribution P̃ as a feasible solution to Eq. ( A.19 )

and q ∈ Qθ(w; P̂T ), and we must have πT,θ(w) ≤ (w − c)⊤q. Consequently, we can discard

all order quantities in the set X (q) ≜
{
q′ ∈ Ξ : (w − c)⊤q′ ≥ (w − c)⊤q

}
that yield higher

profit for the supplier (since we are looking for the worst-case profit). On the other hand,

if Eq. ( A.19 ) is infeasible, we let X≤(q) ≜ {q′ ∈ Ξ : q′ ≤ q} be the set of orders that are

component-wise smaller than q.

Lemma A.5.1. If Eq. ( A.19 ) is infeasible, then X≤(q) ∩Qθ(w; P̂T ) = ∅.
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Proof of Lemma  A.5.1 . Suppose there exists some q′ ∈ X≤(q) such that q′ ∈ Qθ(w; P̂T ).

Then, there must exist some P′ ∈ Dθ(P̂T ) such that q′ satisfies Eq. (  A.19 ) for P = P′. Since

q ≥ q′, we must have Pi(ξi ≤ qi) ≥ Pi(ξi ≤ q′i) ≥ si−wi

si
for all i ∈ [n], a contradiction to the

infeasibility of Eq. ( A.19 ).

To summarize this discussion, each time we check the inclusion q ∈ Qθ(w; P̂T ), we either:

(i) conclude that q ∈ Qθ(w; P̂T ) and discard a set of sub-optimal order quantities; or (ii)

we conclude q /∈ Qθ(w; P̂T ) and we use this information to discard an alternative set of

sub-optimal order quantities. We also notice that Eq. ( A.19 ) is a linear feasibility problem

involving the infinite-dimensional variable P. However, we can reformulate it as a finite-

dimensional nonlinear convex programming problem. The detailed procedure is summarized

in Algorithm  4 . For any two sets X ,Y , we let X − Y ≜ {x : x ∈ X and x /∈ Y}.

Algorithm 4 Demand correlation

Initialize: Ô ← Ξ̂ contains the potential ϵ optimal solutions to Problem ( 2.8 ). Find the

order q(w; P̂T ) corresponding to the center P̂T ; Ô ← Ô−X
(
q(w; P̂T )

)
. q̂ ← q(w; P̂T ) is

the updated solution to Problem ( 2.8 ), and P̂← P̂T is updated solution to Problem ( 2.6 ).

Set upper bound: v̂ ← (w−c)⊤q̂. Set lower bound v ← min{(w−c)⊤q : q ∈ Ô}. Choose

precision ε > 0.

while v − v̂ > ε do

Take some q ∈ Ô and check feasibility of Eq. ( A.19 ) under q

if ( A.19 ) is infeasible then

Ô ← Ô − X≤(q)

else

Let P̃ be a feasible distribution to Eq. ( A.19 )

Ô ← Ô − X (q)

v̂ ← (w − c)⊤q, q̂ ← q, P̂← P̃

Update v ← min{(w − c)⊤q : q ∈ Ô}

Ouput: v̂, q̂ as the optimal value and solution to Problem ( 2.8 ) respectively, and P̂ as the

optimal solution to Problem ( 2.6 )
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Now we reformulate Eq. (  A.19 ) in a more tractable form. We take the center P̂T as input,

and let (ξ̂k)k∈[K] be the support of P̂T and ηk = P̂T (ξ = ξ̂k) for all k ∈ [K] (in particular,

(ηk)k∈[K] correspond to all the strictly positive elements of (β∗
st)s∈[S],t∈[T ]). Then, we have the

equivalent expression P̂T =
∑K

k=1 η
kδξ̂k for the center. Feasibility of Eq. ( A.19 ) can then be

checked by solving:

min
P∈Do

T

{
W 2

2 (P, P̂T ) : P(ξ ≤ qi) ≥
si − wi

si
, ∀i ∈ [n]

}
. (A.20)

Eq. ( A.19 ) is feasible if and only if the optimal value of Problem ( A.20 ) is not larger than

θ2. Furthermore, Problem ( A.20 ) can be reformulated in the same way as Problem ( 2.5 ), we

omit the details here.

A.5.3 Proof of Proposition  2.7.2 (decomposition of projection problem)

Recall Q̂T is an optimal solution to Problem ( 2.19 ) and Q̂T,i is an optimal solution to

Problem ( 2.20 ). In order to prove Proposition  2.7.2 , it suffices to prove Lemma  A.5.2 as

below. Lemma  A.5.2 shows that the center Q̂T obtained from Problem ( 2.19 ) and the center

×n
i=1Q̂T,i obtained from Problem ( 2.20 ) are indeed equivalent.

Lemma A.5.2. (i) We have W 2
2 (Q̂T , Q̂e

T ) =
∑

i∈[n] W
2
2 (Q̂T,i, P̂e,i

T ) = W 2
2 (×i∈[n]Q̂T,i, Q̂e

T ).

(ii) For each i ∈ [n], the i-th marginal distribution of Q̂T , denoted Q̂i
T , solves Prob-

lem ( 2.20 ).

(iii) ×i∈[n]Q̂T,i is an optimal solution to Problem ( 2.19 ).

We need the following auxiliary result (Lemma  A.5.3 ) to prove Lemma  A.5.2 . This result

relates the Wasserstein distance between two probability distributions with independent

marginals to the sum of the Wasserstein distances between their marginals.

Lemma A.5.3. ([ 175 , Lemma 1.2]) Suppose P1,P2 ∈ D× have marginal distributions {Pi
1}i∈[n]

and {Pi
2}i∈[n] respectively, then W 2

2 (P1,P2) =
∑

i∈[n] W
2
2 (Pi

1,Pi
2).

Proof of Lemma  A.5.2 . For Part (i), notice that ×n
i=1Q̂T,i is a feasible solution to Prob-

lem ( 2.19 ), and thus we have W 2
2 (Q̂T , Q̂e

T ) ≤ W 2
2 (×n

i=1Q̂T,i, Q̂e
T ) =

∑
i∈[n] W

2
2 (Q̂T,i, P̂e,i

T ),
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where Q̂T is optimal to Problem ( 2.19 ), and the second equality follows from Lemma  A.5.3 

and the fact that Q̂e
T ∈ D×.

On the other hand, the marginal Q̂i
T is feasible to Problem ( 2.20 ) for all i ∈ [n], and thus

we have W 2
2 (Q̂T , Q̂e

T ) =
∑

i∈[n] W
2
2 (Q̂i

T , P̂
e,i
T ) ≥

∑
i∈[n] W

2
2 (Q̂T,i, P̂e,i

T ) = W 2
2 (×n

i=1Q̂T,i, Q̂e
T ),

where the first and last equalities follow from Lemma  A.5.3 and the fact that Q̂T ,×n
i=1Q̂T,i,

Q̂e
T ∈ D×. The inequality follows since, for each i ∈ [n], Q̂i

T is feasible to Problem ( 2.20 )

while Q̂T,i is optimal to Problem ( 2.20 ). The conclusion of Part (i) follows.

Parts (ii) and (iii) then follow directly from Part (i).

A.5.4 Proof of Proposition  2.7.3 (convexity of worst-case profit)

The argument is the same for all products so we can fix i ∈ [n]. It is immediate that

πi
T,

√
ri
(wi) (the worst-case profit function for the single product i alone), is decreasing in ri.

For ri ≥ θ̄2i (wi), πi
T,

√
ri
(wi) is a constant, so we only need to show that πi

T,
√
ri
(wi) is convex

in ri for ri ≤ θ̄2i (wi).

Define the function fi : [qi(wi), ξi(wi)]→ [0, θ̄2i (wi)] by

fi(qi) ≜

1− wi/si −
∑

{k:ξ̂ki <ξi(wi)}

ηki

 (qi − ξi(wi))
2 +

∑
{k:qi<ξ̂ki <ξi(wi)}

ηki (qi − ξ̂ki )
2. (A.21)

We have fi(qi(wi)) = θ̄2i (w) and fi(ξi(wi)) = 0. Since fi(qi) is convex and strictly decreasing

in [qi(wi), ξi(wi)], the inverse map f−1
i : [0, θ̄2i (wi)] → [qi(wi), ξi(wi)] is well defined and is

also convex on ri ∈ [0, θ̄2i (wi)] [ 176 ]. Thus, the worst-case profit πi
T,

√
ri
(wi) = (wi− ci)f

−1
i (ri)

is also convex in ri.

A.5.5 Proof of Theorem  2.7.2 (supplier’s worst-case distribution and order
quantity)

Part (i) follows since Problem ( 2.22 ) is a convex optimization problem over compact

support.
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For Part (ii), we have πT,θ(w) =
∑n

i=1 π
i

T,
√

r∗i
(wi) =

∑n
i=1(wi− ci)q

i(wi,
√
r∗i ), where the

first equality follows from Part (i) and Problem ( 2.22 ), and the second equality follows from

Theorem  2.6.1 .

To show Pw,θ = ×i∈[n]Pi

wi,
√

r∗i
is the worst-case distribution, we first show that Pw,θ ∈

Dθ,×(Q̂T ) and then show that it attains the worst-case profit in Problem ( 2.9 ). First notice

that Pw,θ ∈ D×. We also have W 2
2 (Pw,θ, Q̂T ) = W 2

2 (×i∈[n]Pi

wi,
√

r∗i
, Q̂T )

=
∑n

i=1W
2
2 (Pi

wi,
√

r∗i
, Q̂T ) ≤

∑n
i=1 r

∗
i ≤ θ2, where the first equality follows from the definition

of Pw,θ, the second equality follows from Lemma  A.5.3 , the first inequality follows from the

definition of Pi

wi,
√

r∗i
and the second inequality follows since (r∗i )

n
i=1 is the optimal solution

to Problem (  2.22 ). In addition, Pw,θ ∈ Do
T since Pi

wi,
√

r∗i
(ξi ≤ qti) = 1 − wt

i/si,∀t ∈ [T ].

In summary we have Pw,θ ∈ Dθ,×(Q̂T ). The distribution Pw,θ attains the worst-case profit

because (Pw,θ, (q
i(wi,

√
r∗i ))

n
i=1) is feasible to Eq. (  2.9 ) and attains the worst-case profit.

A.5.6 Cutting Plane Algorithm for Supplier’s Worst-case Profit (independent
demand)

We discuss how to solve Problem ( 2.22 ) and compute πT,θ(w) for independent demand.

First we characterize cuts for the objective of Problem ( 2.22 ), then we give the details for

our cutting plane algorithm.

Proposition A.5.3. Let r̃ = (r̃i)i∈[n] be feasible for Problem ( 2.22 ) and satisfy r̃i ≤ θ̄2i (wi)

for all i ∈ [n]. Let qi(wi, r̃i) be an optimal solution to Problem ( 2.21 ) for r̃i for each i ∈ [n],

and let q(w, r̃) = (qi(wi, r̃i))i∈[n] given r̃. For each i ∈ [n], let

gi = (wi − ci)/

{
2(1− wi/si −

∑
{k:ξ̂ki <ξi(wi)}

ηki )(qi(wi, r̃i)− ξi(wi))

+ 2
∑

{k:qi(wi,r̃i)<ξ̂ki <ξi(wi)}

ηki (qi(wi, r̃i)− ξ̂ki )

}
,

and let g = (gi)i∈[n]. Then, for any r feasible to Problem ( 2.22 ) satisfying g⊤(r − r̃) ≥ 0,

we have
∑

i∈[n] π
i
T,

√
ri
(wi) ≥

∑
i∈[n] π

i
T,

√
r̃i
(wi).
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Proof of Proposition  A.5.3 . To show that g is a valid objective cut at r̃, it suffices to show

that gi/(wi − ci) is a subgradient for f−1
i (r) (see Eq. ( A.21 )) at r = r̃i for all i ∈ [n]. To

verify this claim, it is sufficient to show that

(wi − ci)/gi = 2

1− wi/si −
∑

{k:ξ̂ki <ξi(wi)}

ηki

 (qi(wi, r̃i)− ξi(wi))

+ 2
∑

{k:qi(wi,r̃i)<ξ̂ki <ξi(wi)}

ηki (qi(wi, r̃i)− ξ̂ki )

is a subgradient of fi(q) at q = qi(wi, r̃i). In particular, for any r ≤ θ̄2i (wi), we can find

q ∈ [qi(wi), ξi(wi)] such that fi(q) = r. Also notice fi(qi(wi, r̃i)) = r̃i. Then, if (wi− ci)/gi is

a subgradient of fi(q) at q = qi(wi, r̃i), we have fi(q) ≥ fi (qi(wi, r̃i)) + (q − qi(wi, r̃i)) (wi −

ci)/gi. Now plug r = fi(q) and r̃i = fi (qi(wi, r̃i)) into the above expression, and rearrange

to get r ≥ r̃i + gi/(wi− ci)(r− r̃i), which implies that gi/(wi− ci) is a subgradient of f−1
i (r)

at r = r̃i.

In the following, we show that (wi − ci)/gi is a subgradient of fi(q) at q = qi(wi, r̃i).

Given arbitrary q ∈ [qi(wi), ξi(wi)], if q ≤ qi(wi, r̃i), then

fi(q)− fi(qi(wi, r̃i))− (q − qi(wi, r̃i))(wi − ci)/gi

=

1− wi/si −
∑

{k:ξ̂ki <ξi(wi)}

ηki

 (q − qi(wi, r̃i))
2 +

∑
{k:q<ξ̂ki ≤qi(wi,r̃i)}

ηki (q − ξ̂ki )
2

+
∑

{k:qi(wi,r̃i)<ξ̂ki <ξi(wi)}

ηki (qi(wi, r̃i)− qi(wi, r̃i))
2 ≥ 0,
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and if q ≥ qi(wi, r̃i), then

fi(q)− fi(qi(wi, r̃i))− (q − qi(wi, r̃i))(wi − ci)/gi

=

1− wi/si −
∑

{k:ξ̂ki <ξi(wi)}

ηki

 (q − qi(wi, r̃i))
2

−
∑

{k:qi(wi,r̃i)<ξ̂ki ≤q}

ηk(qi(wi, r̃i)− ξ̂ki )(2q − qi(wi, r̃i)− ξ̂ki )

+
∑

{k:q<ξ̂ki <ξi(wi)}

ηki (qi(wi, r̃i)− qi(wi, r̃i))
2 ≥ 0.

We have thus established that q ≥ fi(qi(wi, r̃i)) + (wi − ci)(q − qi(wi, r̃i))/gi for all q ∈

[qi(wi), ξi(wi)], for all i ∈ [n]. This establishes that g is a valid cut for Problem (  2.22 ).

We now develop a cutting plane algorithm based on Proposition  A.5.3 . Similar to the

single product case, we let ξi(wi) ∈ argminx∈(ξ̂ki )Kk=1

{
x : P̂i

T (ξi ≤ x) ≥ 1− wi/si

}
be the

smallest element in the support of P̂i
T where the value of the CDF is larger than 1− wi/si,

and we let qi(wi) ∈ argmaxqi∈(qti)t∈[T ]

{
qi : P̄i(ξi ≤ qi) < 1− wi/si

}
be the largest past or-

der quantity that corresponds to a wholesale price greater than wi. Now let θ̄i(wi) ≜√∑
{k:qi(wi)<ξ̂ki <ξi(wi)} η

k
i

(
qi(wi)− ξ̂ki

)2
+
(
1− wi/si −

∑
{k:ξ̂ki <ξi(wi)} η

k
i

)
(qi(wi)− ξi(wi))

2 be

a threshold for product i (which depends on P̂i
T , wi, and si for this product).

Proposition  A.5.3 gives a valid cut for r with ri ≤ θ̄2i (wi) for all i ∈ [n], so based

on Proposition  A.5.3 we can use the cutting plane method to solve Problem ( 2.22 ) (see

Algorithm  5 ). In Problem ( 2.22 ), the feasible region is given explicitly by a set of simple

linear inequalities, so the objective is the computational bottleneck. Our cutting plane

algorithm is designed to cut off sub-optimal points.

166



Algorithm 5 An Analytic Center Cutting Plane Algorithm
Require: A tolerance ε > 0

Initialize: ri = 0; C(0) ≜ {r : 0 ≤ ri ≤ θ̄2i (wi),
∑

i∈[n] ri ≤ θ2} is the set of valid cuts

Set upper bound and lower bound to Problem ( 2.22 ): UB ← +∞ and LB ← −∞

Set iterature counter: j ← 0

while UB− LB > ε do

j ← j + 1

Find the anaytical center r̃(j) of C(j−1)

Find q(w, r̃(j)) and g(j)

Update the set of valid cuts: C(j) ← C(j−1) ∩ {r : g(j)⊤(r − r̃(j)) ≤ 0}

Update upper bound UB: UB← min{UB,
∑

i∈[n] π
i

T,

√
r̃
(j)
i

(wi)}

Update lower bound LB as the optimal value of

min
γ,(ri)i∈[n]

max
k∈[j]

∑
i∈[n]

πi

T,

√
r̃
(k)
i

(wi) + g(k)⊤(r − r̃(k)) : 0 ≤ ri ≤ θ̄2i (wi),∀i ∈ [n],
∑
i∈[n]

ri ≤ θ2


Output: r = (ri)i∈[n] as an optimal solution to Problem ( 2.22 ).

A.6 Additional Material for Section  2.8 (numerical experiments)

A.6.1 Details on the Numerical Experiments

We provide the details on the numerical experiments in Tables  A.1 -  A.4 .
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Table A.1. Simulation Details for Numerical Experiments of Figures  2.3 -  2.5 

Figure Simulation details

Figure  2.3 (a) and (b) ξ ∼ T N (50, 202, [0, 100]) where Ξ = [0, 100]

and w ∼ U [c, s] and w ∼ U [c, s]

Figure  2.3 (c) and (d) ξ ∼ T N (50, 202, [0, 100]) where Ξ = [0, 100]

and w ∼ T N (c+ 0.3(s− c), 0.01(s− c)2, [c, s])

Figure  2.3 (e) and (f) ξ ∼ T N (50, 202, [0, 100]) where Ξ = [0, 100]

and w ∼ T N (c+ 0.9(s− c), 0.01(s− c)2, [c, s])

Figure  2.4 (a) and (b) True profit π(w; P̄) is two modal

and w ∼ U [c, s] and w ∼ U [c, s]

Figure  2.4 (c) and (d) True profit π(w; P̄) is two modal

and w ∼ T N (c+ 0.5(s− c), 0.01(s− c)2, [c, s])

Figure  2.4 (e) and (f) True profit π(w; P̄) is two modal

and w ∼ T N (c+ 0.9(s− c), 0.01(s− c)2, [c, s])

Figure  2.5 (a) and (b) log(ξ) ∼ T N (3, 1, (−∞, log(100)])

and w ∼ U [c, s] and w ∼ U [c, s]

Figure  2.5 (c) and (d) log(ξ) ∼ T N (3, 1, (−∞, log(100)])

and w ∼ T N (c+ 0.5(s− c), 0.01(s− c)2, [c, s])

Figure  2.5 (e) and (f) log(ξ) ∼ T N (3, 1, (−∞, log(100)])

and w ∼ T N (c+ 0.9(s− c), 0.01(s− c)2, [c, s])
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Table A.2. Simulation Details for Numerical Experiments of Figures  2.6 -  2.7 

Figure Simulation details

Figure  2.6 (a) and (b) ξ ∼ T N (µ,Σ,Ξ) where Ξ = [0, 100]2 and Σ =
(
202 0
0 202

)
and µ = [50, 50], s− c = [20, 20], and w1 ∼ U [c1, s1],

w2 ∼ U [c2, s2] independently

Figure  2.6 (c) and (d) ξ ∼ T N (µ,Σ,Ξ) where Ξ = [0, 100]2 and Σ =
(
202 0
0 202

)
and µ = [50, 50], s− c = [20, 20], and w1 ∼ U [c1, s1],

w2 ∼ T N (c1 + 0.2(s2 − c2), (0.1(s2 − c2))
2, [c2, s2]).

w1 and w2 are generated independently

Figure  2.6 (e) and (f) ξ ∼ T N (µ,Σ,Ξ) where Ξ = [0, 100]2 and Σ =
(
202 0
0 202

)
and µ = [50, 50], s− c = [15, 35], and w1 ∼ U [c1, s1],

w2 ∼ U [c2, s2] independently

Figure  2.7 (a) and (b) ξ ∼ T N (µ,Σ,Ξ) where Ξ = [0, 100]2 and Σ =
(
202 0
0 202

)
and µ = [30, 70], s− c = [15, 35], and w1 ∼ U [c1, s1],

w2 ∼ U [c2, s2] independently

Figure  2.7 (c) and (d) ξ ∼ T N (µ,Σ,Ξ) where Ξ = [0, 100]2 and Σ =
(
202 0
0 202

)
and µ = [30, 70], s− c = [15, 35], and

w1 ∼ T N (c1 + 0.2(s1 − c1), (0.1(s1 − c1))
2, [c1, s1]),

w2 ∼ U [c2, s2]. w1 and w2 are generated independently

Figure  2.7 (e) and (f) ξ ∼ T N (µ,Σ,Ξ) where Ξ = [0, 100]2 and Σ =
(
202 0
0 202

)
µ = [30, 70], s− c = [15, 35], w ∼ T N (µw,Σw,Ξw)

where Ξw = [0, 100]2, w = [c1 + 0.2(s1 − c1), c2 + 0.9(s2 − c2)]

and Σw =
(

0.12(s1−c1)2 0.12(s1−c1)(s2−c2)/2

0.12(s1−c1)(s2−c2)/2 0.12(s2−c2)2

)
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Table A.3. Simulation Details for Numerical Experiments of Figures  2.8 -  2.10 

Figure Simulation details

Figure  2.8 (a) and (b) ξ ∼ T N (50, 202, [0, 100]) where Ξ = [0, 100]

and w ∼ U [c, s] and w ∼ U [c, s]

Figure  2.8 (c) and (d) ξ ∼ T N (50, 202, [0, 100]) where Ξ = [0, 100]

and w ∼ T N (c+ 0.3(s− c), 0.01(s− c)2, [c, s])

Figure  2.8 (e) and (f) ξ ∼ T N (50, 202, [0, 100]) where Ξ = [0, 100]

and w ∼ T N (c+ 0.9(s− c), 0.01(s− c)2, [c, s])

Figure  2.9 (a) and (b) True profit π(w; P̄) is two modal

and w ∼ U [c, s] and w ∼ U [c, s]

Figure  2.9 (c) and (d) True profit π(w; P̄) is two modal

and w ∼ T N (c+ 0.5(s− c), 0.01(s− c)2, [c, s])

Figure  2.9 (e) and (f) True profit π(w; P̄) is two modal

and w ∼ T N (c+ 0.9(s− c), 0.01(s− c)2, [c, s])

Figure  2.10 (a) and (b) log(ξ) ∼ T N (3, 1, (−∞, log(100)])

and w ∼ U [c, s] and w ∼ U [c, s]

Figure  2.10 (c) and (d) log(ξ) ∼ T N (3, 1, (−∞, log(100)])

and w ∼ T N (c+ 0.5(s− c), 0.01(s− c)2, [c, s])

Figure  2.10 (e) and (f) log(ξ) ∼ T N (3, 1, (−∞, log(100)])

and w ∼ T N (c+ 0.9(s− c), 0.01(s− c)2, [c, s])
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Table A.4. Simulation Details for Numerical Experiments of Figures  2.11 -  2.12 

Figure Simulation details

Figure  2.11 (a) and (b) ξ ∼ T N (µ,Σ,Ξ) where Ξ = [0, 100]2 and Σ =
(
202 0
0 202

)
and µ = [50, 50], s− c = [20, 20], and w1 ∼ U [c1, s1],

w2 ∼ U [c2, s2] independently

Figure  2.11 (c) and (d) ξ ∼ T N (µ,Σ,Ξ) where Ξ = [0, 100]2 and Σ =
(
202 0
0 202

)
and µ = [50, 50], s− c = [20, 20], and w1 ∼ U [c1, s1],

w2 ∼ T N (c1 + 0.2(s2 − c2), (0.1(s2 − c2))
2, [c2, s2]).

w1 and w2 are generated independently

Figure  2.11 (e) and (f) ξ ∼ T N (µ,Σ,Ξ) where Ξ = [0, 100]2 and Σ =
(
202 0
0 202

)
and µ = [50, 50], s− c = [15, 35], and w1 ∼ U [c1, s1],

w2 ∼ U [c2, s2] independently

Figure  2.12 (a) and (b) ξ ∼ T N (µ,Σ,Ξ) where Ξ = [0, 100]2 and Σ =
(
202 0
0 202

)
and µ = [30, 70], s− c = [15, 35], and w1 ∼ U [c1, s1],

w2 ∼ U [c2, s2] independently

Figure  2.12 (c) and (d) ξ ∼ T N (µ,Σ,Ξ) where Ξ = [0, 100]2 and Σ =
(
202 0
0 202

)
and µ = [30, 70], s− c = [15, 35], and

w1 ∼ T N (c1 + 0.2(s1 − c1), (0.1(s1 − c1))
2, [c1, s1]),

w2 ∼ U [c2, s2]. w1 and w2 are generated independently

Figure  2.12 (e) and (f) ξ ∼ T N (µ,Σ,Ξ) where Ξ = [0, 100]2 and Σ =
(
202 0
0 202

)
µ = [30, 70], s− c = [15, 35], w ∼ T N (µw,Σw,Ξw)

where Ξw = [0, 100]2, w = [c1 + 0.2(s1 − c1), c2 + 0.9(s2 − c2)]

and Σw =
(

0.12(s1−c1)2 0.12(s1−c1)(s2−c2)/2

0.12(s1−c1)(s2−c2)/2 0.12(s2−c2)2

)
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A.7 Proofs of Auxiliary Results

A.7.1 Proof of Lemma  A.4.1 (worst-case profit and worst-case distribution in
single-product case)

To derive ρ(q), we consider the following modified problem:

ρ̃(q) ≜ max
P∈P(Ξ)

{
P(ξ ≤ q) : W2(P, P̂T ) ≤ θ,P(ξ ≤ l(q)) = 1− w(l(q))/s

}
. (A.22a)

Note that the constraint set of Problem ( A.22 ) only includes the first-order conditions ( 2.3 )

for a single data point (l(q), w(l(q))). Let P̃q,θ be the solution to Problem ( A.22 ). In

Lemma  A.7.1 , we will derive a closed form expression for ρ̃(q). In Lemma  A.7.2 , we derive

the optimal solution P̃q,θ. Finally, to prove Lemma  A.4.1 , we will show P̃q,θ is also feasible

to Problem ( A.13 ), and thus ρ(q) = ρ̃(q).

Lemma A.7.1. For q ≥ 0,

ρ̃(q) =

1− w(l(q))/s, θ2 ≥
∑

{k:q<ξ̂k≤l(q)} η
k(q − ξ̂k)2,∑

{k:ξ̂k≤z(q,θ)} η
k +

θ2−
∑

{k:q<ξ̂k≤z(q,θ)} η
k(q−ξ̂k)2

(q−z(q,θ))2
, θ2 <

∑
{k:q<ξ̂k≤l(q)} η

k(q − ξ̂k)2.

Proof of Lemma  A.7.1 . We first show that ρ̃(q) = 1−w(l(q))/s for θ2 ≥
∑

{k:q<ξ̂k≤l(q)} ηk(q−

ξ̂k)2. Notice that ρ̃(q) is always bounded from above by 1 − w(l(q))/s for q ≤ l(q), since

any feasible distribution P to Problem ( A.22 ) must satisfy P(ξ ≤ l(q)) = 1 − w(l(q))/s for

q ≤ l(q). Furthermore, the distribution

P̂ =
∑

{k:0≤ξ̂k<q}

ηkδξ̂k +
∑

{k:q≤ξ̂k≤l(q)}

ηkδq +
∑

{k:ξ̂k>l(q)}

ηkδξ̂k (A.23)

is feasible to Problem (  A.22 ) since according to the expression ( A.23 ), W 2
2 (P̂, P̂T ) ≤∑

{k:q<ξ̂k≤l(q)} η
k(q − ξ̂k)2 ≤ θ2 and P̂(ξ ≤ q) =

∑
{k:ξ̂k≤l(q)} η

k = 1 − w(l(q))/s. Therefore,

P̂ achieves the maximum of Problem ( A.22 ), and thus we have ρ̃(q) = 1 − w(l(q))/s for

θ2 ≥
∑

{k:q<ξ̂k≤l(q)} ηk(q − ξ̂k)2.
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We next consider the case where θ2 <
∑

{k:q<ξ̂k≤l(q)} ηk(q − ξ̂k)2. We will formulate the

Lagrangian dual to Problem (  A.22 ) and then identify its solution. By strong duality between

Problem (  A.22 ) and its dual, we will then obtain the optimal value to Problem ( A.22 ).

Introducing Lagrange multipliers λ1 ≥ 0 and λ2 ∈ R, the Lagrangian dual of Prob-

lem (  A.22 ) is infλ1≥0,λ2 v(q, λ1, λ2) ≜

{
λ1θ

2 − λ2(1− w(l(q))/s)

+
∑K

k=1 η
k supξ∈Ξ fk(ξ, λ1, λ2)

}
, where fk(ξ, λ1, λ2) ≜ 1(ξ ∈ [0, 1]) + λ21(ξ ∈ [0, l(q)]) −

λ1(ξ− ξ̂k)
2. We can solve analytically for a dual optimal solution (λ∗

1, λ
∗
2) to obtain the dual

optimal value v(q, λ∗
1, λ

∗
2).

For any fixed λ1 ≥ 0, v(q, λ1, λ2) is increasing on λ2 ≥ 0 and therefore λ∗
2 ≤ 0. For fixed

λ1 and λ2 ≥ 0, we have the following observations:

1.1 For ξ̂k ≤ q, supξ∈Ξ fk(ξ, λ1, λ2) = fk(ξ̂
k, λ1, λ2) = 1 + λ2.

1.2 For q < ξ̂k ≤ l(q), supξ∈Ξ fk(ξ, λ1, λ2) = max{λ2, 1+λ2−λ1(q− ξ̂k)2} = λ2+max{0, 1−

λ1(q − ξ̂k)2}.

1.3 For ξ̂k > l(q), supξ∈Ξ fk(ξ, λ
∗
1, λ2) = max{0, λ2 − λ1(q1 − ξ̂k)2, 1 + λ2 − λ1(q − ξ̂k)2}.

It follows that for λ2 ≥ 0, we have

v(q, λ1, λ2) = λ1θ + λ2

1− w(l(q))/s+
∑

{k:ξ̂k≤l(q)}

ηk

+
∑

{k:ξ̂k≤l(q)}

ηk

+
∑

{k:q<ξ̂k≤l(q)}

ηk max{0,−λ1(x− ξ̂k)2}

+
∑

{k:ξ̂k>l(q)}

ηk max{0, λ2 − λ1(q1 − ξ̂k)2, 1 + λ2 − λ1(x− ξ̂k)2}. (A.24)

By construction of P̂T ,
∑

{k:ξ̂k≤l(q)} η
k = 1 − w(l(q))/s, and v(q, λ1, λ2) involves linear term

of λ2 with positive coefficients. Therefore v(q, λ1, λ2) is non-decreasing in λ2. Thus we must

take λ∗
2 ≤ 0 to minimize v(q, λ1, λ2).

We now restrict attention to λ∗
2 ≤ 0. For λ1 ≥ 0 and λ2 ≤ 0, we can compute

supξ∈Ξ fk(ξ, λ1, λ2) for the following cases of ξ̂k, λ1, and λ2:
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2.1 If ξ̂k ≤ q and λ2 ≥ −1− λ1(l(q)− ξ̂k)2, supξ∈Ξ fk(ξ, λ1, λ2) = fk(ξ̂
k, λ1, λ2) = 1 + λ2.

2.2 If ξ̂k ≤ q and λ2 < −1 − λ1(l(q) − ξ̂k)2, supξ∈Ξ fk(ξ, λ1, λ2) = fk(l(q), λ1, λ2) =

−λ1(l(q)− ξ̂k)2.

2.3 If q < ξ̂k ≤ l(q), 1 − λ1(q − ξ̂k)2 ≥ 0 and 1 + λ2 − λ1(q − ξ̂k)2 ≥ −λ1(l(q) − ξ̂k)2,

supξ∈Ξ fk(ξ, λ1, λ2) = fk(q) = 1 + λ2 − λ1(q − ξ̂k)2.

2.4 If q < ξ̂k ≤ l(q), 1 − λ1(q − ξ̂k)2 < 0 and λ2 ≥ −λ1(l(q) − ξ̂k)2, supξ∈Ξ fk(ξ, λ1, λ2) =

fk(ξ̂
k, λ1, λ2) = λ2.

2.5 If q < ξ̂k ≤ l(q), 1 + λ2 − λ1(q − ξ̂k)2 < −λ1(l(q) − ξ̂k)2 and λ2 < −λ1(l(q) − ξ̂k)2,

supξ∈Ξ fk(ξ, λ1, λ2) = fk(l(q)) = −λ1(l(q)− ξ̂k)2.

2.6 If ξ̂k > l(q) and 1+ λ2− λ1(q− ξ̂k)2 ≥ 0, supξ∈Ξ fk(ξ, λ1, λ2) = fk(q, λ1, λ2) = 1+ λ2−

λ1(q − ξ̂k)2.

2.7 If ξ̂k > l(q) and 1 + λ2 − λ1(q − ξ̂k)2 < 0, supξ∈Ξ fk(ξ, λ1, λ2) = fk(ξ̂
k, λ1, λ2) = 0.

Based on the above cases, we find

v(q, λ1, λ2) = λ2

{
− 1 + w(l(q))/s+

∑
k:ξ̂k≤q,

−1−λ1(l(q)−ξ̂k)2≤λ2

ηk +
∑

k:q<ξ̂k≤l(q),

−λ1(l(q)−ξ̂k)2≤λ2

+max{0,1−λ1(q−ξ̂k)2}

ηk

+
∑

k:ξ̂k>l(q),

1+λ2−λ1(q−ξ̂k)2≥0

ηk

}
+ λ1

{
θ −

∑
k:ξ̂k≤q,

−1−λ1(l(q)−ξ̂k)2>λ2

ηk(l(q)− ξ̂k)2 −
∑

k:q<ξ̂k≤l(q),

1−λ1(q−ξ̂k)2≥0,

1+λ2−λ1(q−ξ̂k)2

≥−λ1(l(q)−ξ̂k)2

ηk(q − ξ̂k)2

−
∑

k:q<ξ̂k≤l(q),

−λ1(l(q)−ξ̂k)2>λ2

+max{0,1−λ1(q−ξ̂k)2}

ηk(l(q)− ξ̂k)2 −
∑

k:ξ̂k>l(q),

λ2≥−1+λ1(q−ξ̂k)2

ηk(q − ξ̂k)2

}

+
∑

k:ξ̂k≤q,

−1−λ1(l(q)−ξ̂k)2≤λ2

ηk +
∑

k:q<ξ̂k≤l(q),

1−λ1(q−ξ̂k)2≥0

1+λ2−λ1(q−ξ̂k)2

≥−λ1(l(q)−ξ̂k)2

ηk +
∑

k:ξ̂k>l(q),

λ2≥−1+λ1(q−ξ̂k)2

ηk.
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In the following, we establish that the dual optimal solution (λ∗
1, λ

∗
2) satisfies the inequal-

ities −1− λ∗
1(q− l(q))2 ≤ λ∗

2 ≤ −1+ λ∗
1(q− l(q))2 in Step 1 and Step 2. Then, we show that

max{λ∗
2, λ

∗
2 + 1 − λ∗

1(q − l(q))2} = 0 in Step 3. Finally, we will show that λ∗
1 = 1/(q − ξ̂k)2

for some ξ̂k ∈ (q, l(q)] and λ∗
2 = 0, and the desired result will follow.

Step 1: Show that λ∗
2 ≤ −1 + λ∗

1(q − l(q))2.

To show that λ∗
2 ≤ −1+ λ∗

1(q− l(q))2, for a contradiction suppose that there exists some

λ2 > −1 + λ∗
1(q − l(q))2 such that v(q, λ∗

1,−1 + λ∗
1(q − l(q))2) > v(q, λ∗

1, λ2). Then, we have

v(q, λ∗
1,−1+λ∗

1(q− l(q))2) = λ∗
1

(
θ−

∑
k:q<ξ̂k≤l(q),

1−λ∗
1(q−ξ̂k)2≥0

ηk(q− ξ̂k)2

)
+

∑
{k:ξ̂k≤q}

ηk +
∑

k:q<ξ̂k≤l(q),

1−λ∗
1(q−ξ̂k)2≥0

ηk,

and

v(q, λ∗
1, λ2) = λ2

∑
k:ξ̂k>l(q),

1+λ2−λ∗
1(q−ξ̂k)2≥0

ηk + λ∗
1

(
θ −

∑
k:q<ξ̂k≤l(q),

1−λ∗
1(q−ξ̂k)2≥0

ηk(q − ξ̂k)2

−
∑

k:ξ̂k>l(q),

λ2≥−1+λ∗
1(q−ξ̂k)2

ηk(q − ξ̂k)2

)
+

∑
{k:ξ̂k≤q}

ηk +
∑

k:q<ξ̂k≤l(q),

1−λ∗
1(q−ξ̂k)2≥0

ηk +
∑

k:ξ̂k>l(q),

λ2≥−1+λ∗
1(q−ξ̂k)2

ηk.

It then follows that v(q, λ∗
1,−1 + λ∗

1(q − l(q))2) − v(q, λ∗
1, λ2) = −

∑
k:ξ̂k>l(q),

1+λ2−λ∗
1(q−ξ̂k)2≥0

ηk(1 +

λ2 − λ∗
1(q − ξ̂k)2) ≤ 0, which contradicts the assumption that v(q, λ∗

1,−1 + λ∗
1(q − l(q))2) >

v(q, λ∗
1, λ2).

Step 2: Show that λ∗
2 ≥ −1− λ∗

1(q − l(q))2.

To show that λ∗
2 ≥ −1 − λ∗

1(q − l(q))2, for a contradiction suppose that there exists

some λ2 < −1− λ∗
1(q − l(q))2 such that v(q, λ∗

1,−1− λ∗
1(q − l(q))2) > v(q, λ∗

1, λ2). Then, we

have v(q, λ∗
1,−1− λ∗

1(q − l(q))2) = (−1− λ∗
1(q − l(q))2)

{
− 1 + w(l(q))/s +

∑
{k:ξ̂k≤q} ηk

}
+

λ∗
1

{
θ −

∑
{k:q<ξ̂k≤l(q)} ηk(l(q)− ξ̂k)2

}
+
∑

{k:ξ̂k≤q} ηk and v(q, λ∗
1, λ2) = λ2

{
− 1 + w(l(q))/s+
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∑
k:ξ̂k≤q,

−1−λ∗
1(l(q)−ξ̂k)2≤λ2

ηk
}
+ λ∗

1

{
θ −

∑
{k:ξ̂k≤q} ηk(l(q)− ξ̂k)2

+
∑

k:ξ̂k≤q,

−1−λ∗
1(l(q)−ξ̂k)2≤λ2

ηk(l(q)− ξ̂k)2−
∑

{k:q<ξ̂k≤l(q)} ηk(l(q)− ξ̂k)2
}
+
∑

k:ξ̂k≤q,

−1−λ∗
1(l(q)−ξ̂k)2≤λ2

ηk. It

follows that

v(q, λ∗
1, λ2)− v(q, λ∗

1,−1− λ∗
1(q − l(q))2)

=(λ2 + 1 + λ∗
1(q − l(q))2)

{
− 1 + w(l(q))/s+

∑
k:ξ̂k≤q,

−1−λ∗
1(l(q)−ξ̂k)2≤λ2

ηk

}
≥ 0,

which contradicts the assumption that v(q, λ∗
1,−1− λ∗

1(q − l(q))2) > v(q, λ∗
1, λ2).

Step 3: Show that max{λ∗
2, λ

∗
2 + 1− λ∗

1(q − l(q))2} = 0.

We have established the inequalities −1 − λ∗
1(q − l(q))2 ≤ λ∗

2 ≤ −1 + λ∗
1(q − l(q))2, and

hence max{λ∗
2, λ

∗
2+1−λ∗

1(q−l(q))2} ≤ 0. In the following, we will show that max{λ∗
2, λ

∗
2+1−

λ∗
1(q− l(q))2} = 0. Let λ′

2 satisfy max{λ′
2, λ

′
2+1−λ∗

1(q− l(q))2} = 0, and for a contradiction

suppose that there exists some λ2 ≤ 0 such that max{λ2, λ2 + 1 − λ∗
1(q − l(q))2} < 0 and

v(q, λ∗
1, λ

′
2) > v(q, λ∗

1, λ2). Then for −1−λ∗
1(q− l(q))2 ≤ λ2, λ

′
2 ≤ −1+λ∗

1(q− l(q))2, we have

v(q, λ∗
1, λ

′
2) = λ∗

1

{
θ −

∑
k:q<ξ̂k≤l(q),

1−λ∗
1(q−ξ̂k)2≥0

ηk(q − ξ̂k)2

}
+

∑
{k:ξ̂k≤q}

ηk +
∑

k:q<ξ̂k≤l(q),

1−λ∗
1(q−ξ̂k)2≥0

ηk,
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and

v(q, λ∗
1, λ2) = λ2

{
− 1 + w(l(q))/s+

∑
{k:ξ̂k≤q}

ηk +
∑

k:q<ξ̂k≤l(q),

−λ∗
1(l(q)−ξ̂k)2≤λ2

+max{0,1−λ∗
1(q−ξ̂k)2}

ηk

}

+λ∗
1

{
θ−

∑
k:q<ξ̂k≤l(q),

1−λ∗
1(q−ξ̂k)2≥0,

1+λ2−λ∗
1(q−ξ̂k)2

≥−λ∗
1(l(q)−ξ̂k)2

ηk(q−ξ̂k)2−
∑

{k:q<ξ̂k≤l(q)}

ηk(l(q)−ξ̂k)2+
∑

k:q<ξ̂k≤l(q),

−λ∗
1(l(q)−ξ̂k)2≤λ2

+max{0,1−λ∗
1(q−ξ̂k)2}

ηk(l(q)−ξ̂k)2
}

+
∑

{k:ξ̂k≤q}

ηk +
∑

k:q<ξ̂k≤l(q),

1−λ∗
1(q−ξ̂k)2≥0

1+λ2−λ∗
1(q−ξ̂k)2

≥−λ∗
1(l(q)−ξ̂k)2

ηk.
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It follows that

v(q, λ∗
1, λ2)−v(q, λ∗

1, λ
′
2) = λ2(−1+w(l(q))/s+

∑
{k:ξ̂k≤q}

ηk)+
∑

k:q<ξ̂k≤l(q),

1−λ∗
1(q−ξ̂k)2≥0

1+λ2−λ∗
1(q−ξ̂k)2≥

−λ∗
1(l(q)−ξ̂k)2

ηk(−λ∗
1(q−ξ̂k)2+1)

+
∑

k:q<ξ̂k≤l(q),

−λ∗
1(l(q)−ξ̂k)2≤λ2

+max{0,1−λ∗
1(q−ξ̂k)2}

ηk(λ2 + λ∗
1(l(q)− ξ̂k)2)− λ∗

1

∑
{k:q<ξ̂k≤l(q)}

ηk(l(q)− ξ̂k)2

−
∑

k:q<ξ̂k≤l(q),

1−λ∗
1(q−ξ̂k)2≥0

ηk(1− λ∗
1(q − ξ̂k)2) = λ2(−1 + w(l(q))/s+

∑
{k:ξ̂k≤q}

ηk)

−
∑

k:q<ξ̂k≤l(q),

1−λ∗
1(q−ξ̂k)2≥0

1+λ2−λ∗
1(q−ξ̂k)2

<−λ∗
1(l(q)−ξ̂k)2

ηk(−λ∗
1(q − ξ̂k)2 + 1) +

∑
{k:q<ξ̂k≤l(q)}

ηk(λ2 + λ∗
1(l(q)− ξ̂k)2)

−
∑

k:q<ξ̂k≤l(q),

−λ∗(l(q)−ξ̂k)2>λ2,

−λ∗
1(l(q)−ξ̂k)2>λ2+1−λ∗(q−ξ̂k)2

ηk(λ2 + λ∗
1(l(q)− ξ̂k)2)− λ∗

1

∑
{k:q<ξ̂k≤l(q)}

ηk(l(q)− ξ̂k)2

=
∑

k:q<ξ̂k≤l(q),

1−λ∗
1(q−ξ̂k)2≥0

1+λ2−λ∗
1(q−ξ̂k)2

<−λ∗
1(l(q)−ξ̂k)2

ηk(λ∗
1(q− ξ̂k)2− 1)−

∑
k:q<ξ̂k≤l(q),

−λ∗(l(q)−ξ̂k)2>λ2,

−λ∗
1(l(q)−ξ̂k)2>λ2+1−λ∗(q−ξ̂k)2

ηk(λ2+λ∗
1(l(q)− ξ̂k)2) ≥ 0,

which contradicts the assumption that v(q, λ∗
1, λ

′
2) > v(q, λ∗

1, λ2).

Step 4: Show that λ∗
1 ≥ 1/(q − l(q))2 and λ∗

2 = 0.

We have shown that max{λ∗
2, λ

∗
2+1−λ∗

1(q−l(q))2} = 0. Now, for θ2 <
∑

{k:q<ξ̂k≤l(q)} ηk(q−

ξ̂k)2, we show that λ∗
1 ≥ 1/(q − l(q))2 and λ∗

2 = 0. Let λ′
1 = 1/(q − l(q))2, λ′

2 = 0, λ1 <

1/(q − l(q))2, and λ2 = −1 + λ1(q − l(q))2.

For a contradiction, suppose v(q, λ1, λ2) < v(q, λ′
1, λ

′
2), then v(q, λ1, λ2)

= λ1

{
θ −

∑
{k:q<ξ̂k≤l(q)} ηk(q − ξ̂k)2

}
+
∑

{k:ξ̂k≤q} ηk +
∑

{k:q<ξ̂k≤l(q)} ηk and v(q, λ′
1, λ

′
2) =

λ′
1

{
θ−
∑

{k:q<ξ̂k≤l(q)} ηk(q−ξ̂k)2
}
+
∑

{k:ξ̂k≤q} ηk+
∑

{k:q<ξ̂k≤l(q)} ηk. It follows that v(q, λ1, λ2)−
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v(q, λ′
1, λ

′
2) = (λ1 − λ′

1)
{
θ −

∑
{k:q<ξ̂k≤l(q)} ηk

}
≥ 0, which contradicts the assumption that

v(q, λ1, λ2) < v(q, λ′
1, λ

′
2).

In summary, we have shown that for θ2 <
∑

{k:q<ξ̂k≤l(q)} ηk(q − ξ̂k)2, we have λ∗
2 = 0 and

λ∗
1 ≥ 1/(q−l(q))2. Define λ1k ≜ 1/(q− ξ̂k)2 for all k with q < ξ̂k ≤ l(q). For λ1 ∈ (λ1,k+1, λ1k]

for some ξ̂k ∈ (q, l(q)], we have v(q, λ1, 0) = λ1θ+
∑

{k:ξ̂k≤z(q,θ)} η
k−λ1

∑
{k:q<ξ̂k≤z(q,θ)} η

k(q−

ξ̂k)2. It then follows that v(q, λ∗
1, λ

∗
2) =

∑
{k:ξ̂k<z(q,θ)} η

k

+ 1
(q−z(q,θ))2

(
θ −

∑
{k:q<ξ̂k<z(q,θ)} η

k(q − ξ̂k)2
)
, which gives the optimal value v(q, λ∗

1, λ
∗
2). In

particular, strong duality holds for Problem ( A.22 ), which can be proved similarly as Propo-

sition  A.5.1 , and thus we omit its proof. Thus, by strong duality we have ρ̃(q) = v(q, λ∗
1, λ

∗
2),

which gives the statement in Lemma  A.4.1 part (i).

Lemma  A.7.2 provides P̃q,θ, the optimal solution to Problem ( A.22 ).

Lemma A.7.2. Recall γ(q) defined in Eq. ( A.11 ). Then

P̃q,θ =



∑
{k:0≤ξ̂k<q} η

kδξ̂k +
∑

{k:q≤ξ̂k≤l(q)} η
kδq

+
∑

{k:ξ̂k>l(q)} η
kδξ̂k , θ2 ≥

∑
{k:q<ξ̂k≤l(q)} η

k(q − ξ̂k)2,∑
{k:0≤ξ̂k<q} η

kδξ̂k +
(∑

{k:q≤ξ̂k<z(q,θ)} η
k + γ

)
δq

+(ηk
∗ − γ)δz(q,θ) +

∑
{k:ξ̂k>z(q,θ)} η

kδξ̂k , θ2 <
∑

{k:q<ξ̂k≤l(q)} η
k(q − ξ̂k)2.

Proof of Lemma  A.7.2 . To prove that P̃q,θ is a worst-case distribution for Problem ( A.22 ),

we need to verify that P̃q,θ is feasible for Problem ( A.22 ) and also that P̃q,θ achieves the

optimal value ρ̃(q).

For θ2 ≥
∑

{k:q<ξ̂k≤l(q)} η
k(q−ξ̂k)2, P̃q,θ is feasible since W 2

2 (P̃q,θ, P̂T ) ≤
∑

{k:q<ξ̂k≤l(q)} η
k(q−

ξ̂k)2 ≤ θ2. Furthermore, P̃q,θ achieves ρ̃(q) since we have P̃q,θ(ξ ≤ q) =
∑

{k:ξ̂k≤l(q)} ηk =

1− w(l(q))/s.
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For θ2 <
∑

{k:q<ξ̂k≤l(q)} η
k(q−ξ̂k)2, P̃q,θ is feasible since W 2

2 (P̃q,θ, P̂T ) ≤
∑

{k:q<ξ̂k<z(q,θ)} η
k(q−

ξ̂k)2 + γ(q)(q − z(q, θ))2 = θ2 and since

P̃q,θ(ξ ≤ q) =
∑

{k:ξ̂k<z(q,θ)}

ηk + γ

=
∑

{k:ξ̂k<z(q,θ)}

ηk +
θ −

∑
{k:q<ξ̂k<z(q,θ)} η

k(q − ξ̂k)2

(q − z(q, θ))2

=
∑

{k:ξ̂k<z(q,θ)}

ηk +
1

(q − z(q, θ))2

θ −
∑

{k:q<ξ̂k<z(q,θ)}

ηk(q − ξ̂k)2


=

∑
{k:ξ̂k≤z(q,θ)}

ηk +
1

(q − z(q, θ))2

θ −
∑

{k:q<ξ̂k≤z(q,θ)}

ηk(q − ξ̂k)2

 ,

implying P̃q,θ achieves the optimal value ρ̃(q).

Thus we have show that P̃q,θ is feasible for Problem (  A.22 ) for both cases

θ2 ≥
∑

{k:q<ξ̂k≤l(q)} η
k(q− ξ̂k)2 and θ2 <

∑
{k:q<ξ̂k≤l(q)} η

k(q− ξ̂k)2, and that P̃q,θ achieves the

optimal value ρ̃(q). We conclude that P̃q,θ is an optimal solution for Problem ( A.22 ).

Proof of Lemma  A.4.1 . The conclusion of Lemma  A.4.1 follows by noticing that P̃q,θ is also

feasible to Problem ( A.13 ).

A.7.2 Proof of Lemma  A.4.2 

(i) The existence of q̃(w, θ) follows from the continuity of the mapping q → f(q, ξ(w)),

and the Weierstrass Theorem, which says a continuous function attains the maximum and

minimum over a compact set. Given the range of θ (i.e., θ < θ̄(w)), we have [q(w), ξ(w)] ∩

{q : 1− w/s = f(q, ξ(w))} ≠ ∅. As (w − c)q is strictly decreasing in q and f(q, z) is strictly

increasing in q ∈ [q(w), ξ(w)], q̃(w, θ) must satisfy the constraint of Problem ( A.15 ) with

equality.

(ii) First we show

πT,θ(w) = inf
q∈Q2(w,θ),q∈(q(w),ξ(w)]

(w − c)q (A.25)
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for θ < θ̄(w). Notice that c(q, l) is continuous and strictly decreasing in q ∈ (q(w), ξ(w)]. If

θ2 < c(ξ(w), l), then θ2 < c(q, l) for all q ∈ (q(w), ξ(w)] and therefore q(w, θ) /∈ Q1(w, θ).

Thus ( A.25 ) holds. Otherwise, choose q′ ∈ (q(w), ξ(w)] to satisfy θ2 = c(q′, l) (q′ exists given

θ < θ̄(w)). Then, θ2 > c(q, l) for any q ∈ (q(w), q′), and we have infq∈Q1(w,θ)(w− c)q = (w−

c)q′. At the same time, notice q′ ∈ Q2(w, θ) since f(q′, l) ≥ 1− w/s. Thus w.l.o.g. we have

q(w, θ) ∈ Q2(w, θ). Thus, it suffices to show that q̃(w, θ) is also optimal to Problem (  A.25 ).

According to the definition of ξ(w) and the characterization of q̃(w, θ), we have∑
{k:q̃(w,θ)<ξ̂k<ξ(w)} η

k(q̃(w, θ) − ξ̂k)2 < θ2 ≤ c(q̃(w, θ), ξ(w)), and thus z(q̃(w, θ), θ) = ξ(w).

Furthermore, c(q̃(w, θ), l) ≥ c(q̃(w, θ), ξ(w)) ≥ θ2. It follows that q̃(w, θ) is feasible to

Problem (  A.25 ). Then, q̃(w, θ) is optimal to Problem ( A.25 ) because f(q, z(q, θ)) is strictly

increasing in q for any q that satisfies θ2 ≤ c(q, l) (notice f(q, z(q, θ)) = ρ(q) when θ2 ≤

c(q, l) and ρ(q) is clearly increasing in q), and q̃(w, θ) satisfies the constraint 1 − w/s =

f(q̃(w, θ), ξ(w)) with equality.
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A.7.3 Proof of Proposition  A.5.1 (strong duality for construction of the center
distribution)

We derive the Lagrangian dual to Problem ( 2.5 ). Let ξ and ξ′ have distributions Pt and

P̂e
T respectively, and let Pt be the conditional distribution of ξ given ξ′ = ξt for all t ∈ [T ].

We first reformulate Problem (  2.5 ) as follows:

inf
P∈Do

T

W 2
2 (P, P̂e

T ) =



infΠ,P
∫
ξ,ξ′∈Ξ V ξ − ξ′∥22Π(dξ, dξ′)

s.t. Π ∈ C(P, P̂e
T ),

P ∈ Do
T

=


infPt∈P(Ξ)

1
T

∑T
t=1

∫
ξ∈Ξ ∥ξ − ξt∥22Pt(dξ)

s.t. 1
T

∑T
t=1 Pt ∈ Do

T .

=


infPt∈P(Ξ)

1
T

∑T
t=1

∫
ξ∈Ξ ∥ξ − ξt∥22Pt(dξ)

s.t. 1
T

∑T
t=1 EPt

[
1(ξi ≤ qt

′
i )
]
=

si−wt′
i

si
,∀i ∈ [n], t′ ∈ [T ].

The second equality follows from the law of total probability (i.e., any joint probability

distribution Π of ξ and ξ′ can be constructed from the marginal distribution of ξ′, which

is the empirical distribution P̂e
T in this case, and the conditional distribution Pt of ξ given

ξ′ = ξt for all t ∈ [T ]). The third equality follows from the definition of Do
T , where the

constraints are the first-order conditions for the retailer’s past ordering decisions.
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Now we introduce Lagrange multipliers (µt
i)i∈[n],t∈[T ] for the first-order conditions, to

obtain the dual problem

sup
{µt

i}∈R
inf

{Pt}∈P(Ξ)

1

T

T∑
t=1


∫
ξ∈Ξ
∥ξ − ξt∥22Pt(dξ) +

∑
i∈[n]

T∑
t′=1

µt′

i

(
EPt

[
1(ξi ≤ qt

′

i )
]
− si − wt′

i

si

) .

(A.26)

Because the Dirac measure satisfies δ ∈ P(Ξ) and because the inner objective is linear in

Pt, the inner minimization of Problem ( A.26 ) over all distributions in P(Ξ) is equivalent to

minimization over elements in the support set Ξ. Thus, Problem ( A.26 ) is equivalent to

sup
{µt

i}∈R

1

T

T∑
t=1

inf
ξ∈Ξ

∥ξ − ξt∥22 +
∑
i∈[n]

T∑
t′=1

µt′

i

(
1(ξi ≤ qt

′

i )−
si − wt′

i

si

) . (A.27)

We introduce auxiliary variables (γt)t∈[T ] to reformulate Problem ( A.27 ) as:

sup
{µt

i}∈R,{γt}∈R
−
∑
i∈[n]

T∑
t′=1

µt′

i

si − wt′
i

si
+

1

T

T∑
t=1

γt,

s.t. ∥ξ − ξt∥22 +
∑
i∈[n]

T∑
t′=1

µt′

i 1(ξi ≤ qt
′

i ) ≥ γt,∀ξ ∈ Ξ, t ∈ [T ],

(P)

which is a linear semi-infinite programming problem (LSIP).

We will leverage the duality theory for LSIP to establish strong duality for Problem ( 2.5 ).

Take Problem ( P ) to be the primal. Problem ( 2.5 ) is the dual of Problem (  P ), and we

refer to it as Problem (D). Let Y be the set of all bounded Borel measurable functions,

and let Y∗ be the set of all signed Borel measures on Ξ. The duality pairing between

Y and Y∗ is ⟨f, ν⟩ ≜
∫
Ξ
f(ξ)ν(dξ). We also define the corresponding nonnegative cones

C+(Y) = {f ∈ Y : f(ξ) ≥ 0, ∀ξ ∈ Ξ} and C+(Y∗) = {ν ∈ Y∗ : ν ≥ 0}, which are dual to

each other.

We use the shorthand c̃ ≜

((
− si−wt′

i

si

)
i∈[n],t′∈[T ]

, 1/T, . . . , 1/T

)
,

x ≜
((

µt′
i

)
i∈[n],t′∈[T ] , (γt)t∈[T ]

)
, and at(ξ) ≜

((
1(ξi ≤ qt

′
i )
)
i∈[n],t′∈[T ] ,0t−1,−1,0T−t

)
, where

0t denotes a vector with t 0’s. Also let bt(ξ) = −∥ξ − ξt∥22 for all ξ ∈ Ξ and t ∈ [T ]. Then,
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we may rewrite Problem ( P ) as supx

{
c̃⊤x : at(ξ)

⊤x ≥ bt(ξ), ∀ξ ∈ Ξ and ∀t ∈ [T ]
}
. Let us

introduce the following cone where (µ(ξ))ξ∈Ξ is a set of nonnegative multipliers:

M = cone {(at(ξ), bt(ξ)) : t ∈ [T ], ξ ∈ Ξ} =

y =
∑

t∈[T ],ξ∈Ξ

µ(ξ) (at(ξ), bt(ξ)) : µ(ξ) ∈ R+


⊂ RnT+T+1.

We recall the following sufficient condition for strong duality in LSIP.

Theorem A.7.1. ([ 177 , Theorem 6.5]) Suppose val( P ) is finite and M is closed, then val( P )

= val(D) and sol(D) is attained.

Proof of Proposition  A.5.1 . By Theorem  A.7.1 , it is sufficient to show that val( P ) is finite

and M is closed. Finiteness of val( P ) follows since, on one hand, val( P ) > −∞ because ( P ) is

always feasible. On the other hand, by weak duality, val(  P ) ≤ val(D) and val(D) <∞ since

(D) is always feasible (in particular, Do
T is nonempty since there is at least one distribution

in this set, i.e., P̄ ∈ Do
T ).

Now we verify that M is closed. First notice that the set {at(ξ) : t ∈ [T ], ξ ∈ Ξ} is finite.

Since Ξ is compact and bt(·) is continuous, the set {bt(ξ) : t ∈ [T ], ξ ∈ Ξ} is also compact

since the continuous image of a compact set is compact. Thus, M is closed.

A.7.4 Proof of Proposition  A.5.2 (explicit form of the center distribution)

We first prove an auxiliary result (See Lemma  A.7.3 ). In the following, we adopt the

conventions of extended arithmetic where∞×0 = 0×∞ = 0/0 = 0 and∞−∞ = −∞+∞ =

1/0 =∞.

Lemma A.7.3. Suppose a ≥ 0, then the system {aξ⊤ξ+b⊤ξ+c ≥ 0,∀ξ : Aξ ≤ d} is feasible

if and only if there exists τ ≤ 0 such that −(A⊤τ − b)⊤(A⊤τ − b)/(4a) + τ⊤d+ c ≥ 0.

Proof of Lemma  A.7.3 . When a > 0, the proof directly follows from the duality theory for

quadratic programming problems with linear constraints.
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When a = 0, on one hand, by the conventions of extended arithmetic, −(A⊤τ−b)⊤(A⊤τ−

b)/(4a) + τ⊤d + c ≥ 0 implies that τ⊤d + c ≥ 0 and A⊤τ − d = 0, since otherwise

−(A⊤τ − b)⊤(A⊤τ − b)/(4a) + τ⊤d + c = −∞. At the same time, the system {aξ⊤ξ +

b⊤ξ + c ≥ 0, ∀ξ : Aξ ≤ d} reduces to {b⊤ξ + c ≥ 0,∀ξ : Aξ ≤ d}, which is satisfied, by the

duality theory for linear programming problems, if and only if there exists τ ≤ 0 such that

τ⊤d+ c ≥ 0 and A⊤τ − b = 0, which gives the desired result.

Proof of Proposition  A.5.2 . We prove the Proposition by establishing strong duality between

Problems ( A.17 ) and ( 2.17 ). Recall ns is the number of linear inequalities characterizing

the polyhedron Rs = {ξ : Asξ ≤ ds}, i.e., As ∈ Rns×n and ds ∈ Rns . It follows from

Lemma  A.7.3 and Shur’s complement that Problem (  A.17 ) is equivalent to

sup
µ,γ,τst

1

T

T∑
t=1

γt,

s.t.

 In×n −
(
A⊤

s τ + 2ξt
)
/2

−
(
A⊤

s τ + 2ξt
)⊤

/2 τ⊤
stds + ξt⊤ξt +

∑
i∈[n]

∑T
t′=1 µ

t′
i

(
zis(q

t′)− si−wt′
i

si

)
− γt

 ⪰ 0,

∀t ∈ [T ], s ∈ [S],

τst ≤ 0,∀s ∈ [S], t ∈ [T ],

(A.28)
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where In×n stands for the identity matrix with size n×n. The following Lagrangian dual to

Problem (  A.17 ) then follows from SDP duality:

inf
T∑
t=1

S∑
s=1

In×n •Qst − 2p⊤
stξ

t + βstξ
t⊤ξt

s.t.
S∑

s=1

βst = 1/T,∀t ∈ [T ],

T∑
t=1

S∑
s=1

βstzis(q
t′) =

si − wt′
i

si
,∀i ∈ [n], t′ ∈ [T ],

Aspst ≤ βstds, ∀t ∈ [T ], s ∈ [S],Qst pst

p⊤
st βst

 ⪰ 0,∀t ∈ [T ], s ∈ [S],

Qst ∈ Rn×n,pst ∈ Rn, βst ∈ R,

(A.29)

where • is the Frobenius inner product between matrices, and Qst ∈ Rn×n, pst ∈ Rn, and

βst ∈ R are collectively the (matrix-valued) Lagrange multiplier to the first constraint of

Problem (  A.17 ).

We will simplify the dual problem by showing that Q∗
st = p∗

stp
∗⊤
st /β

∗
st for all t ∈ [T ] and

s ∈ [S]. In particular, we have Q∗
st = 0 when β∗

st = 0, since p∗
st = 0 and 0/0 = 0. Indeed,

β∗
st = 0 implies p∗

st = 0 and Q∗
st = 0 as Qst ⪰ 0 must hold. When β∗

st > 0, Shur’s complement

shows that Qst ⪰ pstp
⊤
st/βst and so Q∗

st = p∗
stp

∗⊤
st /β

∗
st is an optimal solution. Substituting

Qst = pstp
⊤
st/βst in the objective of Problem ( A.29 ), we obtain

∑T
t=1

∑S
s=1 p

⊤
stpst/βst −
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2p⊤
stξ

t + βstξ
t⊤ξt =

∑T
t=1

∑S
s=1 βst (pst/βst − ξt)

⊤
(pst/βst − ξt), and so Problem ( A.29 ) is

equivalent to Problem ( 2.17 ) restated as follows:

inf
T∑
t=1

S∑
s=1

βst

(
pst/βst − ξt

)⊤ (
pst/βst − ξt

)
s.t.

S∑
s=1

βst = 1/T,∀t ∈ [T ],

T∑
t=1

S∑
s=1

βstzis(q
t′) =

si − wt′
i

si
,∀i ∈ [n], t′ ∈ [T ],

Aspst/βst ≤ ds, ∀t ∈ [T ], s ∈ [S],

βst ≥ 0,pst ∈ Rn,∀t ∈ [T ], s ∈ [S].

It is immediate that the relative interior of the feasible region of Problem ( A.17 ) is non-

empty as γ is a free variable. Then, based on the weaker version of [  178 , Proposition 3.4],

strong duality holds between Problems (  A.17 ) and ( 2.17 ).

A.7.5 Proof of Theorem  A.3.1 (convergence rate for the center distribution)

We first cite the following result on convergence with respect to the 2−Wasserstein dis-

tance.

Theorem A.7.2 ([ 179 ]). Suppose there exists a > 1 such that EP̄[ exp(∥ξ∥ap)] <∞. Then,

P̄T
{
W2(P̄, P̂e

T ) ≥ θ
}
≤

C1 exp(−C2Tθ
max{n,2}), θ ≤ 1,

C1 exp (−C2Tθ
a), θ > 1,

for all T ≥ 1, and θ > 0, where C1, C2 are positive constants that only depend on a and n.

Theorem  A.7.2 requires the tail of the distribution P̄ to decay at an exponential rate. This

condition is automatically satisfied when Ξ is compact. We also notice that Theorem  A.7.2 

holds when the Wasserstein ball is centered at the empirical distribution P̂e
T . In Section  2.7 ,

when Assumption  2.7.1 holds, we constructed the center distribution P̂T as the projection
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of Q̂e
T onto D×. We obtain an analogous result to Theorem  A.7.2 when the Wasserstein ball

is centered at Q̂e
T and when Assumption  2.7.1 holds.

Theorem A.7.3. Suppose Assumptions  2.3.1 and  2.7.1 hold. Then,

P̄T
{
W2(P̄, Q̂e

T ) ≥ θ
}
≤

c1 exp(−c2Tθ2), θ ≤ 1,

c1 exp (−c2Tθa), θ > 1,

for all T ≥ 1, and θ > 0, where c1, c2 and a are positive constants that only (possibly) depend

on n.

Proof of Theorem  A.7.3 . Under Assumption  2.7.1 , we have P̄ = ×i∈[n]P̄i. Furthermore, we

have Q̂e
T = ×i∈[n]P̂e,i

T by construction. Then we have

P̄T{W2(P̄, Q̂e
T ) ≥ θ} = P̄T

∑
i∈[n]

W 2
2 (P̄i, P̂e,i

T ) ≥ θ2


≤ P̄T

{
W 2

2 (P̄i, P̂e,i
T ) ≥ θ2/n for some i ∈ [n]

}
≤
∑
i∈[n]

P̄T
{
W2(P̄i, P̂e,i

T ) ≥ θ/
√
n
}

≤

c1 exp (−c2Tθ2), θ ≤ 1,

c1 exp (−c2Tθa), θ > 1,

where c1 and c2 and a are positive constants that only (possibly) depend on n. In the above

equations, the first equality follows from Lemma  A.5.3 , the second inequality follows from

union law of probability, and the last inequality follows from Theorem  A.7.2 for n = 1.

Proof of Theorem  A.3.1 . We first prove Theorem  A.3.1 when the center distribution satis-

fies P̂T ∈ argminP∈Do
T
W 2

2 (P, P̂e
T ). Since W2 is a metric, we have W2(P̄, P̂T ) ≤ W2(P̄, P̂e

T ) +

W2(P̂e
T , P̂T ) = W2(P̂e

T , P̄) + W2(P̂e
T , P̂T ), by the triangle inequality and symmetry. By con-

struction, P̂T minimizes W2(P, P̂e
T ) over all P ∈ Do

T , and so W2(P̂e
T , P̂T ) ≤ W2(P̂e

T , P̄).

Therefore, we must have W2(P̄, P̂T ) ≤ 2W2(P̂e
T , P̄). It follows that P̄T{W2(P̄, P̂T ) ≥ θ} ≤
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P̄T{W2(P̂e
T , P̄) ≥ θ/2}. Similarly, when Q̂T ∈ argminP∈Do

T
W 2

2 (P, Q̂e
T ), we have

P̄T{W2(P̄, Q̂T ) ≥ θ} ≤ P̄T{W2(Q̂T , Q̂e
T ) ≥ θ/2}, and the desired result follows.
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B. APPENDICES FOR CHAPTER  3 

B.1 Additional material for Section  3.4 

B.1.1 Proof of Theorem  3.4.1 

We have

Reg(πstat, T ) =
T∑
t=1

E [(w∗ − c)q(w∗;F0)− (wt − c)q(wt;F0)]

=

⌈√T⌉∑
t=1

E [(w∗ − c)q(w∗;F0)− (wt − c)q(wt;F0)]

+
T∑

t=⌈√T⌉+1

E [(w∗ − c)q(w∗;F0)− (w∗
stat − c)q(w∗

stat;F0)]

≤
⌈√

T
⌉
sξ̄ + (T −

⌈√
T
⌉
)sξ̄/

⌈√
T
⌉

= O(
√
T ),

where the first inequality follows from Eq. ( 3.6 ) and the fact that |w∗−w∗
stat| ≤ s/

⌈√
T
⌉

by

the discretization of W .

B.2 Additional material for Section  3.5 

B.2.1 Proof of Lemma  3.5.1 

Suppose q(wt
m; F̂

µ
t ) ≥ ym, then it follows from Eq. ( 3.7 ) that pt,m−1 ≤ 1 − wt

m/s, and

φ(wt
m; F̂

µ
t ) ≥ (wt

m−c)ym = φk∗+∆t+
yms
K

. The previous inequality follows from the fact that

q(wt
m; F̂

µ
t ) ≥ ym and the previous equality follows by construction of wt

m (see Eq. ( 3.12 )).

The proof is similar for the case q(wt
m; F̂

µ
t ) < ym.

B.2.2 Proof of Lemma  3.5.2 

We will show that if q(wt
m; F̂

µ
t ) ≥ ym, then

max
k∈[K]

max
x∈[0,ξ̄]

|F̂ µ
t (x)− F̂ µ

τ0i +k
(x)| ≥ ∆t/(s ξ̄). (B.1)
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It will then follow from the reverse triangle inequality that the total variation over epoch i

is:
τ0i+1−1∑
t=τ0i +1

max
x∈[0,ξ̄]

|F̂ µ
t+1(x)− F̂ µ

t (x)| ≥ ∆t/(sξ̄).

Recall (pτ0i +k,m)k∈[K] are the values of F̂ µ
t at ym during the exploration phase in epoch

i (i.e., for periods t ∈ [τ 0i + 1, τ 0i + K]). To show Eq. ( B.1 ), we start with the following

Lemma  B.2.1 .

Lemma B.2.1. During the exploration phase of epoch i, we must have

max
k∈[K]

pτ0i +k,m−1 ≥ 1− φk∗/ym + c

s
− 1

K
, (B.2)

for all m ∈ [M ] with m ̸= m∗, where the term 1
K

is due to the discretization error.

Proof of Lemma  B.2.1 . For a contradiction, suppose there exists some m′ ∈ [M ] with m′ ̸=

m∗ such that

s(1− pτ0i +k,m′) > φk∗/ym′ + c+
s

K
, ∀k ∈ [K]. (B.3)

We let k′ ∈ [K] be such that w̄k′ ∈ [s(1−pτ0i +k′,m′−1)− s
K
, s(1−pτ0i +k′,m′−1)] (notice that such

k′ must exist by the discretization). We then have φ(w̄k′ ; F̂
µ

τ0i +k′
) = (w̄k′ − c)q(w̄k′ ; F̂

µ

τ0i +k′
) ≥

(w̄k′ − c)ym′ ≥ (s − s pτ0i +k,m′−1 − c − s
K
)ym′ > φk∗ where the first inequality follows since

w̄k′ ≤ s(1 − pτ0i +k′,m′−1) and then according to Eq. (  3.9 ), q(w̄k′ ; F̂
µ

τ0i +k
) ≥ ym′ . The second

inequality follows since w̄k′ ≥ s(1 − pτ0i +k′,m′−1) − s
K

and the last inequality follows from

Eq. ( B.3 ). Thus we have shown that Eq. ( B.3 ) is a contradiction of the fact that k∗ ∈

argmaxk∈[K] φk.

On the other hand, since q(wt
m;Ft) ≥ ym for some m ∈ [M ], we have

pt,m−1 ≤ 1− wt
m/s = 1− (φk∗ +∆t)/ym + 1/K + c

s
, (B.4)
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where the inquality follows from Lemma  3.5.1 and the equality follows from Eq. ( 3.12 ).

Combining Eq. ( B.2 ) and Eq. ( B.4 ) gives:

max
k∈[K]

(pτ0i +k,m−1 − pt,m−1) ≥ ∆t/(s ym) ≥ ∆t/(sξ̄).

It follows that maxk∈[K] maxx∈[0,ξ̄] |F̂
µ

τ i0+k
(x)− F̂ µ

t (x)| ≥ ∆t/(s ξ̄), and the Lemma holds.

B.2.3 Proof of Lemma  3.5.3 

There are two cases: (i) w̄k∗ −∆t/ym∗ ≥ 0; and (ii) w̄k∗ −∆t/ym∗ < 0. In the first case

where w̄k∗−∆t/ym∗ ≥ 0, we have wt
0 = w̄k∗−∆t/ym∗ and the proof is similar to Lemma  3.5.1 .

In the second case where w̄k∗ − ∆t/ym∗ < 0, wt
0 = 0 and we have q(0; F̂ µ

t ) = ξ̄ ≥ ym∗ (the

retailer will order as much as possible since the order cost is zero). In this case, we have

pt,m∗−1 ≤ 1−wt
0/s = 1 (by Eq. ( 3.7 )) and φ(wt

0; F̂
µ
t ) ≥ (wt

0−c)ym∗ ≥ (w̄k∗−∆t/ym∗−c)ym∗ =

φk∗ −∆t.

B.2.4 Proof of Lemma  3.5.4 

When q(wt
0; F̂

µ
t ) < ym∗ , we must have wt

0 > 0. Otherwise, if wt
0 = 0, the retailer will

always order q(0; F̂ µ
t ) = ξ̄ since the order cost is zero. Thus we can restrict to w̄k∗−∆t/ym∗ >

0.

We will show that if q(wt
0; F̂

µ
t ) < ym∗ , then

max
k∈[K]

max
x∈[0,ξ̄]

|F̂ µ

τ0i +k
(x)− F̂ µ

t (x)| ≥ ∆t/(s ξ̄),

and consequently
τ0i+1−1∑
t=τ0i +1

max
x∈[0,ξ̄]

|F̂ µ
t (x)− F̂ µ

t+1(x)| ≥ ∆t/(s ξ̄).
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First notice that according to the policy implementation, we have (by the relation ym∗ =

q(w̄k∗ ; F̂
µ

τ0i +k∗
) and Eq. ( 3.9 )) that:

pτ0i +k∗,m∗−1 < 1− w̄k∗/s. (B.5)

Next, since q(wt
0; F̂

µ
t ) < ym∗ , we have

pt,m∗−1 ≥ 1− wt
0/s = 1− (w̄k∗ −∆t/ym∗)/s = 1− w̄k∗/s+∆t/(s ym∗), (B.6)

where the first inequality follows from Lemma  3.5.3 and the first equality follows from

Eq. (  3.13 ). Combining Eq. ( B.5 ) and Eq. ( B.6 ) gives

pt,m∗−1 − pτ0i +k∗,m∗−1 ≥ ∆t/(s ym∗) ≥ ∆t/(s ξ̄),

and it follows that maxk∈[K] maxx∈[0,ξ̄] |F̂
µ

τ i0+k
(x)− F̂ µ

t (x)| ≥ ∆t/(s ξ̄).

B.2.5 Proof of Theorem  3.5.1 

Here we complete the details of the proof of Theorem  3.5.1 . We use superscript i to

denote quantities corresponding to epoch i since those quantities vary from epoch to epoch.

That is, we use φi
k to denote the profit observed during period k ∈ [K] of the exploration

phase of epoch i, and φi
k∗ to denote the optimal profit observed during the exploration phase

in epoch i.

Abusing notation, let Reg(π, F̂ µ
t1:t2) ≜

∑t2
t=t1

φ(w∗
t ; F̂

µ
t )−φ(wt; F̂

µ
t ) be the regret incurred

from periods t ∈ [t1, t2] when the supplier follows π, given the sequence of perceived distri-

butions F̂ µ
t1:t2 . The regret incurred in epoch i (for periods t ∈ [τ 0i + 1, τ 0i+1]) for πLUNA is

then:

Reg
(
πLUNA, F̂

µ

τ0i +1:τ0i+1

)
=

τ0i+1∑
t=τ0i +1

φ(w∗
t ; F̂

µ
t )− φ(wt

0; F̂
µ
t ) + φ(wt

0; F̂
µ
t )− φ(wt; F̂

µ
t ).
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We will bound the first part Regci(πLUNA) ≜
∑τ0i+1

t=τ0i +1
φ(w∗

t ; F̂
µ
t )− φ(wt

0; F̂
µ
t ) and the second

part Reg0i (πLUNA) ≜
∑τ0i+1

t=τ0i +1
φ(wt

0; F̂
µ
t )− φ(wt; F̂

µ
t ) separately.

Part I of the regret

To bound the first part Regci(πLUNA), recall the set (for epoch i):

E i =
{
t ∈ [τ 0i +max{M + 2, K}+ 1, τ 0i+1] : q(w

t
m; F̂

µ
t ) < ym, ∀m ∈ [M ],

and q(wt
0; F̂

µ
t ) ≥ ym∗

}
.

Then, we have

Regci(πLUNA)

≤
τ0i+1∑

t=τ0i +max{M+2,K}+1

(
φ(w∗

t ; F̂
µ
t )− φ(wt

0; F̂
µ
t )
)
+ sξ̄max{M + 2, K}

≤
τ0i+1∑

t=τ0i +max{M+2,K}+1

[(
φ(w∗

t ; F̂
µ
t )− φ(wt

0; F̂
µ
t )

)
1(t /∈ E i) +

(
φ(w∗

t ; F̂
µ
t )

− φ(wt
0; F̂

µ
t )

)
1(t ∈ E i)

]
+ sξ̄max{M + 2, K}

≤
τ0i+1∑

t=τ0i +max{M+2,K}+1

[
sξ̄1(t /∈ E i) +

(
φ(w∗

t ; F̂
µ
t )− φ(wt

0; F̂
µ
t )
)
1(t ∈ E i)

]
+ sξ̄max{M + 2, K}.

(B.7)
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It then follows from Eq. (  B.7 ), Lemma  3.5.5 , and Lemma  3.5.6 that

Regci(πLUNA)

≤
τ0i+1∑

t=τ0i +max{M+2,K}+1

[
sξ̄1(t /∈ E i) +

(
φ(w∗

t ; F̂
µ
t )− φ(wt

0; F̂
µ
t )
)
1(t ∈ E i)

]
+ sξ̄max{M + 2, K}

≤ sξ̄

[
max{M + 2, K}+ 1 + 2 log(T )

√
M(τ 0i+1 − 1− τ 0i )

]

+

τ0i+1∑
t=τ0i +max{M+2,K}+1

2∆t + (τ 0i+1 − 1− τ 0i )sξ̄

(
1

K

)

≤ sξ̄

[
M +K + 3 + 2 log(T )

√
M(τ 0i+1 − 1− τ 0i )

]
+ 4
√
M(τ 0i+1 − 1− τ 0i )

+ (τ 0i+1 − 1− τ 0i )sξ̄

(
1

K

)
(B.8)

where the last inequality follows since

τ0i+1∑
t=τ0i +max{M+2,K}+1

2∆t =

τ0i+1∑
t=τ0i +max{M+2,K}+1

2
√

M/(t− τ 0i ) ≤ 4
√

M(τ 0i+1 − 1− τ 0i ).

Part II of the regret

For the second part of the regret Reg0i (πLUNA), we have the equivalence

Reg0i (πLUNA) =

τ0i+1∑
t=τ0i +1

φ(wt
0; F̂

µ
t )− φ(wt; F̂

µ
t )

=
(
φ(wt

0; F̂
µ
t )− φ(wt; F̂

µ
t )
)
1(wt ̸= wt

0)

≤ ξ̄s [K + Ti(K)] .
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Then, by Lemma  B.2.3 we have

Reg0i (πLUNA) ≤ ξ̄s

[
K +

√
11 log(T )M(τ 0i+1 − 1− τ 0i )

]
, (B.9)

with probability at least 1− 1/T 2.

Combining the two parts of the regret

Combining Eqs. ( B.8 ) and ( B.9 ), and using the union bound, we have with probability

at least 1− 1/T that (where we let I be the total number of epochs)

Reg
(
πLUNA, F̂

µ
1:T

)
=

T∑
t=1

φ(w∗
t ; F̂

µ
t )− φ(wt

0; F̂
µ
t ) + φ(wt

0; F̂
µ
t )− φ(wt; F̂

µ
t )

=
I∑

i=1

Regci(πLUNA) +
I∑

i=1

Reg0i (πLUNA)

≤ sξ̄(M + 2K + 3)I +
(
2sξ̄ log(T ) + 4

) I∑
i=1

√
M(τ 0i+1 − 1− τ 0i ) +

I∑
i=1

(τ 0i+1 − 1− τ 0i )sξ̄
1

K

+
I∑

i=1

ξ̄s
√

11 log(T )M(τ 0i+1 − 1− τ 0i )

≤ sξ̄(M + 2K + 3)I +
(
2sξ̄ log(T ) + 4 + ξ̄

√
11 log(T )

)( I∑
i=1

√
M(τ 0i+1 − 1− τ 0i )

)
+

T

K
.

(B.10)
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It then follows that

Reg(πLUNA, T )

= sup
µ∈M(V,T )

E
[
Reg

(
πLUNA, F̂

µ
1:T

)]
≤ sξ̄(M + 2K + 3)I +

(
2sξ̄ log(T ) + 4 + ξ̄

√
11 log(T )

)( I∑
i=1

√
M(τ 0i+1 − 1− τ 0i )

)
+

T

K

≤ sξ̄(M + 2K + 3)I +
(
2sξ̄ log(T ) + 4 + ξ̄

√
11 log(T )

)√
MTI +

T

K
.

= Õ

(
ξ̄

4
3V

1
3M

1
3T

2
3 +

ξ̄T

K
+ ξ̄

5
3KV

2
3M− 1

3T
1
3

)
,

(B.11)

where the second inequality follows by Jensen’s inequality (using
∑T

i=1(τ
0
i+1 − τ 0i − 1) = T ),

and the last equality follows by Lemma  3.5.8 . The rest of the argument follows by setting

K∗ =
⌈
T

1
3V − 1

3 ξ̄−
1
3

⌉
and K̂ =

⌈
ξ̄−

1
3T

1
3

⌉
.

B.2.6 Proof of Lemma  3.5.5 

Since t ∈ E i ∩ [τ 0i +max{M + 2, K}+ 1, τ 0i+1], we have by Lemma  3.5.3 that

φ(wt
0; F̂

µ
t ) ≥ (wt

0 − c)ym∗ ≥ φi
k∗ −∆t.

At the same time, by Eq. (  3.9 ), the optimal supplier profit in period t satisfies:

φ(w∗
t ; F̂

µ
t ) = max

m∈[M−1]
(s− s pt,m − c)ym+1.

We then have

φ(w∗
t ; F̂

µ
t ) = max

m∈[M−1]
(s− s pm,t − c)ym+1

≤ max
m∈[M−1]

(wt
m+1 − c)ym+1

= ∆t +
ξ̄s

K
+ φi

k∗ ,
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where the inequality follows from Lemma  3.5.1 . Therefore,

φ(w∗
t ; F̂

µ
t )− φ(wt

0; F̂
µ
t ) = φ(w∗

t ; F̂
µ
t )− φi

k∗ + φi
k∗ − φ(wt

0; F̂
µ
t ) ≤ 2∆t +

ξ̄s

K
.

B.2.7 Proof of Lemma  3.5.6 

We make use of the following supporting result.

Lemma B.2.2. Let (tn)Nn=1 ∈ [τ 0i +max{M +2, K}+1, τ 0i+1− 1] for N ≥ 1 be the sequence

of periods where tn ∈ E i. Let

s = argmin
s′≥1

{
s′∑

n=1

1√
M(tn − τ 0i )

≥ 2 log(T )

}
,

then Ei ≤ s with probability at least 1− 1/T 2.

The proof of Lemma  B.2.2 follows from Lemma  B.2.3 below and [ 65 , Theorem A.4].

Lemma B.2.3. If t /∈ E i and t ≥ τ 0i + max{M + 2, K} + 1, then epoch i ends in period t

with probability at least
√

1
M(t−τ0i )

given that epoch i has not ended before period t.

Proof of Lemma  B.2.3 . If t /∈ E i, then either q(wt
m; F̂

µ
t ) > ym for some m ∈ [M ] holds, or

q(wt
0; F̂

µ
t ) < ym∗ holds. In the first case, where q(wt

m; F̂
µ
t ) > ym for some m ∈ [M ], epoch

i will end if mt = m which occurs with probability 1
M

√
M

t−τ0i
=
√

1
M(t−τ0i )

. In other words,

according to the algorithm implementation, with probability
√

1
M(t−τ0i )

we choose mt = m

and since q(wt
m; F̂

µ
t ) > ym, we end the current epoch according to the pricing policy. In the

second case, if q(wt
0; F̂

µ
t ) < ym∗ , then epoch i will end if mt = 0 which occurs with probability

1 −
√

M
t−τ0i
≥
√

1
M(t−τ0i )

. In either case, epoch i will end with probability at least
√

1
M(t−τ0i )

for all t ≥ τ 0i +max{M + 2, K}+ 1 with t /∈ E i.

Proof of Lemma  3.5.6 . It follows from Lemma  B.2.2 that with probability at least 1− 1/T 2,

we have

Ei − 1√
M(τ 0i+1 − 1− τ 0i )

≤
Ei−1∑
n=1

1√
M(tn − τ 0i )

=
s−1∑
n=1

1√
M(tn − τ 0i )

≤ 2 log(T ),
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and so

Ei ≤ 2 log(T )
√

M(τ 0i+1 − 1− τ 0i ) + 1.

B.2.8 Proof of Lemma  3.5.8 

For πLUNA, when epoch i ends in period t = τ 0i+1, we have ∆t = ∆τ0i+1
= M

1
2 (τ 0i+1 − τ 0i −

1)−
1
2 for every epoch i ∈ [I − 1]. It then follows that

V =
I∑

i=1

τ0i+1−1∑
t=τ0i +1

dK(F̂
µ
t , F̂

µ
t+1) ≥

I−1∑
i=1

τ0i+1−1∑
t=τ0i +1

dK(F̂
µ
t , F̂

µ
t+1) ≥

I−1∑
i=1

∆τ0i+1
/(s ξ̄)

=
I−1∑
i=1

1

s ξ̄
M

1
2 (τ 0i+1 − τ 0i − 1)−

1
2 ≥ M

1
2

s ξ̄
(I − 1)

3
2T− 1

2 .

In the above display, we drop the last epoch I from the summation in the first inequality

because we do not necessarily have
∑τ0I+1−1

t=τ0I +1
dK(F̂

µ
t , F̂

µ
t+1) ≥ ∆I/(s ξ̄), i.e., epoch I does

not necessarily end because T /∈ EI . The second inequality follows from Lemma  3.5.2 and

Lemma  3.5.4 . The last inequality follows since

I−1∑
i=1

(τ 0i+1 − τ 0i − 1)−
1
2 ≥ (I − 1)

(
1

I − 1

I−1∑
i=1

(τ 0i+1 − τ 0i − 1)

)− 1
2

≥ (I − 1) (T/(I − 1))−
1
2 ,

where the first inequality follows from Jensen’s inequality and the second follows since∑I−1
i=1 τ

0
i+1 − τ 0i − 1 ≤ T . We conclude that I ≤ (s ξ̄)

2
3V

2
3M− 1

3T
1
3 + 1.

B.2.9 Proof of Lemma  3.5.9 

Define the mapping f : R → R by f(q) = zn for q ∈ (zn−1, zn]. When q = 0, we have

f(0) ≜ 0.

We make use of the following result.

Lemma B.2.4. For all t ∈ [T ], q(wt; F̃
µ
t ) = f(q(wt; F̂

µ
t )).

199



Proof of Lemma  B.2.4 . When q(wt; F̂
µ
t ) = 0, we have f(q(wt; F̂

µ
t )) = 0 and F̂ µ

t (0) ≥ 1−wt/s

(by Eq. ( 3.4 )). Since F̃ µ
t (0) = F̂ µ

t (0) by Eq. ( 3.15 ), we have F̃ µ
t (0) ≥ 1 − wt/s and thus

q(wt; F̃
µ
t ) = 0.

Now suppose q(wt; F̂
µ
t ) ∈ (zn−1, zn] for some n ≥ 2. Then, we have F̂ µ

t (zn−1) < 1−wt/s,

F̂ µ
t (zn) ≥ 1 − wt/s, and f(q(wt; F̂

µ
t )) = zn. By Eq. (  3.15 ), F̃ µ

t (zn−1) < 1 − wt/s and

F̃ µ
t (zn) ≥ 1 − wt/s both hold. Thus, q(wt; F̃

µ
t ) = zn = f(q(wt; F̂

µ
t )) = zn, and the claim

holds.

Proof of Lemma  3.5.9 . The proof is by induction. The result clearly holds for period t = 1

since the first period wholesale price is fixed at w̄1 (recall πLUNAC calls πLUNA as a sub-

routine). Now suppose the claim holds up to some period 1 ≤ t < T , we will prove

that it holds for period t + 1. For brevity, by the induction hypothesis we simply write

wi ≜ wLUNAC
i (F̂ µ

1:t−1;ω) = wLUNA
i (F̃ µ

1:t−1;ω) for i ∈ [t].

Fix the sample path ω, the history of wholesale prices (wi)
t
i=1, and perceived distributions

F̂ µ
1:t−1. In πLUNAC, in each period the feedback f(q(wt; F̂

µ
t )) is given to πLUNA based on the

actual order quantity q(wt; F̂
µ
t ) (see Line 5 of Algorithm  2 ). Then, the wholesale price

wLUNAC
t+1 (F̂ µ

1:t;ω) output by πLUNAC is the wholesale price output by πLUNA given the past

wholesale prices (wi)
t
i=1 and feedback (f(q(wt; F̂

µ
1:i)))

t
i=1.

At the same time, according to the construction of F̃ µ
1:t (see Eq. ( 3.15 )), given any whole-

sale price wt we have q(wt; F̃
µ
t ) = f(q(wt; F̂

µ
t )) as shown in Lemma  B.2.4 . In other words,

in each period t ∈ [T ], πLUNA receives the feedback f(q(wt; F̂
µ
t )) = q(wt; F̃

µ
t ). It then follows

that wLUNAC
t+1 (F̂ µ

1:t;ω) is the price output by πLUNA given past wholesale prices (wi)
t
i=1 and

orders (q(wt; F̃
µ
t ))

t
i=1. Since πLUNA will output wLUNA

t+1 (F̃ µ
1:t;ω) given past wholesale prices

(wi)
t
i=1 and orders (q(wt; F̃

µ
t ))

t
i=1, we have proved that wLUNAC

t+1 (F̂ µ
1:t;ω) = wLUNA

t+1 (F̃ µ
1:t;ω),

and the induction step holds.
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B.2.10 Proof of Lemma  3.5.10 

By definition, we have

dK(F̃
µ
t , F̃

µ
t+1) = max

n∈[N ]
|F̃ µ

t (zn)− F̃ µ
t+1(zn)| = max

n∈[N ]
|F̂ µ

t (zn)− F̂ µ
t+1(zn)| ≤ dK(F̂

µ
t , F̂

µ
t+1),

where the first equality follows since F̃ µ
t is supported on ZN , and the second equality follows

by construction of F̃ µ
t in Eq. ( 3.15 ).

B.2.11 Proof of Theorem  3.5.2 

Recall w∗
t defined in ( 3.3 ) is the optimal wholesale price in each period (regardless of

whether the F̂ µ
t is continuous or discrete). We can decompose the regret as

Reg(πLUNAC, F̂
µ
1:T )

=
T∑
t=1

E
[
φ(w∗

t ; F̂
µ
t )− φ(wt; F̂

µ
t )
]

=
T∑
t=1

E
[
(φ(w∗

t ; F̂
µ
t )− φ(w∗

t ; F̃
µ
t ))− (φ(wt; F̂

µ
t )− φ(wt; F̃

µ
t )) + (φ(w∗

t ; F̃
µ
t )− φ(wt; F̃

µ
t ))
]

≤
T∑
t=1

E
[
(φ(w∗

t ; F̂
µ
t )− φ(w∗

t ; F̃
µ
t ))− (φ(wt; F̂

µ
t )− φ(wt; F̃

µ
t ))

+
(
sup
w∈W

φ(w; F̃ µ
t )− φ(wt; F̃

µ
t )
)]

.

(B.12)

In the above display, both
∑T

t=1 E[φ(w∗
t ; F̂

µ
t )−φ(w∗

t ; F̃
µ
t )] and

∑T
t=1 E

[
φ(wt; F̂

µ
t )− φ(wt; F̃

µ
t )
]

represent the regret incurred by approximating F̂ µ
t with F̃ µ

t . According to Lemma  3.5.9 , the

wholesale prices w1:T output from πLUNAC are just the pricing decisions of running the sub-

routine πLUNA with distributions F̃1:T . Thus the expression

T∑
t=1

E
[
sup
w∈W

φ(w; F̃ µ
t )− φ(wt; F̃

µ
t )

]
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is the regret from running πLUNA with respect to F̃1:T , i.e.,

T∑
t=1

E
[
sup
w∈W

φ(w; F̃ µ
t )− φ(wt; F̃

µ
t )

]
= Reg(πLUNA, T ),

see Theorem  3.5.1 .

Based on the approximation of F̂ µ
t with F̃ µ

t , for any w ∈ W , we have

|φ(w, F̂ µ
t )− φ(w, F̃ µ

t )| = (w − c)
∣∣∣min

{
q : F̂ µ

t ≥ 1− w/s
}
−min

{
q : F̃ µ

t ≥ 1− w/s
}∣∣∣

≤ (w − c)ξ̄/N, (B.13)

where the inequality follows from Eq. (  3.15 ). Then, we have

Reg(πLUNAC, F̂
µ
1:T )

≤
T∑
t=1

E
[
(φ(w∗

t ; F̂
µ
t )− φ(w∗

t ; F̃
µ
t ))− (φ(wt; F̂

µ
t )− φ(wt; F̃

µ
t ))

+
(
sup
w∈W

φ(w; F̃ µ
t )− φ(wt; F̃

µ
t )
)]

≤
T∑
t=1

E
[∣∣φ(w∗

t ; F̂
µ
t ) + φ(w∗

t ; F̃
µ
t )
∣∣+ ∣∣φ(wt; F̂

µ
t )− φ(wt; F̃

µ
t )
∣∣]+ Reg(πLUNA, T ).

With Eq. ( B.13 ) and Theorem  3.5.1 , if the supplier knows V , then

Reg(πLUNAC, F̂
µ
1:T ) = Õ

(
ξ̄ T/N + ξ̄

4
3V

1
3N

1
3T

2
3

)
and if the supplier does not know V , then

Reg(πLUNAC, F̂
µ
1:T ) = Õ

(
ξ̄ T/N + ξ̄

4
3V

1
3N

1
3T

2
3 + ξ̄

4
3V

2
3N− 1

3T
2
3

)
.

It follows that if the supplier knows V , then with N∗ =
⌈
ξ̄−

1
4V − 1

4T
1
4

⌉
, the regret is

Reg(πLUNAC, T ) = Õ(ξ̄
5
4V

1
4T

3
4 ). If the supplier does not know V , then by choosing N̂ =⌈

ξ̄−
1
4T

1
4

⌉
the regret is Reg(πLUNAC, T ) = Õ(ξ̄

5
4V

1
3T

3
4 + ξ̄

17
12V

2
3T

7
12 ).
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B.3 Additional material for Section  3.6 

B.3.1 Proof of Proposition  3.6.1 

Recall both F̂ e
t = (

∑t−1
i=1 1(ξi ≤ x))/(t− 1) and F̂ e

t+1 = (
∑t

i=1 1(ξi ≤ x))/t are empirical

distributions, so for any x ∈ [0, ξ̄] we have

∣∣∣F̂ e
t (x)− F̂ e

t+1(x)
∣∣∣ ≤ ∣∣∣∣∣

∑t−1
i=1 1(ξi ≤ x)

t− 1
−
∑t

i=1 1(ξi ≤ x)

t

∣∣∣∣∣ =


∑t−1
i=1 1(ξi=x)

t(t−1)
, ξt > x,

1
t
−
∑t−1

i=1 1(ξi=x)

t(t−1)
, ξt ≤ x.

(B.14)

It then follows that dK(F̂
e
t , F̂

e
t+1) ≤ 1

t
. Then

∑T−1
t=1 dK(F̂

e
t , F̂

e
t+1) ≤ log(T ) + 1 and thus

µe ∈M(log(T ) + 1, T ).

B.3.2 Proof of Proposition  3.6.2 

(i) For any t ∈ [T − 1], we have

dK(F̂
d
t , F̂

d
t+1) ≤ dK(F̂

d
t , F̂

e
t ) + dK(F̂

e
t+1, F̂

e
t ) + dK(F̂

e
t+1, F̂

d
t+1)

≤ 1

t
+

√
dKL(F̂ d

t , F̂
e
t )/2 +

√
dKL(F̂ e

t+1, F̂
d
t+1)/2

≤ 1

t
+
√

ϵt/2 +
√

ϵt+1/2,

where the first inequality follows from triangle inequality, the second inequality follows from

[ 64 ] (which states that dK(F,G) ≤
√

dKL(F,G)/2 for all F,G ∈ P with F ≪ G) and

Eq. (  B.14 ). Then, we have

T−1∑
t=1

dK(F̂
d
t , F̂

d
t+1) ≤

T−1∑
t=1

(
1

t
+
√

ϵt/2 +
√

ϵt+1/2

)
≤ log (T ) + 1 +

T∑
t=1

√
2ϵt.
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(ii) For any t ∈ [T − 1], we have

dK(F̂
d
t , F̂

d
t+1) ≤ dK(F̂

d
t , F̂

e
t ) + dK(F̂

e
t+1, F̂

e
t ) + dK(F̂

d
t+1, F̂

e
t+1)

≤ 1

t
+

√
dχ2(F̂ d

t , F̂
e
t )/2 +

√
dχ2(F̂ e

t+1, F̂
d
t+1)/2

≤ 1

t
+
√
ϵt/2 +

√
ϵt+1/2,

where the second inequality follows from [ 64 ], (which states dK(F,G) ≤
√

dχ2(F,G)/2 for

F,G ∈ P with F ≪ G). Then, we have

T−1∑
t=1

dK(F̂
d
t , F̂

d
t+1) ≤

T−1∑
t=1

(
1

t
+
√
ϵt/2 +

√
ϵt+1/2

)
≤ log (T ) + 1 +

T∑
t=1

√
ϵt.

(iii) We have

dK(F̂
d
t , F̂

d
t+1) ≤ dK(F̂

d
t , F̂

e
t ) + dK(F̂

e
t+1, F̂

e
t ) + dK(F̂

d
t+1, F̂

e
t+1)

≤ 1

t
+ dH(F̂

d
t , F̂

e
t ) + dH(F̂

d
t+1, F

e
t+1)

≤ 1

t
+ ϵt + ϵt+1,

where the second inequality follows from [ 64 ] (which states dK(F,G) ≤ dH(F,G) for F,G ∈ P

with F ≪ G). Then, we have

T−1∑
t=1

dK(F̂
d
t , F̂

d
t+1) ≤

T−1∑
t=1

(
1

t
+ ϵt + ϵt+1

)
≤ log (T ) + 1 + 2

T∑
t=1

ϵt.

B.3.3 Proof of Proposition  3.6.3 

To prove Proposition  3.6.3 , we relate the Kolmogorov distance and the total variation

distance dTV . For two probaiblity distributions F,G ∈ P(Ξ) equipped with the σ−algebra

F , the total variation distance dTV between F and G is defined by:

dTV (F,G) ≜ sup {|F (A)−G(A)| : A ∈ F} .
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According to [  64 ],

dKL(F,G) ≤ dTV (F,G). (B.15)

(i) According to [ 180 ], the total variation between Poisson distributions Fλ1 and Fλ2 with

means λ1 and λ2 respectively (we assume that λ1 ≤ λ2) satisfies dTV (Fλ1 , Fλ2) ≤ |λ2 − λ1|.

The MLE estimate of the mean of a Poisson distribution is λt =
∑t−1

i=1 ξi
t−1

, so it follows that

dTV (F̂
m
t , F̂m

t+1) ≤ dTV (Fλt , Fλt+1) ≤

∣∣∣∣∣
∑t

i=1 ξi
t

−
∑t−1

i=1 ξi
t− 1

∣∣∣∣∣
=

∣∣∣∣∣t(
∑t−1

i=1 ξi)− (t− 1)(
∑t−1

i=1 ξi + ξt)

t(t− 1)

∣∣∣∣∣ ≤ max
{∑t−1

i=1 ξi, (t− 1)ξt
}

t(t− 1)
, (B.16)

where the first inequality follows by recalling from Eq. ( 3.20 ) that

F̂m
t (x) =

Fλt(x), 0 ≤ x < q̄;

1, x ≥ q̄.

Poisson(λ) distribution has the following concentration inequality:

P (ξ ≥ λ+ ϵ) ≤ exp

(
− ϵ2

2(λ+ ϵ)

)
for ϵ > 0, (B.17)

and so P (ξ ≤ 4 ln(T ) + 2λ) ≥ 1− 1/T 2. By the union bound, we then have

P (ξt ≤ 4 ln(T ) + 2λ, ∀t ∈ [T ]) ≥ 1− 1

T
.

It follows that

dTV (F̂
m
t , F̂m

t+1) ≤
4 ln (T ) + 2λ

t
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with probability at least 1− 1/T , and thus

T−1∑
t=1

dK(F̂
m
t , F̂m

t+1) ≤
T−1∑
t=1

dTV (F̂
m
t , F̂m

t+1)

≤
T−1∑
t=1

4 ln (T ) + 2λ

t

≤ (4 ln (T ) + 2λ)
T−1∑
t=1

1

t

≤ (ln (T ) + 1) (4 ln (T ) + 2λ) ,

where the first inequality follows from Eq. ( B.15 ).

(ii) If the true demand distribution is the categorical distribution, and the retailer is

using MLE, then Ft = F̂ e
t , the empirical distribution at time t. The argument then follows

similarly to Proposition  3.6.1 .

(iii) Let Fλ and Fλ′ be the CDFs of the E(λ) and E(λ′) distributions, respectively, and

suppose λ < λ′. Then we have

dTV (Fλ, Fλ′) =
1

2

∫ ∞

x=0

|λ exp(−λx)− λ′ exp(−λ′x)|dx

=

(
λ

λ′

) λ
λ′−λ

−
(
λ

λ′

) λ′
λ−λ′

≤ 1− λ

λ′

= min{λ, λ′}
∣∣∣∣1λ − 1

λ′

∣∣∣∣ .
The MLE estimator for the rate is λt =

t−1∑t−1
i=1 ξi

, and so

dTV (F̂
m
t , F̂m

t+1) ≤ dTV (Fλt , Fλt+1) ≤ λt

∣∣∣∣∣
∑t−1

i=1 ξi
t− 1

−
∑t

i=1 ξi
t

∣∣∣∣∣
≤ t− 1∑t−1

i=1 ξi

∣∣∑t−1
i=1 ξi − tξt

∣∣
t(t− 1)

≤ 1

t
+

t− 1

t

ξt∑t−1
i=1 ξi

.
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Now according to the high probability bound for the E(λ) distribution, we have:

P

(
t∑

i=1

ξi ≤ t/λ− ϵ

)
≤ exp

(
−ϵ2λ2

4t

)
,

which gives

P

(
t∑

i=1

ξi ≥
t

λ
−
√
4t ln (2T 2)

λ

)
≥ 1− 1

2T 2
.

On the other hand, according to the CDF of the exponential distribution, we have

P
(
ξ ≤ ln (2T 2)

λ

)
≥ 1− 1

2T 2
.

By the union bound, we have

P

(
t∑

i=1

ξi ≥
t

λ
−
√

4t ln (2T 2)

λ
and ξt ≤

ln (2T 2)

λ
, ∀t ∈ [T − 1]

)
≥ 1− 1

T
. (B.18)

It then follows that, with probability at least 1− 1/T , we have

T−1∑
t=1

dK(F̂
m
t , F̂m

t+1) =

16 ln(2T 2)−1∑
t=1

dK(F̂
m
t , F̂m

t+1) +
T−1∑

t=16 ln(2T 2)

dK(F̂
m
t , F̂m

t+1)

≤
16 ln(2T 2)−1∑

t=1

dK(F̂
m
t , F̂m

t+1) +
T−1∑

t=16 ln(2T 2)

(
1

t
+

t− 1

t

ξt∑t−1
i=1 ξi

)

≤ 16 ln(2T 2)− 1 +
T−1∑

t=16 ln(2T 2)

1 + 2 ln(2T 2)

t

≤ 16 ln(2T 2)− 1 +
T−1∑
t=1

1 + 2 ln(2T 2)

t

≤ 16 ln (2T 2)− 1 +
(
1 + 2 ln (2T 2)

)
(ln (T ) + 1),

where the second inequality follows from Eq.  B.18 (which states that if t ≥ 16 ln(2T 2 + 1),

then ξt∑t−1
i=1 ξi

≤ 2 ln(2T 2)
t

for all t ≥ 2 with probability at least 1− 1/T ).
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(iv) Let Fµ and Fµ′ be the CDFs of the N(µ, σ2) and N(µ′, σ2) distributions, respectively

(they have the same variance and possibly different means). The KL-divergence between Fµ

and Fµ′ is

dKL(Fµ, Fµ′) =
(µ− µ′)2

2σ2
.

The MLE estimator for the mean is

µt =

∑t−1
i=1 ξi

t− 1
, t ≥ 2.

Thus, we have

dKL(Fµt , Fµt+1) =
1

2σ2

(∑t−1
i=1 ξi

t− 1
−
∑t

i=1 ξi
t

)2

≤ 1

2σ2

(∑t−1
i=1 ξi − (t− 1)ξt

t(t− 1)

)2

≤ 1

2σ2

(∑t−1
i=1 ξi

t(t− 1)

)2

+

(
ξt
t

)2
 , t ≥ 2.

On one hand, when ξ ∼ Normal(µ, σ2), we have

P(ξ ≥ µ+ ϵ) ≤ exp
(
−ϵ2/2σ2

)
,

which gives

P
(
ξ ≤ σ

√
2 log(2T 2) + µ

)
≥ 1− 1/(2T 2).

On the other hand, according to Hoeffding’s inequality,

P

(
t∑

i=1

ξi − tµ ≥ ϵ

)
≤ exp

(
− ϵ2

2tσ2

)
. (B.19)
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It then follows that

P

(
t∑

i=1

ξi ≤ tµ+ σ
√

2t ln (2T 2)

)
≥ 1− 1/(2T 2).

Using the union bound, we have

P

(
t−1∑
i=1

ξi ≤ (t− 1)µ+ σ
√

2(t− 1) ln (2T 2) and ξt ≤ σ
√
2 ln(2T 2) + µ, ∀t ≥ 2

)
≥ 1− 1

T
.

(B.20)

We then have with probability at least 1− 1/T , for t ≥ 2,

dKL(Fµt , Fµt+1) ≤
1

2σ2

(∑t−1
i=1 ξi

t(t− 1)

)2

+

(
ξt
t

)2


≤ 1

2σ2

((t− 1)µ+ σ
√

2(t− 1) ln (2T 2)

t(t− 1)

)2

+

(
µ+ σ

√
2 ln (2T 2)

t

)2


≤ 1

σ2

[
2µ2

t2
+

2σ2 ln (2T 2)

t(t− 1)2
+

2σ2 ln (2T 2)

t2

]
≤ 2µ2 + 4σ2 ln (2T 2)

σ2

1

(t− 1)2

where the second inequality follows by the high probability bound Eq. ( B.20 ). The third

inequality follows by the inequality (x + y)2 ≤ 2x2 + 2y2 for arbitrary number x, y. Conse-

quently,

T−1∑
t=1

dK(F̂
m
t , F̂m

t+1) ≤ 1 +
T−1∑
t=2

dK(Fµt , Fµt+1)

≤ 1 +
T−1∑
t=2

√
dKL(Fµt , Fµt+1)/2

≤ 1 +
T−1∑
t=2

1

t− 1

√
µ2 + 2σ2 ln (2T 2)

σ2

≤ 1 +
1

σ

√
(ln(T ) + 1) (µ2 + 2σ2 ln (2T 2)).
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B.3.4 Proof of Proposition  3.6.4 

Let Fλ and Fλ′ be the CDFs of the E(λ) and E(λ′) distributions, respectively, and suppose

λ < λ′. The total variation between Fλ and Fλ′ is

dTV (Fλ, Fλ′) =
1

2

∫ ∞

x=0

|λ exp(−λx)− λ′ exp(−λ′x)|dx

=

(
λ

λ′

) λ
λ′−λ

−
(
λ

λ′

) λ′
λ−λ′

≤ 1− λ

λ′ .

For all t ∈ [T ], define the function ft such that ft(wt) ≜
(t−1)

(
(s/wt)

1
t −1

)
ln(s/wt)

. Then, we have

1/λt = ft(wt)
(∑t−1

i=1 ξi
)
/(t− 1) and ft(wt) ∈ [(t− 1)/t, 1) for all wt ∈ W . It follows that

dK(F̂
o
t , F̂

o
t+1) ≤ dTV (F̂

o
t , F̂

o
t+1) ≤ dTV (Fλt , Fλt+1) ≤ 1− min{λt, λt+1}

max{λt, λt+1}

≤ min{λt, λt+1}
∣∣∣∣ 1λt

− 1

λt+1

∣∣∣∣ .
Next, note that for t ≥ 2,∣∣∣∣ 1λt

− 1

λt+1

∣∣∣∣
=

∣∣∣∣∣ft(wt)

∑t−1
i=1 ξi

t− 1
− ft+1(wt+1)

∑t
i=1 ξi
t

∣∣∣∣∣
=

∣∣∣∣∣tft(wt)
∑t−1

i=1 ξi − (t− 1)ft+1(wt+1)
∑t

i=1 ξi
t(t− 1)

∣∣∣∣∣
=

∣∣∣∣∣(t− 1)(ft(wt)− ft+1(wt+1))
(∑t−1

i=1 ξi
)
+ ft(wt)

(∑t−1
i=1 ξi

)
− (t− 1)ft+1(wt+1)ξt

t(t− 1)

∣∣∣∣∣
≤
∣∣(t− 1)(ft(wt)− ft+1(wt+1))

(∑t−1
i=1 ξi

)∣∣+ ∣∣ft(wt)
(∑t−1

i=1 ξi
)∣∣+ |(t− 1)ft+1(wt+1)ξt|

t(t− 1)

≤ 2t− 1

(t− 1)t2

(
t−1∑
i=1

ξi

)
+

ξt
t
,
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where the last inequality follows since ft(wt) ∈ [(t − 1)/t, 1) for all wt ∈ W . Clearly

min{λt, λt+1} ≤ λt =
t−1

ft(wt)(
∑t−1

i=1 ξi)
and thus for t ≥ 2,

dK(F̂
o
t , F̂

o
t+1) ≤ λt

∣∣∣∣ 1λt

− 1

λt+1

∣∣∣∣
≤ t− 1

ft(wt)
(∑t−1

i=1 ξi
) ( 2t− 1

(t− 1)t2

(
t−1∑
i=1

ξi

)
+

ξt
t

)

≤ 2t− 1

(t− 1)t
+

ξt∑t−1
i=1 ξi

≤ 2

t− 1
+

ξt∑t−1
i=1 ξi

,

where the third inequality again follows because ft(wt) ∈ [(t− 1)/t, 1) for all wt ∈ W . Since

(ξi)
T
i=1 are i.i.d. Exponential(λ), by Eq. ( B.18 ) we have

P

(
t∑

i=1

ξi ≥
t

λ
−
√

4t ln (2T 2)

λ
and ξt+1 ≤

ln (2T 2)

λ
, ∀t ∈ [T − 1]

)
≥ 1− 1

T
.

Thus, with probability at least 1− 1/T , we have

T−1∑
t=1

dK(F̂
o
t , F̂

o
t+1) ≤ 1 +

T−1∑
t=2

2

t− 1
+ 16 ln (2T 2) +

T−1∑
t=2

2 ln (2T 2)

t− 1

≤ 1 + 2 lnT + 2 + 16 ln (2T 2) + 2 ln (2T 2)(lnT + 1)

≤ 21 + 40 ln (T ) + 4(ln (T ))2.

B.4 Additional material for Section  3.5.1 

B.4.1 LUNAC-N

When the supplier does not know V , we show that we can further improve the regret

bound by adopting the Bandit-over-Bandit (BOB) framework proposed by [ 63 ], [ 90 ] to se-

quentially adjust the approximation size N (we call this algorithm πLUNAC-N). πLUNAC-N

divides the time horizon into ⌈T/H⌉ blocks (indexed by i) of equal length H. Inside block

i, the discretization size Ni is chosen from a finite set J ⊂ [H]. Based on the chosen Ni for
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each block, we run πLUNAC for that block. After receiving the profits from each block, the

algorithm sequentially adjusts the approximation size Ni from block to block.

The choice of Ni in each block is chosen according to the EXP3 algorithm [ 92 ] designed

for the adversarial bandit. In this way, the overall procedure consists of a meta algorithm

for choosing Ni in each block according to the profits collected from each block, and a sub-

algorithm that is run inside each block, based on the chosen Ni for that block. Theorem  B.4.1 

presents the regret bound when the supplier does not have knowledge of V and Ni is chosen

according to πLUNAC-N.

Theorem B.4.1. Suppose Assumption  3.5.2 holds, the supplier does not have knowledge of

V , and {Ni} are chosen according to πLUNAC-N. Then, Reg(πLUNAC-N, T ) = Õ(ξ̄
4
3V

3
4T

1
3 +

ξ̄
5
4V

1
3T

3
4 ).

Algorithm  6 presents the implementation details for πLUNAC-N for sequentially adjusting

N when V is unknown. We initialize the EXP3 parameters as:

γ = min

{
1,

√
(z + 1) ln (z + 1)

(e− 1)⌈T/H⌉

}
, sj,1 = 1, ∀j = 0, 1, . . . , z. (B.21)
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Algorithm 6 LUNAC-N
Require: Time horizon T , production cost c, and selling price s

Initialize H ←
⌊
ξ̄−

1
4T

1
4

⌋
, z ← ⌈lnH⌉,J ←

{
H0,

⌊
H1/z

⌋
, . . . , H

}
; Set γ and (sj,1)

z
j=0

according to Eq.  B.21 

for i = 1, 2, . . . , ⌈T/H⌉ do

Define distributions (αj,i)
z
j=0 as:

αj,i = (1− γ)
sj,i∑z
u=0 su,i

+
γ

z + 1
, ∀j = 0, . . . , z

Choose ji ← j with probability αj,i and set Ni ←
⌊
Hji/z

⌋
.

for t = (i− 1)H + 1, . . . , (i . . . H) ∧ T do

Run LUNAC-N with Ni.∑(iH)∧T
t=(i−1)H+1 φ(wt;Ft) is the profit collected during t ∈ [(i− 1)H + 1, (i ·H) ∧ T ];

Update sj,i+1 as:

sji,i+1 ← sji,i exp

(
γ

(z + 1)αji,i

(
1

2
+

1

2

∑(iH)∧T
t=(i−1)H+1 φ(wt;Ft)

((iH) ∧ T − (i− 1)H)(s− c)ξ̄

))
,

sj,i+1 ← sj,i, if j ̸= ji.

Proof of Theorem  B.4.1 . Let N † be the optimally tuned approximation size and w†
t be the

corresponding wholesale price of πLUNA when the approximation size satisfies N = N †. Notice

that since each block has at most H rounds, we do not necessarily have N † = N∗ (where N∗
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is the optimally chosen discretization size given the supplier knows V , see Theorem  3.5.2 )

since we need N † ≤ H. The regret of running BOB on top of πLUNAC can be decomposed as:

Reg
(
πLUNA-K; F̂

µ
1:T

)
=

T∑
t=1

φ(w∗
t ; F̂

µ
t )− φ(wt; F̂

µ
t )

=
T∑
t=1

φ(w∗
t ; F̂

µ
t )− φ(w†

t ; F̂
µ
t ) + φ(w†

t ; F̂
µ
t )− φ(wt; F̂

µ
t )

=

⌈T/H⌉∑
i=1

i·H∧T∑
t=(i−1)H+1

{(
φ(w∗

t ; F̂
µ
t )− φ(w†

t ; F̂
µ
t )
)
+
(
φ(w†

t ; F̂
µ
t )− φ(wt; F̂

µ
t )
)}

.

where
∑⌈T/H⌉

i=1

∑i·H∧T
t=(i−1)H+1

(
φ(w∗

t ; F̂
µ
t )− φ(w†

t ; F̂
µ
t )
)

is the regret incurred by always dis-

cretizing at N † and
∑⌈T/H⌉

i=1

∑i·H∧T
t=(i−1)H+1

(
φ(w†

t ; F̂
µ
t )− φ(wt; F̂

µ
t )
)

is the regret of learning

N †.

Let V (i) be the variation in block i:

V (i) ≜
(i·H)∧T−1∑
t=(i−1)H+1

dK(F̂
µ
t , F̂

µ
t+1).

Then, the regret incurred by always discretizing at N † can be upper bounded with:

sup
F̂µ
1:T∈M(V,T )

⌈T/H⌉∑
i=1

i·H∧T∑
t=(i−1)H+1

E
[
φ(w∗

t ; F̂
µ
t )− φ(w†

t ; F̂
µ
t )
]

=

⌈T/H⌉∑
i=1

Õ
(
ξ̄ H/N † + ξ̄

4
3V (i)

1
3N † 1

3H
2
3 + ξ̄

4
3V (i)

2
3N †− 1

3H
2
3

)
= Õ

(
ξ̄T/N † + ξ̄

4
3V

1
3N † 1

3T
2
3 + ξ̄

4
3V

2
3N †− 1

3T
1
3H

1
3

)
,

where the first equality follows from Theorem  3.5.2 and the second equality follows from

Holder’s inequality.
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The regret of learning N † follows directly from the regret of running EXP3. Since the

number of blocks for EXP3 is ⌈T/H⌉, the number of possible values for K is |J | and the

maximum regret in each block is (s− c)ξ̄H, we have

sup
µ∈M(V,T )

⌈T/H⌉∑
i=1

i·H∧T∑
t=(i−1)H+1

E
[
φ(w†

t ;Ft)− φ(wt;Ft)
]

= Õ

(
ξ̄H

√
|J |T
H

)
= Õ

(
ξ̄
√
|J |TH

)
.

Combining these bounds, we get

Reg(πLUNAC, T ) = Õ
(
ξ̄T/N † + ξ̄

4
3V

1
3N † 1

3T
2
3 + ξ̄

4
3V

2
3N †− 1

3T
1
3H

1
3 + ξ̄

√
|J |TH

)
.

Following [ 63 ], [  90 ], we consider the set J for possible choices of N :

J = {H0,
⌊
H

1
z

⌋
,
⌊
H

2
z

⌋
, . . . , H}

where z is some positive integer. Since the choice of H cannot depend on V , we can set

H = ξ̄ϵTα for some α ∈ (0, 1). We now discuss two cases depending on whether N∗ ≥ H or

not.

Case 1: N∗ ≤ H, then V > T 1−4αξ̄−1−4ϵ. In this case, N † can automatically adapt to

the largest element in J that is smaller than N∗ (i.e., N∗H− 1
z ≤ N † ≤ N∗H

1
z ), and thus

Reg(πLUNA-N, T )

= Õ
(
ξ̄T/(N∗H− 1

z ) + ξ̄
4
3V

1
3 (N∗H

1
z )

1
3T

2
3 + ξ̄

4
3V

2
3 (N∗H− 1

z )−
1
3T

1
3H

1
3 + ξ̄

√
|J |TH

)
= Õ

(
ξ̄

5
4V

1
4T

3
4H

1
z + ξ̄

5
4T

3
4V

1
4H

1
3z + ξ̄

17
12

+ ϵ
3H1/3zV

3
4T

1
4
+α

3 + ξ̄1+
ϵ
2 z

1
2T

α+1
2

)
.

(B.22)
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Case 2: K∗ ≥ H, then V ≤ T 1−4αξ̄−1−4ϵ. In this case, M † = H, and thus

Reg(πLUNA-N, T ) = Õ
(
ξ̄T/H + ξ̄

4
3V

1
3H

1
3T

2
3 + ξ̄

4
3V

2
3H− 1

3T
1
3H

1
3 + ξ̄

√
|J |TH

)
= Õ

(
ξ̄1−αT 1−α + ξ̄

4+ϵ
3 V

1
3T

2+α
3 + ξ̄

4
3V

2
3T

1
3 + z

1
2 ξ̄1+

ϵ
2T

1+α
2

)
.

(B.23)

According to Eqs. ( B.22 ) and ( B.23 ), we can set z = ⌊lnH⌋, ϵ = −1
4

and α = 1
4

and the

regret is

Reg(πLUNA-N, T ) = Õ
(
ξ̄

4
3V

3
4T

1
3 + ξ̄

5
4V

1
3T

3
4

)
.

B.5 Additional materials for Section  3.7 

B.5.1 Finite Decision Set

We can modify πLUNA to handle finite W , and we call this modified algorithm πLUNAF

(see the details in Algorithm  7 ). Let d ≜ |W| be the number of admissible wholesale prices

so W = {wj}dj=1 where WLOG we assume w1 < w2 < · · · < wd. Let ceilS(x) be the smallest

element in a set S that is greater than or equal to x and floorS(x) be the largest element

in S that is less than or equal to x. When x ∈ S, then ceilS(x) = floorS(x) = x. In the

exploration phase of πLUNAF, the policy simply prices at each price inW . Let j∗ be the index

of the optimal wholesale price w∗
j ∈ W . Then, in each period in the exploitation phase, wt

m

for m ∈ [M ] and wt
0 are computed according to

(wt
m − c)ym = φj∗ +∆t + (wj∗+1 − wj∗)ym∗ , (B.24)

which gives

wt
m ≜ (φj∗ + (wj∗+1 − wj∗)ym∗ +∆t) /ym + c,

and

(w0 − c)yj∗ = φj∗ −∆t and wt
0 ≥ 0, otherwise w0

t = 0, (B.25)
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which gives

wt
0 ≜ max{wj∗ −∆t/yj∗ , 0}.

However, since we do not necessarily have wt
mt
∈ W for mt ∈ [M ], we need to project wt

mt

to W . In this case, the dynamic regret follows as

Reg(π, T ) ≜ max
µ∈M(V,T )

E

[
T∑
t=1

(
max
w∈W

φ(w; F̂ µ
t )− (wt − c)q(wt; F̂

µ
t )

)]
,

where the clairvoyant benchmark optimizes over the prices in the finite admissable set W .

We compare this regret for different algorithms numerically.
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Algorithm 7 Learning under Nonstationary Agent with Finite decision set (LUNAF)
Require: Time horizon T , c, s, and admissible decisions W

Update current time t← 1

Set epoch i← 1

for epoch i = 1, 2, . . . do

τ 0i ← t

Exploration:

Price at wj ∈ W , j ∈ [d− 1] and observe φj for the first d− 1 periods in epoch i

Let j∗ ∈ argmaxj∈[J ] φj and m∗ be such that ym∗ = q
(
wj∗ ;Fτ0i +j∗

)
Exploitation:

In period t, set ∆t ←
√
M/(t− τ 0i )

Compute prices wm for m ∈ [M ] and w0 according to Eq. ( 3.12 ) and Eq. ( 3.13 ),

respectively

Select mt according to the distribution

mt =


0, w.p. 1−

√
M

t−τ0i
,

U{1, . . . ,M}, w.p.
√

M
t−τ0i

;

if mt ≥ 1 then Set wholesale price at wt ← ceilW(wm)

else

Set wholesale price at wt ← floorW(w0)

Observe retailer’s order q(wt;Ft)

if q(wmt ;Ft) ≥ ymt for mt ∈ [M ] or q(wmt ;Ft) < ym∗ for mt = 0 then

Start the next epoch i← i+ 1.
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C. APPENDICES FOR CHAPTER  4 

C.1 Additional Model Details

Some additional technical details of the model formulation are as follows. First, under the

AWP policy, the wholesale price and supply satisfy the non-negativity constraints p−βwi ≥ 0

and wi− bw̄-i−a ≥ 0, which implies a+ bw̄-i ≤ wi ≤ p/β. A further requirement is that this

constraint set is non-empty at the symmetric equilibrium derived in later analysis. If at the

equilibrium, each GPO adopts a wholesale price w, then the constraint wi− bw̄-i− a = (1−

b)w−a ≥ 0, implying that w ≥ a/(1−b), and the constraint p−βwi = p−βw ≥ 0, implying

that w ≤ p/β. This further requires the model parameters to satisfy a/(1 − b) ≤ p/β, so

that the model is meaningful and realistic. In our analysis, we assume by default that this

relationship holds.

Under the ASP policy, the non-negativity constraints are θw̄−βwi ≥ 0 and wi−bw̄-i−a ≥

0, implying a + bw̄-i ≤ wi ≤ θw̄/β. Note that the constraint wi ≤ θw̄/β is always satisfied

at an symmetric equilibrium since θ > 1 and β ≤ 1. As stated in the main text, to maintain

realisticity, an additional requirement for model parameters is β > θ/n (see the explanation

after Eq.  4.2 ). We again assume by default that this relationship holds.

C.2 Proof of Theorem  4.4.1 

We first show the existence and uniqueness of the equilibrium. Under the AWP policy,

GPO i’s payoff function ( 4.2 ) can be expressed as E[(p−βwi)(wi− bw̄-i− a)ϵi ∧ (p−βwi)d],

which is the expected minimum of a concave function in wi and a linear function in wi,

and is clearly concave in wi. The function is also continuous. The constraint set, wi ≥ 0,

p − βwi ≥ 0 and wi − bw̄-i − a ≥ 0, is clearly convex and compact. Further, the game is

symmetric. Thus, there exists at least one symmetric pure strategy Nash Equilibrium.

In addition, it is straightforward to see that any boundary point of the constraint set

renders zero payoff, while any interior point yields a positive payoff. Thus, the equilibria are

interior.
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Finally, the payoff function ( 4.2 ) is a product of a linear function and a concave function

of w, and hence is log-concave (and quasi-concave) in w. Since the strategy space is convex

and the equilibria are interior, by a univalent mapping argument (see, e.g., Theorem 6 in

[ 181 ]), the equilibrium is unique.

Under the ASP policy, in GPO i’s payoff function ( 4.2 ),

θw̄ − βwi = θ
∑
j ̸=i

wj/n− (β − θ/n)wi.

Since by assumption, β − θ/n > 0, following the same procedure as that in the previous

AWP proof, we can show the existence of a unique symmetric interior equilibrium.

We now derive the conditions that the equilibrium wholesale prices satisfy. Under the

AWP policy, since ϵi has a continuous PDF, the payoff function ( 4.2 ) is differentiable. The

payoff function can be written as:

(p− βwi)(wi − bw̄-i − a)E[ϵi ∧ d/(wi − bw̄-i − a)].

The first order derivative with respect to wi is:

[−β(wi−bw̄-i−a)+(p−βwi)]E[ϵi∧d/(wi−bw̄-i−a)]−(p−βwi)F̄ (d/(wi−bw̄-i−a))d/(wi−bw̄-i−a).

As the equilibrium is symmetric, wi = w,∀i. Thus, the equilibrium w must satisfy:

[(b− 2)βw + aβ + p]E{[(1− b)w − a]ϵ ∧ d} − d(p− βw)F̄ (d/[(1− b)w − a]) = 0.

Similarly, under the ASP policy, the first order derivative with respect to wi is:

[(θ/n− β)(wi − bw̄-i − a) + (θw̄ − βwi)]E[ϵi ∧ d/(wi − bw̄-i − a)]

− (θw̄ − βwi)F̄ (d/(wi − bw̄-i − a))d/(wi − bw̄-i − a).
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At the symmetric equilibrium,

{(θ/n−β)[(1−b)w−a]+(θ−β)w}E{[(1−b)w−a]ϵ∧d}−d(θ−β)wF̄ (d/[(1−b)w−a]) = 0.

C.3 Proof of Theorem  4.4.2 

We first show the monotonicity of the equilibrium wholesale price with respect to the

parameters. Under the AWP policy, we define:

h = [(b− 2)βw+aβ+ p][(1− b)w−a]E{ϵ∧d/[(1− b)w−a]}−d(p−βw)F̄ (d/[(1− b)w−a]),

that is, h represents the left-hand-side of the condition in Theorem  4.4.1 for the AWP policy.

If we denote the equilibrium wholesale price under AWP by ww, then clearly hw=ww = 0.

Thus,

∂h

∂a
|w=ww ={β[(1− b)w − a]− [(b− 2)βw + aβ + p]}E{ϵ ∧ d/[(1− b)w − a]}

+ [(b− 2)βw + aβ + p]F̄ (d/[(1− b)w − a])d/[(1− b)w − a]

+ d2(p− βw)f(d/[(1− b)w − a])/[(1− b)w − a]2|w=ww

={β[(1− b)w − a]− [(b− 2)βw + aβ + p]}E{ϵ ∧ d/[(1− b)w − a]}

+ {[(b− 2)βw + aβ + p]2/(p− βw)}E{ϵ ∧ d/[(1− b)w − a]}

+ d2(p− βw)f(d/[(1− b)w − a])/[(1− b)w − a]2|w=ww

={β2[(1− b)w − a]2/(p− βw)}E{ϵ ∧ d/[(1− b)w − a]}

+ d2(p− βw)f(d/[(1− b)w − a])/[(1− b)w − a]2|w=ww ≥ 0,

where the second equality follows from h|w=ww = 0.

In addition, let s = (1− b)w − a, then

∂h

∂a
=

∂h

∂s

∂s

∂a
,
∂h

∂b
=

∂h

∂s

∂s

∂b
, and thus

∂h

∂b
|w=ww = w

∂h

∂a
|w=ww ≥ 0.

∂h

∂w
=

∂h

∂s

∂s

∂w
− β[(1− b)w − a]E{ϵ ∧ d/[(1− b)w − a]}+ dβF̄ (d/[(1− b)w − a]).
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By h|w=ww = 0,

dβF̄ (d/[(1−b)w−a])|w=ww =

[
1− (1− b)w − a

p− βw

]
β[(1−b)w−a]E{ϵ∧d/[(1−b)w−a]}|w=ww .

Thus,

∂h

∂w
|w=ww = −(1− b)

∂h

∂a
|w=ww − [(1− b)w − a]2

p− βw
βE{ϵ ∧ d/[(1− b)w − a]}|w=ww ≤ 0.

By the implicit function theorem,

∂ww

∂a
= −( ∂h

∂w
|w=ww)−1 · ∂h

∂a
|w=ww≥ 0 and

∂ww

∂b
= −( ∂h

∂w
|w=ww)−1 · ∂h

∂b
|w=ww≥ 0.

Thus, ww increases in a and b. Further, ww is unaffected by n since h does not contain n.

Under the ASP policy, similarly, let

h = {(θ/n−β)[(1−b)w−a]+(θ−β)w}E{[(1−b)w−a]ϵ∧d}−d(θ−β)wF̄ (d/[(1−b)w−a]),

that is, h represents the left-hand-side of the condition in Theorem  4.4.1 for the ASP policy.

If we denote the equilibrium wholesale price under ASP by ws, then clearly h|w=ws = 0.

Thus,

∂h

∂a
|w=ws

=− {2(θ/n− β)[(1− b)w − a] + (θ − β)w}E{ϵ ∧ d/[(1− b)w − a]}

+ {(θ/n− β)[(1− b)w − a] + (θ − β)w}F̄ (d/[(1− b)w − a])d/[(1− b)w − a]

+ d(θ − β)wf(d/[(1− b)w − a])d/[(1− b)w − a]2|w=ws

=− {2(θ/n− β)[(1− b)w − a] + (θ − β)w}E{ϵ ∧ d/[(1− b)w − a]}

+ {(θ/n− β)[(1− b)w − a] + (θ − β)w}2/[(θ − β)w] · E{ϵ ∧ d/[(1− b)w − a]}

+ d(θ − β)wf(d/[(1− b)w − a])d/[(1− b)w − a]2|w=ws

=(θ/n− β)2[(1− b)w − a]2/[(θ − β)w] · E{ϵ ∧ d/[(1− b)w − a]}

+ d(θ − β)wf(d/[(1− b)w − a])d/[(1− b)w − a]2|w=ws ≥ 0,
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where the second equality follows from h|w=ws = 0.

Again, let s = (1− b)w − a. By the same analysis as that in the AWP policy,

∂h

∂b
|w=ws = w

∂h

∂a
|w=ws ≥ 0 and

∂h

∂n
|w=ws = −(θ/n2)[(1− b)w − a]E{[(1− b)w − a]ϵ ∧ d} ≤ 0.

To show the monotonicity of h with respect to w, we note that in h, limw→∞ E{[(1−b)w−

a]ϵ∧ d} = d and limw→∞ F̄ (d/[(1− b)w− a]) = 1. Thus, limw→∞ h = limw→∞(θ/n− β)[(1−

b)w−a]d ≤ 0. Since h is continuous and there exists a unique ws such that h|w=ws = 0, that

limw→∞ h ≤ 0 implies that ∂h/∂w|w=ws < 0. A further application of the implicit function

theorem similar to that in the AWP proof yields the desired result.

We next show the monotonicity of the equilibrium shortage status with respect to the

parameters. We first note that the parameters, a, b, and n, affect the shortage only through

the mean supply, (1− b)ww− a under AWP or (1− b)ws− a under ASP. Thus, investigating

their impacts on the supply suffices. From the supply expressions, it may appear that the

impacts of a and b are trivial. However, this is not the case since the equilibrium wholesale

price ww or ws is also affected by a and b. Specifically, while large a and b values reduce the

supply, they also boost the wholesale price which raises the supply. Therefore, identifying

their impacts entails a detailed investigation.

To examine the impacts, we perform a transform: s = (1 − b)w − a and c = a, where

s stands for the equilibrium mean supply. Similar to the proof of Theorem  4.4.1 , it can be

straightforwardly shown that in the transformed space, there also exists a unique symmetric

equilibrium. We denote the equilibrium mean supply under AWP by sw and that under ASP

by ss.

Under the AWP policy, the condition in Theorem  4.4.1 becomes:

[− βs− β(s+ c)/(1− b) + p]E{sϵ ∧ d} − d[p− β(s+ c)/(1− b)]F̄ (d/s) = 0 (C.1)
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Let h be the left-hand-side of this equation, then

∂h

∂c
|s=sw =− β

1− b
E{sϵ ∧ d}+ dβ

1− b
F̄ (d/s)|s=sw

=
−β

(1− b)[p− β(s+ c)/(1− b)]

[
p− β(s+ c)

1− b

]
[E{sϵ ∧ d} − dF̄ (d/s)]|s=sw

=
−β2s2

(1− b)[p− β(s+ c)/(1− b)]
E{ϵ ∧ d/s}|s=sw ≤ 0,

where the third equality follows from (  C.1 ).

In addition, if w = (s+ c)/(1− b) in (  C.1 ), then clearly

∂h

∂c
=

∂h

∂w

∂w

∂c
,
∂h

∂b
=

∂h

∂w

∂w

∂b
, and thus

∂h

∂b
|s=sw = w

∂h

∂c
|s=sw ≤ 0.

Further,

∂h

∂s
|s=sw =

[
−2βs− β(2s+ c)

1− b
+ p

]
E{ϵ ∧ d/s} −

[
−βs− β(s+ c)

1− b
+ p

]
F̄ (d/s)

d

s

+
dβ

1− b
F̄ (d/s)− d

[
p− β(s+ c)

1− b

]
f(d/s)

d

s2
|s=sw

=

[
−βs− β(2s+ c)

1− b
+ p

] [
E{ϵ ∧ d/s} − F̄ (d/s)

d

s

]
− βsE{ϵ ∧ d/s}

− d2

s2

[
p− β(s+ c)

1− b

]
f(d/s)|s=sw

=
p− βs− β(2s+ c)/(1− b)

p− β(s+ c)/(1− b)
βsE{ϵ ∧ d/s} − βsE{ϵ ∧ d/s}

− d2

s2

[
p− β(s+ c)

1− b

]
f(d/s)|s=sw

=− β2s2(2− b)

[p− β(s+ c)/(1− b)](1− b)
E{ϵ ∧ d/s} − d2

s2

[
p− β(s+ c)

1− b

]
f(d/s)|s=sw ≤ 0,

where the third equality follows from (  C.1 ).

Using the implicit function theorem and following the same procedure as that in the early

part of this proof, we can show that under the AWP policy, the supply s decreases in a (i.e.,

c) and b. Further, the supply is unaffected by n since the condition ( C.1 ) does not contain

n.
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Under the ASP policy, the condition in Theorem  4.4.1 becomes:

[(θ/n− β)s+ (θ − β)(s+ c)/(1− b)]E{sϵ ∧ d} − d(θ − β)[(s+ c)/(1− b)]F̄ (d/s) = 0 (C.2)

Similarly, Let h be the left-hand-side of this equation, then

∂h

∂c
|s=ss =

θ − β

1− b
E{sϵ ∧ d} − d(θ − β)

1− b
F̄ (d/s)|s=ss

=
1

s+ c

(θ − β)(s+ c)

1− b
[E{sϵ ∧ d} − dF̄ (d/s)]|s=ss

=
−(θ/n− β)s2

s+ c
E{ϵ ∧ d/s}|s=ss ≥ 0,

where the third equality follows from (  C.2 ) and the inequality follows from the requirement

that β > θ/n (see the last paragraph of Section  4.3 .3).

If we let w = (s+ c)/(1− b) in (  C.2 ), then clearly

∂h

∂c
=

∂h

∂w

∂w

∂c
,
∂h

∂b
=

∂h

∂w

∂w

∂b
, and thus

∂h

∂b
|s=ss = w

∂h

∂c
|s=ss ≥ 0.

To show the monotonicity of h with respect to s, we note that in h, lims→∞ E{sϵ∧d} = d

and lims→∞ F̄ (d/s) = 1. Thus, lims→∞ h = lims→∞(θ/n− β)sd ≤ 0 by the requirement that

β > θ/n. In addition, since h is continuous and there exists a unique ss such that h|s=ss = 0,

that lims→∞ h ≤ 0 implies ∂h/∂s|s=ss < 0. Again, by the implicit function theorem, the

result holds.

225



C.4 Proof of Theorem  4.4.3 

The proof is similar to that of Theorem  4.4.2 . Let h be the same as that defined in the

proof of Theorem  4.4.2 . Under the AWP policy,

∂h

∂β
|w=ww =[(b− 2)w + a]E{[(1− b)w − a]ϵ ∧ d}+ dwF̄ (d/[(1− b)w − a])|w=ww

=[(b− 2)w + a]E{[(1− b)w − a]ϵ ∧ d}

+ {[(b− 2)βw + aβ + p]w/(p− βw)}E{[(1− b)w − a]ϵ ∧ d}|w=ww

=− [(1− b)w − a]2pE{ϵ ∧ d/[(1− b)w − a]}/(p− βw)|w=ww ≤ 0,

where the second equality follows from h|w=ww = 0. Similarly, under the ASP policy,

∂h

∂β
|w=ws =[(b− 2)w + a]E{[(1− b)w − a]ϵ ∧ d}+ dwF̄ (d/[(1− b)w − a])|w=ws

=[(b− 2)w + a]E{[(1− b)w − a]ϵ ∧ d}

+ {(θ/n− β)[(1− b)w − a]/(θ − β) + w}E{[(1− b)w − a]ϵ ∧ d}|w=ws

=− (1− 1/n)θ[(1− b)w − a]2E{ϵ ∧ d/[(1− b)w − a]}/(θ − β)|w=ws ≤ 0,

where the second equality follows from h|w=ws = 0. Applying the implicit function theorem

in a similar manner to that in the proof of Theorem  4.4.2 , we can show that both ww and ws

decrease as β increases. Since the equilibrium supply (1− b)w− a does not directly contain

β, the decreasing wholesale price indicates that the supply decreases in β. Hence, shortage

increases as the supply decreases.

In addition, under the ASP policy,

∂h

∂θ
|w=ws ={[(1− b)w − a]/n+ w}E{[(1− b)w − a]ϵ ∧ d} − dwF̄ (d/[(1− b)w − a])|w=ws

={[(1− b)w − a]/n+ w}E{[(1− b)w − a]ϵ ∧ d}

− {(θ/n− β)[(1− b)w − a]/(θ − β) + w}E{[(1− b)w − a]ϵ ∧ d}|w=ws

=(1− 1/n)β[(1− b)w − a]2E{ϵ ∧ d/[(1− b)w − a]}/(θ − β)|w=ws ≥ 0.

By a similar argument, we know that ws increases and shortage decreases in θ.

226



C.5 Additional Details in Data Integration

When identifying shortage drugs, we use two authoritative lists: the ASHP shortage

list and the FDA shortage list, where drugs are defined by using the Healthcare Common

Procedure Coding System (HCPCS) code provided in the CMS (Centers for Medicare &

Medicaid Services) data. If a drug has been listed as shortage for some period of time by

either list since 2005, then the drug is identified as a shortage drug and included in our study.

In the Medicare PUP data, each drug is identified by its HCPCS code, and each physician

is identified by their National Provider Identifier. The AHA data surveyed on average 6266

hospitals a year from 2012 to 2016 and identified on average 107 GPOs every year. Most of

these GPOs were small GPOs that were used by hospitals for ad hoc purchases. We integrate

data from the four data sources (i.e., the ASHP and FDA shortage lists, Medicare PUP, and

AHA data). In this data integration, we focus on U.S. healthcare providers who participate

in Medicare, and drugs that are listed on Medicare Part B drug ASP file.

Since the data integration only matches about 10% of the physicians to GPOs. To match

the remaining 90% of the physicians to GPOs, we test three common supervised learning

methods: random forest, support vector machine, and neural network (multi-layer perceptron

classifier), with their parameters tuned through cross validation. The features used in the

classification include state, provider type, place of service, entity code, average Medicare

allowed payment amount, average submitted charge amount, and average Medicare payment

amount. We encode categorical variables by one-hot encoding. As noticed in previous

studies as well as in our own data analysis, physicians often purchase a drug through a single

GPO while using other small GPOs for ad hoc and one-time purchases (e.g., [ 182 ] and [  183 ]

stated that healthcare providers “route most of their purchases through a single national

alliance” and “utilize (another) only for specific contracts in limited supply areas”). Thus,

for each physician in the AHA hospital–GPO affiliation data, we identify the major GPO

the physician uses (i.e., the one with the most frequent usage and largest purchase volume)

and use it as the physician’s GPO label.

As a common procedure, we normalize all features before the classification. Since the

samples are unbalanced, we further adjust the sample weights of the training data to be
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inversely proportional to class frequencies when applicable. For each drug, we use five-fold

cross validation to find the best tuning parameter values under a learning method, and then

obtain the prediction accuracy with the best performing parameter values. The prediction

accuracy is computed as the fraction of correct predictions (then averaged across all shortage

drugs). For drugs with overly small training samples (i.e., training samples with less than

20 data points), we do not cross validate them but instead set appropriate tuning parameter

values for them.

Our testing shows that the accuracy measures of random forest, support vector machine,

and neural network are 46.6%, 49.2% and 48.0%, respectively. We thus adopt support vector

machine since it has the highest accuracy. Through the data classification process, we are

able to match all physicians to GPOs.

C.6 Proof of Proposition  4.6.1 

We first note that GPOs’ price consciousness, g(n, β), is fixed under fixed n and β. Thus,

all the original theoretical results hold except when we study the impacts of n and β. In

other words, the existence and uniqueness of the equilibrium and the impacts of a, b and θ

are examined with respect to fixed n and β (i.e., to examine the impact of a parameter, we

have varied one parameter at a time), and hence the corresponding results stay the same. For

the impacts of n and β, we first note that the impact of n and β on the equilibrium wholesale

price and shortage under AWP and the impact of β under ASP can be straightforwardly

shown by using the chain rule. We thus omit the details. We next analyze the impact of n

under ASP. Let

h(n, β) = {(θ/n− g(n, β))[(1− b)w − a] + (θ − g(n, β))w}E{[(1− b)w − a]ϵ ∧ d}

− d(θ − g(n, β))wF̄ (d/((1− b)w − a))

be the left hand side of the first order condition under ASP. Furthermore, with slight abuse

of notation, let g = g(n, β) and let

h(n, β, g) = {(θ/n−g)[(1−b)w−a]+(θ−g)w}E{[(1−b)w−a]ϵ∧d}−d(θ−g)wF̄ (d/((1−b)w−a)).
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Then by the rule of total derivative and chain rule, we have

∂h(n, β)

∂n
=

∂h(n, β, g)

∂n
+

∂h(n, β, g)

∂g

∂g(n, β)

∂n
.

One can verify that

∂h(n, β, g)

∂n
|w=ws = −(θ/n2)[(1− b)ws − a]E{[(1− b)ws − a]ϵ ∧ d} ≤ 0,

∂h(n, β, g)

∂g
|w=ws = −(1− 1/n)θ[(1− b)ws − a]2E{ϵ ∧ d/[(1− b)ws − a]}/(θ − g)|w=ws ≤ 0,

and by our assumption,

∂g(n, β)

∂n
≥ 0, so

∂h(n, β)

∂n
|w=ws ≤ 0.

Furthermore, it is straightforward to verify that ∂h(n, β)/∂w|w=ws < 0. An application of the

implicit function theorem shows that the equilibrium wholesale price under ASP decreases

in n.

Since the equilibrium shortage status depends on the equilibrium supply E[(1−b)ws−a],

which further depends on ws when a and b are fixed, the equilibrium shortage increases as

n increases.
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