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ABSTRACT

Cyberphysical systems (CPSs) are expected to operate in safety-critical scenarios, and

are increasingly getting distributed and physically separated. CPSs are characterized by

complex dynamical behavior arising from emergent inter-agent interactions, having discrete

logic-based programs, data-driven methods employed in-the-loop, or by simply having highly

nonlinear dynamics. Despite this, safety and security properties for CPSs need to be com-

puted, often in real-time over analytically accurate solutions of the associated high dimen-

sional partial differential equations (PDEs). In this dissertation, we investigate numerical

approximation schemes to compute safety properties (or reachable sets) for CPSs with dif-

fering natures of complexities, without solving the associated PDEs. We solve for reachable

sets for unknown dynamical systems with polynomial approximations. Similar approxima-

tion schemes can be extended to multi-agent systems and dynamical systems with neural-

networks-in-the-loop. Such systems are increasingly applicable in real life instances, such

as internet of things, urban air mobility, and data-driven controllers in-the-loop. We utilize

the system’s trajectory data to compute equivalent system models, and utilize the data-

driven models to find approximate reachable sets using polytopic or interval approxima-

tions, thereby side stepping PDE solutions. We also investigate cyberphysical vulnerabilities

in CPSs from emergent multi-agent behavior, and single agent interacting with multiple

controllers via supervisory cyber layers. Each problem is accompanied with associated illus-

trative examples and numerical simulations. Finally, we present an extensive discussion of

possible directions for future work, both, that result directly from the works presented in this

dissertation, and those that stem from the assumptions that can be handled immediately.
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1. INTRODUCTION

Cyberphysical systems (CPSs) find applications from internet-of-things, to sensor networks,

to software systems, to robotic teams, and urban and advanced air mobility scenarios.

These CPSs are characterized by possibly geographically distributed hardware (physical lay-

ers), working towards some common computations/objectives (function/application layers),

while collaborating via relaying useful information (communication layers) via communica-

tion channels and protocols (information layer), while being operated by business entities

engaging in cooperative/competitive market environments (business layer). An instantiation

of the same is illustrated in the form of the power grid CPS in Fig.  1.1 .

As a result, CPSs lie at the intersection of Computation, Communication, and Control

(see Fig.  1.2 ). CPSs leverage functionalities from control, communication and computation

Figure 1.1. The power grid Cyberphysical System

13



Figure 1.2. Cyberphysical Systems lie at the intersection of control, commu-
nication, and computation systems

(C3) technologies and advances, but also suffer from the pitfalls of C3 systems and pro-

cedures. Additionally, most CPSs are expected to operate in safety critical environments

(e.g., power grids, unmanned aerial vehicles (UAVs), urban air mobility (UAM) operational

environments, etc.). The focus of this work lies in safety and security properties of CPSs,

and how the abundance of available data can be used in a model-driven manner to comment

upon these properties, or uncover points of failures.

While most emphasis on safety has been provided from a model-driven perspective, data-

driven approaches present a novel semi model-driven method by employing model-discovery.

As data becomes more inexpensive, and system capabilities highly nonlinear, and often

subject to parameter variations during mission, data-driven approaches are utilized more

and more in controls engineering. Further, online and real-time applications increasingly

require unknown models and nonlinear interactions to be learned for control synthesis.

To this end, more established fields of system identification are increasingly utilizing

data-driven models by using neural networks, autoregressive models, and other machine

learning techniques. Due to the expressive nature of such machine learning techniques, they

are utilized to learn models of unknown dynamical systems from observed data sequences.

14



In such approaches, a ‘discovered model’ is arrived at using data, and employed to perform

control design. Even though purely model-driven are slowly getting harder to apply to more

recent, realistic, and complex scenarios, they provide a strong basis to study extensions of

similar approaches to data-driven techniques for estimation and control. In this research,

we attempt to utilize model-driven techniques and extend them to study safety and secu-

rity properties of cyberphysical systems using data. The primary aim of this work is to

study data-driven approaches to safety, and data-driven vulnerabilities against cyberattacks,

of complex control systems.

1.1 Research Objectives

The research presented in this dissertation concerns itself with the following objectives.

(O1): Data-Driven System Safety under Parameter Variations:

Dynamical systems often include data-driven schemes (e.g., Neural Networks (NNs))

in-the-loop to: a) perform system identification from input-output data, and b) devise

model-free control law for systems with unknown parameters. The objective of this

research task is to investigate reachability property of dynamical systems with a data-

driven system model, while incorporating unstructured changes in system parameters.

For example, consider an unmanned ground robot with a nominal safety computation

module. During operation, it loses traction on one of its wheels. Computing reacha-

bility property for such scenarios to maintain control authority in real-time, during a

mission, is of high importance. This allows the system to adjust to parameter variation

during runtime and makes NN based functional approximation methods ubiquitous is

control design. However, ensuring safety, viability, or any other set-based properties

for systems with parameter variation is worsened due to the presence of NNs in-the-

loop. To include parameter variations (e.g., a fault, a failure, or a partial failure), the

state space reachability of the system should deviate from the nominal reachability

property. If the modified reachable set of the system is considered, a control law to

maintain the systems state withing the new set also preserves the systems safety. The

15



modified reachable sets provide a pruned state space set to search for the new control

law for the compromised system.

(O2): Multi-Agent System Safety under Flexible Mission Requirements:

Multi-Agent applications are characterized by flexibility in mission requirements. There-

fore, associated reachability property computation has to accommodate for the follow-

ing: a) flexibility in mission profile for different agents, and b) ability to compute

reachable sets in a distributed manner, especially when reachable set computation is

coupled among agents in a network. The objective of this research task is to study

multi-agent system safety, subject to time-varying network topologies, with distributed

computational resources. For example, the urban air mobility scenario requires un-

manned aerial vehicles to coordinate, despite having limited varied objectives and

missions. This requires the UAVs to coordinate for shorter duration, followed by pur-

suing private objectives. Temporary collaboration also implies the reachable sets of

the agents are related to each other’s state, despite having little information about

each other’s states.

(O3): Cybersecurity Vulnerabilities of Complex Cyberphysical Systems against

Data-Driven Attacks:

Complex for the scope of this research stands for multi-agent systems, with parameter

uncertainties. Due to their nature, most complex systems employ a complex interac-

tion of physical layer (sensors and actuators), communication layer (communication

channels along with their protocols), and cyber layers (computer programs and logic,

and supervisory controllers). The additional dependence on cyber layers poses new vul-

nerabilities that can be exploited by data-driven methods, by a gray box or even white

box attackers. The objective of this research task is to try to uncover newer modes of

cybersecurity that can be exploited by an attacker, by virtue of collecting enough data.

The rest of this dissertation is organized as follows (as shown in Fig.  1.3 ). Chapters 2, 3,

and 4 deal with safety properties in CPSs of varying degrees of complexity. Chapters 5

and 6 address cybersecurity issues present in complex CPSs operating with supervisory

layers and across networks, respectively.

16



Figure 1.3. Organization of this dissertation
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In Chapter 2, we pose the safety property as the problem of computing forward reach-

able sets for a dynamical system with unknown dynamical models. Under certain

conditions, the unknown dynamics can be identified by lifting to observable spaces of

higher dimensions, using Koopman Operator theory. The resultant lifted system with

polynomial dynamics can be leveraged to obtain rapid over-approximations of reach-

able sets using mixed monotone decomposition theory. In Chapter 3, we utilize the

Koopman Operator theory discussed in the previous Chapter, and apply it to compute

real-time approximations of forward reachable sets for neural network-in-the-loop dy-

namical systems. We develop rapid estimations for reachable sets for NN-in-the-loop

control systems, by collecting data from the NN controller by exciting it and noting its

output for given trajectory data points. Chapter 4 extends the optimal control based

ideas of polytopic reachability to multi-agent systems (MASs). The resulting compu-

tations are realized to be distributed equation solving, and are carried out using local

information at individual agents in the MAS. Convergence guarantees are provided

when the underlying graphs satisfy certain conditions.

Chapter 5 discusses cybersecurity vulnerabilities of MASs against combinations of

denial of service (DoS) and false data injection (FDI) attacks of given budgets. It

is realized that for MASs engaged in common goals, smarter attackers can choose an

agent and cause it to no longer conform to the prescribed missions, agreed upon by

the remaining network. In Chapter 6, FDI attack vulnerabilities of supervisory control

systems are presented. The problem of performing FDI attacks is posed as a system

identification problem, followed by an adversarial machine learning problem to cause

unwanted switching in the supervisory logic’s outputs. It is demonstrated that similar

data-driven and machine learning-based schemes can be employed to solve the dual

problem of detecting such injection attacks on the supervisory controller’s logic.

Finally, in Chapter 7, we present the concluding remarks, and posit a number of

recommendations going forward towards the future works.
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2. REACHABLE SETS FOR POLYNOMIAL TYPE

DYNAMICS VIA DYNAMIC MODE DECOMPOSITION

Thapliyal, O., & Hwang, I. (2022). Approximate Reachability for Koopman Systems Using

Mixed Monotonicity. IEEE Access, 10, 84754-84760. [  2 ]

The research presented in this chapter is conducted by Thapliyal, O. under the supervision

of Hwang, I.

Abstract

In this chapter, a novel approach for computing reachable sets for unknown nonlinear

dynamical systems is presented. We propose a method that utilizes Koopman operator to

perform system identification, and then utilizes a high dimensional embedding to find ap-

proximations for the forward-time reachable sets. The proposed method uses a Koopman

operator-based approach and is data-driven, which means it can be applied to systems where

mathematical models are unknown or incomplete. Analytical methods to compute reach-

able sets resort to solving the Hamilton-Jacobi (HJ) partial differential equations (PDEs),

and approximation methods find numerical solutions to the PDEs. Either way, both suffer

from the ‘curse of dimensionality’ that characterizes the HJ PDE. To overcome the curse of

dimensionality, the proposed method employs mixed-monotone decompositions for a class

of Koopman lifted dynamics. This mixed-monotone system is then embedded in a higher-

dimensional dynamical model, which is propagated deterministically in time. This enables

the computation of over-approximations of forward reachable sets that are accurate while

being computationally efficient.

The proposed method is capable of accounting for unknown nonlinear dynamics and

providing conservative approximations of reachable sets to a desired degree of accuracy. To

demonstrate the effectiveness of the algorithm, an illustrative example with an unknown,

nonlinear dynamical model is used. The results are compared to a well-known existing

method, highlighting the advantages of the proposed approach.
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2.1 Introduction

As dynamical systems become more complex, it becomes increasingly important to guar-

antee certain properties for controlled systems. While point-wise properties are useful, set-

based properties are particularly crucial when dealing with larger-scale systems. Set prop-

erties allow us to comment on the properties of bundles, tubes, or collections of trajectories

over time. The reachability property of a dynamical system has recently gained significant

attention, particularly for the verification and validation of safety-critical systems. The

general reachability problem involves finding the set of possible state space solutions to a

dynamical model, given a set of admissible initial states and admissible control inputs. This

set of solutions forms a “tube" of trajectories starting from the initial conditions on the state

space. The ability to calculate reachable sets is crucial in ensuring safety-critical properties

of systems, as it allows for analysis of the set of states that a system can reach under different

conditions. Such reachability analysis has been used in optimal control [  3 ], safety-critical

systems [  4 ], autonomous navigation [  5 ], cybersecurity [  6 ], and differential games [ 7 ].

The reachability problem is a critical aspect of the study of complex dynamical systems.

Set-based properties of a dynamical system are important in determining the properties of

collections of trajectories over time, and the reachability property is especially relevant for

verifying and validating safety-critical systems. The general reachability problem involves

determining the set of possible state space solutions for a given dynamical model, based

on a set of admissible initial states and control inputs. There are three main methods for

solving the reachability problem: Hamilton-Jacobi (HJ) reachability, verification methods,

and numerical approximation methods. Optimal control or game theoretic formulations

of reachability often rely on HJ partial differential equations [ 3 ], [  7 ], [  8 ], where reach sets

are computed as level sets to obtain games of degree from the initial HJ formulation of

games of kind [  9 ], [  10 ]. This simplifies the Boolean problem of determining if a target set

is included in the reachable set. However, these formulations are limited by the ‘curse of

dimensionality’, which leads to exponential increases in computational complexity as the

system dimension grows. Readers are referred to [ 9 ] for a detailed survey of existing HJ

reachability methodologies.
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Verification methods in the form of formal verification [  11 ] and temporal logic [  12 ] offer a

different approach to solving the reachability problem. Instead of using numerical methods,

these methods use a formal structure to describe the state transitions, both continuous and

discrete, of the dynamical system under consideration. These methods use a finite state

machine to represent the system, with each state in the machine corresponding to a region

in the state space of the dynamical system. The transitions between states in the machine

represent the state transitions of the dynamical system. Verification results are obtained

by checking if the system satisfies the desired properties by following runs of the finite

state machine transitions. This requires a detailed description of the system properties in

the form of logical formalism, such as temporal logic, which allows for the specification of

system properties that should be satisfied throughout the evolution of the system. Similar

verification techniques have been extended to hybrid system verification as well (see [  12 ],

[ 13 ], [  14 ]).

The methods discussed previously, such as Hamilton-Jacobi (HJ) reachability and verifi-

cation methods, are mainly useful for checking the finite state transitions of hybrid systems.

However, they may not be as effective for dealing with general nonlinearities in dynamical

models. Moreover, the expressibility of system properties and resulting sets obtained from

these methods may not always be reliable or accurate. Therefore, it is important to consider

alternative methods that can address the limitations of these approaches and provide more

robust and accurate results.

In order to solve the reachability problem, numerical methods are used to either over-

or under- approximate reachable sets and propagate reachability tubes. This approach is

described in various works, such as [  15 ]–[ 18 ]. To handle computational and expressibility

issues that arise in HJ reachability, these methods employ various approximation and rep-

resentation techniques. Examples of such techniques include ellipsoidal over-approximations

[ 15 ], [  19 ], [  20 ], zonotope-based approximations [ 13 ], polyhedral approximations [  21 ], and

sampling-based methods [  22 ]. The present chapter proposes a solution that addresses the

challenges associated with computing conservative reachable sets in the context of unknown

dynamical models. To achieve this goal, the chapter introduces an extension to existing

numerical formulations that can efficiently incorporate unknown models. The proposed
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method does not aim to develop a new system identification algorithm; instead, it leverages

a Koopman operator-based approach for system identification. The Koopman operator is a

mathematical tool that can be used to transform a nonlinear dynamical system into a lin-

ear infinite-dimensional system, enabling the use of linear methods for analysis and control.

The proposed method utilizes the Koopman operator to identify the system’s underlying

dynamics and decompose them into mixed-monotone components. The mixed-monotone

components are then embedded into a higher-dimensional dynamical model, allowing for the

deterministic propagation of the system in time.

This approach provides over-approximations of the forward reachable sets that are not

impacted by the curse of dimensionality. It also enables the computation of conservative

approximations of the reachable sets, even in the presence of unknown nonlinear dynamics,

in a computationally efficient manner. The proposed method’s effectiveness is demonstrated

using an illustrative example with an unknown, nonlinear dynamical model, and its perfor-

mance is compared to that of a well-known existing method.

In this work, we propose a method to handle the issues mentioned earlier by utilizing a

Koopman operator based approach to compute conservative reachable sets for systems with

unknown nonlinear dynamical models. The Koopman operator is an infinite-dimensional

linear operator that can be used to lift the dynamics of a system to a higher dimension,

thereby linearizing the dynamics. By formulating the reachability of unknown nonlinear

dynamical models in terms of the spectral properties of the Koopman operator, we can

find finite-dimensional approximations of the operator using data-driven techniques. The

properties of the original nonlinear function can be represented as transition maps that are

dependent on the eigenfunctions of the Koopman operator, under a suitable choice of basis

functions. Assuming the uniqueness of state transition maps and a connected, compact state

space, the existence and uniqueness of a lifting through the Koopman operator is guaranteed

[ 23 ]. By exploiting the properties of the Koopman operator, it becomes possible to express

the reachability of unknown nonlinear dynamical models in terms of the spectral properties of

the linear operator. The eigenfunctions can be thought of as generalized Laplacian averages

over time [ 23 ]. Finite dimensional approximations of the operator can be easily found using

data-driven techniques. With an appropriate selection of basis functions for the data-driven
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technique, properties of the original nonlinear function can be expressed as transition maps

that are dependent on the eigenfunctions.

Utilizing mixed-monotone embeddings for such suitable bases allows us to construct

embeddings in higher dimensions with twice as many states, which we use to calculate set-

based reachability properties as point-to-point trajectories in a deterministic setting [  16 ].

This approach enables us to express over-approximations of reachable sets in a numerically

efficient manner, making it applicable to systems with unknown nonlinear dynamical models.

As a result, this chapter’s primary contribution is the proposal of an extension to numerical

formulations to incorporate unknown dynamical models to compute conservative reachable

sets efficiently using a Koopman operator-based method.

The structure of this chapter is as follows. First, in Section  2.2 , we will define the data-

driven reachability problem for a nonlinear system. Then, in Section  2.3 , we present the

main results for data-driven reachability and introduce a mixed-monotone embedding for a

Koopman lifting of the nonlinear system. This method enables us to solve a corresponding

reachability problem of the Koopman observables using the selected basis functions. In

Section  2.4 , we demonstrate the effectiveness of the proposed algorithm through a numerical

example. Finally, in Section  2.5 , we offer concluding remarks and discuss future research

directions.

Notations: Let ai denote the ith component of vector a, and let its transpose be denoted

by aT . The vector 1 is a vector of appropriate dimensions consisting of all ones. The inner

product of two vectors a and b is denoted by 〈a, b〉. We also use the notation a ≤ (or ≥), b

for two vectors a and b to mean that ai ≤ (or ≥), bi for all i. For a vector-valued function

φ(x, y), we denote the partial derivative of φ with respect to x as φx. Similarly, φxi denotes

the partial derivative of φ with respect to xi. The set R≥0 is defined as x ∈ R : x ≥ 0. An

extended hyperrectangle Γ = [a, b] is defined as the set Γ = x : a ≤ x ≤ b for a, b ∈ Rn. A

hyperrectangle r := (a, b) ∈ R2n is defined as a bounded extended hyperrectangle, denoted

by [![r]!] := [a, b]. The composition of functions g and h is denoted by g ◦h, where g : G→ F

and h : H → G, implying that g ◦ h : H → F . For any vector x ∈ R2n, [![x]!] denotes a

hyperrectangle defined by the first n and last n components of x.
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2.2 Problem Formulation

Consider the nonlinear dynamics of state x ∈ X under control input u, as follows:

ẋ = f (x, u) , and x0 ∈ X0, u : [0, T ]→ U , t ∈ [0, T ] (2.1)

The dynamics in ( 2.1 ) induces a state-transition map Φf (t;x, u), where Φf (τ ;x, u) = x(τ) for

t ≥ 0. The reachability problem is to compute the T -time reachable set under the dynamics

f , given X0 and U , defined as:

Rf (T ;x0) := {x(T ) ∈ X : ẋ = f(x, u), x0 ∈ X0, u ∈ U}

=
{
Φf (T ;x0, u)) ∈ X : x0 ∈ X0, u ∈ U

} (2.2)

We assume that the dynamics f are unknown but can be characterized by state information

from the transition map. Specifically, we have access to a ‘time-moving snapshot’ of the state-

transition, which consists of the state transition data xi, · · · , xi+N and xi+1, · · · , xi+N+1 for

i = 0,∆t, · · · , i∆t, · · · , with a sampling time of ∆t. This snapshot is obtained by sampling

the continuous time state evolution, where xi = Φf (i∆t;x0, u).

To solve the reachability problem defined in (  2.2 ) using the snapshot data, we make the

following assumptions.

A1. The sets X0 and U are both finite and bounded, which implies that they are also

compact when viewed as subsets of Rn and Rm, respectively. Specifically, we can

bound X0 and U using hyperrectangles of the form [x, x] and [u, u], respectively.

A2. For all times τ ∈ [0, T ], there exists a unique state transition map Φf which is induced

by the dynamics f .

A3. The unknown dynamics can be reconstructed from state-output data using the com-

plete state x and control input u, which are accessible at all times. It is important

to note that in practice, state information is often obtained from onboard sensor data

and the associated state estimation methods.
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2.3 Data-Driven Reachability

In order to solve the problem in (  2.2 ), we need to determine a state-transition map Φf̃

that can be used to calculate approximate reachable sets Rf̃ (T ;x0) for a surrogate model f̃ .

To develop the surrogate model f̃ for the nonlinear system in (  2.1 ), we will use the "snapshot"

data. For the nonlinear system in ( 2.1 ), the set of all observables is defined as the space F

which includes all functions of the form g : X × U → C.

For most dynamical systems, the space F of observables is a Hilbert space of square-

integrable functions [  23 ]. In this space, the Koopman operator is defined as an operator

Kt
f : F → F that acts on an observable g ∈ F as Kt

fg(x, u) = g(Φf
t (x, u)). The operator Kt

f

maps observables to observables, and it describes the evolution of the system’s observables

over time. Specifically, it describes how a given observable g evolves over time under the

dynamics f . By repeatedly applying the operator Kt
f , one can compute the time evolution

of any observable g in the system. Then, the Koopman operator is defined as operator

Kt
f : F → F that acts on the observable to itself as follows:

Kt
f ◦ g(x, u) := g(f(x, u), u) (2.3)

Assumption A2 implies the existence and uniqueness of operator Kt
f , as stated in [  23 ].

Furthermore, as the operator Kt
f defined in ( 2.3 ) is linear, its eigendecomposition can be

defined. The eigenfunctions of K are denoted as special observables ϕj ∈ F defined as:

Kϕj(x, u) = λjϕj(x, u), j ∈ N (2.4)

where λj’s are the corresponding eigenvalues.

Given compact sets X and U in Euclidean spaces Rn and Rm, respectively, and observables

g ∈ F that span F , one can find the Koopman eigenfunctions as a linear combination. The

Koopman operator Kt
f : F → F acts on the observable g and is defined as follows: for any

g ∈ F and t ∈ [0, T ], Kt
fg is the observable g evaluated at Φf (t, x0, u), the state of the

system at time t starting from the initial condition x0 and applying the input u. To find

the Koopman eigenfunctions, one can perform a spectral analysis of the operator Kt
f on a
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Figure 2.1. Reachability for EDMD system using a mixed-monotone embedding

suitable basis for F . This can be done by finding the eigenfunctions ψi and eigenvalues λi

that satisfy Kt
fψi = λiψi, where ψi ∈ F and λi ∈ C.

When F is a Hilbert space of square-integrable functions, such as for most dynamical

systems, one can express any observable g ∈ F as a linear combination of the eigenfunctions

ψi, i.e., g(x, u) = ∑∞
i=1 ciψi(x, u), where ci ∈ C [ 23 ]. This allows one to approximate the

operator Kt
f using a finite number of eigenfunctions and eigenvalues. Spectral techniques,

such as extended dynamic mode decomposition (EDMD), can be used to compute these

eigenfunctions and eigenvalues from the snapshot data.

That is:

Kt
f ◦ g(x, u) =

∞∑
k=1

ξkϕk(x, u) (2.5)

The EDMD technique is utilized to approximate the infinite-dimensional Koopman operator

Kt
f using the snapshot data. This allows for the determination of dissipative or conservative

dynamical modes based on the eigenvalues [  24 ], [  25 ].
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2.3.1 Extended Dynamic Mode Decomposition (EDMD)

By using the state transition data, the infinite-dimensional operator in ( 2.3 ) can be

utilized to compute the discrete-time dynamics of observable g as Kt
fg(xk, uk) = g(xk+1, uk).

As per (  2.5 ), vector-valued observables can be expressed in terms of a linear combination of

Koopman eigenfunctions, given as follows:

ggg(x, u) =



g1(x, u)

g2(x, u)
...

gl(x, u)


=

∞∑
k=1

ξkϕk(x, u) = 〈ξξξ,ϕϕϕ(x, u)〉 (2.6)

The evolution of observables can be written using the definition in (  2.3 ) as Kt
fggg(x, u), which

can be rewritten using (  2.4 ) and (  2.6 ) as:

Kt
fggg(x, u) = Kt

f

∞∑
k=1

ξkϕk(x, u) =
∞∑

k=1
λkξkϕk(x, u) (2.7)

Thus, the spectral properties of Kt
f not only provide a representation of the evolution of

ggg, but also allow for lifting measurements of the form y = ggg(x, u) to obtain a linear map-

ping from data Ψ(Y ) to Ψ(Y +). In other words, an eigenfunction decomposition of the

infinite-dimensional system can be obtained from the finite-dimensional data in the form of

‘snapshots’ of the unknown nonlinear system. Hence, when a sufficiently large observable

set is available, the spectral properties of the Koopman operator are directly tied to EDMD

eigenvalues [  24 ]. Without loss of generality, let the snapshot data contain the full state

information in the form of zk := [xT
k , u

T
k ]T as follows:

Z = [z0, · · · , zN ], Z+ = [z1, · · · , zN+1] (2.8)
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, where xk and uk are the state and control inputs at time step k, respectively. Then, the

corresponding snapshot data under the observable map is defined as:

Ψ(Z) = [ggg(z0), · · · ,ggg(zN)]

Ψ(Z+) = [ggg(z1), · · · ,ggg(zN+1)]
(2.9)

The EDMD approximation to Kt
f can then be viewed as a solution to the minimization

problem:

K̃ := arg min
K∈Rn×(n+l)

N∑
i=1
‖Ψ(Z+)−KΨ(Z)‖ (2.10)

Numerous methods exist for performing the minimization above in numerically efficient

ways (see [ 24 ], [  26 ]). The matrix K̃ that was introduced in (  2.10 ) serves as a finite dimensional

representation of the operator Kt
f and, in turn, our surrogate model f̃ . By computing the

eigenvalues of K̃, we obtain the eigenvalues of Kt
f . Additionally, the eigenfunctions of Kt

f

can be obtained by projecting zk onto the left eigenvectors of K̃. The eigendecomposition

K̃vj = λjvj and wjK̃ = µjwj allows rewriting the observable evolutions as:

ggg(zk+1) =
∑

j
〈ggg(zk), wj〉vj (2.11)

The idea of using the approximate spectral properties of the Koopman operator, which are

obtained through K̃, to propagate observable dynamics is based on a well-known result

[ 24 ]. The computation of matrix K̃ is typically accomplished through the singular value

decomposition (SVD) of data matrices Ψ(X) and Ψ(X+). While for linear systems, the

Koopman operator and matrix K̃ are equivalent representations, this is not the case for non-

linear systems due to finite snapshot size and the necessity of finite-dimensional truncation.

Therefore, some error is always incurred in the resulting approximation. To address the

approximation, we quantify the approximation error incurred in using the EDMD technique

for reconstructing the state x̃k through (  2.11 ), using r data-points, when the true state is

given by xk ∈ X ⊆ Rn. This error bound will be used to improve the reachability analysis

discussed subsequently.
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Theorem 2.3.1 (EDMD Error Bounds). Suppose the state is reconstructed from EDMD

x̃k through (  2.11 ), using r data-points, and the true state is given by xk ∈ X ⊆ Rn. Then

there exist εn,r and εn,r, such that xk ∈ [x̃k − εn,r, x̃k + εn,r] (where a ≤ b implies ai ≤ bi,

element-wise).

Proof. From (  2.5 ), the EDMD reconstructed observables evolve according to the discrete time

recursive relation ggg(x̃k+1, uk+1) = K̃ggg(x̃k, uk), while the original Koopman system evolves

according to g(xk+1, uk+1) = Kt
fg(xk, uk). Let the matrix K̃ be calculated using r data-

points, for the state x ∈ X ⊆ Rn. From Theorem 8.4 in [  25 ], ‖Kt
fggg− K̃ggg‖ ≤ c (log r/r)2n/n + 1

for c > 0. Let δn,r = c (log r/r)2n/n + 1, then ‖Kt
fggg‖ ∈ [K̃ggg − δn,r, K̃ggg + δn,r]. Therefore,

K̃ggg − δn,r1 ≤ Kt
fggg ≤ K̃ggg + 1δn,r necessarily holds. Let ΠX be the projection on to X , such

that the state x is obtained from the observables as ΠXggg. That is, ΠX
(
K̃ggg− δn,r1

)
≤ Kt

fggg ≤

ΠX
(
K̃ggg + δn,r1

)
. Finally, let εn,r = δn,rΠX1 = εn,r for the proof to hold.

2.3.2 Mixed-Monotone Embedding for the EDMD System

So far, the choice of observables ggg has not been restricted, leaving room for problem-

specific guidelines. Indeed, the challenges associated with observable choice is very much an

open problem. However, for the purpose of solving the reachability problem, we will limit

our discussion to polynomial observables of degree at most d. Polynomials are a natural

choice for square-integrable observables on compact sets and are commonly used in the ED-

MD/DMD literature [  24 ]. Henceforth, we denote the set of observables as gggd, which consists

of polynomial basis functions with degree at most d. This restriction on the observables will

be essential in utilizing mixed-monotonicity results from [  16 ], [  27 ] for reachability analysis.

These results provide a way to analyze the monotonicity of (hyperrectangular) sets under

dynamical systems, and have been used in various control and optimization problems. The

restriction to polynomial observables of degree at most d allows us to leverage these results

towards the reachability problem.
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In order to proceed, we will begin by providing a definition for the mixed-monotonicity

of a function F : Rn × Rm → Rn. From [  16 ], F (u, v) is mixed-monotone, if for some Ju ∈

Rn×n
≤0 , Jv ∈ Rn×m

≤0 , Ju ∈ Rn×n
≥0 and Jv ∈ Rn×m

≥0 , the following holds true:

Fu(u, v) ∈ [Ju, Ju], Fv(u, v) ∈ [Jv, Jv], ∀u ∈ U , v ∈ V

(Ju)i,j > −∞ or (Ju)i,j <∞, ∀i 6= j, and

(Jv)i,j > −∞ or (Jv)i,j <∞, ∀i, j

(2.12)

Subsequently, we can consider an embedding into a higher dimensional space given by the

decomposition d : U × V × U × V . The map F (u, v) is considered to be mixed-monotone

with respect to d if, for all u, û ∈ U and v, v̂ ∈ V , the following condition holds true (refer

to [  16 ], [  28 ]):

F (u, v) = d(u, v, u, v),(
duj(u, v, û, v̂)

)
i
≥ 0,

(
dûj(u, v, û, v̂)

)
i
≤ 0, ∀i, j(

dvj(u, v, û, v̂)
)

i
≥ 0,

(
dv̂j(u, v, û, v̂)

)
i
≤ 0, ∀i, j

(2.13)

The concept of mixed-monotonicity is an important tool for analyzing the behavior of dy-

namical systems. In particular, mixed-monotonicity with respect to a decomposition d is

defined in Equation (  2.13 ) and involves a higher dimensional embedding of the function F .

Specifically, a function F is said to be mixed-monotonic with respect to d if it is mono-

tonically increasing with respect to the variables (u, v) and monotonically decreasing with

respect to the variables (û, v̂).

In other words, if we consider the function F as a map from Rd × Rd to R, then mixed-

monotonicity requires that F is non-increasing along any coordinate direction in one of the

two sets of coordinates (u, v) or (û, v̂), and non-decreasing along any coordinate direction in

the other set of coordinates. In particular, mixed-monotonicity with respect to a decompo-

sition d can be used to derive sufficient conditions for reachability that are computationally

tractable, making it a powerful tool for analyzing complex dynamical systems.
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Lemma 1 (Existence of Decomposition d). Consider the EDMD dynamics given below:

xk+1 = ΠX

∑
j
〈gdgdgd, wj〉vj

+ ζk =: F d(x, ζ) (2.14)

where ζ ∈ [εn,r, εn,r] is an unknown but bounded vector. A decomposition function d : X ×

U × X × U always exists w.r.t. which the dynamics in ( 2.14 ) is mixed-monotone.

Proof. The set of all polynomial functions of (x, u), of degree at most d, is denoted by Fd.

Since we have chosen a basis, it follows that 〈gdgdgd, wj〉 ∈
∨gdgdgd = Fd. Moreover, since its

argument y ∈ Fd, ΠX (y) ∈ Fd. Therefore, by construction, the EDMD dynamics in (  2.14 )

are polynomials of degree at most d. Finally, Assumption A1 implies that gd
xgd
xgd
x and gggd

u are both

bounded above and below since the sets X0 and U are compact, which in turn yields J(·)

and J(·) as defined in (  2.12 ). Therefore, due to Theorem 1 in [ 28 ], the dynamics in (  2.14 ) is

mixed-monotone w.r.t. the decomposition d defined as follows:

di(x, ζ, x̂, ζ̂) =



minF d
i (v, w)

v∈[x,x̂]
vi=xi

w∈[ζ,ζ̂]

if x ≤ x̂ and ζ ≤ ζ̂

maxF d
i (v, w)

v∈[x̂,x]
vi=xi

w∈[ζ̂,ζ]

if x ≥ x̂ and ζ ≥ ζ̂

(2.15)

The decomposition above is tight for F d(·, ·) due to [  28 ].

Given Lemma  1 , it is always possible to find a decomposition function d such that the

dynamics 〈gdgdgd(zk), wj〉 are mixed-monotone. We can then define the state transition function

for the EDMD system 〈gdgdgd(zk), wj〉 as Φg(T ;x0, u), such that x(t) = Φg(t;x0, u). Using this,

we can define the forward reachable set of the EDMD system 〈gdgdgd(zk), wj〉, similar to (  2.2 ),

as:

Rg (T ;x0) :=
{
x : xk+1 = ΠX 〈gdgdgd, wj〉vj : x0 ∈ X0, u ∈ U

}
(2.16)
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Theorem 2.3.2 (Mixed Monotone Forward Reachability). Let the EDMD dynamics be

mixed-monotone w.r.t. the decomposition d in ( 2.15 ). Further define the following embedding

by fixing the unknown vector ζ as:

ẋ
˙̂x

 = Θ(x, x̂) :=

d(x, εn,r, x̂, εn,r)

d(x̂, εn,r, x, εn,r)

 (2.17)

Let the corresponding state transition function for Θ be given by ΦΘ(t; (x, x̂)), then if

X0 = [x, x], the original reachable set for the unknown dynamics in (  2.1 ) satisfies:

Rf (T ;x0) ⊆ [[ΦΘ(t; (x, x)]] (2.18)

Proof. Theorem  2.3.2 guarantees that xk ∈ [x̃−εn, r, x̃+εn, r], which implies thatRf (T ;x0) ⊂

Rg (T ;x0), where Rf (T ;x0) and Rg (T ;x0) denote the forward reachable sets of systems f

and g, respectively. To determine the reachable set of the mixed-monotone system g, we

can define the state transition function for the EDMD system 〈gdgdgd(zk), wj〉 as Φg(T ;x0, u)

such that x(t) = Φg(t;x0, u). Additionally, we can define the forward reachable set of the

EDMD system 〈gdgdgd(zk), wj〉. We can always find a decomposition function d with respect

to which the dynamics 〈gdgdgd(zk), wj〉 are mixed-monotone, according to Lemma  1 . Moreover,

since the mappings d(x, ·, ·, ·) and d(·, ·, x̂, ·) are polynomials in gdgdgd, they can be expressed

explicitly from ( 2.15 ). This implies that the state transition function ΦΘ(t; (x, x̂)) can be

found in closed form. Based on Theorem 2 from [ 16 ], since Θ(x, x̂) is a polynomial embed-

ding, we have Rg (T ;x0) ⊆ [[ΦΘ(t; (x, x)]], where [[ · ]] denotes the hyperrectangle bounding the

set. Hence, we have Rf (T ;x0) ⊆ Rg (T ;x0) ⊆ [[ΦΘ(t; (x, x)]]. In other words, the solutions

of the transition function Θ in x and x̂ coordinates, provide the lower and upper corners,

respectively, of the hyperrectangle bounding the reachable set of g.

The findings from Theorem 2 offer a computationally efficient approach to determine

forward reachable sets by utilizing the deterministic embedding Θ stated in ( 2.17 ). Since we

have opted for polynomial basis functions as observables in our EDMD technique, an em-

bedding Θ can always be found through the d decomposition. The approach presented here

32



extends the reachability analysis framework proposed in [ 27 ], [  28 ] to account for unknown

dynamics models. Moreover, [  27 ] provides techniques for computing the decomposition d

in a straightforward manner. Notably, computing d involves solving min/max problems of

polynomials, which can be tackled over compact sets by leveraging Assumption A1. The

assumption that X0 = [x, x] is not restrictive since bounding hyperrectangles can always

be obtained for any bounded X0. The proposed method combines unknown model reach-

able problem with computationally efficient reachable set computation, albeit at the cost

of hyperrectangular approximations to the reachable set. As the method relies on EDMD

approximations of f , the accuracy of the approximations improves with the number of data

points used to construct Kt
f . Therefore, the proposed method is particularly useful for safety-

critical systems that require fast updates to reachable set computations and can tolerate

conservative estimates of the sets. If the unsafe region lies outside of the over-approximated

reachable sets, the original system’s safety is guaranteed.

Therefore, by selecting polynomial observables of degree at most d, we can construct an

embedding that is mixed monotone, allowing us to compute over-approximations of reach-

able sets for dynamical systems using EDMD. This approach offers a complete, end-to-end

framework for tackling computationally intensive reachable set computations for systems

with unknown models. While the over-approximations may be conservative, they provide a

quick update to the reachable set computations, making this method especially suitable for

safety-critical systems where swift response times are crucial. Additionally, it is worth noting

that finding bounding hyperrectangles for bounded X0 is always possible, so the assumption

of X0 = [x, x] is not restrictive. Finally, since the accuracy of the approximations improves

with an increasing number of data-points, the method can be expected to yield increasingly

accurate results as the size of the dataset grows. The proposed method is summarized in

Algorithm  1 .

Remark 1. The action of the Koopman operator over observables is a lifting to a higher di-

mensional space, in order to utilize its spectral properties, where the linear operator’s spectral

properties can be utilized to study the unknown dynamics. Similarly, the decomposition d can
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be viewed as a lifting w.r.t. which the original dynamics are mixed-monotone, as summarized

in Fig.  2.1 .

Algorithm 1: Mixed Monotone Reachability for EDMD System
Input: T, Z, Z+,X0 ⊆ [x, x], U ⊆ [u, u]

Parameters : gggd, d, r

while τ ≤ T do
obtain Ψ(Z),Ψ(Z+)

solve for K̃ using EDMD (  2.10 )

calculate ε, ε

compute decomposition d using (  2.15 )

for i← 0 to n do
solve for min/max F d

i using fmincon

end

compute embedding Θ using (  2.17 )

propagate deterministic system ΦΘ(τ ;x, x)
end

return Output: [[ΦΘ(T ; (x, x)]]

2.4 Numerical Example

In this section, we will consider the Laub-Loomis model, a high dimensional nonlinear

dynamical system introduced in [  29 ]. This model is commonly used to study a class of

enzymatic activities. The equation describing the model is as follows:

ẋ1 = 1.4x3 − 0.9x1, ẋ2 = 2.5x5 − 1.5x2,

ẋ3 = 0.6x7 − 0.8x2x3, ẋ4 = 2− 1.3x3x4,

ẋ5 = 0.7x1 − x4x5, ẋ6 = 0.3x1 − 3.1x6,

ẋ7 = 1.8x6 − 1.5x2x7

(2.19)
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The Laub-Loomis model is often used to benchmark reachability problems (see [  29 ] for

benchmarking results). The initial set X0 ⊂ R7 for the Laub-Loom model in (  2.19 ) is a

hyperrectangle of fixed width W = 0.15, with a lower corner:

x1(0) = 1.2, x2(0) = 1.05, x3(0) = 1.5, x4(0) = 2.4,

x5(0) = 1, x6(0) = 0.1, x7(0) = 0.45

The forward reachable sets are computed for t ∈ [0, 10] seconds.

To construct EDMD approximations of the Laub-Loomis model given in (  2.19 ), we use

full-state information sampled via discretization at ∆T = 0.002s. In this analysis, we restrict

the choice of observables to d = 2. Notably, we observe that Fd includes the unknown

dynamics of the system, meaning that ∨gggd contains the nonlinear dynamical map. As a

result, the EDMD reconstruction of the system dynamics in (  2.19 ) is exact. This is also seen

in the trajectory reconstructed using EDMD in Fig.  2.2 .

Figure 2.2. The Laub Loomis Model’s true dynamics are plotted in blue and
compared with the EDMD reconstruction, which is represented in red
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Using the EDMD model reconstruction via observables of the form gggd, from Theorem

1, we establish ε and ε values. To compute the forward reachable sets Rg (τ ;x0), where

τ ≤ T , we first construct d using (  2.15 ). Next, we use the embedding Θ to propagate the

deterministic system ΦΘ forwards in time. Finally, we project the resulting propagations

back onto X to obtain the reachable set for the original nonlinear system, i.e., Rf (τ ;x0).

Figure 2.3. The CORA tool was used to compute the reachable set
Rf (10;x0) for the original Laub-Loomis system. The initial condition x0 is
denoted by the black circle, and the reachable set is represented by the light
blue region.

A projection of the reachable set Rf (τ ;x0) is shown in Figs.  2.3 and  2.4 in the x2 − x6

dimensions. Figure  2.3 displays the reachable sets computed using COntinuous Reachabil-

ity Analyzer (CORA), a toolbox based on Matlab (for further information, see [  13 ]). In

comparison, Fig.  2.4 shows the reachable sets obtained using the proposed method. Addi-

tionally, Figs.  2.5 and  2.6 present the reachable set projections in other dimensions for the

Laub-Loomis model given in Equation  2.19 .

According to Theorem 2, the reachable sets obtained from a mixed-monotone embedding

of the EDMD system must necessarily contain the reachable set for the original system
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Figure 2.4. Over-approximation of the reachable set Rg (10;x0) obtained
using the proposed method for the EDMD reconstruction of the Laub-Loomis
system

described by (  2.19 ). This is illustrated in the figures, and we further confirm this in Fig.  2.4 

by randomly sampling trajectories starting from X0. The figure provides evidence that the

reachable sets computed using CORA lie within the over-approximations obtained using the

proposed method’s deterministic map ΦΘ.

The proposed approach aims to over-approximate reachable sets of unknown dynamical

models with faster computation times. This is evident in Fig.  2.7 , where the proposed

method consistently outperforms CORA. The experiments were conducted using Matlab

R2020a on a Windows 10 machine with an Intel Core i5-8265U 1.60GHz CPU and 16GB

of RAM. It is worth noting that the proposed method performs significantly better than

CORA for time horizons greater than 3 seconds. For time horizons shorter than 3 seconds, the

computational overhead for computing the decomposition d and its corresponding embedding

Θ is substantial. However, in practical applications, large time-horizon reachable sets are
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Figure 2.5. The reachable set Rf (10;x0) for the Laub-Loomis system using
CORA, projected onto the x1-x2 plane, x1-x3 plane, and x2-x3 plane

often used for trajectory planning, control synthesis, and verification and validation of the

dynamical system.

Remark 2. To obtain the embedding Θ, we solve the min /max problem in (  2.15 ) using

fmincon. However, for dynamical models with a more predictable structure, this compu-

tation can be pre-computed in terms of the chosen observables or off-loaded to reduce the

computational burden of solving fmincon. This approach would significantly decrease the

overhead cost of the method and make the red line in Fig.  2.7 almost flat.

Remark 3. Even though the decomposition d is guaranteed to be tight, as per [  28 ], the

hyperrectangles may not be tight in relation to the original dynamics. This can be observed

in Figs.  2.5 and  2.6 , where an additional “looser" rectangle is present, which arises due to

modeling the EDMD error as residing in a separate hyperrectangle [![·, ·]!].
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Figure 2.6. Projections of the hyperrectangle bounding the over-
approximation of the reachable set Rg (10;x0) for the Laub-Loomis system
using the proposed method
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Figure 2.7. The computation time for generating forward reachable sets for
the Laub-Loomis system is shown for different values of the final time T .

2.5 Conclusion and Future Work

This chapter introduces a novel data-driven method for approximating reachable sets of

unknown nonlinear dynamical systems. Nonlinearities in the dynamics are represented by

a linear operator acting on observable functions of the state and control input. The finite-

dimensional EDMD method is used to estimate the infinite-dimensional Koopman operator

from data snapshots. The resulting EDMD model is then embedded in a higher-dimensional

space using mixed-monotone decomposition functions, which can always be found for EDMD

models under the proposed form. Over-approximations of reachable sets are obtained by

modeling bounded EDMD errors, which contain the original reachable sets. The proposed

method is demonstrated on a high-dimensional nonlinear system example and shown to

outperform a well-known existing algorithm in terms of computational time.

Our current and future work involves exploring ways to improve the proposed method for

computing over-approximations of reachable sets for unknown nonlinear dynamical systems.

Specifically, we are investigating tighter representations of embedding functions in higher

dimensions, which would enable polytopic geometry to be used instead of interval-based

approximations. This would help reduce the inherent conservativeness in the approach and

provide more accurate approximations. Additionally, we plan to consider nonlinearities

introduced by multi-agent interactions to extend the applicability of the proposed method to
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more general nonlinear dynamical systems [  30 ], [ 31 ]. Some of these multi-agent interaction

scenarios include leaderless consensus and optimal control problems.
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3. DMD-BASED REACHABLE SET COMPUTATION FOR

NEURAL NETWORK-IN-THE-LOOP MODELS

Thapliyal, O., & Hwang, I. (2023). Approximating Reachable Sets for Neural Network-

Based Models in Real Time via Optimal Control. IEEE Transactions on Control Systems

Technology. [ 32 ]

The research presented in this chapter is conducted by Thapliyal, O. under the supervision

of Hwang, I.

Abstract

In this chapter, a data-driven approach to estimate reachable sets for control systems

using neural networks (NNs) is presented. The proposed method utilizes a quadrotor model

as a running example, which is learned offline using trajectory data via NNs. During real-time

operation, the learned NN can be excited to obtain linear approximations for reachability

analysis. Dynamic mode decomposition is employed to obtain linear liftings of the NN model.

The linear models obtained can be used with optimal control theory to obtain polytopic

approximations of the reachable sets in real-time, with tunable accuracy. The proposed

framework is not limited to quadrotor models and can be extended to other nonlinear models

that utilize NNs to estimate plant dynamics. The effectiveness of the proposed approach

is demonstrated through an illustrative simulation of quadrotor dynamics. In the future,

the proposed framework can be further improved by exploring more sophisticated methods

to obtain tighter polytopic approximations and by considering other types of nonlinearities

introduced by multi-agent interactions.

3.1 Introduction

Control engineers are increasingly turning to machine learning techniques as systems

become more complex and data becomes more abundant. The ease of generating simulated

data for multiple system trajectories has made neural networks (NNs) a popular choice for

modeling various aspects of control systems, including plants, actuators, controllers, and
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even human operator behavior. Data-driven approaches have proven particularly useful

for discovering underlying physical models of dynamical systems. These approaches involve

using data to identify patterns and relationships between system inputs and outputs. Once a

model has been identified, it can be used to design and optimize control algorithms. Overall,

data-driven techniques hold great promise for advancing the field of control engineering,

especially as the complexity of systems continues to increase. By leveraging large amounts

of data to discover models that capture the underlying physics of these systems, engineers

can design more effective control algorithms that are better suited to real-world scenarios.

Set-based properties like safety, reachability, and controllability offer a strong analytical

foundation to quantify the performance of a system, especially under uncertainties. Reach-

ability, in particular, is closely linked to other properties such as viability, controllability,

and safety [ 3 ]. Estimating reachability is also useful for optimal control synthesis and high-

level decision making [ 33 ]. While reachable sets can be computed analytically by solving

Hamilton-Jacobi partial differential equations (PDEs), this approach is time-consuming and

suffers from the “curse of dimensionality", making it challenging for real-time applications.

Further, it requires finding suitable value functions or level sets to formulate the system at

hand as a suitable Hamiltonian (see [ 9 ] for more details). To alleviate this, various numer-

ical approximation techniques have been proposed to compute approximate reachable sets

without explicit solutions to the associated HJ PDEs. These techniques employ polytopic

approximations [ 34 ], Pontryagin’s optimal control [  35 ], numerical differential equation solvers

[ 36 ], and numerical functional differential equations [  37 ], to name a few. Based on these, a

number of reachable set computation tools are available that utilize numerical techniques for

approximate reachable sets and tubes (such as [  29 ], [ 38 ], [ 39 ]), both forward and backwards

in time.

Designing control signals and analyzing system properties under operational noise, pa-

rameter uncertainties, and nonlinearities are crucial aspects of control system design. Ma-

chine learning, particularly neural networks (NNs), has found applications in various stages

of the control system design process, including system identification, output tracking, con-

trol synthesis, state estimation, and supervisory control logic design. Recent research has

demonstrated the effectiveness of NNs in learning nonlinear dynamical models of varying
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complexities. For example, in [ 40 ], iterative learning was used to infer the inverse dynam-

ics of a robotic arm using real data from an iCub robotic arm. In [  41 ], a learning-based

approach was proposed to infer supervisory control logic for cybersecurity analysis of super-

visory control systems. In [ 42 ], an iterative learning-based method was implemented to learn

the dynamics of train wheel adhesion. In [ 43 ], control signals were synthesized to control

a quadrotor by learning its dynamics. The utilization of machine learning techniques for

system identification has been noted to be particularly useful in recent system modeling

and identification texts such as [ 44 ], [ 45 ], and [  46 ]. Overall, the ability of NNs to handle

uncertainties and nonlinearities in control system design makes them a promising tool for

a wide range of applications. Estimating reachable sets in real-time is vital, especially for

safety-critical operations. However, despite the widespread usage of neural networks (NNs)

in solving dynamics and control problems, their reliability under uncertainties and operat-

ing conditions that demand safety guarantees is limited due to the absence of reachable set

computation/approximation tools for NN based models. However, since machine learning

models use data from an unknown dynamical system, numerical approaches to compute ap-

proximate reachable sets can be extended to the learned models themselves. To this end,

Koopman Operator theory provides a method to find a computationally scalable, equivalent

linear lifted model for NNs [  47 ]. This approach has been used to estimate reachable sets as

polytopes by applying linear control methods to the linear lifted models. Additionally, an

optimal control problem can be formulated to propagate these polytopes over time [ 48 ]. On

the other hand, learning-based methods are also used to learn the Koopman operator itself

for control synthesis. The accuracy of the proposed method depends on two key factors.

Firstly, the ability of the NN to accurately approximate unknown plant models. Secondly,

the ability of the Koopman operator to lift the NN model to a higher dimensional mani-

fold and approximate it as a linear system. However, it should be noted that the proposed

method can achieve arbitrarily accurate polytopic reachable set approximations [  35 ]. For-

tunately, both methods are proven to have an approximation accuracy that is asymptotic

in the number of data points. As a result, the proposed methods allows for a real-time

reachable set estimation framework for the learned model.
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3.1.1 Related Works

The problem of computing output bounds of a neural network (NN) can be related to the

problem of computing reachable sets for learned dynamical models. However, the computa-

tion of output bounds for NN-based controllers using specific activation functions is not easily

amenable to real-time applications due to the complexity of the problem. Some approaches

have been proposed in the literature, such as solving mixed-integer linear programs (MILPs)

[ 49 ] or relaxed linear programs (LPs) [ 50 ], but these methods are computationally expensive

and not suitable for real-time implementation. Methods that exploit individual perceptrons

in a neural network (NN), connected through rectified linear unit (ReLu) activations, have

been used to obtain output bounds. For example, in [  51 ], Bernstein polynomials are used to

obtain Taylor approximations of NN-based control systems to obtain reachability flow pipes.

Exact reachable sets have been computed for a control system employing ReLu activation

functions-based NNs with specific switched linear dynamics in [ 4 ]. However, these methods

rely on explicit system dynamics or specific activation functions to obtain reachable sets for

NN models. Most NNs used for learning system dynamics can be arbitrarily nonlinear. On

the other hand, reachable set computation/approximation using HJ methods or polytopes

is extant in controls literature [  3 ], [  34 ], [  35 ]. Exact model-based methods depend on having

complete knowledge of the system’s dynamical modes, which is not the case for NN-based

modeling. As far as we know, there are no techniques that use optimal control theory to

extend local linear system approximations of NNs to obtain approximate reachable sets for

these models.

3.1.2 Contributions

The proposed method has several main contributions that enhance the efficiency and

effectiveness of NN-based reachability analysis. First, the method employs a dynamic mode

decomposition (DMD) based framework to obtain approximate linear models for the given

nonlinear dynamics learned by the NN. This allows for the use of optimal control theory

to obtain polytopic approximations to the reachable sets for the approximately equivalent
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linear system. The use of linear models reduces the complexity of the problem, making it

more amenable to real-time applications.

Second, the proposed framework is numerically efficient and can be used in real-time

applications. This is achieved by avoiding the need to solve mixed-integer linear programs

(MILPs) or relaxed linear programs (LPs) at each time step. Instead, the proposed method

uses the DMD-based framework and optimal control theory to obtain polytopic approxima-

tions of reachable sets in a computationally efficient manner.

Third, the framework is flexible and allows for the use of various reachability assessment

tools for the approximately equivalent linear systems. The introduced polytopic reachable set

approximation methods can be replaced by other reachability modules, as shown in Fig.  3.1 .

This allows for the integration of other reachability assessment tools, providing flexibility

and facilitating comparisons of different reachability analysis methods.

To demonstrate the effectiveness of the proposed method, the authors provide a detailed

example of real-time reachable set approximation for a quadrotor model. The quadrotor

model is a widely studied system for identification and control using NNs. The results of

the example show the efficiency and effectiveness of the proposed method and its ability to

provide accurate approximations of reachable sets in real-time applications.

The structure of this chapter is as follows. In Section 2, we define the reachability

problem for a NN-learned model. In Section 3, we introduce our framework for estimating

reachable sets for nonlinear models learned by NNs. We formulate the approximate reachable

set computation as an optimal control problem to obtain polytopic approximations. To

illustrate the effectiveness of our method, we use a quadrotor model learned from trajectory

data using a NN as a running example. Section 4 provides a detailed implementation of our

reachability estimation framework on the quadrotor example. We first consider a nominal

quadrotor reachability case and then investigate a scenario where two of the rotors have

failed. Finally, in Section 5, we present our concluding remarks. We emphasize the efficiency

and accuracy of our proposed method, and highlight its potential for real-time applications.

Notations: For two vectors u and v, their inner product is denoted by 〈u, v〉. For a

matrix A, we denote its transpose by AT and its Frobenius norm by ‖A‖F . For two sets A

and B, we denote their Minkowski sum as A ⊕ B , {a + b | a ∈ A, b ∈ B}. Similarly, we
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denote their Minkowski difference by A	B , (Ac⊕ (−B))c. For a finite set A, if a random

variable x is distributed uniformly in the set A, we write x ∼ UA.

3.2 Problem Formulation

Consider the nonlinear dynamical system given as follows:

ẋ(t) = f (x(t), u(t)) , and x(0) ∈ X0, u(t) ∈ Ω, t ≥ 0 (3.1)

where x ∈ X ⊆ Rnx is the state, x0 is the initial state in a known initial set X0, and

the control input u ∈ Rnu resides in the set Ω at all times t. The dynamical map f is

considered to be unknown. Given some input-state data in the form of Xk , {x0, · · · , xN},

Uk , {u0, · · · , uN} over multiple trajectories k = 0, · · · , nT , the unknown dynamical map

f is learned using the trajectory data. The trajectory data is sampled from ẋ = f(x, u) in

( 3.1 ) at some sampling rate ∆t, such that (xi, ui) , (x(i∆t), u(i∆t)) for i = 1, · · · , N .

A data-driven method, such as a neural network (NN), is employed to estimate the

unknown dynamics f from the time series data trajectories as:

˙̃x(t) = f̃Θ (x̃(t), u(t)) (3.2)

The state obtained by the neural network (NN) from the data Xk, Uk is denoted as x̃(t),

which serves as an approximation to the true state x(t), as long as the learned dynamics

f̃Θ is close to the true dynamics f . The approximate dynamics f̃Θ is characterized by the

parameters Θ, which include the weights and biases of the NN. It is assumed, without loss

of generality, that the initial state x̃(0) belongs to the set of initial states X0, and the control

input u belongs to the set Ω. The reachability problem for the NN model is then to find:

Rf̃ (τ ;X0) ,
{
x̃(τ) | ˙̃x = f̃Θ (x̃, u) , x̃(0) ∈ X0, u ∈ Ω; Θ

}
(3.3)
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at some time τ , given initial conditions X0 and admissible control set Ω. Note that the

problem to compute Rf̃ (τ ;X0) is nontrivial due to the arbitrary, unstructured nonlinearities

present in the NN modeling (parameterized by Θ).

Remark 4 (NNs as Universal Approximator [ 52 ]). A causal NN with parameters Θ can be

utilized to approximate f given time series trajectory data Xk, Uk. The state x̃(t) obtained

from the NN approximates the true state x(t) as long as the approximation f̃Θ is close to f .

The parameters of the learning method, including the NN weights and biases, are included

in Θ. Without loss of generality, it is assumed that the initial state x̃(0) is in X0 and the

control input u is in Ω. As the number of available trajectories nT approaches infinity, it is

expected that f̃Θ approaches f , and therefore, x̃(τ) approaches x(τ) for 0 ≤ τ ≤ N∆t.

The set Rf̃ (τ ;X0) provides a good approximation of the reachable set for the nonlinear

system in ( 3.1 ). Since we are not proposing a new learning method, our focus will be on

Rf̃ (τ ;X0). Going forward, we will assume that the system’s dynamics are described by f̃Θ,

as the NN can be trained effectively according to Remark 1.

3.3 Reachability Framework for Neural Network Models

In this section, we assume that the nonlinear dynamical system has been learned using

NN techniques and focus on approximating reachable sets of the NN dynamics f̃Θ using a

computationally efficient method. To achieve this, we use a formulation of dynamic mode

decomposition (DMD) that accommodates control inputs [  53 ]. By doing so, we can construct

a finite-dimensional approximation to the infinite-dimensional Koopman operator and obtain

equivalent time-varying linear system models. The Koopman operator is a linear operator

that maps a function of the state of a dynamical system to its evolution in time. In the case

of a nonlinear dynamical system represented by a NN, the Koopman operator is typically

infinite dimensional and difficult to compute. However, the DMD approach provides a way

to construct a finite-dimensional approximation of the Koopman operator by leveraging

input-output data from the system.

The basic idea of DMD is to perform a spectral decomposition of the data matrix con-

taining the input-output pairs of the system, which leads to a set of modes that can be
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Figure 3.1. A schematic of the proposed data-driven framework for approx-
imate reachable set computation

used to reconstruct the system behavior. By incorporating control inputs into the DMD

formulation, we can obtain a more accurate approximation of the Koopman operator, which

in turn allows us to obtain an equivalent linear time-varying system model. This linear sys-

tem model can then be used to obtain polytopic approximations of the reachable sets using

optimal control theory, as described in the following section.

3.3.1 Dynamic Mode Decomposition with Control

Let us look at a data-driven method for approximating the Koopman Operator, called

dynamic mode decomposition. Nominal forms of DMD involve trajectory data (called ‘snap-

shots’) consisting of state evolutions over time xk. The trajectory data get mapped under a

linear operator as xk+1 ≈ Axk. DMD with control (DMDc) was proposed to include input-

state relations to such trajectory evolutions in [ 53 ]. Given an input-state data point xk, uk,

DMDc attempts to find the pair of operators A,B such that xk+1 ≈ Axk + Buk for data
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points on state xk ∈ Rnx and input uk ∈ Rnu . The data matrices at time step k are temporal

snapshots of the trajectory, of width w ∈ N, given by:

Ξk,w ,


| |

xk · · · xk+w

| |

 ,Υk,w ,


| |

uk · · · uk+w

| |

 (3.4)

The snapshot with data points propagated one-step in time, can then be represented as:

Ξk+1,w = Γk,w

Ξk,w

Υk,w

 , where Γk,w ,
[
A B

]
(3.5)

Note that the mapping Γ varies over time, and is parameterized by the snapshot width w.

The DMDc solution to (  3.5 ) can be viewed as a least-square regression problem to find a

Γ ∈ Rnx×(nx+nu) such that:

Γk,w = arg min

∥∥∥∥∥∥∥Ξk+1,w − Γk,w

Ξk,w

Υk,w


∥∥∥∥∥∥∥F, or

Γk,w =
[
A B

]
= Ξk+1,w

Ξk,w

Υk,w


† (3.6)

where [ · ]† denotes the pseudo-inverse. Extracting columns from the least-square solution in

( 3.6 ), we get a linear time-varying system such that xk+1 ≈ Akxk +Bkuk.

One way to efficiently compute the least-squares solution is by utilizing singular-value

decompositions of data snapshot matrices [  53 ]. In real-time, matrices Ak and Bk can be

estimated over time using a time-moving window of width w. In the proposed method, the

moving window obtains snapshot data from the input-state relation learned by the NN. To

obtain the state snapshot data, the learned model f̃Θ is excited by sampling an arbitrary

control input from Ω that forms Γk, w, and the output of the NN is noted into the propagated

state data snapshot Ξk+1,w. This allows for an independent framework that uses excitations

of the NN model to obtain approximate linear models, as depicted in Fig.  3.1 . Using this
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approach, the proposed framework can efficiently approximate the reachable sets for nonlin-

ear models learned by a NN, which is much more amenable to real-time applications than

solving MILPs or relaxed LPs at each time step.

3.3.2 Approximate Reachable Set Computation using DMDc Model

After obtaining linear approximations of the form xk+1 = Akxk +Bkuk, the focus shifts to

determining the reachable sets for the linear time-varying system (A(t), B(t)). The system

matrices A(t) and B(t) satisfy the conditions expA(t)∆t = Ak and
∫∆t

0 expA(s)sB(s)ds =

Bk for t ∈ [k∆t, (k + 1)∆t). Thus, Ak and Bk are updated at each time step k + 1 as

new snapshot data is received through equation ( 3.5 ), and A(t) and B(t) are updated at

time (k + 1)∆t. The state-transition function Φ(t, 0) associated with the linear system

(A(t), B(t)) is defined as Φ̇(t, 0) = −A(t)Φ(t), with Φ(0, 0) = I. The reachable set of the

system (A(t), B(t)) at time τ is denoted as RΦ (τ ;X0,Ω). If the DMDc approximation is

accurate, approximating RΦ (τ ;X0,Ω) should suffice.

Without loss of generality, we assume that the admissible control set and the initial state

set are polytopes as:

X0 =
n1⋂
i=1
{v ∈ Rnx | 〈ci(0), v〉 ≤ γi(0)}

Ω =
n2⋂
i=1
{u ∈ Rnu | 〈di, u〉 ≤ εi}

(3.7)

defined for arbitrary vectors v. Additionally, the hyperplanes Hi define each face of the

polytopes in (  3.7 ) using normal vectors ci and di. At points x∗
i (0) for i = 1, · · · , n1, the

hyperplanes Hi touch the set X0 with 〈ci(0), x∗
i (0)〉 = γi(0). Although this assumption is

based on polytopes, it is not a limitation, as it is possible to bound arbitrarily convex,

compact sets X0 and Ω with tight polytopes using (  3.7 ). Clearly, the following hold true:

x∗
i (0) = arg max

v∈X0

{〈ci(0), v〉}, and

γi(0) = max
v∈X0
{〈ci(0), v〉}

(3.8)
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A polytopic approximation of the reachable set considers only the points of contact x∗
i (0) of

reachable sets of the linear system, as described in [  34 ], [ 35 ]. Likewise, at time τ , let x∗
i (τ)

denote the point of contact of RΦ (τ ;X0,Ω) with the hyperplane Hi(τ), which is defined as:

H∗
i (τ) = {x | 〈ci(τ), x∗

i (τ)〉 = γi(τ)} (3.9)

for i = 1, · · · , n1, at time τ > 0. The observation above applies to compact and convex sets

X0 and Ω. According to [  35 ], these conditions ensure that the reachable set RΦ remains both

compact and convex for all time τ . This, in turn, allows us to find hyperplanes H∗
i (τ) to

support the reachable set. Following an approach similar to that of (  3.8 ), we can define the

point of contact between H∗
i (τ) and RΦ at any time τ as:

x∗
i (0) = arg max

v∈RΦ(τ ;X0,Ω)
〈ci(τ), v〉

= arg max
{
〈ci(τ), v〉 s.t. v(t) = Φ(t)x(0) +

∫ t

0
Φ(t, s)B(s)u(s)ds, u(t) ∈ Ω, t ≤ τ

}
(3.10)

Also, from (  3.8 ), the distance between H∗
i (τ) and RΦ can be expressed as:

γi(τ) = max
v∈RΦ(τ ;X0,Ω)

〈ci(τ), v〉

= max
{
〈ci(τ), v〉 s.t. v(t) = Φ(t)x(0) +

∫ t

0
Φ(t, s)B(s)u(s)ds, u(t) ∈ Ω, t ≤ τ

}
(3.11)

For a given set of initial points of contact x∗
i (0), equations ( 3.10 ) and (  3.11 ) depend only on

the choice of u ∈ Ω, thereby forming an optimal control problem.

Theorem 3.3.1. Let the optimal control u∗
i (τ) be the solution to arg maxu(τ) 〈ci(τ), B(τ)u(τ)〉.

Then, for ċi = −A(τ)T ci(τ) with the initial condition γ∗
i (0), the reachable set RΦ is supported

by the hyperplane H∗
i (τ) ≡ 〈ci(τ), x∗(τ)〉.

Proof. The proof that follows is based on Pontryagin’s maximum principle [ 34 ]. When

we have the contact point x∗
i (τ), it evolves as ẋ∗

i = A(t)x(τ) + B(t)u∗
i (τ) for the given

optimal control. For the linear system with matrices A(t), B(t), the costate λ(t) evolves as
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λ̇(t) = A(t)Tλ(t). We can choose ci(τ) to be equal to the i-th component of the costate vector

λ(τ), i.e., ci(τ) = λi(τ). The costate equations can be combined with the initial condition

λi(0) = γ∗
i (0) and we can suppress the time indices for brevity. This choice of ci(τ) ensures

that 〈ci(τ), x(τ)〉 is a decreasing function of time. Therefore, the hyperplane Hi(τ) defined

by 〈ci(τ), x(τ)〉 = γi(τ) will touch the reachable set RΦ (τ ;X0,Ω) at the point x∗
i (τ) for which

〈ci(τ), x∗
i (τ)〉 = γi(τ). As a result, the time derivative of 〈λi, x〉 equals:

d

dτ
〈λi, x〉 = 〈λ̇i, x〉+ 〈λi, ẋ〉

= 〈−ATλi, x〉+ 〈λi, Ax+Bu〉 = 〈λi, u〉 ≤ 〈λi, u
∗
i 〉

⇒ d

dτ
〈λi, x

∗
i 〉 = d

dτ
γ∗

Combined with the initial conditions on the points of contact, i.e., 〈λi(0), x∗
i (0)〉 = γ∗

i (0),

one gets 〈λi(τ), xi(τ)〉 ≤ 〈λi(τ), x∗
i (τ)〉 = γ∗

i (τ). Hence, the hyperplane defined by c∗
i and x∗

i

touches the reachable set.

Remark 5. From [  35 ], the polytopic approximation can be made arbitrarily accurate. In

fact, at time τ :

convex hull{x∗
1, · · · , x∗

n1} ⊂ R
Φ(τ) ⊂ ∩n1

1 {λi, x} ≤ γ∗
i

that is, the convex hull of the supporting points provide an under-approximation of the reach-

able set. At the same time, the hyperplanes provide the over-approximation of the same.

The polytopic reachable set approximation is a widely used method to efficiently com-

pute reachable sets and is utilized by many reachability computation tools. The τ -time

reachable ’tube’ resulting from this method can be defined as the Minkowski sum of reach-

able sets ⊕τ
s=0RΦ (s;X0,Ω). Combining this with the DMDc-based method to obtain linear

approximations of the NN model provides a scalable way to estimate reachable sets for NN

models. It is important to note that the proposed numerical method relies on the universal

approximation capabilities of NNs, as described in [ 52 ]. Moreover, DMDc (and DMD more

generally) converges in operator norm to the Koopman operator with an increasing number
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of data points [ 54 ], ensuring that the linear approximation of the NN model is more accu-

rate as more data points are used. The proposed framework has the potential to achieve

arbitrarily accurate reachable set approximations, given a sufficient number of data points

and snapshot widths. This is a common feature of most data-driven approaches. However,

in practice, the proposed framework offers a computationally efficient method to compute

approximate reachable sets for learned models. The additional computational steps required

only involve matrix inversions in DMDc and matrix exponentiation in propagating λ’s, mak-

ing the method relatively inexpensive compared to other numerical methods for reachable

set approximation.

The process of mapping the data snapshots and discovering the mappings by the NN

model and the DMDc method is depicted in Fig.  3.2 . The learned model takes temporal tra-

jectory data and attempts to map it to a higher-dimensional manifold known as the "feature

space," which is parameterized by the NN parameters Θ. On the other hand, the DMDc

method tries to approximate the infinite dimensional Koopman operator by finding finite-

dimensional truncations of it. This is accomplished by considering the temporal trajectories

in some “observable space" where the trajectory evolution can be approximated by the ac-

tion of a linear operator [ 23 ], [ 53 ]. This approach makes the proposed framework suitable for

real-time implementation, and in the subsequent section, we will present it using a quadro-

tor as an example. It is worth noting that this framework can achieve arbitrarily accurate

reachable set approximations if there are enough data points and snapshot widths. However,

the proposed method is computationally efficient and only requires additional computation

steps involving matrix inversions in DMDc and matrix exponentiation in propagating λ’s.

Remark 6. Once the model is learned, computing the reachable set requires matrix exponen-

tiation and matrix-vector multiplications, which have a computational expense of O([·]−1) and

O(exp [ · ]), respectively. These operations can be efficiently performed using existing linear

algebra libraries, such as PyLops [ 55 ] and Armadillo [ 56 ], making the overall computational

expense relatively inexpensive.
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Figure 3.2. Schematic comparison of the temporal data snapshots, as learned
by the NN vs. the DMDc approximation

3.4 Reachable Sets for a Quadrotor

To capture the wide range of dynamics of a quadrotor, a fully nonlinear model is required,

although locally linear models are often used for control synthesis [ 57 ]. Therefore, in this

study, we utilize a fully nonlinear 12 degree-of-freedom (DOF) quadrotor model based on

[ 58 ] to demonstrate the proposed framework. Specifically, in this section, we focus on the

computation of reachable sets over time for the 12DOF nonlinear dynamics, given a set of

initial states X0 and control inputs Ω. This problem is of utmost importance in safety-critical

applications, where we need to ensure that the quadrotor remains within a specified set of

safe states during its operation.

The state vector ξ can be represented as ξ = [x, y, z, ẋ, ẏ, ż, φ, ψ, θ, φ̇, ψ̇, θ̇]T , where the

first three components denote the 3D position and the next three components denote the

corresponding velocities. The remaining components represent the 3D angular attitude and
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the respective angular velocities. Thus, the state vector ξ is a 12-dimensional vector, i.e.,

ξ ∈ R12. The 12-DOF state ξ evolves as follows:


ẍ

ÿ

z̈

 =


−u1

m
(sinφ cosψ + cosφ cosψ sin θ)

−u1
m

(cosφ sinψ sin θ − cosψ sinψ)

g − u1
m

(cosφ cos θ)

 (3.12)


Ixxφ̈

Iyyθ̈

Izzψ̈

 =


u2

u3

u4

−


(Izz − Iyy)θ̇ψ̇

(Ixx − Izz)φ̇ψ̇

(Iyy − Ixx)θ̇φ̇

 (3.13)

where Ixx, Iyy, Izz are the moments of inertia along the 3 axes, g is the acceleration due to

gravity, and m is the quadrotor’s mass. Variables u1, · · · , u4 relate to the actual angular

velocity command at the four rotors ω1, . . . , ω4 as:



u1

u2

u3

u4


=



kf kf kf kf

−lkf lkf lkf −lkf

lkf lkf −lkf −lkf

km −km km −km





ω2
1

ω2
2

ω2
3

ω2
4


(3.14)

via the aerodynamic force and moment constants kf and km, respectively, and the distance

of rotors from the center l (see [  58 ] for the derivation details). Experimental system iden-

tification is required to determine the force and moment constants kf and km, making the

task of learning the nonlinear dynamics in (  3.12 ) through (  3.14 ) challenging. Due to the

complexity of the system, several works have explored learning the nonlinear dynamics for

a quadrotor to aid in control synthesis.

We assume that we have access to nT input-state trajectories Xk, Uk, where each trajec-

tory starts with a randomly initialized state ξ0 drawn from a uniform distribution UX0. In

order to learn the approximate dynamics f̃Θ from the time series input-state trajectories, we

employ a causal multistep neural network (NN) based on [  59 ]. The multistep NN is capable

of recovering the nonlinear dynamics by using time series trajectories over a certain number

of steps, say ξk, ξk−1, . . . , ξk−m and ωi,k, · · · , ωi,k−m for i = 1, · · · , 4, and finding appropriate
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weights for a nonlinear function that maps the m-step trajectory to ξk+1 (see [  59 ] for more

details). The weights Θ of the multistep NN are determined by minimizing the mean-squared

error over each m-step slice of the trajectory data, for a fixed m. It is important to note

that the actual functional approximation is performed by the multistep NN, and not by the

DMDc method, which is used to obtain linear approximations of the learned model.

We utilized a multistep neural network, which is a type of multi-layer perceptron NN

designed for system identification of differential equation based dynamical systems, as de-

scribed in [  59 ]. The goal of this NN is to approximate the system dynamics ẋ = f(x) using

trajectory data xkk = 0N by unrolling a trajectory of length N and estimating the dynamical

map f̃Θ : xk → xk+1 for 0 ≤ k ≤ N − 1. Our multistep NN consisted of 3 layers, including

one hidden layer, with 12, 256, and 12 neurons, respectively. We trained the multistep NN

using the Adams-Moulton scheme, which uses the trapezoidal rule to extend the function

between k and k+ 1. The training was performed over 100 trajectories with a discretization

time of ∆T = 0.1s, a hyperbolic tangent activation function (tanh (·)), and mean square

error (MSE) loss function with adaptive moment estimation (ADAM) as the optimizer. The

training process took approximately 80 seconds using Python on an Intel Xeon CPU running

at 2.20 GHz with a 13 GB memory and a 56 MB cache size. The multistep NN was trained

over 2,000 epochs and converged to an MSE loss of 1.26×10−3.

3.4.1 Reachable Set Computation

Fig.  3.3 illustrates an example of the reachable set computation problem for the quadrotor

model described by equations ( 3.12 )-( 3.14 ). The computation starts with a randomly selected

initial state within the given initial set (shown in green), and the set of all possible evolutions

of the quadrotor’s state after a specified time τ is represented by the set Rf̃ (τ ;X0,Ω,Θ)

(shown in yellow). It should be noted that the command input to each rotor is subject to

additive noise, which is modeled as follows:

ωi(t) = vi(t) + wi, wi(t) ∼ U[−0.25,0.25] for i = 1, · · · , 4 (3.15)
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Figure 3.3. Computing the reachable set for a quadrotor involves determining
the possible states ξ at a given time τ , along a trajectory originating from a
given initial set X0.

and the admissible control set is defined as:

Ω , {ω1, · · · , ω4 |ωi(t) = vi(t) + wi,∀i} (3.16)

where the additive noise wi is assumed to be independent, identically distributed at all times

t. The reachable set approximation problem can be modeled by incorporating actuator noise

using equations (  3.15 ) and ( 3.16 ). Specifically, given a set of initial states X0 and a set of

admissible control inputs Ω, the set of all possible states that can be reached in time τ under

the noisy rotor command input set Ω is contained within Rf̃ (τ ;X0,Ω,Θ), where f̃ is the

learned approximate dynamics function.

We started by training the nonlinear model f̃Θ on nT = 100 trajectories, each starting

from a random position with x, y, z coordinates sampled from U [− 0.5, 0.5] (in meters),

and a random pose with φ, ψ, θ angles sampled from U[−0.1,0.1] (in radians). This random

initialization defines the initial set X0 and also provides explicit forms of hyperplanes Hi at

time τ = 0. To generate the training and testing datasets, we randomly generated trajectories
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starting from X0 and applied control sequences sampled from Ω to each of the four rotors,

as shown in Figure  3.5 .

We utilized the DMDc-based framework described in Section 3 to develop approximate

linear time-varying models (Ak, Bk) for k = i∆t, where ∆t = 0.1s and k takes values from 0

to 50. Based on a dataset with only 100 trajectories, the multistep NN was able to accurately

reconstruct the true trajectories, as shown in Fig.  3.4 . Furthermore, despite the nonlinearities

in the learned model f̃Θ, the DMD reconstructions were also accurate with a relatively small

width of nw = 8. Fig.?? provides a comparison of the pose state reconstruction for the

quadrotor. The initial set X0 was randomly generated using a uniform distribution, with the

x, y, z coordinates within [ − 0.5, 0.5] m and φ, ψ, θ within [ − 0.1, 0.1] radians. To generate

the training and testing datasets, trajectories were randomly sampled from X0 and control

sequences were randomly sampled from Ω, as depicted in Fig.  3.5 .

Next, we represent the initial set X0 using n1 = 24 hyperplanes and the admissible

control set Ω using n2 = 8 hyperplanes. Each hyperplane supports X0 at a contact point ξ∗
i ,

and the τ -time reachability problem becomes the τ -time optimal control problem using the

lifted system Ak, Bk. That is, at a time t = k∆t, the lifted model Ak, Bk is used to solve the

optimal control problem in (  3.10 ) and ( 3.11 ), propagating ξ∗
i (k∆t) under the optimal control

input ω∗
i (t) = ω∗

i for k∆t ≤ t < k∆t+ τ . By propagating each contact point from time t to

t + τ , we obtain the supporting structure for the reachable set over time τ . As the amount

of data increases, the multistep NN model approaches the true unknown dynamical map,

and the DMD lifted system approaches the learned model. This accuracy in approximation

is validated in Figs.  3.5 and  3.6 .

The green envelope shown in Figs.  3.5 and  3.6 represents the admissible control set Ω,

which consists of sinusoidal angular velocity inputs vi(t) applied to the four rotors, with

added noise. The optimal control input, represented by the solid green plots to the right

in the figures, is used to propagate an arbitrary hyperplane’s contact point ξ∗
i over time

by applying rotor control ω∗
1, · · · , ω∗4. The red points depict the contact points of the

hyperplanes at each time step 0,∆t, 2∆t, · · · for a simulation duration of 5 seconds. The

reachable tubes’ inner approximations are simply Minkowski sums of the convex hulls in red.
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Figure 3.4. The true 3D state trajectories are depicted in red, while the
trajectories reconstructed by the multistep NN and DMDc are shown in blue
and black, respectively.

Using the multistep NN, an arbitrary trajectory starting from an ξ(0) sampled from UX0 is

reconstructed and shown as a solid black line.

Despite the reasonable accuracy of the trained multistep NN shown in Fig.  3.4 , the

DMDc reconstruction technique is able to find accurate linear system models, which allows

for real-time estimation of approximate reachable sets. As mentioned in Section  3.1.1 , there

are currently no existing methods that extend optimal control theory to obtain approximate

reachable sets for NN models. The closest methods require exact, detailed knowledge of

the NN architecture and utilize LPs [  50 ] and MILPs [  49 ] to obtain reachable sets or out-

60



Figure 3.5. The inner approximations of reachable sets in the y − z plane
obtained by computing the convex hulls of the points ξ∗

i

Figure 3.6. The inner approximations of reachable sets in the z − x plane
obtained by computing the convex hulls of the points ξ∗

i
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put bounds. Since the proposed method treats the NN as a black box and does not require

knowledge of its internal architecture, a direct comparison with these methods is not straight-

forward. However, one can compare the computational costs of the different methods, as

shown in the table below.

Table 3.1. Comparing LP, MILP, and the proposed methods
Method NN most expensive Computational Cost w.r.t.

model operation #layers #variables
LP method [  50 ] required solve LP O(L) O(nα)
MILP method [ 49 ] required solve MILP O(L) exponential
Proposed method X exp [ · ] O(1) O(n3)

It is important to note that each layer L in the neural network (NN) architecture in-

troduces approximately O(Ln) variables for the LP and MILP-based methods. While the

MILP problems are known to be NP-hard, the method proposed in [ 49 ] has a worst-case com-

putational complexity similar to a brute force search, which is exponential. On the other

hand, the LP-based method has a computational complexity of approximately O[L(4nL)2.5],

which corresponds to the cost of solving one LP for each layer. In contrast, the computational

costs associated with the proposed method are solely based on the expense of the matrix

exponential operation, which is of the order O[(n + nh)3] for nh hyperplanes. While the

LP-based method is computationally cheaper, it only provides hyperrectangular approxima-

tions to the reachable sets, which are loose overapproximations. As such, it is more similar

to interval reachable set methods such as [ 2 ], [ 60 ]. Additionally, introducing MILP and LP

encodings incurs additional computational overhead. Finally, because the propagation of

contact points for each hyperplane can be performed independently, the proposed method is

better suited for parallelization than the MILP and LP formulations, which have inter-layer

variable dependencies.

3.4.2 Reachable set Computation under Rotor Failure

In order to evaluate the capabilities of the system under compromised conditions, we

estimate the reachable sets for a set of trajectories subject to rotor failures. This is an
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important step in assessing the performance of a system when faced with actuator failures.

In this particular scenario, we simulate total failures of rotors 2 and 3, which results in them

appearing only as noise in the input channel. As a consequence, this significantly modifies

the admissible control set Ω that can be applied to the system. By computing the reachable

sets under such conditions, we can evaluate the system’s ability to operate effectively and

safely in the presence of such failures. As a result of the rotor failures, the quadrotor’s

Figure 3.7. The 3D state trajectories under rotor failure at rotors 2 and 3 are
represented by the true trajectories in red, while the trajectories reconstructed
by the multistep NN and DMDc are shown in blue and black, respectively.

behavior deviates significantly from the expected trajectory, leading to discrepancies between

the true trajectory and the NN model’s predictions, as depicted in Fig.  3.7 . The plot also

illustrates that the DMDc model’s performance is comparable to that of the NN model,
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Figure 3.8. The 3D attitude trajectories under rotor failure at rotors 2 and 3
are depicted by the true trajectories in red. The trajectories reconstructed by
the multistep NN and DMDc are represented in blue and black, respectively.
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despite the disturbances caused by the actuator failures. This is further emphasized in

Fig.  3.8 , which shows the φ, ψ, θ trajectories. It should be noted that while DMDc is capable

of reconstructing trajectories by exciting the learned model, both the NN model and the

DMDc model’s performance is poor compared to the true angular pose trajectories. However,

it is evident that the DMDc model is still performing relatively well compared to the learned

model.

Figure 3.9. When there is rotor failure at rotors 2 and 3, the inner approx-
imations of reachable sets in the x − y plane are obtained by computing the
convex hulls of the points ξ∗

i

Figure 3.10. When there is rotor failure at rotors 2 and 3, the inner approx-
imations of reachable sets in the y − z plane are obtained by computing the
convex hulls of the points ξ∗

i
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Figure 3.11. When there is rotor failure at rotors 2 and 3, the inner approx-
imations of reachable sets in the z − x plane are obtained by computing the
convex hulls of the points ξ∗

i

The failure of rotors 2 and 3 has a significant impact on the quadrotor’s reachable sets,

resulting in completely different admissible control sets Ω. The admissible control sets are

visualized as green envelopes in Figs.  3.9 ,  3.10 , and  3.11 . As shown in the figures, the

admissible control sets are greatly constrained due to ω2 and ω3 being bounded noise, while

the remaining rotors provide the nominal angular velocity command. This constraint is also

reflected in the optimal control for each point of contact on an arbitrary hyperplane, which is

shown as a solid green line in the figures. The convex hulls of the points of contact represent

inner approximations of the reachable sets. The impact of the rotor failure is reflected in

the significant change in the reachable sets and the constrained admissible control sets.

The proposed method shows promising results even in scenarios with highly nonlinear

models and rotor failures, using relatively small data sets (nT and nw). This allows for

accurate computation of reachable sets with a computational increment of less than 0.5 sec-

onds per step. As a result, the proposed method is suitable for real-time approximations of

reachable sets. These findings demonstrate the effectiveness and efficiency of the proposed

method, which can be used for assessing the system’s capabilities under various failure sce-

narios and inform control decisions. Therefore, the proposed method provides a practical

and computationally efficient approach for computing reachable sets in real-time.
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3.5 Conclusion

In this chapter, a new approach for computing approximate reachable sets for nonlinear

models learned using neural networks was presented. The proposed method is data-driven

and computationally efficient. It uses a lifting-based technique to find linear approximations

of the learned model by exciting the neural network at each time step. The framework

was shown to be suitable for use in conjunction with other reachability tool sets and can

be made more accurate by incorporating additional data. The real-time application of the

proposed framework was demonstrated through a quadrotor example. The framework was

used to compute approximate reachable sets for a causal neural network that learned the

quadrotor’s dynamics. In addition, the framework was used to compute modified reachable

sets for the quadrotor in a scenario that modeled rotor failures. The results showed that the

proposed method is particularly useful in safety-critical scenarios where real-time approx-

imation and update of reachable sets are necessary. The proposed data-driven framework

offers a computationally cheap and accurate method for computing approximate reachable

sets for nonlinear models learned using neural networks. It has the potential to be widely

used in various fields, including robotics, control systems, and safety-critical applications.

Our next step is to explore the space complexity of our framework and analyze the

amount of data required to achieve a certain level of accuracy in computing reachable sets.

Furthermore, we intend to investigate the space complexity necessary to ensure a desired

level of robustness against parameter variation. Additionally, we aim to develop efficient

codes to create a wrapper that allows easy integration with existing reachability toolboxes.
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4. REACHABLE SETS FOR MULTI-AGENT SYSTEMS

The research presented in this chapter is conducted by Thapliyal, O. under the supervision

of Hwang, I.

Abstract

In this paper, we consider the problem of distributed reachable set computation for multi-

agent systems (MASs) interacting over an undirected, stationary graph. A full state-feedback

control input for such MASs depends no only on the current agent’s state, but also of its

neighbors. However, in most MAS applications, the dynamics are obscured by individual

agents. This makes reachable set computation, in a fully distributed manner, a challenging

problem. We utilize the ideas of polytopic reachable set approximation and generalize it to

a MAS setup. Our idea of distributed polytopic reachable set has three main sub-problems:

(a) solving for optimal control, (b) co-state propagation for the optimal control problem,

and (c) state propagation. We formulate the resulting sub-problems in a fully distributed

manner and provide convergence guarantees for the associated computations. Finally, we

demonstrate the efficacy of our method in a multi-agent formation flight setting, and compare

our proposed method to a fully centralized method.

4.1 Introduction

Multi-agent systems (MASs) appear in widely different fields, ranging from social net-

works, biological systems, computer networks, smart grid, to multi-robot systems [  61 ]. Such

systems often consist of cheaper or smaller components with limited capabilities, to perform

complex tasks that an individual agent could not perform otherwise – such as formation

control, target tracking and capture, distributed computing, and distributed learning tasks

[ 62 ]. Multi-robot systems are employed to enhance capabilities of individual units by virtue

of the additional redundancy, resilience, robustness against agent failure, and modular task

assignment. As a result, the emergent behavior of multi-agent systems can result in behav-

iors far more complex than the comprising individual agents. Due to the above benefits of
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MASs, such systems find ubiquitous applications, often in safety-critical environments [ 63 ].

Therefore, the ability to compute safety properties on-line for MASs is highly desirable.

Of the various set-properties that characterize safety, the ability to compute reachabil-

ity properties for dynamical systems is an important task for control synthesis, validation

of control protocols, and online safety checking. The reachability property is desirable to

be computed for systems that are required to operate in safety-critical applications. For

the more elaborate dynamical systems with dedicated computational resources, a central-

ized reachability problem is limited only by the accuracy of the dynamical model. Further,

multi-agent systems (MAS) are characterized by the following key differences from central-

ized systems. However, MAS dynamics have to be flexible enough to allow for transient

collaboration, followed by periods of non-cooperative, ‘selfish’ dynamics [ 64 ]–[ 66 ]. Addition-

ally, MASs are usually cheaper components in a bigger network of agents, internet-of-things

network, or a system-of-systems, with limited computational capabilities. The limited com-

putational capability at each agent is the most severe bottleneck in computing properties

of an MAS in a distributed manner. Despite the above limitation, a safe operational re-

quirements for individual components of MAS is desirable. This is particularly instantiated

in the Urban Air Mobility (UAM) scenarios, where individual components can be operated

by different entities [  67 ]. [ 67 ]–[ 70 ]. Individual components in the UAM corridors (i.e., un-

manned aerial vehicles (UAVs)) can enter and leave the corridors flexibly, and cooperate

in safety-critical environments while operating within the UAM constraints. Further, the

sensed and communicated information from within the neighborhood of any agent can affect

its own reachable sets (therefore, its own safety property) in non-trivial ways (see Fig.  4.1 ).

The distributed reachable set computation problem is further exacerbated by the individ-

ual vehicular dynamics being obscured across the MAS network of interacting UAVs. The

distributed reachable set computation for MASs attempts to serve the above requirements,

subject to limited communication and computational resources on each component.

Reachability problems for more elaborate dynamical systems have been dealt with in

literature in a centralized manner [  2 ], [ 6 ], [  9 ], [  34 ]–[ 36 ], [  43 ], [ 71 ]–[ 73 ]. Computing exact

reachable sets often requires solving Hamilton Jacobi (HJ) equations [  9 ], [ 43 ], or finding

level set functions [  34 ] to represent set boundaries. On the other hand, authors in [  2 ],
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Coupled Reachable Sets
for Neighbors

Figure 4.1. Dynamical coupling of reachable sets in an MAS

[ 6 ], [ 35 ] provide centralized reachable set approximation methods by bounding the exact

reachable sets with ellipses, polytopes, and intervals, respectively. However, a centralized

reachability framework does not take into account limited computational capabilities at each

agent. Neither does a centralized reachability framework address the limited information

sharing structure of decentralized MASs. A few works in the literature consider multi-

agent applications of reachability [  74 ]–[ 78 ]. Authors in [  74 ] utilize centralized definitions of

reachability applied to certain cases of multi-agent networks. The actual computation of

the reachable sets does not require communication of information, or is dependent on the

states of neighboring agents. In [ 76 ] a multi-agent reinforcement learning (RL) framework is

considered where the overall safety requirements are written in a formal mixed-integer linear

programming (MILP) notation. However, a central MILP is solved to compute reachable

sets for the multi-agent RL framework. Methods proposed in [ 75 ] utilize Hamilton Jacobi

reachability, therefore, suffer from the well known ‘curse of dimensionality’. Authors in

[ 77 ], [ 78 ] consider similar centralized variations of the reachable set computation problem.

However, none of the existing methods address the limited computational abilities, or the

couple dynamical models of individual agents. Further, the manner in which agents cooperate

is not mission flexible, and little allowance is given to graph connectivity (except [  78 ]).

To this end, we attempt to extend the ideas of approximate reachable set computation,

and implement a fully distributed algorithm that incorporates the inter-agent dynamical cou-
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pling behavior. The proposed algorithm has convergence guarantees for static inter-agent

networks that are strongly connected. Our main contributions are: (i) posing reachable set

computation for MASs as a distributed problem, (ii) proposing a fully distributed algorithm

to compute tight approximations to the reachable sets, and (iii) providing convergence guar-

antees for the proposed algorithm. The resulting algorithm is computationally inexpensive,

does not require solving MILPs or HJ equations, and the required computations can be

easily computed locally by individual agents. The proposed method is also promising for

time-varying networks for uniformly-strongly connected inter-agent networks [ 79 ].

The remainder of this paper is organized as follows. In Section  4.2 we detail the dis-

tributed reachability problem. Section  4.3 contains the proposed methodology to solve the

reachability problem for multi-agent systems in a fully distributed manner. In Section ?? we

present a practically motivating example of multi-UAV formation flight, and formulate the

corresponding distributed reachability problem. We demonstrate the proposed algorithm to

compute reachable sets in real-time and compare our method with a centralized method.

Finally, in Section  4.4 we present our concluding remarks and future directions.

4.2 Problem Formulation

Consider a multi-agent system (MAS) where individual agent states are coupled by a

state feedback control law, with multiplicative gains for each network in the agents as:

ẋi(t) = Aixi(t) +Biui(t) +B1,iwi(t) (4.1)

where ui(t) = Kiixi(t) +
∑
j∈Ni

Kij(xi(t)− xj(t)) (4.2)

Here the state of agent i is xi ∈ Rnx , the control input ui ∈ Rnu , and an unknown, exogenous

control wi ∈ Rnw , with gain matrices of appropriate sizes Ki, and system matrices Ai, Bi

and B1,i. The agents can communicate over a network denoted by the undirected graph

G = (V , E), where V = {1, . . . , N} is the set of agents, and E ⊆ {(i, j) : i, j ∈ V} is the set

of all edges. The problem is characterized by agents having their dynamics coupled directly

through their neighboring agents’ states xj ∈ Ni feeding into their own control inputs to
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modify state xi from ( 4.1 ). Additionally, the dynamics of different agents are unknown to

each other, i.e., (Ai, Bi) is known only to the agent i themselves.

Given the dynamical system in (  4.1 ), we can now define the reachable set computation

problem. The reachable set for agent i ∈ V is defined as the set of all possible states for

agent i at some time τ ≥ t0 as:

Ri(τ ;X0,i,Wi) , {x(τ) ∈ Rnx : ẋ = Aix+Biui +B1,iwi,

wi(t) ∈ Wi, x(t0) ∈ X0,i}
(4.3)

for initial set X0,i, and admissible exogenous control set Wi.

Assumption 1. Let the exogenous input set be bounded as Wi , {wi(t) ∈ Rnw | ‖wi(t)‖ 2 ≤

ρi}.

In case the assumption above does not hold, the setW can easily be bounded by a sphere

of radius ρi for a finite setW . From the ‘neighborhood-state feedback’ control from ( 4.2 ), the

reachable set Ri(τ ;X0,i,Wi) clearly depends on xj ∀j ∈ Ni. Simultaneously, xj also evolves

under dynamics (Aj, Bj). The distributed reachability problem is to compute the reachable

sets in (  4.3 ) for each agent, under coupled control input in (  4.2 ), such that the dynamics

(Ai, Bi) are not shared among agents.

4.3 Distributed Reachable Set Computation

To deal with the distributed reachability problem above, let us consider a simpler scenario.

Let L be the Laplacian of the graph corresponding to G, i.e.,

LG , D [G]− Adj [G] (4.4)

where D [•] and Adj [•] are the graph degree and adjacency matrices, respectively. Before

we attempt to solve the distributed reachability problem for the MAS, let us consider a
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centralized approach. To this end, we define the dynamics of the stacked system for the

centralized representation of the MAS by redefining the following variables:

ξ(t) , [x1(t)T , · · · , xN(t)T ]T ,

W (t) , [w1(t)T , · · · , wN(t)T ]T

A(t) , diag {Ai +BiKii}i∈V + LG ⊗BiKij, and

B , diag {B1,i}i∈V

(4.5)

This allows us to consider the evolution of the centralized MAS states ξ(t) ∈ Rnx×N as:

ξ̇(t) = A(t)ξ(t) + BW (t) (4.6)

The stacked system in (  4.5 ), (  4.6 ) allows us to consider a simpler, centralized reachability

problem.

4.3.1 Centralized Reachable Set Computation

If a central computing entity were to compute the reachable sets Ri(τ ;Xo,i,Wi), the

equivalent centralized reachability problem can written compactly as:

Rξ(τ ; Ξ0,W) ,
{
ξ(τ) : ξ̇(t) = Aξ(t) + BW (t), τ ≥ t0,

ξi(t0) ∈ Ξ0,W (t) ∈ W
}

(4.7a)

where Ξ0 ,
N∏

i=1
Xi,0 = X1,0 × · · · × XN,0 , and

W ,
N∏

i=1
Wi =W1 × · · · ×WN (4.7b)

From ( 4.7 ), the centralized reachability problem for the MAS is clearly a linear-system

reachable set computation problem. Note that if the graph G is static (e.g., a smart grid,

internet network, robot flocking, etc.), centralized system matrix A(t) = A is time invariant.

For simplicity of analysis, we will initially concern ourselves with the stationary graph such

that G(t) = G. Therefore, we first investigate reachable set computation for the linear
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time invariant (LTI) system (A,B) given characterizations of initial central state set Ξ0 and

admissible exogenous input set W .

Lemma 2. The admissible exogenous input set W is convex and bounded.

Proof. Let v1, v2 ∈ W . Let v1 = [a1, · · · , an]T and v2 = [b1, · · · , bn]T . From Assumption 1,

we have ‖ai‖ 2 ≤ ρi and ‖bi‖ 2 ≤ ρi. Consider their convex combination

αv1 + (1− α)v2 =


αa1 + (1− α)b1

...

αan + (1− α)bn


for some α ∈ (0, 1). Then, the following holds: ‖αaj + (1− α)bj‖ 2 ≤ α ‖aj‖ 2 + (1 −

α) ‖bj‖ 2 ≤ αρj + (1−α)ρj = ρj. So the convex combination of v1, v2 also lies in W , also, the

set W is bounded.

We will concern ourselves with polytopic approximations of Ξ0 and W utilizing approx-

imate reachable set computation from [  35 ], [  72 ]. As a result, without a loss of generality,

consider the initial state set and the admissible exogenous control set to be polytopes as:

Ξ0 =
n1⋂
j=1
{v ∈ RNnx : 〈cj(t0), v〉 ≤ γj(t0)} (4.8)

W =
n2⋂
j=1
{u ∈ RNnu : 〈dj, u〉 ≤ εj} (4.9)

where the polytopic sets Ξ0 andW have n1 and n2 faces, respectively, and variables cj(t0), γj(t0), dj, εj

parameterize the hyperplanes defining the faces of the polytopes. Thus, the jth hyperplane

supporting the convex set Ξ0 can be denoted by the tuple Hj , (cj(t0), γj(t0)), as shown in

Fig.  4.2 .

Theorem 4.3.1 (Polytopic Reachability [ 35 ]). Let hyperplane Hj = (cj(t0), γj(t0)) support

the initial set Ξ0 at time t0, at a point ξ∗
j (t0). Then the point of contact ξ∗

j (t0) evolves as:

ξ̇j(τ) = Aξj(τ) + BW ∗
j (τ) (4.10)

74



where W ∗
j (τ) solves the optimal control problem:

W ∗
j (τ) = arg max

W ∈W

{
〈λ∗

j (τ),Aξ∗
j (τ) + BW 〉

}
(4.11)

λ̇∗
j (τ) = −ATλ∗

j (τ) s.t. , λ∗
j (t0) = cj(t0), t0 ≤ τ ≤ t (4.12)

for the jth hyperplane, and the co-state variable λ∗
j (τ). Additionally, for γ∗

j (τ) , 〈λ∗
j (τ), ξ∗

j (τ)〉,

the hyperplane (λ∗
j (τ), γ∗

j (τ)) supports the reachable set Rξ(τ ; Ξ0,W) at time τ , at the point

ξ∗
j (τ).

Proof. Proof follows from Varaiya et al. in [  35 ] and Theorem 1 in [  72 ].

A geometric representation of Theorem 1 is depicted in Fig.  4.2 , showing the evolution

of the point of contact of hyperplane Hj over time. This allows us to find the evolution of

the supporting points of all n1 hyperplanes by solving equations (  4.10 ) through ( 4.12 ) for

each j in 1 ≤ j ≤ n1. As a direct consequence of Theorem 1, the reachable set is bounded

by the polytope:

Rξ(τ) ⊂
n1⋂
j=1

{
ξ : 〈λ∗

j (τ), ξ〉 ≤ γ∗
j (τ)

}
(4.13)

where the hyperplane (λ∗
j (τ), γ∗

j (τ)) touches the reachable set at the point ξ∗
j (τ), as shown

in Fig.  4.2 .

Suppose ż = M(t)z + B(t)u(t) is an arbitrary linear dynamical system. We define

the state transition matrix the (at some time t) linear system (M,B) as ΦM(t, t0) such

that ˙ΦM(t, t0) = M(t)ΦM(t, t0), and ΦM(t1, t1) = I. Therefore, due to Theorem  4.3.1 , the

centralized computation of polytopic approximations of the reachable set can be carried out

using the following steps.

S1: Initialize λ∗
j (t0) = cj(t0), then propagate the co-state as λ∗

j (τ) = Φ−AT (τ, t0)λ∗
j (t0) from

( 4.12 ).

S2: Compute W ∗
j (τ) in (  4.11 ) using the co-state from step 1:

W ∗
j (τ) = arg max

W ∈W

{
〈Φ−AT (τ, t0)λ∗

j (t0),W 〉
}
.
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Figure 4.2. Polytopic Approximation of Reachable Set: Evolution of a se-
lected Hyperplane

S3: Finally, the contact point is propagated using (  4.10 ) as:

ξ∗
j (τ) = ΦA(τ, t0)ξj(t0)∗ +

∫ τ

t0
ΦA(τ, s)BW ∗

j (s)ds (4.14)

It must be noted from [  35 ], that the polytopic representation in ( 4.13 ) simultaneously

provides the outer and inner approximations to the reachable set as:

convex hull{ξ∗
i (τ), · · · , ξ∗

n1(τ)} ⊂ Rξ(τ), and

Rξ(τ) ⊂
n1⋂
j=1

{
ξ : 〈λ∗

j (τ), ξ〉 ≤ γ∗
j (τ)

} (4.15)

Remark 7 (Tightness of Approximation in ( 4.15 )). The approximation in (  4.15 ) is tight

in the sense that there does not exist a polytope with n1 vertices P n1, or a polytope P n1 with n1

faces, such that convex hull{ξ∗
i (τ), · · · , ξ∗

n1(τ)} ⊂ P n1 ⊂ Rξ(τ) ⊂ P n1 ⊂
⋂n1

j=1

{
ξ : 〈λ∗

j (τ), ξ〉 ≤ γ∗
j (τ)

}
(see [ 35 ]).

76



4.3.2 Distributed Reachable Set Algorithm

Now that we established the procedure to compute centralized approximations (both

inner, and outer) to the reachable set Rξ(τ) in steps S1-S3, we investigate the decentral-

ized problem for the MAS in (  4.1 ). Therefore, the information available to agent i can be

summarized as:

Ii ,
{
Ai, Bi, B1,i,Ni, {Kij}j∈Ni , ρi, {F k

i }
n1
k=1, {Hk

i }
n2
k=1

}
(4.16)

where {F j
i }n1

j=1 and {H j
i}n2

j=1 are the hyperplanes defining the bounding polytopes for the local

sets X0,i and Wi, respectively. For simplicity of analysis, we assume the polytopes for each

agent have the same number of faces n1 and n2.

To observe the distributed nature of the parameters of the polytopes, consider a simple

case with n = 1 and N = 3, i.e., a one-dimensional, 3 agent MAS. The hyperplanes F k
i

defining initial sets are simply inequalities, as shown in Fig.  4.3 (a). The local hyperplanes

are simply F 1
i , F

2
i , denoting the inequalities x1 ≥ 0 and xi ≤ 1, respectively. As a result, the

centralized state ξ lies in the cube of unit size as shown in Fig.  4.3 (b).

(a) (b)
X0,1 0 6 x1 6 1

0 1

X0,2 0 6 x2 6 1
0 1

X0,3 0 6 x3 6 1
0 1

ξ = [x1, x2, x3]T
Ξ0 = X0,1 ×X0,2 ×X0,3

x3

x1

x2

Figure 4.3. (a) Distributed, and (b) centralized structures of the polytope

Observe that due to the structure of Ξ0 = X0,1 × X0,2 × X0,3, each agent is aware of

n1 = 2 faces defining the polytope Ξ0. Each agent introduces n1 number of planes to define

Ξ0, hence, Ξ0 has Nn1 total faces. The same is true for the polytope W . That is, the faces

defining both sets, Ξ0 andW are distributed across the graph G in the distributed reachability
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problem. Similarly, the matrices A and B are also (row-wise) distributed across the graph

G (see Fig.  4.4 (a)). This distributed information structure affects all steps S1 through S3

previously described. To this end, we need to carry out the steps S1 and S3 in a distributed

manner, the ‘stacked state’ for the jth hyperplane ξ∗
j (τ) and the corresponding ‘stacked co-

state’ λ∗
j (τ) evolution equations in (  4.10 ), and ( 4.12 ), respectively. This can be achieved by

converting the corresponding state evolution differential equations to linear equations using

their Laplace transforms. Note that for distributed linear dynamics (see Fig.  4.4 (a)), the

corresponding Laplace transform of the dynamics is a distributed linear equation (d-LE) as

(see Fig.  4.4 (b)) which can be written as:

λ̇∗
j (τ) = −ATλ∗

j (τ) L(•)−−→ sΛ∗
j (s) = −AT Λ∗

j (s) (4.17)

⇒ (sI + AT )Λ∗
j (s) = λ∗

j (t0) = c∗
j (t0)

L−1(•)−−−−→ λ∗
j (τ) (4.18)

where Λ∗
j (s) , L(λ∗

j (t)) is the Laplace transform of the co-state variable. Therefore, the

co-state equation is a d-LE in the Laplace domain, where each agent i has information if its

corresponding columns of the matrix based on local information set Ii, as shown in Fig.  4.4 

(b). Similarly, for the Laplace transform of the state variable, L(ξ∗
j (t)) , X∗

j (s),L(W ∗
j (t)) ,

W ∗
j (s), the stacked state evolves as:

( 4.10 ) L(•)−−→ (sI − A)X∗
j (s) = BW ∗

j (s) + ξ∗
j (t0) (4.19)

where W ∗
j (t) is given by the stacked optimal control law in ( 4.11 ). Since each agent i knows

their own parameterizations for the local polytopes for Xi,0,Wi, and their optimal control,

w∗j(τ), the state and co-state propagation equations in ( 4.18 ), and (  4.18 ), both admit a

d-LE form.

Therefore, we first outline a distributed linear equation solving method adapted from

[ 79 ], and next carry out the distribute optimal control step S2. Consider a general d-LE as

follows. Solve Ax = b, where agent i has access to certain rows of the problem, given by the
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. . .
Ai +BiKi +Bi

∑
j∈Ni Kij

Ax = b

⇓

=

Figure 4.4. Distribution of system matrices information across the agents

tuple (A[i,:], bi). Additionally, the agents are connected according to the graph G. Then, the

d-LE can be solved by each agent as:

x̂k+1
i = x̂k

i − ProjKer
(

A[i,:]
) x̂k

i −
1
|Ni|

∑
j∈Ni

x̂k
j

 (4.20)

where ProjS [sss] is the orthogonal projection of vector sss on to the set S, and Ker(•) is the

Kernel of the matrix • [ 79 ]. For the d-LE solution iterations in (  4.20 ), the following Lemma

holds.

Lemma 3. If the graph G(t) is (repeatedly jointly) strongly connected, the iterations in ( 4.20 )

converges to the solution to the equation Ax = b exponentially fast.

Proof. See Theorem 1 from [ 79 ].

Next, we carry out the step S2 to compute the optimal control in (  4.11 ) across the graph

G(t). To compute W ∗
j (τ), we can easily observe that we have polytopic bounds on the setW

distributed among agents in the graph G. Note that the set W is a polytope, whose vertices

are spread across agents in the MAS but can be computed offline (similar to Fig.  4.4 (b)).

Let the set V , {v1, · · · , vK} be the vertex set defining W , and each agent be aware of a
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subset Vi of the vertices (i.e., the vertex sets Vi‘s partition V ). The problem of finding the

optimal control W ∗
j (t) in (  4.11 ) can be rewritten as:

W ∗
j (t) = arg max

Wj(t)∈convex hull{V }
〈Φ−AT (τ, t0)λ∗

j (t0),Wj〉 (4.21)

However, the computation above is drastically simplified since Pontryagin’s maximum prin-

ciple guarantees that the maximum occurs on one of the vertices in V [ 35 ]. Therefore, each

agent i can simply exchange the maximum across their neighborhoods as:

Ŵ ∗
i ← arg max

v∈Vi

{〈Φ−AT (τ, t0)λ∗
j (t0), v〉}

Ŵ ∗
i ← max

j∈Ni
{W ∗

i ,W
∗
j }

(4.22)

From ( 4.22 ), agents in the MAS simply keep a track of the vertex in the set Vi that maximizes

the optimal control cost, and keep a local copy of the maximum of such vertices among its

own neighborhood Ni. This simple procedure computes the maximum in at most T steps,

where T is the graph diameter diam (G). Clearly, this requires the graph to be strongly

connected, such that the local maximum is communicated through each neighborhood, and

eventually the maximum is computed (in the worst case) along the longest path with the

path length equaling the graph diameter.

This completes the fully distributed reachable set computation method, where we first

proposed the centralized polytopic reachable set computation scheme and modified it to

accommodate fully distributed MASs applications, for a time-invariant, undirected, strongly

connected graph. For simplicity, we had assumed that the graph G(t) is strongly connected,

and static at all times, i.e., G(t) = G. We now present our main results for time-varying

MAS graphs.

4.3.3 Convergence of Algorithm  2 for Time-Varying Graphs

We will consider the convergence of Algorithm  2 for a specific class of time-varying

graphs. To aid the convergence proof, we utilize the following properties from graph theory

for sequences of graphs.
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Definition 1. Consider two graphs G1,G2 with the corresponding adjacency matrices Adj [G1]

and Adj [G2], respectively. Then their graph composition is defined as the graph correspond-

ing to the product of the two adjacency matrices as G1 ◦ G2 , G(Adj [G1] Adj [G2]).

Definition 2. Consider a (possibly infinite) time-varying graph sequence G , {G(t1),G(t2), · · · }.

Then the sequence G (see [ 79 ]) is repeatedly jointly strongly connected, if a over a finite

interval [t, t] the graph composition G◦[t,t] is strongly connected.

The concept of strong connectivity of a graph G is based on the existence of a path

between any two arbitrary agents in the graph at a given time t. However, when dealing

with time-varying graphs, it is often necessary to consider the existence of a path between

any two agents over a time interval [t, t], rather than just at a single time t. This is where the

concept of a repeatedly-jointly connected graph sequence G comes in. A repeatedly-jointly

connected graph sequence G requires that there exists a path between any two arbitrary

agents over the time interval [t, t], for all t ∈ [t, t]. This is a generalization of the notion of

strong connectivity, allowing for the graph to vary with time. Based on these definitions,

the convergence of the proposed method can be considered for time-varying, undirected,

repeatedly jointly strongly connected graphs. This means that the communication graph

must be connected for all time intervals [t, t], and there must exist a path between any two

agents over each of these time intervals.

Theorem 4.3.2. Let the MAS under consideration evolve according to ( 4.1 ) where the in-

formation Ii is distributed across the graph G(t). If the time-varying graph sequence G is

repeatedly jointly strongly connected, then the reachable sets Ri(τ ;X0,i,Wi) can be computed

efficiently. Specifically, the intermediate distributed computations can be performed expo-

nentially fast (for steps S1 and S3) and the optimal control in S2 can be computed in finite

time.

Proof. Similar to diam (G) in ( 4.22 ), the optimal control step for time-varying graphs now

depends on the maximum diameter of the graph composition over the interval [t, t]. Hence,

step S2 converges in at most supt∈[t,t] diam
(
G◦[t,t]

)
steps. However, note that the slowest steps

are still S1 and S3, both of which now require solving the distributed linear equations over
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the graph sequence G. From Theorem 1 in [  79 ], the update rule for d-LE in (  4.20 ) converges

exponentially fast to the solution of Ax = b over repeatedly jointly strongly connected graph

sequence G. Therefore, distributed solution to S2 converges to optimal control solution in

finite time, while distributed solutions to S1 and S3 converge exponentially.

4.4 Conclusions

In this research, we addressed the challenge of computing reachable sets for a multi-agent

system (MAS) in a distributed manner. Specifically, we focused on approximating polytopic

reachable sets for a given time horizon τ . We proposed a fully distributed method and a

corresponding computation scheme that leverages techniques from distributed linear equation

solving. Our proposed method was designed to work for communication graphs of the MAS

that are repeatedly jointly strongly connected. We proved that the reachable sets obtained

using our approach converge exponentially with respect to the number of iterations. The

significance of our work lies in its potential to enable efficient and scalable computation of

reachable sets for large-scale multi-agent systems, without relying on a centralized controller.

This is particularly relevant in domains such as robotics, where distributed systems are

commonly employed.

In our future work, we plan to investigate the use of directed graphs for inter-agent

communication in the MAS to further extend the reachability analysis capabilities. This

will enable us to model and analyze more complex scenarios with varying communication

patterns. Additionally, we plan to explore numerically efficient methods for computing reach-

able sets in a fully distributed manner for time-varying MASs. One such approach we plan

to investigate is the use of ellipsoidal reachability, which has been shown to be an effec-

tive approximation method for reachable sets in nonlinear systems [  71 ]. By developing such

methods, we aim to improve the efficiency and scalability of our distributed reachable set

computation framework for MASs, making it applicable to larger and more complex systems.
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Algorithm 2: Distributed Reachable Set Computation
Input: t0, τ, T , local copies of Ii (for each agent i ∈ V) from (  4.16 )

Parameters : initial polytopes: {λ∗
j (t0), c∗

j (t0)}n1
j=1, {W ∗

j }
n2
j=1

compute initial contact points {ξ∗
j (t0)}n1

j=1

while τ ≤ T do

for j← 0 to n1 do
λ∗

j (τ)← co-state update using dLP_solver(•) on (  4.18 )

end

for j ∈ V do
solve for optimal control Ŵ ∗

i using (  4.22 )

end

for j← 0 to n1 do
update ξ∗

j (τ) for jth hyperplane using λ∗
j (τ),W ∗

j (τ)

ξ∗
j (τ)← dLP_solver(•) on (  4.19 )

end

Ri(τ)← {λ∗
i (τ), ξ∗

i (τ)} ; // outer approx.

Ri(τ)← convex hull{ξ∗
i (τ)} ; // inner approx.

end

return Output: {Ri(τ ;X0,i,Wi),Ri(τ ;X0,i,Wi)}i∈V

Function dLP_solver((A[i,:], bi; i ∈ V), G(t), nε):

x̂0
i ← 000, ∀i ∈ V ; // arbitrary initialization for dLP solver

for k ← 0 to nε do
Update x̂k+1

i using (  4.20 )

end

return x∗
i , ∀i ∈ V
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5. DATA-DRIVEN CYBERATTACKS ON NETWORK

CONTROL SYSTEMS

Thapliyal, O., & Hwang, I. (2022). Data-driven Cyberattack Synthesis against Network

Control Systems. arXiv preprint arXiv:2211.05203; Submitted to the 22nd World Congress

of the International Federation of Automatic Control. [ 80 ]

The research presented in this chapter is conducted by Thapliyal, O. under the supervision

of Hwang, I.

Abstract

Network Control Systems (NCSs) are systems that rely heavily on communication chan-

nels, making them vulnerable to cyberattacks. Cyberattacks on NCSs can lead to eavesdrop-

ping, false data injection (FDI), and denial of service (DoS), resulting in degraded system

performance. To launch an attack on an NCS, attackers can combine multiple techniques to

cause a more significant impact. In this study, we propose a white-box cyberattack synthesis

technique that begins with eavesdropping to gather system data and construct an equivalent

system model. This equivalent model is then used to synthesize hybrid cyberattacks, com-

bining FDI and DoS attacks on the NCS. The attack synthesis problem can be formulated as

an optimal control problem. To solve the attack synthesis problem, we employ a data-driven

reachable set computation, which provides real-time guidance on selecting NCS agents to

be attacked while adhering to a specified attacker budget. The reachable sets are computed

for the equivalent NCS model, providing quick and accurate decision-making capabilities for

the attacker.

The proposed method provides a more realistic approach to cyberattack synthesis against

NCSs with unknown parameters, making it useful for real-world scenarios. To demonstrate

the effectiveness of the proposed method, we applied it to a multi-aerial vehicle formation

control scenario. The results showed that the proposed method could efficiently synthe-

size hybrid cyberattacks that significantly degrade the NCS’s performance, highlighting the

importance of securing NCSs against cyberattacks.
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5.1 Introduction

Recent trends in combining networks with control systems allow control engineers to solve

complex tasks, design sophisticated control schemes, and model cooperation of spatially sep-

arate entities, via data sharing across communication networks. As a result, network control

systems (NCSs) find varied applications in wireless sensor networks, industrial automation,

distributed control systems, power grids, multi-robot cooperation, etc. [  81 ]–[ 83 ]. However,

due to increased reliance on communication, often over insecure channels or in the presence

of malicious entities, NCSs face increased cybersecurity threats compared to their centralized

counterparts. [  81 ] have noted numerous occurrences of such cyberattacks on NCSs: from

the famous StuxNet, and the capturing of RQ-170 reconnaissance aircraft, to cybersecurity

threats against autonomous driving systems. Therefore, control theoretic methods can be

utilized to inform NCS cybersecurity issues – both, from the control designer and attacker

perspectives.

Related Works: In a previous study [  84 ], cyberattacks were classified into two categories:

black-box and white-box attacks, depending on the attacker’s access to NCS information.

Black-box attacks assume that the attacker has no knowledge of the inner workings of the

NCS, while white-box attacks assume complete knowledge. These terms are borrowed from

the adversarial machine learning community [  85 ]–[ 87 ]. White-box attacks are more suited for

identifying vulnerabilities in the control algorithms used in NCSs, while black-box attacks

provide a more realistic approach to attack synthesis problems. The distinction between

these types of attacks is crucial for designing effective countermeasures. For instance, a

black-box attacker may exploit vulnerabilities in the communication channels of the NCS,

while a white-box attacker may focus on manipulating the control algorithms to cause system

instability.

The literature on control theory has thoroughly covered white-box cyberattacks against

NCS. For instance, studies such as [  88 ], [  89 ], and [  90 ] discuss this issue from the control

designer’s perspective. In [  88 ], a "leader-follower" game is proposed as a model for the inter-

action between the attacker and defender. The Nash equilibrium solution is then compared

to the optimal responses from both players. On the other hand, [ 89 ] quantifies NCS security
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against stealthy injection attacks utilizing a reachability-based metric, assuming the attacker

has complete knowledge of the system. A Kalman filter augmented with a neural network

is employed to detect false data injection (FDI) attacks an NCS by [ 81 ], while guaranteeing

controller stability. On the other hand, more realistic and sophisticated cyberattacks are

often carried out as a combination of different attacks. Such white-box attacks often utilize

statistical methods to develop system models [  86 ], [  91 ], by exploiting well known communi-

cation vulnerabilities of NCSs (see [  81 ], [ 92 ] for more detailed survey on NCS vulnerabilities,

and FDI attack procedures, respectively). As noted by [  84 ], attackers can eavesdrop on

black-box system data to develop auxiliary system models and perform injection attacks

based on the model thus developed. [  92 ] consider a different white-box FDI attack against

a smart power grid (and the corresponding defense mechanism). They assume the attacker

is able to tap into communication channels to eavesdrop for power grid NCS measurements,

and then carries out FDI attacks that are stealthy to chi-squared detection tests on the

measurement residue.

However, most black-box attack methods require offline training [  91 ], computationally

expensive machine learning [  84 ], strong reachability assumptions [  92 ], or complete knowledge

of detection schemes [  89 ]. To this end, we would like to investigate the synthesis of white-

box FDI attacks against NCSs, while including realistic attacker capabilities. We assume the

attacker is capable of observing the dynamical behavior of the NCS (in practice implemented

by eavesdropping) to develop equivalent dynamical models. We propose a dynamic mode

decomposition (DMD) approach to obtain rapid real-time auxiliary approximations to the

NCS dynamics. The attack capabilities can be modeled as reachable sets of the auxiliary

system, obtained in real-time through polytopic approximations [ 34 ], [  35 ]. Additionally, the

impact of the attack is demonstrated to be enhanced by isolating more vulnerable agents in

the NCS.

Contributions: In our work, we employ DMD combined with polytopic reachable set

computation, to model the unknown NCS and attacker capabilities, respectively. Therefore,

the cyberattacks can be carried out with limited system data, and in real-time. The agent

isolation is posed as a repeated semi-definite program (SDP), thus allowing the attacker to

carry out more directed attacks against the NCS, while only relying on the system data. As
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a result, the proposed method provides a realistic attack synthesis scenario under practical

attacker capabilities.

The remainder of this paper is organized as follows. We present the problem formula-

tion of cyberattack synthesis against the partially known network control system in Section

 5.2 . We formulate a DMD-based scheme combined with reachable set estimation to devise

the cyberattack synthesis methodology in Section  5.3 . In Section  5.4 , we demonstrate the

proposed method using a motivating scenario of injection attacks in actuator channels of

a network of unmanned aerial vehicles (UAVs) engaging in formation flight and trajectory

tracking. Finally, we present our concluding remarks in Section ??.

5.2 Problem Formulation

Consider a network control system (NCS) where the individual agents have a linear

time-invariant (LTI) dynamics, under a coupled state feedback control law, as follows:

ẋi(t) = Aixi(t) +Biui(t),

ui(t) = Kiixi(t) +
∑

j∈Ni(t)
Kij (xi(t)− xj(t))

(5.1)

Here, the state of the ith agent is given by xi ∈ Rn, the coupled control input ui ∈ Rp, the

LTI system matrices (Ai, Bi), and the state feedback gains {Kij}N
j=1, for a total of N agents.

The agents in the NCS are connected according to an underlying graph G(t) = (E(t),V), a

tuple of the node set V and the edge set E(t) ⊆ V × V . Also, Ni(t) is the neighborhood of

the ith agent at time t, defined as the set {j : (i, j) ∈ E(t), i 6= j}. Let Adj [G(t)] denote the

graph adjacency matrix, and LG(t) the graph Laplacian, defined as:

Adj [G(t)] , [aij] = 1 if (i, j) ∈ E(t), 0 otherwise

LG , D [G(t)]− Adj [G(t)]
(5.2)

where D [G(t)] is the degree matrix with diagonal entries that denote the incoming degree

(or |Ni(t)|) of the ith agent.
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From the attacker’s perspective, the NCS dynamics can be rewritten as:

ẋxx(t) , AG(t)xxx(t) (5.3)

using the ‘stacked vector’ definitions as:

xxx(t) , [x1(t)T , x2(t)T , · · · , xN(t)T ]T

AG(t) , diag {Ai +BiKii}i∈V +BiKij ⊗ LG(t)

(5.4)

The attacker intends to perform injection attacks to the system (  5.3 ) with the following

aims: (a) cause safety violations/collisions between any two agents in the NCS, (b) while

remaining undetected by the NCS monitoring protocols. That is, false data injection (FDI)

attacks to the system ( 5.3 ) can be written as ẋxx(t) = AG(t)xxx(t) + Bauuua(t), for the injection

attack vector uuua(t), and a ‘vehicle selection matrix’ Ba. The attack synthesis problem can

then be written as:

find Ba,uuua(t)

such that ẋxx(t) = AG(t)xxx(t) + Bauuua(t),

∃ t∗ ≥ t1 where ‖xi(t∗)− xj(t∗)‖2 ≥ d∗,

‖uuua(t)‖2 ≤ ρ for all t ≥ t1

(5.5)

Here, ρ denotes the FDI budget, and d∗ is some separation distance that the attacker wants to

induce. Note that in case of a consensus problem (instead of formation flight), the attacker

replaces the constraint above as ≤ d∗ instead. Similarly, d∗ denotes the safety violation

threshold. We make the following assumption for the FDI problem:

Assumption 2. The attacker is unaware of the system matrices
{
Ai(t), Bi(t), {Kij}j∈Ni(t)

}
i∈V

,

but can collect discrete-time trajectory data {x1(t), · · · , xN(t)}t=t1
t=t0 over some time interval.

Note that Assumption  2 characterizes the attack problem that we call the gray-box ap-

proach to cyberattack synthesis. Compared with the white-box approach (where the attacker

has access to the entire NCS data, including system matrices), or the black-box approach

(the attacker is allowed no data at all), gray-box approaches acknowledge the fact that more
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severe cyberattacks can utilize tapped system data. In practice, the data collection in As-

sumption 1 is carried out via data association & state estimation, or eavesdropping into

communicated data that the agents use to formulate individual control laws. Furthermore,

severe cyberattacks are often preceded by simpler attacks to tap/eavesdrop on the system

monitoring protocols or communication channels [ 84 ], [  93 ]. As shown in Fig.  5.1 , the attacker

observes the state evolutions of the NCS agents.

5.3 Methodology

To devise the injection attack, we first outline a method to infer the system matrix AG(t).

We will recap a Koopman operator based method (see works from [  23 ], [  94 ] for more detail)

that estimates underlying time-varying dynamical structure.

Note that the NCS in (  5.1 ) exhibits linear dynamics, but the stacked system in (  5.3 ) is

not perfectly linear due to the dependence on the time-varying graph G(t). As a result, we

employ a Koopman operator-based approach to identify the linear dynamics. The Koopman

operator can be thought of as a linear operator over measurable functional spaces that comes

close (in operator norm) to the observed dynamics in the state space. Consider the dynamics

of some trajectory data collected from some dynamical map:

xxxk+1 = F (xxxk) (5.6)

Even though the underlying dynamics can be nonlinear, the Koopman operator K acts on

the space of all measurable functions g : X → X such that the evolution of these functions

is linear. That is, the trajectory of a function g evolves linearly

g ◦ F (xxxk) = K ◦ g(xxxk)⇒ g(xxxk+1) = K ◦ g(xxxk) (5.7)

under the action of K : G → G , where G is the space of observable functions.

If the underlying state space is not finite, the Koopman operator, such that the observable

trajectories are invariant in G and linear in K, is infinite dimensional. Almost all existing

literature that relies on Koopman operator theory to perform system identification from
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state data, relies on finite dimensional approximations of K as a matrix K. If we restrict

ourselves to observable functions spanned by full-state measurements xxx, we try to find a

matrix K that approximates K. In reality, we carry out this approximation K given data

snapshots as follows:

X ,


| | |

xxx1 xxx2 · · · xxxw

| | |

 , X+ ,


| | |

xxx2 xxx3 · · · xxxw+1

| | |

 (5.8)

K = arg min
K

∥∥∥X+ −KX
∥∥∥

F
= X+X† (5.9)

where [ • ]† denotes pseudoinverse and ‖•‖F is the Frobenius norm. Approximation in (  5.9 )

is referred to as dynamic mode decomposition (DMD) [  23 ], and can be thought of as linear

regression given data snapshots. The resulting approximation K is a rank-r (usually, r < w

for snapshot width w) approximation of K confined to observables g(xkxkxk) = xxxk. Henceforth,

we assume that we can obtain data snapshots of system ( 5.1 ) by virtue of Assumption 1.

Remark 8. More complex observable families can be employed (e.g., Gaussian basis, polyno-

mial basis, and neural networks to learn basis functions) depending on the degree of nonlin-

earity exhibited by the dynamical system, to result in extended dynamic mode decomposition

methods. However, for our linear time-varying system identification, simple DMD suffices.

Having solved for K, we have essentially performed regression for X+ ≈ KX. As a result,

we can solve a modified version of the optimal control problem in (  5.5 ) as:

find Ba,uuua
k

such that ẋxx = Kkxxx+ Bauuua,

∃ t∗ where ‖xi(t∗)− xj(t∗)‖2 ≤ d∗,

‖uuua‖2 ≤ ρ for all k

(5.10)
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To this end, we first define the set of all possible states that the agents in the NCS can take,

when subjected to the norm-bounded injection attacks, as the reachable set for agent i as:

Ri(τ ; ρ) , {xi,k : k ≤ τ, ‖ua‖2 ≤ ρ, and ẋxx = Kkxxx} (5.11)

Note that for our linearized system, reachable sets at some time τ are lent useful properties

of convexity under system linearity. As a result, reachable sets of linear systems can be

represented by propagating their boundaries or characterizations of their boundaries, e.g.,

interval representations in our previous work [ 2 ], polytopic approximations by [ 32 ], [  34 ], or

ellipsoidal representations proposed by [ 71 ].

Next, we summarize the polytopic reachable set computation method for linear systems

based on our work [ 32 ], applied to the DMD approximation ẋxx = Kkxxx+ Buuua, where uuua(t) lies

in a bounded set Ω , {u ∈ RpN : ‖u‖2 ≤ ρ}. We first bound Ω with an s-faced polytope,

where the ith face is given by:

Ω ⊆
s⋂

i=1
{u ∈ RpN | 〈νi, u〉 ≤ di} (5.12)

where νi is the normal vector, and di the distance from the origin, for the ith face. Let

H(a, b) , {x ∈ Rn : 〈a, x〉 = b} be the hyperplane with some normal vector a, at a distance b.

The evolution of the reachable set can then be expressed using the polytopic characterization

of Ω from (  5.12 ) as follows.

Lemma 4. Let hyperplanes Hi(λi,0, γi,0) support the initial reachable set at time t = 0 at

points x∗
i,0 for each hyperplane i. Then the reachable set at some time τ , under a bounded

input, ua, can be represented as:

R(τ ; ρ) ⊆
s⋂

i=1
Hi(τ) where Hi(τ) ≡ (λi(τ), γi(τ)) (5.13)

where the time-varying support points evolve according to ẋ∗
i = Kkx

∗
i + Buuu∗, and uuu∗ solves

the optimal control problem arg max 〈λi, Kkx
∗
i + Buuu〉, and the costate evolution is given by
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λ̇i = −KT
k λi. The variable γi(τ) is the distance of the hyperplane Hi, i.e., 〈λi(τ), x∗

i (τ)〉 =

γi(τ)

Proof. The proof follows from [ 35 ] and Theorem 1 in [  32 ].

Once the reachable set for the stacked system is obtained, Ri is obtained by projecting

R on to the ith state space coordinate. Note that polytopic reachable sets are efficient to

compute as the characterizations of reachable sets are a predefined number of hyperplanes.

Furthermore, hyperplanes are characterized by points of contact x∗
i and normal vectors λi,

which evolve under the linear dynamics. This evolution takes place under the optimal control

law uuu∗
i , which is also easy to compute for the polytopic set Ω. This is because the maximum

is guaranteed to occur on one of the vertices of the polytope in (  5.12 ) that bounds Ω [ 35 ].

Once Ri(τ ; ρ) are computed for some time τ , (  5.10 ) is solved as follows. The attacker

chooses B to indicate the agents being attacked (e.g., if the ith agent is being attacked, B has

an identity in the ith place, and zero matrices for the remaining agents). The FDI attack

vector uuu∗ that solves d(Ri(τ + ∆t),Rj(τ + ∆t)) ≥ d∗ for some ∆t, also solves ( 5.10 ) for

t∗ ∈ [τ, τ + ∆t]. This is because the FDI attack of uuu∗ pushes the reachable sets for agents i

and j at least d∗ units apart in some time ∆t, which necessarily means that the constraints

in (  5.5 ) are automatically satisfied. As a result, the reachable sets thus found encode the

attacker’s aim in the original problem. A detailed application of the proposed method is

presented in the following section, and a summary of the method is summarized in Fig.  5.1 .

5.4 False Data Injection Attack against Formation Control of UAVs

In this section, we consider a network of 5-UAVs performing formation control while

trying to follow a desired trajectory. Such problems often arise in the NCS literature, NCS

cybersecurity, distributed control & estimation [ 95 ], imperfections in state measurements for

state estimation [  96 ], [  97 ], and UAV path planning problems [  98 ].
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Figure 5.1. Schematic of the proposed cyberattack synthesis method

5.4.1 NCS Model

Although the proposed method is developed for continuous time NCSs, the numerical

implementation has to be carried out in discrete time. The ith UAV in the NCS has its

dynamics governed by the discrete-time version of (  5.1 ) as xi,k+1 = Aixi,k + Biui,k, with the

system matrices:

Ai =



1 ∆t 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1


, Bi =



∆t2/2 0

∆t 0

0 ∆t2/2

0 ∆t



93



The dynamics above are the general double integrator in the 2D plane, and the ith UAV’s

state is defined as xi = [x, ẋ, y, ẏ]T . The formation control problem for the UAVs is solved

by the following distributed control input:

u1,k = K1(x1,k − x?
k) +

∑
j∈N1

K1j(x1,k − xj,k − x?
1j) (5.14)

ui,k =
∑
j∈Ni

Kij(xi,k − xj,k − x?
ij), i = {2 · · · , 5} (5.15)

Equation (  5.14 ) denotes the control input of the leader UAV, according to the reference

trajectory x?
k which the entire formation must follow. Equation ( 5.15 ) denotes the control

sequence for all of the remaining follower UAVs who try to conform to a prescribed desired

formation x?
ij. Note that for the UAV NCS described by (  5.14 ) and ( 5.15 ), the NCS error

dynamics follows ( 5.4 ), as noted by [ 98 ]. The desired formation trajectory is given by x?
k = [−

k sin(3k/100), 1,−k cos(3k/100), 1]T , for a simulation time of 100s, a sampling time of ∆t = 0.2s,

and a desired formation as shown in Fig.  5.2 . The stabilizing gain to guarantee formation

control was found by [  98 ] to be:

Kij =

−0.2263 −0.4712 0 0

0 0 −0.2263 −0.4712


The resulting trajectory of the 5-UAV NCS is shown in Fig.  5.3 (left). The initial positions of

the UAVs, denoted by circles, were chosen randomly. The final positions denoted by crosses

confirm a successful formation and trajectory tracking by the leader UAV.

1

32

4 5Leader

Figure 5.2. Desired UAV NCS formation
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Figure 5.3. Formation control for 5-UAV network under gains Kij (left);
Approximate reachable sets for DMD-based auxiliary model (right)

5.4.2 Attack Synthesis

In order to find the auxiliary model xxxk+1 ≈ Kxxxk using DMD, it is assumed that the

attacker performs state estimation to obtain the data matrices X and X+ in (  5.9 ), with a

snapshot width w = 50, at a sampling rate of ∆t = 0.2s. The FDI attack budget is given
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by ρ = 0.05. We approximate this admissible attack set as an 8-sided polygon with vertices

chosen randomly such that the ‖uauaua‖ ≤ ρ is circumscribed by the polygon. The attacker

then computes the reachable sets according to Lemma 1, and propagates them over time to

synthesize FDI attacks. The propagated reachable sets at selected time instances are shown

in Fig.  5.3 (right). The tails in the comet plots denote the previous trajectory of the given

UAV over the intervals shown.

Since UAVs are trying to conform to a specified formation, attacked agents are selected

based on the reachable sets at a given time τ as:

(i∗, j∗) = arg max
i,j

d (Ri(τ ; ρ),Rj(τ ; ρ)) (5.16)

uuua = arg max
‖u‖≤0.05

d (Ri(τ + ∆t; ρ),Rj(τ + ∆t; ρ)) (5.17)

where the UAVs to be attacked (i∗, j∗) are chosen whose reachable sets are farthest apart

( 5.16 ), and the FDI attack is chosen to drive them further apart at the next time step, while

being subject to the attack budget. These distances can be computed efficiently as the sets

are polytopic.

The targeted agents change over time, depending on the relative locations of their reach-

able sets, as in Fig.  5.1 . Finally, Ba is the corresponding matrix with a zero matrix at all

positions, and an identity matrix at positions (i∗, j∗) to denote FDI attacks taking place at

the selected agents. The effect of such an attack over time can be observed in the trajectories

shown in Fig.  5.4 (left). Note that the stacked system evolves under AG, and the formation

error is guaranteed to go to zero under the proposed gain, as the dynamics of the stacked

error is stable [ 98 ]. As a result, the FDI attack can be seen to cause a disruption in only the

trajectory tracking error, and the desired formation is still attained (see Fig.  5.4 (left)).

To cause a disruption in the formation, the stability of the stacked system can be com-

promised if the underlying connected graph can be disconnected. This is carried out by

preceding the FDI attack with a sustained denial of service (DoS) attack on a ‘vulnerable

agent’, whose communication link when disrupted causes the underlying graph to be discon-

nected. However, the auxiliary DMD system evolves under a time-varying matrix K, which
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does not necessarily preserve the underlying graph structure in ( 5.4 ). This is because the

matrix K was obtained by minimizing the trajectory error in (  5.9 ), and does not necessarily

find the matrix LG (as DMD can be though of as a special case of L2 regression [  23 ]). There-

fore, to find an estimate of the underlying graph Laplacian, the attacker solves the following

equation:

L̂ = arg min
L
‖K − (S + T ⊗ L)‖F (5.18)

for some matrices S and T , such that L is a candidate Laplacian, i.e., L satisfies L � 0

and L1 = 0. The minimization of the Kronecker product above can be rewritten as a

minimization over γ for some bound (K − (S + T ⊗ L))T (K − (S + T ⊗ L)) � γ2I. This

can be rewritten as a ‘quasi’ semi-definite program (SDP) using Schur complement as:

min γ

subject to

 γI K − (S + T ⊗ L)

[K − (S + T ⊗ L)]T γI

 � 0

L � 0, L1 = 0

(5.19)

Note that the equation above is a proper SDP if the matrix T is fixed. Similar SDP for-

mulations to minimize matrix norms over Kronecker product are proposed by [  99 ]. We can

solve (  5.19 ) as an alternating SDP as follows. Starting with an arbitrary but fixed value of

S and T , we solve the SDP in (  5.19 ) to find L. Next, fix T and the value L thus obtained

to solve for S, followed by solving for T after fixing L and S, respectively. The alternating

SDP procedure is carried out until γ stops improving above a prefixed threshold, resulting

in L̂. This alternating SDP procedure is derived by [  99 ] in more detail. Using this alter-

nating SDP method, the attacker was able to recover the graph Laplacian matrix L̂ in 16

iterations of the alternating SDP where γ stopped improving beyond 10−6. Next, solving for

the second largest eigenvalue of the Laplacian λ2(L̂) immediately provides the vulnerable

nodes in the underlying strongly connected graph (i.e., there exist connecting paths between

any two arbitrary nodes of the graph). This is because the second largest eigenvalue of
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Figure 5.4. Impact of false data injection attacks on UAV trajectories: FDI
attacks (left); FDI combined with DoS on agent 5, link 5–3 (right)

the graph Laplacian is an immediate metric of graph connectivity [ 100 ], and all distributed

control of the form (  5.1 ) relies on the underlying graph being strongly connected [ 97 ]. The

eigenvector corresponding to λ2(LG), called Fiedler eigenvector, provides immediate relative

importance of each node of the graph G towards graph connectivity [  100 ]. As a result, the

attacker chooses to DoS the ith UAV (link 5–3), thereby causing the underlying graph to be
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Figure 5.5. Inter-UAV errors plotted against time

disconnected, and the stacked system is no longer stable. The FDI attacks are carried out

as outlined earlier.

The resulting trajectory can be seen in Fig.  5.4 (right). Compared to the reachable

set-based FDI attacks, the attack mechanism of DoS attack on UAV 5 followed by FDI

attacks causes disruption in formation as well as a failure in trajectory tracking. The same

is observed in the plot of inter-UAV position errors, ‖xi,k − xj,k − (x∗
i − x∗

j )‖, shown for the

nominal NCS, FDI attacks on the NCS, and the final FDI combined with alternating SDP-

based DoS attacks to isolate UAV 5 (see Fig.  5.5 ). As a result, the attacker can cause the

formation errors to increase and accumulate over time. Therefore, by utilizing the reachable

sets, the attacker can cause disruption in formation control and trajectory tracking in the

UAV NCS discussed.
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5.5 Conclusion

In this paper, we developed a novel cyberattack synthesis mechanism targeting net-

work control systems (NCSs) with unknown dynamics. We proposed a dynamic mode

decomposition-based method to first estimate reachable sets of the NCS agents, followed

by false data injection (FDI) attacks by driving the reachable sets as far apart as possible.

We demonstrated the proposed method using an illustrative scenario of unmanned aerial

vehicle (UAV) formation flight and trajectory tracking. The proposed method was observed

to cause failure in both, formation and trajectory tracking, upon preceding the FDI attacks

by denial of service (DoS) attacks to isolate certain agents.

Future work will be to utilize exact reachable sets from the defender’s perspective to

provide guarantees on the controller against FDI attacks of a fixed budget.
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6. DATA-DRIVEN CYBERATTACKS ON SUPERVISORY

CONTROL SYSTEMS

Thapliyal, O., & Hwang, I. (2021, June). Learning based Cyberattack Design and Defense

for Supervisory Control Systems. In 2021 European Control Conference (ECC) (pp. 144-

149). IEEE. [  84 ]

The research presented in this chapter is conducted by Thapliyal, O. under the supervision

of Hwang, I.

Abstract

Cyber-physical systems (CPSs) are complex and often require multiple controllers, each

with specific design requirements. Hybrid controllers for CPSs employ a supervisor to switch

among a set of controllers to ensure proper operation. The supervisor is typically a com-

puter program, separate from the physical layer of the CPS. While individual controllers’

vulnerabilities to cyberattacks and their resilience to such attacks have been studied, smarter

cyberattacks could destabilize CPSs by exploiting vulnerabilities in the supervisory logic it-

self. This could be followed by a targeted attack on an individual controller. However, in

realistic scenarios, little to no information is available about the CPS models and dynamics,

making machine learning-based approaches more appropriate for realistic cyberattacks.

This chapter focuses on cyberattack and defense design for supervisory controllers in

CPSs when there is only partial information available to both the attacker and the defender.

The proposed approach is advantageous because it does not rely on detailed knowledge of

the CPS’s underlying mathematical models, which is often not available in practice. Addi-

tionally, the paper proposes a data-driven defense scheme for such attacks, where the attack

mechanism is unknown to the designer. Overall, the paper provides a novel and practical

approach for addressing cyberattack vulnerabilities in CPSs with multiple controllers.
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6.1 Introduction

Supervisory control is a versatile control methodology that has found applications in a

variety of systems, including hybrid, nonlinear, and networked control systems. One of the

most common applications is in systems utilizing Supervisory Control and Data Acquisition

(SCADA), such as chemical plants, industrial control systems, and process control systems.

Another important application of supervisory control is in multi-agent systems, where agents

are under supervision. Supervisory control can model human-machine interactions by allow-

ing the human operator to retain supervisory status over the plant ([ 101 ], [  102 ]) or by

delegating supervision to an automatic logic or a computer program ([  103 ], [  104 ]). While

human-machine interface (HMI) design deals with problems related to the former, automatic

control deals with the latter. Cybersecurity is crucial for CPSs due to their connected and

hybrid nature. Recent cyberattacks against SCADA have highlighted the importance of

developing robust cyberattack defense strategies for such systems. Therefore, mathematical

analysis of cyberattack design and defense strategies has become increasingly important for

addressing the challenges arising from real-life applications of complicated networked and

CPSs.

Although literature has extensively studied cyberattack vulnerabilities of linear systems,

for instance in [  105 ] and [ 6 ], most methods suffer from two drawbacks. Firstly, for attack

design, they assume a white box model where the attacker knows the details of the lin-

ear system. Secondly, hybrid controllers can bypass the vulnerabilities of linear systems

by switching among usable controllers when subjected to cyberattacks. This capability of

supervisory controllers to minimize the effects of cyberattacks by switching among a bank

of controllers is discussed in [  106 ]. Readers are referred to a more comprehensive survey of

existing cyberattack mechanisms, vulnerabilities of CPSs, and attack types in [  93 ], [  107 ].

While white box type attacks are best suited for a vulnerability analysis, since they

assume a worst case scenario where the adversary has complete knowledge of the system,

these results are obviously not useful to attackers to implement black box (no intricacies of

the CPS are known by the attacker), or even gray box attacks (some intricacies of the CPS

are known by the attacker), since mathematical details of the plants, actuators, and sensors
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are almost always obscured from attackers. White box attacks assume that the attacker has

complete knowledge of the system, including its mathematical details, and therefore are best

suited for vulnerability analysis. However, in practice, attackers rarely have access to such

information and thus resort to black box or gray box attacks. Black box attacks assume no

knowledge of the system, while gray box attacks assume some level of knowledge about the

system, such as its structure or behavior.

The results of vulnerability analysis based on white box attacks may not be useful to at-

tackers attempting to perform black box or gray box attacks. Therefore, developing defense

mechanisms that can withstand attacks of unknown synthesis mechanisms, as well as de-

signing attack strategies that can be effective in the absence of complete system knowledge,

is important. The proposed learning-based methodology for gray box cyberattacks and cor-

responding defense methods addresses this challenge and offers advantages such as realism

and real-time performance. Vulnerabilities of supervisory controllers, modeled as discrete

event systems (DESs), subject to cyberattack have been studied in [  108 ], [ 109 ]. Although

supervisory controllers are widely used in cyber-physical systems (CPSs), the vulnerabilities

of such controllers have not been extensively studied in the literature. The interplay between

continuous and discrete states of each agent in a CPS creates a fundamentally different prob-

lem compared to the DES approach that is commonly discussed in literature. This added

complexity is manifested in supervisory controllers as an abstract switching mechanism on

top of individual controller units. As a result, attackers can exploit these vulnerabilities by

causing unwanted switching behavior, which may activate incorrect controllers. Even if all

controllers are designed to reject attacks, an attacker can still cause the so-called “chattering

phenomenon" resulting in high-frequency “bang-bang" control cycles that can significantly

degrade the system’s performance and reduce the longevity of the actuators.

The proposed method in this chapter aims to exploit the intricate nature of supervisory

controllers, allowing attackers to launch injection attacks on the supervisory protocol itself.

The actual plant model and actuator details are obscured from the attacker, while it is

assumed that the attacker is allowed to insert itself in the communication layer between the

controllers and the supervisor stealthily, as shown in Fig. 1. attack synthesis consists of two

key steps: the attacker develops an auxiliary statistical model of the supervisor’s transition
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logic, and an optimal attack based on the auxiliary model is injected to cause switching in

the plant’s controllers. From the partial knowledge of the system, the attacker constructs

an ‘auxiliary model’ for the system, which assists in performing the attacks. Modeling

supervisory logic poses a significant challenge due to the presence of discontinuities and

transition conditions based on mixed continuous and Boolean logic (as discussed in [  110 ]).

To address this issue and accommodate unknown plant models, we incorporate artificial

neural networks (ANNs). The injection of optimal attacks is then transformed into an

adversarial machine learning problem (as detailed in [ 111 ]). We devise a defense mechanism

that utilizes generative adversarial networks (GANs), which have previously been employed

in anomaly detection and reconstruction in both time-series data and images (as reported in

[ 112 ], [ 113 ]). In this chapter, the defense-GAN comprises a detector ANN and a reconstructor

ANN, which are trained against each other in a two-person game, following the standard

GAN training procedure.

We propose a novel approach for performing gray box cyberattacks on supervisory con-

trollers and developing corresponding defense methods in situations where the attacker has

incomplete knowledge about the CPS. This is a significant contribution to the field, as it

provides a more realistic approach to attacking and defending CPSs without making any

assumptions about the target CPS or attack synthesis model. The proposed method is ad-

vantageous in two ways. Firstly, it allows for more realistic attacks and defenses as it does

not rely on white box assumptions. This means that the approach is not dependent on spe-

cific details of the target CPS or attack synthesis model, which makes it more applicable to

real-world scenarios. Secondly, once the statistical models are trained, the attack and defense

methods can be performed in real time, which makes it a practical solution for protecting

CPSs against cyberattacks.

This chapter is organized as follows. In Section  6.2 , we introduce the hybrid system

and supervisory controller model that we study. Section  6.3 presents the formulation of the

attack and defense design problems as an adversarial machine learning problem. In Section

 6.4 , we provide a practical example of a multi-robot formation controller to demonstrate the

proposed attack method, and we train a defensive GAN to counter these attacks. Lastly, in

Section  6.5 , we conclude this chpter with our final remarks.
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6.2 Problem Formulation

This section presents a mathematical model of the cyber-physical system (CPS) under

attack. Consider a discrete-time linear system with its dynamics given as follows:

xk+1 = Axk +Buk(σk) (6.1)

where xk ∈ X ⊆ Rn is the continuous state, uk(σk) ∈ U ⊆ Rm is the control input as advised

by the supervisor based on the discrete state σk ∈ Σ, and A and B are system matrices

of appropriate dimensions for time indices k ∈ N. The discrete event nature of control law

uk(σk) is introduced by the supervisory logic, while the plant itself evolves based on the

difference equation on xk (see [  103 ]). The supervisor itself is a finite automaton given by the

tuple S = (Σ,X ,U , δ, φ), with the discrete state σk ∈ Σ, discrete state transition function

δ : Σ×X → Σ, and controller output function φ : Σ→ U . The controller’s discrete state σk

and controller output uk then evolve as:

σk = δ(σk−1, xk), and uk = φ(σk) (6.2)

A bank of state feedback controllers is a finite set Σ ⊂ R, each matched to a partition of the

state space, is given by:

σk = δ(σk−1, xk) = j if Gσk−1j(xk) ≥ 0

uk(j) = Kjxk , for gains indexed by j ∈ Σ
(6.3)

where X = ⋃
i∈Σ

Si and Si∩Sj = ∅ for i 6= j, Gij is the boundary between Si,Sj, or the guard

condition for the i − j discrete state transition, and Kj the ‘mode-matched controller gain’

for the jth discrete state. This ensures that only one controller is active at a time, and there

is no ambiguity while switching controllers. Here the supervisor’s discrete state σk simply
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specifies the controller operating at time k. Further, the protocol governing transitions

among controllers is usually implemented in the supervisor as a computer program or logic.

σk = j if Gij(xk) ≥ 0 (6.4)

where the guards Gij(xk) partition the space X as

⋃
i∈N

Si = X , Si
⋂

i,j∈N ,i6=j
Sj = ∅

where Sj = {x ∈ X |Gij(x) ≥ 0}
(6.5)

N ×N ×Rn, as shown in Fig.  6.2 . Equation (  6.3 ) describes the switching control scheme for

the CPS under supervisory control. The discrete nature of the transition logic is captured

using the guard condition Gij(xk) between controllers i and j. Such a CPS is shown in

Fig.  6.1 . The plant in (  6.1 ) together with the supervisor S described by (  6.2 ) forms the

target supervised control system. The CPS (Cyber-Physical System) under consideration

consists of different components that work together to achieve a specific task. The physical

layer includes the plants, sensors, and actuators that interact with the physical environment.

The communication layer comprises the wired or wireless channels through which signals are

transmitted between the physical layer and the cyber layer. The cyber layer consists of the

supervisory logic that governs the physical layer through wireless communication channels.

The supervisory logic acts as a controller that takes inputs from sensors, generates control

signals, and sends them to the physical layer to control the system’s behavior. Fig.  6.1 

provides a visual representation of the CPS, illustrating the interactions between the physical,

communication, and cyber layers.

The inter-layer boundaries are often more vulnerable to cyberattacks. Consider a scenario

where an attacker has the capability to infiltrate the communication-cyber layers of a CPS,

as described above. The primary goal of this attacker is to cause the supervisory logic to

produce incorrect output, whenever feasible, by injecting an additive attack ‖ak‖∞ ≤ ρ into

the continuous state xk being transmitted to the supervisor S. It is important to note that

the attacker is not authorized to directly alter the actual control inputs uk or the plant states
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xk. Instead, the attacker can only inject a fictitious signal that is visible to the supervisor,

as illustrated in Fig.  6.1 . In other words, the attacker intends to introduce an allowable

undesired injection attack into the supervisor.

The attacker’s goal is to trigger undesired transitions in the supervisor’s internal discrete

states within a limited attack budget ρ. This means that the attacker aims to inject attacks

that do not exceed the budget and can remain undetected for a prolonged period, causing

practical disruptions in the system. To capture the attacker’s knowledge and behavior, we

assume that the attacker has an understanding of the system’s vulnerabilities and can use a

valid guard condition G to perform allowable attacks. This implies that the attacker can ex-

ploit the system’s weaknesses and cause undesired state transitions using a set of conditions

that trigger the attack. We acknowledge that the attacker’s actions may not always have a

negative impact on the system, but they can still be practical disruptions over long periods.

Therefore, we assume that the attacker can remain stealthy, allowing them to carry out the

attacks without being detected. The budget ρ captures the attacker’s knowledge of injecting

bounded attacks causing undesired supervisor switching, while remaining stealthy. This need

not have a negative impact on the system, but the attacker remains stealthy and can cause

practical disruptions over long time windows [ 114 ]. We make the following assumptions for

modeling the attacker’s intentions.

Assumption 1: The attacker has a partial a priori knowledge of the supervisor S in the

form of the languages and symbols (Σ,X ,U). That is, the attacker knows what symbols the

supervisor finite automaton can input or output.

Assumption 2: The attacker can make a finite number of queries to the supervisor to con-

struct the map δ.

The assumptions above essentially model the capability of the attacker to either make

queries to the supervisor or observe its open loop behavior. This is a reasonable assumption,

often observed in spoofing and data injection type attacks, and exploits already present

inter-layer vulnerabilities [  93 ].
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Figure 6.1. Supervisory control system under attack

6.3 Attack & Defense Synthesis

In this section, we will sequentially consider the attack and defense mechanism design

with almost no knowledge of the adversary’s intent or model. Because of this, we propose a

data driven scheme for both cyberattack and defense synthesis.

6.3.1 Cyberattack Synthesis

Assumptions 1 & 2 ensure that the attacker knows no details about the physical layer

in the plant model (A,B) itself. These assumptions help us to model the attacker’s a priori

knowledge of the system, and the ability to disrupt the supervisor by data injection attacks.

This makes the problem more practical yet challenging, and a data-driven approach more

suitable. As seen above, we consider the scenario where the plant and actuator models are
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obscured from the attacker. Further, the attacker can only interact with the CPS in a limited

manner. The attacker’s aim at time k can then be captured as:

find ak, ‖ak‖∞ ≤ ρ

such that δ(σk−1, xk) 6= δ(σk−1, xk + ak)

xk+1 = (A+BKσk
)xk

given: Σ,X ,U

(6.6)

for some attack budget ρ > 0 for the injected attack ak. This can be posed an optimization

problem, with the following characteristics: (i) due to the realistic case of partial knowledge

of supervisor S and no knowledge about the plant, the attacker first needs to estimate the

map δ(·), and (ii) if an unlimited attack budget ρ is available, one can always find an attack

that can cause an allowable undesired switching of discrete states in the supervisor. To carry

out the norm bounded injection in (  6.6 ), the attacker first infers an approximate model for

the supervisor Ŝ = (Σ,X ,U , δ̂, φ). Note that the attacker need not know φ, as will be

seen later. For this, we propose a data-driven approach to first approximate the supervisor

model by estimating the discrete state transition map δ. To this end, the attacker samples

σ ∈ Σ, x ∈ X from the discrete and continuous state spaces, respectively, and performs

queries with the open-loop supervisor as yi = δ(σi, xi).

y = δ(σ, x) (6.7)

The attacker’s aim in the query phase is to build the labeled dataset D = {(yi, xi)}, for

i = 1, · · · , N . Following the query phase, the attacker must create an estimated map δ̂ of

the unknown discrete state transition map δ based on the collected data D. This results in

a supervised M−class classification problem on a labeled dataset D, for |Σ| = M number of
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discrete states. It is known that the cost function for a binary classification problem in the

form of the parameterized estimator function hθ(x) is given as:

J(θ) = − 1
N

N∑
i=1

[yi log (hθ(xi)) + (1− yi) log 1− (hθ(xi))]

+ λ

2N ‖θ‖ 22

(6.8)

with a regularization parameter λ. For instance, for a single layered artificial neural network

(ANN), the parameterized function could be sigmoidal hθ(x) = sigmoid(θTx), linear θTx,

rectified linear unit, or other activation functions with tensor operations. Due to the universal

approximation properties [ 115 ], ANNs are good candidate classification methods for our

problem, especially because of the inherent discontinuities and Boolean logic in discrete

state transition maps [  110 ]. Therefore, for an M−class classification over the dataset D, the

training problem is to minimize the following cost function:

J(Θ) = − 1
N

N∑
i=1

M∑
j=1

[
y

(j)
i log (hΘ(xi))(j)

+(1− y(j)
i ) log (hΘ(xi))(j)

]
+ λ

2N

L∑
l=1
‖Θ‖ 22

(6.9)

over xi, yi ∈ D, for an L−layer ANN. The learning problem to minimize (  6.9 ) is solved

using stochastic gradient descent. Presenting detailed derivations of ANN based function

approximation is not an aim for this work and standard solving procedures can be found in

[ 113 ]. This yields the estimate δ̂ that minimizes the cost function over seen examples as δ̂Θ∗

for Θ∗ = arg minΘ J(Θ). Under the proposed scheme, the attacker uses the learned map

δ̂Θ∗ instead of δ in (  6.6 ) as:

find ak, ‖ak‖∞ ≤ ρ

such that δ̂(σk−1, xk; Θ∗) 6= δ̂(σk−1, xk + ak; Θ∗)

given: Σ,X ,U

(6.10)
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Figure 6.2. Attacker’s approximation of the guard conditions

The problem in (  6.10 ) is then the same as misclassifying the output of the trained ANN

model δ̂, as shown in Fig.  6.2 . Now the attacker has learned a query based approximation

Ŝ of supervisor S. This is often addressed as an adversarial machine learning problem, as

in [  111 ]. Since δ̂ is the minimizer of the cost function J(Θ), the following holds:

if δ̂(σk−1, xk; Θ∗) 6= δ̂(σk−1, xk + ak; Θ∗)

⇒ J(xk; Θ∗) ≤ J(xk + ak; Θ)
(6.11)

where Θ∗ is the (possibly non-unique) minimizer of ( 6.9 ). Equation (  6.11 ) states that any

injection ak into supervisor input xk will worsen the optimum cost function. Therefore, once

δ̂ is learned, the misclassification problem can be posed as a maximization of this optimum

cost function as follows:

maximize
ak

J(xk + ak; Θ∗)

subject to ‖ak‖∞ ≤ ρ

(6.12)

Note that based on the choice of activation functions and tensor operations to describe hΘ(x),

the gradients ∇xJ(Θ∗) are known. Further, calculation of this gradient is performed in the

so-called backpropagation step of training the ANN, making the gradients readily available.

Using the first order approximation for J , the optimal attack on δ̂ is found to be:

a∗
k = ρ · sign{∇xk

J(Θ∗)} (6.13)
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which is a known result from the fast gradient sign method (FGSM) from [  111 ]. This is

gradient descent in the steepest direction along which the cost increases the most, moving

towards the decision boundary. This gives the maximum allowable attack on the supervisor

Ŝ. It follows from (  6.2 ) that the maximum allowable attack is also an undesired attack on

Ŝ if it results in the discrete state transition δ̂(σk, xk; Θ∗) 6= δ̂(σk, xk + a∗
k; Θ∗). While a

solution to (  6.6 ) may not exist, the maximization problem in (  6.12 ) can always be solved,

which comes at the cost that the resulting solution is always a maximum allowable attack,

but not necessarily undesired. Further remarks on the space complexity of similar ANN

based methods are in Appendix  6.5.1 .

6.3.2 Defense Synthesis

A realistic defense mechanism is unaware of attack synthesis strategies in (  6.6 ), or the

attack injection mechanisms. As a result, we are required to design a defense mechanism

where neither the attack mechanism, nor the upper bounds ρ on injection attacks in (  6.10 )

are known. A successful defense mechanism must have two functions: a) a detection mech-

anism to predict whether the supervisory control system has been compromised, and b)

reconstructing the compromised signal to the supervisor. In the absence of attack synthe-

sis details, we follow a data driven defense scheme to address the required functionality as

a generative adversarial network (GAN), shown in Fig.  6.3 . Such a GAN based defense

method is inspired from similar methods well known in adversarial machine learning [  112 ].

Let x̃k denote the perturbed signal to the supervisor under some unknown attack ak,

and σ̃k the resulting supervisor output. The detector d : X → [0, 1] is trained to detect the

probability of an undesired switching having occurred due to the attack as

d(z) = P (σk 6= σ̃k; z|x̃k) (6.14)

for a small number ε. The reconstructor g : X × Σ → X is trained to be capable of

generating realistic supervisor input by sampling from the latent space X × Σ (usually

sampled as multivariate Gaussian [  112 ]). In implementation, the detector and reconstructor

are both neural networks, trained against each other from sampled trajectories of the model
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in ( 6.1 ) as a GAN. The detector d is then trained as a binary classifier in (  6.8 ) against

samples generated by reconstructor g by drawing random samples from the latent space.

The standard GAN training is done as a two-person game such that the detector learns

to correctly classify generated supervisor input as an attacked input or genuine supervisor

input. Simultaneously, the reconstructor attempts to deceive the detector by generating

sample supervisor inputs [  113 ]. That is, for a similar cost function as (  6.9 ), for the detector’s

cost J(Θd,Θg), the reconstructor’s payoff is given by −J(Θd,Θg).

An ideally trained detector-reconstructor pair should function in a way that the recon-

structor is able to generate perfect samples, and the detector can identify all compromised

signals. The goal of training a detector-reconstructor pair in a GAN is to achieve perfect

performance where the reconstructor can generate flawless samples and the detector can

identify all compromised signals. In a GAN, the trained detector serves as a binary classi-

fier, outputting probabilities from a logistic model (referred to as a logit output). When the

detector produces a probability of P (σk 6= σ̃k) ≥ 1 − ε, using d(·) for a small value of ε, an

attack is detected, and the compromised supervisory input is corrected by the reconstructor,

as illustrated in Fig.  6.3 . However, if the supervisor input is not detected as being compro-

mised, then it is used as is. This defense mechanism can be trained offline, does not depend

on attacker dynamics, and can be adjusted to a specific level of accuracy. It should also be

noted that the defense-GAN is integrated upstream of the supervisor in the cyber system

layer.

It is important to achieve a balance between the accuracy of the detector and the recon-

structor. If the detector is too sensitive, it may produce a high number of false positives

and over-correct legitimate signals. Conversely, if the detector is not sensitive enough, it

may miss actual attacks, leading to system failure. In the proposed defense mechanism, the

reconstructor learns to generate samples that closely resemble the expected signals, which

ensures that the correction process is as accurate as possible.

The defense-GAN provides an effective approach to protecting cyber-physical systems

from cyberattacks. Its ability to detect attacks without relying on attacker dynamics, its

offline training capabilities, and its adjustable accuracy make it a useful tool for safeguarding

a wide range of systems.
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Θ∗
d,Θ∗

g = arg min
g

max
d
J(Θd,Θg) (6.15)

Controller2

Controllern

Controller1

...

Detector

Defense− GAN

Reconstructor

PLANT

Supervisor

Figure 6.3. A GAN to function as a detector-reconstructor against unknown
injection attacks

6.4 Case Study: Formation Control of a network of robots

In this section, we consider a formation control example for a group of nonholonomic

robots, adapted from [ 116 ]. A network of N−nonholonomic robots are required to follow a

fixed trajectory, while maintaining a desired formation. The robots have their dynamics in

continuous time governed by Dubin’s equations given below:

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = ωi (6.16)

Here (xi, yi, θi) denotes the ith robot’s coordinates and (vi, ωi) denotes the fixed linear and

rotational velocities, respectively, as shown in Fig.  6.4 . Linearization of (  6.16 ) results in

the matrices Ai in (  6.1 ), for each robot i. Of these, one robot is assigned as the ‘leader’

with a predefined trajectory and the remaining are ‘follower’ robots. Based on sensor ranges

of each robot, [  116 ] and [  117 ] proposed a bank of state feedback controllers with gains{
K i

(1), K
i,j
(2), K

i
(3), K

i,j
(4)

}N

i,j=1
where subscripts represent the discrete states, and superscripts

the active robots. The supervisor’s discrete states are σk = 1 ≡ Separation Bearing Control
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Figure 6.4. Coordinate scheme for formation control

(SBijC, robot i follows j), σk = 2 ≡ Separation Separation Control (SijSjkC, robot k follows

i, j), σk = 3 ≡ Separation Distance-to-Obstacle Control (SDoC), and σk = 4 ≡ Autonomous

navigation (u ≡ 0) as per ( 6.16 ). The formation control problem is then to find a switching

strategy among candidate controllers such that starting from an initial configuration, an

arbitrary desired configuration can be reached. The exponentially stable controllers proposed

by [ 116 ] are detailed in (  6.20 ). For a 3−robot case where robot 3 follows robots 1 & 2, the

guaranteed exponentially stable control switching scheme for arbitrary configurations is given

as:

If (l13 < l23) ∧ (l23 > r1) ∧ (l13 < r2) then SB13C,

σk = 1 for robot 3

If (l13 > l23) ∧ (l23 > r1) ∧ (l23 < r2) then SB23C,

σk = 2 for robot 3

If (l13 < r1) ∧ (l23 < r1) then S13S13C,

σk = 3 for robot 3

If (l13 > r2) ∧ (l23 > r2) then Autonomous,

σk = 4 for robot 3

(6.17)
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Here lij denotes the relative distance between robots i and j, and Ri the sensor range for

robot i. This gives an analytical form of discrete state transition map δ from ( 6.2 ) with

implicit partitions of the state space. The differential equations are discretized to get system

matrices conforming with the discrete time linear plant in (  6.1 ), and the parameters used in

simulation are given in Appendix  6.5.2 .

6.4.1 ANN Design

Each robot determines its active controller by sending the relative distance lij from every

other robot. The supervisor then switches to the appropriate controller based on the received

information, using ( 6.17 ). However, in this demonstration, an attacker aims to inject signals

ak into the state of robot 3. To achieve this goal, the attacker needs to infer the switching

logic by first obtaining query data from the system and then solving the optimization problem

described in ( 6.9 ). To obtain the necessary query data, the attacker creates a sample of lij’s

and communicates with the supervisory logic to record the corresponding values of σk. An

artificial neural network (ANN) is then employed, where the cost function in ( 6.12 ) is the least

squared error between the assigned and estimated controller states. It should be noted that

in reality, the architecture complexity np and the number of data points N available to the

attacker are interdependent, as shown in ( 6.19 ) in Appendix  6.5.1 . Therefore, the attacker

must carefully consider the architecture of the ANN and the amount of data required to

successfully infer the switching logic of the system.

Overall, the presented approach highlights the potential vulnerability of cyber-physical

systems to attacks and emphasizes the importance of developing robust defense mechanisms

to protect against such threats. The findings of this study can be valuable in various do-

mains, including robotics, manufacturing, and transportation systems, where the security

and reliability of cyber-physical systems are essential.

After collecting 500 data points, the attacker deduces a discrete state switching map δ̂

for the switching regulated by (  6.17 ). The details of the ANN’s parameters are provided in

Appendix  6.5.2 . Subsequently, the attacker gains access to the communication channel of

robot 3’s queries to the supervisor and injects a∗
k, which is calculated using (  6.13 ). Robot 3
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was arbitrarily selected because of the symmetry of controllers in (  6.17 ) around the leader

robot. The backpropagation step during the ANN training provides the gradients of the

mean squared error cost function.

Figure  6.6 displays the trajectories of the robots, which were initially and finally arranged

according to the formation specified in [  116 ]. To cause the formation to deteriorate, the

attacker uses adversarial switching tactics based on the guard conditions outlined in (  6.17 )

with a value of ρ = 0.375. The decision boundaries of the artificial neural network used in

the attack are determined through interactions with the supervisor. The decision boundaries

and the guard conditions are illustrated side by side in Fig.  6.5 . The cyber attacker has the

Figure 6.5. Analytical guard conditions (in red) compared with guard con-
ditions estimated by the ANN (in color)

capability to cause undesired behavior not only in the evolution of σk over time, but also

in the trajectory of the targeted robot, leading to a deviation from the nominal trajectory

as depicted in Fig.  6.6 . Robot 3, highlighted in red, is particularly affected by the attack

and deviates from the desired formation, failing to recover its trajectory during the attack

period. Meanwhile, robots 1 & 2 continue to follow the nominal trajectories.

117



Figure 6.6. Left: Trajectories of the formation when using defense-GAN;
Right: Trajectories when robot 3 is subject to attacks, with no defense mech-
anism

6.4.2 Defense-GAN Design & Results

The article presents a new technique for enhancing the security of CPSs using a defense-

generative adversarial network (defense-GAN). The defense-GAN comprises two ANNs – a

detector and a reconstructor, that work together to detect and mitigate cyberattacks on the

system. The detector ANN has a single output unit and takes input that is compatible with

the output of the reconstructor. The reconstructor ANN generates a candidate trajectory,

and the detector ANN classifies the given trajectory points as anomalous or not. Both

ANNs are designed with 4 hidden layers and use ’leaky rectified linear units’ as activation

functions at each layer. The defense-GAN is trained over 10,000 epochs, during which the

reconstructor ANN generates trajectories that the detector ANN classifies as anomalous or

not. Through the training process, the reconstructor learns to generate tighter clusters of

data in feature space, which correspond to discrete state-specific clusters in the latent space.
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Figure 6.7. Training procedure of the reconstructor visualized (in an inter-
mediate feature space)

The purpose of this training is to ensure that the defense-GAN can identify and mitigate

cyberattacks on the CPS.

Figure  6.7 illustrates the performance of the GAN during the training process. The results

show that the GAN performance increases slowly over time, as evidenced by the emergence

of cohesive clusters of generated data in the figure. This indicates that the defense-GAN is

able to generate trajectories that closely resemble the true trajectories and can accurately

detect anomalous data points.

Overall, the proposed design and training of the defense-GAN demonstrates the poten-

tial of using machine learning techniques to improve the security of cyber-physical systems

against cyberattacks. The paper’s findings can be valuable in various domains, including

industrial automation, transportation systems, and healthcare, where the security and re-

silience of cyber-physical systems are critical.

119



The attacks based on gradient result in σk from (  6.6 ), which lead to undesired switching.

As shown in Fig.  6.8 , the nominal trajectory of robot 3 during this simulation spends most

of the time dwelling in σk ≡ SB23C. Nonetheless, the gradient based attack can inject

‖ak‖∞ ≤ 0.375, which causes the trajectory points lying close to the guard condition between

the blue and yellow regions in Fig.  6.5 to move from one region to the other. As a result,

the supervisor’s discrete state fluctuates between σk = 2 and σk = 4, as seen in Fig.  6.8 .

However, the defense-GAN effectively mitigates these attacks, leaving the discrete states

almost unaltered. The proposed method shows that despite each individual controller mode

Figure 6.8. Controller switching induced by the attacker

σk being stable and the supervisory controller being designed to be exponentially stable, an

attacker can still destabilize the formation within the given attack budget. The attacker can

achieve this by inducing allowable undesired discrete state transitions. These state switchings

can be detected along the shown trajectory when using the defense-GAN. The method further

emphasizes the importance of assessing the performance of defense mechanisms by using

appropriate metrics. In this regard, the paper proposes a more reliable metric for evaluating
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the performance of defense-GAN, which is its cyberattack detection accuracy for a large

number of trajectories. In particular, the paper evaluates the performance of the defense-

GAN by running 10,000 trajectories. The results show that the defense-GAN was able to

detect cyberattacks with an accuracy of 97.6%, while the remaining 2.4% accounts for both

Type-I and Type-II errors.

It’s important to note that in the absence of true discrete state, the occurrences of

Type-I and II errors are reported combined. This highlights the need for using appropriate

metrics that take into account the limitations and uncertainties in the system, as well as

the potential trade-offs between accuracy and false positives or false negatives. By using

appropriate metrics, researchers can better evaluate the effectiveness of defense mechanisms

and identify areas for further improvement.

6.5 Conclusion

This chapter introduces a novel approach to designing cyberattacks and defense mecha-

nisms for supervisory controllers in cyber-physical systems (CPSs) using machine learning

techniques. The proposed method leverages adversarial machine learning methodologies and

the numerical properties of neural networks to enhance the system’s security against cy-

ber threats. To illustrate the effectiveness of the proposed approach, the paper presents

a practical example of a multi-robot system’s formation control, in which an attacker in-

duces allowable undesired discrete state transitions in an exponentially stable supervisory

controller. The proposed data-driven method is utilized to carry out this attack, and a

defensive generative adversarial network is designed to identify and mitigate these attacks.

The results demonstrate the effectiveness of the proposed method in enhancing the system’s

resilience against cyberattacks. The method improves the system’s security by utilizing ma-

chine learning techniques to identify and prevent cyberattacks. By leveraging adversarial

machine learning and neural network properties, the proposed method can enhance the sys-

tem’s resilience to cyber threats in CPSs. The practical example provides evidence of the

method’s effectiveness and demonstrates its potential to be applied to other cyber-physical

systems.
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As a future research direction, the authors plan to implement the proposed attack-defense

scenario to an unmanned robotic system. This will help to evaluate the real-world applica-

bility and effectiveness of the proposed method in a practical setting. The proposed method

has the potential to provide a significant contribution to the development of secure and re-

silient cyber-physical systems, which are increasingly important in various applications, such

as industrial automation, transportation systems, and healthcare.

6.5.1 Space complexity of ANNs

The space complexity of an approximation scheme is the number of data points required

to achieve a probabilistic estimation error of 1 − α (where α is the misclassification proba-

bility). This is studied as Probably asymptotically correct-ness (PAC). based on which, the

following remarks can be made about the space complexity of the ANN based method.

Remark 9. For an ANN with np units, d data points, and k input dimension, the order of

data points for a specified PAC accuracy (due to [  118 ]) is defined as follows. The estimation

error with respect to the Bayes regressor is given by the following due to [ 118 ]:

P
(∥∥∥δ̂Bayes − δ̂

∥∥∥ 22 ≤ 1− α
)
≤ O

(
1
np

)
+

O

√npk log npd− logα
d

 (6.18)

np(N) ∼ O
[ 4N

k log(n∗
p(N) ·N)

]1/3
 (6.19)

This provides guidelines for the order of number of data points for a specified PAC accuracy.
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6.5.2 Simulation Parameters

The individual controllers for different modes σk ∈ {1, · · · , 4} for robot 3, as devised by

[ 116 ], are given as:

If σk = i ∈ {1, 2},

l̇i3 = k1(ldi3 − li3), ψ̇i3 = k2(ψd
i3 − ψi3), θ̇3 = ω3

If σk = 3,

l̇13 = k1(ld13 − l13), l̇23 = k1(ld23 − l23), θ̇3 = ω3

If σk = 4, Eq. ( 6.16 )

(6.20)

The simulation parameters are given in the table below.

Table 6.1. Multi-robot parameters for simulation on supervisory controllers
subject to cyberattacks

Separation gain k1 1.5
Separation angle gain k2 1.5

Sensor ranges (R1, R2, R3) (0.75, 1.2, 2)
Initial positions robot 1 (leader) (0, 0, 30◦)

robot 2 (follower) (1.5, 0, 0◦)
robot 3 (follower) (0.2, 2, 30◦)

Initial velocities robot 1 (leader) ω1 = 0.1 sin 0.2t,
v1 = 0.5

Desired formation separating distance ld12 = ld13 = ld23 = 1
separating angle ψd

12 = 90◦

The ANNs designed in Section  6.4 have the following parameters.
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Table 6.2. NN parameters for simulation on supervisory controllers subject
to cyberattacks

Number of epochs, batch size 100, 5 (attacker)
Optimizer Adam

Loss function mean squared error
Number of hidden layers 1
Hidden layer activation softmax

Dropout rate 0.10
Trainable parameters 66

Query distribution (to collect D) U[0,3]×[0,3]
No. of epochs, batch size 10000, 512 (for defense GAN)

No. of hidden layers (both g & d) 4
Hidden layer activation leaky ReLU
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7. CONCLUSIONS AND RECOMMENDATIONS

This dissertation investigated data-driven safety and security methods for complex cyber-

physical systems (CPSs), where complexity is imparted to the systems via unknown non-

linearities (Chapters 2 & 4), usage of data-driven methods-in-the-loop (Chapter 4), com-

plex multi-agent interactions over time-varying networks (Chapters 3 & 5), and superviso-

ry/switched control systems with distinct cyber and physical layers (Chapter 6).

7.1 Research Contributions

As per the multi-fold objectives outlined in Chapter 1, the research contributions follow

appropriately. Set properties are generally more stronger properties than point-wise, or even

trajectory-wise properties for control systems. Of these, safety and security are of particular

importance, especially since more and more control systems employ physically separated

entities interacting over insecure communication networks. This is worsened by inter-agent

interactions of complex systems resulting in emergent points of failures in safety, or points

of cyberphysical vulnerabilities. This dissertation aims to perform a systematic research

into uncovering challenges relating to these set properties, and points of failures of related

operations of complex systems resulting from such an emergence.

To this end, the first point of contribution is to assist in rapid computation of reachable

sets, essential for determining safety properties. While numerical methods exist that compute

such set properties, the method proposed in Chapter 2 accomplishes the same with an

advantage of real-time applicability, while handling totally unknown system dynamics, at the

expense of the disadvantage of loose over-approximations. Such a method would be more

applicable when rapid reachable sets are to be computed and loose over approximations

are acceptable (e.g., initial rapid path planning). Chapter 3 considers similar unknown

dynamical systems, that have neural networks-in-the-loop. The contributions of this chapter

are as follows. First, computing approximate reachable sets for NNs in real-time is very much

an open problem, and the results can be far reaching as NNs are used in all parts of control

design lately (from estimation, to system identification to control synthesis). This provides

us with a systematic way to compute bounds on NN outputs in real-time, while respecting
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system’s dynamical data. The dynamics uncovered for these systems are used to obtain

a hybrid model+data-driven approach compute reachable sets for NN-in-the-loop systems.

As hard model-based control gets more and more elusive these days due to the presence of

widely unknown models, and agents being expected to collaborate with unknown entities,

the methods proposed in Chapter 3 pose wide utilities for practical problems and control

prototyping under highly nonlinear and uncertain environments, especially when machine

learning models are being employed in conjunction with modern control.

This dissertation also looks at the problem of safety for multi-agent systems. Related

reachable set computation can be performed on a central computational node, however, for

N number of n-dimensional dynamical systems, the computational cost grows exponentially

with n×N due to the associated curse of dimensionality in the Hamilton-Jacobi equations.

To alleviate this, we propose a distributed computational strategy where the reachable sets

of the agents are affected by each other in unknown ways, but inter-agent communication

can be utilized to compute the reachable sets using distributed optimization. Obviously, the

related disadvantages from distributed optimization are inherited in the schemes in Chapter

4. Convergence is slower in sparse networks, and uniform-joint-connectivity is to be main-

tained at all times for the solutions to be consistent. In reality, these assumptions can get

violated, especially if subject to malicious entities.

To this end, we dealt with the dual problem of uncovering vulnerabilities of complex

CPSs subject to malicious intent, under realistic scenarios of underlying CPS models be-

ing completely obscured from the attacker, except for the ability to interact with the CPS

physical layer in an open loop manner. Such assumptions are very realistic as many real

life cyberattacks against drones are prepared/trained on relatively inexpensively and readily

available off-the drones. We utilized such open loop interactions to determine equivalent

machine learning models for supervisory control systems in Chapter 6, and used Koopman

theory combined with semi-definite programming to find the equivalent systems in Chapter

5. The equivalent (or learned) models are sued by attackers to perform attacks with limited

budget, to remain undetected against naive detection schemes (e.g., threshold based detec-

tion), while causing degradation in system performance (in Chapter 6), and violating system

safety (in Chapter 5).
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7.2 Recommendations for Future Work

Based on the above summarizing discussion, the following points of recommendations

and further investigation can follow.

1. Computation of flight envelopes of quadrotors and UAVs in real-time is a challenging

problem. The methods discussed in Chapters 2 & 3 can effectively be utilized in

combination to result in a “hybrid reachable set computation" scheme. Such a practical

scheme should utilize loose approximations (when computation speed is desired), and

switch to slower, more accurate method (when operating close to flight envelope, or

when safety is desired).

2. For the methods in Chapters 3 and 5, convergence of the methods discussed over

stochastic networks is an open problem. Techniques from distributed optimization

over random graphs must be utilized to extend the results obtained in the Chapters

above to hold over random communication networks.

3. For over/under-approximate reachable set computation methods, developing associ-

ated approximation metrics (e.g., volume of difference between approximate set and

true reachable set) must be computed, and in a recursive manner. Works from

Kurzhansky et.al. in [  71 ] are an excellent starting point for certifying approxima-

tion level of such reachable sets. The methods proposed in Chapters 2 & 3 are ripe

for augmentation with such approximation certifying schemes, or metrics of approxi-

mation.

4. In this work, numerous nonlinearities in dynamics were handled while computing reach-

able sets with unknown dynamics. However, discrete event systems (DESs) or hy-

brid dynamical systems are a more general class of nonlinear dynamical systems that

are found everywhere from aerospace to electrical and software systems. Extension

of rapid, over-approximate reachable set computation methods to such nonlinearities

would enhance the applicability of this work.
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5. Hybrid cyber attacks were eluded to in Chapters 5 & 6, however, the scope was limited

to FDI and DoS attacks only. Smarter attackers can perform stealthy cyber attacks

against unknown systems (while being able to interact with their open-loop copies)

6. Computing real-time capabilities of UAVs is very important for UAM operating en-

vironments and practical applications of full autonomy in UAS control systems. The

proposed reachability methods can be utilized to compute system capabilities and for

real-time health monitoring of autonomous UASs. On-board applications should be

worth consider and investigation, but was beyond the scope of this work.

7. For the hybrid attack schemes in Chapter 5, the defenders can perform evasive ma-

neuvers by utilizing the distributed reachable set computation schemes in Chapter 3.

A full attacker-defender analysis can thus be analyzed from the combination of the

strategies above, and be used to determine, a priori, the range of all attack budgets

which result in system safety being violated. This is a stronger property, and thus we

believe could be of utility even if computed offline.

8. The mixed monotone schemes from Chapter 2 can be extended to hybrid dynamical

EDMD systems, where guard conditions themselves are also polynomial manifolds. A

two-level system identification can be performed to identify the resulting polynomial

hybrid system with polynomial guard conditions.
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