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ABSTRACT 

Management of white-tailed deer (Odocoileus virginianus) remains a high priority for 

wildlife agencies, and principally sound and current science is a foundation of effective wildlife 

management. To ensure that deer management in Indiana is grounded in sound and current science, 

my dissertation aims to: (1) improve components of density estimators for deer management; (2) 

compare candidate deer density estimators; (3) examine how spatially explicit density of 

demographic classes of deer change across Indiana and test for differences between demographic 

ratios of density; and (4) examine how deer group sizes change across space and time in Indiana. 

I accomplish these goals with data from fecal-pellet, camera-trap, and aerial sampling collected in 

Deer Regional Management Units 3, 4, and 9 within Indiana.  

Two issues when estimating persistence time, 𝑡̂, of dung piles frequently occur in deer 

management: (i) differences between observers on what constitutes a dung pile; and (ii) 

substituting the number of days between the date in which 98% of deciduous trees shed leaves in 

autumn and field sampling for 𝑡̂ . I therefore developed and implemented a new method for 

estimating 𝑡̂, which produced density estimates that were larger than previous leaf-off methods 

and accounted for variation attributable to interobserver classification discrepancies. Similarly, 

density estimates from aerial sampling often suffers from sources of error. I showcased the 

importance of accounting for common types of error in aerial sampling by using a simple double-

observer approach with infrared and visible cameras. My results stressed the significance of 

pairing red-green-blue sensors with infrared thermal sensors, choosing appropriate sampling 

altitudes, and using specific criteria to classify thermal signatures.  

To aid decision making, I then extended cost-effectiveness analysis to choose between 

density-estimation methods, and simultaneously integrated precision and per-area cost of sampling, 

allowed for situation weighting of factors, and annualized capital cost across a single or multiple 

applications of capital equipment. I found aerial sampling to be the most cost-effective method for 

long-term deer monitoring in Indiana.  

I next developed a density surface model that utilized camera-trap distance sampling within 

a hierarchical generalized additive model to estimate spatially explicit densities of bucks, does, 

and fawns. I found that deer density was influenced by landscape fragmentation, wetlands, and 
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anthropogenic development. By extending simple statistical theory to test for differences in two 

ratios of density, I found strong evidence that recruitment was tied to agriculture.  

Finally, I used camera traps, detectability estimates from distance sampling, and 

hierarchical Bayesian modelling to index group size and test multiple group-formation hypotheses 

in deer. I found a strong relationship between group size and several interactive predictors. I 

documented the largest groups in areas near anthropogenic development, in areas with high 

predator use intensity, and during times of day when predators were active. Additionally, groups 

were larger in locations with concealment when the area of concealment within the surrounding 

landscape was small, and larger in open areas when the amount of concealment within the 

surrounding landscape was large.  

I lastly concluded my dissertation by encouraging future deer management in Indiana to 

carefully consider their goals for population estimation, and recognize and address sources of bias 

in common sampling protocols for population data.  
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 INTRODUCTION 

Wildlife agencies and landowners have consistently prioritized the management of cervids 

in nearly all regions of North America. Of the North American cervids, many regions including 

the Midwestern USA give precedence to population management of white-tailed deer (henceforth 

deer; Odocoileus virginianus; Wallmo 1981, Waller and Alverson 1997). The pre-eminence given 

to deer management in wildlife agencies is likely attributable to the unique, intrinsic, and 

comparatively intense economical (Conover 1997, Bissonette et al. 2008), ecological (Gill and 

Beardall 2001, Horsley et al. 2003, Côté et al. 2004), and societal (Conover 1994, Conover et al. 

1995, Conover 2011) impacts of deer. 

Economic costs attributable to deer stem mainly from deer-vehicle collisions and property 

damage. Rue (1989) reported 726,000 nationwide deer collisions, and Romin and Bissonette (1996) 

reported 500,000 deer road mortalities within only 35 states. More recently, State Farm’s 16th 

annual deer-vehicle collision study that projects deer-vehicle collisions across the entire insurance 

industry (includes elk [Cervus canadensis], moose [Alces alces], and caribou [Rangifer tarandus], 

but deer likely comprise the majority of this cost) reported 1.33 million deer-vehicle collisions 

between 1 July 2017 and 10 June 2018 in the USA. This report found the average cost per deer 

collision to be $4,341, with a total cost exceeding $5.75 billion; however, this total is likely a 

conservative estimate, as Marcoux and Riley (2010) noted that only 52% of drivers report deer-

vehicle incidents to their insurance company. Thus, 2.56 million deer-vehicle collisions that 

accumulated $11.1 billion in damage over the approximately 1-year period may be more accurate. 

Similar to deer-vehicle collisions, deer-induced property damage has a steep cumulative cost to 

land owners across the USA. In an economic synopsis of the available literature at the time, 

Conover (1997) estimated deer-related agricultural damage at $100 million, silvicultural damage 

at $750 million, and household damage at $251 million.  

Contrasting with economic cost, activities related to hunting of deer generate considerable 

economic revenue (Conover 2011). In 2006, 10.7 million people hunted elk and deer in the USA 

(U.S. Fish and Wildlife Service 2006). In so doing, the average hunter spent $1121 in their pursuits, 

resulting in nearly $12 billion spent on elk and deer hunting in the USA during 2006 (U.S. Fish 

and Wildlife Service 2006).  
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Ecological impacts of deer are well documented in natural settings. Abundant deer herds 

can drastically alter the natural successional trajectory of inhabited areas because of their 

cumulative browse intensity (Horsley et al. 2003, Conover 2011). Successional shifts can alter the 

growth of preferred flora and can cause ecological strife and logistical hardships for property 

management (Horsley et al. 2003, Conover 2011). For instance, Rooney and Waller (2003) 

observed a decline in Quercus and Betula regeneration and herb diversity that was linked to high 

deer abundance in northern Wisconsin. Similarly, Horsley et al. (2003) found a decline in species 

richness of flora with increasing deer abundance that resulted in a prolonged fern-, grass-, and 

sedge-dominated community. Such deer-induced ecological shifts are hard to reverse, and the 

effects can be extremely expensive for management and landowners (Côté et al. 2004).  

In addition to direct effects on plants, the feeding intensity of abundant deer herds can 

cause cascading effects for other fauna. Specifically, deer browsing can impact small mammal, 

avian, and invertebrate populations (reviewed by Côté et al. 2004). Over-abundant deer herds are 

also subject to subsequent density-dependent feedback effects because of increased competition 

for limited resources (Fowler, 1987). For instance, Kilpatrick et al. (2001) reported a positive 

relationship between deer density and size of home range, and other studies also found negative 

relationships between deer abundance and individual fecundity, body mass, and fat index (Swihart 

et al. 1998, Kie and Bowyer 1999, Kilpatrick et al. 2001).  

Although the economic revenue that deer accumulate is undeniable, deer also have a unique 

intrinsic value unrelated to hunting. Many people enjoy watching deer, while others are pleased 

simply by knowing that deer herds are doing well (Conover 2011). Conversely, other individuals 

are active proponents for herd reductions (Conover 1994, VerCauteren et al. 2006). Such 

proponents of herd reductions often include victims of deer-vehicle collisions, agricultural crop 

damage, damage to households, or silvicultural damage.   

Because of the magnitude of ecological and economic impacts, along with the diversity of 

attitudes of affected parties, population management of deer remains one of the highest priorities 

for land managers and wildlife agencies. Thus, nearly all states implement a deer management 

plan and have at least one designated cervid biologist (Waller and Alverson 1997, Urbanek et al. 

2011). To ensure that deer management in Indiana is grounded in sound and current science, in 

2018 the Indiana Department of Natural Resources initiated a state-wide integrative project to 

address the challenges involved with management of white-tailed deer. This integrative project 
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seeks to investigate the relationships between: (1) societal perceptions of the deer herd in Indiana; 

(2) ecological effects deer have on forests in Indiana; and (3) densities of deer in Indiana. Findings 

from the project will inform management of deer in Indiana. My dissertation is focused on the 

third component in the list above.  

Throughout my dissertation, I specifically investigated how different components of 

density estimators can be improved for deer management (Chapters 2 and 3). I then compared 

candidate methods for estimating deer density and make methodological recommendations for 

population monitoring of deer conducted by the Indiana Department of Natural Resources going 

forward (Chapter 4). Following this, I further examined how density of demographic classes of 

deer change across the landscape of Indiana and tested for differences between demographic ratios 

of density in different regions of Indiana (Chapter 5). Lastly, I examined how deer group sizes 

change across space and time in Indiana (Chapter 6). The results within all of my chapters are 

based on field work conducted within Deer Regional Management Units 3, 4, and 9 within Indiana 

during the winters of 2019 – 2021 (Figure 1.1; Swihart et al. 2020). These regions were selected 

because: (1) they span the gradient of landscape compositions in Indiana in terms of row-crop 

agriculture, wetland, and forest; and (2) putative deer densities in these regions ranged from 

extremely dense to sparse.   
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Figure 1.1. Land cover types within Deer Regional Management Units 3 (west central), 4 

(southern), and 9 (northeastern; two parcels) of Indiana, USA. 
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 DENSITY FROM PELLET GROUPS: COMPARING 

METHODS FOR ESTIMATING DUNG PERSISTENCE TIME 

Published as: Delisle, Z.J., R.K. Swihart, B.M. Quinby, R.D. Sample, K.J. Kinser‐Mcbee, E.K. 

Tauber, and E.A. Flaherty. Density from pellet groups: Comparing methods for estimating dung 

persistence time. Wildlife Society Bulletin 46:e1325. 

2.1 Abstract 

Effective wildlife management often relies on estimates of animal density, and cue 

counting is a viable estimation strategy. A key component of density estimation from dung, a form 

of cue counting, is estimation of the persistence time, 𝑡̂ , of dung piles. However, differences 

between observers on what constitutes a dung pile may alter subsequent density estimates. 

Additionally, many researchers studying white-tailed deer (Odocoileus virginianus) have 

substituted for 𝑡̂ the number of days between the date in which 98% of deciduous trees shed leaves 

in autumn and field sampling. To address these 2 concerns, I compared 3 methods for estimating 

𝑡̂ of white-tailed deer pellet groups: (1) a common modelling approach based on observations from 

a single observer (single-observer method), (2) a method that accommodates interobserver 

variation on the status of dung during field surveys (interobserver method), and (3) the days 

elapsed since 98% of deciduous trees shed autumn leaves (leaf-off method). I then applied these 3 

𝑡̂ estimates to distance-sampling data on pellet groups from white-tailed deer that I collected along 

transects during 3 sampling seasons from 2019–2021 in west-central Indiana. I estimated habitat- 

and year-specific deer densities. Persistence probability of pellet groups varied across habitats and 

years, positively with age and number of pellets, and negatively with precipitation and temperature. 

In several instances, I found strong or marginal differences between densities estimated using the 

leaf-off method and the other 2 methods. The densities using the interobserver and single-observer 

methods were similar, with the latter being larger by an average of 8.0% (SE = 1.71). The latter 

also yielded coefficients of variation (CV) that averaged 16.6% (SE = 4.8) larger, attributable to 

interobserver discrepancies in scoring dung persistence. Density estimates from the leaf-off 

method were 32.6% (SE = 15.3) and 37.8% (SE = 13.0) less than the density estimates from the 

interobserver and single-observer method, respectively. I encourage future researchers estimating 

density using multiple observers and dung sampling techniques to incorporate interobserver 
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variation. I advocate that biologists relying on dung-based estimation of density for white-tailed 

deer abandon the conventional leaf-off method and adopt other modelling approaches. 

2.2 Introduction 

Understanding the population density of wildlife species is critical for the effective 

application of management strategies (Williams et al. 2002). Density estimation from cue counting 

is a viable method to estimate the density of many wildlife species that produce cues such as calls 

(Marques et al. 2011), burrows (Nomani et al. 2008), dung (Wood 1988), or nests (Hashimoto 

1995). Cue counting estimates the density of cues that a population produces and subsequently 

converts to animal density by use of a cue production rate (Buckland et al. 2001). Dung sampling 

is a form of cue counting that estimates the density of dung piles produced by a population, from 

which animal density is estimated by use of the daily defecation rate and number of days that dung 

piles persist before degrading beyond recognition (Marques et al. 2001). Commonly, dung 

sampling uses a distance-sampling framework under the following formula (Marques et al. 2001): 

𝐷̂ =  
(

𝑛
𝐿) ∗ 𝑓(0) ∗ 0.5

𝑡̂ ∗ 𝑠̂
 (1) 

where 𝐷̂ = the density estimate of the animal population, 𝑛 = the number of dung piles detected, 𝐿 

= transect length, 𝑓(0) = the estimated probability density function of perpendicular distances 

measured from the transect line to detected dung piles evaluated at distance 0, 𝑠̂ = the estimated 

defecation rate of the animal, and 𝑡̂ = the estimated persistence time for dung piles deposited 

during the study period.  

Observer bias is a well-recognized issue in cue counting and is mentioned in the context of 

several taxa including large mammals (Neff 1968, Härkönen and Heikkilä 1999, Jenkins and 

Manly 2008), small mammals (Murray et al. 2002, Prugh and Krebs 2004), and primates (Kuehl 

et al. 2007). To limit the amount of observer bias, many animal surveys that rely on cue counting 

have constrained field sampling to a single surveyor (Brodie 2006, Urbanek et al. 2012). However, 

employing a single surveyor is not feasible for large-scale monitoring, and many cue count surveys 

employ multiple individuals to collect data across large study areas (Barnes et al. 1995, Barnes 

2001, Marques et al. 2001, Ahrestani et al. 2018). The decision for an observer to classify a dung 

pile as intact (and thus counted) or decayed (and thus ignored) contains a potentially important 

element of subjectivity in multi-observer surveys (Neff 1968). Concordance between individuals 
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when classifying dung piles is critical to avoiding spurious fluctuations in density estimates that 

are solely due to interobserver discrepancies during dung classification. Unfortunately, opinions 

frequently differ in the field among trained observers (Spaulding et al. 2000), as performance is 

associated with experience, gender, and motivation (Silvertown et al. 2013). Consequently, 

interobserver variation represents an additional source of variation in 𝑡̂. However, few published 

methods to incorporate interobserver variation into 𝐷̂ are available (but see Burt et al. 2014). 

White-tailed deer (Odocoileus virginianus) are an ecologically and economically important 

species in the eastern U.S. (Conover 1997, Waller and Alverson 1997), and management objectives 

would be better served if estimates of deer abundance were available (Hewitt 2011). Dung 

sampling (termed pellet sampling for many ungulates, e.g., Urbanek et al. 2012, Alves et al. 2013) 

can provide useful density estimates or indices of ungulate abundance (Marques et al. 2001, 

Forsyth et al. 2007, Alves et al. 2013). Traditionally, researchers estimating white-tailed deer 

density from pellet sampling have substituted for 𝑡̂ the estimated number of days between the date 

when over-story trees shed 98% of leaves in autumn (henceforth referred to as 98% leaf off) and 

the date when surveyors sample for pellet groups (Eberhardt and Van Etten 1956, Urbanek et al. 

2012, Anderson et al. 2013, DeCalesta 2013). The substitution assumes that leaf fall covers all 

previously deposited pellet groups permanently and all pellet groups defecated after 98% leaf off 

persist until field sampling. In addition, 98% leaf off typically has been treated as a constant rather 

than an estimate, with the practical consequence of assuming that 𝑣𝑎𝑟̂(𝑡̂) = 0 . Urbanek et al. 

(2012) reported from analysis of unpublished data that white-tailed deer pellet groups in woodland 

and prairie habitat persisted without significant decay from September through April in Illinois. 

However, studies on other ungulates in temperate regions have determined that persistence of 

pellet groups can vary with habitat conditions (e.g., Smart et al. 2004, Tsaparis et al. 2009), and 

spatiotemporal variation in dung persistence rates is a well-known issue in tropical regions 

(Ahrestani et al. 2018). 

To address the aforementioned concerns, I present a method to estimate 𝑡̂  that 

accommodates interobserver variation on the status of dung during field surveys. I apply this 

method to monitoring data on pellet groups from white-tailed deer. Additionally, I estimate 𝑡̂ using 

2 existing methods: (1) a common modelling approach based on observations from a single 

observer following Laing et al. (2003); and (2) the days passed between 98% leaf off and field 

sampling, as customarily adopted for white-tailed deer in central and northern latitudes. Finally, I 



 

28 

apply estimates of 𝑡̂ derived from each of these 3 methods in a case study to estimate the density 

of white-tailed deer in west-central Indiana, USA, and compare density estimates and 

corresponding measures of precision. 

2.2.1 Study Area 

I conducted all pellet-group monitoring in west-central Indiana, USA, centrally located in 

deer management unit 3 (10,233.3 km2; Swihart et al. 2020; Figure 2.1). The management unit is 

located within the Central and Eastern Corn Belt Plains ecoregions (U.S. Environmental Protection 

Agency 1997). The primary land use in this area was soybean and corn row-crop agriculture. 

Natural cover types such as forest and prairie were primarily constrained to intermittent patches. 

Forest patches primarily contained mesic hardwoods with silty loam soils. Dominant overstory 

tree species included black cherry (Prunus serotina), black oak (Quercus velutina), black walnut 

(Juglans nigra), pin oak (Q. palustris), sassafras (Sassafras albidium), and white oak (Q. alba), 

and dominant herbaceous species included black snakeroot (Sanicula marilandica), enchanter’s 

nightshade (Circaea lutetiana), garlic mustard (Alliaria petiolata), sweet cicely (Osmorhiza 

claytonii), and Virginia knotweed (Polygonum virginianum). Weather regimes followed a 4-season 

temperate pattern. Annually across my study site, the average rainfall was 96.27 cm, and the 

average minimum and maximum daily temperatures were 6.57° and 16.57° C, respectively.
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Figure 2.1. Deer management unit 3 located in west-central Indiana, USA. Within deer 

management unit 3, I depict with a * the immediate area in which grids were located for 

monitoring of pellet groups to estimate pellet-group persistence (Grids), and 16, 10.36-km2 areas 

in which I conducted line-transect sampling for pellet groups. All 10.36-km2 areas are color 

coded to denote sampling of the area during 2019, 2020, 2021, or during all 3 years (Repeat).
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2.3 Methods 

2.3.1 Pellet Group Monitoring 

I collected, deployed, and monitored freshly deposited pellet groups of white-tailed deer 

from December to April of 2018–2019, 2019–2020, and 2020–2021, in 6, 1,600-m2 grids. Grids 

were used in lieu of natural deposition sites because the time required to visit the latter in row-crop 

fields would have been prohibitive. I placed 2 grids in each of 3 different habitat types: forest, 

prairie, and agricultural fields. The crops in agricultural sites were harvested before my monitoring 

and were not disturbed by farm equipment during the study period. I systematically separated pellet 

groups within each grid by 10 m, so that a single grid contained 25 equally spaced stations with 

pellet groups. I searched for and collected pellet groups in the same search areas. Search areas 

were located in habitat surrounding the grid locations. Before my first collection, I removed all 

pellet groups deposited in the search areas. The age of pellet groups from my first collection were 

then estimated as half the number of days between the removal and first collection. Every 2 weeks, 

I searched for and collected pellet groups within the search areas, deployed freshly collected pellet 

groups in the grids, and photographed both freshly deposited pellet groups upon deployment and 

each previously deployed pellet group. I defined pellet groups as ≥6 pellets of the same color, 

shine, and located within the same immediate vicinity (usually within <1 m), so each pellet could 

be assumed to result from the same defecation event. I gently placed pellet groups on the ground 

to mimic a natural defecation event. I did not fill each station in each grid upon the first sampling 

occasion in December to allow for future deployment of freshly deposited pellet groups (Laing et 

al. 2003). In some instances, snow events prevented monitoring. Because it is impossible to 

determine the exact age of collected pellet groups, I considered the age of each collected pellet 

group to be half the number of days between searching occasions (Laing et al. 2003).  

I compiled all photographs from each monitoring occasion for each pellet group into a 

single document. Surveyors then independently examined photos and reported a status of decayed 

(0) or persisted (1) for each pellet group on each monitoring occasion. Surveyors considered pellet 

groups decayed if <6 individual pellets were distinguishable (Urbanek et al. 2012). Up to 4 

surveyors examined the photos from each year, which were the same surveyors who conducted the 

line transect sampling in the case study. I extensively trained surveyors in the decay criteria that I 

used to classify pellet groups during classroom sessions and hands-on field trials. Additionally, all 
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surveyors received copies of reference photographs of pellet groups and a written protocol that 

contained the criteria for determining pellet group decay. Because it was infeasible to determine 

the exact date a pellet group decayed between monitoring occasions, I considered the date when a 

pellet group decayed as the date midway between the last monitoring occasion I observed the pellet 

group as intact and the first monitoring occasion I categorized the same pellet group as decayed. 

This midway point typically was 7 days before the first monitoring occasion that I considered the 

pellet group decayed, but in some instances snow events delayed photo documentation and led to 

a corresponding increase. I assessed consistency on the statuses given to pellet groups by surveyors 

using concordance (i.e., the percentage of pellet-group photos between 2 given surveyors that were 

assigned the same status) and Somers’ D given by 𝐷 =
𝑁𝑐−𝑁𝑑

𝑁𝑡
, where 𝑁𝑐  = the number of 

concordant pairs, 𝑁𝑑 = the number of discordant pairs, and 𝑁𝑡 = the total number of pairs.  

2.3.2 Estimating Persistence Time for a Single Observer 

I estimated the persistence time of pellet groups for a single surveyor using logistic 

regression and numerical integration (Laing et al. 2003). I fit 9 random-intercept logistic regression 

models (Table 2.1) to test the effects of year and habitat type on persistence (decayed or not 

decayed) and used Akaike Information Criterion adjusted for small sample sizes (AICc) for model 

selection (Burnham and Anderson 2002). I used pellet group ID as a random effect. During 

preliminary analysis, I determined the mean number of pellets in pellet groups monitored during 

the 2019–2020 season to be less than in the other 2 monitoring seasons. Accordingly, I randomly 

subsampled pellet groups in the 2019–2020 season using weighted probabilities derived from the 

other 2 monitoring seasons to ensure that any potential interannual differences in pellet-group 

persistence resulted from environmental factors and that the size distribution of pellet groups 

monitored on grids was representative of naturally occurring pellet groups (Figure A1). I also 

identified a negative relationship between the number of pellets in pellet groups and persistence 

time. Thus, I included the initial number of pellets in each group as an additive predictor in all 

regression models of persistence time. Pellet persistence can vary among vegetation types and over 

seasons (Fernandez-de-Simon et al. 2011, Davis and Coulson 2016). Thus, I included mean daily 

temperature and mean total daily precipitation, computed over the period from deployment until 

each unique monitoring occasion, as additive predictors in an effort to enhance the value of my 
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model to future applications. Due to budget constraints, I did not collect temperature and 

precipitation data uniquely for each grid, but instead collected these weather variables across all 

grids. I assessed model goodness of fit using conditional R2 (Nakagawa and Schielzeth 2013). To 

facilitate the use of covariates in addition to age of the pellet group, I used the best AICc model to 

predict the probability of persistence 𝑦̂𝑖  for each observation 𝑖  of my monitored pellet groups 

(Laing et al. 2003). I then fit a logistic curve to the predictions using nonlinear weighted least 

squares, with weights of 𝑦̂𝑖 = 1/{𝑦̂𝑖(1 − 𝑦̂𝑖)} (Buckland et al. 1999), and estimated persistence 

time using the equation from Laing et al. (2003): 

 𝑡̂ =  ∫
−𝛽1𝑎[1 + exp(−𝛽0)]exp (−(𝛽0 + 𝛽1𝑎))

[1 + exp (−(𝛽0 + 𝛽1𝑎))]2
𝑑𝑎

∞

0

 (2) 

where 𝑡̂ = the estimated persistence time, 𝑎 = the age of a pellet group, and 𝛽0 and 𝛽1 are the 

coefficients to be estimated from the non-linear weighted least squares logistic model with an 

asymptote of 1. I approximated 𝑣𝑎𝑟̂(𝑡̂) using the delta method (Eq. 16 in Laing et al. 2003). 

Henceforth, I will refer to this method as the single-observer method. As the name suggests, when 

estimating the single-observer persistence time, I only used the photo-observation data from a 

single observer (ZJD) who examined photographs of all pellet groups from all 3 years. 
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Table 2.1. Relative support of candidate random-intercept logistic regression models estimating 

the number of days pellet groups from white-tailed deer persisted before degrading to <6 pellets 

in west-central Indiana, USA. I obtained the response variable from status of pellet groups 

(decayed = 0, persisted = 1) given by observers viewing photographs of pellet groups. I 

photographed pellet groups from December to April in 2018–19, 2019–20, and 2020–21 within 

prairie, forest and agricultural fields. I present model selection results from the single-observer 

method. Pellets = number of pellets in each pellet group upon initial deployment. Precipitation = 

mean daily total of precipitation. Temp = mean daily temperature. Age = the number of days 

since the estimated data of defecation. Habitat = habitat type the pellet groups was placed in. 

Year = the year of monitoring. + = additive effect. × = interactive effect. 

Predictors ka AICc
b ΔAICc

c wd Cond R2e
 

Pellets + Precipitation + Temp + Age + 

Habitat × Year 

 

14 600.4 0 0.996 

 

0.665 

Pellets + Precipitation + Temp + Age + 

Habitat + Year 

 

10 611.9 11.55 0.003 

 

0.644 

Pellets + Precipitation + Temp + Age × 

Year + Habitat 

 

12 615.5 15.12 0.001 

 

0.636 

Pellets + Precipitation + Temp + Age 12 641.4 40.99 0 0.635 

Pellets + Precipitation + Temp + Age + 

Habitat 

 

8 622.1 21.76 0 

 

0.631 

Pellets + Precipitation + Temp + Age + 

Year 

 

10 634.6 34.18 0 

 

0.644 

Pellets + Precipitation + Temp + Age × 

Habitat 

 

8 626.2 25.85 0 

 

0.631 

Pellets + Precipitation + Temp + Age × 

Year 

 

10 638.2 37.79 0 

 

0.641 

Pellets + Precipitation + Temp + Age × 

Habitat + Year 

 

6 616.1 15.67 0 

 

0.639 

aThe number of parameters estimated.  
bAkaike Information Criterion adjusted for small sample sizes.  
cThe difference between the AICc value of the model with the smallest AICc value and 

the AICc of the contending model.  
dWeight of evidence suggesting the contending model is the best model.  
eConditional R2 values.
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2.3.3 Accounting for Interobserver Discrepancies 

To account for observer discrepancies on the status of pellet groups, I used a case-wise 

randomization process to assign a final binary decay status Y (0 = decayed, 1 = not decayed) for 

pellet group 𝑖 in habitat ℎ and study year 𝑗, denoted by 𝑌𝑖ℎ𝑗 , where 𝑌𝑖ℎ𝑗 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑃𝑖ℎ𝑗). Here, 

𝑃𝑖ℎ𝑗  is the fraction of the observers in study year 𝑗  to classify pellet group 𝑖ℎ𝑗  as decayed. I 

conducted M = 999 independent Bernoulli trials for all pellet groups. For each mth set of Bernoulli 

trials, I calculated the persistence time for each habitat and year, denoted by 𝑡̂𝑚ℎ𝑗, by fitting all 

possible logistic models in Table 2.1, using an automated model selection procedure with AICc, 

fitting a nonlinear weighted least squares regression model to predictions of observations using 

the AICc-best model, and estimating persistence time with equation 2. As formulated, 𝑣𝑎𝑟̂(𝑡̂ℎ𝑗) is 

solely attributable to interobserver discrepancies (i.e., if concordance across observers = 100%, 

𝑣𝑎𝑟̂(𝑡̂ℎ𝑗) = 0). To incorporate variation due to sampling, I used nonparametric bootstraps to sample 

pellet observations with replacement for each mth set of Bernoulli trials. Using equation 3.97 from 

Buckland et al. (2001), a final estimate from the 𝑀 trials, denoted by 𝑡̂ℎ𝑗, was estimated by 𝑡̂ℎ𝑗 =

∑ 𝑡̂(𝑚ℎ𝑗)
𝑀
𝑚=1

𝑀
 , and 𝑣𝑎𝑟̂(𝑡̂ℎ𝑗) =

∑ (𝑡̂(𝑚ℎ𝑗)−𝑡̂ℎ𝑗)2𝑀
𝑚=1

𝑀−1
.  Henceforth, I will refer to this method as the 

interobserver method.  

2.3.4 Leaf Off 

Within large woodlots (>10 ha), I randomly selected 20 canopy trees and monitored them 

weekly from October to January 2018–19, 2019–20, and 2020–21. On each monitoring occasion 

for each tree, I photographed the tree’s canopy while standing directly beneath it. Using each photo, 

I estimated when each tree shed 98% of leaves. During the summer following each tree-monitoring 

season, I tallied species composition of deciduous canopy trees across the same woodlots sampled 

in my case study. Specifically, I calculated basal area and species composition with variable radius 

plots using a 2.296-m2/ha basal area factor prism. I sampled 2–9 plots within each woodlot, with 

sample number dependent on woodlot size, i.e., A/2p < p, where A is the area of the woodlot in 

hectares, and p is the number of plots within the woodlot.  

Similar to other studies (Xie et al. 2018), I observed oak (Quercus spp.) species shedding 

leaves after all other tree species during my monitoring. Therefore, I designated the date of 98% 
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leaf off when 𝜑 percent of monitored oaks had shed ≥98% of leaves, and 𝜑 ≅ (𝑂𝑎𝑘 − 2)/𝑂𝑎𝑘, 

where 𝑂𝑎𝑘 is the percent of the canopy that I identified as oak during my tallying of canopy 

species composition. Henceforth, I will refer to this method as the leaf-off method.  

2.3.5 Case Study: White-Tailed Deer 

I applied my estimates of 𝑡̂ for agricultural fields and forested habitats in all 3 years to 

pellet transect data collected from late February to mid-March in 2019, 2020, and 2021 along 200-

m transects placed randomly and oriented using ArcMap 10.7 (ESRI, Redlands, CA, USA). I did 

not estimate deer density in prairie due to insufficient effort in this habitat type (Table 2.2), as 

prairie made up only 2.6, 2.0, and 3.8% of the total area sampled in 2019, 2020, and 2021, 

respectively. Similarly, I did not estimate density in agricultural fields using the leaf-off method, 

as agricultural fields do not have >50% canopy coverage (Eberhardt and Van Etten 1956). I 

specifically sampled transects in 16 10.36-km2 areas that I randomly selected from the Indiana 

Department of Natural Resources’ deer reporting grid using ArcMap 10.7. Similar to the pellet-

group monitoring, all 10.36-km2 areas were located within deer management unit 3, in west-central 

Indiana, USA (Figure 2.1). During each of the 3 years of sampling, I surveyed a subset of the 16 

areas. However, I included 2 of the areas in each year of my sampling (Figure 2.1). Transects were 

unevenly distributed across the 10.36-km2 areas because of access constraints on private property. 

Field work was conducted each year by the same surveyors that examined the photos of pellet 

groups for that respective year. Each unique transect was surveyed by a single surveyor. To ensure 

perfect detection at distance 0, a single surveyor sampled each transect twice. During the first pass, 

the surveyor concentrated all attention directly on the transect line. During the second pass, the 

surveyor looked for pellet groups up to 2 m away from the transect line. Upon detecting a pellet 

group, the perpendicular distance from the transect line to the centroid of the pellet group was 

measured and the pellet group was removed so that no pellet group was accidentally counted again 

during the second pass. 



 

36 

Table 2.2. The number of 200-m transects sampled (Transects) and white-tailed deer pellet 

groups detected in each habitat type. Values are shown for all years when pellet transect 

sampling was conducted in deer management unit 3 of Indiana, USA. 

Habitat Year Transects Pellet groups 

Agricultural fields 2019 61 66 

Forest 2019 33 314 

Prairie 2019 6 26 

Agricultural fields 2020 65 35 

Forest 2020 31 332 

Prairie 2020 3 20 

Agricultural fields 2021 47 86 

Forest 2021 42 259 

Prairie 2021 10 42 

 

Agricultural fields comprised 83.94% of the area in my study sites. White-tailed deer spend 

less time in agricultural fields compared to areas of natural cover (Beier and McCullough 1990, 

Nixon et al. 1991). Thus, if defecation rate of deer is independent of local cover type, average 

density of pellet groups and corresponding encounter rate variance is likely lower in agricultural 

fields than in natural cover types. Because of this, I stratified transect placement into natural cover 

and agricultural fields to account for disparities in pellet group density. Specifically, I concentrated 

my sampling effort in natural cover disproportionate to its availability across my study area 

(Appendix A: Effort Stratification). I defined natural cover as forest, shrubland, grassland, pasture 

or hay field, and wetlands. 

I fit year-specific detection functions for forested habitat using the Distance R package 

(Miller 2020). Specifically, I fit half-normal key functions with Hermite polynomial, simple 

polynomial, cosine, and no adjustments, and hazard-rate key functions with simple polynomial 

and no adjustments to estimate a detection function. In addition, I considered detection functions 

using the half-normal and hazard-rate key functions with observer as a factor covariate, as 

detection may differ between observers (Buckland et al. 2004). I selected the most parsimonious 

models using an information theoretic framework via AIC (Burnham and Anderson 2002). To 
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determine whether to use a pooled detection function across all 3 years in forest or year-specific 

detection functions in forest, I compared the sum of AICs from the best year-specific detection 

functions for each year to the AIC of the best detection function fit to the data from all 3 years 

(Buckland et al. 2015). I did not detect enough pellet groups in 2020 to fit year-specific detection 

functions in agricultural fields. Therefore, in addition to the aforementioned detection functions, I 

considered hazard-rate and half-normal detection functions in agricultural fields that used year or 

observer as a factor covariate (Buckland et al. 2004). I estimated year-specific density in 

agricultural fields using a pooled detection function for agriculture across all years and a stratified 

encounter rate. After preliminary examination of the perpendicular distances, I truncated distances 

>190, >170, and >140 cm in forest during 2019, 2020, and 2021, respectively, and distances >140 

cm in agricultural fields. I assessed the fit of all detection functions using a Cramer-von Mises 

Goodness-of-Fit test (Buckland et al. 2004). I estimated the total density across both forest and 

agricultural fields in the areas I sampled each year using a weighted geographic stratification by 

 𝐷̂𝑦 = ∑ (
𝐴𝑖𝑦

𝐴𝑦
) 𝐷̂𝑖𝑦

2

𝑖=1

 (3) 

where 𝐷̂𝑦 is the density estimate across all strata in year 𝑦, 𝐴𝑖𝑦 is the total area of stratum 𝑖 in year 

𝑦, 𝐴𝑦 is the total area of both strata in year 𝑦, 𝐷̂𝑖𝑦 is the stratum-specific density estimate in year 

𝑦 , and 𝑣𝑎𝑟(𝐷̂𝑦) = ∑ (
𝐴𝑖𝑦

𝐴𝑦
)

2

𝑣𝑎𝑟(𝐷̂𝑖𝑦)2
𝑖=1 . During density estimation, I used a constant daily 

defecation rate of 26.8 pellet groups/deer/day (i.e., there was no uncertainty associated with daily 

defecation rate). The chosen rate was a mean from previous studies that obtained defecation rates 

from white-tailed deer during winter (Rogers 1987, Sawyer et al. 1990). Because I used a constant 

defecation rate, intermethod differences in density for a given habitat and year were attributable 

solely to differences in 𝑡̂.  

To compare density estimates (within each habitat and year) from each of the 3 methods 

for estimating 𝑡̂, I used a paired bootstrap analysis. Specifically, I estimated 𝑡̂ for each habitat and 

year using the single-observer and interobserver method by bootstrapping the pellet observations 

from photos 999 times, from which I estimated 999 paired 𝑡̂ estimates for both methods. I then 

acquired 999 individual samples of pellet-transect data by using nonparametric bootstrapping to 

sample transects with replacement. For each of the 999 bootstrapped samples of pellet-transect 

data, I fit all of the detection functions stated above and used an automated model selection process 
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with AIC to account for model uncertainty (Buckland et al. 2001). Each pair of interobserver and 

single-observer 𝑡̂  estimates, along with the constant leaf-off substitute for 𝑡 , were applied as 

multipliers to a single bootstrapped pellet-transect sample. I inferred differences between densities 

in the same year and habitat using 2 different indices. The first was an index of consistency 

between the paired bootstrap densities given by the fraction of instances across the 999 bootstraps 

in which the difference in density was the same sign as the observed difference between 𝐷̂𝑡̂1
and 

𝐷̂𝑡̂2
 . The second was an index of the magnitude of the difference between the sampling 

distributions for densities from each method, expressed as the overlap index, 𝜂̂, i.e., the area of 

overlap of the 2 distributions of bootstrapped densities (Pastore and Calcagnì 2019). I performed 

all statistical analyses in the programming language R (R Core Team 2021).  

2.4 Results 

2.4.1 Estimation of Persistence Times 

After examination of all the pellet-group photos, the mean concordance between observers 

was 93.48% (SE = 1.35) and mean Somers’ D was 0.87 (SE = 0.03). Point estimates of persistence 

time for the single-observer and interobserver methods were similar in all instances, although 

variance of the latter was greater due to interobserver discrepancies. I documented 98% leaf off on 

29 November 2018, 15 December 2019, and 18 November 2020, which resulted in 118, 72, and 

120 days between 98% leaf off and field sampling in 2019, 2020, and 2021, respectively (Table 

2.3). The persistence time in forests using the leaf-off method was always greater than the 

estimated persistence time using either the interobserver or single-observer methods. The model 

containing age, mean daily precipitation, mean daily temperature, number of pellets upon 

deployment, habitat type, and year as additive predictors and an interactive effect between habitat 

type and year was the best model for the single-observer method (AICc = 600.4, weight = 0.996, 

conditional R2 = 0.665, Table 2.1). Using Type 2 Wald χ2 tests to identify strong predictors of 

pellet-group persistence within the best single-observer model, I found support for the importance 

of pellet group age (χ2 = 127.33, df = 1, P ≤ 0.001, Figure 2.2E), mean daily precipitation (χ2 = 

9.59, df = 1, P = 0.002, Figure 2.2B), mean daily temperature (χ2 = 9.23, df = 1, P = 0.002, Figure 

2.2C), number of pellets upon deployment (χ2 = 9.48, df = 1, P = 0.002, Figure 2.2D), habitat type 

(χ2 = 20.66, df = 2, P ≤ 0.001), and year (χ2 = 10.41, df = 2, P = 0.005). Additionally, I found 
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support for an interaction between habitat type and year (χ2 = 16.22, df = 4, P = 0.003, Figure 

2.2A). Specifically, the probability of pellet groups persisting was negatively associated with age 

(β = −0.06, SE = 0.01), mean daily precipitation (β = −4.04, SE = 1.31), and mean daily 

temperature (β = −0.20, SE = 0.07), and was positively associated with the number of pellets upon 

deployment (β = 0.02, SE = 0.01). The habitat type × year interaction revealed that the probability 

of persistence was highest in 2018–2019 and lowest in 2020–2021 for forests and agricultural 

fields; however, the probability of persistence was similar in 2018–2019 and 2020–2021 and 

lowest in 2019–2020 in prairies (Figure 2.2A).
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Table 2.3. Estimates of the mean number of days pellet groups from white-tailed deer persisted 

before degrading beyond recognition (𝑡̂; <6 individual pellets), based on photographs of pellet 

groups taken every 2 weeks, and corresponding white-tailed deer density estimates (𝐷̂; deer/km2) 

derived from pellet-transect sampling. Both monitoring of pellet groups and transect sampling 

occurred in deer management unit 3 within west-central Indiana, USA. Estimates of 𝑡̂ and 𝐷̂ are 

shown for agricultural fields (Ag) and forests during 2019, 2020, and 2021. Cumulative 

estimates of 𝐷̂ across all 3 habitat types (Total) were computed from a weighted geographic 

stratification (Buckland et al. 2001). Estimates of 𝑡̂ and 𝐷̂ are specifically shown for 3 different 

methods for estimating 𝑡̂: (1) a method that accounts for interobserver discrepancies on whether 

a pellet group is intact or decayed (Interobserver), (2) the number of days since 98% leaf off and 

field sampling (Urbanek et al. 2012; Leaf off), and (3) model-based estimation of mean 

persistence time from a single observer (Laing et al. 2003; Single observer). 

Method Habitat Year 𝐷̂ SE(𝐷̂) CV(𝐷̂) 𝑡̂ SE(𝑡̂) CV(𝑡̂) 

Interobserver Ag 2019 0.84 0.37 0.43 131.67 24.80 0.19 

Single observer Ag 2019 0.86 0.35 0.41 128.49 4.92 0.04 

Interobserver Ag 2020 0.75 0.66 0.87 69.07 15.10 0.22 

Single observer Ag 2020 0.88 0.69 0.79 59.20 4.05 0.07 

Interobserver Ag 2021 5.48 2.46 0.45 71.89 8.03 0.11 

Single observer Ag 2021 5.85 2.55 0.44 67.31 2.01 0.03 

Interobserver Forest 2019 7.66 2.27 0.30 88.36 22.56 0.26 

Leaf off Forest 2019 5.73 0.86 0.15 118.00 0.00 0.00 

Single observer Forest 2019 8.16 1.25 0.15 82.95 2.03 0.02 

Interobserver Forest 2020 17.81 6.70 0.38 64.39 14.73 0.23 

Leaf off Forest 2020 15.93 4.76 0.30 72.00 0.00 0.00 

Single observer Forest 2020 20.07 6.07 0.30 57.15 2.62 0.05 

Interobserver Forest 2021 14.79 3.63 0.25 45.55 8.05 0.18 

Leaf off Forest 2021 5.61 0.95 0.17 120.00 0.00 0.00 

Single observer Forest 2021 15.26 2.70 0.18 44.14 2.20 0.05 

Interobserver Total 2019 1.50 0.41 0.27 NA NA NA 

Single observer Total 2019 1.57 0.35 0.23 NA NA NA 

Interobserver Total 2020 2.00 0.80 0.40 NA NA NA 

Single observer Total 2020 2.28 0.80 0.35 NA NA NA 

Interobserver Total 2021 7.61 2.32 0.30 NA NA NA 

Single observer Total 2021 8.01 2.32 0.29 NA NA NA 



 

41 

 

Figure 2.2. Effects plots showing the relationships between persistence probability of pellet 

groups from white-tailed deer and predictors including habitat type and year (A), the mean daily 

precipitation (B) and temperature (C) between the estimated date of defecation and each 

monitoring occasion, the initial number of pellets in each pellet group (D), and the age of the 

pellet group (E). I obtained these relationships from the best random-intercept logistic regression 

model using the single-observer method. Vertical bars and gray bands represent ±SE. Data was 

collected in deer management unit 3 in Indiana, USA, during 2019, 2020, and 2021.
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2.4.2 Case Study 

In total, I surveyed 279 transects and detected 1,092 pellet groups in forest and agricultural 

fields (Table 2.2). On average across all years of sampling, within each 10.36-km2 area I sampled 

5.30 (SE = 0.65) and 8.65 (SE = 0.93) transects in forest and agricultural fields, respectively. 

Akaike Information Criterion suggested preference for the use of year-specific detection functions 

over a pooled detection function in forest (ΔAIC = 32.71). The AIC-best detection function for 

forest in 2019 was the half-normal key function with no adjustments (AIC = 3,101.67, ΔAIC = 

1.60, Cramer-von Mises goodness-of-fit statistic = 0.062, P = 0.800; Figure 2.3A). The AIC-best 

detection function for forest in 2020 and 2021 both included observer as a covariate, and were the 

hazard-rate key function (AIC = 3,195.85, ΔAIC = 0.05; Cramer-von Mises goodness-of-fit 

statistic = 0.072, P = 0.742; Figure 2.3B) and the half-normal key function (AIC = 2,310.63, ΔAIC 

= 4.37; Cramer-von Mises goodness-of-fit statistic = 0.061, P = 0.809; Figure 2.3C), respectively. 

For agriculture fields across all 3 years of sampling, the half-normal key function with year as a 

covariate emerged as the best detection function (AIC = 1,716.18, ΔAIC = 2.85; Cramer-von Mises 

goodness-of-fit statistic = 0.031, P = 0.973; Figure 2.3D).
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Figure 2.3. The AIC-best detection functions fit to distance-sampling data from pellet groups of 

white-tailed deer collected on line transects from late February to mid-March in 2019, 2020, and 

2021 within forests and agricultural fields in deer management unit 3 of Indiana, USA. For forest 

in 2019, 2020, and 2021 the half-normal key function with no adjustments (AIC = 3,101.67, 

ΔAIC = 1.60; Cramer-von Mises goodness-of-fit statistic = 0.062, P = 0.800; A), the hazard-rate 

key function with observer as a covariate (AIC = 3,195.85, ΔAIC = 0.05; Cramer-von Mises 

goodness-of-fit statistic = 0.072, P = 0.742; B), and the half-normal key function with observer 

as a covariate (AIC = 2,310.63, ΔAIC = 4.37; Cramer-von Mises goodness-of-fit statistic = 

0.061, P = 0.809; C), respectively, were the AIC-best detection functions. For agricultural fields 

across all 3 years of sampling, the half-normal key function with year as a covariate was the 

AIC-best detection function (AIC = 1,716.18, ΔAIC = 2.85; Cramer-von Mises goodness-of-fit 

statistic = 0.031, P = 0.973; D).



 

44 

Density estimates from the leaf-off method were less than the density estimates from the 

interobserver or single-observer methods in all scenarios (Table 2.3). On average within years, 

forest density estimates from the leaf-off method were 32.6% (SE = 15.3) and 37.8% (SE = 13.0) 

less than the density estimates from the interobserver and single-observer method, respectively, 

and within years and habitat types, density estimates from the single-observer method were 8.0% 

(SE = 1.7) larger than the density estimates from the interobserver method. On average within 

years, the CVs of forest density estimates from the leaf-off method were 33.4% (SE = 8.3) and 

2.1% (SE = 0.9) less than the CV of density estimates from the interobserver and single-observer 

method, respectively. Within years and habitat types, the CVs of density estimates from the single-

observer method were 16.6% (SE = 4.8) less than the CVs of density estimates from the 

interobserver method (Table 2.3).  

I did not find statistically significant differences between density estimates from the 

interobserver and single-observer method within a habitat type and year. However, I identified 

differences between density estimates from the single-observer and leaf-off methods within forests 

in 2021 (observed difference = 9.65, consistency = 1, 𝜂̂ = 0.023; Figure A2, Table A1). Similarly, 

I revealed differences between density estimates from interobserver and leaf-off methods within 

forests in 2021 (observed difference = 9.17, consistency = 1, 𝜂̂  = 0.044). I found evidence of 

marginal differences between the density estimates from the single-observer and leaf-off methods 

within forests in 2019 (observed difference = 2.42, consistency = 0.988, 𝜂̂ = 0.267), and between 

the density estimates from the interobserver and leaf-off methods within forests in 2019 (observed 

difference = 1.92, consistency = 0.949, 𝜂̂ = 0.325; Figure A2, Table A1). Five of the 6 smallest 

values of 𝜂̂ corresponded to pairwise comparisons involving the leaf-off method.  

2.5 Discussion 

Ignoring variation from interobserver discrepancies in scoring the status of pellet groups 

has the potential to bias density estimates from multi-surveyor studies and confound management 

decisions reliant upon them. Specifically, if a multiobserver study seeking to estimate animal 

density via pellet sampling uses a single surveyor, the estimate of persistence may be dissimilar to 

that of all the individuals who sampled for pellet groups. For example, if the single individual used 

to estimate persistence exhibits a proclivity to classify pellet groups nearly decayed as intact, 

whereas the other surveyors classify similar pellet groups as decayed, the estimate of pellet group 
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persistence will be positively biased and the subsequent animal density estimate will be negatively 

biased. I present a straightforward interobserver method to account for observer variation in the 

status of pellet groups. Not surprisingly, the CV of density estimates using the interobserver 

method was larger than the CV of density estimates from the single-observer method. Inflation of 

the CV due to variation among observers is pertinent because managers strive for density estimates 

with good precision and thus smaller CVs that indicate acceptable levels of relative precision. My 

method requires independent scoring of a common set of pellet groups by multiple observers. An 

alternative solution is to estimate density as a weighted average of multiple single-observer 

estimates. One could specify nuisance survey strata (referred to as nuisance because they are not 

of biological interest) for each field surveyor 𝑖 in each habitat ℎ, to obtain an effort-weighted 

density estimate for each habitat across all observers using established methods (Buckland et al. 

2001). In such an instance, 

 𝐷̂ℎ = ∑ (
𝐿𝑖ℎ

𝐿ℎ
)

𝑖=1

𝐷̂𝑖ℎ (4) 

where 𝐷̂ℎ is the habitat specific density estimate across all surveyors, 𝐿𝑖ℎ is the length of transect 

walked by surveyor 𝑖 in habitat ℎ, 𝐿ℎ is the total transect length walked by all surveyors in habitat 

ℎ, and 𝐷̂𝑖ℎ  is the estimated density from surveyor 𝑖  in habitat ℎ. The stratum method has the 

advantage of relying on independent estimates of pellet persistence for each surveyor using the 

single-observer method, which might reduce variation in pellet persistence and subsequent density 

estimates in comparison to the interobserver method and may be more appropriate for spatially 

explicit modelling of density (Hedley and Buckland 2004, Sillett et al. 2012). However, this 

method could potentially decrease the sample size of pellet-group observations used to estimate 

each observer’s persistence rate in a multi-season study where employment of surveyors is 

constrained to a single season. In such a case, smaller sample size may lead to increased variance 

in the estimated persistence rate of pellet groups and subsequent density estimates. Unfortunately, 

sample size of monitored pellet groups for each habitat in each year was insufficient to permit 

application of this stratum method to my study. Another approach to account for interobserver 

variation on the status of pellet groups is to model the status of each pellet group on each 

monitoring occasion within an occupancy-modelling framework in which the conventional use of 

temporally replicated sampling occasions is replaced with samples replicated across observers in 

a manner analogous to spatial replicates (MacKenzie et al. 2006).  
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I recommend that researchers and managers contemplating the leaf-off method consider 

adopting preferential measures of pellet persistence. The leaf-off method’s 2 strong assumptions 

are as follows: 1) on the date of 98% leaf off all previously deposited pellet groups are visually 

obscured and 2) all subsequently deposited pellet groups persist until field sampling. Regarding 

the first assumption, timing of leaf fall is dependent on many factors including species, weather, 

and nutrients (Niinemets and Tamm 2005, Richardson et al. 2006). Because these predictors are 

often heterogeneously distributed in space, the leaf-fall period can span many weeks (Xie et al. 

2018). Leaves falling from the canopy will thus cover pellet groups gradually and in a spatially 

heterogeneous fashion, especially in mixed-species stands where timing of leaf fall varies among 

species. For instance, a pellet group deposited on the forest floor when the canopy has already shed 

85% of its leaves is far less likely covered by the remaining unshed leaves than a pellet group 

deposited when only 15% of leaves have been shed. Additionally, falling leaves may not cover all 

pellet groups deposited before leaf fall, and wind may partially or completely reveal previously 

covered pellet groups or cover pellet groups deposited after leaf off (Eberhardt and Van Etten 

1956). In these cases, attempts to distinguish between pellet groups deposited before and after leaf 

fall are challenging; like others (Eberhardt and Van Etten 1956), I question the reliability of 

classifying pellet groups as pre- or post-leaf fall by solely visual and olfactory cues. Regarding the 

second assumption, winter severity and precipitation strongly influence the persistence of pellet 

groups. Similar to Barnes et al. (1997), I documented that persistence of pellet groups declined 

with warmer temperatures and precipitation. Therefore, in temperate latitudes warmer winters with 

many precipitation events will heighten the severity of violating the assumption that all pellet 

groups deposited after 98% leaf off will persist until field sampling. In most habitat types within 

each year of my study, mean estimated persistence time of pellet groups using the interobserver or 

single-observer methods was less than the number of days between leaf off and field sampling, 

indicating that decay of pellet groups was apparent after the date of 98% leaf off. Although actual 

density is rarely known in field settings, using the leaf-off method in areas with temperate winters 

and precipitation events will likely result in positive bias of pellet-persistence estimates, and 

negative bias of subsequent density estimates. During all years, variation in persistence was 

evident using either the interobserver or single-observer method; thus, assuming a constant 𝑡 (as 

in the leaf-off method) is inappropriate and will underestimate the variance of corresponding 

density estimates.  
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The equivalent of the leaf-off method for prairie habitats requires the estimation of 98% 

herbaceous senescence, and the number of days between this date and field sampling is substituted 

for 𝑡̂ (Eberhardt and Van Etten 1956). Thus, the same assumptions of the leaf-off method apply: 

all pellet groups deposited before 98% herbaceous senescence would be covered by herbaceous 

debris, all pellet groups deposited after 98% herbaceous senescence persist until field sampling, 

and there is no variation associated with 𝑡̂. Like tree species, herbaceous prairie species senesce in 

a heterogeneous fashion (Wang et al. 2013). Therefore, the assumption that all pellet groups are 

covered on a single day seems tenuous. Similar to pellet groups in forests and agricultural fields, 

I found variation in the persistence of pellet groups in prairies, signifying that 𝑣𝑎𝑟̂(𝑡̂) ≠ 0  in 

prairies. For these reasons, I suggest adoption of other measures of pellet persistence.  

My attention focused on issues related to estimation of pellet group persistence, but 

estimation of the deposition rate of pellet groups (𝑠̂ in equation 1) presents similar challenges. Like 

others, in my case study I relied on published estimates of daily defecation rate for white-tailed 

deer, which I treated as a constant. Similar to 𝑡̂, defecation rates likely vary temporally due to 

environmental conditions and have the potential to alter density estimates derived from pellet 

sampling methods (Fuller 1991). For this reason, in my case study I stress interpretation of relative 

differences in densities due to the 3 methods of estimating 𝑡̂  rather than the actual densities 

themselves. Ideally, monitoring that seeks estimates of deer density would benefit from efficient 

methods for estimation of defecation rates at or near the spatiotemporal extent of the study, a topic 

that merits future consideration.  

2.6 Management Implications 

Managers seeking to estimate densities of species using dung sampling need to carefully 

consider the ecology of future study areas and the method used to estimate dung persistence time. 

Temperate climates with annual fluctuation in temperature and precipitation, coupled with mixed-

species forests experiencing autumn leaf abscission over the course of several weeks (or multiple 

months), present situations that are likely to violate the assumptions underlying the leaf-off method. 

Additionally, managers employing several individuals for largescale monitoring should emphasize 

the criteria for classifying pellet groups as decayed or intact during training for fieldwork and 

should explicitly account for interobserver variation using either the method outlined herein or 
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suitable alternatives. I encourage future work on methods of incorporating interobserver variation 

in status of cue counts into estimates of persistence and density. 
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3.1 Abstract 

Aerial vehicles equipped with infrared thermal sensors facilitate quick density estimates of 

wildlife, but detection error can arise from the thermal sensor and viewer of the infrared video. I 

reviewed published research to determine how commonly these sources of error have been 

assessed in studies using infrared video from aerial platforms to sample wildlife. The number of 

annual articles pertaining to aerial sampling using infrared thermography has increased drastically 

since 2018, but past studies inconsistently assessed sources of imperfect detection. I illustrate the 

importance of accounting for some of these types of error in a case study on white-tailed deer 

(Odocoileus virginianus) in Indiana, USA, using a simple double-observer approach. In my case 

study, I found evidence of false negatives associated with the viewer of infrared video. 

Additionally, I found that concordance between the detections of two viewers increased when 

using a red-green-blue camera paired with the infrared thermal sensor, when altitude decreased, 

and when more stringent criteria were used to classify thermal signatures as deer. I encourage 

future managers and ecologists recording infrared video from aerial platforms to use double-

observer methods to account for viewer-induced false negatives when video is manually viewed 

by humans. I also recommend combining infrared video with red-green-blue video to reduce false 

positives, applying stringent verification standards to detections in infrared and red-green-blue 

video, and collecting data at lower altitudes over snow when needed. 

3.2 Introduction 

Aerial platforms are commonly used for surveying in wildlife research and management 

(Pollock and Kendall 1987, Hone 2008). Sampling animals from an aerial platform facilitates 

quick population estimates (McMahon et al. 2021). Traditionally, aerial sampling has been 
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performed by human observers who ride in a plane or helicopter and detect animals out the sides 

of the aircraft (Pollock and Kendall 1987). Collecting data and estimating density under various 

distance-sampling, mark-recapture, or a combination of these two frameworks has thus been 

common (Barker 2008, Fewster and Pople 2008).  

Infrared (IR) thermography, in which thermal cameras capture images from infrared 

radiation emitted from objects, has been adopted by wildlife researchers to estimate population 

abundance (Havens and Sharp 2015). In the context of aerial sampling, thermal sensors have been 

oriented two different ways when used to detect animals: (1) forward-looking infrared (FLIR) 

thermal sensors, which look forward from the aerial vehicle at oblique angles (Storm et al. 2011, 

Sudholz et al. 2021); and (2) vertical-looking infrared (VLIR) thermal sensors, which look directly 

beneath the aircraft (i.e., nadir orientation; Kissell and Nimmo 2011).  

 Using IR thermal sensors to sample wildlife may introduce error from at least two sources. 

Firstly, the thermal sensor may yield false negative errors by failing to detect animals. Similar to 

Brack et al. (2018), I refer to these as availability errors. Poor or no thermal contrast (e.g., thick 

vegetation, lack of cloud cover (resulting in poor thermal contrast), or overhangs) induce 

availability errors (Havens and Sharp 2015). Therefore, study designs often consider weather and 

altitude to minimize the potential of availability errors. The use of VLIR instead of FLIR also can 

help to alleviate availability errors caused by vegetative obstruction because the distance and angle, 

and thereby the amount of vegetative or topographical obstruction, between the thermal sensor and 

animal is lesser (Kissell and Nimmo 2011). In general, strategies to account for availability errors 

seem logistically challenging (discussed more below).  

 Other sources of error can arise while viewing the IR video if viewers incorrectly classify 

IR signatures (Stander et al. 2021). Specifically, false positives and negatives can be caused by the 

viewer or automated classification algorithm. Similar to Brack et al. (2018), I refer to false 

positives and negatives from the viewer as misidentification errors and perception errors, 

respectively. Because of the potential for misidentification errors, some researchers have 

simultaneously captured high-resolution red-green-blue (RGB) digital imagery with IR video, 

which is then used to confirm heat signatures as the target species (Franke et al. 2012, Schoenecker 

et al. 2018). An additional type of false positive can occur from double counting. Double counting 

can arise from overlapping transects, successive images containing the same individual, or animal 

movement in between neighboring transects (Brack et al. 2018; discussed more below).  
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I conducted a literature review to determine how frequently the aforementioned types of 

errors have been addressed in wildlife research using thermal sensors from aerial platforms. I then 

illustrated the potential importance of viewer errors in a case study where I simultaneously 

captured VLIR and RGB video across three different regions of Indiana, USA. To evaluate the 

magnitude and impact of perception errors in IR sampling, I estimated the density of white-tailed 

deer (Odocoileus virginianus) using the detections of two viewers and a single viewer. To assess 

the effects of study design on the concordance of IR detections, I computed density using video 

collected at multiple altitudes and differing ground conditions. Lastly, to better understand the 

importance of confirming IR signatures with RGB video, I estimated densities using: (1) only IR 

video; and (2) IR and RGB video. 

3.3 Methods 

3.3.1 Literature Review 

I reviewed published studies that used thermal sensors to study wildlife from aerial vehicles 

by conducting the following keyword search on Web of Science™ on 1 January 2022: “(thermal 

OR infrared) AND wildlife AND (aerial OR plane OR airplane OR helicopter OR unmanned OR 

drone)”. For each article I recorded: (1) year of publication; (2) whether the study pertained to 

behavior, presence/absence, simple counts, or density/abundance estimation; (3) if imperfect 

detection was addressed in any way, and if so, whether uniform detection across the field-of-view 

of the camera, availability errors, perception errors, misidentification errors, or double-counting 

errors were addressed; (4) if photos, video, or active searching was used to collect data; (5) thermal 

sensor orientation (forward-looking or vertical-looking); (6) if IR, RGB, or IR and RGB video was 

recorded; (7) if the aerial vehicle was crewed or uncrewed; and (8) if automated software, human 

viewers, or automated software and human viewers were used to review video and detect the target 

species. I did not include articles that used data from only simulation, did not pertain to wildlife, 

did not use an aerial vehicle, were not fully available for review (e.g., only abstracts available), or 

previous review articles without a case study. 
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3.3.2 Case Study 

3.3.2.1 Study Sites 

I sampled deer populations in Indiana’s Deer Regional Management Units 3, 4, and 9 

(Swihart et al. 2020, Delisle et al. 2022). I surveyed two different 6.4 x 6.4-km areas within each 

Regional Management Unit (hereafter, RMU), resulting in six total areas flown (Figure 3.1). I 

randomly selected these areas from the deer reporting grid used by the Indiana Department of 

Natural Resources to collect spatially explicit harvest data. Regional Management Unit 3 is an 

intensively farmed region with 79% row-crop agriculture, 10% forest, 3% grassland, and 1% 

wetland. Unlike RMU 3, RMU 4 is mainly forested with 19% row-crop agriculture, 56% forest, 

16% grassland, and <1% wetland. Lastly, RMU 9 is 56% row-crop agriculture, 8% forest, 11% 

grassland, and 13% wetland. All three RMUs follow a four-season temperate weather pattern.
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Figure 3.1. Sampling areas within the Deer Regional Management Units (RMU) of Indiana, 

USA, that I surveyed. White-tailed deer (Odocoileus virginianus) were detected using thermal 

and color sensors in a crewed aerial platform during daylight hours from 8 February – 10 March 

2021.
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3.3.2.2 Data Collection 

In each sampling area, I flew 16 systematically placed 6.4-km transects. Adjacent transects 

were separated by 400 m and aligned north to south. I flew transects in a Sky Arrow Light Sport 

Aircraft (Magnaghi Aeronautica S.p.A.) at speeds of ~105 kph. I flew at an altitude of 450 m in 

RMU 3 when there was snow cover, an altitude of 450 m in RMU 4 when there was no snow cover, 

and an altitude of 300 m when there was snow cover in RMU 9. Flights occurred during daytime 

hours (30 minutes after sunrise to 30 minutes before sunset) from 8 February – 10 March 2021 

when deciduous trees had already shed leaves. I surveyed during daytime so RGB video could be 

captured simultaneously. Regardless of ground condition or altitude, I only collected aerial data 

on overcast days while flying under cloud cover, which heightened the thermal contrast between 

background temperatures and body temperatures of deer.  

 During flights, I recorded VLIR and RGB video using an IR-TCM HD 1024 stationary 

thermal sensor equipped with a 60 mm lens (Jenoptik, Jena, Germany), and a Nikon D810 DSLR 

camera equipped with a Nikon AF DC-NIKKOR 135mm f/2D lens (Nikon Inc., Melville, NY). 

Cameras were affixed to opposite sides of the aircraft and focused on the ground directly beneath 

the aircraft. I simultaneously recorded IR and RGB video while georeferencing and digitally 

storing the video using a GeoDVR Mini (Remote GeoSystems, Inc.) equipped with a Garmin 

global positioning system (Garmin Ltd.). 

 I viewed IR and RGB video using the LineVision – Ultimate software (Remote 

GeoSystems, Inc.). While viewing video, two independent viewers that were highly trained and 

experienced in viewing IR video (3 sampling seasons of experience) recorded 4 different 

qualitative classes of detections (Figure 3.2): (1) detections from IR video for which the heat 

signature had any potential to be a deer but the viewer was not confident that the heat signature 

was a deer (lenient IR detections); (2) detections from IR video in which the viewer was confident 

that the heat signature was from a deer (stringent IR detections); (3) RGB confirmations of lenient 

or stringent IR heat signatures in which the object in the RGB video had any potential to be a deer 

but the viewer was not confident the object was a deer (lenient RGB confirmations); and (4) RGB 

confirmations of lenient or stringent IR heat signatures in which the viewer was confident that the 

object in the RGB video was a deer (stringent RGB confirmations). When assigning IR heat 

signatures or RGB objects, stringent detections were those with a shape that was clearly defined 

and unambiguous so that I believed no other object than a deer could be producing such an IR heat 
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signature or RGB object. No other species of similar shape and color to that of white-tailed deer 

were present in my field site. To avoid bias, the two viewers scored videos independently (i.e., did 

not aid each other when classifying images) and only defined an RGB confirmation as either 3 or 

4 after first defining an IR detection as 1 or 2 (Figure 3.2). For all detections, I recorded whether 

or not the detection was within concealed (forest, wetland) or open (grassland, agricultural field) 

habitat. I used the LineVision – Ultimate software to measure the perpendicular distance from the 

middle of the thermal sensor’s field-of-view to the IR heat signature. Lastly, I recorded how many 

other lenient or stringent IR detections were within the immediate vicinity of the IR detection 

(henceforth referred to as group size). I considered IR detections to be in the immediate vicinity 

of each other if the detections could appear in the field-of-view of the thermal sensor at the same 

time. 
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Figure 3.2. Workflow for classifying infrared (IR) heat signatures and corresponding objects in 

red-green-blue (RGB) as either white-tailed deer (Odocoileus virginianus), not deer, or unsure. 

Video was captured in a crewed aircraft in Indiana, USA, from 8 February – 10 March 2021. All 

potential IR heat signatures are classified as either lenient IR detections (defined as detections 

from IR video for which the heat signature had any potential to be a deer but the viewer was not 

confident the heat signature was a deer) or stringent IR detections (defined as detections from IR 

video in which the viewer was confident that the heat signature was from a deer). All RGB 

confirmations were classified as either lenient RGB confirmations (defined as RGB 

confirmations of lenient IR heat signatures in which the object in the RGB video had any 

potential to be a deer but the viewer was not confident the object was a deer) or stringent RGB 

confirmations (defined as RGB confirmations of lenient IR heat signatures in which the viewer 

was confident that the object in the RGB video was a deer). When assigning IR heat signatures 

or RGB objects, stringent detections were those with a shape that was clearly defined and 

unambiguous so that I believed no other object than a deer could be producing such an IR heat 

signature or RGB object. No other species of similar shape and color to that of white-tailed deer 

were present in my field site. 
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I compiled four detection histories using these four detection classes: (1) detection history 

using lenient and stringent IR detections; (2) detection history using only stringent IR detections; 

(3) detection history using lenient or stringent RGB confirmations of lenient or stringent IR 

detections; and (4) detection history using stringent RGB confirmations of lenient or stringent IR 

detections. I did not assess a scenario in which RGB was used to only confirm stringent IR 

detections because if RGB is available, I would expect users to check all potential IR heat 

signatures. 

3.3.2.3 Single Viewer 

I estimated density from the four different types of detection histories using the 

observations of a single viewer (ZJD) in each of the altitudes and ground conditions I sampled. I 

first considered the possibility that detection probability decreased with increasing distance from 

the middle of the thermal sensor’s field-of-view. However, I found evidence that detection 

probability across the field-of-view was uniform according to Akaike’s Information Criterion (AIC) 

and visual plots of several candidate detection functions (Appendix B: Distance Sampling Analysis 

for more details). Therefore, I used plot sampling techniques to estimate density (Buckland et al. 

2015) with the following formula: 

 𝐷̂ =  
𝑛

𝐴
 (1) 

Where 𝑛 = the total number detections, and 𝐴 = the total area sampled = 𝐿𝑤2, where 𝐿 = the total 

length of transect sampled, and 𝑤  = the transect half width. Because the variation from plot 

sampling techniques comes from the encounter rate (i.e., there is no variation from a detection 

function), I used an approach modified from the “R2” method in Fewster et al. (2009) to estimate 

the standard error as 

 𝑆𝐸(𝐷̂) =  √
𝐾

𝐴2(𝐾 − 1)
∑ 𝑎𝑘

2

𝐾

𝑘=1

(
𝑛𝑘

𝑎𝑘
−

𝑛

𝐴
)

2

 (2) 

where 𝐾 = the total number of transects, 𝑎𝑘 = the total area sampled on transect 𝑘, and 𝑛𝑘 = the 

total number of detections on transect 𝑘.  
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3.3.2.4 Double Viewer 

To ensure that the detection and error rates of the double- and single-viewer methods were 

directly comparable, I used the detections from the single viewer as one of the double viewers. I 

calculated the concordance between the two viewers (ZJD and PGM) for all 4 detection histories 

at each altitude and ground condition. To assess the need for RGB video, I determined the 

percentage of stringent and lenient IR detections that were confirmed by RGB video to be deer, an 

object other than deer, or unresolved. I evaluated the value of multiple viewers by calculating the 

probability of a single viewer detecting a deer conditional upon the other viewer, and the 

probability of either viewer detecting the deer using the “mrds” package (Laake et al. 2022) in R 

(R Core Team 2022). Specifically, I fit logistic conditional detection models with a logit link in 

the form of eq. 6.32 in Laake and Borchers (2004). I used an independent observer configuration 

and assumed full independence (Burt et al. 2014). I fit a mark-recapture model for each possible 

additive combination of the following covariates: distance from the transect line, group size, and 

observer (viewer 1 or viewer 2). I used AIC to decide between competing mark-recapture models. 

I repeated this model fitting process for each of the four different types of detection histories in 

each of the altitudes and ground conditions I sampled. I did not test the effect of habitat type (open 

vs concealed) on detection probability because I detected too few deer in open habitat. Additionally, 

I purposefully sampled when there was no leaf cover in the canopy to avoid reduced probability 

of infrared detection in wooded areas.  

 After selecting the best mark-recapture model, I estimated density in the sampled area 

using a Horvitz-Thompson-like estimator (Borchers et al. 1998) in the “mrds” R package. 

Variation from the mark-recapture model was estimated using the delta method (Borchers et al. 

1998), and variation from the random sample selection was estimated using the encounter-rate 

estimator in Innes et al. (2002) in the form of the “R2” method in Fewster et al. (2009). 

3.4 Results 

3.4.1 Literature Review 

My search revealed 62 articles on the use of IR thermography in aerial sampling of wildlife 

since 1991. The number of articles increased sharply from 2018 to 2021 (Figure B2). Uncrewed 

aerial vehicles have shown a particularly pronounced increase in usage, which is consistent with 
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past reviews focused on uncrewed aerial vehicles (Linchant et al. 2015). Although the usage of 

dual platforms containing IR and RGB cameras has increased since 1991, only 9 of 23 articles 

estimating density or abundance used a dual platform; two of these articles did not use RGB to 

confirm IR heat signatures, but instead assessed whether or not RGB could solely be used to 

estimate density. Two articles did not specify if they used FLIR or VLIR. Of the 62 articles I 

reviewed, 19 did not address any type of error, 16 addressed one type of error, 18 addressed two 

types of error, 8 addressed three types of error, 1 addressed four types of error, and no articles 

addressed all 5 types of error. Twenty-four articles used photos, 32 articles used video, and 16 

articles used active searching methods to locate IR heat signatures.  

 Imperfect detection across the field-of-view of the thermal sensor was assessed by 7 articles; 

availability errors were addressed by 19 articles; perception errors were addressed by 9 articles; 

misidentification errors were addressed by 34 articles; and double-counting errors were addressed 

by 11 articles. Perfect detection across the field-of-view of the thermal sensor was found in 4 of 7 

(57%) of the articles that tested for uniform detection probability. Sixteen of the 23 articles (70%) 

estimating density assessed imperfect detection to some degree. Of these, 7 assessed uniform 

detection probability across the camera’s field-of-view, 5 addressed availability errors, 2 addressed 

perception errors, 9 addressed misidentification errors, and 6 addressed double-counting errors 

(Table 3.1). 
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Table 3.1. Contingency table reporting the total number of articles that: used forward-looking or vertical-looking infrared thermography; did not 

assess imperfect detection; assessed imperfect detection in terms of uniform detection probability across the field-of-view of the thermal sensor 

(Uniform), availability errors (AE),  perception errors (PE), misidentification errors (ME), or double-counting errors (Double); used infrared (IR), 

red-green-blue (RGB), or IR and RGB cameras; used crewed or uncrewed aircraft; and used automated viewing software (AI), manual human 

viewing (human), or both AI and human. Categories are mutually exclusive (e.g., an article using IR and RGB cameras would not satisfy the 

individual IR and RGB categories). Articles were obtained through a Web of Science™ search conducted on 1 January 2022 for the following: 

“(thermal OR infrared) AND wildlife AND (aerial OR plane OR airplane OR helicopter OR unmanned OR drone)”. 

Platform orientation:  Forward looking    Vertical looking     

   Assess detection?    Assess detection     

Aircraft Sensor Review No Uniform AE PE ME Double No Uniform AE PE ME Double Subtotal 

Crewed IR AI 0 0 0 0 0 0 0 0 0 0 0 0 0 

  Human 6 0 3 0 1 2 2 2 1 0 1 2 15 

  Both 0 0 0 0 0 0 0 1 0 1 1 0 1 

 RGB AI 0 0 0 0 0 0 0 0 0 0 0 0 0 

  Human 0 0 0 0 0 0 0 0 0 0 0 0 0 

  Both 0 0 0 0 0 0 0 0 0 0 0 0 0 

 IR + RGB AI 0 0 0 0 0 0 0 0 0 0 0 0 0 

  Human 0 0 0 0 1 1 1 2 2 0 6 1 8 

  Both 1 0 0 0 0 0 0 1 0 2 2 0 3 

Uncrewed IR AI 0 0 0 0 0 0 0 0 0 0 0 0 0 

  Human 3 0 1 0 5 0 3 1 0 0 1 2 14 

  Both 0 0 0 0 0 0 1 0 2 2 3 2 4 

 RGB AI 0 0 0 0 0 0 0 0 0 0 0 0 0 

  Human 0 0 0 0 0 0 0 0 0 0 0 0 0 

  Both 0 0 0 0 0 0 0 0 1 0 0 0 1 

 IR + RGB AI 0 0 0 0 1 0 0 0 0 0 0 0 1 

  Human 1 0 2 1 2 0 0 0 5 1 8 0 11 

  Both 0 0 0 0 0 0 0 0 1 2 2 0 2 

                

  Subtotal 11 0 6 1 10 3 7 7 12 8 24 7 60 
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3.4.2 Case Study 

Across the four classes of detection histories, concordance between the two viewers 

increased when altitude was lower and when snow covered the ground (Table 3.2). I were unable 

to confirm IR signatures using RGB video in the areas that did not have snow cover on the ground, 

and therefore I do not present any statistics for the lenient IR with lenient or stringent RGB 

confirmation histories for this sampling scenario. At altitudes of 300 m, 77.2% (SE = 4.5), 6.5% 

(SE = 3.6), and 16.4% (SE = 0.9) of stringent IR detections were confirmed to be deer, not deer, 

or unresolved, respectively, and 19.7% (SE = 6.6), 60.6% (SE = 13.3), and 19.7% (SE = 6.6) of 

lenient IR detections were confirmed to be deer, not deer, or unresolved, respectively. At altitudes 

of 450 m, 81.8% (SE = 0.9), 10.2% (SE = 4.3), and 8.1% (SE = 5.2) of stringent IR detections 

were confirmed to be deer, not deer, or unresolved, respectively, and 21.1% (SE = 21.1), 54.0% 

(SE = 4.0), and 25.0% (SE = 25.0) of lenient IR detections were confirmed to be deer, not deer, or 

unresolved, respectively.  

 

Table 3.2. Concordance between two viewers’ detections of white-tailed deer (Odocoileus 

virginianus) from aerially captured infrared (IR) and red-green-blue (RGB) video collected in 

Indiana, USA, from 8 February – 10 March 2021. Both videos were simultaneously captured on 

an aircraft flown at two different altitudes and over two different ground conditions. Viewers 

detected deer under four different scenarios: (A) detections from only IR video for which the 

heat signature had any potential to be a deer; (B) detections from only IR video in which the 

viewer was confident that the heat signature was from a deer; (C) RGB confirmations of any IR 

heat signatures in which the object in the RGB video had any potential to be a deer; and (D) 

RGB confirmations of any IR heat signatures where viewers were confident that the object in 

the RGB video was a deer. Concordance is not reported for C or D at 450 m altitude over bare 

ground because I were unable to utilize RGB video in these conditions. When assigning IR heat 

signatures or RGB objects, stringent detections were those with a shape that was clearly defined 

and unambiguous so that I believed no other object than a deer could be producing such an IR 

heat signature or RGB object. No other species of similar shape and color to that of white-tailed 

deer were present in my field site. 

Ground Altitude A B C D 

Snow 300 70.81 72.98 81.68 86.02 

Snow 450 56.10 56.10 61.79 55.28 

Bare 450 31.30 43.48 NA NA 
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 Across all ground conditions, altitudes, and detection histories, the probabilities of either 

of two viewers detecting a heat signature were on average 3.9% (SE = 1.6) larger than the 

probabilities of viewer 1 detecting a heat signature (Table 3.3). At 300 m altitude, the probability 

of detection remained fairly consistent across the different detection histories. However, at 450 m 

altitude, probability of detection differed between the detection histories, with increasing certainty 

thresholds of objects in the IR and RGB video associated with lower detection probability (Table 

3.3). 

The densities and AIC-best mark-recapture models for each of the 4 detection histories at 

each altitude and ground condition are presented in Table 3.3 and Table 3.4, respectively. Observer 

was the only covariate in each of the AIC-best mark-recapture models. The densities across all 

ground conditions, altitudes, and classes of detection histories from the mark-recapture estimator 

were on average 9.2% (SE = 2.8) larger than the density estimates that used the detections from a 

single viewer (Table 3.3). Unlike detection probability, the densities across different detection 

histories at 450 m altitude were fairly consistent, but the densities at 300 m altitude differed among 

classes of detection histories. Increasing certainty thresholds of objects in the IR and RGB video 

captured at 300 m resulted in lower density estimates.
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Table 3.3. Density estimates (𝐷̂) and detection probabilities (Pr(det)) of white-tailed deer (Odocoileus virginianus) from aerially 

captured infrared (IR) and red-green-blue (RGB) video collected in Indiana, USA, from 8 February – 10 March 2021.  Corresponding 

standard errors (SE(𝐷̂)) and coefficients of variation (CV(𝐷̂)) are reported for density estimates, and standard errors (SE(Pr[Det])) are 

reported for Pr(Det). Video was captured at differing altitudes (300 m and 450 m) and ground conditions (bare ground and snow 

cover). Densities were estimated from two viewers using mark-recapture (MR) methods, or a single viewer using plot sampling (PS) 

methods. For PS, Pr(det) = the probability of viewer 1 detecting a deer, and for MR, Pr(det) = the probability of either viewer 

detecting a deer. Densities were estimated using four different types of detection histories: (1) detections from only IR video for which 

the heat signature had any potential to be a deer (Lenient IR); (2) detections from only IR video in which the viewer was confident 
that the heat signature was from a deer (Stringent IR); (3) RGB confirmations of any IR heat signatures in which the object in the 

RGB video had any potential to be a deer (Lenient RGB); and (4) RGB confirmations of any IR heat signatures where viewers were 

confident that the object in the RGB video was a deer (Stringent RGB). When assigning IR heat signatures or RGB objects, stringent 

detections were those with a shape that was clearly defined and unambiguous so that I believed no other object than a deer could be 

producing such an IR heat signature or RGB object. No other species of similar shape and color to that of white-tailed deer were 

present in my field site. 
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Table 3.3 continued 

Ground Altitude Method Detection history 𝐷̂ SE(𝐷̂) CV(𝐷̂) Pr(Det) SE(Pr[Det]) 

Snow 300 MR Lenient IR 19.89 2.91 0.15 0.98 <0.01 

   
Stringent IR 18.02 2.76 0.15 0.99 <0.01 

   
Lenient RGB 16.68 3.02 0.18 0.99 <0.01 

   
Stringent RGB 13.40 2.96 0.22 0.99 <0.01 

  
PS Lenient IR 18.79 2.92 0.16 0.98 0.01 

   
Stringent IR 17.32 2.72 0.16 0.98 0.01 

   
Lenient RGB 16.15 2.98 0.18 0.98 0.01 

   
Stringent RGB 12.93 2.89 0.22 0.98 0.01 

 
450 MR Lenient IR 5.43 1.84 0.34 1.00 <0.01 

   
Stringent IR 5.27 1.67 0.32 0.95 0.02 

   
Lenient RGB 5.60 1.89 0.34 0.94 0.02 

   
Stringent RGB 5.67 1.93 0.34 0.91 0.03 

  
PS Lenient IR 5.43 1.84 0.34 1.00 <0.01 

   
Stringent IR 4.64 1.41 0.30 0.88 0.04 

   
Lenient RGB 4.69 1.46 0.31 0.84 0.04 

   
Stringent RGB 4.59 1.44 0.31 0.81 0.05 

Bare 450 MR Lenient IR 5.57 1.18 0.21 0.88 0.05 

   
Stringent IR 3.97 0.90 0.23 1.00 <0.01 

  
PS Lenient IR 4.70 0.98 0.21 0.84 0.07 

   
Stringent IR 3.97 0.90 0.23 1.00 <0.01 
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Table 3.4. The AIC-best mark-recapture models fit to detection histories of white-tailed deer (Odocoileus virginianus). Detections 

were extracted from aerially captured infrared (IR) and red-green-blue (RGB) video collected in Indiana, USA, from 8 February – 10 

March 2021. Video was captured at differing altitudes (300 m and 450 m) and ground conditions (bare ground and snow cover). 

Mark-recapture models were fit using four different types of detection histories: (1) detections from only IR video for which the heat 

signature had any potential to be a deer (Lenient IR); (2) detections from only IR video in which the viewer was confident that the 

heat signature was from a deer (Stringent IR); (3) RGB confirmations of any IR heat signatures in which the object in the RGB video 

had any potential to be a deer (Lenient RGB); and (4) RGB confirmations of any IR heat signatures where viewers were confident 
that the object in the RGB video was a deer (Stringent RGB). When assigning IR heat signatures or RGB objects, stringent detections 

were those with a shape that was clearly defined and unambiguous so that I believed no other object than a deer could be producing 

such an IR heat signature or RGB object. No other species of similar shape and color to that of white-tailed deer were present in my 

field site. Distance = the perpendicular distance in between the transect line and the deer. Observer = the observer that detected the 

deer. Group size = the number of deer in the same group as the detected deer. 

Ground Altitude Detection history Covariates AIC ΔAICa 

Snow 300 Lenient IR Distance + Observer -1644.62 1.88 

  
Stringent IR Distance + Observer -1500.63 1.88 

  
Lenient RGB Distance + Group size + Observer -1269.93 0.49 

  
Stringent RGB Distance + Group size + Observer -1024.25 2.22 

 
450 Lenient IR Observer -549.94 1.59 

  
Stringent IR Observer -458.13 1.06 

  
Lenient RGB Observer -440.42 1.94 

  
Stringent RGB Observer -426.68 0.70 

Bare 450 Lenient IR Group size + Observer -504.14 12.75 

  
Stringent IR Group size + Observer -446.28 8.17 

a Difference between the best model and next best model. 
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3.5 Discussion 

I found that RGB video confirmation, lower altitudes, snow cover, and increasing levels of 

object scrutiny substantially increased concordance between my two viewers. Consequently, I 

strongly encourage future researchers to apply stringent verification standards and RGB 

confirmation to data collected from low-altitude flights over snow when surveying in similar study 

areas and for comparable species. Classifying IR heat signatures as deer is a viewer-dependent 

task, and thus contains a degree of subjectivity. Indeed, concordance between my two viewers 

dropped to as low as 30% in areas that did not have snow cover, regardless of detection history, 

even though both viewers had undergone extensive training to examine IR video that I captured 

from aerial platforms. Other studies have reported lack of concordance between the classifications 

of multiple viewers of both aerial video (Beaver et al. 2020, Preston et al. 2021) and other types 

of population data (Delisle et al. 2022). In instances when high certainty cannot be obtained due 

to the natural history of the target species (e.g., arboreal species inhabiting dense canopies or little 

color contrast between the animal and background; Corcoran et al. 2019), ground truthing may be 

required.   

 Similar to others, my literature review revealed that uncrewed aerial vehicles are 

increasingly popular in wildlife monitoring (Linchant et al. 2015). One major advantage of these 

vehicles is the capability of flying at much lower altitudes compared to crewed aircraft, which 

helps to increase video quality and thus reduce misidentification and perception errors (Linchant 

et al. 2015). If battery life is of no concern, some researchers have even reduced altitude upon 

detection of a potential heat signature in non-forested habitats, and honed in for more certain 

confirmation (Smith et al. 2020). Furthermore, crewed aerial vehicle accidents account for 66% of 

wildlife biologist deaths while on the job (Sasse 2003). Uncrewed aerial vehicles are a much safer 

alternative. Lastly, uncrewed aerial vehicles have an appealing ease of use, which facilitates quick 

data collection (McMahon et al. 2021). That being said, large-scale management may still struggle 

to efficiently sample with uncrewed aerial vehicles due to line-of-sight restrictions and short 

battery life (Linchant et al. 2015). Practical application over large extents likely will require 

improved battery life and more lenient regulations pertaining to line-of-sight operation. 

 I tested the effects of ground condition (snow vs bare) and altitude on the ability to use 

RGB video to confirm heat signatures. Because I did not sample the same areas repeatedly at 

different altitudes and ground conditions, I were unable to infer how detection probability changes 
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as a function of altitude and ground condition. Flight speed is an additional variable of interest to 

wildlife managers using aerial methods. Although I attempted to fly surveys at a constant speed to 

ensure repeatability, the ability to effectively sample at faster flight speeds would be more cost 

and time efficient, and may also facilitate sampling larger areas. Therefore, I encourage future 

researchers to examine the effects of altitude and ground condition on detection probability, and 

the effects of flight speed on the efficacy of RGB confirmation, concordance between independent 

observers, and detection probability. 

 Simultaneously capturing IR and RGB video increases logistical difficulties and monetary 

costs associated with aerial sampling. Logistically, synchronizing the two video streams to ensure 

viewers can examine the same image in IR and RGB could prove difficult to non-experts (Bushaw 

et al. 2020). I used the GeoDVR Mini to simultaneously capture, georeference, and store IR and 

RGB video streams, which required little technical expertise. Additionally, the GeoDVR Mini 

named and stored video files for simultaneous examination of images in IR and RGB bands within 

the LineVision – Ultimate software. I thus avoided the step of manually lining up two separate 

videos streams, which can be challenging for large video files. Monetarily, the purchase of an 

additional RGB camera increased the cost of sampling. However, the added cost of the RGB 

camera ($4,089 USD) was small compared to the IR thermal sensor ($33,488 USD). The additional 

cost was essential, as RGB confirmation substantially improved my object classifications. Other 

researchers surveying for species inhabiting more open habitat may only need RGB video if the 

target individuals are large enough or colored to be easily distinguishable from the background 

terrain (e.g., Edwards et al. 2021). If surveys include multiple species producing indistinguishable 

heat signatures (e.g., Gentle et al. 2018), RGB video may facilitate species classification (Lee et 

al. 2019).  

 False positive and negative errors can affect bias and precision of occupancy and density 

estimates (Otis et al. 1978, Royle and Link 2006, Miller et al. 2011, Strickfaden et al. 2020). In 

the context of aerial sampling with thermal sensors, availability errors can arise from the thermal 

sensor when the thermal sensor fails to capture the IR heat signature of an animal within the field-

of-view (Bushaw et al. 2020). Perception errors arise when the viewer, or automated viewing 

software, fails to detect an IR heat signature that is present in the video stream (Preston et al. 2021). 

Strategies to specifically account for perception errors are few and vary in terms of their validity. 

Manual viewing has been used to count perception errors from automated software (e.g., 
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Lethbridge et al. 2019, Conn et al. 2021), but this relies on the dubious assumption that human 

viewers do not commit perception errors – an assumption my work does not support. When 

counting walrus using IR thermography, Burn et al. (2009) modelled detection probability as a 

function of group size to help alleviate perception errors. Conducting auxiliary ground truthing by 

walking the flown transects and recording the coordinates of confirmed individuals can quantify 

perception errors (Corcoran et al. 2019). This strategy may be more effective for sedentary species, 

as mobile species will likely flush or move before being sampled by walkers. Double-observer 

methods are well known in ecological studies (Nichols et al. 2000), and enable the modelling of 

heterogeneity in detection probability across predictors (Laake and Borchers 2004). Moreover, 

open access software for fitting such models is readily available for ecologists and managers 

(Laake et al. 2022). Even so, to my knowledge, I am the first to utilize this framework to estimate 

and correct for perception errors in IR sampling. I encourage future users of IR thermal sensors to 

employ double-viewer methods when estimating population density from video captured with 

aerial platforms that is manually viewed. 

 Unlike perception errors, accounting for availability errors is much more logistically 

challenging. Such error could be induced by dense overhead cover or poor thermal contrast 

(Havens and Sharp 2015). Several past studies have quantified availability errors by 

simultaneously conducting additional studies to determine how many individuals are available for 

IR sampling. These have consisted of ground surveys (Kays et al. 2019, Brunton et al. 2020, Witt 

et al. 2020, McKellar et al. 2021) and telemetric studies (Latham et al. 2021). Both of these 

strategies are problematic for study species that are highly mobile. Kissell and Tappe (2004) used 

human surrogates to quantify availability errors; a potentially useful strategy that nonetheless 

assumes: (1) IR heat signatures of the surrogates are identical to the IR heat signatures from the 

study animal; (2) habitat in which the surrogates are placed is representative of the actual area to 

be sampled; and (3) conditions that affect IR heat signatures in the surrogate study replicate those 

in the actual study. Distance sampling is an alternative method to address availability errors by 

accounting for decreased detection probability associated with increasing distance from the aerial 

transect line (Gentle et al. 2018, Schoenecker et al. 2018). Among other things, distance sampling 

assumes all objects directly on the line are detected with certainty (Buckland et al. 2001). Mark-

recapture distance sampling can adjust density estimates when objects are not detected with 

certainty on the transect line (Burt et al. 2014). However, assessing availability errors with mark-
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recapture methods is challenging for aerial sampling because: (1) repeat flights typically occur 

immediately following initial flights and thus experience the same thermal conditions which in 

turn causes the thermal sensor to detect the same individuals; and (2) when surveying for mobile 

species, animal movement in between repeat flights may confound how many individuals are 

within the field-of-view of the thermal sensor. For these same reasons, double-observer methods 

to correct for perception errors are problematic when using automated viewing algorithms to detect 

heat signatures. I encourage future work on procedures to estimate availability errors, especially 

with more mobile study species.  

 False positives from double counting the same individuals present an additional source of 

error that can positively bias estimates. Generally, double counting occurs from recording the same 

individual twice on overlapping images or videos, and recording the same moving individual twice 

on neighboring transects (Brack et al. 2018). Fortunately, strategies to account for or avoid double 

counting exist. Lu et al. (2022) developed a hierarchical framework that utilized entity resolution 

to identify the same individuals in overlapping images and thus avoid double counting when IR 

images are analyzed instead of video (e.g., Chrétien et al. 2015). Double counting the same 

individuals on neighboring transects is not problematic when animal movement is random and 

spatial sampling effort is accounted for (Buckland et al. 2001). Reactive movement is problematic 

if individuals consistently run off the transect before the aircraft samples (due to noise) or if the 

aircraft continually pushes individuals and, thus, repeatedly samples the same individuals 

(Buckland et al. 2001). I did not document any reactive movement of deer towards my aircraft at 

any altitude during test flights and collection of data. While I recommend surveying at low altitudes, 

I also encourage future users of aerial platforms to be aware of reactive movement induced by the 

aerial platform (Mulero-Pázmány et al. 2017). Such reactive movement can bias density estimates 

if not accounted for (Buckland et al. 2005; Glennie et al. 2015, 2021). Perhaps the easiest way to 

avoid double counting on neighboring transects is to space transects far enough apart to completely 

avoid this error (e.g., Dunn et al. 2002). Regardless, I encourage future researchers to conduct test 

flights to evaluate reactive movement induced by the aerial vehicle. 

In wildlife modelling, accounting for false positives has received considerably less 

attention than false negatives (Kéry and Royle 2016, 2020; Strickfaden et al. 2020). Small amounts 

of false positives can substantially bias estimates (Miller et al. 2011). Because of this, modelling 

false positive rates has increased in areas such as genetics (Augustine et al. 2020), acoustic 
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monitoring (Chambert et al. 2018), and citizen science (Clare et al. 2019). Many of the strategies 

to count misidentification errors in IR aerial sampling mimic those used for counting perception 

errors. Several studies have counted misidentification errors associated with automated viewing 

software by manually examining the IR video (e.g., Lhoest et al. 2015, Chrétien et al. 2016, 

Lethbridge et al. 2019), but this strategy assumes that the manual examiner does not commit 

misidentification errors. Simultaneous ground surveys have been conducted to assess 

misidentification errors (Corcoran et al. 2019, Bushaw et al. 2020, Stander et al. 2021). Such 

ground surveys appear more promising if the target species is sedentary and can thus reasonably 

be assumed to not move in between flights and ground truthing. Geographic coordinates of all 

other objects or animals can then be compared to those of the target individuals, and used to count 

misidentification errors (Corcoran et al. 2019). Other researchers have reduced the altitude of an 

uncrewed aircraft (Bushaw et al. 2019, Smith et al. 2020), or circled a crewed aircraft (Gillette et 

al. 2015), to confirm IR heat signatures as the target species. Circling or altitude-reduction 

strategies may not be feasible for largescale spatial sampling of common species, as time 

expenditures would drastically increase. My results suggest that the use of RGB video to confirm 

IR heat signatures as belonging to the target species is a promising method for reducing 

misidentification errors when possible. Unfortunately, my review found that supplemental RGB 

video has inconsistently been implemented by those relying on IR thermal sensors to sample 

wildlife, especially in crewed vehicles. I found strong evidence for the need to use RGB video to 

confirm that IR heat signatures are deer – 19.3% (SE = 4.1) of lenient IR detections that would 

otherwise have been ignored were confirmed as deer, and 18.3% (SE = 2.8) of stringent IR 

detections that would otherwise have been counted were instead confirmed as not deer or unsure. 

Similar to previous research, I found the efficacy of RGB confirmation to be higher at lower 

altitudes (Millette et al. 2011). Additionally, I found snow to be essential when using RGB video 

to confirm IR heat signatures, as white-tailed deer blend in well with bare or leaf-covered ground 

in forested habitat. Thus, my ability to distinguish deer from debris or ground features was poor, 

at least at 450 m altitude. Therefore, to minimize misidentification errors, I recommend using RGB 

video to confirm IR heat signatures and sampling during snow cover from flights at lower altitudes. 

Reliance on snow and low altitude for RGB confirmations may be less important for those 

sampling in open habitats, when the target species has natural color contrast with the background 

terrain, and for endotherms with larger body masses than white-tailed deer. In instances when snow 
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cover is unavailable, uncrewed aircraft may be a suitable alternative to crewed aircraft, as these 

platforms can be flown at much lower altitudes than crewed aircraft and thus may not need to rely 

on snow or a double-sensor platform. Nonetheless, I encourage future work to quantify and 

account for misidentification errors in aerial sampling. 
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4.1 Abstract 

Density estimates for animal populations often inform conservation and management 

decisions. Many methods to estimate animal density exist, but deciding between competing 

alternatives traditionally has depended upon assessing multiple factors (e.g., precision, total cost, 

area sampled) independently and often in an ad hoc manner. Cost-effectiveness analysis is a simple 

tool that economists use to decide objectively between competing alternatives. I extend cost-

effectiveness analysis to simultaneously integrate precision and per-area cost of sampling when 

selecting between competing techniques used to estimate animal density both after a single 

application of a method and across several applications of capital equipment. My extension allows 

for weighting of factors that may vary with the objectives and constraints of decision makers. I 

apply my extension of cost-effectiveness analysis to a case study in which population density of 

white-tailed deer (Odocoileus virginianus) was estimated in three large management units in 

Indiana, USA, using three competing distance-sampling methods: fecal-pellet, camera-trap, and 

aerial sampling. The unweighted cost effectiveness of aerial sampling with color and infrared 

sensors was usually superior after a single application of each method, and was always superior 

across several applications in vastly differing landscapes. Pellet sampling was the most cost 

effective after a single application of each method in an agriculturally dominated management unit. 

Although camera sampling has increased in popularity, the cost effectiveness of camera sampling 

was poorer than the other two methods, even when allowing for potential future innovations to 

streamline data processing. Cost-effectiveness analysis can be useful when selecting among 

competing methods for monitoring animal populations of conservation and management 

importance. The same principles used in my cost-effectiveness analysis can be used to decide 

between competing alternatives related to any ecological monitoring in addition to density 

estimation. 
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4.2 Introduction 

Wildlife management benefits from estimates of animal density that are precise, cost-

effective, and representative of the actual population (Williams et al. 2002). Such density estimates 

can inform conservation and management decisions that regulate harvest (Devers et al. 2021, 

Tombre et al. 2021), diminish animal-induced habitat degradation (Spake et al. 2020), minimize 

wildlife-human conflict (Conover 2001, Hussain et al. 2007), update the protection status of rare 

species and critical habitat (Meylan and Donnelly 1999, Hawkins and Racey 2005), and mitigate 

demographic responses to habitat or climate change (Péron et al. 2012, Lewis et al. 2015). 

Agencies often must implement conservation and management decisions across large functional 

jurisdictional units that span hundreds to thousands of km2 (Sinclair 1991, Thiemann et al. 2008, 

Wallace et al. 2010) and thus require methods of density estimation that are applicable to large 

spatial extents.  

When managers consider potential methods for estimating animal density, the utility of 

those methods often depends upon multiple factors including monetary costs and performance of 

the density estimator (Lyra-Jorge et al. 2008, De Bondi et al. 2010, Laguardia et al. 2021). 

Monetary costs include capital costs (Glover‐Kapfer et al. 2019), recurring expenditures from 

sampling operations (De Bondi et al. 2010), and labor required for data processing (Delisle et al. 

2021, Palencia et al. 2021). The performance of a density-estimation method can be assessed by 

the total area over which density is inferred (Laguardia et al. 2021) and the relative precision of 

the resulting density estimate (Campbell et al. 2004). Although desired, bias is extremely difficult 

to assess on density estimates of wildlife populations. Generally, these factors pertain to cost 

effectiveness. In economic analyses, cost effectiveness is routinely presented as the ratio of the 

cost of an alternative in dollars and some measure of performance of that alternative (Boardman 

et al. 2011).  

Numerous studies have compared methods for estimating animal density (e.g., Parmenter 

et al. 2003, Urbanek et al. 2012, Anile et al. 2014, Keiter et al. 2017) but focused primarily on 

separately comparing the precision and total cost associated with different methods. Other 

published comparisons of methods for estimating animal density have mistakenly referred to the 

total cost or total effort of a method as a measure of cost effectiveness. Therefore, as an aid to 

resource managers, I extend simple methods of cost effectiveness analysis borrowed from 

economics to decide between competing techniques used to estimate animal density. I then apply 
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cost-effectiveness analysis to evaluate three different field techniques to estimate the density of 

white-tailed deer (Odocoileus virginianus) across three large management units in Indiana, USA. 

Specifically, I assess the cost effectiveness of fecal-pellet, camera-trapping, and aerial methods 

using distance-sampling estimators. I also evaluate if and how cost effectiveness differed for each 

method as a function of landscape composition.  

4.3 Methods 

4.3.1 Cost-Effectiveness Analysis 

Cost effectiveness, 𝐶𝐸, is the ratio of the cost, 𝐶, of an alternative and some measure of 

performance (i.e., effectiveness), 𝐸, of that alternative (Boardman et al. 2011), expressed as 𝐶𝐸 =

 𝐶/𝐸. Because wildlife managers often desire density estimates across large areas over which 

management is implemented, cost per unit land area, 𝐶/𝑎, is a relevant measure of costs. Similarly, 

wildlife managers strive for density estimates that are relatively precise to facilitate detection of 

changes in density across repeatedly sampled areas and yield more confidence in single estimates. 

Given this, a relative measure of precision, e.g., the inverse of the coefficient of variation (CV), is 

often the only measure of effectiveness of interest regarding a method to estimate animal density 

(Skalski et al. 2005). Therefore, a cost-effectiveness ratio (sensu Boardman et al. 2011, p. 465) for 

this situation can be expressed as 

 𝐶𝐸 =
𝐶/𝑎

1/𝐶𝑉
 (1) 

which is simply the cost per unit land area standardized by relative precision. Cost, 𝐶, is the total 

cost of the alternative, including the capital cost of equipment and the recurring cost associated 

with collecting, processing, and analyzing the data. Consistent with past research, area, 𝑎, is the 

total area over which density is inferred (Laguardia et al. 2021). When deciding among competing 

methods for estimating density, the most cost-effective alternative is the method with smallest cost 

effectiveness. Feasibility constraints on 𝐶  (e.g., maximum allowance for personnel hiring or 

vehicle purchasing) or minimum required precision (i.e., maximum allowance for CV) can be set 

a priori to remove alternatives that do not meet the minimum standards of an agency (discussed 

more below).  
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Management often benefits from knowledge of spatiotemporal changes in density or 

abundance, rather than a single density estimate in time and space (Schaub and Kéry 2021). 

Consequently, many agencies estimate density on a recurring seasonal or yearly basis, and thus 

invest in what is hoped to be long-lived equipment. I therefore calculate C as an annuity, or an 

“annualized” total cost. Formally, I assume that: (1) capital equipment (e.g., camera traps, aerial 

sampling equipment) is purchased at cost 𝐶𝐶 and will last 𝑁 applications, (2) there are recurring 

costs for each application of the method (e.g., labor to collect, process, and analyze the data), and 

(3) the same measure of precision 1/𝐶𝑉 is returned and area 𝑎 sampled for each application of the 

method. In this case, the resulting annualized cost is  

 𝐶 = 𝐶𝐶/𝐴(𝑟, 𝑁) + 𝐹𝑂𝐶 + 𝐷𝑃𝐶 (2) 

where 𝐹𝑂𝐶  = field-operating cost per application, 𝐷𝑃𝐶  = data-processing cost per application, 

𝐴(𝑟, 𝑁) = [(1 + 𝑟)𝑁 − 1]/[𝑟(1 + 𝑟)𝑁] = the annuity factor (Campbell and Brown 2016), and 𝑟 = 

a discount rate. I specify 𝑟 at 0.03, which is approximately equal to the real social rate of time 

preference in the US and is consistent with federal guidance on the choice of discount rate for 

economic analysis (Office of Management and Budget 2003). Effectively, 𝐴(𝑟, 𝑁) takes a large 

up-front capital expenditure and “annualizes” the capital expenditure, i.e., converts the capital 

expenditure into an annual expenditure such that, if you were to take the present value of all 

expenditures over the 𝑁 applications of the capital’s life at a discount rate of 𝑟, then it would equal 

𝐶𝐶.  

I recognize that the relative importance of factors contributing to a method’s cost 

effectiveness could vary due to the management objective as well as political, financial, or 

bureaucratic constraints acting on a management agency. To explicitly allow for variation in 

relative importance, I modified Eq. 1 to allow for user-specified weights, denoted by 𝑤, for cost-

effectiveness input parameters such that  

 𝐶𝐸𝑎𝑛𝑤 =
(

𝐶𝐶
𝐴(𝑟, 𝑁)

∗ 𝑤𝐶𝐶 + 𝐹𝑂𝐶 ∗ 𝑤𝐹𝑂𝐶 + 𝐷𝑃𝐶 ∗ 𝑤𝐷𝑃𝐶) /(𝑎 ∗ 𝑤𝑎)

(1/𝐶𝑉)𝑤𝐶𝑉
 

(3) 

where 𝑤𝑝, 𝑝 ∈ {𝐶𝐶, 𝐹𝑂𝐶, 𝐷𝑃𝐶, 𝑎, 𝐶𝑉}  = manager-specified weights for each parameter. To 

determine weights, an importance score, 𝑖𝑝 , ranging from 0 (no importance) to 100 (critically 

important), can be given to each parameter in Eq. 3. Then a compositional weight for parameter p 

is given by 𝑤𝑝 =
𝑝𝑖𝑝

∑ 𝑖𝑝
𝑃
𝑝=1

. When w = 1 for all P parameters, Eq. 3 simplifies to Eq. 1. 
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4.3.2 Case Study 

4.3.2.1 Study Area 

I conducted sampling during the late winter of 2020-21 in deer Regional Management 

Units (RMU) 3, 4, and 9 in Indiana, USA (Figure 4.1; Swihart et al. 2020). Weather regimes in 

each RMU followed a four-season temperate pattern. RMU 3 (10,233 km2) was predominantly 

row-crop agriculture (8,113 km2), with intermittent patches of forest and grasslands (1,446 km2), 

and is located within the Central and Eastern Corn Belt Plains ecoregions (U.S. Environmental 

Protection Agency 1997). Soils were predominantly silty loams. Within patches of forest, common 

tree species included black cherry (Prunus serotina), black oak (Quercus velutina), black walnut 

(Juglans nigra), pin oak (Q. palustris), sassafras (Sassafras albidium), and white oak (Q. alba), 

and common herbaceous species included black snakeroot (Sanicula marilandica), enchanter’s 

nightshade (Circaea lutetiana), garlic mustard (Alliaria petiolata), sweet cicely (Osmorhiza 

claytonii), and Virginia knotweed (Polygonum virginianum). Private property comprised 98.4% of 

the total area in RMU 3. 
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Figure 4.1. Land cover types within deer Regional Management Units 3 (west central), 4 

(southern), and 9 (northeastern) in Indiana, USA. The 41.44-km2 areas I conducted fecal-pellet, 

camera-trap, and aerial sampling for white-tailed deer in Spring 2021 are shown within Regional 

Management Units.
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Unlike RMU 3, RMU 4 (16,187 km2) was predominantly forested (9,208 km2), contained 

far less agricultural land (3,141 km2), and was located within the Interior Plateau Interior River 

Valleys and Hills, and Eastern Corn Belt Plains ecoregions (U.S. Environmental Protection 

Agency 1997). Soil types in the western two-thirds of RMU 4 were bedrock soils with sandstone, 

limestone, and siltstone, whereas soils in the eastern third were primarily silty loams. Forests were 

primarily mesic hardwoods that contained American beech (Fagus grandifolia), black oak, sugar 

maple (Acer saccharum), tulip poplar (Liriodendron tulipifera), and white oak. Dominant 

herbaceous species included common blue violet (Viola sororia), enchanter’s nightshade, 

honewort (Cryptotaenia canadensis), jack-in-the-pulpit (Arisaema triphyllum), and wild licorice 

(Galium circaezans). Private property comprised 88.1% of the total area in RMU 4. 

Lastly, RMU 9 (4,716 km2) was a mixture of forests (400 km2), wetlands (607 km2), and 

row-crop agriculture (2663 km2), and was located within the Southern Michigan/Northern Indiana 

Drift Plains and Eastern Corn Belt Plains ecoregions (U.S. Environmental Protection Agency 

1997). Soil types included silty and sandy loams, neutral clays, and muck soils. Forest patches 

ranged from mesic to hydric hardwoods that contained American basswood (Tilia Americana), 

black cherry, red maple (A. rubrum), sugar maple, and silver maple (A. saccharinum). Dominant 

herbaceous species included black snakeroot, common blue violet, enchanter’s nightshade, garlic 

mustard, and Virginia knotweed. Private property comprised 97.4% of the total area in RMU 9. 

Within each RMU, I focused aerial sampling within 41.44-km2 areas that I randomly 

selected from Indiana’s deer harvest reporting grid. This reporting grid spans the entirety of each 

RMU, and spatially separates each RMU into 6.44 × 6.44-km areas from which the Indiana 

Department of Natural Resources records deer harvests. For fecal-pellet and camera-trap sampling, 

I sampled 10.36-km2 square sub-areas (henceforth referred to as sub-areas) placed within the larger 

41.44-km2 areas in which I conducted aerial sampling. I placed sub-areas to ensure that habitat 

composition was reflective of the greater 41.44-km2 area and that property access across the sub-

area was as homogeneously distributed as possible. In total, I sampled 7, 6, and 7 different areas 

within RMUs 3, 4, and 9, respectively. The number of areas I sampled in each RMU was dependent 

on a larger project with aims of estimating deer density across each RMU by sampling several 

additional years and areas.  
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4.3.2.2 Modelling Methods 

I estimated density using conventional distance sampling (Buckland et al. 2001) for each 

of the three methods I evaluated. For robust estimation of density, five assumptions of distance 

sampling must be met. These include: (1) objects on the line or point are detected with certainty 

(2) objects are detected at their initial location, (3) distances from the transect or point are measured 

exactly, (4) objects are distributed independently of transects or points, and (5) detections are 

independent events (Buckland et al. 2001). I present relevant considerations for meeting each of 

these assumptions in the methods sections below. For each method, I estimated density in both 

open (defined as agricultural fields, pasture, and herbaceous grasslands) and concealed (defined as 

wetlands and forest) habitats in each RMU. Total density for each method across both open and 

concealed habitats in each RMU was estimated using a weighted geographic stratification as 𝐷̂𝑦 =

∑ (
𝐴𝑖𝑦

𝐴𝑦
) 𝐷̂𝑖𝑦

2
𝑖=1  where 𝐷̂𝑦 is the density estimate across both habitats in RMU 𝑦, 𝐴𝑖𝑦 is the total 

area of habitat 𝑖 in RMU 𝑦, 𝐴𝑦  is the total area of both habitats in RMU 𝑦, 𝐷̂𝑖𝑦  is the habitat-

specific density estimate in RMU 𝑦, and 𝑣𝑎𝑟(𝐷̂𝑦) = ∑ (
𝐴𝑖𝑦

𝐴𝑦
)

2

𝑣𝑎𝑟(𝐷̂𝑖𝑦)2
𝑖=1 .  

4.3.2.3 Fecal-Pellet Sampling 

Sampling of fecal pellets is a common method used to estimate the densities of many 

wildlife species (Wood 1988, Barnes 2001, Marques et al. 2001, Todd et al. 2008). To sample for 

fecal-pellet groups of white-tailed deer, I surveyed 200-m line transects from 1-24 March 2021 

across the three RMUs. The assumption that fecal-pellet groups were detected at their initial 

location was easily met as fecal-pellet groups are stationary. Transect location and orientation was 

determined randomly using ArcMap 10.7, subject to the dual constraints of property access and 

separation from the nearest neighboring transect by ≥200 m. Random placement ensured that I met 

the assumption that fecal-pellet groups were distributed independently of the transect. I sampled 

concealed habitat disproportionate to its availability because white-tailed deer spend less time in 

agricultural fields compared to areas of natural cover (Beier and McCullough 1990, Nixon et al. 

1991). Pellet transects in adjoining states were used to guide decisions on transect spacing and 

number (Urbanek et al. 2012, Anderson et al. 2013). Details of my stratified sampling are provided 

in Delisle et al. (2022b).  
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During field sampling, each transect was surveyed by one of multiple surveyors who 

conducted fecal-pellet sampling. A single surveyor walked each transect twice to help meet the 

assumption that objects on the line are detected with certainty. During the first pass, the surveyor 

focused all attention directly on the transect line to ensure perfect detection at distance 0. During 

the second pass, the surveyor focused attention around the line. Upon detection of a fecal-pellet 

group, each surveyor recorded the perpendicular distance from the transect line to the center of the 

fecal-pellet group which met the assumption that distances were measured accurately. If a fecal-

pellet group was detected on the first pass, the group was removed so that no fecal-pellet group 

was accidentally counted twice on the second pass; thus, the assumption that detections are 

independent events was met.  

To estimate deer density in concealed and open habitats using fecal-pellet sampling, I used 

the formula from Marques et al. (2001): 

𝐷̂ =  
(

𝑛
𝐿) ∗ 𝑓(0) ∗ 0.5

𝑡̂ ∗ 𝑠̂
 (4) 

In Eq. 4, 𝐷̂ = the density estimate of the animal population, 𝑛 = the number of dung piles detected, 

𝐿 = transect length, 𝑓(0) = the estimated probability density function of perpendicular distances 

measured from the transect line to detected dung piles evaluated at distance 0, 𝑠̂ = the estimated 

defecation rate of the animal, and 𝑡̂  = the estimated persistence time for dung piles deposited 

during the study period. To estimate 𝑡̂ in each RMU, I used the inter-observer method from Delisle 

et al. (2022b). Specifically, I used a weighted habitat-specific 𝑡̂ for each RMU, with weights based 

on the sampling effort in each habitat type in each sub-area (for a more in-depth overview on my 

estimation of 𝑡̂ see Appendix C: Estimation of Persistence). I used the same 𝑠̂ of 26.8 fecal-pellet 

groups/deer/day for density estimates in each RMU (Delisle et al. 2022b). I included variation 

from 𝑡̂  but not 𝑠̂  in the final density estimates from pellet sampling because I did not 

experimentally estimate 𝑠̂. Instead, I used 𝑠̂ from previous research in similar study areas (Delisle 

et al. 2022b).   

To model the detection process, I fit half-normal key functions with either Hermite 

polynomial, simple polynomial, cosine, or no adjustment terms, and hazard-rate key functions with 

either simple polynomial or no adjustment terms. Additionally, I fit hazard-rate and half-normal 

key functions with the following combinations of covariates: (1) observer, (2) sub-area, (3) local 

microhabitat each transect was located within (cornfield, soybean field, deciduous, mixed, or 
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evergreen forest, woody wetland, herbaceous grassland, and pasture/hay), (4) observer and sub-

area, (5) observer and microhabitat, (6) sub-area and microhabitat type, and (7) observer, sub-area, 

and microhabitat type. I used AIC for model selection (Buckland et al. 2001). To evaluate if I 

should fit a pooled detection function and stratified encounter rate over concealed and open habitat 

types or separate stratified detection functions, I fit unique detection functions for concealed and 

open habitat and a pooled detection function across both habitats and all RMUs. I then compared 

the sum of the AICs from the best stratified detection functions with the AIC from the pooled 

detection function to choose between a pooled and stratified detection function (Buckland et al. 

2015). I repeated this process to evaluate if I should fit a single pooled or several stratified detection 

functions across grassland and agriculture (within open habitat) and across the RMUs (i.e., 

grassland-, agriculture-, and RMU-specific detection functions). I fit all detection functions using 

the “Distance” package in R (Miller 2021).  

4.3.2.4 Camera-Trap Sampling 

Camera-trap sampling is an increasingly popular method used to estimate animal density 

(Delisle et al. 2021). I deployed Browning Strike Force HD motion-triggered camera traps from 2 

February – 15 March 2021. I strived to deploy 20 camera traps per sub-area, which Buckland et 

al. (2001) recommended as the minimum number of sampling locations to estimate the encounter 

rate variance. However, access to private property limited the number of cameras in some sub 

areas. I randomly selected camera trap locations using ArcMap 10.7 subject to the same access and 

proximity constraints as fecal-pellet transects, which met the assumption that deer were distributed 

independently of camera locations. In wooded areas, I affixed camera traps to trees at a height of 

1 m and in areas without trees, I affixed camera traps to t-posts at 1 m height. Affixing cameras at 

a height of 1 m assured that I would meet the assumption of detecting deer at distance 0 with 

certainty, as deer could not pass beneath the camera. I oriented all camera traps to face north to 

avoid sun glare at dawn and dusk. In rare instances, locations of camera traps were slightly altered 

from random (<20 m) to ensure a suitable location. When triggered, camera traps captured a burst 

of 3 photos usually separated by 0.3 sec. I set minimum time delays between triggers to 1 or 5 sec. 

Quickly triggering upon detection helped ensure that deer were detected at their initial location.  

To estimate deer density in each RMU and habitat type (concealed and open) using camera 

traps, I relied on the distance-sampling method of Howe et al. (2017): 
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 𝐷̂ =  
2𝑡 ∑ 𝑛𝑘

𝐾
𝑘=1

𝛳𝑤2 ∑ 𝑇𝑘𝑃̂𝑘
𝐾
𝑘=1

∗
1

𝐴̂
 (5) 

In Eq. 5, 𝐷̂ = estimated density, k = the camera trap sampled, nk = the total detections at camera 

trap k, t = the time interval between consecutive detections (sec), ϴ = the angle of view (radians) 

of the camera trap, w = the truncation distance (m), Tk = the total time sampled (sec), 𝑃̂k = the 

probability of detection in the camera-trap sampling area at a given 𝑡 demarcated by ϴ and w, and 

𝐴̂ = the estimated fraction of a camera-trap day spent active and thus available for camera-trap 

sampling. For my application, I most often measured the distance to a deer in the first photo 

contained within a burst, and therefore I used t = 1.6 or 5.6 sec for most cameras. To estimate 𝐴̂ 

of white-tailed deer in each RMU, I first used the average anchoring method from Vazquez et al. 

(2019) to double-anchor deer detection times by the average sunset and sunrise times across the 

spatiotemporal extent of my sampling in each RMU. I then estimated 𝐴̂ by fitting circular kernel 

distributions to the double-anchored detection times using the methods of Rowcliffe et al. (2014), 

and estimated the standard error (SE) of 𝐴̂ with nonparametric bootstrapping (Rowcliffe et al. 2014) 

using the “activity” package in R (Rowcliffe 2021). Similar to conventional multipliers, the 

resulting SE for 𝐴̂ was propagated into the design-based SE of 𝐷̂ using the delta method (Buckland 

et al. 2001).  

I estimated distances from the camera trap to deer in photos by using reference videos of 

deployers holding signs that indicated their distance from the camera trap at the edges and center 

of the camera trap’s field-of-view (Howe et al. 2017). This helped to meet the assumption that 

distances were measured accurately. To estimate a detection function, I fit half-normal key 

functions with either 2 Hermite polynomial adjustments or no adjustments, uniform key functions 

with either one or two cosine adjustment, and hazard-rate key functions with either no, one or two 

cosine adjustments. Additionally, I fit half-normal and hazard-rate key functions with several 

different combinations of factor covariates including: (1) whether the camera trap’s flash fired 

upon detection (night vs day), (2) local microhabitat surrounding the camera trap (same 

microhabitats as in fecal-pellet sampling), (3) RMU, (4) RMU and camera-trap flash, (5) camera-

trap flash and microhabitat, (6) RMU and microhabitat, and (7) camera-trap flash, microhabitat, 

and RMU. I estimated the SE of 𝐷̂ using nonparametric bootstrapping to sample camera traps with 

replacement. Similar to fecal-pellet sampling, I fit all detection functions using the “Distance” 

package in R (Miller 2021). 
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I measured distances to the same deer in consecutive photo bursts, as is standard with 

camera-trap distance sampling. Because recording distances to the same individual introduces 

overdispersion and violates the assumption of independent detections, I used the two-step 

procedure proposed by Howe et al. (2019) for model selection. Specifically, I used QAIC to select 

the best model within the same key function. I used the average number of detections per individual 

per camera visit as a measure of the overdispersion factor, 𝑐̂. After selecting the best model within 

key functions, I selected the best overall model by dividing the χ2 goodness-of-fit (GOF) statistic 

by the degrees of freedom of the model. I chose the key function with the lowest quotient as the 

best model. To determine whether to fit a pooled detection function across both open and concealed 

habitat types, or to fit unique detection functions for open and concealed habitat types, I compared 

the sum of the QAIC from the best models (according to the two-step process) fit separately and 

the QAIC of the best pooled detection function.  

4.3.2.5 Aerial Sampling 

Aerial sampling has been used to estimate population abundance of many wildlife species 

(e.g., Haufler et al. 1993, Jachmann 2002, Winiarski et al. 2017, Stapleton et al. 2016). In the 

context of distance sampling, counts obtained from visual surveys on aerial platforms assume 

perfect detection along either the transect line or the distance at which left truncation is specified 

(Laake et al. 2008). I used a vertical-looking infrared (VLIR) platform coupled with high-

resolution color video in an attempt to meet this assumption more readily than when sampling with 

observers counting from the sides of fixed-wing aircraft (e.g., Caughley and Grice 1982, Fleming 

and Tracey 2008) or when using forward-looking infrared (FLIR) cameras that increase distance 

and vegetative obstruction between the thermographer and animals (Bernatas and Nelson 2004, 

Storm et al. 2011, Smith et al. 2020). Vertical-looking infrared permits detection of deer directly 

beneath the aerial platform (Kissell and Nimmo 2011). Combining VLIR with high-resolution 

color video was adopted to further augment VLIR capabilities (Franke et al. 2012, Chrétien et al. 

2016).  

I conducted aerial sampling during daylight hours from 8 February – 10 March 2021. 

During my flights, I flew 16 x ~6.44-km transects that were aligned north to south in each 41.44-

km2 area. Based on prior work with deer, each transect was separated by 400 m (Kissell and 

Nimmo 2011). Transects were systematically aligned but randomly placed, ensuring that deer were 
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distributed randomly in relation to the transects. I flew at an altitude of ~450 m and speed of ~65 

mph in a Sky Arrow Light Sport Aircraft to minimize the chance of deer movement in response to 

the aircraft. Altitude was restricted to 300 m in some 41.44-km2 areas due to low cloud cover. The 

width of the field-of-view of the camera was 126.5 m and 84.3 m for flights conducted at 450 m 

and 300 m above ground altitude, respectively, and thus there was never overlap between 

neighboring transects. I found that flights at these altitudes did not induce reactive movement in 

deer beneath the plane. However, there still was the possibility of nonreactive movement, and 

therefore potential, albeit small, for double counting due to fast random movement from one 

transect to another neighboring transect during flights. Due to the speed of my flights, I believe 

the probability of double counting individuals was extremely small. Moreover, random double 

counting at two different transects does not pose a serious problem, as random movement in the 

opposite direction was just as probable (Buckland et al. 2001). Finally, estimators of the encounter-

rate variance are robust to violation of the assumption that detections are independent (Buckland 

et al. 2015), which could arise from double counting. 

I recorded VLIR video of the ground beneath the plane with an IR-TCM HD 1024 

stationary thermography camera combined with a telephoto 60mm lens (Jenoptik, Jena, Germany). 

Simultaneously, I recorded vertical-looking red-green-blue (RGB) video of the same areas using a 

Nikon D810 DSLR camera combined with the Nikon AF DC-NIKKOR 135mm f/2D lens (Nikon 

Inc., Melville, NY). Cameras were affixed to either side of the aircraft and pointed directly at the 

ground during flight. VLIR and RGB footage were synchronously recorded, georeferenced, and 

stored digitally using a GeoDVR Mini (Remote GeoSystems, Inc.) and Garmin GPS (Garmin Ltd.).  

After I conducted my flights, I viewed the VLIR and RGB video in the lab using the 

LineVision – Ultimate software (Remote GeoSystems, Inc.). Upon detecting a heat signature in 

the VLIR video that I suspected to be a deer, RGB video was used for confirmation. In addition, I 

measured the perpendicular distance from each deer to the centerline of the video, and recorded 

whether the deer was located in concealed or open habitat. The LineVision software is equipped 

with a feature that allows measuring of distance, which ensured that I measured distances 

accurately. Similar to other past research using VLIR (Kissell and Nimmo 2011), after preliminary 

examination of the aerial sampling distance data, I found uniform detection across all distances 

from the transect line to the field-of-view edge of the camera (Appendix C: Aerial Detection 

Probability, Delisle et al. 2022a). However, I did document false negatives caused by viewers 
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missing infrared signatures (i.e., perception errors; Brack et al. 2018). Therefore, I estimated the 

probability of a single viewer detecting an infrared signature, and the standard error of that 

probability, using the mark-recapture methods described in Delisle et al. (2022a) on a subset of 

my aerial data from each altitude.  

I estimated deer density in each RMU and habitat (open and concealed) by using the 

equation from Buckland et al. (2015) with the probability of detecting an infrared heat signature 

as a multiplier: 

 𝐷̂ =  
𝑛

𝑏
∗

1

𝑝𝑟(𝑑𝑒𝑡)
 (6) 

Where 𝑛 = the number of deer detected, 𝑏 = the total area sampled, and 𝑝𝑟(𝑑𝑒𝑡) = the probability 

of detecting an infrared heat signature. I calculated 𝑏 with the field-of-view of the infrared sensor 

and the above-ground altitude maintained by the pilot. I used the field-of-view of the infrared 

sensor instead of the color sensor because I identified candidate heat signatures in the infrared 

video before consulting color video. I estimated the standard error (SE) of 𝐷̂ using an approach 

modified from the “R2” method in Fewster et al. (2009), where 

 𝑆𝐸(𝐷̂) =  √
𝐾

𝐴2(𝐾 − 1)
∑ 𝑎𝑘

2

𝐾

𝑘=1

(
𝑛𝑘

𝑏𝑘
−

𝑛

𝐴
)

2

 (7) 

And 𝐾 = the number of transects, 𝐴 = the total area sampled, 𝑛 = the total number of detections, 

𝑏𝑘 = the total area sampled on transect 𝑘, and 𝑛𝑘 = the total number of detections on transect 𝑘. I 

then propagated the error from the probability of detecting an infrared heat signature into 𝑆𝐸(𝐷̂) 

using the delta method.  

4.3.2.6 Comparing Methods and Cost-Effectiveness Analysis 

I compared the performance of fecal-pellet, camera-trap, and aerial sampling along 

multiple dimensions associated with a single application of each field method in each RMU. These 

dimensions included the CV of the density estimate, the spatial extent of sampling, the initial cost 

required to attain an estimate, and the recurring costs for continued use. I compared the relative 

precision of each density estimate using the coefficient of variation (CV). For spatial extent I 

compared the total area, 𝑎, surveyed by each method. Consistent with Laguardia et al. (2021), I 

defined 𝑎 as the area of the sub-areas within each RMU for fecal-pellet and camera-trap sampling, 
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and the area of the 41.44-km2 areas in each RMU for aerial sampling. I assessed three measures of 

sampling costs: (1) capital, (2) field-operations, and (3) data-processing costs. The capital cost was 

defined as the annualized upfront expense for equipment. I did not consider the capital cost of field 

vehicles used for fecal-pellet and camera-trap sampling. In cases where I used the same field 

equipment for estimating density in each RMU for a particular method, the annualized upfront 

capital cost was divided between the three RMUs to calculate the cost per-use via the following 

formula: 

 𝐶𝐶𝑖 =
𝐶𝐶𝐼/𝐴(𝑟, 𝑁)

𝑈𝐼
∗ 𝑈𝑖 (8) 

where 𝐶𝐶𝑖 = the repeated capital cost for the 𝑖th RMU, 𝐶𝐶𝐼 = the total cost of the repeatedly used 

capital across all 𝐼 RMUs, 𝑈𝐼 = the total usage (e.g., number of transects or points sampled with 

capital) of the repeatedly used capital across all 𝐼 RMUs per application, and 𝑈𝑖 = the usage of the 

repeatedly used capital for the 𝑖th RMU. In cases where select field operations were performed to 

conduct field work on all RMUs (e.g., installing sensors on the aircraft), this cost was divided 

between RMUs by removing the annuity factor and replacing capital cost with the cost of the select 

field operations in Eq. 8. I decided to split shared costs between RMUs because the Indiana 

Department of Natural Resources requires future density estimates across no fewer than 3 RMUs 

per sampling year, and I suspect that other states may also require estimates in multiple sites. The 

field-operations cost was defined as the recurring cost associated with each field application of the 

method to estimate density. Lastly, I defined the data-processing cost as the cost to process the data 

in the lab, which included the hourly cost of entering data, viewing and scoring aerial footage, 

classifying species within camera-trap photos, measuring distances to deer within camera-trap 

photos, and analysis.  

I calculated the cost effectiveness of each method using Eqs. 1 and 2. I calculated 

annualized capital costs assuming N = 1, 2…,15 applications to assess the sensitivity of my cost-

effectiveness ratios to the lifespans of capital equipment. Lastly, I repeated these analyses while 

allowing for user-specified weights using Eq. 3. I specified weights using the importance scores 

given by the Indiana state deer biologist (JNC). Specifically, I used the following importance 

scores: 𝑖𝑐𝑣 = 100, 𝑖𝐶𝐶 = 10, 𝑖𝐹𝑂𝐶 = 40, 𝑖𝐷𝑃𝐶 = 20, and 𝑖𝑎 = 100, which corresponded to weights of: 

𝑤𝑐𝑣 = 1.852, 𝑤𝐶𝐶 = 0.185, 𝑤𝐹𝑂𝐶 = 0.741, 𝑤𝐷𝑃𝐶 = 0.370, and 𝑤𝑎 = 1.852. I performed all analyses 

using the R programming language (R version 4.1.2; R Core Team 2021).  
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4.4 Results 

4.4.1 Fecal-Pellet Sampling 

In total, I surveyed 263 transects covering 52.6 km and detected 1,262 fecal-pellet groups 

across all three RMUs. A stratified detection function across open and concealed habitats was most 

parsimonious when I fit candidate detection functions to cumulative data collected across all 

RMUs (ΔAIC = 872.1). Following this, a pooled detection function and stratified encounter rate 

were most parsimonious across the RMUs for both open (ΔAIC = 45.8) and concealed (ΔAIC = 

476.6) habitats. Lastly, a pooled detection function and stratified encounter rate were most 

parsimonious across grassland and agriculture within open habitats (ΔAIC = 43.9). Thus, I used 

unique detection functions for open and concealed habitat, and a stratified encounter rate to 

estimate RMU-specific densities for each habitat type. I truncated all detections >110 cm and >150 

cm from the transect line in open and concealed habitat, respectively, to remove a right tail of 

distances with low associated detection probabilities (Buckland et al. 2001). Truncation removed 

a total of 100 detections. Following truncation, the hazard-rate detection function with no 

adjustments or covariates (ΔAIC = 1.02, Cramer-von Mises GOF P = 0.89) and the half-normal 

detection function with observer and sub-area as covariates (ΔAIC = 2.5, Cramer-von Mises GOF 

P = 0.21) were the AIC-best models in open and concealed habitat types, respectively. Because a 

pooled detection function and stratified encounter rate were most parsimonious, I estimated 𝐷̂ and 

𝑆𝐸(𝐷̂) in open habitat (across grassland and agriculture) using the methods in Buckland et al. 

(2001) section 3.7.1. In RMU 3, 4, and 9, I estimated t̂ at 45.2 (SE = 3.1), 31.9 (SE = 5.4), and 

51.9 (SE = 3.1) days in concealment; 71.5 (SE = 3.1), 53.7 (SE = 10.4), and 78.3 (SE = 3.5) days 

in agricultural fields; and 106.5 (SE = 3.9), 77.3 (SE = 8.4), and 111.6 (SE = 5.9) days in prairies, 

respectively. 

The average density from fecal-pellet sampling across RMUs in open, concealed, and 

across both habitats was 6.48 (SE = 2.33), 15.20 (SE = 0.23), and 9.59 (SE = 1.89) deer/km2, 

respectively. The average CV of density in open, concealed, and across both habitats was 0.50 (SE 

= 0.08), 0.20 (SE = 0.03), and 0.28 (SE = 0.02), respectively. Within each RMU, the densities in 

concealed habitat were always larger than those in open habitat (Table 4.1). Similarly, within each 

RMU, the CVs of densities in concealed habitat were always smaller than those in open habitat 

(Table 4.1). The average capital, data-processing, and field-operations costs across RMUs was 
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$427 (SE = 50), $116 (SE = 9) and $4,045 (SE = 396; Table 4.2), respectively. The total area for 

fecal-pellet sampling was 72.5 km2 for both RMU 3 and 9, and 62.2 km2 for RMU 4. The average 

cost effectiveness and weighted cost effectiveness across RMUs for fecal-pellet sampling was 

18.27 (SE = 1.26) and 12.40 (SE = 0.87), respectively. 

 

Table 4.1. Density estimates of white-tailed deer from fecal-pellet data collected from 1–

24 March 2021 in three different regional management units (RMU) of Indiana, USA. Densities 

and corresponding measures of precision were estimated using conventional distance sampling, 

and are shown for concealed, open, and across both concealed and open (Total) habitat types. 

The number of 200 m-transects surveyed (k) and number of detections after truncation (n) are 

presented for each RMU and habitat type. 

Habitat RMU k n 𝐷̂ 𝑆𝐸(𝐷̂) 𝐶𝑉(𝐷̂) 

Concealed 3 42 246 14.919 2.694 0.181 

Concealed 4 88 395 15.011 3.763 0.251 

Concealed 9 46 298 15.661 2.506 0.16 

Open 3 57 122 4.737 1.932 0.408 

Open 4 9 9 3.607 2.393 0.663 

Open 9 21 92 11.097 4.893 0.441 

Total 3 99 368 5.922 1.736 0.293 

Total 4 97 404 10.673 2.503 0.235 

Total 9 67 390 12.189 3.771 0.309 



 

98 

Table 4.2. The capital (USD; CC), field operation (USD; FOC), and data processing cost (USD; 

DPC), area over which density was inferred (km2), coefficient of variation (CV), cost 

effectiveness (CE), and weighted cost effectiveness (CEw) associated with density estimates from 

fecal-pellet (PS), camera-trap (CS), and aerial (AS) sampling in regional management units 

(RMU) 3, 4, and 9 within Indiana, USA. Weights were assigned by the Indiana state deer 

biologist. Capital costs were annualized across a single application. I underline the best index 

within each RMU. 

Method RMU CC FOC DPC Area CV CE CEw 

PS 3 482 4107 110 72 0.29 18.98 12.82 

PS 4 472 4699 104 62 0.24 19.94 13.64 

PS 9 326 3330 134 72 0.31 15.79 10.72 

CS 3 19714 7986 3126 72 0.15 65.61 22.82 

CS 4 15967 6156 2412 62 0.18 69.03 23.66 

CS 9 19475 7330 5181 72 0.12 52.71 18.05 

AS 3 28606 4260 729 290 0.17 19.34 5.02 

AS 4 24520 3819 695 249 0.13 15.18 3.99 

AS 9 28606 4362 723 290 0.11 12.19 3.18 

4.4.2 Camera-Trap Sampling 

I deployed 428 camera traps and captured a total of 1,015,178 photos. I removed 21 camera 

traps from my analysis due to poor placement (e.g., pointed downward or upward) resulting in 407 

camera traps used to estimate density (Table 4.3). I restricted attention to data collected during a 

2-week period from 25 February – 10 March 2021 in order to streamline data analysis. Within this 

2-week period, I captured 294,335 photos (2.22 terabyte of data), 81,740 of which contained deer. 

I measured a total of 30,732 and 9,505 distances in concealed and open habitat, respectively. 

During preliminary investigation of the data, I observed a spike in detections near camera traps in 

open habitat. Because of this, I did not consider the hazard-rate key function during model 

selection in open habitat, because this model can fit unnaturally large spikes at close distances 

resulting in an unnaturally abrupt decline in detectability as distance increases. This may 

underestimate 𝑃̂𝑘 in Eq. 7 and thus overestimate the corresponding density estimate (Buckland et 

al. 2001). After removing the hazard rate model from consideration in open habitat, I found a 

stratified detection function across open and concealed habitat to be most parsimonious (ΔQAIC 

= 1,298.2). I found the uniform key function with 1 cosine adjustment (Δχ2/df = 332.2) and the 
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uniform key function with 2 cosine adjustment terms (Δχ2/df = 190.7) to be the best detection 

functions in open and concealed habitats, respectively. In RMU 3, 4, and 9, I estimated 𝐴̂ at 0.38 

(SE = 0.02), 0.43 (SE = 0.03), and 0.42 (SE = 0.01), respectively.  

 

Table 4.3. Density estimates of white-tailed deer from camera-trap sampling data collected from 

25 February – 10 March 2021 in three different regional management units (RMU) of Indiana, 

USA. Densities and corresponding measures of precision were estimated using conventional 

distance sampling, and are shown for concealed, open, and across both concealed and open 

(Total) habitat types. The number of cameras deployed (k) and the number of detections after 

truncation (n) are presented for each RMU and habitat type. 

Habitat RMU k n 𝐷̂ 𝑆𝐸(𝐷̂) 𝐶𝑉(𝐷̂) 

Concealed 3 85 6,549 11.791 1.893 0.161 

Concealed 4 91 4,642 6.600 1.223 0.185 

Concealed 9 108 19,541 24.055 3.513 0.146 

Open 3 60 2,459 3.806 0.789 0.207 

Open 4 23 2,040 7.029 2.388 0.340 

Open 9 40 5,006 10.642 1.875 0.176 

Total 3 145 9,008 4.736 0.731 0.154 

Total 4 114 6,682 6.763 1.183 0.175 

Total 9 148 24,547 13.851 1.655 0.120 

 

 

The average density from camera-trap sampling across RMUs in open, concealed, and 

across both habitats was 7.16 (SE = 1.97), 14.15 (SE = 5.17), and 8.45 (SE = 2.76) deer/km2, 

respectively. The average CV of density in open, concealed, and across both habitats was 0.24 (SE 

= 0.05), 0.16 (SE = 0.01), and 0.15 (SE = 0.02), respectively. Density estimates in concealed habitat 

were larger than those in open habitat in RMU 3 and 9, but the reverse was true for RMU 4 (Table 

4.3). The CVs of densities in concealed habitat were always smaller than those in open habitat 

(Table 4.3). Similar to fecal-pellet sampling, total density was largest for RMU 9 and smallest for 

RMU 3. The average capital, data-processing, and field-operations costs across RMUs was 

$18,385 (SE = 1,211), $3,573 (SE = 830), and $7,157 (SE = 535; Table 4.2), respectively. The total 

area for camera-trap sampling was 72.5 km2 each for RMUs 3 and 9, and 62.2 km2 for RMU 4. 
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The average cost effectiveness and weighted cost effectiveness across RMUs for camera-trap 

sampling was 62.45 (SE = 4.97) and 21.51 (SE = 1.75), respectively. 

4.4.3 Aerial Sampling 

I recorded video on 111, 96, and 112 transects in RMUs 3, 4, and 9, respectively. On a 

single transect in RMU 3, my video recording system failed to record, which resulted in 111 

transect videos instead of 112. I recorded 6.90, 5.49, and 6.67 hours of video in RMUs 3, 4, and 9, 

respectively (240 gigabyte of data).  

The probability of detecting an infrared heat signature classified as a deer was 0.81 (SE = 

0.05), 0.99 (SE < 0.01), and 0.93 (SE = 0.02) in RMUs 3, 4 and 9, respectively (Delisle et al. 

2022a). The average density from aerial sampling across RMUs in open, concealed, and across 

both habitats was 1.31 (SE = 0.49), 21.64 (SE = 7.95), and 6.11 (SE = 2.06) deer/km2, respectively. 

The average CV of density in open, concealed, and across both habitats was 0.36 (SE = 0.01), 0.14 

(SE = 0.02), and 0.13 (SE = 0.02), respectively. Within each RMU, the densities in concealed 

habitat were always larger than those in open habitat (Table 4.4). Similarly, within each RMU, the 

CVs of densities in concealed habitat were always smaller than those in open habitat (Table 4.4). 

The average capital, data-processing, and field-operations costs across RMUs was $27,244 (SE = 

1,362), $716 (SE = 10) and $4,147 (SE = 167; Table 4.2), respectively. The total area for aerial 

sampling was 290.1 km2 each for RMUs 3 and 9, and 248.6 km2 for RMU 4. The average cost 

effectiveness and weighted cost effectiveness across RMUs for aerial sampling was 15.83 (SE = 

2.11) and 4.11 (SE = 0.54), respectively.
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Table 4.4. Density estimates of white-tailed deer from aerial-sampling data collected from 8 

February to 10 March 2021 in three different regional management units (RMU) of Indiana, 

USA. Densities and corresponding measures of precision were estimated using plot sampling 

methods, and are shown for concealed, open, and across both concealed and open (Total) habitat 

types. The area captured by the field-of-view of the vertical-looking infrared thermographer (at), 

as well as the number of detections after truncation (n) are presented for each RMU and habitat 

type. 

Habitat RMU at n 𝐷̂ 𝑆𝐸(𝐷̂) 𝐶𝑉(𝐷̂) 

Concealed 3 13.8 250 22.349 4.074 0.182 

Concealed 4 50.34 379 7.528 1.036 0.138 

Concealed 9 20.54 671 35.038 3.662 0.105 

Open 3 76.35 42 0.679 0.247 0.363 

Open 4 22.55 22 0.976 0.362 0.371 

Open 9 39.29 83 2.266 0.773 0.341 

Total 3 90.15 292 3.202 0.534 0.167 

Total 4 72.89 401 5.035 0.657 0.13 

Total 9 59.83 754 10.105 1.063 0.105 

4.4.4 Comparing Methods and Cost-Effectiveness Analysis 

Total density estimates from aerial sampling were consistently smaller than density 

estimates from the other methods. All three methods suggested that total densities of deer were 

largest in RMU 9 and smallest in RMU 3. Aerial and camera-trap sampling always had the lowest 

CVs. The lowest capital, field-operating, and data-processing costs were associated with fecal-

pellet sampling, except field-operating costs for aerial sampling in RMU 4 (Table 4.2). Specific 

sources of capital, field-operating, and data-processing costs are presented in Table 4.5.
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Table 4.5. A breakdown of cost (USD) sources comprising capital (CC), field-operating (FOC), 

and data-processing (DPC) cost for aerial, camera-trap, and fecal-pellet sampling methods used 

to estimate white-tailed deer (Odocoileus virginianus) density in Indiana, USA. Deer densities 

were estimated in Deer Regional Management Units (RMU) 3, 4, and 9. Costs per unit, hour of 

operation, or mile (Cost/UHM) and the number of units, hours of operation, or miles (# of UHM) 

for each source of cost are presented. 

Method Type Source Cost/UHM # of UHM RMU 3 RMU 4 RMU 9 

Pellet CC Field equipment 272.13 Variablea 468 458 317 

 
FOC Field labor 17.76 534 3229 3894 2362 

  
Travel (gas) 0.58 892 161 189 168 

  
Study design labor 26.39 18 166 143 166 

  
Land permission 1575.00 NA 551 473 551 

 
DPC Analysis labor 24.38 14 110 104 134 

Camera CC Camera equipmentb 119.02 428 18210 14758 17972 

  
Field equipmentc 272.13 4 388 305 396 

  
Equipment shipping 1520.00 1 542 438 540 

 
FOC Field labord 18.35 784 5515 4007 4866 

  
Travel (gas) 0.58 1784 321 379 335 

  
Study design labor 26.39 7 65 55 65 

  
Batteries 1.67 2568 1533 1242 1513 

  
Land permission 1575.00 NA 551 473 551 

 
DPC Downloading labor 24.38 40 349 283 344 

  
Classification labore 14.40 169 870 557 1008 

  
Distance labor 13.79 424 1420 1086 3342 

  
Analysis labor 24.38 60 488 488 488 

Aerial CC IR sensor 33488.00 1 11721 10046 11721 

  
Color sensor 4088.90 1 1431 1227 1431 

  
Pod engineering 95.00 209 6949 5957 6949 

  
GeoDVRf 18510.00 1 6479 5553 6479 

  
Equipment shipping 3410.25 1 1194 1023 1194 

 
FOC Plane usage 237.00 37 2989 2714 3081 

  
Operational labor 24.38 37 307 279 317 
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Table 4.5 continued 

  
Study design labor 26.39 9 83 71 83 

  
Sensor installation 95.00 18 599 513 599 

  
Sensor removal 95.00 9 283 242 283 

 
DPC Viewing labor 24.38 28 241 207 236 

  
Analysis labor 24.38 60 488 488 488 

a Field equipment for pellet sampling included 8 tape measures and 4 GPS units. 
b Camera equipment includes the cost of cameras, security boxes, python cables, and SD cards.  
c Field equipment includes the cost of compasses, tape measures, and GPS units.  
d Field labor cost/hr is a weighted average (weighted based on hours of labor) between coordinator 

($25.58 USD/hr), technician ($13.32 USD/hr), and graduate student ($24.38 USD/hr) labor.  
e Classification labor is a weighted average (weighted based on hours of labor) between technician 

($13.32 USD/hr) and graduate student ($24.38 USD/hr) labor. 
f GeoDVR includes the price of the GeoDVR as well as upgrades and accessories that I required. 

 

 

After a single application (i.e., capital costs annualized across a single application), aerial 

sampling was the most cost effective in RMUs 4 and 9, while fecal-pellet sampling was the most 

cost effective in RMU 3 (Table 4.2). However, when differential weights were used with input 

parameters, aerial sampling was always the most cost-effective method after a single application 

of each method. When annualizing the capital costs of each method across 1, 2…,15 applications, 

the cost effectiveness of aerial sampling improved with increasing number of applications at a 

more rapid rate than that of fecal-pellet sampling. Although cost effectiveness of camera-trap 

sampling was most sensitive to the number of applications, camera-trap sampling still never 

surpassed either fecal-pellet or aerial sampling, regardless of whether differential weights were 

used or how many applications capital cost was annualized across (Figure 4.2).
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Figure 4.2. The cost-effectiveness (a) and weighted cost-effectiveness (b) of aerial (AS), camera-

trap (CS), and fecal-pellet sampling (PS) when estimating the density of white-tailed deer 

(Odocoileus virginianus) in Regional Management Units (RMU) 3, 4, and 9 within Indiana, 

USA. Capital cost was annualized across 1, 2…,15-application lifespans.
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4.5 Discussion 

Cost-effectiveness analysis is a simple and powerful tool to decide between competing 

methods to estimate animal density. Past evaluations of methods used for estimating animal 

densities usually compared the cost and various factors related to the performance of methods 

separately (e.g., Anderson et al. 2013, Hedges et al. 2013, Zero et al. 2013). Unfortunately, such 

comparisons can lead to conflicting results that can confound decision makers (e.g., one method 

is more precise, but another requires less money). Therefore, I developed a cost-effectiveness 

model that integrates cost, performance, and scale into a single, comparable, and easily 

interpretable value (e.g., cost per unit land area standardized by relative precision) for methods 

estimating density.  

Wildlife management agencies are limited by funding (Leopold et al. 2018), and thus 

decisions about the cost effectiveness of a management technique should affect the selection and 

quantity of management activities in which managers engage (Anderson and Loomis 2006). 

However, whether a method can actually be implemented (i.e., feasibility; Hopfensperger et al. 

2007, Bowen et al. 2009) may depend on factors other than those included in cost-effectiveness 

analysis. Laguardia et al. (2021) introduced a metric they termed an integrated feasibility index 

which incorporated similar parameters as my model (cost, scale, and precision), but their index 

does not assess feasibility sensu stricto. Indeed, simple rearrangement reveals that their index is a 

modified cost-effectiveness ratio of the form given in Eq. 1. More appropriately, factors that 

determine feasibility are a result of constraints placed on an agency by internal or external forces. 

Internal constraints may be related to operational priorities, which limit the amount of money that 

can be spent on a project or the number of personnel assigned to the task. External constraints are 

often beyond the control of natural resource agencies, and may include bureaucratic restrictions 

such as limits on the maximum number of personnel allowed for hiring, or the maximum number 

of vehicles allowed for purchasing, regardless of whether the agency can afford more personnel or 

vehicles. External constraints may limit feasibility even when internal constraints are absent. 

Therefore, agencies must identify the factors affecting the feasibility of a method before 

consideration, and adjust how methods are applied to ensure feasibility prior to assessing cost 

effectiveness.  

Due to limited funding, wildlife agencies may be more inclined to spend funds on methods 

that have the potential to collect additional biological information in conjunction with the target 
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data. When using my study-design methods, camera-trap sampling can also be used to estimate 

the density or occurrence of many other species captured in images, and can answer other questions 

related to behavior, health, and demographics (Delisle et al. 2021). Aerial sampling using infrared 

thermographers can estimate the density of other medium to large endotherms (Chrétien et al. 

2015). When conducting field work for fecal-pellet sampling, fecal pellets may be simultaneously 

collected for genetic analyses (Kaunisto et al. 2016), or other animal sign recorded (Wood 1988). 

Similar to feasibility constraints, the value put on the potential to collect additional information 

depends on management objectives and funding; therefore, I did not explicitly consider the 

potential to collect additional information. If agencies do consider the additive utility of competing 

methods, then the added utility should be discounted appropriately according to its value relative 

to the importance of the primary purpose of the survey. 

I used aerial, fecal-pellet, and camera-trap sampling to estimate the density of a common 

ungulate in three large regions. Based on weighted and non-weighted cost-effectiveness analysis, 

aerial sampling was the most cost-effective when annualizing the capital cost of each method 

across multiple applications. Aside from annualizing capital costs across only a single application, 

the superior cost effectiveness of aerial sampling was apparent in all three RMUs, which suggests 

consistency even for landscapes with vastly different habitat compositions and varying densities. 

These findings are dependent on my method which splits the shared costs across RMUs (Eq. 8). I 

decided to split shared costs between RMUs because future management objectives of the Indiana 

Department of Natural Resources seek to estimate deer density (1) in the remaining RMUs within 

the state, (2) across no fewer than 3 RMUs per sampling year, and (3) repetitively across many 

future sampling years. The RMUs included in the current study span the range of landscape 

conditions in the state, and thus I believe the better long-term cost effectiveness of aerial sampling 

will hold true in the remaining RMUs. More generally, I suspect that the superior long-term cost 

effectiveness of aerial sampling will translate to density estimation of other common endothermic 

species that can be detected using infrared thermographers in similarly sized or larger areas outside 

of Indiana.   

There is no greater concern than human safety when conducting wildlife research. 

Although I found aerial sampling to be the most cost-effective method, safety concerns can be 

problematic for aerial sampling, as aircraft accidents are responsible for 66% of on-the-job deaths 

of wildlife biologist (Sasse 2003). Of course, other methods reliant on terrestrially based human 
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labor may also be dangerous in certain situations. Safety is a factor influencing whether a method 

is feasible, not cost effective. For instance, many project coordinators would deem transect 

sampling for mountain goat (Oreamnos americanus) on cliffs to be unacceptably dangerous and 

thus not feasible. Therefore, safety concerns, similar to all feasibility constraints, should be 

identified before conducting field sampling.  

A substantial portion of my field operating costs for camera-trap and fecal-pellet sampling 

were associated with acquiring permission to sample on private property. Aerial sampling forgoes 

this requirement, as airspace is not privately owned. I predict narrower differences between the 

cost-effectiveness ratios of aerial sampling and fecal-pellet and camera-trap sampling for studies 

similar to mine but conducted in areas dominated by public lands. In comparison to the other 

methods I considered, camera-trap sampling had higher field-operation and data-processing costs 

(i.e., recurring costs). Specifically, data processing costs for camera-trap sampling per RMU were 

30.1 (SE = 4.5) and 5.0 (SE = 1.1) times greater than those from fecal-pellet and aerial sampling, 

respectively. Such discrepancies might discourage future researchers from using camera traps to 

estimate trends in density across large spatiotemporal expanses, but this finding reflects the current 

technology available for accurately processing data. Models for automated species tagging (Willi 

et al. 2019, Norouzzadeh et al. 2021) and distance estimation (Haucke et al. 2021, Zuleger et al. 

2022) appear promising and, if easy-to-use forms are readily available in the future, could 

substantially decrease the cost of processing data from camera-traps. To predict future cost 

effectiveness, I simulated a reduction in the data-processing cost of camera-trap sampling to $200; 

however, the weighted and unweighted cost-effectiveness ratios showed the same preference 

rankings across methods. Therefore, despite the increased usage of camera traps (Delisle et al. 

2021), my study suggests the cost effectiveness of camera-trap sampling for estimating density 

across larger heterogenous landscapes is poor in comparison to alternative methods.  

Within each RMU, densities from aerial sampling in open and concealed habitats were 

considerably lower and higher (except in RMU 4), respectively, than the other two methods. These 

patterns likely resulted because I conducted aerial sampling diurnally when deer were less likely 

to use open habitats (Larson et al. 1978). My density estimates from camera traps and pellet counts 

both incorporated nighttime hours when deer are far more likely to use open habitat types (Larson 

et al. 1978). Specifically, density estimates from pellet sampling represent an average density 

across the time it takes pellet groups to decay (Marques et al. 2001), and densities from camera 
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sampling are an average density across the snapshot moments during the time cameras are 

sampling. Therefore, interpretation of differences between density estimates from the three 

methods should focus on the total density across both open and concealed habitat types. 

Density estimates from aerial and camera-trap sampling had lower CVs than the estimates 

from pellet sampling. Uncertainty from many different sources can impact the variation of density 

estimates (Williams et al. 2002). These sources of variation include detectability as a function of 

distance (Buckland et al. 2001), observer (Buckland and Garthwaite 1991), or a combination of 

these and other covariates (Burt et al. 2014); multipliers such as activity or availability levels 

(Howe et al. 2017), group size (Hamilton et al. 2017), and persistence or production of cues 

(Marques et al. 2001, Buckland et al. 2008); classification discrepancies among observers (Delisle 

et al. 2022b); and the encounter rate between transects or points (Fewster et al. 2009). My estimates 

from aerial sampling only had variation from the encounter rate and detectability differences 

between viewers of infrared video. Similarly, the estimates from camera trapping and pellet 

sampling had variation from the encounter rate, detection function, and multipliers (activity level 

and dung persistence rate), but spatial replicates were more plentiful for camera trapping. These 

additional sources of variation and fewer spatial replicates likely contributed to the higher CVs of 

density estimates from pellet sampling.  

Although I used three common field-sampling methods under, perhaps, the most common 

statistical estimator used for estimating wildlife density (distance sampling), other sampling 

methods and estimators exist. Field-sampling methods related to density estimation that I did not 

consider include, but are not limited to, drones (Chrétien et al. 2016) and spotlighting (McCullough 

1982). Similarly, other statistical estimators of density include, but are not limited to, capture-

recapture methods (Royle et al. 2013), N-mixture models (Royle 2004), and random encounter or 

random encounter staying time models (Rowcliffe et al. 2008, Nakashima et al. 2018). I chose to 

implement fecal-pellet, camera-trapping, and aerial sampling methods under a distance-sampling 

framework because these strategies could be reasonably applied while meeting study-design and 

sampling assumptions. Even subtle changes to field sampling and statistical methods could alter 

costs or precision. For instance, guidelines with case studies are needed on how best to account for 

factors such as reactive behavior toward cameras. I encourage future comparisons of the cost 

effectiveness of other field sampling and statistical methods, and how cost effectiveness is 
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influenced by finer examination of other field-sampling and statistical decisions within common 

density estimators. 

I extended cost-effectiveness analysis to specifically decide between density-estimation 

methods, and I believe that the same principles can be used to decide between competing 

alternatives related to many types of ecological monitoring. For example, several methods exist 

that aim to reduce human-wildlife conflict (Tarlow and Blumstein 2007) or measure the impacts 

of herbivores on plant communities (Kirschbaum and Anacker 2005, Royo et al. 2016). Simple 

alterations to my cost-effectiveness analysis can aid these decisions. Similarly, methods that 

integrate multiple data types to produce a single estimate (i.e., fusion models) are becoming more 

popular due to increased precision (Zipkin et al. 2021). My approach to cost-effectiveness analysis 

offers a formal framework to determine whether the improved precision is worth the extra cost and 

effort to collect multiple data types.  

4.6 Management Implications 

When considering the cost effectiveness of field methods, the relative importance of cost, 

precision, and area sampled depends on context, and each agency will have its own set of 

parameters with which to contend (Leopold et al. 2018). Unfortunately, most cost-effectiveness 

analyses do not take this into consideration. If context is not fully considered, then cost-

effectiveness analysis can lead to error in judgement. When I used equal weights of importance 

for input parameters, the cost-effectiveness ratios of aerial and fecal-pellet sampling were very 

similar after a single application of each method. However, because the deer manager in Indiana 

allocated low importance to cost-related parameters and placed much greater value on the precision 

of the density estimate, aerial sampling was clearly identified as the most cost-effective approach. 

In general, wildlife managers should use my weighted cost-effectiveness ratio (Eq. 3), because it 

permits users to specify importance of each parameter and thus flexibly accommodates the unique 

context faced by each agency. Context-independent comparisons of methods across agencies or 

jurisdictions should use cost-effectiveness ratios computed using Eq. 1 and 2. 
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SAMPLING 

Published as: Delisle, Z.J., D.L. Miller, and R.K. Swihart. Accepted In Press. Modeling density 

surfaces of demographic classes using camera-trap distance sampling. Methods in Ecology and 

Evolution. 

5.1 Abstract 

Spatially explicit densities of wildlife are important for understanding environmental 

drivers of populations, and density surfaces of demographic classes allow exploration of links 

between demographic ratios and environmental conditions. Although spatially explicit densities 

and class densities are valuable, conventional design-based estimators remain prevalent when 

using camera-trapping methods for unmarked populations. I developed a density surface model 

that utilized camera-trap distance sampling data within a hierarchical generalized additive 

modelling framework. I estimated density surfaces of demographic classes of a common ungulate, 

white-tailed deer (Odocoileus virginianus), across three large management regions in Indiana, 

USA. I then extended simple statistical theory to test for differences in two ratios of density. Deer 

density was influenced by landscape fragmentation, wetlands, and anthropogenic development. I 

documented class-specific responses of density to availability of concealment cover, and found 

strong evidence that increased recruitment of young was tied to increased resource availability 

from anthropogenic agricultural land use. The coefficients of variation of the total density 

estimates within the three regions I surveyed were 0.10, 0.10, and 0.06. My strategy extends 

camera-trap distance sampling, and enables managers to use camera traps to better understand 

spatial predictors of density. My density estimates were more precise than previous estimates from 

camera-trap distance sampling. Population managers can use my methods to detect finer 

spatiotemporal changes in density or ratios of demographic-class densities. Such changes in 

density can be linked to land use, or to management regimes on habitat and harvest limits of game 

species.  
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5.2 Introduction 

 Ecologists and wildlife managers require estimates of population density for more 

comprehensive ecological knowledge and effective application of management (Williams et al. 

2002). For many species, density estimates specific to age, sex, or other demographic classes can 

provide additional information to ecologists and managers. For instance, class-specific densities 

may aid management of game species when classes are unequally harvested to achieve population 

goals (Keehner et al. 2015), or of species for which recruitment is associated with food availability 

(Costello et al. 2003).  

 Camera traps are commonly used to estimate wildlife density (Delisle et al. 2021). When 

monitoring demographic classes, camera traps are especially advantageous because they allow 

viewers of images to carefully consider class membership of individuals. Other methods requiring 

the physical presence of surveyors in the field may not facilitate such careful determination of 

class membership. Thus, inaccuracies may arise when surveyors must determine class membership 

in challenging field conditions. Difficulties may be especially great when class membership must 

be assigned quickly before sampled individuals are out of sight, as often happens when sampling 

extremely mobile species, species that flee in response to surveyors, or when surveyors are aboard 

a moving platform.  

 Several methods exist for estimating density of unmarked populations using camera traps 

(Gilbert et al. 2021). Although each method has unique advantages, camera-trap distance sampling 

remains appealing because it rests upon a well-established and intuitive statistical foundation 

(Buckland et al. 2001, Howe et al. 2017). However, one limitation of conventional distance 

sampling is that a single design-based density, estimated from an average count across sampled 

locations, is inferred across entire study areas (Buckland et al. 2001). This approach can obscure 

local fluctuations in density along environmental gradients (e.g., topography, food proximity). 

Accordingly, ecologists are frequently interested in relationships between density and local 

covariates.  

 Density surface modelling uses distance sampling data to estimate spatially explicit density 

in two steps (Miller et al. 2013). Firstly, detectability is modelled with a detection function fit to 

distance-sampling data, which accounts for decreased detection probability associated with 

increasing distance from the surveyor. Secondly, counts on sampling locations are modelled as a 

function of spatially explicit predictors. Generalized additive modelling is often used within the 
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second step, which facilitates nonlinear relationships that are common in ecology (Wood 2017). 

The fitted model is then used to predict density in unsampled areas, which yields more accurate 

density estimates across study areas, especially for species whose density relates to spatial 

fluctuations of habitat characteristics (Miller et al. 2013).  

 Within the second step of density surface modelling, hierarchical generalized additive 

models are uniquely appealing for researchers interested in demographic classes. Specifically, they 

can simultaneously model multiple biologically determined subsets of data while maintaining 

global relationships exhibited by the entire data set (Pedersen et al. 2019). Such fitted relationships, 

termed factor-smooth interactions, can enable unique spatial modelling of class-specific densities 

in a single model. Class specificity is especially useful when class density exhibits unique 

relationships with spatially explicit predictors. Considering class-specific relationships may yield 

more accurate estimates of overall density and between-class ratios of density, more robust 

understanding of ecological relationships, and better fit of models. 

 Although the advantages of camera-trap distance sampling, density surface modelling, and 

hierarchical generalized additive models are evident, to my knowledge, no study has combined 

these approaches to model the spatially explicit density of classes. I combine these tools to model 

the class density of a common North American game ungulate, white-tailed deer (Odocoileus 

virginianus), across three large regional areas over which management is implemented in Indiana, 

USA. I then use density estimates of classes to compare recruitment rates and adult sex ratios in 

these three areas. First, because recruitment of white-tailed deer is directly linked to food 

availability (McCullough 1979) and deer readily forage on agricultural crops (Rouleau et al. 2002), 

I hypothesized that recruitment rates of deer would be higher in areas with more agricultural land 

use. Specifically, I predicted larger ratios of young deer:adult female deer (fawns and does, 

respectively) densities in areas where the fraction of land being used for agriculture is larger. 

Second, annual deer harvest reports from the years and areas I sampled (Caudell and Vaught 2019, 

2020; Boggess and Vaught 2021) showed that ratios of harvested adult male (buck) deer:harvested 

does were similar in two of the areas I sampled, but higher in the third area I sampled that had the 

highest relative amount of land devoted to agriculture. Therefore, I predicted that the ratios of 

buck:doe densities would be lowest in the most highly agricultural region.   
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5.3 Materials and Methods 

5.3.1 Study Area 

 I sampled in Deer Regional Management Units (RMUs) 3, 4, and 9 in Indiana, USA 

(Swihart et al. 2020) during the winters of 2019, 2020, and 2021 (Figure 5.1). RMU 3 is 

predominantly agriculture (79%), but also contains patches of forest (10%), grassland (3%), and 

wetland (1%). RMU 4 contains more forest (56%), a mixture of agriculture (19%) and grassland 

(16%), and sparse patches of wetland (<1%). Lastly, RMU 9 is intermediate in agriculture between 

the other RMUs (56%), and has nearly even amounts of wetland (13%), grassland (11%), and 

forest (8%). Approximately 95% of these RMUs is privately owned.
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Figure 5.1. Landcover types within Regional Management Units 3 (west-central), 4 (southern), 

and 9 (northeastern) in Indiana, USA. I deployed cameras within 10.36-km2 sub areas.
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 Within RMUs, I sampled in randomly chosen 41.44-km2 cells from the deer-harvest 

reporting grid that the Indiana Department of Natural Resources uses to collect spatially explicit 

harvest data. I did not preferentially sample 41.44-km2 cells that I believed would have more or 

less deer. Specifically, I sampled inside 10.36-km2 areas (sub areas) that I placed inside the larger 

cell. I attempted to place sub areas within larger cells to ensure property permission was 

homogeneously distributed, and habitat composition within sub areas was representative of the 

larger cell. During each year, I sampled 20 sub areas across all three RMUs. Thus, in two years I 

sampled seven sub areas in each RMU, and in one year I sampled six sub areas. I repeatedly 

sampled two sub areas in each RMU during each year to assess interannual variation uncoupled 

from spatial variation, resulting in sampling of 48 unique sub areas.  

5.3.2 Data Collection and Analysis 

 I randomly deployed Browning Strike Force HD or BTC-5HDE motion-triggered camera 

traps in forest, grassland, wetland, and agricultural fields within sub areas in each RMU using 

ArcMap 10.7. In forests, I affixed cameras to trees at 1-m height and oriented cameras north to 

avoid sun glare at dawn and dusk. In non-forested areas, I affixed cameras to metal posts (that I 

hammered into the ground) at the same height and orientation. Cameras were deployed during 

February–April in 2019, 2020, and 2021. Because of the large number of photos, I collected data 

from images during 2-week sampling periods from 12–25 February 2019, 9–22 March 2020, and 

25 February–10 March 2021. The 2-week sampling windows differed slightly each year due to 

logistical constraints during camera deployment. Before each sampling window, cameras were 

deployed for 7 days minimum to allow for deer habituation to cameras. In rare instances (5%), 

cameras did not sample the entire 2 weeks because of unpredictable circumstances in the field (e.g., 

human moving camera). When triggered, cameras captured a 3-photo burst with a 0.3-s delay 

between photos and a minimum 1-s delay before subsequent bursts. In some instances (~25%), 

settings were slightly altered accidentally or because BTC-5HDE cameras did not permit minimum 

delays <5 s. I recorded the spatiotemporal effort of each camera as in Howe et al. (2017). When 

cameras did not sample the entire 2-week window, or when photo delays were set incorrectly, I 

adjusted the spatiotemporal sampling effort accordingly. If I deployed cameras in sub areas that I 

sampled each year, I treated repeatedly sampled points as a single spatial replicate and combined 

the spatiotemporal sampling effort across all years.  
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 I used camera-trap distance sampling to model the observation process (Howe et al. 2017). 

I recorded reference videos as in Howe et al. (2017), which I used to measure the distances between 

cameras and deer within each image from 1 to 15 m integer distances. I did not measure distances 

to bedded deer, or deer that became interested in the camera. Each deer was recorded as doe, buck, 

fawn, or unknown. I binned distances between cameras and deer at 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 

and 15 m and estimated several detection functions with the “Distance” package in R (Miller 2022, 

R Core Team 2022). I did not consider distances >15 m. Candidate detection functions included 

half-normal key functions with 0, 1, and 2 Hermite polynomial adjustments; uniform key functions 

with 1 and 2 cosine adjustments; and hazard-rate key functions with 0, 1, and 2 cosine adjustments. 

I also considered half-normal and hazard-rate key functions with the following factor covariates: 

(1) night or day (determined by camera flash), (2) microhabitat surrounding the camera (cornfield, 

soybean field, deciduous, mixed, or evergreen forest, woody or herbaceous wetland, herbaceous 

grassland, and pasture/hay), (3) RMU, (4) RMU and night or day, (5) night or day and microhabitat, 

(6) RMU and microhabitat, and (7) night or day, microhabitat, and RMU. Because repeatedly 

measuring distances to the same deer in subsequent images introduces overdispersion into the 

detection function, I used the methods of Howe et al. (2019) to select a final detection function 

with Akaike’s Information Criterion adjusted for overdispersion (QAIC).  

 Vegetative obstruction in front of cameras may influence detection probability. Therefore, 

I tested a pooled detection function across open (agricultural fields and grasslands) and concealed 

(forests and wetlands) areas, and separate detection functions for open and concealed areas. To do 

this, I compared the QAIC of the best pooled model to the sum of the QAIC values of the best 

models fit separately. I chose the strategy that produced lowest QAIC value.   

 Density surface modelling assumes that all individuals are available for sampling. Because 

deer are not available for camera sampling when bedded, I estimated the activity level of deer to 

account for this. I recorded the times individual deer were first detected by cameras upon entering 

the field-of-view. Because deer are crepuscular (Beier and McCullough 1990), I double-anchored 

detection times with the average sunset and sunrise times during my sampling (Vazquez et al. 

2019). I estimated the activity level of deer in each RMU by fitting circular kernel densities to 

double-anchored detection times, and standard errors of activity levels with nonparametric 

bootstrapping using the “activity” package in R (Rowcliffe et al. 2014, Rowcliffe, 2021).  
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 After selecting detection functions and estimating deer activity levels, I fit density surface 

models using the “dsm” package in R (Miller et al. 2022) in the form:  

 log(𝐸[𝑛𝑖]) = 𝛽0 + ∑ 𝑓𝑚(𝑥𝑖𝑚)
𝑚

+ ∑ 𝛽𝑓𝑎𝑐
𝑓𝑎𝑐

+ log(𝑣𝑖) (1) 

where 𝑛𝑖 = the count of deer at camera 𝑖, 𝛽0 = the intercept, 𝑓𝑚 = the smooth functions of spatially 

explicit predictors 𝑥𝑖𝑚, 𝛽𝑓𝑎𝑐 = any factor variables considered, and 𝑣𝑖 = the product of detection 

probability and activity level of deer at camera 𝑖 used as an offset. I modelled smooths with thin 

plate regression splines (Wood 2003). In preliminary analysis, overfitting was apparent (e.g., 

extremely wiggly relationships). To prevent overfitting, I specified the gamma parameter at 2 

(Wood 2017 section 4.6.1). I found goodness-of-fit (via observed vs expected counts) of the quasi-

Poisson distribution to outperform other count distributions (e.g., Poisson, negative binomial, 

Tweedie). Therefore, I used this distribution for all models.  

 I tested several spatially explicit predictors of density at each camera including metrics of 

distance and landscape composition or structure within buffers around cameras. For distance 

metrics, I tested the distance to wetland, which I calculated in R using the 2019 National Land 

Cover Database land cover raster (Dewitz and U.S. Geological Survey 2021). I used the 

“landscapemetrics” package (Hesselbarth et al. 2019) in R to test several landscape-composition 

or structure indices within buffers, including the contagion index, coefficient of variation of the 

core area of patches, and total area of concealment cover (defined as forest or wetland) and wetland 

(McGarigal and Marks 1995). I used the Indiana primary and secondary roads state-based shapefile 

(US Census Bureau, Department of Commerce) and R to calculate the total road length within 

buffers. Other metrics were tested and eliminated from consideration due to concurvity (a measure 

similar to collinearity for smooth models; Wood 2017) with these better predictors. I evaluated 

indices in buffers with radii of 250, 750, 1425, 4000, and 8000 m (Appendix D: Buffer Radii). I 

chose a final buffer size for each metric based on the strength of the relationship with deer counts. 

I did not use the same metrics with multiple buffer radii due to concurvity.  

 For each predictor, I used observed vs expected counts to choose between the following 

types of class-smooth interactions for each predictor: (1) single common smoother across all 

classes (i.e., global smoother; no factor-smooth interaction); (2) global smoother and class-specific 

smoothers with identical wiggliness; (3) global smoother and class-specific smoothers with 

differing wiggliness; (4) class-specific smoothers with identical wiggliness but no global smoother; 
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and (5) class-specific smoothers with differing wiggliness but no global smoother (Pedersen et al. 

2019). Additionally, I considered habitat type (forest, wetland, grassland, and agricultural field) 

and an interaction between class and RMU as factor variables. Upon deciding which smooth type 

to fit for each predictor, I fit a global model containing all the best factor-smooth types for each 

predictor. I then used F-tests to identify and remove factor-smooths in the global model with weak 

(P > 0.05) relationships with deer counts.   

 To predict spatially explicit class density, I created a grid over each RMU. I specified the 

resolution of grid cells to be 30 x 30 m because: (1) this was comparable to the area each camera 

sampled; and (2) I did not expect deer density to change perceptibly over this area. Within each 

grid cell, I calculated each predictor of deer density that I parameterized in my final density surface 

model, and used the final fitted model to predict buck, doe, fawn, and unknown density. I did not 

predict density in developed, barren (rock, sand, or clay), or scrub/shrub habitats because I did not 

sample these habitats. Additionally, I used the “dsmextra” package in R (Bouchet et al. 2020) to 

calculate Euclidean and Mahalanobis distances (Mesgaran et al. 2014) and identify cells with 

covariates exhibiting univariate or combinatorial extrapolation outside the range of the covariates 

I sampled. I estimated densities that both considered and did not consider extrapolated cells 

(extrapolated and non-extrapolated densities, respectively).  

 I used a modified formula from Gerrodette and Forcada (2005) to prorate unknown-specific 

density in each cell to the known classes: 

 𝐷̂𝑖(𝑝𝑟) = 𝐷̂𝑖 + 𝐷̂𝑢 [
𝑤𝑖𝐷̂𝑖

𝑤𝑖𝐷̂𝑖 + ∑ 𝑤𝑘𝐷̂𝑘𝑘

] (2) 

where 𝑖 refers to known class 𝑖 (bucks, does, or fawns), 𝑢 refers to the unknown class, 𝑘 refers to 

all other classes ≠ 𝑖, 𝐷̂𝑖(𝑝𝑟) = the prorated density of class 𝑖, 𝐷̂𝑖 = the density of class 𝑖 before 

proration, 𝐷̂𝑢 = the density of the unknown class, and 𝑤𝑖 = the fraction of class 𝑖 that is at risk of 

being unidentifiable. For does and fawns, 𝑤𝑖 = 1. However, because only a fraction of bucks had 

shed their antlers during my sampling, I specified 𝑤𝑖 for bucks as the fraction of bucks detected 

that shed both antlers in the RMU the cell was within. I considered bucks with antlers to be wholly 

identifiable, as antlers are easily distinguishable in images. To estimate the final density of 

demographic classes in each RMU and habitat-specific densities, I averaged the predicted class 

density across the entire grid of each RMU and across habitats within each RMU, respectively. I 
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estimated total deer densities (all classes combined) by summing the predicted density of all 

classes in each cell, and averaging the sum across cells.  

 Because of the size of my prediction grids (~4 to ~16 million cells), I used posterior 

simulation in combination with Welford’s online algorithm (Welford 1962, Knuth 2014) to 

estimate the variance and confidence intervals of all densities through the following process in 

Miller et al. (2022):  

1. Sample from the posterior of the model’s parameters (approximately multivariate normal 

distributed). 

2. Use sampled parameters to generate class-specific predictions of density across the 

prediction grid. 

3. Save necessary summary statistics needed to calculate the variance per Welford’s 

algorithm. 

I repeated the above algorithm 1000 times, and prorated the simulated unknown densities using 

equation 2. I estimated variances of all density estimates from the 1000 simulated densities (using 

Welford’s algorithm) and propagated variance from the activity level via the delta method. I 

approximated 95% confidence intervals using the percentile method (Efron 1981).  

 For each RMU, I estimated fawn:doe ratios by 
𝐷̂(𝑓)

𝐷̂(𝑑)
, where 𝐷̂(𝑓) and 𝐷̂(𝑑) = the density 

estimate of fawns and does, respectively. I estimated the variance of fawn:doe ratios using a first-

order Taylor series expansion (Seltman 2012): 

 

𝑉𝑎𝑟 [
𝐷̂(𝑓)

 𝐷̂(𝑑)
] =

𝐸[𝐷̂(𝑓)]
2

𝐸[ 𝐷̂(𝑑)]
2 (

𝑉𝑎𝑟[𝐷̂(𝑓)]

𝐸[𝐷̂(𝑓)]
2 +

𝑉𝑎𝑟[ 𝐷̂(𝑑)]

𝐸[ 𝐷̂(𝑑)]
2

− 2
𝐶𝑜𝑣[𝐷̂(𝑓), 𝐷̂(𝑑)]

𝐸[𝐷̂(𝑓)]𝐸[ 𝐷̂(𝑑)]
) 

(3) 

where 𝑉𝑎𝑟 [
𝐷̂(𝑓)

 𝐷̂(𝑑)
] = the variance of the fawn:doe ratio, 𝐸[𝐷̂(𝑓)] and 𝐸[ 𝐷̂(𝑑)] = the expected 

density of fawns and does, respectively, and 𝐶𝑜𝑣[𝐷̂(𝑓), 𝐷̂(𝑑)] = the covariance of 𝐷̂(𝑓) and 𝐷̂(𝑑) 

estimated from the 1000 simulated densities. I repeated this process for buck:doe ratios. To infer 

differences in ratios between RMUs, I used a Z test: 

 𝑍 =
𝑟𝑎𝑡1 − 𝑟𝑎𝑡2

√𝑉𝑎𝑟(𝑟𝑎𝑡1 − 𝑟𝑎𝑡2)
 (4) 
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where 𝑟𝑎𝑡1  and 𝑟𝑎𝑡2  = the two ratios being compared, and 𝑉𝑎𝑟(𝑟𝑎𝑡1 − 𝑟𝑎𝑡2) = 𝑉𝑎𝑟(𝑟𝑎𝑡1) +

𝑉𝑎𝑟(𝑟𝑎𝑡2). I implemented a 1-tailed test in instances when my hypotheses on ratios of density 

between RMUs were directional.  

5.4 Results 

 I deployed 1295 cameras but removed 73 cameras from analysis because of faulty 

placement. After accounting for repeatedly sampled points across years, I used data from 1018 

independent locations and measured 83,824 distances (Table 5.1).  

 I observed a spike in detections at close distances in open areas. Therefore, I removed all 

hazard-rate models from consideration in open areas, because this model can fit unnatural spikes 

at close distances. In this instance, the hazard-rate key function can model unnaturally abrupt 

declines in detection probability, which underestimates detectability and overestimates density 

(Buckland et al. 2001).  

 A separate detection function for open and concealed areas was the QAIC-best strategy 

(ΔQAIC = 1492.4). Subsequently, the uniform key function with 1 cosine adjustment term (Δχ2/df 

= 329.2) and the uniform key function with 2 cosine adjustment terms (Δχ2/df = 550.7) were the 

best detection functions in open and concealed areas, respectively (Figure 5.2). I estimated activity 

levels of 0.41 (SE = 0.01), 0.39 (SE = 0.02), and 0.44 (SE = 0.01) in RMUs 3, 4, and 9, respectively 

(Figure 5.3). 
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Table 5.1. Number of cameras deployed and distances measured to white-tailed deer in open 

(agriculture and grasslands) or concealed (forest and wetland) habitats within three different 

Regional Management Units (RMU) in Indiana, USA. 

RMU Habitat Cameras Distances 

3 Open 146 3796 

4 Open 58 3501 

9 Open 117 7539 

3 Concealed 181 15194 

4 Concealed 249 14155 

9 Concealed 267 39639 

 

 

 

 

 
Figure 5.2. Probability density functions of distances (m) between white-tailed deer and camera 

traps in Indiana, USA. In open areas, the uniform key function with 1 cosine adjustment term is 

presented. In concealed areas, the uniform key function with 2 cosine adjustment terms is 

presented. 
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Figure 5.3. Activity probability distributions of white-tailed deer in Regional Management Units 

(RMU) 3, 4, and 9 in Indiana, USA. Solid lines represent the fit kernel density, and dotted lines 

represent 95% confidence intervals. 

 

 After fitting each type of factor-smooth interaction for each predictor, goodness-of-fit via 

observed vs expected counts suggested that a single global smooth was best for the contagion index 

<4000 m and the amount of wetland <8000 m; class-specific smoothers with the same wiggliness 

without a global smoother were best for the coefficient of variation of the core area of patches 

<4000 m; a global smoother and class-level smoothers with differing wiggliness were best for 

distance to wetland; and a global smoother with class-level smoothers of the same wiggliness was 

best for the amount of concealment cover <1425 m and amount of road length <8000 m. F-tests 

on a global model containing all the best factor-smooth interactions suggested that factor-smooth 

interactions were unnecessary for the amount of road <8000 m, distance to wetland, and the 

coefficient of variation of the core area of patches <4000 m. Therefore, I replaced these factor-

smooth interactions with global smooths, but kept the factor-smooth interaction for the amount of 

concealment cover <1425 m within my final model (deviance explained = 46.2%).  

 I found strong evidence to include factor terms for habitat (df = 3, F = 36.47, P <0.001), 

sex (df = 3, F = 30.06, P <0.001), RMU (df = 2, F = 2.38, P = 0.093), and the interaction between 
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sex and RMU (df = 6, F = 2.34, P = 0.037). Similarly, I found strong evidence for the smooths of 

contagion index <4000 m (edf = 13.17, F = 1.38, P <0.001; Figure 5.4A), coefficient of variation 

of the core area of patches <4000 m (edf = 11.11, F = 0.81, P <0.001; Figure 5.4B), distance to 

wetland (edf = 4.13, F = 0.21, P <0.001; Figure 5.4C), amount of wetland <8000 m (edf = 12.18, 

F = 1.21, P <0.001; Figure 5.4D), global smooth for the amount of concealment cover <1425 m 

(edf = 9.77, F = 4.80, P <0.001; Figure 5.4E), class-specific smooths for the amount of 

concealment cover <1425 m (edf = 4.73, F = 0.05, P <0.001; Figure 5.4E), and length of road 

<8000 m (edf = 7.05, F = 0.37, P <0.001; Figure 5.4F). Specific effects of factor terms, smoothed 

relationships, spatial density surfaces, and spatial coefficient of variation (CV) surfaces are 

presented in Figure D1, and Figures 5.4–5.6, respectively.  

 Extrapolated densities and ratios of extrapolated densities were much more variable and 

never exhibited statistical differences (Appendix D: Extrapolated Densities). Henceforth, I only 

present non-extrapolated densities. Within each RMU, density was highest in wetlands and lowest 

in agricultural fields (Table 5.2). The CV of total densities in RMU 3, 4, and 9 were 0.10, 0.10, 

and 0.06, respectively. The average class- and habitat-specific CV was 0.15 (SE = 0.02) and 0.14 

(SE = 0.03), respectively. Buck:doe ratios between RMUs and fawn:doe ratios in RMU 3 and 9 

(observed difference = 0.11, Z = 1.26, P = 0.104) did not exhibit strong differences (Table 5.3). 

However, the fawn:doe ratio in RMU 3 was significantly larger than RMU 4 (observed difference 

= 0.19, Z = 2.21, P = 0.013) and RMU 9 was significantly larger than RMU 4 (observed difference 

= 0.08, Z = -1.66, P = 0.048). 
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Figure 5.4. Partial effects plot of my final density surface model fit to camera-trap distance 

sampling data from white-tailed deer within Indiana, USA. Predictors include the contagion 

index of habitat <4000 m of the camera (A), coefficient of variation of the core area of patches 

<4000 m of the camera (B), distance (m) from the camera to the nearest wetland (C), amount 

(m2) of wetland <8000 m of the camera (D), amount (m2) of concealment cover <1425 m of the 

camera (E), and length (m) of road <8000 m of the camera (F). For the amount of concealment 

cover <1425 m of the camera, I used a factor-smooth interaction that implemented a global 

smoother and class-level smoothers with the same wiggliness.
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Figure 5.5. Predicted densities (deer/km2) of white-tailed deer across Regional Management 

Units (RMU) 3, 4, and 9 of Indiana, USA, from a density surface model fit to camera-trap 

distance sampling data. Cells exhibiting univariate or combinatorial extrapolation are not 

depicted.
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Figure 5.6. Coefficient of variation of predicted densities of white-tailed deer across Regional 

Management Units (RMU) 3, 4, and 9 of Indiana, USA, from a density surface model fit to 

camera-trap distance sampling data.
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Table 5.2. Density estimates (deer/km2) of white-tailed deer in Regional Management Units 

(RMU) 3, 4, and 9 in Indiana, USA. Densities were estimated with a density surface model fitted 

to camera-trap distance sampling data. Habitat- and class-specific densities were estimated only 

across areas that were within the univariate or combinatorial range of environmental covariates I 

sampled. UCI = upper 95% confidence interval. LCI = lower 95% confidence interval. 

Type RMU Habitat/Class 𝐷̂ SE(𝐷̂) CV(𝐷̂) UCI(𝐷̂) LCI(𝐷̂) 

Habitat 3 Agriculture 2.33 0.24 0.10 2.06 2.94 

  
Grassland 5.40 0.76 0.14 4.64 7.52 

  
Wetland 17.81 4.52 0.25 13.68 31.39 

  
Forest 9.99 1.13 0.11 8.92 13.28 

 
4 Agriculture 3.70 0.61 0.17 3.21 5.35 

  
Grassland 5.81 0.72 0.12 4.92 7.69 

  
Wetland 22.66 9.14 0.40 15.93 47.42 

  
Forest 7.29 0.65 0.09 6.71 8.99 

 
9 Agriculture 2.79 0.20 0.07 2.56 3.31 

  
Grassland 5.00 0.50 0.10 4.44 6.41 

  
Wetland 10.24 0.93 0.09 9.26 12.87 

  
Forest 9.26 0.46 0.05 8.78 10.50 

Class 3 Doe 2.07 0.31 0.15 1.73 2.93 

  
Buck 0.74 0.13 0.18 0.58 1.09 

  
Fawn 0.68 0.13 0.19 0.52 0.99 

 
4 Doe 4.24 0.56 0.13 3.69 5.69 

  
Buck 1.57 0.26 0.17 1.24 2.19 

  
Fawn 0.57 0.14 0.25 0.39 0.96 

 
9 Doe 2.96 0.26 0.09 2.68 3.69 

  
Buck 1.09 0.12 0.11 0.93 1.43 

  
Fawn 0.65 0.08 0.13 0.54 0.87 

Total 3 Total 3.50 0.36 0.10 3.15 4.55 

 
4 Total 6.38 0.64 0.10 5.82 8.11 

 
9 Total 4.70 0.29 0.06 4.44 5.55 
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Table 5.3. Ratios of densities of different classes of white-tailed deer in Regional Management 

Units (RMU) 3, 4, and 9 of Indiana, USA. Ratios were computed with densities that only 

considered areas that were within the univariate or combinatorial range of environmental 

covariates I sampled. 

Classes RMU Ratio Var(Ratio) 

Buck:Doe 3 0.358 0.007 

 
4 0.370 0.006 

 
9 0.370 0.003 

Fawn:Doe 3 0.328 0.006 

 
4 0.135 0.001 

 
9 0.220 0.001 

5.5 Discussion 

 I present a novel strategy to estimate and test for differences between density surfaces of 

classes within a population. I first implemented a density surface model with camera-trap distance 

sampling data, which linked variation in local density to environmental predictors across large 

spatial expanses with widely differing landscape characteristics. Secondly, the framework of 

hierarchical generalized additive modelling allowed fitting and assessment of various factor-

smooth interactions, thereby illuminating differential class-specific responses to external factors 

within a single statistical model. Thirdly, I extended foundational statistical theory to tractably test 

for differences in ratios of density, which further elucidated differences in ratios of classes related 

to landscape characteristics. 

 I found metrics associated with landscape fragmentation, anthropogenic development, and 

concealment cover to predict local density. These predictors can be tied to naturally or 

anthropogenically sourced increases in food availability. Density was largest in areas with 

moderately high contagion values, which indicates moderately low amounts of landscape 

fragmentation. Similarly, density responded positively to increased road lengths, which further 

fragment landscapes (Schonewald-Cox and Buechner 1992) and increase edges that contain 

greater concentrations of plants that deer forage (Ford et al. 1993). Lastly, density was highest 

when intermediate amounts of concealment cover were present. Because agriculture dominates 

areas without concealment cover in the RMUs, the amount of agriculture within buffers is 

negatively related to concealment cover (Pearson's product-moment correlation = -0.93, P <0.001). 
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Since deer readily consume calorie-dense crops (Rouleau et al. 2002), intermediate levels of 

agriculture and concealment cover may optimize food availability from crops and natural forage. 

Cumulatively, optimal values of these three metrics heighten available food on the landscape 

which, in turn, support denser populations.  

 Camera traps are an effective tool for identifying classes within a population. Hierarchical 

density surface models provide an established method to model class data and examine class-

specific relationships between density and environmental predictors with open-source software. 

When implementing this strategy, I found larger doe and fawn densities to be related to 

intermediate amounts of concealment, while larger buck densities were linked to areas with small 

or large amounts of concealment. Class-specific differences in habitat selection of deer has been 

documented by past research. Specifically, bucks may select areas with lower quality foraging 

opportunities compared to does and fawns (McCullough 1979). My class-specific density surfaces 

support this relationship. Because lack of concealment is predominantly associated with 

agriculture, large amounts of concealment may not provide as much calorie-dense waste grain as 

areas with intermediate amounts of concealment. Conversely, areas with scarce amounts of 

concealment may have insufficient natural browse for foraging during daylight.  

 I extended existing statistical theory to provide a tractable method to compare ratios of 

density. Using this method, I found statistically higher recruitment rates in areas with more 

agricultural use, which supported my hypothesis. Although agriculture is one of the greatest causes 

for biodiversity loss (MEA 2005), many adaptable species, such as deer, are able to consume crops 

for nutritional gains (Putman and Moore 1998). In these species, supplemental caloric intake from 

agriculture may support unnaturally high recruitment rates for dense populations, even when 

natural food resources are limited. Indeed, deer densities in forests were positively related to 

recruitment ratios in my study, which contradicts density-dependent theories on recruitment 

(Keyser et al. 2005).  

 Despite larger buck:doe harvest ratios in RMU 3, I did not document smaller buck:doe 

ratios in this region. However, yearling bucks often disperse larger distances from natal areas than 

does (DeYoung 2011), and dispersal distances of bucks are negatively related to forest-cover 

availability (Long et al. 2005), which is limited in RMU 3. Therefore, larger-magnitude dispersal 

of young bucks coupled with greater recruitment in RMU 3 may have increased the buck:doe ratio 

in RMU 3 to values similar to those in the other RMUs.  
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 Extrapolation beyond the range of covariates sampled in the field can lead to dubious 

inference in ecological studies, as it assumes that the form of the fitted model remains appropriate 

(Jones et al. 2022). I exemplified this by using Euclidean and Mahalanobis distances to identify 

cells in my prediction grids that exhibited univariate or combinatorial extrapolation (Mesgaran et 

al. 2014), and computed densities that included and did not include these cells. Although 

extrapolation did not appear to affect the point estimates of density in two of the RMUs, the 

variances of extrapolated densities were considerably higher, and larger spatially explicit CVs 

usually corresponded to extrapolation (Table D1). Conversely, point estimates of density were 

affected in RMU 9 by including extrapolated cells. Therefore, I encourage readers to interpret 

extrapolated and non-extrapolated densities accordingly; although the total non-extrapolated 

density in RMU 9 was smaller than RMU 4, cells exhibiting extrapolation in RMU 9 could alter 

this conclusion to an unknown degree. More thorough sampling across the range of environmental 

predictors of density that I used in my density surface model would be needed to minimize such 

sampling-based discrepancies and should be a design consideration for future studies that intend 

to use the methods I describe. 

 Wildlife research and management benefits from precise density estimates (Williams et al. 

2002). The CV typically is used to assess relative precision of estimates (Skalski et al. 2005). In 

conventional camera-trap distance sampling, the encounter-rate variance is predominantly 

responsible for variance of density estimates (Howe et al. 2017). Large encounter-rate variances 

can cause larger CVs of densities from this estimator (>0.25 or even >0.40; Bessone et al. 2020; 

Cappelle et al. 2021). Density surface modelling avoids design-based estimation of the encounter-

rate variance by modelling encounter rates at cameras as a function of environmental predictors. 

This difference in modelling approaches may be partially responsible for the lower CVs of my 

density estimates. Therefore, I believe future managers using camera traps to sample wildlife will 

benefit from using spatially explicit methods such as mine, as this will facilitate detection of 

meaningful changes in density and provide confidence in single estimates. 
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 FEAR AND CONCEALMENT PREDICT GROUP SIZE 

OF A COMMON UNGULATE 

Submitted for publication as: Delisle, Z.J., R.D. Sample, and R.K. Swihart. In Review. Fear and 

concealment predict group size of a common ungulate. 

6.1 Abstract 

Many species exhibit group formation in nearly all ecosystems. Hypotheses on the drivers 

of group size include perceived predation risk, food resources, and concealment from danger. 

However, several previous studies have limited inference due to testing group-formation 

hypotheses individually. I used camera traps, detectability estimates from distance sampling, and 

hierarchical Bayesian modelling to index group size and test multiple group-formation hypotheses 

in white-tailed deer (Odocoileus virginianus), within Indiana, USA. I found a strong relationship 

between my index of group size and the following: (1) three-way interaction of spatiotemporal 

fluxes in natural predation risk and anthropogenic development; and (2) two-way interaction 

between the habitat type in which a camera was placed (open area or concealment) and the amount 

of concealment within the larger landscape. Specifically, I documented the largest groups in areas 

near anthropogenic development, in areas with high predator use intensity, and during times of 

day when predators were active. Additionally, groups were larger in locations with concealment 

when the area of concealment within the surrounding landscape was small, and larger in open areas 

when the amount of concealment within the surrounding landscape was large. My methods can 

aid future behavioral and ecological studies, as I present a clear and easily replicable strategy that 

infers group membership from spatiotemporal proximity, corrects for differences in detectability, 

and enables sampling across large spatial and long temporal scales. I identified that fear of natural 

predators and anthropogenic disturbance interactively explained variation in group size.  

6.2 Introduction 

Numerous ecological hypotheses offer explanations for why animals choose, or are 

constrained, to group together with conspecifics (Krause et al. 2002, Ward and Webster 2016). 

Many of these hypotheses are tied to structural attributes of the environment or population by 

which group formation is driven, including: perceived or actual risk of predation (Hill and Lee 
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1998); anthropogenic disturbance (Averbeck et al. 2012); food availability or food quality 

(Beauchamp 2007); and availability of concealment (Webb et al. 1996). A common assumption 

across all group-formation hypotheses is that group size is adaptive and thus increases fitness by 

virtue of improved individual survival or breeding success (Turner and Pitcher 1986). I consider 

these hypotheses in detail below, and then assess their support in explaining variation in group size 

of white-tailed deer (Odocoileus virginianus; henceforth deer) – a common ungulate in the 

Midwestern USA (henceforth Midwest) that often forms loose groups. The fluid nature of deer 

aggregations allows individuals to leave or join groups at will (Lagory 1986), making deer an ideal 

model species to test group-formation hypotheses along various environmental gradients over 

which deer group size may fluctuate.  

Predation risk has been linked to group formation via several different hypotheses, each of 

which predicts that group size increases with predation risk (Bertram 1978, Roberts 1996, Caro 

2005). A corollary of these predation-risk hypotheses is that larger groups should be able to feed 

in riskier areas, which may increase the amount of available food within the landscape (Fortin et 

al. 2009). Within the Midwest, natural predators of deer are predominantly restricted to coyotes 

(Canis latrans; Kilgo et al. 2012). Although coyotes prey principally on small vertebrates (Randa 

et al. 2009) and may not influence deer abundance across regional scales (Bragina et al. 2019), 

several studies have documented their behavioral effects on deer (Lingle and Pellis 2002, Cherry 

et al. 2015, Higdon et al. 2019). Moreover, predators could be affecting group size at multiple 

spatial and temporal scales. For instance, intense local use of an area by predators may promote 

increased group size at local spatial scales, whereas temporal shifts in regional predator activity 

may promote increased group size during active periods. Given the extent of behavioral responses 

to predators, fluctuations in deer group size across spatiotemporal gradients of predation risk may 

exist.  

Anthropogenic disturbance constitutes a unique combination of actual and perceived risk 

(Averbeck et al. 2012) that could influence group size. Actual risk occurs during seasons when 

and where game species are hunted (Benhaiem et al. 2008) or animal-vehicle collisions occur 

(Sullivan 2011). Additionally, species may respond to perceived risk from other anthropogenic 

activity during times or in areas that are not hunted (McBlain et al. 2020). For instance, Ritzel and 

Gallo (2020) found that increased vigilance was a common mammalian response to urbanization. 

Deer in the Midwest experience a variety of anthropogenic disturbances, including development 
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and recreational activity (Brown et al. 2000). Furthermore, responses in ungulate behavior have 

been documented along urban gradients (Bonnot et al. 2013). Maurer et al. (2022) specifically 

documented larger groups of Key deer (Odocoileus virginianus clavium) in elevated areas near 

urban development. Therefore, larger deer groups may be expected to occur near areas 

experiencing more anthropogenic disturbance. 

Food resources constitute another potential determinant of group size. If food is limited, 

individuals may reduce intraspecific competition for food by feeding in different areas than other 

individuals, resulting in smaller groups (Jarman 1974). Conversely, individuals may be able to 

feed while maintaining contact with group members in areas with plentiful food (Jarman 1974). In 

addition to food availability, food quality may influence group size. The forage-maturation 

hypothesis predicts that herbivores benefit from foraging in groups, as group feeding better 

maintains vegetation at younger, more nutritious, life stages (Esmaeili et al. 2021). Deer in the 

Midwest may exhibit such a response, as landscape fragmentation fluctuates between varying 

degrees of anthropogenic land use. Such landscape fragmentation results in more forest edges with 

larger amounts of woody food (Ford et al. 1993) that support higher levels of foraging by deer 

(Williamson and Hirth 1985). Forest edges are especially pertinent in the winter when deer heavily 

rely on woody vegetation because herbaceous plants and crop residues are limited (Hewitt 2011). 

Concealment, what I define as vegetative cover (e.g., forest or wetland) required when 

inactive or to hide from predators, is an essential resource for many species (Signorell et al. 2010) 

and may affect group size at different spatial scales. At a larger landscape scale, sparse amounts 

of concealment may produce larger groups because of spatial confinement (Atwood 2006). 

Confinement-induced group size could be especially important for crepuscular or nocturnal species 

that require cover during daytime rest but otherwise feed in surrounding open areas. Such is often 

the case for species in agriculturally dominated landscapes when crops are consumed at night 

(Delahay et al. 2006). At finer spatial scales, the immediate presence of concealment may influence 

group size because risk may increase in open areas (Lagory 1986). Deer in the Midwest are an 

ideal model species to test these concealment hypotheses because agriculture dominates the 

landscape, producing a gradient of concealment at both local and landscape spatial scales.  

Numerous past studies have tested these hypotheses individually (Kasozi and Montgomery 

2020). However, in addition to acting independently, multiple, possibly interacting mechanisms 

could drive group size. For instance, in areas lacking predators, herbivores may not form large 



 

146 

groups when foraging in open areas outside of concealment. But in areas with abundant stalking 

or pursuing predators, herbivores may form larger groups in open areas. Considering such 

interactions may lead to more robust explanations of group formation and improvements in models 

that predict group size.   

I use camera traps to index deer group size across three heterogenous regions of Indiana, 

USA. I assessed the effects of: (1) spatiotemporal fluctuations in predation risk from natural 

predators; (2) anthropogenic disturbance; (3) natural food; and (4) concealment. Specifically, for 

(1) above, I hypothesized an interactive effect of coyote use intensity (i.e., how much coyotes use 

a local area) and regional coyote activity levels. I predicted larger groups during times of day when 

coyotes were active in areas where coyote use intensity was high. However, I predicted no changes 

in group size where coyote use intensity was low because low use intensity suggests minimal 

predation risk irrespective of coyote activity levels. For (2) I hypothesized that greater 

anthropogenic disturbance would cause larger groups due to increased perceived risk. Accordingly, 

I predicted larger groups as distance to anthropogenic development decreased. For (3) I 

hypothesized that deer group size would respond to availability and quality of natural winter food. 

Because forest edges are associated with increased winter food availability that is consumed by 

deer, I predicted a positive relationship between group size and forest edge density. Similarly, 

because deer selectively consume woody food (Brown and Doucet 1991), I also predicted larger 

groups in areas with higher availability of preferred woody twigs. Lastly, for (4) I hypothesized 

that deer will be forced to congregate within concealment to greater degrees when concealment in 

the surrounding landscape is limited. Thus, I predicted larger groups in areas with less concealment 

in the surrounding landscape. Similarly, because of the increased perceived risk associated with 

open areas, I hypothesized deer would respond with larger groups in open areas locally lacking 

concealment. In addition to models based on a single hypothesis, I also consider models 

incorporating combinations of these hypotheses (more below). Additional details on hypotheses 

and predictions are provided in Table 6.1.
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Table 6.1. Model comparisons and estimates of baseline predictors of deer group size based on a 

priori hypotheses. Aside from natural risk which contained two additive predictors and a single 

two-way interaction, only a single predictor was fitted in models. LCI and UCI = lower and 

upper 95% credible interval, respectively; ΔLOO = difference between the approximate leave-

one-out cross validation of the best model and competing model; SE = standard error of 

component-wise differences of the LOO value from the best model; CAL = coyote activity level; 

CUI = coyote use intensity; OA = open areas (baseline = concealment); PNTD = preferred and 

neutral twig density; DRB = distance to road or building; FED = forest edge density <750 m; CA 

= concealment area <8 km. 

Hypothesis Predictor Prediction Estimate LCI UCI ΔLOO SE 

Natural risk CAL + -0.164 -0.198 -0.131 0.0 0.0 

 
CUI + 0.038 -0.001 0.081 

  

 
CUI * CAL + 0.031 0.006 0.056 

  
Concealment risk OA + -0.245 -0.350 -0.139 -134.2 12.0 

Food PNTD + -0.001 -0.069 0.065 -193.3 11.6 

Anthropogenic risk DRB − 0.061 0.012 0.111 -196.0 11.6 

Food FED + 0.064 0.008 0.124 -197.9 11.8 

Confinement CA − -0.130 -0.252 0.002 -205.1 11.7 
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6.3 Methods 

6.3.1 Study Areas 

I sampled in deer Regional Management Units 3, 4, and 9 in Indiana, USA. Regional 

Management Units were delineated by known mortality rates of deer within Indiana counties so 

that counties with nearer spatial proximity and similar deer mortality rates were clustered into a 

single unit. Thus, mortality rates of deer are more similar within Regional Management Units than 

between Regional Management Units (Swihart et al. 2020). The Indiana Department of Natural 

Resources uses these Regional Management Units when setting harvest limits on deer for human 

hunters. 

Regional Management Unit 3 spans west-central Indiana and is predominantly row-crop 

agriculture (79%) with fragmented concealment (defined as forest or wetland; 11%) and minimal 

development (6%). Regional Management Unit 4 covers southcentral Indiana and contains much 

more concealment (56%), a mixture of row-crop agriculture (19%) and grassland (16%), and 

similar amounts of development (6%). Lastly, Regional Management Unit 9 is in northeast Indiana, 

and is mostly row-crop agriculture (56%) with a mixture of wetland (13%), grassland (11%), forest 

(8%), and development (9%).  

6.3.2 Data Collection 

Sampling of Regional Management Units was completed inside randomly chosen 41.44-

km2 cells from the deer harvest reporting grid used by the Indiana Department of Natural Resources 

to collect spatially explicit harvest data of deer. I specifically deployed cameras inside 10.36-km2 

sampling areas (henceforth sampling areas) nested within larger 41.44-km2 cells (Figure 6.1). I 

placed 10.36-km2 sampling areas within randomly selected 41.44-km2 cells to ensure that (i) 

habitat composition was representative of the larger 41.44-km2 cell, and (ii) access to private 

property across the sampling areas was as homogeneously distributed as possible (~95% of Indiana 

is privately owned).
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Figure 6.1. Landcover types in each Deer Regional Management Units (RMU) of Indiana, USA, 

within which I sampled white-tailed deer. I sampled within 16 different 10.36-km2 sampling 

areas in each RMU during 2019, 2020, and 2021.
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I deployed and collected data with Browning Strike Force HD motion-triggered camera 

traps within a 2-week sampling window from 12–25 February 2019, 9–22 March 2020, and 25 

February–10 March 2021. Sampling windows differed due to logistical issues. Cameras were 

positioned randomly using ArcMap 10.7, contingent upon being >200 m from the nearest-

neighboring camera. I affixed cameras to trees at 1-m height, and oriented cameras north to avoid 

glare at sunrise and sunset. If no trees were present, I affixed cameras to metal posts hammered 

into the ground at the same height and orientation. Locations were minimally adjusted (<20 m) in 

rare instances to ensure sampling suitability (e.g., extremely steep topography, flooding, fallen 

tree). When triggered, cameras captured three photos separated by 0.3 seconds, with photo bursts 

separated by ≥1 sec.  

I recorded the time of initial detection when individual deer entered the field-of-view of 

the camera. I then calculated the elapsed time between consecutive deer entering the camera’s 

field-of-view. I examined empirical cumulative distribution functions of the times between initial 

detections of consecutive deer in each region in open areas and concealment. After removing 

differences >50 min, I found that, regardless of concealment or region, empirical cumulative 

distribution functions started a long flat tail at 10 min. I thus decided that elapsed times >10 min 

would constitute a new group (Appendix E: Group Membership). After defining groups, I indexed 

group size by summing the total number of putative individuals detected >10 min of the previously 

detected deer. I used these counts as indexes because: (1) deer were unmarked and thus double 

counting was possible; and (2) some group members may not pass in front of, or be detected by, 

the camera trap.  

6.3.3 Baseline Predictors of Group Size 

6.3.2.1 Natural Predation 

I indexed coyote use intensity (UI) for each camera by 𝑈𝐼 =
∑ 𝑑𝑖

𝐼
𝑖=1

𝑇
 where 𝑑𝑖 = the number 

of coyotes present in photo 𝑖 summed across all 𝐼 photos, and 𝑇 = the total time the camera was 

sampling (sec). I estimated the regional activity level of coyotes when each deer group was 

detected by double anchoring the initial detection times of coyotes with the average sunset and 

sunrise times across the spatiotemporal extent of my sampling (Vazquez et al. 2019). I fit a circular 
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kernel density to these double-anchored times (Rowcliffe et al. 2014) with the “activity” package 

in R (Rowcliffe 2021, R Core Team 2022), which was used to determine the activity level of 

coyotes when I detected deer groups. I estimated coyote activity across all cameras because of data 

paucities on most cameras.  

6.3.2.2 Anthropogenic Disturbance 

I calculated the distance (m) to nearest road or building (i.e., whichever was nearest) as an 

index of anthropogenic disturbance using the 2015 Indiana primary and secondary roads shapefile 

(US Census Bureau, Department of Commerce) and US building footprints shapefile from 

Microsoft (https://github.com/Microsoft/USBuildingFootprints) in R.  

6.3.2.3 Natural Food Availability 

I assessed the effects of natural food availability and quality on group size with the density 

of forest edges in the immediate area surrounding the camera, and density of twigs that were 

preferentially and neutrally consumed. I used a buffer with a radius of 750 m to define the 

immediate surrounding area because 750 m approximates the radius of a circular doe home range 

after the hunting season in agricultural areas (Nixon et al. 1991, Vercauteren and Hygnstrom 1998). 

The density of forest edge was calculated in R with the National Land Cover Database 2019 land 

cover raster file (Dewitz 2021).  

To estimate total density of woody twigs that were preferentially and neutrally consumed 

within forest patches, I sampled five 1-m2 quadrats placed every 10 m along 50-m transects. 

Transect were randomly placed and oriented using ArcMap 10.7. The number of transects sampled 

per forest patch was determined by 𝐴𝑖/2𝑁𝑇𝑖 < 𝑁𝑇𝑖, where 𝑁𝑇𝑖 = the number of transects in forest 

patch 𝑖, and 𝐴𝑖 = the area (ha) of forest patch 𝑖. I counted all living woody twigs in 3-dimensional 

space 20-180 cm above the quadrat (Frerker et al. 2013), and estimated twig density (𝐷𝑖) by 𝐷𝑖 =

𝑡𝑖/𝑛𝑖, where 𝑡𝑖 = the total number of twigs counted in forest patch 𝑖, and 𝑛𝑖 = the total number of 

quadrats surveyed within forest patch 𝑖. I used a Pearson’s chi-square test for count data (Ebbert 

2019) to classify twig species as significantly (consumed at a higher rate than expected; α ≤ 0.05) 

or neutrally (consumed at a similar rate than expected; α > 0.05) preferred for consumption. I used 

this preference ranking to index nutritional quality, as deer prefer higher quality vegetation (Bee 



 

152 

 

et al. 2009). I assigned cameras placed in forest patches the food indices associated with the patch 

the camera was deployed in. For cameras not deployed in forest patches, I assigned the average 

indices from the 10.36-km2 sampling area in which the camera was deployed. 

6.3.2.4 Availability and Presence of Concealment 

I calculated the area of forest and wetland <8 km from the camera using the National Land 

Cover Database 2019 land cover raster in R as a measure of availability of concealment in the 

surrounding landscape. I chose a buffer of 8 km to define the surrounding landscape because this 

approximates the average dispersal distance of young bucks (DeYoung 2011). Secondly, 

concealment at the position of cameras was classified at deployment as present (forest or wetland) 

or absent (grassland or agriculture). Other predictors of group size were tested but deemed less 

informative or to have multicollinearity issues with better predictors; they are presented in 

Appendix E.  

6.3.4 Data Analysis 

I modeled my index of group size in a Bayesian hierarchical model with a negative 

binomial response using the “brms” package (Bürkner 2017) in R, which utilizes Hamiltonian 

Monte Carlo and NUTS samplers (Hoffman and Gelman 2014) implemented in Stan (Stan 

Development Team 2022). To account for spatial autocorrelation and repeated observations on the 

same camera, I included random intercepts for camera identity nested within the 10.36-km2 

sampling area nested within the Regional Management Unit. I left-truncated the negative binomial 

distribution at 1 because a group size of 0 is impossible (Bürkner 2017).  

Detectability of deer may change depending on vegetative obstruction in front of the 

camera trap. Therefore, I used distance-sampling detection functions (Howe et al. 2017) fit to 

distances collected from deer in the same photographs captured for this project (unpublished 

manuscript, Z.J. Delisle, D.L. Miller, R.K. Swihart). In so doing, I found that unique detection 

functions fit to open areas and concealment were most appropriate.  

To correct my index of group size for differing detection probabilities within open areas 

and concealment, I used corresponding detection probabilities of deer in both areas (open areas = 

0.40; concealment = 0.33) as offsets in my model. I did not propagate uncertainty associated with 
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the detection functions into my regression coefficients because uncertainty in detection probability 

was minimal (coefficient of variation: open areas = 0.007, concealment = 0.007).  

I standardized (i.e., subtracted the mean and divided by the standard deviation) all 

continuous predictors. I first fit baseline models with either single predictors or the interaction 

between coyote activity level and use intensity, to test the predictive ability of each covariate 

(Table 6.1). I ran 3 Markov chains for a total of 4000 iterations per chain. The first 1500 iterations 

per chain were discarded. I set my initial values to 0. Gaussian priors were applied for all regression 

coefficients (mean = 0, standard deviation = 0.05) and nested random effects (mean = 0, standard 

deviation = 4).  

6.3.5 Complex Models 

After fitting my index of group size in the baseline models, I proceeded to construct three 

more complex hypotheses by fitting interactive combinations of strong and marginal predictors 

from the baseline models (Table 6.2). A strong relationship was defined as one in which the 95% 

credible interval did not overlap 0, whereas a marginal relationship was defined as when only a 

single 95% CI overlapped 0 by <0.01.



 

 

 

1
5
4
 

Table 6.2. Model comparisons and estimates of interactive predictors of deer group size based on complex a priori hypotheses derived 

from strong or marginal baseline predictors of group size. LCI and UCI = lower and upper 95% credible interval, respectively; ΔLOO 

= difference between the approximate leave-one-out cross validation of the best model and competing model; SE = standard error of 

component-wise differences of the LOO value from the best model; CAL = coyote activity level; CUI = coyote use intensity; DRB = 

distance to road or building; OA = open areas (baseline = concealment); CA = concealment area <8 km. 

Hypothesis Predictor Estimate LCI UCI ΔLOO SE 

Anthropogenic risk * natural risk CAL -0.156 -0.190 -0.122 0.0 0.0 

 
CUI 0.046 -0.016 0.111 

  

 
DRB 0.023 -0.025 0.071 

  

 
CUI * CAL 0.078 0.029 0.128 

  

 
CAL * DRB -0.039 -0.073 -0.004 

  

 
CUI * DRB -0.009 -0.061 0.043 

  

 
CUI * CAL * DRB -0.041 -0.080 -0.003 

  

Confinement * concealment risk OA -0.219 -0.327 -0.106 -149.9 13.0 

 
CA -0.173 -0.297 -0.045 

  

 
OA * CA 0.154 0.031 0.279 

  

Anthropogenic risk * concealment risk OA -0.245 -0.358 -0.136 -151.6 12.5 

 
DRB 0.055 0.001 0.108 

  

 
OA * DRB -0.050 -0.169 0.073 
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Firstly, I hypothesized that group sizes would differ in open areas and concealment when 

under differing amounts of anthropogenic risk. I predicted that groups would be larger in open 

areas when distance to road or building was small because of more direct exposure to 

anthropogenic activity in open areas. Secondly, I hypothesized that open areas and concealment 

would yield differing group sizes in areas with varying amounts of concealment within the 

landscape surrounding each camera. I predicted larger groups in concealment than in open areas 

when small amounts of concealment are present in the surrounding landscape, because deer will 

be confined to small forest patches when needing concealment (e.g., when bedding or not feeding 

on agriculture). I predicted larger groups in open areas when there are large amounts of 

concealment in the surrounding landscape because deer will congregate in limited open areas to 

consume waste grain. Lastly, I hypothesized that group size would interactively respond to risk 

associated with distance to the nearest building or road, coyote use intensity, and coyote activity 

level. Specifically, I predicted the most positive relationship between group size and coyote 

activity level to be when use intensity was high and distance to road was small (Table 6.2). 

6.3.6 Final Models 

I acknowledge that more complex combinations of factors than hypothesized above could 

affect group size. Accordingly, after evaluating the strength of baseline and complex models above, 

I fit all additive combinations of strong or marginal complex interactions and strong or marginal 

baseline predictors that were not part of strong or marginal complex interactions. I used 

approximate leave-one-out cross validation (LOO) for model selection and only report models 

within 2SE of component-wise differences of the LOO value from the best model (Vehtari et al. 

2017). I first compared LOO values of baseline models only. Secondly, I evaluated LOO values 

of the models containing complex interactions. Lastly, I compared the LOO values from additive 

combinations of strong or marginal predictors along with baseline and complex interactive models 

(i.e., all models).  

6.4 Results 

I deployed cameras at 1,018 unique locations and detected deer entering the field-of-view 

of my camera traps 24,352 times at 831 locations resulting in a total of 8,794 indexed deer groups 
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(Table 6.3). I did not detect any deer at 187 cameras. The average index of group size was 2.76 

deer (SE = 0.03) before correcting for detectability (Appendix E). When only considering baseline 

models, I found the model containing the interaction between coyote activity level and coyote use 

intensity to be the only competing LOO-best model (ΔLOO over next best model = -134.2, SE = 

12.0; Table 6.1). Subsequently, when only considering the three complex models containing two- 

or three-way interactions, I found the model containing the three-way interaction between distance 

to nearest building or road, coyote use intensity, and coyote activity level to be the only competing 

LOO-best model (ΔLOO over next best model = -149.9, SE = 13.0; Table 6.2).  

 

Table 6.3. Total number of cameras deployed, unique detections of white-tailed deer, and 

indexed groups of deer in Deer Regional Management Units (RMU) 3, 4, and 9 of Indiana, USA, 

within concealment (forest and wetland) or open areas (grassland and agricultural field) during 

2019, 2020, and 2021. 

RMU Cover Cameras Detections Groups 

3 Concealment 181 4561 1680 

3 Open areas 146 1159 485 

4 Concealment 249 4801 2077 

4 Open areas 58 1236 482 

9 Concealment 267 10029 3268 

9 Open areas 117 2566 802 

 

 

When further considering all baseline models in Table 6.1, complex models in Table 6.2, 

and final models containing additive combinations of strong or marginal complex interactions or 

baseline predictors, I found that the LOO-best model contained: (1) the two-way interaction 

between the amount of concealment within the larger surrounding area and occurrence of local 

concealment; and (2) the three-way interaction between distance to nearest building or road, coyote 

use intensity, and coyote activity level (Table 6.4). The only other possible best model (i.e., <2SE 

of the best model) was the model containing the two interactions in the LOO-best model, along 

with forest edge density in the immediate area of the camera (ΔLOO = -1.9, SE = 1.4). However, 

the additive predictor, forest edge density, in the second-best model had neither strong nor 

marginal support (estimate = 0.044, 95% credible intervals = -0.013 to 0.101). Plots of posterior 

distributions, posterior predictive checks, and trace plots are provided in Appendix E.  
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Table 6.4. Estimates of all predictors contained within the final LOO-best model for regressing 

group size of white-tailed deer. LCI and UCI = lower and upper 95% credible interval, 

respectively; CA = concealment area <8 km; OA = open areas (baseline = concealment); CAL = 

coyote activity level; CUI = coyote use intensity; DRB = distance to road or building. 

Hypothesis Predictor Estimate LCI UCI 

Confinement * concealment risk + 

anthropogenic risk * natural risk CA -0.173 -0.293 -0.048 

 
OA -0.135 -0.243 -0.025 

 
CAL -0.147 -0.181 -0.112 

 
CUI 0.053 -0.010 0.116 

 
DRB 0.018 -0.031 0.067 

 
CA * OA 0.176 0.055 0.298 

 
CAL * CUI 0.083 0.034 0.132 

 
CAL * DRB -0.041 -0.076 -0.007 

 
CUI * DRB -0.014 -0.066 0.037 

 
CAL * CUI * DRB -0.044 -0.083 -0.006 

 

 

Based on the final LOO-best model, the index of group size was larger in open areas when 

the amount of concealment in the surrounding landscape was largest, and larger in concealment 

when the amount of concealment in the surrounding landscape was smallest (Figure 6.2). At large 

distances to the nearest road or building, group size decreased as coyote activity level increased, 

regardless of coyote use intensity (Figure 6.3). However, when distance to the nearest road or 

building was small, group size was the most positively related to coyote activity level when coyote 

use intensity was high. 
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Figure 6.2. Conditional effects plot of the relationship between an index of white-tailed deer 

group size (± SE) and a two-way interaction between the cover type in which the camera was 

placed (open area or concealment) and the amount of concealment (km2) within 8 km of the 

camera in Indiana, USA.
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Figure 6.3. Conditional effects plot of the relationship between my index of white-tailed deer 

group size (± SE) and the three-way interaction between coyote use intensity (CUI; total 

detections/total time the camera sampled), coyote activity level, and distance to the nearest road 

or building (DRB; m) in Indiana, USA. I depict three plots with different distances to the nearest 

road or building: DRB = 555 m (1.5 standard deviations more than average distance); DRB = 

282 m (average distance); and DRB = 8 m (1.5 standard deviations less than average distance). 

Within each plot, three levels of CUI are presented: (Low) CUI = 0 (minimum observed CUI); 

(Average) CUI = 26,104; and (High) CUI = 159,555 (1.5 standard deviations more than average 

CUI). 
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6.5 Discussion 

My results highlight a two-pronged landscape of fear (Brown et al. 1999) in which 

anthropogenic development and spatiotemporal use intensity of natural predators interactively 

influenced group size. Deer were annually harvested by humans in the months immediately 

preceding each of my field seasons, likely enhancing fear responses to anthropogenic sources. In 

addition, coyotes, which emerged as the dominant carnivore in Indiana only after extirpation of 

larger carnivores (Lyon 1934), are well adapted for urbanization and can persist in urban areas 

near roads and buildings (Jones et al. 2016; Appendix E). Interactively, anthropogenic 

development and spatiotemporal pulses of coyote use intensity likely heightened fear of multiple 

mortality sources to which deer responded by forming larger groups.  

Findings from my study suggest that landscape availability of concealment and open areas, 

not fear associated with open areas per se, better explains concealment-related predictors of group 

size in my study. I found groups to be larger in concealment and smaller in open areas, which 

contradicts past research and my baseline predictions (Lagory 1986). Instead, my analysis revealed 

a more complex interaction between local occurrence of concealment and the amount of 

concealment within the surrounding landscape. Specifically, groups were largest at camera stations 

in concealment when landscape-level concealment was limited, and largest at cameras in open 

areas when landscape-level concealment was plentiful.  

In my study area, perceived mortality risks and context-dependent availability of 

concealment appear to have outweighed foraging considerations as predictors of group size in deer. 

I found minimal support for group size responding to woody food availability or quality. The latter 

result could be due to the lower relative nutritional quality of natural woody foods (Hewitt 2011). 

Regarding availability, winter food resources in my study area may not be limited; forest edges 

and associated woody browse were prevalent. Decorative ornamental plants surrounding human 

residences were common and often contain highly palatable plants (Swihart et al. 1995). Waste 

grain left behind in agricultural fields after harvest also represents a plentiful wildlife food source 

(Warner et al. 1989). These results are contingent upon the following: (1) my study population was 

hunted just months before my sampling; and (2) timing of my sampling during winter resulted in 

no available natural herbaceous food.   

Camera traps are excellent tools to index group size. In a recent review, 91% of articles 

studying group size defined groups based on direct observations of humans (Kasozi and 
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Montgomery 2020). Direct human observations may suffer from small sample sizes or few spatial 

replicates due to logistical constraints, and bias from extreme differences in detectability in 

concealment vs open areas due to camouflage of the target species and direct lines-of-sight. 

Conversely, camera traps enable indexing of group sizes across large spatiotemporal expanses to 

test complex hypotheses that otherwise would be logistically challenging or impossible to test with 

human observers. Additionally, collection of data across time facilitates various spatiotemporal 

metrics related to other species that may influence group formation of the target species. Past 

researchers indexed group size with camera traps but used the total number of individuals within 

a single photo as the index (Lashley et al. 2014, Cherry et al. 2015, Maurer et al. 2022). I extended 

these studies and developed a clear and easily replicable method that uses detection times to infer 

group membership based on temporal proximity of subsequently detected individuals. Although 

there are many ways in which scientists have defined group membership (Kasozi and Montgomery 

2020), in the context of camera traps, my method facilitates a broader definition of group 

membership, which may be useful for species whose spatial proximity often exceeds the limits of 

the field-of-view of camera traps.  

I used deer as my model species to test several hypotheses related to group formation, but 

my methods can be used in other systems and species. However, my methods can also be used to 

test other group formation hypotheses. During prolonged cold weather, increasing group size and 

huddling together can reduce the cost of thermogenesis (Gilbert et al. 2010). Many camera traps 

are equipped with temperature gauges; thus, spatiotemporally explicit thermal data can be 

collected concurrently with group size indices to test group-formation hypotheses related to 

thermoregulation in colder climates. Additionally, groups can arise due to kinship or mating 

(Giraldeau and Caraco 1993). Camera traps deployed at mating or nest sites may be useful to test 

group-formation hypotheses related to these factors and could likewise benefit from application of 

the methods described in this paper.  

I have shown that many variables representing multiple hypotheses may drive the group 

size of deer under specific conditions. Such complex responses not only increase my understanding 

of this behavioral phenomenon, but may call for considerations in other professions and ecological 

fields. Examinations of trait-mediated trophic cascades induced by ungulate responses to predation 

risk have been predominantly restricted to spatial avoidance of predators and decreases in feeding 

caused by increases in time spent vigilant (Chitwood et al. 2022). Further examining how 
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responses in the group size of ungulates affects plant communities, and potentially other vertebrate 

or invertebrate species, might illuminate other top-down relationships that better explain the full 

ecological ramifications of grouping. Similarly, deer-vehicle collisions represent a major 

economic cost and sometimes fatal hazard for humans (Conover 1997). If group size of deer 

correlates with rates of deer-vehicle collisions, then city planners may consider balancing the 

relationship between development, risk of natural predation, and fragmentation of concealment 

when planning new urban or suburban developments to reduce deer-vehicle collisions.  
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 SYNTHESIS 

Throughout my dissertation, I develop strategies to advance common distance- or plot-

sampling approaches used to model the densities of animal populations and choose between 

several density estimators; and furthered the understanding of the population and group-size 

ecology of white-tailed deer. In Chapter 2, when estimating density with pellet sampling, I found 

strong differences between estimates using the leaf-off method and other modelling approaches, 

and documented that interobserver discrepancies when scoring pellet groups added considerable 

variation to density estimates. In Chapter 3, I illustrated the importance of accounting for several 

types of error when estimating density via aerial sampling by recording infrared and color video 

beneath an aircraft, and using a simple double-observer approach, I found evidence of false 

negatives associated with the viewer of infrared video. In Chapter 4, I extended cost-effectiveness 

analysis to simultaneously integrate precision and per-area cost of sampling when selecting 

between density estimators. My extension facilitated weighting of factors that may vary with the 

objectives and constraints of managers, and annualization of capital costs across several 

applications of use. Using my new tool, I found that cost effectiveness of aerial sampling with 

color and infrared sensors is the most cost-effective method for monitoring deer populations in 

Indiana.   

In Chapter 5, I developed a density surface model that utilized camera-trap distance 

sampling data within a hierarchical generalized additive model to estimate density surfaces of 

demographic classes of deer, and found landscape fragmentation, wetlands, and anthropogenic 

development to be strong predictors of deer density. I then extended simple statistical theory to 

test for differences in two ratios of density, documented class-specific responses of density to 

availability of concealment cover, and found strong evidence that increased recruitment of young 

was tied to increased resource availability from anthropogenic agricultural land use. Lastly, in 

Chapter 6, I used camera traps, detectability estimates from distance sampling, and hierarchical 

Bayesian modelling to index group size and test multiple group-formation hypotheses in deer. I 

documented the largest groups in areas near anthropogenic development, in areas with high 

predator use intensity, and during times of day when predators were active. I found larger groups 

in concealment when the availability of concealment within the surrounding landscape was small, 
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and larger groups in open areas when the availability of concealment within the surrounding 

landscape was large. 

7.1 Future research 

There are many opportunities for future researchers to build off my work and answer future 

questions that advance our understanding of density estimation and group-size ecology. For pellet 

sampling, I focused Chapter 2 on estimation of pellet-group persistence. Defecation rate is equally 

important when estimating density from pellet counts. However, we need to improve our ability 

to estimate defecation rates to better the accuracy of pellet-based density estimators, as many past 

researchers simply implied defecation rates retrieved from the literature (including myself). One 

potentially suitable method might be the use of camera traps. Monitoring, with certainty, an area 

with camera traps would facilitate calculation of the amount of time deer spent in the monitored 

area. Pellet groups could then be counted inside the monitored area, and a defecation rate for that 

area would be easily obtainable. Furthermore, researchers could monitor multiple areas and thus 

estimate measures of variance for the defecation rate. Another approach would be to attach 

cameras to the rumps of deer and simply count the number of defecations. Variance of the 

defecation rate could then be estimated across individuals.  

Past researchers have consistently improved aerial sampling since its adoption, both 

technologically and statistically, but further improvements can still be made. Feasible procedures 

to estimate availability errors, especially with more mobile study species, are lacking. Similarly, 

future research can examine the effects of altitude and ground condition on detection probability 

by repeatedly sampling the same flight path. Management would also benefit from an examination 

testing the effects of flight speed on the efficacy of red-green-blue confirmation, concordance 

between independent observers, and detection probability. Ramifications of flight speed are 

specifically useful because faster planes would enable more time- and cost-efficient sampling.  

In several of my chapters, I found substantial evidence that deer became attracted to camera 

traps; specifically, camera traps placed in non-forested areas. Because of this, when estimating 

density in non-forested areas, I utilized practical methods that I suspect would reduce bias caused 

by attraction towards camera traps. However, future research would benefit from testing these, and 

potentially other, methods that aim to reduce bias in density estimates caused by reactive behavior 
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towards camera traps. Therefore, future research should conduct simulations where true density is 

known, and test methods for reducing bias.  

My results revealed evidence for complex and interactive relationships between group size 

of deer and environmental predictors across large landscapes. Future research may build off these 

findings and examine how changes in group sizes effect other species. For instance, larger group 

sizes may impact vegetative communities that deer consume. Such examinations would yield a 

more complete understanding of trait-mediated trophic cascades caused by grouping.  

7.2 Management considerations 

Going forward, I encourage the Indiana Department of Natural Resources to think carefully 

about the goals of deer monitoring in Indiana. Specifically, I stress the consideration of feasibility 

(i.e., whether a task is possible), which is discussed in Chapter 4. For instance, if the Indiana 

Department of Natural Resources desires buck:doe or fawn:doe ratios of density, the only feasible 

method (of those that I considered) to estimate these density ratios is camera sampling, which is 

the least cost-effective of the methods I compared in Chapter 4. Similarly, if habitat-specific 

estimates are desired by the Indiana Department of Natural Resources, then aerial sampling is not 

strictly feasible. Habitat-specific density estimates will be dependent on the time-of-day when 

flights are conducted, as deer are more likely to occupy open areas at crepuscular or nocturnal 

hours. Considerations such as these should be evaluated while also contemplating information that 

may aid deer management in the future (e.g., fawn:doe ratios may not be helpful now, but will 

these ratios be needed five years from now?).  

Irrespective of the chosen monitoring method for deer management in Indiana, I encourage 

collection of population data that is both environmentally and spatially representative of the larger 

regional area over which density is being inferred. In Chapter 5, I showed that deer density can be 

spatially predicted by several different environmental covariates. The study design of future 

monitoring should consider sampling the full range of each environmental predictor of deer density 

contained within the larger region over which inference of density is desired. However, because 

deer density is a random variable, spatial changes in density that cannot be explained by previous 

environmental predictors are likely to occur. Therefore, data should also be spatially representative 

of the larger region over which inference of density is desired. 
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APPENDIX A. DENSITY FROM PELLET GROUPS: COMPARING 

METHODS FOR ESTIMATING DUNG PERSISTENCE TIME 

 

Figure A1. Distributions of the number of pellets in each pellet group monitored to estimate 

persistence rate. Unique distributions are presented for each year of monitoring. The 2020 

distribution is shown after I randomly subsampled pellet groups using weighted probabilities 

derived from the other 2 monitoring seasons.
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Figure A2. Distributions of bootstrapped density estimates of white-tailed deer (deer/km2) using 

the leaf-off (LO), single-observer (SO), and inter-observer (IO) methods for estimating the 

persistence of pellet groups. Comparisons and corresponding overlap (OV) are designated in the 

title of each panel (Pastore and Calcagnì 2019).
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Table A1. Comparisons of density estimates (white tailed deer/km2) using the leaf-off (LO), 

single-observer (SO), and Inter-observer (IO) methods for estimating persistence of pellet 

groups. Comparisons are within respective habitats and years of sampling in deer management 

unit 3 of west-central Indiana, USA. 

Comparisona Habitat Year 

Observed 

differenceb Biasc Consistencyd 

Overlap 

index, 𝜂̂e 

LO - SO Forest 2019 -2.423 -1.591 0.988 0.267 

LO - SO Forest 2020 -4.141 -4.184 0.934 0.521 

LO - SO Forest 2021 -9.646 -8.536 1.000 0.023 

LO - IO Forest 2019 -1.924 -1.404 0.949 0.325 

LO - IO Forest 2020 -1.882 -2.570 0.747 0.697 

LO - IO Forest 2021 -9.173 -5.828 1.000 0.044 

SO - IO Forest 2019 0.499 0.187 0.697 0.830 

SO - IO Forest 2020 2.259 1.614 0.848 0.750 

SO - IO Forest 2021 0.473 2.708 0.859 0.679 

SO - IO Ag 2019 0.021 -0.076 0.455 0.917 

SO - IO Ag 2020 0.125 0.049 0.905 0.793 

SO - IO Ag 2021 0.373 0.582 0.946 0.850 

SO - IO Total 2019 0.067 -0.050 0.560 0.901 

SO - IO Total 2020 0.281 0.163 0.898 0.705 

SO - IO Total 2021 0.396 1.070 0.942 0.730 

aPairs of methods being compared, shown in the formula used to calculate Observed difference and 

bias.   
bThe observed difference between the point estimates of density from the two methods being 

compared.  

cThe bias of the observed difference between the density estimates from two methods calculated 

by 𝜃̂𝐵 − 𝜃̂, where 𝜃̂𝐵 = mean bootstrapped difference between the two paired densities and 𝜃̂ = 

the observed difference between the point estimates of density from the two methods being 

compared. 
dThe fraction of instances across 999 paired bootstrapped estimates where 𝐷̂𝑡̂1

> 𝐷̂𝑡̂2
 and 𝐷̂𝑡̂1

 is 

also the larger density according to the observed differences between 𝐷̂𝑡̂1
and 𝐷̂𝑡̂2

. 
eThe overlap between distributions of the 999 bootstrapped densities from the two methods being 

compared (Pastore and Calcagnì 2019).
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Effort Stratification 

 Agricultural fields comprised much of the area in my study sites. White-tailed deer spend 

less time in agricultural fields compared to areas of natural cover (Beier and McCullough 1990, 

Nixon et al. 1991). Thus, if defecation rate of deer is independent of local cover type, average deer 

pellet group density and corresponding encounter rate variance is likely lower in agricultural fields 

than in natural cover types. Because of this, I stratified transects into two groups, natural cover and 

agricultural fields, to account for likely disparities in pellet group density. Specifically, I used 

studies in neighboring states to derive estimates of selection ratios (Manly et al. 2007) for natural 

cover (2) and agricultural fields (¼; Beier and McCullough 1990, Nixon et al. 1991). I combined 

these estimates of relative use with predicted pellet-group density derived from data in neighboring 

states (Urbanek et al. 2012, Anderson et al. 2013). I approximated deer densities in my study areas 

using deer mortality data collected from 2012-2017 (Swihart et al. 2020) and assumed a 25% 

annual mortality rate by March. For stratification, I used the proportion of each cover type for the 

county within which each study area was located to bracket the optimal transect ratio by taking the 

average of equations 7.26 (𝐿𝑣𝐿=𝐴𝑣√𝐷𝑣∑𝐴𝑣√𝐷𝑣) and 7.37 (𝜋𝑗=𝐴𝑗𝐷𝑗∑𝐴𝑣𝐷𝑣) in Buckland et al. 

(2001) at a desired CV of 0.15. 
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APPENDIX B. IMPERFECT DETECTION AND WILDLIFE DENSITY 

ESTIMATION USING AERIAL SURVEYS WITH INFRARED AND 

VISIBLE SENSORS 

Distance Sampling Analysis 

Methods 

I right truncated distances >53 m and >38 m at 450 m and 300 m altitude, respectively 

(Buckland et al. 2001), for the following reasons. I observed that distances >53 m and >38 m 

recorded at 450 m and 300 m altitude, respectively, experienced variable coverage due to 

turbulence and cross winds. Specifically, when the plane shook during turbulence the 

thermographer also shook. This caused the thermographer to capture potential infrared detections 

beyond these distance thresholds, albeit for only a very brief period (< 0.1 sec). In addition to 

turbulence, small aircraft such as the one I used will not align parallel to the transect line when 

consistent winds are not parallel to the transect line. Such situations with wind caused the 

thermographer’s field-of-view to not squarely align with the transect. This further limited the time 

that infrared heat signatures associated with large distances remained in the thermographer’s field-

of-view. Because of these reasons, viewers of the infrared video experienced difficulties 

attempting to consistently detect infrared heat signatures associated with these greater distances.  

 After right truncating distances, I estimated detection functions, which included the half-

normal key function with no adjustments and with 1 and 2 cosine, simple polynomial, and Hermite 

polynomial adjustments; the hazard-rate key function with no adjustments and with 1 and 2 simple 

polynomial adjustments; and the uniform key function with no adjustments and with 1 and 2 cosine 

adjustments (Buckland et al. 2001). I fit these candidate detection functions separately to the data 

collected at each altitude, by each observer, and two different combinations of detection history 

types that included: (1) lenient and stringent infrared detections, and (2) stringent infrared 

detections. I used Program Distance (Version 7.2) to estimate detection functions (Thomas et al. 

2010).  

Results 

See Table B1 and Figure B1 for results. Visual plots and AIC both suggested that the 

uniform key function with no adjustments terms was the most appropriate detection function for 

all scenarios. 
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Table B1. AIC-based model selection results for fit detection functions. The top four AIC-best 

detections functions are shown for each altitude (m) , observer, and type of infrared detections 

used (lenient = Len, stringent = Strin). 

Altitude (m) Observer Typea Key function Adjustment Termsb ΔAICc 

450 1 Len + Strin Uniform NA NA 0 

   Uniform Cosine 1 2 

   Half normal NA NA 2 

   Hazard rate NA NA 3.61 

  Strin Uniform NA NA 0 

   Half normal NA NA 1.80 

   Uniform Cosine 1 1.81 

   Half normal Cosine 1 3.46 

 2 Len + Strin Uniform NA NA 0 

   Uniform Cosine 1 2 

   Half normal NA NA 2 

   Hazard rate NA NA 3.93 

  Strin Uniform NA NA 0 

   Hazard rate NA NA 1.52 

   Half normal NA NA 1.70 

   Uniform Cosine 1 1.95 

300 1 Len + Strin Uniform NA NA 0 

   Uniform Cosine 1 2 

   Half normal NA NA 2.01 

   Hazard rate NA NA 3.98 

  Strin Uniform NA NA 0 

   Uniform Cosine 1 2 

   Half normal NA NA 2.01 

   Hazard rate NA NA 3.85 

 2 Len + Strin Uniform NA NA 0 

   Uniform Cosine 1 2 

   Half normal NA NA 2 

   Hazard rate NA NA 2.75 

  Strin Uniform NA NA 0 

   Hazard rate NA NA 1.45 

   Uniform Cosine 1 2 

   Half normal NA NA 2 
a Type of infrared detections used to estimate the detection function.  
b Number of adjustment terms used.  
c Difference between the AIC of the best model and the model under consideration. 
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Table B2. The number of articles using infrared thermal sensors from aerial platforms that 

addressed different error types. Error types considered were detection probability across the 

field-of-view of the sensor (Uniform), availability errors (AE), perception errors (PE), 

misclassification errors (ME), and double counting errors (Double). 

Combination Number of articles 

Uniform + AE 0 

Uniform + PE 2 

Uniform + ME 5 

Uniform + Double 2 

AE + PE 4 

AE + ME 15 

AE + Double 4 

PE + ME 9 

PE + Double 1 

ME + Double 6 

Uniform + AE + PE 0 

Uniform + AE + ME 0 

Uniform + AE + Double 0 

Uniform + PE + ME 2 

Uniform + PE + Double 0 

Uniform + ME + Double 1 

AE + PE + ME 4 

AE + PE + Double 1 

AE + ME + Double 3 

PE + ME + Double 1 

Uniform + AE + PE + ME 0 

Uniform + AE + PE + Double 0 

Uniform + AE + ME + Double 0 

Uniform + PE + ME + Double 0 

AE + PE + ME + Double 1 

Uniform + AE + PE + ME + Double 0 
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Figure B1. Plots of the AIC-best detection function for each altitude (m), observer, and type of 

infrared detections used (lenient = Len, stringent = Strin).



 

179 

 
Figure B2. The number of articles published annually using aerial sampling techniques combined 

with infrared thermography to monitor wildlife. 
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APPENDIX C. USING COST-EFFECTIVENESS ANALYSIS TO 

COMPARE DENSITY-ESTIMATION METHODS FOR LARGE-SCALE 

WILDLIFE MANAGEMENT  

Estimation of Persistence 

To estimate the persistence time of pellet groups, I  used the 2021 decay data and the fitted 

models from Delisle et al. (2022b). Following the inter-observer method in Delisle et al. (2022b), 

I predicted the probability of persistence 𝑦̂𝑖 for each observation 𝑖 of my monitored pellet groups. 

The decay data from Delisle et al. (2022b) were collected in RMU 3. To account for regional 

variation in pellet decay due to weather, I substituted weather data from each test landscape within 

which I conducted pellet sampling. I obtained a final estimate of persistence for each Regional 

Management Unit x habitat (forest, grassland, and agricultural field) combination using methods 

described in Delisle et al. (2022b). To estimate persistence rates in each habitat type across an 

RMU, I used an effort-weighted average of the persistence rates for a given habitat type in each 

test landscape, i.e., 𝑡̂ℎ = ∑ (
𝑘𝑙ℎ

𝑘ℎ
) 𝑡̂𝑙ℎ

𝐿
𝑙=1 , where 𝑡̂ℎ  is the estimated persistence rate in habitat ℎ 

across the entire RMU, 𝑘𝑙ℎ is the total number of transects sampled in habitat ℎ in test landscape 

𝑙 , 𝑘ℎ  is the total number of transects sampled in habitat ℎ  across the entire RMU, 𝑡̂𝑙ℎ  is the 

estimated persistence rate in in habitat ℎ in test landscape 𝑙, 𝐿 is the total number of test landscapes, 

and 𝑣𝑎𝑟(𝑡̂ℎ) = ∑ (
𝑘𝑙ℎ

𝑘ℎ
)

2

𝑣𝑎𝑟(𝑡̂𝑙ℎ)𝐿
𝑙=1 .  
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Aerial Detection Probability 

 
Figure C1. Detection probability of white-tailed deer in Indiana, USA, across the field-of-view of 

an infrared sensor. Infrared video was captured at 450 m and 300 m above-ground attitude in a 

crewed aircraft (Delisle et al. 2022a). 
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APPENDIX D. MODELLING DENSITY SURFACES OF DEMOGRAPHIC 

CLASSES USING CAMERA-TRAP DISTANCE SAMPLING 

Buffer Radii 

 Buffers with radii of 250 and 750 m were chosen for local habitat composition and 

configuration metrics, as both of these lengths are well within the average home range sizes of 

deer in the Midwest (Nixon et al. 1991, Vercauteren and Hygnstrom 1998). I chose a buffer radius 

of 1425 m because this approximates the diameter of a circular doe home range during the same 

time of year as my sampling and in similar areas with heavy agricultural use (Nixon et al. 1991, 

Vercauteren and Hygnstrom 1998). Lastly, I tested buffers with radii of 4000 and 8000 m because 

these approximate the minimum and average dispersal distances of young male deer (Hewitt 2011).  
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Factor Terms 

 

 
Figure D1. Estimated marginal means (i.e., least squares means) of combinations of factor terms 

from a density surface model estimating density of white-tailed deer (Odocoileus virginianus) 

within Regional Management Units (RMU) 3, 4, and 9 in Indiana, USA. The model was fit to 

camera-trap distance sampling data collected during the winter of 2019, 2020, and 2021. Factor 

terms include habitat (Wet = wetland, Grass = grassland, For = forest, CC = cultivated crops), 

sex (buck, doe, fawn, and unknown), and RMU. Marginal means were estimated with the 

‘emmeans’ package in R (Lenth et al. 2022).
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Extrapolated Densities 

 Within RMUs 3 and 4, densities estimated across all areas, including areas that exhibited 

univariate or combinatorial extrapolation past the sampled range of environmental covariates 

(henceforth referred to as extrapolated densities), were similar to the densities estimated only in 

areas that were within the range of environmental covariates I sampled (henceforth referred to as 

non-extrapolated densities; Table D1). However, extrapolated densities estimated were, on average, 

2.7 (SE = 0.1) times larger than non-extrapolated densities in RMU 9. On average, the CVs of 

extrapolated densities were 107.8 (SE = 45.8) times larger than those of non-extrapolated densities 

across all RMUs, habitat types, and classes. Fawn:doe ratios never exhibited differences when 

estimated with extrapolated densities (Table D2).
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Table D1. Habitat-specific, class-specific, and total density estimates (deer/km2) of white-tailed 

deer (Odocoileus virginianus) in Regional Management Units (RMU) 3, 4, and 9 of Indiana, 

USA. Densities were estimated with a density surface model fitted to camera-trap distance 

sampling data collected in the winter of 2019, 2020, and 2021. Habitat-specific densities are 

presented for agricultural fields (Ag), grasslands and pastures (Grass), wetlands (Wet), and 

forests (For). Densities were estimated across all areas, including areas that exhibited 

combinatorial or univariate extrapolation past the range of environmental covariates that I 

sampled. UCI = upper 95% confidence interval. LCI = lower 95% confidence interval. 

Type RMU Class 𝐷̂ SE(𝐷̂) CV(𝐷̂) UCI(𝐷̂) LCI(𝐷̂) 

Habitat 3 Ag 2.17 0.23 0.10 1.93 2.78 

  
Grass 5.69 1.04 0.18 4.90 8.88 

  
Wet 18.32 4.77 0.26 14.40 32.98 

  
For 10.42 1.63 0.16 9.37 15.34 

 
4 Ag 3.76 5.25 1.39 3.31 5.82 

  
Grass 6.38 8.64 1.35 5.55 20.32 

  
Wet 23.53 66.84 2.84 17.63 64.89 

  
For 7.85 54.71 6.97 7.32 19.40 

 
9 Ag 6.42 26.59 4.14 4.96 69.62 

  
Grass 10.17 104.35 10.26 8.79 230.88 

  
Wet 34.06 164.95 4.84 23.84 472.77 

  
For 29.30 1552.14 52.97 20.62 2755.89 

Class 3 Doe 1.99 0.35 0.17 1.67 2.96 

  
Buck 0.71 0.14 0.20 0.56 1.10 

  
Fawn 0.65 0.14 0.21 0.50 1.03 

 
4 Doe 4.56 29.79 6.54 3.92 11.36 

  
Buck 1.69 20.68 12.24 1.36 4.15 

  
Fawn 0.62 2.04 3.29 0.43 1.76 

 
9 Doe 8.35 146.71 17.56 4.45 247.38 

  
Buck 2.91 58.38 20.09 1.45 94.13 

  
Fawn 1.75 89.71 51.26 0.87 66.79 

Total 3 Total 3.35 0.40 0.12 3.04 4.52 

 
4 Total 6.87 36.27 5.28 6.37 17.09 

 
9 Total 13.01 191.77 14.74 10.42 398.85 
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Table D2. Ratios of densities of different demographic classes of white-tailed deer (Odocoileus 

virginianus) in Regional Management Units (RMU) 3, 4, and 9 of Indiana, USA. Densities to 

compute ratios were estimated with a density surface model fitted to camera-trap distance 

sampling data collected in the winter of 2019, 2020, and 2021. Ratios were computed with 

densities that I estimated across all areas, including areas that exhibited combinatorial or 

univariate extrapolation past the range of environmental covariates that I sampled. 

Classes RMU Ratio Var(Ratio) 

Buck:Doe 3 0.357 0.009 

 
4 0.371 26.539 

 
9 0.348 83.000 

Fawn:Doe 3 0.328 0.008 

 
4 0.136 0.985 

 
9 0.209 124.529 
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APPENDIX E. FEAR AND CONCEALMENT PREDICT GROUP SIZE OF 

A COMMON UNGULATE 

Group Membership 

 

 
Figure E1. Empirical cumulative distribution functions of the times in between initial detections 

of deer in each Regional Management Unit (RMU). Unique empirical cumulative distribution 

functions are shown for open (agricultural field and grassland) and concealed (forest and 

wetland) habitat types in Indiana, USA. 

 

Other Predictors 

Anthropogenic Disturbance 

I also tested length of roads, number of buildings, average impervious surface in the 

immediate area, and human and domestic dog use intensity. For length of roads, number of 

buildings, and mean impervious surface metrics (% of developed surface over 30x30 m cells), I 

used a buffer with a radius of 750 m to define the immediate surrounding area, because 750 m 

approximates the radius of a circular home range for does after the hunting season in agricultural 

areas (Nixon et al. 1991, Vercauteren and Hygnstrom 1998). I used the 2015 Indiana primary and 
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secondary roads shapefile (US Census Bureau, Department of Commerce) and US building 

footprints shapefile from Microsoft (https://github.com/Microsoft/USBuildingFootprints) to 

calculate the length of roads and number of buildings within buffers in R (R Core Team 2022). 

The mean impervious surface index was calculated in R using the 2019 National Land Cover 

Database impervious surface raster (Dewitz and U.S. Geological Survey 2021). I calculated the 

index of human and dog use intensity identically to the coyote use intensity index in the main text 

by substituting for coyotes the number of dogs or humans in each image.  

I did not consider the average impervious surface <750 m in more complex models due to 

multicollinearity issues with the amount of concealment <8000 m, which was a stronger predictor. 

 

Natural Food Availability 

I additionally assessed the density of all twigs; density of twigs that were avoided by deer; 

fraction of the total twig density that was preferred or neutral; and fraction of the total twig density 

that was avoided.  
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Average Group Sizes 

 

 

 
Figure E2. Histogram showing the frequency of group sizes of white-tailed deer in each Regional 

Management Unit (RMU) sampled in Indiana, USA. Presented group sizes are not corrected for 

detectability (i.e., naïve). 
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Baseline Predictors 

 

Table E1. Estimates and confidence intervals for Bayesian regression models explaining the 

group size of white-tailed deer in Indiana, USA, as a function of various predictors. Only a single 

predictor was used in each model, aside from the natural predation model where coyote use 

intensity and coyote activity level were both specified in an interactive model. Data were 

collected by camera traps in 2019, 2020, and 2021. 

Predictor Estimate LCI UCI 

concealment presence -0.245 -0.350 -0.139 

proportion of group that is fawn 7.749 4.728 12.798 

forest edge density <750 m 0.064 0.008 0.124 

distance to concealment -0.084 -0.124 -0.045 

interaction: coyote use intensity and activity level 0.031 0.006 0.056 

distance to nearest road or building 0.061 0.012 0.111 

impervious surface average <750 m -0.044 -0.091 0.005 

concealment area <8000 m -0.130 -0.252 0.002 

human and dog use intensity 0.027 -0.017 0.072 

proportion of twig density that is avoided twigs 0.009 -0.049 0.067 

density of preferred and neutral twigs -0.001 -0.069 0.065 

proportion of twig density that is preferred and neutral twigs -0.009 -0.072 0.053 

density of avoided twigs -0.010 -0.070 0.051 

total twig density -0.014 -0.081 0.053 

buildings <750 m -0.023 -0.066 0.020 

road length <750 m -0.031 -0.080 0.019 
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Trace Plots and Posterior Predictive Checks 

 
Figure E3. Trace plots of parameters from the best Bayesian model fitting an index of group size of white-tailed deer to various 

interactive and additive predictors. β0 = intercept. β1 = amount of concealment < 8000 m. β2 = concealment presence. β3 = coyote 

activity level. β4 = coyote use intensity. β5 = distance to nearest building or road. RMU = Regional Management Unit. SA = sampling 

area. Camera = the location ID of the camera. Fixed effects in the model included the following: (1) two-way interaction between the 

amount of concealment within the larger surrounding area and occurrence of local concealment; and (2) three-way interaction between 

distance to nearest building or road, coyote use intensity, and coyote activity level.
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Figure E4. Observations plotted over draws from the posterior predictive distribution of a Bayesian model regressing an index of 

group size as a function of the following fixed effects: (1) two-way interaction between the amount of concealment within the larger 

surrounding area and occurrence of local concealment; and (2) three-way interaction between distance to nearest building or road, 

coyote use intensity, and coyote activity level.
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Figure E5. Posterior distributions of a Bayesian model regressing an index of group size as a function of the following fixed effects: 

(1) two-way interaction between the amount of concealment within the larger surrounding area and occurrence of local concealment; 

and (2) three-way interaction between distance to nearest building or road, coyote use intensity, and coyote activity level.
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Coyote and Deer Interaction Captures by Camera Trap 

 

 

 
 



 

195 

 


