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ABSTRACT 

The engine is the heart of the vehicle; any problems with this component will cause significant 

damage and may even result in the car being junked. The engine repair cost is enormous, and there 

is no guarantee that the existing engine will be repaired or replaced. Fault diagnosis in engines is 

critical; there have been numerous techniques and tools used for fault diagnosis in this 

revolutionary world, which require some extra cost to detect and still cannot detect faults such as 

knocking. The engine can have several problems but knocking is the major issue that blows up the 

engine and results in the breakdown of the vehicle. Our research focuses on this key issue which 

not only costs thousands of dollars but also results in waste. According to experts, at a very early 

stage, knocking can be detected by human senses, either visually or audibly. The most noticeable 

feature in detecting engine faults is the knocking sound.  Artificial intelligence deep learning 

neural networks are well known for their ability to simulate humans; we can utilize this domain to 

train the networks on sound to detect engine knocking. Many neural networks have been designed 

for various purposes, one of which is classification. The best widely used and reliable network is 

the convolution neural network (CNN) which takes input as images and classifies them 

respectively. Engine sounds have been collected from Google’s Machine Perception research. Our 

research shows that a prominent feature in building these networks is data. Understanding data and 

making the most of it is central to data science. A better model is created by meaningful data, not 

just by designing a complex network. We have used a new algorithmic method of extracting sound 

and feeding it into all variants of CNN, which we call dependent vehicle sound extraction, in which 

we use fast Fourier transform (FFT), short-time Fourier transform (STFT), and Mel-frequency 

cepstral coefficients (MFCCs) for processing input sound signals. We validated the utilization of 

deep learning networks with a unique dependent vehicle feature extraction technique to detect 

engine knocking with accurate classification. 
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 INTRODUCTION 

 Literature Review 

The process of finding a flaw in any machine before it leads to a breakdown is known as fault 

detection. Fault detection and classification are crucial elements of fault diagnosis. Before 

determining which type of fault exists, we must first determine whether a fault exists. Fault 

detection can be viewed as a binary classification problem to some extent [1]. Fault detection is an 

extensive field that can be applied to any industry. For instance, ArcelorMittal, a top steel tycoon, 

demonstrates the importance and use of fault detection in rolling machines using artificial 

intelligence concepts in an interview with Carlos Alba (chief digital officer at ArcelorMittal) and 

Peter D’haese (chief digital officer at ArcelorMittal Flat Europe) [2]. 

 Classification is the finest method for detecting faults. There is currently a sizable collection 

of meta-classifiers built around specialized algorithms to match classification schemes [3]. C-

MAPSS is a program that simulates a large commercial turbofan engine. The software is written 

in MATLAB and Simulink. This software generates final simulated results in labeling format, 

which can be used to classify various faults in an aircraft engine using deep learning classification 

algorithms [4]. Knock is a phenomenon in which the leftover "end gases" explode unexpectedly 

instead of consuming flawlessly in an extending wavefront across the chamber. Within the cylinder, 

increased temperature, stresses, and audible reverberations embrace the subsequent shock wave. 

These effects can be very damaging at high speeds and loads, yet, when not essential, knocking 

can be disturbing to the driver and is related to higher NOx emissions and lower force creation. 

[5]. Engine knocking can also be detected using fault detection and diagnosis (FDD) deep learning 

classification algorithms. Top-notch automotive industries have demonstrated their methods for 

detecting faults in vehicle engines, and some of them are still in development: 

a. Infosys: Vehicle Maintenance Workbench, it is an integrated platform based on AI and ML 

optimization algorithms for fleet maintenance efficiency and safety [6].  

b. Intuceo: Predictive Maintenance Solutions, it gathers data from every in-vehicle sensor and 

uses machine-learning algorithms to offer preventative maintenance options [7]. 
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c. Questar: AI-based Predictive Analytics to keep fleets on the road, it offers a vehicle health 

management (VHM) platform that uses in-vehicle data collection and AI methods to 

produce early warnings of probable vehicle faults [8]. 

d. IBM: Connected Vehicle Predictive Maintenance Solution, artificial intelligence 

investigates and follows up on the information from the sensors and cameras by giving 

suggestions to the driver [9]. 

e. BMW: Predictive Maintenance Control Measures, this innovation uses sensors to filter the 

ongoing status/health of the parts, data analytics and other machine learning algorithms to 

forecast failures before they occur [10]. 

f. Ford: Connected Vehicle Data Collaboration, with drivers’ permission, it gives third-party 

businesses safe and secure access to vehicle-generated data to develop innovative, 

specialized goods and services like usage-based insurance, predictive maintenance, and 

smart roadside recovery [11]. 

g. Hyundai Motor Group: Sound-based Fault Diagnosis and Predictive Maintenance, devised 

a creative method that allows artificial intelligence to pick up on automotive sounds, 

enabling it to identify damaged components. [12]. 

These industries focus on sensor data and rely on complex, time-consuming machine learning 

and deep learning architectures. Organizations such as Intuceo, Ford, and Hyundai Motor Group 

are working on this area of research and are still in the development stage. The estimation of 

combustion noise based on in-cylinder pressure measurements is used to identify engine knocking 

and this noise is detected by sensors [13]. Using these sensors there is wavelet transform method 

to detect knock [14]-[16]. Another research uses a microphone to capture engine knock on a 

specific vehicle and used that vehicle to capture knock [17]. Even though mechanical advances in 

the exact inspection of knock vibrancy are expanding because of refinements in signal handling, 

automakers are working intensely to enhance knock recognition. However, no method can 

completely switch the human hearing in recognizing among severe knocks and mechanistic blows. 

Conceivably innovative auditory sensors can develop knock detection significantly [18]. After the 

assortment of information from sensors, numerous strategies like Artificial neural networks (ANN), 

machine learning (ML), deep learning (DL), genetic algorithms (GA), wavelet transform (WT), 

Fuzzy logic, supported vector machine (SVM), and some statistical methods are utilized to identify 

knock which again depends on sensors [19]-[21]. Our research focuses on data and uses unique 
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dependent vehicle feature extraction techniques to transform the input signal to a meaningful form 

that can be pipelined to a deep learning network which is simple in structure and produces high 

accuracy in fault detection. Fast Fourier transform, short-term Fourier transform, and Mel-

frequency cepstral coefficients techniques have been deployed in our research to transform raw 

input sound to feasible input to a deep learning network. We have used Artificial neural networks, 

1D convolution neural network, and 2D convolution neural network to obtain a highly accurate 

fault-diagnosing engine system. 

 Research and Motivation  

Sound can be utilized to identify engine knocking; currently, sensor data is the only way to do 

so. Formula 1 is the top level of competition for single-seater formula racing vehicles in worldwide 

competitions amongst the automotive companies, that use cutting-edge technology to demonstrate 

their prowess in the field. The Mercedes car at the 2016 Formula 1 Malaysian Grand Prix suffered 

an engine knock, and it has been reported that the engine’s big-end bearing failed without being 

detected by the existing sensor architecture [22]. Our research emphasizes sound data that can 

accurately detect knocking and would be valuable in the automotive industry for fault detection 

and diagnosis. Building complex deep learning architectures will not result in an efficient method 

of detecting faults; instead, focus on data. 

 Organization of Thesis 

The structure of this thesis is as follows. The dataset utilized in the experiment and the idea of 

engine knock detection using audio signal as input are introduced in Chapter 2. Three techniques 

for preparing input sound are described in Chapter 3. The widely utilized artificial neural network 

algorithm is used in Chapter 4. The outcomes of each combination are evaluated in Chapter 5, 

which presents several fault detection algorithms based on two-dimensional convolutional neural 

networks combined with two audio signal processing techniques. The outcomes of engine knock 

detection using a one-dimensional convolutional neural network are examined and shown in 

Chapter 6. The observations and future work are presented in Chapter 7. 
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 Contribution of Thesis 

a. In this thesis work, the artificial neural network method is investigated and applied in 

engine knock detection as the baseline. 

b. Throughout the evaluation of deep learning neural networks with input processing for 

engine knock diagnosis with multiple audio labels, the most accurate classification method 

(2D STFT-CNN and 2D MFCC-CNN) is validated. 

c. The feasibility of engine knock classification using a one-dimensional convolutional neural 

network is explored in order to reduce computational complexity. 
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 ENGINE DATASET 

An artificial neural network method is built on data. A good audio collection is required to 

develop effective ANN and deep learning (DL) algorithms for engine knock detection. Collecting 

engine sounds from various vehicles would take years to complete one set, which could be 

imbalanced due to a lack of knocking samples. There are few resources for collecting engine sound 

samples, and no automotive industry has an open-source collection of sounds from their vehicles 

to detect knock because they do not focus on sound. However, Google provides us with YouTube’s 

car engine sound videos, timeframe, and the id to download the audio sample. 

 Audio Set Dataset 

The Audio Set is a large dataset of manually annotated audio events that aims to bridge the 

data availability gap between image and audio research. They have collected information from 

individual person who have labelled audio files to investigate the presence of definite acoustic 

modules in 10-second cuts of YouTube tapes using a wisely coordinated characterized 

phenomenologically of 632 sound classes thoroughly categorized by the human synthesis and 

research. Labeling segments are proposed using object, framework, and subject matter evaluation 

searches. The Audio Set YouTube Corpus comprises named YouTube sections, organized as a 

comma separated value (CSV) document including YouTube identifiers, begin time, end time, and 

at least one label. Audio set portions are each 10 seconds in length except for unseen video which 

exceeds the duration of the actual video. Each audio file conveys at least one class name [23]. 

 

 

 
Figure 2-1 CSV document of Audio Set [23]. 

 

Annotators confirmed the presence of sound classes /m/03v3yw ("Keys jangling") and 

/m/0k4j ("Car") in the YouTube video -0RWZT-miFs for the 10-second chunk from t=420 sec to 

t=430 sec which is illustrated in Figure 2-1. 
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 The Audio Set Ontology of Engine  

The sound of a machine generates mechanical energy. Combustion engines use fuel to 

generate heat, which in turn generates force. Electric motors are devices that convert electrical 

energy into mechanical motion. Pneumatic motors and clockwork motors are two other types of 

engines.  

The Audio Set Ontology demonstrated in Figure 2-2 is a structured set of audio event 

categories. The provided categories are an extensive collection of terminology that may be utilized 

to identify audio events occurring in real-time soundtracks. A specific acoustic tape falls into the 

category that best fits the notion or comprehension that the listener has after hearing it. The 

hierarchical structure makes it as simple as feasible for individuals to choose the finest, truly 

precise groups for a particular set of auditory files [24]. 

 

 
Figure 2-2 Engine Audio Set ontology [24]. 
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  The Audio Set Dataset Download 

Engine related classes were selected from the engine’s ontology. We made use of a toolkit for 

downloading the audio samples of engine knocking, engine starting, idling, and accelerating were 

used to detect knocking.  

Using the toolkit, we have selected the engine classes to download the subset of Audio Set. 

The YouTube IDs that contain labels connected with the specified class is found by parsing the 

CSV files published for the dataset. URLs are created with the YouTube IDs using a variety of 

Python programs. Using the automatically created URLs and associated timestamps for each video, 

ten-second audio snippets are obtained. On the user's computer, clips are kept locally or on cloud 

for further use [25]. 

 

Figure 2-3 Flow chart of downloading a class from Audio Set [25]. 
 

Figure 2-3 demonstrates how to obtain engine classes from Audio Set without having to 

gather all the samples for each class repeatedly, which would take a considerable amount of time. 
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  Improvised Toolkit for Downloading 

The repetitive audio recordings in the toolkit that we downloaded for each class were a 

significant problem. It was challenging to download the files because each class took more than 4 

hours to download and required the user to add input to an already downloaded or existing file. 

The existing code was modified, that makes sure duplicates are eliminated from the ontology file. 

As a result, the user is no longer required to submit information for every duplicate or existing file. 

It had a section in the toolkit's utils file where it reads the CSV file provided by Audio Set and 

overwrites the CSV file. We removed the overwriting section from the code, which solved the user 

input problem, but the same file was downloaded twice. We then checked the CSV file, and it 

contained duplicates, which we removed and pipelined to the toolkit. Finally, the issue with user 

input was resolved, and we were able to efficiently download all the classes of engine. 

 

Table 2-1 Description of engine audio set 

S.no Engine Audio Class Audio 
Samples Training Testing Total 

1 Acceleration 100 16000 X 2049 4000 X 2049 20000 X 2049 

2 Idle 100 16000 X 2049 4000 X 2049 20000 X 2049 

3 Start 100 16000 X 2049 4000 X 2049 20000 X 2049 

4 Knock 100 16000 X 2049 4000 X 2049 20000 X 2049 

Total 4 Classes 400 64000 X 2049 16000 X 
2049 80000 X 2049 

 

We used 400 different audio samples from Google's audio set, which we preprocessed using 

our novel method of preprocessing the engine's audio samples, yielding 80,000 rows and 2049 

columns. 
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   SOUND PREPROCESSING TECHNIQUES 

Python is a programming language that provides multiple libraries for audio processing, and 

it is rapidly growing as all multimedia trends. All Python libraries are open source and used for 

scientific and technical computing [26]. Librosa is an audio and music signal analysis library, it 

has been developed with easy to understand, use, parameters according to the terms used in sound 

analysis, retains backward compatibility against existing reference implementation, and keeps on 

evolving to resolve new issues [27]. We have used the Librosa library to process raw audio into 

deep-learning models. 

 Dependent Vehicle Feature Extraction 

Librosa library reads the raw audio sample, and we extract the file's sample rate and data. 

Utilizing the MinMax scaler, the data is normalized before being subjected to random 

segmentation and packing. Next, we separate the data into training and testing sets for the deep 

learning network. Figure 3-1 portrays the methodology to create a training and testing test. 

 

 
Figure 3-1 Preprocessing of audio using dependent vehicle feature extraction technique [28]. 
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Step 1: Audio data is normalized, and we take 𝑛𝑛 random points to pick 𝑘𝑘  length signal from 

the audio data for segmentation.  

Step 2: Almost every other frame is subsequently divided into 𝑌𝑌 bits of data records following 

acoustic fragmentation. 

Step 3: In favor of a simple deep learning network, data blocks are stored in a list, whereas for 

a CNN network, data blocks are stored in a 2-dimensional array or a data frame. CNN has made a 

mark for itself in classification, having been used not only for images but also for audio and other 

data types. A fully connected CNN feature fusion model that combined audio and video results in 

accurate results, allowing us to be confident in CNN for our knocking diagnosis [29]. 

 Sound Processing Methods 

The sound handling strategy is significant in examining information present in the sound as 

the raw signal would neither lead us to any pattern recognition nor could be plotted to envision 

signals. Signal processing applications frequently require time domain information as well as the 

frequency content of the signal to analyze audio. Many applications for audio signal processing 

can be found in digital speech and audio, digital and cellular telephones, automobile controls, 

communications, biomedical imaging, image/video processing, and multimedia [30]. 

3.2.1 Fast Fourier Transform 

The fast Fourier transform (FFT) is a computer algorithm that computes the discrete Fourier 

transform much faster than other algorithms. This algorithm is also useful to calculate power 

spectra. To understand FFT we must know the discrete Fourier transform, it is an algorithm that 

converts time-domain signal samples to frequency-domain components. This algorithm also 

establishes a connection between the time domain and frequency domain representations [31]. 

  𝑋𝑋(𝑘𝑘) = ∑ 𝑥𝑥(𝑛𝑛) . 𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁𝑁𝑁−1
𝜋𝜋=0  𝑘𝑘 = 0,1,2, … ,𝑁𝑁 − 1 (3.1) 

Equation (3.1) shows 𝑋𝑋(𝑘𝑘) is the discrete Fourier transform of signal 𝑥𝑥(𝑛𝑛). The recurrent 

waves, that are challenging to identify from the initial spectrum, can easily be extracted and 

analyzed using this technique. FFT has fewer computations when compared with discrete Fourier 

transform. Using this method, we can concentrate on each signal in the audio files. FFT is much 

faster than algorithms as it computes transformation for the whole signal of 1024 points 100 times 
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faster than other algorithms. This algorithm involves fewer computational addition, subtraction, 

and multiplication operations. 

In python, we can compute one-dimensional FFT using the NumPy library which has a 

function fft which uses the fastest algorithm to compute the Fourier transform of the audio signal. 

To obtain a frequency domain representation of the audio, engine audio samples were transformed 

using FFT in steps involved for dependent vehicle feature extraction technique. The sound files' 

totality of periodic and aperiodic impulses was converted from time to frequency. This method has 

been used in our investigation to draw attention towards the knocking signal, which is vividly 

observable in the frequency domain. 

 

 
Figure 3-2 Time domain representation of two distinct forms of engine. 

 

Figure 3-2 depicts two different audio files of engine datasets on the time domain, the signal 

in red being the engine knocking clip and the other being the idle engine. 
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Figure 3-3 clips are from the same categories as in Figure 3-2 and are a frequency domain 

representation of audio files. 

 

 

Figure 3-3 Frequency domain representation of two distinct forms of engine. 

 

3.2.2 Mel Frequency Cepstral Coefficients 

MFCC is a widely used technique in speech analysis. It is based on the known variation of the 

crucial frequency bandwidth of the human ear. De-connecting the result log energies of a channel 

bank made up of triangle filters which are straightly separated on the Mel frequency hierarchy 

yields the MFCC coefficients. As the most accurate estimate of the Karhunen-Loeve transform 

(KLT) currently available, the discrete cosine transform (DCT) implementation identified as 

distributed DCT (DCT - II) is typically used to separate the speech (KLT). A melodic cepstral 

acoustic vector is represented by MFCC data sets. The acoustic vectors are feature vectors that can 

be applied. A derivation on the MFCC acoustic vectors can be used to acquire more precise speech 

features. Speech signals do not scale linearly. As a result, for each tone with an actual frequency 
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at the sampling rate of 22 kHz. An idiosyncratic tone is computed in Hz at a range known as the 

'Mel' scale.  

  𝑀𝑀𝑒𝑒𝑀𝑀(𝑓𝑓) = 2595 ln �1 + 𝑓𝑓
700
� (3.2) 

The Equation (3.2) converts frequency to Mel scale measurement where 𝑓𝑓 is the frequency in 

Hz. MFCC coefficients are a bunch of DCT decor-related objects calculated via a modification of 

the logarithmically compacted channel result of vibrance got from a conceptually separated three-

sided channel bank that conducts the DFT discourse acoustic. 

  𝐶𝐶𝑚𝑚 = �2
𝑀𝑀
∑ log𝑄𝑄−1
𝑙𝑙=0 [𝑒𝑒(𝑀𝑀 + 1)]. cos [𝑚𝑚. �2𝑙𝑙+1

2
� .𝜋𝜋/𝑄𝑄] (3.2) 

Equation (3.2) calculates number of MFCC coefficients 𝐶𝐶𝑚𝑚 where m=0,1, 2,… ,R-1 , and R is 

the chosen amount of MFCCs. Filters on the Mel-frequency scale have been placed in the MFCC's 

filter bank structure. Because the neighboring filters consist of a corresponding region, they 

include additional interconnected data when compared to the filters extended. The correlation 

between filter powers varies (not holding to a first-order Markov correlation). Because of the non-

constant relationship together with the filter bank productions, utilizing a DCT to the whole log-

energy vector is improper. It is suggested to apply DCT in a disseminated way to obey the Markov 

fundamentals [32]. Engine knocking is a sound produced by a machine and we applied MFCC 

over the samples to differentiate engine sounds by extraction coefficients using the dependent 

vehicle feature extraction method. Librosa library has been used to convert audio samples into 

MFCC coefficients. By offering arguments to set the number of frames, hop length, number of 

MFCCs, and other parameters, the librosa. feature. mfcc method makes acquiring MFCCs easier.   

 

 
Figure 3-4 MFCC for knoked and idle engine. 
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The MFCC spectrogram for 50 coefficients for knocked and idle engine audio samples is 

shown in Figure 3-2. There are some differences in above images where the high dimensional 

model resulted in pattern recognition but at a high computational cost.  

3.2.3 Short-time Fourier Transform 

The traditional Fourier transform is the foundation for the short-time Fourier transform 

(STFT). The reason for developing this transformation was to enhance the Fourier transform (FT), 

which can manage the recurrence space, by duplicating a windowing capability with limited time 

before the Fourier change. The STFT could guarantee permission to recurrence space data while 

retaining adequate time-domain material. The Fourier change of the subsequent sign is utilized as 

the windowing capability sliding along the sign set, permitting the restriction and time-fluctuating 

recurrence area investigation to be comprehended [33]. The data to be transformed could be 

divided into frames in the discrete-time case (which usually have a fixed overlap). Each frame is 

Fourier transformed, and the resulting complex result is added to a matrix, which records the 

magnitude and phase for each time and frequency point. The STFT is defined in Equation (3.6) as 

shown below. 

  𝑋𝑋(𝑘𝑘) = 1
𝑊𝑊
∑ [𝑥𝑥(𝑛𝑛)𝑤𝑤(𝑛𝑛)𝑊𝑊−1
𝜋𝜋=0 ]𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋/𝑊𝑊  𝑘𝑘 = 0,1, . . . ,𝑊𝑊 − 1  (3.6) 

where ( )x n  is the original signal, ( )w n  is the window function, which can reduce the leakage of 

the spectrum of the transformation. When compared to FFT, STFT has more information for audio 

samples and ensures that repeated information is not considered. STFT can be used to extract 

engine noises because it does away with FFT's restrictions. The addition of the window function 

allowed the STFT to accurately reflect the properties of engine sound signals in both the time and 

frequency domains, allowing it to fully show the dynamic process of engine sound and distinguish 

between distinct engine sound signals. 

In STFT, the resolution of time and frequency can be traded off. To put it another way, a 

narrow-width window produces a better resolution in the time domain but a poorer resolution in 

the frequency domain, and vice versa. The spectrogram, which is an intensity representation of 

STFT magnitude over time, is frequently used to visualize STFT. Figure 3-4 displays two 

spectrograms showcasing various time-frequency resolutions.  
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Figure 3-5 STFT for knocked and idle engine. 

 

We used STFT to extract time and frequency features from our audio data using a sliding 

window that allows us to jump or skip data points from the sample. The Librosa library includes 

an STFT feature extraction function with various parameters for extracting audio according to the 

requirements.  
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   DEEP LEARNING NEURAL NETWORKS PERFORMANCE 

Deep learning (DL) remains exceptionally vital around our daily lives. This area of research 

has already had a significant influence in fields, for example, malignant growth identification, 

accuracy medication, self-driving vehicles, prescient gauging, and discourse acknowledgment. 

Conventional understanding, categorization, and design establishing techniques use meticulously 

handcrafted feature extractors that remain incomprehensible for enormous datasets. DL can 

likewise conquer the restrictions of prior superficial algorithms that forestalled effective 

preparation and deliberations of various leveled portrayals of multi-layered training information 

much of the time, contingent upon the issue's intricacy. Deep neural network (DNN) uses many 

levels of components that are extremely augmented in terms of procedures and designs [34].  

Deep neural networks' success is based on advances in fast and large-scale computations. 

These structures typically demand additional reckoning capacity as well as preparation information 

than traditional approaches. Central processing units are not ideal for these complex algorithms. 

As an alternative, matrix-boosted processors, primarily conventional-end graphics managing 

elements and product-limited multilingual electric circuit like commercial tensor processing units, 

are commonly used. Smaller models are required for applications with limited high-end resources, 

like cellular phones or listening services. While many recent works focus on neural network 

generalization, solidity, or preparing with small budgets, the issue could be reasonable to explore 

choices for the necessities of constant sound signal handling [35].  

 Artificial Neural Network (ANN) 

An ANN is a particular kind of neural network which prepares using procedures to study 

interpretations from datasets deprived of the need for manually designing feature extractors. It is 

well known under the category of multilayer perceptron (MLP). In contrast to the shallow learning 

model, which has fewer layers of units, deep learning has a higher or deeper number of processing 

layers. More complicated and continuous tasks can now be efficiently represented because of the 

transition from shallow to deep learning systems [36].  

The idea of an ANN is first introduced in the context of biology, where neural networks are 

crucial to the functioning of the human body. Neural networks assist in the functioning of the 
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human body. A neural network is nothing more than a web of millions of millions of 

interconnected neurons. The human body performs all parallel processing with the assistance of 

these interconnected neurons, making it the ideal example of parallel processing. A neuron is a 

specific type of biological cell that uses electrical and chemical changes to transmit information 

from one neuron to another [37].  

Keras is Powerful and simple to use, it is a free open-source Python framework for creating 

and analyzing deep learning models. It enables you to create and train neural network models and 

is a component of the TensorFlow library. Using data, we can construct an ANN, specify the model, 

compile it, fit it, and forecast the outcomes [38].  

Even though there are other deep learning libraries like PyTorch and MXnet, we still favor 

using Keras because of its straightforward framework for building, compiling, and running models 

[39]. The effectiveness of the method employed to categorize and recognize bird sounds was the 

deciding factor in the selection of ANN [40]. To improvise the results produced by ANN can be 

modified using hyper parameter tuning, there are number of arguments and parameters present in 

ANN that can be modified according to the results [41]. The technique of spectrum detection 

involves comparing a signal's spectrum against a fixed or adaptive threshold (automatic). There is 

a sound at that frequency if the spectrum is greater than the threshold value for that frequency, 

which can be accurately detected using deep-learning neural networks [42]. 

Predictive Analysis ANN can be used for both supervised and unsupervised training by 

preprocessing using normalization, fast Fourier transformation, Short-Time Fourier 

Transformation, Mel Filter bank, and Mel Frequency Cepstral Coefficient [43]. Deep Neural 

Network with hyperparameter tuning with hyper parameters improves the model furthermore [44]. 

Our problem focuses on supervised training, and within this training, we have a classification 

problem. Humans labeled the audio samples provided by Audio Set, and we built a classification 

ANN model to accurately classify engine sounds.  

  𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅(𝑧𝑧) = max {0, 𝑧𝑧}  (4.1) 

Equation (4.1) is a ReLU activation function used in hidden layers, which chooses max 

between 0 and z.  

  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝑛𝑛:𝑔𝑔(𝑥𝑥)𝑗𝑗 =  𝑒𝑒(𝑤𝑤𝐾𝐾+1
𝑗𝑗  𝑥𝑥+𝑏𝑏𝐾𝐾+1

𝑗𝑗 )

∑ 𝑒𝑒(𝑤𝑤𝑘𝑘+1
𝑗𝑗 𝑥𝑥+𝑏𝑏𝑘𝑘+1

𝑘𝑘 )𝑁𝑁
𝑘𝑘=1

  (4.2) 
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Equation (4.2) gives a number between 0 and 1 for each class, SoftMax function is used for 

multi-variate classification. 

 

 

Figure 4-1 ANN architecture for multi-class. 
 

Figure 4-1 depicts the classification architecture used in our research. It has one input layer, 

two hidden layers, and one output layer with four neurons because we are dealing with four 

different types of audio files. Activation functions in ANN are an essential component of neural 

network design. The activation function used in the hidden layer determines how well the network 
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model learns the training dataset. The type of predictions that the model can make will be 

determined by the activation function used in the output layer. In our architecture we made use of 

ReLu activation function in hidden layers and SoftMax function for the output layer.  

 Experiment Results 

Engine knocking, engine idle, engine accelerating, and engine starting are the four categories 

into which engine audio clips from the Audio Set dataset are divided. Before diving into the results, 

let's talk about the several feature extraction strategies that were used to fit the data into binary 

classification and multi-class classification models. We employed simple ANN to classify these 

audio clips using the dependent vehicle feature extraction technique. Figure 4-2 displays the FFT 

feature extraction utilized for engine knocking and engine idling. 

 

 
Figure 4-1 FFT of engine knocking and engine idle. 
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We used these audio files for FFT binary classification and multi-class classifications Figure 

4-3, shows FFT for engine starting and engine accelerating. We started with binary classification 

because the results were noteworthy, and then we switched to multi-class classification. 

 

 

 

Figure 4-3 FFT of engine accelerating and engine starting. 
 

We used MFCC to extract audio features from all four classes of engine audio files after 

applying FFT. When comparing the MFCC feature extraction technique against numerous models, 

including binary and multi-class classification, FFT came out on top. FFT analyzes a signal to 

determine its frequency content. MFFCs are perceptually motivating characteristics that mimic 

how humans perceive pitch. FFT has a linear resolution and evenly spaced bins.  
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Figure 4-4 depicts the MFCC feature extracted from the engine starting and accelerating at 50 

MFCC’S, whereas Figure 4-5 displays MFCC extraction of engine idle and knock with similar 

MFCC coefficients as Figure 4-4. 

 

  

 

Figure 4-4 MFCC of engine starting and engine accelerating. 
 

MFCCs are a condensed representation of the spectrum of an audio signal, where a waveform 

is represented by the sum of a potentially infinite number of sinusoids. When a cepstral coefficient 

is positive, most of the spectral energy is concentrated in low-frequency regions. If, on the other 

hand, a cepstral coefficient is negative, it indicates that the vast majority of the ghastly energy is 

assembled at increased frequencies. 
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Figure 4-5 MFCC of engine knocking and engine idle. 

4.2.1 Results for ANN using FFT feature extraction 

Figure 4-3 depicts FFT for engine starting and accelerating; we used these audio clips for FFT 

binary and multi-class classifications. We started with 17 epochs for binary classification model 

and then moved on to 50 epochs for multi-class classification.  
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(1)  ANN FOR ENGINE KNOCK VS ENGINE IDLE USING FFT 

The average accuracy is 96.17% and it takes 1 mins and 25 sec to finish the training. Figures 4-

4, 4-5, 4-6, 4-7, 4-8, and 4-9 show that the method has good classification accuracy. 

 

 

Figure 4-6 Training progress of ANN (knock vs idle). 
 

 

Figure 4-7 Testing accuracy of ANN (knock vs idle). 
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Figure 4-8 Training loss of ANN (knock vs idle). 
 

 

Figure 4-9 Testing loss of ANN (knock vs idle). 
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Figure 4-10 Evaluation metrics of ANN (knock vs idle). 
 

 

Figure 4-11 Confusion matrix for ANN (knock vs idle). 
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(2)  ANN FOR ENGINE KNOCK VS ENGINE START USING FFT 

The average accuracy is 93.16%. It takes 1 mins and 24 sec to finish the training. From the below 

Figures, we can see that the method has lower classification accuracy when compared with the 

above ANN model. 

 

 

Figure 4-12 Training progress of ANN (knock vs start). 
 

 

Figure 4-13 Testing accuracy of ANN (knock vs start). 
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Figure 4-14 Training loss of ANN (knock vs start). 
 

 

Figure 4-15 Testing loss of ANN (knock vs start). 
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Figure 4-16 Evaluation metrics of ANN (knock vs start). 
 

 

Figure 4-17 Confusion matrix for ANN (knock vs idle). 
  



 
 

42 

(3)  ANN FOR ENGINE KNOCK VS ENGINE ACCELERATION USING FFT  

The average accuracy is 97.00%; it takes 1 mins and 06 sec to finish the training. Figures below 

show that the method has better classification accuracy when compared with engine start and idle 

audio samples ANN model. 

 

 

Figure 4-18 Training progress of ANN (knock vs acceleration). 
 

 

Figure 4-19 Testing accuracy of ANN (knock vs acceleration). 
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Figure 4-20 Training loss of ANN (knock vs acceleration). 
 

 

Figure 4-21 Testing loss of ANN (knock vs acceleration). 
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 Figure 4-22 Evaluation metrics of ANN (knock vs acceleration). 
 

 
Figure 4-23 Confusion matrix for ANN (knock vs acceleration). 
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(4)  ANN FOR MULTICLASS CLASSIFICATION USING FFT 

The average accuracy is 92.00%. It takes 6 mins and 28 sec to finish the training. From Figures 

beneath exhibits that the method has optimal classification accuracy for all the  engine audio 

samples ANN model. 

 

 

Figure 4-24 Training progress of ANN (multi-class classification). 
 

 

Figure 4-25 Testing accuracy of ANN (multi-class classification). 
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Figure 4-26 Training loss of ANN (multi-class classification). 
 

 

Figure 4-27 Testing loss of ANN (multi-class classification). 
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Figure 4-28 Evaluation metrics of ANN (multi-class classification). 
 

 

Figure 4-29 Confusion matrix of ANN (multi-class classification). 
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4.2.2 Results for ANN using MFCC feature extraction 

We know that MFCC is appropriate for human speech, but we used it to the engine sound 

samples, which generated intriguing results. FFT has produced some fantastic results not only for 

binary classification, but also for multi-class classification.  

 

(1)  ANN FOR ENGINE KNOCK VS ENGINE IDLE USING MFCC 

The average accuracy is 90.28% and it takes 3 mins and 22 sec to finish the training. Images 

below illustrates that the method has produced almost equal classification accuracy as FFT. 

 

 

Figure 4-30 Training progress of ANN (knock vs idle). 
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Figure 4-31 Testing accuracy of ANN (knock vs idle). 
 

 

Figure 4-32 Training loss of ANN (knock vs idle). 
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Figure 4-33 Testing loss of ANN (knock vs idle). 
 

 

Figure 4-34 Evaluation metrics of ANN (knock vs idle). 
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Figure 4-35 Confusion matrix for ANN (knock vs idle). 
 

(2)  ANN FOR ENGINE KNOCK VS ENGINE START USING MFCC 

The average accuracy is 85.87%; it takes 2 mins and 45 sec to finish the training. Figures 

explains that the method has maintained good classification accuracy when compared with above 

ANN model it is lower by 5%. 

 

 

Figure 4-36 Training progress of ANN (knock vs start). 
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Figure 4-37 Testing accuracy of ANN (knock vs start). 
 

 

Figure 4-38 Training loss of ANN (knock vs start). 
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Figure 4-39 Testing loss of ANN (knock vs start). 
 

 

Figure 4-40 Evaluation metrics of ANN (knock vs start). 
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Figure 4-41 Confusion matrix for ANN (knock vs start). 
 

(3)  ANN FOR ENGINE KNOCK VS ENGINE ACCELERATION USING MFCC  

The average accuracy is 90.14%. It takes 3 mins and 22 sec to finish the training. Explanation 

of training and testing resulted images are shown below and this method has better classification 

accuracy when compared with engine start and idle audio samples ANN model. 

 

 

Figure 4-42 Training progress of ANN (knock vs acceleration). 
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Figure 4-43 Testing accuracy of ANN (knock vs acceleration). 
 

 

Figure 4-44 Training loss of ANN (knock vs acceleration). 
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Figure 4-45 Testing loss of ANN (knock vs acceleration). 
 

 

 

 Figure 4-46 Evaluation metrics of ANN (knock vs acceleration). 
 



 
 

57 

 
Figure 4-47 Confusion matrix for ANN (knock vs acceleration). 

  

(4)  ANN FOR MULTICLASS CLASSIFICATION USING MFCC 

The average accuracy is 77.52% and it takes 17 mins and 22 sec to finish the training. From 

Figures 4-48 till 4-53 we can see that the method has not obtained suitable classification accuracy 

for all the  engine audio samples ANN model. 

 

 

Figure 4-48 Training progress of ANN (multi-class classification). 
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Figure 4-49 Testing accuracy of ANN (multi-class classification). 
 

 

Figure 4-50 Training loss of ANN (multi-class classification). 
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Figure 4-51 Testing loss of ANN (multi-class classification). 
 

 

Figure 4-52 Evaluation metrics of ANN (multi-class classification). 
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Figure 4-53 Confusion matrix of ANN (multi-class classification). 
 

Table 4-1 lists all the models together to illustrate which gives the best result for fault 

diagnosis in the engine. Note that we have used binary classification and multi-class classification 

techniques to detect knocking from engine audio samples. ANN models will be chosen from both 

methods used. 

 

Table 4-1 Accuracies of ANN algorithms 

Audio Samples Class Preprocessing Accuracy F1 

Knock Vs Idle Binary FFT 96.17 96.00 

Knock Vs Start Binary FFT 92.80 93.00 

Knock Vs Acceleration Binary FFT 95.06 94.00 

All four classes Multi FFT 92.18 92.00 

Knock Vs Idle Binary MFCC 90.28 90.00 

Knock Vs Start Binary MFCC 85.87 85.00 

Knock Vs Acceleration Binary MFCC 90.14 90.00 

All four classes Multi MFCC 77.52 73.00 
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The results show that the signal following feature extraction can be used as the input of the 

ANN algorithm to achieve comparatively high accuracy, with the binary model of knock and idle 

audio, fault distinguishable from idle sound, and decent accuracy in multi-class. When compared 

to MFCC, FFT is the best preprocessing method for detecting knocking. 

We discovered from section 3.2 that MFCC is appropriate for human voice patterns because 

it can detect differences in pitch from audio samples. Music instruments can also be classified 

using MFCC; in our ANN models, there is no significant difference between MFCC and FFT; in 

fact, FFT has won the battle by a significant margin, as seen in ANN models of MFCC and FFT. 
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 DESIGN OF 2D CONVOLUTIONAL NEURAL NETWORK 

 2D-CNN Structure  

The convolutional neural network (CNN) is one of the most popular deep neural networks. It 

derives its name from the linear convolution operation between matrices in mathematics. 

Convolutional, non-linear, pooling, and fully connected layers are among the many layers that 

make up CNN. Pooling and non-linearity layers lack parameters, but convolutional and fully 

connected layers do. In machine learning issues, CNN performs quite well. Particularly the image-

related applications, such as the largest image classification data set (Image Net), computer vision, 

and natural language processing (NLP), and the outcomes obtained were truly astounding [45]. 

Four components are typically required to build a 2D-CNN model. Convolution is a critical 

step in the feature extraction process. Convolutional outputs are known as feature maps. We will 

lose information on the border if we use a convolution kernel of a certain size. As a result, padding 

is introduced to enlarge the input with a zero value, which can indirectly adjust the size. 

Furthermore, stride is used to control the density of convolving. The lower the density, the longer 

the stride. Following convolution, feature maps contain many features, which are prone to 

overfitting. As a result, pooling, including max pooling and average pooling, is proposed to 

eliminate redundancy [46]. 

The neural model's parameters must be adjusted to the necessary degree. Gradient descent is 

typically applied in this situation to ensure the highest level of precision. A first-order iterative 

optimization procedure for resolving the local minima of differentiable functions is the gradient 

descent method (GDM). It is frequently employed in machine learning to resolve least squares 

issues. Since the steepest fall is in the direction of the gradient at the current position of the function, 

it makes sense to repeat the steps in that direction. The data from known solutions are included in 

the training set, and the neural network model can be tuned to a reasonably accurate level [47].  

In our research we have used the standard Adam as the learning rate to improve the accuracy 

using gradient descent. Keras library has been used to implement this optimizer with a categorical 

cross-entropy loss function for the network.  
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Although 2D-CNN has primarily been used for image classification [48], we have also used 

it to classify audio, and the results are very remarkable. Architecture that we have used for this 

task can be seen in Figure 5-1  

 

 

Figure 5-1 2D-CNN architecture for audio classification. 
 

With the introduction of large datasets such as ImageNet, image classification performance 

has greatly improved using convolutional neural network (CNN) architectures such as AlexNet, 

VGG, Inception, and ResNet [49]. We have decided to make our basic design to characterize sound 

examples, our examination centers around information instead of deep learning networks.  

 

Table 5-1 Information of 2D-CNN Layers 

Layer name CNN Models (Kernel Filter, Activation Function, Strides, Padding) 

C1 Conv 2D (32*3*3, ReLU, 1, None) 

C2 Conv 2D (48*3*3, ReLU, 1, None) 

C3 Conv 2D (128*3*3, ReLU, 1, None) 

MXP3 Maxpooling 2D (2,2,1) 

FC1 Fullyconnect (128, ReLU) 

FC2 Fullyconnect (64, ReLU) 

Output SoftMax, Classification 
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To extract high-level information, we use triplet sequential convolutional and merging levels. 

Each convolutional layer employs the ReLU activation function. Three convolution layers are 

applied before the maximum pooling process. Finally, the adoption of two fully interconnected 

layers, each with the ReLU activation function. A soft-max layer is used to achieve the classified 

output. 

 Experimental Results 

We have used the same format as ANN in 2D-CNN to classify audio files. Simple architecture 

has been used to classify, when it comes to preprocessing stage which stands as central point of 

our research. In preprocessing stage, we have STFT and MFCC to form input for the 2D-CNN 

network, dependent vehicle feature extraction has been deployed. To store the data, we have used 

data frames and in addition to ANN steps we have separated testing and training data while 

capturing each class data.  

This architecture also performs binary classification and multi-class classification to compare 

it to all previous models produced by ANN. The architecture for multi-class and binary classes 

does not change, but the activation function at the final layer does. We used the sigmoid activation 

function for binary and the SoftMax activation function for multi-class. 

In general, 2D-CNN is a more potent and accurate method of classifying data and 

convolutional neural networks (CNN) are among the most widely used models today. This neural 

network computational model employs a multilayer perceptron variation and includes one or more 

convolutional layers that can be entirely connected or pooled. These convolutional layers generate 

feature maps that capture a region of the image, which is then divided into rectangles and sent out 

for nonlinear processing. Since ANN executes more quickly than other deep learning networks 

like CNN, it continues to be the industry standard for issues with small datasets and no requirement 

for visual inputs. Instead of using photos as the network's input, we preprocessed the data into data 

frames to increase 2D-CNN's efficacy and decrease the network's execution time. These data 

frames can be used in the same way as images and converted back to images, as we typically do 

with CNN issues. 

2D-CNN is frequently designed with dense layers [50], which we did not use in our model; 

instead, we used a simple architecture. CNN has an advantage over ANN in terms of accuracy; 

ANN only accepts tabular data, whereas CNN can also work with images [51].  
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5.2.1 Results for 2D-CNN using STFT feature extraction 

The 2D-CNN model has been tested with engine-knocking audio samples for each class at 17 

iterations, and the multi-class model has also been validated at 50 iterations.  

 

(1)  2D-CNN FOR ENGINE KNOCK VS ENGINE IDLE USING STFT 

The average accuracy is 95.08%, and it takes 1 mins and 35 sec to finish the training which is 

very less than ANN due to its simple structure. This method has excellent classification accuracy. 

 

 

Figure 5-2 Training progress of 2D-CNN (knock vs idle). 
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Figure 5-3 Testing accuracy of 2D-CNN (knock vs idle). 
 

 

Figure 5-4 Training loss of 2D-CNN (knock vs idle). 
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Figure 5-5 Testing loss of 2D-CNN (knock vs idle). 
 

 

Figure 5-6 Confusion matrix for 2D-CNN (knock vs idle). 
 

(2)  2D-CNN FOR ENGINE KNOCK VS ENGINE START USING STFT 

The average accuracy is 92.29%; it takes 1 mins and 44 sec to finish the training. From Figures 

5-7 till 5-11 we can see that the method has lesser classification accuracy when compared with 

above idle sound model and it converges in about 17 epochs. 
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Figure 5-7 Training progress of 2D-CNN (knock vs start). 
 

 

Figure 5-8 Testing accuracy of 2D-CNN (knock vs start). 
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Figure 5-9 Training loss of 2D-CNN (knock vs start). 
 

 

Figure 5-10 Testing loss of 2D-CNN (knock vs start). 
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Figure 5-11 Confusion matrix for 2D-CNN (knock vs idle). 
 

(3)  2D-CNN FOR ENGINE KNOCK VS ENGINE ACCELERATION USING STFT 

The average accuracy is 94.79%. It takes 1 mins and 56 sec to finish the training. From the 

Figures below we can see that the method has better classification accuracy when compared with 

engine start but not with idle audio samples ANN model. 

 

 

Figure 5-12 Training progress of 2D-CNN (knock vs acceleration). 
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Figure 5-13 Testing accuracy of 2D-CNN (knock vs acceleration). 
 

 

Figure 5-14 Training loss of 2D-CNN (knock vs acceleration). 
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Figure 5-15 Testing loss of 2D-CNN (knock vs acceleration). 
 

 
Figure 5-16 Confusion matrix for 2D-CNN (knock vs acceleration). 

  

(4)  2D-CNN FOR MULTICLASS CLASSIFICATION USING STFT 

The average accuracy is 90.70%; it takes 7 mins and 88 sec to finish the training. As we can see, 

the method has the finest classification accuracy for all the engine audio samples ANN model, and 

an illustration of its validation can be seen below in Figures. 
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Figure 5-17 Training progress of 2D-CNN (multi-class classification). 
 

 

Figure 5-18 Testing accuracy of 2D-CNN (multi-class classification). 
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Figure 5-19 Training loss of 2D-CNN (multi-class classification). 
 

 

Figure 5-20 Testing loss of 2D-CNN (multi-class classification). 
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Figure 5-21 Confusion matrix of 2D-CNN (multi-class classification). 

5.2.2 Results for 2D-CNN using MFCC feature extraction 

We know that MFCC is appropriate for human speech, but we used it to the engine sound 

samples, which generated intriguing results. FFT has produced some fantastic results not only for 

binary classification, but also for multi-class classification, and epochs in this model are same as 

FFT for both classification methods.   

 

(1)  2D-CNN FOR ENGINE KNOCK VS ENGINE IDLE USING MFCC 

The average accuracy is 96.82% and it takes 1 mins and 05 sec to finish the training. Figures 

below show that the method has produced better classification accuracy when compared it with 

STFT. 
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Figure 5-22 Training progress of 2D-CNN (knock vs idle). 
 

 

Figure 5-23 Testing accuracy of 2D-CNN (knock vs idle). 
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Figure 5-24 Training loss of 2D-CNN (knock vs idle). 
 

 

Figure 5-25 Testing loss of 2D-CNN (knock vs idle). 
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Figure 5-26 Confusion matrix for 2D-CNN (knock vs idle). 
 

(2)  ANN FOR ENGINE KNOCK VS ENGINE START USING MFCC 

The average accuracy is 94.47%; it takes 1 mins and 15 sec to finish the training. This method 

has maintained good classification accuracy when compared with the above model as it is lower 

by small margin. 

 

 

Figure 5-27 Training progress of 2D-CNN (knock vs start). 
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Figure 5-28 Testing accuracy of 2D-CNN (knock vs start). 
 

 

Figure 5-29 Training loss of 2D-CNN (knock vs start). 
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Figure 5-30 Testing loss of 2D-CNN (knock vs start). 
 

 

Figure 5-31 Confusion matrix for 2D-CNN (knock vs start). 
 

(3)  2D-CNN FOR ENGINE KNOCK VS ENGINE ACCELERATION USING MFCC  

The average accuracy is 95.56%; it takes less than a minute to finish the training. This method 

has better classification accuracy when compared with engine start but idle audio samples model 

still stands as best. 

 



 
 

81 

 

Figure 5-32 Training progress of 2D-CNN (knock vs acceleration). 
 

 

Figure 5-33 Testing accuracy of 2D-CNN (knock vs acceleration). 
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Figure 5-34 Training loss of 2D-CNN (knock vs acceleration). 
 

 

Figure 5-35 Testing loss of 2D-CNN (knock vs acceleration). 
 

 

 



 
 

83 

 
Figure 5-36 Confusion matrix for 2D-CNN (knock vs acceleration). 

  

(4)  2D-CNN FOR MULTICLASS CLASSIFICATION USING MFCC 

The average accuracy is 91.17% and it takes 4 mins and 50 sec to finish the training. This model 

has obtained suitable classification accuracy for all the  engine audio samples. 

 

 

Figure 5-37 Training progress of 2D-CNN (multi-class classification). 
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Figure 5-38 Testing accuracy of 2D-CNN (multi-class classification). 
 

 

Figure 5-39 Training loss of 2D-CNN (multi-class classification). 
 



 
 

85 

 

Figure 5-40 Testing loss of 2D-CNN (multi-class classification). 
 

 

Figure 5-41 Confusion matrix of 2D-CNN (multi-class classification). 
 

Table 5-2 provides an overview of the 2D-CNN model, with binary and multi-class models 

and their respective feature extraction methods validated in terms of accuracy produced by each 

model. 
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Table 5-2 Accuracies of 2D-CNN algorithms 

Audio Samples Class Preprocessing Accuracy 

Knock Vs Idle Binary STFT 95.08 

Knock Vs Start Binary STFT 92.29 

Knock Vs Acceleration Binary STFT 94.79 

All four classes Multi STFT 90.70 

Knock Vs Idle Binary MFCC 96.82 

Knock Vs Start Binary MFCC 94.47 

Knock Vs Acceleration Binary MFCC 95.63 

All four classes Multi MFCC 91.17 

 

The results show that the MFCC method performs well for the 2D-CNN model because it 

extracts more data from the audio signal than STFT. The results of MFCC have surprised us, and 

we can say that MFCC can also be used for fault detection if we extract more data from the audio 

signal rather than just doing STFT. We can use both methods to detect the knocking sound from 

the engine because MFCC won by a small margin. 
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 DESIGN OF 1D CONVOLUTIONAL NEURAL NETWORK 

 1D-CNN Structure  

1D-CNN method is applied in critical wave handling functions like subject-limited ECG 

categorization, fundamental health examining, inconsistency identification in power electronics 

circuits, and motor-fault detection has lately been 1D Convolutional Neural Networks (CNNs). 

This is a predictable result given the many benefits of employing an efficient and shallow 1D CNN 

rather than a traditional (2D) deep equivalent and a correct 1D to 2D conversion is necessary when 

using a standard deep CNN for 1-D signal processing applications [52]. CNN is often defined as 

“2D CNN”. The application of 1D CNN means that we can input one-dimensional audio signals 

directly acquired by audio clips into the network for operation.  

Each convolution layer in 1D CNN is formed from numerous complication components. A 

back-propagation procedure enhances the limitations of every intricacy component, and the 

convolution activity's motivation is to extricate various elements of the information. Albeit the 

main convolution layer may just concentrate on a few low-layered parameters, extra layers of 

convolutional layers can extricate auxiliary perplexing elements from the low-layered parameters. 

The convolution layer plays out the convolution computation, with its convolution fragment 

convolved with the element submaps connected to the earlier layer. 

  𝑥𝑥𝑗𝑗𝑖𝑖 = 𝑓𝑓(∑ 𝑥𝑥𝑙𝑙𝑖𝑖−1𝑙𝑙∈𝑀𝑀𝑗𝑗 . k𝑙𝑙𝑗𝑗𝑖𝑖 + 𝑏𝑏𝑗𝑗𝑖𝑖)  (6.1) 

Where 𝑥𝑥𝑙𝑙𝑖𝑖−1, k𝑙𝑙𝑗𝑗𝑖𝑖 , 𝑏𝑏𝑗𝑗𝑖𝑖 ,𝑓𝑓,𝑀𝑀𝑛𝑛𝑎𝑎 𝑥𝑥𝑗𝑗𝑖𝑖  represents the input, the kernel weights, the biases, the 

activation function, the feature maps of the 𝑗𝑗 kernel in the 𝑀𝑀 convolutional layer respectively in 

Equation (6.1). 

The max amalgamating function produces new characteristic maps through subsampling the 

adjacent area and using the global algebraic qualities of nearby positions in the temporal field. 

This effectively reduces the parameter's dimension.  

  𝑥𝑥�𝑗𝑗𝑖𝑖 = 𝑓𝑓(𝛽𝛽𝑗𝑗𝑖𝑖.𝑎𝑎𝐶𝐶𝑤𝑤𝑛𝑛(𝑥𝑥𝑗𝑗𝑖𝑖) + 𝑏𝑏𝑗𝑗𝑖𝑖)  (6.2) 

Where 𝑥𝑥𝑙𝑙𝑖𝑖 ,𝛽𝛽𝑗𝑗𝑖𝑖, 𝑏𝑏𝑗𝑗𝑖𝑖 ,𝑎𝑎𝐶𝐶𝑤𝑤𝑛𝑛(),𝑀𝑀𝑛𝑛𝑎𝑎 𝑥𝑥�𝑗𝑗𝑖𝑖 represents the input, the weight matrix, the biases, the down 

sampling function, the feature maps of the 𝑗𝑗 kernel in 𝑀𝑀 the pooling layer respectively in Equation 

(6.2). 
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The output of feature extraction is the input of fully connected layers. The parameters 

combined in dual dimensions can convert to a 1-D parameterized array using the fully connected 

layer. As a result, each regional characteristic of the source information unified with numerous 

outlier characters, also, the changed highlights are then used to compute the result in support of 

every classification. The SoftMax function assesses the likelihood of all categorization outcomes, 

can generate the output vector of predictions. The cross-entropy capability is utilized to figure out 

the misfortune upsides of the result and target vectors [53]. 

  𝐶𝐶 = − 1
𝜋𝜋
∑ [𝑦𝑦𝜋𝜋 ln𝑎𝑎𝜋𝜋 + (1 − 𝑦𝑦𝜋𝜋) 𝑀𝑀𝑛𝑛  (1 − 𝑎𝑎𝜋𝜋)]𝜋𝜋−1
𝜋𝜋=0   (6.3) 

where 𝐶𝐶 is the total loss value, 𝑦𝑦𝜋𝜋 represents the 𝑘𝑘𝑡𝑡ℎ output vector of a fully connected neural 

network, 𝑎𝑎𝜋𝜋indicates the target vector of the 𝑘𝑘𝑡𝑡ℎ simulation data in Equation (6.3). 

2D-CNN was the most used architecture for image classification, but several researchers have 

suggested 1D CNNs recently, which take the raw audio stream as input. For audio tagging, music 

genre classification, environmental sound categorization, and 1D residual CNN architecture, 

various 1D CNN architectures have been developed [54]. 

 

 

Figure 6-1 1D-CNN architecture for audio classification. 
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We employed a standard 1D-CNN architecture with a minimal number of layers, as shown in 

Figure 6-1. Researchers have developed numerous sophisticated designs for various purposes, 

which also increases the complexity and time of the model. Table 6-1 contains the detailed 

parameters we used in the 1D-CNN structure. 

 

Table 6-1 Information of 1D-CNN Layers 

Layer name CNN Models (Kernel Filter, Activation Function, Strides, Padding) 

C1 Conv 1D (64*3*1, ReLU, 1, None) 

C2 Conv 1D (64*3*1, ReLU, 1, None) 

MXP3 Maxpooling 1D (2,2,1) 

FC1 Fullyconnect (100, ReLU) 

Output SoftMax, Classification 

 

From Table 6-1 and Figure 6.1, we can understand a detailed explanation of all the elements 

involved in 1D-CNN to classify audio samples of the engine. 

 Experimental Results 

We have used the same setup for ANN, 2D-CNN, and 1D-CNN architectures in this research. 

Initially, we will be testing on binary and multi-class classification. 

6.2.1 Results for 1D-CNN using STFT feature extraction 

After validating the 2D-CNN structure, we discovered that it has a higher computation cost 

than the 1D-CNN structure. Classification methods used in all the preceding models can also be 

applied to 1D-CNN with less computation cost. Epochs were 17 for binary class and 50 for multi-

class model. 
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(1)  1D-CNN FOR ENGINE KNOCK VS ENGINE IDLE USING STFT 

The average accuracy is 97.58%; it takes 3 mins and 24 sec to finish the training. Figures 6-2, 

6-3, 6-4, 6-5, and 6-6 show that the method has best classification accuracy. 

 

 

Figure 6-2 Training progress of 1D-CNN (knock vs idle). 
 

 

Figure 6-3 Testing accuracy of 1D-CNN (knock vs idle). 
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Figure 6-4 Training loss of 1D-CNN (knock vs idle). 
 

 

Figure 6-5 Testing loss of 1D-CNN (knock vs idle). 
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Figure 6-6 Confusion matrix for 1D-CNN (knock vs idle). 
 

(2)  1D-CNN FOR ENGINE KNOCK VS ENGINE START USING STFT 

The average accuracy is 94.79% and it takes 3 mins and 24 sec to finish the training. Lower 

classification accuracy has been seen in this method when compared with above idle sample sound 

model. 

 

 

Figure 6-7 Training progress of 1D-CNN (knock vs start). 
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Figure 6-8 Testing accuracy of 1D-CNN (knock vs start). 
 

 

Figure 6-9 Training loss of 1D-CNN (knock vs start). 
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Figure 6-10 Testing loss of 1D-CNN (knock vs start). 
 

 

Figure 6-11 Confusion matrix for 1D-CNN (knock vs idle). 
 

(3)  1D-CNN FOR ENGINE KNOCK VS ENGINE ACCELERATION USING STFT 

The average accuracy is 97.14%. It takes 3 mins and 23 sec to finish the training. Better 

classification accuracy has been observed in this method when compared with engine start but idle 

audio samples  model still stand as best. 
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Figure 6-12 Training progress of 1D-CNN (knock vs acceleration). 
 

 

Figure 6-13 Testing accuracy of 1D-CNN (knock vs acceleration). 
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Figure 6-14 Training loss of 1D-CNN (knock vs acceleration). 
 

 

Figure 6-15 Testing loss of 1D-CNN (knock vs acceleration). 
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Figure 6-16 Confusion matrix for 1D-CNN (knock vs acceleration). 

  

(4)  1D-CNN FOR MULTICLASS CLASSIFICATION USING STFT 

The average accuracy is 90.00%; it takes 4 mins and 45 sec to finish the training. High quality 

classification accuracy for all the  engine audio samples model is seen in this method which is 

demonstrated in below figures. 

 

 

Figure 6-17 Training progress of 1D-CNN (multi-class classification). 
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Figure 6-18 Testing accuracy of 1D-CNN (multi-class classification). 
 

 

Figure 6-19 Training loss of 1D-CNN (multi-class classification). 
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Figure 6-20 Testing loss of 1D-CNN (multi-class classification). 
 

 

Figure 6-21 Confusion matrix of 1D-CNN (multi-class classification). 

6.2.2 Results for 1D-CNN using MFCC feature extraction 

MFCC is a popular technique for extracting features from an audio signal. Because these audio 

signals are mostly human voices, validating MFCC for engine audio samples in the above models 

yielded significant results, and 1D-CNN confirmed that MFCC is a good feature extraction 

technique for engine fault diagnosis. Epochs setup is same as STFT 1D-CNN. 
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(1)  1D-CNN FOR ENGINE KNOCK VS ENGINE IDLE USING MFCC 

The average accuracy is 92.72% and it takes 3 mins and 27 sec to finish the training. Figures 6-

22, 6-23, 6-24, 6-25, and 6-26 show that the method has produced lower classification accuracy as 

STFT. 

 

 

Figure 6-22 Training progress of 1D-CNN (knock vs idle). 
 

 

Figure 6-23 Testing accuracy of 1D-CNN (knock vs idle). 
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Figure 6-24 Training loss of 1D-CNN (knock vs idle). 
 

 

Figure 6-25 Testing loss of 1D-CNN (knock vs idle). 
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Figure 6-26 Confusion matrix for 1D-CNN (knock vs idle). 
 

(2)  1D-CNN FOR ENGINE KNOCK VS ENGINE START USING MFCC 

The average accuracy is 90.04%; it takes 4 mins and 22 sec to finish the training. From Figures 

6-27 till 6-31 we can see that the method has maintained good classification accuracy when 

compared with above idle model it is lower by small percentage. 

 

 

Figure 6-27 Training progress of 1D-CNN (knock vs start). 
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Figure 6-28 Testing accuracy of 1D-CNN (knock vs start). 
 

 

Figure 6-29 Training loss of 1D-CNN (knock vs start). 
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Figure 6-30 Testing loss of 1D-CNN (knock vs start). 
 

 

Figure 6-31 Confusion matrix for 1D-CNN (knock vs start). 
 

(3)  1D-CNN FOR ENGINE KNOCK VS ENGINE ACCELERATION USING MFCC  

The average accuracy is 93.21%. It takes 4 mins and 45 sec to finish the training. From Figures 

below we can see that the method has better classification accuracy when compared with engine 

start and idle audio samples model. 
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Figure 6-32 Training progress of 1D-CNN (knock vs acceleration). 
 

 

Figure 6-33 Testing accuracy of 1D-CNN (knock vs acceleration). 
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Figure 6-34 Training loss of 1D-CNN (knock vs acceleration). 
 

 

Figure 6-35 Testing loss of 1D-CNN (knock vs acceleration). 
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Figure 6-36 Confusion matrix for 1D-CNN (knock vs acceleration). 

  

(4)  1D-CNN FOR MULTICLASS CLASSIFICATION USING MFCC 

The average accuracy is 91.24%; it takes 4 mins and 57 sec to finish the training. We can see in 

below Figures that the method has done very well on classification accuracy for all the engine 

audio samples model. 

 

 

Figure 6-37 Training progress of 1D-CNN (multi-class classification). 
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Figure 6-38 Testing accuracy of 1D-CNN (multi-class classification). 
 

 

Figure 6-39 Training loss of 1D-CNN (multi-class classification). 
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Figure 6-40 Testing loss of 1D-CNN (multi-class classification). 
 

 

Figure 6-41 Confusion matrix of 1D-CNN (multi-class classification). 
 

Table 6-2 is the summarized version of all the variations of classes and audio samples used in 

1D-CNN has been mentioned with accuracy as the metric to evaluate the model for binary and 

multi-class. 
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Table 6-2 Accuracies of 1D-CNN algorithms 

Audio Samples Class Preprocessing Accuracy 

Knock Vs Idle Binary FFT 97.58 

Knock Vs Start Binary FFT 94.79 

Knock Vs Acceleration Binary FFT 97.14 

All four classes Multi FFT 90.07 

Knock Vs Idle Binary MFCC 92.72 

Knock Vs Start Binary MFCC 90.04 

Knock Vs Acceleration Binary MFCC 93.21 

All four classes Multi MFCC 91.24 

 

Regardless of their applications, both preprocessing methods from Table 6-2 MFCC and FFT 

can be used to detect knocking. 

We can see that FFT produces better accuracy than MFCC, but we cannot ignore the accuracy 

produced by both preprocessing methods on the simple architecture of 1D-CNN. FFT with idle 

samples is the best binary model, and MFCC has good accuracy in multi-class. 
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 CONCLUSION AND FUTURE WORK 

In our research, we have employed three different designs to identify engine faults. We have 

discovered knocking samples in multi-class settings in addition to finding them in various engine 

circumstances. While the complexity of deep learning models was the focus of all prior research, 

we were more concerned with the data, which is the industry's biggest challenge. The accuracy of 

finding engine knocking was increased by using a dependent vehicle feature extraction technique. 

 

Table 7-1 Comparison of all models used to detect knocking 

Models Class Preprocessing Accuracy 

ANN Multi FFT 92.18 

ANN Multi MFCC 77.52 

2D CNN Multi STFT 90.70 

2D CNN Multi MFCC 91.17 

1D CNN Multi FFT 90.07 

1D CNN Multi MFCC 91.24 

 

Compared to ANN, 2D-CNN and 1D-CNN all outperformed it with the feature extraction 

method, with 1D-CNN coming out on top. If time complexity is a concern, we can switch to ANN 

which can be seen in Table 7-2 which has average time utilized by each model and look for 

knocking in the samples.   

 

Table 7-2 Time complexity of all models used to detect knocking 

Models Training time Testing time 

ANN 279.25 sec 0.1 sec 

2D CNN 457.25 sec 0.1 sec 

1D CNN 336.37 sec 0.1 sec 
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The exhibition of well-known convolutional neural networks (CNN), and Artificial neural 

networks (ANN) for engine error identification built on audio signal processing has been validated. 

The audio wave handling methods incorporate the dependent vehicle feature extraction technique 

with short-time Fourier transform (STFT), Mel-frequency cepstral coefficient (MFCC), and fast 

Fourier transform (FFT). The Audio set of the engine ontology dataset is embraced for our engine 

fault detection. FFT-CNN achieves the most elevated precision in the CNN-based networks, and 

the FFT-ANN networks have the most elevated exactness in the ANN-based networks. The CNN-

based networks perform better compared to the ANN networks overall. MFCC model offers the 

finest performance in a multi-class environment. Our simulations validate the effectiveness of each 

network input formulation. Moreover, the one-dimensional convolutional neural network is 

studied and constructed.  

We can develop an independent vehicle feature extraction technique that can be applied to any 

vehicle in the future and the current research will stand as a base for such a strategy. Our engine 

fault detection method detects faults brilliantly from the vehicle samples present in the Audio set; 

however, each vehicle has unique characteristics and throughputs, it is difficult to apply the same 

technique to all vehicles. Engine faults detected in different audio samples from the Audio set can 

be further classified into various faulty engine parts that are causing such a knocking sound. 

Techniques like data augmentation [55] and an extensive collection of engine audio samples 

will lead us to a more generalized version of engine-knocking detection. Our research has some 

limitations such as the fact that it can only be applied to cars that have been used in training our 

deep learning models, and that it cannot be used to detect knocking on running road cars because 

the source will be a microphone that will collect other sounds besides engine sound; the challenge 

will be separating the engine sound from the noise. Blind source separation is a technique for 

distinguishing engine sounds from other sounds. We can have the perfect tool to detect knocking 

across any car by using a denser audio set that contains audio samples of cars that are frequently 

seen on the road and a blind source separation technique. 
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