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ABSTRACT

Graph representation learning (GRL) has been increasing used to model and understand

data from a wide variety of complex systems spanning social, technological, bio-chemical

and physical domains. GRL consists of two main components (1) a parametrized encoder

that provides representations of graph data and (2) a learning process to train the encoder

parameters. Designing flexible encoders that capture the underlying invariances and char-

acteristics of graph data are crucial to the success of GRL. On the other hand, the learning

process drives the quality of the encoder representations and developing principled learning

mechanisms are vital for a number of growing applications in self-supervised, transfer and

federated learning settings. To this end, we propose a suite of models and learning algorithms

for GRL which form the two main thrusts of this dissertation.

In Thrust I, we propose two novel encoders which build upon on a widely popular GRL

encoder class called graph neural networks (GNNs). First, we empirically study the predic-

tion performance of current GNN based encoders when applied to graphs with heterogeneous

node mixing patterns using our proposed notion of local assortativity. We find that GNN

performance in node prediction tasks strongly correlates with our local assortativity metric—

thereby introducing a limit. We propose to transform the input graph into a computation

graph with proximity and structural information as distinct types of edges. We then propose

a novel GNN based encoder that operates on this computation graph and adaptively chooses

between structure and proximity information. Empirically, adopting our transformation and

encoder framework leads to improved node classification performance compared to baselines

in real-world graphs that exhibit diverse mixing. Secondly, we study the trade-off between

expressivity and efficiency of GNNs when applied to temporal graphs for the task of link

ranking. We develop an encoder that incorporates a labeling approach designed to allow

for efficient inference over the candidate set jointly, while provably boosting expressivity.

We also propose to optimize a list-wise loss for improved ranking. With extensive evalua-

tion on real-world temporal graphs, we demonstrate its improved performance and efficiency

compared to baselines.

17



In Thrust II, we propose two principled encoder learning mechanisms for challenging and

realistic graph data settings. First, we consider a scenario where only limited or even no la-

belled data is available for GRL. Recent research has converged on graph contrastive learning

(GCL), where GNNs are trained to maximize the correspondence between representations

of the same graph in its different augmented forms. However, we find that GNNs trained

by traditional GCL often risk capturing redundant graph features and thus may be brittle

and provide sub-par performance in downstream tasks. We then propose a novel principle,

termed adversarial-GCL (AD-GCL), which enables GNNs to avoid capturing redundant in-

formation during the training by optimizing adversarial graph augmentation strategies used

in GCL. We pair AD-GCL with theoretical explanations and design a practical instanti-

ation based on trainable edge-dropping graph augmentation. We experimentally validate

AD-GCL by comparing with state-of-the-art GCL methods and achieve performance gains

in semi-supervised, unsupervised and transfer learning settings using benchmark chemical

and biological molecule datasets. Secondly, we consider a scenario where graph data is silo-

ed across clients for GRL. We focus on two unique challenges encountered when applying

distributed training to GRL: (i) client task heterogeneity and (ii) label scarcity. We propose

a novel learning framework called federated self-supervised graph learning (FedSGL), which

first utilizes a self-supervised objective to train GNNs in a federated fashion across clients

and then, each client fine-tunes the obtained GNNs based on its local task and available

labels. Our framework enables the federated GNN model to extract patterns from the com-

mon feature (attribute and graph topology) space without the need of labels or being biased

by heterogeneous local tasks. Extensive empirical study of FedSGL on both node and graph

classification tasks yields fruitful insights into how the level of feature / task heterogeneity,

the adopted federated algorithm and the level of label scarcity affects the clients’ performance

in their tasks.
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1. INTRODUCTION

Data from a wide variety of complex systems spanning social, technological, bio-chemical and

physical domains are primarily modelled using graphs (or networks) 

1
 that jointly describe a

set of entities (nodes) and their relationships (edges) [ 1 ], [ 2 ]. This abstract formulation using

a graph data object allows one to be extremely flexible in modelling various metadata infor-

mation like node and edge attributes, relation types and timestamps. When incorporated, it

leads to attributed graphs, multi-relational graphs and temporal graphs respectively—just

to name a few different graph forms which we will extensively use in this dissertation. Given

the rise of large online social networks, billion scale interconnected devices [ 3 ] and massive

scientific initiatives from modelling biological interactomes [ 4 ]–[ 6 ] to high energy particle jet

clouds in physics [  7 ]–[ 9 ], the quantity, quality and diversity of graph data is ever increasing

and building machine learning techniques that can reason about graph data is paramount

to numerous downstream prediction applications. For example, in social networks, classify-

ing users (nodes) is vital for personalized search and advertising; in e-commerce networks,

predicting future links (edges) between users and products is key to providing recommen-

dations [  10 ]–[ 12 ]; in protein interactomes, predicting interactions (edges) between proteins

is crucial to improve drug-design strategies [ 13 ]–[ 15 ]; for bio-chemical molecules, predicting

molecular properties (subgraphs / whole-graph) is useful for various tagging and screening

tasks [  16 ]–[ 19 ]. Towards this end, decades of work have been put into building models and

frameworks for general machine learning problems in graphs viz., node classification, link

prediction and graph classification among others.

Traditional approaches heavily relied on feature engineering to obtain meaningful features

at the node level (e.g., degree, centrality and assortativity) [ 20 ]; edge level (e.g., common

neighbors, Katz index and Adamic-Adar index) [  21 ], [  22 ]; subgraph level (e.g., ego graphs,

motifs and graphlets) [ 23 ], [  24 ] and graph level (e.g., spectra, diameter, random walks and

kernels) [ 25 ], [  26 ]. Various supervised and unsupervised tasks were solved using these features

as input to off-the-shelf machine learning techniques. While, hand-engineered features are

principled in nature and based on well tested observations in network science, they can be
1

 ↑ the term graph and network are used interchangeably
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inflexible and brittle—they cannot adapt during a learning process and often discard several

other important aspects of the graphs that are not covered in their design. Designing these

features can also be time consuming and inefficient—calculating various graph statistics often

incur quadratic or exponential time.

Over the past decade, the principles of representation learning have in part fueled the

meteoric rise of modern deep learning [ 27 ], [  28 ] for various applications [  29 ]–[ 37 ]. Repre-

sentation learning prescribes to learn flexible representations of data that capture “useful”

features relevant to solving downstream tasks while simultaneously discarding “less relevant”

or noisy features [  38 ]. Importantly, the inherent inductive bias of the representation learner,

constraints in the learning process and priors on the data itself together drive the quality

of the learnt representations. In the context of graphs, approaches in graph representa-

tion learning (GRL) that aims to encode graph-structured data into low-dimensional vector

representations, have recently shown great potential for many applications in biochemistry,

physics and social sciences [  9 ], [  14 ], [  39 ], [  40 ]. Central to GRL is (1) a parameterized encoder

function that generates representations of a graph at different levels (node, edge, subgraph)

and (2) the learning process which trains the parameters of the encoder.

This dissertation revolves around GRL touching various aspects of its fundamental com-

ponents with two main thrusts: Thrust I (Chapters  3 and  4 ) will be devoted to the study

of how the characteristics of the underlying graph data affect the current state-of-the-art

encoders which motivate us to develop new techniques and algorithms to improve their ef-

fectiveness and efficiency. Thrust II (Chapters  5 and  6 ) focuses on the study of current

encoder learning mechanisms under various setting such as semi-supervised, self-supervised,

transfer and federated settings. We find that the learned representation quality from current

approaches have several deficiencies and we propose principled learning techniques that lead

to improvements on various real-world benchmarks.

1.1 Thrust I: Encoder Design Driven by Graph Data Characteristics

Mixing Characteristics. Graph neural networks (GNNs) [  41 ], [  42 ], inheriting the power

of neural networks [  43 ], [  44 ] have become the de facto encoder of choice for GRL due to their
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useful properties which include parameter sharing, permutation invariance, inductiveness and

computational efficiency. In particular, message passing graph neural networks [  35 ], [  45 ]–[ 47 ]

work by propagating node features across edges which is then followed by aggregation e.g.,

sum, mean, attention and so on for a number of iterations. The central idea is to utilize

the neighbourhood (proximity) information of a node to construct its representation which

in turn serves as a useful descriptor for predicting its label. Given the successful adoption

of GNNs for various graph related tasks [ 10 ], [  35 ], [ 48 ]–[ 50 ], much effort in the community

has been devoted to understanding the nature and working of GNNs. While most promi-

nent studies have looked at them from the standpoint of the combinatorial color refinement

algorithm for graph isomorphism testing (Weisfeiler-Lehman tests) [  51 ]–[ 54 ] with the goal

of analysing and improving their expressive power, there are also some works that use the

lens of graph signal processing to understand their working [  55 ]–[ 59 ]. The latter works view

the GNN’s neighborhood convolution as a non-linear local node feature smoothing operation

akin to graph filtering and point out that GNNs essentially enforce similarity of representa-

tions between adjacent nodes and they behave as “low-pass” filters, filtering high frequency

noise components in the convolution step. Because the convolution operations are defined on

neighbourhoods, the apparent local nature prohibits the use of far away information in the

graph to generate node representations. Further, when multiple such GNN convolution lay-

ers are stacked with the hopes of using long-range information, the performance decays due

to a so called over-smoothing problem [ 60 ]–[ 63 ]—resulting node representations becoming

indistinguishable. We experimentally study this phenomenon in GNNs using the notion of

mixing from network science. Specifically, mixing is defined to quantify the degree at which

similar node attributes/labels connect to in local network regions [  64 ], [  65 ]. For instance, in

social networks, people with similar habits and ideals form friendships with each other [ 22 ].

In citation networks, papers from a similar area tend to cite each other. These can be recog-

nized as assortative mixing nodes. In the opposite, disassortative mixing nodes can be found

in technological networks where node hierarchy exists, heterosexual dating networks based

on gender and ecological food webs where predator and prey tend to be dissimilar. Due to

the neighborhood smoothing property of GNNs, we experimentally observe that its predic-

tion performance is strongly bounded by the assortative mixing value of a graph. Moreover,
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when applied to real world networks that exhibit heterogeneous or diverse mixing patterns,

we observe that the performance of GNNs for node classification tasks is highly correlated

with the notion of node level assortativity. We then make a simple but important distinction

between the input and the computation graph on which a GNN operates. While conven-

tionally, these two graphs mean the same thing, our previous observations motivates us to

distinguish the two and we propose to run GNNs on a computation graph that inherently

has high assortativity irrespective of the mixing patterns observed in the input graph. This

leads to our graph transformation algorithm which transforms the original input graph into

a computation graph using proximity and structural information and we experimentally wit-

ness improved semi-supervised node classification performance under diverse mixing when

off-the-shelf GNNs are run on our computation graph. We also experimentally show how

our computational graph has an enhanced level of assortativity to which we attribute the

observed gains.

Temporal Characteristics. Many practical machine learning applications for graphs fo-

cus on predicting future interactions among nodes, based on an observed sequence of past

interactions, for example, recommendations in heterogeneous information systems [  66 ], [  67 ],

social behavior prediction [  68 ], [ 69 ], and financial system monitoring [ 70 ], [  71 ]. In this case

representing the data as a temporal graph [ 72 ] and formulating the prediction task as link

prediction has proved quite successful. While there has been a great deal of research focused

on GRL methods to improve predictive performance on a wide variety of downstream tasks

(e.g., [  39 ], [  73 ]), much of this effort has centered on static graphs. In temporal graph rep-

resentation learning (T-GRL), the main goal is to learn representations to predict how the

graphs evolve over time [  68 ], [  74 ], [  75 ]. Many previous T-GRL models (e.g., TGN [ 75 ]) in-

herit the limited expressivity of standard GNNs for link prediction. GNNs such as GCN [ 45 ]

associate each node with a representation and update such a representation by aggregating

the neighbor representations [  39 ]. However, representations that use this aggregation proce-

dure fail to encode the structural information that is important for link prediction [ 76 ]–[ 78 ].

Since most T-GRL models, including TGN, update node representation in the same manner

(i.e. updating representations based on the nodes one has interacted with [ 66 ], [ 74 ], [ 75 ],

[ 79 ]). They also fail to encode such structural information. Another problem is that to
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date, these methods optimize node representations using a pointwise loss function geared to

maximize accuracy independently over future links (conditioned on the graph of interactions

in the past). This objective doesn’t reflect the fact that many complex systems have con-

straints that produce dependencies among future links. For example, a user selects among a

set of items to decide what to purchase next, or among a set of users to connect to next in a

social network. In this case, the predictions are either presented as a ranked list to the user

(ie. thru recommendations) or resources are allocated based on the ranking assuming that

actions at the top of the rank are more likely to happen (eg. caching information, matching

advertisers). While we can rank predictions from a model that is learned from a pointwise

loss, it is likely that representations learned with a joint ranking loss will generalize better

for ranking tasks. Further, our study shows that even when a rank learning mechanism is

employed in current methods, several modelling issues arise due to a trade-off between ex-

pressivity in the learned representation and scalability of estimation/inference. We address

these issues and propose Temporal Graph network for Ranking (TGRank), which signifi-

cantly improves performance for link prediction tasks by (i) optimizing a list-wise loss for

improved ranking, and (ii) incorporating a labeling approach designed to allow for efficient

inference over the candidate set jointly, while provably boosting expressivity. We extensively

evaluate TGRank over real networks, where the performance of TGRank outperforms the

state-of-the-art baselines in ranking metrics while being more efficient on large networks.

1.2 Thrust II: Learning Mechanisms

Adversarial Graph Contrastive Learning. GNNs have been mostly studied in cases

with supervised end-to-end training [ 45 ], [  52 ], [  53 ], [  77 ], [  80 ]–[ 82 ], where a large number of

task-specific labels are needed. However, in many applications, annotating labels of graph

data takes a lot of time and resources [ 83 ], [ 84 ], e.g., identifying pharmacological effect of

drug molecule graphs requires living animal experiments [  85 ]. Therefore, recent research ef-

forts are directed towards studying self-supervised learning for GNNs, where only limited or

even no labels are needed [  84 ], [  86 ]–[ 97 ]. Designing proper self-supervised-learning principles

for GNNs is crucial, as they drive what information of graph-structured data will be captured
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by GNNs and may heavily impact their performance in downstream tasks. Many previous

works adopt the edge-reconstruction principle to match traditional network-embedding re-

quirement [  98 ]–[ 101 ], where the edges of the input graph are expected to be reconstructed

based on the output of GNNs [ 46 ], [ 86 ], [ 91 ]. Experiments showed that these GNN models

learn to over-emphasize node proximity [  93 ] and may lose subtle but crucial structural in-

formation, thus failing in many tasks including node-role classification [  77 ], [  101 ]–[ 103 ] and

graph classification [ 83 ]. To avoid the above issue, graph contrastive learning (GCL) has at-

tracted more attention recently [  84 ], [  87 ]–[ 90 ], [  92 ], [  93 ], [  95 ]–[ 97 ]. GCL leverages the mutual

information maximization principle (InfoMax) [  104 ] that aims to maximize the correspon-

dence between the representations of a graph (or a node) in its different augmented forms [ 84 ],

[ 87 ]–[ 90 ], [  94 ], [  95 ]. Perfect correspondence indicates that a representation precisely identifies

its corresponding graph (or node) and thus the encoding procedure does not decrease the

mutual information between them. However, researchers have found that the InfoMax prin-

ciple may be risky because it may push encoders to capture redundant information that is

irrelevant to the downstream tasks: Redundant information suffices to identify each graph to

achieve InfoMax, but encoding it yields brittle representations and may severely deteriorate

the performance of the encoder in the downstream tasks [ 105 ]. This observation reminds us

of another principle, termed information bottleneck (IB) [  106 ]–[ 111 ]. As opposed to Info-

Max, IB asks the encoder to capture the minimal sufficient information for the downstream

tasks. Specifically, IB minimizes the information from the original data while maximizing

the information that is relevant to the downstream tasks. As the redundant information gets

removed, the encoder learnt by IB tends to be more robust and transferable. Recently, IB

has been applied to GNNs [  112 ], [ 113 ]. But IB needs the knowledge of the downstream tasks

that may not be available. Hence, a natural question emerges: When the knowledge of down-

stream tasks are unavailable, how to train GNNs that may remove redundant information?

Previous works highlight some solutions by designing data augmentation strategies for GCL

but those strategies are typically task-related and sub-optimal. They either leverage domain

knowledge [  87 ], [ 89 ], [  95 ], e.g., node centralities in network science or molecule motifs in

bio-chemistry, or depend on extensive evaluation on the downstream tasks, where the best

strategy is selected based on validation performance [  89 ], [  94 ]. We approach this question by
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proposing a novel principle that pairs GCL with adversarial training, termed AD-GCL which

enables GNNs to avoid capturing redundant information during the training by optimizing

adversarial graph augmentation strategies used in GCL. We pair AD-GCL with theoretical

explanations and design a practical instantiation based on trainable edge-dropping graph

augmentation. We experimentally validate AD-GCL by comparing with the state-of-the-art

GCL methods and achieve performance gains of up-to 14% in unsupervised, 6% in transfer,

and 3% in semi-supervised learning settings overall with 18 different benchmark datasets for

graph level the tasks of molecule property regression and classification, and social network

classification.

Federated Self-Supervised Graph Learning. Federated learning (FL) is a distributed

learning paradigm that enables a collection of clients to collaboratively train a machine

learning model without the need of sharing their local training data [  114 ]–[ 116 ]. FL aims

for those clients to benefit from using data from each other without sacrificing data privacy

or paying a substantial communication cost. Recently, FL has been applied to graph rep-

resentation learning (GRL) [ 117 ]–[ 119 ], specifically, training graph neural networks (GNNs)

in federated ways, which has found applications in recommender systems [  120 ], [  121 ], drug

design [  122 ], molecule property prediction [  123 ], [  124 ], financial crime detection [  125 ], disease

and hospitalization prediction [ 126 ], [  127 ], and so on. Albeit promising, applying FL to GRL

often encounters unique challenges due to practical graph-structured data allocation. In this

work, we focus on the following two types of challenges. The first challenge is client-task

heterogeneity. Many GRL applications have graph-structured data share some common fea-

tures across clients while the prediction tasks vary substantially across clients. For example,

different pharmaceutical companies may have different design purposes and are therefore

to predict different properties (e.g., antibacterial v.s. anesthesia) of their designed drugs,

although these drug molecules have already been proved to have valid structures. Different

product departments in e-commerce (e.g., Electronics v.s. Office Products) may expect to

partition their customers into different interest groups, although their used data such as cus-

tomers’ co-purchasing networks and reviews share many common patterns. This defines a

special type of data heterogeneity different from most previous empirical studies in FL with

label distribution shift as the application scenario. The second challenge is label scarcity. Al-
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though graph-structure data is often not hard to get or construct, it often takes a lot of time

and resources to annotate the labels [ 83 ], [  128 ]. Think about difficulties in obtaining explicit

customers feedback in e-commerce and costly in vitro experiments for drug design in the

above two scenarios. Typically, annotating labels becomes even more challenging when data

gets moved from centralized (non-FL) scenarios to distributed (FL) scenarios. Typically, to

handle data heterogeneity, personalized FL methods based on such as meta learning [ 129 ],

[ 130 ], proximal regularization [  131 ] and moreau envelop [  132 ] have been proposed. These

methods often have a global model and train local models on clients with some adjustment of

the global model. Other personalized methods based on multi-task learning [  133 ], [  134 ] and

client clustering [ 135 ], [  136 ] do not assume a single global model, while these methods need

to optimize clients mixing or clustering parameters. Importantly, all these methods do not

by default address the issue of label sparsity per task. To address both challenges simultane-

ously in GRL, we propose to incorporate self-supervised learning (SSL) into FL. SSL forces

a model to extract patterns from the common feature (attributes and graph topology) space

without the need of labels or being biased by heterogeneous local tasks. SSL has recently

been applied to GRL in data-centralized scenarios when labels are sparse [ 88 ], [ 96 ], while we

argue that SSL has better potential in data-decentralized scenarios due to its great power

to deal with the potentially extreme heterogeneity in clients’ tasks. As the first work of

applying federated SSL to GRL, our main goal is to provide an extensive empirical study on

positioning the potential of SSL in this setting. We consider a simple framework and name

it Federated Self-supervised Graph Learning (FedSGL): FedSGL first performs SSL of GNNs

in a FL fashion over all clients; Then, each client fine-tunes the obtained GNNs based on its

local task and labels. We do not consider an end-to-end training framework because in theory

many recent works have proved that local fine-tuning can give as good prediction perfor-

mance as end-to-end personalized FL [  137 ], [ 138 ], and in practice, some clients may have new

downstream tasks added at a later point, where the central model is not contaminated by

previous tasks and can quickly adapt to the new task. With this framework, we study both

node classification and graph classification tasks by considering different combinations of

(a) non-personalized/personalized FL algorithms with (b) commonly-used SSL frameworks,

paired with (c) different local fine-tuning strategies. Our study of FedSGL yields fruitful
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insights into how the level of feature heterogeneity, the adopted federated SSL algorithm

and the level of label scarcity affects the clients’ performance in their tasks. Specifically,

(1) we observe a uniform advantage of FedSGL over local non-federated SSL, which means

using the features of other clients’ both labeled and unlabeled data is always beneficial even

if clients hold data for very different prediction tasks. (2) FedSGL has a good chance to

outperform supervised FL even if the latter adopts sophisticated personalized algorithms

such as FedProx [  139 ] and the state-of-the-art clustering-based FL for GRL [ 123 ], and even

if a good portion of labels are used in supervision. (3) The benefit of fine-tune mechanism

varies according to the tasks and the level of label sparsity. For graph classification tasks, we

observe that fine-tuning the model is beneficial even with very sparse local labels. However,

for node classification tasks, fine-tuning the model does no good in a sparse label regime.

As an extra contribution, to test FedSGL over node classification tasks, we construct and

introduce a new dataset with co-purchase networks based on different sales departments in

Amazon, which may be beneficial for a broader community.

1.3 Dissertation Organization

The rest of the dissertation is organized as follows,

• Chapter  2 provides an in-dept overview of the tools and techniques used in GRL and

introduces various important concepts which are relevant for our study.

• Chapters  3 and  4 are devoted to the study of how the characteristics of the underlying

graph data affect the current state-of-the-art encoders. Specifically, Chapter  3 presents

techniques to deal with various levels of assortative mixing in networks for a class of

encoders called graph neural networks and empirically analysis is conducted on various

benchmark datasets. Chapter  4 outlines our method and techniques to deal with

temporal graph characteristics, describes the model expressivity and complexity, and

presents empirical results for the task of temporal link ranking on real world datasets.
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• Chapter  5 focuses on the study of self-supervised graph representation learning, out-

lines a novel adversarial contrastive learning framework, and presents empirical results

on unsupervised, semi-supervised and transfer learning tasks using real world datasets.

• Chapter  6 is devoted to the study of decentralized training mechanisms for graph data.

We present a novel framework that can deal with client data heterogeneity and label

sparsity. Empirical experiments are presented on both node and graph level tasks using

real world datasets.

• Chapter  7 summarizes the contributions, provides concluding remarks and discusses

future work.

In all, Chapters  3 and  4 contribute to Thrust I and Chapters  5 and  6 contribute to

Thrust II of this dissertation.
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2. GRAPH REPRESENTATION LEARNING

In this chapter we introduce some preliminary concepts which will be extensively applied,

analyzed and extended in the rest of this dissertation.

2.1 Graphs

An attributed graph G = (V, E) where V is a node set and E is an edge set. G may have

node attributes {Xv ∈ RF | v ∈ V } and edge attributes {Xe ∈ RF | e ∈ E} of dimension F .

We denote the set of the neighbors of a node v as Nv.

2.2 Learning Graph Representations

Given a set of graphs Gi, i = 1, 2, ..., n, in some universe G, the aim is to learn an

encoder f : G → Rd, where f(Gi) can be further used in some downstream task. Here, we

call f : G → Rd as the graph encoder.

We also assume that Gi’s are all IID sampled from an unknown distribution PG defined

over G. In a downstream task, each Gi is associated with a label yi ∈ Y . Another model

q : Rd → Y will be learnt to predict Yi based on q(f(Gi)). We assume (Gi, Yi)’s are IID

sampled from a distribution PG×Y = PY|GPG, where PY|G is the conditional distribution of

the graph label in the downstream task given the graph.

2.3 Graph Neural Networks (GNNs)

We focus on using GNNs, message passing GNNs in particular [ 35 ], as the encoder f .

For a graph G = (V, E), every node v ∈ V will be paired with a node representation hv

initialized as h(0)
v = Xv. These representations will be updated by a GNN. During the kth

iteration, each h(k−1)
v is updated using v′s neighbourhood information expressed as,

h(k)
v = UPDATE(k)

(
h(k−1)

v , AGGREGATE(k)
({

(h(k−1)
u , Xuv) | u ∈ Nv

}))
(2.1)

where AGGREGATE(·) is a trainable function that maps the set of node representations

and edge attributes Xuv to an aggregated vector, UPDATE(·) is another trainable function
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that maps both v’s current representation and the aggregated vector to v’s updated repre-

sentation. After K iterations of Eq.  2.1 , the graph representation is obtained by pooling the

final set of node representations as,

f(G) :, hG = POOL
(
{h(K)

v | v ∈ V }
)

(2.2)

For design choices regarding aggregation, update and pooling functions we refer the reader

to [ 39 ], [ 140 ], [ 141 ].

2.4 Weisfeiler-Lehman (WL) Test and Expressive Power of GNNs

Two graphs G1 and G2 are called to be isomorphic if there is a mapping between the

nodes of the graphs such that their adjacencies are preserved. For a general class of graphs,

without the knowledge of the mapping, determining if G1 and G2 are indeed isomorphic

is challenging and there has been no known polynomial time algorithms until now [ 142 ].

The best algorithm till now has complexity 2O(log n)3 where n is the size of the graphs of

interest [ 143 ].

The family of Weisfeiler-Lehman tests [  51 ] (specifically the 1-WL test) offers a very

efficient way perform graph isomorphism testing by generating canonical forms of graphs.

Specifically, the 1-WL test follows an iterative color refinement algorithm. Let, graph G =

(V, E) and let C : V → C denote a coloring function that assigns each vertex v ∈ V a color

Cv. Nodes with different features are associated with different colors. These colors constitute

the initial colors C0 of the algorithm i.e. C0,v = Cv for every vertex v ∈ V . Now, for each

vertex v and each iteration i, the algorithm creates a new set of colors from the color Ci−1,v

and the colors Ci−1,u of every vertex u that is adjacent to v. This multi-set of colors is then

mapped to a new color (say using a unique hash). Basically, the color refinement follows

Ci,v ← Hash(Ci−1,v, {Ci−1,u|u∈Nv}), (2.3)
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where the above Hash function is an injective mapping. This iteration goes on until when

the list of colors stabilises, i.e. at some iteration N , no new colors are created. The final set

of colors serves as the the canonical form of a graph.

Intuitively, if the canonical forms obtained by 1-WL test for two graphs are different,

then the graphs are surely not isomorphic. But, it is possible for two non-isomorphic graphs

to share a the same 1-WL canonical form. Though the 1-WL test can test most of the

non-isomorphic graphs, it will fail in some corner cases. For example, it cannot distinguish

regular graphs with the same node degrees and of the same sizes.

As GNNs share the same iterative procedure as the 1-WL test by comparing Eq.  2.3 

and Eq.  2.1 , GNNs are proved to be at most as powerful as the 1-WL test to distinguish

isomorphic graphs [ 52 ], [ 53 ].
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3. GRAPH REPRESENTATION LEARNING AND LOCAL

MIXING PATTERNS

In GNNs, the standard message passing works by propagating node features across edges

and followed by aggregation viz. sum, mean or attention for a number of rounds [  45 ]–[ 47 ].

The central idea is to utilize the neighbourhood information to construct a representation

that can be beneficial for downstream learning tasks. Looking through the lens of graph

signal processing, this operation of GNN could be viewed as a non-linear form of smooth-

ing operation on the neighborhood or a low-pass graph filtering which is invariant to graph

isomorphism. Clearly, one fundamental assumption made here is that similar nodes (w.r.t

node attributes and labels) have a higher tendency to connect to each other compared to

nodes that are far away. In other words, the philosophy followed is that proximity infor-

mation from the surroundings of a node is a useful descriptor for predicting its labels. In

network science, the concept assortative mixing is defined to quantify the degree of similar

node attributes/labels aggregated on local network regions [ 64 ], [ 65 ]. For instance, in social

networks, people with similar habits and ideals form friendships with each other [  22 ]. In ci-

tation networks, papers from a similar area tend to cite each other. These can be recognized

as assortative mixing nodes. In the opposite, disassortative mixing nodes can be found in

technological networks where node hierarchy exists, heterosexual dating networks based on

gender and ecological food webs where predator and prey tend to be dissimilar.

In this work, we aim to study the relationships between the limits of prediction perfor-

mance of GNN and different mixing patterns in a graph. Quantifying mixing patterns in

graphs has conventionally been done using a global binary notion of homophily/heterophily

or assortative/disassortative mixing. These global summary statistics capture the average

mixing patterns in the graph as an entire entity and are meaningful only when the mixing

patterns of a whole network are centered around the mean. However, most real world graphs

show heterogeneous and diverse mixing patterns wherein certain parts of the graph are as-

sortative while others disassortative [  144 ], [ 145 ]. For instance, Figure  3.2 demonstrates the

distributions of assortativity on several real world graphs in which both multimodal distri-

butions and long tail distributions are observed. Apparently, the global metrics will fail to
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measure this diversity on these complicated real world graphs. Recently, there has been a

growing interest in designing new GNN models utilizing the nature of assortativity in graphs

[ 146 ]–[ 150 ]. However, some of the representatives are based on heuristics leveraging node

attributes [  146 ] or intermediate node representations [  148 ] to address disassortative nodes in

the graph. Others simply incorporate node features from multi-hop neighbors [ 147 ] which

might help improve predictions of disassortative nodes but at the same time suffer the over-

smoothing problem of GNN [  56 ], [ 57 ], [  60 ]. GPR-GNN [ 150 ] may overcome the above issue

using generalized graph diffusion [  151 ] but loses model expressivity [ 152 ]. We reason that
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Figure 3.1. An input graph with diverse mixing pattern. Our pipeline uses
both proximity and structural information to build a computation graph on
which a GNN is run.

for GNNs to achieve good performance on graphs with diverse mixing, one has to provide

sufficient inductive bias that lets the model adaptively choose either proximity, structural

information or both for predicting node labels. This is based on the key observation that

disassortative nodes (potentially far apart) may share similar structural features while assor-
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tative nodes tend to share similar features within their proximity. Consider the input graph

G in Figure  3.1 and two nodes colored red i.e. 1 and 2 having same labels as each other

but different from the labels of their own neighbourhoods. Based on the theory of mixing

patterns, these two nodes are disassortative. Even though they are far apart, their local

connecting pattern is quite similar. For instance, by comparing degree sequences of nodes

1 and 2 in G at various neighbourhoods, we can see that at 0-hop both have similar degree

of 5 and 5 respectively, their 1-hop neighbours all have the same degree of 1 or 5 and so

on. This shows nodes 1 and 2 are structurally quite similar and therefore, we can make use

of their structural equivalences to construct a new graph in which nodes like 1 and 2 have

a connection with large weight. On the other hand, consider node like 5 and 6. They mix

assortatively and their surroundings/proximity can provide enough information to infer their

labels. Further, we could still benefit from the fact that nodes 5 and 6 have similar local

structure. In all, our idea is to construct a transformed computation graph that encodes

both structure and proximity information w.r.t each node and the GNN is run on this com-

putation graph instead of the original graph. Note that because similar (either structurally

or proximity) nodes have large weight in the computation graph it has an enhanced level of

assortativity and this can boost the prediction performance of GNNs.

To implement this idea, we first use a local measure of assortativity that can quantify

diverse mixing patterns introduced in [  144 ]. This new metric, named local assortativity,

is a node-centric measure of mixing patterns that calculates assortativity within a local

neighbourhood. We show that the representation capability of a wide range of GNN models

is highly correlated with the level of local assortative mixing in the graph, which sets a limit

to the prediction performance for GNN models based on message passing (Sec.  3.4 ). To

break this limit, we then develop a new algorithm which can transform the input graph

into a new one with higher assortativity level and suitable for the deployment of GNN by

leveraging both proximity and the local structural similarity of nodes at multiple scales.

Figure  3.1 shows the overall framework we propose based on the idea of transforming the

input graph to a new computation graph on which the GNN is run. Lastly, we conduct

extensive experiments and provide analysis to show the benefits of the proposed approach.
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Our code and an easy to use tool for evaluating GNNs w.r.t network local assortativity is

provided online  

1
 .

3.1 Preliminaries

A graph is defined as G = (V , E) in which V and E denote the node set and edge set,

respectively. An edge going from node u ∈ V to node v ∈ V is denoted as (u, v) ∈ E .

The adjacency matrix A ∈ R|V|×|V| is a convenient way to represent G where, A[u, v] = 1

if (u, v) ∈ E otherwise 0. A is a real valued matrix when there are weighted edges. For

multi-relational graphs, we extend the edge notation with type as (u, v, τ) ∈ E to denote

that the edge (u, v) belongs to type τ ∈ R.

We represent the node attributes or features as a matrix X ∈ R|V|×d where d is the

feature dimension. The feature of a particular node u ∈ V is a vector xu ∈ Rd. We denote

the neighbourhood around a given node u which is a set of nodes exactly one hop/step away

as N (u) = {v : (u, v) ∈ E}.

We consider the standard semi-supervised node classification task on G, where each node

u ∈ V has a class label yu. The goal is to learn a function f : V → Y mapping the set

of nodes to their class labels given some labelled nodes {(u1, yu1), (u2, yu2), . . . } as training

where ui ∈ V and yui
∈ Y .

3.1.1 Neural Message Passing

It is a framework that encompasses a range of GNN techniques inspired by the classical

color refinement algorithm for graph isomorphism testing [  35 ], [ 153 ]. During this refinement

process, vector messages are passed between nodes across edges and updated using neural

networks repeatedly for K rounds. The parameters are learned by defining a suitable loss

function and followed by back propagation. Concretely, during the kth iteration a hidden
1

 ↑  https://github.com/susheels/gnns-and-local-assortativity 
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representation h(k−1)
u corresponding to each node u ∈ V is updated using u’s neighbourhood

information. Expressed as,

mk
N (u) = AGGREGATEk

(
{h(k−1)

v : v ∈ N (u)}
)

(3.1)

h(k)
u = UPDATEk

(
h(k−1)

u , mk
N (u)

)
(3.2)

where AGGREGATE(·) is a trainable differentiable function mapping sets of hidden node

representations of u’s neighbours to an aggregated message vector, UPDATE(·) is also a

trainable differentiable function that maps both u’s current hidden representation and the

aggregated message vector to u’s updated representation. The initial representation h(0)
u

is initialized using the original node feature xu. After a total of K iterations following

Eq.  3.1 and  3.2 , we obtain final representations zu = hK
u ,∀u ∈ V . To perform node clas-

sification, we derive the class label of a node u by decoding it’s final representation via,

yu = argmax(softmax(MLPθ(zu))) where MLP is a neural network with trainable parame-

ters θ and the softmax function is used to get a probability distribution over the classes.

3.1.2 Mixing in Networks

The global assortativity coefficient rglobal introduced by Newman [ 65 ] is used to measure

mixing in networks which is the tendency of nodes with similar attributes/labels to be

connected to other nodes. To characterize the mixing pattern, a quantity Mgh is defined to

be the fraction of edges in a network that connect a node with label g to one of label h.

This helps us define a mixing matrix M whose elements are Mgh. This matrix satisfies the

following sum property ∑g

∑
h Mgh = 1. Global assortativity is a summary statistic for the

whole network and is defined as,

rglobal =
∑

g Mgg −
∑

g agbg

1−∑g agbg

(3.3)

where ag and bg represent the number of outgoing and incoming edges of all nodes of

label g as follows, ag = ∑
h Mgh and bg = ∑

h Mhg. The quantities a and b can be viewed
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as marginals that describe the proportion of edges starting from and ending at each of the

attributes. For undirected graphs where ends of edges are of same type, quantities ag and

bg are equal and M is symmetric. This allows us to write the elements of M as,

Mgh = 1
2m

∑
i:τi=g

∑
j:τj=h

Aij (3.4)

where Aij is an element of adjacency matrix, m = |E| is the number of edges and τi represents

the label of node i.

3.2 Related Work

Graph Neural Networks (GNNs) have been successfully adopted for many graph related

tasks [ 10 ], [  35 ], [  48 ]–[ 50 ] and much effort in the community has been in understanding the

nature and working of GNNs either with the lens of signal processing [ 56 ]–[ 59 ] or the combi-

natorial color refinement algorithm for graph isomorphism [  52 ]–[ 54 ], [ 77 ]. Li, Han, and Wu

[ 60 ] points out that GNNs essentially enforce similarity of representations between adjacent

nodes akin to some sort of local smoothing. In line with this view, NT and Maehara [  56 ]

shows that GNNs behave as “low-pass” filters filtering high frequency noise components in

the convolution step. Fu, Hou, Zhang, et al. [ 57 ] theoretically characterize the behaviour of

a number of GNN models by proposing that they work by smoothing and de-noising node

features. All these results show that when node features and labels vary smoothly or in other

words when there is assortative mixing, GNNs tend to work well.

Because the convolution operations are defined on neighbourhoods, the apparent local

nature prohibits the use of higher-order information in the graph. To alleviate this, Li, Han,

and Wu [  60 ] tried to stack multiple layers of GNNs but failed due to the over-smoothing

problem resulting from node representations becoming indistinguishable. This problem has

also been acknowledged in Klicpera, Bojchevski, and Günnemann [  61 ]. Another line of work

proposes graph attention [  47 ], [  149 ] computed using node features however, they are still

enforcing smoothing albeit adaptively making use of relevant information from a node’s

surrounding.
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In light of these results, a few works propose to supplant the basic message passing frame-

work of GNNs with extra graph information. PPNP [  61 ] uses PageRank, GDC [  154 ] utilizes

graph diffusion (e.g.,heat kernels) and Geom-GCN [  146 ] extends graph convolution with ge-

ometric aggregation derived by precomputing unsupervised node embeddings. GPR-GNN

[ 150 ] allows different hop neighbors being associated with different signs of scalar weights to

model high pass filters. Jumping Knowledge Networks [  155 ] leverages different neighborhood

ranges for each node to enable better structure-aware representations. Non-local GNNs [ 148 ]

use attention to adaptively get relevant long range graph information while H2GCN [  147 ]

and MixHop [  156 ] directly include information from higher order neighbourhoods within

each convolution step. A comprehensive review of various graph neural networks can be

found in [ 140 ], [ 141 ].

3.3 Local Mixing in Graphs

The global assortative coefficient rglobal defined in Eq.  3.3 captures the average mixing

pattern for the whole network but rglobal is only meaningful if all nodes have mixing concen-

trated around the mean. It has been studied that real world graphs exhibit high variation in

mixing patterns and we are essentially interested in how GNNs perform under such a diverse

mixing. For this we first utilize a node level measure of assortativity rlocal introduced by

Peel, Delvenne, and Lambiotte [  144 ] that is calculated w.r.t a local neighbourhood. This

allows us to interpolate the mixing from individual nodes to global graph level by varying

the size of the local neighbourhoods. Consider a simple random walker on an undirected

graph. It walks by selecting an edge at i with an equal probability of Aij/di where di is the

degree of node i. Then, the stationary probability of being at node i is given by πi = di/2m.

This means each edge is traversed with a probability of πiAij/di = 1/2m. Based on this and

noting that Aij ∈ {0, 1}, we can rewrite Eq.  3.4 as,

Mgh =
∑

i:τi=g

∑
j:τj=h

πi
Aij

di

(3.5)
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Eq.  3.5 reinterprets the mixing M from the point of view of using random walk to visit

the entire graph and thus reveals that the global assortativity counts all edges in the graph

equally. For the local measure of assortativity the edges are weighted according to how local

they are to a node of interest l by replacing the stationary distribution πi with an alternative

distribution over the nodes w(i; l). Then Eq.  3.5 becomes,

Mgh(l) =
∑

i:τi=g

∑
j:τj=h

w(i; l)Aij

di

(3.6)

The personalized PageRank vector is utilized as a proxy for w(i; l). Concretely, it is simple

random walk with restarts i.e. during a simple random walk, the walker can return to the

initial node of interest l with a probability of (1 − α). Varying α allows us to interpolate

from the trivial local neighbourhood (when α = 0 i.e. walker never leaves the node) to the

global assortativity (when α = 1 i.e. no restarts). Finally, the local assortativity metric for

a node l parameterized by α is,

rα(l) =
∑

g Mgg(l)−∑g a2
g

1−∑g a2
g

(3.7)

Note that we can recover the global assortativity metric from Eq.  3.7 , r1(l) = rglobal because

when (α = 1) no restarts happen, wα(i; l) falls back to πi. When calculating the rα(l) in

practice, instead of choosing α heuristically, inspired by TotalRank [  157 ], the PageRank

vector is averaged over the entire range of α ∈ [0, 1] as,

wtt(i; l) =
∫ 1

0
wα(i; l) dα (3.8)

With wtt(i; l) in place of w(i; l) in Eq.  3.6 and finally using the resultant mixing matrix in

Eq.  3.7 gives us our local assortativity metric rlocal(l).

In Figure  3.2 , we examine various networks from different domains for existence of diverse

mixing patterns using rlocal. The details of these networks are given in the supplemental

(Sec.  3.7.1 ). In almost all of them we witness skewed and multimodal distributions. It is

interesting to note that the global assortativity coefficient rglobal ≈ 0 (Eq.  3.3 ) while nodes
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exhibit diverse mixing over the full spectrum of rlocal. This observation highlights that rglobal

is not necessarily reliable as it doesn’t give a complete picture.
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Figure 3.2. Observed distribution of node level assortativity in various
graphs. The blue dotted line indicates global assortativity coefficient.

3.4 Problems of GNNs under Diverse Local Mixing

Given the observation in Figure  3.2 , we are interested in studying the behaviour of

various leading GNN models such as GCN [  45 ], GIN [  52 ] and GAT [ 47 ], when applied to

graphs with diverse mixing patterns. The task of semi-supervised node classification is used
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as a proxy to understand the power of modelling graph data w.r.t different levels of local

assortativity embedded in the graph. As shown in Figure  3.3 , the performance of GNN

models are highly correlated with the node-level local assortativity rlocal within the same

graph they are deployed. Across all the tested real world graphs, another clear pattern

is that most of the popular GNN methods perform poorly for disassortative nodes l with

rlocal(l) < 0. The reason is that the features of disassortative nodes are vastly different from

their neighbourhoods’ and, GNN methods simply cannot create useful node representations

based on the information provided by their neighbours through conventional node smoothing

operation (alluded in theoretical works [ 56 ], [  57 ]). We further characterize our reasoning

below with the help of two definitions.

Definition 3.4.1 (Neighbourhood Label Smoothness). A node u ∈ V with class label

yu ∈ Y has label smoothness parameter defined on the neighbourhood N (u) as, εu =
1

|N (u)|
∑

i∈N (u) P (yi = yu|yu)

Definition 3.4.2 (Neighbourhood Feature Smoothness). A node u ∈ V with feature vector

xu ∈ Rd has a smoothness parameter defined on the neighbourhood N (u) as, λu = ‖xu −
1

|N (u)|
∑

i∈N (u) xi‖2

Labels of disassortative nodes and their neighbours have high probability of being differ-

ent which means their labels tend to be not smooth in that neighbourhood, which is quite

clear from Def.  3.4.1 (their εu’s tends to be low). Then, it is also likely that features of such

nodes are not smooth either (high λu). This is based on a reasonable assumption that fea-

tures xu and class labels yu are correlated. However, GNNs try to smooth the node features

in the latent space which in turn smooth out the class label predictions. Thus, performing

poorly in a disassortative regime. On the flip side for neighbourhoods mixing assortatively,

owing to smooth labels all across, εu will be large, which also means high feature smoothness

(low λu), a regime that is very beneficial to GNNs. A key take away is that εu ∝ 1/λu and

this characterization explains the observations we witness in Figure  3.3 .
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Figure 3.3. GNNs vs Local Assortativity on various graphs. Node classifi-
cation is performed on various datasets. Y -axis shows mean F1-Micro with
standard deviation over 10 runs.

3.5 Decoupling the GNN Computation Graph and the Underlying Original
Graph

In Section  3.4 we showed that real world graphs contain diverse mixing patterns and

experimental results demonstrate that current GNN methods based on message passing

are unable to provide good representations for nodes that show disassortative mixing. To

break the limit introduced by the original graph structure, we design a graph transformation

algorithm which can generate a new graph with higher assortativity. The central idea is

to leverage the structural and proximity information in the original graph. Ideally, the

42



resulted new graph should have the following properties: (1) Constructed from the original

input graph using the same set of nodes without the class label information. (2) Encode

the structural equivalences in the original input graph in a model free manner. (3) Encode

proximity information as seen in the original graph.

These properties requires the construction of a new graph to be solely based on struc-

tural and proximity regularities of the original graph. Traditionally, GNN methods define

convolutions on the original input graph and various design choices are made. Different from

them, our framework aims to apply such GNN models on a transformed graph which we dub

as the “computation graph” for the same machine learning task. Note that our framework

consists of 2 stages. Stage (1) transforms the original input graph to a computation graph

and in Stage (2) GNN methods are applied on the computation graph for learning. In the

next section, we introduce one approach for graph transformation and later define message

passing on the transformed graph.

3.6 A Practical Framework for Improving the Performance of GNNs

One obvious choice to encode structural equivalences between nodes is to compare ordered

degree sequences at various hierarchies [  101 ]. The rationale is that any two nodes with same

degree are structurally similar, and if their one hop neighbours also have same degree, then

they are even more structurally similar and so on. Therefore, a key observation is that the

structural similarity between two nodes monotonically increases when their degree sequences

get progressively similar. More formally, let Nτ (g) denote the set of neighbouring nodes at

exactly τ hops away from node g in graph G. Let s(V ) represent a non-increasing (ordered)

sequence of degrees of a set V ⊂ V of nodes. The goal is to compare ordered degree sequences

at various neighbourhoods for every pair of nodes (g, h) in G. The notion of structural distance

[ 101 ] is recursively defined as follows,

fτ (g, h) = fτ−1(g, h) +D(s(Nτ (g)), s(Nτ (h))) (3.9)

where D(S1, S2) ≥ 0 measures the distance between ordered degree sequences S1 and S2 and

f−1(·) = 0. fτ (g, h) is defined for τ ≥ 0 and |Nτ (g)|, |Nτ (h)| > 0 i.e. only when neigh-
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bourhoods at τ exist. The cost function D(·, ·) should ideally give small values for similar

ordered degree sequences while provide large values for vastly different ones. Following [ 101 ],

we make use of Fast Dynamic Time Warping (DTW) [ 158 ] that is best suited for loosely

comparing sequences of different sizes. The recursive definition of structural distance in

Eq.  3.9 , makes sure that fτ (·, ·) can only increase as we successively progress through τ . So,

for nodes g and h, that are structurally similar, structural distance is low.

3.6.1 Incorporating Structure and Proximity Information in the Computation
Graph

We construct a weighted multi-relational computation graph C which encodes the struc-

tural distances at various hierarchies between pairs of nodes and proximity information

available in the original input graph G. Let T denote a number less the diameter of the

graph G and n = |V| the number of nodes. To construct the new graph C, we first add the

original node set V and for each pair of nodes (g, h) we create T + 1 different types of edges

where each type corresponds to the τ -hop neighbourhoods on which we calculated struc-

tural distance in G. To encode structural equivalence between nodes we define edge weights

wτ (g, h) between g and h with structural relation type τ to vary inversely with structural

distance fτ (g, h) as follows:

wτ (g, h) = e−fτ (g,h), τ = 0, 1, . . . T (3.10)

The edge weight for type τ between g and h is large when their τ -hop neighbors have similar

network structure properties (low structural distance).

For proximity information, we simply use the original edges of G and add it to C with

weight one. In total, this construction creates C which has V nodes and at most E+(T +1)(n
2)

edges. Naively using the above graph construction results in a large number of edges being

introduced and when run, requires O(n2) structural similarity calculations. However in

practice we use an heuristic algorithm which achieves O(n log n) calculations. The intuition

is that we don’t need to look at node pairs with large degree differences. For instance, given

nodes u and v with degree 1 and 20, we don’t have to compute the similarity between u
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and v as their structural similarity will be extremely small. We cap ourselves to a budget

of O(log n) nodes to look at for each node. The budget is picked based on the heuristic

of most similar degrees. Thus, pairwise structural similarity calculations are restricted to

O(log n) for each node at each τ -hop neighbourhood. We thus have O(n log n) edges for each

τ instead of O(n2). For completeness we provide the efficient practical implementation of

the algorithm for constructing the computation graph in Algo.  1 

In this work, we provide one specific implementation of our general idea of using both

structure and proximity information from the original graph into the computation graph.

Other structural techniques viz. RolX [  102 ], GraphWave [  103 ] and generalized proximity

inspired methods viz. Graph Diffusion [  154 ], PageRank [ 61 ] can also be adopted.

3.6.2 Message Passing on the Multi-relational Computation Graph

The constructed multi-relational graph C and the original graph G share the same node

set V and can be defined as (V , E ′,R). Each edge in C going from node u to v of type τ is

represented as a triplet (u, v, τ) ∈ E ′. Recall that there are T + 1 structural type edges and

one proximity type edge. Thus, the total number of relations |R| = T +1+1. We now define

the message passing procedure on C following the standard GNN formulation (ref. Eq.  3.1 ,

 3.2 ).

To account for the different relation types in C, following [  159 ], we introduce a relation

specific transformation matrix Wτ for each type τ ∈ R of edge and specify the AGGREGATE

function as follows,

mu =
∑
τ∈R

∑
v∈N τ

1 (u)
Wτ hv wτ (u, v) ατ (u, v) (3.11)

where wτ (u, v) is the τ type specific edge weight between nodes u and v defined in Algo.  1 .

In line with our motivation of letting the model adaptively choose between structural and

proximity information, we make use of an attention mechanism [  47 ] defined using attention

coefficients eτ (u, v) that indicates the importance of node v’s feature to node u w.r.t a

particular relation type τ .

eτ
u,v = aτ (Wτ hu, Wτ hv) = aT [Wτ hu ⊕Wτ hv] (3.12)
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Algorithm 1: Efficient construction of computation graph
Input: Original Input Graph G = (V , E);

τ -hop Neighborhood Function on G as Nτ (u) : u→ 2V ; Ordered Degree
Sequence Function s(V ), V ⊂ V ; Sequence Comparison Cost Function D

Hyper-Params.: No. of structural relations T < dia(G)
Output: Computation graph C

1 begin
2 E ′ ← ∅; n← |V|;
3 wτ ∈ Rn×n ← 0,∀τ ∈ {0, 1 · · ·T}; wp ∈ Rn×n ← 0;
4 f−1 ← 0;
5 S ← [degree(u)] ∀u ∈ V ;
6 Sort S; // O(n log n)
7 for g ∈ V do
8 pos← BinarySearch(S, degree(g)); // O(log n)
9 P ← log(n) positions left and right of pos in S;

10 for h ∈ P do
// P contains O(log n) nodes

11 for τ ∈ {0, 1 · · ·T} do
// Calculate structural dist. Eq.  3.9 

12 fτ (g, h)← fτ−1(g, h) +D(s(Nτ (g)), s(Nτ (h)));
// Calculate edge weights.

13 wτ (g, h)← e−fτ (g,h) ; // Eq.  3.10 

// Extend the edge set
14 E ′ ← E ′ ∪ (g, h, τ);
15 end
16 end
17 end
18 for (g, h) ∈ E do
19 E ′ ← E ′ ∪ (g, h, p); wp(g, h)← 1
20 end
21 R← {0, 1 · · ·T} ∪ p;
22 return C =

(
V , E ′,R, {wτ , ∀τ ∈ R}

)
23 end

46



where a : Rd × Rd → R is a shared attention mechanism parameterized by a learnable

attention weight vector a ∈ R2d, ·T is transpose operation and ⊕ is concatenation operation.

We inject the available computation graph information as follows,

ατ (u, v) =
exp(LeakyReLU(eτ

u,v))∑
x∈N τ

1 (u)
exp(LeakyReLU(eτ

u,x)) (3.13)

Finally, The UPDATE function is defined as,

h′
u = σ

(
Wself hu + Wneig mu

)
(3.14)

We name our general model as WRGNN (weighted relational GNN) and from the above def-

initions, we select two model variants viz. WRGAT and WRGCN for experimental analysis

which specifies if attention mechanism is used or not respectively. Algorithm  2 provides a pro-

cedure for applying such a K layer WRGNN on the computation graph for semi-supervised

node classification.

3.7 Experimental Results

In this section, we evaluate the performance of our framework against other methods

under semi-supervised node classification setting. Note that our framework is quite flexible

so any GNN model based on message passing could be adopted on our computation graph.

To evaluate the performance of our method, we use real world graphs from different domains

viz. Hyperlinked Web Pages [  146 ], Citation Networks [  160 ], Air Traffic Networks [  101 ] and

Internet’s Inter-Domain Routing Network [  149 ], [ 161 ]. These graphs are know to exhibit

diverse mixing as we showed in Sec.  3.4 and thus provides us with the means to assess GNN

based methods.
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Algorithm 2: Procedure for Node Classification
Input: Computation Graph C =

(
V , E ′,R, {wτ ,∀τ ∈ R}

)
;

Node Features {xu ∈ Rd,∀u ∈ V};
1-hop τ -relation specific Neighbourhood Function on C as
N τ

1 (u) = {v : (u, v, τ) ∈ E ′};
Output: Predicted node labels

1 begin
2 h0

u ← xu ,∀u ∈ V ;
3 for k = 1, . . . K do
4 for u ∈ V do
5 mk

u ←
∑

τ∈R

∑
v∈N τ

1 (u)
W k

τ hk−1
v wτ (u, v) ατ (u, v);

6 hk
u ← σ

(
W k

self hk−1
u + W k

neig mk
u

)
7 end
8 hk

u ← hk
u/‖hk

u‖2, ∀u ∈ V ;
9 end

10 zu ← hK
u , ∀u ∈ V ;

// Predict node labels
11 for u ∈ V do
12 pu ← softmax(MLPθ(zu));
13 yu ← argmax(pu)
14 end
15 return yu ,∀u ∈ V
16 end

Table 3.1. Dataset statistics. Details of F discussed in Sec.  3.7.2 .
Hyperlinked Web Pages Network Citation Network Air Traffic Network Internet Network

Chameleon Squirrel Actor Cornell Texas Wisconsin Cora Citeseer Pubmed Brazil Europe USA BGP (small)

#Nodes |V| 2,277 5,201 7,600 183 183 251 2,708 3,327 19,717 131 399 1,190 10,176
#Edges |E| 31,421 198,493 26,752 280 295 466 5,429 4,732 44,338 1,038 5,995 13,599 206,799
#Classes |Y| 5 5 5 5 5 5 7 6 3 4 4 4 7
#Node Features d 2,325 2,089 931 1,703 1,703 1,703 1,433 3,703 500 1 1 1 287
Assortativity rglobal 0.0331 0.0070 0.0047 -0.0706 -0.2587 -0.1524 0.7710 0.6713 0.6860 0.0116 -0.0737 0.2629 0.0029
Train/Val/Test Splits F 60/20/20 60/20/20 80/10/10 70/10/20
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3.7.1 Datasets

Table  3.1 provides the statistics of the datasets we use for evaluation. We select a wide

range of frequently evaluated datasets from different domains and below we provide brief

descriptions.

• Chameleon and Squirrel collected by [  162 ] are networks of hyperlinked web pages

on Wikipedia related to animal topics. The nodes (here pages) are labelled from one

of 5 classes based on the average traffic (views) they received. Node features are bag-

of-words representation of nouns in the respective pages. We download the processed

data from Pei, Wei, Chang, et al. [ 146 ].

• Actor is a co-occurrence network based on the film-director-actor-writer network from

[ 163 ]. In this dataset, nodes represent actor web pages on Wikipedia and edges symbol-

ize co-occurrence on the same web page. Node features are bag-of-words representation

of the corresponding pages and labels are placed according to topics on actor web page.

The dataset is from Pei, Wei, Chang, et al. [ 146 ].

• Cornell, Texas and Wisconsin collected as part of CMUWebKB project. Nodes are

university web pages and edges are hyperlinks between them. Node labels are one of

student, project, course, staff or faculty. Node features are bag-of-words representation

of the corresponding web pages. The dataset is also from Pei, Wei, Chang, et al. [ 146 ].

• Cora, Citeseer and Pubmed introduced by [ 160 ], [  164 ] are citation networks where

node represent scientific papers and edges are citation relationships. Node features

are bag-of-words representation of the paper and labels are the scientific field they

represent.

• Air Traffic Networks from three regions Brazil, Europe and USA is collected

by the respective civil aviation agencies. Nodes represent airports and edges mean

the presence of commercial routes between nodes. Nodes are labelled according to

the traffic (aircraft landings and takeoffs) or level of activity (by passenger count) an

airport witnesses. We get the data from Ribeiro, Saverese, and Figueiredo [  101 ].
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• BGP Network collected by [  161 ] represents the inter-domain structure of the Inter-

net. Nodes represent autonomous systems and edges indicate business relationships

between nodes. Node features contain categorical location and topology information

and labels are based on the type or tier of the autonomous system. We get the pro-

cessed data from Hou, Zhang, Cheng, et al. [ 149 ].

3.7.2 Baseline Methods and Experiment Setup

We primarily consider methods that utilize GNN models which adopted messaging pass-

ing operation as their main backbones. GCN [  45 ] and GraphSage [  46 ] are methods where

convolutions are strictly based on first order neighbour aggregation scheme for each layer.

GCN-Cheby [ 165 ] generalizes convolutions with the help of k-hop localized spectral filters.

GAT [ 47 ] adaptively aggregates immediate neighbour information using attention coefficients

which are also derived from node features. MixHop [  156 ] and H2GCN [  147 ] generalize the

node aggregation beyond the first order neighbourhoods and dynamically considers node fea-

tures k-hops away. It is important to note that all baseline methods operate on the original

graph and thus have access to only proximity information albeit in different forms.

We perform semi-supervised node classification and use the classification accuracy and

F1-Micro scores as performance metrics to evaluate different approaches. The training/val-

idation/testing data splits for all the methods to be compared is shown in Table  3.1 . For

Hyperlinked Web Page and Citation Networks, we report the performance of mean ± std.

dev. on 10 random splits provided by Pei et al. [  146 ] which is available on their GitHub  

2
 .

Reported values for Air Traffic Networks and BGP Networks are based on 20 and 10 random

splits respectively. All the implemented methods including our own are all trained until the

loss function converges and the final models are selected based on the prediction performance

on the validation sets. The sensitivity analysis and hyper-parameter search is performed on

the validation set and more details are provided next.

For all our experiments, we use Adam [  166 ] algorithm with learning rate of {1e−2, 1e−3}

and weight decay of {0, 1e− 5, 5e− 4, 5e− 6} to optimize our model. Our WRGNN model
2

 ↑  https://github.com/graphdml-uiuc-jlu/geom-gcn/tree/master/splits 
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variants contains 2 layers with an another fully connected MLPθ on top of it. We select

ReLU as the nonlinear activation. For the model with attention mechanism i.e. WRGAT,

we use LeakyReLU with a negative input slope of 0.2. We sweep all the hidden dimensions

from {16, 32, 64, 128} for the WRGNN layer and {32, 64, 128} for the final MLPθ layer using

cross validation. We set the maximum learning epochs as 500 with early stopping parameter

100. Specifically, for Hyperlinked Web Page Networks (Table  3.2 ) dropout operation with

a probability of 0.8 is applied on each WRGNN layer. For BGP Network our model uses

dropout of 0.5, learning rate as 1e-2 with weight decay of 0. Finally, for Air Traffic Networks

(Table  3.3 ), dropout is set to 0.6, learning rate is 1e− 3 with weight decay 5e− 6 and T is

set to 5, 5 and 8 for Brazil, Europe and USA datasets, respectively. The hyper-parameter

T related to structural similarity calculations is chosen based on the validation set. Its

sensitivity against validation accuracy for some datasets are provided in Fig.  3.6 and  3.7 .

3.7.3 Local Assortativity Distribution Shift

We first perform a quick study to confirm our graph transformation algorithm indeed

enhances the level of local assortativity in comparison to the original input graph. To achieve

this, we focus on all the disassortative nodes (rlocal < 0) from the input graph G and track how

they mix in the transformed computation graph C. From Figure  3.4 , a clear distribution shift

of local assortativity could be observed. That is, the previously disassortative nodes in G,

are more assortative in the new computation graph after transformation. This empirically

verifies the claim we raised earlier about similar structural regularities between a pair of

nodes being captured in the computation graph as a result of our transformation (hence

the increased assortativity). In addition, we have a reason to believe that performance

improvement of our relational GNN model variants WRGCN and WRGAT are rooted in the

increase of local assortativity for disassortative nodes in the original graph. This is clearly

witnessed in Figure  3.3 (shown in red).
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Figure 3.4. Distributions of node level assortativity for the original graph
and the newly constructed computation graph on different datasets.

3.7.4 Node Classification Performance

Hyperlinked Web Page and Citation Networks. Table  3.2 shows the evaluation of

our framework against other GNN based baselines on the node classification task for these

datasets. Mean test accuracy and standard deviation numbers are reported for each method.

Values for H2GCN [  147 ]and Geom-GCN [ 146 ] are taken from the respective papers. We use

the same train/val/test splits as [  146 ], [  147 ] for comparability. We find that our frame-

work consistently performs well for the Hyperlinked Web Page Networks owing to the rich

structural regularities that our computation graph captures. On Citation Networks which

predominantly have assortative mixing, our framework gives comparable performance to

baselines. H2GCN and MixHop utilize higher order neighbourhoods in each convolution

which does help over standard GNN methods, but can also be a lot harder to train and they

also suffer from oversmoothing problem. Our framework makes it possible to define compu-

tation graphs that can directly tap into the structural regularities thereby making effective

use of graph information, while the message passing defined on such a computation graph
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Table 3.2. Semi-supervised node classification showing mean test accuracy ±
std. over 10 runs. Club Suit [♣] denotes result obtained from the best model
variant of respective papers.

Chameleon Squirrel Actor Cornell Texas Wisconsin Cora Citeseer Pubmed

GCN 59.82 ± 2.58 36.89±1.34 30.26±0.79 57.03±4.67 59.46±5.25 59.80±6.99 87.28±1.26 76.68±1.64 87.38±0.66
GraphSage 58.73±1.68 41.61±0.74 34.23±0.99 75.95±5.01 82.43±6.14 81.18±5.56 86.90±1.04 76.04±1.30 88.45±0.50
GAT 54.69±1.95 30.62±2.11 26.28±1.73 58.92±3.32 58.38±4.45 55.29±8.71 86.37±1.69 75.46±1.72 87.62±0.42
GCN-Cheby 55.24±2.76 43.86±1.64 34.11±1.09 74.32±7.46 77.30±4.07 79.41±4.46 86.86±0.96 76.25±1.76 88.08±0.52
MixHop 60.50±2.53 43.80±1.48 32.22±2.34 73.51±6.34 77.84±7.73 75.88±4.90 83.10±2.03 70.75±2.95 80.75±2.29
Geom-GCN ♣ 60.90 38.14 31.63 60.81 67.57 64.12 85.27 77.99 90.05
H2GCN ♣ 59.39±1.98 37.90±2.02 35.86±1.03 82.16±4.80 84.86±6.77 86.67±4.69 87.67±1.42 76.72±1.50 88.50±0.64

Ours (WRGAT) 65.24±0.87 48.85±0.78 36.53±0.77 81.62±3.90 83.62±5.50 86.98±3.78 88.20±2.26 76.81±1.89 88.52±0.92

Table 3.3. Node classification on Air Traffic Networks and BGP Network.
Mean test acccuracy ± std. is shown over 20 runs.

Brazil Europe USA BGP

GCN 64.55±4.18 54.83±2.69 56.58±1.11 53.33±0.18
GraphSage 70.65±5.33 56.29±3.21 50.85±2.83 65.19±0.28
GIN 71.89±3.60 57.05±4.08 58.87±2.12 49.51±1.52
Struc2vec 70.88±4.26 57.94±4.01 61.92±2.61 48.40±1.39

Ours 76.92±5.45 57.12±2.81 63.02±1.87 66.54±0.48

takes care of adapting to node features. Overall performance rank of various methods in

Table  3.2 on both disassortative and assortative datasets is shown in Figure  3.5 . It is clear

that our model variant WRGAT run on the computation graph achieves the lowest rank

overall hence supporting our claim of achieving superior performance in both disassortative

and assortative regime.

Air Traffic and BGP Networks. Table  3.3 gives comparisons of our framework against

other GNN methods for node classification on multiple Air Traffic Networks (ATNs) and the

Internet Domain Network (BGP). It is clear from the table that, our framework achieves

strong performance compared to other baselines. ATNs don’t have node attributes and base-

line GNN methods perform poorly while our framework utilizing structure is better suited

for the task. Strong performance is seen because our construction of the computation graph

explicitly looks at different neighbourhoods that is very beneficial in air traffic networks.
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Figure 3.5. Overall performance rank of various methods for datasets in
Table  3.2 &  3.3 . Lower rank signifies better performance

Major hubs connect to local airports (disassortative) while they also mix with other hubs

(assortative). Structure alone is capable of capturing this diversity and our computation

graph takes a step in that direction. The BGP network also exhibits diverse mixing and we

believe that the strong performance is due to the adaptive selection of both proximity and

structural information.

3.7.5 Sensitivity Analysis
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Figure 3.6. Sensitivity w.r.t structure relations. Baseline is using only prox-
imity information.
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Figure 3.7. Sensitivity w.r.t structure relations. Baseline is using only prox-
imity information.

We provide sensitivity analysis based on validation split w.r.t the number of structural

relations used in our computation graph, which is our main hyper-parameter. Figure  3.6 

shows the analysis for disassortative networks and is quite clear that adding structural in-

formation at various scales significantly improves validation performance when compared

to baseline of just using proximity information. Figure  3.7 shows an interesting picture for

highly assortative networks. Here, the take away is that structure alone is not useful (blue

line), while an adaptive structure+proximity with attention model i.e. using WRGAT (green

line) is able to give better consistent performance over proximity only baseline.

3.7.6 Ablation Analysis

Figure  3.8 provides ablation analysis for a number of networks and shows test performance

gains over proximity only baseline for our model variants (WRGCN and WRGAT) in y-axis

and against the use of either proximity, structure or both kinds of information in x-axis.

For the top row consisting of predominantly disassortative networks, the take away is that

structure only information is capable of providing better performance over proximity only

information, but when both kinds of information is available, the attention model is best

suited. For the bottom row consisting of highly assortative networks, clearly structure only

information hurts performance compared to baseline. We reason that structure becomes less

important for graphs with high assortativity however, when both kinds of information is

available and attention is used we witness the best gains. These results further supports our

model choices.
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Baseline (proximity only) is shown in parenthesis. Numbers indicate gain over
baseline.

The previous ablation study shows test performance gains for the whole dataset. We now

study how these different model configurations behave w.r.t node level local assortativity we

introduced earlier. With Figure  3.9 we are able to study their behaviour in finer detail

due to the notion of local assortativity. It supports our hypothesis that in the high local

assortativity regime, proximity information dominates in discriminatory power and structure

only information leads to worsened performance as it becomes irrelevant. However when

using both kinds with an adaptive mechanism we can see increased performance over the

full spectrum.

3.8 Discussion

The level of mixing plays a crucial role in characterizing real world networks. In this

work we have used the quantification of local mixing patterns to study the predictive per-
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Figure 3.9. Ablation w.r.t graph info and local assortativity

formance of graph neural networks. Our observations and results offer a new perspective

to study the limitations of GNNs. Motivated by the findings of our analysis, we develop

a graph transformation technique that has shown to experimentally improve assortativity

owing to the use of structural regularities in the input graph and there by increasing GNN

performance. Extensive experiments on various real world networks from different domains

supports our claim of running GNNs on a transformed computation graph and adaptively

choosing between structure and proximity information rather than on the original. The con-

nections we find with mixing patterns and GNN learnability provides motivation for future

work to provide possible theoretical claims relating the two. We also hope that this study

leads to the creation of other benchmark datasets with diverse mixing patterns which can

aid in the robust evaluation of future GNN methods.
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4. GRAPH REPRESENTATION LEARNING FOR RANKING

TEMPORAL LINKS

Many practical machine learning applications in complex systems focus on predicting future

interactions among entities, based on an observed sequence of past interactions, for example,

recommendations in heterogeneous information systems [ 66 ], [ 67 ], social behavior predic-

tion [  68 ], [  69 ], and financial system monitoring [ 70 ], [  71 ]. In this case representing the data

as a temporal graph [ 72 ] and formulating the prediction task as link prediction has proved

quite successful.

Recently, temporal graph representation learning (T-GRL) that learns the representa-

tions of temporal graphs has shown great potential to improve link prediction accuracy in

temporal settings [  66 ], [ 68 ], [ 74 ], [ 75 ], [ 79 ], [ 167 ]. To date the methods optimize the represen-

tations using a pointwise loss function geared to maximize accuracy independently over future

links (conditioned on the graph of interactions in the past). This objective doesn’t reflect the

fact that many complex systems have constraints that produce dependencies among future

links. For example, a user selects among a set of items to decide what to purchase next, or

among a set of users to connect to next in a social network. In this case, the predictions

are either presented as a ranked list to the user (ie. thru recommendations) or resources are

allocated based on the ranking assuming that actions at the top of the rank are more likely

to happen (eg. caching information, matching advertisers). While we can rank predictions

from a model that is learned from a pointwise loss, it is likely that representations learned

with a joint ranking loss over the list of candidates will generalize better for ranking tasks.

Although it is a common practice that pointwise losses can be transformed for ranking

by applying listwise losses over all ranking candidates [ 168 ], applying these ideas to T-GRL

is not straightforward, particularly for inductive models. This is due to a tradeoff between

expressivity in the learned representation and scalability of estimation/inference, which we

discuss next.

First, many previous T-GRL models inherit the limited expressivity of graph neural

networks (GNNs) for link prediction. They associate each node with a representation and

update that representation by aggregating the representations of its interacted nodes [ 66 ],
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[ 74 ], [  75 ], [  79 ], [  167 ]. However, the obtained representations are known to fail to encode some

structural information important for link prediction [  68 ], [  76 ]–[ 78 ]. Figure  4.1 gives a toy

example in temporal graphs to illustrate the issue. Many T-GRL models (e.g. TGN [ 75 ])

will learn the same representations for v1 and v3 at t3, so the models cannot distinguish

whether u is more likely to be a friend of v1 or v3, and would predict them as equally likely.

What those representations fail to capture is that v3 and u have had a common friend before

t3 while v1 and u have not. Labeling tricks have been proposed recently on static graphs to

address this issue [  77 ], [ 78 ]. However, the standard idea of labeling tricks that labels the

node pair of interest different from other nodes suffer from the following scalability issue.

Second, it is often difficult to compute a listwise loss for link prediction problems with

large candidate sets. Even if a rough filtering of candidates is adopted (e.g., only consider

the nodes within the first several hops away from the query node), which is similar to the

matching or pre-ranking procedure in traditional ranking systems [  169 ], the pool may still

contain hundreds or even thousands of candidates. The key idea to compute these losses

efficiently is to compute the representations for all the candidates jointly with one forward

pass of the encoder rather than independently.

However, the standard labeling trick [  78 ] may not allow such joint computation. In

particular, a recent model CAWN [  68 ] can online construct structural features for a node

pair as its adopted labeling trick, while such construction has to be done independently for

each candidate link and cannot be shared over a candidate set.

In this work, we address these issues and propose Temporal Graph network for RANKing

(TGRank) 

1
 . Our pipeline is shown in Fig.  4.2 . TGRank can (i) optimize a list-wise loss for

improved ranking, and (ii) incorporate a labeling trick to improve expressivity while allow-

ing for inference over the candidate set jointly, to improve efficiency. Specifically, during the

training, for each query with a center node and a set of candidate nodes, TGRank labels

the center node different from others and leverages GNNs to diffuse such a label to every

ranking candidate. The parameterized label diffusion procedure aggregates the timestamps,

the multiplicity, and the features of historical interactions along the network from the center

nodes to all the candidates, and gives provably more expressive power to better capture the
1

 ↑  https://github.com/susheels/tgrank 
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Figure 4.1. Illustration of how node representations given by GNN models
(right) can fail to distinguish some pairwise relationships (left).

needed structural features for link prediction (see the example in Fig.  4.2 ). Since all the

candidate nodes will be associated with the likelihoods of interactions jointly, this facilitates

efficient optimization of the ranking loss. During testing, a similar label diffusion procedure

is done to jointly infer over all candidates. Table  4.1 lists the characteristics of TGRank

compared to CAWN [  68 ] and TGN [  75 ], and shows the previous tradeoff between expressiv-

ity and efficiency. It also includes a basic extension to TGN, which optimizes list-wise loss

(TGN-LW) rather than pointwise loss.

We extensively evaluate TGRank over 6 real-world temporal graphs with up-to 1M+

node future interactions (100M+ ranking candidates) for training and 200k node future

interactions (20M+ ranking candidates) for testing. TGRank outperforms the best baselines

on average by 14.21% for transductive ranking and by 16.25% for inductive ranking mean

reciprocal rank (MRR). TGRank also achieves up-to 65× speed-up compared to CAWN

during inference and is more efficient in both training (up-to 8× speed-up) and inference

(up-to 2× speed-up) than the baselines without labeling tricks e.g., TGN-LW.
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Figure 4.2. Pipeline of TGRank. Here, the center node s is tasked at ranking
candidates in the subgraph surrounding it at a time t3 (simulating the example
in Fig.  4.1 : node s ↔ u, node 1 ↔ v1, node 3 ↔ v3). TGRank follows
three steps. (1) Labeling the s differently from candidates. (2) Parameterized
label diffusion using GNNs to propagate timestamps, multiplicity and features.
(3) Ranking candidates. Importantly, the pools of effective candidates are
assumed to be in the sub-graph surrounding s and a list-wise loss is used to
optimize ranking scores jointly.

Table 4.1. Characteristics of our method (TGRank) and comparison T-GRL methods.
CAWN TGN TGN-LW TGRank

Representation: inductive 3 3 3 3

Representation: more expressive 3 7 7 3

Objective: ranking loss 7 7 3 3

Scalable inference over candidates 7 3 3 3

4.1 Related Work

The earliest works for T-GRL break temporal networks into snapshots by aggregating

temporal interactions that appear within consecutive time ranges [  70 ], [ 170 ]–[ 173 ]. This

allows for utilizing off the shelf static GNNs [  174 ], [  175 ] to extract the structural patterns

and recurrent neural nets (RNNs) or transformers to combine the extracted patterns along

with time to make prediction. However, all these methods cannot capture the evolving

dynamics in different levels of granularity. In light of these issue, several recent works deal

with the stream of temporal interactions directly [ 66 ], [  68 ], [  74 ], [  75 ], [  79 ], [  176 ]–[ 179 ]. Know-

E [  179 ], JODIE [  66 ], DyRep [  79 ] and DyGNN [ 178 ] track representations of individual nodes
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over time and update them when the nodes occur in an interaction event. To improve

the inductive prediction performance, TGAT [  74 ] does not track node representations over

time. Instead, TGAT samples from the historical neighborhood for every node of interest

and applies attention layers to aggregate the neighbor’s representations to get a temporal

node representation. TGN [  75 ] both tracks node representations over time and adopts the

historical sampling to update them. All these models, unless using node IDs as features,

suffer from the node ambiguity issue of the example as illustrated in the Fig.  4.1 because they

cannot capture some important structural features [  77 ], [  78 ]. Some works also adopt network

embedding techniques to encode temporal networks [  176 ], [ 177 ], [ 180 ]–[ 182 ], which do not

suffer from the node ambiguity issue but at the cost of the capability of making inductive

prediction and using network attributes. A recent approach CAWN [ 68 ] directly constructs

structural features for each node-pair of interest, which also keeps inductive capability, but

the complexity of CAWN is so high as a number of random walks need to be sampled to

construct the structural features.

None of the above models have considered being optimized for ranking objectives, though

many of them are indeed aware of the practical importance of ranking prediction and adopt

ranking metrics in their evaluation [  66 ], [  70 ], [  79 ], [  171 ], [  178 ], [  179 ]. Learning-to-Rank (LtR)

studies how to directly optimize a model to make ranking prediction and has been exten-

sively studied in recommender system and information retrieval literatures. Some works that

have applied GRL for dynamic recommendation are relevant to us [  67 ], [ 183 ]–[ 186 ]. Among

them, only a few [ 67 ], [ 183 ], [ 186 ] adopt LtR objectives while two of them focus on session

recommendation which works in a substantially different setting [  183 ], [  186 ]. TGSRec [  67 ]

adopts an attention-based T-GRL encoder which is very similar to TGN [  75 ] but with a LtR

objective, but it can only apply to bipartite networks.

4.2 Preliminaries

In this section, we introduce some preliminaries for TGRank, including notations and

definitions.
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Definition 4.2.1 (Temporal Graph). A temporal graph is modelled as a sequence E =

{(e1, t1), (e2, t2), . . . } of temporal edge (interaction) events. Each edge ei = (ui, vi) occurs

between two nodes ui and vi with a timestamp ti ∈ R>0.

For now, we ignore edge features that may be associated with each edge event and

later, we will show how it can be incorporated. Note that in temporal graphs, there may

exist multi-edges between the same pair of nodes. We use Et = {(e, t′) ∈ E|t′ < t} and

Vt = {v ∈ e|(e, t) ∈ Et} to represent the set of all edges and nodes that occur before time

t respectively. Collectively, we will use Gt = (Vt, Et) to represent the corresponding graph.

We now define the temporal neighborhood around a node.

Definition 4.2.2 (k-hop t-Temporal Neighborhood). Given a node s and cutoff time t,

the k-hop t-temporal subgraph around s ∈ Vt, Gk
t,s is the subgraph induced by node set

{v ∈ Vt | Spd (s, v) ≤ k} on Gt where, Spd (·, ·) is the shortest path distance between two

nodes. Note that Gk
t,s only consists of edges occurring before time t.

Next, we also introduce the graph diffusion based on PageRank [ 187 ]. The initial vector

used in Personalized PageRank [  188 ] in the definition motivates the labeling trick of TGRank

encoder.

Definition 4.2.3 (Graph Diffusion). Given a static graph G = (V , E) with adjacency matrix

A and diagonal degree matrix D, define the diffusion matrix as W = AD−1. The graph

pagerank diffusion procedure follows that given some initial labels over the node set x0 ∈ R|V |,

for some α > 0, do

xk = αWxk−1 + (1− α)x0, k = 1, 2, ... (4.1)

By setting the initial label x is a 0-1 vector that contains a unique 1 for a given seed node,

x∞ in Eq.  4.1 gives Personalized Pagerank vector [  188 ], where each entry characterizes the

relevance between the corresponding node and the seed node.
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4.3 Ranking Problems and TGRank

Our goal is to learn a T-GRL model that can accurately predict how temporal graph

evolves. Specifically, the model can predict the next node or set of nodes that a center node

may interact with. We formulate this question as a ranking problem as follows.

Definition 4.3.1 (The Ranking Problem for Temporal Graph Prediction). Consider a set

of m queries {q1, q2, ..., qm}. Each query qi = (si,Di, ti) occurs at time ti, and consists of a

center node si whose action is to be predicted and a number of associated ranking candidate

nodes Di = (di
1, di

2, . . . , di
ni

), di
j ∈ Vti

. The ranking problem is to learn φ to encode the

temporal graph Gti
and get φ(qi;Gti

) ∈ Rni, where each entry [φ(qi;Gti
)]j is the relevant score

for the candidate j ∈ Di. Predict the next-step action of si to interact with the top-ranked

candidates based on φ(qi;Gti
).

Later, we ignore the historical graph Gti
and use φ(qi) to denote the encoder for simplic-

ity. The candidate list may include the entire node set while a more practical and interesting

setting is to consider a more challenging candidate list. In recommender systems, the candi-

date list is often given by a matching or pre-ranking algorithm that search the most relevant

hundreds or thousands of candidates and put them into the list. In our setting, we assume

that all the nodes in the first k-hop historical subgraph Gk
ti,si

of the center node si give the

ranking candidates. We are aware that this assumption may lose some feature-wise rele-

vant candidates, so we verify this assumption by conducting data analysis on real temporal

graphs, which shows that on average 97.39% of all the positive edges connect to the nodes

in this list and this list cover 3.17 % to 55.12 % of the entire node set for these networks.

Complete statistics are shown in Table  4.2 . We leave a more extensive study on the definition

of the candidate set in the future.

Next, we will introduce TGRank, including the design of its encoder, the theoretical

argument on its higher expressivity, and the complexity analysis.
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4.3.1 Algorithmic Motivation

To motivate the design of TGRank encoder, we first introduce the insight behind it—

which is that the candidate node that the center node s will likely interact with next is often

strongly related to the network structure that bridges these two nodes in the graph. The

form of the structure can be transformed into some relevance measure. In static networks,

extensive work [  22 ] has been done to compare different relevance measures to characterize

the likelihood of an edge between two nodes. Shortest path distance (SPD) is typically not

an effective measure as otherwise, since s will connect to the nodes that are 2-hops away

with equal likelihood. Although SPD is ineffective, if we count the number of 2-hop paths

between the two nodes, we can get an extremely effective measure of the number of common

neighbors. Importantly, different graph diffusion procedures along the network structure

from s to the candidate nodes also often provide effective relevance measures, such as hitting

time [ 189 ] and personalized Pagerank scores [ 188 ].

However, designing the relevance measures becomes much more involved in temporal

networks. There may be multiple edges between two nodes and those edges are further

associated with timestamps. Intuitively, both larger multiplicity and having more recent

timestamps indicate a stronger connection or higher relevance between two nodes. Real-

world complex systems may contain even more complicated dynamics where the order of

edges also matters, such as the metabolic networks, where stimuli and inhibition interactions

between proteins often follow an alternative manner [ 190 ].

The encoder φ in TGRank is essentially designed to address such complexity by learning

a data-driven relevance measure between the center node and the ranking candidates. The

measure is parameterized and trained to optimally combine edge timestamps, multiplicity

and attributes (if there are some) to fit the data. In a high level, our encoder is inspired by

the personalized Pagerank diffusion as Def.  4.2.3 . We view the center node as a seed node

and associate it with a label that is different from all other nodes (a labeling trick [ 78 ]).

Then, use a GNN to parameterize the diffusion procedure of the label over the network. The

diffused value on each candidate node can be used as its relevance to the center node. Note

that our encoder shares some similar spirits with the recent works on static graphs [ 191 ],
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[ 192 ] while these two models do not apply to temporal graphs. This idea is also inspired by

SEAL (for static graphs) [ 78 ], [ 193 ] and CAWN (for temporal graphs) [ 68 ]. However, these

models suffer from scalability issues as discussed in Sec.  4.1 . Next, we specify our encoding

algorithm.

4.3.2 TGRank Encoder

Given a query q = (s,D, t), TGRank will encode the temporal graph Gt before time t

and learn the relevance scores φ(q) ∈ R|D|.

TGRank first associates each node v in the temporal graph Gt = (Vt, Et) with an initialized

representation h0
v. The center node s is initialized in a different way from the other nodes,

where h0
s = c ∈ RF that is a learnable vector and h0

v = 0 for v 6= s. TGRank then adopts a

GNN to mimic the graph diffusion of the initialized features. That is, for r = 1, 2, ..., R,, do

mr
u,v,t′ = Messager

(
hr−1

u , time-encoding(t− t′)
)

, ∀(u, v, t′) ∈ Et (4.2)

hr
v = Updater

(
h0

v, hr−1
u ,

{
mr

u,v,t′

∣∣∣∣ (u, v, t′) ∈ Et

})
, ∀v ∈ Vt (4.3)

For time encoding, we adopt parametrized Fourier features [ 194 ] which follows Eq.  4.4 ,

time-encoding(t) = [cos(a1t) + b1, cos(a2t) + b2, . . . , cos(aF t) + bF ] (4.4)

where, ai, bi, for i ∈ {1, 2, . . . , F} represent learnable parameters. This time encoding has

been widely used in T-GRL works [ 68 ], [ 74 ], [ 75 ], [ 195 ] and is known to be more expres-

sive [ 196 ]–[ 198 ].

Note that in the node representation update step Eq.  4.3 , we inject the initial represen-

tation h0
v, which is inspired by the graph diffusion in Def.  4.2.3 . Empirically, we find this

helps reduce the oversmoothing problem that GNNs typically suffer from [ 62 ], [  63 ]. TGRank

can also encode node and edge attributes by simply concatenating node attributes with the

initial representation and edge attributes with the input of the message function in Eq.  4.2 .

In our instantiation, the Messager(·) function with a simple single linear layer followed

by nonlinearity ReLU. The Updater(·) function is a sum pooling of all its input followed by a
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linear layer. Other elaborate instantiations inspired by static GNNs [  39 ] (e.g., neighborhood

attention [  47 ]), can also be incorporated, but our simple and efficient functions show strong

empirical performance.

All the node representations at the end of R iterations of Eq.  4.2 and Eq.  4.3 can be used

for ranking. Specifically, we set the corresponding entry [φ(q)]v = MLP(hR
v ), for v ∈ D. In

our experiments, we predict the next single edge for the center node, so we adopt the listwise

loss used as follows,

L(φ(q), v∗) = − log
( exp([φ(q)]v∗)∑

u∈D exp([φ(q)]u)

)
(4.5)

where v∗ corresponds to the unique candidate node that s is to connect to next (i.e., the

ground truth). This loss can be summarized over all queries {q1, q2, ..., qm} in the training

dataset, minimizing which optimizes the parameters of φ(·). Note that minimizing the above

listwise loss is equivalent to maximizing the logarithm of a relaxation of the mean reciprocal

rank (MRR), i.e. log
(

1
m

∑m
i=1 1/rank([φ(qi)]j∗)

)
, where j∗ corresponds to the only candidate

linked by si next [ 199 ].

In comparison, previous works, such as TGAT [  74 ], TGN [  75 ] and CAWN [ 68 ] adopt a

pointwise loss, e.g., computing the cross-entropy loss for each node u ∈ D separately and

then doing sum.

Temporal Graph Downsampling

Note that the sizes of node or edge sets of real temporal graphs Gt may grow over

time. Moreover, the edges with timestamps long ago may not be as effective as the recent

edges. Therefore, it is reasonable to downsample the nodes and edges in Gt. We adopt

the following downsampling strategy. We first extract the k-hop neighborhood Gk
t,s which

by assumption includes all effective candidates. Starting from the center node s, for each

sampled node in i − 1-hop, we sample at most B1 most recent neighbors of this node in

i-hop, i = 1, 2, ..., k. For every two sampled neighboring nodes, we keep at most B2 most

recent edges between them. In our experiments, we keep B1, B2 ≤ 20 and also evaluate the

generalization capability of TGRank by letting the training and testing stages adopt different
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Algorithm 3: TGRank Training
Input: Train Batch

{
(qi = (si,Di, ti), v∗

i )
}m

i=1
;

Hyper-Params : Emb. Dim. F ; Layers R;
Temporal graph downsampling parameters k, B1, B2;

1 loss← 0
2 foreach (q = (s,D, t), v∗) ∈ Train Batch do
3 Get historical graph Gt with query cut-off time t (Def.  4.2.1 );
4 Down-sample Gt = (Vt, Et) with k, B1, B2 (Sec  4.3.2 );
5 Initialize labelling vector c ∈ RF ;
6 Set center node s with initial representation, h0

s ← c;
7 Set initial representations, h0

v ← 0 ∀v 6= s ∈ Vt

8 Get node representations hR
v ← Gnn(R,Gt) ,∀v ∈ Vt (Eq.  4.2 ,  4.3 and  4.4 );

9 [φ(q)]v ←Mlp(hR
v ) ,∀v ∈ D

10 loss← loss + L(φ(q), v∗) // Ranking Loss (Eq.  4.5 )

11 end
12 return loss/m

B1, B2’s, which demonstrate the robustness of TGRank to the downsampling strategy (See

Sec.  4.5.4 ). Overall, the training pipeline is shown in Alg.  3 .

4.3.3 Expressive and Inductive Ranking

Although the encoding procedure of TGRank is similar to standard GNNs, what makes

TGRank substantially good for ranking is the initializing strategy in Sec.  4.3.2 , where the

center node and other nodes are labeled differently. Here, we provide a theoretical justifica-

tion of the increased expressiveness of TGRank for ranking problems in temporal networks.

We generalize the proof in [  78 ], while the new technical challenge is to deal with multi-edges

and timestamps that the previous analysis on static simple graphs cannot handle.

For notational simplicity, we temporarily do not consider any downsampling discussed in

Sec.  4.3.2 and assume all nodes in the graph are ranking candidates. We first define a class

of center nodes where R-layer standard GNNs without the labeling strategy cannot the rank

candidate nodes for these center nodes properly.
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Definition 4.3.2 (R-GNN Troublesome Center Node). Consider on a temporal graph Gt at

time t. Define a R-GNN troublesome center node as the node who has at least one historical

neighbor node vj and a non-neighbor node vk such that the representation of vj learnt by

running R-layer standard GNNs without the labeling strategy on the temporal graph Gt is the

same as the representation of vk.

Obviously, for a R-GNN troublesome center node, the two other nodes that cause trouble

to standard GNNs can be easily distinguished when using the labeling strategy. Running

just 1-layer GNN can diffuse the center node label to the neighbor node vj but not the non-

neighbor node vk, which distinguish the two nodes. We prove that under certain conditions

there could a lot of R-GNN troublesome center nodes in Thm.  4.3.1 .

Theorem 4.3.1 (Expressivity). Consider a non-attributed temporal graph Gt with n nodes

at time t. Suppose there are at most τ − 1 distinct timestamps and the degree of each node

in the graph is between 1 and O
(
(logτ n)

1−ε
R+1

)
for any constant ε > 0, then there exists at

least ω( nε

logτ n
) R-GNN troublesome center nodes in Gt.

Proof. Our proof is inspired by the proof of Theorem 2 in [ 78 ]. However, additional effort

to deal with the multi-edges and timestamps is needed. The proof has two steps. First,

we would like to show that there are ω(nε) nodes that cannot be distinguished by k-layer

GNNs without the labeling strategy. Then, we prove that among these nodes, there are at

least ω( nε

log n
) nodes whose 1-hop neighbors are all k-GNN troublesome center nodes. Also,

note that in Gt, timestamps can be viewed as edge features. When we say two graphs are

isomorphic, not only the edges but also the features on the edges are needed to match.

Step 1. Recall Gk
t,s is the k-hop t-temporal neighborhood around s. As each node is

with degree d = O(log
1−ε
k+1
τ n), then the number of nodes in Gk

t,s, denoted by |V(Gk
t,s)|, satisfies

|V(Gk
t,s)| ≤

k−1∑
i=0

di = O(dk
m), where dm = log

(1−ε)
k+1

τ n.

We set the max K = maxs∈Vt |V(Gk
t,s)| and thus K = O(dk

m).
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Now we expand subgraphs Gk
t,s to Ḡk

t,s by adding K−|V(Gk
t,s)| independent nodes for each

node s ∈ Vt. Then, all Ḡk
t,s have the same number of nodes, which is K, though they may

not be connected graphs.

Next, we consider the number of non-isomorphic graphs in {Ḡk
t,s|s ∈ Vt}. Because in these

graphs, the degree of each node is bound by dm. Each node in these graphs at most has

O((τK)d
m) different ways to be connected to the rest of the corresponding graph (Here we

allow multi-edges and edges with timestamps). As each graph contains K nodes, the number

of non-isomorphic graph structures in this set is at most O((τK)Kdm) = O((τdm)kdk+1
m )). As

dm = log
(1−ε)
k+1

τ n and k is a constant, we have O((τdm)kdk+1
m ) ≤ O(n1−ε). So, the number of

non-isomorphic graphs in {Ḡk
t,s|s ∈ Vt} is at most O(n1−ε).

Therefore, due to the pigeonhole principle, there exist n/o(n1−ε) = ω(nε) many nodes v

whose Ḡk
t,s are isomorphic to each other. Denote the set of these nodes as Viso. Next, we

focus on looking for k-GNN troublesome center nodes from the neighbors of nodes in Viso.

Step 2. Let us partition Viso = ∪q
i=1Vi so that for all nodes in Vi, they share the same

first-hop neighbor sets. Then, consider any pair of nodes u, v such that u, v are from different

Vi’s. Since u, v share identical k-hop t-temporal neighborhood structures, a k-layer standard

GNN will give them the same representation. Then, we may pick one u’s first-hop neighbor

w that is not v’s first-hop neighbor. We know such w exists by the definition of Vi. As w

is u’s first-hop neighbor and is not v’s first-hop neighbor, w is a k-GNN troublesome center

node because without labeling w, u, v will have the same representation given by a k-layer

standard GNN. So, we just need to count w. Based on the partition Viso, we know the

number of such k-GNN troublesome center nodes is at least q − 1. We now derive a lower

bound of q.

Because of the definitions of the partition, ∑q
i=1 |Vi| = |Viso| = ω(nε) and the size of each

Vi satisfies

1 ≤ |Vi| ≤ dm = O(log
(1−ε)
k+1

τ n).

So, a lower bound of q is just ω( nε

dm
) ≥ ω( nε

logτ n
), which concludes the proof.
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Besides the better expressivity, we may also show the inductive property of TGRank. As

claimed in Thm.  4.3.2 , TGRank guarantees making the same ranking prediction as along as

two k-hop temporal neighborhood are symmetric. Thm.  4.3.2 is easy to prove due to the

permutation equivariance of GNNs and the time shift invariance of time encoding. Many

GRL-based recommendation models are not inductive because they associate each node with

a vector that can be trained differently across nodes.

Theorem 4.3.2 (Inductive Ranking). Consider two queries qi = (si,Di, ti), i ∈ {1, 2}.

Denote the two temporal k-hop neighborhoods for these two queries Gk
ti,si

= (Vi, Ei), i ∈ {1, 2}.

Suppose these two queries and these two neighbors are symmetric in the sense that there

exists a bijective mapping between the node sets π : V1 → V2 such that (1) π(s1) = s2;

(2) D2 = {π(d)|d ∈ D1}; (3) for every edge (u, v, t) ∈ E1, (π(u), π(v), t − t1 + t2) ∈ E1,

and for every edge (u, v, t) ∈ E2, (π−1(u), π−1(v), t − t2 + t1) ∈ E2. Then, TGRank will

output the same relevance scores for D1 and D2, i.e., [φ(q1;Gk
t1,s1)]u = [φ(q2;Gk

t2,s2)]v for all

u ∈ D1, v ∈ D2 and v = π(u).

4.3.4 Complexity Analysis

Let’s assume that each method uses a k-hop subgraph to determine a node representation

and the complexity of using GNN to compute such a represention is linear w.r.t. the size

of the subgraph. The complexity of computing a representation for each query q = (s,D, t)

depends on: (i) the number of candidates in D, and (ii) the size of subgraph to determine a

node representation via GNNs, which we will refer to as Gk
t,v for node v. We denote the size

of the graph |Gk
t,v| = max{|Vk

t,v|, |Ek
t,v|}.

TGRank. We take the k-hop subgraph around s and add D to that set. Since the

GNN with the labeling trick makes inference over this set just once, the overall complexity

is O(|Gk
t,s|+ |D|).

CAWN [  68 ]. For each d ∈ D, CAWN computes M walks of length k from d and

s respectively and applies the labeling trick over that set of nodes to compute an edge

representation. Assuming those random walks approximate the subgraphs Gk
t,s and Gk

t,d, the

complexity is O
(
(|Gk

t,s|+ |Gk
t,d|) · |D|

)
.

71



TGN [  75 ]. For each d ∈ D, TGN will compute a representation for s and d respectively

with a k-hop neighborhood. While GNNs on static graphs can compute node representations

jointly, TGN needs to sample edges over time for each node independently. Thus, with the

current TGN, the overall complexity will be O(|Gk
t,s|+ |Gk

t,d| · |D|).

This shows that as the size of the candidate set grows, CAWN will be much less efficient

than TGRank, which amortizes computation over a joint set rather than compute represen-

tations independently for each pair (source+one candidate). Theoretically, the complexity

of TGN and CAWN are the same, but TGN often samples from direct neighbors (k = 1)

to compute representations, while CAWN needs much longer walks k > 1 to keep good

performance. This empirically leads to increased run times for CAWN during inference (see

experiments in Sec  4.5.5 ). However, TGRank can still utilize larger subgraphs Gk
t,s with k > 1

during training as the optimization w.r.t all candidates is done jointly. So, empirically, in

fact we observe that TGRank is comparable (if not better) to TGN and is much faster than

CAWN (see Table  4.5 ).

4.4 Experimental Setting

Table 4.2. Dataset Statistics
Reddit Wikipedia MOOC LastFM Enron UCI

# nodes & attributes 10,984 & 172 9,227 & 172 7,144 & 0 1,980 & 0 184 & 0 1,899 & 0
# edges & attributes 672,447 & 172 157,474 & 172 411,749 & 4 1,293,103 & 0 125,235 & 0 59,835 & 0
# transductive &
inductive test edges 100,867 & 21,470 23,621 & 11,715 61,763 & 29179 193,966 & 98,442 18,785 & 4,206 8,976 & 5,932

coverage of positive candidates 99.47 % 93.73 % 99.68 % 99.81 % 95.05 % 96.63 %
coverage of entire node set 4.10 % 3.17 % 4.70 % 55.12 % 52.05 % 50.66 %

We use six real-world temporal graph datasets for evaluation: Reddit [  66 ], Wikipedia [  66 ],

MOOC [ 66 ], LastFM [ 66 ], Enron [ 68 ] and UCI [  200 ]. In Reddit, Wikipedia, MOOC and

LastFM users interact with items forming a bipartite graph with edges having continuous

timestamps, with/without edge features. Enron and UCI are unipartite communication

networks between users with edges having continuous timestamps, no additional attributes.

Dataset statistics are shown in Table  4.2 and detailed descriptions are provided below.
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4.4.1 Dataset Description

For our empirical evaluation we use six real world benchmark datasets. They consist of

Reddit, Wikipedia, MOOC, LastFM, Enron and UCI. Table  4.2 shows basic statistics and

below we list brief descriptions. Coverage of both positive candidates and entire node sets

are calculated on the test set for each dataset. Specifically, for each source in test, its k-hop

historical subgraph is sampled with constraint parameters k = 3, B1 = B2 = 50 and coverage

statistics are calculated based on this sampled graph and averaged across all sources in the

test set for a dataset.

• Reddit is a bipartite interaction graph formed over a span of 30 days. Here, users and

sub-reddits form two classes of nodes and an edge occurs when a user interacts with a

sub-reddit. Interactions contain continuous timestamps and textual LIWC attributes

related to the post that a user writes to the sub-reddit. The processed dataset is

obtained from  http://snap.stanford.edu/ jodie/reddit.csv  

• Wikipedia is a bipartite interaction graph formed over a span of 30 days. Here, users

and wiki pages form two classes of nodes and an edge occurs when a user edits a

wiki page. Interactions contain continuous timestamps and textual LIWC attributes

related to the edit that a user made to the wiki page. The processed dataset is obtained

from  http://snap.stanford.edu/ jodie/wikipedia.csv  

• MOOC is a bipartite user action graph formed by two classes of nodes: students

and course content. Edges are formed when students interact with a course content.

Interactions contain continuous timestamps and vector attributes related to the type

of event (e.g., access course chapter, view course video). The processed dataset is

obtained from  http://snap.stanford.edu/ jodie/mooc.csv  

• LastFM is a bipartite user interaction graph formed by who-listens-to-which song on

an online music platform. Edges are formed when users listen to a song. Interac-

tions contain continuous timestamps without any attributes. The processed dataset is

obtained from  http://snap.stanford.edu/ jodie/ lastfm.csv  
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• Enron is a communication network formed by email exchanges between employees

of an organization over several years. The processed dataset is obtained from  https:

//www.cs.cmu.edu/~./enron/  

• UCI is a communication network arising from messages sent between users of an online

community of students over a span of six months. The processed dataset is obtained

from  http://konect.cc/networks/opsahl-ucsocial/  

4.4.2 Baselines

We compare our framework TGRank against representative T-GRL methods designed for

continuous time graphs: JODIE [ 66 ], DyRep [  79 ], TGAT [  74 ], TGN [  75 ] and CAWN [  68 ]. The

baselines we adopt have shown to be consistently better than network embedding methods

[ 99 ], [ 100 ], [  176 ] and temporally adapted static GNNs (e.g., GAT [  47 ], GraphSAGE [  46 ])

on same datasets we have chosen [cf.  74 ], [  75 ]. Thus, we focus on comparing TGRank with

only the aforementioned methods. Additionally, for having more comparative baselines, we

extend TGAT and TGN which were originally proposed with a binary classification based

link prediction loss to our listwise ranking loss in Eq.  4.5 . We term them TGAT-LW and

TGN-LW respectively. For both the aforementioned baselines we sample the candidates for

each source node using the exact same strategy as used by TGRank from Sec.  4.3.2 during

training to keep comparison fair.

4.4.3 Evaluation Tasks, Protocol and Metrics.

The general setup for all datasets is as follows. First, for a dataset in time range [0, T ] we

follow [  74 ], [  75 ] and perform a 70%-15%- 15% chronological split of the dataset for defining its

training [0, Ttrain), validation [Ttrain, Tval) and testing (Tval, T ] intervals. Secondly, following

previous works [ 68 ], [  74 ], [  75 ] we randomly sample 10% of all nodes and consider them

as “new” nodes (used for inductive task explained later). In the transductive task, the

training, validation and testing sets involve all interactions occurring in their respective

split intervals. In the inductive task, for a testing query, neither the center node nor

the true candidate in the testing set is not observed during training. We generate the

74

https://www.cs.cmu.edu/~./enron/
https://www.cs.cmu.edu/~./enron/
http://konect.cc/networks/opsahl-ucsocial/


queries q = (s,D, t) as follows. Given a positive edge (s, v, t), we consider all nodes in

the k-hop historical subgraph Gk
t,s and adopt the downsampling strategy in Sec.  4.3.2 with

hyperparameters B1, B2. We set the obtained node set as D. We use mean reciprocal rank

(MRR) and mean Hits@K to evaluate the models ranking ability over all evaluation queries.

More details are provided below.

4.4.4 Detailed Temporal Graphs Downsampling in Experiments

Our real-world temporal network evaluation sets only consist of a single ground truth

candidate for a source node at a certain evaluation time, so we consider the following proce-

dure to build the query and its ground truth ranking list. Specifically, given an evaluation

interaction (s, v∗, t) where s is the source, v∗ is its single ground truth candidate and t is the

evaluation time of the interaction, to build its query q = (s,D, t), we consider the k-hop his-

torical subgraph Gk
s,t of the source s and build the candidate list D = (d1, d2, . . . , dn), where

dj ∈ Gk
s,t. Additionally, to control the quality and quantity of the candidates that are used

for each source in evaluation, we follow the same downsampling stategy like in training and

consider constraints on Gk
s,t with parameters k, B1 and B2 that represent the total number of

hops, number of recent neighbors sampled for each node per hop and number of most recent

edges sampled between two nodes respectively. Note that these evaluation parameters can

be different from that used for training and later in experiments we will show the interplay

between them. An important point to note is that v∗ may or may not be present in the

constrained Gk
s,t, but is always included in D. We use mean reciprocal rank (MRR) and

mean Hits@K to evaluate the models ranking ability over all evaluation queries.

4.4.5 Additional Implementation Details

Hyper-parameters of TGRank

We set the embedding dimension for all datasets to 128. The time encoding dimension

is set to 128 for all datasets. Train batch size is chosen from {32, 64, 128}. The number of

encoder layers R is chosen from {1, 2, 3}. Gradient optimization is carried out using Adam

with learning rate of 1e − 4 for all datasets. The upper cap for number of epochs is set to

75



25. Models are selected using early stopping with patience set to 5 rounds. Validation MRR

performance is chosen to guide the early stopping with a tolerance of 1e−10. Dropout layers

with drop probability of 0.1 is used during training for the Message, Update and Ranking

MLP function. Layer normalization is used for the update function.

Baselines

Specifically for implementing TGAT-LW and TGN-LW, we adapt the code available at

 https://github.com/twitter-research/tgn  to include our listwise loss. JODIE, DyRep, TGAT

are run using the code provided at the same aforementioned link.

Resources

For calculating the wall-clock time, a single Nvidia GeForce GTX 1080 Ti (12GB) card

is used along with 6 Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz and a total of 24 GB

RAM.

4.4.6 Classification based Loss Formulation

Previous T-GRL encoders produced latent representations for individual nodes. Thus,

in these methods the goal of the decoder is to map pairs of such representations into a single

latent space that represents a score for a link. TGAT [  74 ] used a parameter free decoder which

just computes similarity of two latent node representation using dot products. TGN [ 75 ] use

a MLP that takes a vector concatenation of two node representations to provide a link

representation. For e.g., if φ(u, t) represents the node representation for a node u at time t

as generated by TGN,

zu,v(t) = Mlp
(
φ(u, t) ‖ φ(v, t)

)
(4.6)

where zu,v(t) represents a score for link (u, v) at time t.

Now, the goal is to classify if two nodes interact (or form links) with each other at a given

time. In other words, link prediction is cast as a binary classification problem. Since the
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dataset contains only positive observation, negative observations are sampled by corrupting

the positives. Finally, binary cross entropy loss is used as the training objective:

L(s, v∗, t) = − log(σ(zs,v∗(t)))− log(1− σ(zs,v′(t))) (4.7)

where node v′ is randomly sampled from Vt and σ(·) is the sigmoid function. While the

above formulation is commonly employed for training T-GRL methods [  68 ], [  74 ], [  75 ], [  79 ],

it can be inconsistent with the goal of ranking evaluation. Specifically, consider a ranking

evaluation with metrics such as MRR, given a true link (s, v∗), we want to rank v∗ higher

compared to other nodes in a list of candidates D.

4.5 Experimental Analysis

In this section, we conduct empirical evaluations of TGRank over real-world temporal

networks.
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Figure 4.3. Heatmap values indicate % gain in MRR of TGRank over TGN
for different parameters used to generate candidates from the historical sub-
graph of a source during ranking evaluation. The x-axis shows the number of
hops k considered and y-axis B1(= B2) jointly shows the number of most re-
cent neighbors sampled per node per hop (B1) and the number of most recent
edges between two nodes (B2).

4.5.1 Temporal Interaction Ranking Results

In Table  4.3 we compare TGRank with baselines for both transductive and inductive

temporal interaction ranking tasks. All methods are evaluated on the same testing query-

true list pairs where candidates are generated by setting sampling parameters k = 3, B1 =

B2 = 20.
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Focusing on the transductive task, it is clear from Table  4.3 that our method TGRank

significantly outperforms all baselines on all datasets. On average, for attributed datasets

(Reddit, Wikipedia and MOOC) our method improves over the strongest baseline by 7.6%

in MRR and 4.21% in Hits@5. While, for non-attributed datasets (LastFM, Enron and UCI)

we witness that increased expressivity of TGRank helps and we see average improvement

of 61.08% in MRR and 70.60% Hits@5 compared to TGN-LW and average improvement of

19.7% in MRR and 10.5% Hits@5 over CAWN for Enron and UCI datasets.

By actively sampling historical graphs, viz., TGAT, TGN, TGAT-LW, TGN-LW, CAWN

and TGRank outperform than other methods not fully utilizing it (JODIE and DyRep). This

highlights that historical graph is key to the interaction ranking problem. Moreover, our

method TGRank that is more expressive due to the label trick is consistently better than all

the baselines. We stress that the gains we witness for TGRank are higher in datasets devoid

of attributes as structural and temporal patterns play an even bigger role. Lastly, methods

using a listwise ranking loss are better than methods trained using binary classification loss

by comparing TGN-LW and TGAT-LW with their original counterparts TGN and TGAT,

respectively.

Moving to the inductive task in Table.  4.3 , it is clear that TGRank shows improved

performance over baselines on all datasets. Specifically, compared to the best baseline, we

witness averaged gains of 4.8% in MRR and 5.6% Hits@5 over attributed datasets. Over

non-attributed datasets, we see gains of 59.08% in MRR and 66.37% in Hits@5 compared

to TGN-LW (less expressive). Whereas, compared to CAWN, we witness average gains of

20.2% in MRR and 10.6% in Hits@5 for Enron and UCI datasets combined.

Once again, even in the inductive task, the gains we witness are considerably higher

for non-attributed datasets. This additionally supports our claim that TGRank can be

effectively used for inductive ranking tasks (Thm.  4.3.2 ). While TGAT, TGN and their

ranking counterparts TGAT-LW, TGN-LW are also inductive by design, they fall short in

comparison to our method TGRank, primarily due to their reduced expressivity (ambiguity

problem). While CAWN can maintain high expressivity, it incurs excessive run-times and

for large datasets like Reddit and LastFM, we were unable to finish the inference on all test
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queries within a 12 hour time window (hence a TLE). More details on wall run times are

provided in Sec  4.5.5 .

We also compare different methods via the non-ranking evaluation protocol, i.e., a binary

classification task to predict when an edge exists or not, as commonly adopted by previous

works in Table  4.6 . The results further demonstrate the effectiveness of the labeling method

and our encoder.

4.5.2 Ranking evaluation for different ways of candidate selection

One might argue that the results in Table  4.3 might not give a complete picture of the

effectiveness of TGRank as the quality and quantity of candidates selected during ranking

evaluation is fixed for a source in the query. Thus, we compare TGRank with TGN over

different evaluation parameters 0 < k ≤ 5, and 0 < B1 = B2 ≤ 20. Note that each value

taken by the parameters will result in a different ranking evaluation over all data points

in testing for a dataset. Fig.  4.3 shows heatmaps of averaged % gain (using MRR) of

TGRank over TGN under different evaluation parameters. The take away is that TGRank

is consistently better than TGN as we see positive gain throughout the chosen evaluation

parameter space. Noticeably greater improvements are seen when candidates are selected

further away from the source (higher k) and number of candidates increase (higher B1) per

source.

4.5.3 Ablation Study

Table 4.4. Ablation results for TGRank using transductive ranking. Here
candidate nodes are sampled from temporal neighborhood

No. Ablation Wikipedia MOOC Enron UCI
MRR Hits@5 MRR Hits@5 MRR Hits@5 MRR Hits@5

1 TGRank (original) 0.792±0.006 0.870±0.001 0.321±0.001 0.436±0.001 0.414±0.007 0.650±0.006 0.685±0.002 0.781±0.004
2 replace listwise loss with pointwise loss 0.772±0.008 0.859±0.009 0.302±0.004 0.405±0.003 0.348±0.003 0.572±0.001 0.372±0.002 0.566±0.003
3 randomize timestamps before encoding 0.767±0.002 0.860±0.003 0.231±0.003 0.344±0.006 0.386±0.002 0.621±0.002 0.663±0.004 0.748±0.009
4 coalesce temporal edges, time counts 0.741±0.005 0.863±0.004 0.234±0.002 0.352±0.002 0.405±0.002 0.620±0.008 0.669±0.003 0.742±0.007
5 no labelling trick 0.609±0.005 0.735±0.004 0.228±0.001 0.332±0.004 0.341±0.002 0.559±0.009 0.389±0.006 0.593±0.007
6 replace time encoding with just timestamp 0.734±0.001 0.813±0.001 0.066±0.005 0.067±0.002 0.176±0.002 0.253±0.003 0.058±0.001 0.065±0.001

We further conduct ablation analysis on attributed (Wikipedia, MOOC) and non-attributed

(Enron, UCI) datasets to probe into the critical components of our method. Table  4.4 shows
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the results. Row Ab.1 is our original TGRank method. In row Ab.2, we replace the listwise

ranking loss with a binary classification loss, we witness a drop in performance (compared

to row 1) on all datasets, with the drop being prominent for non-attributed datasets. In

row Ab.3 timestamps are randomized before encoding during training. The results show

that breaking the time invariance property used in Theorem  4.3.2 does have a significant

negative effect on the performance across all datasets. In row Ab.4, multi-edges between

two nodes are coalesced and time information is replaced with counts. This leads to a decay

in performance that is more prominent in attributed datasets compared to non-attributed

datasets. We reason that for Enron and UCI, which are communication networks, the num-

ber of interactions between two nodes which we provide as counts is a very important signal

in ranking future interactions. On the other hand in attributed datasets, when we coalesce

such multi-edges, their attributes are averaged and some crucial information loss is bound

to happen and therefore we witness a steeper decay in performance. In row Ab.5, we show

performance of TGRank without initial labels (i.e., limiting the expressivity of the model).

The results show that not labelling the source differently from candidates during our label

diffusion procedure, performance across all datasets is severely impacted. This clearly val-

idates our motivation that candidate representations should be “aware” of the source node

when used for ranking and provides empirical evidence of the increased expressivity via la-

bel diffusion as characterized by Thm.  4.3.1 . Finally, in row Ab. 6, we drop the learned

time encoding from TGRank and simply use the original time stamps on the edges. The

results provides experimental evidence to the importance of using time encoding to model

the timestamps and how our method can effectively use it.

4.5.4 Hyperparameter Sensitivity

We conduct an experiment to vary the quality and quantity of candidates per source in

a query and measure its effect on evaluation performance where a fixed number and type

of candidates are given. The analysis is shown in Fig  4.4 . Specifically, during training, the

candidates are generated from the k-hop historical subgraph around a center node with the

following parameters: number of hops 0 < k ≤ 3, number of most recent neighbors sampled
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Figure 4.4. Heatmap shows the effect of using different ways of selecting
candidates during training on a fixed 3-hop, 20 most recent neighbors per
node per hop and 20 most recent edges between nodes type sampling during
testing evaluation. Numbers indicate averaged test MRR.

per node per hop B1. As for testing, the sampling is fixed with k = 3, B1 = 20. We fix

number of most recent edges sampled between two nodes B2 = B1 for both training and

testing. The results show that when the training candidate selection parameters approach

that of the testing, the performance of TGRank becomes optimal. However, note that as long

as the quality of candidates used in training match that of the candidates used in testing,

comparative performance is achieved across all datasets (row 3 of heatmaps in Fig  4.4 ). This

means that one can significantly reduce the size of the downsampled subgraph by placing

more importance to the depth at which candidates are sampled rather than the number of

candidates at each depth.

4.5.5 Run Time Comparisons

We provide the wall-clock times of TGN-LW, CAWN and TGRank on all the datasets we

considered in Table  4.5 . Both training and test (inference on transductive ranking test set)
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Table 4.5. Wall times in seconds. Train represents time taken per training
epoch averaged over first 5 epochs. Test represents time taken for inference on
transductive test ranking queries.

Method Reddit Wikipedia MOOC LastFM Enron UCI
Train Test Train Test Train Test Train Test Train Test Train Test

TGN-LW 1366.98 881.33 210.22 106.09 608.46 314.05 6701.49 2217.71 54.42 45.21 145.77 45.99
CAWN 1844.52 TLE (12h+) 292.64 2491.76 904.62 16180.02 2103.20 TLE (12h+) 192.18 438.01 91.40 1524.54
TGRank (ours) 644.65 706.73 102.96 68.24 518.41 252.94 807.06 1845.19 50.72 33.53 136.01 38.89

times are reported. Note that in TGN-LW for scalability only 1-layer graph convolutions are

used. Ours uses 3-layers (Wikipedia, MOOC, Enron, UCI) and 2-layers (Reddit, LastFM).

All methods listed use the same temporal sampling scheme for each dataset to find candidates

so that comparison is fair. Firstly, comparing TGRank and TGN-LW, it is clear that TGRank

achieves 2∼8× speed-up of TGN-LW in both train and test stages and the difference is clearly

visible for large datasets like LastFM and Reddit. CAWN, incurs excessive runtimes during

inference as it needs to sample long random walks between source and candidate nodes.

For large datasets like Reddit and LastFM, CAWN was unable to complete the inference

over all test queries within a 12 hour window resulting in a TLE (time limit exceeded).

TGRank achieves 10∼65× speed-up compared to CAWN during inference with increased

gains witnessed for large datasets like Reddit, MOOC and LastFM.

4.6 Additional Experimental Results

Fig.  4.5 shows the sensitivity analysis of our method. Here, we plot the sensitivity of

the number of layers of encoder used in relation to the number of most recent neighbors

sampled per node per hop. Across all four datasets, we witness that increasing the layer or

in other words rounds of message passing for label diffusion has a strong positive correlation

with validation MRR. While, traditional T-GRL methods like TGN and TGAT may suffer

from over-smoothing issues as prevalent in standard GNNs. Moreover the authors of TGN

have proposed that a single layer of their GNN based attention encoder is sufficient and

comparable to larger layers [cf.  75 , fig. 3 (b) p. 8 ]. Our use of initial node representations

in the update functions of message passing may alleviate issues surrounding over-smoothing

in temporal networks, although more study is required.
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Figure 4.5. Sensitivity Analysis

4.6.1 On Interaction Ranking v.s. Prediction

Table 4.6. Transductive temporal link prediction performance in AP (mean ± std.)
Method Reddit Wikipedia MOOC LastFM Enron UCI
DyRep 97.98±0.1 94.59±0.2 79.57±1.5 69.24±1.4 77.68±1.6 54.60±3.1
JODIE 97.84±0.3 95.70±0.2 81.16±1.0 69.32±1.0 77.31±4.2 86.73±1.0
TGAT 98.12±0.2 95.34±0.1 64.36±3.3 54.77±0.4 68.02±0.1 77.51±0.7
TGN 98.68±0.1 98.51±0.1 82.10±0.6 78.80±0.5 78.05±1.2 90.40±1.2
TGRank 98.83±0.2 98.20±0.5 83.47±0.5 79.53±0.4 83.65±0.9 92.14±0.8

In Table  4.6 we also compare different methods via the non-ranking evaluation protocol,

i.e., a binary classification task to predict when an edge exists or not, as commonly adopted

by previous works [ 68 ], [  74 ], [  75 ]. Here, for all positive links in the evaluation set an equal

number of negative links are sampled and the average precision (AP) metric is used to

evaluate the models prediction ability. Even in this setting, where the baseline models

were first proposed, one can witness that TGRank significantly outperforms in five out of

six datasets. An interesting observation is that baseline methods show strong performance

in terms of relatively high AP values for all datasets, but fail to provide similar strong
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performance in our ranking tasks (see Table  4.3 ). This illustrates that using methods trained

and evaluated on classification objectives for ranking tasks can lead to sub-par results, and

gives further evidence to support the claim that training and evaluation objectives should

match.

4.7 Discussion

In this chapter, we developed a novel Temporal Graph network for Ranking (TGRank)

that optimizes a list-wise loss and incorporates a labeling trick to effectively and efficiently

improve performance for link ranking tasks. We discussed the complexity/expressivity trade-

off for previous methods that have either (i) increased expressivity (CAWN) or (ii) are more

amenable to joint inference over candidate sets (TGN), but not both. Then, we showed

how our labeling trick provably increases the expressivity of learned representations and as

such leads to increased ranking accuracy. Our labeling approach allows us to efficiently infer

representations over the candidate set jointly. In the experiment, we observe consistent, sig-

nificant gains in ranking performance compared to the baselines, and we also achieve efficient

run times.
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5. ADVERSARIAL GRAPH CONTRASTIVE LEARNING

Graph representation learning (GRL) aims to encode graph-structured data into low-dimensional

vector representations, which has recently shown great potential in many applications in

biochemistry, physics and social science [ 9 ], [ 14 ], [ 39 ]. Graph neural networks (GNNs), in-

heriting the power of neural networks [  43 ], [ 44 ], have become the almost de facto encoders

for GRL [  42 ], [  140 ], [  141 ], [  201 ]. GNNs have been mostly studied in cases with supervised

end-to-end training [ 45 ], [ 52 ], [ 53 ], [ 77 ], [ 80 ]–[ 82 ], where a large number of task-specific labels

are needed. However, in many applications, annotating labels of graph data takes a lot of

time and resources [  83 ], [  84 ], e.g., identifying pharmacological effect of drug molecule graphs

requires living animal experiments [  85 ]. Therefore, recent research efforts are directed to-

wards studying self-supervised learning for GNNs, where only limited or even no labels are

needed [ 84 ], [ 86 ]–[ 97 ].

Designing proper self-supervised-learning principles for GNNs is crucial, as they drive

what information of graph-structured data will be captured by GNNs and may heavily impact

their performance in downstream tasks. Many previous works adopt the edge-reconstruction

principle to match traditional network-embedding requirement [  98 ]–[ 101 ], where the edges of

the input graph are expected to be reconstructed based on the output of GNNs [  46 ], [  86 ], [  91 ].

Experiments showed that these GNN models learn to over-emphasize node proximity [ 93 ]

and may lose subtle but crucial structural information, thus failing in many tasks including

node-role classification [ 77 ], [ 101 ]–[ 103 ] and graph classification [ 83 ].

To avoid the above issue, graph contrastive learning (GCL) has attracted more attention

recently [ 84 ], [ 87 ]–[ 90 ], [ 92 ], [ 93 ], [ 95 ]–[ 97 ]. GCL leverages the mutual information maxi-

mization principle (InfoMax) [  104 ] that aims to maximize the correspondence between the

representations of a graph (or a node) in its different augmented forms [  84 ], [  87 ]–[ 90 ], [  94 ],

[ 95 ]. Perfect correspondence indicates that a representation precisely identifies its corre-

sponding graph (or node) and thus the encoding procedure does not decrease the mutual

information between them.

However, researchers have found that the InfoMax principle may be risky because it may

push encoders to capture redundant information that is irrelevant to the downstream tasks:
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Redundant information suffices to identify each graph to achieve InfoMax, but encoding it

yields brittle representations and may severely deteriorate the performance of the encoder in

the downstream tasks [  105 ]. This observation reminds us of another principle, termed infor-

mation bottleneck (IB) [  106 ]–[ 111 ]. As opposed to InfoMax, IB asks the encoder to capture

the minimal sufficient information for the downstream tasks. Specifically, IB minimizes the

information from the original data while maximizing the information that is relevant to the

downstream tasks. As the redundant information gets removed, the encoder learnt by IB

tends to be more robust and transferable. Recently, IB has been applied to GNNs [ 112 ],

[ 113 ]. But IB needs the knowledge of the downstream tasks that may not be available.

Hence, a natural question emerges: When the knowledge of downstream tasks are unavail-

able, how to train GNNs that may remove redundant information? Previous works highlight

some solutions by designing data augmentation strategies for GCL but those strategies are

typically task-related and sub-optimal. They either leverage domain knowledge [  87 ], [  89 ],

[ 95 ], e.g., node centralities in network science or molecule motifs in bio-chemistry, or depend

on extensive evaluation on the downstream tasks, where the best strategy is selected based

on validation performance [ 89 ], [ 94 ].
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Figure 5.1. The AD-GCL principle and its instantiation based on learnable edge-
dropping augmentation. AD-GCL contains two components for graph data encoding
and graph data augmentation. The GNN encoder f(·) maximizes the mutual in-
formation between the original graph G and the augmented graph t(G) while the
GNN augmenter optimizes the augmentation T (·) to remove the information from
the original graph. The instantiation of AD-GCL proposed in this work uses edge
dropping: An edge e of G is randomly dropped according to Bernoulli(ωe), where
ωe is parameterized by the GNN augmenter.
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In this chapter, we approach this question by proposing a novel principle that pairs GCL

with adversarial training, termed AD-GCL, as shown in Fig. 5.1 . We particularly focus on

training self-supervised GNNs for graph-level tasks, though the idea may be generalized for

node-level tasks. AD-GCL consists of two components: The first component contains a

GNN encoder, which adopts InfoMax to maximize the correspondence/mutual information

between the representations of the original graph and its augmented graphs. The second

component contains a GNN-based augmenter, which aims to optimize the augmentation

strategy to decrease redundant information from the original graph as much as possible.

AD-GCL essentially allows the encoder capturing the minimal sufficient information to dis-

tinguish graphs in the dataset. We further provide theoretical explanations of AD-GCL. We

show that with certain regularization on the search space of the augmenter, AD-GCL can

yield a lower bound guarantee of the information related to the downstream tasks, while

simultaneously holding an upper bound guarantee of the redundant information from the

original graphs, which matches the aim of the IB principle. We further give an instantia-

tion of AD-GCL: The GNN augmenter adopts a task-agnostic augmentation strategy and

will learn an input-graph-dependent non-uniform-edge-drop probability to perform graph

augmentation.

Finally, we extensively evaluate AD-GCL on 18 different benchmark datasets for molecule

property classification and regression, and social network classification tasks in different set-

ting viz. unsupervised learning (Sec.  5.5.2 ), transfer learning (Sec.  5.5.3 ) and semi-supervised

learning (Sec.  5.5.4 ) learning. AD-GCL achieves significant performance gains in relative im-

provement and high mean ranks over the datasets compared to state-of-the-art baselines. We

also study the theoretical aspects of AD-GCL with apt experiments and analyze the results

to offer fresh perspectives (Sec.  5.6 ): Interestingly, we observe that AD-GCL outperforms

traditional GCL based on non-optimizable augmentation across almost the entire range of

perturbation levels.

5.1 Preliminaries

We first introduce some preliminary concepts and notations for further exposition.
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5.1.1 The Mutual Information Maximization Principle

GCL is built upon the InfoMax principle [  104 ], which prescribes to learn an encoder

f that maximizes the mutual information or the correspondence between the graph and

its representation. The rationale behind GCL is that a graph representation f(G) should

capture the features of the graph G so that representation can distinguish this graph from

other graphs. Specifically, the objective of GCL follows

InfoMax: max
f

I(G; f(G)), where G ∼ PG. (5.1)

where I(X1; X2) denotes the mutual information between two random variables X1 and

X2 [ 202 ]. The learnt encoder f can yield graph representations that are used for the down-

stream tasks.

Note that the encoder f(·) given by GNNs is not injective in the graph space G due to its

limited expressive power [  52 ], [  53 ]. Specifically, for the graphs that cannot be distinguished

by 1-WL test [  51 ], GNNs will associate them with the same representations. 1-WL test is

discussed in detail in the Section  2.4 . In contrast to using CNNs as encoders, one can never

expect GNNs to identify all the graphs in G based their representations, which introduces a

unique challenge for GCL.

In this section, we introduce our adversarial graph contrastive learning (AD-GCL) frame-

work and one of its instantiations based on edge perturbation.

5.2 Theoretical Motivation for Adversarial Graph Contrastive Learning (AD-
GCL)

The InfoMax principle in Eq.  5.1 could be problematic in practice for general represen-

tation learning. Tschannen et al. have shown that for image classification, representations

capturing the information that is entirely irrelevant to the image labels are also able to max-

imize the mutual information but such representations are definitely not useful for image

classification [ 105 ]. A similar issue can also be observed in graph representation learning,

as illustrated by Fig.  5.2 : We consider a binary graph classification problem with graphs in
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the dataset ogbg-molbace [  203 ]. Two GNN encoders with exactly the same architecture are

trained to keep mutual information maximization between graph representations and the in-

put graphs, but one of the GNN encoders in the same time is further supervised by random

graph labels. Although the GNN encoder supervised by random labels still keeps one-to-one

correspondance between every input graph and its representation (i.e., mutual information

maximization), we may observe significant performance degeneration of this GNN encoder

when evaluating it over the downstream ground-truth labels. More detailed experiment

setup is given below.
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Figure 5.2. Two GNNs keep the mutual information maximized between
graphs and their representations. Simultaneously, they get supervised by
ground-truth labels (green) and random labels (blue) respectively.The curves
show their testing performance on predicting ground-truth labels.

The aim of this experiment is to show that having GNNs that can maximize mutual

information between the input graph and its representation is insufficient to guarantee their

performance in the downstream tasks, because redundant information may still maximize

mutual information but may degenerate the performance. To show this phenomenon, we

perform two case studies: (1) a GNN is trained following the vanilla GCL (InfoMax) objective

and (2) a GNN is trained following the vanilla GCL (InfoMax) objective while simultaneously

a linear classifier that tasks the graph representations output by the GNN encoder is trained

with random labels. These two GNNs have exactly the same architectures, hyperparametes

and initialization. Specifically, the GNN architecture is GIN [  204 ], with embedding dimension

of 32, 5 layers with no skip connections and a dropout of 0.0.
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Both GNN encoders are trained as above. In the first step of the evaluation, we want

to test whether these GNNs keep mutual information maximization. For all graphs in the

ogbg-molbace dataset, either one of the GNN provides a set of graph representations. For

each GNN, we compare all its output graph representations. We find that, the output

representations of every two graphs have difference that is greater than a digit accuracy. This

implies that either one of the GNN keeps an one-to-one correspondance between the graphs

in the dataset and their representations, which guarantees mutual information maximization.

We further compare these two GNNs encoders in the downstream task by using true

labels. We impose two linear classifiers on the output representations of the above two GNN

encoders to predict the true labels. The two linear classifiers have exactly the same architec-

ture, hyperparametes and initialization. Specifically, a simple logistic classifier implemented

using sklearn [ 205 ] is used with L2 regularization. The L2 strength is tuned using validation

set. For the dataset ogbg-molbace, we follow the default train/val/test splits that are given

by the original authors of OGB [ 203 ]. Note that, during the evaluation stage, the GNN

encoders are fixed while the linear classifiers get trained. The evaluation performance is the

curves as illustrated in Figure  5.2 .

This observation inspires us to rethink what a good graph representation is. Recently, the

information bottleneck has applied to learn graph representations [  112 ], [ 113 ]. Specifically,

the objective of graph information bottleneck (GIB) follows

GIB: max
f

I(f(G); Y )− βI(G; f(G)), (5.2)

where (G, Y ) ∼ PG×Y , β is a positive constant. Comparing Eq.  5.1 and Eq.  5.2 , we may

observe the different requirements between InfoMax and GIB: InfoMax asks for maximizing

the information from the original graph, while GIB asks for minimizing such information

but simultaneously maximizing the information that is relevant to the downstream tasks.

As GIB asks to remove redundant information, GIB naturally avoids the issue encountered

in Fig.  5.2 . Removing extra information also makes GNNs trained w.r.t. GIB robust to

adverserial attack and strongly transferrable [ 112 ], [ 113 ].
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Unfortunately, GIB requires the knowledge of the class labels Y from the downstream

task and thus does not apply to self-supervised training of GNNs where there are few or no

labels. Then, the question is how to learn robust and transferable GNNs in a self-supervised

way.

To address this, we will develop a GCL approach that uses adversarial learning to avoid

capturing redundant information during the representation learning.

In general, GCL methods use graph data augmentation (GDA) processes to perturb

the original observed graphs and decrease the amount of information they encode. Then,

the methods apply InfoMax over perturbed graph pairs (using different GDAs) to train an

encoder f to capture the remaining information.

Definition 5.2.1 (Graph Data Augmentation (GDA)). For a graph G ∈ G, T (G) denotes

a graph data augmentation of G, which is a distribution defined over G conditioned on G.

We use t(G) ∈ G to denote a sample of T (G).

Specifically, given two ways of GDA T1 and T2, the objective of GCL becomes

GDA-GCL: max
f

I(f(t1(G)); f(t2(G))), where G ∼ PG, ti(G) ∼ Ti(G), i ∈ {1, 2}. (5.3)

In practice, GDA processes are often pre-designed based on either domain knowledge

or extensive evaluation, and improper choice of GDA may severely impact the downstream

performance [ 83 ], [ 94 ]. We will review a few GDAs adopted in existing works in Sec.  5.4 .

In contrast to previous predefined GDAs, our idea, inspired by GIB, is to learn the GDA

process (over a parameterized family), so that the encoder f can capture the minimal

information that is sufficient to identify each graph.

5.2.1 Formulating AD-GCL

We optimize the following objective, over a GDA family T (defined below).

AD-GCL: min
T ∈T

max
f

I(f(G); f(t(G))), where G ∼ PG, t(G) ∼ T (G), (5.4)
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Definition 5.2.2 (Graph Data Augmentation Family). Let T denote a family of different

GDAs TΦ(·), where Φ is the parameter in some universe. A TΦ(·) ∈ T is a specific GDA

with parameter Φ.

The min-max principle in AD-GCL aims to train the encoder such that even with a

very aggressive GDA (i.e., where t(G) is very different from G), the mutual information /

the correspondence between the perturbed graph and the original graph can be maximized.

Compared with the two GDAs adopted in GDA-GCL (Eq. 5.3 ), AD-GCL views the original

graph G as the anchor while pushing its perturbation T (G) as far from the anchor as it

can. The automatic search over T ∈ T saves a great deal of effort evaluating different

combinations of GDA as adopted in [ 94 ].

5.2.2 Relating AD-GCL to the Downstream Task

Next, we will theoretically characterize the property of the encoder trained via AD-GCL.

The analysis here not only further illustrates the rationale of AD-GCL but helps design

practical T when some knowledge of Y is accessible. But note that our analysis does not

make any assumption on the availability of Y .

Note that GNNs learning graph representations is very different from CNNs learning im-

age representations because GNNs are never injective mappings between the graph universe

G and the representation space Rd, because the expressive power of GNNs is limited by the

1-WL test [  51 ]–[ 53 ]. So, we need to define a quotient space of G based on the equivalence

given by the 1-WL test.

Definition 5.2.3 (Graph Quotient Space). Define the equivalence ∼= between two graphs

G1 ∼= G2 if G1, G2 cannot be distinguished by the 1-WL test. Define the quotient space

G ′ = G/ ∼=.

So every element in the quotient space, i.e., G′ ∈ G ′, is a representative graph from a

family of graphs that cannot be distinguished by the 1-WL test. Note that our definition

also allows attributed graphs.
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Definition 5.2.4 (Probability Measures in G ′). Define PG′ over the space G ′ such that

PG′(G′) = PG(G ∼= G′) for any G′ ∈ G ′. Further define joint probability, PG′×Y(G′, Y ′) =

PG×Y(G ∼= G′, Y = Y ′). Given a GDA T (·) defined over G, define a distribution on G ′, as,

T ′(G′) = EG∼PG [T (G)|G ∼= G′] for G′ ∈ G ′.

Now, we provide our theoretical results with a reasonable assumption that GNNs with

proper design may achieve the power of the 1-WL test [ 52 ] (see. Sec.  2.4 ).

Theorem 5.2.1. Suppose the encoder f is implemented by a GNN as powerful as the 1-WL

test. Suppose G is a countable space and thus G ′ is a countable space. Then, the optimal

solution (f ∗, T ∗) to AD-GCL satisfies, letting T ′∗(G′) = EG∼PG [T ∗(G)|G ∼= G′],

1. I(f ∗(t∗(G)); G |Y ) ≤ minT ∈T I(t′(G′); G′)− I(t′∗(G′); Y ) where,

t′(G′) ∼ T ′(G′), t′∗(G′) ∼ T ′∗(G′), (G, Y ) ∼ PG×Y and (G′, Y ) ∼ PG′×Y .

2. I(f ∗(G); Y ) ≥ I(f ∗(t′∗(G′)); Y ) = I(t′∗(G′); Y ) where,

t′∗(G′) ∼ T ′∗(G′), (G, Y ) ∼ PG×Y and (G′, Y ) ∼ PG′×Y .

Proof. Because G and G ′ are countable, PG and PG′ are defined over countable sets and thus

discrete distribution. Later we may call a function z(·) can distinguish two graphs G1, G2 if

z(G1) 6= z(G2).

Moreover, for notational simplicity, we consider the following definition. Because f ∗ is as

powerful as the 1-WL test. Then, for any two graphs G1, G2 ∈ G, G1 ∼= G2, f ∗(G1) = f ∗(G2).

We may define a mapping over G ′, also denoted by f ∗ which simply satisfies f ∗(G′) :, f ∗(G),

where G ∼= G′, and G ∈ G and G′ ∈ G ′.

We first prove the statement 1, i.e., the upper bound. We have the following inequality:

Recall that T ′∗(G′) = EG∼PG [T ∗(G)|G ∼= G′] and t′∗(G′) ∼ T ′∗(G′).

I(t′∗(G′); G′) = I(t′∗(G′); (G′, Y ))− I(t′∗(G′); Y |G′)]
(a)= I(t′∗(G′); (G′, Y ))

= I(t′∗(G′); Y ) + I(t′∗(G′); G′|Y )
(b)
≥ I(f ∗(t′∗(G′)); G′|Y ) + I(t′∗(G′); Y ) (5.5)
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where (a) is because t′∗(G′) ⊥G′ Y , (b) is because the data processing inequality [ 202 ].

Moreover, because f ∗ could be as powerful as the 1-WL test and thus could be injective in G ′

a.e. with respect to the measure PG′ . Then, for any GDA T (·) and T ′(G′) = EG∼PG [T (G)|G ∼=

G′],

I(t′(G′); G′) = I(f ∗(t′(G′)); f ∗(G′)) = I(f ∗(t(G)); f ∗(G)), (5.6)

where t′(G′) ∼ T ′(G′), t(G) ∼ T (G). Here, the second equality is because f ∗(G) = f ∗(G′)

and T ′(G′) = EG∼PG [T (G)|G ∼= G′].

Since T ∗ = arg minT ∈T I(f(t∗(G)); f(G)) where t∗(G) ∼ T ∗(G) and Eq. 5.6 , we have

I(t′∗(G′); G′) = arg min
T ∈T

I(t′(G′); G′), where t′(G′) ∼ T ′(G′) = EG∼PG [T (G)|G ∼= G′]. (5.7)

Again, because by definition f ∗ = arg maxf I(f(G); f(t∗(G))) and f ∗ could be as pow-

erful as the 1-WL test, its counterpart defined over G ′, i.e., f ?, must be injective over

G ′ ∩ Supp(EG′∼PG′ [T ∗(G′)]) a.e. with respect to the measure PG′ to achieve such mutual

information maximization. Here, Supp(µ) defines the set where µ has non-zero measure.

Because of the definition of T ′∗(G′) = EG∼PG [T ∗(G)|G ∼= G′],

G ′ ∩ Supp(EG′∼PG′ [T ∗(G′)]) = G ′ ∩ Supp(EG∼PG [T ∗(G)]).

Therefore, f ∗ is a.e. injective over G ′ ∩ Supp(EG∼PG [T ∗(G)]) and thus

I(f ∗(t′∗(G′)); G′|Y ) = I(f ∗(t∗(G)); G′|Y ), (5.8)

Moreover, as f ∗ cannot cannot distinguish more graphs in G than G ′ as the power of f ∗ is

limited by 1-WL test, thus,

I(f ∗(t∗(G)); G′|Y ) = I(f ∗(t∗(G)); G|Y ). (5.9)
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Plugging Eqs. 5.7 ,  5.8 ,  5.9 into Eq. 5.5 , we achieve

I(f ∗(t∗(G)); G|Y ) ≤ arg min
T ∈T

I(t′(G′); G′)− I(t′∗(G′); Y )

where t′(G′) ∼ T ′(G′) = EG∼PG [T (G)|G ∼= G′] and t′∗(G′) ∼ T ′∗(G′) = EG∼PG [T ∗(G)|G ∼=

G′], which gives us the statement 1, which is the upper bound.

We next prove the statement 2, i.e., the lower bound. Recall (T ∗, f ∗) is the optimal

solution to Eq. 5.4 and t∗(·) denotes samples from T ∗(·).

Again, because f ∗ = arg maxf I(f(G); f(t∗(G))), f ∗ must be injective on

G ′ ∩ Supp(EG′∼PG′ [T ∗(G′)]) (5.10)

a.e. with respect to the measure PG′ . Given t′∗(G′), t′∗(G′) → f ∗(t′∗(G′)) is an injective

deterministic mapping. Therefore, for any random variable Q,

I(f ∗(t′∗(G′)); Q) = I(t′∗(G′); Q), where G′ ∼ PG′ , t′∗(G′) ∼ T ′∗(G′).

Of course, we may set Q = Y . So,

I(f ∗(t′∗(G′)); Y ) = I(t′∗(G′); Y ), where (G′, Y ) ∼ PG′×Y , t′∗(G′) ∼ T ′∗(G′). (5.11)

Because of the data processing inequality [  202 ] and T ′∗(G′) = EG∼PG [T ∗(G)|G ∼= G′], we

further have

I(f ∗(t∗(G)); Y ) ≥ I(f ∗(t′∗(G′)); Y ), (5.12)

where (G′, Y ) ∼ PG′×Y , (G, Y ) ∼ PG×Y , t′∗(G′) ∼ T ′∗(G′), t∗(G) ∼ T ∗(G).

Further because of the data processing inequality [ 202 ],

I(f ∗(G); Y ) ≥ I(f ∗(t∗(G)); Y ). (5.13)
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Combining Eqs. 5.11 ,  5.12 ,  5.13 , we have

I(f ∗(G); Y ) ≥ I(f ∗(t∗(G)); Y ) ≥ I(f ∗(t′∗(G′)); Y ) = I(t′∗(G′); Y ),

which concludes the proof of the lower bound.

5.2.3 Implications of AD-GCL Priciple

The statement 1 in Theorem  5.2.1 guarantees a upper bound of the information that is

captured by the representations but irrelevant to the downstream task, which matches our

aim. This bound has a form very relevant to the GIB principle (Eq. 5.2 when β = 1), since

minT ∈T I(t′(G′); G′)− I(t′∗(G′); Y ) ≥ minf [I(f(G); G)− I(f(G); Y )],

where f is a GNN encoder as powerful as the 1-WL test. But note that this inequality

also implies that the encoder given by AD-GCL may be worse than the optimal encoder

given by GIB (β = 1). This makes sense as GIB has the access to the downstream task Y .

The statement 2 in Theorem  5.2.1 guarantees a lower bound of the mutual information

between the learnt representations and the labels of the downstream task. As long as the

GDA family T has a good control, I(t′∗(G′); Y ) ≥ minT ∈T I(t′(G′); Y ) and I(f ∗(G); Y ) thus

cannot be too small. This implies that it is better to regularize when learning over T . In

our instantiation, based on edge-dropping augmentation (Sec.  5.3 ), we regularize the ratio

of dropped edges per graph.

5.3 Instantiation of AD-GCL via Learnable Edge Perturbation

We now introduce a practical instantiation of the AD-GCL principle (Eq.  5.4 ) based on

learnable edge-dropping augmentations as illustrated in Fig.  5.1 . The objective of AD-GCL

has two folds: (1) Optimize the encoder f to maximize the mutual information between

the representations of the original graph G and its augmented graph t(G); (2) Optimize the

GDA T (G) where t(G) is sampled to minimize such a mutual information. We always set the

encoder as a GNN fΘ with learnable parameters Θ and next we focus on the GDA, TΦ(G)

that has learnable parameters Φ.
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5.3.1 Learnable Edge Dropping GDA Model

Edge dropping is the operation of deleting some edges in a graph. As a proof of concept,

we adopt edge dropping to formulate the GDA family T . Other types of GDAs such as node

dropping, edge adding and feature masking can also be paired with our AD-GCL principle.

Interestingly, in our experiments, edge-dropping augmentation optimized by AD-GCL has

already achieved much better performance than any pre-defined random GDAs even care-

fully selected via extensive evaluation [  94 ] (See Sec.  5.5 ). We attribute such improvement to

the AD-GCL principle. Another reason that supports edge dropping is due to our Theo-

rem  5.2.1 statement 2, which shows that good GDAs should keep some information related

to the downstream tasks. Many GRL downstream tasks such as molecule classification only

depends on the structural fingerprints that can be represented as subgraphs of the original

graph [ 48 ]. Dropping a few edges may not change those subgraph structures and thus keeps

the information sufficient to the downstream classification. But note that this reasoning

does not mean that we leverage domain knowledge to design GDA, as the family T is still

broad and the specific GDA still needs to be optimized. Moreover, experiments show that

our instantiation also works extremely well on social network classification and molecule

property regression, where the evidence of subgraph fingerprints may not exist any more.

5.3.2 Parameterizing Edge Dropping Weights

For each G = (V, E), we set TΦ(G), T ∈ T as a random graph model [ 206 ], [  207 ]

conditioning on G. Each sample t(G) ∼ TΦ(G) is a graph that shares the same node set

with G while the edge set of t(G) is only a subset of E. Each edge e ∈ E will be associated

with a random variable pe ∼ Bernoulli(ωe), where e is in t(G) if pe = 1 and is dropped

otherwise.
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We parameterize the Bernoulli weights ωe by leveraging another GNN, i.e., the aug-

menter, to run on G according to Eq. 2.1 of K layers, get the final-layer node representations

{h(K)
v |v ∈ V } and set

ωe = MLP([h(K)
u ; h(K)

z ]), where e = (u, z) and {h(K)
v | v ∈ V } = GNN-augmenter(G)

(5.14)

To train T (G) in an end-to-end fashion, we relax the discrete pe to be a continuous

variable in [0, 1] and utilize the Gumbel-Max reparametrization trick [  208 ], [  209 ]. Specifically,

pe = Sigmoid((log δ − log(1− δ) + ωe)/τ), where δ ∼ Uniform(0,1). As temperature hyper-

parameter τ → 0, pe gets closer to being binary. Moreover, the gradients ∂pe

∂ωe
are smooth

and well defined. This style of edge dropping based on a random graph model has also been

used for parameterized explanations of GNNs [ 210 ].

5.3.3 Regularization for AD-GCL

As shown in Theorem  5.2.1 , a reasonable GDA should keep a certain amount of informa-

tion related to the downstream tasks (statement 2). Hence, we expect the GDAs in the edge

dropping family T not to perform very aggressive perturbation. Therefore, we regularize the

ratio of edges being dropped per graph by enforcing the following constraint: For a graph G

and its augmented graph t(G), we add ∑e∈E ωe/|E| to the objective, where ωe is defined in

Eq. 5.14 indicates the probability that e gets dropped.

Putting everything together, the final objective is as follows.

min
Φ

max
Θ

I(fΘ(G); fΘ(t(G))) + λregEG

[ ∑
e∈E

ωe/|E|
]
, where G ∼ PG, t(G) ∼ TΦ(G). (5.15)

Note Φ corresponds to the learnable parameters of the augmenter GNN and MLP used

to derive the ωe’s and Θ corresponds to the learnable parameters of the GNN f .
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5.3.4 Estimating the AD-GCL Objective

In our implementation, the second (regularization) term is easy to estimate empirically.

For the first (mutual information) term, we adopt InfoNCE as the estimator [ 211 ]–[ 213 ],

which is known to be a lower bound of the mutual information and is frequently used for

contrastive learning [  105 ], [  211 ], [  214 ]. Specfically, during the training, given a minibatch of

m graphs {Gi}m
i=1, let zi,1 = g(fΘ(Gi)) and zi,2 = g(fΘ(t(Gi))) where g(·) is the projection

head implemented by a 2-layer MLP as suggested in [ 214 ]. With sim(·, ·) denoting cosine

similarity, we estimate the mutual information for the mini-batch as follows.

I(fΘ(G); fΘ(t(G)))→ Î = 1
m

m∑
i=1

log exp(sim(zi,1, zi,2))∑m
i′=1,i′ 6=i exp(sim(zi,1, zi′,2)) (5.16)

Algorithm  4 describes the self-supervised training algorithm for AD-GCL with learnable

edge-dropping GDA. Note that augmenter TΦ(·) with parameters Φ is implemented as a

GNN followed by an MLP to obtain the Bernoulli weights ωe.

5.4 Extended Related Work

Here, we focus on the topics that are most relevant to graph contrastive learning (GCL).

Contrastive learning (CL) [  104 ], [  211 ], [  212 ], [  215 ]–[ 217 ] was initially proposed to train

CNNs for image representation learning and has recently achieved great success [  214 ], [  218 ].

GCL applies the idea of CL on GNNs. In contrast to the case of CNNs, GCL trained using

GNNs posts us new fundamental challenges. An image often has multiple natural views, say

by imposing different color filters and so on. Hence, different views of an image give natural

contrastive pairs for CL to train CNNs. However, graphs are more abstract and the irregu-

larity of graph structures typically provides crucial information. Thus, designing contrastive

pairs for GCL must play with irregular graph structures and thus becomes more challeng-

ing. Some works use different parts of a graph to build contrastive pairs, including nodes

v.s. whole graphs [ 84 ], [  93 ], nodes v.s. nodes [  92 ], nodes v.s. subgraphs [  83 ], [  219 ]. Other

works adopt graph data augmentations (GDA) such as edge perturbation [  90 ] to generate

contrastive pairs. Recently. GraphCL [  94 ] gives an extensive study on different combinations

of GDAs including node dropping, edge perturbation, subgraph sampling and feature mask-
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Algorithm 4: Training Learnable Edge-Dropping GDA under AD-GCL principle.
Input: Data {Gm ∼ G | m = 1, 2 . . . M};

Encoder fΘ(·); Augmenter TΦ(·); Projection Head gΨ(·); Cosine Similarity
sim(·)

Hyper-Params : Edge-Dropping Regularization Strength λreg; learning rates α, β

Output: Trained Encoder fΘ(·)
1 begin
2 for number of training epochs do
3 for sampled minibatch {Gn = (Vn, En) : n = 1, 2 . . . N} do
4 for n = 1 to N do
5 h1,n = fΘ(Gn)
6 z1,n = gΨ(h1,n)
7 t(Gn) ∼ TΦ(Gn)
8 set pe,∀e ∈ En from t(Gn)
9 Rn = ∑

e∈En
pe/|En|

10 h2,n = fΘ(t(Gn));
11 z1,n = gΨ(h2,n)
12 end
13 define Ln = − log exp(sim(z1,n,z2,n))∑N

n′=1,n′6=n
exp (sim(z1,n,z2,n′))

/* calculate NCE loss for minibatch */
14 L = 1

N

∑N
n=1 Ln

/* calculate regularization term for minibatch */
15 R = 1

N

∑N
n=1Rn

/* update augmenter params via gradient ascent */
16 Φ← Φ + α∇Φ(L − λreg ∗ R)

/* update enocder & projection head
params via gradient descent */

17 Θ← Θ− β∇Θ(L); Ψ← Ψ− β∇Ψ(L)
18 end
19 end
20 return Encoder fΘ(·)
21 end
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ing. Extensive evaluation is required to determine good combinations. MVGRL [  95 ] and

GCA [ 89 ] leverage the domain knowledge of network science and adopt network centrality to

perform GDAs. Note that none of the above methods consider optimizing augmentations. In

contrast, our principle AD-GCL provides theoretical guiding principles to optimize augmen-

tations. Very recently, JOAO [  220 ] adopts a bi-level optimization framework sharing some

high-level ideas with our adversarial training strategy but has several differences: 1) the GDA

search space in JOAO is set as different types of augmentation with uniform perturbation,

such as uniform edge/node dropping while we allow augmentation with non-uniform pertur-

bation. 2) JOAO relaxes the GDA combinatorial search problem into continuous space via

Jensen’s inequality and adopts projected gradient descent to optimize. Ours, instead, adopts

Bayesian modeling plus reparameterization tricks to optimize. The performance comparison

between AD-GCL and JOAO for the tasks investigated in Sec.  5.5 is given in Appendix  5.5.5 .

Tian et al. [  221 ] has recently proposed the InfoMin principle that shares some ideas with

AD-GCL but there are several fundamental differences. Theoretically, InfoMin needs the

downstream tasks to supervise the augmentation. Rephrased in our notation, the optimal

augmentation TIM(G) given by InfoMin (called the sweet spot in [ 221 ]) needs to satisfy

I(tIM(G); Y ) = I(G; Y ) and I(tIM(G); G|Y ) = 0, tIM(G) ∼ TIM(G), neither of which are

possible without the downstream-task knowledge. Instead, our Theorem  5.2.1 provides more

reasonable arguments and creatively suggests using regularization to control the tradeoff.

Empirically, InfoMin is applied to CNNs while AD-GCL is applied to GNNs. AD-GCL needs

to handle the above challenges due to irregular graph structures and the limited expressive

power of GNNs [ 52 ], [ 53 ], which InfoMin does not consider.

5.5 Experimental Evaluation

This section is devoted to the empirical evaluation of the proposed instantiation of our

AD-GCL principle. Our initial focus is on unsupervised learning which is followed by analysis

of the effects of regularization. We further apply AD-GCL to transfer and semi-supervised

learning settings.
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5.5.1 Datasets

A wide variety of datasets from different domains for a range of graph property prediction

tasks are used for our experiments. Here, we summarize and point out the specific experiment

setting for which they are used.

• Table  5.1 shows the datasets for chemical molecular property prediction which are

from Open Graph Benchmark (OGB) [  203 ] and ZINC-10K [  222 ]. These are used in

the unsupervised learning setting for both classification and regression tasks. We are

the first one to considering using regression tasks and the corresponding datasets in

the evaluation of self-supervised GNN.

• Table  5.2 shows the datasets which contain biochemical and social networks. These are

taken from the TU Benchmark Datasets [  223 ]. We use them for graph classification

tasks in both unsupervised and semi-supervised learning settings.

• Table  5.3 shows the datasets consisting of biological interactions and chemical molecules

from [  83 ]. These datasets are used for graph classification in the transfer learning set-

ting.

Table 5.1. Summary of chemical molecular properties datasets used for un-
supervised learning experiments. Datasets obtained from OGB [  203 ] and [  222 ]

Name #Graphs Avg #Nodes Avg #Edges #Tasks Task Type Metric

ogbg-molesol 1,128 13.3 13.7 1 Regression RMSE
ogbg-mollipo 4,200 27.0 29.5 1 Regression RMSE
ogbg-molfreesolv 642 8.7 8.4 1 Regression RMSE
ogbg-molbace 1,513 34.1 36.9 1 Binary Class. ROC-AUC
ogbg-molbbbp 2,039 24.1 26.0 1 Binary Class. ROC-AUC
ogbg-molclintox 1,477 26.2 27.9 2 Binary Class. ROC-AUC
ogbg-moltox21 7,831 18.6 19.3 12 Binary Class. ROC-AUC
ogbg-molsider 1,427 33.6 35.4 27 Binary Class. ROC-AUC
ZINC-10K 12,000 23.16 49.83 1 Regression MAE
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Table 5.2. Summary of biochemical and social networks from TU Benchmark
Dataset [  223 ] used for unsupervised and semi-supervised learning experiments.
The evaluation metric for all these datasets is Accuracy.

Dataset #Graphs Avg. #Nodes Avg. #Edges #Classes

Biochemical Molecules

NCI1 4,110 29.87 32.30 2
PROTEINS 1,113 39.06 72.82 2
MUTAG 188 17.93 19.79 2
DD 1,178 284.32 715.66 2

Social Networks

COLLAB 5,000 74.5 2457.78 3
REDDIT-BINARY 2,000 429.6 497.75 2
REDDIT-MULTI-5K 4,999 508.8 594.87 5
IMDB-BINARY 1,000 19.8 96.53 2
IMDB-MULTI 1,500 13.0 65.94 3

5.5.2 Unsupervised Learning Settting

Evaluation Protocol. In this setting, an encoder (specifically GIN [ 204 ]) is trained with

different self-supervised methods to learn graph representations, which are then evaluated by

feeding these representations to make prediction for the downstream tasks. We use datasets

from Open Graph Benchmark (OGB) [  203 ], TU Dataset [  223 ] and ZINC [ 222 ] for graph-level

property classification and regression. All methods (ours and baselines) are first trained with

the corresponding self-supervised objective and then evaluated with a linear classifier/regres-

sor. We follow [  214 ] and adopt a linear evaluation protocol. Specifically, once the encoder

provides representations, a Ridge regressor (+ L2) and Logistic (+ L2) classifier is trained

on top and evaluated for regression and classification tasks respectively. Both methods are

implemented using sklearn [  205 ] and uses LBFGS [  224 ] or LibLinear [  225 ] solvers. Finally,

the lone hyper-parameter of the downstream linear model i.e. L2 regularization strength is

grid searched among {0.001, 0.01, 0.1, 1, 10, 100, 1000} on the validation set for every single

representation evaluation.
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Table 5.3. Summary of biological interaction and chemical molecule datasets
from [ 83 ]. Used for graph classification in transfer learning experiments. The
evaluation metric is ROC-AUC.

Dataset Utilization #Graphs Avg. #Nodes Avg. Degree

Protein-Protein Interaction Networks

PPI-306K Pre-Training 306,925 39.82 729.62
PPI Finetuning 88,000 49.35 890.77

Chemical Molecules

ZINC-2M Pre-Training 2,000,000 26.62 57.72
BBBP Finetuning 2,039 24.06 51.90
Tox21 Finetuning 7,831 18.57 38.58
SIDER Finetuning 1,427 33.64 70.71
ClinTox Finetuning 1,477 26.15 55.76
BACE Finetuning 1,513 34.08 73.71
HIV Finetuning 41,127 25.51 54.93
MUV Finetuning 93,087 24.23 52.55
ToxCast Finetuning 8,576 18.78 38.52

For the Open Graph Benchmark Datasets (ogbg-mol*), we directly use the processed

data in Pytorch Geometric format which is available online  

1
 . The processed data includes

train/val/test that follow a scaffolding split. More details are present in the OGB paper [ 203 ].

Additionally, we make use of the evaluators written by authors for standardizing the evalu-

ation. The evaluation metric varies depending on the task at hand. For regression tasks it

is RMSE (root mean square error) and for classification it is ROC-AUC (%).

For the ZINC-10K dataset [  222 ], we use the processed data in Pytorch Geometric format

that is made available online 

2
 by the authors. We use the same train/val/test splits that are

provided. We follow the authors and adopt MAE (mean absolute error) as the test metric.

For the TU Datasets [ 223 ], we obtain the data from Pytorch Geometric Library  

3
 and

follow the conventional 10-Fold evaluation. Following standard protocol, we adopt Accuracy

(%) as the test metric. All our experiments are performed 10 times with different random
1

 ↑  https://ogb.stanford.edu/docs/graphprop/ 

2
 ↑  https://github.com/graphdeeplearning/benchmarking-gnns/tree/master/data 

3
 ↑  https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html 
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seeds and we report mean and standard deviation of the corresponding test metric for each

dataset.

Hyper-parameters. The encoder used for ours and baselines is GIN [  204 ]. The encoder

is fixed and not tuned while performing self-supervised learning (i.e. embedding dimen-

sion, number of layers, pooling type) for all the methods to keep the comparison fair. The

reasoning is that any performance difference we witness should only be attributed to the self-

supervised objective and not to the encoder design. Details of encoder for specific datasets.

• OBG - emb dim = 300, num gnn layers = 5, pooling = add, skip connections = None,

dropout = 0.5, batch size = 32

• ZINC-10K - emb dim = 100, num gnn layers = 5, pooling = add, skip connections =

None, dropout = 0.5, batch size = 64

• TU Datasets - emb dim = 32, num gnn layers = 5, pooling = add, skip connections =

None, dropout = 0.5, batch size = 32

The optimization of AD-GCL is performed using Adam and the learning rates for the

encoder and the augmenter in AD-GCL are tuned among {0.01, 0.005, 0.001}. We find that

asymmetric learning rates for encoder and augmenter tend to make the training non-stable.

Thus, for stability we adopt a learning rate of 0.001 for all the datasets and experiments.

The number of training epochs are chosen among {20, 50, 80, 100, 150} using the validation

set.

Results. We consider two types of AD-GCL, where one is with a fixed regularization weight

λreg = 5 (Eq. 5.15 ), termed AD-GCL-FIX, and another is with λreg tuned over the validation

set among {0.1, 0.3, 0.5, 1.0, 2.0, 5.0, 10.0}, termed AD-GCL-OPT. AD-GCL-FIX assumes

any information from the downstream task as unavailable while AD-GCL-OPT assumes

the augmentation search space has some weak information from the downstream task. A

full range of analysis on how λreg impacts AD-GCL will be investigated in Sec.  5.6 . We

compare AD-GCL with three unsupervised/self-supervised learning baselines for graph-level

tasks, which include randomly initialized untrained GIN (RU-GIN) [  204 ], InfoGraph [  84 ]
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and GraphCL [  94 ]. Previous works [ 84 ], [  94 ] show that they generally outperform graph

kernels [ 26 ], [ 226 ], [ 227 ] and network embedding methods [ 99 ], [ 100 ], [ 228 ], [ 229 ].

We also adopt GCL with GDA based on non-adversarial edge dropping (NAD-GCL)

for ablation study. NAD-GCL drops the edges of a graph uniformly at random. We con-

sider NAD-GCL-FIX and NAD-GCL-OPT with different edge drop ratios. NAD-GCL-GCL

adopts the edge drop ratio of AD-GCL-FIX at the saddle point of the optimization (Eq. 5.15 )

while NAD-GCL-OPT optimally tunes the edge drop ratio over the validation datasets to

match AD-GCL-OPT. We also adopt fully supervised GIN (F-GIN) to provide an anchor

of the performance. We stress that all methods adopt GIN [  204 ] as the encoder. Ex-

cept F-GIN, all methods adopt a downstream linear classifier or regressor with the same

hyper-parameters for fair comparison. Adopting linear models was suggested by [  105 ], which

explicitly attributes any performance gain/drop to the quality of learnt representations.

Tables  5.4 show the results for unsupervised graph level property prediction in social and

chemical domains respectively. We witness the big performance gain of AD-GCL as opposed

to all baselines across all the datasets. Note GraphCL utilizes extensive evaluation to select

the best combination of augmentions over a broad GDA family including node-dropping,

edge dropping and subgraph sampling. Our results indicate that such extensive evaluation

may not be necessary while optimizing the augmentation strategy in an adversarial way is

greatly beneficial.

We stress that edge dropping is not cherry picked as the search space of augmentation

strategies. Other search spaces may even achieve better performance, while an extensive

investigation is left for the future work.

Moreover, AD-GCL also clearly improves upon the performance against its non-adversarial

counterparts (NAD-GCL) across all the datasets, which further demonstrates stable and

significant advantages of the AD-GCL principle. Essentially, the input-graph-dependent

augmentation learnt by AD-GCL yields much benefit.

Finally, we compare AD-GCL-FIX with AD-GCL-OPT. Interestingly, two methods achieve

comparable results though AD-GCL-OPT is sometimes better. This observation implies that

the AD-GCL principle may be robust to the choice of λreg and thus motivates the analy-

sis in the next subsection. Moreover, weak information from the downstream tasks indeed
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Table 5.4. Unsupervised learning performance for (TOP) biochemical and
social network classification in TU datasets [ 223 ] (Averaged accuracy ± std.
over 10 runs) and (BOTTOM) chemical molecules property prediction in OGB
datasets [  203 ] (mean ± std. over 10 runs). Bold/Bold? indicats our meth-
ods outperform baselines with ≥ 0.5/≥ 2 std respectively. Fully supervised
(F-GIN) results are shown only for placing GRL methods in perspective.
Ablation-study (AB-S) results do not count as baselines.

Dataset NCI1 PROTEINS MUTAG DD COLLAB RDT-B RDT-M5K IMDB-B IMDB-M

F-GIN 78.27 ± 1.35 72.39 ± 2.76 90.41 ± 4.61 74.87 ± 3.56 74.82 ± 0.92 86.79 ± 2.04 53.28 ± 3.17 71.83 ± 1.93 48.46 ± 2.31

B
as
el
in
es RU-GIN [ 204 ] 62.98 ± 0.10 69.03 ± 0.33 87.61 ± 0.39 74.22 ± 0.30 63.08 ± 0.10 58.97 ± 0.13 27.52 ± 0.61 51.86 ± 0.33 32.81 ± 0.57

InfoGraph [ 84 ] 68.13 ± 0.59 72.57 ± 0.65 87.71 ± 1.77 75.23 ± 0.39 70.35 ± 0.64 78.79 ± 2.14 51.11 ± 0.55 71.11 ± 0.88 48.66 ± 0.67

GraphCL [ 94 ] 68.54 ± 0.55 72.86 ± 1.01 88.29 ± 1.31 74.70 ± 0.70 71.26 ± 0.55 82.63 ± 0.99 53.05 ± 0.40 70.80 ± 0.77 48.49 ± 0.63

A
B
-S NAD-GCL-FIX 69.23 ± 0.60 72.81 ± 0.71 88.58 ± 1.58 74.55 ± 0.55 71.56 ± 0.58 83.41 ± 0.66 52.72 ± 0.71 70.94 ± 0.77 48.33 ± 0.47

NAD-GCL-OPT 69.30 ± 0.32 73.18 ± 0.71 89.05 ± 1.06 74.55 ± 0.55 72.04 ± 0.67 83.74 ± 0.76 53.43 ± 0.26 71.94 ± 0.59 49.01 ± 0.93

O
ur
s AD-GCL-FIX 69.67 ± 0.51? 73.59 ± 0.65 89.25 ± 1.45 74.49 ± 0.52 73.32 ± 0.61? 85.52 ± 0.79? 53.00 ± 0.82 71.57 ± 1.01 49.04 ± 0.53

AD-GCL-OPT 69.67 ± 0.51? 73.81 ± 0.46? 89.70 ± 1.03 75.10 ± 0.39 73.32 ± 0.61? 85.52 ± 0.79? 54.93 ± 0.43? 72.33 ± 0.56? 49.89 ± 0.66?

Task Regression (Downstream Classifier - Linear Regression + L2) Classification (Downstream Classifier - Logistic Regression + L2)

Dataset molesol mollipo molfreesolv ZINC-10K molbace molbbbp molclintox moltox21 molsider

Metric RMSE (shared) (↓) MAE (↓) ROC-AUC % (shared) (↑)

F-GIN 1.173 ± 0.057 0.757 ± 0.018 2.755 ± 0.349 0.254 ± 0.005 72.97 ± 4.00 68.17 ± 1.48 88.14 ± 2.51 74.91 ± 0.51 57.60 ± 1.40

B
as
el
in
es RU-GIN [ 204 ] 1.706 ± 0.180 1.075 ± 0.022 7.526 ± 2.119 0.809 ± 0.022 75.07 ± 2.23 64.48 ± 2.46 72.29 ± 4.15 71.53 ± 0.74 62.29 ± 1.12

InfoGraph [ 84 ] 1.344 ± 0.178 1.005 ± 0.023 10.005 ± 4.819 0.890 ± 0.017 74.74 ± 3.64 66.33 ± 2.79 64.50 ± 5.32 69.74 ± 0.57 60.54 ± 0.90

GraphCL [ 94 ] 1.272 ± 0.089 0.910 ± 0.016 7.679 ± 2.748 0.627 ± 0.013 74.32 ± 2.70 68.22 ± 1.89 74.92 ± 4.42 72.40 ± 1.01 61.76 ± 1.11

A
B
-S NAD-GCL-FIX 1.392 ± 0.065 0.952 ± 0.024 5.840 ± 0.877 0.609 ± 0.010 73.60 ± 2.73 66.12 ± 1.80 73.32 ± 3.66 71.65 ± 0.94 60.41 ± 1.48

NAD-GCL-OPT 1.242 ± 0.096 0.897 ± 0.022 5.840 ± 0.877 0.609 ± 0.010 73.69 ± 3.67 67.70 ± 1.78 74.40 ± 4.92 71.65 ± 0.94 61.14 ± 1.43

O
ur
s AD-GCL-FIX 1.217 ± 0.087 0.842 ± 0.028? 5.150 ± 0.624? 0.578 ± 0.012? 76.37 ± 2.03 68.24 ± 1.47 80.77 ± 3.92 71.42 ± 0.73 63.19 ± 0.95

AD-GCL-OPT 1.136 ± 0.050? 0.812 ± 0.020? 4.145 ± 0.369? 0.544 ± 0.004? 77.27 ± 2.56 69.54 ± 1.92 80.77 ± 3.92 72.92 ± 0.86 63.19 ± 0.95

help with controlling the search space and further betters the performance. We also list

the optimal λreg’s of AD-GCL-OPT for different datasets in Section  5.6.2 for the purpose of

comparison and reproduction.

On the Choice of Downstream Classifier. We find that the choice of the downstream

classifier can significantly affect the evaluation of the self-supervised representations. Info-

Graph [  84 ] and GraphCL [  94 ] adopt a non-linear SVM model as the downstream classifier.

Such a non-linear model is more powerful than the linear model we adopt and thus causes

some performance gap between the results showed in Table  5.4 (TOP) and (BOTTOM) and

their original results (listed in Table  5.5 ). We argue that using a non-linear SVMmodel as the

downstream classifier is unfair, because the performance of even a randomly initialized un-

trained GIN (RU-GIN) is significantly improved (comparing results from Table  5.4 (TOP)
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to Table  5.5 ). Therefore, we argue for adopting a linear classifier protocol as suggested

by [ 105 ]. That having been said, our methods (both AD-GCL-FIX and AD-GCL-OPT) still

performs significantly better than baselines in most cases, even when a non-linear SVM clas-

sifer is adopted, as shown in Table  5.5 . Several relative gains are there no matter whether

the downstream classifier is a simple linear model (Tables  5.4 ) or a non-linear SVM model

(Table  5.5 ). AD-GCL methods significantly outperform InfoGraph in 5 over 8 datasets and

GraphCL in 6 over 8 datasets. This further provides the evidence for the effectiveness of our

method.

Table 5.5. Unsupervised Learning results on TU Datasets using a non-linear
SVM classifier as done in GraphCL [ 94 ]. Averaged Accuracy (%) ± std. over
10 runs. This is different from the linear classifier used to show results in
Tables  5.4 (TOP) and (BOTTOM).

NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B

RU-GIN 65.40 ± 0.17 72.73 ± 0.51 75.67 ± 0.29 87.39 ± 1.09 65.29 ± 0.16 76.86 ± 0.25 48.48 ± 0.28 69.37 ± 0.37
InfoGraph 76.20 ± 1.06 74.44 ± 0.31 72.85 ± 1.78 89.01 ± 1.13 70.65 ± 1.13 82.50 ± 1.42 53.46 ± 1.03 73.03 ± 0.87
GraphCL 77.87 ± 0.41 74.39 ± 0.45 78.62 ± 0.40 86.80 ± 1.34 71.36 ± 1.15 89.53 ± 0.84 55.99 ± 0.28 71.14 ± 0.44

AD-GCL-FIX 75.77 ± 0.50 75.04 ± 0.48 75.38 ± 0.41 88.62 ± 1.27 74.79 ± 0.41? 92.06 ± 0.42? 56.24 ± 0.39 71.49 ± 0.98
AD-GCL-OPT 75.86 ± 0.62 75.04 ± 0.48 75.73 ± 0.51 88.62 ± 1.27 74.89 ± 0.90? 92.35 ± 0.42? 56.24 ± 0.39 71.49 ± 0.98

In our evaluation, we also observe several further benefits of using a downstream linear

model in practice, would like to list them here. First, linear classifiers are much faster

to train/converge in practice, especially for the large-scaled datasets or large embedding

dimensions, which is good for practical usage. We observe that non-linear SVM classifiers

induce a rather slow convergence, when applying to those several OGB datasets where the

embedding dimensions are 300 (Table  5.4 (BOTTOM)). Second, compared to the linear

model, the non-liner SVM may introduce additional hyper-parameters which not only need

further effort to be tuned but also weaken the effect of the self-training procedure on the

downstream performance.

5.5.3 Transfer Learning Setting

Evaluation Protocol. We follow the same evaluation protocol as done in [ 83 ]. In this

setting, self-supervised methods are trained on the pre-train dataset and later used to be
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Table 5.6. Transfer learning performance for chemical molecules property
prediction (mean ROC-AUC± std. over 10 runs). Bold indicates our methods
outperform baselines with ≥ 0.5 std..

Pre-Train Dataset ZINC 2M PPI-306K
Fine-Tune Dataset BBBP Tox21 SIDER ClinTox BACE HIV MUV ToxCast PPI
No Pre-Train 65.8 ± 4.5 74.0 ± 0.8 57.3 ± 1.6 58.0 ± 4.4 70.1 ± 5.4 75.3 ± 1.9 71.8 ± 2.5 63.4 ± 0.6 64.8 ± 1.0
EdgePred [ 83 ] 67.3 ± 2.4 76.0 ± 0.6 60.4 ± 0.7 64.1 ± 3.7 79.9 ± 0.9 76.3 ± 1.0 74.1 ± 2.1 64.1± 0.6 65.7 ± 1.3
AttrMasking [ 83 ] 64.3 ± 2.8 76.7 ± 0.4 61.0 ± 0.7 71.8 ± 4.1 79.3 ± 1.6 77.2 ± 1.1 74.7 ± 1.4 64.2 ± 0.5 65.2 ± 1.6
ContextPred [ 83 ] 68.0 ± 2.0 75.7 ± 0.7 60.9 ± 0.6 65.9 ± 3.8 79.6 ± 1.2 77.3 ± 1.0 75.8 ± 1.7 63.9 ± 0.6 64.4 ± 1.3
InfoGraph [ 84 ] 68.8 ± 0.8 75.3 ± 0.5 58.4 ± 0.8 69.9 ±3.0 75.9 ± 1.6 76.0 ± 0.7 75.3 ± 2.5 62.7 ± 0.4 64.1 ± 1.5
GraphCL [ 94 ] 69.68 ± 0.67 73.87 ± 0.66 60.53 ± 0.88 75.99 ± 2.65 75.38 ± 1.44 78.47 ± 1.22 69.8 ± 2.66 62.40 ± 0.57 67.88 ± 0.85

AD-GCL-FIX 70.01 ±1.07 76.54 ± 0.82 63.28 ± 0.79 79.78 ± 3.52 78.51 ± 0.80 78.28 ± 0.97 72.30 ± 1.61 63.07 ± 0.72 68.83 ± 1.26
Our Ranks 1 2 1 1 4 2 5 5 1

test regarding transferability. In the testing procedure, the models are fine-tuned on multiple

datasets and evaluated by the labels of these datasets. We adopt the GIN encoder used in

[ 83 ] with the same settings for fair comparison. All reported values for baseline methods are

taken directly from [  83 ] and [  94 ]. For the fine-tuning, the encoder has an additional linear

graph prediction layer on top which is used to map the representations to the task labels.

This is trained end-to-end using gradient descent (Adam).

Hyper-parameters. Due to the large pre-train dataset size and multiple fine-tune datasets

finding optimal λreg for each of them can become time consuming. Instead we use a fixed

λreg = 5.0 as it provides reasonable performance. The learning rate is also fixed to 0.001 and

is symmetric for both the encoder and augmenter during self-supervision on the pre-train

dataset. The number of training epochs for pre-training is chosen among {20, 50, 80, 100}

based on the validation performance on the fine-tune datasets. The same learning setting

for fine-tuning is used by following [ 94 ].

Results. We evaluate the GNN encoders trained by AD-GCL on transfer learning to predict

chemical molecule properties and biological protein functions. We follow the setting in [ 83 ]

and use the same datasets: GNNs are pre-trained on one dataset using self-supervised learn-

ing and later fine-tuned on another dataset to test out-of-distribution performance. Here, we

only consider AD-GCL-FIX as AD-GCL-OPT is only expected to have better performance.

We adopt baselines including no pre-trained GIN (i.e., without self-supervised training on

the first dataset and with only fine-tuning), InfoGraph [  84 ], GraphCL [  94 ], three different
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pre-train strategies in [  83 ] including edge prediction, node attribute masking and context

prediction that utilize edge, node and subgraph context respectively.

According to Table  5.6 , AD-GCL-FIX significantly outperforms baselines in 3 out of 9

datasets and achieves a mean rank of 2.4 across these 9 datasets which is better than all

baselines. Note that although AD-GCL only achieves 5th on some datasets, AD-GCL still

significantly outperforms InfoGraph [ 84 ] and GraphCL [ 94 ], both of which are strong GNN

self-training baselines. In contrast to InfoGraph [  84 ] and GraphCL [  94 ], AD-GCL achieves

some performance much closer to those baselines (EdgePred, AttrMasking and ContextPred)

based on domain knowledge and extensive evaluation in [  83 ]. This is rather significant as

our method utilizes only edge dropping GDA, which again shows the effectiveness of the

AD-GCL principle.

5.5.4 Semi-Supervised Learning Setting

Evaluation Protocol. We follow the protocol as mentioned in [  94 ]. In this setting, the self-

supervised methods are pre-trained and later fine-tuned with 10% true label supervision on

the same dataset. The representations generated by the methods are finally evaluated using

10-fold evaluation. All reported values for baseline methods are taken directly from [  94 ]. For

fine-tuning, the encoder has an additional linear graph prediction layer on top which is used

to map the representations to the task labels. This is trained end-to-end by using gradient

descent (Adam).

Hyper-parameters. For the pre-training our model, a fixed λreg = 5.0 and learning

rate of 0.001 for both encoder and augmenter is used. The epochs are selected among

{20, 50, 80, 100} and finally for fine-tuning with 10% label supervision, default parameters

from [ 94 ] are used.

Results. We evaluate AD-GCL on semi-supervised learning for graph classification on the

benchmark TU datasets [ 223 ]. Again, we only consider AD-GCL-FIX and compare it with

several baselines in [ 94 ]: 1) no pre-trained GCN, which is directly trained by the 10% labels

from scratch, 2) SS-GCN-A, a baseline that introduces more labelled data by creating ran-

dom augmentations and then gets trained from scratch, 3) a predictive method GAE [ 86 ]
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Table 5.7. Semi-supervised learning performance with 10% labels on TU
datasets [  223 ] (10-Fold Accuracy (%)± std over 5 runs). Bold/Bold? indicate
our methods outperform baselines with ≥ 0.5 std/ ≥ 2 std respectively.

Dataset NCI1 PROTEINS DD COLLAB RDT-B RDT-M5K
No Pre-Train 73.72 ± 0.24 70.40 ± 1.54 73.56 ± 0.41 73.71± 0.27 86.63 ± 0.27 51.33 ± 0.44
SS-GCN-A 73.59 ± 0.32 70.29 ± 0.64 74.30 ± 0.81 74.19 ± 0.13 87.74 ± 0.39 52.01 ± 0.20
GAE [ 86 ] 74.36 ± 0.24 70.51 ± 0.17 74.54 ± 0.68 75.09 ± 0.19 87.69 ± 0.40 53.58 ± 0.13
InfoGraph [ 84 ] 74.86 ± 0.26 72.27 ± 0.40 75.78 ± 0.34 73.76 ± 0.29 88.66 ± 0.95 53.61 ± 0.31
GraphCL [ 94 ] 74.63 ± 0.25 74.17 ± 0.34 76.17 ± 1.37 74.23 ± 0.21 89.11 ± 0.19 52.55 ± 0.45
AD-GCL-FIX 75.18 ± 0.31 73.96 ± 0.47 77.91 ± 0.73? 75.82 ± 0.26? 90.10 ± 0.15? 53.49 ± 0.28
Our Ranks 1 2 1 1 1 3

that utilizes adjacency reconstruction in the pre-training phase, and GCL methods, 4) Info-

Graph [  84 ] and 5) GraphCL [  94 ]. Note that here we have to keep the encoder architecture

same and thus AD-GCL-FIX adopts GCN as the encoder. Table  5.7 shows the results. AD-

GCL-FIX significantly outperforms baselines in 3 out of 6 datasets and achieves a mean rank

of 1.5 across these 6 datasets, which again demonstrates the strength of AD-GCL.

5.5.5 Additional Baseline Comparisons for AD-GCL

We first clarify the different mechanisms that JOAO [  220 ] and AD-GCL adopt. JOAO se-

lects augmentation families from a poolA = NodeDrop, Subgraph,EdgePert, AttrMask,Iden-

tical and defines a uniform prior on them for their inner optimization over all possible aug-

mentation family pairs. (See Section 3.2 and See Eq. 7,8 in [  220 ]). An important distinction

is that JOAO still adopts uniformly random augmentations and the inner optimization only

searches over different pairs of uniform augmentations. Whereas, AD-GCL adopts non-

uniformly random augmentations, which essentially corresponds to a much larger search

space.

Complexity wise, JOAO is more expensive than AD-GCL as, they utilize projected gra-

dient descent to fully optimize the inner optimization step over all possible augmentations

A. This is a factor k more expensive than AD-GCL. The factor k in JOAO is currently

|A|2 = 42 = 16. This makes it slow to train while still having a restricted search space

compared to AD-GCL which on the other hand is both faster and looks at a larger search
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space for a given augmentation family. In our experiments on a single GPU, JOAO took 3.2

hrs for training on COLLAB whereas AD-GCL only took 14.4 mins (0.24 hrs). Moreover,

we derive the min-max principle in a more principled way by illustrating its connection to

graph information bottleneck (Theorem  5.2.1 ), which explains the fundamental reason and

benefits of optimizing graph augmentation strategies.

Experimental Comparison. We provide comparison between JOAO and AD-GCL in

unsupervised learning setting with the standard non-linear downstream classifier setting in

Table  5.8 . This is done following [ 220 ] for fair comparison. Now, we provide the comparison

between JOAO and AD-GCL using a linear evaluation protocol for unsupervised setting in

Table  5.9 . Specifically, a linear SVM head is used for evaluating the representations learned

by the 2 methods for the downstream task. The regularization hyper-parameter of the linear

svm is grid-searched among 0.001, 0.01,0.1,1,10,100,1000. We re-run the code provided by

authors of JOAO (available at  https://github.com/Shen-Lab/GraphCL_Automated  ) with

the default parameters for 5 times each with different seeds. The only change done is to the

embedding evaluation code to include linear svm as the final prediction head. For all the

TU datasets used here, standard 10-Fold evaluation is used to report classification accuracy

(%).

The results in the above table further indicate that AD-GCL performs better than JOAO

in 6 of the 8 TU benchmark datasets. The gap in performance is even more clear compared

to the non-linear evaluation setting as shown previously in Table  5.8 . Again, we reiterate

that the improved performance gains are due to AD-GCL’s search of non-uniformly random

augmentations.

Table 5.8. Unsupervised learning showing Averaged Accuracy (%) ± std.
with a non linear SVM downstream classifier and same standard setup as used
in [ 220 ]. The results for JOAO and JOAOv2 are taken from [  220 ].

Dataset NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B

JOAO 78.07±0.47 74.55±0.41 77.32±0.54 87.35±1.02 69.50±0.36 85.29±1.35 55.74±0.63 70.21±3.08
JOAOv2 78.36±0.53 74.07±1.10 77.40±1.15 87.67±0.79 69.33±0.34 86.42±1.45 56.03±0.27 70.83±0.25
AD-GCL-FIX 75.77±0.50 75.04±0.48 75.38±0.41 88.62±1.27 74.79±0.41 92.06±0.42 56.24±0.39 71.49±0.98
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Table 5.9. Unsupervised learning showing Averaged Accuracy (%) ± std.
with a linear downstream classifier. JOAOv2 results using linear evaluation is
obtained by us using code provided by the authors.

Dataset NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B

JOAOv2 (FIX-gamma=0.1) 72.99±0.75 71.25±0.85 66.91±1.75 85.20±1.64 70.40±2.21 78.35±1.38 45.57±2.86 71.60±0.86
AD-GCL-FIX 69.67±0.51 73.59±0.65 74.49±0.52 89.25±1.45 73.32±0.61 85.52±0.79 53.00±0.82 71.57±1.01

Table 5.10. Transfer learning results showing mean ROC-AUC ± std. Pre-
Training done using ZINC 2M (used for first 8 fine-tune datasets) and PPI-
306K (for the last PPI fine-tune dataset). The results for JOAO and JOAOv2
are taken from [ 220 ]. The experimental setting follows [  220 ].

Fine-Tune Dataset BBBP Tox21 SIDER ClinTox BACE HIV MUV ToxCast PPI

JOAO 70.22±0.98 74.98±0.29 59.97±0.79 81.32±2.49 77.34±0.48 76.73±1.23 71.66±1.43 62.94±0.48 64.43±1.38
JOAOv2 71.39±0.92 74.27±0.62 60.49±0.74 80.97±1.64 75.49±1.27 77.51±1.17 73.67±1.00 63.16±0.45 63.94±1.59
AD-GCL-FIX 70.01±1.07 76.54±0.82 63.28±0.79 79.78±3.52 78.51±0.80 78.28±0.97 72.30±1.61 63.07±0.72 68.83±1.26

Table 5.11. Semi-supervised Learning with 10% label rate showing 10-Fold
Accuracy (%). The results for JOAO and JOAOv2 are taken from [ 220 ]. The
experimental setting follows [ 220 ].

Dataset NCI1 PROTEINS DD COLLAB RDT-B RDT-M5K

JOAO 74.48±0.27 72.13±0.92 75.69±0.67 75.30±0.32 88.14±0.25 52.83±0.54
JOAOv2 74.86±0.39 73.31±0.48 75.81±0.73 75.53±0.18 88.79±0.65 52.71±0.28
AD-GCL-FIX 75.18±0.31 73.96±0.47 77.91±0.73 75.82±0.26 90.10±0.15 53.49±0.28

More comparison on transfer learning and semi-supervised learning is put in Table  5.10 

and Table  5.10 respectively, where the experimental settings follow Sec.  5.5 . For transfer

learning, AD-GCL outperforms JOAO in 7 among 9 datasets, JOAOv2 in 5 among 9 datasets.

For semi-supervised learning, AD-GCL outperforms both of them in all 6 datasets.

5.6 Detailed Analysis of Regularizing AD-GCL

Here, we study how different λreg’s impact the expected edge drop ratio of AD-GCL at

the saddle point of Eq. 5.15 and further impact the model performance on the validation

datasets. The main hyper-parameter for our method AD-GCL is the regularization strength

λreg. Detailed sensitivity analysis is provided in Figures  5.3 ,  5.5 and  5.4 . For the method

AD-GCL-OPT, we tune λreg over the validation set among {0.1, 0.3, 0.5, 1.0, 2.0, 5.0, 10.0}.
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For the ablation study, i.e. NAD-GCL-OPT the random edge drop ratio is tuned over the

validation set among {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

5.6.1 Key Takeaways

(a) (b)

(c)

Figure 5.3. (a) λreg v.s. expected edge drop ratio EG[∑e ωe/|E|] (measured
at saddle point of Eq. 5.15 ). (b) Training dynamics of expected drop ratio
for λreg. (c) Validation performance for graph classification v.s. edge drop
ratio. Compare AD-GCL and GCL with non-adversarial edge dropping. The
markers on AD-GCL’s performance curves show the λreg used.

As shown in Figure  5.3 (a), a large λreg tends to yield a small expected edge drop ratio at

the convergent point, which matches our expectation. λreg ranging from 0.1 to 10.0 corre-

sponds to dropping almost everything (80% edges) to nothing (<10% edges). The validation

performance in Figure  5.3 (c) is out of our expectation. We find that for classification tasks,

the performance of the encoder is extremely robust to different choices of λreg’s when trained

w.r.t. the AD-GCL principle, though the edge drop ratios at the saddle point are very differ-

ent. However, the non-adversarial counterpart NAD-GCL is sensitive to different edge drop

ratios, especially on the molecule dataset (e.g., ogbg-molclitox, ogbg-molbbbp). We actu-

ally observe the similar issue of NAD-GCL across all molecule datasets (See Section  5.6.5 ).

More interesting aspects of our results appear at the extreme cases. When λreg ≥ 5.0, the
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convergent edge drop ratio is close to 0, which means no edge dropping, but AD-GCL still

significantly outperforms naive GCL with small edge drop ratio. When λreg = 0.3, the con-

vergent edge drop ratio is greater than 0.6, which means dropping more than half of the

edges, but AD-GCL still keeps reasonable performance. We suspect that such benefit comes

from the training dynamics of AD-GCL (examples as shown in Figure  5.3 (b)). Particularly,

optimizing augmentations allows for non-uniform edge-dropping probability. During the op-

timization procedure, AD-GCL pushes high drop probability on redundant edges while low

drop probability on critical edges, which allows the encoder to differentiate redundant and

critical information. This cannot be fully explained by the final convergent edge drop ratio

and motivates future investigation of AD-GCL from a more in-depth theoretical perspective.

5.6.2 Optimal Regularization Strength Values

Table 5.12. Optimal λreg for AD-GCL on validation set that are used for
reporting test performance in Tables  5.4 (TOP) and (BOTTOM).

ogbg-molesol ogbg-mollipo ogbg-molfreesolv ZINC-10K ogbg-molbace ogbg-molbbbp ogbg-molclintox ogbg-moltox21 ogbg-molsider

AD-GCL-OPT 0.4 0.1 0.3 0.8 10.0 10.0 5.0 10.0 5.0

COLLAB RDT-B RDT-M5K IMDB-B IMDB-M NCI1 PROTEINS MUTAG DD

AD-GCL-OPT 5.0 5.0 10.0 2.0 10.0 5.0 1.0 10.0 10.0

Table  5.12 shows the optimal λreg on the validation set that are used to report test

performance in Tables  5.4 (both TOP and BOTTOM).

5.6.3 Effects of Regularization on Graph Classification Tasks

Figure  5.4 shows the complete validation set performance for different edge drop ratios.

AD-GCL is compared to a non-adversarial random edge dropping GCL (NAD-GCL). We

choose λreg’s that result in an expected edge drop ratio (measured at saddle point of Eq.  5.15 )

value to match the random drop ratio used for NAD-GCL.
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Figure 5.4. Validation performance for graph classification v.s. edge drop
ratio. Comparing AD-GCL and GCL with non-adversarial random edge drop-
ping. The markers on AD-GCL’s performance curves show the λreg used. Note
here that higher validation metric is better.
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Figure 5.5. Validation performance for graph regression v.s. edge drop ratio.
Comparing AD-GCL and GCL with non-adversarial random edge dropping. The
markers on AD-GCL’s performance curves show the λreg used. Note here that lower
validation metric is better.

5.6.4 Effects of Regularization on Graph Regression Tasks

Subplots in the topmost row of Figure  5.5 shows the validation performance for different

λreg’s in AD-GCL and random edge drop ratios in NAD-GCL for regression tasks. These

observations show an interesting phenomenon that is different from what we observe in

classification tasks: for AD-GCL, small λreg (which in-turn lead to large expected edge drop

ratio) results in better performance. A similar trend can be observed even for NAD-GCL,

where large random edge drop ratios results in better performance. However, AD-GCL

is still uniformly better that NAD-GCL in that regard. We reason that, regression tasks

(different from classification tasks) are more sensitive to node level information rather than

structural fingerprints and thus, the edge dropping GDA family might not be the most apt

GDA family. Modelling different learnable GDA families is left for future work and these

observations motivate such steps.

5.6.5 Effects of Regularization on Edge-Drop Ratio

Figure  5.6 shows how different regularization strengths (λreg) affects the expected edge

drop ratio for multiple datasets. These results further provides us evidence that indeed,

λreg and the expected edge drop ratio are inversely related in accordance with our design

objective and thus provides us with a way of controlling the space of augmentations for our

learnable edge dropping GDA.
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5.6.6 Training Dynamics of Regularized AD-GCL

Figure 5.7. Training dynamics of expected edge drop ratio for λreg.

Figure  5.7 further provides additional plots of the training dynamics of expected edge

drop ratio for different λreg values.
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5.7 Discussion

In this work we have developed a theoretically motivated, novel principle: AD-GCL that

goes a step beyond the conventional InfoMax objective for self-supervised learning of GNNs.

The optimal GNN encoders that are agnostic to the downstream tasks are the ones that cap-

ture the minimal sufficient information to identify each graph in the dataset. To achieve this

goal, AD-GCL suggests to better graph contrastive learning via optimizing graph augmenta-

tions in an adversarial way. Following this principle, we developed a practical instantiation

based on learnable edge dropping. We have extensively analyzed and demonstrated the ben-

efits of AD-GCL and its instantiation with real-world datasets for graph property prediction

in unsupervised, transfer and semi-supervised learning settings.

We stress on the fact that self-supervised methods come with a fundamental set of lim-

itations as they don’t have access to the downstream task information. Specifically for

contrastive learning, the design of contrastive pairs (done through augmentations) plays a

major role as it guides the encooder to selectively capture certain invariances with the hope

that it can be beneficial to downstream tasks. Biases could creep in during the design of

such augmentations that can be detrimental to the downstream tasks and risk learning of

sub-optimal or non-robust representations of input data. Our work helps to alleviate some

of the issues of hand designed augmentation techniques and provides a novel principle that

can aid in the design of learnable augmentations. It also motivates further research into

the understanding the inherent biases of family of augmentations and how they affect the

downstream tasks. Finally, self-supervised graph representation learning has a lot of impli-

cations in terms of either fairness, robustness or privacy for the various fields that have been

increasing adopting these methods.
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6. FEDERATED SELF-SUPERVISED GRAPH LEARNING

The widespread adoption of Graph neural networks (GNNs), a class of powerful encoders

for graph representation learning [  42 ], [ 45 ], [ 46 ], [ 141 ] have shown enormous potential for

downstream applications in a variety of domains spanning social, physical and biochemical

sciences [ 9 ], [  14 ], [  39 ], [ 40 ]. While GNNs have been extensively studied in both supervised

[ 45 ]–[ 47 ], [ 53 ], [ 77 ], [ 80 ], [ 204 ] and self-supervised [  93 ]–[ 97 ], [ 230 ] settings, the bulk of the

work falls under a traditional data-centralized training regime. With heightened data security

concerns, privacy, and compliance regulations in key GNN application domains such as social

networks and healthcare, increasingly, vast amounts of such graph data is siloed away or

held behind strict data boundary constraints [ 231 ], [  232 ]. Therefore, there is great need for

understanding and developing decentralized training processes for GNNs.

Federated learning (FL) [  114 ], [  233 ] has risen as a widely popular distributed learning

approach that brings model training processes to the training data held at the clients, thereby

avoiding transfer of raw client data. The benefits of FL are two fold, first, it is seen as

a key ingredient in enabling privacy-preserving model learning in cross-geo or cross-silo

scenarios [  116 ]. Second, when certain participating clients have scarce training data or

lack diverse distributions, FL enables them to potentiality leverage the power of data from

others—thereby helping them improve performance on their own local tasks [ 233 ].

Recent research efforts have looked at applying federated learning algorithms to graph

structured data [ 117 ]–[ 119 ], [  123 ], [  234 ], [  235 ]. However, several interesting and real-world

graph data characteristics are not taken into consideration: (1) Label deficiency - current

methods assume that training labels (node / graph level) for the corresponding tasks  

1
 are

readily available at the clients and a global model is trained end-to-end in a federated fash-

ion. However, in many cross-silo applications, clients might have very little or no labeled

data points. It is a well known that annotating labels of node / graph data takes a lot of

time and resources [  83 ], [  128 ], e.g., difficulties in obtaining explicit user feedback in social

network applications and costly in vitro experiments for biological networks. Moreover, cer-

tain clients may be unwilling to share labels due to competition or other regulatory reasons.
1

 ↑ e.g., classification / regression problems at node or whole graph level.

123



(2) Downstream task heterogeneity - it is reasonable to assume that while clients may

share the same graph data domain, the downstream tasks may be client-dependent and vary

significantly across clients. It is also reasonable to expect that some clients may have new

downstream tasks added at a later point, where a model supervised by previous tasks may

be ineffective.

With these observations, we propose a realistic and unexplored problem setting for Fed-

GRL: Participating clients have a shared space of graph-structured data, though the distribu-

tions may different across clients. And, clients have the access to vast amounts of unlabeled

data. Additionally, they may have very different local downstream tasks with very few private

labeled data points. Fundamentally, our problem setting asks if one can leverage unlabeled

data across clients to learn a shared graph representation (akin to “knowledge transfer”)

which can then be further personalized to perform well in the local downstream tasks at

each client. In a data centralized training regime, a number of works that utilize GNN pre-

training [  83 ], [  90 ] and self-supervision [  88 ], [  94 ], [  96 ], [  230 ] have shown the benefits of such

approaches in dealing with label deficiency and transfer learning scenarios which motivate

us to explore and utilize them for the proposed FedGRL problem setting.

In this chapter, we propose a novel FedGRL formulation (called FedSGL) based on model

interpolation where we aim to learn a shared global model that is optimized collaboratively

using a self-supervised objective and gets downstream task supervision through local client

models. We provide a specific instantiation of our general formulation using BGRL [ 88 ]

a SoTA self-supervised graph representation learning method and we empirically verify its

effectiveness through realistic cross-slio datasets: (1) we adapt the Twitch Gamer Network

which naturally simulates a cross-geo scenario and show that our formulation can provide

consistent and avg. 6.1% gains over traditional supervised federated learning objectives and

on avg. 1.7% gains compared to individual client specific self-supervised training, (2) we

construct and introduce a new cross-silo dataset called Amazon Co-purchase Networks that

have both the characteristics of the motivated problem setting and (3) we adapt the OGB

Molecule datasets [  92 ] to a cross-silo setting to test FedSGL in graph classification tasks. We

firstly show how standard supervised federated objectives can result in negative gains (on avg.

-4.16%) compared to individual client specific supervised training, due to the increased data
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heterogeneity and limited label availability. Then we experimentally verify the effectiveness

of our method and witness on avg. 11.5% gains over traditional supervised federated learning

and on avg. 1.9% gains over individually trained self-supervised models. For OGB molecule

cross-silo dataset, we witness up to avg. +19.3% gains across eight different clients for graph

classification task compared to supervised federated learning. Both experimental results

point to the effectiveness of our proposed formulation.

The remainder of this chapter is organized as follows, in Sec.  6.1 we review relevant work

related to FL for graph structured data, self-supervised techniques for GNNs and finally

some recent work on tackling label deficiency with FL. In Sec.  6.2 we introduce notation

and some preliminaries, later in Sec.  6.3 , we provide a detailed problem setup, introduce our

formulation and its instantiations. Later in Sec.  6.4 we provide detailed experimental setup

and finally present experimental results in Sec  6.5 .

6.1 Related Work

The broad fields of designing GNNs for graph representation learning (GRL) get detailed

coverage in recent surveys [  39 ], [  40 ], [  141 ]. We refer the reader to [  114 ], [  115 ], [  131 ] for a

an overview of FL methods.

6.1.1 Federated Learning for Graphs

FedGRL is a new research topic and current works have considered the following two

main problem formulations.

First, for node-level tasks (predicting node labels), there are three sub categories based

on the degree of overlap in graph nodes across clients: (1) No node overlap between client

graphs. Here, each client maintains a GNN model which is trained on the local node labels

and the server aggregates the parameters of the client GNN models and communicates it

back in every federation round [  235 ]–[ 237 ]. ASFGNN [  236 ] additionally tackles the non-IID

data issue using split based learning and FedGraph [  237 ] focuses on efficiency and utilizes a

privacy preserving cross-client GNN convolution operation. FedSage [  235 ] considers a slightly

different formulation, wherein each client has access to disjoint subgraphs of some global
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graph. They utilize GraphSage [  46 ] and train it with label information and further propose

to train a missing neighbor generator to deal with missing links across local subgraphs. (2)

Partial node overlap across clients. Here, each participating client holds subgraphs which

may have overlapping nodes with other clients graphs. GraphFL [ 234 ] considers this scenario

and utilizes a meta-learning based federated learning algorithm to personalize client models

to downstream tasks. [  238 ] considers overlapping nodes in local client knowledge graphs and

utilize them to translate knowledge embedding across clients. (3) Complete node overlap

across clients. Here all clients hold the same set of nodes, they upload node embeddings

instead of model parameters to the server for FL aggregation. Existing works focus on the

vertically partitioned citation network data [ 239 ], [  240 ]. Note that all the above problem

settings are different from ours in motivation as we focus on label deficiency and downstream

task heterogeneity.

Secondly, for graph-level tasks (predicting graph labels), each client has a local set of

labeled graphs and the goal is to learn one global model or personalized local models using

federation. This problem setting is fundamentally similar to other federated learning set-

tings widely considered in vision and language domains. One needs to replace the previous

linear/DNN encoder into a graph kernel/GNN encoder to handle the graph data modality.

[ 117 ] creates a benchmark towards this end. The issues of client data non-IID ness carry

over to the graph domain as well and [ 123 ] utilizes client clustering to aggregate model

parameters.

6.1.2 Self-Supervised Learning for GNNs

Early SSL techniques for GNNs adopted the edge-reconstruction principle, where the

edges of the input graph are expected to be reconstructed based on the output of GNNs [ 46 ],

[ 86 ]. Recently, contrastive methods [  214 ] effective on images have been successfully adapted

to self-supervised GNN training. The main focus of these methods are in designing con-

trastive pairs for irregular graph structures unlike images and thus becomes more challeng-

ing. Some works use different parts of a graph to build contrastive pairs, including nodes

v.s. whole graphs [  84 ], [  93 ], nodes v.s. nodes [ 241 ], nodes v.s. subgraphs [ 219 ]. Other

126



works have also employed graph data augmentation like edge perturbation, node dropping,

subgraph sampling for building contrastive pairs and have been commonly applied for both

node and graph level representation learning [  94 ], [ 95 ], [ 230 ], [  242 ]. However, due to the need

for costly negative sampling to generate contrastive pairs, large negative examples and batch

sizes, these contrastive based methods suffer from scalability and efficiency issues when ap-

plied to large scale graphs [ 88 ]. Recent efforts have adapted Siamese representation learning

techniques [  243 ] that do not rely on negative examples, but contrast representations from

GNN encoders on different augmentations of a graph for e.g., BGRL [  88 ], SelfGNN [  244 ] and

DGB [  245 ]. It is important to note that our general self-supervised FedGRL formulation can

be instantiated using any of the above SSL techniques developed for GNNs.

6.1.3 Label Deficiency and FL

There are also some very recent developments in handling the label deficiency issue

within FL mainly for vision domains that are relevant to our work [  246 ]–[ 250 ]. FedCA [  246 ]

and FedU [  247 ] are based on direct extension of self-supervised methods SimCLR [  214 ] and

BYOL [ 251 ] to the federated regime respectively. FedEMA [  248 ] extends FedU to further

address the non-IID data issue by controlling the divergence between global and local mod-

els dynamically using exponential moving average. Orchestra [  250 ] also employs an SSL

based method during federation and addresses the non-IID problem using client clustering.

SSFL [  249 ] utilizes SimSiam [ 243 ], a siamese SSL method in conjunction to both standard

and personalized FL algorithms viz., FedAvg [  233 ], perFedAvg [ 130 ], Ditto [  252 ]. While these

methods have utilized and shown the benefits of using unlabeled data within federated learn-

ing for image domain, they have not shown the experimental efficacy of their methods for

real world datasets with downstream task heterogeneity across clients, which heterogeneity

graph learning tasks often contain.

6.2 Preliminaries

We consider a graph G = (V, E) with node set V = {v1, . . . vN} and edge set E ⊆ V ×V .

Additionally, we use node feature matrix X ∈ RN×F and adjacency matrix A ∈ {0, 1}N×N
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where, N = |V | is the number of nodes in the graph, F is the node feature dimension and

Ai,j = 1 iff (vi, vj) ∈ E.

6.2.1 Graph Neural Networks

A GNN encoder f(X, A) or equivalently 

2
 f(G), receives the node features and graph

structure to produce node representations H ∈ RN×F ′ of dimension F ′ � F which is defined

using a layer-wise propagation rule for e.g., GCN [ 45 ] defined as follows:

H(l+1) = σ
(

D̃− 1
2 ÃD̃− 1

2 H(l)W(l)

)
(6.1)

where, Ã = A+I is the adjacency matrix with added self loops, D̃ is the degree matrix with

D̃ii = ∑
j Ãij. W(l) is trainable weight matrix for layer l and H(l) is the intermediate lth layer

node representation matrix with H(0) = X. We omit the layer index and use H = H(l+1) to

denote the final node representations produced by the l-layer GNN. These representations

can be used for downstream tasks, such as node classification.

6.2.2 Federated Optimization

In standard federated optimization, we are given a set of clients C. A client c ∈ C holds

nc amount of private data drawn from distribution Dc and the goal is to learn fc : Xc → Yc

for each c and the overall distributed optimization is of the form [ 233 ]:

min
{fc}

∑
c∈C

nc

n
Lc(fc) (6.2)

where, n = ∪c∈Cnc is total amount of data. For each client c, the expected loss over its data

distribution is,

Lc(fc) = E(xc,yc)∼Dc [`c(fc, xc, yc)], (6.3)

where, (xc, yc) represents data and labels in client c and `c(f, xc, yc) is the loss function for

e.g., cross-entropy loss for classification problems.
2

 ↑ later we omit X and A and simply denote the input as a graph G for brevity.
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6.3 Method

In this section, we describe the problem setting for self-supervised FedGRL, provide a

general framework and then introduce a specific instantiation.

6.3.1 Problem Setting

Figure 6.1. Overview of the proposed general formulation for self-supervised
FedGRL. Here, we learn a shared global GNN model f using a self-supervised
(SSL) objective, collaboratively based on federated learning. With the copy
gate, f is only trained on unlabeled data through SSL and local client models
pc are further trained individually on top of f with label supervision. This
forms our first learning protocol (LP1) . Without the copy gate, in addition
to SSL objective, f can further receive label supervision from client tasks and
this forms the second learning protocol (LP2).

Each client c ∈ C holds a graph Gc = (Vc, Ec) and has a downstream task Tc if one

exists. Let Nc = |Vc| be the number of nodes in client graph. The node set Vc is partitioned

into labeled and unlabeled nodes as, Vc = V l
c ∪ V u

c . If a certain client has no downstream

task, then V l
c = ∅. A client c with task Tc has access to a space of node label Yc of size
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mc. Different clients may have entirely different tasks and thus Yc’s may not overlap across

clients. Each node in V l
c gets a label from Yc to form its corresponding set of node labels Yc.

The task Tc is then to infer the labels for unlabeled nodes in V u
c . Note that there could be

multiple tasks for each client but it will not change the foundation of the problem. So, we

simply consider one task per client.

There are several differences compared to the traditional FL setting: (1) Label scarcity

i.e., for each client c, |V l
c | could be very small or even zero. (2) Total labeled data may be far

less than unlabeled data i.e., ∑c |V l
c | �

∑
c |V u

c | (3) Poor data quality i.e., for some clients

|V l
c | + |V u

c | may also be small. (4) Downstream task heterogeneity i.e., across clients, the

class label domain Yc’s could be very different.

6.3.2 General Formulation

Directly optimizing {fc}c∈C using the standard FL optimization in Eq.  6.2 and  6.3 with

labels, may not achieve good results as ∑c |V l
c | �

∑
c |V u

c |. So, instead, we propose to utilize

a model interpolation based formulation where a global shared model and client specific

local models are simultaneously optimized using self-supervision and label supervision if

downstream task labels are available. Specifically, we set fc = pc ◦ f , where pc is the local

client model, f is the global shared model. We then propose to empirically solve the following

distributed objective:

min
{pc},f

∑
c∈C

[
Lc(pc, f, Gc, Yc)1Tc exists + λcL̃c(f, Gc)

]
(6.4)

where, the first term is the objective supervised by labels and the second term is the self-

supervised objective that doesn’t utilize label information, λc controls the amount of model

interpolation. Note that f is shared while pc is not shared. It is important to point out

that, by setting each λc to 0.0, the objective in Eq.  6.4 falls back to standard supervised

FL optimization. An overview of the formulation is shown in Fig  6.1 . From the general

formulation in Eq.  6.4 , we propose two practical learning protocols (LPs).
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• LP1: The first supervised objective term is ignored, each λc is set to 1.0 and a global

model f is learnt in a federated self-supervised fashion using the objective in the second

term. Notice that here, labeled data is not used to train f during federation. Once such

a f is trained, each client c can further train a task specific local model pc themselves

again by freezing or finetuning on top of f .

• LP2: Both terms are used with a non zero λc during federation. Both pc and f get

label data supervision if available through the first term. Additionally, f also gets

trained using the self-supervised objective through the second term.

We will only consider the first learning protocol (LP1) for further experimentation in

Sec  6.5 and leave the study of LP2 for future work.

6.3.3 Self-Supervised Objective

While in theory, the self-supervised loss term L̃c(·) in Eq  6.4 can be instantiated by

using any self-supervised objectives, for practical reasons, more considerations are needed.

Methods like GRACE [  242 ] and GCA [  89 ] learn node representations by maximizing the

agreement between the same node pairs from two augmented versions of a graph while

simultaneously minimizing the agreement between every other node pair. This leads to a

scalability issue on large graphs as they require costly (time and space complexity quadratic

in the number of nodes) negative sampling for building contrastive pairs [  88 ]. Moreover, in

practice these methods rely on a large number of such negatives to be effective. We adopt

BGRL [  88 ] which is a scalable and SoTA for node level self-supervised learning of GNNs.

BGRL scales linearly with the the number of nodes in the input graph as it does not require

contrasting negative node pairs. Fig.  6.2 shows an overview of the approach.

Instantiating using BGRL. We describe the method for a single client and omit the

client subscript c for brevity. Specifically, BGRL first produces two alternate but correlated

views of the input graph G: G1 = T 1(G) and G2 = T 2(G), by using stochastic graph

augmentations T 1 and T 2 respectively. Examples include node feature masking and edge

masking. BGRL, then utilizes two GNN encoders, an online ω(·) and a target τ(·) encoder.

The online encoder produces online node representations for the first graph H1 = ω(G1) and
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similarly, the target encoder produces target node representations of the second augmented

graph as, H2 = τ(G2). Then, the online node representations are fed to a node level head

s(·) that outputs predictions of the target node representations as Z1 = s(H1). Then, the

self-supervised BGRL objective is as follows,

L̃(ω, s, τ) = − 2
N

N−1∑
i=0

Z1
i H2

i
>

‖Z1
i ‖‖H2

i ‖
(6.5)

where N is the number of nodes in G. It is important to note that gradients of the above

objective are taken only w.r.t the parameters of ω(·) and s(·) and only they get optimized by

gradient descent. The parameters of τ(·) are updated using an exponential moving average

of the parameters of ω(·) [ 88 ].

During federation, parameters of online GNN encoder ω(·) and node level head s(·) are

both shared across clients and the server aggregates them in each federation round and

sends it back to the clients. We refer to the global shared model f = ω and is used for

the supervised objectives and further downstream tasks. The target GNN encoder τ(·) is

an auxiliary unit and is only used locally within the client for the purpose of self-supervised

learning and discarded once training is finished.

6.3.4 Task Specific Supervision

The first loss term Lc(·) utilizes supervision from the node labels if available. Standard

cross-entropy loss over all labeled nodes can be utilized as commonly employed in semi-

supervised GNN node classification [ 45 ]. For completeness it takes the following form,

L(pc, f, Gc, Yc) = −
∑
i∈V l

c

mc∑
j=1

Yc(ij) ln Zc(ij) (6.6)

where, Zc = softmax(pc ◦ f(Gc)) and Zc ∈ RNc×mc .
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Figure 6.2. Overview of BGRL [  88 ]. Here, two correlated views of input G
are obtained using augmentations T 1 and T 2. Further, two GNN encoders ω
and τ are used to obtain node representations. The node level head s is tasked
at using the representations from ω to predict the representations obtained
from τ using a cosine similarity metric. Gradients flow only through s and ω
and τ ’s parameters are updated using an exponential moving average of ω’s
parameters.

6.4 Experimental Setup

In this section, we first introduce the real-world datasets apt for our proposed problem

setting. We then describe the baseline methods, experiment protocol, model architecture

and hyper-parameters.

6.4.1 Datasets

Twitch Gamer Networks. These are a set of six user-user social network of gamers who

stream in certain countries [ 162 ]. Nodes are users and edges represent friendships. Node

features are 128-dimensional vectors based on games liked and played, streaming habits

and location. These networks are naturally formed in different geographies and share the

same feature space which allows us consider them as a cross-silo scenario for our problem

setting of federated “knowledge transfer”. Additionally, each network also has a binary node
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classification task of predicting if a user uses explicit language. This enables us to empirically

evaluate the learnt representations. The statistics of these networks are provided in Table  6.1 .

Table 6.1. Statistics of Twitch Gamer Networks. Each network from a geog-
raphy represents a client graph in our experiments.

twitch-DE twitch-EN twitch-ES twitch-FR twitch-PT twitch-RU

#nodes 9,498 7,126 4,648 6,549 1,912 4,385
#edges 153,138 35,324 59,382 112,666 31,299 37,304
density 0.003 0.002 0.006 0.005 0.017 0.004

Amazon Co-purchase Networks. We construct a set of six co-purchase networks from

raw Amazon reviews 

3
 and product meta data [ 253 ]. Specifically, we first consider six top

level product segments viz. computer, photo, phone, tool, guitar and art. For each seg-

ment we construct a co-purchase network where nodes represent various products in the

chosen segment and edges signify a frequent co-purchase (using the ”also buy” signal in the

raw product meta data). Each of these networks is held privately by six different clients

simulating a cross-silo scenario. We then build a common review vocabulary of all products

considered across all the six networks and use 1000-dimensional bag-of-words product review

encoding as node features. This ensures all nodes across graphs share the same node feature

space to make federated ”knowledge transfer” meaningful and apt to our problem setting.

The downstream task for each network is to classify the products (nodes) to fine-grained

sub-segments. Again, this construction naturally simulates downstream task heterogeneity

as each graph has a different class label domain. The statistics of these networks are provided

in Table  6.2 .

Table 6.2. Statistics of Amazon Co-purchase Networks. Refer to Fig.  6.3 for
detailed label distributions.

computer photo phone tool guitar art

#nodes 10,055 4,705 16,683 4,827 2,506 6,610
#edges 87,512 28,818 113,760 43,458 10,342 90,678
#classes 9 8 7 6 5 8

3
 ↑  https://nijianmo.github.io/amazon/index.html 
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Figure 6.3. Class label distribution for Amazon Co-purchase Networks

OGB Cross-Silo Molecule Datasets For graph level classification tasks we adopt eight

molecule datasets from open graph benchmark (OGB) [ 92 ]. Each of the datasets contains

a set a bio-chemical molecules represented as nodes and edges with attributes. To simulate

cross-silo graph level representation learning we distribute each of the eight datasets to eight

different clients respectively. It is important to note that all datasets share the same 9-

dimensional node feature space consisting of information such as atomic number, chirality

and other atom features etc. Each silo consists of a novel domain multi-class binary graph

classification task and naturally simulates extreme client task heterogeneity. We simulate the

level of label scarcity with 8/10/10 and 80/10/10 scaffold train/val/test splitting strategy.

Detailed dataset statistics are provided in Table  6.3 . It is clear from the table that each client
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has different set of molecules and downstream tasks simulating extreme data heterogeneity

among clients.

Table 6.3. Cross-silo molecule datasets for (multi-task) binary graph classification.

bbbp bace tox21 toxcast sider clintox muv hiv

#Graphs 2,039 1,513 7,831 8,576 1,427 1,477 93,087 41,127
Avg. #Nodes 24.06 34.08 18.57 18.78 33.64 26.15 24.23 25.51
Avg. Degree 51.90 73.71 38.58 38.52 70.71 55.76 52.55 54.93
#Tasks 1 1 12 617 27 2 17 1

6.4.2 Baselines

For baselines, we consider: (1) NoFed-Sup which trains a GNN model end-to-end with

label supervision, for each client individually without federation. (2) NoFed-Self-Freeze

which first trains a GNN model using self-supervision and then performs linear evaluation

after freezing the GNN node representations, for each client individually without federation.

(3) NoFed-Self-Finetune which first trains a GNN model using self-supervision and then

performs end-to-end task specific fine-tuning with a MLP task head on top, for each client

individually without federation. (4) Fed-Sup trains a local GNN encoder + local MLP task

head with end-to-end label supervision using federated learning. Only the parameters of the

local GNN models are shared across clients and their parameters are aggregated in the server

via FedAvg [  233 ] and sent back after every communication round. We choose the No-Fed

class of baselines to experiment whether FL can bring improvements to each client through

collaborative training. The Freeze and Finetune baselines allow us to experiment with

the best downstream task evaluation strategy. The Fed-Sup baseline is the traditional FL

technique that utilizes label information across clients. This baseline allows us to experiment

if the formulation (and method) we propose to utilize self-supervision signal within FL brings

improvements to each client.
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6.4.3 Experiment Protocol

For twitch network experiments, we use a 60/20/20 training, validation and test node

random split for evaluation and for amazon network experiments, we use a 10/10/80 random

split. Both experiments utilize F1-Micro score as the metric for node classification perfor-

mance and we report average score results over 10 data splits. For OGB cross-silo molecule

dataset, we use ROC-AUC metric for graph classification performance and we report average

metric score over 10 data splits.

6.4.4 Parameter Settings

For all baselines and our methods, we employ a 2-layer GCN [  45 ] encoder with hidden

dimensions tuned from {64, 128, 256} and batch normalization. For supervised baselines

NoFed-Sup and Fed-Sup we use the AdamW [  166 ] optimizer with learning rate of 0.01

and weight decay of 1e-3. For NoFed-Self baselines and our Fed-Self methods we use the

AdamW optimizer with a learning rate of 1e-4 annealed using a cosine scheduler as prescribed

in [  88 ] and weight decay of 1e-5. Additionally, the hidden dimension of the MLP predictor

model s(·) in BGRL is set as 512. The exponential moving average decay rate in BGRL is

initialized as 0.99 and gradually increased to 1.0 using cosine schedule. We perform a small

random grid search (20 max trials) over node feature and edge masking probabilities from

{0.1, 0.2, . . . , 0.8, 0.9} for both augmentations T 1 and T 2. For all Fed methods the number

of local epochs is set to be 1 and the number of communication rounds for Fed-Sup is set to

500 and FedSGL is set to 10,000 with 1,000 warmup rounds. For Freeze linear evaluation,

we employ a `2−regularized logistic regression classifier and perform regularization strength

search over {2−10, 2−8, 2−6, . . . , 26, 28, 210}. For Finetune evaluation, we employ a task spe-

cific MLP head of 128 dimensions and perform optimization using AdamW for 100 steps

with a learning rate of 0.01 and weight decay of 1e-3. For graph level classification tasks

(i.e., OGB cross-silo molecule dataset), we instantiate FedSGL with GraphCL [  94 ] for the

self-supervised objective with default hyper-parameters. GraphCL is a contrastive objective

that was given detailed introduced in Chapter  5 .
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6.5 Experimental Analysis

In this section, we experimentally compare our instantiated methods against baselines

for twitch and amazon networks.

6.5.1 Twitch Network Experiments

Table 6.4. Node classification task on cross-silo Twitch Gamer Networks.
Avg F1-Micro Scores over 10 splits and std. dev.

twitch-DE twitch-EN twitch-ES twitch-FR twitch-PT twitch-RU
NoFed (RandInit-GNN) 0.502 ± 0.103 0.501 ± 0.047 0.496 ± 0.198 0.510 ± 0.131 0.533 ± 0.156 0.507 ± 0.248
NoFed-Sup 0.673 ± 0.010 0.584 ± 0.014 0.725 ± 0.014 0.626 ± 0.016 0.678 ± 0.023 0.751 ± 0.015
NoFed-Self-Freeze 0.685 ± 0.009 0.617 ± 0.012 0.731 ± 0.010 0.626 ± 0.015 0.696 ± 0.021 0.752 ± 0.009
NoFed-Self-Finetune 0.703 ± 0.012 0.665 ± 0.023 0.746 ± 0.015 0.635 ± 0.018 0.710 ± 0.026 0.762 ± 0.011
Fed-Sup (FedAvg) 0.677 ± 0.009 0.600 ± 0.009 0.723 ± 0.013 0.627 ± 0.018 0.683 ± 0.013 0.743 ± 0.015
FedSGL-Freeze (ours) 0.686 ± 0.007 0.606 ± 0.012 0.733 ± 0.007 0.626 ± 0.014 0.699 ± 0.022 0.752 ± 0.009
FedSGL-Finetune (ours) 0.706 ± 0.013 0.657 ± 0.024 0.745 ± 0.013 0.636 ± 0.021 0.712 ± 0.024 0.761 ± 0.014

Table  6.4 shows the results across all Twitch clients graphs. Firstly, it is clear that both

NoFed-Self-Freeze and NoFed-Self-Finetune perform better than the NoFed-Sup baseline for

all the clients. This shows the usefulness of the self-supervised objective as it can make use

of the available unlabeled data in each client albeit individually. Secondly, we witness that

fine-tuning based evaluation (NoFed-Self-Finetune) leads to the best gain of 4.75% averaged

across all clients over No-Fed-Sup. The individual client gains are shown in Fig.  6.4 (a).

Thirdly, Fed-Sup is only marginally better (0.45 % avg. gain) than No-Fed-Sup, indicating

that a supervised federated baseline is not effective in of properly utilizing all the client

label information. In fact, for certain clients we see negative gains as shown in Fig  6.4 (b).

Fourthly, our method Fed-Self-Finetune provides a gain of on avg. 6.13% across all clients

over Fed-Sup and Fig  6.4 (c) shows individual client gains we witness. This provides the

evidence of the benefits in using self-supervised objective for learning the global model during

federation. We reason that the heterogeneity across these client graphs is due to the fact

that they are naturally formed in different geographies with diverse friendship cultures and

language-use patterns. In such a scenario, standard supervised FedAvg suffers (Fed-Sup)

due to the reliance on labels alone to learn representations, whereas utilizing unlabeled data
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and performing self-supervised FedAvg can learn shared patterns and provide more robust

representations for each client (Fed-Self-Finetune). Finally, our method Fed-Self-Finetune

provides consistent gains over individually trained No-Fed-Self-Finetune baseline and overall

we witness an avg. 1.73% gain across all clients (see also Fig  6.4 (d)). This further shows

that we can indeed utilize unlabeled data collaboratively using federation and justifies for

formulation. This can also be attributed statistically, as there is an increase in effective

unlabeled data which the shared GNN encoder model can leverage.

Figure 6.4. Performance gains in Twitch network experiments

6.5.2 Amazon Network Experiments

Table  6.5 shows the results across all Amazon client graphs. Firstly, No-Fed-Self-Freeze

is clearly superior to No-Fed-Sup, which shows that self-supervised learning is effective for

these graphs with an avg., gain of 4.3% across all clients and Fig  6.5 (a) shows the gains

individually. Note that, the number of train node labels for amazon graphs are extremely

limited—we consider only 10% of all nodes as train nodes. In this case, No-Fed-Sup suffers

from over-fitting, where as No-Fed-Self is able to utilize the unlabeled nodes effectively—
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Table 6.5. Node classification task on cross-silo Amazon Co-purchase Net-
works. Avg. F1-Micro Scores over 10 splits and std. dev.

computer photo phone guitar tool art
NoFed (RandInit-GNN) 0.687 ± 0.005 0.709 ± 0.008 0.673 ± 0.005 0.737 ± 0.014 0.622 ± 0.008 0.653 ± 0.009
NoFed-Sup 0.787 ± 0.009 0.801 ± 0.008 0.759 ± 0.007 0.866 ± 0.012 0.764 ± 0.012 0.741 ± 0.010
NoFed-Self-Freeze 0.837 ± 0.004 0.841 ± 0.007 0.778 ± 0.003 0.882 ± 0.011 0.800 ± 0.007 0.784 ± 0.006
NoFed-Self-Finetune 0.789 ± 0.012 0.792 ± 0.014 0.757 ± 0.012 0.845 ± 0.026 0.758 ± 0.018 0.735 ± 0.015
Fed-Sup (FedAvg) 0.769 ± 0.003 0.754 ± 0.009 0.741 ± 0.004 0.807 ± 0.019 0.722 ± 0.010 0.704 ± 0.013
FedSGL-Freeze (ours) 0.849 ± 0.005 0.868 ± 0.009 0.776 ± 0.005 0.897 ± 0.011 0.818 ± 0.010 0.807 ± 0.005
FedSGL-Finetune (ours) 0.786 ± 0.009 0.791 ± 0.012 0.753 ± 0.005 0.849 ± 0.019 0.764 ± 0.016 0.738 ± 0.015

thereby justifying the SSL objective. Secondly, No-Fed-Self-Finetune is worse than No-Fed-

Self-Freeze, indicating that fine-tuning is not very effective for Amazon networks which is

contrary to what we observed in Twitch. We attribute this again to limited train labels

and fine-tuning is still ineffective. Thirdly, we interestingly find that Fed-Sup suffers very

badly across all clients and we witness avg. gain of -4.16% compared to No-Fed-Sup across

clients. Fig  6.5 (b) further shows it individually. This is again different to what we observed

in twitch where the same comparison (Fed-Sup vs No-Fed-Sup) did not lead to this kind of

severe performance degradation. We reason that because of the increased downstream task

heterogeneity in Amazon compared to Twitch, a global model learnt using label supervision

alone will be incapable to perform well. Moreover, The non-IID ness among Amazon clients

is significantly greater than among Twitch clients and standard supervised FedAvg (Fed-

Sup) falls short. Fourthly, our method FedSGL-Freeze provides significant increase in

performance compared to baselines across all clients due to the effective and collaborative

use of unlabeled data. Specifically, we witness avg. 11.5% gains across clients over Fed-Sup

which shows how our formulation can be effectively used when there is high task heterogeneity

across clients. Fig  6.5 (c) further shows the gains individually. We also witness an avg. gain

of 1.9% over NoFed-Self-Freeze and further shows that our formulation can indeed leverage

unlabeled data across clients using federation to improve downstream performance locally.

6.5.3 OGB Cross-Silo Molecule Datasets

Table  6.6 shows the results for graph classification task on the OBG cross-silo molecule

dataset. We use FedAvg [  233 ] and personalized federated methods such as FedProx [  131 ]
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Figure 6.5. Performance gains in Amazon network experiments

which uses proximal regularization technique and GCFL+ [ 123 ] which utilizes client clus-

tering. For the case with train/val/test split of 80/10/10 which has sufficient train label

availability, it is clear that supervised FL (i.e. FedAvg) performs worse than NoFed-Sup

with avg. gains of −8.6%. The best personalized method (among FedProx and GCFL+)

also performs poorly compared to NoFed-Sup with avg. gains of −8.3%. Next, client specific

self-supervision and further task fine-tuning i.e., NoFed-Self-Finetune is on par or better than

client specific supervised model without self-supervision i.e., NoFed-Sup with an avg. gain of

+4.1%. This shows the usefulness of self-supervision. Our method FedSGL-Finetune results

in best performance with avg. gain of +5.4% over NoFed-Self-Finetune which means using

the features of other clients is always beneficial even if clients hold data for very different

prediction tasks. Also, we witness an avg. gain of +19.3% over the best supervised FL

baseline (among FedAvg, FedProx and GCFL+) which shows how our method can tackle

the heterogeneous label bias problem in supervised FL methods. In the label scarcity case

where we use a train/val/test split of 8/10/10, it is evident that FedSGL-Finetune results

in avg. gain of +4.1% over NoFed-Self-Finetune and an avg. gain of +11.6% over the best

141



Table 6.6. Graph classification task across cross-silo clients. Avg. ROC-AUC
Scores over 10 splits and std. dev.

Split bbbp (1) bace (1) tox21 (12) toxcast (617) sider (27) clintox (2) muv (17) hiv (1)

80/10/10

NoFed-Sup 67.66 ± 2.42 71.00 ± 3.59 74.11 ± 0.53 62.25 ± 0.56 57.30 ± 2.44 60.95 ± 3.08 71.04 ± 2.57 75.25 ± 1.40
FedAvg 57.98 ± 3.41 58.18 ± 6.34 67.83 ± 1.72 56.84 ± 1.23 52.21 ± 1.99 60.28 ± 6.16 69.84 ± 4.14 69.61 ± 2.85
FedProx 55.49 ± 3.20 59.38 ± 6.21 66.87 ± 1.74 56.40 ± 1.68 52.67 ± 2.53 57.11 ± 8.64 71.81 ± 4.21 69.45 ± 3.94
GCFL+ 55.23 ± 4.60 60.13 ± 8.12 67.72 ± 1.10 56.57 ± 1.57 53.51 ± 3.49 58.45 ± 5.17 69.86 ± 5.11 69.77 ± 2.21

NoFed-Self-Freeze 64.85 ± 1.05 57.27 ± 0.36 68.98 ± 0.24 59.37 ± 0.37 58.75 ± 0.93 50.76 ± 1.39 71.64 ± 1.48 67.31 ± 0.62
NoFed-Self-Finetune 71.05 ± 1.14 73.01 ± 1.76 74.82 ± 0.31 62.91 ± 0.24 59.76 ± 0.49 68.53 ± 1.37 75.92 ± 1.90 76.18 ± 0.81

FedSGL-Freeze 61.03 ± 1.97 56.89 ± 1.03 69.64 ± 0.57 58.86 ± 0.48 60.45 ± 0.63 60.79 ± 1.98 73.35 ± 1.59 68.20 ± 0.97
FedSGL-Finetune 72.40 ± 1.35 80.47 ± 1.61 75.23 ± 0.94 63.72 ± 0.83 61.53 ± 1.02 84.30 ± 1.87 76.79 ± 1.81 77.91 ± 1.03

8/10/10

NoFed-Sup 57.80 ± 2.19 60.59 ± 4.23 67.74 ± 1.14 57.09 ± 0.64 49.97 ± 1.84 48.85 ± 5.53 63.23 ± 2.13 69.27 ± 3.22
FedAvg 57.66 ± 4.40 51.55 ± 12.11 65.45 ± 0.92 53.31 ± 1.15 51.22 ± 1.69 54.03 ± 4.76 61.27 ± 3.31 65.27 ± 3.31
FedProx 54.81 ± 3.84 56.50 ± 8.64 65.22 ± 1.52 55.12 ± 2.03 50.41 ± 1.56 49.34 ± 5.40 62.08 ± 4.26 68.97 ± 3.08
GCFL+ 57.81 ± 4.35 57.61 ± 8.83 65.04 ± 1.60 52.81 ± 1.30 50.49 ± 2.25 52.48 ± 5.77 60.38 ± 2.95 67.34 ± 2.93

NoFed-Self-Freeze 61.54 ± 0.52 53.46 ± 1.20 65.07 ± 0.61 55.62 ± 0.23 51.08 ± 0.75 42.57 ± 2.38 64.65 ± 1.08 64.12 ± 0.51
NoFed-Self-Finetune 61.42 ± 1.75 72.03 ± 1.98 68.07 ± 0.82 57.71 ± 0.41 51.56 ± 0.73 56.70 ± 1.91 65.95 ± 2.33 72.65 ± 0.92

FedSGL-Freeze 58.09 ± 0.76 56.35 ± 1.76 67.41 ± 0.98 55.46 ± 0.56 53.51 ± 0.65 53.00 ± 1.63 67.18 ± 0.72 66.22 ± 1.13
FedSGL-Finetune 63.38 ± 1.09 79.55 ± 1.07 69.07 ± 0.34 58.81 ± 0.17 54.89 ± 0.55 58.52 ± 1.08 68.81 ± 0.23 73.89 ± 0.87

supervised FL (among FedAvg, FedProx, GCFL+) method. This again shows that in the

low label availability regime coupled with heterogeneous task scenario, our method FedSGL

is able to extract common features across clients and provides a uniform advantage over local

non-federated self-supervised methods and federated supervised methods.

6.6 Discussion

Motivated by two key characteristics of real-world graph data when used in cross-silo

settings: (1) Label deficiency and (2) Downstream task heterogeneity, we proposed a novel

problem setting that has not been considered by current FedGRL setups. We raise a natural

research question of how one can leverage vast amounts of unlabeled graph data and collabo-

ratively learn a shared model using federated learning that is effective at solving downstream

client tasks. We provide a general formulation based on model interpolation where a shared

global model is both self-supervised and gets supervision with available local task labels

through a local client model. We provided two learning protocols based on this general for-

mulation and provided specific instantiations using BGRL for the self-supervised objective.

To empirically verify one of our learning protocol and its instantiation, we adopted a real

world Twitch Gamer Networks to simulate a cross-geo FedGRL application and we witnessed
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on avg. 6.1% gains over traditional supervised federated objectives. To further incorporate

the task heterogeneity characteristic, we constructed a new cross-silo dataset called Amazon

Co-purchase Networks which have varying downstream label domains. We showed how stan-

dard supervised federated objectives can result in negative gains (on avg. -4.16%) compared

to individual client specific training, due to the increased data heterogeneity and finally

justified our formulation which results in on avg. 11.5% gains over traditional supervised

federated learning and on avg. 1.9% gains over individually trained self-supervised models.

We witness up to avg. +19.3% gains in OBG cross-silo molecule dataset for graph classifica-

tion which shows how FedSGL outperforms personalized FL methods even when they have

task supervision. Additionally, FedSGL is able to extract shared features across clients and

provides gains over local non-federated SSL under label scarcity.

Several extensions to our work can be considered. While we have experimented with

learning protocol LP1 in this chapter, more experiments are required to fully realize the

potential benefits of the formulations, especially LP2. It is also significantly more challenging

as the shared global model may be biased towards local client labels due to supervision

and techniques from personalized federated learning literature may have to be adapted,

instead of the standard FedAvg algorithm we currently employ. Further work can also be

undertaken to explore the best server aggregation protocol, experiments with varying client

participation ratios and how it affects self-supervised based federation can also be further

explored. Moreover, our methodology of constructing the amazon co-purchase networks can

be extended to include more clients for future bench-marking. We stress on the fact that for

FedGRL, realistic datasets are a major gap in current works and more effort is required in

this front.
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7. SUMMARY AND DISCUSSIONS

In this chapter, we summarize the contributions of the two thrusts presented in this disser-

tation and discuss areas of future work.

7.1 Contributions

In Chapter  3 , motivated by the observation that nodes in real-world networks exhibit

diverse mixing behaviour, we conducted an in depth investigation into the relation between

node mixing and SoTA GNN performance in node label prediction tasks. We first proposed

the use of a local assortativity metric which offers a fine grained measure of node level mixing

compared to a conventional global measurement of network assortativity (e.g., assortativ-

ity coefficient). Using real-world networks, we empirically demonstrated that the predictive

performance of GNNs are highly correlated with our local assortativity measure. We at-

tribute this limiting behaviour to the over reliance of proximity information in constructing

node representations—in part due to the smoothing effects of message passing in GNNs. We

empirically identify that for nodes with high local assortativity, proximity information from

its surroundings suffices to infer its own label whereas, for nodes with low local assortativ-

ity, structural similarity is key to help distinguish or infer their labels. We then proposed

a graph transformation algorithm that transforms the original graph into a computation

graph accounting for both node level structural and proximity information. The resulting

computation graph is shown to experimentally improve assortativity owing to the use of

structural regularities in the input graph. We further developed a practical version of the

transformation algorithm that reduces the quadratic complexity of structural and proximal

similarity calculation to log-linear in the the number of nodes in the graph. With exten-

sive experiments on various real world networks from different domains we showed that our

novel GNN (WRGAT) which adaptively chooses structure and proximity information in the

transformed computation graph provides superior node classification performance compared

to baseline GNN methods that operate on the original graph.

In Chapter  4 , we proposed an expressive and efficient approach to learn link representa-

tions in temporal graphs for the task of ranking links. First, we developed a novel temporal
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graph encoder model that incorporates a Labeling Trick followed by parametrized diffusion

using GNNs to learn structural and temporal link representations. We theoretically showed

the benefits of increased expressivity due to the use of our labeling trick in the encoder

compared to previous models. We also theoretically showed that our encoder is capable of

inductive link ranking due to the use of (1) our parametrized diffusion model with permu-

tation equivariance property and (2) our timestamp encoding scheme which is time shift

invariant. Instead of optimizing the encoder parameters with a conventional point-wise loss

as employed by previous methods, we proposed to use a list-wise ranking loss function which

better suits the goals of the evaluation i.e. ranking links. To implement the list-wise loss

in practice, we proposed a subgraph sampling technique which selects an effective set of

candidates for ranking. Our labeling approach and diffusion over the sampled subgraph is

amenable to joint inference over candidates and we performed a detailed complexity anal-

ysis to show the benefits in terms of scalable inference over candidates of our approach in

comparison to baseline methods. We conducted a detailed empirical study using real-world

temporal network datasets to demonstrate increased ranking performance of our approach

in both trasductive and inductive learning settings. To validate our theoretical claims of

increased expressivity, we conducted ablations with and without the labeling trick and em-

pirically demonstrated performance gains in link ranking tasks. Lastly, we provided detailed

run time analysis to empirically demonstrate the practical efficiency of our approach in

comparison to baselines.

In Chapter  5 , we developed a principled learning mechanism to train graph neural net-

works in a self-supervised fashion. Our initial empirical study found that existing InfoMax

priciple based methods often risk capturing redundant graph features which may be irrele-

vant to the downstream tasks. We proposed an adversarial InfoMax framework (AD-GCL),

inspired by the graph information bottleneck theory with a goal of letting the graph encoder

capture minimal information that is sufficient to identify each graph. We provided theoreti-

cal guarantees on the upper bound of irrelevant information captured by our framework and

a lower bound of mutual information between learnt representations and downstream task

labels. Inspired by our theoretical characterization of AD-GCL, we developed a practical in-

stantiation via learnable edge dropping augmentations and a min-max contrastive objective.
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To parameterize the learnable augmentation model, we developed a method that utilizes the

Gumbel-Max reparametrization trick. Inspired by our theory, we further proposed a novel

regularization term that controls the amount of perturbation in the min-max objective. Us-

ing real-world graph datasets from different domains, we performed extensive experiments in

unsupervised learning setting to demonstrate the significant gains of our learning mechanism

compared to baselines. We performed an in dept empirical study to analyze our min-max

objective and demonstrated stable training dynamics. Lastly, we empirically tested our prin-

ciple in semi-supervised and transfer learning settings to show improved performance gains

compared to baselines.

In Chapter  6 , motivated by two key characteristics of real-world graph data in cross-silo

settings: (1) downstream task heterogeneity (2) label deficiency, we proposed a novel problem

setting that has not been considered by current federated graph representation learning

setups. We provided a general formulation based on model interpolation where a shared

global model is both self-supervised and gets supervision with available local task labels

through a local client model. We provided a learning framework (called FedSGL) based

on this general formulation and provided specific instantiations using two self-supervised

objective, BGRL and GraphCL for node and graph representation learning respectively. To

empirically verify FedSGL and its instantiations, we adopted six real-world Twitch Gamer

Networks to simulate a cross-geo application and we witnessed uniform gains over traditional

supervised federated objectives. To further incorporate the task heterogeneity characteristic,

we constructed a new cross-silo dataset called Amazon Co-purchase Networks which have

varying downstream label domains. For graph level tasks, we adopted eight OGB molecule

benchmark datasets to simulate a cross-silo application scenario. Overall, we showed how

standard supervised federated objectives can result in negative gains compared to individual

client specific training, due to the increased data heterogeneity and finally justified our

formulation which results in significant gains over traditional supervised federated learning

and uniform gains over locally trained self-supervised models.

The contributions of this dissertations are categorized into the following aspects. Chapter

numbers are provided in parenthesis at the end of each bullet for ease of reference.
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7.1.1 Theoretical

• Defining the notion of GNN Troublesome Center Node to show the node ambiguity

problem and failure of GNN encoders to provide structural and temporal link repre-

sentations for temporal graphs. Analytically quantifying the number of such trouble-

some center nodes in temporal graphs which are problematic for conventional GNNs.

(Chapter  4 )

• Analyzing the expressive power of our TGRank encoder in terms of distinguishing non-

isomorphic temporal links. Proving that conventional GNN based encoders will fail

to distinguish a lot of GNN Troublesome Center Nodes while, TGRank with labelling

strategy can distinguish them—leading to enhanced expressivity. (Chapter  4 )

• Proving the inductive ranking ability of TGRank which guarantees that for any two

isomorphic temporal queries, their ranking prediction scores obtained from TGRank

will be identical. (Chapter  4 )

• Complexity analysis to show that as the size of the candidate set grows, other base-

line methods will be much less efficient than our TGRank, which amortizes computa-

tion over a joint set rather than compute representations independently for each pair

(source+one candidate) during link ranking. (Chapter  4 )

• Defining graph data augmentation families and presenting mutual information bounds

for AD-GCL principle. Upper bound of irrelevant information captured by our frame-

work and a lower bound of mutual information between learnt representations and

downstream task labels. (Chapter  5 )

7.1.2 Algorithmic / Models

• Development of a graph transformation algorithm that transforms graphs which ex-

hibit diverse mixing patterns into a highly assortative computation graph for running

message passing GNNs. Our computation graph construction contains weighted struc-

tural edges that brings far away disassortative nodes closer and reflects different levels
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of structural similarity between nodes. Simultaneously, models assortative node mix-

ing behavior with the inclusion of weighted proximity edges that reflect different levels

of proximal similarity between nodes. (Chapter  3 )

• Efficient and practical computation graph construction to reduce the costly O(n2)

structural and proximity similarity calculation to O(n log n) w.r.t the number of nodes

n in graph. (Chapter  3 )

• Development of a parametrized relational GNN model (WRGAT) that can adaptively

choose between proximity and structural edges in our computation graph to boost node

classification performance in the entire spectrum of local assortativity. (Chapter  3 )

• Development of TGRank encoder model for learning expressive temporal link repre-

sentations. (Chapter  4 )

• Development of a subgraph sampling technique to generate effective candidate sets

and efficiently train the TGRank encoder with a list-wise ranking loss. (Chapter  4 )

• Development of a practical algorithmic instantiation of our AD-GCL principle to

train GNNs with self-supervision using a novel min-max contrastive learning objec-

tive. (Chapter  5 )

• For the instantiation of AD-GCL, development of a parametrized learnable edge drop-

ping model using Gumbel-Max reparametrization trick and a novel regularization term

to control the amount of perturbation. (Chapter  5 )

• Development of FedSGL learning framework which trains GNNs in a federated fashion

with self-supervised objectives. (Chapter  6 )

• Concrete algorithmic instantiations of FedSGL with different combinations of (a) non-

personalized/personalized FL algorithms with (b) commonly used self-supervised ob-

jectives, paired with (c) different local fine-tuning strategies. (Chapter  6 )
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7.1.3 Empirical / Applications

• Proposing the use of a local assortativity metric to measure diverse mixing behaviour

in real-world networks and an in dept study of its effects on message passing GNN

performance for the task of node label prediction. (Chapter  3 )

• Experimental performance evaluation of our WRGAT encoder model against seven

baseline methods, detailed ablations and parameter sensitivity analysis of our graph

transformation algorithm for the task of semi-supervised node classification on six

hyperlinked web-page networks, three citation networks, three air-traffic networks and

a BGP internet network—all of which are real-world networks with diverse node mixing

patterns. (Chapter  3 )

• Experimental performance evaluation of TGRank and comparisons against relevant

baselines for the task of temporal link ranking using six real-world temporal graphs.

Extending prior methods to utilize list-wise loss for apt performance comparisons.

(Chapter  4 )

• Empirical evaluation of TGRank in both transductive and inductive learning settings,

ablation study to probe into the critical components of TGRank, parameter sensitivity

analysis and empirical run time analysis. (Chapter  4 )

• Empirical analysis highlighting the drawbacks of traditional graph contrastive learning

methods and showing that task irrelevant information can be sufficient for holding the

InfoMax principle. (Chapter  5 )

• Experimental evaluation of our instantiation of proposed AD-GCL principle and com-

parisons against baselines methods using eighteen different graph datasets from social

and biochemistry domains for the task of unsupervised graph property prediction.

(Chapter  5 )

• Empirical analysis of regularizing the AD-GCL principle and showing stable training

dynamics of our proposed min-max contrastive objective.
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• Empirical performance evaluation of graph representations obtained from GNNs trained

using AD-GCL principle and comparisons to baselines using six different datasets for

semi-supervised graph property prediction. (Chapter  5 )

• Transfer learning performance evaluation of graph representations obtained from GNNs

trained using AD-GCL principle and other baselines on two large scale pre-train graph

datasets and downstream fine-tuning on nine datasets for graph property prediction

tasks. (Chapter  5 )

• Construction and introduction of a new dataset of co-purchase networks based on

different sales departments in Amazon, to test FedSGL over node classification tasks.

(Chapter  6 )

• Empirical study of proposed FedSGL framework. Experiments on a variety of real-

world cross silo-ed graph datasets for node and graph classification tasks. Compar-

isons with local self-supervised baselines, supervised personalized and non-personalized

federated methods. (Chapter  6 )

7.2 Future Work

There are a number of interesting directions for future work that extend the ideas and

techniques presented in this dissertation. We will outline immediate areas of exploration for

each chapter and discuss broader avenues of future work.

In Chapter  3 , we empirically observed correlation between node level local assortativity

and GNN performance for node classification. Some recent works have begun to theoreti-

cally study the connection between a global network metric called homophily [ 64 ] to GNN

representation quality [ 254 ], [ 255 ]. A possible extension is to provide theoretical arguments

relating our fine grained node level assortativity and GNN node representation quality. While

our generic toolkit can be used to empirically analyze future GNN encoders from the per-

spective of node mixing behaviour, it can also aid in further theoretical understanding of

the node feature smoothing operation of message passing GNNs [ 56 ], [  57 ]. From the techni-

cal encoder design standpoint, while our adaptive structure and proximity edge selection is
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learnable using an attention mechanism, the underlying graph transformation algorithm is

predefined and not learnable. Future work can build upon this to make the transformation

process completely automatic and possibly fused with the encoder taking local assortativity

into account. Our empirical study also motivates the curation of real-world networks with

diverse mixing patterns to systematically benchmark GNN performance.

In Chapter  4 , we proposed to incorporate a list-wise encoder training objective for the

task of temporal link ranking. For efficiency reasons, we proposed a sampling algorithm to

generate candidate sets for ranking training. Future work can be directed towards providing

theoretical arguments to the effectiveness of the proposed candidate set generation process.

Empirically, we witnessed increased gains in link ranking performance when our list-wise

objective was used instead of the conventional point-wise objective. Immediate future work

can be directed towards incorporating other learning to rank objectives and systematically

studying their trade-offs in terms of efficiency and performance.

In Chapter  5 , we showed the drawbacks of InfoMax principle based contrastive learning

where redundant and task irrelevant information may be captured in GNN graph repre-

sentations. We then instantiated a learnable edge dropping augmentation process within

contrastive learning based on our proposed AD-GCL principle. We showed that when the

augmentation process is optimized adversarially, GNN representations may learn the mini-

mum and sufficient information for the downstream task. Immediate future work can look at

incorporating other learnable augmentation families like node dropping, subgraph masking

or attriburte masking. A broader goal would be to incorporate the AD-GCL principle to

non-contrastive self-supervised methods such as BYOL [  251 ] and momentum contrast [  256 ].

There is growing body of work to understand the effectiveness of self-supervised learning

mostly for vision and language domains [  257 ]–[ 265 ]. Extending them to the graph domain

to further understand the benefits of AD-GCL can be considered as future work. As an ex-

tension, the learnable edge dropping augmentation can also be used to provide explanations

as to which edges are most useful when learning representations.

In Chapter  6 , we developed a federated self-supervised graph learning framework (FedSGL)

for both cross-silo node and graph level representation learning. An extension for future work

is to consider cross-silo link representation learning. Further, theoretical convergence analysis
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of FedSGL can be explored as future work. Another direction is a theoretical characteri-

zation of how FedSGL tackles heterogeneous label bias which supervised federated learning

suffers.
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