
FUZZING DEEPER LOGIC WITH IMPEDING FUNCTION
TRANSFORMATION

by

Rowan Hart

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science

Department of Computer Science

West Lafayette, Indiana

December 2022

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Antonio Bianchi, Chair

School of Computer Science

Dr. Berkay Celik

School of Computer Science

Dr. Dave (Jing) Tian

School of Computer Science

Approved by:

Dr. Kihong Park

2

Dedicated to Kerry Brock, who brought me old printers for Christmas and set me on the

path towards science, and to Evelyn Doster, who made this possible from beginning to end.

3

ACKNOWLEDGMENTS

Xingman Chen, Alex Lin, and Connor McMillin conceptualized much of what would be-

come this work, and Michael Tompkins took equal part in completing it. Thank you also to

Antonio Bianchi and Fish Wang for their advice, guidance, and expertise.

Special thanks to Bader AlBassam, who introduced me to computer security and CTF,

and has lent a hand every step of the way.

4

TABLE OF CONTENTS

LIST OF TABLES . 8

LIST OF FIGURES . 9

ABSTRACT . 10

1 INTRODUCTION . 11

1.1 Prior Work & History . 11

1.1.1 Static Analysis . 11

Historical Methods . 12

Malware-motivated Advancement . 13

Compiler-based and Satisfiability Theory 15

1.1.2 Symbolic Execution . 16

Human-directed systems . 17

Abstract methods . 18

SMT and Boolean Satisfiability solvers 20

Scaling symbolic execution . 23

Modern symbolic systems . 25

1.1.3 Taint Analysis . 29

1.1.4 Fuzzing . 31

Generative Fuzzing . 32

Mutational Fuzzing . 35

Hybrid fuzzing . 41

1.1.5 Prior Work Summary . 43

2 SYSTEM . 44

2.1 Direction . 44

2.1.1 Impeding function Criteria . 48

2.2 Research Questions . 51

2.2.1 RQ1: How common are impeding functions in real-world code? . . . 51

5

2.2.2 RQ2: Can impeding functions be identified in real-world binary code? 53

Stage 1: Stuck point identification 54

Stage 2: Identifying input-consuming functions 58

Stage 3: Return values causing stuck points 63

2.2.3 RQ3: How should impeding functions be modified? 63

Stage 4: Patch synthesis . 65

Modifying return value distribution 66

Replicating memory behavior . 69

2.2.4 RQ4: How can modifications, once decided upon, be applied to a binary? 70

2.2.5 RQ5: How can modifications to an impeding function be validated for

soundness and improvement to fuzzing? 71

3 EVALUATION . 72

3.1 Best Practices . 72

3.1.1 Comparison Metrics . 72

3.1.2 Seed Selection . 76

3.1.3 Evaluation Time and Repetitions . 76

3.1.4 Fuzzer Configuration . 77

3.1.5 Datasets . 77

3.2 Testing Methodology . 79

3.2.1 Comparison Metrics . 79

3.2.2 Dataset . 80

3.2.3 Seed Selection . 81

3.2.4 Evaluation Time and Repetitions . 82

3.2.5 Fuzzer Configuration . 82

3.3 Test Results . 83

3.3.1 Coverage . 83

3.3.2 Impeding function Identification . 90

3.3.3 Crashes . 95

3.3.4 Case Study . 97

6

4 FUTURE WORK . 101

4.1 Additional Evaluation . 101

4.2 Buffer Analysis . 101

4.3 De-Simplification . 102

5 CONCLUSIONS . 104

5.1 Contributions . 104

5.2 Takeaways . 104

REFERENCES . 106

7

LIST OF TABLES

2.1 Table of keywords and frequency of appearance in 1000 samples of C code from
the Debian sources repository containing 107071 functions. 52

3.1 Table of maximum coverage gained by patched program through a single runtime. 88

3.2 Impeding functions reported by CodeQL compared to REFACE for PPMS . . . 91

3.3 Impeding functions reported by CodeQL compared to REFACE for LSIMP . . . 92

3.4 Impeding functions reported by CodeQL compared to REFACE for PKK Steganog-
raphy . 93

3.5 Impeding functions reported by CodeQL compared to REFACE for CGC Symbol
Viewer CSV . 94

8

LIST OF FIGURES

3.1 An example control flow graph to illustrate various coverage metrics. 74

3.2 Newly discovered inputs added to the AFL++ queue over time. 84

3.3 Newly discovered coverage and stuck points. 85

3.4 Newly discovered input receiving and stuck point creating functions over time. . 86

3.5 Newly discovered candidate functions over time. 87

3.6 Coverage of original binaries compared to variant binaries over time. 89

9

ABSTRACT

Fuzzing, a technique for negative testing of programs using randomly mutated or gen-

erated input data, is responsible for the discovery of thousands of bugs in software from

web browsers to video players. Advances in fuzzing focus on various methods for enhancing

the number of bugs found and reducing the time spent to find them by applying various

static, dynamic, and symbolic binary analysis techniques. As a stochastic process, fuzzing is

an inherently inefficient method for discovering bugs residing in deep logic of programs due

to the compounding complexity of preconditions as paths in programs grow in length. We

propose a novel system to overcome this limitation by abstracting away path-constraining

preconditions from a statement level to a function level by identifying impeding functions,

functions that inhibit control flow from proceeding. REFACE is an end-to-end system for

enhancing the capabilities of an existing fuzzer by generating variant binaries that present

an easier-to-fuzz interface and expands an ongoing fuzzing campaign with minimal offline

overhead. REFACE operates entirely on binary programs, requiring no source code or sym-

bols to run, and is fuzzer-agnostic. This enhancement represents a step forward in a new

direction toward abstraction of code that has historically presented a significant barrier to

fuzzing and aims to make incremental progress by way of several ancillary dataflow analysis

techniques with potential wide applicability. We attain a significant improvement in speed

of obtaining maximum coverage, re-discover one known bug, and discover one possible new

bug in a binary program during evaluation against an un-modified state-of-the-art fuzzer

with no augmentation.

10

1. INTRODUCTION

1.1 Prior Work & History

Fuzzing, static and dynamic analysis, and symbolic execution fields have deep prior work

to draw on and learn from when considering approaches for enhanced bug finding. Our

approach draws on all of the following sub-fields of binary security research, therefore it is

important to understand the strengths, weaknesses, and direction of each. At their core,

every method has the goal of finding defects in software by improving in some aspect of

analysis, but there are highly varied methods for approaching the problem.

1.1.1 Static Analysis

The concept of “static analysis” is broad, but can generally be defined as any software

analysis that does not execute the code being analyzed. Common modern static analyses

are Control Flow Graph (CFG) construction, variable recovery, and decompilation. The first

decompiler implementing these techniques was written by Housel [1] at Purdue university,

a very rough prototype leveraging an Intermediate Representation (IR), CFG construction

and analysis, as well as dead code elimination and optimization. Mention of static analysis

by name in literature first occurs circa 1975 with a focus on data flow of programs [2] for

both software reliability [3] and program security [4]. The bulk of this work was focused

on FORTRAN [5] programs. Simultaneously, Cousot’s field-defining paper which originated

the term “Abstract Interpretation” [6] was released. This paper defined several critical

constructs to program analysis, notably the use of a lattice-based approach for analyzing

program flows. Their assertion that program context is a complete lattice is foundational for

modern compiler techniques implemented in frameworks such as LLVM [7] as well as pro-

gram and binary analysis tools such as MAYHEM [8] and BAP [9]. Abstract intepretation

formed a basis for future static analysis techniques as a generalization of several methods

for analyzing programs, including global data flow analysis, type verification, type discovery,

symbolic evaluation, and verification of program correctness.

11

Historical Methods

These foundational static analysis techniques focused primarily on source code. From

1970-90, this was primarily FORTRAN and PASCAL code. By the mid 1990s, static analy-

sis of binary programs had become a prominent topic. In particular, Cifuentes [10] pioneered

data and code flow based decompilation approaches in 1995, unifying several static analysis

techniques into a useful C decompilation tool dcc. Cifuentes also pioneered several other

areas. Slicing leverages data and control dependency analysis to create a minimal set of

binary instructions, or slice of a program either terminating or beginning at a particular

code location. Soon after her work on decompilers, Cifuentes published a technique [11] for

performing slicing intra-procedurally, or within one function. Landi in 1992 [12] expanded

the area of alias analysis, proving that context-sensitive static analysis is an undecidable

problem and at best NP complete under many simplifying assumptions. As Landi puts it,

“this is an extremely negative result”, one that the last two decades of static analysis re-

search have focused on. Despite provable properties about the processes that make up static

analysis of programs, heuristics are able to solve many problems in a vast majority of cases

in static analysis.

In the late 1990s thorough approximately 2005, there was significant effort in heuristic

and case-specific methodologies for analyzing binary programs. The two main frameworks

for analysis, Abstract Interpretation and Dataflow Analysis had been solidified enough to

become generally useful, so additional effort was made to solve less broad, more practical

problems. CFG construction was greatly expanded by Theiling [13] with the introduction

of bottom-up and iterative algorithms for construction and enhancement of graphs without

relying on symbols or debug information. One motivation for this is the accelerated spread of

malware [14] at this time, the analysis of which necessitated advancements in decompilation,

debugging, and static analysis. Compounding this need is the lack of availability of dynamic

techniques for malware analysis prior to the wide introduction of Virtual Machines (VMs)

[15]. Cifuentes et al. [16] implemented a generalized technique for recovering jump tables in

binaries using slicing and constant propagation. Further enhancements to slicing by Kiss et

12

al. [17] allowed size reductions of binaries under analysis, speeding up further manual static

analysis and enabling slicing inter-procedurally, building on the earlier work of Cifuentes.

Harris et al. [18] focused on enhancing the ability of static analysis tools to handle stripped

binaries where symbols and debug information have been completely removed. This period

marked growth in specific areas, which would eventually be merged to create new and more

capable tools for researchers and industry.

Malware-motivated Advancement

In 2007, Hex-Rays released the decompiler module for IDA Pro [19]. This decompiler was

the first example of a very widely adopted, production quality decompilation engine and in-

corporated many of the recent enhancements to the static analysis process. Guilfanov wrote

“it heavily uses the data-flow analysis methods to analyze the program” and envisioned a

future where it “is capable of answering questions about the variable ranges, code and data

coverage...check if some invariants hold at the given program locations...report about not

only trivial buffer overflows but also other logic flaws”. Guilfanov would prove prophetic:

the next decade gave rise to rapid innovation in binary static analysis, in particular practical

applications of existing methods to new and continuing problems: malware and ever expand-

ing technology and internet sectors. Kruegel et al. [20] introduced several techniques for

improving analysis of stripped binaries. The correlation between papers focusing on malware

analysis and focus on stripped or obfuscated binaries also lends itself to the eventual goal

of many modern binary analysis frameworks: to make less assumptions about the target

binary. Less assumptions about the binary means a higher requirement to correctly and

safely analyze it, but allows the techniques used to be more generally applicable. This time

period also saw greatly increased interest in use of static analysis for vulnerability detec-

tion. Static Application Security Testing (SAST) tools existed for quite some time, but were

highly focused on auditing source code, not binary applications. Cova et al. [21] presented

a groundbreaking work that leveraged static and symbolic techniques to find vulnerabilities

in binaries in 2006. We focus here on the static aspects of this approach, and discuss the

13

symbolic aspects in Subsection 1.1.2 . Cova et. al use primarily linear sweeps to discover

code in binary blobs in their work. Call and jump resolution, including jump table resolu-

tion resembling the algorithm given by Cifuentes, and constant propagation also put forth

by Cifuentes are used to construct a highly accurate CFG. Cova et al. go a step further to

refine the CFG by detecting loops and recursive functions. Finally, they use the binary’s

structures to detect library function use. The core of their approach to finding vulnerabilities

centers on using symbolic execution to add program context to the static view of the binary

given by the CFG. This work was one of the first to both merge many analysis techniques

into a single tool, and one of the first to attempt analysis for vulnerability discovery across

many vulnerability categories.

Several other works such as BitBlaze [22] and Jakstab [23] attempted a similar task, each

with various implementation differences and goals. For example, BitBlaze implemented a

new weakest-precondition analysis that allows for correctness proofs about program behavior

to be tested statically. BitBlaze focused primarily on correctness assertions about behavior

than on direct bug-finding, but reached the same result: incorrect behavior is indeed a bug.

Jakstab adopted a less academic approach and instead aggressively optimized lifted IR code

to produce the smallest possible CFG to analyze. CodeSurfer/x86 [24] debuted two highly

impactful static analysis techniques. The first, value-set analysis (VSA), first put forth by

Balakrishnan et al. efficiently tracks “an over-approximation of the set of values that each

data object can hold at each program point” allowing fast and accurate data-flow analysis.

More importantly, this analysis is context-sensitive. Codesurfer/x86 also utilized the idea of

affine relationships to determine additional information about the value-sets of registers at

code points. Finally, CodeSurfer/x86 was one of the first projects along with the work by

Cova et al. to implement indirect jump and call resolution; a key step in inter-procedural

analysis. Without indirect call resolution, the target of any call to a location residing in a

register or memory value cannot be determined, and propagation of information through a

call stack or via context sensitive path operations is much more difficult or less accurate.

14

Compiler-based and Satisfiability Theory

The Cyber Grand Challenge [25] (CGC) and the new concept of the ”Cyber Reasoning

System” (CRS) gave rise to many tools that leveraged and improved existing static analysis

techniques as well as facilitated the creation of entirely new techniques. The winner of CGC,

Mayhem [8] , was based on the BAP [9] tool, due to Brumley et al. BAP implements a much

less recent technology, syntax-directed analysis. This analysis was discounted in the 80s due

to the difficulty of representing all effects of an instruction accurately. BAP solved this prob-

lem by representing all side effects explicitly. It provides most of the previously mentioned

static analysis tools such as CFGs and VSA. Like its predecessor BitBlaze, BAP places great

emphasis on the weakest precondition analysis problem, but extends prior functionality via

Satisfiability Modulo Theory (SMT) solvers. These solvers allow greater flexibility of for-

mal verification of code functionality. BAP also implements SSA forms in its Intermediate

Language (IL), a technique in which values are assigned to only once. This was not a novel

idea, SSA form and algorithms for value numbering are due to Cytron [26] and most recently

Braun [27]. BAP implements algorithms for the latter including an algorithm for φ-node

reduction using Strongly Connected Components (SCCs) atop the CFG. This method of

value numbering is highly advanced and efficient, but relies on solid underpinnings of CFG

consistency and completeness. The viability of this approach demonstrates the leaps and

bounds of static analysis evolution to this point.

Static analysis research has slowed as of 2022. Binary application security research has

pivoted in directions that may in fact be static but do not fit the prior trends. Use of

AI for static analysis by developing embeddings such as code2vec [28] and creating feature

selection models [29] bears little resemblance to current formal-methods based approaches,

yet it presents an exciting direction to expand capabilities through innovation in other ar-

eas. Other research seeks to refine existing technologies, such as the BinCAT [30] project to

leverage older Abstract Interpretation techniques to implement bit-level precision for value

analysis. Blending of binary analysis technologies began to accelerate with CGC-adjacent

projects. For example, modern analyses such as Veritesting [31] leverage static analysis dur-

15

ing dynamic symbolic dynamic analysis to enhance efficiency and accuracy. Static analysis

still forms the core of binary analysis, and will for the foreseeable future.

1.1.2 Symbolic Execution

Symbolic execution is a sub-category of abstract interpretation, and is a set of methods

for determining information about possible executions of a program. Symbolic execution

was first proposed in the 1970s by King [32] [33] for the purpose of verifying the correctness

of programs. Essentially, the technique translates the sub-expressions of each instruction

executed in a program into a symbolic expression, the result of which may take on many

possible values. Likewise, control flow transfers that depend on these expressions is evaluated

such that all possible paths may be analyzed. For example, consider the small C program

in Listing 1 .

1 int main() {
2 int32_t val;
3 read(0, &val, sizeof(val));
4

5 if (val < 0) {
6 printf("Too small!\n");
7 exit(1);
8 }
9

10 if (val > 10000) {
11 printf("Too big!\n");
12 exit(1);
13 } else if (val > 1000) {
14 printf("Victory!\n");
15 exit(0);
16 } else {
17 printf("Too small!\n");
18 exit(1);
19 }
20 }

Listing 1: Example of a simple program for symbolic execution

16

The variable val declared on line 2 under symbolic execution would be represented as

a symbolic variable of size 4 bytes, which we will call V(val). The value is set via a read

call, which takes user input. In symbolic execution, user input need not be provided, and

the value may be left as a purely symbolic value. This means V(val) may take on any

value that can be represented in its 4 byte size. At line 5, val is compared against 0, and a

branch is taken depending on that comparison. Herein lies the crux of symbolic execution:

instead of assigning a nonnegative or negative value to val, the state of the execution will

be duplicated. In one state, the branch is taken, and thus V(val) must have a negative

value. This is represented by applying a constraint that V (val) < 0 to the “split state”

which allows the state to embody restrictions on the data it contains while not assigning any

specific value to the symbolic variable V(val). In the second state, the branch is not taken,

and a different constraint V (val) ≥ 0 is applied. This process continues forward from the

program start point, and after execution of this example four states will exist with various

constraints and “deadend” locations:

1. V (val) < 0, deadends at line 7.

2. V (val) ≥ 0 ∧ V (val) > 10000, deadends at line 12.

3. V (val) ≥ 0 ∧ V (val) ≤ 10000 ∧ V (val) > 1000, deadends at line 15.

4. V (val) ≥ 0 ∧ V (val) ≤ 10000 ∧ V (val) ≤ 1000, deadends at line 18.

Human-directed systems

Various techniques exist to process and simplify constraints, notably the use of Satisfiabil-

ity Modulo Theory (SMT) solvers such as Z3 [34], but early executors relied on more simple

approaches. In this contrived example, the constraints V (val) ≤ 10000 ∧ V (val) ≤ 1000

could be simplified to simply V (val) ≤ 1000. Using their symbolic execution engine EF-

FIGY, King [35] points out that symbolic execution can be viewed as a tree of possibilities

beginning from a program’s entrypoint. However, EFFIGY was very simple, required human

interaction, and lacked a complex memory model. Despite these limitations, it paved the

way for future work such as SELECT [36]. SELECT used a similar model of interactive

17

debugging of LISP programs to achieve formal verification of small parts of symbolically

executed programs. It allows a user to specify “assertions” in the program that can then

be verified symbolically. For example, in the above example in Listing 1 , an assertion that

execution will always terminate with a call to exit could be verified. From a security per-

spective, assertions about insecure conditions such as buffer overflows, out of bounds reads

or writes, or other exploitation primitives are most interesting. Unlike EFFIGY, SELECT

implements a feature that most modern security-oriented symbolic execution systems in-

herit: input data generation. By solving the constraints placed on input data, SELECT is

able to return an input that causes program execution to proceed down a particular path,

passing specific checks and taking specific branches. Notably, SELECT is only able to solve

for inputs that can be expressed as simple systems of linear equations, and cites “techni-

cal limitations in present-day theorem-proving techniques” as a major obstacle to effective

use of symbolic execution. SELECT introduced several other key ideas that would inform

symbolic execution research in the future. First, recognition of the state explosion prob-

lem. State explosion occurs when repeated branching causes an exponential increase in the

number of active program states. A common pattern leading to state explosion presented

by the SELECT authors is a loop that executes a symbolic number of iterations. SELECT

handles this by setting a maximum number of iterations, but the authors recognize this as

an imperfect solution. Next, they present an idea of what is now commonly referred to

as “symbolic procedures” where a known function can be skipped during symbolic execu-

tion. They suggest an “attempt to characterize each subroutine invoked...whenever that

module is invoked it can be replaced...by those input/output specifications.”. DISSECT, due

to Howden [3] is stated by the author to be similar to SELECT, except that it presents a

programming API for writing “simple analysis procedures” over the programs it is executing.

Abstract methods

Cousot [6] et al. mention in their field-defining work on Abstract Interpretation is a

superset of symbolic evaluation, among other symbolic techniques. Abstract Interpretation

18

is a process by which a program’s real representation is transformed in a (usually simpli-

fied) representation where properties may be computed efficiently and information about the

real program can be obtained. Fundamentally, the technique seeks to represent a semantic

property of a program via set relations from a concrete set to an abstract one. In a later

simplified presentation by Cousot [37], the idea is presented more succinctly as represent-

ing program executions as “trajectories” then utilizing Abstract Interpretation to find an

abstraction of the program semantics that covers all “trajectories”. Finally, the abstraction

is checked against various error conditions such as NULL pointer dereferences in a process

known as “bounded model-checking”. The example provided in the original paper describes

a useful program analysis technique. Given a program P , consisting of instructions I1...n,

transform each aritmetic operation on a number into a simpler arithmetic operation on the

“sign” of the number. In Cousot’s example, −1515 ·17 =⇒ −(+) · (+) = (−), i.e. the result

of this computation must be negative. In a program where a negative result could create an

error condition, for example a negative array index, this Abstract Interpretation could allow

for bug checking in a significantly more efficient manner. A key property of Abstract Inter-

pretation is the “fundamentally incomplete’ results...allows the programmer or the compiler

to answer questions which do not need full knowledge of program executions”. In nearly

every paper concerning symbolic execution after Cousot’s work, Abstract Interpretation is

mentioned as a superset of symbolic execution.

A follow-up to their earlier paper on EFFIGY, King et al. [38] expands on several

previously glossed-over concepts. They reiterate that generally, symbolic execution per-

forms symbolic operations during evaluation of symbolic expressions and during conditional

branching. They also note that symbolic expressions are created during any input to the

program, and expand on earlier definitions of input to include uninitialized values, input

from file user input or networks, randomness, and more. The authors identify the idea of

exhaustive symbolic execution, where a program is completely explored and every possible

state in the program is identified. They note that this is an extremely intensive process

over all but the simplest programs, as it requires not only exploring all possible control flow

paths in the program, but every control flow point with each possible preceeding path as

19

well. Symbolic execution experienced relatively few advancements after this until the early

2000s, seemingly primarily due to the lack of advancements in efficient theorem proving that

made the relatively ineffective linear systems solvers leveraged by SELECT and EFFIGY

less effective than necessary to tackle “realistic” programs.

SMT and Boolean Satisfiability solvers

Microsoft Research (MSR) led the advancement of symbolic execution advancement start-

ing with Ball [39]’s 2003 paper. Ball created several key advancements in symbolic execution

that are still considered state of the art. They analyze C programs, as opposed to the ear-

lier systems discussed which analyze ALGOL, FORTRAN, and other similar languages. To

understand the significance of this choice, we must first understand the aliasing problem.

Aliasing occurs in languages with pointers, where a value refers to a location in memory,

when multiple pointers refer to the same location in memory. This presents problems when,

for example, one pointer is used to write to the referenced memory. The other pointer has

no “knowledge” that this has occurred, and in an analysis setting it is difficult to determine

as well. C also allows pointers to code, as well as multiple layers of indirection, which both

compound the aliasing issue. Finally, C is the lingua franca of modern systems, and is often

used as an additional Application Binary Interface (ABI) or as a wrapper to external ABIs.

Ball also introduced the use of boolean satisfiability as an abstraction for systems, a method

reminiscent of Cousot’s Abstract Interpretation, instead of using simple linear equations.

To facilitate this, Ball employs Satisfiability (SAT) solvers, a solution now employed in ev-

ery usable symbolic execution engine. Ball’s system uses three steps to accomplish another

critical goal of symbolic execution: full automation. Whereas early systems like SELECT

required, according to the author, frequent intervention by a human analyst, Ball’s system

is able to accomplish the following in an automated fashion.

20

First, given a C program P , is transformed into a boolean program BP in which “every

feasible execution path of P is a feasible execution path of BP”. We examine an example

buggy program P and its BP equivalent in Listing 2 from Ball’s paper.

1 // P
2 void partition(int *a, size_t n) {
3 int pivot = *a;
4 int tmp = -1;
5 size_t lo = 1;
6 size_t hi = n -1;
7

8 while (lo <= hi) {
9 // missing check:

10 // lo <= hi
11 while (*(a + lo) <= pivot) {
12 lo++;
13 }
14

15 // missing check:
16 // lo <= hi
17 while (*(a + hi) > pivot) {
18 hi--;
19 }
20

21 if (lo < hi) {
22 tmp = *(a + lo);
23 *(a + lo) = *(a + hi);
24 *(a + hi) = tmp;
25 }
26 }
27 }

1 bool check(bool a, bool b) {
2 if (a) {
3 return true;
4 } else if (!a && b) {
5 return false;
6 } else {
7 return undetermined;
8 }
9 }

10

11 // BP
12 void partition(int *a, size_t n) {
13 bool lt = true;
14 bool le = true;
15 bool al = undetermined;
16 bool ah = undetermined;
17

18 while (le) {
19 while (al) {
20 lt = check(false, !lt);
21 le = check(lt, !lt || !le);
22 al = undetermined;
23 }
24

25 while (ah) {
26 lt = check(false, !lt);
27 le = check(lt, !lt || !le);
28 ah = undetermined;
29 }
30

31 if (lt) {
32 al = !ah;
33 ah = !al;
34 }
35 }
36 }

Listing 2: Example of a program P and its boolean program equivalent BP

21

This methodology works by translating the boolean relationships (such as lo <= hi)

into boolean variables, which can then be solved for by a boolean SAT solver to determine

the set of reachable states and the values of each boolean variable that allows those states to

be reached. They use reachability to narrow the amount of actual symbolic execution that

must be performed, as the constraint solving during symbolic execution is the most expensive

part of the execution process. Finally, they perform symbolic execution to explore the tree

of possible states, similar to the idea put forth by King. From this process, they obtain both

a feasibility result, which describes the full set of paths that can actually execute, and a set

of inputs that cause each feasible path to execute. They use these feasible paths to identify

that due to missing bounds checks, there are paths that result in an error state (which in

this case results in an array that is not partitioned correctly). The input generation enables

real execution testing of this error condition to more easily fix the problem. In addition, the

transformation to boolean variables allows testing of this program, which has nested loops

and comparisons, to avoid state explosion by computing relationships as invariant at each

program point.

Ball’s work was a huge step forward for symbolic execution methods, but had a large

caveat of requiring significant high level program information and formal specification of er-

ror conditions of the code under test. Balakrishnan and Reps [40] cite the “growing need to

tools that analyze executables” as a primary motivation in their work on value-set analysis,

a method described as static that nonetheless contributed many ideas to symbolic techniques

covered further on. As mentioned previously, the largest problem for symbolic execution is

state explosion, Value-set analysis creates an abstraction of a program’s data into value-sets,

which describe the data more efficiently, although it provides an over-approximation. It also

introduced the use of widening and narrowing operations on memory accesses to abstract

memory locations as well as registers, a technique used by more modern analysis engines.

22

Scaling symbolic execution

CUTE [41] was one of the first concolic execution engines, a strategy that will be dis-

cussed later in Subsection 1.1.4 . It used a novel approach to symbolic execution that was

tailored to find bugs as opposed to earlier systems that were primarily concerned with cor-

rectness checking. Similarly to Ball’s work, CUTE uses symbolic analysis of constraints on

reachable paths in the program under test. It has two key differences, however. First, CUTE

only observes constraints along a specific path triggered by an existing input, rather than

explore the program’s state space exhaustively. Second, instead of discovering new paths

forward via exploration, it only observes the path that was already executed. Once the

constraints are observed, CUTE first chooses a path constraint and inverts it. This creates

a new path that will branch at a particular point in the program’s execution. It then uses

this new set of path constraints – including the just-inverted constraint – and solves it to

identify an input that will trigger this new path. This method is known as Dynamic Symbolic

Execution (DSE) or dynamic symbolic tracing, as it uses the symbolic components of “pure”

symbolic execution to observe a dynamic execution of a program. Interestingly, CUTE does

not use boolean satisfiability as an abstract representation of the program. Instead, it uses

a linear constraint solver and falls back to using concrete values from DSE instead of all

symbolic variables when the constraint solver is unable to solve or simplify a variable. The

CUTE authors present several additional optimizations to linear solving. It uses heuristics

to check whether it needs to run the solver at all, which they claim reduces solves by 60-95%

depending on the program. They also eliminate common sub-expressions of constraints and

uses an “incremental” approach to solving. All of these optimizations are present in modern

well-supported solvers, but were novel ideas for their time. It is important to remember that

constraint solvers have essentially been used orthogonal to their intended purpose when ap-

plied to program analysis. Finally, CUTE applies pointer analysis techniques in an attempt

to mitigate the aliasing problem, although it should be noted that their approach requires

source code.

23

Shortly after CUTE, Xie et al. presented Saturn [42], a system that uses prior ideas from

other symbolic execution systems at larger scales and on realistic programs. Saturn makes

several notable contributions. First, it applies the use of SAT solvers to analyzing locking

errors, a notoriously difficult class of bug to analyze. As the authors point out, “locking is

always a flow sensitive and sometimes a path sensitive property, programmers store locks in

data structures, pass locks as arguments, use complex tests to decide when and where to

acquire and release locks, and so on”. Saturn performs symbolic execution in a very similar

way to Ball, but augments the translated code with control flow graph information. This

allows further constraint of possible control flow transfer locations following a just-executed

block of code. The system primarily aims to reduce the number of symbolic queries to the

SAT solver, and notes as prior research does that this is the most expensive component

of the symbolic analysis process. Also unlike the work due to Ball, Saturn is able to per-

form analysis interprocedurally. For many functions, it uses a function summary to model

the behavior of a function without performing actual expensive symbolic execution of the

function. This greatly improves the speed of symbolic execution by reducing the amount of

actual symbolic execution that needs to take place. In addition, the analysis is made path

sensitive by incorporating the state history. The authors note that, for example, a try_lock

operation is allowed to fail, and whether it does depends on the current state of the lock.

Following a failure to lock in a try_lock operation, an error condition may or may not be

encountered, and prior state is required to determine whether in fact an error condition is

present. Saturn claims that it was “the most successful bug detection tool for Linux locking

errors” at the time of publication.

Engler et al. introduced under-constrained symbolic execution [43] to tackle scalability

problems with symbolic execution. Under-constrained symbolic execution makes one small

but impactful change to typical symbolic execution such as that done by CUTE. A symbolic

variable is either “normal” or “under-constrained” and errors involving “under-constrained”

variables are only reported if the solver is able to show that the error occurs for all values of

that variable. Otherwise, a new constraint that the variable does not take on an error-case

value is added to the solver and execution continues. This coerces symbolic execution from

24

what is known as a may analysis, where any state that can possibly violate some assertion is

in error, to a must analysis, where only states that are guaranteed to violate the assertion are

in error. The authors implemented a tool called EXE that performs this under-constrained

execution and used it to analyze Linux kernel drivers in isolation – a very interesting appli-

cation of symbolic execution to an existing domain, but in a novel way.

Modern symbolic systems

One of the most famous symbolic execution engines is KLEE [44] due to its effective,

fully automated approach to symbolic execution and bug finding. KLEE was presented by

the authors of EXE, and expands on previous work in several ways. First, the authors use a

“compact state representation” to mitigate the problem of state explosion not by reducing

the number of states, as many other works attempt to do, but by reducing the size of each

state to allow more states to fit in memory. This is an important contribution, and represents

a change in thinking with respect to state explosion where it seems to become clear that the

issue cannot be effectively mitigated by path pruning alone. This state representation uses

copy-on-write memory for heap objects, not simply memory pages, to decrease the amount

of memory that must be copied when states split. Like previous works, the KLEE authors

place significant emphasis on the cost of constraint solving. KLEE uses the STP [45] solver

with several optimizations based on compiler theory as well as caching. Expression rewrit-

ing for common arithmetic operations such as converting power of 2 to left shift, constant

folding, and more. In addition, KLEE utilizes optimization of constraints to eliminate re-

dundant constraints on paths. In the authors’ example, if a variable has a constraint such

as j < 10, and subsequently has another constraint such as j == 5, the first constraint

can be eliminated. The authors claim a massive 95% reduction in the number of queries

to the constraint solver, which reduces the execution time commensurately. Finally, KLEE

presents a number of non-theoretical improvements to the engineering implementation of

constraint solving systems. In particular, the authors pay attention to the simulated exe-

cution environment including system calls, the filesystem, and other external interactions.

25

KLEE allows mixed concrete and symbolic data in files, which permits more complex system

configurations than other methods that either only use concrete data and perform DSE, or

that use only symbolic data and experience a greater slowdown due to path explosion. The

largest drawback of KLEE’s implementation is the reliance on LLVM bytecode, which in

most non-trivial cases means that KLEE only works when source code is available.

SAGE [46], presented near the same time, is also a whitebox vulnerability finding system

that uses symbolic execution alongside fuzzing, which will be discussed in Subsection 1.1.4 .

Unlike KLEE, SAGE does not rely on information from source code to work, and instead

uses program tracing to generate path constraints. It is unspecified what tool SAGE uses to

perform tracing, but the authors note that the real difficulty in symbolic tracing arises from

the complexity of the underlying machine instructions. This is particularly problematic on

x86 platforms, and SAGE solves it by simply attempting to handle every case of the x86

instruction set exhaustively. SAGE also implements path constraint optimizations very sim-

ilar to those of KLEE. S2E [47] was another project with similar goals that achieved great

success by utilizing LLVM, like KLEE, and QEMU [48] to apply dynamic binary translation

to scale symbolic execution. While the primary contribution of S2E was engineering effort,

they made a significant contribution in recognizing that symbolic execution need not always

be active, hence selective symbolic execution. By selecting when to enable and disable sym-

bolic analysis, the expensive process can be restricted to a small area, allowing the rest of the

system under test to execute efficiently. While KLEE and SAGE pioneered the application

of symbolic execution to truly realistic binary programs, MAYHEM [8] brought the use of

symbolic execution to the mainstream. MAYHEM incorporates many advances. First, it

utilizes Microsoft Research’s Z3 as a symbolic engine [34], a decision that is now taken for

granted as Z3 incorporates a huge number of heuristics for very efficient expression simpli-

fication, especially over bitvectors, the symbolic data type typically used to model bits and

bytes of memory. Next, MAYHEM uses a large number of heuristics for path selection. This

is not necessarily a novel idea, but it reflects the reality that no algorithm will be able to

efficiently choose the best path in all cases. Instead, MAYHEM attempts to implement the

intuition that a human reverse engineer might use to analyze a binary to find likely bug loca-

26

tions. Next, the authors implement a unique memory model that makes all writes concrete,

but allows reads to be partially or fully symbolic. They also implement the aforementioned

value-set analysis in MAYHEM as a “preprocessing step” to utilizing Z3 to solve constraints

to determine memory locations, an especially expensive task. Finally, MAYHEM attempts

to determine whether expressions may be pointers to other data, and infers whether those

pointers may be corruptible. This is the final extremely unique feature of MAYHEM: after

determining that a bug may exist, MAYHEM attempts to synthesize a full exploit for the

program to prove its vulnerability.

This “full-chain” approach to using symbolic execution to discover bugs also appears in

two papers [49] [50] by the angr authors. The authors collect in essence, all previous work

in symbolic execution into a single extensible library that can be used to provide nearly

any of the previously discussed symbolic execution tactics. Of particular note is the careful

attention to indirect jump resolution, the multi-modal memory model, and the reasonably

complete system state capability for representing files and other external inputs. angr im-

plements DSE, Veritesting, under-constrained DSE, fuzzing with symbolic execution, static

analysis of control and dataflow, symbolic program states and environment simulation, de-

compilation, forward and backward symbolic execution and slicing, integration with various

levels of full system and userspace emulation, taint analysis, and more. Implementations of

more cutting-edge approaches are typically added to angr by the authors after their intro-

duction, so it represents a reasonable single source of truth for advancements.

Sydr [51] was introduced to empirically measure the effect of various symbolic execution

enhancements: “skiping non-symbolic instructions, AST simplification, path predicate slic-

ing, indirect jumps resolving, and handling multi-threaded programs”. Of these, only the

special attention paid to handling multi-threading was novel at the time of release. To handle

mutli-threading, the authors suggest implementation of a coherency model that implements

“symbolic context switching” to separate the execution of each thread, but fall short of im-

plementing a symbolic thread scheduler to explore possible data race vulnerabilities. SymCC

and the following work SymQEMU [52] implement one of the most recent advancements in

27

symbolic execution, purely working towards speed and scalability improvements. Instead of

using an offline tracing or taint system, or an IR to collect symbolic information, SymCC

compiles the handling of symbolic data directly into the target binary so that it can execute

with a significantly reduced performance penalty. SymQEMU does the same, but is able

to execute on black-box binaries. Despite using no new techniques aside from the imple-

mentation detail, SymCC and SymQEMU achieve incredibly strong results, which indicates

there is still room to make advances in the feasibility and general applicability of symbolic

execution through new applications of existing methods.

Chandra et al. presented Snugglebug [53], a tool that addresses slightly different analy-

sis goals to the exhaustive symbolic execution discussed previously. Snugglebug identifies a

problem with forward symbolic execution and the prohibitive cost of executing until a deep

vulnerability where the path is extremely long. This is a problem that KLEE and other

prior papers address in various ways, but all continue to suffer from the exponential nature

of path explosion without manual direction, despite heuristics and optimizations. Snuggle-

bug proposes a method for backward symbolic execution, where a particular code location

of set of locations is specified, and the tool attempts to determine reachability of the code

as well as derive external inputs sufficient to reach it. Their analysis targets highly complex

Java code expressing polymorphism, object oriented programming, and runtime side effects

by implementing “directed call graph construction”. This type of analysis, as mentioned pre-

viously, is known as weakest precondition analysis, to determine the over-approximated set

of inputs to reach a given location in a program. This type of backward symbolic execution

for weakest precondition analysis was also utilized by BAP and its derivative works.

Brucato et al. presented a method [54] for detecting input-parsing functions in programs

using symbolic execution. The authors use DSE over inputs that successfully pass parsing

checks as well as inputs that fail parsing checks and analyze the divergence between the

symbolic traces. Once a divergence is identified, the containing function may be marked as

a parser function and a set of instructions in the function is associated with the failure state.

Symbolic tracing is used once again to fix-up fuzzer inputs to pass checks identified in this

28

set of instructions. The intuition of this approach is remarkably similar to the approach

that will be explored herein, although the implementation is very different. The symbolic

approach taken by Brucato relies on user intervention and the availability of known positive

and negative test cases, so it is not suitable for scalable black-box analysis. The authors

note that despite “encouraging results”, there are significant limitations to the approach due

to the use of exhaustive symbolic execution.

1.1.3 Taint Analysis

Taint Analysis is a dynamic dataflow analysis technique in which data, which may

be memory, registers, external inputs, or results of system calls, are marked and tracked

(tainted) during the execution of a program. Typically, taint analysis focuses on the prop-

agation of this data after it is tainted, with an end goal of observing some or all data that

is affected by the tainted data. While general static dataflow methods have existed for

quite some time, as discussed in Subsection 1.1.1 , dynamic data flow methods remained

somewhat impractical until the industry and academic movement to C in the 1990s and the

introduction of analysis frameworks that could support taint tracking, which is necessarily

a very heavy-weight analysis, as it must track each “value” in the program or full system.

Denning proposed [4] a model in 1976 that has evolved into this understanding of taint

analysis. Denning proposes that within a program, down to the variable level of granularity,

information flow can be modeled as functions of transfer from one location to another. In

modern taint analysis systems, this flow is even more granular, even down to the bit level.

Valgrind [55], one of the most prominent taint analysis systems still in use, was presented

in 2005. It uses taint tracking over an IR lifted from machine code called VEX, and tracks

tainted data propagation through a program with bit-level granularity. It also uses highly

accurate representations of instructions to determine exactly what data is tainted after an

operation involving a tainted data source. The authors of Valgrind utilize it in a tool called

Memcheck, which uses taint analysis to determine the source of various memory errors. It

is a well-known and powerful tool not only for vulnerability discovery but for development,

29

and can reduce debugging time significantly.

Another tool, Dytan [56] is implemented not as a binary tool but as a library that is

used from the target program. Unlike Valgrind, which now provides a large API but was

initially designed mostly for command-line use, it was less opinionated and provided addi-

tional formal definitions of common taint analysis terms, including propagation policy, sink

and source, the authors also showed Dytan working on very large binaries such as Firefox.

Valgrind also works with Firefox as a target, but it is notable that within a short time

frame multiple teams saw enough value in efficient taint analysis to justify the creation of

both projects. Much more recently, efforts have begun to bear results that attempt to apply

taint analysis, which has generally been a theoretical static exercise or a mainly userspace

exercise, to full systems. DECAF [57] introduces a method for using QEMU’s TCG to ana-

lyze data taint in a full system via Virtual Machine Introspection (VMI). This effort required

significant innovation in accuracy and speed of propagating taint at a guest instruction level.

REDQUEEN [58]’s authors primarily designed it to accomplish goals in fuzzing, discussed

in the next section. However, the real innovation behind REDQUEEN was an improvement

in the mechanism for performing taint analysis. The authors of REDQUEEN specifically

discuss Valgrind as an effective approach to taint analysis that was far too slow for their

needs. Because fuzzing is a throughput-driven task, any process which reduces through-

put of fuzzing is an unacceptable tradeoff. Instead of using global or local taint tracking,

REDQUEEN adopts a method that is quite intuitive: changing small parts of the input to

determine whether the input corresponds to the state observed in the program. The authors

call this technique Input-to-State correspondence, an apt name. In contrast, a similarly timed

paper about Angora [59] details a fuzzer that does use byte-level taint tracking. However,

the Angora authors intentionally trade off taint tracking accuracy for increased speed by

scoping their use of taint analysis to a specific sub-problem. They use the information about

data flow of tainted input to determine which components of an input to the program must

be mutated to achieve additional coverage.

30

1.1.4 Fuzzing

Fuzz testing, or simply fuzzing, is a dynamic analysis technique where a program is

run many times with many different inputs to test program robustness against unexpected

external inputs. Fuzzing was initially conceived in 1962 as a method for testing the logic

of COBOL programs by Saiider [60], and generated “improper relations at random”. This

system also accepted specifications of the data to generate, an idea that would eventually

become structure-aware fuzzing. Several other researchers throughout the 1960s and 1970s

investigated approaches that resemble fuzzing. Burgess [61] used the term black-box testing

to refer to testing without visibility into the state of the software under test. Other works

instead utilized static analysis of the program under test to generate test inputs for func-

tional and robustness verification. This approach is now known as white-box testing. Shortly

following these works, Goodenough [62] showed that several metrics, including coverage, are

insufficient to fully test a program for problems. For example, they show that executing

a statement inside a loop only a single time will not uncover problems with the statement

occuring after many loop executions. This is intuitive, but an important idea to understand

further developments in fuzzing. Many such developments seek to expand the context under

which code is executed in order to discover further error conditions.

The actual term fuzzing was defined by Miller [63] in 1990, who pointed out that “while

formal verification of a complete set of operating system utilities was too onerous a task,

there was still a need for some form of more complete testing”. Miller and other UNIX

developers created a tool called fuzz that generated random data for input to system utili-

ties. Their goal, unlike the aforementioned COBOL-centric testing, was explicitly to crash

or hang programs to identify faults. This “first” fuzzer was extremely simple: it did not have

any feedback mechanism, which means the testing it was used for was truly black-box. This

paper was the first to demonstrate the extraordinarily wide applicability of such a simple

approach, crashing “24%-33%” of programs on each system. This is an important observa-

tion about fuzzing in general. The approach is very simple, even the most complex fuzzers

at their core are generating random data and attempting to overcome probability and cause

31

a crash. The list of observed weaknesses presented by Miller demonstrates the wide variety

of weaknesses fuzzing is able to discover. They note memory errors, improper use of library

functions, race conditions, and signedness bugs as common categories of weakness that fuzz

was able to find. Miller released a follow up paper [64] in 1995, extending the use of the

fuzz program to network and GUI applications, and introducing memory allocator faults.

Their results displayed continued effectiveness of the fuzzing process. Miller and Forrester

[65] were able to replicate similar fuzzing results on the Windows platform as well as on Unix.

From 2005 to the modern day at the time of writing, fuzzing is a rich research area with

many sub-disciplines. Many research works focus on just one of these sub-disciplines, and

others combine many ideas together. Along with advancements, the fuzzing research com-

munity arrived at a partial consensus on vocabulary used to describe the ideas employed in

fuzzing research.

Generative Fuzzing

Generative or generational fuzzing is a test case generation mechanism where a specifi-

cation for the input data is provided to a fuzzer, parts or the whole of which is modified

by the fuzzer prior to each execution of the program under test. One of the first fuzzers

leveraging generative fuzzing was Spike [66]. The idea behind spike was to represent net-

work protocols, file formats, and other data representations as linear bytes in memory no

matter their semantic structure. This linear structure was generated using a programming

API that allowed users of the fuzzer to specify constant byte areas and variable areas of a

particular data type. This is a simplistic approach, but allowed Spike to successfully pass

checks that a legacy “dumb” fuzzer like fuzz would never pass in practice. A motivating

example in Listing 3 demonstrates a use case. There is a vulnerable copy of user-provided

data with a user-provided size, but the vulnerable code is hidden behind a format check

of the incoming structure. A generative fuzzer then, could keep the required magic values

present in all test cases while randomizing other parts of the input, including the size of the

32

randomized input. This allows fewer wasted executions, but requires manual intervention

by an analyst to create and modify input specifications throughout the fuzzing campaign.

Spike attempted to mitigate this problem by providing many formats by default along with

the fuzzer, but analysis of any bespoke protocol or format would require renewed effort.

struct ExternalRPCLocatorStruct {
uint16_t magic;
uint16_t size;
wchar_t request[]

};

bool CanDemarshalRPCLocatorStruct(ExternalRPCLocatorStruct *l) {
if (l->magic != 0x3) {

return false;
}
return CheckRequest(l->request);

}

void MSRPCLocator(ExternalRPCLocatorStruct *l) {
struct InternalRPCLocatorStruct *i;

if (CanDemarshalRPCLocatorStruct(l) != NULL) {
// Vulnerable, but hidden behind a check!
memcpy(i, l->request, l->size);

}
}

Listing 3: Example of check guarding vulnerable code inspired by RPCLocator Vulnerability

Peach fuzzer [67] adopted a similar approach to Spike, but did not use specifications

written in code. Instead it used an eXtensible Markup Language (XML) file containing a

Domain-Specific-Language (DSL) for specifying data layouts. Peach’s implementation of this

DSL allows for extraordinarily well specified data models, particularly for complex file for-

mats. In fact, Peach was later used to fuzz the Firefox browser due to its ability to generate

well formed font, HTML, JavaScript, and CSS files. Despite the heavy up-front investment

to specify file formats in such an intensive fashion, Peach has a more robust specification

that allows repetitions, optional entries, variable lengths, and many built in data types.

33

Autodafe adopts an approach more similar to that of Spike, using code to specify genera-

tive formats for fuzzing. Autodafé’s innovation was primarily focused on known vulnerable

functions such as strcpy. Unlike Peach which simply detects crashes as its only feedback

mechanism, Autodafé uses a callstack tracer that records a trace at the function-call level

to determine when data from the fuzzer input testcase is used as a parameter to vulnerable

functions. Detection increases the weight of that specific component of the input which is

then modified by replacing it with data from an input library. The tracer is also used to

provide additional context when a crash does occur.

Much more recently, Skyfire [68] addressed problems arising from generational fuzzing.

The authors note that despite the advantage of generational fuzzing in passing syntactic

checks, generational approaches often generate data that is semantically meaningless. This

means that while generational approaches may surpass both “dumb” and mutational ap-

proaches in early code coverage as they are able to pass initial checks, these approaches still

become stuck at more complex checks. A motivating example provided by the authors is a

check in the eXtensible Stylesheet Language (XSLT) that an attribute of an element is valid.

Generational fuzzers have little chance of passing such checks, and are reduced to the effec-

tiveness of “dumb” or mutational fuzzers to pass them if the semantic checks occur on the

unstructured sections of the generated test case’s input. In addition to a grammar, or input

specification, Skyfire uses a large corpus of valid example files to generate additional tests

derived from the input corpus. This enhancement to generational fuzzing enabled deeper

bug discovery, a key goal in modern fuzzing research. NAUTILUS [69] adopts a very similar

approach, although it utilizes grammars specified using the ANTLR parser. Unlike Skyfire,

NAUTILUS makes heavy use of mutation as a post-processing step to generation of well-

formed input cases. Superion [70] makes additional incremental progress over NAUTILUS

by emphasizing the process of “tree mutation” and “enhanced dictionary-based mutation”.

Dictionary-based mutation in this case refers to the random insertion of user-provided or

automatically identified keywords in the input at identified token boundaries. The goal of

this process is to reduce unsoundness of inputs and reduce the required amount of mutation.

Superion’s tree-based mutation uses the Abstract Syntax Tree (AST) of the input to recur-

34

sively append, remove, and replace subtrees of the AST to cause large variation to the input

without relying on byte or bit mutation. Their method keeps structure and parsing validity

constraints, again to reduce the number of unsound inputs that exit quickly. The authors

claim significant improvements in not only number of bugs found but in the efficiency of

the fuzzing process using this methodology, but note that it is not applicable to all input

formats and is most well suited to highly structured input types such as XML and HTML.

Overall, generative fuzzing is a highly effective approach, especially when the target is

well suited to highly structured inputs. However, the primary drawback of grammar-based

and generative fuzzing has yet to be solved. Human analysts must still invest significant time

into the harnessing and input grammar specification, which reduces the real-world usefulness

of the approach. Software engineers are typically unenthusiastic about testing, and even less

so with respect to writing specifications for input formats to their sotware.

Mutational Fuzzing

In contrast to generational fuzzing, mutational fuzzing does not utilize a specification or

formal grammar describing an input file. The mutation process starts with an input seed,

which can be random or empty, and modifies the input seed in random locations to exer-

cise code paths [71]. There are infinite types of mutations, but they generally fall within a

few categories. Miller [72] describes “replacing small strings with longer strings or changing

length values to either very large or very small values”. Bunny the Fuzzer, due to Zalewski

[73] was an early mutational fuzzer that implemented bitflips, byte, word, and dword setting,

deletion, replacement, insertion, and swapping of test case data. An important breakthrough

from Bunny was the implementation of compiler-based coverage metrics used for feedback

direction. Bunny used a crude C parser to add instrumentation to the program before com-

pilation that allowed it to observe coverage during test case execution without expensive

post-invocation tools such as gcov [74]. It used this fast coverage information to provide

feedback to its mutation engine to determine which mutations were more effective, allowing

35

the mutation to continue trying techniques that yielded the best results.

Mutation has evolved significantly since the implementation of Bunny, and now utilizes

advanced techniques such as stochastic gradient descent and random search to inform test

case mutation instead of simple randomly chosen operations. Last et al. [75] proposed ad-

vancements to test case generation and mutation with two goals in mind: “generate good

test cases...one that has a high probability of detecting an as-yet undiscovered error” and

“prioritize test cases according to a rate of fault detection”. Their novel approach uses Ge-

netic Algorithms (GAs) as a search methodology for input test cases. Genetic algorithms

have influenced a significant number of mutational fuzzing advancements, so it is helpful to

understand the process. Zeller et al. describe the process in easy to consume terms [76].

First, test cases are modeled as chromosomes. These test case chromosomes are composed

of genetic information which in fuzzing are the various components of the input, the demar-

cations of which the genetic algorithm may or may not be made aware of through feedback

mechanisms. If initial test cases are provided, those test cases will typically be used as part

of the initial population of chromosomes, but they may also be randomly generated. Once

the population is initialized, the following operations proceed in a loop. First, members

of the population are selected for mating, which involves a fitness determination to select

the best individuals in the population. For fuzzing purposes, the best individuals are those

whose input to the program being fuzzed generates the largest desired result. We will discuss

additional feedback mechanisms further, but coverage is the most common fitness metric.

The individuals selected for mating are then input to a crossover function which combines

the input individuals to produce one or more offspring. Zeller et al. provide an example

where each input is divided in half and the two combinations of halves become the offspring,

but interpolation and more exotic crossover operations such as cross product are also pos-

sible. Each offspring is then mutated to some degree, which inserts simulated evolutionary

randomness into the process. Last et al. note that the most common mutation methods are

bit flips, whereupon each bit in the offspring chromosome is flipped with some probability,

and uniform mutation in which the algorithm will “choose one bit randomly and change its

value”. Finally, the offspring are inserted into the population, and the loop continues with

36

selection after running the binary being fuzzed with the new population as inputs.

American Fuzzy Lop (AFL), due to Zalewski [77] is undoubtedly the most famous and

most used fuzzer. It is a simple, robust mutational fuzzer that uses compiler or emulator-

based coverage data as a feedback mechanism. AFL’s initial release used a worklist-based

method for discovering new test cases. Zalewski claims that “in contrast to more greedy

genetic algorithms, this approach allows the tool to progressively explore various disjoint

and possibly mutually incompatible features of the underlying data format”. More specifi-

cally, if a test case discovers additional state within an execution, it is marked as interesting

and added to a queue for further mutation. This process may not precisely follow the GA

sequence outlined above, but it is still an implementation of an evolutionary algorithm for

test case selection. AFL introduces a step not found in the above GA stages and periodi-

cally removes test cases whose coverage is a proper subset of other test cases. Its mutation

steps are: “sequential bit flips with varying lengths and stepovers”, “sequential addition

and subtraction of small integers”, and “sequential insertion of known interesting integers”.

Zalewski notes in a separate blog post [78] that “test case splicing” reminiscent of the previ-

ously mentioned crossover function can be used as a last resort along with block operations

of duplication, deletion, and setting. Zalewski claims this set of approaches outperforms

GAs, but concedes that “the mutation engine for a new fuzzer has more to do with art than

science”.

AFL’s success made its mutation strategy the de facto approach for many papers, but

work still proceeded to identify strategies to further improve the effectiveness of test case

generation processes. VUzzer [79] attempts to “prioritize deep (and thus interesting) paths

and deprioritize frequent (and thus uninteresting) paths”. They present a motivating exam-

ple similar to Listing 4 that AFL experiences a problem with. The authors point out that

because AFL will discover a new path whether it takes the true or the false branch of a

conditional, it may waste significant time exploring a new path “even if the path leads to an

error state”. In the example, time will be wasted exploring the false branch of the second

conditional without further progress, because that branch will undoubtedly be discovered

37

first. In order to solve this problem, VUzzer proposes using taint analysis (which we discuss

in Subsection 1.1.3) to track data flow along with control flow (i.e. coverage information).

The authors utilize this information to inform the fitness step of their GA. The fitness op-

eration is a function from input to fitness weight where fitness weight equals the sum of the

logarithm of the block’s “hit frequency” multiplied by the weight of the block. The weight of

the block is equal to the number of basic blocks executed divided by the weight of the error

handling blocks encountered by the input. VUzzer uses the same crossover function as Last

of dividing inputs, or chromosomes, in half and combining them. VUzzer adds additional

steps to the mutation of chromosomes, however. First, VUzzer inserts strings at random into

the input where “tainted offsets” appear. VUzzer defines a “tainted offset” as the offset into

the input data where data is read or pointed to. Next, the system modifies data in the input

at offsets where data is accessed with the lea x86 assembly instruction. Finally, it directly

modifies data where possible to change the direction of comparisons from cmp instructions

and adds “magic bytes” where they are detected. This process reflects more closely the actual

behavior of the application than simply observing, as the basic AFL implementation does,

how application statistics change after running the program with a given input. However,

the taint analysis and additional mutation steps slow down VUzzer significantly, so there is

a large tradeoff between speed and accuracy. That tradeoff appears frequently with regards

to both feedback mechanisms and mutation strategies.

Angora [59] builds further on the work done for VUzzer and implements a gradient

descent search algorithm for identifying interesting inputs. The authors use a transforma-

tion from binary comparisons to constraints on input data, then utilize gradient descent to

find a minimum of the given constraints. This minimum corresponds to a solution of path

constraints that allows the fuzzer to move into unexplored code. A similar tool, FairFuzz

[80] does not replace the mutation algorithm used by AFL. Instead, it first uses enhanced

coverage information beyond that provided by AFL to recognize when branches in the pro-

gram are being utilized less frequently. It pairs this additional coverage information with

an enhancement to AFL’s mutation algorithm. FairFuzz computes a mutation mask based

on execution information that excludes mutations to data that causes AFL to hit common

38

int main() {
int sz;
read(0, &sz, sizeof(sz));

if (sz < 16) {
exit(1);

}

char *buf = (char *)malloc(sz + 1);
read(0, buf, sz + 1);

if (buf[sz] == 0xd8 && buf[sz - 1] == 0xff) {
deeper_function(buf);

} else {
exit(1);

}
}

Listing 4: Example of a problematic check for the original AFL evolutionary fuzzer

branches. This allows FairFuzz to focus more quickly on rarely explored code paths and iden-

tify deeper program logic. In practice, these techniques primarily enhance the capability of

AFL against complex string comparisons and checks against constant values. REDQUEEN

[81], due to Aschermann et al. makes yet another large leap in passing complex checks on

user input values. Unlike FairFuzz and VUzzer, REDQUEEN does not utilize taint tracking

but is able to determine an “approximation to taint tracking and symbolic execution” by

simply setting input bytes to “color” values (where there are, of course, 256 possible colors)

and tracking when these input bytes arrive at comparison instructions. By testing inputs

multiple times with modified “colors”, REDQUEEN is able to efficiently check whether the

compared data in fact corresponds to input data without requiring heavy taint tracking

or emulation. REDQUEEN also implements mutations on these discovered “input-to-state

correspondences”: zero and sign extension, reversing, null termination, encoding, and re-

placement of corresponding inputs.

39

AFL is likely the most used fuzzer of all time, according to the AFL++ paper [82].

AFL++ is a direct enhancement to AFL that includes many optimizations and enhance-

ments from works like FairFuzz, VUzzer, and more. AFL++ additionally supports cus-

tom mutator implementation to enhance mutator swaps for various targets. It implements

“structure-aware” mutators based on work by Fioraldi [83] et al. that allows for a genera-

tional fuzzing approach embedded inside a mutational fuzzer to more efficiently fuzz complex

data structures. Finally, it implements the mutation schedule due to Lyu’s MOpt [84]. This

mutation enhancement does not add new operators to AFL’s mutation, but it optimizes the

order in which the operators are used. The Pilot stage from MOpt uses probability dis-

tributions of particle swarms, which represent mutation operators, to determine how much

each operator is contributing to the number of interesting cases found using it. MOpt also

measures how many total attempts are made to discover an interesting case, and discovers

how efficient each mutation operator is by dividing interesting cases found by number of

attempts made. The Core stage uses the discovered optimum operator to determine which

swarm is a global optimum. Finally, the Pacemaker mode from MOpt – which was not

included in AFL++ at the time of writing but is included in the modern distribution – is

able to selectively disable an inefficiently functioning deterministic stage permanently.

Included in almost all modern fuzzers is the Havoc stage of input mutation, which was

first proposed in AFL. Wu et al. analyzed the Havoc approach [85] and made several im-

provements. Havoc selects mutation operators uniformly at random from a set of possible

operators and applies them on one given seed. This generates a much more highly mutated

seed and is able to overcome many roadblocks to fuzzing through its stochastic properties.

The authors first found that havoc is in many cases more effective than the primary mutation

option used by many fuzzers. The authors also implement a Multi-Armed-Bandit (MAB)

based extension to Havoc. Mutators are still selected by the uniform distribution, however

the choice of how many mutators to select is also randomized based on whether mutated

test cases generated by the mutator types and counts chosen explore new program edges.

The authors show that this extension to Havoc is highly effective and even beats symbolic

40

execution-based approaches.

From a survey of existing research, it is clear that mutational fuzzing is the preferred ap-

proach for real-world fuzzing applications. Primarily, this is due to ease of use. Generational

fuzzing requires up-front time investment for any effectiveness, while mutational fuzzing can

be started with zero investment and improved over time. This explains the greater interest

in mutational fuzzers and the wider propagation of AFL-based fuzzers over any other fuzzer

core implementation.

Hybrid fuzzing

Hybrid fuzzing refers to the combination of fuzzing with other approaches, typically either

symbolic execution, taint analysis, or both. Concolic approaches such as DART and CUTE

[86] (due to Godefroid and Sen, respectively) explored concrete combined with symbolic ex-

ecution, known as concolic execution. The authors showed that in order to assist a fuzzer

in exploring all paths in a binary, symbolic execution can be used to solve path constraints

on executions of the program under test in order to force program execution to find new

paths in the program. Sen later built on their work with CUTE to present a more capable

system for concolic testing that enabled their prior work to explore coverage more quickly

by reaching what the authors call “deep states”. They critically observed that these deep

states are not reached by a standard fuzzer without combining symbolic execution. SAGE

[46], MAYHEM [8], VUzzer [79], as well as older tools such as Flayer [87] discussed above all

implement some form of hybrid analysis. Driller [88] is one of the most well known examples

of hybrid fuzzing. The tool uses concolic execution alongside traditional fuzzing to “allevi-

ate path explosion”. The authors specifically apply symbolic execution to fuzzing where it

is most useful to pass through checks that are difficult to randomly satisfy. In the model

used by Driller, programs are divided into logical “compartments” of easier-to-explore code

separated by these difficult checks. Driller quickly explores the code inside compartments

using a traditional fuzzer, in this case AFL, and uses symbolic execution to move between

these logical compartments by generating inputs that satisfy the complex checks. QSYM [89]

41

uses a very similar approach to Driller, but applies DBI to execution to achieve symbolic

execution instead of using emulation to apply the technique to larger real world software

projects. They make several points about popular techniques. First, they do not use an

IR, instead using QEMU for execution. Next, they do not utilize snapshots of symbolic

executions to start from a branch and instead resume symbolic execution from entry with

each new test case. QSYM also does not use a model of the external environment and allows

it to be used organically. Finally, they do not focus on over-sound execution and point out

that too much soundness can introduce inaccuracy and “over-constrain a path”. SAVIOR

[90] is conceptually very similar to QSYM but makes a large innovation in that it does not

use symbolic execution as a “last resort” instead using it optimistically to help the fuzzer

discover new paths. In addition, SAVIOR utilizes the UBSan sanitizer to guide the fuzzer

towards likely bugs deriving from use of undefined behavior. SymQEMU builds on both

earlier works by using a compilation-based approach inside the translation engine of QEMU

to avoid needing heavyweight tracing or compiled-in symbolic execution code.

Other works also fall under “hybrid fuzzing” that use enhancements to fuzzing for other

reasons. Most notable among these approaches is T-Fuzz [91]. T-Fuzz uses DSE over fuzzer

inputs to detect what the authors call “Non-Critical Checks”, or “NCCs” in code, which are

checks that are deemed non-essential to the operation of a program, but which prevent a

fuzzer from making progress. T-Fuzz identifies these checks and does not just change the

direction of the comparison, but actually produces a transformed program with the branch

condition inverted. The authors note that this causes a soundness problem. Any crash or bug

found on a transformed program may not be present in the original binary. They mitigate

this by verifying any found bugs and implementing a process for transforming a bug from a

transformed program into a bug on the original program, where possible. The authors note

that this fast bypassing of NCCs reduces the need for symbolic execution of many test inputs

which increases throughput and exposes bugs more quickly. Other projects such as CAFA

[92] were also introduced at similar times. CAFA focuses specifically on checksums. CAFA

first recognizes that a checksum is being computed and then identifies the point where a

comparison against a checksum occurs and inverts the direction of the branch. This allows

42

any input that does not pass the checksum check to continue execution, instead of any input

that does pass. These tools present an extremely interesting idea that binaries need not be

immutable to discover vulnerabilities and bugs, however both papers point out the severe

unsoundness of such methods.

1.1.5 Prior Work Summary

The discussed work in subfields of binary application security prompts researchers to

pose the question: “what is next?” Our hypothesis leads us in a direction most influenced

by work in program transformation by projects such as CAFA and T-Fuzz, but with several

additional goals and extensions in mind. In order to consider extending existing methods

for fuzzing by program transformation, however, every category of binary analysis technique

must be used. First, fuzzing must be used in order to enhance an existing (or potentially, a

non-existent) corpus of inputs. Next, dynamic analysis must be used to analyze the control

flow coverage of these inputs via emulation. Taint analysis must be implemented to observe

the data flow along these discovered control flow paths in order to discover the effect of

input data across a program, and symbolic execution and static analysis must be leveraged

to perform the transformation of a program. Thus, these sub-fields cannot be viewed as

disconnected and disparate disciplines but rather distinct parts of a solution to a single

problem: what is the most efficient technique or set of techniques to find the most bugs in

a program?

43

2. SYSTEM

2.1 Direction

Considering the vast field of binary analysis and fuzzing research, it is clear that there is

ample opportunity to improve the process. We take inspiration from multiple prior works,

notably those investigating program transformation, especially T-Fuzz [91], and those inves-

tigating methods for accessing and fuzzing “deeper logic” in programs, such as Angora [59].

The intersection of both the goals and approaches of these prior works, as well as the previ-

ously explored sub-fields discussed previously, leads to the key question: is it possible to use

offline program transformation to allow fuzzing of deep branches while mitigating the perfor-

mance drawbacks of online symbolic execution or taint analysis to facilitate full-throughput

fuzzing? Many prior works have identified the key issue with even “smart” fuzzing with

coverage-guided fuzzers such as AFL: they eventually reach a “stuck point” and are unable

to make progress by discovering new inputs to increase coverage. The majority of related

works tend to classify these stuck points as a single code statement, for example the check

on line 5 of Listing 5 .

1 int main() {
2 uint32_t x;
3 read(0, &x, sizeof(x));
4

5 if (x == 0x00ACAD1A) {
6 vulnerable();
7 }
8 }

Listing 5: Example (due to Driller) of a stuck point

Instead of considering specific if or while comparisons, we note that in general, high

level programming languages encourage modular code in the form of functions (K&R note

that “C programs generally consist of many small functions rather than a few big ones”).

Therefore functions typically do “one thing”. There are many exceptions, but by and large

the recommendation is to follow this convention. We can apply this observation to fuzzing

44

by abstracting the idea of a stuck point on a single line of code away and focusing on what

we will refer to as a “impeding function”. If a function invocation behaves like a stuck point,

it can be treated like one and the fuzzing process can potentially be enhanced by applying

prior methods to this now-abstract impeding function. For example, consider the functions

in Listing 6 . There are three checks in isok that could be stuck points if a fuzzer was unable

bypass them. However, when considering the calling context of isok we see that clearly,

there is only one relevant check to bypass in order to reach the vulnerable function, the

check on line 21.

1 int isok(uint32_t v) {
2 if (v >> 32 == 0) {
3 return 0;
4 }
5

6 if ((v >> 16) ^ 0xBEEF != 0x1337) {
7 return 0;
8 }
9

10 if ((v & 0xffff) > 0xFEED) {
11 return 0;
12 }
13

14 return 1;
15 }
16

17 int main() {
18 uint32_t x;
19 read(0, &x, sizeof(x));
20

21 if (isok(x)) {
22 vulnerable();
23 }
24

25 }

Listing 6: Example of an impeding function

This leads to a natural conclusion: if we model checks and assertions against the return

values of impeding function such as isok, the assertions contained within the function can be

45

collapsed into the single assertion against its return value. The number of total checks that

must be bypassed to fully explore a program will therefore be reduced. In fact, any number

of additional assertions, each of which may cause a stuck point could be added to isok.

Using this model these checks could all be ignored if the check at line 21 could be artificially

bypassed. Despite the promise of this idea, there are several immediate concerns that could

impede its effectiveness or validity. In general, all identified potential problems with an ap-

proach focused on a function level instead of a statement level are soundness problems. As

works such as QSYM [93] and T-Fuzz [91] identify, a sound analysis in the context of fuzzing

is one that does not produce false positive inputs. That is, the system does not produce a

valid input for a transformed program that is invalid for the original program. For example,

if the call to isok is replaced with a call to a function that returns 1 unconditionally, the

analysis becomes unsound because any input will reach the vulnerable function, instead of

the limited reaching input of the original program. We will discuss several soundness consid-

erations taken throughout the system design of REFACE to mitigate unsoundness problems,

and address the remaining soundness tradeoffs of the completed system in Subsection 2.2.5 .

Our hypothesis, then, boils down to:

By abstracting stuck points at a function level as impeding functions and

modifying them to remove checks, deeper logic will be reached more quickly by

off-the-shelf fuzzers, leading to increased coverage and bug discovery.

The first requirement towards testing this hypothesis is to create formal definitions of

each critical component. Most important is a definition for impeding functions, functions

that behave as if they were statement-level stuck points. Critical checks on data precede

deeper logic operations using the data in most applications, but of particular interest is

cryptographic decoding and decryption, compression and decompression, and media for-

mat parsing and conversion. These are all common operations present either as external

dependencies or directly inside a large amount of the most-used applications for both per-

sonal computers and servers. In order to create a functional definition, we considered real-

world code first. The function in Listing 7 from the SSL and Cryptography library Wolf-

46

SSL [94] demonstrates a prototypical impeding function. The result of the function call is

checked and the checked value guards the deeper logic inside the if statement. The function

wc_RsaPrivateKeyDecode contains many locations where an error value is returned, mean-

ing this check is likely to fail while fuzzing with random input data.

1 int wolfSSL_RSA_LoadDer_ex(WOLFSSL_RSA* rsa, const unsigned char* derBuf,
2 int derSz, int opt)
3 {
4 int ret = 1;
5 word32 idx = 0;
6 /* */
7

8 if (ret == 1) {
9 /* Decode private or public key data. */

10 if (opt == WOLFSSL_RSA_LOAD_PRIVATE) {
11 res = wc_RsaPrivateKeyDecode(derBuf, &idx, (RsaKey*)rsa->internal,
12 derSz);
13 }
14 else {
15 res = wc_RsaPublicKeyDecode(derBuf, &idx, (RsaKey*)rsa->internal,
16 derSz);
17 }
18 /* Check for error. */
19 if (res < 0) {
20 if (opt == WOLFSSL_RSA_LOAD_PRIVATE) {
21 WOLFSSL_MSG("RsaPrivateKeyDecode failed");
22 }
23 else {
24 WOLFSSL_MSG("RsaPublicKeyDecode failed");
25 }
26 WOLFSSL_ERROR_VERBOSE(res);
27 ret = -1;
28 }
29 }
30 if (ret == 1) {
31 /* */
32 }
33 return ret;
34 }

Listing 7: The wolfSSL_RSA_LoadDer_ex function in WolfSSL. Line 30 is a stuck point
arising from the call to wc_RsaPrivatekeyDecode on line 11.

47

2.1.1 Impeding function Criteria

Cases similar to the function above occur in other cryptographic libraries such as AXtls

[95], OpenSSL [96], and more. Attempting to pass through every check in the impeding

function is particularly problematic due to the number and complexity of the checks (the

wc_RsaPrivateKeyDecode function specifically has 17 return locations that prevent passing

the stuck point check). If the idea we identified prior could be applied, however, the checks

inside the function could be effectively collapsed to a single check, a large reduction in the

amount of data that must be correct for fuzzing to progress. This leads to the first observa-

tion toward a formal definition: the functions we identify should be functions that operate

on data from external input sources. If the data operated on is not influenced by external

input, there is no feasible method for checking or ensuring soundness. Furthermore, reaching

further deep logic may be possible by modifying the control flow of sections operating on

non-external data, but reaching deeper logic is unlikely to yield bug discoveries if the data

passed to the deeper logic code is not controlled by the fuzzer. The first criteria can be

expressed as:

C1: Impeding functions receive external input as parameters.

In order for a function invocation to affect control flow in a similar way to a statement-

level stuck point, the return value of the function or data set by the function must be checked

against some other value. In order to implement an analysis tool capable of recognizing these

checks and synthesizing data capable of satisfying them, these values must be constant or

otherwise available via static analysis. Otherwise, over a single or small number of execu-

tions of the program, there is no effective method for determining whether a value used in

a comparison is a constant. For example, a CRC32 value could be used to avoid a Time-of-

check-to-time-of-use (TOCTTOU) bug by ensuring data used at a later point in a program

is the same as data used earlier in the program. A function performing this check would be

an inappropriate function to modify because it would be difficult to generally analyze the

48

soundness of operations against the return value of the modified function. In addition, func-

tions must have multiple possible return values. If a function only returns 1 for example,

even disregarding the impossibility of its return value affecting control flow, the function

is not possible to modify in a way that enables bypassing checks. Not only must a valid

function have multiple possible return values, but during execution it should exhibit an un-

balanced distribution of return values. An example is a function that returns true on success

or false on failure. If the function performs complex checks against the external input it

receives as a parameter, it is likely to return one value (in this case, false) significantly

more often during fuzzing. It is sometimes, but not generally, possible to determine which

of a set of returned values indicate an error condition and which value may allow execution

to proceed into deeper code. If a function is observed to return each possible return value

with a reasonably uniform distribution, it is unlikely to cause the fuzzer to become stuck.

Finally, in order to create a stuck point, the function’s return value must modify control flow

in some way. We can define additional criteria based on these observations:

C2: Impeding functions must return multiple possible values.

C3: The distribution of the values returned by an impeding function must be

skewed.

C4: The return value of an impeding function must affect the control flow of

the program.

With the four criteria identified above, a significant number of impeding functions can

be identified that may present a problem to fuzzers, but which could feasibly be modified

to allow fuzzing to proceed down previously inaccessible paths. However, many functions

satisfy the aforementioned three criteria but may be very difficult to modify in order to

avoid causing severe unsoundness. As discussed previously, unsoundness, where inputs are

discovered that are not reproducible with the original program, is acceptable and will be

addressed later. However, a program may be modified to the point where it does not exe-

49

cute correctly at all, or executes so incorrectly that no valuable fuzzing can be done on the

modified program. A large portion of these problems can be averted by avoiding functions

with certain side effects. Specifically, writes to non-parameter data locations are problem-

atic, as are system calls, especially system calls whose parameters are non-constant. To

preserve maximum soundness, all operations performed by a function except for the stuck

point checks it performs must be replicated in a replacement function. This lends itself to

the fourth and final criteria for impeding functions:

C5: Impeding functions must be mostly side effect free, and their extraneous

functionality must be replayable.

The definitions of “replayable” as well as “side effect” are left intentionally vague. In the

general case, it is not possible to determine whether the essential functionality of a function

can be preserved while removing non-essential checks. It is, in fact, not possible to determine

whether a check is essential or not. T-Fuzz, as discussed earlier, refers to checks as either

NCCs or CCs depending on whether they are “non-critical” or “critical”. We must follow

a similar methodology and make a best-effort approach. Ultimately, the tradeoff becomes

one of runtime versus accuracy: a wholly unsound modification is likely to exhibit highly

unsatisfactory behavior (anecdotally, mostly crashing) when run with inputs that do not

cause problems for the original binary, despite not reaching deeper logic. We will return to

this idea of a post-processing step for validation purposes in Subsection 2.2.5 . Milewski [97]

asserts that “pure” functions exhibit the following characteristics:

1. “Returns the same result every time it’s called with the same set of arguments. In

other words a function has no state, nor can it access any external state.”

2. “A function has no side effects. Calling a function once is the same as calling it twice

and discarding the result of the first call.”

This definition is very strong, and many C functions (including those previously dis-

cussed) violate them. Therefore, for the purposes of this work we make some adjustments.

50

First, we remove the requirement for the “same set of arguments”. Machine code is rife with

pointers, and a different instance of the same type of object poses no immediate problem for

analysis. Next, we hypothesize that the real inhibitor arising from external state is muta-

tion of that state, not access to it. Therefore, a modification of external state is prohibited

but read-only access to it is not, except for access to data external to the program, for

example via a recv system call. Happily, this modified definition can be summarized by

simply taking the second criteria presented by Milewski, using our newly modified definition

of a “side effect”. These criteria narrow the definition of an impeding function considerably,

mostly allowing categorization of relevant functions that may present effective targets for

modification. However, none of the criteria present a method for actually identifying these

impeding functions in binary code, synthesizing maximally sound modifications, or applying

and verifying these modifications. Before addressing these engineering challenges, several

questions must first be answered.

2.2 Research Questions

2.2.1 RQ1: How common are impeding functions in real-world code?

Despite the appealing hypothesis, there is little value in searching for, analyzing, and

modifying functions that rarely appear in the wild. While verifying the exact assertions

discussed later over a large corpus of public code would be an intractably large task, we

make a general assertion that many functions satisfying these criteria are found in simi-

lar types of code. Generally, with many exceptions, code that performs similar functions

can be found inside functions with similar names. The function WolfSSL discussed above,

wc_RsaPublicKeyDecode gives a starting point: decoding functions are an obvious first tar-

get. We manually analyzed popular open source libraries and identified common identifiers

and keywords that may signal a function that is likely to be a valid impeding function.

The methodology for this search was as follows. First, we downloaded 1000 packages

listing C as a primary language from the Debian [98] repository and extracted. Then, each

C source file and header was parsed using a syntax-aware parser and each function identifier

51

Table 2.1. Table of keywords and frequency of appearance in 1000 samples
of C code from the Debian sources repository containing 107071 functions.
Keyword Count Avg. Rel. Frequency (names) Avg. Rel. Frequency (calls)

decode 228 2.41% 0.83%
decrypt 57 0.35% 0.06%
extract 177 1.31% 0.37%

decompress 50 0.49% 0.11%
deserialize 20 0.04% 0.01%

inflate 22 0.21% 0.11%

was recorded. Additionally, the number of locations where a function containing each key-

word was invoked was recorded. The first result is the raw number of appearances. For each

package, each identifier was checked case-insensitively to contain each search term. If any

function identifier contained a given search term, the “number of appearances” was increased

by 1 for that search term. This statistic gives an insight into how common functions with

these keywords are across many different types of code. Next, for each package containing

at least one occurrence of a given keyword, the relative frequency of the identifier was calcu-

lated by proportion of function identifiers containing the keyword. Finally, the proportion of

function invocations invoking the function whose identifier contains the keyword was calcu-

lated. For example, consider a package with 100 functions total that contains one function

whose identifier contains the keyword decode and which has 1000 total function invocations

in its source code. That package would have an appearance count of 1, a relative frequency

(by function) of 1%, and a relative frequency (by calls) of .1%.

These results make a strong case for the wide applicability of our approach. In total,

554 out of 1000 packages analyzed contain at least one instance of a function matching the

keywords, meaning over half of the software may contain an impeding function. It should be

noted that this approach for surveying packages creates an under-estimate, as many actual

impeding functions have different naming conventions, or may not contain a keyword in

their name at all. However, this approach gives an intuitive result that there are likely many

functions that fit the criteria. In addition, functions containing “decode” average 1% of all

function call targets throughout the 1000 packages surveyed. Not only does this indicate

52

these functions are common, it also indicates that these functions are used commonly, and

often multiple times in the same program.

2.2.2 RQ2: Can impeding functions be identified in real-world binary code?

To identify whether a given function is an impeding function, we must effectively evaluate

whether it satisfies the criteria presented above. First, we must decide how to determine

that a function receives external input. Static methods, including static dataflow analysis,

are possible. However, static methods are slow and as discussed in Subsection 1.1.1 are im-

precise. This means, particularly in this use case, static analysis may often produce a false

negative result and conclude that a function does not receive external input when in fact it

does. Symbolic methods are also possible, using a framework such as angr [99]. However,

symbolic methods have several key weaknesses. First, symbolic execution is slow due to mul-

tiple factors. Chief among them is the overhead of constraint solving, which increases with

the depth of an analysis. We want to reach deep locations in code, so this is a significant

concern. Second, pure symbolic execution will waste time. The intent of this work is to

reduce impedance to fuzzing throughput by removing roadblocks. Therefore, pure symbolic

exploration of the full state space of a binary is unnecessary. DSE could present a solution

by utilizing symbolic analysis over a concrete execution of the program. In fact, a prior

implementation of REFACE utilized dynamic symbolic execution for this purpose. However,

we discovered that even DSE was not performant enough and created unnecessary overhead.

The logical conclusion, then, was to use dynamic taint analysis. Dynamic taint anlysis is a

more scalable approach than symbolic execution as it does not require the overhead of con-

straint solving, nor does it require the memory overhead of maintaining multiple disparate

states during execution or exploration. In addition, taint analysis is perfectly suited to the

problem of tracking data from external input through program execution and discovering

locations containing or modified by that external data, even through copies and transforma-

tions.

53

To identify impeding functions in binary code, we begin with the original goal of enhanc-

ing the effectiveness of fuzzing. Fuzzing, as discussed previously, utilizes input mutation or

generation to test a program via its external inputs. Therefore, if we begin with the design

decision that REFACE will be integrated into a pipeline along with a fuzzer, it becomes

obvious that the inputs the fuzzer uses to perform each test of the program can be utilized

as inputs in taint analysis as well. This serves two objectives. First, it enables the use of

taint analysis over an input-agnostic method such as symbolic execution. Second, it allows

REFACE to operate using a view of the fuzzer’s current state. For example, if the fuzzer is

currently stuck attempting to pass a particular check, it will not have generated any inputs

that pass through that check. It guaranteed to, however, have generated inputs that reach

the check in question. Those inputs will be used as input to REFACE along with the binary

program under test. By analyzing the program’s behavior under the fuzzer’s current set

of inputs (called a queue by AFL++), we can begin to reason about relevant function be-

havior. This reasoning is broken down into multiple stages, each implementing a narrowing

constraint on the stage before it and proceeding until finally only the set of functions in the

binary that satisfy the criteria remain.

Stage 1: Stuck point identification

Before functions themselves can be analyzed, we must build an understanding of where

the fuzzer is becoming impeded. Logically, a stuck point is a single location in code where

the fuzzer is not able to progress. In binary code terms, it is a conditional control flow

transfer where some target is either never taken or taken very rarely. For example, in the

code discussed previously in Listing 7 , the if statement on line 30 compiles to assembly

similar to that in Listing 8 . This code is a complex example, as it has two layers of checks

leading to the actual stuck point of concern on line 16. However, the check and jump at line

8 is also a stuck point, where the second depends on the first. The first stage will identify

both of these locations as stuck points.

54

1 _:
2 mov rbx, 1 # ret is initialized to 1
3

4 # # Code prior to call omitted for brevity
5

6 call wc_RsaPrivateKeyDecode
7 cmp rax, 0 # Compare the return value against 0
8 jge no_wolfssl_error # If rax >= 0, no error occured
9 mov rbx, -1 # ret is set to -1 if an error occurred

10

11 no_wolfssl_error:
12 cmp rbx, 1
13 jne exit_and_return # If ret is not equal to 1, no deeper code is reached
14

15 #.......................... # Deeper code omitted for brevity
16

17 exit_and_return:
18 mov rax, rbx
19 ret # the function returns the value of ret

Listing 8: Example assembly code of motivating function (some non-relevant assembly re-
moved for brevity).

To identify stuck points, the first stage uses a tracing program without taint analysis to

obtain a simple execution trace of the program for every input in the current fuzzing queue.

Algorithm 1 presents a formal algorithm for this tracing stage. The inputs to the algorithm

are a trace of program counter addresses and the opcode of the instruction at each instruc-

tion executed, and a cutoff value between 0 and 1 the ratio between “next” and “target”

edges of a branch indicating it as a stuck point. The algorithm proceeds by iterating over

each trace entry, recording the last comparison instruction seen. In the amd64 architecture,

comparisons, or the actual location of the stuck point do not occur at the same location

as the associated control flow transfer. When a conditional control flow transfer is reached,

for example the jge instruction discussed above, it is entered into a mapping of branch lo-

cations to their corresponding comparison instruction and the next and target instructions

that form the two outgoing edges from the containing basic block. In addition, hit counters

for the next and target edges are created. Finally, when a trace entry has a program counter

55

corresponding to a next or target hit counter, the hit counter is incremented. After all trace

entries have been checked, each stuck point’s hit counters are checked to determine if the

edges were traversed an imbalanced number of times, and a set of stuck points meeting this

criteria are returned.

The algorithm is parameterized on the RA ratio because it allows for greater flexibility.

Some campaigns may benefit from modifying even less difficult-to-satisfy impeding functions.

For our campaign, this value is set to 0.9 which indicates that one edge of a branch is taken at

least 90% of the time, while the other is taken 10% or less of the time. In general, the great-

est indicator that a location may be a stuck point is a complete imbalance of edge traversal.

That is, one edge is taken 100% of the time. A known violation of the assumption that such

a comparison presents a stuck point is the comparison at the head of a loop. False-positive

stuck points deriving from loop conditionals can be easily filtered out at a later stage using

separate loop detection logic leveraging static analysis, or for a coarser approach, all stuck

points with one edge having a single traversal and the other edge having many can be filtered.

The trace used as input to Algorithm 1 is obtained using the QEMU userspace emula-

tor. At each execution of a translated instruction, the program counter is reported by the

emulator to a consumer program. The consumer program maintains a copy of the binary

and translates the program counter to an offset in the binary program and disassembles an

instruction at the translated offset. The augmented program counter, translated instruction

trace is then passed into the the code implementing Algorithm 1 and the final result of the

first stage’s analysis is returned. The returned set specifies each comparison operation in

the binary found during execution of the binary program with a single input that exhibits

stuck point criteria. This process repeats for each input in the fuzzing queue, and the set of

all stuck points is used as input to future stages.

56

Algorithm 1 Stage 1 Trace
Inputs:

TR, an amd64 execution trace of 〈o, p〉 opcode, program counter pairs
RA, a cutoff ratio qualifying a branch as imbalanced
C, a set of opcodes for comparison instructions that set flags
J , a set of opcodes for conditional control flow transfer instructions

1: procedure TraceBranches(TR, C, J)
2: S, N, T, l ← ∅, ∅, ∅, ∅
3: for all 〈o, p〉 ∈ TR do
4: if o ∈ C then
5: l← p
6: else if o ∈ J ∧ l 6= ∅ ∧ p /∈ S ∧ p /∈ N ∧ p /∈ T then
7: n← p + len(o)
8: t← imm(o)
9: S[p]← 〈l, n, t〉

10: N [p]← 0
11: T [p]← 0
12: else if p ∈ N then
13: N [p] + +
14: else if p ∈ T then
15: T [p] + +
16: end if
17: end for
18: return S
19: end procedure

20: procedure ChooseStuckPoints(TR, RA, C, J)
21: R← ∅
22: S ← TraceBranches(TR, C, J)
23: for all p ∈ S do
24: 〈s, n, t〉 = S[p]
25: nh← N [p]
26: th← T [p]
27: if |nh− th| > RA · nh + th then
28: R = R ∪ s
29: end if
30: end for
31: return R
32: end procedure

57

Stage 2: Identifying input-consuming functions

By identifying all stuck points, we obtain an understanding of where the fuzzer encoun-

ters problems proceeding. However, more analysis must be done to discover which functions

cause these stuck points to occur. The first step to analyze functions is to determine the

set of functions across the current fuzzer input queue that receive user input. To accom-

plish this, we leverage dynamic taint analysis to track data from exernal inputs like reads

from standard input or network sockets through the program. To facilitate performant taint

tracking, we used libdft64 [59], a project created by the authors of the Angora fuzzing

project. libdft64 in turn utilizes Intel’s PinTool [100] to obtain information about the

instructions underlying a dynamic program execution. PinTool provides callbacks to user

code upon certain processor events, for example on each instruction executed or before and

after a system call occurs. libdft64 uses several of these callbacks internally to propagate

taint across data at runtime.

In the case of our implementation of this stage, we enable taint tracking of all data from

external sources using file descriptors. This includes data read from the read and pread64

system calls, which allows for flexible taint tracking of data from stdin, files, and network

sockets. For the prototype implementation of REFACE, only programs receiving input via

files and stdin are considered to reduce scope. When data enters the system, libdft64 tags

it internally for tracking. At any point the tagged data is accessed, a callback to libdft64

is triggered to propagate taint by tagging locations the tagged data is copied into. Vari-

ous taint analysis systems propagate taint differently, and libdft64 only propagates explicit

dataflows. This can be demonstrated with the sample program in Listing 9 . In this example,

data comes into the system and the return value is set to 1 if any byte in the input was

zero, and zero is returned otherwise. libdft64’s hooks will cause externaldata to become

tainted after the read system call completes. From there, the data flow during the memcpy on

line 7 is an explicit flow, which libdft tracks. Therefore, the full contents of internaldata

will become tainted after the memcpy. The data flow from the constant 1 into the variable

rv, however, is an implicit data flow. Whether the data flow occurs or not has a dependency

58

on the value of tainted data (in this case internaldata) but is not directly copied from that

tainted data.

1 int main() {
2 int rv = 0;
3 uint32_t externaldata;
4 uint32_t internaldata;
5 read(0, &externaldata, sizeof(externaldata));
6

7 memcpy(&internaldata, &externaldata, sizeof(internaldata));
8

9 for (int i = 0; i < sizeof(internaldata); i++) {
10 if ((internaldata >> (i * 8)) & 0xff == 0x00) {
11 rv = 1;
12 }
13 }
14 }

Listing 9: Example of taint tracking via explicit and implicit flows.

In addition to not supporting implicit flows, libdft64 also tracks tainted data at the

byte level instead of the bit level as some other taint analysis tools are able to do in exchange

for additional speed and ease of use. Despite these two limitations, it allows full tracking of

data from source to sink which facilitates all taint analysis dependent stages of REFACE.

In order to identify input-consuming functions, external data is marked as discussed above

using hooks on system calls using file descriptors. Each time a function invocation occurs,

a callback is triggered that begins a scan of each argument passed to the function. The

number of function arguments is identified offline using static analysis by the angr binary

analysis framework. The algorithm for scanning a function argument is given in Algorithm 2 .

The first component of Algorithm 2 explores in a breadth-first fashion through the mem-

ory that may be pointed to by a function parameter. This function parameter is inserted

into a new tree structure as the root. At each step, it collects the child items of the pointer

it is currently considering. Nodes in the tree may be either pointers or data nodes, but

59

Algorithm 2 Stage 2 Function Argument Scan
Inputs:

V , The value of an argument register
1: procedure ArgumentScan(V)
2: Q = NewQueue()
3: T = NewTree(Q)
4: push(Q, NewPointerNode(V, ∅))
5: while Q not empty do
6: P = front(Q)
7: for all C ∈ CollectChildren(P) do
8: InsertAndMerge(C, T)
9: if isptr(C) then

10: push(Q, C)
11: end if
12: addChild(P, C)
13: end for
14: if children(P) = ∅ then
15: removeFromParent(P)
16: end if
17: end while
18: end procedure

data nodes may only be leaves of the tree and represent data that is tainted. Pointer nodes

may be any interior node of the tree and cannot be leaves, and can have multiple children.

Effectively, a “pointer” node represents a region of memory that lies behind that pointer,

up to the parameterized walk size limit. After collecting the child entries in the memory

pointed to by the current node, newly discovered notes are inserted and merged into the

tree. The merge operation handles a case where a newly discovered node, or multiple newly

discovered nodes, either overlap each other or the existing data nodes in the tree. If this

occurs, adjacent and overlapping nodes are merged together into a single node holding the

full data and extents of the union of all overlapping and adjacent nodes. It also handles the

case where a pointer node is discovered that is already present in the tree. If this happens,

a cycle would occur if the node was inserted into the tree, so such nodes are simply deleted

without insertion. Finally, if a pointer node is considered but has no discovered child entries

in the tree, it is removed from the tree to preserve the invariant that pointer nodes cannot

60

Algorithm 3 Stage 2 Child Scan
Inputs:

P , The possible pointer to tainted data
SS, WS, the parameterized stride (pointer) size and walk size

1: procedure CollectChildren(P , SS, WS)
2: b← copy(P[:WS])
3: C, DR, o← ∅, ∅, ∅
4: for i up to len(b)/SS do
5: if mapped(b[i]) then
6: C = C ∪ NewPointerNode(b[i], P)
7: o← i
8: else
9: for j = 0 up to SS do

10: if tainted(P + (SS ·i) + j) then
11: if o /∈ DR then
12: o← i
13: DR[o]← 1
14: else
15: DR[o] + +
16: end if
17: else
18: o← i
19: end if
20: end for
21: end if
22: end for
23: for all d ∈ DR do
24: C = C ∪ NewDataNode(P + DR[d], copy(b[d:DR[d]))
25: end for
26: return C
27: end procedure

form the leaves of the tree.

The inner function of the algorithm, shown in Algorithm 3 performs a 1-dimensional walk

over the data pointed to by the argument. It proceeds in steps of pointer size, checking if

each pointer-sized value is a valid mapped pointer. If it is, it creates a new child node and

adds it to its list of collected child nodes. If a value is not a valid mapped pointer, each byte

is iterated over and checked for taint. If the byte is tainted, its offset is either added to an

61

existing range of tainted data or a new data range is created beginning at its offset. After

each disjoint range of tainted data is identified, new nodes are created for each data range.

Finally, the set of child nodes is returned to the caller.

These trees representing the tainted memory are captured at the entry of a function.

During the execution of the function, memory read operations are instrumented and any

read addresses are tracked. At the return from a function, the corresponding tree is exam-

ined and any data from which no memory reads occurred is discarded from the tree. This

solves a problem where the recursive memory walk examines data that is not actually input

data to a function. For example, a function may receive a pointer to a stack buffer of length

80 containing data from an external interface that is located directly before an integer value

that also contains external data. While walking the pointer passed as input, the integer value

will be treated as continuous tainted data from the buffer by the scan algorithm. However,

if the function is well behaved and receives only a pointer to the input buffer, it will never

read data from the integer and will allow it to be excluded from the tainted data tree.

Functions may be invoked multiple times during a program execution, and each invoca-

tion must be checked. That is, a scan cannot be cached per function, nor even per callsite.

This is due to the aliasing problem, discussed in Subsection 1.1.1 , and which here allows

a function to be called with the “same pointer” that may have been reassigned from some

previously untainted data to point to newly tainted data. Not analyzing a function on

subsequent invocations would cause possible false negative results. Therefore, this process

implements a “shadow callstack” that is pushed to on function invocation and popped from

on function return. As an optimization and scope limitation, only programs within the main

binary program under test are tracked. This process proceeds until program exit, where

the set of functions that received any user data is returned, or in simple terms the list of

functions verifying C1.

62

Stage 3: Return values causing stuck points

Once functions receiving user input have been identified, the set of functions must be

narrowed down to determine which of them actually cause a stuck point to occur. Specifi-

cally, we must determine which functions’ return values are found in one of the arguments to

a comparison instruction that is associated with an imbalanced branch point. This analysis

can also be performed with the help of taint analysis utilizing libdft64. As inputs, this

stage of analysis takes the list of addresses where stuck point comparisons occur and the list

of functions identified during the previous stage as receiving external input. Upon returning

from a function in the list, the return value is tainted. Then, until the next call or return

instruction, each instruction address is checked against the list of addresses of stuck point

comparisons. If there is a match, the operands of the instruction are checked for tainted

data. If any is found, the function is added to the returned list of functions. Functions

passing this narrowing filter exhibit C4, and therefore because they have now been identified

to cause a stuck point, which are defined by Stage 1 to posess a skewed distribution, they

must also exhibit C3 and C2. In our analysis, C2 is also verified using static analysis.

2.2.3 RQ3: How should impeding functions be modified?

To this point, we have discussed at length what functions should be considered for mod-

ification to test the hypothesis that modifications can be applied to at a function level to

enhance throughput of a fuzzer. At this stage in analysis, these functions have been iden-

tified with high accuracy, but no assessment has been made as to their actual fitness for

modification. As an example, consider the program in Listing 10 .

This program exhibits a poor candidate for patching. Assuming it returns more than

one possible return code, function run exhibits C1-4. However, it is a poor candidate be-

cause it likely encapsulates nearly all of the program’s functionality. This function could

be modified, and doing so would likely enable the fuzzer to obtain coverage of line 13 as

well as line 11. However, it would also eliminate any deeper logic from being reached if the

63

1 int run(char *input_data) {
2 /* */
3 }
4

5 int main(int argc, char **argv) {
6 char *data = read_file(argv[1]);
7 int success = run(data);
8

9

10 if (!success) {
11 printf("Failure!\n");
12 } else {
13 printf("Success!\n");
14 }
15 return success;
16 }

Listing 10: Example of a poor impeding function patch candidate.

deeper logic is contained as subroutines of the run function. This type of function presents

a difficult challenge. How can we detect when a function is a good candidate for patching?

There are several heuristics that can be applied to filter out simple cases. Call depth could

be examined from main, and a cutoff can be used to eliminate “main-like” functions such as

the run function above. In a similar fashion, functions whose own call trees are shallower

could be prioritized. For example, the run function above could make many subroutine calls,

but a base64 decoding function is unlikely to make many. However, it is easy to find coun-

terexamples to many heuristics. Because of this, we elect to perform no filtering to attempt

to evaluate fitness for modification. Patch synthesis is reasonably low overhead, requiring

a limited number of dynamic taint analysis run per binary, and it is significantly easier to

evaluate the effectiveness and performance of a modification after it has been applied rather

than than attempt to determine whether an as-yet-applied patch will function well.

64

Stage 4: Patch synthesis

After impeding functions have been identified by stages 1 through 3, modifications to

each impeding function must be synthesized using a combination of statically and dynam-

ically recovered information about the function. We will refer to binaries generated by the

process of synthesizing and applying patches to the original binary under test as variant

binaries. First, we patch only one impeding function per output binary. Put differently,

for each identified call to an impeding function identified by previous stages, one output

binary will be generated, each with a different patch applied. There are several reasons to

only modify a single impeding function instead of alternate approaches, such as modifying

all or some other subset. Chief among them is the goal of preserving soundness if possible.

Any number of impeding functions may be identified, and while it is difficult to maintain

soundness of newly discovered inputs for a variant binary when re-applied to an original

binary, it is orders of magnitude more difficult when multiple functions have been replaced

with synthesized versions. This is a scope-reducing decision, however it is also a scalability

consideration. Given a production-ready implementation of this research work, the desired

workflow would likely proceed as follows:

1. A fuzzing job or fuzzing jobs are created

2. The fuzzer eventually becomes stuck

3. REFACE is run to generate a set of variant binaries

4. A smaller-scale fuzzing job is created for each variant binary and run for a limited

period of time

5. Inputs from variant binary fuzzing jobs that proceed past the stuck point in the original

binary are re-hosted to the original binary (if possible)

6. Other variant jobs are stopped and normal fuzzing proceeds until the fuzzer becomes

stuck again, and the process begins again from step 2

65

If the objective of fuzzing variant binaries was simply to find additional bugs in the vari-

ant binaries, creating a variant with multiple patches may be preferable. The probability

of unsoundness leading to a crash instead of simply incorrect behavior compounds with the

addition of further patches. However, because the objective is to find bugs in the original

binary, a balance between allowing the fuzzer to proceed unimpeded and preserving as much

of the original code as possible is desirable. In addition, we only apply a patch to a par-

ticular callsite as mentioned above, instead of either replacing all calls to the function with

calls to the replacement or replacing the actual body of the function with modified code.

This decision is once again motivated by reducing unsoundness, but also serves to narrow

the focus of a given impeding function modification on passing through the associated stuck

point. Consider a function such as a base64 decoding function. If the function is called in

two separate locations in the binary, one of which decodes constant data compiled into the

program and the other which decodes externally-supplied data , it serves no purpose to mod-

ify the function when called to decode constant data. In fact, this could only cause unsound

behavior, and is thus avoided. When a patch is applied, it is applied to a specific callsite of

a specific impeding function, and only that patch is applied to that variant. We have now

considered when patches will be applied, and must turn our attention to the method for

synthesizing these patches. Desirable properties for a modified function are as follows.

Modifying return value distribution

First, the impeding function should be modified to return the same possible return val-

ues as the original function, but with an inverse or otherwise modified distribution. In this

implementation, we hand control over the return value from the variant function directly to

the fuzzer. Based on prior work on AFL [77] and other fuzzing advancements, the fuzzer will

receive feedback based on the value chosen for that component of the input data, and will

observe different coverage of the program. In order to identify the return values from the

impeding function, static analysis is leveraged using the angr [99] framework. The algorithm

66

Algorithm 4 Stage 4 Return value identification
Inputs:

A, the address of the impeding function
1: procedure IdentifyReturnValues(A)
2: R← ∅
3: O ← returnLocations(A)
4: for all c ∈ callers(A) do
5: for all o ∈ O do
6: D ← reachingDefinitions(functionAt(A), rax, [c], o)
7: for all d ∈ D do
8: R = R ∪ AllConcreteSolutions(d)
9: end for

10: end for
11: end for
12: return R
13: end procedure

for identifying the return values for a given function is given in Algorithm 4 .

Because return values are returned (in our case) in the rax register, a naive approach

that may work well on source code of observing locations where a return CONSTANT state-

ment occur is impossible. Instead, a Reaching Definitions analysis, mentioned briefly in

Subsection 1.1.1 must be utilized to determine the locations in code where the value of the

rax register are defined, or set, without being killed, or overwritten with another definition,

before a return statement occurs. This complex analysis is abstracted away here, as it is

handled by the existing angr framework. However, these reaching definitions are symbolic.

Constant values defined inside the function will be easily identified and the symbolic defi-

nition can be concretized to obtain a real value or set of values. However, concrete values

passed into the function and then returned will not be discovered. To solve this, we pass the

execution context in this case an artificial static definition of a call stack. This call stack can

be arbitrarily large, but here we limit the context to a single outer function, as benefits are

diminishing past this point. Then, for each artificial callstack possible for the function under

test, observation point at each return location, all concrete solutions for each definition are

67

added to the set of constant return values, and the full set is returned.

Once the set of constant return values is identified, the return value component of the

patch can be fully synthesized. First, an array of the constant return values is created. Then,

code to consume a value of appropriate size to index into the array directly from the fuzzer

is added, and finally, code to return the value in the array at the indexed location is added as

the final statement in the patch. Using the motivating example function from WolfSSL (List-

ing 7) as an example, the return component of a patch might resemble the code in Listing 11 .

1 int patched_wc_RsaPrivateKeyDecode(const byte* input, word32* inOutIdx, RsaKey* key,
2 word32 inSz) {
3 /* */
4 const int return_values[] = {
5 -110, // MP_INIT_E
6 -132, // BUFFER_E
7 -140, // ASN_PARSE_E
8 -142, // ASN_GETINT_E
9 -146, // ASN_EXPECT_0_E

10 0, // No error
11 };
12 uint8_t idx = ConsumeUint8FromFuzzer();
13 return return_values[idx];
14 }

Listing 11: An example of a return value re-distribution patch.

More complex return paradigms that “return” data to the caller by setting the value

pointed to by an argument or by setting a global value are more error prone and are unsup-

ported by the prototype implementation of REFACE. However, this is not an insurmountable

challenge, and this possibility will be discussed further in Chapter 4 .

68

Replicating memory behavior

In addition to modifying the return value of the function, the behavior of the function

with respect to memory reads and writes must be replicated as closely as possible to avoid

unsound behavior. This is implemented via analyses based on dynamic taint analysis. First,

as discussed in Subsection 2.2.1 , many impeding functions also copy tainted data to other

locations, often from some type of input buffer to an output buffer. This data copying

presents an opportunity to directly pass fuzzer data to deeper logic, as the data is known to

be accessible via external inputs. In order to provide fuzzer data as output, the location of

this output must first be identified. The algorithm from Subsection 2.2.2 is used on entry to

the impeding function during dynamic taint analysis to take a “snapshot” of tainted memory.

Unlike the previous use of this algorithm, however, a second snapshot is taken at the exit of

the function. Then, the two tree structures are compared to find the set difference of tainted

memory from the exit snapshot from the entry snapshot. This gives the location in memory

of the output data, which is then used to synthesize the part of the patch that will con-

sume fuzzer data and write it directly to the output location(s) identified. In order to avoid

copying too much data, the sizes of the various regions of data are observed across dynamic

symbolic execution over each input in the fuzzer queue. For each tainted location in the

calculated set difference, the maximum and minimum sizes are recorded and used to param-

eterize the data consume functions from the fuzzer. For a typical base64_decode function,

the patch after applying memory behavior replication and return value re-distribution, the

patched function may resemble the example in Listing 12 .

Memory behavior modification in the prototype implementation of REFACE is limited

to copying of tainted data with the simplifying assumption that only functions correctly

verifying criteria C5 are of interest. Additional memory operations could be replicated by

performing additional dynamic or symbolic analysis, but function summarization and trans-

lation is out of scope of this project. Additional discussion in this area is covered later in

Chapter 4 .

69

1 int patched_base64_decode(char *outb, char *inb, size_t size) {
2 size_t dataSize = ConsumeDataInRangeFromFuzzer(MIN_SIZE_SEEN, MAX_SIZE_SEEN);
3 ConsumeBytesFromFuzzer(outb, dataSize);
4 const int return_values[] = {
5 0, // Success
6 1, // Failure
7 };
8 uint8_t idx = ConsumeUint8FromFuzzer();
9 return return_values[idx];

10 }

Listing 12: An example of a memory behavior and return value re-distribution patch.

2.2.4 RQ4: How can modifications, once decided upon, be applied to a binary?

Using the above analyses, patches can be synthesized that implement the fuzzer-relevant

operations of an impeding function. Applying these patches, however, is another challenge.

Stage 4 synthesizes patches as C code in order to simplify memory accesses relative to argu-

ment values. However, transforming C code into usable machine code, inserting the machine

code into the binary, and restructuring control flow to use the new code instead of the original

function are all non-trivial tasks. Several projects exist to perform each of these operations

separately, but all either were insufficient on engineering grounds, either containing bugs

or not supporting the target architecture amd64, or were not able to correctly apply the

generated patches to the binary to generate a variant binary.

The first task of patch application is compilation from the C code patch synthesized in

stage 4 to machine code that can be inserted into an existing binary. To perform this opera-

tion, we created an LLVM pass capable of taking nearly-arbitrary C code and outputting a

single function of machine code using LLVM inlining called Squishy. This pass was inspired

by a prior project, SheLLVM [101] that implemented a “shellcode compiler” using a similar

LLVM pass. Unfortunately, the SheLLVM project is not maintained, and several steps of the

pass it implemented resulted in incompletely inlined code. Squishy proceeds in several steps.

First, functions are recursively inlined into their callers until only a single function (main)

70

remains, then removing newly dead code as a result of the inlining. Next, global variables

are inlined into the beginning of the main function and transformed into stack variables so

they can be made position independent. Finally, any newly undefined calls are removed and

the resulting LLVM module is verified and compiled.

The patch is applied by using the LIEF [102] binary parsing and modification library. A

new loadable segment is added to the binary and the newly compiled patch is added to the

segment. Then, the callsite of the original impeding function is modified such that the call

transfers control flow to the newly compiled patch function instead of the original function.

2.2.5 RQ5: How can modifications to an impeding function be validated for
soundness and improvement to fuzzing?

Instead of validating patches for soundness before application, patches are applied ea-

gerly and validity testing is done in two stages after variant binaries have been generated.

First, each input in the fuzzing input queue that was used to generate the variant binaries

via the previous stages is run on each variant binary. Any variant that experiences a signifi-

cant unsound behavior such as crashing or hanging is immediately discarded. Variants that

successfully run with the original set of inputs are placed under fuzzing for a brief period

(parameterized in REFACE by the length of the period). Crashes during this period do not

necessarily represent unsoundness, as they could potentially reflect newly discovered logic

after the binary’s execution proceeds through the original stuck point. However, a crash

could also be due to an invalid patch, so after the brief period of time (generally, on the

order of minutes) inputs from the new fuzzer job’s input queue are run on the binary using

the coverage tool llvm-cov. The callstacks of any crashing locations are examined and any

crashes inside of patched code are taken to indicate an unsound patch. The remaining vari-

ant binaries are kept and fuzzed for a longer period of time to generate a larger set of inputs

to increase the chance of generating an input that can be re-hosted to allow the original

binary to pass through the stuck point.

71

3. EVALUATION

3.1 Best Practices

Evaluation of fuzzers specifically is a highly active research area with little agreement

among researchers on a precise way to measure fuzzer performance or compare fuzzers against

each other. This problem is compounded when considering a project such as REFACE, where

the majority of the process remains identical between a typical configuration and the im-

plemented tool with a single variable modified. In this case, the variable modified is the

binary itself, which gives rise to additional complexity in evaluating performance, especially

relative performance to other approaches. Despite the lack of formal settled specification for

performing evaluation, some consensus has been established. Generally, evaluation meth-

ods for fuzzing differentiate themselves in a select few categories. The first, and perhaps

most important, is the primary and secondary metrics used to evaluate effectiveness. Of

particular note for this work is the lack of recommendation of any paper surveyed for fuzzer

configuration when evaluating properties of a fuzzer other than maximum bugs found, or

for evaluating fuzzers in a manner other than a “head to head” configuration to drag race

fuzzers for supremacy. FuzzBench [103] aims to directly provide these configurations as a

benchmarking service, and also provide reproducibility, multiple runs, deduplication, and a

selection of programs as benchmark targets. FuzzBench does, however, suffer from overfit-

ting, as the benchmark components are known and can be tested and improved against. We

outline several recommendations from literature for fuzzer evaluation and discuss whether

we will utilize the recommendations as is, or give a reason for adopting a different approach.

3.1.1 Comparison Metrics

As discussed in Subsection 1.1.4 , many metrics exist for the continuous evaluation fuzzers

use to mutate input seeds. Often, these include some combination of edge, branch, and path

coverage. These three metrics are subtly different. Given the program control flow graph

in Figure 3.1 , edges are easy to identify. Any edge in the graph is also an “edge” by the

72

common definition used to describe program coverage. That is, the edge from block 0 to

block 1 is an edge, as is the edge from block 3 to 6, and the edge from block 5 to 4. Branch

coverage, in contrast, is only concerned with nodes with multiple outdegrees. In this case,

there are two branches from blocks 2 and 4. 100% branch coverage in this graph means

both edges from both blocks 2 and 4 are covered, a total of four edges. Thus, branch cov-

erage represents a subset of the possible edge coverage in the program. Path coverage, in

contrast to edge and branch coverage, is context sensitive. The path context depends on

the implementation, but assume for example the size of the context here is 7 blocks. The

path from 0 → 1 → 2 → 3 → 6 would be one path with a context size of 5, while the path

from 0 → 1 → 2 → 4 → 5 → 4 → 5 represents another with a context size of 7. This

second example reveals a fundamental limitation of path-based context tracking. Paths that

traverse the same code multiple times greatly increase both the size and number of paths

needed to represent all paths in a given segment of code. More practically, many fuzzers

do not support path-based coverage tracking. Branch and edge coverage are both useful,

however, and are used in many fuzzers including AFL [77].

As a metric for comparison, coverage has proven contentious, with several prior works

arguing for and against coverage as a metric for evaluating fuzzers. In 2015, Kochhar et al.

[104] presented a study of code coverage as an indicator for effectiveness in large programs,

which in this case refers to Apache HTTPClient and Mozilla Rhino, both of which are real-

world programs with a large amount (hundreds of thousands of lines) of code. The authors

discovered a moderate correlation between coverage and bug discovery in these programs.

Interestingly, the authors observe this correlation for “both statement and branch coverage”.

Also of interest is the claim cited by Kochhar, but put forth by differently by Just [105] et

al. Kochhar claims that “it is not clear whether the effectiveness of a test suite in killing

mutants is representative to its effectiveness in killing real bugs”. However, in the cited

work Just claims that “results show a statistically significant correlation between mutant

detection and real fault detection”. Just also presents some limitations, however, including

that many real bugs did not have corresponding classes of bugs represented by the injected

faults, or mutants, they inserted into the tested code. Klees et al. [106] presented one of the

73

0: int parseint(const char *str)

1: int rv = 0;

2: if (!str)

3: rv = -1;
3: goto err; 4: while (*str)

5: rv *= 10 + *str - 0x30;
5: str++;

6: err:
6: return res;

Figure 3.1. An example control flow graph to illustrate various coverage metrics.

74

most important works in fuzzer evaluation, Evaluating Fuzz Testing, a survey work intended

to make recommendations for fuzzer evaluations based on concrete data. Shockingly, their

work found problems by their criteria with 32 separate fuzzing papers published prior. They

note that “14 out of 32 papers we examined used code coverage to assess fuzzing effective-

ness”, but reference Inozemtseva [107]’s work which found a very weak correlation between

coverage and fuzzer effectiveness. However, Inozemtseva found this correlation on large Java

programs, where code and data interact differently than they do in C programs. Further-

more, there is a stark contrast in the high correlation between coverage and effectiveness

when test suite size – or the size of the software under test – was ignored, and the much

lower correlation when size is considered. Inozemtseva also uncovered a significant conclusion

that statement, branch, and path coverage show little difference between them. Klees tested

all 32 aforementioned fuzzing projects with the same configuration to identify weaknesses

in the various papers’ approaches. They suggest that bugs found should always be used

as the primary metric when evaluating fuzzers, because ultimately a fuzzer is only useful

if it successfully uncovers bugs. They suggest that when evaluating fuzzers with a “bugs

found” metric, the ground truth should be used if at all possible. In addition, they note that

there is weak or no correlation between the number of crashing input seeds found and the

number of unique crashes, and assert that bugs must be at a minimum deduplicated when

presented as data points. With respect to code coverage, Klees maintains that it is useful

as a secondary metric, but asserts bug finding should be prioritized. A newer work from

Bohme [108] presents new evidence directly contrary to that of both Klees and Inozemtseva.

The work shows conclusively that coverage is strongly correlated with bug finding, however

the authors make careful note that it should not be used to compare fuzzers to each other to

determine “superiority”. Instead, they suggest using an agreement test to determine whether

a fuzzer finds more bugs and achieves more coverage.

75

3.1.2 Seed Selection

Fuzzers rely on input seeds for all exploration of target binaries. Klees et al. find a

discrepancy between testing with an empty (or null) seed as opposed to a provided “good”

seed specifically tailored to the target program. They suggest where possible testing should

be done using both a “good” and “bad” seed. Seeds tailored to a program typically contain

data that is already formatted to conform to the expected input format of the binary. For

example, a black-box program that decodes an unknown data format may be very difficult or

time consuming to construct seeds for. In addition, fuzzing harnesses for both open source

and black box programs often harness specific portions of code, not the entire program. An

image parsing library may have fuzzing harnesses included, but these harnesses may exercise

only the re-encoding portions of the library. Because of this, even code that is already set

up with fuzzing supported may not provide “good” seeds for security evaluation. In addi-

tion, external analysts evaluating binary programs for security flaws generally must either

create seeds themselves through manual effort, which requires time and money, or begin

fuzzing using “bad” seeds in the hopes of passing through enough checks via the mutation

or generation processes. Therefore, there are compelling reasons aside from performance

differences to evaluate fuzzing projects over both “good” and “bad” seeds. Performance is

the key consideration, however, and the same fuzzer may perform very differently when run

using different seeds.

3.1.3 Evaluation Time and Repetitions

Most importantly, Klees et al. recommend using multiple runs of any evaluation to reduce

the effect of non-determinism or “good” and “bad” runs. They do not give a specific number

as a recommended minimum, instead recommending runs be performed until a statistical

test shows a significant result. They also suggest that any fuzzing run be configured to run

for at least 24 hours. The primary motivation of fuzzer evaluation is to compare mutation or

generation algorithms, which they note may not begin to produce desirable results until after

a certain time has elapsed. In addition, they note that evaluation over shorter timelines can

76

be simulated by simply excluding data after a certain time in the fuzzing cycle. In general,

fuzzing time is a problem for repeatability of results, especially if the time is not given or

evaluated.

3.1.4 Fuzzer Configuration

Klees et al. place little emphasis on fuzzer configuration in their work. In order to ac-

curately assess algorithms, they state (and we agree), that fuzzers must have an accurate

head-to-head configuration. For example, there is little value in a benchmark of one fuzzer

running on 8 cores compared to another fuzzer running on a single core, unless the dis-

crepancy is the point of the benchmark. This is a difficult property to express empirically,

however, and Klees et al. give no concrete numbers or recommendations. For example, it is

obvious that giving one fuzzer additional CPU resources over another gives that fuzzer an

unfair advantage, but some fuzzers such as AFL++ posses numerous options and toggles.

AFL++ specifically has options to enable features from previously discussed projects that

make massive leaps in performance, such as REDQUEEN. Klees et al. do not present spe-

cific recommendations, but they do mention that evaluation should be as fair as possible and

fuzzers should not be intentionally reduced in effectiveness when configured for evaluation.

3.1.5 Datasets

Datasets suitable for fuzzing research are difficult to create, as they must satisfy sev-

eral requirements. First, they must be publicly available, and fuzzing must be able to be

reasonably performed against them. Often in the real world, fuzzing requires creation of a

harness, which is a time consuming process. Next, they must contain bugs and the bugs

must be known ahead of time in order to evaluate, as discussed above, against the ground

truth. Very few purpose-built test sets exist, of which the dataset from the Cyber Grand

Challenge (CGC) [25] is the largest. It consists of over 200 small to medium programs with

widely varied behavior and implementations. All known bugs in the CGC dataset are doc-

77

umented, and therefore can be very efficiently triaged. However, the CGC dataset consists

almost entirely of programs under 10,000 lines of code, and is therefore not representative of

“real-world” fuzzing applications. In addition, although CGC consists of over 200 binaries,

Klees et al. note that Driller, VUzzer, and Steelix evaluate on under half of the binaries.

Injection of bugs into existing programs is therefore a popular tactic: large real-world soft-

ware can be used as a target to insert known errors into, in order to take advantage of

ground truth knowledge while also presenting the fuzzer with a large binary. Dolan-Gavitt

et al. also investigated realistic bug injection methodologies. The result is the LAVA-M [109]

benchmark, which addresses some of the identified problems with fault injection identified

by Just. This benchmark scales bug injection and allows extraction of the ground truth

from the set of injected bugs. However, it does not satisfactorily address the problem of

realism and injects only trivial and semi-trivial buffer overflow vulnerabilities where a value

must be set to expose the vulnerable code. Magma, presented by Hazimeh at al. [110],

aims to solve this limitation by utilizing real bugs from the past and “re-inserting” them

into real programs that can be re-analyzed to rediscover the previously extant bugs. This

allows for reproducibility and realism, along with verifiability to allow less costly triaging of

results. Magma also has an advantage in its human curation, as opposed to LAVA-M and

other injection works that use automation to inject bugs but, according to Dolan-Gavitt, the

bug injection itself can cause instability or further bugs and it can be difficult to ascertain

the root cause of a bug discovery in an injected program. FIXREVERTER [111], a more

recent work, modified the bug injection paradigm. Instead of finding code locations to insert

bugs, FIXREVERTER identifies locations where a bug would exist if a condition was met,

and creates an opportunity for that program to exist. They check “bug fix patterns” using

static analysis, then modify the binary to enable the bug. This method implements few

bug types, but provides a very convincing argument toward avoiding injection of brand new

bugs, instead of reusing old bugs. Most significantly, this creates a “realism” factor.

78

3.2 Testing Methodology

We attempt to include as many recommendations by the authors listed above as possi-

ble. The primary difference between this work and other projects in fuzzing research that are

included in the aforementioned fuzzer benchmarks, such as AFL++ or Honggfuzz [112], is

scope. REFACE does not attempt to be a fuzzer in itself, rather it attempts to augment an

existing fuzzer and enable it to surmount difficult code paths to make faster progress deeper

into the binary. Instead of comparing against multiple other fuzzers, as a typical fuzzing

project might, we only consider a single fuzzer: AFL++, and compare AFL++ using our

approach against AFL++ with no extraneous assistance. In addition to the decision to use

AFL++, several other choices were made to strike a balance between the unique testing

requirements of REFACE and the recommendations and best practices outlined above.

3.2.1 Comparison Metrics

The hypothesis of this work is essentially that REFACE will (a) enhance coverage, and

the speed of achieving enhanced coverage, on appropriate binary programs during fuzzing,

and (b) that this gain in coverage will enable a fuzzer to discover bugs more quickly. To this

end, the primary evaluation mechanism we use is edge coverage. Edge coverage is roughly

equivalent to branch coverage, and is the metric used by AFL++ to calculate whether inputs

have activated additional coverage. We also analyze any discovered bugs, as well as the time

required to discover them. In general, “time to first bug” is an imperfect metric, however as

a key goal of this work is to enhance not only the coverage and bug finding ability of fuzzers

but to enhance the speed with which they analyze black-box binaries with little preparation

time, we feel this time-based metric is appropriate.

79

3.2.2 Dataset

This is a prototype implementation of REFACE, and is capable of analyzing light to

medium weight programs. However, REFACE is not a general-purpose tool in terms of

applicability. As discussed in Subsection 2.2.1 , it depends on the presence of impeding

functions in programs to achieve greater performance. Therefore, to achieve the greatest

possible diversity in the dataset, we focus efforts on the CGC dataset of challenge binaries.

Several stages of analysis led to this decision, first among them a static analysis pass using

the CodeQL [113] code scanner to evaluate whether the CGC met the needs of evaluating

the effectiveness of REFACE. CodeQL facilitates writing “queries” that run over a project’s

code, searching for locations where particular patterns appear. It also incorporates powerful

static control and dataflow analysis capabilities. We implemented queries for each of the

criteria listed above to discover a ground truth over the dataset of functions that may verify

the search criteria.

First, we filtered for functions satisfying basic prerequisites such as non-library and non-

builtin definitions. Next, functions were checked for side-effect freeness. In the context of the

Cyber Grand Challenge binaries, a function was defined side-effect free if it did not call any

of the five defined system calls for the dataset and did not make any writes to global data.

This is a restrictive assertion that was lightened (as discussed previously) in the binary-only

assertion system. However, because source code is available for CodeQL queries, we opted

for higher accuracy rather than lower false negative rates. Next, functions were checked to

ensure they could feasibly return multiple different values. To do this, local dataflow was

examined for each function. CodeQL’s speed allowed for examining local dataflow sources

defined as each other expression in the function, while the sinks were defined as each return

statement in the function. Then, the set of possible expressions whose values flow into the

return statements was checked to ensure at least two possibilities existed for a given func-

tion. Next, another local dataflow analysis with sources defined for each return statement

and sinks defined on each comparison expression allowed testing the criteria that control flow

is modified by the return value of the impeding function. Finally, global dataflow allowed

80

checking whether a function received part of an external input as an argument. This dataflow

analysis, more than the local analyses checked prior, is imprecise. CodeQL implements a

may analysis for dataflow, meaning unlike with libdft, implicit dataflows are captured.

This affords more power to the analysis, but also provides room for error because REFACE

does not handle implicit dataflow. The results of the CodeQL analysis were utilized to select

targets appropriate for testing with REFACE as well as to verify the output of REFACE and

validate the effectiveness of testing the same assertions with only a binary program instead

of full source code.

From the CGC dataset, we selected four binaries best suited to analysis using REFACE,

using functions that perform many checks on user data, copy user data, or transform it.

These programs all contain at least one function identified by both CodeQL and manual

analysis as an opportune impeding function. The selected binaries were:

• CGC_Symbol_Viewer_CSV

• Mathematical_Solver

• Loud_Square_Instant_Messaging_Protocol_LSIMP

• Parking_Permit_Management_System_PPMS

These data points were selected without regard to the performance of AFL++ against

them, as it is a general purpose fuzzer and therefore able to handle nearly any program as

a test subject. A larger dataset would be ideal, however these four binaries serve as exhibits

of the effectiveness of the concept presented here. A larger evaluation is planned, but given

to future work as a function of manual analysis resources required to interpret results of

large-scale testing.

3.2.3 Seed Selection

Seed selection is a key consideration, and we pay special attention to seed selection due to

the specific nature of this approach. In general, we hypothesize REFACE’s approach is most

81

helpful when well-formatted seeds are not available, as manually crafted seeds may already

bypass many impeding functions that would otherwise impede progress of the fuzzer. How-

ever, in order to accurately assess the applicability of the methods described, it is useful to

observe the discrepancy. To avoid bias toward either approach, we test each binary program

with both a set of 20 crafted seeds provided in the CGC dataset along with the programs.

We also test each binary with a null seed composed of a sequence of 32 zeroes. This allows

a comparison of the same approach in both scenarios.

3.2.4 Evaluation Time and Repetitions

Fuzzing time is a second critical procedural choice. Klees et al. clearly recommend a

fuzzing run of a least 24 hours, and we adopt this time length as well. For the purposes of

this evaluation, the majority of exploration will, we hypothesize, occur early in the fuzzing

process, with impeding functions impeding further exploration after a short time. However,

to preclude the possibility of the fuzzer discovering new “interesting” inputs significantly

later in fuzzing, we implement the full time. More realistic time recommendations for evalu-

ating systems that do not implement fuzzing components but rather implement an assistance

mechanism for a fuzzer are discussed in Chapter 4 . In addition to fuzzing for 24 hours, we

make multiple repetitions of each test in order to preclude testing outliers or random differ-

ences in the progression of the mutation engine. Each binary is run in three full separate

fuzzing cycles, and each separate cycle is also tested with separate invocations of REFACE

during the runtime of the fuzzer, creating three fully separate experiment repetitions. These

repetitions address the threat to validity that a given observed run is a spurious maximum

or minimum that could make it difficult to accurately compare results.

3.2.5 Fuzzer Configuration

Finally, for scalability of testing as well as reproducibility of results, each fuzzing “job”

was run on one CPU core, using the default settings for the AFL++ fuzzer. The fuzzer

82

was run in binary-only fuzzing mode, which executes using the QEMU emulation system.

Using binary-only fuzzing mode is reflective of real workloads we hypothesisze REFACE is

best suited for, where there is little visibility into or knowledge of a target binary. These

fuzzing jobs were carried out in parallel across the cores of a single server, and at a config-

ured interval (in this case, 30 minutes), the REFACE pipeline was invoked with the current

fuzzer queue as input. The pipeline, executed at each interval, identified impeding functions

matching the criteria and produced variant binaries suitable for fuzzing. If any new variant

binaries were produced by a given invocation, a new fuzzing process was created for each,

with an initial input queue of the current input queue of the primary fuzzer. On exit of a

variant binary fuzzing job, the current fuzzer queue was captured for analysis. Finally, after

24 hours, all fuzzing jobs were stopped and outputs were captured.

3.3 Test Results

3.3.1 Coverage

Coverage results show a strong support of the first half of the hypothesis regarding bugs

or coverage found, it gives insight to examine auxiliary metric results first. As mentioned

above, the first data collected to analyze the performance of the approach was the fuzzing

queue from AFL++, complete with metadata including timestamps. The queue was col-

lected for each primary fuzzer, each of which ran for 24 hours, as well as from variant binary

fuzzing jobs, each of which ran for only 30 minutes. Figure 3.2 displays the number of total

inputs in the queue as a function of time. For both the “good” and “bad” starting seed con-

figurations, we observe an exceedingly sharp drop-off of new input discovery after a relatively

short amount of time. In general, sharp drops in new input discovery can indicate a lack of

forward progress made by the fuzzer, a problem that indicates the binary may be becoming

stuck at a check it cannot bypass by stochastic approaches. Figure 3.2 shows that this input

discovery effectively drops to zero by approximately 300 minutes of fuzzing although by far

the largest decrease occurs within the first 30 minutes. Interestingly, this drop-off occurs

83

Figure 3.2. Newly discovered inputs added to the AFL++ queue over time.

similarly for “good” and “bad” seeds, and occurs over all repetitions.

Coverage is the key metric we aim to increase using REFACE, so analysis of coverage

during the run of the fuzzer as shown in Figures 3.3 and 3.4 proves highly interesting. Unlike

the graph of new inputs discovered over time, which shows only a single input, if any, discov-

ered at a time for the majority of the fuzzing run, coverage discovery remains significantly

higher through the fuzzing process, with less of a drop-off for both the Parking Permit

and CGC_Symbol_Viewer_CSV binaries. First, consider the “good seed”. Small (single input)

numbers of additional discoveries barely visible in Figure 3.2 correspond to large jumps in

new coverage discovery. This seems to imply that late coverage, likely coverage reaching

deeper parts of the program, is as valuable to expanding coverage as early coverage discov-

ered at the beginning of a test. Perhaps even more so, as single input discoveries later in

the runtime of the fuzzer account for basic block discovery on par with that triggered by

multiple inputs provided as initial seeds. These two observations imply that REFACE should

indeed be effective at enhancing the coverage of the fuzzer. In fact, considering the graphs

of coverage as compared to the graph of newly discovered stuck points, we observe that

stuck point discovery is nearly identically correlated with coverage discovery, implying that

nearly all branches discovered are in fact stuck points. This gives weight to the additional

criteria for selecting impeding functions, as clearly selecting every stuck point would result

84

Figure 3.3. Newly discovered coverage and stuck points.

in numerous false positive results.

Recall that a “candidate function” or impeding function is a function verifying all of the

criteria identified previously. That is, an impeding function receives user input, and causes

a stuck point to occur via an imbalanced return value distribution. The identification of an

impeding function in the binary is correlated with the generation of a variant binary and the

subsequent fuzzing of that binary. Consider Figure 3.5 . It is clear the vast majority of candi-

dates are identified relatively quickly, with between 1 and 5 variant binaries created for each

original binary within the first interval of running REFACE. In the Parking Permit binary,

further coverage later in the runtime facilitates discovery of additional impeding functions

85

Figure 3.4. Newly discovered input receiving and stuck point creating func-
tions over time.

86

and variant binaries, but this is not the case for the other binaries. However, the other

binaries all produce a larger number of initial variant binaries with the notable exception of

the PKK Steganography binary when executed with a “bad” seed. The correlation between

increases in coverage and discovery of new impeding functions is encouraging. In an ideal

scenario to prove the usefulness of REFACE, the fuzzer would always become stuck due to

an impeding function, and not due to a non-impeding function-caused stuck point.

Figure 3.5. Newly discovered candidate functions over time.

The above conclusions suggest that REFACE is effectively locating impeding functions

during runtime, and also suggests the discovered impeding functions are indeed a significant

blocker to advancement by the fuzzer. This is a promising result for the validity of the first

component of the approach given here for identifying functions as abstract locations blocking

progress when fuzzing a binary. In addition, the REFACE system runs alongside an exist-

ing fuzzer to obtain these results and uses little compute power relative to the fuzzer itself,

making this approach relatively “cheap” for locating functions as areas blocking progress.

However, the key result is not necessarily whether impeding functions can be identified and

successfully modified, but whether doing so materially enhances the fuzzing process. In fact,

we demonstrate a positive result, with some significant caveats and prior work. However, in

general we show this method does increase coverage of the target binary during fuzzing. In

addition, this method obtains increased coverage of the target binary well before the regions

87

Table 3.1. Table of maximum coverage gained by patched program through
a single runtime.

Target Seed Type Run # Time (min) Coverage Gain (blocks)
parkingpermit badseed 1 57 6
parkingpermit badseed 2 56 9
symbolviewer badseed 1 53 303
symbolviewer goodseed 1 92 257
symbolviewer goodseed 2 59 142
symbolviewer goodseed 3 41 273

of code under test can be explored by an unmodified fuzzer.

Consider Table 3.1 above. The table lists each binary under test with a successfully

executing patch (PKK_Steganography experienced failures to analyze the type of impeding

function, a shortcoming discussed in the future work section), along with the category of

seed and the trial number. The final column displays the “maximum patch coverage”, or the

comparison at any given point in time of the number of basic blocks covered by the patched

binary compared to the unpatched binary. The method for calculating this metric was to

iterate over each time step for both patched and unpatched binaries and check the size of

the set difference of coverage between them. Then, the largest difference is reported here.

This is a best-case metric, but demonstrates the exact hypothesis we sought to demonstrate

by obtaining faster time to reach a larger coverage than the unpatched binary. This cover-

age leap at an earlier time than the original binary can be seen in graphs of variant versus

original binary performance in Figure 3.6 .

Figure 3.6 displays coverage graphs of original versus variant binaries over time. While

coverage over time is similar, we note that two out of three cases, REFACE achieves faster

time to reach a plateau of coverage improvement, and in all cases the fuzzer achieves nearly

identical maximum coverage in the variant binary. In all cases the replacement function con-

tains less basic blocks than the patched function, so this coverage is not due to the applied

patch. This increase in both speed and coverage amount is modest, but displays a confir-

mation of the section of the hypothesis regarding coverage increases as a result of modifying

88

Figure 3.6. Coverage of original binaries compared to variant binaries over time.

89

impeding functions. In particular, variant binaries of the GCG_Symbol_Viewer_CSV binary

reach greater coverage than the good-seed fuzzer on the original binary, a case explored

in greater depth in Subsection 3.3.4 . Variant fuzzing also reaches a coverage plateau more

quickly on the Parking Permit binary with a bad seed.

3.3.2 Impeding function Identification

As discussed in Subsection 3.2.2 , we use CodeQL to statically identify possible impeding

functions with static source analysis. In order to empirically measure how effective REFACE

is in identifying impeding functions, we compare the actually detected functions with applied

patches to the “ground truth” set of functions from CodeQL. In almost all cases, CodeQL

provides a significant over-estimate of the number of real impeding functions present in a

binary. There are several reasons for this. First, and most impactful, is the lack of dynamic

information available to CodeQL. This means it is unable to determine when a function

returns one value more often than another, and is therefore unable to verify C3, the asser-

tion that the distribution of return values must be skewed. In addition, although CodeQL

implements dataflow analysis, it is an estimation, and tends to raise many false positives.

The following tables Table 3.2 , 3.3 , 3.4 , and 3.5 display the set of functions identified by

CodeQL as compared to the set of functions identified during the runtime of REFACE and

patched. Note that each function may be patched more than once, as different runs may

expose different identifications of buffer locations and sizes.

In all cases, REFACE was able to identify at least one common impeding function with

CodeQL. In LSIMP, PKK_Steganography, and CGC_Symbol_Viewer_CSV, REFACE was able

to identify a manually verified real impeding function CodeQL was unable to identify. Via

manual verification, we conclude the majority of functions recognized by CodeQL are false

positives for this analysis. Primarily, this is due to a lack of biased return value distribution.

For example, all is type functions such as isascii do not exhibit this characteristic over

well-distributed input from the fuzzer. A small number of functions recognized by CodeQL

90

Table 3.2. Impeding functions reported by CodeQL compared to REFACE for PPMS
Function CodeQL REFACE

cgc_allocate_new_blk D
cgc_calloc D

cgc_fdprintf D
cgc_isalnum D
cgc_isalpha D
cgc_isascii D
cgc_isdigit D
cgc_islower D
cgc_ispunct D
cgc_isspace D
cgc_isupper D
cgc_isxdigit D
cgc_malloc D

cgc_memchr D
cgc_memcmp D D
cgc_memcpy D

cgc_permit_new D
cgc_permit_test D

cgc_pring_test D
cgc_read_n D D

cgc_read_until D
cgc_realloc D

cgc_strcasecmp D
cgc_strchr D

cgc_strcmp D
cgc_strdup D
cgc_strlen D

cgc_strncasecmp D
cgc_strncmp D

cgc_strsep D
cgc_strtol D

cgc_strtoul D
cgc_tolower D

cgc__validate_license_number D
cgc__validate_permit_token D

91

Table 3.3. Impeding functions reported by CodeQL compared to REFACE for LSIMP
Function CodeQL REFACE

cgc_calloc D
cgc_compute_guard D D

cgc_decode_data D
cgc_fdprintf D
cgc_isalnum D
cgc_isalpha D
cgc_isascii D
cgc_isdigit D
cgc_islower D
cgc_ispunct D
cgc_isspace D
cgc_isupper D
cgc_isxdigit D
cgc_malloc D D

cgc_memchr D
cgc_memcmp D
cgc_memcpy D

cgc_parse_msg D
cgc_process D
cgc_read_n D D

cgc_read_until D
cgc_realloc D

cgc_strcasecmp D
cgc_strchr D

cgc_strcmp D
cgc_strdup D
cgc_strlen D D

cgc_strncasecmp D
cgc_strncmp D

cgc_strsep D
cgc_strtol D

cgc_strtoul D
cgc_tolower D

92

Table 3.4. Impeding functions reported by CodeQL compared to REFACE
for PKK Steganography

cgc_allocate_new_blk D
cgc_calloc D

cgc_embed_text D
cgc_extract_text D

cgc_isalnum D
cgc_isalpha D
cgc_isascii D

cgc_islower D
cgc_ispunct D
cgc_isspace D
cgc_isupper D
cgc_malloc D D

cgc_memchr D
cgc_memcmp D
cgc_memcpy D

cgc_output_pkk D
cgc_parse_input D

cgc_read_n D D
cgc_readuntil D

cgc_realloc D
cgc_skip_whitespace D

cgc_strchr D
cgc_strcmp D
cgc_strlen D
cgc_strsep D
cgc_strtol D

cgc_strtoul D
cgc_tolower D

93

Table 3.5. Impeding functions reported by CodeQL compared to REFACE
for CGC Symbol Viewer CSV

cgc_allocate_new_blk D
cgc_calloc D

cgc_cgcf_is_valid D
cgc_cgcf_parse_file_header D

cgc_cgcf_parse_section_header D D
cgc_fdprintf D
cgc_isalnum D
cgc_isalpha D
cgc_isascii D
cgc_isdigit D
cgc_islower D
cgc_ispunct D
cgc_isspace D
cgc_isupper D
cgc_isxdigit D
cgc_malloc D D

cgc_memchr D
cgc_memcmp D
cgc_memcpy D
cgc_read_n D

cgc_read_until D
cgc_realloc D

cgc_sl_insert D
cgc_strcasecmp D

cgc_strchr D
cgc_strcmp D
cgc_strdup D
cgc_strlen D

cgc_strncasecmp D
cgc_strncmp D

cgc_strsep D
cgc_strtol D

cgc_strtoul D
cgc_tolower D

94

would eventually become true positive results, but in the tested binaries over the 24 hours

tested, they were not reached in a context in which they would become true impeding func-

tions. Finally, many functions are statically-compiled library functions and are unused in the

binaries. For example, LSIMP contains no calls to cgc_strcasecmp. Some functions, such

as cgc_read_n would appear false positives upon first consideration, however cgc_read_n

is in fact a true positive result in the context of the chosen binaries. In LSIMP, cgc_read_n

is called in a loop, and data is read into the same buffer each iteration. Its return value is

checked, and the loop is exited if no data is read, which only occurs once out of all read

operations. Thus, it creates a stuck point and receives user input if called more than a single

time on the same buffer. In addition, a patch to this function can exercise additional control

flow by potentially reading more than requested into the buffer, introducing new potentially

behavior. Via manual analysis of identifiied impeding functions, we find REFACE discov-

ered the first encountered impeding function with 75% accuracy over the programs tested.

REFACE did not identify cgc_parse_input in PKK_Steganography, as it does not receive

user input through a parameter. Instead, it performs read operations from standard input in

its function body, then performs parsing immediately. Despite not conforming to the current

definition of a impeding function, we recognize this as a valid case and leave implementation

of additional checks and criteria to detect similar cases to future work.

3.3.3 Crashes

Using default AFL++ without Reface, the fuzzer experiences various levels of success.

Over the four binaries evaluated, LSIMP and Parking Permit experienced zero crashes each

over the entire 24 hour fuzzing run. Several crashes were reported for LSIMP by AFL++, but

these were due to AFL++’s qualifications for a reported crash, which includes any instance

where a binary exits with a signal. LSIMP exits with a signal during normal operation, which

causes AFL++ to report these exits as crashes, but a triaging session using GDB shows

these are false positives. PKK Steganography contains an unintended SIGFPE crash (the

crash is not listed as ground truth in the CGC documentation) when dividing by zero in

95

its pixel parser, which divides a constant by both the width and height, both of which are

user-provided. This crash is discovered almost immediately (after 34 seconds), and is the

only crash discovered in this challenge binary. CGC_Symbol_Viewer_CSV contains a crash in

the cgc_cgcf_parse_section_header function, which calls memmove with an out of bounds

pointer. This crash is the only crash discovered during the unmodified fuzzer run known in

the ground truth for CGC, and is noted in the documentation for the dataset.

Using modified AFL++ with Reface, over 400 crashes are discovered in Parking Permit,

the majority of which derive from a patch to the cgc_memcmp function, which allows the pro-

gram to artificially proceed down control flow paths it otherwise could not. For example,

the majority of crashes occur during an invalid free which is not discovered in the original

binary. This crash can be triggered by a patch that does not copy any extraneous data or

cause memory corruption, simply returning zero when non-equal data is passed in. This

example showcases potential useful properties of REFACE for deep vulnerability scanning.

Although in this case we are confident this vulnerability is unreachable in the original pro-

gram due to the guard comparison, code reuse is rampant within the software industry and

it is entirely possible vulnerable code that was once hidden behind such a guard comparison

may be used in a way that it is left unguarded in the future. CGC_Symbol_Viewer_CSV does

not discover any additional crashes with the benefit of REFACE, however the case study

below highlights its speed and coverage gain as compared to unmodified AFL++ in explor-

ing behind a more complex guard check. LSIMP also does not discover additional crashes. It

does discover inputs which AFL++ marks as crashes sooner, however this is not necessarily

a benefit and simply reflects AFL++’s eager approach to finding what it interprets as bugs.

Finally, PKK_Steganography experiences a problem where additional fuzzers cannot start

due to discovered seeds which cause the fuzzer to hang or crash, and is unable to start.

Overall, we show that AFL++ with reface performs at least as well as unmodified AFL++

at finding crashes (1 real crash vs 1 real crash) and potentially better, although the addi-

tional discovered vulnerability is not reproducible on the original binary due to a guard

check. Some results reflect areas where the system could be improved, however as shown

96

above the demonstrated coverage example is a strong positive outcome. We leave further

attention to improving REFACE specifically for bug finding case to future work, with some

discussion of avenues for improvement in Chapter 4 .

3.3.4 Case Study

The CGC_Symbol_Viewer_CSV binary is a prototypical case study. It is a parser for CGC

binary programs that parses a format similar to a simplified ELF file. The program’s main

function is given in Listing 13 , and reads and then parses data.

The last two calls, to cgc_cgcf_parse_file_header and cgc_cgcf_is_valid are both

prototypical impeding functions that take user input and perform checks on the data. In

particular, the file header parse function peforms both checks and copying of buffer data.

The code for the parse file header function is given in Listing 14 , and is conceptually

simple, however the check of the buffer length depends on a previous read from user input

to obtain the buffer length value. Therefore, it is difficult for the fuzzer to bypass this check

as a significant weak point of fuzzing without symbolic execution is the absence of state

representation, which would allow correlation of input data to the data checked. REFACE

analyzes this program and identifies cgc_cgcf_parse_file_header as an impeding func-

tion because it receives user input via an argument (in this case, buf), returns skewed return

values (in this case, -1 and 0, with -1 significantly more common). In addition, the if check

on the return value at line 24 causes a stuck point. Next, REFACE attempts to derive a

patch for this function automatically.

The input and output buffers (buf and hdr respectively) are detected via taint snapshot-

ting at entry and return from the function, which allows REFACE to correctly identify the

location of the buffer relative to the argument registers. In this case, rdx is a direct pointer

to the output data, so REFACE uses this information in conjunction with analysis of return

values to derive the patch given in Listing 15 . The call to the original function in main

97

1 int main() {
2 /* */
3 /* Read in size */
4 if (cgc_read_n(STDIN, (char *)&size, sizeof(size)) != sizeof(size))
5 return -1;
6

7 /* Check size */
8 if (size > MAX_FILE_SIZE)
9 {

10 cgc_printf("Too big.\n");
11 return -1;
12 }
13

14 /* Allocate memory */
15 file = cgc_malloc(size);
16 if (file == NULL)
17 return -1;
18

19 /* Read in file */
20 if (cgc_read_n(STDIN, file, size) != size)
21 goto error;
22

23 /* Parse file header */
24 if (cgc_cgcf_parse_file_header(file, size, &ehdr) != 0)
25 {
26 cgc_printf("Invalid CGC file header.\n");
27 goto error;
28 }
29

30 /* Validate CGC magic */
31 if (!cgc_cgcf_is_valid(&ehdr))
32 {
33 cgc_printf("Invalid CGC magic.\n");
34 goto error;
35 }

Listing 13: The main function of CGC_Symbol_Viewer_CSV

is redirected to this function, and this function is inserted into the binary and a fuzzer is

started. This function serves as a nearly optimal patch candidate, as not only does returning

a new magic value (0) cause execution to continue past the error check where it previously

failed, but the replacement of a copy with a read from fuzzer data allows the fuzzer to exer-

98

1 int cgc_cgcf_parse_file_header(const char *buf, cgc_size_t buf_len, cgcf_Ehdr *hdr)
2 {
3 /* Check if the pointers are NULL */
4 if (buf == NULL || hdr == NULL)
5 return -1;
6

7 /* Check if the buffer is large enough */
8 if (buf_len < sizeof(cgcf_Ehdr))
9 return -1;

10

11 /* Copy over the file header */
12 cgc_memmove(hdr, buf, sizeof(cgcf_Ehdr));
13

14 return 0;
15 }

Listing 14: An impeding function from CGC_Symbol_Viewer_CSV

1 void read_fuzzer(uint8_t *buf, size_t size) {
2 ssize_t rv = _syscall3(SYS_read, 0, (size_t)buf, size);
3 if (!rv) {
4 _syscall1(SYS_exit, 0);
5 }
6 }
7

8 uint64_t patch(uint64_t arg0, uint64_t arg1, uint64_t arg2, uint64_t arg3,
9 uint64_t arg4, uint64_t arg5) {

10

11 uint8_t *outb2 = (uint8_t*)arg2;
12 read_fuzzer(outb2, 8);
13

14

15 uint64_t ret = 0;
16 uint8_t idx = 0;
17 read_fuzzer((uint8_t *)&idx, sizeof(uint8_t));
18 idx %= 2;
19 const uint64_t rvs[2] = {0x0, 0xffffffff};
20 ret = rvs[idx];
21 return ret;
22 }

Listing 15: Synthesized patch for cgc_cgcf_parse_file_header

99

cise additional control flow paths after the check. This is the cause of the surprisingly large

increase in basic block coverage, as un-checked fuzzer data is now passed directly to deeper

program logic in the binary.

100

4. FUTURE WORK

4.1 Additional Evaluation

The primary future work in this area is an extended evaluation. Due to the difficulty

of evaluating REFACE in a scalable fashion, as well as the computational requirements

(REFACE used 100% of 112 cores in its evaluation over the three binaries discussed previ-

ously), this is left for future work. To fully and completely evaluate the system, there are

several key recommendations. First, a significantly larger dataset with many various types

of programs should be used, including but not limited to the full CGC and Magma datasets.

Replicating this analysis over a larger dataset will serve two purposes. First, it will provide

a more accurate evaluation of the effectiveness of this approach on a wider variety of pro-

grams with different functions. The evaluation contained in this work is limited in scope and

intended solely to prove the method and approach is effective, and was not intended as a

comparison against other fuzzing approaches and methodologies. Second, analysis of many

different types of applications may reveal other effective applications of the approach.

Second, this evaluation does not seek to discover novel bugs or exploits in programs, but

future work should be done to determine the effectiveness of REFACE at discovering bugs

and vulnerabilities. Here we focus only on the enhancement of coverage by the tool, but the

core of the project aims to enhance the bug finding process as well. Analysis of the full CGC

dataset as well as vulnerability-focused tests – such as Magma and Lava – will provide useful

data regarding the power of this method for impedance abstraction for quickly discovering

bugs

4.2 Buffer Analysis

The largest gap in the implementation of REFACE lies in the analysis of impeding func-

tions to identify buffer information and inform the patcher where additional input data

should be read. The primary barrier in this area is simple: if a function is executed with

101

user input as some argument, but the function returns prior to performing reads or writes

from or to the tainted input data. This causes a problem in patch synthesis, because if

a read or write operation does not occur during any trace of the program, it is effectively

hidden from the analysis. we mitigate this problem with several heuristics, but there is

further work in this area. Notably, static symbolic analysis of the impeding function could

be used to reveal the possible operations, or under-constrained symbolic execution could be

leveraged to solve for the real set of operations on the tainted memory under analysis. Fur-

thermore, identification of tainted data operates recursively and therefore supports analysis

nested structures and other complex data structures. However, REFACE currently makes no

attempt to infer the real data type of underlying data. Heuristics could easily be leveraged

to perform a best-effort analysis of the input arguments for this purpose.

4.3 De-Simplification

REFACE is designed to modify binaries and fuzz those modified binaries to potentially

uncover vulnerabilities. However, it does not currently attempt to re-host any discovered

inputs for bugs discovered in a variant binary back to the original binary. In general, we pro-

pose this step is not required – a human analyst can easily determine given a crashing input

for a patched binary whether the crash is problematic and necessitates a fix, or whether it is

unreachable in the real system. For a production system, however, this would be a helpful

feature for scalability and triaging. The current theory for de-simplifying inputs is to simply

fall back to dynamic symbolic execution on the original binary using the modified input,

fixing up constraints to coerce the program to follow the same path as the variant binary.

However, this approach is not foolproof and relies on pure symbolic execution, so additional

research into its viability or alternative methods is recommended.

There is ample future work in fuzzing, and particularly in the direction REFACE aims

to proceed. Abstraction of program elements, including but not limited to functions, is a

promising direction for many reasons discussed prior. Though this work highlights only a

102

modest increase in fuzzing performance, the promise of additional bugs given investment in

engineering and heuristics for improved patch generation is motivation for further investiga-

tion.

103

5. CONCLUSIONS

5.1 Contributions

This work makes several material contributions to the practice of fuzzing and scal-

able analysis. First, we put forth REFACE, a pipeline for integrating function-level fuzzer

impedance analysis into a normal fuzzing process composed of a scalable dynamic tracing

framework based on QEMU, targeted taint analysis tools based on libdft64, and patching

tools built with the LIEF binary patching framework. The core REFACE implementation

consists of approximately 3000 lines of Rust, 2000 lines of C++, and 1000 lines of Python,

with the following sub-components: cannonball tracing framework (1000 lines of Rust code

and 1200 lines of C), pypatches patching framework (1500 lines of Python), pysquishy shell-

code compiler (500 lines of C++ and 800 lines of Python). In addition, we put forth a

general method for analysis of functions for control flow impedance and a limited analysis of

results of the application of this general method with positive results on appropriate targets.

We demonstrate a confirmation of the hypothesis that abstraction of stuck points to im-

peding functions and modification to affect control flow increases coverage, and we demon-

strate potential to confirm the hypothesis with respect to bugs found, leaving a wider-scale

evaluation to future work. In addition, we evaluate the fitness of REFACE as a component

of a wider fuzzing research landscape and identify similar works.

5.2 Takeaways

Despite a lack of clear bug discovery, we suspect primarily due to a small-scale evaluation,

several interesting observations arise through analysis of the various stages of results:

• Near 1:1 correlation of stuck points and coverage bears investigation, it is possible

coverage may be used as a metric of impedance as well as discovery.

• Sharp decreases in coverage and new input discovery over time should be evaluated,

and solutions may present avenues for investigation.

104

• Bugs discovered may be true positives and remain unreachable in current code.

Most critically, we consider investigation of methods for abstraction of concepts that

present difficulty to fuzzers a fruitful research area. Intuitively, reducing the complexity of

specific areas of binary programs to allow fuzzers to focus on other areas of a binary should

allow greater exploration of control and data flows. Abstraction of difficult to bypass checks

from a statement level to a function level is only one application of an abstraction-based

approach to fuzzing improvement. For example, in very large programs the abstraction of

entire components into opaque data producing or consumers could provide an even higher-

level analog of this idea. However, many difficulties remain unsolved. Chief among them

is the problem of unsoundness when attempting to generalize software defects identified in

modified binaries back to the original binary. This “re-hosting” problem is a significant hur-

dle for this line of research, and should be investigated thoroughly.

Empirically, we present data describing the initial validity of the approach outlined in

the system design. REFACE discovers 75% of first-encountered stuck points across four bi-

naries. REFACE discovered a minimum of 2 and maximum of 5 impeding functions over a

24 hour fuzzing execution and was able to generate variant binaries and begin fuzzing these

variants on 3 out of 4 binaries. Fuzzing of variant binaries generated through modification

of discovered impeding functions showed a significant increase in coverage in the same time

interval when compared to the original binary. Finally, REFACE discovered one new crash

in a variant binary, although this new crash is unreachable in the original binary. Several

avenues to improve REFACE were identified in Chapter 4 . REFACE implements a proof of

concept that validates the hypothesis, but falls short of demonstrating significant capability

to discover new bugs on a wide variety of programs. This deficiency is primarily due to

insufficient analysis of program data buffers, which we are confident implementation of ideas

set forth in the Chapter 4 will address.

105

REFERENCES

[1] B. C. HOUSEL, “A STUDY OF DECOMPILING MACHINE LANGUAGES INTO
HIGH-LEVEL MACHINE INDEPENDENT LANGUAGES,” Theses and Dissertations Avail-
able from ProQuest, pp. 1–271, Jan. 1, 1973. [Online]. Available: https://docs.lib.purdue.
edu/dissertations/AAI7404980 .

[2] R. Farrow, K. Kennedy, and L. Zucconi, “Graph grammars and global program data
flow analysis,” in 17th Annual Symposium on Foundations of Computer Science (sfcs 1976),
ISSN: 0272-5428, Oct. 1976, pp. 42–56. doi: 10.1109/SFCS.1976.17 .

[3] W. Howden, “Symbolic testing and the DISSECT symbolic evaluation system,” IEEE
Transactions on Software Engineering, vol. SE-3, no. 4, pp. 266–278, Jul. 1977, Conference
Name: IEEE Transactions on Software Engineering, issn: 1939-3520. doi: 10.1109/TSE.
1977.231144 .

[4] D. E. Denning, “A lattice model of secure information flow,” Communications of the
ACM, vol. 19, no. 5, pp. 236–243, May 1976, issn: 0001-0782, 1557-7317. doi: 10.1145/
360051.360056 . [Online]. Available: https://dl.acm.org/doi/10.1145/360051.360056 (visited
on 10/05/2022).

[5] S. K. Robinson and I. S. Torsun, “An empirical analysis of FORTRAN programs,” The
Computer Journal, vol. 19, no. 1, pp. 56–62, Jan. 1, 1976, issn: 0010-4620. doi: 10.1093/
comjnl/19.1.56 . [Online]. Available: https://doi.org/10.1093/comjnl/19.1.56 (visited on
09/08/2022).

[6] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints,” in Proceedings of the 4th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages, ser. POPL
’77, New York, NY, USA: Association for Computing Machinery, Jan. 1, 1977, pp. 238–252,
isbn: 978-1-4503-7350-0. doi: 10.1145/512950.512973 . [Online]. Available: https://doi.org/
10.1145/512950.512973 (visited on 09/08/2022).

[7] (). “The LLVM compiler infrastructure project,” [Online]. Available: https://llvm.org/

(visited on 10/24/2022).

[8] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing mayhem on bi-
nary code,” in 2012 IEEE Symposium on Security and Privacy, San Francisco, CA, USA:
IEEE, May 2012, pp. 380–394, isbn: 978-1-4673-1244-8 978-0-7695-4681-0. doi: 10.1109/
SP.2012.31 . [Online]. Available: https://ieeexplore.ieee.org/document/6234425/ (visited on
09/24/2022).

106

https://docs.lib.purdue.edu/dissertations/AAI7404980
https://docs.lib.purdue.edu/dissertations/AAI7404980
https://doi.org/10.1109/SFCS.1976.17
https://doi.org/10.1109/TSE.1977.231144
https://doi.org/10.1109/TSE.1977.231144
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056
https://dl.acm.org/doi/10.1145/360051.360056
https://doi.org/10.1093/comjnl/19.1.56
https://doi.org/10.1093/comjnl/19.1.56
https://doi.org/10.1093/comjnl/19.1.56
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://llvm.org/
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1109/SP.2012.31
https://ieeexplore.ieee.org/document/6234425/

[9] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary analysis plat-
form,” in Computer Aided Verification, G. Gopalakrishnan and S. Qadeer, Eds., ser. Lecture
Notes in Computer Science, Berlin, Heidelberg: Springer, 2011, pp. 463–469, isbn: 978-3-
642-22110-1. doi: 10.1007/978-3-642-22110-1_37 .

[10] C. Cifuentes, “Reverse compilation techniques,” 1994.

[11] C. Cifuentes and A. Fraboulet, “Intraprocedural static slicing of binary executables,” in
In Int. Conf. on Softw. Maint, 1997, pp. 188–195.

[12] W. Landi, “Undecidability of static analysis,” ACM Letters on Programming Languages
and Systems, vol. 1, no. 4, pp. 323–337, Dec. 1, 1992, issn: 1057-4514. doi: 10.1145/161494.
161501 . [Online]. Available: https://doi.org/10.1145/161494.161501 (visited on 09/08/2022).

[13] H. Theiling, “Extracting safe and precise control flow from binaries,” in In Proc. 7th
Conference on Real-Time Computing Systems and Applications, 2000.

[14] M. Egele, T. Scholte, E. Kirda, and C. Krügel, “A survey on automated dynamic
malware-analysis techniques and tools,” ACM Comput. Surv., vol. 44, 6:1–6:42, 2008.

[15] S. Shankland. (). “VMware ready to capitalize on hot server market,” CNET, [Online].
Available: https://www.cnet.com/tech/tech-industry/vmware-ready-to-capitalize-on-hot-
server-market/ (visited on 10/24/2022).

[16] C. Cifuentes and M. Van Emmerik, “Recovery of jump table case statements from binary
code,” Science of Computer Programming, Special Issue on Program Comprehension, vol. 40,
no. 2, pp. 171–188, Jul. 1, 2001, issn: 0167-6423. doi: 10.1016/S0167-6423(01)00014-4 .
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167642301000144

(visited on 09/08/2022).

[17] A. Kiss, J. Jasz, G. Lehotai, and T. Gyimothy, “Interprocedural static slicing of binary
executables,” in Proceedings Third IEEE International Workshop on Source Code Analysis
and Manipulation, Sep. 2003, pp. 118–127. doi: 10.1109/SCAM.2003.1238038 .

[18] L. C. Harris and B. P. Miller, “Practical analysis of stripped binary code,” ACM
SIGARCH Computer Architecture News, vol. 33, no. 5, pp. 63–68, Dec. 2005, issn: 0163-
5964. doi: 10.1145/1127577.1127590 . [Online]. Available: https://dl.acm.org/doi/10.1145/
1127577.1127590 (visited on 09/08/2022).

[19] (2007). “Decompilation gets real – hex rays,” [Online]. Available: https://hex-rays.com/
blog/decompilation-gets-real/ (visited on 09/08/2022).

107

https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1145/161494.161501
https://doi.org/10.1145/161494.161501
https://doi.org/10.1145/161494.161501
https://www.cnet.com/tech/tech-industry/vmware-ready-to-capitalize-on-hot-server-market/
https://www.cnet.com/tech/tech-industry/vmware-ready-to-capitalize-on-hot-server-market/
https://doi.org/10.1016/S0167-6423(01)00014-4
https://www.sciencedirect.com/science/article/pii/S0167642301000144
https://doi.org/10.1109/SCAM.2003.1238038
https://doi.org/10.1145/1127577.1127590
https://dl.acm.org/doi/10.1145/1127577.1127590
https://dl.acm.org/doi/10.1145/1127577.1127590
https://hex-rays.com/blog/decompilation-gets-real/
https://hex-rays.com/blog/decompilation-gets-real/

[20] (2004). “Static disassembly of obfuscated binaries,” [Online]. Available: https://www.
usenix . org / legacy / event / sec04 / tech / full _ papers / kruegel / kruegel _ html/ (visited on
09/08/2022).

[21] M. Cova, V. Felmetsger, G. Banks, and G. Vigna, “Static detection of vulnerabilities
in x86 executables,” in 2006 22nd Annual Computer Security Applications Conference (AC-
SAC’06), ISSN: 1063-9527, Miami Beach, FL, USA: IEEE, Dec. 2006, pp. 269–278, isbn:
978-0-7695-2716-1. doi: 10.1109/ACSAC.2006.50 . [Online]. Available: http://ieeexplore.
ieee.org/document/4041173/ (visited on 09/08/2022).

[22] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, and P. Saxena, “BitBlaze: A new approach to computer security via binary
analysis,” in Information Systems Security, R. Sekar and A. K. Pujari, Eds., ser. Lecture
Notes in Computer Science, Berlin, Heidelberg: Springer, 2008, pp. 1–25, isbn: 978-3-540-
89862-7. doi: 10.1007/978-3-540-89862-7_1 .

[23] J. Kinder and H. Veith, “Jakstab: A static analysis platform for binaries,” in Computer
Aided Verification, A. Gupta and S. Malik, Eds., ser. Lecture Notes in Computer Science,
Berlin, Heidelberg: Springer, 2008, pp. 423–427, isbn: 978-3-540-70545-1. doi: 10.1007/978-
3-540-70545-1_40 .

[24] G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum, “CodeSurfer/x86—a platform
for analyzing x86 executables,” in Compiler Construction, R. Bodik, Ed., ser. Lecture Notes
in Computer Science, Berlin, Heidelberg: Springer, 2005, pp. 250–254, isbn: 978-3-540-31985-
6. doi: 10.1007/978-3-540-31985-6_19 .

[25] (). “Cyber grand challenge,” [Online]. Available: https://www.darpa.mil/program/
cyber-grand-challenge (visited on 10/24/2022).

[26] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “An effi-
cient method of computing static single assignment form,” in Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages - POPL ’89, Austin,
Texas, United States: ACM Press, 1989, pp. 25–35, isbn: 978-0-89791-294-5. doi: 10.1145/
75277.75280 . [Online]. Available: http://portal.acm.org/citation.cfm?doid=75277.75280

(visited on 09/09/2022).

[27] M. Braun, S. Buchwald, S. Hack, R. Leißa, C. Mallon, and A. Zwinkau, “Simple and
efficient construction of static single assignment form,” p. 20,

[28] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, Code2vec: Learning distributed represen-
tations of code, Oct. 30, 2018. doi: 10.48550/arXiv.1803.09473 . arXiv: 1803.09473[cs,stat] .
[Online]. Available: http://arxiv.org/abs/1803.09473 (visited on 09/09/2022).

108

https://www.usenix.org/legacy/event/sec04/tech/full_papers/kruegel/kruegel_html/
https://www.usenix.org/legacy/event/sec04/tech/full_papers/kruegel/kruegel_html/
https://doi.org/10.1109/ACSAC.2006.50
http://ieeexplore.ieee.org/document/4041173/
http://ieeexplore.ieee.org/document/4041173/
https://doi.org/10.1007/978-3-540-89862-7_1
https://doi.org/10.1007/978-3-540-70545-1_40
https://doi.org/10.1007/978-3-540-70545-1_40
https://doi.org/10.1007/978-3-540-31985-6_19
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://doi.org/10.1145/75277.75280
https://doi.org/10.1145/75277.75280
http://portal.acm.org/citation.cfm?doid=75277.75280
https://doi.org/10.48550/arXiv.1803.09473
https://arxiv.org/abs/1803.09473 [cs, stat]
http://arxiv.org/abs/1803.09473

[29] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan, A. Svyatkovskiy,
S. Fu, M. Tufano, S. K. Deng, C. Clement, D. Drain, N. Sundaresan, J. Yin, D. Jiang, and
M. Zhou, GraphCodeBERT: Pre-training code representations with data flow, Sep. 13, 2021.
arXiv: 2009.08366[cs] . [Online]. Available: http://arxiv .org/abs/2009.08366 (visited on
10/24/2022).

[30] P. Biondi, R. Rigo, S. Zennou, and X. Mehrenberger, “BinCAT: Purrfecting binary
static analysis,” p. 22,

[31] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing symbolic execution
with veritesting,” p. 12,

[32] J. C. King, “Symbolic execution and program testing,” Communications of the ACM,
vol. 19, no. 7, pp. 385–394, Jul. 1976, issn: 0001-0782, 1557-7317. doi: 10.1145/360248.
360252 . [Online]. Available: https://dl.acm.org/doi/10.1145/360248.360252 (visited on
09/24/2022).

[33] S. L. Hantler and J. C. King, “An introduction to proving the correctness of programs,”
ACM Computing Surveys, vol. 8, no. 3, pp. 331–353, Sep. 1976, issn: 0360-0300, 1557-7341.
doi: 10.1145/356674.356677 . [Online]. Available: https://dl.acm.org/doi/10.1145/356674.
356677 (visited on 09/18/2022).

[34] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and Algorithms for
the Construction and Analysis of Systems, C. R. Ramakrishnan and J. Rehof, Eds., red. by
D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor,
O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y.
Vardi, and G. Weikum, vol. 4963, Series Title: Lecture Notes in Computer Science, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 337–340, isbn: 978-3-540-78799-0 978-3-
540-78800-3. doi: 10.1007/978-3-540-78800-3_24 . [Online]. Available: http://link.springer.
com/10.1007/978-3-540-78800-3_24 (visited on 09/24/2022).

[35] J. C. King, “A new approach to program testing,” p. 13, 1974.

[36] R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT—a formal system for testing and
debugging programs by symbolic execution,” ACM SIGPLAN Notices, vol. 10, no. 6, pp. 234–
245, Jun. 1975, issn: 0362-1340, 1558-1160. doi: 10.1145/390016.808445 . [Online]. Available:

 https://dl.acm.org/doi/10.1145/390016.808445 (visited on 09/18/2022).

[37] (). “Abstract interpretation in a nutshell,” [Online]. Available: https://www.di.ens.fr/
~cousot/AI/IntroAbsInt.html (visited on 09/25/2022).

[38] J. Darringer and J. King, “Applications of symbolic execution to program testing,”
Computer, vol. 11, no. 4, pp. 51–60, Apr. 1978, Conference Name: Computer, issn: 1558-
0814. doi: 10.1109/C-M.1978.218139 .

109

https://arxiv.org/abs/2009.08366 [cs]
http://arxiv.org/abs/2009.08366
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://dl.acm.org/doi/10.1145/360248.360252
https://doi.org/10.1145/356674.356677
https://dl.acm.org/doi/10.1145/356674.356677
https://dl.acm.org/doi/10.1145/356674.356677
https://doi.org/10.1007/978-3-540-78800-3_24
http://link.springer.com/10.1007/978-3-540-78800-3_24
http://link.springer.com/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/390016.808445
https://dl.acm.org/doi/10.1145/390016.808445
https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
https://doi.org/10.1109/C-M.1978.218139

[39] T. Ball, “Abstraction-guided test generation: A case study,” p. 16, 2003.

[40] G. Balakrishnan and T. Reps, “Analyzing memory accesses in x86 executables,” p. 19,
2004.

[41] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing engine for c,” p. 10,
2005.

[42] Y. Xie and A. Aiken, “Scalable error detection using boolean satisfiability,” p. 13, 2005.

[43] D. Engler and D. Dunbar, “Under-constrained execution: Making automatic code de-
struction easy and scalable,” in Proceedings of the 2007 international symposium on Software
testing and analysis - ISSTA ’07, London, United Kingdom: ACM Press, 2007, pp. 1–4, isbn:
978-1-59593-734-6. doi: 10.1145/1273463.1273464 . [Online]. Available: http://portal.acm.
org/citation.cfm?doid=1273463.1273464 (visited on 09/24/2022).

[44] D. A. Ramos and D. Engler, “Under-constrained symbolic execution: Correctness check-
ing for real code,” p. 17,

[45] STP. (). “The simple theorem prover,” The Simple Theorem Prover, [Online]. Available:
 https://stp.github.io// (visited on 10/24/2022).

[46] P. Godefroid, M. Y. Levin, and D. Molnar, “Automated whitebox fuzz testing,” p. 13,
2008.

[47] V. Chipounov, V. Kuznetsov, and G. Candea, “The s2e platform: Design, implementa-
tion, and applications,” ACM Transactions on Computer Systems, vol. 30, no. 1, pp. 1–49,
Feb. 2012, issn: 0734-2071, 1557-7333. doi: 10.1145/2110356.2110358 . [Online]. Available:

 https://dl.acm.org/doi/10.1145/2110356.2110358 (visited on 09/24/2022).

[48] F. Bellard, “QEMU, a fast and portable dynamic translator,” p. 6, 2005.

[49] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “SOK: (state of) the art of war: Offensive
techniques in binary analysis,” in 2016 IEEE Symposium on Security and Privacy (SP), San
Jose, CA: IEEE, May 2016, pp. 138–157, isbn: 978-1-5090-0824-7. doi: 10.1109/SP.2016.17 .
[Online]. Available: http://ieeexplore.ieee.org/document/7546500/ (visited on 09/24/2022).

[50] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili, C.
Kruegel, and G. Vigna, “Driller: Augmenting fuzzing through selective symbolic execution,”
in Proceedings 2016 Network and Distributed System Security Symposium, San Diego, CA:
Internet Society, 2016, isbn: 978-1-891562-41-9. doi: 10.14722/ndss.2016.23368 . [Online].
Available: https : / / www . ndss - symposium . org / wp - content / uploads / 2017 / 09 / driller -
augmenting-fuzzing-through-selective-symbolic-execution.pdf (visited on 09/14/2022).

110

https://doi.org/10.1145/1273463.1273464
http://portal.acm.org/citation.cfm?doid=1273463.1273464
http://portal.acm.org/citation.cfm?doid=1273463.1273464
https://stp.github.io//
https://doi.org/10.1145/2110356.2110358
https://dl.acm.org/doi/10.1145/2110356.2110358
https://doi.org/10.1109/SP.2016.17
http://ieeexplore.ieee.org/document/7546500/
https://doi.org/10.14722/ndss.2016.23368
https://www.ndss-symposium.org/wp-content/uploads/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf

[51] A. Vishnyakov, A. Fedotov, D. Kuts, A. Novikov, D. Parygina, E. Kobrin, V. Logunova,
P. Belecky, and S. Kurmangaleev, “Sydr: Cutting edge dynamic symbolic execution,” in
2020 Ivannikov Ispras Open Conference (ISPRAS), Dec. 2020, pp. 46–54. doi: 10.1109/
ISPRAS51486.2020.00014 .

[52] S. Poeplau and A. Francillon, “SymQEMU: Compilation-based symbolic execution for
binaries,” in Proceedings 2021 Network and Distributed System Security Symposium, Virtual:
Internet Society, 2021, isbn: 978-1-891562-66-2. doi: 10.14722/ndss.2021.24118 . [Online].
Available: https://www.ndss-symposium.org/wp-content/uploads/ndss2021_2B-2_24118_
paper.pdf (visited on 08/29/2022).

[53] S. Chandra, S. J. Fink, and M. Sridharan, “Snugglebug: A powerful approach to weakest
preconditions,” p. 12, 2009.

[54] A. Brucato, “Semi-automated identification and handling of input parsing routines for
efficient fuzzing and symbolic execution,” pp. 1–124, 2019.

[55] N. Nethercote and J. Seward. (). “Valgrind: A program supervision framework,” [On-
line]. Available: https : / / reader . elsevier . com / reader / sd / pii / S1571066104810429 ? tok
en=CEBAE7D1B88CE7690C2313AE06D085E80DC02C7824FF0FF37C8978CEE1FF8785B
0541A2A943D295771963A173DC85538&originRegion=us-east-1&originCreation=20221003032231

(visited on 10/03/2022).

[56] J. Clause, W. Li, and A. Orso, “Dytan: A generic dynamic taint analysis framework,” in
Proceedings of the 2007 international symposium on Software testing and analysis - ISSTA
’07, London, United Kingdom: ACM Press, 2007, p. 196, isbn: 978-1-59593-734-6. doi:

 10.1145/1273463.1273490 . [Online]. Available: http://portal.acm.org/citation.cfm?doid=
1273463.1273490 (visited on 10/05/2022).

[57] A. Henderson, L. K. Yan, X. Hu, A. Prakash, H. Yin, and S. McCamant, “DECAF:
A platform-neutral whole-system dynamic binary analysis platform,” IEEE Transactions
on Software Engineering, vol. 43, no. 2, pp. 164–184, Feb. 2017, Conference Name: IEEE
Transactions on Software Engineering, issn: 1939-3520. doi: 10.1109/TSE.2016.2589242 .

[58] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz, “REDQUEEN:
Fuzzing with input-to-state correspondence,” p. 15,

[59] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,” in 2018 IEEE
Symposium on Security and Privacy (SP), ISSN: 2375-1207, May 2018, pp. 711–725. doi:

 10.1109/SP.2018.00046 .

[60] L. R. L. Saiider, “A GENERAL TEST DATA GENERATOR FOR COBOL,” p. 8,
1962.

111

https://doi.org/10.1109/ISPRAS51486.2020.00014
https://doi.org/10.1109/ISPRAS51486.2020.00014
https://doi.org/10.14722/ndss.2021.24118
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_2B-2_24118_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_2B-2_24118_paper.pdf
https://reader.elsevier.com/reader/sd/pii/S1571066104810429?token=CEBAE7D1B88CE7690C2313AE06D085E80DC02C7824FF0FF37C8978CEE1FF8785B0541A2A943D295771963A173DC85538&originRegion=us-east-1&originCreation=20221003032231
https://reader.elsevier.com/reader/sd/pii/S1571066104810429?token=CEBAE7D1B88CE7690C2313AE06D085E80DC02C7824FF0FF37C8978CEE1FF8785B0541A2A943D295771963A173DC85538&originRegion=us-east-1&originCreation=20221003032231
https://reader.elsevier.com/reader/sd/pii/S1571066104810429?token=CEBAE7D1B88CE7690C2313AE06D085E80DC02C7824FF0FF37C8978CEE1FF8785B0541A2A943D295771963A173DC85538&originRegion=us-east-1&originCreation=20221003032231
https://doi.org/10.1145/1273463.1273490
http://portal.acm.org/citation.cfm?doid=1273463.1273490
http://portal.acm.org/citation.cfm?doid=1273463.1273490
https://doi.org/10.1109/TSE.2016.2589242
https://doi.org/10.1109/SP.2018.00046

[61] C. Burgess, “Software TEsting using an automatic generator of test data,” 1970. [On-
line]. Available: https://web.archive.org/web/20170814021946/https://www.witpress.com/
Secure/elibrary/papers/SQM93/SQM93040FU.pdf (visited on 09/15/2022).

[62] J. B. Goodenough and S. L. Gerhart, “Toward a theory of test data selection,” IEEE
Transactions on Software Engineering, vol. SE-1, no. 2, pp. 156–173, Jun. 1975, Conference
Name: IEEE Transactions on Software Engineering, issn: 1939-3520. doi: 10.1109/TSE.
1975.6312836 .

[63] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of UNIX
utilities,” Communications of the ACM, vol. 33, no. 12, pp. 32–44, Dec. 1, 1990, issn: 0001-
0782. doi: 10.1145/96267.96279 . [Online]. Available: https://doi.org/10.1145/96267.96279

(visited on 09/14/2022).

[64] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natarajan, and J. Steidl,
“Fuzz revisited: A re-examination of the reliability of UNIX utilities and services,” p. 23,
1995.

[65] J. E. Forrester and B. P. Miller, “An empirical study of the robustness of windows NT
applications using random testing,” p. 10, 2000.

[66] D. Aitel. (2002). “The advantages of block-based protocol analysis for security testing,”
[Online]. Available: https://www.immunitysec.com/downloads/advantages_of_block_
based_analysis.html (visited on 09/15/2022).

[67] MozillaSecurity/peach, original-date: 2015-06-15T20:58:45Z, Aug. 28, 2022. [Online].
Available: https://github.com/MozillaSecurity/peach (visited on 08/29/2022).

[68] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed generation for fuzzing,”
in 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA: IEEE, May
2017, pp. 579–594, isbn: 978-1-5090-5533-3. doi: 10.1109/SP.2017.23 . [Online]. Available:

 http://ieeexplore.ieee.org/document/7958599/ (visited on 09/14/2022).

[69] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and D. Teuchert,
“NAUTILUS: Fishing for deep bugs with grammars,” in Proceedings 2019 Network and
Distributed System Security Symposium, San Diego, CA: Internet Society, 2019, isbn: 978-
1-891562-55-6. doi: 10 .14722/ndss .2019 .23412 . [Online]. Available: https ://www.ndss -
symposium.org/wp-content/uploads/2019/02/ndss2019_04A-3_Aschermann_paper.pdf

(visited on 09/14/2022).

[70] J. Wang, B. Chen, L. Wei, and Y. Liu, Superion: Grammar-aware greybox fuzzing,
Jan. 23, 2019. arXiv: 1812.01197[cs] . [Online]. Available: http://arxiv.org/abs/1812.01197

(visited on 09/14/2022).

112

https://web.archive.org/web/20170814021946/https://www.witpress.com/Secure/elibrary/papers/SQM93/SQM93040FU.pdf
https://web.archive.org/web/20170814021946/https://www.witpress.com/Secure/elibrary/papers/SQM93/SQM93040FU.pdf
https://doi.org/10.1109/TSE.1975.6312836
https://doi.org/10.1109/TSE.1975.6312836
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://www.immunitysec.com/downloads/advantages_of_block_based_analysis.html
https://www.immunitysec.com/downloads/advantages_of_block_based_analysis.html
https://github.com/MozillaSecurity/peach
https://doi.org/10.1109/SP.2017.23
http://ieeexplore.ieee.org/document/7958599/
https://doi.org/10.14722/ndss.2019.23412
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_04A-3_Aschermann_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_04A-3_Aschermann_paper.pdf
https://arxiv.org/abs/1812.01197 [cs]
http://arxiv.org/abs/1812.01197

[71] H. Bos, “Vrije universiteit amsterdam, the netherlands {asia,tsu500,herbertb}@few.vu.nl,”
p. 20,

[72] C. Miller and Z. N. J. Peterson, “Analysis of mutation and generation-based fuzzing,”
p. 7, 2007.

[73] M. Zalewski, Bunny the fuzzer, original-date: 2022-09-17T17:22:52Z, Sep. 17, 2022. [On-
line]. Available: https://github.com/novafacing/bunny/blob/1001d7dc44a765ca0632c169c
462494d3ea4d097/README (visited on 09/17/2022).

[74] M. IvankoviÄ‡, G. PetroviÄ‡, R. Just, and G. Fraser, “Code coverage at google,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, Tallinn Estonia: ACM,
Aug. 12, 2019, pp. 955–963, isbn: 978-1-4503-5572-8. doi: 10.1145/3338906.3340459 . [On-
line]. Available: https://dl.acm.org/doi/10.1145/3338906.3340459 (visited on 10/24/2022).

[75] M. Last, S. Eyal, and A. Kandel, “Effective black-box testing with genetic algorithms,”
in Hardware and Software, Verification and Testing, S. Ur, E. Bin, and Y. Wolfsthal, Eds.,
red. by D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar,
M. Y. Vardi, and G. Weikum, vol. 3875, Series Title: Lecture Notes in Computer Science,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 134–148, isbn: 978-3-540-32604-5
978-3-540-32605-2. doi: 10.1007/11678779_10 . [Online]. Available: http://link.springer.
com/10.1007/11678779_10 (visited on 09/18/2022).

[76] A. Zeller. (). “Search-based fuzzing - the fuzzing book,” [Online]. Available: https://
www.fuzzingbook.org/html/SearchBasedFuzzer.html (visited on 09/18/2022).

[77] M. Zalewski. (2013). “AFL history,” [Online]. Available: https://lcamtuf.coredump.cx/
afl/historical_notes.txt (visited on 09/15/2022).

[78] (). “Lcamtuf’s blog: Binary fuzzing strategies: What works, what doesn’t,” [Online].
Available: https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.
html (visited on 09/18/2022).

[79] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, “VUzzer: Application-
aware evolutionary fuzzing,” in Proceedings 2017 Network and Distributed System Security
Symposium, San Diego, CA: Internet Society, 2017, isbn: 978-1-891562-46-4. doi: 10.14722/
ndss.2017.23404 . [Online]. Available: https://www.ndss-symposium.org/ndss2017/ndss-
2017-programme/vuzzer-application-aware-evolutionary-fuzzing/ (visited on 09/14/2022).

113

https://github.com/novafacing/bunny/blob/1001d7dc44a765ca0632c169c462494d3ea4d097/README
https://github.com/novafacing/bunny/blob/1001d7dc44a765ca0632c169c462494d3ea4d097/README
https://doi.org/10.1145/3338906.3340459
https://dl.acm.org/doi/10.1145/3338906.3340459
https://doi.org/10.1007/11678779_10
http://link.springer.com/10.1007/11678779_10
http://link.springer.com/10.1007/11678779_10
https://www.fuzzingbook.org/html/SearchBasedFuzzer.html
https://www.fuzzingbook.org/html/SearchBasedFuzzer.html
https://lcamtuf.coredump.cx/afl/historical_notes.txt
https://lcamtuf.coredump.cx/afl/historical_notes.txt
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html
https://doi.org/10.14722/ndss.2017.23404
https://doi.org/10.14722/ndss.2017.23404
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/

[80] C. Lemieux and K. Sen, “FairFuzz: A targeted mutation strategy for increasing greybox
fuzz testing coverage,” in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, Montpellier France: ACM, Sep. 3, 2018, pp. 475–485, isbn:
978-1-4503-5937-5. doi: 10.1145/3238147.3238176 . [Online]. Available: https://dl.acm.org/
doi/10.1145/3238147.3238176 (visited on 09/14/2022).

[81] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz, “REDQUEEN:
Fuzzing with input-to-state correspondence,” in Proceedings 2019 Network and Distributed
System Security Symposium, San Diego, CA: Internet Society, 2019, isbn: 978-1-891562-55-
6. doi: 10 .14722/ndss .2019 .23371 . [Online]. Available: https ://www.ndss - symposium.
org/wp-content/uploads/2019/02/ndss2019_04A-2_Aschermann_paper.pdf (visited on
09/14/2022).

[82] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining incremental
steps of fuzzing research,” p. 12, 2020.

[83] A. Fioraldi, D. C. D’Elia, and E. Coppa, “WEIZZ: Automatic grey-box fuzzing for
structured binary formats,” in Proceedings of the 29th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, Virtual Event USA: ACM, Jul. 18, 2020, pp. 1–
13, isbn: 978-1-4503-8008-9. doi: 10 . 1145 / 3395363 . 3397372 . [Online]. Available: https :
//dl.acm.org/doi/10.1145/3395363.3397372 (visited on 09/18/2022).

[84] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, and Y. Song, “MOPT: Optimized mutation
scheduling for fuzzers,” p. 19,

[85] M. Wu, L. Jiang, J. Xiang, Y. Huang, H. Cui, L. Zhang, and Y. Zhang, “One fuzzing
strategy to rule them all,” in Proceedings of the 44th International Conference on Software
Engineering, Pittsburgh Pennsylvania: ACM, May 21, 2022, pp. 1634–1645, isbn: 978-1-
4503-9221-1. doi: 10.1145/3510003.3510174 . [Online]. Available: https://dl.acm.org/doi/10.
1145/3510003.3510174 (visited on 09/14/2022).

[86] K. Sen, “DART: Directed automated random testing,” p. 1, 2005.

[87] W. Drewry and T. Ormandy. (2007). “Flayer: Exposing application internals USENIX,”
[Online]. Available: https://www.usenix.org/conference/woot-07/flayer-exposing-applicatio
n-internals (visited on 09/15/2022).

[88] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili, C.
Kruegel, and G. Vigna, “Driller: Augmenting fuzzing through selective symbolic execution,”
in Proceedings 2016 Network and Distributed System Security Symposium, San Diego, CA:
Internet Society, 2016, isbn: 978-1-891562-41-9. doi: 10.14722/ndss.2016.23368 . [Online].
Available: https : / / www . ndss - symposium . org / wp - content / uploads / 2017 / 09 / driller -
augmenting-fuzzing-through-selective-symbolic-execution.pdf (visited on 08/29/2022).

114

https://doi.org/10.1145/3238147.3238176
https://dl.acm.org/doi/10.1145/3238147.3238176
https://dl.acm.org/doi/10.1145/3238147.3238176
https://doi.org/10.14722/ndss.2019.23371
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_04A-2_Aschermann_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_04A-2_Aschermann_paper.pdf
https://doi.org/10.1145/3395363.3397372
https://dl.acm.org/doi/10.1145/3395363.3397372
https://dl.acm.org/doi/10.1145/3395363.3397372
https://doi.org/10.1145/3510003.3510174
https://dl.acm.org/doi/10.1145/3510003.3510174
https://dl.acm.org/doi/10.1145/3510003.3510174
https://www.usenix.org/conference/woot-07/flayer-exposing-application-internals
https://www.usenix.org/conference/woot-07/flayer-exposing-application-internals
https://doi.org/10.14722/ndss.2016.23368
https://www.ndss-symposium.org/wp-content/uploads/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf

[89] S. Poeplau and A. Francillon, “Symbolic execution with SYMCC: Don’t interpret, com-
pile!,” p. 19, 2020.

[90] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, Taowei, and L. Lu, SAVIOR: Towards
bug-driven hybrid testing, Jun. 17, 2019. arXiv: 1906.07327[cs] . [Online]. Available: http:
//arxiv.org/abs/1906.07327 (visited on 09/14/2022).

[91] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: Fuzzing by program transformation,”
in 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA: IEEE, May 2018,
pp. 697–710, isbn: 978-1-5386-4353-2. doi: 10 .1109/SP.2018 .00056 . [Online]. Available:

 https://ieeexplore.ieee.org/document/8418632/ (visited on 09/14/2022).

[92] X. Liu, Q. Wei, Q. Wang, Z. Zhao, and Z. Yin, “CAFA: A checksum-aware fuzzing
assistant tool for coverage improvement,” Security and Communication Networks, vol. 2018,
pp. 1–13, Oct. 16, 2018, issn: 1939-0114, 1939-0122. doi: 10.1155/2018/9071065 . [Online].
Available: https://www.hindawi.com/journals/scn/2018/9071065/ (visited on 10/05/2022).

[93] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A practical concolic execution
engine tailored for hybrid fuzzing,” p. 18,

[94] (). “wolfSSL embedded SSL/TLS library now supporting TLS 1.3,” [Online]. Available:
 https://www.wolfssl.com/ (visited on 10/24/2022).

[95] (). “axTLS embedded SSL,” [Online]. Available: https://axtls.sourceforge.net/ (visited
on 10/24/2022).

[96] (). “Openssl,” [Online]. Available: https://www.openssl.org/ (visited on 10/24/2022).

[97] (). “3. pure functions, laziness, i/o, and monads - school of haskell school of haskell,”
[Online]. Available: https://web.archive.org/web/20161027145455/https://www.schoolo
fhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

(visited on 10/17/2022).

[98] (). “Debian sources debian sources,” [Online]. Available: https://sources.debian.org/

(visited on 08/29/2022).

[99] F. Wang and Y. Shoshitaishvili, “Angr - the next generation of binary analysis,” in 2017
IEEE Cybersecurity Development (SecDev), Sep. 2017, pp. 8–9. doi: 10.1109/SecDev.2017.
14 .

[100] (). “Pin - a dynamic binary instrumentation tool,” Intel, [Online]. Available: https :
//www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-
instrumentation-tool.html (visited on 10/24/2022).

115

https://arxiv.org/abs/1906.07327 [cs]
http://arxiv.org/abs/1906.07327
http://arxiv.org/abs/1906.07327
https://doi.org/10.1109/SP.2018.00056
https://ieeexplore.ieee.org/document/8418632/
https://doi.org/10.1155/2018/9071065
https://www.hindawi.com/journals/scn/2018/9071065/
https://www.wolfssl.com/
https://axtls.sourceforge.net/
https://www.openssl.org/
https://web.archive.org/web/20161027145455/https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io
https://web.archive.org/web/20161027145455/https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io
https://sources.debian.org/
https://doi.org/10.1109/SecDev.2017.14
https://doi.org/10.1109/SecDev.2017.14
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html

[101] SheLLVM, original-date: 2018-01-19T08:03:41Z, Oct. 11, 2022. [Online]. Available: https:
//github.com/SheLLVM/SheLLVM (visited on 10/24/2022).

[102] QuarksLab. (Jul. 18, 2021). “Home,” LIEF, [Online]. Available: https://lief-project.
github.io/ (visited on 10/24/2022).

[103] J. Metzman, L. Szekeres, L. Simon, R. Sprabery, and A. Arya, “FuzzBench: An open
fuzzer benchmarking platform and service,” in Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Athens Greece: ACM, Aug. 20, 2021, pp. 1393–1403, isbn: 978-1-4503-8562-6.
doi: 10 .1145/3468264 .3473932 . [Online]. Available: https : //dl . acm.org/doi/10 .1145/
3468264.3473932 (visited on 08/29/2022).

[104] P. S. Kochhar, F. Thung, and D. Lo, “Code coverage and test suite effectiveness: Empir-
ical study with real bugs in large systems,” in 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), Montreal, QC, Canada: IEEE,
Mar. 2015, pp. 560–564, isbn: 978-1-4799-8469-5. doi: 10 . 1109 / SANER . 2015 . 7081877 .
[Online]. Available: http://ieeexplore.ieee.org/document/7081877/ (visited on 10/24/2022).

[105] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser, “Are mutants
a valid substitute for real faults in software testing?” In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, Hong Kong
China: ACM, Nov. 11, 2014, pp. 654–665, isbn: 978-1-4503-3056-5. doi: 10.1145/2635868.
2635929 . [Online]. Available: https://dl.acm.org/doi/10.1145/2635868.2635929 (visited on
10/24/2022).

[106] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, Evaluating fuzz testing, Oct. 18,
2018. arXiv: 1808.09700[cs] . [Online]. Available: http://arxiv.org/abs/1808.09700 (visited
on 08/29/2022).

[107] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated with test suite
effectiveness,” in Proceedings of the 36th International Conference on Software Engineering,
Hyderabad India: ACM, May 31, 2014, pp. 435–445, isbn: 978-1-4503-2756-5. doi: 10.1145/
2568225.2568271 . [Online]. Available: https://dl.acm.org/doi/10.1145/2568225.2568271

(visited on 10/24/2022).

[108] M. Böhme, L. Szekeres, and J. Metzman, “On the reliability of coverage-based fuzzer
benchmarking,” in Proceedings of the 44th International Conference on Software Engineering,
Pittsburgh Pennsylvania: ACM, May 21, 2022, pp. 1621–1633, isbn: 978-1-4503-9221-1. doi:

 10.1145/3510003.3510230 . [Online]. Available: https://dl.acm.org/doi/10.1145/3510003.
3510230 (visited on 08/29/2022).

116

https://github.com/SheLLVM/SheLLVM
https://github.com/SheLLVM/SheLLVM
https://lief-project.github.io/
https://lief-project.github.io/
https://doi.org/10.1145/3468264.3473932
https://dl.acm.org/doi/10.1145/3468264.3473932
https://dl.acm.org/doi/10.1145/3468264.3473932
https://doi.org/10.1109/SANER.2015.7081877
http://ieeexplore.ieee.org/document/7081877/
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://dl.acm.org/doi/10.1145/2635868.2635929
https://arxiv.org/abs/1808.09700 [cs]
http://arxiv.org/abs/1808.09700
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/2568225.2568271
https://dl.acm.org/doi/10.1145/2568225.2568271
https://doi.org/10.1145/3510003.3510230
https://dl.acm.org/doi/10.1145/3510003.3510230
https://dl.acm.org/doi/10.1145/3510003.3510230

[109] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ulrich,
and R. Whelan, “LAVA: Large-scale automated vulnerability addition,” in 2016 IEEE Sym-
posium on Security and Privacy (SP), San Jose, CA: IEEE, May 2016, pp. 110–121, isbn:
978-1-5090-0824-7. doi: 10.1109/SP.2016.15 . [Online]. Available: http://ieeexplore.ieee.org/
document/7546498/ (visited on 10/24/2022).

[110] A. Hazimeh, A. Herrera, and M. Payer, “Magma: A ground-truth fuzzing benchmark,”
Proceedings of the ACM on Measurement and Analysis of Computing Systems, vol. 4, no. 3,
pp. 1–29, Nov. 30, 2020, issn: 2476-1249. doi: 10.1145/3428334 . [Online]. Available: https:
//dl.acm.org/doi/10.1145/3428334 (visited on 10/24/2022).

[111] Z. Zhang, Z. Patterson, M. Hicks, and S. Wei, “FIXREVERTER: A realistic bug injec-
tion methodology for benchmarking fuzz testing,” p. 18,

[112] (). “Honggfuzz,” honggfuzz, [Online]. Available: https ://honggfuzz .dev/ (visited on
10/24/2022).

[113] (). “CodeQL,” [Online]. Available: https://codeql.github.com/ (visited on 10/24/2022).

117

https://doi.org/10.1109/SP.2016.15
http://ieeexplore.ieee.org/document/7546498/
http://ieeexplore.ieee.org/document/7546498/
https://doi.org/10.1145/3428334
https://dl.acm.org/doi/10.1145/3428334
https://dl.acm.org/doi/10.1145/3428334
https://honggfuzz.dev/
https://codeql.github.com/

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Prior Work & History
	Static Analysis
	Historical Methods
	Malware-motivated Advancement
	Compiler-based and Satisfiability Theory

	Symbolic Execution
	Human-directed systems
	Abstract methods
	SMT and Boolean Satisfiability solvers
	Scaling symbolic execution
	Modern symbolic systems

	Taint Analysis
	Fuzzing
	Generative Fuzzing
	Mutational Fuzzing
	Hybrid fuzzing

	Prior Work Summary

	SYSTEM
	Direction
	Impeding function Criteria

	Research Questions
	RQ1: How common are impeding functions in real-world code?
	RQ2: Can impeding functions be identified in real-world binary code?
	Stage 1: Stuck point identification
	Stage 2: Identifying input-consuming functions
	Stage 3: Return values causing stuck points

	RQ3: How should impeding functions be modified?
	Stage 4: Patch synthesis
	Modifying return value distribution
	Replicating memory behavior

	RQ4: How can modifications, once decided upon, be applied to a binary?
	RQ5: How can modifications to an impeding function be validated for soundness and improvement to fuzzing?

	EVALUATION
	Best Practices
	Comparison Metrics
	Seed Selection
	Evaluation Time and Repetitions
	Fuzzer Configuration
	Datasets

	Testing Methodology
	Comparison Metrics
	Dataset
	Seed Selection
	Evaluation Time and Repetitions
	Fuzzer Configuration

	Test Results
	Coverage
	Impeding function Identification
	Crashes
	Case Study

	FUTURE WORK
	Additional Evaluation
	Buffer Analysis
	De-Simplification

	CONCLUSIONS
	Contributions
	Takeaways

	REFERENCES
	INDEX

