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ABSTRACT

Synthesized speech may be used for nefarious purposes, such as fraud, spoofing, and

misinformation campaigns. We present several speech forensics methods based on deep

learning to protect against such attacks. First, we use a convolutional neural network (CNN)

and transformers to detect synthesized speech. Then, we investigate closed set and open set

speech synthesizer attribution. We use a transformer to attribute a speech signal to its

source (i.e., to identify the speech synthesizer that created it). Additionally, we show that

our approach separates different known and unknown speech synthesizers in its latent space,

even though it has not seen any of the unknown speech synthesizers during training. Next,

we explore machine learning for an objective in the aerospace domain.

Compared to conventional ballistic vehicles and cruise vehicles, hypersonic glide vehicles

(HGVs) exhibit unprecedented abilities. They travel faster than Mach 5 and maneuver

to evade defense systems and hinder prediction of their final destinations. We investigate

machine learning for identifying different HGVs and a conic reentry vehicle (CRV) based on

their aerodynamic state estimates. We also propose a HGV flight phase prediction method.

Inspired by natural language processing (NLP), we model flight phases as “words” and HGV

trajectories as “sentences.” Next, we learn a “grammar” from the HGV trajectories that

describes their flight phase transition patterns. Given “words” from the initial part of a HGV

trajectory and the “grammar”, we predict future “words” in the “sentence” (i.e., future HGV

flight phases in the trajectory). We demonstrate that this approach successfully predicts

future flight phases for HGV trajectories, especially in scenarios with limited training data.

We also show that it can be used in a transfer learning scenario to predict flight phases

of HGV trajectories that exhibit new maneuvers and behaviors never seen before during

training.
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1. INTRODUCTION

Terms such as “artificial intelligence” (AI) and “machine learning” (ML) evoke imagery

of futuristic scenes with omniscient robots and hovercrafts. Although neither robots nor

hovercrafts are prevalent in today’s society, the pursuit of intelligent machines enchants

humankind. The scientific community strives to develop and harness the power of machines

that perform advanced computational methods in a way that imitates human intelligence.

Furthermore, the community investigates the application of such machine intelligence to

various domains, including speech recognition, visual object recognition, object detection,

drug discovery, and genomics [ 1 ]. The history of machine learning dates back to the 1950s in

the early days of pattern recognition [ 2 ], [ 3 ], when Samuel first coined the term [ 4 ]. Today,

machine learning research is more popular than ever before [  5 ].

Breakthroughs in concepts such as backpropogation [ 6 ]–[ 9 ] and hardware resources [ 10 ]–

[ 12 ] enabled machine learning methods to learn from more data at scale. Moreover, novel ar-

chitectures succeeding at difficult tasks demonstrated the potential of machine learning [ 13 ]–

[ 17 ]. These methods are often considered deep learning (DL) methods because they con-

sist of many computational layers that operate sequentially on an input, creating a deeper

network. Such networks are referred to as neural networks (NNs). As computational re-

sources and algorithms continue to increase in efficiency and processing power, the number

of computational layers can also increase, adding even more depth to NNs. Because of these

advancements and promising results, research trends in machine learning, deep learning, and

artificial intelligence have increased exponentially in recent years [ 5 ]. Figure  1.1 shows the

dramatic increase in publications from zero in 1986 to over 25,000 in 2016 using the term

“deep learning.”

Machine learning methods draw conclusions from data in an induction approach [ 18 ]. In

other words, ML methods analyze data and discover trends directly from the data itself.

Through an extensive and iterative analysis of a large amount of data, ML methods improve

over time as they “learn” the most salient features of a dataset necessary to make certain

decisions. For this reason, it is important that the dataset supplied to a ML approach for

training (i.e., sampled distribution, training dataset) is representative of the total distri-
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Figure 1.1. Prevalence of Deep Learning Research. This graph depicts
the exponentially increasing trend in recent years of research publications that
use the term “deep learning.” Source: [ 5 ].

bution that a ML method may evaluate in a real-world scenario (i.e., population, testing

dataset). The dataset features provided to ML algorithms should be grounded in mathe-

matical, engineering, scientific, and physics-based reasoning.

In this dissertation, machine learning and deep learning are used to analyze data from

two different domains: speech forensics and hypersonics. In both domains, we begin our

investigation with supervised learning approaches in scenarios in which the training data

is representative of the testing data. For speech forensics, this entails development of syn-

thesized speech detection methods that distinguish between synthesized speech signals and

speech signals containing authentic, recorded human voices. For hypersonics, this entails

vehicle classification to identify the type of vehicle flying. After demonstrating success on

these tasks, we advance to more complicated scenarios and explore unsupervised learning

on out-of-distribution tasks. In other words, we investigate machine learning methods in

scenarios in which the training data is not necessarily representative of the testing data.

For speech forensics, this entails detecting synthesized speech on a sequestered dataset and

developing a speech synthesizer attribution method that can discriminate between different
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speech synthesizers in an open set scenario. For hypersonics, this entails predicting future

behavior and engageability of HGVs and using transfer learning to apply a model trained on

one dataset containing a certain maneuver to another dataset that exhibits a new maneuver.

The application of machine learning to problems in these domains started with hypotheses

grounded in reality and evolved through investigation and analysis to the results presented

today. The rest of this chapter will provide introductions to these specific problems, contri-

butions of this work, and publications resulting from the investigation.

1.1 Speech Forensics

Nowadays, it is common to interact with synthesized speech on a daily basis. We talk

with Siri, Alexa, and Google Assistant in our homes, on our phones, and in our cars [ 19 ]–[ 23 ].

Virtual assistants answer customer service phone numbers and help us with anything from

scheduling appointments to paying our bills to accessing bank accounts [ 24 ]–[ 26 ]. Often, we

can easily tell that the voices of these virtual assistants are synthesized from their robotic

tones. In some situations, though, it is more difficult to discern whether we are listening to

synthesized or authentic human voices.

Social media platforms offer many tools that allow users to create new speech signals that

sound realistic. Both Tiktok and Instagram provide text-to-speech (TTS) services, enabling

users to generate new speech signals with custom messages [ 27 ]–[ 30 ]. The platforms maintain

libraries of voice styles, any of which can be used to deliver the messages. The libraries include

standard human voices as well as fun characters, such as C-3P0 and a Stormtrooper [ 31 ]–[ 33 ].

Tiktok also offers an option for users to upload an audio track of a specific voice style they

would like to replicate. If users already have an audio track with a desired message, they can

transform the message into a different voice style using Tiktok. Deep learning methods for

speech synthesis and voice conversion systems can also generate realistic-sounding human

speech [ 34 ]–[ 37 ]. Because many easy-to-use tools like these exist for modifying speech with

high quality, the quantity of inauthentic speech is increasing rapidly [ 38 ]. Although all of

these features can be used for comedic purposes, they can also easily be used with more

detrimental consequences.
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Attackers may generate new speech signals impersonating people for a variety of malev-

olent ambitions. For example, they could create a new message for a public figure with the

hope that the speech goes viral and disseminates misinformation. When inauthentic video

accompanies inauthentic speech signals, such as in deepfakes, the potential to influence pub-

lic opinion and current events is even higher [ 39 ], [ 40 ]. In 2022, a deepfake arose that showed

Ukrainian President Volodymyr Zelensky surrendering to Russia [ 41 ], [ 42 ]. Although it was

quickly debunked, this scenario shows the potential a realistic deepfake with inauthentic

audio can have on war situations and other global matters. In another example, Goldman

Sachs stopped a $40 million investment in 2021 after realizing they were conducting business

with an impersonator using synthesized speech on a conference call [ 43 ]. As people conduct

more and more business remotely, they must authenticate their virtual interactions more

than ever [ 44 ]–[ 46 ]. In this dissertation, we propose several speech forensics methods to

counter attacks like these.

In Chapter  2 , we present a method that analyzes speech signals to determine whether they

contain genuine, recorded human voices or synthesized human voices (i.e., voices generated

by neural acoustic and waveform models). Instead of analyzing the speech signals directly,

our proposed approach converts the speech signals into spectrograms displaying frequency,

intensity, and temporal information and evaluates them with a CNN. Trained on both genuine

speech signals and synthesized speech signals, we show that our approach achieves high

accuracy on this classification task.

In Chapter  3 , we continue our investigation of synthesized speech detection. Again, we

analyze the speech signals in the form of spectrograms. This time, though, use a compact

convolutional transformer (CCT) to analyze them. We demonstrate that this approach

improves synthesized speech detection over our prior CNN work. We also show that this

approach succeeds on a sequestered dataset as part of a DARPA competition included in

the Semantic Forensics (SemaFor) program [ 47 ].

In Chapter  4 , we investigate three transformers to detect synthesized speech: compact

convolutional transformer (CCT), patchout fast spectrogram transformer (PaSST), and self-

supervised audio spectrogram transformer (SSAST). We show that each transformer inde-

pendently detects synthesized speech well. Then, we propose an ensemble of transformers
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that can provide even better performance. Finally, we explore how much of a speech signal is

needed for high synthesized speech detection. In this approach, we are still analyzing audio

in the frequency domain, rather than analyzing audio waveforms directly. However, now

we explore speech signals represented as mel spectrograms, which show frequencies of the

speech signals according to the mel scale [ 48 ]. The mel scale is a perceptual scale based on

the human auditory system [ 48 ]. We demonstrate that our transformer ensemble achieves

the highest synthesized speech detection results of all methods explored in this dissertation.

Furthermore, we show that it can detect synthesized speech with the same level of high

success when analyzing shorter amounts of a speech signal.

In Chapter  5 , we present our final speech forensics investigation. So far, we have fo-

cused on synthesized speech detection methods. These methods are important for protection

against audio-based fraud, spoofing, and misinformation attacks. Speech attribution meth-

ods provide even more information about the nature of synthesized speech signals because

they identify the specific speech synthesis method (i.e., speech synthesizer) used to create

a speech signal. Due to the increasing number of realistic-sounding speech synthesizers, we

propose a speech attribution method that generalizes to new synthesizers not seen during

training. To do so, we investigate speech synthesizer attribution in both a closed set sce-

nario and an open set scenario. In other words, we consider some speech synthesizers to be

“known” synthesizers (i.e., part of the closed set) and others to be “unknown” synthesiz-

ers (i.e., part of the open set). We represent speech signals as spectrograms and train our

proposed method, known as compact attribution transformer (CAT), on the closed set for

multi-class classification. Then, we extend our analysis to the open set to attribute synthe-

sized speech signals to both known and unknown synthesizers. We utilize a t-distributed

stochastic neighbor embedding (tSNE) on the latent space of the trained CAT to differen-

tiate between each unknown synthesizer. Additionally, we explore poly-1 loss formulations

to improve attribution results. Our proposed approach successfully attributes synthesized

speech signals to their respective speech synthesizers in both closed and open set scenarios.
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1.2 Hypersonic Vehicle Applications

One result of scientific progress is the ability to perform tasks more quickly and efficiently.

Sometimes, the need for speed is the motivating factor behind a research endeavor. Nowa-

days, we expect our desires to be met quickly and accurately. Many products and services

emerged with the goal of providing immediate satisfaction. Text and email communications,

finding answers to questions, ordering products, requesting taxis, and streaming services are

all examples of tasks that consumers expect to complete instantaneously as soon as the idea

pops into their heads. As society moves faster and faster, we desire our vehicles to move

faster and more autonomously as well. For example, traveling across the continental United

States in the past from New York to San Francisco via horse and buggy would take four to

six months and require constant navigation supervision [ 49 ]. However, flying across the U.S.

along this same path would require only seven hours today without the need to navigate

personally [ 50 ]. In the future, this trip could take only two hours, thanks to hypersonic

vehicles [ 51 ], [  52 ].

Hypersonic vehicles fly faster than Mach 5 (i.e., five times the speed of sound). In

order to fly at such tremendous speeds, some hypersonic vehicles utilize a jet engine called a

supersonic combustion ramjet, often referred to as a scramjet [ 53 ]. Other hypersonic vehicles

use a rocket engine [ 52 ]. Spacecrafts reach hypersonic speeds as they re-enter the atmosphere

of a planet, yet typically they do not have any kind of engine [ 54 ]. In addition to high speed,

high maneuverability differentiates hypersonic vehicles from other types of vehicles.

Hypersonic vehicles exhibit a high degree of agility, which manifests itself in two main

ways. First, hypersonic vehicles possess high turning ability, which allows them to perform

different maneuvers during flight. For example, hypersonic vehicles may swerve and dive

around obstacles. Second, hypersonic vehicles may disguise their final destinations. The

flight paths of hypersonic vehicles are challenging to predict due to the vehicle’s agility.

Vehicles may land in any number of locations within a large coverage area, depending on

the final maneuver executed to land a vehicle. As a result, the actual destination can be

ambiguous until the final descent [ 55 ].
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Due to the development of new hypersonic vehicles, we need methods to recognize and

characterize them, as we do with other vehicles. It is important to distinguish hyper-

sonic vehicles from other types of vehicles as well as discriminate between different types

of hypersonic vehicles. In Chapter  6 , we endeavor to classify both hypersonic vehicles and

non-hypersonic vehicles. We present multiple machine learning methods that analyze aero-

dynamic features of vehicles over time as they fly along their trajectories. We utilize a

k-nearest neighbors (KNN) classifier, support vector machine (SVM), and convolutional

neural network (CNN) to determine whether a trajectory under analysis belongs to one type

of hypersonic glide vehicle (HGV-1), another type of hypersonic glide vehicle (HGV-2), or a

non-hypersonic vehicle called a conic re-entry vehicle (CRV).

HGVs fly at very high velocities and demonstrate high agility, which creates challenges

in forecasting their flight behavior (e.g., aerodynamics, flight paths, maneuvers). In Chap-

ter  7 , we describe a method for predicting future flight phases of a HGV. Flight phases could

be modeled as categorical labels that correspond to different types of flight behavior. For

our purposes, we define flight phases based on magnitude of rate of change of total energy

(i.e., summation of kinetic and potential energy) of a vehicle. We use methods from natural

language processing (NLP) to model the flight phases as “words” and the HGV trajectories

as “sentences.” We learn a “grammar” from the HGV trajectories, which we use for our

prediction task. Given “words” from the initial part of a HGV trajectory and the “gram-

mar”, we can predict future “words” in the “sentence” (i.e., future HGV flight phases in the

trajectory). We demonstrate that this approach successfully predicts future flight phases for

HGV trajectories, especially in scenarios with limited training data.

There are limited examples of actual HGV flights, which impedes the development of

prediction methods that model HGV trajectories. In Chapter  8 , we investigate transfer

learning for HGV trajectory prediction to evaluate how stochastic grammars trained on a

limited number of HGV trajectories perform on new, unseen HGV trajectories. Our analysis

includes two datasets containing HGV trajectories that exhibit different maneuvers. One

dataset contains trajectories that exhibit vertical maneuvers, which are behaviors related to

changes in altitude. The second dataset exhibits both horizontal and vertical maneuvers,

where horizontal maneuvers refer to changes in crossrange and downrange. The vertical
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dataset is also significantly smaller than the second dataset (i.e., the dataset that exhibits

horizontal and vertical maneuvers). We develop a prediction method using the smaller,

less complicated dataset to model HGV trajectories. Specifically, we use an unsupervised

machine learning method based on stochastic grammars. Then, we demonstrate that the

learned grammar can be used to predict HGV behavior and engageability for trajectories

from the larger, more complicated dataset. Our results show that transfer learning improves

prediction performance (even on unseen trajectory maneuvers) and can be used in limited

data scenarios.

1.3 Contributions of this Dissertation

The contributions of this dissertation are as follows:

• we investigate a CNN and multiple transformers for synthesized speech detection and

demonstrate success on this task;

• we show that our transformer-based synthesized speech detection approach also suc-

ceeds on a sequestered dataset of lossy audio signals, which indicates that it is able to

generalize to new, unseen data samples not present in the training dataset;

• we design a transformer ensemble to improve synthesized speech detection;

• we demonstrate that our transformer ensemble can achieve high success on this task,

even when analyzing shorter portions (i.e., less) of a speech signal;

• we propose a compact attribution transformer (CAT) to attribute synthesized speech

signals to known and unknown speech synthesizers;

• we investigate the latent space of CAT with tSNE to distinguish between different

speech synthesizers and offer more insight into the trained neural network;

• we demonstrate that CAT successfully discriminates between different known and un-

known synthesizers, which indicates that CAT generalizes to new speech synthesizers

not seen during training;

30



• we use poly-1 loss formulations to improve attribution results;

• we investigate a CNN for vehicle classification based on initial phases of a vehicle’s

flight;

• we demonstrate that machine learning approaches successfully discriminate between

three types of vehicles (two different hypersonic vehicles and one conic re-entry vehicle),

even under noisy conditions;

• we introduce stochastic grammars to model HGV trajectories;

• we demonstrate that our stochastic grammar method accurately predicts HGV flight

phases, even with a limited amount of training data;

• we show that our vehicle classification and HGV prediction methods achieve higher

success as time after lift-off (TALO) increases;

• we propose an engageability definition that indicates when a HGV could be intercepted;

• we use transfer learning to derive a stochastic grammar with a smaller dataset of

HGV trajectories that exhibit vertical maneuvers and predict future behavior and

engageability of HGV trajectories in a larger dataset that exhibit both horizontal and

vertical maneuvers;

• we demonstrate that transfer learning with stochastic grammars can predict HGV

behavior and engageability, even when the method encounters HGV trajectories that

exhibit different maneuvers than the trajectories used to derive the stochastic grammar.
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2. SYNTHESIZED SPEECH DETECTION WITH A CNN

2.1 Overview

Synthesized media can be generated for multiple different modalities, including text, im-

ages, videos, and audio. Technological advancements enable people to generate manipulated

or false multimedia content relatively easily. Because generating false content is so accessi-

ble, the quantity of synthesized media increases exponentially daily [ 38 ]. Fabricated content

has been used for years for entertainment purposes, such as in movies or comedic segments.

However, it also has the potential to be introduced for nefarious purposes. Audio authenti-

cation is necessary for speaker verification. If audio is synthesized to impersonate someone

successfully, an adversary may access personal devices with confidential information, such

as banking details and medical records. Furthermore, fabricated audio could be used in the

audio tracks of deepfake videos.

In this chapter, we consider an audio authentication task. The reason for this is twofold.

First, there are cases in which the only medium available is audio, such as in a speaker

verification task. Second, there are cases in which multiple types of data are available for

analysis, such as a deepfake detection task, which would benefit from a multi-modal analysis

that includes fake audio detection. Our method examines audio signals in the frequency

domain in the form of spectrograms, as shown in Figure  2.1 .

A spectrogram is a visualization technique for audio signals. It shows the relationship

between time, frequency, and intensity (or “loudness”) of an audio signal – all in the same

graph. Time increases from left to right along the horizontal axis, while frequency increases

from bottom to top along the vertical axis. Colors densely fill the middle of the graph and

indicate the strength of a signal over time at different frequencies. Much like a heat map,

brighter colors depict greater strength. We treat these spectrograms as images and analyze

them using deep learning techniques to determine whether an audio track is genuine or

synthesized.
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Genuine Audio Signal

Synthesized Audio Signal

Figure 2.1. Audio Signals and Spectrograms. Left column: Audio signals
in the time domain (i.e., waveforms), where the top image shows a genuine
audio signal spoken by a human and the bottom image shows a synthesized
audio signal. Right column: Spectrograms generated from the time domain
audio signals, which are used by the CNN to determine audio authenticity.

2.2 Related Work

Developing methods to verify multimedia is an ongoing research effort. Previous work

includes analysis of audio content [ 56 ], visual content [ 57 ] [  39 ] [  58 ] [  59 ], metadata [ 60 ], and

combinations of these modalities [ 61 ].

37



2.2.1 Spoofing Attacks

For the audio modality specifically, spoofing attacks fall into three main categories: voice

conversion (VC), speech synthesis (SS), and replay attacks. Voice conversion refers to the

process of transforming an already existing speech signal into the style of another speaker,

so that it sounds as if a new speaker is saying exactly what the original speaker said. Speech

synthesis refers to methods in which new audio signals are generated from scratch. For ex-

ample, converting written text into spoken speech (i.e., text-to-speech (TTS)) is one method

to achieve speech synthesis. Finally, replay attacks refer to spoofing methods in which the

original speaker and desired speech are recorded. Then, this speech signal is played back

to an audio-capturing device, which is fooled into believing the replayed audio signal is the

desired speaker in real-time. Some research efforts, such as [ 56 ], focus on replay attacks

specifically. On the other hand, we focus solely on voice conversion and speech synthesis

attacks, which consist of synthetically generated audio signals.

2.2.2 Audio Features

Digital signal processing offers many different methods to extract features to analyze

audio signals. Arguably the most famous method for signal analysis is the Fourier Trans-

form (FT) and its subsidiaries (e.g., Discrete Fourier Transform (DFT)), which deconstruct

a function of time into its constituent frequencies. Many techniques build upon the foun-

dation of the Fourier Transform. Constant Q Cepstral Coefficients (CQCCs) are derived

by converting a signal from time domain to frequency domain with the Fourier Transform,

spacing the spectral amplitudes logarithmically, and then converting the amplitudes to the

quefrency domain with a time scale [  62 ]. Mel Frequency Cepstral Coefficients (MFCCs) are

also based on the Fourier Transform. In order to compute MFCCs, the Fourier Transform is

applied to time domain audio signals, and the powers of the resulting spectrum are mapped

onto the mel scale [  48 ]. The mel scale describes how humans perceive tones and pitches.

It reflects humans’ sensitivity to different frequencies [ 63 ]. Next, the logarithmic scale is

applied to the powers at each of the mel frequencies in preparation to compute the Discrete
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Cosine Transform (DCT) [ 64 ] of the mel log powers. Finally, the amplitudes of the result of

the DCT constitute the MFCCs [  65 ].

Besides enabling the computation of feature coefficients, the Fourier Transform may be

used to construct visual representations of signals. Nowadays, spectrogram generation is

a digital process which involves sampling a signal in the time domain, dividing the signal

into smaller segments, and applying the Fourier Transform to each segment to calculate the

magnitude of the frequency spectrum for each segment. Through this process, a segment

corresponding to a specific moment in time is transformed into a sequence of spectrum

magnitude values. To construct a graph of these values, the sequence is oriented as a vertical

line and color coded according to magnitude, creating a vertical line of “pixels.” These

pixel lines are concatenated side-by-side in order of increasing time index to construct a

spectrogram “image.”

2.2.3 Audio Authentication Approaches

Current audio authentication methods utilize the aforementioned features to determine

whether an audio signal is real or fake. They first estimate the desired audio features from

the time domain signal (i.e., waveform) and then use them as inputs to a deep learning

system. For example, [ 66 ] uses CQCCs and MFCCs as inputs to a standard multilayer

perceptron network (MLP) and ResNet-based CNN. Chen et al. investigate CQCCs and

MFCCs as inputs to long short-term memory networks (LSTMs), gated recurrent unit net-

works (GRUs), and recurrent neural networks (RNNs) [ 56 ]. For these methods, the audio

signals are represented as sequences of coefficients, which are then fed into a neural network.

Conversely, some work analyzes audio signals directly. In such cases, the method relies on

the learning-based system to identify relevant audio features. Chintha et al. use audio sig-

nals as inputs to a CNN-LSTM model, where the first few layers of the network consist of

convolution layers and a later layer consists of a LSTM layer [ 61 ]. The authors also explore

working with log-melspectrograms, which are spectrograms in which the frequency domain

content is mapped to the mel scale. The log-melspectrograms are analyzed with a CNN to

detect authentic and spoofed audio.
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Independent from audio authentication tasks, many signal processing research efforts

use spectrograms for a variety of other human speech-related tasks. Verma et al. explore a

style transfer method for audio signals which transforms a reference signal into the style of

a specific target signal [  67 ]. This work utilizes both audio waveforms and spectrograms as

inputs to a CNN architecture. Dennis et al. classify sound events based on spectrograms with

a SVM [ 68 ]. Jeng et al. investigate audio signal reconstruction based on spectrograms [ 69 ].

Works such as [ 70 ] endeavor to improve upon the traditional spectrogram and focus on

underlying, stable structures grounded in the lower frequencies of an audio signal. More

recently, there have been efforts to analyze spectrograms with respect to emotions. Stolar

et al. use a CNN to analyze spectrograms and differentiate between seven different emotions

captured in speakers’ voices [ 71 ]. Zheng et al. analyze spectrograms with a CNN and then

feed the extracted CNN features into a random forest (RF) to identify speakers’ emotions [ 72 ].

Prasomphan uses a MLP to analyze spectrograms for the purpose of detecting emotion of

audio signals [ 73 ], [ 74 ]. Mittal et al. and Malik explore an emotion recognition task and fake

audio detection task in tandem [ 75 ], [  76 ]. He et al. use a gaussian mixture model (GMM)

and KNN to detect stress in speech signals [ 77 ]. Inspired by these works conducted for more

general tasks in the signal processing domain, we leverage a CNN that analyzes spectrograms.

Our approach takes advantage of the translation invariant properties of images to find

critical, local indicators revealing the authenticity of an audio signal. Furthermore, our

approach benefits from shared weights which collectively learn from all patches of a spec-

trogram. By leveraging signal processing techniques, image processing techniques, and deep

learning techniques, we detect authentic and inauthentic audio clips with high reliability and

accuracy.

2.3 Proposed Approach

We investigate an audio discrimination task in this chapter. Given an audio signal of a

few seconds in length, we seek to recognize whether it is genuine human speech or synthesized

speech. Our overall approach is shown in Figure  2.2 .
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Figure 2.2. Proposed Synthesized Speech Detection Method. The
proposed approach transforms audio signals in the time domain into spec-
trograms, which are used as inputs to a CNN. Then, the CNN produces a
classification label indicating whether the signal under analysis is authentic or
synthesized.

2.3.1 Spectrogram Creation

The first step in our analysis is to consider the digital audio signal in the time domain.

Let f(t) be a continuous time domain audio signal where t is the time index. Figure  2.1 

and Figure  2.3 show examples of time domain audio signals (i.e., waveforms). By a visual

inspection, it is unclear which signals could be genuine and which could be synthesized. In

order to leverage computer vision techniques for forensic analysis, we convert these time

domain signals into frequency domain spectrograms, as shown Figure  2.1 and Figure  2.3 .

The conversion process involves taking the Discrete Fourier Transform (DFT) of a sam-

pled signal f [n] to obtain Fourier coefficients F (m), where m is the frequency index in hertz

(Hz). The magnitudes of the coefficients |F | are then color coded to indicate the strength of

the signal. f [n] refers to a sampled, discrete version of f(t) with a total of N samples. The

N samples can be denoted as f [0], f [1], ..., f [N − 1], where each sample f [n] is an impulse

with area f [n]. The DFT is:

F (m) =
N−1∑
n=0

f [n]e− i2π
N

mn (2.1)

A Fast Fourier Transform (FFT) is a method that efficiently computes the DFT of a

sequence. Therefore, we utilize the FFT to rapidly obtain Fourier coefficients F (m) of

the signals in our dataset. For our experiments, we run the FFT on blocks of the signal

consisting of 512 sampled points with 511 points of overlap between consecutive blocks. The
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signals in our dataset have a sample rate of 16 kHz, so the audio signals are sliced into

equally-sized temporal segments of 32 milliseconds in length. Once the Fourier coefficients

have been computed, the audio signal f [n] is converted to decibels for magnitude scaling:

fdB = 10 log(|f |). The spectrogram “image” of size 50x34 pixels is then constructed to show

the audio signal’s magnitude (i.e., intensity in dB) over time versus frequency, as shown in

Figure  2.3 .

Each spectrogram encompasses information from an entire audio track. We can determine

frequencies and intensities of an audio signal as it propagates in time by analyzing the colors

in the spectrogram from left to right in the image. The warmer and more yellow a color

Figure 2.3. Audio Waveforms and Spectrograms. Genuine and synthe-
sized audio signals analyzed by the CNN.

42



is, the louder the audio signal is at that point in time and at that frequency. Darker colors

indicate quieter sounds. Once the spectrogram images are created, they are converted to

grayscale images and normalized in preparation for analysis by the CNN.

2.3.2 Convolutional Neural Network (CNN)

We employ a convolutional neural network (CNN) to analyze the normalized, grayscale

spectrogram images and detect whether they represent genuine or synthesized audio. Ta-

ble  2.1 outlines the specifics of the network architecture depicted in Figure  2.4 . It consists

mainly of two convolutional layers in the initial stages of the CNN. Then, it employs max

pooling and dropout for regularization purposes and to prevent overfitting. The final output

of the neural network applies a softmax function to a fully-connected dense layer of two

nodes, producing two final detection scores. The scores indicate the probabilities that the

audio segment under analysis is considered to be genuine or synthesized. Finally, the argmax

function is used to convert these probabilities into a final class prediction. We train for 10

epochs using the Adam optimizer [ 78 ] and cross entropy loss function.

Figure 2.4. CNN Diagram for Synthesized Speech Detection. The
CNN developed for our audio authentication approach.
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Table 2.1. CNN Architecture for Synthesized Speech Detection. This
table indicates the parameters of the proposed CNN. Each row in the table
specifies (from left to right) the details of the layer, its output shape, and the
number of parameters it contains. Output shape is in the form (N, H, W),
where N refers to the number of feature maps produced, H refers to the height
of the feature maps produced, and W refers to the width of the feature maps
produced.

CNN Architecture

Layer Output Shape
(N, H, W) Parameters

conv1 (32, 48, 32) 320
conv2 (30, 46, 64) 18,496

max pooling (15, 23, 64) 0
dropout1 (15, 23, 64) 0
flatten1 (22080) 0
dense1 (128) 2,826,368

dropout2 (128) 0
dense2 (2) 258

2.4 Experimental Setup

2.4.1 Dataset

To validate our methods, we utilize the ASVspoof2019 dataset [ 79 ]. This dataset was

introduced in the ASVspoof2019: Automatic Speaker Verification Spoofing and Countermea-

sures Challenge [ 80 ]. It contains both genuine human speech samples and fabricated speech

samples. The inauthentic speech samples fall into the three categories outlined in Chap-

ter  2.1 , Section  2.2.1 : voice conversion (VC), speech synthesis (SS), and replay attacks. For

this work, we only consider generated audio. Thus, we only utilize the VC and SS subsets

of the dataset. The synthesized audio was generated with neural acoustic models and deep

learning methods, including LSTMs [ 81 ] and generative adversarial networks (GANs) [  82 ].

Our final version of the dataset based on only VC and SS attacks contains 121,461 audio

tracks. The details of the dataset are included in Table  2.2 . We utilize the official dataset

split according to the challenge, which results in 25,380 training tracks, 24,844 validation
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tracks, and 71,237 testing tracks. The average length of all of the audio signals in the entire

dataset (including training, validation, and testing samples) is 3.35 seconds.

Table 2.2. ASVspoof2019 Dataset. Details about the dataset used in our experiments.

ASVspoof2019 Dataset

Subset Genuine
Speech Signals

Synthesized
Speech Signals

Total
Speech Signals

Female
Speakers

Male
Speakers

Training 2,580 22,800 25,380 12 8
Validation 2,548 22,296 24,844 6 4

Testing 7,355 63,882 71,237 27 21
Total 12,483 108,978 121,461 45 33

2.4.2 Experimental Results

Table  2.3 summarizes the results of our method. For comparison purposes, we evaluate

how our approach performs relative to a baseline approach in which the classifier randomly

guesses whether an audio signal is genuine or synthesized according to a uniform random

distribution. Our spectrogram-CNN achieves 85.99% accuracy on the testing dataset, out-

performing the baseline random method by 35.95%. This indicates that our method is

considerably better than random chance. The precision, recall, and F1-scores of our method

are 67.23%, 75.94%, and 70.08%, respectively. These values further indicate that even on an

unbalanced dataset, our method performs well.

Table 2.3. Results for Synthesized Speech Detection. This table in-
dicates the performances of the baseline random method and our proposed
method.

Synthesized Speech Detection Results
Method Accuracy Precision Recall F1

Baseline (Random) 50.06% 49.93% 49.80% 40.63%
Proposed Method 85.99% 67.23% 75.93% 70.08%
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Receiver Operating Characteristic Curve Precision-Recall Curve

Figure 2.5. ROC and PR Curves. Our method is in orange (the top line
in both plots), and the baseline random approach is in blue (the bottom line
in both plots).

Figure  2.5 shows the Receiver Operating Characteristic (ROC) and Precision-Recall (PR)

curves of our method in comparison to the baseline random method. For both of these plots,

the ideal, completely accurate classifier would yield curves resembling a 45-degree angle that

include the top-left corners of the plots. The closer a curve to that corner, the better a

classifier performs. A way to measure the quality of a curve is by calculating the area under

the curve (AUC). A higher AUC value indicates a better classifier, with an AUC of 1.0

indicating a “perfect” classifier. Because PR AUC does not depend on the class distribution

of the dataset, it is a useful metric for evaluating classifiers on unbalanced datasets such as

ours. Our method yields a high ROC AUC of 0.9012 and a PR AUC of 0.4566. In comparison

to the baseline method which achieves a ROC AUC of 0.5081 and a PR AUC of 0.1057, our

method performs better by both metrics.

Considering that the testing dataset contains new audio attacks (i.e., new speech syn-

thesis methods) which were never seen before in training, these results are very promising.

They demonstrate that our method generalizes well to some unseen audio attacks. However,

there are still some other unseen attacks on which our method fails, and more investigation

into its failure cases is needed. In general, though, a CNN analysis of audio signals formatted

as spectrograms is effective for an audio verification task.
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3. SYNTHESIZED SPEECH DETECTION WITH A

TRANSFORMER

3.1 Overview

In this chapter, we continue our work for synthesized speech detection but pivot to ex-

plore a different type of network. Now, we use a compact convolutional transformer (CCT)

to analyze speech signals in the form of spectrograms. CCT utilizes a convolutional layer

that introduces inductive biases and shared weights into a network, allowing a transformer

architecture to perform well when fewer data samples are available for training. CCT uses

an attention mechanism to incorporate information from all parts of a signal under analy-

sis. Trained on both genuine human voice signals and synthesized human voice signals, we

demonstrate that our CCT approach successfully differentiates between genuine and synthe-

sized speech signals. We also show that this approach succeeds on a sequestered dataset as

part of a DARPA competition included in the Semantic Forensics (SemaFor) program [ 47 ].

3.2 Related Work

Although prior deep learning work relies heavily on CNNs, recent developments indicate

that convolutions may not be necessary to effectively analyze images [ 83 ], [  84 ]. These meth-

ods succeed in image classification tasks without inductive biases provided by convolutions.

Inspired by the success of attention mechanisms in natural language processing (NLP) [ 85 ],

vision transformer (ViT) analyzes patches of an image with an attention mechanism for im-

age classification tasks [  83 ]. Hassani et al. adopt concepts from CNNs and ViT to create

a compact convolutional transformer (CCT) [ 86 ]. CCT leverages the inductive biases and

efficiencies of parameter-sharing that convolutions provide to succeed at machine learning

tasks with smaller-sized datasets compared to the datasets used with ViT. It also lever-

ages the attention mechanism of transformers to capture long-range dependencies in images.

CCT combines the power of convolutions with the power of transformers. We utilize a

CCT trained on spectrograms showing genuine and synthesized speech signals to identify

synthesized speech.
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3.3 Proposed Approach

Figure  3.1 shows an overview of our approach, known as compact convolutional trans-

former (CCT). CCT uses a standard transformer encoder, as used in [ 83 ], [ 85 ]. However,

CCT introduces two new features – a convolutional image encoding block and a sequence

pooling layer – that replace operations in standard transformer approaches. The CCT first

uses a convolutional block (i.e., a series of convolutional layers) to embed an input image

into a latent space. In our experiments, we utilize two convolutional layers with a kernel of

size 3x3, a ReLU activation function, and max pooling. The first and second convolutional

layers produce sets of 64 and 128 feature maps, respectively. We use this convolutional block

instead of the standard transformer practice of dividing input images into non-overlapping

patches, which contain only local image information and fail to preserve information at patch

boundaries. The feature maps contain aggregate information from all regions of an image,

so they are more salient inputs to the transformer encoder. Because they result from con-

volution operations, they also introduce inductive biases to the network. This enables the

transformer to train more efficiently, which is highly important on smaller-sized datasets.

Next, we row concatenate each of the 128 2D feature maps (sized 32x32) into a vector of

length 1024, creating the tokens analyzed by the transformer encoder. We use positional

embedding (a standard practice in transformers) for each token so that the transformer

understands how they relate spatially [ 83 ], [  87 ].

Next, CCT analyzes the tokens with the transformer encoder, which consists of two trans-

former encoder layers. Each transformer encoder layer contains the multi-headed attention

mechanism that captures long-range dependencies between different parts of the input. The

transformer encoder layers are modeled after typical attention-based layers [ 83 ], [ 85 ]. Then,

sequence pooling occurs on the outputs of the transformer encoder. The pooling operation

smooths the sequence of outputs so that the MLP Head can correctly detect whether the

speech signal under analysis is synthesized or genuine. Sequence pooling also eliminates

the need for an extra token (i.e., a classification token) that other transformers use [ 83 ],

[ 87 ]. With sequence pooling, the model no longer needs to track the classification token

throughout its layers.
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Figure 3.1. Block diagram of Our Synthesized Speech Detection Ap-
proach based on a Compact Convolutional Transformer. This block
diagram shows a spectrogram of size 128x128 being analyzed by a compact
convolutional transformer (CCT), which produces a classification output indi-
cating if the spectrogram represents genuine or synthesized speech.

3.4 Experimental Setup

3.4.1 Dataset and Spectrogram Creation

We again utilize the ASVspoof2019 dataset [ 79 ] in our experiments. Table  3.1 summarizes

the details of the dataset. Recall that the ASVspoof2019 dataset is heavily imbalanced, with

significantly more synthesized speech signals than genuine speech signals.

We convert speech waveforms from the dataset into spectrograms by following a similar

procedure as described in [ 88 ]. More specifically, we use the Fast Fourier Transform (FFT)

to compute Fourier coefficients of signals in our dataset. The FFT operates on blocks of

the signals consisting of 512 sampled points with 128 points of overlap between consecutive

blocks. Then, the Fourier coefficients are converted to decibels and organized in 2D arrays

to construct the spectrograms. We represent each spectrogram with a matrix of 128x128

values. Note that these spectrograms are larger than those used in our previous approach in
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Table 3.1. ASVspoof2019 Dataset. Details about the dataset used in our experiments.

ASVspoof2019 Dataset

Subset Genuine
Speech Signals

Synthesized
Speech Signals

Total
Speech Signals

Female
Speakers

Male
Speakers

Training 2,580 22,800 25,380 12 8
Validation 2,548 22,296 24,844 6 4

Testing 7,355 63,882 71,237 27 21
Total 12,483 108,978 121,461 45 33

Chapter  2 . The larger spectrograms have higher resolution, which preserves more details of

speech signals for the synthesized speech detector. Next, we perform min-max normalization

on the intensity values, mapping the spectrogram intensities to the range of values [0,1].

Normalized values enable machine learning models to learn more quickly because they are

forced to focus on relative rather than absolute differences in input values. Figure  3.2 shows

an example of a grayscale, normalized spectrogram that is analyzed by the CCT.

Figure 3.2. Spectrogram of a Synthesized Speech Signal. Our CCT
approach analyzes grayscale, normalized spectrograms of size 128x128.

3.4.2 Comparison Methods

To validate our approach, we compare it against several other methods. First, we es-

tablish three baseline methods: Baseline-Minority, Baseline-Majority, and Baseline-Prior.

Baseline-Minority is a classifier that only predicts that speech signals belong to the minority

class – in this case, the genuine category. Baseline-Majority is a classifier that does the

opposite. It only predicts that speech signals belong to the synthesized class. Considering
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the significant class imbalance in the dataset, we expect Baseline-Minority to have the worst

performance of all methods. Meanwhile, Baseline-Majority establishes a threshold above

which a classifier actually performs well. Baseline-Prior is the final baseline classifier. It

randomly assigns a label to a signal under analysis according to the known distribution

of genuine vs. synthesized samples in the training data split. In addition to these base-

lines, we investigate the effectiveness of KNN [ 89 ], [ 90 ], SVM [ 91 ], and logistic regression

(LogReg) [ 92 ] on this task. These methods operate on row concatenated versions of the

128x128-sized spectrograms (i.e., vectors of length 16,384). Finally, we compare our results

to our previous synthesized speech detection method from Chapter  2 that utilizes a CNN.

We report the performance of the CNN on the smaller-sized spectrograms (dimensions 50x34

pixels) as well as the the new, larger-sized spectrograms (dimensions 128x128).

3.4.3 Experimental Results on Public Dataset

Table  3.2 and Figure  3.3 show the results of all approaches. We report accuracy, weighted

precision, weighted recall, weighted F1, Balanced Accuracy, Receiver Operating Character-

istic Area Under the Curve (ROC AUC), and Precision Recall Area Under the Curve (PR

AUC) [  93 ], [ 94 ]. Weighted metrics are computed with a weighted average of each metric

obtained on the two classes, where weights reflect the dataset class imbalance. Results indi-

cate that the CCT approach outperforms all other methods by a clear margin. It achieves

the highest metrics of all methods considered. Although the CCT performs better than our

previously proposed CNN, the CNN achieves the second highest performance when trained

on spectrograms of size 128x128 pixels. Overall, the two neural network approaches perform

the best.

Results confirm that both larger input spectrograms and the new model contribute to

better performance. Comparing the results of CNN-50x34 and CNN-128x128, we observe

that balanced accuracy, ROC AUC, and PR AUC increase when the CNN is trained and

evaluated on larger, higher-resolution inputs. In this case, the CNN is presented with more

detailed input images that allow it to better discriminate genuine and synthesized speech

signals. Comparing the results of CNN-128x128 and CCT, we observe that ROC AUC and
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Table 3.2. Results of All Methods for Synthesized Speech Detection.
ROC AUC and PR AUC represent area under the curve of the receiver oper-
ating characteristic and precision recall curves, respectively.

Synthesized Speech Detection Results

Method Accuracy Weighted
Precision

Weighted
Recall

Weighted
F1

Balanced
Accuracy

ROC
AUC

PR
AUC

Baseline-Minority 10.32% 1.07% 10.32% 1.93% 50.00% 0.5000 0.1032
Baseline-Prior 81.59% 81.46% 81.59% 81.52% 49.94% 0.4994 0.1032

Baseline-Majority 89.68% 80.42% 89.68% 84.79% 50.00% 0.5000 0.1032
KNN 89.45% 84.99% 89.45% 85.57% 52.08% 0.6751 0.2643

LogReg 80.60% 91.76% 80.60% 83.98% 84.41% 0.9041 0.4101
CNN-50x34 85.59% 90.50% 85.59% 87.35% 79.26% 0.9052 0.4649

SVM 89.93% 90.94% 89.93% 85.25% 50.47% 0.9113 0.5023
CNN-128x128 85.27% 93.21% 85.27% 87.60% 89.22% 0.9416 0.6278

CCT 92.13% 93.79% 92.13% 92.70% 87.78% 0.9646 0.7501

PR AUC increase even more when an attention mechanism is used. The attention mechanism

of the transformer determines the most important part of a spectrogram and focuses on that

part of the image more so than the less discriminative regions, which aids in its detection

capabilities. However, transformers have historically required very large-scale datasets in

order to learn properly, suffering from a lack of inductive biases that CNNs have. Because

we utilize convolutional layers, the CCT achieves a greater degree of shared weights, learns

more efficiently, and leverages the inductive biases to achieve high success, even with fewer

data samples from which to learn.

3.4.4 Experimental Results on Sequestered Dataset

Now that we have demonstrated successful synthetic audio detection on a publicly avail-

able dataset, we investigate the performance of our proposed approach on a sequestered,

private dataset. The dataset is part of a competition in the Semantic Forensics (SemaFor)

program organized by DARPA [ 47 ]. The SemaFor program focuses on methods that detect,

attribute, and characterize synthesized and manipulated multimedia. The SemaFor evalu-
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Figure 3.3. ROC and PR Curves of All Methods for Synthesized
Speech Detection. The three baseline methods are all represented by the
“baselines” method. Our CCT approach outperforms all other methods.

ation team organizes multiple competitions related to falsified media, such as a deepfake

detection, synthesized speech detection, generated text detection, text and image inconsis-

tencies detection, and attribution verification related to authors of news articles. In all of

these competitions, the evaluation data is sequestered. In other words, competition par-

ticipants do not have direct access to the evaluation data to use in development of their

media forensics methods. Instead, participants must develop their methods in a way that

generalizes to new, unseen data from an unknown distribution.

We submitted our transformer-based synthesized speech detection method to a SemaFor

competition related to generated audio detection. This competition evaluates methods’

abilities to detect both synthesized and manipulated audio. Synthesized audio refers to audio

signals that have been completed generated by an audio generation method. Manipulated

audio refers to audio signals in which only some segments have been generated, while other

segments are authentic, recorded audio clips. In other words, manipulated audio signals

are authentic audio signals in which synthesized audio has been spliced into them at one

or more temporal locations. We do not have more details about the audio signals in the

dataset. For example, we do not know which speech synthesis methods were used to create

the speech signals; we do not know how many different speakers are included in the authentic
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audio signals; and we do not know the sources of the audio signals (e.g., YouTube, internet

websites, social media, television). The audio signals could be from a pristine, noiseless

recording environment, or they could be heavily and/or multiply compressed (in the case

where they have been shared multiple times online).

At the time of submission, our transformer-based synthesized speech detection method

achieved top-3 performance in this competition out of more than twenty-five different sub-

missions. Figure  3.4 shows the ROC curves of the five methods that achieve the highest

generated audio detection results in this competition. Our proposed approach (shown in

green), achieves a ROC AUC of 0.7705. Although this value is lower than the ROC AUC

score achieved on ASVspoof2019 (which was 0.9646), a ROC AUC value 0.7705 is still fairly

good, especially considering that we have no prior knowledge of the characteristics exhibited

in the evaluation data or access to it for training our method.

There are a few differences between the training and evaluation scenarios that could

contribute to this drop in ROC AUC. First, the evaluation data in the SemaFor competition

presents a new challenge to our method in the form of manipulated/spliced audio signals. Our

method is trained on audio signals that are either entirely authentic or entirely synthesized.

In the SemaFor competition, some audio signals may be a combination of both, though.

Since our method has never seen audio signals like these, it is reasonable that our approach

may experience a drop in detection. Second, the evaluation data could be significantly

longer than audio signals used to train our approach. Our training dataset consists of audio

signals that are 3.35 seconds on average. In the SemaFor competition, there are some audio

signals that are several minutes long. To analyze new audio signals, our approach uses the

initial portion of an audio signal to create a spectrogram with 128 temporal windows. This

spectrogram size captures most (if not all) of an audio signal that is only a few seconds long.

However, it does not capture all of an audio signal that lasts for several minutes. Thus,

our current approach only uses the initial portion of an audio signal to determine whether

it is synthesized. Because the audio signals in the SemaFor competition are longer and are

constructed with splicing, it is possible that the initial portion of an audio signal analyzed

by our method is entirely authentic but that a spliced portion of synthesized audio appears

later in the audio signal. Our approach would not detect the synthesized audio, in this
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case. One final point to consider is the difference in quality between training and evaluation

audio signals. The ASVspoof2019 dataset stores audio signals as FLAC files, which use a

lossless audio compression codec. Thus, we train our synthesized speech detection method

on high-quality audio signals, which may make it easier to expose synthesized speech signals.

By comparison, all audio signals in the SemaFor generated audio competition are stored as

MP3 files, which use a lossy audio compression codec. This means that the evaluation data

does not preserve as much information as is present in the training data. Despite this loss

in quality, our trasnformer-based synthesized speech detection method is able to extend to

lossy audio files. Our SemaFor competition results indicate that our proposed approach

generalizes to new audio signals of an unknown nature, even if they are longer, lossy, and

spliced.

Figure 3.4. ROC Curves of Top-5 Performers on Sequestered
Dataset. This plot shows ROC curves from the top-5 methods for generated
audio detection in a SemaFor competition. Our transformer-based synthesized
speech detector is shown in green and achieves top-3 performance.
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4. SYNTHESIZED SPEECH DETECTION WITH A

TRANSFORMER ENSEMBLE

4.1 Overview

In this chapter, we investigate three transformers for synthesized speech detection:

compact convolutional transformer (CCT) [  86 ]; patchout fast spectrogram transformer

(PaSST) [ 95 ]; and self-supervised audio spectrogram transformer (SSAST) [ 96 ]. Our inves-

tigation focuses on transformers, which have achieved success on a variety of tasks in recent

years. We explore whether we can harness the potential of transformers, which typically

require large datasets to train, on a smaller, imbalanced dataset for synthesized speech de-

tection. We train each of the transformers on mel spectrograms [  48 ] to authenticate speech

signals. Mel spectrograms are 2-D visual representations of audio signals showing frequency

and intensity of an audio signal over time [ 48 ]. The frequencies of the audio signals are in the

mel scale, which is a perceptual scale based on the human auditory system [ 48 ]. Although

each of the transformers detects synthesized speech from mel spectrograms well on its own,

we demonstrate that fusing the transformers in an ensemble achieves even better detection.

Finally, we explore how much of an audio signal is needed for synthesized speech detection.

We show that individual transformers are more sensitive to different lengths of audio signals.

However, our transformer ensemble consistently and successfully detects synthesized speech

from all mel spectrogram sizes (corresponding to different audio signal lengths) considered.

4.2 Related Work

There are many different ways to represent an audio signal: as a temporal waveform, as

a spectrogram, or as sequences of coefficients from a transform (e.g., Constant Q Cepstral

Coefficients (CQCCs) [ 62 ]). Hua et al. analyze audio waveforms with a CNN based on

ResNet and Inception networks [ 97 ]. However, waveform-based methods can struggle with

longer audio signals because the inputs can be hundreds of thousands of samples. One

way to create inputs of shorter lengths is to use sequences of transform coefficients of the

audio signals. In these approaches, the audio waveforms are converted to sequences of
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coefficients, such as CQCCs [ 62 ], and then analyzed. Chen et al. use a MLP, ResNet-based

CNN, LSTM, GRU, and RNN to detect synthesized speech represented as CQCCs [ 56 ], [ 66 ].

Other methods represent audio signals as 2-D arrays that contain information about an audio

signal’s frequencies and intensity over time. These 2-D arrays are known as spectrograms

and can be treated as images. Our prior work introduced in Chapters  2 and  3 analyze

spectrograms of audio signals for synthesized speech detection using a CNN and a convolution

transformer [ 88 ], [ 98 ], [ 99 ]. Spectrograms can represent frequencies according to the mel

scale, which is a scale that represents pitches perceived to be equally distant according to

the human auditory system [ 48 ]. These versions are known as mel spectrograms. Conti et al.

analyze mel spectrograms to identify emotions and then use a random forest classifier on the

emotion features to detect synthesized speech [ 100 ]. Gong et al. and Koutini et al. use mel

spectrograms to classify over 600 different types of audio signals, from bird noises to specific

speech commands [  95 ], [ 96 ], [ 101 ]. Based on the success of work with mel spectrograms, we

use mel spectrograms for synthesized speech detection.

4.3 Proposed Approach

4.3.1 Mel Spectrogram Creation

We convert speech waveforms into mel spectrograms by following a similar procedure

as described in [ 95 ], [ 96 ], [ 101 ]. More specifically, we create mel spectrograms with 128

mel frequency bins. The mel spectrogram is computed using a 25 ms Hanning window

with a shift of 10 ms. In other words, an audio waveform is divided into 25 ms “time

frames” or “windows” with 10 ms overlap between consecutive windows. We orient the mel

spectrograms so that the height of the mel spectrograms is 128 (corresponding to the 128 mel

frequency bins) and the width of the spectrograms corresponds to the length of the audio

signal (in terms of 25 ms time frames). We crop or zero-pad the mel spectrograms to each

of the following dimensions: 128x256, 128x512, and 128x1024. Notice that only the second

dimension (indicating the temporal length of the audio signal) is affected by the cropping

and padding procedure. The first dimension (corresponding to the number of mel frequency

bins) always remains the same. Figure  4.1 shows mel spectrograms of the same audio signal
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formatted as different sizes (i.e., formatted to analyze different lengths of an audio signal).

These mel spectrograms are used to train and evaluate the transformers and transformer

ensemble.

Figure 4.1. Mel Spectrograms Showing the Same Speech Signal
Cropped to Different Lengths. Different lengths correspond to different
amounts of time of the speech signal. The first dimension (i.e., height of mel
spectrogram) is always 128, corresponding to 128 mel frequency bins. The sec-
ond dimension (i.e., width/length of mel spectrogram) indicates the number
of temporal windows of an audio signal used in the analysis.

4.3.2 Compact Convolutional Transformer (CCT)

Compact convolutional transformer (CCT) [ 86 ] is a smaller transformer used for analyses

on 2-D inputs, such as our mel spectrogram inputs. It uses a series of convolutional layers to

extract features from the inputs. Then, the features are analyzed by the transformer block of

the network. This approach ensures that the features provided to the attention mechanism

capture information from all regions of an input. The convolutions also introduce inductive

biases (e.g., translational equivariance) into the network that normally require an extensive

amount of data for a transformer to learn on its own. Convolution operations enable weight

sharing, which decreases the size of the network and increases its computational efficiency.

The CCT used in this work has approximately 405 thousand parameters, making it the

smallest transformer we investigate by a significant margin. We train CCT from scratch

with early stopping using a patience of 15 epochs. The AdamW optimizer [ 102 ] is used

with an initial learning rate and weight decay of 10−4. The batch size in our experiments
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depends on the size of the mel spectrograms analyzed because the size of the attention matrix

scales quadratically with the increase in input size [ 86 ]. For mel spectrograms sized 128x256,

128x512, and 128x1024, we use a batch size of 16, 16, and 2, respectively.

4.3.3 Patchout Fast Spectrogram Transformer (PaSST)

Patchout fast spectrogram transformer (PaSST) [ 95 ] is designed for analyzing mel spec-

trograms and considers frequency information explicitly. It has previously been used for

audio classification [ 95 ] on Audio Set [ 103 ], which is a large-scale audio classification dataset

with over 2 million sound clips. PaSST divides a 2-D mel spectrogram into smaller patches.

Next, both frequency and time positional encodings are added to each patch so that the

model knows the temporal and frequency ranges the patch represents. Finally, the patches

are passed through the transformer. PaSST uses a technique called patchout to exclude

certain patches during training. Patchout both shortens the input length (because fewer

patches are analyzed) and regularizes the network (by forcing the network to succeed even

when parts of the audio signals are missing). This reduces the network’s reliance on certain

frequency and temporal segments so that it can generalize to new audio signals better. The

PaSST model used in our experiments has approximately 85.3 million parameters. We use

an initial learning rate of 10−5 and weight decay of 10−4 with the AdamW optimizer [ 102 ]

to train PaSST from scratch. Training occurs for 51 epochs with a batch size of 12. We use

a patch stride of 10 both in time and frequency.

4.3.4 Self-Supervised Audio Spectrogram Transformer (SSAST)

Self-supervised audio spectrogram transformer (SSAST) [ 96 ] is another transformer that

has been used for audio classification, and it is modeled after the audio spectrogram trans-

former [ 101 ]. Similar to PaSST, SSAST divides a 2-D mel spectrogram into patches and uses

patch-based dropout to regularize the network. Because large amounts of labeled data are

not always readily available for a specific task, SSAST proposes a self-supervised learning

stage to use unlabeled data to learn general characteristics of a certain data distribution.

After SSAST completes the self-supervised learning stage, it is fine tuned on labeled data
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for a specific task. However, our experiments indicate that the self-supervision stage is not

necessary for our task. We obtain better synthesized speech detection by training SSAST

from scratch on our experimental dataset. We use an initial learning rate of 10−4 and weight

decay 5 ∗ 10−7 with the Adam optimizer [ 78 ] to train SSAST for 50 epochs with a batch size

of 48, 48, and 12 for mel spectrograms sized 128x256, 128x512, and 128x1024, respectively.

This network has approximately 87 million parameters.

4.3.5 Transformer Ensemble

We fuse the probabilities produced by each transformer to create the transformer ensem-

ble. We explore two fusion techniques: averaging and maximizing. For these techniques,

either the average probability or the maximum probability of all transformers are used as

the final ensemble probability. Results indicate that the averaging technique detects synthe-

sized speech better, so we report those results in this chapter. We also explore an ensemble

using only the two best-performing transformers. Results indicate that the two-transformer

ensemble is better than the three-transformer ensemble, so we report those results in this

chapter. The transformers used in the transformer ensemble are CCT and PaSST, so we

refer to the transformer ensemble as “CCT-PaSST”.

4.4 Experimental Setup

4.4.1 Dataset

We again utilize the ASVspoof2019 dataset [ 79 ] in our experiments. We provide the

training, validation, and testing breakdown in Table  4.1 for reference. Please refer to

Chapters  2 and  3 for more information on the dataset.

4.4.2 Evaluation Metrics

For all experiments, we report Receiver Operating Characteristic Area Under the Curve

(ROC AUC) and Precision Recall Area Under the Curve (PR AUC). Recall that for a

binary classification problem (such as this synthesized speech detection task), a threshold
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Table 4.1. ASVspoof2019 Dataset. Details about the dataset used in our experiments.

ASVspoof2019 Dataset

Subset Genuine
Speech Signals

Synthesized
Speech Signals

Total
Speech Signals

Female
Speakers

Male
Speakers

Training 2,580 22,800 25,380 12 8
Validation 2,548 22,296 24,844 6 4

Testing 7,355 63,882 71,237 27 21
Total 12,483 108,978 121,461 45 33

must be selected to use as a cutoff to convert output probabilities to discrete categories (i.e.,

synthesized or authentic). ROC AUC and PR AUC summarize detection performance using

a full range of thresholds. Rather than reporting accuracy, precision, recall, and F1 metrics

for a specific threshold, we wish to evaluate all methods based on their “robustness”, or

independence to a specific threshold. If ROC AUC and PR AUC are high, the detection

method is able to detect synthesized speech for a large range of thresholds.

ROC AUC indicates how skillful (i.e., successful) a detection method is. However, it

does not account for class imbalances. If there are significantly more samples of one class in

the evaluation set compared to the other class (as is the case with our dataset), it is possible

for a detection method to have a high ROC AUC even if the detection method predicts the

majority class all the time (but never predicts the minority class). For imbalanced datasets,

it is important to consider other metrics, such as precision and recall, which measure how

often the detection method correctly predicts the minority class. Thus, PR AUC is an

important evaluation metric for our task because it will reflect the skill of all methods on

our imbalanced dataset.

4.4.3 Experimental Results

Table  4.2 summarizes our experimental results. Results indicate that each transformer

independently performs well on this task. Each individual transformer can achieve ROC

AUC above 0.95 for at least one mel spectrogram size. CCT achieves the highest ROC
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AUC of the individual transformers for all mel spectrogram sizes. All of the ROC AUC

scores for CCT are above 0.96. PaSST has the second-highest ROC AUC scores, which are

all above 0.92. However, the CCT-PaSST ensemble surpasses both CCT and PaSST ROC

AUC scores. The CCT-PaSST ensemble consistently achieves ROC AUC higher than 0.98

for all mel spectrogram sizes.

Table 4.2. Results for Synthesized Speech Detection. This table shows
results obtained with each method for each mel spectrogram size.

Synthesized Speech Detection Results
Mel

Spectrogram
Size

Method ROC AUC PR AUC

CCT 0.9668 0.6446
PaSST 0.9483 0.7332
SSAST 0.9536 0.6774

128x256

CCT-PaSST 0.9810 0.8507
CCT 0.9742 0.6876

PaSST 0.9258 0.7012
SSAST 0.7541 0.2213

128x512

CCT-PaSST 0.9816 0.8508
CCT 0.9718 0.7512

PaSST 0.9590 0.7551
SSAST 0.9064 0.4265

128x1024

CCT-PaSST 0.9801 0.8585

The PR AUC has more variability. Individual transformers achieve PR AUC ranging

from 0.2213 to 0.7551. In this case, PaSST achieves the highest PR AUC of the individual

transformers for all mel spectrogram sizes. Its PR AUC is greater than 0.70 for all mel

spectrogram sizes. CCT has the second-highest PR AUC scores, which are all above 0.64 for

all mel spectrogram sizes. Again, though, the CCT-PaSST ensemble achieves the best PR

AUC scores. Its PR AUC is higher than 0.85 for all mel spectrogram sizes, which is higher

than all PR AUC scores achieved with individual transformers by a significant margin.
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Finally, let us consider how each method is impacted by mel spectrogram size. Each

individual transformer seems sensitive to mel spectrogram size. CCT ROC AUC is consistent

for all mel spectrogram sizes, but its PR AUC increases from 0.6446 to 0.7512 when the mel

spectrogram length increases from 256 to 1,024. PaSST ROC AUC ranges from 0.9258 to

0.9590 as mel spectrogram sizes change, and its PR AUC ranges from 0.7012 to 0.7551

for different sizes. SSAST shows the most variability to mel spectrogram sizes, with its

ROC AUC ranging from 0.7541 to 0.9536 and its PR AUC ranging from 0.2213 to 0.6774.

However, the CCT-PaSST ensemble achieves consistent results for all mel spectrogram sizes.

Its results do not even vary a percentage. The ROC AUC ranges from 0.9801 to 0.9816, and

the PR AUC ranges from 0.8507 to 0.8585. Thus, our transformer ensemble consistently and

successfully detects synthesized speech from all mel spectrogram sizes.

Figure  4.2 shows the ROC and PR curves for all methods trained and evaluated on mel

spectrograms sized 128x256. From this figure, we see that all detection methods achieve high

ROC curves that are fairly similar. The PR curves are more distinct, though. Clearly from

Figure  4.2 , we see that the CCT-PaSST ensemble outperforms all individual transformers.

Thus, from both a visual and a numeric analysis, we conclude that our proposed transformer

ensemble achieves the best synthesized speech detection.

Figure 4.2. ROC and PR Curves for Synthesized Speech Detection.
Results obtained with each method analyzing mel spectrograms sized 128x256.
The CCT-PaSST transformer ensemble achieves the best synthesized speech
detection results, especially in terms of PR AUC.
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5. SYNTHESIZED SPEECH ATTRIBUTION WITH A

TRANSFORMER

5.1 Overview

Many free, easy-to-use tools offer text-to-speech or voice conversion utilities to generate

synthetic speech [ 27 ], [ 28 ], [ 34 ]–[ 37 ]. Synthesized speech can provide many benefits to so-

ciety, such as accessibility services to support people who are visually impaired. However,

synthesized speech can also be used for malicious purposes. In 2021, an impersonator using

synthesized speech on a conference call tried to convince Goldman Sachs to make a $40 million

investment [ 43 ]. In 2022, a deepfake video showed Ukrainian President Volodymyr Zelen-

sky surrendering to Russia [ 41 ]. A recent AI-produced podcast contains a realistic-sounding

conversation between Steve Jobs and Joe Rogan, but all of the speech is synthesized [ 104 ].

These examples highlight the importance of audio forensics. Large amounts of synthesized

speech may be generated for large-scale scams and disinformation campaigns. The same

speech synthesizers are often utilized throughout the scams. Thus, identifying the speech

synthesizer used to create speech signals in these campaigns can reveal more information

about how the scams are spreading and (possibly) who created them.

In this chapter, we investigate speech synthesizer attribution, which is the task of identi-

fying which speech synthesizer was used to generate a synthetic speech signal. To attribute

a speech signal to a speech synthesizer, we convert speech signals into spectrograms[ 105 ].

A spectrogram is a 2-D temporal-spectral representation of a speech signal. We treat the

spectrograms as images and analyze them with our proposed deep learning method, called

compact attribution transformer (CAT). We consider eleven different speech synthesizers in

the scope of this work. Eight of the synthesizers are used to train CAT. The remaining three

synthesizers are only used during testing to represent a set of unknown speech synthesizers

that have not been seen during training. We evaluate our method on both a closed set of

known speech synthesizers as well as an open set, which contains a combination of known and

unknown synthesizers. We demonstrate that our proposed approach successfully attributes

synthesized speech signals to their synthesizers and can differentiate between known and un-

known synthesizers. We utilize a t-distributed stochastic neighbor embedding (tSNE) [ 106 ]
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to separate synthesized speech signals created by different synthesizers in CAT’s latent space.

We show that tSNE successfully discriminates different synthesizers, including different un-

known synthesizers. Thus, our proposed approach generalizes to new synthesizers. Finally,

we improve attribution performance by using poly-1 loss formulations.

5.2 Related Work

Most audio forensics methods focus on detecting manipulated or synthesized speech [  88 ],

[ 98 ], [  107 ], [  108 ]. However, identifying the source of the audio is also important. Different

recording devices, editing software, and file compression methods leave clues about the nature

of an audio signal. It is possible to associate – or attribute – authentic audio signals to specific

components used in their creation. For example, Buchholz et al. identify microphones used

to record audio signals by analyzing the signals’ Fourier coefficients [  109 ] with naïve bayes,

a SVM, logistic regression (LogReg), decision trees, and a KNN. Luo et al. focus specifically

on smartphone attribution for audio recordings [ 110 ]. They propose a feature set called a

bank energy difference descriptor (BED) for analysis with a SVM. Just as it is possible to

attribute an authentic speech signal to a specific audio-capturing device, it is possible to

identify speech synthesizers used to generate speech signals because each speech synthesizer

leaves its own fingerprints in the audio signals it creates. Borrelli et al. explore speech

synthesizer attribution using a random forest, a linear SVM, and a non-linear SVM in both

closed set and open set scenarios [ 111 ].

In this work, we propose a deep learning method know as compact attribution transformer

(CAT) for speech synthesizer attribution. CAT is a convolutional transformer, meaning that

it utilizes a series of convolutional layers before a transformer to train more efficiently and

incorporate inductive biases into the network. A convolutional transformer has achieved

success in synthetic audio detection [ 99 ], so now we explore its use for synthetic speech

attribution.

Besides using deep learning, our approach differs from prior audio attribution work in

that it analyzes spectrograms of audio signals. We use spectrograms to leverage frequency

information of speech signals. Because spectrograms provide a structured version of a speech
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signal and group similar frequencies together, CAT can analyze different frequency ranges

more explicitly to identify artifacts of various speech synthesizers. Another novel aspect of

our work is the use of t-distributed stochastic neighbor embedding (tSNE) [  106 ] to discrim-

inate between different unknown synthesizers. TSNE is an unsupervised learning method

used for dimensionality reduction and visualizing high-dimensional data. We use tSNE on

the latent space of CAT to separate all known and unknown synthesizers. Finally, we ex-

plore different loss functions to improve performance of the method. We formulate the loss

function used in CAT as poly-1 losses to tailor the loss function to this specific task. We

show that our proposed approach achieves success on this attribution task, even in an open

set scenario.

5.3 Proposed Approach

Figure  5.1 shows an overview of our approach. First, we convert all speech waveforms

into normalized spectrograms [ 105 ]. Next, we use a series of convolutional layers (i.e., a

convolutional block) to extract feature maps from the spectrograms. Then, a transformer

analyzes the feature maps and produces a set of probabilities P = {pi | 0 ≤ i ≤ N − 1},

where N corresponds to the number of known synthesizers, and probability pi indicates the

likelihood that a speech signal under analysis was generated by speech synthesizer i. We use

the probabilities in P to determine which of the known speech synthesizers created the speech

signal. We also use a thresholding procedure on the probabilities to determine whether a

speech signal was generated by a known or an unknown speech synthesizer.

5.3.1 Spectrogram Creation

We convert speech waveforms into spectrograms by using a 32 ms Hanning window on the

speech signals with a shift of 8 ms. In other words, we use the Fast Fourier Transform (FFT)

on blocks of the signals consisting of 512 sampled points with 128 points of overlap between

consecutive blocks [ 105 ]. Note that all waveforms in our experimental dataset have a 16 kHz

sampling rate. Next, the FFT coefficients are converted to decibels and organized into 2-D

arrays, where height corresponds to frequency bands and width corresponds to time (i.e.,
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Figure 5.1. Block Diagram of our Compact Attribution Transformer
(CAT). CAT is a convolutional transformer that analyzes spectrograms sized
128x128. After producing a set of attribution probabilities P with the trans-
former block, CAT uses a thresholding procedure to determine if the speech
signal was created by a known or an unknown speech synthesizer.

length of the audio signal in terms of 32 ms time blocks). We crop or pad each spectrogram to

have dimensions 128x128 pixels to ensure that all inputs to the neural network are the same

size. Finally, we normalize the spectrogram pixels to the range of values [0,1]. Normalized

values enable machine learning models to learn more quickly because they are forced to focus

on relative rather than absolute differences in input values. The normalized spectrograms of

size 128x128 pixels are used as inputs to CAT.

5.3.2 Compact Attribution Transformer (CAT)

We propose a method called the compact attribution transformer (CAT) for speech syn-

thesizer attribution. It is a convolutional transformer that first extracts feature maps from

an input spectrogram using convolutions. Then, it uses an attention mechanism [ 85 ] to

analyze the feature maps in order to attribute the audio signal under analysis to a speech

synthesizer. One significant benefit of our approach compared to other transformers is its

size. We design CAT to have 405 thousand parameters. There are a number of other trans-

formers that have demonstrated success in image-based analyses, but they are significantly

larger in size. For example, the first transformer used on images – known as vision trans-

former (ViT) [  83 ] – has three variants of different sizes: ViT-Base has 86 million parameters;

ViT-Large has 307 million parameters; and ViT-Huge has 632 million parameters. ViT was

adapted for spectrogram analysis to produce a model called audio spectrogram transformer
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(AST) [  101 ]. There are other variations of AST, such as self-supervised audio spectrogram

transformer (SSAST) [ 96 ], that use self-supervised learning during training for audio clas-

sification. Because AST and its variants (e.g., SSAST) are based on ViT, they too have

over 87 million parameters. Patchout fast spectrogram transformer (PaSST) [  95 ] is another

transformer used to analyze spectrograms for audio classification. It explicitly uses frequency

information in its attention mechanism and has over 85 million parameters. Because CAT

uses significantly fewer parameters in comparison to these transformers, it trains faster and

is easier to work with in scenarios with limited compute power.

Another benefit of CAT is that it does not require an extremely large dataset for train-

ing [ 86 ]. This is important for our work because we investigate speech synthesizer attribution

with a relatively small dataset containing only 17,000 samples (see Section  5.4 for details of

the dataset). Transformers lack some of the inductive biases that convolutions introduce,

such as translational equivariance and locality [  83 ], [ 86 ], and must learn these properties

on their own. However, this requires larger datasets that exhibit the properties. Larger

datasets are not always available for particular tasks (e.g., medical tasks, our speech syn-

thesizer attribution task), making it difficult to train transformers properly. CAT explicitly

introduces these biases into the network by using a convolutional block before the trans-

former. The convolutional block also increases the parameter efficiency of CAT compared

to non-convolutional transformers by using shared weights. This enables CAT to train more

efficiently with less data.

CAT is based on a network known as compact convolutional transformer [ 86 ]. Our

CAT network uses two convolutional layers in the convolutional block. Each convolutional

layer uses a 3x3 kernel, ReLU activation functions, max pooling, and positional embedding.

The transformer encoder contains two transformer layers that use layer normalization, two

attention heads, GeLU activation functions, stochastic depth, and sequence pooling [ 86 ].

The final dense layer of the network uses a softmax function to create the set of output

probabilities P . We train CAT for 100 epochs with a patience of 10 epochs and use the

AdamW optimizer [ 102 ] with an initial learning rate and weight decay of 10−4. The batch

size in our experiments is 128.
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5.3.3 Loss Functions

We investigate the use of three different loss functions in this work. First, we use a

standard cross entropy (CE) loss [ 92 ]. Then, we use a poly-1 cross entropy loss (poly-1-CE)

and a poly-1 focal loss (poly-1-FL) [ 112 ]. Poly-1 losses approximate loss functions via Taylor

expansion. This allows loss functions to be designed as linear combinations of polynomial

functions with easily adjusted polynomial bases. The polynomial bases can be customized

for a specific dataset or specific task, enabling better performance with the same dataset and

model architecture.

Let us begin with the definition of cross entropy (CE) loss:

LCE = −log(pi). (5.1)

The poly-1 cross entropy loss is then:

Lpoly−1−CE = LCE + ϵ(1 − pi). (5.2)

Similarly, we can formulate the poly-1 focal loss. Let us begin with the definition of focal

loss (FL):

LF L = −(1 − pi)γlog(pi) (5.3)

where γ serves as a modulating factor. It reduces the loss contribution from “easy” data

samples by extending the range of probabilities that contribute to a low loss value. Note

that when γ = 0, focal loss is equivalent to cross entropy loss (i.e., LF L = LCE). Then, the

poly-1 focal loss is:

Lpoly−1−F L = LF L + ϵ(1 − pi)γ+1. (5.4)

By constructing the loss function with this poly-1 formulation, we can adapt the loss

function for our specific dataset by changing ϵ. We perform a gridsearch to find the best

value of ϵ for our task. Experiments indicate that ϵ = 3.3 yields the best results with poly-1

cross entropy loss, and ϵ = 3 yields the best results with poly-1 focal loss. Note that we use

γ = 2 with poly-1 focal loss. More details of these experiments are included in Section  5.4 .
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5.3.4 Identifying Unknown Synthesizers

In addition to attributing synthesized speech signals to known synthesizers, we also de-

termine if a speech signal is created by an unknown synthesizer. To do so, we implement

a thresholding procedure on the probabilities in P produced by CAT. We define a thresh-

old T that determines if CAT is confident in its attribution or not. Let pm represent the

maximum probability in P (i.e., pm = max(P )). If pm > T , then CAT is very confident

that it can attribute the speech signal under analysis to the known synthesizer i. If none of

the probabilities in P are greater than the threshold T , CAT cannot detect any fingerprints

from any of the known synthesizers. Instead, the signal must be created by an unknown

synthesizer. In this case, it is assigned to the category containing all unknown synthesizers

U . In practice, any threshold T can be selected depending on the application and dataset.

This thresholding procedure enables attribution to N + 1 classes (i.e., to one of the

known synthesizers or to the unknown category U). However, it does not allow for discrim-

ination between different unknown synthesizers within U . To attribute a synthesized signal

to a specific unknown synthesizer, we utilize a t-distributed stochastic neighbor embedding

(tSNE) [ 106 ] on the latent space of CAT. First, we embed all speech signals in the open

set into the latent space of CAT by running them through the model. Next, we use tSNE

on the output of CAT’s transformer block, which is the layer directly before the final dense

layer that maps the latent space of CAT to a lower-dimensional output vector of length N

(i.e., the number of known synthesizers). TSNE projects the high-dimensional latent space

of CAT onto two dimensions, allowing visualization of CAT’s internal representation of all of

the speech signals in the open set. Then, we examine the tSNE visualization to understand

how CAT separates different synthesizers in its latent space. Our results indicate that dis-

tinct clusters form in the tSNE visualization and that each cluster corresponds to a different

synthesizer. Even the different unknown synthesizers have distinct clusters in the latent

space. Thus, analyzing the tSNE visualization provides more details about the nature of

synthesized speech signals. We present our findings in Section  5.4 . In our experiments, we

use a perplexity of 50 and 1,500 iterations to fit tSNE to CAT’s latent space.
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5.4 Experimental Setup

5.4.1 Dataset

To validate our approach, we use a dataset known as the SemaFor Audio Model Attribu-

tion Dataset. It was presented in the Semantic Forensics (SemaFor) program [ 47 ] organized

by DARPA. The dataset is based on a dataset from the 2022 IEEE Signal Processing Cup

(SP Cup) [ 113 ], which is a competition related to synthetic speech attribution. The dataset

from the SP Cup was augmented with another speech synthesizer (known as Riva [ 114 ]) and

re-arranged to create the final version of the SemaFor Audio Model Attribution Dataset.

There are a total of 17,000 synthesized speech signals in the dataset from 11 different

speech synthesizers. Speech signals from eight synthesizers are considered to be “known”

(i.e., part of the closed set). Speech signals from the remaining three synthesizers are con-

sidered to be “unknown” (i.e., part of the open set). The speech synthesizers in the closed

set are FastPitch[ 115 ], FastSpeech2 [ 116 ], Glow-TTS [  117 ], gTTS [ 118 ], Tacotron [ 119 ],

Tacotron 2 [ 120 ], TalkNet [ 121 ], and Riva [  114 ]. The speech synthesizers in the open set

are Mixer-TTS [ 122 ], SpeedySpeech [ 123 ], and VITS [ 34 ]. The speech synthesizers use vari-

ous deep learning methods, including transformers [  85 ], generative flow models [  124 ], [  125 ],

CNNs [ 126 ], LSTMs [ 81 ], [  127 ], MLPs [ 84 ], GANs [ 82 ], [  128 ], [  129 ], and variational autoen-

coders (VAEs) [ 130 ] to generate new speech signals. All signals have a sampling rate of 16

kHz.

Table  5.1 summarizes the details of the dataset. We utilize the official dataset split

according to the SemaFor program for training and testing our approach. Notice that there

are an unequal number of samples associated with each speech synthesizer. For example,

Tacotron 2 and FastSpeech2 only have 500 training samples, but the other speech synthesizers

in the closed set have 1,000 training samples. Similarly, these two synthesizers have only 300

testing samples, while some other synthesizers have 1,500 testing samples. This imbalance

presents a challenge in training an attribution model because there are fewer data samples

that can be used to learn to recognize certain speech synthesizers. One other challenge

with this dataset is that not all speech synthesizers use the same speaker (i.e., simulate

the same voice). Most of the speech synthesizers replicate a speaker from the LJSpeech
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dataset [  131 ], but some synthesizers use speakers from the LibriSpeech dataset [ 132 ], the

VCTK dataset [  133 ], and an unknown dataset used by Google. Because there are different

speakers in the dataset, an audio attribution model must learn the characteristics of a speech

synthesizer regardless of the speaker.

Table 5.1. SemaFor Audio Model Attribution Dataset. Dataset used
in our experiments.

SemaFor Audio Model Attribution Dataset
Speech

Synthesizer
Training
Samples

Testing
Samples

Total
Samples Speakers Type

FastPitch 1,000 1,500 2,500 1 from LJSpeech Known
FastSpeech2 500 300 800 1 from LJSpeech Known
Glow-TTS 1,000 1,500 2,500 1 from LJSpeech Known

gTTS 1,000 1,500 2,500 4 unknown Known
Tacotron 1,000 1,500 2,500 10 from LibriSpeech Known

Tacotron 2 500 300 800 1 from LJSpeech Known
TalkNet 1,000 1,500 2,500 1 from LJSpeech Known

Riva 1,000 1,000 2,000 1 from LJSpeech Known
Mixer-TTS 0 300 300 1 from LJSpeech Uknown

SpeedySpeech 0 300 300 1 from LJSpeech Uknown
VITS 0 300 300 10 from VCTK Uknown
Total 7,000 10,000 17,000 25

5.4.2 Evaluation Process

We report accuracy, weighted precision, weighted recall, and weighted F1 [ 93 ] of all

methods evaluated. Weighted metrics are computed with a weighted average of each metric

obtained on each of the classes in the dataset, where weights reflect the dataset class im-

balance. Recall that all evaluated methods produce a set P of N probabilities, where each

probability represents the likelihood that a known synthesizer was used to generate a speech

signal under analysis. In a closed set scenario, the final attribution output is the synthesizer

that corresponds to the maximum probability pm ∈ P . All metrics are computed based on

only the N known synthesizers. In an open set scenario, the thresholding procedure pro-
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duces the final attribution output, which could either be one of the known synthesizers or

an unknown class U . In this case, all metrics are computed based on the N + 1 classes.

5.4.3 Baselines and Comparison Methods

To validate our approach, we compare it against theoretical baselines, classical machine

learning methods, and deep learning methods. We refer to our theoretical baselines as

Baseline-Minority and Baseline-Majority. These baselines represent theoretical classifiers

that only predict one synthesizer. In other words, every time a new speech signal is presented

to the theoretical classifiers, they always predict the same attribution output. In the case

of Baseline-Minority, the output is always the minority class (i.e., the dataset class that

corresponds to the fewest samples in the training set). In the case of Baseline-Majority,

the output is always the majority class (i.e., the dataset class that corresponds to the most

samples in the training set). In the case where multiple classes have the same number of data

samples, one of the tied classes is chosen to represent the minority/majority class. Because

these baselines are computed from the experimental dataset, they establish lower bounds of

the evaluation metrics to indicate whether a classifier actually performs well.

In addition to these baselines, we investigate several classical machine learning methods:

quadratic discriminant analysis (QDA); gaussian process (GP); AdaBoost; k-nearest neigh-

bors (KNN); naïve bayes; decision tree; random forest; non-linear and linear support vector

machines (SVMs); and logistic regression (LogReg). To construct the inputs to these meth-

ods, the normalized spectrograms of size 128x128 pixels are row concatenated to produced

flattened, 1-D arrays of length 16,384. Each of these methods has various hyperparame-

ters that can affect their performance, so we execute a gridsearch to determine the best set

of hyperparameters for each method. Table  5.5 specifies the best hyperparameters for all

methods included in our analysis.

Finally, we explore two deep learning methods in addition to our proposed CAT solution:

a MLP and a CNN. The MLP operates on the 1-D version of the spectrograms, while the

CNN operates on the original 2-D format (i.e., the same format analyzed by CAT). The

MLP consists of two hidden layers of 1,500 nodes with logistic activation functions and one
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output layer that consists of 8 nodes (equal to the number of known synthesizers in our

experimental dataset). We train the MLP for 200 epochs with a patience of 10 epochs using

the Adam optimizer [ 78 ] with an initial learning rate of 10−4. The batch size is 200 in our

experiments. The CNN consists of two convolutional layers followed by two dense layers.

The convolutional layers use a 3x3 kernel and ReLU activation functions. The first dense

layer contains 128 nodes, and the second dense layer (i.e., the output layer) contains 8 nodes.

The CNN uses max pooling and dropout to regularize the network. We train the CNN for

100 epochs with a patience of 10 epochs using a batch size of 128. The CNN uses the Adam

optimizer [ 78 ] with an initial learning rate of 10−3. Both the MLP and the CNN use a

softmax activation function on the outputs of the final dense layer to create a set of output

probabilities P . They also both use cross entropy as a loss function.

5.4.4 Experimental Results

Table 5.2. CAT Results on Closed Set with Different Losses. Results
reported in this table are the best results achieved with each poly-1 loss func-
tion after a search for the poly-1 hyperparameter term ϵ.

CAT Results with Different Loss Functions
Loss

Function Accuracy Weighted
Precision

Weighted
Recall

Weighted
F1

LCE 90.12% 89.05% 90.12% 89.45%
Lpoly−1−CE 92.53% 90.37% 92.53% 91.27%
Lpoly−1−F L 92.02% 89.65% 92.02% 90.67%

Table  5.2 shows results with CAT using different loss functions. The baseline loss func-

tion is cross entropy LCE, which achieves approximately 90% accuracy, weighted precision,

weighted recall, and weighted F1 on the closed set. Both poly-1 loss formulations improve at-

tribution results compared to this baseline. Poly-1 focal loss (Lpoly−1−F L) improves all results,

especially in terms of accuracy and weighted recall. Poly-1 cross entropy loss (Lpoly−1−CE)

improves results even further. All metrics increase by roughly 2% with Lpoly−1−CE, result-
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ing in 92.53% accuracy and 91.27% F1. Because poly-1 cross entropy achieves the greatest

results overall, CAT experiments reported in the rest of this chapter use Lpoly−1−CE.

Table  5.3 shows results of all methods on the closed set. All methods outperform the

theoretical baselines and demonstrate that they achieve greater attribution success than

minority class and majority class classifiers. However, some methods cannot even achieve

50% accuracy on this attribution task. For example, all metrics obtained with QDA, GP,

and AdaBoost are less than 35%. KNN barely passes the 50% mark. Thus, not all methods

are suited for synthesizer attribution. Decision trees achieve better success on this task,

obtaining approximately 70% accuracy. Using an ensemble of decision trees (i.e., a random

forest) improves results even further to ∼80% accuracy. SVMs achieve better attribution

performance, with both linear and non-linear SVMs achieving roughly 81% accuracy on

this task. LogReg achieves the best performance of the classical machine learning methods

(∼90%). However, two deep learning methods achieve better performance. Both CNN and

CAT achieve 90% or higher for all metrics considered. Our CAT with poly-1 cross entropy loss

outperforms all methods for all metrics, achieving ∼93% accuracy and ∼91% F1. Figure  5.3 

shows more details about the performance of CAT on the closed set. This confusion matrix

indicates that CAT can attribute speech signals to most of the known synthesizers (7 out

of 8) very well. CAT struggles with just one synthesizer: Tacotron 2. Tacotron 2 is one

of the synthesizers with the fewest training and testing samples. It is more difficult for an

attribution method to learn to identify a synthesizer from fewer samples, which is one factor

contributing to the challenge in identifying Tacotron 2 speech signals.

Table  5.4 shows results on the open set using the thresholding method. In general, attri-

bution results drop for all approaches in the open set scenario. One method’s performance

(GP) even drops below Baseline-Majority. Other methods, such as QDA and AdaBoost,

barely beat Baseline-Majority based on some metrics. Most methods’ metrics drop to under

80%. Only three methods achieve metrics greater than 80%: LogReg, CNN, and CAT. This

drop in performance indicates the difficulty of synthesizer attribution in an open set scenario.

However, CAT is still able to attribute synthesized speech with over 84% accuracy and 83%

F1, achieving the highest attribution results overall. Thus, results indicate that CAT with
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Table 5.3. Results of All Methods on Closed Set. Results reported in
this table are the highest metrics obtained with each method from a hyperpa-
rameter search.

Results of All Methods on the Closed Set

Method Accuracy Weighted
Precision

Weighted
Recall

Weighted
F1

Baseline-Minority 3.30% 0.11% 3.30% 0.21%
Baseline-Majority 16.48% 2.72% 16.48% 4.67%

QDA 19.34% 16.82% 19.34% 11.75%
GP 21.62% 68.80% 21.62% 12.82%

AdaBoost 33.58% 32.71% 33.58% 23.69%
KNN 52.22% 56.63% 52.22% 49.83%

Naïve Bayes 68.14% 70.95% 68.14% 69.08%
Decision Tree 69.02% 71.08% 69.02% 69.93%

MLP 78.91% 77.06% 78.91% 77.68%
Random Forest 81.04% 79.90% 81.04% 79.10%

Non-Linear SVM 81.13% 81.35% 81.13% 81.05%
Linear SVM 81.57% 80.99% 81.57% 81.22%

LogReg 90.68% 88.29% 90.68% 89.43%
CNN 91.99% 90.21% 91.99% 90.88%
CAT 92.53% 90.37% 92.53% 91.27%

poly-1 cross entropy loss is the best method for synthesized speech attribution in both closed

set and open set scenarios.

Figure  5.2 shows CAT’s latent space representation of all speech signals in the open

set. We explore the tSNE plot to better understand the attribution performance of CAT.

It shows distinct clusters for most of the synthesizers in our experimental dataset. For

example, gTTS, Glow-TTS, Tacotron, Riva, FastSpeech2, SpeechSpeech, VITS, and Mixer-

TTS all have their own clusters within the latent space. This separability indicates that CAT

can successfully identify unique fingerprints of each of these synthesizers and use them for

attribution. Recall that Mixer-TTS, SpeedySpeech, and VITS are all unknown synthesizers.
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Table 5.4. Results of All Methods on Open Set. Results reported in
this table are the highest metrics obtained with each method from a hyperpa-
rameter search.

Results of All Methods on the Open Set

Method Accuracy Weighted
Precision

Weighted
Recall

Weighted
F1

Baseline-Minority 3.00% 0.09% 3.00% 0.17%
Baseline-Majority 15.00% 2.25% 15.00% 3.91%

QDA 17.60% 14.45% 17.60% 9.86%
GP 9.00% 0.81% 9.00% 1.49%

AdaBoost 17.51% 10.84% 17.51% 12.80%
KNN 47.52% 46.89% 47.52% 42.77%

Naïve Bayes 62.01% 59.58% 62.01% 59.95%
Decision Tree 62.66% 60.01% 62.66% 60.77%

MLP 55.97% 57.03% 55.97% 53.36%
Random Forest 47.74% 80.92% 47.74% 46.29%

Non-Linear SVM 65.41% 73.24% 65.41% 66.41%
Linear SVM 68.47% 71.78% 68.47% 68.80%

LogReg 83.85% 81.44% 83.85% 81.62%
CNN 83.56% 77.26% 83.56% 79.67%
CAT 84.10% 82.37% 84.10% 83.00%

Thus, CAT can actually discriminate between different unknown synthesizers, even though

they have never been presented to the network before. This ability can provide further

information to forensic analysts and help them in real-world scenarios as new synthesizers

are invented. TSNE also provides further details about CAT’s vulnerabilities. Although most

synthesizers are separated into distinct clusters in the tSNE plot, three synthesizers have less

separability: TalkNet, Tacotron 2, and FastPitch. The tSNE plot indicates that TalkNet and

FastPitch have more separability from each other, but Tacotron 2 has extensive overlap with

TalkNet and FastPitch. Thus, tSNE confirms results summarized by the confusion matrix in

Figure  5.3 . Figure  5.3 indicates that CAT is not able to attribute Tacotron 2 speech signals,
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Figure 5.2. TSNE Plot of CAT’s Latent Space on Open Set. Mixer-
TTS, SpeedySpeech, and VITS are unknown synthesizers.

and Figure  5.2 provides evidence that CAT cannot separate those signals correctly. To try

to mediate this issue, we explored weighted loss functions that account for the dataset’s class

imbalance. We also investigated methods that could discriminate between Tacotron 2 speech

signals and all other synthesizers in a one-vs-all fashion. However, these initial investigations

were unsuccessful at attributing Tacotron 2 signals. In future work, we seek to overcome

this challenge.
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Figure 5.3. Confusion Matrix of CAT Results with poly-1-CE Loss.
CAT can attribute speech signals to most synthesizers very well, but it struggles
with attribution to Tacotron 2.
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Table 5.5. Hyperparameters. Values used to achieve best results.
Method Hyperparameter Value
QDA reg_param 0.0
GP optimizer fmin_l_bfgs_b

AdaBoost n_estimators 50
n_neighbors 2

weights distance
algorithm auto
leaf_size 10

KNN

p 1
Naïve Bayes var_smoothing 1e-7

criterion gini
splitter best

min_samples_split 10Decision Tree

class_weight balanced
hidden_layer_sizes (1500, 1500)

activation logistic
batch_size 200

epochs 200
patience 10

early_stopping True
optimizer adam

learning_rate_init 0.0001

MLP

loss_function CE
n_estimators 500

min_samples_split 5Random Forest
class_weight balanced

C 1
kernel poly
degree 2
gamma scale

shrinking True
class_weight None
probability True

Non-Linear SVM

max_iter 100
C 0.1

kernel linear
shrinking True

class_weight None
probability True

Linear SVM

max_iter 100
penalty L1

C 10
class_weight balanced

solver liblinear
max_iter 500

LogReg

l1_ratio 0.75
batch_size 128

epochs 100
patience 10
optimizer adam

learning_rate_init 0.001

CNN

loss_function CE
batch_size 128

epochs 100
patience 10
optimizer adamW

learning_rate_init 0.001
weight_decay_init 0.001

loss_function poly-1-CE

CAT

ϵ 3.3
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6. MACHINE LEARNING FOR HYPERSONIC VEHICLE

CLASSIFICATION

6.1 Overview

Hypersonic vehicles fly at tremendous speeds. They travel faster than five times the speed

of sound in high supersonic ranges between Mach 5 and Mach 10 (5,000 to 25,000 km/h) [ 134 ].

At peak velocities, hypersonic vehicles travel approximately five miles a second [ 135 ]. As a

result of their speed, hypersonic vehicles could fly anywhere in the world in less one hour [ 136 ],

[ 137 ].

One type of hypersonic vehicle is a hypersonic glide vehicle (HGV), which possesses ma-

neuvering capabilities. Typically, rockets launch HGVs into the upper atmosphere. HGVs

then travel in and above the atmosphere at altitudes ranging from 40 km to over 100 km.

They glide to their final destinations by skipping off the top of the atmosphere [  135 ], [  138 ].

This bouncing action can be seen in Figures  6.1 ,  6.2 ,  6.3 , and  6.10b , after a vehicle pulls up

from its initial dive. These figures show normalized values since machine learning methods

perform best on normalized data [ 139 ]–[ 142 ]. HGVs exploit aerodynamic forces to steer to

their destinations, bypassing defense tracking systems and interceptors en route. Such ma-

neuvering presents challenges in predicting their destinations. HGVs possess the capability

to change their trajectories, and thus their final destinations, during flight [ 135 ].

Hypersonic glide vehicles distinguish themselves from conventional ballistic and cruise

vehicles by coupling speed with maneuverability. Although ballistic vehicles can travel at

hypersonic speeds, they do not maneuver. They follow relatively predictable hyperbolic

flight paths to their final destinations. Cruise vehicles sacrifice speed for maneuverability.

They travel slower than Mach 1 (i.e., the speed of sound) at speeds less than approximately

1,000 km/h [ 135 ]. Hypersonic glide vehicles excel at both key characteristics, achieving ultra-

high velocities with high mobility. Due to their advanced capabilities, HGVs may replicate

behaviors exhibited by legacy vehicles initially in order to disguise their true nature and

inhibit a successful defense response.

In this chapter, we investigate various machine learning methods to identify hypersonic

vehicles and reentry vehicles based on their aerodynamic features. We train and evaluate our
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Figure 6.1. Vehicle Dataset Trajectories. This plot shows all trajectories
in the dataset used for analysis based on their 3-D position coordinates.

Figure 6.2. Example Trajectories from Each Vehicle Type. This plot
shows a trajectory from each vehicle type.

methods on a multi-class dataset consisting of estimated states with notional radar quality

of service portraying vehicle trajectories. We demonstrate that our approaches achieve good

accuracy on this classification task and that accuracy increases with time after lift-off (TALO)

of the vehicle.
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6.2 Related Work

Various research techniques characterize vehicles. Some of these methods strive to differ-

entiate ballistic vehicles from decoys, debris, and other airborne vehicles [  143 ]–[ 145 ]. Other

techniques focus on recognizing different subcategories of vehicles (e.g., ballistic vehicles,

reentry vehicles, quasi-ballistic vehicles, and cruise vehicles) [ 146 ]–[ 151 ]. Recently, a method

emerged which classifies hypersonic glide vehicles in addition to ballistic vehicles [ 152 ].

In order to identify ballistic vehicles from other objects, some approaches utilize a ma-

chine learning method based on a KNN classifier [ 143 ]–[ 145 ]. Persico et al. extract feature

vectors consisting of pseudo-Zernike moments from high-resolution range profile (HRRP)

frames [ 143 ], [ 144 ]. They use a KNN classifier with the feature vectors to achieve vehicle

discrimination. In another approach, Perisco et al. analyze features based on Krawtchouk

moments with KNN used for classification [ 145 ]. Jithesh et al. also utilize HRRPs for vehicle

classification [ 151 ]. Although they do not consider ballistic vehicles specifically, they employ

a LSTM architecture to recognize different airborne vehicles.

For classifying different types of vehicles, many approaches use Bayesian models and

machine learning methods. Farina et al. use a multiple model maximum likelihood estimator

(MM-MLE) to classify vehicles based on kinematic features [ 150 ]. Park et al. recognize

ballistic vehicles during their ascent phases with a thresholding method [ 149 ]. They obtain

the thresholds through Monte-Carlo simulation. Singh et al. implement a Hidden Markov

Model (HMM) to classify ballistic vehicles based on their kinematic attributes, including

specific energy, acceleration, altitude, and velocity [ 148 ]. They also introduce a method that

unites a HMM with a Real-Time Neural Network (RTNN) [ 146 ], [  147 ].

Gaiduchenko et al. [ 152 ] propose a hypersonic convolutional neural network (HCNN) to

classify both hypersonic and ballistic vehicles. They describe a method that analyzes flight

path data consisting of 3-D coordinates which describe the position of the vehicles under

analysis during flight. The HCNN only requires position data in order to classify whether a

trajectory is that of a hypersonic glide vehicle, a hypersonic cruise missile, or a conventional

ballistic missile.
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Our proposed approach also utilizes machine learning methods to classify vehicles. We

examine different aerodynamic features than previous methods. More specifically, our meth-

ods analyze angle of attack, angle of attack rate, and dynamic pressure. Our experiments

focus on hypersonic vehicles specifically and include analysis of multiple HGVs. We demon-

strate that our method successfully classifies HGV and RV trajectories based on key vehicle

maneuvers and that accuracy increases with TALO.

6.3 Initial Work

Prior to developing and finalizing our methodology presented in Section  6.4 , extensive

experimentation, investigation, analysis, and discussion was conducted on other methods.

This initial work explored MLP, LSTM, and CNN architectures. The experiments also ex-

plored the use of different aerodynamic features analyzed by the ML networks and evaluated

vehicle data in a 2-class, 3-class, and 4-class fashion. This section discusses the initial work

that helped refine the ultimate method utilized.

6.3.1 Initial Dataset

To construct the dataset used in these experiments, we simulate altitude, longitude, and

latitude at a 1 Hz sampling rate for entire trajectories. The trajectories and associated fea-

tures are normalized in order to enable better learning of the machine learning models [ 139 ]–

[ 142 ]. Our dataset contains trajectories resulting from various launch configurations. Each

launch configuration is defined by its start location and rocket stages. For our experiments,

start positions include the ground and the air. In the case of an air launch, vehicles are

released from another aircraft that already achieved a desire altitude. The number of rocket

stages refers to the number of separate rocket boosters used in a multistage launch. More

boosters introduce more propellant to launch a vehicle further. For our experiments, multi-

stage launches include 1-3 boost stages. Our dataset contains 1-boost, 2-boost, and 3-boost

ground launches as well as air launches for each type of vehicle, resulting in a total of 207

trajectories. We have 146 HGV trajectories (85 HGV-1 trajectories, HGV-2 trajectories) and

61 CRV trajectories, as detailed in Table  6.1 . Each HGV possesses a different aerodynamic
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profile and thus exhibits distinct maneuvering capabilities. Our engagement planning would

vary when considering each of these vehicles, so it is important to discriminate between

HGV-1 and HGV-2 trajectories. The lengths of the trajectories vary since some vehicles and

missions fly longer than others, as can be seen in Figure  6.1 and Figure  6.2 .

Table 6.1. Vehicle Trajectory Dataset. This table provides details about
the number of trajectories available per vehicle in the training, validation, and
testing sets.

Vehicle Trajectory Dataset
Vehicle Train Validation Test Total
HGV-1 59 8 18 85
HGV-2 42 6 13 61
CRV 42 6 13 61
Total 143 20 44 207

Next, we implement two different trajectory truncation methods to construct the final

inputs to the ML methods. The first approach divides full trajectories into shorter segments

of equal length using a rolling window method. The window commences at the beginning of

a trajectory, corresponding to time after lift off (TALO) of zero seconds. Then, it traverses

the entire trajectory, shifting by one second of data each time. Thus, trajectory segments in

the dataset overlap. The length of the window determines the number of segments available

for training, validation, and testing. In other words, a larger window will result in fewer

segments because it will reach the end of a trajectory sooner than shorter window will. For

the experiments in this thesis, windows of size 10, 20, 100, and 200 seconds were used.

The second approach divides trajectories into three equal parts corresponding to phase-

1, phase-2, and phase-3 data. Because full trajectories are unequal in length, this approach

results in segments of unequal length within each phase of flight. Furthermore, the segments

do not overlap. An example of this trajectory division is depicted in Figure  6.3 . Trajectories

were divided in this way to create balanced datasets for each phase of flight. This approach

ensures the same amount of data is available for training and evaluating each separate
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model, as described later in this section. For both approaches, once the trajectories have

been segmented, the neural network classifies the segments independently of each other.

Figure 6.3. Trajectory Division into Phases. This plot depicts a trajec-
tory divided into phases equal in length.

A set of seven datasets serve as the basis for these initial experiments. The details of

each dataset are included in Tables  6.2 ,  6.3 ,  6.4 ,  6.5 ,  6.6 ,  6.7 , and  6.8 . For the creation

of each dataset, trajectories of each vehicle class are separated into training, validation,

and testing sets according to a 70%:15%:15% split. Then, data from the terminal phase

of flight is excluded. In initial experiments, data from the boost phase of flight is also

excluded. However, later experiments pivot and begin to include boost phase segments in

the dataset. As a result, only Vehicle Segment Dataset 1 (Table  6.2 ) and Vehicle Segment

Dataset 2 (Table  6.3 ) do not include boost phase data. Next, the trajectories are segmented

via the rolling window approach. One final step for Vehicle Segment Dataset 2 (Table  6.3 )

involves randomly sampling HGV-1 segments to include a subset of them in the dataset.

In general, more HGV-1 trajectories (and thus segments) are available in these datasets, so

experiments conducted with Vehicle Segment Dataset 2 (Table  6.3 ) explore performance on

a more balanced dataset.
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Table 6.2. Vehicle Segment Dataset 1. This table provides details about
the number of 100-second length segments (excluding boost phase data) avail-
able per vehicle in the training, validation, and testing sets.

Vehicle Trajectory Dataset 1
Vehicle Train Validation Test Total
HGV-1 71,286 14,560 20,260 106,106
HGV-2 37,250 8,449 9,545 55,244
CRV 30,826 6,706 6,565 44,097
Total 139,362 29,715 36,370 205,447

Table 6.3. Vehicle Segment Dataset 2. This table provides details about
the number of 100-second length segments (excluding boost phase data) avail-
able per vehicle in the training, validation, and testing sets. This is a more
balanced dataset, with equal numbers of segments in the HGV-1 and HGV-2
classes.

Vehicle Trajectory Dataset 2
Vehicle Train Validation Test Total
HGV-1 37,250 8,449 9,545 55,244
HGV-2 37,250 8,449 9,545 55,244
CRV 30,826 6,706 6,565 44,097
Total 105,326 23,604 25,655 154,585

6.3.2 Multi-Layer Perceptron (MLP) Methods

In this section we describe our MLP methods for vehicle classification. We explored four

different network architectures, which are depicted in Figures  6.4 thru  6.7 . Before evaluating

data with the MLP-based approaches, the trajectory segments undergo pre-processing steps

to construct the final inputs to the networks. Given 3-D position coordinates (i.e., longitude,

latitude, and altitude) of a vehicle, other aerodynamic features, such as speed, are calculated.

Then, polynomials are fitted to each of these aerodynamic features, resulting in a set of 36

coefficients. The coefficients serve as the inputs to the MLPs.
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Table 6.4. Vehicle Segment Dataset 3. This table provides details about
the number of 10-second length segments (including boost phase data) available
per vehicle in the training, validation, and testing sets.

Vehicle Trajectory Dataset 3
Vehicle Train Validation Test Total
HGV-1 79,959 16,324 22,318 118,601
HGV-2 43,424 9,772 11,015 60,418
CRV 37,000 8,029 8,035 49,403
Total 160,383 34,125 41,368 228,422

Table 6.5. Vehicle Segment Dataset 4. This table provides details about
the number of 20-second length segments (including boost phase data) available
per vehicle in the training, validation, and testing sets.

Vehicle Trajectory Dataset 4
Vehicle Train Validation Test Total
HGV-1 79,369 16,204 22,178 117,751
HGV-2 43,004 9,682 10,915 63,601
CRV 36,580 7,939 7,935 44,519
Total 158,953 33,825 33,093 225,871

The first architecture, MLP-max, employs three separate MLPs. Each one is trained

for a different binary classification problem: HGV-1 vs Not, HGV-2 vs Not, and CRV vs

Not. In each case, the Not category consists of data from the other two types of vehicles.

For example, in the HGV-1 vs Not scenario, HGV-2 and CRV segments comprise the Not

class. After training each of the MLPs, testing data is processed by each of them. Each

MLP predicts whether the segment under analysis S is the vehicle type it was trained to

identify or not. The output of each of the MLPs is a likelihood score in the range [-1, 1],

where a “1” indicates that the network believes the segment to be of the vehicle type it was

trained to identify with strong likelihood. On the other hand, a score of “-1” indicates that

network believes S belongs to the Not category with strong likelihood. The vehicle class
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Table 6.6. Vehicle Segment Dataset 5. This table provides details about
the number of 100-second length segments (including boost phase data) avail-
able per vehicle in the training, validation, and testing sets.

Vehicle Trajectory Dataset 5
Vehicle Train Validation Test Total
HGV-1 74,649 15,244 21,058 110,951
HGV-2 39,644 8,962 10,115 58,721
CRV 33,220 7,219 7,135 47,574
Total 147,513 31,425 38,308 217,246

Table 6.7. Vehicle Segment Dataset 6. This table provides details about
the number of 200-second length segments (including boost phase data) avail-
able per vehicle in the training, validation, and testing sets.

Vehicle Trajectory Dataset 6
Vehicle Train Validation Test Total
HGV-1 68,749 14,044 19,658 102,451
HGV-2 29,020 6,319 6,135 41,474
CRV 35,444 8,062 9,115 52,621
Total 133,213 28,425 34,908 196,546

corresponding to the maximum likelihood score of the three MLPs’ outputs is the prediction

of MLP-max.

The second architecture is named MLP-softmax. It utilizes only one MLP with a softmax

layer in order to operate in a 3-class fashion. The output of this network consists of three

probabilities in the range [0, 1] that indicate the chances that the segment under analysis S

belongs to each of the vehicle classes. The vehicle class corresponding to the maximum prob-

ability is the prediction of MLP-softmax. This network architecture differs from MLP-max

in that it is trained to learn how to differentiate between three different vehicles concurrently,

whereas MLP-max requires three different networks trained to learn how to differentiate be-

tween only two different vehicles concurrently. In other words, no decision-making function

is added to MLP-softmax after training.
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Table 6.8. Vehicle Segment Dataset 7. This table provides details about
the number of segments of various lengths (including boost phase data) avail-
able per vehicle in the training, validation, and testing sets.

Vehicle Trajectory Dataset 7
Vehicle Train Validation Test Total
HGV-1 41 8 10 59
HGV-2 32 6 8 46
CRV 32 6 8 46
Total 105 20 26 151

Figure 6.4. MLP-max. MLP-max consists of three MLPs trained in a 2-class fashion.

The third architecture, MLP-DC, is very similar to MLP-max. However, it differs in the

way that the outputs of each separate MLP are evaluated to make a final prediction. Just

as with MLP-max, each of the MLPs are trained separately on a different 2-class problem.

For testing, though, a threshold function and a decision tree are added to evaluate the MLP

outputs. The threshold function performs binary thresholding on the likelihood scores to

convert them to either a “1” or a “-1.” Next, the decision tree determines whether there
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Figure 6.5. MLP-softmax. MLP-softmax consists of one MLP trained in a
3-class fashion.

is a clear classification choice or not. In other words, if there is only one “1” in the set of

thresholded results, that vehicle class will be used as the final prediction. Thus, a threshold

output of [1 -1 -1] corresponds to HGV-1, [-1 1 -1] corresponds to HGV-2, and [-1 -1 1]

corresponds to CRV. All other combinations of result in a classification of Not. Thus, this

network architecture operates in a 4-class fashion.

MLP-DC2 builds upon MLP-DC and utilizes a 2-layer decision tree. First, seven separate

MLPs are trained to learn HGV-1 vs Not, HGV-2 vs Not, CRV vs Not, HGV-1 vs HGV-2,

HGV-2 vs CRV, CRV vs HGV-1, and HGV-1 vs HGV-2 vs CRV. Then, once training is

complete, threshold functions and a 2-layer decision three are added to connect and evaluate

the outputs. In the first layer of decision making, the outputs of HGV-1 vs Not, HGV-

2 vs Not, and CRV vs Not are evaluated. Binary thresholding on this set of outputs is

performed. If there is a clear classification choice, meaning that the thresholded set of values

only contains one “1”, that vehicle class is used as the final prediction. However, if there is

any uncertainty, the MLP corresponding to the classes where the uncertainty lies is used to

evaluate S further. For example, if the thresholded set of values contains a “1” corresponding
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Figure 6.6. MLP-DC. MLP-DC consists of three MLPs and a 1-layer deci-
sion tree. Each MLP is trained in a 2-class fashion.

to both the HGV-1 and HGV-2 classes, the HGV-1 vs HGV-2 network will be utilized; if the

thresholded set of values contains all “1”s, the HGV-1 vs HGV-2 vs CRV network will be

utilized; etc. S is processed by the next network, and then either another binary thresholding

(in the case of a 2-class network) or a softmax (in the case of a 3-class network) function is

utilized to achieve the final prediction.

6.3.3 Long Short-Term Memory (LSTM) Methods

The LSTM-1 architecture pivots from MLPs to LSTMs. It employs one LSTM trained

in a 3-class scenario to concurrently learn to classify segments into three vehicle categories.

The network produces three probabilities corresponding to each of the vehicle classes, so a

softmax function is once more utilized to obtain the final prediction.

Finally, the last set of experiments utilizes three separate LSTMs (LSTM-2-1, LSTM-2-2,

LSTM-2-3) trained on a separate phase of flight (phase-1. phase-2, phase-3). Each LSTM

functions in a 3-class fashion, so softmax is again used to evaluate the outputs of each LSTM

and determine the final prediction.

92



Figure 6.7. MLP-DC2. MLP-DC2 consists of seven MLPs and a 2-layer
decision tree. Six MLPs are trained in a 2-class fashion, and the remaining one
is trained in a 3-class fashion.

6.3.4 Initial Experimental Results

In this section, we present experimental results using MLP and LSTM approaches. Ta-

ble  6.9 summarizes the results of several experiments conducted with different datasets,

architectures, and data features. The first column in the table specifies the architecture (or

specific model within an architecture) used in an experiment. The second column establishes

the dataset utilized for the set of experiments. The third column includes the data features
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Figure 6.8. LSTM-1. LSTM-1 consists of one LSTM trained in a 3-class fashion.

used as inputs to the the network: T refers to normalized TALO with respect to each in-

dividual trajectory, A refers to altitude, L1 refers to longitude, and L2 refers to latitude.

The next three columns report average training, validation, and testing accuracies, when

available, of the experiments conducted. Experiments administered with MLP-based archi-

tectures were repeated five times, and experiments using LSTM-based architectures were

repeated ten times.

Experiments conducted with MLP-based architectures utilize Vehicle Segment Dataset 1

or Vehicle Segment Dataset 2, which contain segments of 100 seconds. MLP-max performs

the best of all architectures in these experiments, achieving an average testing accuracy of

58.30%. However, the results of all these MLP experiments stagnate, not achieving better

results with different configurations. For this reason, we commenced use of LSTMs.

Experiments conducted with LSTM-1 utilize datasets of varying lengths of segments

to explore the impact of segment length on performance. Some of the experiments use

normalized TALO as an input feature as well. For experiments both with TALO as an input

and without, performance on Vehicle Segment Dataset 5 of 100-second segments achieves

the best performance. Using TALO as an input feature with this setup yields an average
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Figure 6.9. LSTM-2. This configuration consists of three LSTMs trained in
a 3-class fashion. Each LSTM is trained on a different set of phase data.

testing accuracy of 97.73%, which is the best overall performance. In general, adding TALO

as an input feature increased average performance of the network. No trends in performance

related to segment length can be identified with certainty, though.

The final set of experiments analyze each phase of a trajectory. Training these models

proved very challenging, and many experimental setups and model parameter changes were

conducted before LSTM-2-1 showed signs of learning. Unfortunately, learning was never

achieved with LSTM-2-2 or LSTM-2-3. Both of these networks will only predict HGV-1,

and thus the performances reported in Table  6.9 are the percentage of HGV-1 data samples

in Vehicle Segment Dataset 7. One reason these networks did not learn as well (or at all)

as previous architectures is that much less data is available for training these networks.

Compared to Vehicle Segment Dataset 3 that contains 228,000 segments, Vehicle Segment

Dataset 7 only contains 151. Another challenge for this architecture is the longer input

sequences. The average segment lengths by vehicle for Vehicle Segment Dataset 7 is 588.78
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Table 6.9. Initial Results. Results of initial experiments conducted with
MLPs and LSTMs.

Initial Vehicle Classification Results

Architecture Dataset Features
Average
Training
Accuracy

Average
Validation
Accuracy

Average
Testing

Accuracy
MLP-max 1 A, L1, L2 - - 58.30%
MLP-max 2 A, L1, L2 - - 49.65%

MLP-softmax 1 A, L1, L2 - - 54.34%
MLP-softmax 2 A, L1, L2 - - 41.08%

MLP-DC 1 A, L1, L2 - - 40.91%
MLP-DC2 1 A, L1, L2 - - 56.60%
LSTM-1 3 A, L1, L2 82.67% 82.30% 84.22%
LSTM-1 4 A, L1, L2 87.70% 87.65% 88.07%
LSTM-1 5 A, L1, L2 90.45% 90.18% 91.70%
LSTM-1 6 A, L1, L2 72.92% 72.82% 76.36%
LSTM-1 3 T, A, L1, L2 90.80% 90.60% 91.63%
LSTM-1 4 T, A, L1, L2 84.98% 84.37% 86.22%
LSTM-1 5 T, A, L1, L2 97.18% 97.21% 97.73%
LSTM-1 6 T, A, L1, L2 83.42% 83.29% 85.25%

LSTM-2-1 7 T, A, L1, L2 65.05% 68.67% 61.54%
LSTM-2-2 7 T, A, L1, L2 39.05% 40.00% 38.46%
LSTM-2-3 7 T, A, L1, L2 39.05% 40.00% 38.46%

seconds for HGV-1s, 407.65 seconds for HGV-2s, and 417.41 seconds for CRVs. These are

significantly longer inputs than the datasets consisting of segments 10, 20, 100, and 200

seconds in length.

6.3.5 Discussion of Initial Work

The proposed technique exploits a data driven approach, thus learning how to distinguish

HGV-1s from HGV2-s from CRVs directly from the available training data. Results show
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that the developed methodology accomplishes classification to varying degrees of accuracy

on the used datasets. While some networks, such as LSTM-2-2 never learn to classify vehicle

flight paths, other networks, such as LSTM-1, achieve promising results. Although the

results of LSTM-1 experiments are very good, more investigation into explaining these results

is necessary. Furthermore, it would be interesting to see how the technique performs on

segments of even shorter lengths to test how little data is needed to classify a trajectory

segment. Finally, we will develop other methods to pursue the goal of determining how

quickly a trajectory can be classified.

One criticism of these approaches is that it is difficult to justify or explain what the ML

methods learn from the data. Although LSTM-1 performed well on virtually all datasets

and segment lengths, it is difficult to understand why this network achieves such high perfor-

mance. Classifying 10-seconds of data along any point in a trajectory that exhibits maneuvers

and different flight events is a challenge, yet LSTM-1 achieved very good performance with

Vehicle Segment Dataset 3. Without physically enforcing the models to learn how a vehicle

flies from position data, it is difficult to explain why they can succeed with such information.

Aerodynamic domain knowledge suggests that this task is not trivial either. Instead, other

aerodynamic features, such as angle of attack, angle of attack rate, and dynamic pressure

might yield to better and more explainable discrimination results.

Even though some experimental results show promising results, it is necessary to better

define a problem in which the ML models’ decisions can be better understood. Due to the

uncertainty in what the methods learn with this experimental setup, we propose a different

problem formulation that analyzes new aerodynamic features. The next section presents

the new methodology, which serves as our current state-of-the-art experimental setup and

validation.

6.4 Proposed Approach

Given trajectory data, we seek to identify the vehicle that created the trajectory. We

evaluate our approach on a dataset containing trajectories of three different types of vehicles.

Two vehicles are HGVs, which we will refer to as HGV-1 and HGV-2. The third vehicle is
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a conic re-entry vehicle (CRV). We investigate the characterization performance of three

different machine learning models, including a SVM, a KNN, and a CNN) [ 89 ]–[ 91 ], [ 153 ],

[ 154 ].

(a) Full Trajectories. (b) Identification of Pullup Phase.

(c) Pullup Phase of One Trajectory. (d) Pullup Phases of all Trajectories.

Figure 6.10. Extracting Pullup Phases. These four plots show the process
of extracting the pullup phase from all of the trajectories in the dataset.

6.4.1 Extracting Aerodynamic Features of Pullup Phases

Our approach analyzes the pullup phase from a vehicle’s mission. Figure  6.10a shows

all of the trajectories in the dataset and their pullup phases. The pullup phases, indicated

in yellow, start at different times, depending on the characteristics of the vehicle and the

mission. We use altitude measurements of a trajectory to identify the pullup phase. We
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identify the apogee of a trajectory, indicated by a red star in Figure  6.10b . The apogee is

the highest point of a trajectory and occurs early in a vehicle’s flight. After reaching apogee,

the vehicle dives into the remainder of the flight and flies at lower altitudes. It uses its

momentum and potential energy harvested from its decline to glide to its final destination.

Next, we identify the first local minima in the trajectory after the apogee. This point is

indicated by a green star in Figure  6.10b . The local minima results from the vehicle’s dive

from apogee and pullup from the dive into the next maneuver of the mission.

Then, we obtain an equal number of measurements from before and after the pullup

point. We extract the same number of time samples from all of the trajectories to ensure

that the learning system evaluates uniform-length inputs. Figure  6.10b indicates the pullup

phase in orange. For our experiments, we consider the pullup phase to be 100 seconds long

and centered around the first local minima. Figure  6.10c is a closer look at the pullup

phase described by 100 seconds of altitude data. We observe that the altitude data points

before the middle of the pullup phase are spaced further apart than the points after the

pullup phase. Since our data contains evenly spaced measurements (in terms of time), this

reveals that the vehicle travels at a faster velocity in its dive right before it pulls up. We

use this pre-processing for all trajectories to identify the times associated with their pullup

phases. Figure  6.10d shows the altitude measurements of the pullup phases from all of the

trajectories in the dataset.

After the times of the pullup phases are identified, we estimate the aerodynamic features.

We consider the aerodynamic features of angle of attack, angle of attack rate, and dynamic

pressure, which are shown in Figure  6.11 for the full trajectories. Dynamic pressure is

derived from estimated track kinematic states. Angle of attack and rate are augmented filter

states. Figure  6.12 shows these aerodynamic features for the pullup phases. The segments

in Figure  6.12 serve as the inputs to the machine learning models in our experiments. These

indicate that there is a high degree of overlap between the pullup phases of different vehicles.
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Figure 6.11. Full Trajectories. Aerodynamic features of full trajectories
before desired region is extracted.

Figure 6.12. 100-Second Pullup Phases. Aerodynamic features of 100-
Second pullup phases classified with Machine Learning methods.

6.4.2 Noisy Aerodynamic Features

We also examine the situation with noisy observations. The segments shown in Fig-

ure  6.12 are pristine (noiseless) trajectories. We need to determine the effect of noise on

our classification task. To simulate this we add zero-mean Gaussian-distributed noise to

each aerodynamic feature based on the feature’s range (max−min) for a particular pullup

phase. For an aerodynamic feature f of trajectory t, ft,p,max is the maximum value of the

feature associated with the pullup phase p for t. Likewise, ft,p,min is the minimum value of

the aerodynamic feature associated with the pullup phase p for trajectory t. Let M be the

“scale factor”of the noise which controls the standard deviation. The standard deviation of

the Gaussian noise added to feature f for trajectory t is:

σt,p,f = (ft,p,max − ft,p,min) ∗M. (6.1)
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Thus, different noise signals will be added to each pullup phase based on the aerodynamic

features for that particular trajectory. Figures  6.13 ,  6.14 , and  6.15 show aerodynamic features

with noise scale factor M = 0.05. Figures  6.16 ,  6.17 , and  6.18 show aerodynamic features

with noise scale factor M = 0.25. In our experiments we used noise scale factors M ∈

{0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50}.

Figure 6.13. HGV-1 with Small Noise Level. Aerodynamic features for
HGV-1 with M = 0.05.

Figure 6.14. HGV-2 with Small Noise Level. Aerodynamic features for
HGV-2 with M = 0.05.

Figure 6.15. CRV with Small Noise Level. Aerodynamic features for
CRV with M = 0.05.
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Figure 6.16. HGV-1 with Medium Noise Level. Aerodynamic features
for HGV-1 with M = 0.25.

Figure 6.17. HGV-2 with Medium Noise Level. Aerodynamic features
for HGV-2 with M = 0.25.

Figure 6.18. CRV with Medium Noise Level. Aerodynamic features for
CRV with M = 0.25.

6.4.3 K-Nearest Neighbors (KNN)

A machine learning method we investigate is KNN [ 89 ], [ 90 ]. KNN does not require any

prior knowledge about the underlying probability density function of the dataset. This non-

parametric method strives to classify data samples based on proximity of a trajectory under

analysis (i.e., trajectories in the testing set) to all other known trajectories (i.e., trajectories

in the training set). For our experiments, we classify a trajectory based on the k = 1 nearest

neighbor to that trajectory, where proximity is determined by the L2-norm. To form the
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inputs to the KNN, we row concatenate each of the 1-D aerodynamic features. Since we are

analyzing 3, 100-second-long aerodynamic features, the input to the KNN for one trajectory

will be a row vector with length 300.

6.4.4 Support Vector Machine (SVM)

We also investigate a Support Vector Machine (SVM) with a Radial Basis Function

(RBF) kernel [ 91 ]. Because our classification task contains more than two classes, we train

three different SVMs on three different binary classification tasks. Each SVM uses a one-vs-

one approach, meaning that it learns to differentiate between two different vehicle classes.

This is different from the one-vs-many approach, which learns to differentiate between one

class and the rest of the vehicles in the dataset. In order to choose a final classification for

a trajectory, the argmax function is employed on the three output scores from each of the

SVMs. We utilize the same row concatenation procedure that we use for the KNN classifier

to create the inputs to the SVM.

6.4.5 Convolutional Neural Network (CNN)

The final machine learning method we investigate is a CNN [ 153 ], [ 154 ]. Our proposed

CNN architecture is shown in Figure  6.19 , and the details about the sizes of the layers are

presented in Table  6.10 . The neural network consists mainly of two 1-D convolutional layers

to analyze the 1-D aerodynamic features presented to it. It also employs max pooling and

dropout layers to regularize the model and prevent overfitting. The final output of the neural

network uses a softmax function to a fully-connected dense layer consisting of three nodes.

This step produces three detection scores, indicating the likelihood that a trajectory under

analysis belongs to each of the three classes. Next, the argmax function is used to these

detection scores, producing a final class prediction. During training, we use early stopping

with a patience of 5 epochs and the Adam optimizer [ 78 ]. CNNs can operate on 2-D matrices,

so we present temporally aligned aerodynamic features to the CNN for analysis. A single

trajectory input to the CNN has dimensions 3 x 100.
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Figure 6.19. CNN Diagram for Vehicle Classification. The CNN de-
veloped for our vehicle classification approach.

6.5 Experimental Setup

6.5.1 Dataset

To create our experimental dataset, we simulate estimated angle of attack, angle of attack

rate, and dynamic pressure at a 1 Hz sampling rate for entire trajectories, excluding boost

and terminal phases. Angle-of-attack and angle-of-attack rate can be estimated from lift-

over-drag ratio and velocity, given knowledge about the threat aerodynamic profile. The

trajectories and associated features are normalized in order to enable better learning of the

machine learning models [ 139 ]–[ 142 ]. Our dataset contains trajectories resulting from various

launch configurations. Each launch configuration is defined by its start location and rocket

stages. For our experiments, start positions include the ground and the air. In the case

of an air launch, vehicles are released from another aircraft that already achieved a desire

altitude. The number of rocket stages refers to the number of separate rocket boosters used

in a multistage launch. More boosters introduce more propellant to launch a vehicle further.

For our experiments, multistage launches include 1-3 boost stages. Our dataset contains 1-

boost, 2-boost, and 3-boost ground launches as well as air launches for each type of vehicle,

resulting in a total of 207 trajectories. We have 146 HGV trajectories (85 HGV-1 trajectories,

104



Table 6.10. CNN Architecture for Vehicle Classification. This table
indicates the architecture of the proposed CNN. Each row in the table specifies
(from left to right) the layer type, its output shape, and the number of param-
eters per layer. The outputs of the CNN can be described in the form (L,N).
L is the length of the 1-D aerodynamic parameter vector of measurements. N
is the number of feature maps produced.

CNN Architecture

Layer Output Shape
(L, N) Parameters

input (100, 3) 0
conv1 (98, 32) 128
conv2 (96, 64) 6,208

max pooling (48, 64) 0
dropout1 (48, 64) 0
flatten1 (3072, 1) 0
dense1 (128, 1) 393,344

dropout2 (128, 1) 0
dense2 (3, 1) 387

output label (1,1) 0

HGV-2 trajectories) and 61 CRV trajectories. Each HGV possesses a different aerodynamic

profile and thus exhibits distinct maneuvering capabilities. Our engagement planning would

vary when considering each of these vehicles, so it is important to discriminate between

HGV-1 and HGV-2 trajectories. The lengths of the trajectories vary since some vehicles and

missions fly longer than others, as can be seen in Figure  6.1 and Figure  6.2 .

We train our machine learning methods on a subset of the trajectories of the full dataset,

referred to as the training set. For the CNN, we determine when training finishes by mon-

itoring the error of the CNN on another subset of the data. This is the validation set. We

evaluate the performance of the CNN on the validation set each time that the CNN analyzes

all trajectories in the training set. Once the error of the CNN stops decreasing significantly

on the validation set, we conclude that the CNN is no longer effectively learning from the

training data and terminate any further training. Note that SVMs and KNNs have set train-

ing times based on the size of the dataset, so the validation set is not used with either of
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these methods. Finally, once a method has been trained, we evaluate the trained model by

examining how it performs on the maneuvers on the remaining trajectories in the dataset,

which will be referred to as the testing set. We partition the full dataset into three sets for

training, validation, and testing according to a 70%:10%:20% split. Details about the dataset

appear in Table  6.1 . Table  6.11 is a replica of Table  6.1 , reproduced here for reference.

Table 6.11. Vehicle Trajectory Dataset. This table provides details about
the number of trajectories available per vehicle in the training, validation, and
testing sets.

Vehicle Trajectory Dataset
Vehicle Train Validation Test Total
HGV-1 59 8 18 85
HGV-2 42 6 13 61
CRV 42 6 13 61
Total 143 20 44 207

6.5.2 Training and Evaluation Process

For our experiments, we train each of our machine learning methods multiple times

independently. Each time a new method is trained, a new dataset split is used. This means

that a trajectory might be included in the training set to train one version of a method. Then,

it might be included in the testing set another time when a new version of the method is

trained. We utilize this random split because we have a relatively small dataset. Rather than

splitting the dataset once and using that split for all experiments, we train our methods on

different trajectories each time and see how it performs on a new set of trajectories. To ensure

we account for the impact of different train/validation/test splits, we train 500 versions of

each method and evaluate their average performance results. To validate our approach, we

evaluate all machine learning methods based on accuracy, precision, recall, and F1-score

metrics. Furthermore, we analyze how classification accuracy relates to TALO.
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6.5.3 Heuristic Methods Used in Evaluation

We establish two theoretical bounds on performance using heuristic classifiers. The

heuristic methods serve as minimum viable benchmarks for improvement. These are im-

portant to consider in an unbalanced dataset, such as ours. If, for example, our model

performs worse than random guessing, it is a poor classifier. A more challenging benchmark

to beat is a classifier that predicts the majority class in the dataset. If our model performs

worse than predicting the most common vehicle, it is of no use at all. Our method must

outperform these baselines in order to demonstrate effectiveness.

The first heuristic baseline method is a theoretical classifier that performs random guess-

ing. For an unbalanced, 3-class dataset, the accuracy of a random classifier AR is calculated

by:

AR =
∑
v∈V

P (T = v) ∗ P (C = v) ≈ 0.3419, (6.2)

where V = {HGV − 1, HGV − 2, CRV }, P (T = v) refers to the probability that a

trajectory T is of vehicle type v, and P (L = v) refers to the probability that the classifier

predicts a class C of vehicle v. This theoretical classifier will be referred to as Baseline-Rand.

The second theoretical classifier we consider predicts trajectories as belonging to the

mode of the dataset. The mode is the majority class, which is the vehicle that appears most

often in the dataset. In our case, the classifier would predict HGV-1 every time it analyzes

a trajectory. Thus, it would obtain an accuracy of 18
44 ∗ 100% ≈ 40.91%. This benchmark

method is often called the 0-R (i.e., zero rule) [ 155 ], [ 156 ]. It represents the accuracy of a

classifier that predicts the most frequently occurring class in an unbalanced dataset. We will

refer to it as Baseline-0R.

6.5.4 Results on Noiseless Data

The first row in Table  6.12 summarizes the average results achieved by training and

evaluating 500 models independently on noiseless data (i.e.,M = 0) for each method. Results

indicate that the CNN and the KNN perform very well. Both the CNN and the KNN results
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significantly outperform the two heuristic benchmarks as well as the SVM. The SVM does

not even exceed the heuristic benchmarks for all metrics considered. It fails to surpass

both the random guessing benchmark (i.e., Baseline-Rand) and the 0-R benchmark (i.e.,

Baseline-0R) with its F1-score, indicating that this method performs extremely poorly on

this classification task. The CNN improves in accuracy by more than a factor of two over the

Baseline-0R benchmark. Furthermore, the CNN increases classification accuracy by ∼43%

in comparison to the SVM. To verify that our method performs well even on an unbalanced

dataset, we consider the F1-score. The CNN also achieves a higher F1-score compared to

both benchmarks and outperforms the SVM by ∼74%. The KNN classifier performs the

best of all the methods. It achieves the highest accuracy, precision, recall, and F1-score of

all machine learning methods. In fact, it achieves a margin of less than 4% to perfection

based on all metrics.

6.5.5 Results on Noisy Data

Next, we explore the performance of our methods on noisy data. The rest of Tables  6.12 

and  6.13 summarize the results of all methods trained and tested on noisy data with the same

magnitude M . In other words, a model is trained on noisy data with M = 0.15 and then

tested on data with M = 0.15. Then, it is trained on noisy data with M = 0.20 and tested

on noisy data with M = 0.20. Tables  6.14 and  6.15 show results of training all methods

on noisy data and testing them on noiseless data. For this scenario, noise with magnitude

M was used both the training and validation sets, while the testing set remains noiseless.

Tables  6.16 and  6.17 show results for the opposite scenario, where training and validation

sets remain noiseless, while noise with magnitude M is applied to the testing data. For all

of these scenarios, we train 500 separate instances of each method for each noise level and

test them independently.

The SVM performs poorly for all noisy scenarios. In most cases, it achieves F1-scores

that are worse than random guessing. There are a few noisy scenarios for which the SVM

achieves F1-scores that are on par with the Baseline-Rand benchmark, but these cases are

infrequent. Interestingly, its performance rather consistently fails for all metrics in that its
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performance does not decline as noise levels increase. For all scenarios and all noise levels,

it achieves roughly the same performance. Figure  6.20 and Figure  6.21 show these results

more explicitly.

The CNN achieves better results for noisy scenarios. It performs much better than the

SVM, Benchmark-Rand, and Benchmark-0R for all noise levels and noise scenarios. Only the

KNN outperforms it when M < 0.25. It also achieves fairly consistent results in this range

despite increasing noise levels. Figures  6.20 and Figure  6.21 visualize the consistent behavior

of the CNN on noisy data from M = 0 until M = 0.3. Even as the noise level increases

on both the training and testing sets, the CNN identifies vehicles well. At M = 0.3, it still

achieves ∼74% accuracy and an F1-score of ∼71%. Once M > 0.25, the CNN outperforms

all other methods, including the KNN. Its classification accuracy and F1-scores decrease

more as noise levels increase, but the CNN continues to identify vehicles better than any

other methods with high levels of noise..

It might seem surprising that the CNN performs well in spite of noise. Injecting noise

into data analyzed by a neural network is a form of data augmentation that enhances the

network’s capabilities [ 157 ]–[ 159 ]. This technique, often called “adding jitter”, introduces

more regularization effect into the network. As a result, it decreases the likelihood of overfit-

ting and increases a model’s generalization capabilities. It is especially important to utilize

data augmentation techniques for relatively small datasets, such as ours. Small datasets

provide fewer data samples and capture less of the input space. Thus, it is easier for a neural

network to memorize the dataset rather than learning a proper mapping from the input

space to the desired output space. Adding noise to the inputs provides a smoother, richer

representation of the input space and enables a model to learn an appropriate mapping from

data to labels. Introducing noise to our dataset enables better learning for our CNN and

increases the model’s robustness.

The KNN achieves the highest classification metrics overall. For M < 0.10, the KNN

classifier identifies vehicles with greater than 90% accuracy, precision, recall, and F1-score.

It also surpasses the CNN (and all other methods) for half of the noise levels we consider.

However, the KNN experiences the greatest degradation in performance as noise level in-

creases and noise scenarios change. Its classification accuracy and F1-score decrease more
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rapidly than any other method for the scenario when training and testing data have noise.

When M > 0.25, the KNN success drops to below that of the CNN. When M > 0.40, the

KNN accuracies drop below those of the SVM, and the KNN F1-scores indicate worse perfor-

mance than the Baseline-0R heuristic. The KNN F1-score ranges from 96.76% when M = 0

to 53.08% when M = 0.50, resulting in a decrease in performance of ∼45%. On the other

hand, the CNN only experiences a ∼22% decrease in F1-score over this range. This is true

for the scenario where the KNN is trained on data with noise and tested on pristine data as

well. However, the KNN holds up well when trained on noiseless data and tested on noisy

data. In this scenario, its performance degradation is much more gradual, for this is only a

change in F1-score of ∼9% from M = 0 to M = 0.50, while the CNN experiences a ∼14%

decrease in F1-score over this range. Even at M = 0.30, it achieves accuracy, precision,

recall, and F1-score greater than 93.5%.

6.5.6 Discussion

These results demonstrate that our methods successfully differentiate vehicles by analyz-

ing key aerodynamic features. Since our CNN and KNN achieve the highest performances

of all noise levels and scenarios, we consider other factors about each of these methods in

addition to their performances. For example, KNN is more sensitive to noise. If a method

needs to operate in a situation with higher noise levels, it is preferable to use the CNN. The

CNN performs well fairly consistently despite various noise levels and noise scenarios.

Another important factor to consider is the size the dataset. A KNN classifier must

compare a trajectory under analysis to all data points already labeled and available in the

training set. Thus, as the size of the training set increases, so will the time complexity of

the KNN analysis. At some point, the inference time (i.e., the time required to analyze a

single, new trajectory) will exceed the acceptable amount of time required to analyze a new

data sample. The CNN has a very quick inference time that does not scale with the size

of the training set. The CNN can be trained in an offline scenario and used in an online

scenario to analyze new trajectories quickly. There is more work required to determine the

appropriate amount of time for which to train a CNN, but once it is trained properly, it will
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execute quickly. Finally, the translational equivariant properties of CNNs lend themselves

to analyzing trajectory data with respect to time.

Figure 6.20. Vehicle Classification Average Accuracy Versus Noise
Magnitude. Results of 500 experimental runs for each machine learning
method with various noise magnitudes applied to training, validation, and
testing sets.

6.5.7 Results with Respect to Time After Lift-Off (TALO)

Figure  6.22 and Figure  6.23 provide another analysis of the CNN’s performance on noisy

data. These plots show how classification accuracy behaves as a function of time after lift off

(TALO), both from a summary perspective and as a breakdown based on each vehicle type.

To generate these results, we use a growing window approach. To start, the window has a

width of one second. A trained CNN classifies every pullup phase in the dataset based on

its first second of data. Next, the window size increases to two seconds of data, and the first

two seconds of every trajectory are classified. The process continues until the window size is

equal to the length of the pullup phase, and every single second of data has been classified.

We see that initially, classification results are ∼40% when M = 0.20 and M = 0.25. By

analyzing the corresponding accuracy by vehicle type, we see that HGV-1 is classified with
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Figure 6.21. Vehicle Classification Average F1-Score Versus Noise
Magnitude. Results of 500 experimental runs for each machine learning
method with various noise magnitudes applied to training, validation, and
testing sets.

100% accuracy initially. This indicates that these trained CNNs began by predicting HGV-1

every single time they analyze a new trajectory. This initial stage behaves the same as our

Baseline-0R classifier. As more data becomes available for analysis and reaches the original

input length to the CNN (i.e., 100 seconds), classification results increase. This reveals that

the equivariant properties of the CNN enable classification of trajectories when a trajectory

under analysis is incomplete or unaligned with the pullup phase. The CNN does not need

to train on data from full trajectories in order to achieve high classification. Furthermore, it

achieves high accuracy on the critical initial phases of flight.
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Table 6.12. Results with Noise Magnitudes in Range 0-0.25 Applied
to All Data Splits. This table contains the average results for each metric of
500 experimental runs on noisy data, where equal noise was applied to training,
validation, and testing sets.

Results with Noise in Range 0-0.25 Applied to All Data Splits
Noise

Magnitude Method Average
Accuracy

Average
Precision

Average
Recall Average F1

Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.56% 47.25% 52.28% 45.58%
CNN 82.10% 83.49% 80.70% 79.36%

0.00

KNN 97.02% 97.03% 96.78% 96.76%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.84% 48.44% 52.59% 45.97%
CNN 82.55% 83.92% 81.12% 79.80%

0.05

KNN 96.65% 96.55% 96.36% 96.32%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.15% 47.13% 51.84% 45.27%
CNN 81.25% 82.70% 79.67% 78.36%

0.10

KNN 93.69% 93.47% 93.03% 92.96%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.37% 48.99% 52.09% 45.75%
CNN 80.28% 81.54% 78.65% 77.27%

0.15

KNN 89.27% 88.86% 88.20% 88.04%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.81% 50.72% 52.58% 46.45%
CNN 77.84% 79.12% 76.20% 74.77%

0.20

KNN 84.49% 84.01% 83.30% 82.96%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.26% 49.51% 51.98% 45.83%
CNN 77.06% 78.28% 75.33% 74.02%

0.25

KNN 77.00% 76.92% 76.01% 75.60%
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Table 6.13. Results with Noise Magnitudes in Range 0.3-0.5 Applied
to All Data Splits. This table contains the average results for each metric of
500 experimental runs on noisy data, where equal noise was applied to training,
validation, and testing sets.

Results with Noise in Range 0.3-0.5 Applied to All Data Splits
Noise

Magnitude Method Average
Accuracy

Average
Precision

Average
Recall Average F1

Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.34% 50.26% 52.07% 45.85%
CNN 74.45% 75.66% 72.69% 71.32%

0.30

KNN 68.84% 70.19% 68.11% 67.92%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.10% 49.57% 51.81% 45.54%
CNN 71.99% 73.32% 70.03% 68.76%

0.35

KNN 61.74% 64.77% 61.27% 61.22%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 56.88% 48.56% 51.57% 45.07%
CNN 69.84% 70.59% 67.89% 66.50%

0.40

KNN 57.51% 61.92% 57.36% 57.28%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 56.87% 49.16% 51.58% 45.16%
CNN 67.56% 68.58% 65.70% 64.22%

0.45

KNN 55.55% 60.10% 55.33% 55.09%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 56.95% 48.27% 51.69% 45.11%
CNN 65.03% 66.24% 63.28% 61.74%

0.50

KNN 53.47% 58.54% 53.36% 53.08%
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Table 6.14. Results with Noise Magnitudes in Range 0-0.25 Applied
to Training Data Splits. This table contains the average results for each
metric of 500 experimental runs on noisy data, where equal noise was applied
to training and validation sets.

Results with Noise in Range 0-0.25 Applied to Training Data Splits
Noise

Magnitude Method Average
Accuracy

Average
Precision

Average
Recall Average F1

Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.56% 47.25% 52.28% 45.58%
CNN 82.10% 83.49% 80.70% 79.36%

0.00

KNN 97.02% 97.03% 96.78% 96.76%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.92% 48.40% 52.70% 46.00%
CNN 82.31% 83.55% 80.83% 79.44%

0.05

KNN 96.98% 96.90% 96.73% 96.68%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 58.11% 49.78% 52.91% 46.62%
CNN 81.96% 82.90% 80.52% 79.28%

0.10

KNN 95.22% 95.14% 94.76% 94.68%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 58.11% 49.78% 52.91% 46.62%
CNN 80.92% 82.45% 79.37% 77.93%

0.15

KNN 91.69% 91.80% 90.81% 90.60%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 56.96% 48.82% 51.65% 45.43%
CNN 80.40% 82.25% 78.68% 77.28%

0.20

KNN 87.26% 87.70% 86.03% 85.54%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.13% 49.49% 51.82% 45.60%
CNN 78.61% 80.58% 76.98% 75.44%

0.25

KNN 81.31% 81.77% 80.32% 79.44%
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Table 6.15. Results with Noise Magnitudes in Range 0.3-0.5 Applied
to Training Data Splits. This table contains the average results for each
metric of 500 experimental runs on noisy data, where equal noise was applied
to training and validation sets.

Results with Noise in Range 0.3-0.5 Applied to Training Data Splits
Noise

Magnitude Method Average
Accuracy

Average
Precision

Average
Recall Average F1

Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.46% 51.15% 52.20% 46.16%
CNN 76.35% 78.03% 74.55% 72.62%

0.30

KNN 68.41% 70.12% 67.52% 67.03%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.50% 50.82% 52.24% 46.24%
CNN 74.17% 76.84% 72.07% 70.12%

0.35

KNN 60.90% 64.76% 60.58% 60.03%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 56.74% 49.39% 51.41% 45.24%
CNN 71.12% 74.39% 69.08% 66.82%

0.40

KNN 55.66% 62.25% 55.79% 55.29%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 56.48% 48.54% 51.11% 44.75%
CNN 68.81% 72.93% 66.70% 64.32%

0.45

KNN 53.57% 61.31% 54.04% 53.24%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 56.42% 49.07% 51.03% 44.79%
CNN 66.75% 71.23% 65.08% 62.27%

0.50

KNN 52.35% 60.46% 52.83% 51.94%
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Table 6.16. Results with Noise Magnitudes in Range 0-0.25 Applied
to Testing Split. This table contains the average results for each metric
of 500 experimental runs on noisy data, where noise was applied to only the
testing set.

Results with Noise in Range 0-0.25 Applied to Testing Data Split
Noise

Magnitude Method Average
Accuracy

Average
Precision

Average
Recall Average F1

Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.56% 47.25% 52.28% 45.58%
CNN 82.10% 83.49% 80.70% 79.36%

0.00

KNN 97.02% 97.03% 96.78% 96.76%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.57% 47.40% 52.28% 45.58%
CNN 82.60% 83.92% 81.08% 79.85%

0.05

KNN 96.91% 96.87% 96.68% 96.64%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.73% 47.43% 52.46% 45.68%
CNN 82.30% 83.50% 80.80% 79.62%

0.10

KNN 96.78% 96.73% 96.51% 96.47%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.07% 46.73% 51.74% 44.90%
CNN 80.86% 82.19% 79.36% 78.17%

0.15

KNN 96.63% 96.58% 96.35% 96.32%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.51% 48.00% 52.21% 45.47%
CNN 80.50% 81.47% 79.08% 77.99%

0.20

KNN 95.99% 95.92% 95.66% 95.62%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.19% 47.99% 51.86% 45.27%
CNN 78.47% 79.66% 76.84% 75.60%

0.15

KNN 95.15% 95.05% 94.71% 94.66%
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Table 6.17. Results with Noise Magnitudes in Range 0.3-0.5 Applied
to Testing Data Split. This table contains the average results for each metric
of 500 experimental runs on noisy data, where noise was applied to only the
testing set.

Results with Noise in Range 0.3-0.5 Applied to Testing Data Split
Noise

Magnitude Method Average
Accuracy

Average
Precision

Average
Recall Average F1

Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 57.24% 48.11% 51.98% 45.36%
CNN 77.27% 78.25% 75.73% 74.68%

0.30

KNN 94.17% 94.01% 93.60% 93.56%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 56.88% 46.97% 51.52% 44.67%
CNN 75.60% 76.50% 74.04% 72.81%

0.35

KNN 93.12% 92.89% 92.48% 92.41%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 56.95% 47.18% 51.60% 44.73%
CNN 73.67% 74.58% 72.00% 70.74%

0.40

KNN 91.69% 91.39% 90.89% 90.82%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 56.63% 47.73% 51.27% 44.53%
CNN 73.03% 74.34% 71.44% 70.36%

0.45

KNN 90.59% 90.31% 89.77% 89.66%
Baseline-Rand 34.19% 100.00% 34.19% 46.43%
Baseline-0R 40.91% 100.00% 40.91% 56.66%

SVM 56.22% 46.77% 50.81% 44.05%
CNN 71.19% 72.48% 69.58% 68.54%

0.50

KNN 89.20% 88.80% 88.29% 88.18%
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Figure 6.22. Vehicle Classification Average Accuracy over TALO
with M = 0.20 for a Single Trained CNN. These TALO plots show
average accuracy achieved on all vehicles in the testing dataset using one of
the 500 trained CNNs on data containing noise with M = 0.20. The noise is
applied to the training, validation, and testing sets.

Figure 6.23. Vehicle Classification Average Accuracy over TALO
with M = 0.25 for a Single Trained CNN. These TALO plots show
average accuracy achieved on all vehicles in the testing dataset using one of
the 500 trained CNNs on data containing noise with M = 0.25. The noise is
applied to the training, validation, and testing sets.
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7. MACHINE LEARNING FOR HYPERSONIC VEHICLE

PREDICTION

7.1 Overview

Figure 7.1. Different Vehicle Trajectory Comparisons. Examples of
hypersonic glide vehicle (HGV) trajectories (shown in red) and a ballistic tra-
jectory (shown in blue). HGVs can follow many different flight paths to reach
a specific destination.

Hypersonic glide vehicles (HGVs) fly at high velocities with a high degree of maneu-

verability. More specifically, they fly at velocities faster than Mach 5 (i.e., five times the

velocity of sound) [ 54 ], [  160 ]–[ 162 ]. This combination of speed and maneuverability differ-

entiates them from traditional spacecraft, which cannot achieve such velocities and agility

at the same time. For example, spacecraft (such as those used in the Apollo missions [ 163 ])

and ballistic vehicles (such as those proposed for commercial travel by SpaceX in 2017 [ 164 ]–

[ 166 ]) accelerate to hypersonic velocities for short periods of time as they re-enter the Earth’s

atmosphere [ 161 ], [ 163 ], [ 167 ]. Ballistic vehicles follow parabolic trajectories (known as bal-

listic trajectories) from their initial launch points to their final destinations [ 168 ]–[ 172 ], as

shown in Figure  7.1 . Their trajectories extend high out of Earth’s atmosphere to sub-orbital

space, so they must re-enter the atmosphere during descent. During re-entry, spacecraft

and ballistic vehicles maintain velocities between Mach 5 and Mach 25 [  54 ], [ 162 ], [ 163 ],

[ 173 ]. However, they neither sustain these velocities for a long period of time nor maneuver

efficiently [ 161 ], [  167 ]. Hypersonic glide vehicles distinguish themselves by excelling at both

speed and maneuverability – simultaneously.
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HGVs travel at sustained hypersonic velocities for long distances by gliding [ 134 ]–[ 136 ],

[ 138 ], [  167 ]. They fly at lower altitudes than ballistic vehicles (as shown in Figure  7.1 ), which

allows them to bounce off of the Earth’s atmosphere. Each bounce increases their potential

energy, which they use to “glide” further. Hypersonic glide vehicles steer themselves as

they approach their landing spots, which enables them to approach from multiple directions;

maneuver around bad weather conditions; and evade tracking systems [ 135 ], [ 138 ], [ 174 ].

Even en route, HGVs can change their destinations [ 135 ]. Figure  7.1 shows three examples of

HGV trajectories. Although all three trajectories commence and end at the same locations,

they maneuver to pursue different flight paths. For these reasons, predicting a HGV’s flight

behavior (e.g., aerodynamics, flight path, maneuvers) is challenging.

In this chapter, we propose an approach to predict future flight phases of HGVs based

on partially observed trajectories. Flight phases could be modeled as categorical labels that

discretize HGV flight behavior. We define flight phases based on the vehicle’s magnitude of

rate of change of total energy. Total energy is the summation of kinetic and potential energy,

estimated from a vehicle’s altitude and 3-D velocity (i.e., a subset of the vehicle’s kinematic

features). We use methods from NLP to model the flight phases as “words” and the HGV

trajectories as “sentences.” We learn a “grammar” from the HGV trajectories, which we use

for our prediction task. Given “words” from the initial part of a HGV trajectory and the

“grammar”, we can predict future “words” in the “sentence” (i.e., future HGV flight phases

in the trajectory).

7.2 Related Work

Hypersonic glide vehicles present a new set of challenges for predicting long-term flight

behavior (e.g., aerodynamics, flight paths, maneuvers) because they exhibit such unprece-

dented capabilities. For example, analytical methods cannot exploit assumptions about

Keplerian orbit (as ballistic vehicle prediction methods do [ 175 ]–[ 177 ]) to predict HGV tra-

jectory shapes because HGVs exhibit complex, non-Keplerian behavior [ 168 ], [ 169 ]. Lei et

al. [  178 ] use a Kalman filter [ 179 ] for HGV trajectory prediction. First, a dynamics model

is used to estimate future states (e.g., position, velocity) of the vehicle. Then, as observa-
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tions of the vehicle (i.e., measurements of the vehicle in real-time) become available, the

observations are used to update the state estimates using a Bayesian probabilistic approach.

Accurate state estimates require accurate dynamics models and frequent measurements of

a vehicle under analysis for Kalman filter methods to succeed [ 172 ], [  179 ]. If measurements

are not received often enough, then the state estimates could have poor accuracy or even

result in filter divergence. However, real-time observations might not always be available

to assist a Kalman filter in updating its dynamics model. Consequently, the Kalman filter

might incorrectly estimate future states of the HGV [ 178 ], [  180 ].

Some Kalman filter methods utilize an aerodynamic model that requires knowledge of

a vehicle’s aerodynamic profile. An aerodynamic profile of a vehicle controls how it flies,

and different types of vehicles have different aerodynamic profiles. In reality, knowledge of

features indicative of a vehicle’s aerodynamic profile could be uncertain. Thus, a Kalman

filter with an aerodynamic model can be difficult to implement. Other methods attempt

to model HGV trajectories with polynomials [ 181 ], but this approach again requires many

assumptions and knowledge for initialization. Some other research efforts use a conditional

random field (CRF) [ 182 ] and a neural network [  183 ] to predict hypersonic trajectories. The

deep learning methods require extensive amounts of training data, though. For example, Xie

et al. use 6,000 trajectories to train and validate their deep learning neural network [ 183 ].

In this work, we focus on the scenario where fewer training trajectories are known, and we

assume that only initial portions of a trajectory inform our predictions. Our approach is also

different in that we predict flight phases (rather than state estimates or flight paths). Later,

we will provide the definition of flight phases for HGVs and explain how our proposed flight

phases indicate possible flight maneuvers of HGVs.

We model HGV trajectories with a stochastic grammar [ 184 ]–[ 186 ]. Stochastic gram-

mars originated from work in computational linguistics to formalize grammar theory and

understand structures found in languages [  184 ]–[ 186 ]. They deconstruct sequences into eas-

ily interpreted, hierarchical representations. Initially, they were used for language tasks,

such as predicting ends of sentences given initial words in the sentences. Since then, they

have been used for many other sequential data problems, such as predicting RNA struc-

tures [ 187 ]–[ 190 ]; forecasting human activities [  191 ]–[ 193 ]; modeling human poses [ 194 ]; and
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detecting anomalies in trajectory patterns [ 195 ]. Methods to derive a stochastic grammar

typically do not require large training datasets [ 196 ].

Grammar models have been used previously for vehicle trajectory analysis [ 195 ], [ 197 ],

[ 198 ]. In [ 195 ], Fanaswala et al. use a stochastic grammar to detect abnormal behavior

(e.g., circling around a building) of different vehicle trajectories (e.g., car, ship, airplane).

They approach this abnormal behavior detection task as a trajectory shape classification

task, where certain trajectory shapes are defined as abnormal. First, quantized moving

directions of the vehicles are used to build multiple grammars – one for each trajectory

shape (e.g., line, arc, rectangle, closed, move-stop-move). Then, a query trajectory and

the grammars are used to estimate probabilities that indicate if the trajectory belongs to

each grammar. The query trajectory is classified as the shape that corresponds to the most

probable grammar, and the trajectory is considered abnormal if the shape is defined as

abnormal. Brisaboa et al. use a grammar for trajectory compression [ 197 ]. They derive a

grammar that describes flight patterns (based on a vehicle’s position) in ship, commercial

airline, and city taxi trajectories. They use the grammar to turn the trajectories (containing

position coordinates) into “sentences” to compress the trajectories to 4% – 7% of their

original sizes. López-Leonés et al. use a grammar to represent mathematical constraints

for trajectory optimization, planning, and prediction [  198 ]. They define a set of constraints

that trajectories must satisfy. Then, they map the constraints to an “alphabet”, where each

“letter” represents a different constraint. The “letters” can be used to form “words” and a

“grammar” to represent the combination of constraints. Trajectory prediction and planning

methods utilize the grammar to interface with an Air Traffic Management (ATM) system

that understands the grammar and how it relates to the flight constraints. In this way, the

grammar is used to plan flight paths, ensure vehicles fly safely, and avoid collision in the

airspace.

Stochastic grammar models consist of a set of production rules that define permissible

sentence structures as well as probabilities of the rules occurring [ 184 ]–[ 186 ]. The format

of the production rules depends on the type of grammar used. In our approach, we utilize

a Probabilistic Context-Free Grammar (PCFG) [ 199 ]. Training a PCFG model requires

labeled sequences. In NLP, the sequences could be sentences, and the smallest labeled units
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of the sequences could be words. In our HGV task, the “words” are the flight phases, and

the “sentences” are HGV trajectories represented by their magnitudes of rate of change of

total energy. Figure  7.2 shows an example of a trajectory’s magnitude of rate of change of

total energy, which is used to determine the HGV’s flight phases.Latitude (Degree)27.5
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Figure 7.2. A HGV Trajectory. This plot shows a HGV trajectory based
on its magnitude of rate of change of total energy (denoted as Ė).

Figure 7.3. A HGV Trajectory as a Parse Graph. The parse graph rep-
resents a trajectory as a “sentence”, where nodes and edges of the parse graph
show the sentence structure of the trajectory. Flight phase labels (i.e., “words”)
are shown in red; groups of flight phase labels (i.e., higher-level “phrases” in a
sentence) are shown in blue; and flight phase transition patterns (i.e., produc-
tion rules in a grammar) are shown as edges connecting the nodes in the parse
graph.

We can illustrate the production rules (from the PCFG [  199 ]) that a sequence exhibits

with a tree known as a parse graph [ 200 ]. In a language application, a parse graph shows a

hierarchical representation of a sentence and indicates more explicitly how each part of the

sentence (e.g., noun phrase, verb phrase, noun, verb) relates to the other words and phrases

(i.e., groups of words) in the sentence. In our approach, the parse graphs show trajectories
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and how their flight phases relate. Figure  7.3 shows the same trajectory shown in Figure  7.2 

formatted as a parse graph. Parse graphs decompose a trajectory into smaller components

(i.e., flight phases or groups of flight phases) based on the production rules. Each subsequent

layer of the parse graph (proceeding from top to bottom) further divides a trajectory. Nodes

located at the top of a parse graph represent longer portions of a trajectory, while nodes

located towards the bottom represent shorter portions of a trajectory. Nodes at very bottom

of the parse graph represent the smallest unit of the trajectory (i.e., flight phases, which

serve as “words” in the trajectories). Parse graphs also incorporate temporal information

because they preserve the chronological order of flight phases. Time increases from left to

right in a parse graph, where the left-most node (ec0 in Figure  7.3 ) shows a trajectory’s

earliest state, and the right-most node (ec1 in Figure  7.3 ) shows a trajectory’s final state.

Later in the chapter, we will provide more context about ec0, ec1, and the other nodes shown

in Figure  7.3 . The edges connecting the nodes in the parse graph represent the production

rules in the PCFG (i.e., transitions between different flight phases of a trajectory).

We combine two additional pieces of information with the PCFG to predict future flight

phases. First, we identify the type of mission of a HGV trajectory. Some HGV missions

fly longer distances than others. Long-range HGV missions exhibit different flight phases

than short-range HGV missions, so we use a Long Short-Term Memory network [ 81 ] to

identify the mission type (i.e., short-range or long-range mission) of a trajectory to aid our

prediction method. Second, we determine flight phase duration estimates to determine how

long each flight phase lasts. We design our PCFG to capture changes between different flight

phases, but it does not model the duration of each phase. To recover flight phase duration

information, we develop flight phase duration estimates and provide these to our prediction

method.

Our main contributions in this chapter are: introduction of a stochastic grammar, specif-

ically the Probabilistic Context-Free Grammar (PCFG), to model hypersonic glide vehicle

trajectories; demonstration that our method achieves accurate HGV flight phase predic-

tion with a limited amount of training data; and use of mission types and phase duration

estimates to improve flight phase prediction.
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Figure 7.4. Block Diagram of Proposed Approach. Training produces:
a stochastic grammar G; a set of phase duration priors T ; and a mission
classifier C, given a collection of full-length training trajectories, denoted as{
d

(1)
0:T1 , d

(2)
0:T2 , . . . , d

(N)
0:TN

}
. Note that only 3-D velocity of the training trajectories{

d
(1)
v,0:T1 , d

(2)
v,0:T2 , . . . , d

(N)
v,0:TN

}
is used to train C, while G and T use all of the

trajectory data available. During testing, a partially observed trajectory d0:t
is used to predict flight phases (both transitions and durations) x̂ for n future
seconds of flight, given the stochastic grammar G; mission type probabilities
ptype from the mission classifier C; and phase duration priors T . We denote the
resulting sequence of flight phase predictions as x̂t+1:t+n.

7.3 Proposed Approach

7.3.1 Overview of Our Approach

Figure  7.4 shows an overview of our proposed approach for flight phase prediction. During

training, we use a set of HGV trajectories that trace flight paths from the point where a

vehicle inserts itself into the atmosphere until the point where it reaches its final destination.

In the rest of this chapter, we will refer to these trajectories as full-length trajectories (as

compared to trajectories used during testing where only the initial portion of flight is available
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for analysis). Let d(i)
0:Ti

represent a full-length trajectory that flies from insertion at time 0 to

touchdown at time Ti (measured in seconds), where i indicates the particular trajectory in the

dataset; N is the total number of trajectories in the dataset; and i = {1, 2, ..., N}. Because

each trajectory lasts for a different period of time, we denote the end time of each trajectory

as Ti. The entire training set can be represented as
{
d

(1)
0:T1 , d

(2)
0:T2 , . . . , d

(N)
0:TN

}
. These full-length

trajectories are used to train the components of our approach, which involves Flight Phase

Estimation, Flight Phase Merging, Grammar Induction, Mission Type Classification, and

Flight Phase Duration Estimation. The Flight Phase Estimation process converts trajectory

data into flight phases. In this work, we define five categories of flight phases based on

magnitude of rate of change of total energy of a HGV. We present the flight phase definitions

in Section  7.3.3 . Once we convert a trajectory into this new representation (in terms of flight

phases), we denote it as x(i)
0:Ti

, where i still indicates the trajectory number. The trajectory

has a new length, indicated by Ti, resulting from a subsampling operation done in Flight

Phase Estimation. Section  7.3.3 also reviews the details of the subsampling process. Next,

Flight Phase Merging combines consecutive flight phases belonging to the same flight phase

category. After Flight Phase Merging, a trajectory is denoted as x0:T , where T ≤ T . x0:T

contains the same flight phase categories as x0:T but has fewer elements. By merging the

flight phases, we ensure the Grammar Induction module (described in Section  7.3.5 ) derives

a grammar G that models flight phase transitions (i.e., which flight phases are exhibited in

what order) and not how long each of the phases occurs. Grammar Induction produces the

grammar G. To recover the temporal duration of the flight phases, Flight Phase Duration

Estimation is used. Flight Phase Duration Estimation results in a set of phase durations,

known as T , that we use as prior information. Decoupling the predictions of flight phase

transitions and flight phase durations reduces the complexity of the grammar G, which

improves the performance of Flight Phase Prediction. Mission Type Classification identifies

whether a HGV pursues a short-range or long-range flight path based on a trajectory’s

velocity in three dimensions, denoted as d(i)
v,0:Ti

. Incorporating information about the type

of mission a HGV pursues into our prediction method can improve Flight Phase Prediction

because different types of missions exhibit distinct patterns in changes in energy. Mission
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Type Classification produces a mission classifier C. The grammar G, flight phase duration

priors T , and mission classifier C are used for Flight Phase Prediction.

During testing, the proposed method analyzes a partially observed trajectory to predict

flight phases for n future seconds. Let d0:t represent a partially observed trajectory from

time 0 to t. We represent the sequence of predicted phases as x̂t+1:t+n. To obtain these

predicted phases, we use Flight Phase Estimation and the testing trajectory d0:t, resulting in

a sequence of observed phases referred to as x0:t. Flight Phase Merging produces a sequence

of merged flight phases: x0:t. We also provide 3-D velocity of a testing trajectory dv,0:t to

the Mission Type Classification module, which produces a set of two probabilities (that we

denote as ptype) indicating the likelihoods that trajectory d0:t pursues a short-range and a

long-range mission. Finally, x0:t, ptype, G, and T are used in Flight Phase Prediction to

predict future flight phases x̂t+1:t+n.

7.3.2 Dataset and Motivation for Using Magnitude of Rate of Change of Total
Energy

Our dataset consists of 150 simulated HGV trajectories. Seventy-five trajectories are

short-range HGV missions, and the other seventy-five trajectories are long-range HGV mis-

sions. Short-range and long-range missions are differentiated based on the distance a HGV

flies in terms of downrange (i.e., distance from initial launch point). We focus our analysis

on the portions of the trajectories that occur after a HGV’s insertion into the atmosphere.

Figure  7.5a illustrates the flight paths of the trajectories used in our experiments. The 3-D

coordinates (longitude, latitude, and altitude values, in this case) show that all trajectories

commence from the same longitude-latitude location after insertion into the atmosphere and

that short-range missions start at a lower altitude than long-range missions. Depending on

the length of the mission and maneuvers performed, a vehicle may fly for longer or shorter

periods of time.

The trajectories are simulated using a waypoint-following navigation scheme. Given a set

of waypoints, the navigation logic selects a maneuver that best propagates a HGV towards

the next waypoint. Our trajectory generation tool selects the best maneuver from a discrete

set of potential maneuvers, where the potential maneuvers are defined by changes to two
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(a) 3-D flight paths of trajectories in our dataset. Trajec-
tories in warm colors (e.g., orange, yellow, red) are short-
range missions, while trajectories in cold colors (e.g., blue,
purple) are long-range missions.

(b) Magnitude of rate of change of total energy (denoted
as Ė) of all trajectories. Short-range trajectories appear in
orange, and long-range trajectories appear in blue. Dashed,
horizontal lines (in black) indicate different flight phases.

Figure 7.5. HGV Dataset. Our simulated dataset contains an equal number
of short-range and long-range trajectories.
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control inputs: angle of attack and bank angle. The tool utilizes a ballistic re-entry model

with the aerodynamic profile of a HGV. The ballistic re-entry model is a set of ordinary

differential equations that define a dynamical model with gravity, lift, and drag for a vehicle

moving through Earth’s atmosphere [ 201 ]. The hypersonic glide vehicle has the aerodynamic

profile of a Common Aero Vehicle-H (CAV-H), a specific type of HGV [ 202 ], [ 203 ]. We obtain

the aerodynamic profile for our HGV from [  204 ], [ 205 ]. The profile consists of lift and drag

coefficients as a function of angle of attack and Mach number.Latitude (Degree)
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(b) Magnitude of rate of change of total energy (denoted as Ė)
of a HGV trajectory.

Figure 7.6. Comparison of HGV Features. Magnitude of rate of change
of total energy exhibits a similar pattern (e.g., same raising and dropping) as
lift and drag accelerations.
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Lift and drag accelerations imply how a vehicle might maneuver in the future. Directly

estimating lift and drag accelerations in real-world situations can result in noisy and unreli-

able estimates, though, which would inhibit our predictive methods. Thus, we use kinematic

features (specifically 3-D velocity and altitude) that can be estimated with higher reliabil-

ity to determine an alternative aerodynamic parameter that implies how a vehicle might

maneuver: magnitude of rate of change of total energy. Figure  7.6a shows lift and drag

accelerations from a single trajectory in our dataset, and Figure  7.6b shows magnitude of

rate of change of total energy for the same trajectory. This side-by-side comparison reveals

that both exhibit analogous behavior, so we use magnitude of rate of change of total energy

to imply information about lift and drag. The magnitude of rate of change of total energy

also indicates which maneuvers a vehicle could perform, based on physics. Vehicles rely upon

limited energy sources based on their velocities and initial diving altitudes. As vehicles fly

longer and execute more maneuvers, they use more and more of their energy supply. At

some point, they can no longer perform further actions because they lack the energy to do

so. By using magnitude of rate of change of total energy, we provide physics-based informa-

tion to our method to predict future flight phases. We use 3-D velocity and altitude to find

the magnitude of rate of change of total energy. We simulate these kinematic features (i.e.,

3-D velocity and altitude) at a 1 Hz rate in Earth-Centered Inertial (ECI) coordinates for

all trajectories in our dataset. Then, the flight phases of the trajectories are estimated (as

shown in Section C) using magnitude of rate of change of total energy.

Figure  7.5b shows magnitude of rate of change of total energy of all trajectories in our

dataset. We designed this multi-mission dataset using a realistic scenario in predicting future

flight phases. The short-range trajectories and long-range trajectories have distinct energy

change rate characteristics. Predicting future flight phases is more difficult for short-range

missions since their flight phase transitions are more complex than long-range missions,

especially earlier in flight (e.g., 0 - 400 seconds). To overcome these challenges, we leverage

mission-type information from the mission type classifier C in our flight phase predictor to

improve the performance of flight phase prediction.
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7.3.3 Flight Phase Estimation

We use Flight Phase Estimation to convert trajectory data (i.e., kinematic features) into

sequences of flight phases. Flight Phase Estimation labels the trajectories in our dataset,

determining which phases they exhibit throughout flight. We define five different categories

of flight phases (known as ec0, ec1, ec2, ec3, and ec4) based on magnitude of rate of change of

total energy Ė. Recall that xt is a flight phase at time t of a trajectory. Thus, Ėt represents

magnitude of rate of change of total energy of a trajectory at time t. Let the set Ω denote

the flight phases, where xt ∈ Ω. We define Ω as:

Ω =



ec0, Ėt ≤ 104,

ec1, 104 < Ėt ≤ 2 × 104,

ec2, 2 × 104 < Ėt ≤ 3 × 104,

ec3, 3 × 104 < Ėt ≤ 4 × 104,

ec4, Ėt > 4 × 104.

(7.1)

From this definition, ec0 represents the smallest magnitude of rate of change of total energy,

and ec4 represents the largest magnitude of rate of change of total energy.

We define the thresholds in Equation  7.1 to ensure each flight phase category is equally

represented in our dataset. The thresholds and flight phase distributions are shown in

Figure  7.5b where the blue lines are the thresholds. The proposed method does not require

an equal distribution of flight phases to perform well, but the methods we use for comparison

in our experiments do. We compare our PCFG to two popular deep learning-based methods:

LSTM [  81 ] and Seq2Seq model [ 127 ]. These data-driven methods perform best on datasets

with balanced classes. In unbalanced cases, the methods tend to ignore the classes that

occur infrequently in training. To fairly compare our method against these models, we

choose thresholding values that result in a balanced dataset in terms of flight phases.

Figure  7.7 shows an overview of the Flight Phase Estimation process. We begin with a

sequence of kinematic features that describes a trajectory having T seconds of flight. Let

d0:T represent this trajectory with kinematic features:
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Figure 7.7. Block Diagram of Flight Phase Estimation. Flight Phase
Estimation uses a trajectory represented as a sequence of kinematic features
(i.e., 3-D velocity and acceleration) – denoted as d0:T , where d0:T (0:T :=
[0, 1, 2, ..., T ]) – to find a new representation of the trajectory as a sequence of
flight phases – denoted as x0:T , where 0:T := [0, 10, 20, ..., T ].

• h0:T : altitude;

• vx,0:T : velocity in the ECI x direction;

• vy,0:T : velocity in the ECI y direction; and

• vz,0:T : velocity in the ECI z direction,

where 0:T := [0, 1, 2, ..., T ]. Flight Phase Estimation uses these kinematic features to de-

termine magnitude of rate of change of total energy over the entire trajectory, resulting in

sequence Ė0:T . First, we find potential energy and kinetic energy for every second of flight,

resulting in Ep,0:T and Ek,0:T , respectively. For one second of flight, potential energy at time

t (where 0 ≤ t ≤ T ) is calculated as:

Ep,t = mgtht, (7.2)

and kinetic energy at time t is calculated as:

Ek,t = 1
2m|vt|2, (7.3)

where gt is acceleration due to gravity at time t and |vt| is velocity magnitude at time t.

Velocity magnitude at time t is calculated as:

|vt| =
√
v2

x,t + v2
y,t + v2

z,t. (7.4)
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We obtain gt from a WGS84 spherical Earth gravitational acceleration model [  206 ]. For

mass m, we use m = 1. Thus, we calculate specific energy (i.e., total of kinetic and potential

energy per unit mass) of the HGV. We do not need the exact mass of the vehicle for our

approach since we define flight phases based on relative differences in magnitude of rate of

change of total energy, so specific energy is sufficient for our purposes. In the remainder of

the chapter, we will refer to the specific energy of the HGV as total energy. Total energy at

time t is:

Etotal,t = Ep,t + Ek,t. (7.5)

We define the magnitude of rate of change of total energy at time t as:

Ėt =
∣∣∣∣∣(Etotal,t − Etotal,t−1)

∆t

∣∣∣∣∣ , (7.6)

where ∆t = 1 since our data has 1-second timesteps. We calculate Ėt for the entire sequence

d0:T to form a new representation of the trajectory as a sequence of magnitude of rate of

change of total energy Ė0:T .

Ė0:T can be noisy because a derivative operation (or in our case, a finite difference approx-

imation) enhances noise. We smooth Ė0:T with a 9-second moving average filter to obtain

Ėsmoothed,0:T . The smoothing operation aids in quantization of the flight phases. Finally, we

quantize Ėsmoothed,0:T to obtain flight phases using the set Ω in Equation  7.1 . We quantize

the trajectories in this way because stochastic grammars use discrete labels. x0:T denotes a

trajectory in this new representation (i.e., in terms of flight phases).

The original temporal resolution of x0:T is one second. As shown in Figure  7.5b , many

long-range trajectories extend more than 1, 400 seconds in length. These long sequences can

result in extensive computation times if we process every second of the data. Therefore,

we downsample each trajectory by a factor of ten to shorten the trajectory lengths and

reduce computation times. We use a non-overlapping window to subsample the trajectories.

First, a trajectory x0:T is divided into 10-second non-overlapping segments. Then, the most

common flight phase (i.e., the mode) in each 10-second segment serves as new flight phase

label for that portion of the trajectory. Let x0:T represent this new trajectory, where 0:T
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:= [0, 10, 20, ..., T ]. In practice, any downsampling rate can be used, depending on the

application and computation budget.

7.3.4 Flight Phase Merging

A trained stochastic grammar G contains production rules used to predict future flight

phases. We force the production rules to focus on flight phase transitions rather than flight

phase durations (we will recover the flight phase durations later) by utilizing Flight Phase

Merging. In this process, consecutive flight phases with the same phase label are combined

into one element. For example, consider a flight phase sequence x0:T such as ec0 ec0 ec0 ec1.

Flight Phase Merging collapses the repeated flight phase (i.e., ec0) into a single element,

resulting in a new flight phase sequence x0:T of two elements: ec0 ec1. Flight Phase Merging

preserves information about flight phases exhibited in trajectories while reducing the num-

ber of elements in the trajectories (T denotes the new length of the flight phase sequence

after merging). Now, the grammar does not need to learn rules that describe how often a

flight phase repeats (e.g., ec0 ec0 ec0 versus ec0 ec0), which reduces the complexity of the

resulting grammar. Instead, the grammar G learns phase transitions (i.e., changes between

two different types of flight phases).

7.3.5 Grammar Induction

After converting the trajectories to flight phases, a stochastic grammar G is derived that

describes them. A brief review of the stochastic grammar known as the Probabilistic Context-

Free Grammar (PCFG) [ 199 ] is presented here. Then, the Grammar Induction method used

in this chapter, Automatic Distillation of Structure (ADIOS) [ 207 ] is described. ADIOS

learns a grammar G that describes the general patterns (i.e., flight phase transitions) of

HGV trajectories.

Formally, PCFG is defined by a quintuple G = (Ω, V, T, R, P ), where

• Ω is a finite set of terminal symbols;

• V is a finite set of non-terminal symbols;
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• T ∈ V is the start symbol;

• R is a finite set of production rules;

• P is a finite set of probabilities.

Each of these components are described in detail below. It is helpful to refer to an example

parse graph to better understand them, so Figure  7.3 is included here again.

Figure 7.8. A HGV Trajectory as a Parse Graph. The parse graph rep-
resents a trajectory as a “sentence”, where nodes and edges of the parse graph
show the sentence structure of the trajectory. Flight phase labels (i.e., “words”)
are shown in red; groups of flight phase labels (i.e., higher-level “phrases” in a
sentence) are shown in blue; and flight phase transition patterns (i.e., produc-
tion rules in a grammar) are shown as edges connecting the nodes in the parse
graph.

In Figure  7.8 , the terminal symbols are shown in red and are located in the final layer

of the parse graph. Terminal symbols are the smallest units of a sequence under analysis.

A terminal symbol cannot be decomposed into a smaller unit. In a language modeling

task, terminal symbols could be words. In our case, terminal symbols are flight phases

based on magnitude of rate of change of total energy. Thus, the set of terminal symbols is

Ω = {ec0, ec1, ec2, ec3, ec4}.

Non-terminal symbols can be decomposed further. Every non-terminal symbol in V

can be expanded into a new sequence of terminal and non-terminal symbols. Non-terminal

symbols are located in layers above the final layer of a parse graph. Figure  7.8 shows them

in blue. In a language modeling task, non-terminal symbols could describe phrases (i.e.,

groups of words) in sentences, such as noun phrases and verb phrases. In our case, each non-

terminal symbol describes a unique relationship between components of a trajectory that

corresponds to flight phase transition patterns. T is a special type of non-terminal symbol
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because it serves as the root node for all parse graphs, representing a trajectory before its

been decomposed.

Production rules in R define how non-terminal symbols and terminal symbols relate.

More specifically, production rules indicate how a non-terminal symbol expands into a se-

quence of non-terminal and/or terminal symbols. Here are a few examples of production

rules based on the trajectory shown in Figure  7.8 :

• T → ec0 ec1 P10 P8;

• P10 → ec2 ec3 ec4 E9;

• E9 → ec1;

• P8 → ec0 E7;

• E7 → ec1;

where T, P10, P8, E9, E7 ∈ V and ec0, ec1, ec2, ec3, ec4 ∈ Ω. The symbol found on the left

side of → is the non-terminal symbol that can be expanded. On the right side of → is the

expanded sequence of non-terminal and/or terminal symbols. For example, P8 → ec0 E7

means a non-terminal symbol P8 can be decomposed into smaller constituents (i.e., ec0

and E7). Note that the order of the new symbols sequence is meaningful. In other words,

P8 → ec0 E7 and P8 → E7 ec0 are two different production rules. Multiple different

expansions of the same non-terminal symbol are permitted as well. For example, P8 →

ec0 E7 | ec0 E9 means that P8 can be expanded to ec0 E7 or to ec0 E9. In this

chapter, we use upper case English letters to represent non-terminal symbols V .

The final component of G is a set of probabilities P . The probabilities in P correspond

to each production rule in G. Similar to [ 191 ], we determine these probabilities according to:

P (A → ⋆) = #(A → ⋆)
#(A → ∗) , (7.7)

where A ∈ V is a non-terminal symbol; ⋆ is an expansion of the non-terminal symbol A;

A → ⋆ is the production rule for which the probability is being calculated; #() represents the

total number of occurrences in the training set of the production rule inside the parentheses;
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and A → ∗ represents all production rules that start with the same non-terminal symbol

as the production rule for which the probability is being calculated. In other words, this

equation calculates the probability of a rule occurring as the total number of observations

of that rule in the training set divided by the total number of rules beginning with the same

start symbol in the training set. For example, to calculate the probability associated with

the rule P8 → ec0 E7, Equation  7.7 would become:

P (P8 → ec0 E7) = #(P8 → ec0 E7)
#(P8 → ∗) . (7.8)

Given the flight phases obtained from the training set, we use Grammar Induction to

learn a set of production rules that describe the general patterns of flight phase transitions.

As in [  191 ], we use the Automatic Distillation of Structure model (ADIOS) [ 207 ] to obtain

these rules. ADIOS produces two types of rules:

• P-Rule: a rule that captures a major, statistically significant pattern. It captures a

subsequence of flight phases that appears frequently in the training set. One example

of a P-rule is P1 → ec0 ec1 ec2. Note that we use P∗, where ∗ represents different

indices, to distinguish different P-rules.

• E-Rule: a rule that defines more generalizable rules. It allows rules with multiple

expansions (i.e., equivalent options). An example of an E-rule is E1 → ec0 | ec1,

which indicates that the non-terminal symbol E1 can be replaced by either ec0 or ec1.

Again, we use E∗ (where ∗ represents different indices) to distinguish different E-rules.

Nested rules, such as P1 → ec0 E1 ec2 and E1 → ec1 | P2, are permitted in ADIOS.

ADIOS iteratively determines the set of all P-rules and E-rules to generalize the grammar,

iterating until the rule set no longer changes. Please refer to the original paper [ 207 ] for the

details of ADIOS.

7.3.6 Mission Type Classification

As shown in Figure  7.5b , short-range missions and long-range missions have distinct

energy characteristics. Energy of a HGV will rise and fall in a manner unique to each
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mission. Therefore, including mission information in our prediction method can help the

method choose production rules from the grammar that are more suitable to the mission

being flown. To incorporate the mission type information in our approach, we use a 1-

layer LSTM [ 81 ] for Mission Type Classification. Given 3-D velocity of a partially observed

trajectory dv,0:t, the LSTM predicts two probabilities: ptype = C(dv,0:t) ∈ R2, where C is the

LSTM model with a softmax function as the last layer and ptype is the predicted probability

vector for short-range and long-range missions. Note that 3-D velocity dv,0:t is not the same as

velocity magnitude |v0:t|. 3-D velocity dv,0:t is a 2-D matrix with dimensions 3 x t, where the

three separate rows of the matrix contain vx,0:t, vy,0:t, and vz,0:t, respectively. Although our

dataset is challenging for flight phase prediction, it exhibits distinct trajectory paths for each

of the two mission types. Thus, Mission Type Classification is relatively simple. Even with

a simple 1-layer LSTM, we achieve 100% accuracy by “observing” only 100 seconds of flight

from the initial portions of trajectories in the training dataset (i.e., t = 100). When dealing

with complex trajectories of multiple types of vehicles, a more effective vehicle classification

method can be used, such as that described in [  208 ].

With the mission type probability ptype, we can modify the probabilities of the PCFG

production rules in P – calculated with Equation  7.7 – to incorporate the mission type

information as follows:

P̂ (r) = P (r) · (pT
type · wtype(r)), (7.9)

where wtype(r) ∈ R2 are the weights of a rule r belonging to each mission type. wtype(r) is

defined as:

wtype(r) =


#(r|Dshort)

#(r|Dall)

#(r|Dlong)
#(r|Dall)

 , (7.10)

where #(r|Dshort) counts the number of occurrences of rule r in the short-range trajectories in

training data Dshort; #(r|Dlong) counts the number of occurrences of rule r in the long-range

trajectories in training data Dlong; and #(r|Dall) counts the total number of occurrences

of rule r in the entire training dataset Dall. Therefore, the product pT
type · wtype(r) has a

large value only if the weight and type probability for a certain type of mission are large,

simultaneously.
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7.3.7 Flight Phase Duration Estimation
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(a) Duration priors for short-range missions.
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(b) Duration priors for long-range missions.

Figure 7.9. Duration Priors. Given the mission type, predicted phase, and
current time, the phase duration priors output the duration of the predicted
phase.

We do not design the PCFG to estimate the duration of each phase. To recover the

duration information, a set of flight phase duration priors based on the flight phases in the

training data is found. As shown in Figure  7.9 , we use the flight phase obtained from the

Flight Phase Estimation module to determine the duration of each flight phase and each

mission type based on the trajectories in the training set. A flight phase’s duration is found

as the average of the flight phase duration for every time t. Figure  7.9a shows that the

majority of the short-range trajectories end after 900 seconds and that most of the phases

are ec0, which is consistent with the magnitude of rate of change of total energy shown in

Figure  7.5b . As shown in Figure  7.9b , the long-range trajectories have a more diverse flight

phase distribution at different times. Figure  7.5b shows that these trajectories usually have

slow transitions, meaning that the phase durations are typically longer than the short-range

trajectories. Given a predicted flight phase l (the details of flight phase prediction process will

be provided in the next section), the predicted mission type classification c = arg max(ptype),
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and the current time t, we obtain the duration of the predicted phase as T c(t, l), where T c

is the flight phase duration prior of mission type c as shown in Figure  7.9 . We call these

values “priors” because flight phase duration information is collected solely based on the

training data. During testing, the flight phase duration information can be obtained from

these priors without knowledge of the testing data.

7.3.8 Phase Prediction

To predict future phases of flight and the phase durations, the proposed flight phase

predictor uses:

• flight phases after merging, x0:t;

• the stochastic grammar (i.e., PCFG) G;

• the set of flight phase duration priors T ; and

• the mission type probability ptype.

Figure  7.4 shows an overview of this process. Similar to [  192 ], [  193 ], we use Generalized

Earley Parser (GEP) for predictions. In [ 191 ], the original Earley parser [ 209 ] is used

to predict human activity. The Earley parser was designed for parsing sentences using a

language grammar. The Earley parser reads terminal symbols (i.e., words in a sentence

or, in our case, flight phases) sequentially and returns all possible parse graphs given the

grammar G. Due to grammar ambiguity, a symbol sequence (e.g., flight phase sequence) can

have multiple parse graphs. In [ 191 ], it was proposed to use the pending states (i.e., the

rules that have not been fully used after reading the observed flight phases) for predictions.

However, as shown in [ 192 ], [ 193 ], the original Earley parser is sensitive to the input sequence.

Changing one flight phase in the input sequence can yield completely different parse graphs,

which will cause different predictions. If the prediction method needs to operate in a noisy

environment, a parser more resistant to noise is required.

To solve this input sensitivity issue, the Generalized Earley Parser (GEP) [ 192 ], [ 193 ]

uses a matrix of flight phase probabilities as an input instead of a flight phase sequence x0:t.
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GEP will find the flight phase sequence from the probability matrix that best describes the

trajectory given the PCFG grammar rules. For example, in our 5-category flight phase case,

the probability matrix for a N -phase sequence has the shape of 5 × N , where each column

is the probabilities of the flight phase occurring for each class. In this chapter, we define the

conversion from flight phase sequence to probability matrix as follows:

pi(l) =


1

1+4ϵ
l = i

ϵ
1+4ϵ

l ̸= i

,∀i ∈ Ω,

where l is a given query flight phase. As suggested by [ 193 ], we set ϵ = 10−10. The use of this

probability matrix enables GEP to handle noise in flight phase sequences. Since we define

all values in the probability matrix as positive values, GEP will find the best flight phase

sequence based on the PCFG grammar from all possible phase sequences, as shown in [ 192 ],

[ 193 ]. Therefore, if a flight phase is incorrectly changed due to noise (e.g., from ec0 ec1 ec2

to ec0 ec4 ec2), GEP will still find the correct flight phase sequence (ec0 ec1 ec2) based

on the PCFG rules and their corresponding probabilities. Furthermore, the use of GEP

for flight phase prediction enables a more explainable prediction approach compared to deep

learning-based methods, such as LSTM [ 81 ] or Seq2Seq [  127 ]. Given a predicted flight phase,

GEP is able to trace back to the original production rule that predicted this particular flight

phase. As shown in Figure  7.8 , the production rules construct the parse graph of a trajectory,

which provides an effective representation/visualization to help understand the structure of

the entire trajectory. Production rules can be explored in this manner to understand a

prediction for HGV flight in a more explainable way. Please refer [ 192 ], [ 193 ] for the details

of GEP.

7.4 Experimental Setup

7.4.1 Dataset Partitioning and Discussion

We evaluate performance assuming a scenario of limited training data. We have 150

trajectories in total, including 75 short-range trajectories and 75 long-range trajectories. We
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divide the full dataset into training and testing sets according to a 2:8 ratio. We purposefully

limit the amount of training data to evaluate performance of all methods with minimal

examples from which to learn. More specifically, we use 30 trajectories (15 short-range and

15 long-range) as training data, while the remaining 120 trajectories (60 short-range and 60

long-range) serve as the testing data. For now, we proceed with this data split. Later, we

show results with different ratios of training and testing data to analyze performance related

to the amount of training data available.

LSTM1 2 3 4 5 6 7 8 9 10 11 12

(a) Block diagram of the LSTM model.

1 9
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…

2
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11
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12

…

(b) Block diagram of the Seq2Seq model.

Figure 7.10. Comparison Methods. We compare the performance of our
proposed stochastic grammar to these two LSTM-based methods.

7.4.2 Comparison Methods

We consider two alternative methods, shown in Figure  7.10 , to verify our approach.

Specifically, we utilize a LSTM [ 81 ] and a Seq2Seq model [ 127 ]. We use these methods for

comparison since they often succeed in prediction tasks with sequential data [ 210 ], [  211 ].

We design the baseline LSTM [  81 ] as one recurrent layer with 32 features in the hidden

state. The LSTM iterates over the flight phases in the input sequence (i.e., sequence of

observed flight phases) and predicts future flight phases until it reaches the desired prediction

duration. We use a shared, fully connected layer to map each output state of the recurrent

layer to the flight phase space. The output state at each predicted timestep has shape B×D,

where B is batch size and D is the size of the hidden state. The flight phase space has shape

B × 5 since we use 5 flight phase classes defined in Equation  7.1 . A softmax function
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determines the predicted flight phase at a specific timestep from the 5-class predicted flight

phase space.

As shown in Figure  7.10b , the Seq2Seq [ 127 ] consists of two LSTMs: an encoder and a

decoder. The encoder first iterates over the flight phases in the input sequence. It produces

a hidden state of 32 features. Then, the hidden state serves as an input to the decoder,

which predicts future flight phases with a shared fully connected layer to map the output

state to the flight phase space. Again, the Seq2Seq model continues to make predictions

until the desired prediction duration is reached.

For a fair comparison, we evaluate the LSTM and Seq2Seq methods with and without

mission type probability. More specifically, for the experiments without mission type proba-

bility, we only provide the flight phase sequence (without Flight Phase Merging to keep the

flight phase duration information) to the LSTM and Seq2Seq models. Therefore, the input is

B×L×1, where B is batch size and L is observed sequence length. For the experiments with

mission type probability, we concatenate the input flight phase sequence with the mission

type probability. Note that we only include the short-range probability, since the long-range

probability is its complement. Therefore, the input in this case is B × L× 2.

To train the LSTM and Seq2Seq models, we use a batch size of eight. Additionally, we

use the Adam optimizer [ 78 ] with an initial learning rate of 10−4. The learning rate decays

linearly over the training period. Both models are trained with cross entropy loss [  212 ] for

100 epochs.

7.4.3 Experimental Results

In this work, we use flight phase prediction accuracy to compare the performance of the

PCFG, LSTM, and Seq2Seq models. Table  7.1 shows a summary of results of all methods

we evaluated when they are trained on only 20% of the full dataset. From this table, we

observe that the proposed PCFG performs significantly better than both LSTM and Seq2Seq

in all scenarios. First, we consider the most challenging case: 100 seconds of observed data

without mission type information. Our PCFG achieves 0.6708 accuracy in this scenario,

while the LSTM and Seq2Seq achieve only 0.2908 and 0.4283, respectively. The PCFG
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clearly outperforms LSTM and Seq2Seq by a significant margin, which shows that PCFG

can perform well in this limited training data scenario. As the length of observation increases,

the performance of PCFG increases and continues to surpass the two baseline methods. For

example, the PCFG obtains its best performance without mission type information (0.8567

accuracy) when it observes 300 seconds of a trajectory. However, the LSTM and Seq2Seq

only manage 0.4183 and 0.6358 accuracies, respectively. The PCFG performs well in all

cases even though the mission type information is not available.

Table 7.1. Flight Phase Prediction Accuracy. Results with the proposed
stochastic grammar PCFG, LSTM, and Seq2Seq for different lengths of ob-
served flight phases, with and without mission type probability.

HGV Flight Phase Prediction Results

Method Train-Test
Ratio

Observation
Time (s)

Accuracy of
Predicting 100s
Without Type

Probability

Accuracy of
Predicting 100s

With Type
Probability

2:8 100 0.6708 0.6758
2:8 200 0.5983 0.6308PCFG
2:8 300 0.8567 0.8683
2:8 100 0.2908 0.3392
2:8 200 0.3717 0.2875LSTM
2:8 300 0.4183 0.4908
2:8 100 0.4283 0.2717
2:8 200 0.3758 0.3767Seq2Seq
2:8 300 0.6358 0.8592

When we extend our analysis further to incorporate mission type information (but still

only train on 20% of data), the PCFG also outperforms LSTM and Seq2Seq in all cases (i.e.,

observing 100, 200, and 300 seconds). In most cases, the performance increases for PCFG,

LSTM, and Seq2Seq when mission type information is available. This indicates that the

mission type information can be used to improve flight phase prediction.

Overall, the improvement of PCFG using the mission type information is not significant,

especially compared to the improvement of Seq2Seq in the 300-second observation scenario.
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Since the grammar induction method, ADIOS, learns a set of generalized production rules

for the entire training set, there is a large number of shared rules between short-range and

long-range trajectories. Thus, the weights in Equation  7.10 will approach 0.5 for most of the

rules, which indicates the rules are equally applicable to either type of mission. Therefore,

the mission type probabilities are not effective for those rules. In general, when dealing

with more mission types, there will be fewer shared rules across all trajectory types. In that

scenario, the mission type probability will improve the performance more effectively.

Table 7.2. Flight Phase Prediction Accuracy with Different Amounts
of Training Data. All results shown in this table were obtained by using the
mission type probabilties.

HGV Flight Phase Prediction Results for Different Train-Test Ratios

Method Observation
Time (s)

Accuracy of
Predicting 100s
with Train-Test

Ratio of 2:8

Accuracy of
Predicting 100s
with Train-Test

Ratio of 5:5

Accuracy of
Predicting 100s
with Train-Test

Ratio of 8:2
100 0.6758 0.6697 0.5900
200 0.6308 0.6316 0.6400PCFG
300 0.8683 0.8974 0.8667
100 0.3392 0.3474 0.3300
200 0.2875 0.3013 0.3800LSTM
300 0.4908 0.4961 0.4967
100 0.2717 0.4500 0.4633
200 0.3767 0.3868 0.6600Seq2Seq
300 0.8592 0.9132 0.9100

Now, we consider how the methods perform with different amounts of training data,

assuming mission type information is used. As shown in Table  7.2 , we evaluate performance

when the training data is 20%, 50%, and 80% of all available data. As the amount of

training data increases, we observe that the proposed stochastic grammar does not increase

in performance. Instead, the PCFG maintains fairly comparable performance. More training

data does not increase the PCFG performance because it can learn a set of rules that govern

flight phases from a limited training set. In theory, as long as the training set contains
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exemplary training trajectories that encompass all possible rules that could be exhibited by

a HGV, the PCFG will perform well. Usually, deep learning methods require an extensive

amount of training samples, though. As the size of the training set increases, these deep

learning methods can perform better (e.g., Seq2Seq trained on 80% of data). Therefore, we

show that the proposed PCFG can achieve good performance without the requirement of a

large training set, especially compared to the deep learning methods.

Next, we consider performance as a function of time, as shown in Figure  7.11 . The gray,

horizontal lines indicate the amount of observed data analyzed in order to inform predictions.

The colored lines show accuracy of predictions for the different methods. For example,

Figure  7.11a shows results when the methods observe 100 seconds of data and predict flight

phases from 100s to 400s into the future. Similar to results summarized in Table  7.1 , the

PCFG usually achieves the best performance for various prediction times. Especially for the

cases where the methods only observe 100 or 200 seconds (shown in Figures  7.11a and  7.11b ,

respectively), PCFG outperforms LSTM and Seq2Seq by a significant margin. Although

Seq2Seq achieves comparable performance to PCFG when it observes 300 seconds of flight

(shown in Figure  7.11c ), the prediction task is much easier in this case than the first two

scenarios, as we discuss below.

One of the best aspects of the PCFG is its ability to model flight phase transitions.

Figure  7.12 shows six different trajectories in our testing set. For each trajectory, the top

bar graph illustrates the ground truth (GT) flight phases (i.e., the actual flight phases the

trajectory exhibits during the prediction period) as a function of time. The other three bar

graphs show the predicted flight phases from each method we consider (i.e., PCFG, LSTM,

and Seq2Seq). The gray portions of the bar graphs indicate the portions of the trajectories

that serve as observation periods. The total duration in the bar graphs is 400 seconds, and

the observed duration changes from 100 seconds to 300 seconds (similar to the experiments

shown in Figure  7.11 ). These examples were obtained by training with limited data, so 20%

of data was used for training. From this figure, we see that only PCFG successfully predicts

flight phase transitions, while LSTM and Seq2Seq usually predict the same phase for an

entire prediction period. We observe that the PCFG usually predicts flight phases in the

correct order, matching the ground truth.

147



Let us consider a simpler example for flight phase prediction, as shown in Figure  7.12 f.

The ground truth indicates that methods will examine 300 seconds of observed data and

should predict one phase category (ec0) for the next 100 seconds. The PCFG and Seq2Seq

correctly predict ec0 in this example, but the LSTM fails. If we look at the LSTM’s predic-

tions in all six examples, we observe that it only predicts ec4. The Seq2Seq exhibits similar

behavior but mostly predicts the lowest energy change phase (ec0). This example shows how

LSTM and Seq2Seq fail to model flight phase transitions and usually predict only one flight

phase type, no matter the length of the input or the initial flight phases exhibited. For these

reasons, we conclude that the LSTM and Seq2Seq perform inadequately.

Now, let us consider a more complex example for flight phase prediction, as shown in

Figure  7.12 a. In this example, a HGV exhibits four different flight phases in increasing order:

ec1 ec2 ec3 ec4. The methods observe 100 seconds of the trajectory and then predict 300

seconds of flight phases. The LSTM only predicts ec4 for this entire duration, demonstrating

its inability to predict other flight phases. Thus, it fails in this example too. The Seq2Seq

also does not perform well in this complicated scenario. It predicts ec0 for the entire pre-

diction period. The proposed PCFG is the only method that correctly predicts the flight

phase transitions, anticipating that a HGV will go through ec1 to ec4. However, the PCFG

incorrectly adds a final phase transition pattern (ec0 ec1 ec0) at the end. These extra flight

phases are due to the inaccurate phase duration estimations from the previous predictions.

PCFG will accumulate error caused by inaccurate phase duration estimations, which con-

tributes to the decrease in testing accuracy as time increases, as shown in the 100-second

experiment in Figure  7.11a . This example indicates that although our PCFG predicts flight

phase transitions well, there is still room for improvement.
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(a) Flight Phase Prediction Results after Observing
100s of a Trajectory.
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(b) Flight Phase Prediction Results after Observing
200s of a Trajectory.
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(c) Flight Phase Prediction Results after Observing
300s of a Trajectory.

Figure 7.11. Flight Phase Prediction Accuracy as a Function of Time.
We evaluate the proposed stochastic grammar PCFG, LSTM, and Seq2Seq
with different lengths of observed flight phases as a function of time.
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Figure 7.12. Flight Phase Prediction Results. We show the groundtruth
(GT) flight phases (i.e., the actual flight phases the testing trajectories ex-
hibit during the prediction period) as well as prediction results with the pro-
posed stochastic grammar PCFG, LSTM, and Seq2Seq for different observation
lengths.
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8. TRANSFER LEARNING FOR HYPERSONIC VEHICLE

PREDICTION

8.1 Overview

In this chapter, we investigate transfer learning to predict the future behavior and en-

gageability of hypersonic glide vehicles (HGVs). HGVs introduce new flight behaviors defined

by high speeds (i.e., Mach 5 to Mach 25) and high maneuverability [  134 ]–[ 136 ], [  138 ], [  167 ],

[ 213 ]. Their mobility allows them to evade traditional defense systems, so they pose a new

set of challenges for monitoring their flight behavior [  134 ], [ 135 ], [ 208 ], [ 213 ]. Due to their

nascent development, there is limited HGV data available for use in designing HGV pre-

diction methods. We propose a transfer learning approach to explore performance of our

stochastic grammar prediction method on new, unseen trajectories and maneuvers. In this

transfer learning scenario, a prediction method is derived using one dataset and evaluated

on a second dataset. For added complexity, we train and evaluate our prediction method

on datasets of HGV trajectories that exhibit different types of maneuvers. The first dataset

contains trajectories that exhibit vertical maneuvers, which are behaviors related to changes

in altitude. The second dataset exhibits both horizontal and vertical maneuvers, where hor-

izontal maneuvers refer to changes in crossrange and downrange. The vertical dataset is also

significantly smaller than the other dataset (i.e., the dataset that exhibits horizontal and

vertical maneuvers). We train our prediction approach on the smaller dataset of HGV tra-

jectories that only exhibit vertical maneuvers. Then, we evaluate the HGV model obtained

from the smaller dataset on a larger, more complicated HGV dataset that exhibits new be-

haviors never seen during development. With transfer learning, we investigate how our HGV

prediction method extends to new, unseen HGV trajectories that might be encountered.

In this chapter, we use machine learning to derive a stochastic grammar for HGV

prediction. A stochastic grammar is a rules-based framework used in sequential mod-

eling tasks [ 184 ]–[ 186 ], [ 199 ]. Stochastic grammars have been used to predict words in

sentences [ 184 ]–[ 186 ], [ 214 ]; envision RNA structures [ 187 ]–[ 190 ]; forecast human activi-

ties [ 191 ]–[ 193 ]; model human poses [ 194 ]; and detect anomalies in trajectory patterns [ 195 ].

A stochastic grammar consists of a set of production rules and a set of probabilities. The pro-
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duction rules explicitly define how discrete categories transition in sequences. The probabili-

ties describe how often each production rule (i.e., each transition pattern) occurs. Stochastic

grammars were initially developed for language modeling tasks, such as predicting words in

sentences. In language applications, words are the discrete categories, and production rules

describe how words transition throughout a sentence. For our application, the discrete cate-

gories are known as feature labels, which are quantized kinematic features based on altitude,

velocity magnitude, and acceleration magnitude. The production rules describe how kine-

matic features transition throughout a trajectory. Our prior work indicates that stochastic

grammars can succeed in modeling HGV behavior, even with limited training data [ 215 ]. In

this chapter, we investigate their use for transfer learning to determine how well a stochas-

tic grammar that describes vertical HGV maneuvers can perform on HGV trajectories that

exhibit both horizontal and vertical maneuvers. We also propose a notional engageability

definition to determine when a HGV could be intercepted. Along with future feature la-

bels describing a HGV trajectory’s maneuvers and behavior, we predict when a HGV is

engageable. This investigation provides valuable information about how stochastic gram-

mars capture physics-based information and can predict HGV behavior and engageability,

even if they encounter new HGV maneuvers never seen during development.

8.2 Proposed Approach

Figure  8.1 shows an overview of our transfer learning approach. The analysis uses two

different datasets of HGV trajectories. None of the trajectories in the two datasets are the

same, and each trajectory is defined by altitude h; velocity magnitude |v|; and acceleration

magnitude |a| for each second of flight. Each dataset is used to train a separate stochastic

grammar that models the HGV trajectories in that training dataset. The stochastic grammar

derived from the first dataset is referred to as G1, and the stochastic grammar derived

from the second dataset is referred to as G2. Next, each of the stochastic grammars is

used to predict future values of HGV trajectories in the second dataset. The dotted line in

Figure  8.1 indicates that only one stochastic grammar is used at a time to predict future HGV

trajectory behavior. Whichever stochastic grammar (i.e., G1 or G2) is used for prediction,
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Figure 8.1. Transfer Learning Approach. Different datasets are used to
derive two different stochastic grammars: G1 and G2. G1 is derived from the
first dataset of HGV trajectories (known as Beluga-v1), which exhibits vertical
maneuvers. G2 is derived from the second dataset of HGV trajectories (known
as Beluga-v2), which exhibits both horizontal and vertical maneuvers. Then,
each stochastic grammar is used to predict future HGV behavior of trajectories
in the second dataset (i.e., Beluga-v2). Note that only one stochastic grammar
is used at a time – either G1 or G2 – for predictions, as indicated by the dotted
lines in this figure. HGV predictions are feature labels ℓ̂ that represent different
kinematic values. Predictions start at time T + 1 and extend until time T + d.
T refers to the observation duration in seconds, and d refers to the prediction
duration in seconds. Larger versions of the six plots showing HGV trajectories
in this figure are shown in Figures  8.2 and  8.3 , when the datasets are explained
in greater detail.

the output values of the prediction method form a sequence of d feature labels ℓ̂T +1:T +d that

starts at time T + 1 and ends at time T + d. T refers to the observation duration (i.e.,

the period of time that a HGV trajectory is “observed” before making predictions), and

d refers to the prediction duration (i.e., the period of time that HGV trajectory behavior

is predicted into the future). Both observation duration T and prediction duration d are

measured in seconds. The predicted feature labels represent discrete categories corresponding

to different ranges of kinematic features of the HGV trajectories. Recall that a stochastic

grammar framework models discrete categories, such as words [  184 ]. Thus, HGV trajectories

(defined by continuous kinematic features) must be quantized into discrete categories to use a

stochastic grammar to describe them. We refer to the discrete categories of HGV trajectories

as “feature labels.” The definition of the feature labels is provided in the next section.
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8.2.1 Feature Labels

To produce the set of feature labels modeled by the stochastic grammar, each kinematic

feature is quantized into I intervals. A quantizer is described by the thresholds (or intervals)

that separate continuous inputs into discrete categories. The output values of the quantizer

can be integer values that represent the specific quantization intervals [ 216 ]. We quantize

each of the three kinematic features separately to obtain three sets of integer values that

represent different ranges of each kinematic feature. Then, every combination of the quan-

tization intervals (from each kinematic feature) is assigned a final integer value. This final

integer value provides information about all three kinematic features of a HGV because it

represents a combination of quantized kinematic features. We call these final integer values

“feature labels”, and a single feature label is represented as ℓ. HGV trajectories are quantized

into feature labels before they are modeled by a stochastic grammar. Thus, our prediction

approach predicts feature labels ℓ̂. We will now explain this process in greater detail.

Each kinematic feature f ∈ {h, |v|, |a|} is divided into I intervals based on its distribution

and range of kinematic feature values. Let M represent the number of HGV trajectories

available for training our stochastic grammar. For the purposes of this example, let us

assume that all trajectories fly for T seconds and thus have T data samples of feature f .

Keep in mind that each trajectory flies for a different length of time in reality, though. For our

example, the total number of data samples of a single kinematic feature from all trajectories

is N = MT . The quantizer intervals are chosen such that N
I

data samples are included in

each interval, and the quantized outputs Q are integers in the range {0, 1, ..., I − 1}. Let F

represent all values of f from all trajectories and time steps sorted in non-decreasing order:

F = {f0, f1, ..., fN−1}. Note that the minimum value of the feature is fmin = f0, and the

maximum value of the feature is fmax = fN−1. The upper bound U of quantization interval

i for kinematic feature f , where i ∈ {1, 2, ..., I} is equal to the n-th kinematic feature value

in F , where n ∈ {0, 1, ..., N − 1}. In other words, Ufi
= fni

. The index ni is computed as
βi

100N , where βi = 100
I
i represents the percentile that corresponds to the i-th interval. The

calculation of ni is:

ni = βi

100N = Ni

I
. (8.1)
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Finally, the quantized output of a data sample of feature f at time t is:

Qft =



0, ft ∈ (−∞, Uf1 ],

i− 1, ft ∈ (Ufi−1 , Ufi
] ∀ i ̸= 1, I,

I − 1, ft ∈ (UfI−1 ,∞].

(8.2)

In practice, any number of quantization intervals I could be used. In this work, we use I = 3

so that the quantized outputs correspond to low, medium, and high values of a kinematic

feature. With the numbering convention used, “0” corresponds to the lowest interval of a

feature; “1” corresponds to the middle interval; and “2” corresponds to the highest interval.

From the resulting quantization sets
(
Qh, Q|v|, and Q|a|

)
, we determine the set of all unique

combinations of quantization intervals from each kinematic feature. We refer to this set as

C since it is based on a Cartesian product of all quantization sets:

C = {ψh × ψ|v| × ψ|a| | ψf ∈ Qf ∀ f ∈ {h, |v|, |a|}. (8.3)

C contains I3 elements, where “3” corresponds to the number of kinematic features used to

define C. Thus, each element in C is a unique combination of quantization intervals from

each kinematic feature. Finally, we assign each element in C an integer so that each unique

combination has a unique label. Let this final set of integer feature labels be represented as

L = {0, 1, ..., I3 − 1}. In this work, there are twenty-seven unique combinations (and thus

twenty-seven feature labels) based on I = 3 intervals and three kinematic features. Now

that the set of feature labels has been defined, it can be used to label each trajectory. Let

h0:T , |v|0:T , and |a|0:T represent a trajectory’s altitude, velocity magnitude, and acceleration

magnitude for T seconds of flight. Each feature f is quantized for every time t ∈ 0:T

using Equation  8.2 . Then, each time t is assigned a feature label ℓ from L based on its

specific combination of quantization levels from each kinematic feature. The final sequence

of feature labels for the trajectory is represented as ℓ0:T . Next, stochastic grammars are

derived to describe the transition patterns exhibited in these sequences of feature labels.
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8.2.2 Engageability Definition

We are interested in moments during a trajectory where a HGV is engageable (i.e., could

be intercepted). To investigate a stochastic grammar’s ability to predict HGV engageability,

we define engageability based on the feature labels used in this chapter. For each second of

flight t ∈ 0:T , a HGV could be considered engageable or not engageable. A HGV is considered

engageable at time t if:

• altitude is medium or high (Qht ∈ {1, 2});

• velocity magnitude is low or medium
(
Q|v|t ∈ {0, 1}

)
; and

• acceleration magnitude is low
(
Q|a|t ∈ {0}

)
.

Based on this definition, only four of the twenty-seven feature labels are considered engage-

able. Each second of each trajectory is labeled based on these definitions. It should be noted

that other definitions of engageability could be used, and our definition is notional [ 213 ].

8.2.3 HGV Modeling and Prediction

We use an unsupervised learning method known as automatic distillation of structure

(ADIOS) [ 207 ] to derive the stochastic grammars. Recall that a stochastic grammar consists

of a set of production rules R that describe transition patterns and a set of probabilities P

that describe how often each rule occurs [ 184 ]–[ 186 ], [ 199 ], [ 214 ], [ 215 ]. ADIOS determines

R and P by finding statistically significant transition patterns within the feature label se-

quences. It is an unsupervised learning method that learns R and P directly from the dataset,

rather than relying on prior knowledge about the format or content of rules. ADIOS iterates

multiple times over the training dataset, continuing to find new rules and combine rules,

until R no longer changes. Next, we use the Generalized Earley Parser (GEP) [ 192 ], [ 193 ]

for predicting feature labels. The GEP analyzes sequences of probability vectors, which

contain a set of probabilities that indicate the likelihood that each feature label is exhibited.

In this work, the probability vectors thus have a length of twenty-seven. GEP analyzes

the probability vectors sequentially. First, it examines the feature label transition patterns
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exhibited during an initial, “observed” portion of a trajectory. Then, it determines the set

of all rules that match the observed portion of flight. GEP constructs a set of all possible

feature label sequences that could be exhibited during the rest of the trajectory’s flight by

using the rules in R. Finally, GEP selects the most probable sequence of feature labels based

on the probabilities in P . We have used ADIOS and GEP for HGV modeling and prediction

before. More information about these approaches are included in our prior work [  215 ].

8.3 Experimental Setup

8.3.1 Datasets

We utilize two datasets of HGV trajectories to develop and evaluate our prediction

method. Both datasets were generated by a publicly available tool known as Beluga [  217 ],

[ 218 ]. Beluga is a general-purpose indirect trajectory optimization framework. It generates

HGV trajectories with the aerodynamic profile of [ 218 ], [  219 ] according to flight mechanics

described in [  220 ]. Beluga simulates HGV trajectories after the HGV enters the atmosphere.

All trajectories adhere to a re-entry model where only gravity, lift, and drag operate on the

vehicle. The first dataset (known as Beluga-v1) consists of 250 HGV trajectories. These

trajectories are designed to exhibit vertical maneuvers, which are maneuvers in terms of

altitude. The second dataset (known as Beluga-v2) consists of 1,681 trajectories. These

trajectories exhibit both vertical maneuvers and horizontal maneuvers simultaneously. Hor-

izontal maneuvers refer to maneuvers in terms of crossrange and downrange. Because each

dataset contains trajectories that exhibit distinct behaviors, we can use them in a transfer

learning scenario to investigate the impact of using only one of the datasets to prepare a

prediction method for success on the other dataset.

Figures  8.2 and  8.3 show the kinematic features h, |v|, and |a| for all HGV trajecto-

ries from both datasets. Although the trajectories in each dataset exhibit different types of

maneuvers, these figures show how their kinematic features look relatively similar. From a

visual perspective, these plots indicate that transfer learning could succeed in this scenario

because the kinematic features are not significantly different from each other. A numeri-

cal analysis supports this qualitative analysis. Table  8.1 includes information about each
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Beluga-v1 Dataset

Beluga-v2 Dataset
Figure 8.2. Kinematic Features of HGV Trajectories in the Beluga-
v1 Dataset. Colors are randomly assigned to each trajectory and carry no
significance. They help show individual trajectories.

Beluga-v1 Dataset

Beluga-v2 Dataset

Figure 8.3. Kinematic Features of HGV Trajectories in the Beluga-
v2 Dataset. Colors are randomly assigned to each trajectory and carry no
significance. They help show individual trajectories.

quantization bound from both datasets. Recall that these bounds are determined directly

from the training data based on the quantization process described in Section  8.2.1 . Because

we quantize each kinematic feature into three intervals using a percentile-based approach,

each bound separates 33.33% of data samples (i.e., kinematic values from all trajectories

and time steps) into different intervals of that kinematic feature. Any number of quantiza-

tion intervals/bounds could be used in practice, but we use three intervals in this chapter

to represent low, medium, and high ranges of values for each kinematic feature. From the

information in Table  8.1 , notice that Upper Bound 1 Uh1 for the Beluga-v1 dataset is 36,201

m, which indicates that 33.33% of altitude data samples from the Beluga-v1 dataset are less

than 36,201 m. This same bound for the Beluga-v2 dataset is 37,035 m. Thus, even though

each dataset exhibits different behaviors, their summary statistics are relatively similar and

produce bounds that are fairly close to each other. If the data distributions were drastically
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Table 8.1. Quantization Bounds from Each HGV Dataset. Upper
Bound 3 is not included in this table for any kinematic feature since Uf3 =
∞ ∀ f ∈ {h, |v|, |a|}.

Quantization Bounds from Each HGV Dataset
Altitude (m) Velocity Magnitude (m/s) Acceleration Magnitude (m/s2)

Dataset Upper
Bound 1

Uh1

Upper
Bound 2

Uh2

Upper
Bound 1

U|v|1

Upper
Bound 2

U|v|2

Upper
Bound 1

U|a|1

Upper
Bound 2

U|a|2

Beluga-v1 36,201 42,016 2,575 3,317 2.3 3.6
Beluga-v2 37,035 41,927 2,579 3,316 2.3 3.8

different from each other, the quantization bounds obtained based on each dataset would

also be very different, and a transfer learning approach might not succeed. However, our

numerical analysis shows that it is possible to succeed with transfer learning because the

distributions of kinematic features in the HGV datasets are not significantly different, even

if their underlying maneuvers are.

Table 8.2. Number of HGV Trajectories in Each Beluga Dataset. We
explore a limited training data scenario, using only 20% of trajectories in each
dataset as training data. Notice that there are significantly fewer trajectories
in Beluga-v1 compared to Beluga-v2.

HGV Datasets Splits

HGV
Dataset

Training
Trajectories

Testing
Trajectories

Total
Trajectories

Beluga-v1 50 200 250
Beluga-v2 336 1,345 1,681

Now that we have explored the HGV datasets used in our analysis, we will present our

experimental setup. For our experiments, we use 20% of trajectories as training data and

80% of trajectories as testing data. This means that only 50 Beluga-v1 trajectories are used

to derive stochastic grammar G1, and 336 Beluga-v2 trajectories are used to derive stochastic
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grammar G2. Then, the HGV prediction method is evaluated on the remaining 200 Beluga-

v1 and 1,345 Beluga-v2 trajectories. The reason we split our data in this fashion is to explore

prediction results in a limited data scenario. We develop our approach under the assumption

that a large amount of actual HGV trajectories might not be available for training. Table  8.2 

shows the summary of the training and testing trajectories for each dataset.

8.3.2 Evaluation Metrics

Recall that ℓ̂T +1:T +d represents the predicted feature labels of a HGV trajectory, where T

represents the total number of seconds that are observed and used to predict d seconds into

the future. We compute accuracy, weighted precision, weighted recall, and weighted F1 [ 93 ]

of the predicted feature labels ℓ̂ by comparing them to the actual, true feature labels ℓ. Let

M represent the number of trajectories in the test set. We compute accuracy as:

Accuracy = 1
Md

M−1∑
j=0

d∑
k=1

1(ℓ̂j,T +k, ℓj,T +k), (8.4)

where ℓ̂j,T +k is the predicted feature label of trajectory j at time T + k; ℓj,T +k is the cor-

responding true feature label; and 1(·) is the indicator function. Accuracy is a measure of

how many feature labels were predicted correctly. Weighted precision is computed as:

Weighted Precision = 1∑
l∈L |ℓl|

∑
l∈L

|ℓl|
|ℓl ∩ ℓ̂l|

|ℓ̂l|
, (8.5)

where ℓ represents all true feature labels (from all trajectories and predicted time steps) that

are being evaluated; ℓ̂ represents all corresponding predicted feature labels (from all trajec-

tories and predicted time steps); L is the set of unique feature labels defined in Section  8.2.1 

(i.e., the set of “words” modeled by the stochastic grammar); ℓl is the subset of ℓ with the

specific feature label l ∈ L; and ℓ̂l is the subset of ℓ̂ with feature label l. Precision is a mea-

sure of our prediction method’s ability not to predict samples as a certain feature label when

that particular feature label is being evaluated. Recall measures the prediction method’s
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ability to predict a particular feature label when that feature label is actually exhibited by

a trajectory. Weighted recall is then:

Weighted Recall = 1∑
l∈L |ℓl|

∑
l∈L

|ℓl|
|ℓl ∩ ℓ̂l|

|ℓl|
, (8.6)

Our final evaluation metric is weighted F1, defined as:

Weighted F1 = 1∑
l∈L |ℓl|

∑
l∈L

|ℓl|
|ℓl∩ℓ̂l|

|ℓ̂l|
∗ |ℓl∩ℓ̂l|

|ℓl|
|ℓl∩ℓ̂l|

|ℓ̂l|
+ |ℓl∩ℓ̂l|

|ℓl|

. (8.7)

It is a measure of the balance between precision and recall. It can be interpreted as a weighted

harmonic mean between the two. Note that we calculate weighted precision, weighted recall,

and weighted F1. Weighted metrics reflect the frequency of each feature label’s occurrence

in the evaluation dataset. For all of these metrics, larger values are better, and 100% is the

best possible score.

8.3.3 Experimental Results

Table 8.3. Results Predicting Feature Labels. The top two rows in the
table show results obtained by training and testing on the same dataset. The
third row shows the results from our transfer learning experiment.

Feature Label Prediction Results

Training
Dataset

Testing
Dataset Accuracy Weighted

Precision
Weighted

Recall
Weighted

F1
Number of
G Rules

Beluga-v1 Beluga-v1 47.55% 60.93% 47.55% 49.73% 48

Beluga-v2 Beluga-v2 35.80% 52.49% 35.80% 39.45% 265

Beluga-v1 Beluga-v2 39.22% 48.54% 39.22% 41.31% 48

Tables  8.3 and  8.4 show results of observing HGV trajectories for 300 seconds (i.e., T =

300) and predicting feature labels and engageability, respectively, for 100 seconds (i.e., d =

100). In both cases, we first train and evaluate our prediction method on the same dataset.

For example, we train a stochastic grammar on Beluga-v1 and use it to predict trajectories in
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Table 8.4. Results Predicting Engageability. The top two rows in the
table show results obtained by training and testing on the same dataset. The
third row shows the results from our transfer learning experiment.

Engageability Prediction Results

Training
Dataset

Testing
Dataset Accuracy Weighted

Precision
Weighted

Recall
Weighted

F1
Number of
G Rules

Beluga-v1 Beluga-v1 73.75% 81.42% 73.75% 74.79% 48

Beluga-v2 Beluga-v2 67.14% 83.08% 67.14% 69.01% 265

Beluga-v1 Beluga-v2 69.09% 82.77% 69.09% 71.92% 48

Beluga-v1. In this case, we obtain the highest metrics for feature label prediction, such as a

prediction accuracy of 47.55%. This process is repeated for the Beluga-v2 dataset to obtain a

prediction accuracy of 35.80%. Recall that the Beluga-v2 dataset is more complicated than

the Beluga-v1 dataset because Beluga-v2 exhibits maneuvers in both the horizontal and

vertical directions, whereas Beluga-v1 only exhibits maneuvers in the vertical direction. Due

to the increased complexity of Beluga-v2, our prediction method’s performance drops. Next,

we obtain results with transfer learning. We use G1 (i.e., the stochastic grammar derived

from the Beluga-v1 dataset) to predict future feature labels and engageability of trajectories

in the Beluga-v2 dataset. With this transfer learning approach, the prediction performance

on the Beluga-v2 dataset improves, achieving a feature label prediction accuracy of 39.22%.

Results indicate that transfer learning can be used to not only maintain performance on a

more complicated dataset but to also improve results slightly. For example, feature label

prediction accuracy on the Beluga-v2 dataset improves from 35.80% to 39.22% with transfer

learning.

Similar results are observed with engageability predictions. Stochastic grammar G1

trained and evaluated on the Beluga-v1 dataset achieves the highest engageability metrics.

Stochastic grammar G2 trained and evaluated on the Beluga-v2 dataset exhibits a drop in

engageability prediction metrics. However, using G1 on the Beluga-v2 dataset improves all

engageability prediction metrics. For example, engageability prediction accuracy increases

from 67.14% to 69.09% when switching from G2 to G1 on the Beluga-v2 dataset. In gen-
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eral, all engageability prediction metrics are higher than feature label prediction metrics.

This is because feature label prediction requires explicitness. The exact feature label (out

of twenty-seven different feature labels) must be predicted in order to be considered correct,

which makes this task more difficult. For engageability prediction, the exact feature label

does not need to be predicted. Instead, a feature label that has the same engageability

classification (i.e., engageable or not engageable) could be predicted, and the prediction is

still considered correct. Furthermore, there are only two different prediction outputs for

enageability, compared to the twenty-seven for feature label prediction. Although this is a

slightly less difficult evaluation procedure, it still provides very useful information about the

status of a HGV. Because there could be an unequal number of engageable vs. not engageable

feature labels, we need to evaluate weighted precision, weighted recall, and weighted F1 to

understand how our prediction method performs in spite of the imbalance. However, we see

that all engageability metrics are consistent with each other and very high, which indicates

that our prediction approach can perform well despite any class imbalances that may exist.

Our transfer learning experiments demonstrate a stochastic grammar learned from a

smaller, less complicated dataset can still succeed on a larger, more complicated dataset.

This is important since it is difficult to obtain HGV trajectory data, so all HGV behaviors

might not be available in a training dataset. As seen in Tables  8.3 and  8.4 , G1 contains

48 rules, while G2 contains 265 rules. G2 contains significantly more rules than G1, yet

G1 predicts HGV feature labels and engageability better on the Beluga-v2 dataset. These

results indicate that G1 contains rules that capture physics-based information better than

the rules in G2, thus allowing G1 to understand Beluga-v2 trajectories even though their

horizontal maneuvers were not used to train G1. From these experiments, we conclude

that G2 contains more rules that model more unique, specific HGV behaviors. In other

words, they capture “edge cases” that are not often exhibited and thus do not generalize as

well to new trajectories. In conclusion, not all of the rules in G2 are necessary to predict

HGV trajectories well. This phenomenon is often observed with stochastic grammar-based

approaches [ 184 ]–[ 186 ], [ 214 ]. In general, stochastic grammars with more rules have more

ambiguity, meaning that there are more rules that match observed input sequences. Because

there are more rules that match the input, there are more options that the GEP can select
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in order to predict the rest of the sequence. This means that the chances of choosing an

incorrect rule to predict the next sequence value are higher. Therefore, stochastic grammars

with fewer rules that are more descriptive often provide better prediction results. With

these types of stochastic grammars, there are fewer rules to choose from, less ambiguity, and

more chances of choosing the correct rule for prediction. One other benefit of a stochastic

grammar with fewer rules is that prediction times are shorter. There are fewer rules for a

parser to iterate through and keep track of, which makes computation faster. Our transfer

learning approach demonstrates all of these benefits to achieve better performance on a

larger, more complicated HGV dataset, even when the trajectories in the new dataset exhibit

new behaviors.
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9. SUMMARY AND FUTURE WORK

In Chapter  2 , we propose a CNN approach to analyze audio signal spectrograms for the

purpose of validating the audio signal authenticity. The experimental results show that the

method accomplishes this discrimination task with high accuracy on the test dataset with

a relatively shallow network. Our method generalizes to new audio attacks never seen dur-

ing training. Thus, our results indicate that a signals-informed and signals-based approach

assists a neural network in learning information to extend to new attacks. However, our

method fails to classify other new audio signals correctly. Future work should focus on un-

derstanding the failure cases and improving our method to correctly identify whether they

are fake or real audio signals. A future approach could include analyzing the signals with

a Natural Language Processing (NLP) approach to evaluate the coherence of the spoken

phrases. Then, two analyses could be conducted in parallel to analyze the frequency content

and structure of the signal as well as the coherence of the spoken words. Another future

direction could include an environmental analysis of the captured audio signal. If, for ex-

ample, an audio signal is identified to be recorded outside but the speaker says phrases as

if he or she is indoors, this mismatch between recording environment and spoken cues could

indicate that the audio is synthesized. These experiments conducted in tandem with our

proposed approach would strengthen our audio authentication method.

In Chapter  3 , we improve upon our previous work to demonstrate the benefits of using

higher-resolution spectrograms and an attention mechanism. We demonstrate that a neural

network that utilizes both convolution and transformer capabilities achieves high success in

detecting synthesized speech. Convolution operations convert a spectrogram input image

into feature maps that contain salient information for discriminating synthesized and gen-

uine human speech. It also enables a transformer to achieve high success with less data

than transformers typically require. We demonstrate that this synthesized speech detection

method performs well on a publicly available dataset and also that it generalizes to lossy

audio signals in a sequestered dataset of an unknown nature.

Although this approach is promising, future work should consider more diverse speech

features. For example, the method should be validated on data of different audio formats,
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compression levels, sampling rates, and durations. Since both the CNN and the CCT perform

well, an ensemble of these two methods could be created and augmented with other neural

networks. Finally, a speech analysis method such as this could be paired with methods that

analyze media’s other data modalities. For example, our synthesized speech detector could

analyze speech signals found in videos, while methods that analyze images and videos could

analyze the visual content. A metadata analysis could strengthen this multi-modal approach

even more.

In Chapter  4 , we investigate three transformers for synthesized speech detection and pro-

poses a transformer ensemble to boost performance. We show that our proposed transformer

ensemble achieves better synthesized speech detection than each of the individual transform-

ers, especially considering the highly imbalanced nature of our experimental dataset. We

also demonstrate that our transformer ensemble can achieve the same level of high success,

even when analyzing shorter speech signals. Future work will focus on other tasks in addition

to detection, such as localization of synthesized speech within full audio signals.

Finally, we conclude our audio analysis work in Chapter  5 . In this chapter, we attribute

speech signals to speech synthesizers in both closed set and open set scenarios. We analyze

speech signals in the form of spectrograms with a compact attribution transformer (CAT)

and demonstrate that our approach achieves success on this speech synthesizer attribution

task. Furthermore, we show that poly-1 loss formulations improve results and that analyzing

the latent space of CAT with tSNE can discriminate between different unknown synthesizers.

Future work could extend this analysis to more speech synthesizers and increase separability

in the latent space.

In Chapter  6 , we commence our discussion of machine learning for hypersonic vehicle

applications. We utilize machine learning methods for HGV trajectory classification. Our

techniques exploit a data driven approach, learning how to distinguish HGVs and CRVs

directly from the available training data. Our approaches analyze the aerodynamic properties

of the vehicles to learn a unique signature that describes each one. Experimental results

shows that our approach works well and increases in performance over TALO.

Future research directions could explore how these methods extend to trajectories of

other vehicles. It is important to consider both different types of HGVs and CRVs as well as
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entirely new vehicles. Additionally, it is necessary to develop an approach to consider out-

of-distribution vehicles. In other words, the methods should be able to identify a new type

of vehicle never seen before during training. These are all future directions for improving

our approach.

In Chapter  7 , we propose a stochastic grammar model for flight phase prediction. We

demonstrate that the proposed approach successfully predicts future flight phases of HGVs

and estimates temporal durations of the flight phases, even with limited training data. Al-

though our approach performs well, there is still room for improvement. Future work could

extend our analysis to include different types of HGV vehicles. We currently simulate all

trajectories with the same aerodynamic profile, so it would be useful to investigate how our

approach performs when multiple aerodynamic profiles are used. The set of flight phase

transition rules would be more complicated, as different vehicles would transition between

phases differently. Another direction for future work will focus on improving the flight phase

duration priors. Our method predicts flight phase transitions well, but it could be improved

in terms of its duration estimation by considering the information from the current observa-

tions.

Finally in Chapter  8 , we propose transfer learning for HGV trajectory prediction. We

analyze three kinematic features (altitude, velocity magnitude, and acceleration magnitude)

to predict future kinematic features and engageability of HGV trajectories. To do so, we

derive stochastic grammars from two different datasets that are different sizes and exhibit

different behaviors. Results indicate that a stochastic grammar trained on the smaller dataset

can still perform well (and even increase prediction results) on the larger dataset, even though

the larger dataset exhibits new types of HGV behavior. This investigation shows that transfer

learning can be used to predict HGV trajectories in limited training data scenarios. As with

any machine learning or deep learning approach, it can be helpful to have an explanation for

prediction results. In the future, future work could investigate the explainability of various

machine learning methods to understand their decision-making better.
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9.1 Contributions of this Dissertation

The contributions of this dissertation are as follows:

• we investigate a CNN and multiple transformers for synthesized speech detection and

demonstrate success on this task;

• we show that our transformer-based synthesized speech detection approach also suc-

ceeds on a sequestered dataset of lossy audio signals, which indicates that it is able to

generalize to new, unseen data samples not present in the training dataset;

• we design a transformer ensemble to improve synthesized speech detection;

• we demonstrate that our transformer ensemble can achieve high success on this task,

even when analyzing shorter portions (i.e., less) of a speech signal;

• we propose a compact attribution transformer (CAT) to attribute synthesized speech

signals to known and unknown speech synthesizers;

• we investigate the latent space of CAT with tSNE to distinguish between different

speech synthesizers and offer more insight into the trained neural network;

• we demonstrate that CAT successfully discriminates between different known and un-

known synthesizers, which indicates that CAT generalizes to new speech synthesizers

not seen during training;

• we use poly-1 loss formulations to improve attribution results;

• we investigate a CNN for vehicle classification based on initial phases of a vehicle’s

flight;

• we demonstrate that machine learning approaches successfully discriminate between

three types of vehicles (two different hypersonic vehicles and one conic re-entry vehicle),

even under noisy conditions;

• we introduce stochastic grammars to model HGV trajectories;
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• we demonstrate that our stochastic grammar method accurately predicts HGV flight

phases, even with a limited amount of training data;

• we show that our vehicle classification and HGV prediction methods achieve higher

success as time after lift-off (TALO) increases;

• we propose an engageability definition that indicates when a HGV could be intercepted;

• we use transfer learning to derive a stochastic grammar with a smaller dataset of

HGV trajectories that exhibit vertical maneuvers and predict future behavior and

engageability of HGV trajectories in a larger dataset that exhibit both horizontal and

vertical maneuvers;

• we demonstrate that transfer learning with stochastic grammars can predict HGV

behavior and engageability, even when the method encounters HGV trajectories that

exhibit different maneuvers than the trajectories used to derive the stochastic grammar.
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