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SET Supplemental Emissions Test
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ABSTRACT

Selective Catalytic Reduction (SCR) and Ammonia Slip Catalyst (ASC) are important

components of the diesel engine aftertreatment. SCR reduces the engine-out NOx into

harmless N2 and H2O using NH3, which is injected into the system as Diesel Exhaust Fluid

or DEF. ASC is responsible for oxidizing SCR-out NH3. Thus, SCR-ASC system minimizes

tailpipe NOx and NH3 emissions.

A major challenge with the SCR-ASC system is degradation or aging of the SCR catalyst

with time, which leads to increase in tailpipe NOx emissions. Therefore, it is important for

diesel-engine vehicles to be equipped with effective on-board diagnostics (OBD), which can

monitor and report catalyst degradation before it degrades beyond acceptable levels. The

primary objective of this work is to develop a robust model-based non-intrusive on-board

diagnostics algorithm that can monitor catalyst health using commercial NOx sensors under

real-world on-road driving conditions.

Cummins Inc. has generously provided on-road data for four trucks, and test-cell data

for cold Federal Test Procedure (cFTP), hot Federal Test Procedure (hFTP), and Ramped

Mode Cycle (RMC) cycles for degreened (DG) and end-of-useful-life (EUL) catalysts. This

thesis presents a diagnostics-oriented aging model for combined SCR-ASC system, along

with two model-based OBD methods applied to both test-cell data and on-road data from

commercial trucks. The key challenge with model development was unavailability of NOx

and NH3 measurements between SCR and ASC. Since it would have been very difficult to

calibrate both SCR and ASC dynamics without any measurements between SCR and ASC,

therefore ASC was modeled using static look-up tables to determine ASC’s NH3 conversion

efficiency and its selectivity to NOx and N2O as a function of temperature and flow rate.

The traditional three-state single-cell ordinary differential equation (ODE) model was used

for SCR. Hot FTP was used to calibrate the model. Cold FTP and RMC were used for

validation. Results show that the SCR-ASC model can capture the aging signatures in

tailpipe NOx, NH3, and N2O reasonably well for cFTP, hFTP, and RMC cycles in the test-

cell data. After slight re-calibration and combining with a simple model for commercial NOx

sensor’s cross-sensitivity to NH3, the model works reasonably well for on-road data from
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commercial trucks. Two model-based on-board diagnostic (OBD) methods are presented

with enable conditions designed to detect operating conditions suitable for detecting aging

signatures, while minimizing false positives and false negatives. It was demonstrated that

the enable conditions increase the robustness of the OBD methods to model inaccuracy,

uncertainty in initial NH3 storage, and NOx sensor’s cross-sensitivity to NH3.

The first OBD method does a binary classification at each sample point to label it as

either degreened or EUL. This OBD method is applied to both test-cell and real-world truck

data with commercial NOx sensors. Results on test-cell data showed that this method is

capable of correctly identifying the aging levels of degreened and EUL catalysts with zero

false positives and very few false negatives. The method was also shown to be robust to NOx

sensor’s cross-sensitivity to NH3 and measurement noise when the tailpipe NOx and NH3

signals in test-cell data were combined with Gaussian noise to simulate worst-case cross-

sensitivity and measurement noise. Results on truck data show encouraging trends between

relative degradation level and the number of miles on the four trucks. The trends reported by

the method on truck data were shown to be robust to uncertainty in the initial value of NH3

storage. A drawback with this method was that very few sample points were selected from

the test-cell data after applying the enable conditions, which demonstrate the challenge with

designing model-based enable conditions that are robust to false positives and false negatives

but still lead to good In-use monitoring performance ratio (IUMPR).

Unlike the first method, the second OBD method assigns a non-binary value to each

sample point, which is proportional to the probability of that point belonging to a degreened

or an EUL catalyst. This method uses a stochastic version of the proposed SCR-ASC model,

which is derived using a simplified version of the Bayesian approach for model calibration.

This method results in a much better IUMPR than the first one and can still correctly

classify the degreened and EUL catalysts for all three cycles in the test-cell data. Even

though this work presents a preliminary implementation of the stochastic OBD method, the

detailed framework presented in this thesis along with a complete set of enable conditions

lays a strong foundation for developing a more detailed version of the method in future based

on a rigorous implementation of the Bayesian approach.
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1. INTRODUCTION TO SCR-ASC OBD: MOTIVATION,

CHALLENGES, AND CURRENT APPROACH

Due to their high compression ratio, diesel engines have low operation cost and high fuel

efficiency, which makes them a popular choice for automotive applications. However, diesel

emissions include pollutants such as unburnt hydrocarbons (UHC), carbon monoxide (CO),

nitrogen oxides (NOx) and particulate matter (PM). These pollutants are the result of

undesirable processes during combustion, including incomplete fuel combustion, combustion

of engine lubricating oil and non-hydrocarbon components, and reactions between mixture

components under high temperature and pressure [ 1 ].

These pollutants combine in the atmosphere to form ground-level ozone, which leads to

health issues such as respiratory problems [ 2 ]. Hence, government bodies like the United

States Environment Protection Agency (EPA) and California Air Resources Board (CARB)

enforce regulations on the amount of pollutants a vehicle can emit. In order to meet the

EPA/CARB regulations, the diesel engine aftertreatment system employs diesel particulate

filter (DPF) to filter PM, diesel oxidation catalyst (DOC) to oxidize CO and UHC, Urea-SCR

(Selective Catalytic Reduction) to reduce NOx into harmless Nitrogen and water vapors, and

Ammonia Slip Catalyst (ASC) to oxidize SCR-out NH3 into Nitrogen.

The increasingly stringent regulations warrant effective and robust control strategies for

all aftertreatment components. Another major challenge with the aftertreatment system is

degradation or aging of its components with time. Though all components of the aftertreat-

ment age, the focus of this work will be SCR and ASC. Degradation of SCR catalyst leads

to decline in deNOx efficiency resulting in an increase in tailpipe NOx emissions. A robust

urea-dosing controller can adapt to catalyst age, to a certain extent, to keep NOx emission

under permissible limits. However, this would lead to an increase in Diesel Exhaust Fluid

(DEF or AdBlue, a mixture of 32.5% urea and 67.5% distilled water) consumption, and the

NOx emissions will go beyond permissible limits once the catalyst degrades beyond a certain

level. This can have severe environmental and financial implications. A drastic example of

this from recent times was when Cummins Inc. had to recall 500,000 medium-and heavy-

duty trucks in 2018, because the SCR catalysts degraded faster than expected, leading to
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excess NOx emissions [ 3 ]. Therefore, it is very important for diesel-engine vehicles to be

equipped with effective on-board diagnostics (OBD), which can monitor and report catalyst

degradation before it degrades beyond acceptable levels. The objective of this work is to

develop effective model-based OBD algorithm(s) to detect SCR catalyst degradation, which

can work under real-world on-road conditions. This chapter starts with a brief description of

aftertreatment components, followed by a summary of EPA’s OBD regulations. Then, the

motivation, objective and key challenges for this work will be discussed. The chapter will

conclude with an overview of the rest of the document.

1.1 Diesel engine aftertreatment system

A schematic of the diesel-engine aftertreatment system is shown in Figure  1.1 . The

following subsections (text for DOC, DPF, and SCR is borrowed from the author’s M.S. thesis

[ 4 ]) will summarize important functions of the components of the diesel engine aftertreatment

system.

Figure 1.1. Schematic of the diesel engine aftertreatment system. Exhaust
gas flows from left to right.

1.1.1 Diesel Oxidation Catalyst (DOC)

As quoted from [ 5 ], the DOC has 3 major functions:

1. “Oxidation of CO to CO2.

2. Oxidation of unburnt and partially burnt hydrocarbons.
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3. Oxidation of NO to NO2". This helps to bring the NO/NO2 ratio in NOx from about

9:1 to 1:1. This function is important for good SCR performance which relies on almost

equal quantities of NO and NO2 in NOx [  5 ].

As a sub-function, the heat generated from the DOC due to oxidation helps in DPF regen-

eration [ 5 ].

1.1.2 Diesel Particulate Filter (DPF)

DPF is a soot filter responsible to trap PM in the exhaust stream. It needs periodic

cleaning of the soot which is called DPF regeneration. Depending on the heat source to

burn off the soot particles, the regeneration is called active or passive. Active regeneration

involves controlled heating whereas passive relies on high exhaust gas temperature and heat

from DOC oxidation reactions [ 5 ].

1.1.3 Urea - Selective Catalytic Reduction (SCR) system

The Urea-SCR system employs NH3 to reduce NOx into molecular nitrogen (N2) and

water (H2O). DEF is injected into the system as a source of NH3 because it is difficult and

dangerous to store NH3.

Urea gets converted into NH3 through thermolysis and hydrolysis because of high exhaust

gas temperature. The catalyst adsorbs some NH3. Adsorbed NH3 is involved in oxidation,

desorption and NOx reduction. Unadsorbed and desorbed NH3 constitute NH3 slip which

goes out of the tailpipe with unreacted NOx. The schematic representation of this process

along with the corresponding reactions (according to the Eley Rideal mechanism) is shown

in Figure  1.2 .

1.1.4 Ammonia Slip Catalyst (ASC)

Very high urea injection leads to excessive SCR-out NH3 slip and too little leads to

excessive NOx emissions. Hence, it is challenging to simultaneously achieve low SCR-out

NH3 and low NOx. The Ammonia Slip Catalyst oxidizes SCR-out NH3 into harmless N2.
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Figure 1.2. Schematic representation of SCR reactions, taken from [  4 ].

Therefore, an SCR+ASC system allows the urea-dosing controller to inject higher amounts of

urea than an SCR-only system, leading to better deNOx with low tailpipe NH3 slip. However,

the ASC is not perfect and it oxidizes some SCR-out NH3 into NO and N2O. Therefore, the

urea-dosing controller still needs to ensure optimum urea injection as excessive SCR-out NH3

can contribute to increase in tailpipe NO and N2O, due to the ASC.

1.2 Important OBD Terminology

1. Degreened (DG) catalyst: A fresh catalyst that has not aged at all is called de-

greened catalyst.

2. End-of-useful-life (EUL) catalyst: In the context of this work, a catalyst that

has degraded to the least-acceptable performance by EPA/CARB is called an EUL

catalyst. So for this work, DG and EUL will be considered the extreme ends of the

degradation spectrum with no degradation and maximum degradation, respectively.
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3. Enable conditions or Monitoring conditions: Unlike a controller, OBD doesn’t

run at all times. The operating conditions when OBD is activated are called enable or

monitoring conditions.

4. False positive: False indication of malfunctions is called false positive. For example,

reporting a degreened catalyst as aged.

5. False negative: False passing of a malfunctioning part is called false negative. For

example, reporting an aged catalyst as degreened.

6. Driving cycle: As per sections 1968.2 [  6 ] and 1971.1 [ 7 ], title 13 of California Code

of Regulations (CCR), this is defined as: “A trip that meets any of the four conditions

below:

(a) Begins with engine start and ends with engine shutoff;

(b) Begins with engine start and ends after four hours of continuous engine-on oper-

ation;

(c) Begins at the end of the previous four hours of continuous engine-on operation

and ends after four hours of continuous engine-on operation; or

(d) Begins at the end of the previous four hours of continuous engine-on operation

and ends with engine shutoff."

7. IUMPR (In-use monitor performance ratio): This is defined in [  6 ], [  7 ] as the

ratio of:

(a) Numerator: The number of times OBD has been activated or the enable condi-

tions have been encountered during vehicle operation. This is an integer and can

not be incremented by more than one during a single driving cycle.

(b) Denominator: The number of drive cycles.

Both numerator and denominator can be increased by more than one under very spe-

cific ambient and vehicle operating conditions, which won’t be listed here for brevity.

Sections 1968.2 [  6 ] and 1971.2 [ 7 ] of CCR can be referred for more details.
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1.3 Types of OBD

SCR OBD can be classified as follows:

1. Based on intrusion:

(a) Intrusive Diagnostics: A diagnostic algorithm is called intrusive if it overrides

the urea-dosing controller with a diagnostics-oriented dosing routine to monitor

catalyst health. In other words, intrusive diagnostics and urea-dosing controller

can not run simultaneously. The controller is turned off when diagnostics is run-

ning and vice versa. Controller’s urea dosing profile is designed to maximize

SCR’s performance (or minimize emissions), whereas an intrusive diagnostic al-

gorithm’s urea dosing profile is designed to excite the system to reveal its age.

Therefore, emissions may increase when intrusion is active.

(b) Non-intrusive Diagnostics: A non-intrusive diagnostics algorithm monitors

catalyst health without interfering with the controller and hence, does not affect

emissions.

2. Based on OBD goal:

(a) Binary Classification: CARB/EPA require OBD to illuminate the malfunction

indicator light (MIL) and store a fault code when catalyst degrades enough to

cause tailpipe NOx emissions to exceed acceptable limits (quantified based on

drive-cycle tests defined by CARB/EPA) [ 6 ] [  7 ]. Such diagnostic algorithm only

needs to classify the catalyst as good (MIL off) or bad (MIL on). So, it won’t be

able to distinguish between a degreened and an aged catalyst, which still doesn’t

cause the emissions to exceed the specified threshold.

(b) Distinguish multiple aging levels: Although binary classification is sufficient

to meet EPA/CARB requirements, it is important to distinguish between sev-

eral levels of degradation among both “good” and “bad” catalysts in order to

monitor the rate of catalyst degradation. This category needs more advanced
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algorithm(s) that can report several levels of degradation. Both OBD goals are

visually demonstrated in Figure  1.3 .

Figure 1.3. Two categories of OBD goals: 1) Binary classification; 2) Distin-
guishing multiple aging levels.

1.4 EPA/CARB Regulations for OBD

Since OBD performance has very significant environmental impact, EPA and CARB have

specific OBD requirements for SCR. Here is the timeline of CARB OBD regulations in US,

as quoted from [ 8 ]:

1. “OBD I: The first OBD regulation in the United States, which required manufacturers

to monitor some of the emission control components on all 1991 and newer vehicles

sold in California.

2. OBD II: This more rigorous OBD regulation started to be phased-in in 1994. Since

1996, its implementation has been required on all new gasoline and alternate fuel

passenger cars and trucks sold in California. All 1997 and newer diesel fueled passenger

cars and trucks are also required to meet OBD II requirements.”

Quoted from [  9 ]: “Following the introduction of OBD requirements in California, OBD

regulations were also adopted by the US EPA. The following have been the most important

steps in the development of federal OBD requirements:

1. Beginning with the 1994 model year, the EPA has required OBD systems on light-duty

vehicles (LDVs) and light-duty trucks (LDTs).

23



2. Since 2005, OBD systems became mandatory for heavy-duty vehicles and engines up

to 14,000 lbs Gross Vehicle Weight Rating (GVWR).

3. In December 2008, EPA finalized OBD regulations for 2010 and later heavy-duty en-

gines used in highway vehicles over 14,000 lbs GVWR and made changes to the OBD

requirements for heavy-duty applications up to 14,000 lbs GVWR to align them with

requirements for applications over 14,000 lbs GVWR."

Although several engine and aftertreatment components fall under the scope of these

regulations, we will focus on the ones for SCR.

1.4.1 SCR Faults to Monitor

Several faults can affect the performance of SCR-ASC system, resulting in lower de-

NOx efficiency or excess emissions. Therefore, EPA/CARB require vehicle manufacturers to

monitor the following as part of OBD for the SCR-ASC system [  10 ], [  6 ], [  7 ]:

1. Faults with urea-dosing system such as:

• Faults with the injector or the pump.

• Empty urea tank.

• Urea tank filled with something other than DEF.

2. Faults with urea-dosing control, such as [ 6 ], [  7 ]:

• Control doesn’t start within the expected time.

• Fault with feedback causes open-loop operation.

• Emission targets can’t be reached even with the controller saturated at maximum

urea dosing.

3. Catalyst degradation resulting in increased emissions.
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1.4.2 Regulations

Here are the key OBD regulations for SCR from CARB. EPA regulations are very similar,

with some slight differences [  9 ], which are not presented here. Also, since the focus of this

work is catalyst degradation, only the regulations relevant to that are presented:

1. Malfunction criterion: For 2016 and subsequent model year vehicles, OBD must

illuminate the MIL if catalyst degrades enough to exceed acceptable NOx emissions

(during an SET (Supplemental Emission Test) or FTP (Federal Test Procedure)) for

a degreened catalyst by 0.2 gm/bhp-hr.

2. Enable conditions: The enable or monitoring conditions must be designed such that:

(a) false positives and false negatives are minimized;

(b) OBD must be activated at least once during FTP;

(c) the enable conditions must “reasonably be expected to be encountered in normal

vehicle operation and use" [ 6 ], [  7 ].

(d) the IUMPR should not be less than 0.3 for 2024 and subsequent model year

vehicles (there are some subtle differences between the IUMPR requirements for

model year 2024-2027 and model year 2028 and subsequent year vehicles, but

those are not detailed here). For heavy-duty vehicles, CARB estimates that

an IUMPR is approximately equivalent to around 500 miles or 10 hours per

monitoring event [ 11 ].

3. Intrusive diagnostics: The most recent CARB regulations dictate that intrusive

diagnostics will only be allowed if it has minimal impact on tailpipe emissions. If

the impact on emissions is significant, then intrusion is only allowed when the MIL is

already on as a result of non-intrusive monitoring.

1.5 Current Research

1.5.1 Motivation

Here is a summary of some key gaps identified from the literature:
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1. On-road vs test-cell/simulations: EPA and CARB have rigorous and effective

test-cell routines to certify vehicles. However, their findings, shown in Figure  1.4 ,

from logging over a month’s on-road OBD data from 68 trucks show that there is

significant discrepancy between real-world and test-cell emissions [  11 ]–[ 13 ]. This chal-

lenge is also reflected in academic literature, where most aging models and diagnostic

strategies have only been demonstrated in simulation [ 14 ]–[ 16 ]. A few that have demon-

strated hardware results have used a catalyst that was aged in a controlled environment

through accelerated hydrothermal aging. Although this is a good simulation, it is still

not a perfect replication of on-road aging [  17 ].

Figure 1.4. On-road emissions data collected by CARB, taken from [ 11 ].

2. Intrusive vs non-intrusive: There are patents from industry that have proposed

diagnostic algorithms designed to work under on-road conditions. However, most of

these algorithms are intrusive [ 18 ]–[ 20 ]. Since the most recent regulations contain

stringent restrictions on intrusive diagnostics, it is important to develop non-intrusive

methods that can work under on-road conditions.
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3. Commercial aftertreatment system: To the best of our knowledge, most existing

literature has not considered the presence of ASC or absence of tailpipe NH3 sensors in

commercial aftertreatment system. Therefore, diagnostic algorithms that can monitor

the SCR-ASC system using a commercial tailpipe NOx sensor must be developed.

1.5.2 Objective

The objective of this work is to contribute towards filling the aforementioned gaps by de-

veloping model-based non-intrusive diagnostics for SCR-ASC that can work with commercial

NOx sensors, and demonstrate the results on real-world on-road truck data.

In this work, the focus would be to monitor catalyst age assuming that the dosing system,

controller, and sensors do not have any fault. This is summarized in Figure  1.5 .

Figure 1.5. Summary of the focus of this work.
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1.5.3 Approach

Cummins Inc. has generously provided on-road data for four trucks, and test-cell data

for cold FTP, hot FTP, and RMC cycles for degreened (DG) and end-of-useful-life (EUL)

catalysts. After thoroughly studying the data, the first task in the project was to develop

diagnostics-oriented aging models for SCR-ASC using test-cell data. Once the modeling

results were satisfactory for test-cell data, the model was calibrated and validated on truck

data. Modeling work was followed by development of two model-based OBD methods with

well-defined enable conditions and diagnostic metrics. The first OBD method does a bi-

nary classification at each time sample by labeling it as either degreened or EUL. This

OBD method was first applied to test-cell data with perfect measurements. After achiev-

ing satisfactory performance with perfect measurements, the OBD’s robustness was tested

by simulating worst-case NOx sensor cross-sensitivity and noise in test-cell data. After ro-

bustness analysis, the OBD algorithm was applied to truck data to demonstrate that the

method can report relative aging levels of the SCR-ASC system on trucks with commercial

NOx sensors. Unlike the first method, the second OBD method assigns a non-binary value

to each sample point, which is proportional to the probability of that point belonging to

a degreened or an EUL catalyst. This method uses a stochastic version of the proposed

SCR-ASC model, which is derived using a simplified version of the Bayesian approach for

model calibration. This method results in a much better IUMPR than the first one and can

still correctly classify the degreened and EUL catalysts for all three cycles in the test-cell

data.

Based on this approach, the key contributions of this work are:

1. Observations about the effects of real-world catalyst degradation on tailpipe NOx,

NH3, and N2O are presented based on data from test-cell experiments on a degreened

and an aged catalyst, which degraded to end-of-useful-life (EUL) on the road.

2. Insights from the test-cell data and observations from on-road truck data are then used

to describe challenges with designing model-based on-board diagnostics that could work

for the aftertreatment system on commercial trucks.
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3. A novel diagnostics-oriented SCR-ASC model is presented, which is shown to work

reasonably well, for the purpose of model-based OBD, for both test-cell data and on-

road data from commercial trucks. The model is calibrated on the hot FTP cycle

and validated on the cold FTP and RMC cycles in test-cell data. After slight re-

calibration and combining with a simple model for NOx sensor’s cross-sensitivity to

NH3, the model works reasonably well for the purpose of model-based OBD on the

truck data as well.

4. Two model-based OBD methods are presented with model-based enable conditions

designed to detect operating conditions suitable for diagnostics, while minimizing false

positives and false negatives due to model uncertainties, NOx sensor’s cross-sensitivity

to NH3, measurement noise, and uncertainty in initial NH3 storage.

5. The first OBD method does a binary classification at each time sample by labeling

it as either degreened or EUL. This method was applied to both test-cell data and

real-world truck data with commercial NOx sensors. The method is shown to be

robust to cross-sensitivity, measurement noise, and uncertainty in initial NH3 storage

but very few sample points were selected from the test-cell data after applying the

enable conditions. This demonstrated the challenge with designing model-based enable

conditions that are robust to false positives and false negatives but still lead to good

IUMPR.

6. Unlike the first method, the second OBD method assigns a non-binary value to each

sample point, which is proportional to the probability of that point belonging to a

degreened or an EUL catalyst. This method uses a stochastic version of the proposed

SCR-ASC model, which is derived using a simplified version of the Bayesian approach

for model calibration. This method was applied to the test-cell data. Results show

that it has a much better IUMPR than the first method and can still correctly classify

the degreened and EUL catalysts for all three cycles in the test-cell data. Similar to the

first method, detailed enable conditions are defined for this method as well. The enable
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conditions are shown to make the method robust to NOx sensor’s cross-sensitivity to

NH3 and uncertainty in initial NH3 storage.

1.6 Structure of the document

This document has six chapters. Chapter 2 reviews existing catalyst aging mechanisms,

models and OBD methods in literature. The first step in the project after receiving the data

was to carefully analyze and observe it. Chapter 3 contains details about the data, along

with these observations. This lays the groundwork for Chapter 4, which discusses the SCR-

ASC model in detail with calibration and validation results from test-cell and truck data.

Chapter 5 presents the two model-based diagnostic algorithms, with clearly defined enable

conditions and diagnostic metrics, and results on both test-cell and truck data. Chapter 6

concludes the document and proposes the directions for future work.
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2. LITERATURE REVIEW: SCR-ASC AGING MECHANISMS,

MODELS AND EXISTING OBD STRATEGIES

2.1 SCR Aging Mechanisms and Effects

Following are some key aging mechanisms and their effects reported in literature:

1. Hydothermal aging leads to irreversible structural and chemical changes. Several pub-

lications such as [  21 ], [  22 ] report reduction in NH3 storage capacity as a result of

hydothermal aging. Another observation in [  21 ] was that in-oven aging doesn’t change

the overall NOx conversion efficiency but changes the axial NH3 storage and NO, NO2

and NH3 concentration profiles.

2. Sulphur or Phosphorous poisoning and injected urea-related deposits block active sites

for NH3 adsorption, causing reduced NH3 storage capacity [ 22 ].

3. Trace levels of Pt volatize from DOC and deposit on the front section of SCR [  23 ], [  24 ].

This leads to increase in NH3 oxidation, which reduces the NH3 available for deNOx.

4. There are aging mechanisms specific to catalyst formulation, such as dealumination of

the zeolite for Fe-zeolite [  23 ] or sintering of anatase (higher surface area/mass) TiO2

to form rutile (lower surface area/mass) TiO2 in V2O5/WO3/TiO2 [ 25 ], that lead to

reduction in surface area for NH3 adsorption, resulting in reduced storage capacity.

Therefore, robustness to aging depends on catalyst formulation. It is reported in [ 26 ],

[ 27 ] that state-of-the-art Cu-SSZ 13 is more robust to hydrothermal aging than Cu-

Zeolite and Fe-Zeolite.

Since it takes several years for the catalyst to age on-road, electrical heating in an oven

and accelerated on-engine aging are used to prepare aged catalysts in labs for research studies.

Oven-heating causes uniform heating across catalyst length and cross-section. On-engine

dynamometer accelerated aging causes the front part of the catalyst to degrade more than

the rear [  22 ]. This may not necessarily be due to front part’s exposure to slightly higher

temperature [ 23 ]. Primary reason could be higher exposure to Sulphur poisoning, urea,

and Pt deposits [  22 ]. On-road aging is found to cause non-uniform aging across catalyst
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length and cross-section due to non-uniform exposure to exotherms, urea, Sulphur and other

poisoning components [  28 ].

2.2 SCR Aging Models

A very popular approach to capture catalyst degradation in control-oriented models is

changing the value of certain parameters. This theme is common across different types of

control-oriented models. For example, [ 14 ] and [  15 ] use the four-state model from [  29 ], [  30 ];

[ 31 ], [  32 ], and [  33 ] (three-cell model) use the three-state CSTR model from [  34 ]; and [ 16 ]

(two-cell model) uses the three-state model from [  35 ], [ 29 ]. But they all model aging by

multiplying some model parameter by an “aging factor”, which decreases from 1 to, say 0.5,

as the catalyst degrades. The aging factor is used to scale catalyst’s NH3 storage capacity

in [ 14 ], [ 15 ], [ 31 ], and [ 16 ]. In [  33 ], it is used to scale the NH3 adsorption reaction rate, and

scales the NOx reduction rate in [  32 ]. It should be noted that none of these aging models

have been validated on an actual aged catalyst yet.

Instead of capturing age through a single parameter, an alternate approach is to perform

separate calibration for degreened and aged catalysts as done in [  21 ]. This resulted in

different values for all parameters across degreened and aged catalysts.

Recent publications from Cummins Inc. on high-fidelity aging models, such as [ 26 ], [  27 ],

report that there are various types of active sites, where NH3 storage happens: Bronsted

acid sites, Cu sites and physisorbed NH3 sites. It is recommended in [  27 ] that at least two

sites should be used in aging models. These are called S1 and S2 in [ 27 ]. The following

observations about the impact of aging on S1 and S2 were reported in [ 26 ] and [  27 ]:

1. Number density of active sites in S1 decreases and in S2 increases until mild aging

occurs. Then both decrease with severe aging. Overall number density of active sites

remains constant until some aging occurs and then decreases with severe aging.

2. Adsorption and desorption reaction rates don’t change until mild aging occurs. They

might change with severe aging.
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3. Standard and fast reaction rates were almost unaffected with aging in [ 27 ] showing the

catalyst’s robustness.

4. Standard SCR reaction mainly happens on S1 for fresh catalyst and on S2 for aged.

5. NH3 oxidation increases with aging at S1.

2.3 Non-intrusive OBD

2.3.1 “Aging Factor” Estimation

The common idea among [  14 ], [  15 ], [  31 ], and [  16 ] for diagnosing catalyst degradation is to

design an observer to estimate the aforementioned aging factor. Lyapunov-based nonlinear

observers are presented in [ 14 ] and [  15 ], whereas [ 31 ] and [  16 ] have used the Extended Kalman

Filter (EKF) and Unscented Kalman Filter (UKF), respectively. The observers in all four

papers rely on accurate tailpipe NOx and NH3 feedback, except [  15 ], who have presented an

additional observer that can work with just tailpipe NOx feedback. Simulation results for

all the observers show good performance for aging factor estimation.

2.3.2 Benchmark Approach

Reference [ 17 ] is the most promising paper so far as it presents an OBD method that

considers the presence of ASC, works with the commercial tailpipe NOx sensor, and is

demonstrated for real-world driving conditions. A two-cell SCR model and a single-cell ASC

model are calibrated individually using SCR-in, SCR-out, and ASC-out measurements. Both

SCR and ASC models are DAE-type models, except that a discretized equation is used to

calculate NH3 storage and the equations for tailpipe NOx and NH3 are slightly different

from the common CSTR equations. Each reaction is calibrated individually using steady-

state tests. The SCR-ASC model is calibrated for both fresh and aged catalysts. The fresh

and aged catalyst models are used to calculate the worst acceptable performance (highest

possible value that could be reported by tailpipe NOx sensor for a good catalyst) and the

best unacceptable performance (lowest possible value that could be reported by tailpipe

NOx sensor for an aged catalyst), respectively at each operating point. OBD is enabled only
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when the tailpipe NOx sensor value for the best unacceptable performance is more than

that for the worst acceptable performance by a threshold. The OBD can only do binary

classification. It can not report multiple aging levels. The OBD is shown to work with

reasonable IUMPR for New European Driving Cycle (NEDC) and about ten other driving

patterns which customers actually drive. The workflow in this paper is very similar to our

project. However, an additional challenge for us is that we don’t have access to SCR-out

measurements. Also, the aged catalyst in this work was prepared via accelerated aging in

an electrical furnace, whereas the aged catalyst in our work degraded on the road.

2.3.3 Other non-intrusive approaches

A 2010 patent from Delphi [ 18 ] proposed the idea of adapting the reference to the urea-

dosing control and detecting fault if the reference goes out of an acceptable range. Such

method could work with the fault-tolerant controllers proposed in [  14 ] and [  31 ], which used

both tailpipe NH3 and NOx signals. However, the controller proposed in [  18 ] uses only

tailpipe NH3 measurements.

Reference [  36 ] implemented the idea of comparing the outputs of a fixed-parameter model

to the actual measurements for OBD of a Lean NOx Trap (LNT). In this work, we will explore

this method for SCR OBD.

A classification method that is a combination of grid search (GS), particle swarm op-

timization (PSO) and support vector machine (SVM) called the GS-PSO-SVM algorithm

is used to detect catalyst age in [  32 ]. Simulation runs with multiple aging vectors for the

European Transient Cycle (ETC) are used to train and test the algorithm. The first half

of ETC is used for training and the second for testing. Simulation results show that the

algorithm can achieve 92% classification accuracy to detect aging accuracy during ETC.

2.4 Intrusive OBD

Due to the restrictions imposed by government agencies, and their undesirable impact

on emissions, the literature on intrusive OBD is limited. The authors for reference [  18 ]

have proposed perturbing the control reference under steady-state conditions and monitoring
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the catalyst based on NH3 slip response. Another idea is to infer catalyst degradation by

comparing upstream and downstream NOx sensor measurements [  19 ], [  20 ].
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3. DATA

Cummins Inc. has kindly provided test-cell and truck data to support this work. This

chapter will discuss the details of these data-sets, along with some observations to set the

base for the modeling work presented in the following chapters.

3.1 Test-cell Data

The test-cell data consists of six data-sets. These data-sets contain emissions data for a

degreened and an aged aftertreatment system, for three drive cycles: 1) Cold Federal Test

Procedure (cFTP), 2) Hot Federal Test Procedure (hFTP), and 3) Ramped Mode Cycle

(RMC) Supplemental Emissions Test (SET). Each data-set contains the following measure-

ments:

Engine torque

Engine speed

Diesel Exhaust Fluid (DEF) injection

Engine-out (EO) NOx

DOC-out NO, NO2

Tailpipe (TP) NOx, NH3, N2O

DOC-in, DOC-out, SCR-in, ASC-out temperature

Exhaust flow rate

The exhaust layout, with the sensors available in test-cell, is shown in Figure  3.1 . Table

 3.1 shows the dimensions of the exhaust components.

Table 3.1. Dimensions of the key aftertreatment components in Cummins
aftertreatment system used in this work.

DOC DPF SCR ASC
Diameter (in) 13 13 13 13
Length (in) 4 7 9.5 2
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Figure 3.1. Exhaust layout with the sensors available in test-cell

3.1.1 Comparing operating conditions across drive cycles

Some observations regarding the operating conditions across drive cycles are as follows:

1. Engine-out NOx and Exhaust Flow Rate: The FTP cycles have transient changes

in engine torque and speed, which lead to transient engine-out NOx and exhaust flow

rate. On the other hand, RMC-SET has step changes in engine torque, speed, engine-

out NOx, and exhaust flow rate. Also, both cFTP and hFTP have almost identical.

engine-out NOx and flow rate throughout the cycle. Engine torque, speed, engine-out

NOx, and exhaust flow rate for all three cycles are shown in Figure  3.2 .

2. Exhaust-gas temperature The exhaust-gas temperature during the RMC-SET is

higher than that for the FTP cycles. Among the FTP cycles, hot FTP has higher

temperature than cold FTP during the first 600 seconds as shown in Figure  3.3 .

3. Urea Dosing Figure  3.4 shows four phases of DEF dosing and ANR (Ammonia to

NOx Ratio) vs time for the three cycles. It can be observed that during all four phases,

the ANR stays steady for RMC-SET and is very transient for cFTP and hFTP. During

phase 1, which is from t = 0 to t = 424 sec, there is zero DEF dosing for cFTP. In the

next phase from t = 424 to t = 520 sec, cFTP has higher dosing than hFTP. In the

third phase from t = 520 to t = 600 sec, a distinct step DEF dosing profile is observed

for both cFTP and hFTP at different times. In the last phase beyond t = 600 sec,

both cFTP and hFTP have almost the same dosing profile.
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Figure 3.2. Engine torque, speed, engine-out NOx, and exhaust flow rate F
for the three drive cycles in test-cell data. Each quantity was normalized by
dividing by the maximum value across the three cycles.

3.1.2 Aging Signatures

The aged catalyst in the test-cell data was assumed to be degraded to EUL level on

the road. As shown in Figure  3.5 , both degreened and EUL aftertreatment systems were

operated under the exact same operating conditions for each cycle. Therefore, the difference

in DOC-out and tailpipe (TP) signals can be attributed to aging. And these differences in

DOC-out and tailpipe signals due to aging are called aging signatures.

Following aging signatures were observed in the test-cell data:

1. DOC-out NO, NO2: Engine-out NOx is rich in NO, leading to an NO2/NO ratio of

less than 1. DOC is responsible for oxidizing NO to NO2. Aftertreatment aging leads

to a decline in DOC performance, which decreases the DOC-out NO2/NO ratio. This

was clearly observed for all three cycles in the test-cell data as shown in Figure  3.6 .
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Figure 3.3. SCR mean temperature for the three drive cycles in test-cell
data. Temperature was normalized by dividing by its maximum value across
the three cycles.

2. Tailpipe N2O: Figure  3.7 shows tailpipe N2O for the three cycles. Aged catalyst

produced significantly higher N2O than degreened for cFTP and hFTP, from around

600 sec to 1000 sec. This could be because of higher SCR-out NH3 slip from the aged

catalyst, during those times, that gets converted to TP N2O by the ASC. The RMC-

SET shows the opposite trend as the TP N2O for the degreened catalyst is higher. The

reason for this is not entirely clear but it should be noted that TP N2O in this case

is very low (around 20 ppm), and hence the difference between degreened and aged

catalyst is also very small.

3. Tailpipe NH3: Tailpipe NH3 slip for all three cycles was very low because of the

presence of ASC. As shown in Figure  3.8 , only hFTP showed slightly higher NH3 slip

(around 5 ppm) for the aged catalyst.

4. Tailpipe NOx: Aging is expected to cause a decline in SCR performance, leading to

lower deNOx or higher tailpipe NOx. However, the test-cell data showed that TP NOx

for the aged catalyst may not be higher than the degreened catalyst at all times. Only
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(a) Phase 1: uDEF,cFTP = 0 (b) Phase 2: uDEF,cFTP > uDEF,hFTP

(c) Phase 3: Distinct dosing routine for
cFTP and hFTP

(d) Phase 4: uDEF,cFTP = uDEF,hFTP

Figure 3.4. DEF dosing and ANR for the three cycles, split into four phases.
Both DEF dosing and ANR were normalized by dividing by the maximum
value across the three cycles. .

five segments of data, shown in Figure  3.9 , across all three cycles showed reasonably

higher (>10 ppm) tailpipe NOx for the aged catalyst.

Following are the key take-aways from these observations:

1. The effect of aging on DOC performance is evident from the smaller DOC-out NO2/NO

ratio for the aged catalyst across all three cycles.

2. The decline in SCR performance due to aging is expected to result in an increase in

TP NOx and NH3 slip. However, due to the presence of ASC, TP NH3 stays low at

all times and the increase in SCR-out NH3 slip manifests through an increase in TP

N2O.

3. Only five aging signatures in TP NOx, i.e. reasonably higher (>10 ppm) tailpipe NOx

for the EUL catalyst than the degreened catalyst, across the three drive cycles demon-
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Figure 3.5. Input signals for both degreened and EUL catalyst for the three drive cycles.

strate that not all operating conditions will reveal the catalyst age. This establishes

the importance of picking the right operating conditions to enable the diagnostics

algorithm. This will be elaborated further in Chapter 6.

4. The RMC cycle presents a very interesting case where the effect of aging is very clear in

DOC-out NO, NO2, but doesn’t show up in the tailpipe signals. This again shows that

there are operating conditions where it may not be possible to distinguish degreened

and aged catalysts based on tailpipe signals alone.
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Figure 3.6. DOC-out NO2/NO ratio for both degreened and EUL catalysts
for the three drive cycles.

3.2 Truck Data

The truck data consists of four “day files”. Each day file has on-road data collected using

commercial on-board sensors during 24 hours-drive of a truck. The four day files are for

four different trucks with 271k, 422k, 484k, and 711k miles on them. Each day file contains

several measurements such as:

Engine torque, Engine speed

Truck speed

Cruise-control information

DPF-regeneration information

Diesel Exhaust Fluid (DEF) injection

Engine-out NOx

Tailpipe NOx

DOC-in, SCR-in, ASC-out temperature

Exhaust flow rate
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Figure 3.7. Tailpipe N2O for degreened and EUL catalysts for the three drive cycles.

The aftertreatment system on these trucks is the same as the one used to collect test-cell

data. The exhaust layout, with the sensors available on these trucks, is shown in Figure

 3.10 .

3.2.1 Operating conditions

Figure  3.11 shows a 7-minute segment of truck data. Differences in accelerator pedal

position, altitude, and ambient temperature demonstrate that each driver has their own

driving style, and every truck could be driven under different road, traffic, and weather

conditions. Therefore, the operating conditions vary significantly across the four trucks.

Table  3.2 lists the minimum, maximum, and average values of engine-out NOx, exhaust

flow, temperature and urea dosing over the entire day file for each truck. Notice that the

average values of exhaust flow rate and temperature are very similar across the four trucks,

but the ranges and average values of engine-out NOx and urea dose vary across the four

trucks.
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Figure 3.8. Tailpipe NH3 for degreened and EUL catalysts for the three drive cycles.

Table 3.2. Operating conditions for the four trucks in truck-data day files.
Truck kMiles EO NOx

(ppm)
Exh Volume

Flow (m3/sec)
SCR Bed

Temp (0C)
Urea Dose
(ml/sec)

Min Avg Max Min Avg Max Min Avg Max Min Avg Max
Truck 1 271 0 403 1371 0 0.35 0.61 50 244 314 0 0.34 2
Truck 2 422 0 408 1203 0 0.27 0.65 72 243 557 0 0.25 1.5
Truck 3 484 0 573 2237 0 0.35 0.77 44 253 354 0 0.44 2
Truck 4 711 0 490 1647 0 0.30 0.67 113 241 374 0 0.34 1.8

Since the inputs to the aftertreatment are unique for each truck, it is more challenging

to attribute differences in tailpipe signals to aging as compared to the test-cell data.

3.3 Test-cell data vs Truck data

This section will compare some key aspects of the truck and the test-cell data and their

implications for model-development and diagnostics:

1. Aging signatures As discussed earlier, since the test-cell data has experiments where

degreened and aged aftertreatment were run under identical operating conditions, it is
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Figure 3.9. Aging signatures observed in tailpipe NOx for the three drive
cycles. Note that the three subplots for hFTP, shown on the left side, are
zoomed in sections from the same test.

easier to attribute changes in tailpipe signals to aging. Therefore, the test-cell data is

more suitable for developing a model to capture aging.

2. Available signals: The test-cell data has DOC-out NO, NO2, TP NH3, TP NOx,

and TP N2O signals as compared to just the TP NOx signal in the truck data. It was

shown in Subsection  3.1.2 that there are operating conditions where only a subset of

these signals show aging signatures. Therefore, the test-cell data gives more insight

about the effects of aging as compared to the truck data.

3. Commercial NOx sensors vs FTIR: Test-cell data has measurements from FTIR

sensors, as opposed to the commercial NOx sensors in the truck data. Since the com-

mercial NOx sensors have several limitations such as lower accuracy, cross-sensitivity to
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Figure 3.10. Exhaust layout with the sensors available on commercial trucks.

Figure 3.11. Segment of truck data showing differences in driving style and
ambient conditions across the four trucks.

NH3, and inability to operate below the light-off temperature, the FTIR measurements

provide a more complete and cleaner data for modeling.

4. On-road vs In-Lab Conditions: Given the challenges with truck data, the test-

cell data is clearly more suitable to build a model from scratch. However, the truck

data provides great insights about the challenges posed by on-road conditions. These

insights have played a key role in laying down the modeling requirements, which will

be discussed in the next chapter.
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4. MODELING

This chapter describes the diagnostics-oriented model, suitable for model-based OBD for

SCR+ASC. The chapter starts by specifying the model requirements, based on observations

from test-cell and truck data discussed in the previous chapter. This is followed by a de-

scription of SCR and ASC reactions and model structure. Then the chapter describes the

model calibration process in detail, and concludes with the validation results on test-cell and

truck data.

4.1 Model Requirements

Model requirements are elaborated in the following points:

1. Accuracy requirement: The model in this work is intended to be used for developing

model-based diagnostic algorithm(s). To avoid false positives and false negatives, it is

important to pick the right operating conditions to activate the diagnostic algorithm.

Therefore, unlike a controller, a diagnostic method would not be running at all times

and the model doesn’t need to be accurate during operating conditions when the OBD

would not be running.

The model needs to be at its most accurate during operating conditions that are

suitable for diagnostics such as the ones where a clear aging signature, i.e. reasonable

difference between EUL and degreened catalysts, for tailpipe NOx can occur. But

even under these operating conditions, the model doesn’t need to capture the data

accurately at each time-stamp of a drive cycle. Instead, the key requirement from

a diagnostics-oriented model would be to capture the general trends in the tailpipe

signals that occur as a result of aging.

2. Ability to run with commercial sensors: Apart from exhaust gas flow rate and

temperature, commercial trucks only have engine-out and tailpipe NOx measurements.

Therefore, it must be possible to run the model with just those measurements.

Even though aging signatures were observed in DOC-out NO and NO2 signals, DOC-

out NOx will be used as the input to the model. This is because DOC-out NO and
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NO2 signals are not available in commercial trucks, and a DOC model will be required

to calculate DOC-out NO and NO2. Since the focus of current work is SCR+ASC, the

DOC dynamics will not be taken into account at this stage.

Also, the outputs from the SCR+ASC model would be tailpipe NOx, NH3, and N2O

concentration as these measurements are available in the test-cell data, and will be

used to calibrate and validate the model. However, only the tailpipe NOx values will

be used when testing the model on data from commercial trucks.

Model Objective: To summarize, the primary objective is to develop a diagnostics-

oriented model for SCR+ASC that can capture aging signatures observed in the test-cell

data, and is suitable for developing model-based OBD that can work with sensors available

in the SCR-ASC system on commercial trucks.

4.2 Selective Catalytic Reduction (SCR)

The SCR catalyst is responsible for reducing engine-out NOx into harmless N2 and H2O.

Diesel Exhaust Fluid (DEF), which is a mixture of 32.5% urea and 67.5% distilled water is

injected into the exhaust. Exhaust heat converts urea to NH3, which is then adsorbed by

the catalyst. Some of the adsorbed NH3 reduces the NOx, and the rest gets desorbed or

oxidized.

4.2.1 SCR Reactions

The Eley Rideal mechanism is widely accepted to be an accurate representation of the

Urea-SCR reactions [ 30 ], [  37 ]. The key processes and corresponding chemical reactions in

the Urea-SCR system as per the Eley Rideal mechanism are as follows:

1. Urea to NH3 conversion.

Thermolysis:

(NH2)2CO −−→ HNCO + NH3 (4.1)

48



Hydrolysis:

HNCO + H2O −−→ NH3 + CO2 (4.2)

2. NH3 adsorption and desorption.

NH3 + θfree ←−→ NH3(ads) (4.3)

where θfree is the number of moles of catalyst sites available for NH3 adsorption.

3. NOx reduction.

Standard SCR reaction:

4 NH3(ads) + 4 NO + O2 −−→ 4 N2 + 6 H2O (4.4)

Fast SCR reaction:

4 NH3(ads) + 2 NO + 2 NO2 −−→ 4 N2 + 6 H2O (4.5)

Slow SCR reaction:

8 NH3(ads) + 6 NO2 −−→ 7 N2 + 12 H2O (4.6)

Slow reaction is usually ignored when writing the dynamic equations, as it is much

slower than the fast and the standard reactions.

4. NH3 oxidation.

4 NH3(ads) + 3 O2 −−→ 2 N2 + 6 H2O (4.7)
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4.2.2 SCR Model

A high fidelity model for the Urea-SCR system will require partial differential equations

(PDEs) to represent chemical reactions, gas flow and convective heat transfer [  38 ], [ 37 ].

However, such model would be computationally too expensive to be embedded in a micro-

controller. Hence, several references such as [  30 ], [  39 ] and [  40 ] have used a lumped parameter

zero-dimensional model by treating the catalyst as a continuous stirred tank reactor (CSTR)

as shown in Figure  4.1 . The CSTR model assumes homogeneous distribution of reacting

species in the catalyst which allows using ordinary differential equations (ODEs) instead of

PDEs to model the Urea-SCR system dynamics.

Figure 4.1. Schematic of the CSTR Model (Taken from [  30 ]).

The system dynamic equations for the CSTR model can then be obtained using mass

balance across the catalyst: Depending on whether or not NO2 dynamics are considered, the

CSTR model can have three or four states, respectively. In this work, the three-state CSTR

model will be used for SCR because the aftertreatment system on commercial trucks does

not have any sensor to measure NO2 concentration upstream or downstream of SCR. The

system dynamic equations for the three-state CSTR models are given by Equation  4.8 .
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ẋ1 = F

V
(u1 − x1)− αadsx1(1− x3)K + αdesx3K

ẋ2 = F

V
(u2 − x2)− αSCR(x2)(x3K)

ẋ3 = −αSCRx2x3 + αadsx1(1− x3)− αdesx3 − αoxix3

(4.8)

The temperature (T ) dependence of the reaction rates (αi) and catalyst NH3 storage

capacity (K) is given by

αi = Aie− Ei
RT , K = S1

V
e−S2T (4.9)

And the urea to NH3 conversion dynamics is given by

u̇1 = 1
τ

(−u1 + ηureau1,ideal) (4.10)

All the symbols in Equations  4.8 to  4.10 are described in Table  4.1 .

Table 4.1. Symbols used in the SCR Model
Symbol Meaning

x1 Concentration of NH3 slip in mol/m3

x2 Concentration of emitted NOx in mol/m3

x3 Fraction of catalyst storage capacity occupied by NH3
u1 Concentration of injected NH3 in mol/m3

u1,ideal Ideal u1 assuming instant and 100% conversion from urea to NH3
u2 Concentration of incoming NOx in mol/m3

F Exhaust gas volume flow-rate in m3/sec
T Catalyst bed temperature in K
Ai Pre-exponential coefficient for reaction i
Ei Activation energy for reaction i in J/mol
V Catalyst volume in m3

K Catalyst NH3 storage capacity in moles
αads Reaction rate for NH3 adsorption to SCR catalyst
αdes Reaction rate for NH3 desorption from SCR catalyst
αoxi Reaction rate for oxidation of adsorbed NH3 in SCR catalyst
αSCR Reaction rate for NOx reduction by adsorbed NH3 in SCR catalyst
ηurea Urea to NH3 conversion efficiency

τ Time-constant for Urea to NH3 conversion
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4.3 Ammonia Slip Catalyst (ASC)

It is difficult to get low SCR-out NOx and NH3 simultaneously. ASC is responsible for

oxidizing the SCR-out NH3 to N2. Therefore, for the same amount of tailpipe NOx, an SCR-

ASC system will have lower tailpipe NH3 than an SCR-only system. However, the ASC is

not perfect and it can oxidize some SCR-out NH3 into NO and N2O.

4.3.1 ASC Reactions

The key reactions in an ASC are as follows [  41 ]:

1. Conversion of NH3 to N2. This is the desired reaction.

4 NH3 + 3 O2 −−→ 2 N2 + 6 H2O (4.11)

2. Conversion of NH3 to NO and N2O. These are the undesired reactions.

4 NH3 + 5 O2 −−→ 4 NO + 6 H2O (4.12)

2 NH3 + 2 O2 −−→ N2O + 3 H2O (4.13)

4.3.2 ASC Model

An ODE model, with concentration of NH3, NO, and N2O as the three states, could be

developed for ASC from the reactions  4.11 to  4.13 using mass balance and CSTR assumptions

similar to the SCR model. Combining such model with the three-state SCR model would give

us a six-state nonlinear ODE model for the SCR-ASC system. However, calibrating such

model would be extremely difficult in the absence of SCR-out measurements. Therefore,

instead of developing an ODE model for ASC, a look-up table model based on ASC’s NH3
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conversion efficiency and selectivity to N2, NO and N2O is developed. Since the look-up table

doesn’t model ASC dynamics, it won’t be able to capture the tailpipe signals accurately at

each time-stamp in the drive cycles. However, the results will show that this model can

capture the general trends caused due to aging, which should be sufficient for diagnostics as

discussed earlier and will also be demonstrated in the later sections.

ASC’s NH3 conversion efficiency and selectivities to NOx and N2O can be calculated

using the following equations:

ηNH3 = yNH3,SCR − yNH3,TP

yNH3,SCR
(4.14)

SNOx = yNOx,TP − yNOx,SCR

yNH3,SCR − yNH3,TP
(4.15)

SN2O = 2yN2O,TP

yNH3,SCR − yNH3,TP
(4.16)

where ηNH3 is ASC’s NH3 conversion efficiency and SNOx and SN2O are selectivities to NOx

and N2O, respectively.

The curves, reported in [  41 ], for ASC’s NH3 conversion efficiency and sensitivities vs tem-

perature and flow rate are shown in Figure  4.2 . Since ASC’s NH3 conversion efficiency and

sensitivities are functions of temperature and flow rate, two-dimensional look-up tables can

be developed to calculate NH3 conversion efficiency and sensitivities for any given combina-

tion of temperature and flow rate. Due to the unavailability of detailed ASC-in and ASC-out

data, it won’t be possible to obtain the exact relation from temperature and flow rate to

efficiency and selectivities. Therefore, the objective here is to maintain the qualitative curves

reported in [  41 ] and manipulate them empirically using the existing test-cell data such that

the SCR+ASC model can match the tailpipe signals.

The curves shown in Figure  4.2 are a good starting point to develop the look-up tables

because the temperatures in these curves cover the range of values in the test-cell data. The

space velocities given by [ 41 ] in Figure  4.2 are 66k hr−1 and 265k hr−1, but these exact space

velocity values are not important as the curves at these values will be manipulated to obtain
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the curves at three flow rate values within the range of our data. The range of exhaust

volume flow rate in the data is from 0.04 m3/sec to 0.6 m3/sec. Curves for 66k hr−1 will be

manipulated to get selectivity vs temperature curves for a flow rate of 0.04 m3/sec and 0.2

m3/sec. And the curves for 265k hr−1 will be manipulated to get selectivity vs temperature

curves for the flow rate of 0.7 m3/sec. This will be further elaborated in Section  4.3.4 .

(a) 66k hr−1 space velocity (b) 265k hr−1 space velocity

Figure 4.2. Dependence of ASC’s NH3 conversion efficiency and selectivities
on temperature and flow-rate, taken from [  41 ].

The step-by-step implementation of the ASC model, based on these 2D look-up tables,

is given as follows:

1. For a given temperature (T ), flow rate (F ) calculate ηNH3 , SNOx, and SN2O using the

2D look-up tables.

2. Calculate tailpipe NH3 using ηNH3 and SCR-out NH3.

yNH3,TP = (1− ηNH3) yNH3,SCR (4.17)

3. Calculate tailpipe NOx using SNOx, SCR-out NOx, SCR-out NH3, and tailpipe NH3.

yNOx,TP = yNOx,SCR + SNOx (yNH3,SCR − yNH3,TP) (4.18)
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4. Calculate tailpipe N2O using SN2O, SCR-out NH3, and tailpipe NH3.

yN2O,TP = SN2O

2 (yNH3,SCR − yNH3,TP) (4.19)

4.3.3 Model Calibration

The combined SCR-ASC model is shown in Figure  4.3 . Inputs to the SCR model are: T ,

F , Engine-out NOx (uNOx), and Injected DEF (uDEF). Outputs from the SCR model and

the inputs to the ASC model are SCR-out NH3 (yNH3,SCR) and NOx (yNOx,SCR). Tailpipe

NH3 (yNH3,TP), NOx (yNOx,TP), and N2O (yN2O,TP) are the outputs from the ASC model.

Figure 4.3. SCR+ASC model structure

Hot FTP cycle (hFTP) data is used to calibrate the SCR and ASC models for both

degreened and EUL catalysts. Cold FTP (cFTP) and RMC cycles will be used for validation.

Parameters for the SCR model are: Pre-exponential coefficients (Ai) and activation energies

(Ei) for the reaction rates, storage capacity parameters S1, S2, Urea-to-NH3 conversion

efficiency (ηurea), and time constant for urea-to-NH3 conversion (τ). Parametrization of the

look-up tables for the ASC model will be discussed in Section  4.3.4 .
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4.3.4 Look-up tables for SN2O, ηNH3, and SNOx

Look-up table for SN2O: The step-by-step procedure to obtain the look-up table from

temperature and flow rate to SN2O is given as follows:

1. Extract SN2O vs temperature data from Figure  4.2 for 66k hr−1 and 265k hr−1 space

velocities. The values in Figure  4.2 are for the catalyst that was used in [  41 ]. Therefore,

these are not necessarily the true selectivities for the catalyst used in this work. These

will be used as initial guesses, and will be parametrized by offsetting the curves for

SN2O vs temperature in Figure  4.2 . Let the initial values of SN2O from Figure  4.2 

be SN2O,init66 for 66k hr−1 space-velocity and SN2O,init265 for 265k hr−1 space-velocity.

Then the look-up table for SN2O can be parametrized as follows:

SN2O,lowflow = SN2O,init66 + p1

SN2O,midflow = SN2O,init66 + p2

SN2O,highflow = SN2O,init265 + p3

(4.20)

where SN2O,lowflow, SN2O,midflow, and SN2O,highflow are the values of ASC’s selectivity to

N2O at the three flow rates of 0.04 m3/sec, 0.2 m3/sec, and 0.7 m3/sec, respectively.

2. After the first step, SN2O values are obtained for several temperatures at each of the

three flow rates. At each flow rate, SN2O is calculated for other temperatures in hFTP

using piece-wise cubic Hermite interpolation. Then for each temperature, SN2O is

calculated for other flow rates in hFTP using linear interpolation. Note that cubic in-

terpolation is used to capture the nonlinear selectivity-vs-temperature curves in Figure

 4.2 , whereas linear interpolation is used for flow rate as selectivity values are known

for only three flow rates, making it unnecessary and infeasible to use nonlinear inter-

polation.

3. After the second step, SN2O values are obtained for many temperatures and flow rates.

Then the temperature, flow rate and selectivity values are stacked together to form a

2D interpolant using MATLAB’s scatteredInterpolant function. This interpolant
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is the 2D look-up table that can calculate SN2O for any combination of temperature

and flow rate.

Look-up table for ηNH3: It is possible to obtain the look-up table for ηNH3 by extracting

ηNH3 vs temperature data from Figure  4.2 , and following a similar process to the look-up

table for SN2O. However, as shown in Figure  4.4 , the SCR-out NH3 slip, calculated using

ηNH3 vs temperature curves from Figure  4.2 , is less than yNH3,TP + 2yN2O,TP. This would

imply that SN2O = 2yN2O,TP/ (yNH3,SCR − yNH3,TP) > 1, which is not possible. Therefore, the

Figure 4.4. Comparison of yNH3,SCR, calculated using ηNH3 , and yNH3,TP + 2yN2O,TP.

look-up table for ηNH3 is created using the following alternate approach:

1. At each time-stamp in hFTP, calculate SCR-out NH3 using SN2O, tailpipe NH3, and

tailpipe N2O using the following equation:

yNH3,SCR = yNH3,TP + 2yN2O,TP

SN2O
(4.21)

2. Calculate ηNH3 from yNH3,SCR and yNH3,TP using Equation  4.14 .

3. Stack temperature, flow rate, and ηNH3 at each time-stamp using scatteredInterpolant

to obtain the look-up table from temperature and flow rate to ηNH3 .
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Look-up table for SNOx: SNOx can be calculated from yNH3,SCR, yNH3,TP, yNOx,SCR, and

yNOx,TP using Equation  4.15 . However, since test-cell data does not have SCR-out measure-

ments, yNOx,SCR is unknown. Therefore, Equation  4.15 can be parametrized as follows:

SNOx = p4(yNOx,TP)
yNH3,SCR − yNH3,TP

(4.22)

where p4 is the fraction of tailpipe NOx produced from NH3 oxidation by ASC. This equation

assumes that p4 is a constant, which may not be true in general. However, this is a reasonable

assumption to calculate approximate values of SNOx for model calibration.

The look-up tables for both degreened and EUL catalysts were developed using these

steps. The NH3 conversion efficiency and selectivities vs temperature and flow rate, based

on these look-up tables, are shown in Figure  4.5 . Note that the curves for the degreened

and EUL catalysts are generally very close to each other, which is a sanity check because

the same SN2O vs temperature data was used for both degreened and EUL catalysts when

creating the look-up table for SN2O and therefore it was expected that similar look-up tables

will be obtained for both. The slight differences between the curves for degreened and EUL

catalysts, shown in Figure  4.5 , could be attributed to numerical differences caused due to

slightly different operating conditions and tailpipe signals for the two catalysts.

Since these curves look qualitatively similar to the ones in Figure  4.2 , these look-up tables

could be used as reasonable initial guesses for the ASC model, which can be calibrated by

tuning p1, p2, p3, and p4. Note that ηNH3 , SNOx, and SN2O are zero below 200oC, which is

the threshold for ASC activation.

4.3.5 Current Calibration Approach for SCR+ASC Model

As mentioned earlier, hFTP is used to calibrate the SCR+ASC model. The following

steps summarize the procedure to run the SCR+ASC model:

1. Integrate the three-state ODE Equations  4.8 to get SCR-out NH3 and NOx.

2. Calculate ηNH3 , SNOx, and SN2O at each time point using the look-up tables from T ,

F .
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Figure 4.5. ηNH3 , SNOx, and SN2O vs temperature and flow rate, based on
the 2D look-up tables for degreened (DG) and EUL catalyst.

3. Calculate tailpipe NH3 from ηNH3 and yNH3,SCR.

4. Calculate tailpipe NOx from SNOx, yNOx,SCR, yNH3,TP, and yNH3,SCR.

5. Calculate tailpipe N2O from SN2O, yNH3,TP, and yNH3,SCR.
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The parameters for the SCR-ASC model can be identified by solving the following optimiza-

tion problem:

min
θSCR,θASC

J =
t2∑

t=t1

(
e2

NH3,T P + e2
NOx,T P + e2

N2O,T P

)
subject to Ai, Ei, S1, S2 > 0

0 < ηurea < 1

0 < τ < 50

−1 < p1, p2, p3 < 1

0 < p4 < 1

where

ei,TP = yi,TP − ŷi,TP

θSCR = [Ai, Ei, S1, S2, ηurea, τ ]

θASC = [p1, p2, p3, p4]

(4.23)

where yi,TP are the true tailpipe signals and ŷi,TP are the model-out values. Also note that

t1 and t2 denote the times during which clear aging signature was observed in hFTP data.

This implies that good model accuracy is required only when the operating conditions are

favorable for diagnostics.

The Trust-region-reflective algorithm, using MATLAB’s lsqnonlin, was used to solve

the optimization problem to obtain the fits shown in Figure  4.6 .

Visually, the fits shown in Figure  4.6 are reasonable for all tailpipe signals. These fits are

quantified in Table  4.2 using the values of average modeling error, in ppm and as a fraction

(rmean) of average value of the true signals. Note that the average error for tailpipe NOx

and tailpipe NH3 is less than 1 ppm for both DG and EUL catalysts. However, it is still

37% of the average value of true tailpipe NOx for the DG catalyst, which is around 2 ppm.

The average error for tailpipe N2O is around 0.2 ppm for the DG catalyst and around 6.4

ppm for the EUL catalyst, which is about 23% of the average value of true tailpipe N2O.

Average error values in Table  4.2 demonstrate that very low modeling error could still be a

significant fraction of the true signal value if the signal itself is small. But, it will be shown

in Chapter  5 that a model-based diagnostic method could be designed to handle modeling
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Figure 4.6. TP signal fits for degreened and EUL catalysts after calibrating
the model on hFTP cycle.

error up to 10 ppm in tailpipe NOx. So, even if the modeling error is significant with respect

to the true signal value, the model can be considered accurate enough for the OBD method

in Chapter  5 to capture the aging signatures if the modeling error is less than 10 ppm.

One observation from Figure  4.6 is that the model is not able to capture the second

spike in tailpipe N2O between 900-950 seconds. The reason for this spike is not exactly clear

at this point, but it could be due to conditions favoring NH3 desorption, such as relatively

low engine-out NOx, low flow rate and high exhaust temperature, leading to high SCR-out

NH3, which then gets primarily converted to tailpipe N2O due to conditions where ASC’s
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selectivity to N2O is high. Our model’s inability to capture this spike could primarily be

attributed to the SCR model underestimating SCR-out NH3 at that time. This will be

analyzed more carefully in future to improve model calibration.

Table 4.2. Average modeling error, in ppm and as a fraction (rmean) of average
value of the true signal, to quantify the tailpipe signal fits for hFTP shown in
Figure  4.6 .

Avg Error
(ē,ppm)

Avg True Value
(ȳi,TP, ppm)

rmean = ē
ȳi,TP

DG EUL DG EUL DG EUL
TP NH3 0.28 0.79 1.75 5.36 0.16 0.15
TP N2O 0.23 6.43 14.37 27.67 0.01 0.23
TP NOx 0.67 0.12 1.83 5.81 0.37 0.02

It should be noted that the pre-exponential coefficient, S1, of the catalyst NH3 storage

capacity was the only free parameter when calibrating the model for the EUL catalyst.

Therefore, the only difference between parameters for the degreened and the EUL catalysts

is S1. It is likely that other parameters, if left free, could also have taken different values

for the EUL catalyst than the degreened one. But since the model could capture the trends

due to aging by just changing S1, it can be concluded that S1 is adequate to capture the

catalyst age. However, the effect of other parameters could be explored in future work.

4.3.6 Model Validation

cFTP, RMC, and truck data are used to validate the SCR+ASC model. This section

will present the model validation results on these data-sets.

4.3.7 Model Validation on cFTP Cycle

The validation fits for both degreened and EUL catalysts are shown in Figure  4.7 .

The average modeling error, in ppm and as a fraction (rmean) of average value of the

true signal, is shown in Table  4.3 to quantify the validation fits shown in Figure  4.7 . Very

small values of true TP NH3 signals lead to large rmean values and bad visual fit for the EUL
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Figure 4.7. TP signal fits after ASC calibration for degreened and EUL
catalysts for cFTP, which was used for validation.

catalyst, but the fit is reasonable as the average error values are less than 10 ppm. Visual

fits for TP N2O and NOx are decent, supported by low average error values. Large rmean

values can again be attributed to small signal values.

4.3.8 Model Validation on RMC Cycle

Ideally, the training data for the ASC look-up tables should cover a wider range of tem-

perature and flow rate than the validation data because look-up tables can not extrapolate.

However, the maximum temperature across the FTP cycles is 270oC. But the temperature
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Table 4.3. Average modeling error, in ppm and as a fraction (rmean) of average
value of the true signal, to quantify the tailpipe signal fits for cFTP shown in
Figure  4.7 .

Avg Error
(ē,ppm)

Avg True Value
(ȳi,TP, ppm)

rmean

DG EUL DG EUL DG EUL
TP NH3 4.2 8.1 0.6 0.5 6.39 17.31
TP N2O 2.4 7 9.7 13.4 0.24 0.52
TP NOx 0.5 2.7 1.8 2.9 0.25 0.91

for the RMC cycle ranges from 260oC to 350oC. Therefore, the look-up tables in Figure  4.5 

have to be extended for the RMC cycle by following the procedure in Section  4.3.4 using

the ASC parameter values (p1, p2, p3, p4) obtained from calibrating the model on the hFTP

cycle. The updated curves for NH3 conversion efficiency and selectivities vs temperature and

flow rate are shown in Figure  4.8 .

It can be observed from Figure  4.9 that reasonable fits, quantified by low average error

values in Table  4.4 , were obtained for both degreened and EUL catalysts.

Table 4.4. Average modeling error, in ppm and as a fraction (rmean) of average
value of the true signal, to quantify the tailpipe signal fits for RMC shown in
Figure  4.9 .

Avg Error
(ē,ppm)

Avg True Value
(ȳi,TP, ppm)

rmean

DG EUL DG EUL DG EUL
TP NH3 0.34 0.98 2.14 2.18 0.16 0.45
TP N2O 0.93 3.81 13.03 9.42 0.07 0.40
TP NOx 1.52 5.52 15.42 15.79 0.1 0.35
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Figure 4.8. ηNH3 , SNOx, and SN2O vs temperature and flow rate, extended to RMC cycle.

4.3.9 Model Validation on Truck Data

Since the duty cycles for the trucks are different from the cycles in test-cell data, the

pre-exponential coefficient of the NOx reduction reaction (ASCR) had to be adjusted to make

the model work for truck data. Also, since the catalyst degradation levels on the trucks

are unknown, the model is considered to be “performing reasonably” if any of the following

conditions is satisfied:

1. The measured TP NOx is close to the TP NOx value estimated by the DG catalyst

model, or

2. The measured TP NOx is close to the TP NOx value estimated by the EUL catalyst

model, or
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Figure 4.9. Tailpipe signal fits for degreened and EUL catalysts for RMC,
which was used for model validation.

3. the measured TP NOx is more than the TP NOx value estimated by the DG catalyst

model but less than the EUL catalyst model.

These conditions will be elaborated and quantified in the next section. An example of

each of these conditions from the truck data is shown in Figure  4.10 . It can be concluded

from the values in Table  4.5 that the model behaves reasonably, based on the three points

mentioned above, for a significant number of points for all four trucks.

Using a simple cross-sensitivity model to improve the fits: Since the commercial

tailpipe NOx sensor on the trucks is cross-sensitive to NH3, the results in Table  4.5 could

be improved by incorporating a simple model for cross-sensitivity. The tailpipe NOx and
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Figure 4.10. Examples from truck data where the model behaves reasonably.

Table 4.5. Model performance on truck data quantified by the number and
percentage of points where model behaves reasonably.

Truck 1 Truck 2 Truck 3 Truck 4

No. of points where T>200oC 32036 57852 67500 55678

No. of points where model is reasonable 18515 47919 41591 24253

%. of points where model is reasonable 57.8% 82.8% 61.6% 43.5%

NH3 values can be combined as follows to incorporate cross-sensitivity in both DG and EUL

models:

yNOx,cross = yNOx,TP,model + χ (yNH3,TP,model)

Though the cross-sensitivity factor χ can vary with temperature, it is a common approach

to use a constant value for simplicity [  42 ]–[ 44 ]. It has been reported in [  43 ] that the cross-

sensitivity factor can range from 0 to 2. Therefore, in this paper, χ was varied from 0 to 2

for each truck to find the value that results in the best fit. From the curves shown in Figure

 4.11 , it can be concluded that the fits improved significantly for each truck by using this

simple cross-sensitivity model with an appropriate χ. After incorporating cross-sensitivity,
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the percentage of points where the model is reasonable increased to 86.6%, 85.6%, 69.8%,

and 80% for Trucks 1 to 4, respectively.

Figure 4.11. Percentage of points where the DG and EUL models behave
reasonably for the truck data vs the cross-sensitivity factor χ.

The next chapter will discuss the model-based OBD method with well-defined enable

conditions applied to both test-cell and truck data.
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5. MODEL-BASED OBD STRATEGIES

Two OBD methods based on the DG and EUL catalyst models are presented in this chap-

ter. The key idea for both methods is to infer catalyst degradation level by comparing the

measured tailpipe NOx to its value estimated by both DG and EUL models. Note that a

key assumption in this chapter is that the model-based OBD methods should be applied to

the same engine-aftertreatment combination as the one used for model calibration. The first

five sections will describe the enable conditions, precise diagnostic criteria, and results on

both test-cell and truck data for the first method. The last section will present the second

OBD method, which is based on the stochastic version of the SCR-ASC model.

5.1 Model-based Enable Conditions

Unlike a controller, OBD doesn’t need to run at all times. It is important to pick the

right conditions to activate the OBD. These conditions are called enable conditions. The

enable conditions should minimize false positives and false negatives while maintaining a

good In-use-performance-monitoring-ratio (IUMPR).

The fundamental objective of formulating enable conditions is to detect and pick op-

erating conditions where a degraded catalyst would perform significantly differently from

a degreened one. In other words, the enable conditions need to pick operating conditions

which are likely to produce aging signatures.

Since the OBD needs to detect catalyst degradation on commercial trucks using just

tailpipe NOx measurements, we tried to find operating conditions in test-cell data where

more than 10% difference in deNOx efficiency of the DG and the EUL catalysts was observed.

However, observations from test-cell data, such as the one shown in Figure  5.1 , showed

that very similar operating conditions could lead to very different separability between DG

and EUL catalysts based on %deNOx. Despite very similar values of DEF dosing, engine-out

NOx, temperature, and flow rate, the difference between %deNOx of DG and EUL catalyst

is more than 10% for the operating conditions plotted in blue and very small for the ones

plotted in red. This shows that the separability between DG and aged catalysts depends

not just on the present operating conditions but on the dynamics that happened in the
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past, which could be captured by a model. This establishes the importance of formulating

model-based enable conditions.

Figure 5.1. A section of test-cell data showing that very similar operating
conditions could lead to different separability between DG and EUL catalysts
based on %deNOx.

In this thesis, the following steps are proposed to pick operating conditions where aging

signatures are expected to occur according to the SCR-ASC model:

1. Filter 1: Run both DG and EUL catalyst models so that model-out TP NOx

values could be compared to measured TP NOx. Since the SCR-ASC model can’t run

at temperatures less than 200oC, only the points where the SCR bed temperature is

greater than 200oC are selected in this step.

2. Filter 2: From the points selected in step 1, select points where the model

behaves reasonably, i.e., at least one of the following conditions is satisfied:
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|yNOx,TP,meas − yNOx,TP,DG model| < 20 ppm OR
|yNOx,TP,meas − yNOx,TP,DG model|

yNOx,TP,meas
< 0.2 OR

|yNOx,TP,meas − yNOx,TP,EUL model| < 20 ppm OR
|yNOx,TP,meas − yNOx,TP,EUL model|

yNOx,TP,meas
< 0.2 OR

yNOx,TP,DG model < yNOx,TP,meas < yNOx,TP,EUL model

(5.1)

The threshold in modeling error is chosen to be 20 ppm or 20%, because the commercial

NOx sensor has an uncertainty of 10 ppm or 10%, and the maximum average modeling

error in tailpipe NOx across the three drive cycles was slightly less than 10 ppm. So,

the measurement and modeling uncertainty were combined to choose 20 ppm or 20%

as the threshold for this enable condition.

3. Filter 3: From the points selected after the first two steps, select points where

differences between DG and EUL catalysts can be expected based on the

SCR-ASC model. This can be quantified either based on %deNOx or TP NOx. For

%deNOx-based filter 3, the points where (ηdeNOx,DG model − ηdeNOx,EUL model) > 10% are

selected. The threshold for %deNOx-based separation was chosen as 10% based on ob-

servations from test-cell data such that it is not too low to be affected by measurement

or modeling errors and not too high to exclude a lot of points from the data.

The other option for this enable condition is to quantify the separation in DG and

EUL catalysts based on TP NOx, where the points that satisfy all of the following

conditions are selected:

yNOx,TP,EUL model − yNOx,TP,DG model > 20 ppm AND
yNOx,TP,EUL model − yNOx,TP,DG model

yNOx,TP,DG model
> 0.2 AND

yNOx,TP,EUL model − yNOx,TP,DG model

yNOx,TP,EUL model
> 0.2

(5.2)
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Since the modeling error in tailpipe NOx for both DG and EUL catalyst models is

up to 10 ppm, a difference of up to 20 ppm in yNOx,TP,DG model and yNOx,TP,EUL model

could be because of modeling error. So, to ensure that the difference is due to an aging

signature, 20 ppm or 20% was chosen as the threshold to quantify the separation based

on tailpipe NOx.

4. Filter 4: From the points selected after the first three steps, select points where the

tailpipe NH3 is too low for cross-sensitivity to significantly affect tailpipe

NOx sensor readings. In the existing literature, 2 is reported as the maximum

cross-sensitivity factor [ 43 ]. So, this enable condition should select points where the

tailpipe NOx sensor reading with maximum cross-sensitivity, yNOx + 2yNH3 , is not too

different from the true reading, yNOx, to affect the result of diagnostics. Therefore, this

enable condition selects the points that satisfy the following conditions:


2yNH3,TP,DG model < 5 ppm

OR

2yNH3,TP,DG model < 0.05yNOx,TP,DG model


AND

2yNH3,TP,EUL model < 5 ppm

OR

2yNH3,TP,EUL model < 0.05yNOx,TP,EUL model



Since the goal of this enable condition is to select points where yNH3 is too small for

cross-sensitivity to affect the result of diagnostics, the threshold was chosen as 25% of

the thresholds in Filter 2 and Filter 3.

5.2 Diagnostic criteria

For a perfect model and with perfect TP NOx measurements, the TP NOx measurements

from a DG catalyst can be expected to overlap with the TP NOx estimated from the DG
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model. As the catalyst degrades, the TP NOx measurements will be higher than the value

estimated by the DG model, and their difference will be higher for higher degradation. For

an EUL catalyst, the measurement will overlap with the value estimated by the EUL model.

However, there will be false positives and false negatives because of uncertainties in the

model and imperfect measurements. This means that the TP NOx measurements can be

closer to the DG model at some sample points and to the EUL model at others. However, if

the enable conditions are designed effectively to minimize false positives and false negatives

then the TP NOx measurements will align with the correct model according to the aging

level. Based on this, the following diagnostic metric is defined to be applied to the points

selected after the four filters in Section  5.1 .

The key idea in this metric is to classify each point, selected after applying the enable

conditions, as either DG, EUL, or none. Let NDG and NEUL be the number of points classified

as DG and EUL, respectively. Then the degradation level is quantified by the ratio of NEUL

to NDG. Higher NEUL/NDG would imply higher degradation.

The diagnostic metric classifies a point as DG if the measured TP NOx is closer to the

value estimated by the DG model than the one by the EUL model, i.e.

|eNOx,TP,DG model| < |eNOx,TP,EUL model|,

where

eNOx,TP,DG model = yNOx,TP,meas − yNOx,TP,DG model

eNOx,TP,EUL model = yNOx,TP,meas − yNOx,TP,EUL model

Similarly, a point is classified as EUL if the measured TP NOx is closer to the value

estimated by the EUL model than the one by the DG model, i.e.

|eNOx,TP,DG model| > |eNOx,TP,EUL model|

Note that every point is guaranteed to be classified as either DG or EUL by this metric.
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Also note that this diagnostic metric is designed to compare the degradation level across

various catalysts. Therefore, rather than giving an absolute aging level, it will give aging

level relative to a baseline catalyst with known aging level.

5.3 Results with test-cell data

We will now apply the enable conditions in Section  5.1 to monitor both DG and EUL

catalysts during the three drive cycles in test-cell data:

1. Filter 1: We run both DG and EUL models for all three cycles, and only select points

where SCR-bed temperature is greater than 200oC.

2. Filter 2: We then select the points where the model behaves reasonably. It can be

observed from Table  5.1 that this filter removes less than 5% of the points selected

after the first filter. This implies that the model behaves reasonably in all three cycles

for almost every point where the temperature is greater than 200oC, which is expected

because of good agreement between test-cell data and models.

3. Filter 3: From the points selected after applying the first two filters, this filter selects

the points where aging signature can be expected based on DG and EUL catalyst

models. This can be quantified either based on %deNOx efficiency or TP NOx from

DG and EUL models. It can be observed from Table  5.1 that this filter removes most

of the points. Based on %deNOx, very few but non-zero number of points are selected

from all three cycles. However, no points are selected from cFTP and hFTP cycles if

the filter is applied based on TP NOx.

4. Filter 4: This filter selects points where the TP NH3, from both EUL and DG cat-

alysts, is too low for cross-sensitivity to affect the OBD results. Over the three drive

cycles, this filter removed 78% of the points selected after %deNOx-based filter 3 and

no points were selected from the RMC cycle. When applied to the points selected after

TP NOx-based filter 3, only 1.2% of the points got selected after this filter. In this

case, all the selected points are from RMC because the TP NOx-based filter 3 removed

all points from cFTP and hFTP.
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Table 5.1. Number of points selected in test-cell data after applying the
enable conditions

cFTP hFTP RMC

DG EUL DG EUL DG EUL

Total no. of points 6014 6013 6012 6012 12005 12005

Filter 1: No. of points where T>200oC 2864 2885 3173 3177 12005 12005

Filter 2: No. of points where model is reasonable 2863 2885 3170 3174 11458 11362

Filter 3: No. of
points where
aging signature
is expected
based on DG
and EUL
models

Based on %deNOx 37 55 138 38 18 46

Based on TP NOx 0 0 0 0 1177 879

Filter 4: No. of
points where TP
NH3 is too low
for
cross-sensitivity

after %deNOx-based filter 3 8 0 55 9 0 0

after TP NOx-based filter 3 0 0 0 0 1 24

After filtering the data using enable conditions, the diagnostic metric was applied to

the selected points. It can be observed from Table  5.2 that the diagnostic metric correctly

classified all points from the DG catalyst as DG for all three cycles, resulting in NEUL/NDG =

0. For the EUL catalyst, this metric correctly classified 22 points as EUL out of 24 points

selected from the RMC cycle by TP NOx-based enable conditions, resulting in NEUL/NDG =

22/2 = 11. However, this metric incorrectly classified all 9 points selected from hFTP by

%deNOx-based enable conditions as DG for the EUL catalyst. These results were combined

over the three drive cycles and are shown in Table  5.3 . It can be observed from Table  5.3 that

%deNOx-based enable conditions selected 72 points whereas only 25 points were selected by

TP NOx-based enable conditions. None of the enable conditions resulted in false positives,

i.e., DG catalyst identified as EUL. For %deNOx-based enable conditions, 9 out of 72 points

resulted in false negatives, i.e., EUL catalyst reported as DG, and only 2 out of 25 points for
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TP NOx-based enable conditions resulted in false negatives. These results show that the TP

NOx-based enable conditions are more selective and hence more robust to false negatives.

Table 5.2. Results of applying diagnostic metric to the test-cell data selected
after applying the enable conditions (Filters 1 to 4).

cFTP hFTP RMC

DG EUL DG EUL DG EUL

%deNOx-based
enable
conditions

No. of points selected after

applying Filters 1 to 4
8 0 55 9 0 0

NEUL/NDG 0/8 0/0 0/55 0/9 0/0 0/0

TP NOx-based
enable
conditions

No. of points selected after

applying Filters 1 to 4
0 0 0 0 1 24

NEUL/NDG 0/0 0/0 0/0 0/0 0/1 22/2

Testing OBD method’s robustness to cross-sensitivity and measurement noise:

Since the OBD has to work with commercial NOx sensors on trucks, it is important to test

its robustness to cross-sensitivity and measurement noise. The cross-sensitivity factor can

change as a function of other signals such as temperature, but the worst-case scenario was

simulated in test-cell data by using the maximum possible value of 2 for the cross-sensitivity

factor. Since commercial tailpipe NOx sensors have measurement error up to 10 ppm, the

measurement noise was simulated using a Gaussian distribution with zero mean and 10/3

ppm of standard deviation (since 99% of values sampled from a Gaussian distribution lie

within ±3 times the standard deviation). Therefore, cross-sensitivity and measurement noise

were simulated in test-cell data using the following equation:

yNOx,simulated = yNOx,TP,meas + 2yNH3,TP,meas +N (0, (10/3)2)

Then instead of yNOx,TP,meas, yNOx,simulated was compared to model-out TP NOx when

applying the enable conditions and the diagnostic metric. The results of this exercise are

shown in Table  5.3 . It can be observed from Table  5.3 that almost identical results were

obtained for a cross-sensitive NOx signal without measurement noise, suggesting that the

enable conditions and the diagnostic metric are robust to cross-sensitivity. Addition of noise
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to the cross-sensitivity signal resulted in some false positives, but the majority of points

were still correctly classified as degreened or EUL. Therefore, the diagnostic metric can be

considered to be robust to both cross-sensitivity and noise.

Table 5.3. OBD results combined over the three drive-cycles for clean, cross-
sensitive, and noisy tailpipe NOx sensor readings.

Perfect TP NOx

measurement

(yNOx,TP,meas)

With cross-sensitivity

(yNOx,TP,meas

+2yNH3,TP,meas)

With cross-sensitivity

and noise

(yNOx,TP,meas

+2yNH3,TP,meas

+N (0, (10/3)2))

Points selected 72 72 72
%deNOx-
based
enable
conditions

Correctly identified as DG 63 63 58

False positive (DG identified as EUL) 0 0 5

Correctly identified as EUL 0 0 7

False negative (EUL identified as DG) 9 9 2

Points selected 25 25 25
Tailpipe
NOx-based
enable
conditions

Correctly identified as DG 1 1 1

False positive (DG identified as EUL) 0 0 0

Correctly identified as EUL 22 23 20

False negative (EUL identified as DG) 2 1 4

5.4 Results with truck data

The number of points selected from each truck after applying the enable conditions are

shown in Table  5.4 . Note that filter 2, which selects the points where the model behaves

reasonably, is more selective for truck data than the test-cell data. In test-cell data, this

filter removed less than 5% of the points selected after filter 1, which was expected because

the model was calibrated on test-cell data. But in truck data, only 43% to 83% points were

selected after filter 2. This was still a significant number of points as more than 18000 points

were selected from all trucks. Filter 3, which selects the points where aging signature can

be expected based on DG and EUL catalyst models, removed a significant number of points

as it did for test-cell data. Based on %deNOx, filter 3 selected less than 0.6% of the points

remaining after filter 2 from all four trucks. It was less restrictive based on tailpipe NOx
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as up to 32% of the points were selected. For the points selected after %deNOx-based filter

3, the cross-sensitivity based filter 4 selected 75% of the points. And it selected 67% of the

points selected after TP NOx-based filter 3.

Table 5.4. Number of points selected in truck data after applying the enable conditions
Truck 1 Truck 2 Truck 3 Truck 4

Total no. of points 33834 66133 79987 69848

Filter 1: No. of points where T>200oC 32036 57852 67500 55678

Filter 2: No. of points where model is reasonable 18515 47919 41591 24253

Filter 3: No. of
points where
aging signature
is expected
based on DG
and EUL
models

Based on %deNOx 46 89 253 137

Based on TP NOx 619 272 13286 2284

Filter 4: No. of
points where TP
NH3 is too low
for
cross-sensitivity

after %deNOx-based filter 3 28 86 159 121

after TP NOx-based filter 3 477 254 8823 1503

The results of applying the diagnostic metrics to points selected from both %deNOx-based

and tailpipe NOx-based enable conditions are shown in Table  5.5 . NEUL/NDG vs the number

of miles on each truck is shown in Figure  5.2 . Higher NEUL/NDG implies higher degradation,

therefore the plots in Figure  5.2 show the aging trends reported by the diagnostic metrics vs

the number of miles on each truck.

Since the actual degradation levels on these trucks is not known, the results can’t be

validated yet. However, it is encouraging that the diagnostic metric gave almost identical

trends for both types of enable conditions. The only difference between the two trends is

that the truck with 484k miles is reported to be more aged than the one with 271k miles

for %deNOx-based enable conditions and vice versa for TP NOx-based enable conditions.

This is because factors such as DPF regeneration, and different driving styles could result in
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Table 5.5. Results of applying diagnostic metrics to the truck data selected
after applying the enable conditions (Filters 1 to 4) based on %deNOx and
tailpipe NOx.

Truck 1 Truck 2 Truck 3 Truck 4

%deNOx-based
enable
conditions

No. of points selected after

applying Filters 1 to 4
28 86 159 121

NEUL/NDG 1/27 43/43 63/96 71/50

TP NOx-based
enable
conditions

No. of points selected after

applying Filters 1 to 4
477 254 8823 1503

NEUL/NDG 180/297 127/127 2126/6697 886/617

higher degradation on a truck with lesser miles on it. Another consistent result from both

enable conditions is that the truck with 711 kmiles is reported to have significantly higher

degradation compared to the other three trucks. Even though these results could not be

validated yet, mostly similar and sensible trends using different enable conditions increase

the confidence in the relative aging levels, and is an encouraging result.

Figure 5.2. Aging trends reported by diagnostic metrics vs the number of
miles on each truck. Higher NEUL/NDG implies higher degradation
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5.5 Impact of uncertainty in initial NH3 storage on OBD results

For the results presented so far, the model was run assuming zero initial NH3 storage.

However, the initial NH3 storage would be non-zero during most of the operation of a truck.

Therefore, it is important to analyze the robustness of the OBD method to uncertainty in

initial NH3 storage. To do this, both degreened and EUL models were run for 100 different

values of initial NH3 storage fraction from 0 to 1, in increments of 0.01, for each truck. The

OBD method was then applied to the truck data to calculate the NEUL/NDG ratio for each

initial NH3 storage fraction for each truck, which is plotted in Figure  5.3 . It can be observed

from Figure  5.3 that NEUL/NDG ratio, and hence the aging trend reported by the diagnostic

metric across the four trucks, changes significantly with the initial NH3 storage value, which

implies that the OBD is not robust to uncertainty in initial NH3 storage.

Figure 5.3. NEUL/NDG vs initial NH3 storage fraction before incorporating
the enable condition designed to handle the uncertainty in initial NH3 storage.

5.5.1 Designing an enable condition to make the OBD robust to uncertainty in
initial NH3 storage

Since the OBD method uses model-out tailpipe NOx and NH3 values, the time-series of

tailpipe NOx and tailpipe NH3 of the model run with different initial NH3 storage values

were analyzed to determine the cause of the OBD method’s high sensitivity to initial NH3

storage value. Since the model was run for 100 different values of initial NH3 storage, it
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resulted in 100 different values of tailpipe NOx and NH3 at each time-stamp. To visualize

the impact of the initial NH3 storage on these signals, the difference between the maximum

and minimum value at each time-stamp was plotted for both tailpipe NOx and NH3. This

was done for the entire truck data, but a segment of the data is shown in Figure  5.4 to

demonstrate the key result of this analysis. It can be observed from Figure  5.4 that the

difference between maximum and minimum value, of both tailpipe NOx and NH3 across all

initial NH3 storage values, converges to almost zero in less than 10 minutes. This implies

that all initial NH3 storage values converge to almost identical values of model-out tailpipe

NOx and NH3 values in around 10 minutes.

Figure 5.4. Time-series plot of difference between maximum and minimum
value of model-out tailpipe NOx and NH3 across all initial NH3 storage values.

Therefore, to make the OBD method robust to uncertainty in initial NH3 storage (x3,0),

another enable condition is added to only select points where the maximum variation in

model-out tailpipe NOx and NH3 due to uncertainty in initial NH3 storage is less than 5

ppm for both degreened and EUL models. This enable condition is defined as Filter 5, and

selects the points that satisfy the following conditions:
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
max

x3,0∈(0,1)
(yNOx,TP,DG model)− min

x3,0∈(0,1)
(yNOx,TP,DG model) < 5ppm

AND

max
x3,0∈(0,1)

(yNH3,TP,DG model)− min
x3,0∈(0,1)

(yNH3,TP,DG model) < 5ppm


AND

max
x3,0∈(0,1)

(yNOx,TP,EUL model)− min
x3,0∈(0,1)

(yNOx,TP,EUL model) < 5ppm

AND

max
x3,0∈(0,1)

(yNH3,TP,EUL model)− min
x3,0∈(0,1)

(yNH3,TP,EUL model) < 5ppm



5.5.2 Number of points selected for diagnostics after applying Filter 5

The results of applying this enable condition to test-cell data are shown in Table  5.6 .

It can be observed that Filter 5 removed all the points that were selected from cFTP and

hFTP cycles after applying the first four %deNOx-based enable conditions. Filter 5 did not

remove any points that were selected from the RMC cycle by tailpipe NOx-based enable

conditions. The five enable conditions are designed to make the OBD robust to modeling

errors, cross-sensitivity, and uncertainty in initial NH3 storage but the results from Table  5.6 

show that these enable conditions lead to a very small IUMPR for the test-cell data. This

demonstrates the difficulty in designing enable conditions that are robust and yet lead to a

high IUMPR.

The results of applying Filter 5 to truck data are summarized in Table  5.7 . Compared to

test-cell data, a reasonable number of points were selected from all four trucks after applying

the five enable conditions. This is because the on-road driving cycles on trucks are much

longer than the FTP and RMC cycles, which results in more opportunities for the OBD to

get enabled.
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Table 5.6. Results of applying the initial NH3 storage-based enable condition,
Filter 5, to test-cell data.

cFTP hFTP RMC

DG EUL DG EUL DG EUL

%deNOx-based
enable
conditions

No. of points selected after

applying Filters 1 to 4
8 0 55 9 0 0

No. of points selected after

applying Filter 5
0 0 0 0 0 0

NEUL/NDG 0/0 0/0 0/0 0/0 0/0 0/0

TP NOx-based
enable
conditions

No. of points selected after

applying Filters 1 to 4
0 0 0 0 1 24

No. of points selected after

applying Filter 5
0 0 0 0 1 24

NEUL/NDG 0/0 0/0 0/0 0/0 0/1 22/2

5.5.3 OBD method’s robustness to uncertainty in initial NH3 storage after in-
corporating Filter 5

The NEUL/NDG ratio vs initial NH3 storage fraction for each truck after incorporating

this enable condition is shown in Figure  5.5 . It can be observed from Figure  5.5 that the

NEUL/NDG ratio remains almost constant across different initial NH3 storage, which implies

that the aging trend reported by the OBD is now robust to uncertainty in initial NH3 storage.

5.6 Stochastic model-based OBD

The model-based approach discussed so far does binary classification as it classifies each

sample point as either degreened or EUL. In this section, a stochastic model-based OBD

method is introduced, which can assign a non-binary value proportional to the probability

of a sample point belonging to a degreened or an EUL catalyst. Note that the stochastic

model-based OBD method presented in this work is a preliminary attempt to demonstrate

the feasibility of this approach and lay the foundation for a more detailed implementation

in future work.
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Table 5.7. Results of applying initial NH3 storage-based enable condition,
Filter 5, to truck data.

Truck 1 Truck 2 Truck 3 Truck 4

%deNOx-based
enable
conditions

No. of points selected after

applying Filters 1 to 4
28 86 159 121

No. of points selected after

applying Filter 5
27 74 157 103

NEUL/NDG 1/26 40/34 61/96 58/45

TP NOx-based
enable
conditions

No. of points selected after

applying Filters 1 to 4
477 254 8823 1503

No. of points selected after

applying Filter 5
350 203 8744 1397

NEUL/NDG 144/206 114/89 2111/6633 857/540

5.6.1 Stochastic model obtained using simplified Bayesian model calibration

For this approach, a stochastic version of the SCR-ASC model is derived using a simplified

version of the Bayesian approach for model calibration. An introduction to the Bayesian

approach for model calibration could be found in Lecture 20 of the Spring 2020 course on

“Introduction to Uncertainty Quantification” by Dr. Ilias Bilionis at Purdue University [ 45 ].

The main goal of the Bayesian approach is to find a probability density function, instead

of a single value, for the model parameters. Let θ ∈ R12 be the unknown parameters of

the SCR-ASC model, y be the tailpipe measurements, and f(θ) be the SCR-ASC model

represented as a function that takes parameter values as the input and gives model-out

tailpipe values for a particular drive cycle in test-cell data as the output. The key idea is to

define:

1. A prior probability density for θ, pprior(θ), based on any prior knowledge about the

parameters that is available before looking at the measurements.

2. A likelihood model plikeli(y | f(θ)), which should be defined such that it satisfies

the properties of a probability density function and is a non-increasing monotonic
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Figure 5.5. NEUL/NDG vs initial NH3 storage fraction after incorporating
the enable condition designed to handle the uncertainty in initial NH3 storage
(Filter 5).

function of the modeling error, which can be defined as ‖y − f(θ)‖2. In other words,

plikeli(y | f(θ)) should increase as the modeling error is decreased. A common choice

for the likelihood is a Gaussian distribution with mean at f(θ) and a tunable standard

deviation σ.

plikeli(y | f(θ)) = N (y | f(θ), σ2), (5.3)

where N (x | µ, σ2) denotes the value of the probability density of a Gaussian distribu-

tion, with mean µ and standard deviation σ, at x.

Using the Bayes rule, the posterior probability density, ppost(θ | y), on parameter θ, given

the measurements y, is:

ppost(θ | y) ∝ plikeli(y | f(θ))pprior(θ) (5.4)

Equation  5.4 implies that the posterior probability density will be higher for the param-

eters that result in good model fit and are close to the values based on prior knowledge. In

other words, the posterior probability density will be low at parameters that:

• result in poor model fit and are far from the value based on prior knowledge,
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• result in good model fit but are very far from the value based on prior knowledge, and

• are close to the value based on prior knowledge but result in very poor model fit.

In this work, there is no prior information available about the parameters, and hence

pprior can be considered uniform, which implies that

ppost(θ | y) ∝ plikeli(y | f(θ)) = N (y | f(θ), σ2) ∝ e− ‖y−f(θ)‖2

2σ2 .

For this work,

ppost(θ | y) = ppost(θ | yTPNOx,meas,RMC) = 3e−

∥∥eNOx,RMC
∥∥2

2×106 , (5.5)

where eNOx,RMC is the difference between measured (yTPNOx,meas,RMC) and model-out tailpipe

NOx for the RMC cycle. The tailpipe NOx signal was chosen because OBD has to work using

tailpipe NOx measurements, and RMC cycle was chosen because it covers a wider range of

tailpipe NOx than cFTP and hFTP. The proportionality constant of 3, and σ = 1000 were

chosen so that the maximum value of ppost is close to 1, which would make it easier to design

thresholds for the OBD method. Note that ppost will be higher for parameters that give

better fit on the tailpipe NOx signal in RMC cycle.

After defining the posterior probability density, the next step in the Bayesian approach

is to sample the parameter values from this distribution. This process is not trivial and

advanced methods such as Markov Chain Monte Carlo sampling are used because usually it

is not possible to obtain an analytical formulation of the posterior probability density. For

the simplified approach in this work, the parameters for both degreened and EUL models

are sampled as follows:

1. Sample 500 parameter values from a Gaussian distribution with mean at the parameter

values obtained after the traditional model calibration in Section  4.3.5 , and standard

deviation at one tenth of the mean value.

2. Run the model and calculate ppost, using Equation  5.5 , for each parameter value sam-

pled in step 1.
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3. Pick 20 parameters with the highest ppost values.

These 20 parameters, with the corresponding ppost values parametrize the stochastic

SCR-ASC model, which will be used to formulate the stochastic model-based OBD approach

discussed in the next section.

5.6.2 OBD method based on the stochastic model

The key idea for this method is still to compare the measured tailpipe NOx to the

model-out tailpipe NOx from both degreened and EUL models. In the previous method,

a single value of measured tailpipe NOx was compared to a single model-out value from

both degreened and EUL models at each time-stamp to classify a sample point as either

degreened or EUL. Instead of binary classification at each time-stamp, this method will

use the probability distribution of the measurement noise and the posterior distribution on

20 parameters, sampled for the stochastic model, to calculate a non-binary value that is

proportional to the probability of the measured tailpipe NOx value belonging to a degreened

or an EUL catalyst.

The following steps describe the method in detail:

1. Similar to the previous OBD method, the first enable condition for this method is to

select points where the temperature is greater than 200oC because the look-up tables

in the SCR-ASC model can’t work at temperatures lower than 200oC. This enable

condition is identical to Filter 1, which was defined in Section  5 for the previous

method.

2. At any time-stamp, there is one tailpipe NOx value from the measurement (yTPNOx,meas),

and 20 tailpipe NOx values from the 20 parameters sampled for each of the degreened

and the EUL models. Let yTPNOx,θmodel,i be the model-out tailpipe NOx values us-

ing the ith parameter value sampled for that model. Whenever required, the subscript

“model” in yTPNOx,θmodel,i will be replaced by “DG” or “EUL” to refer specifically to the

degreened or the EUL model, respectively. Let pmeas(yTPNOx,θmodel,i) be the probability

density of measurement noise at yTPNOx,θmodel,i . Since commercial tailpipe NOx sensors
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have measurement error up to 10 ppm, pmeas is assumed to be Gaussian with zero mean

and 10/3 ppm of standard deviation (since 99% of values sampled from a Gaussian dis-

tribution lie within ±3 times the standard deviation). Therefore, pmeas(yTPNOx,θmodel,i)

is given by:

pmeas(yTPNOx,θmodel,i) = N (yTPNOx,θmodel,i − yTPNOx,meas | 0, (10/3)2)

= 1
3.33
√

2π
e−

(yTPNOx,θmodel,i
−yTPNOx,meas)2

2(3.33)2 ,

(5.6)

To make it easier to define thresholds for the OBD method, pmeas in Equation  5.6 will

be scaled so that the maximum value of pmeas is close to one. After scaling, pmeas is

given by

pmeas(yTPNOx,θmodel,i) = e−
(ymodel,θi

−yTPNOx,meas)2

2(3.33)2 . (5.7)

3. Let θDG,i and θEUL,i be the ith parameters sampled for the degreened and the EUL

models, respectively. Using Equation  5.5 , calculate

ppost(θDG,i | yTPNOx,meas,RMC,DG) = 3e−

∥∥∥yTPNOx,θDG,i
−yTPNOx,meas,RMC,DG

∥∥∥2

2×106 ,

ppost(θEUL,i | yTPNOx,meas,RMC,EUL) = 3e−

∥∥∥yTPNOx,θEUL,i
−yTPNOx,meas,RMC,EUL

∥∥∥2

2×106

(5.8)

for every i ∈ {1, 2, . . . , 20}.

4. Calculate the following joint probability densities at yTPNOx,θDG,i
and yTPNOx,θEUL,i

for

every i ∈ {1, 2, . . . , 20}:

pjoint,DG(yTPNOx,θDG,i
) = pmeas(yTPNOx,θDG,i

)ppost(θDG,i | yTPNOx,meas,RMC,DG)

pjoint,EUL(yTPNOx,θEUL,i
) = pmeas(yTPNOx,θEUL,i

)ppost(θEUL,i | yTPNOx,meas,RMC,EUL)
(5.9)
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5. Integrate pjoint,DG(yTPNOx,θDG,i
) and pjoint,EUL(yTPNOx,θEUL,i

) as follows to calculate the

probability of yTPNOx,meas belonging to a degreened (PDG) or an EUL (PEUL) catalyst.

PDG =
∫ 20

i=1
pjoint,DG(yTPNOx,θDG,i

)

PEUL =
∫ 20

i=1
pjoint,EUL(yTPNOx,θEUL,i

)
(5.10)

This process is visually illustrated in Figure  5.6 . PDG is the area shaded in green in

Figure  5.6a , and PEUL is the area shaded in red in Figure  5.6 .

(a) The green area is PDG (b) The red area is PEUL

Figure 5.6. Visual demonstration of the process of calculating (a) PDG and
(b) PEUL at a time-stamp. .

6. Then for each sample point, define Pdiff as

Pdiff = PDG − PEUL. (5.11)

So, Pdiff should be a large positive number for a degreened catalyst and a large negative

number for an EUL catalyst. A small value of Pdiff implies an indeterminate aging level

resulting from either a small aging signature or poor model performance from both

degreened and EUL models. Therefore, |Pdiff| > Pthres is added as an enable condition

to remove points where the models are unreliable or the aging signatures are too small.
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Therefore, this enable condition is equivalent to Filters 2 and 3 in the previous method.

Based on observations from the test-cell data, 1.5 is chosen as the threshold Pthres. An

example of each of the three cases i.e. Pdiff > Pthres, Pdiff < −Pthres, and |Pdiff| < Pthres is

shown in Figure  5.7 . For the sample point shown in Figure  5.7a , the measured tailpipe

NOx is closer to the twenty model-out tailpipe NOx values from the degreened model

than the ones from the EUL model. This implies that the probability of the tailpipe

NOx measurement belonging to a degreened catalyst (PDG) is higher than EUL (PEUL),

which results in a large positive Pdiff. Similarly, the probability of the sample point in

Figure  5.7b belonging to an EUL catalyst is higher than degreened, which results in a

large negative Pdiff. The sample point in Figure  5.7c is an example of an indeterminate

point as it is almost equally likely to belong to either a degreened or an EUL catalyst,

which is quantified by a small Pdiff.

7. The metric reported by this OBD method is the value of Pdiff averaged over all the

points where enable conditions are satisfied. The average value is denoted by P̄diff.

Higher P̄diff implies lower degradation.

Results from applying this OBD method to the test-cell data are summarized in Table

 5.8 . Note that this OBD results in a much better IUMPR as it gets enabled at 10,291

points across the entire test-cell data, as opposed to only 2,388 points getting selected after

applying the first three filters or enable conditions (including both %deNOx-based and TP

NOx-based enable conditions) in the previous method.

Table 5.8. Results of applying the stochastic model-based OBD method to the test-cell.
cFTP hFTP RMC

DG EUL DG EUL DG EUL

No. of points selected after applying enable

conditions equivalent to Filters 1 to 3
7 255 47 241 5409 4332

P̄diff -1.8 -2 0.6 -2 1.7 -2.9

Another observation from Table  5.8 is that P̄diff is negative for the degreened catalyst in

cFTP cycle, which implies a significant number of false positives. It was observed that all

false positives were from the start of the cycle where the impact of uncertainty in initial NH3
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(a) PDG > PEUL =⇒ Pdiff > 1.5 (b) PDG < PEUL =⇒ Pdiff < −1.5

(c) PDG ≈ PEUL =⇒ Pdiff ≈ 0

Figure 5.7. An example of each of the three cases: (a) Pdiff > Pthres, (b)
Pdiff < −Pthres, and (c) |Pdiff| < Pthres. The OBD will be enabled at the sample
points (a) and (b), but not (c). .

storage is significant. Therefore, this was fixed by including the initial NH3 storage-based

enable condition, defined by Filter 5 in Section  5.5.1 . The results after applying Filter 5 are

summarized in Table  5.9 .
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Table 5.9. Results on test-cell data after incorporating the initial NH3
storage-based enable condition, Filter 5, in the stochastic model-based OBD
method.

cFTP hFTP RMC

DG EUL DG EUL DG EUL

No. of points selected

after applying Filter 5
0 224 2 103 3605 3906

P̄diff 0 -2 1.8 -1.9 2.5 -2.9

5.6.3 Enable condition to make the stochastic OBD method robust to NOx
sensor’s cross-sensitivity to NH3

To test the stochastic OBD method’s robustness to tailpipe NOx sensor’s cross-sensitivity

to NH3, the worst-case cross-sensitivity was simulated in test-cell data by using the maximum

possible value of 2 for the cross-sensitivity factor, as shown in Equation  5.12 .

yNOx,cross = yNOx,TP,meas + 2yNH3,TP,meas (5.12)

Tailpipe NOx sensor’s cross-sensitivity to NH3 can make a degreened catalyst look like

EUL, resulting in false positives. This is demonstrated, in Figure  5.8 , by a section of tailpipe

NOx vs time data for the degreened catalyst taken from the RMC cycle. The black line

is the cross-sensitive NOx signal, yNOx,cross. The green and the red bands show the range

of tailpipe NOx values estimated by the stochastic models for the degreened and the EUL

catalysts, respectively. It can be observed from Figure  5.8a that the cross-sensitive NOx

signal is aligning much better with the values predicted by the EUL model, which results in

PEUL > PDG leading to Pdiff < −1.5 as shown in Figure  5.8b . Therefore, the stochastic OBD

method would report the degreened catalyst as EUL for the section of data shown in Figure

 5.8 .

The results of applying the stochastic OBD method on the entire test-cell data with the

cross-sensitive tailpipe NOx values (yNOx,cross) are shown in Table  5.10 . It can be observed

that the P̄diff is negative for the degreened catalyst for all three cycles, which shows that
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(a) Section of TP NOx vs time data from the
RMC cycle for the DG catalyst.

(b) Probability calculations showing PEUL >
PDG =⇒ Pdiff < −1.5

Figure 5.8. Segment of tailpipe NOx vs time data from the RMC cycle
demonstrating that cross-sensitivity can make a degreened catalyst look like
EUL: (a) the black line, representing the cross-sensitive tailpipe NOx mea-
surement from a DG catalyst, aligns better with the EUL model than the
DG model, quantified by the probabilities plotted in (b), which shows that
PEUL > PDG =⇒ Pdiff < −1.5. This demonstrates that cross-sensitivity can
make the stochastic OBD method report a degreened catalyst as EUL, leading
to false positives.

cross-sensitivity makes the method report the degreened catalyst as EUL for all three cycles

in the test-cell data.

Table 5.10. Results of applying the stochastic model-based OBD to test-cell
data with cross-sensitive tailpipe NOx measurement (simulated using Equation
 5.12 ).

cFTP hFTP RMC

DG EUL DG EUL DG EUL

No. of points selected after

applying Filters 1, 2, 3, and 5
28 408 27 4 3460 4823

P̄diff -1.6 -2.5 -1.9 -1.6 -1.1 -3

The key idea to make the method robust to cross-sensitivity is as follows. For a catalyst

that looks like EUL, calculate the probability that the measurement could actually be a

cross-sensitive signal from a degreened catalyst. This is defined as PDG,cross and calculated

using the following equation.

PDG,cross =
∫ 20

i=1
pmeas(yTPNOx,θDG,i

+ yTPNH3,θDG,i
)ppost(θDG,i | yTPNOx,meas) (5.13)
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Then the OBD must be disabled if PDG,cross ≈ PEUL. In other words, the OBD should be

disabled for NOx measurements which are equally likely to be either accurate NOx values

for an EUL catalyst or cross-sensitive NOx values for a degreened catalyst. This situation

is demonstrated in Figure  5.9 . The same segment of data as in Figure  5.8a is shown in

Figure  5.9a . As discussed earlier, cross-sensitivity makes the degreened catalyst look like

EUL for this segment resulting in PEUL > PDG. However, it can be observed from Figure

 5.9b that PDG,cross ≈ PEUL, which implies that it is equally likely that the measurement is a

cross-sensitive NOx value for a degreened catalyst.

(a) Section of TP NOx vs time data from the
RMC cycle for the DG catalyst.

(b) Probability calculations showing PEUL >
PDG =⇒ Pdiff < −1.5, and PDG,cross ≈
PEUL

Figure 5.9. Segment of tailpipe NOx vs time data from the RMC cycle
showing an example of NOx measurements, which are equally likely to be
accurate measurements from an EUL catalyst or cross-sensitive NOx values
for a degreened catalyst: (a) for the same segment of data as shown in Figure
 5.8a , the black line, representing the cross-sensitive tailpipe NOx measurement
from a DG catalyst, aligns with the cross-sensitive TP NOx values predicted
by the DG catalyst model. This is quantified by the probabilities plotted in
(b), which shows that PEUL > PDG =⇒ Pdiff < −1.5 and PDG,cross ≈ PEUL.
OBD should be disabled for such situations to improve robustness to cross-
sensitivity.

The precise enable conditions are defined as follows. Disable the OBD if:

PEUL − PDG > 1.5 AND

|PEUL − PDG,cross| < 1.5
(5.14)
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Since the enable condition to handle the cross-sensitivity was defined as Filter 4 in Section

 5.1 , this enable condition is also defined as Filter 4 for consistency across the two methods.

OBD results for worst-case cross-sensitivity after incorporating this enable condition are

listed in Table  5.11 . It can be observed that this enable condition disabled the OBD for the

degreened catalyst for both cFTP and hFTP. The OBD was still enabled at a significant

number of points in the RMC cycle, and the degreened catalyst was correctly reported to

be degreened even in the presence of worst-case cross-sensitivity as implied by the positive

value of P̄diff.

Table 5.11. Results of applying the stochastic model-based OBD to test-cell
data with cross-sensitive tailpipe NOx measurement (simulated using Equation
 5.12 ), after applying Filter 4.

cFTP hFTP RMC

DG EUL DG EUL DG EUL

No. of points selected after

applying Filters 1, 2, 3, 4 and 5
0 19 0 1 1228 2656

P̄diff N/A -3.6 N/A -1.7 2.4 -3.1
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6. CONCLUSION AND FUTURE WORK

6.1 Summary of key contributions and conclusions

1. Observations and insights from test-cell and on-road data about challenges of

designing robust and accurate OBD for SCR-ASC are presented:

• In the test-cell data, the most prominent aging signatures were observed in

tailpipe N2O, which is a signal often ignored in SCR OBD literature. The aging

signatures in tailpipe NOx, the only tailpipe measurement in commercial trucks,

are very small. Small aging signatures could make an OBD method susceptible

to false positives due to NOx sensor’s cross-sensitivity to NH3. Moreover, some

of the most prominent aging signatures in tailpipe NOx were observed during op-

erating conditions, such as low temperatures (< 200oC), where commercial NOx

sensors would be off. This demonstrated the challenges posed by limitations of

commercial NOx sensors towards robust OBD design.

• An OBD method based on tailpipe NOx sensor could look at aging signatures

in terms of either tailpipe NOx concentration or %deNOx efficiency. Based on

the results from OBD methods presented in this thesis, it was observed that

%deNOx would be a better metric for the cFTP and hFTP cycles, and tailpipe

NOx concentration would be a better metric for the RMC cycle.

• It was observed that the range of engine-out and tailpipe NOx covered during

on-road vehicle operation is much larger than during FTP and RMC cycles in

test-cell. Therefore a model or a model-based OBD method validated on FTP

and RMC cycles may not necessarily work under on-road operating conditions

and vice versa.

2. A novel diagnostics-oriented SCR-ASC model: The SCR-ASC model presented

in this work is a simple diagnostics-oriented model that models the SCR using tra-

ditional three-state ODE model and ASC using static look-up tables that determine

ASC’s NH3 conversion efficiency and its selectivity to NOx and N2O as a function of

temperature and flow rate. Since these look-up tables were calibrated for tempera-
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tures ranging from 200oC to 350oC, this model can’t be used for temperatures outside

this range as the look-up tables can’t extrapolate. Results show that the SCR-ASC

model can capture the aging signatures in tailpipe NOx, NH3, and N2O reasonably

well for cFTP, hFTP, and RMC cycles in the test-cell data. After slight re-calibration

and combining with a simple model for commercial NOx sensor’s cross-sensitivity to

NH3, the model works reasonably well for on-road data from commercial trucks. The

two model-based OBD methods designed using this model showed reasonable results

across test-cell and on-road data. This demonstrates that unlike a control-oriented

model, a diagnostics-oriented model does not need to be accurate under all operating

conditions. A diagnostics-oriented model only needs to accurately capture the general

trends that occur as a result of aging during operating conditions where clear aging

signatures can be observed.

3. Model-based enable conditions: To achieve accurate and robust diagnostics, it is

very important for OBD methods to be equipped with carefully designed enable con-

ditions to achieve a good IUMPR while minimizing false positives and false negatives.

An important contribution of this work is the clearly defined model-based enable con-

ditions for two OBD methods. It was demonstrated that the enable conditions increase

the robustness of the OBD methods to model inaccuracy, uncertainty in initial NH3

storage, and NOx sensor’s cross-sensitivity to NH3. However, increasing the robustness

resulted in more restrictive enable conditions. Therefore, the results of applying these

enable conditions demonstrated the fundamental difficulty of robust SCR monitoring

due to the trade-off between the number of points where the enable conditions are

satisfied and the robustness of the diagnostics results to uncertainties.

4. Two model-based OBD methods: Two model-based OBD methods are presented

in this work. The first method does a binary classification at each sample point by

labeling each sample point as either degreened or EUL. Results on test-cell data showed

that this method is capable of correctly identifying the aging levels of degreened and

EUL catalysts with zero false positives and very few false negatives. The method was

also shown to be robust to NOx sensor’s cross-sensitivity to NH3 when the tailpipe NOx
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and NH3 signals in test-cell data were combined to simulate worst-case cross-sensitivity.

Simulating both cross-sensitivity and measurement noise in test-cell data resulted in

some false positives but the majority of points were still correctly classified as degreened

or EUL. Results on truck data show encouraging trends between relative degradation

level and the number of miles on the four trucks. A drawback with this method

was that very few sample points were selected from the test-cell data after applying

the enable conditions, which demonstrates the challenge with designing model-based

enable conditions that are robust to false positives and false negatives but still lead to

good IUMPR.

Unlike the first method, the second OBD method assigns a non-binary value to each

sample point, which is proportional to the probability of that point belonging to a

degreened or an EUL catalyst. This method uses a stochastic version of the proposed

SCR-ASC model, which is derived using a simplified version of the Bayesian approach

for model calibration. This method results in a much better IUMPR than the first one

and can still correctly classify the degreened and EUL catalysts for all three cycles in

the test-cell data.

6.2 Key Challenges

1. Implementing the OBD on actual trucks: Both OBD methods presented in

this work involve running the differential equation and look-up table-based SCR-ASC

model. The deterministic model-based method requires running two models, the de-

greened and the EUL catalyst models, and the stochastic model-based OBD method

requires to run forty models (twenty times for the degreened catalyst model and twenty

for the EUL catalyst model). It may not be computationally feasible to run these mod-

els in real-time on the on-board micro-controller in trucks. Since the OBD doesn’t need

to report the catalyst age in real time, the models could be run at a remote server and

communicate with the on-board micro-controller over the air. Exact implementation

of this would be a significant step towards running the proposed OBD methods on

commercial trucks.
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2. Stringent emission regulations: As the NOx emission regulations become more

stringent, it would become harder to detect differences between degreened and EUL

catalysts as the difference between tailpipe NOx emissions from degreened and EUL

catalysts could start becoming smaller than the measurement and modeling errors.

One option to resolve this would be to use more accurate NOx sensors. However, due

to the lack of improvement in accuracy of commercial NOx sensors over the years,

this would imply that the diagnostics-oriented SCR-ASC model would need to become

more accurate for effective and robust OBD as the emission regulations become more

stringent.

3. Coupling of model accuracy and model-based enable conditions: The accu-

racy of the diagnostics-oriented SCR-ASC model in this work was an important factor

when designing the model-based enable conditions for the proposed OBD methods.

This process demonstrated that the model accuracy and enable conditions are coupled

with each other, and improvements in model accuracy in future would lead to changes

in enable conditions and vice versa. Therefore, making improvements in the model

and designing the enable conditions should not be considered as independent tasks

and should be done in parallel as two tightly linked aspects of the same task.

6.3 Future Work

1. Comprehensive model validation using more data and/or high-fidelity model:

In this work, the proposed SCR-ASC models for degreened and EUL catalysts were

calibrated using the hFTP cycle and validated using the cFTP and RMC cycles in

test-cell data. Since the degradation levels of the catalysts on the four trucks were

unknown, the model performance on the truck data was considered “reasonable” if the

tailpipe NOx measurements from the trucks lie between the model-out tailpipe NOx

values from the degreened and the EUL catalyst models. Even if the degradation level

of the catalyst on a truck was known, a model calibrated using the hFTP cycle might

not work for the very different operating conditions encountered during on-road opera-

tion. Another challenge with validating the model using on-road data is unavailability
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of tailpipe NH3 measurements and cross-sensitive tailpipe NOx measurements in com-

mercial trucks. Therefore, for a more comprehensive model validation, the following

options are suggested:

• To validate the degreened and EUL catalyst models for operating conditions

encountered during on-road vehicle operation, test-cell data for customized drive

cycle(s), with operating conditions similar to truck data, for degreened and EUL

catalysts should be used.

• Degreened and EUL are the extreme aging levels. To validate the SCR-ASC model

for intermediate aging levels, test-cell data for a catalyst at an intermediate aging

level run under cFTP, hFTP, RMC, and custom drive cycle(s) with “on-road”

operating conditions should be used.

• Even though using real data for model validation is ideal, collecting data that

meets all the requirements for a comprehensive model validation, such as the ones

listed above, may not be practical. A good alternate in that case is to validate

the simple diagnostics-oriented model against a high-fidelity partial differential

equation (PDE) model for SCR-ASC. Unlike experimental data, signals such as

SCR-out NOx and NH3 would be available from the high-fidelity simulation. This

will allow for individual calibration and validation of the low-fidelity SCR and

ASC models. Also, simulating multiple aging levels using the high-fidelity model

is much easier than getting access to catalysts at intermediate aging levels.

• Therefore, a comprehensive validation, for several degradation levels and under

a wide range of operating conditions, of low-fidelity diagnostics-oriented SCR

and ASC models against a high-fidelity PDE model for SCR-ASC followed by

experimental validation could be a viable future direction.

2. Validation of the diagnostic trends reported on the truck data: Diagnostics

results on truck data show encouraging trends between relative degradation level and

the number of miles on the four trucks. However, these results could not be validated

at this stage because the aging levels of the catalysts on these trucks are unknown.
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Therefore, on-road data from truck(s) with known aging level(s) should be used to

validate these results. This could be data from a new truck with a degreened catalyst

and/or data collected right before replacing an EUL catalyst on an old truck.

3. Further development of stochastic model-based OBD: Good IUMPR and cor-

rect identification of degreened and EUL catalysts for the three cycles in the test-cell

data are encouraging results for the stochastic model-based OBD method. However, a

preliminary version of this method was presented in this thesis based on a simplified

implementation of the Bayesian approach for model calibration. In future, a more

rigorous version of the Bayesian approach should be used to refine the method. For

example, in the preliminary implementation presented here, an analytical form of the

posterior probability distribution was defined for model parameters by choosing spe-

cific values of the proportionality constant and standard deviation. This simplified the

process of calculating posterior probability density at various parameter values. In the

more rigorous implementation, advanced methods such as Markov Chain Monte Carlo

sampling must be used to sample parameters from a posterior probability density func-

tion, whose analytical formulation is unknown. A more detailed implementation of the

Bayesian approach coupled with the detailed framework of the stochastic model-based

OBD method equipped with a complete set of enable conditions presented here would

result in a promising model-based OBD method.
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