
RESILIENT ARCHITECTURES THROUGH DYNAMIC
MANAGEMENT OF SOFTWARE COMPONENTS

by

Anton Dimov Hristozov

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

May 2023

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Eric Matson, Chair

Computer and Information Technology

Dr. Eric Dietz

Computer and Information Technology

Dr. Marcus Rogers

Computer and Information Technology

Approved by:

Dr. John Springer

2

ACKNOWLEDGMENTS

This work has been possible due to the help from my advisor and dissertation committee.

3

TABLE OF CONTENTS

LIST OF TABLES . 10

LIST OF FIGURES . 11

LIST OF LISTINGS . 13

ABBREVIATIONS . 15

ABSTRACT . 18

1 INTRODUCTION . 19

1.1 Purpose of the study . 19

1.1.1 Class of systems . 20

1.1.2 Problems that need to be solved . 22

1.2 Significance of the study . 23

1.3 Hypotheses . 24

1.4 Research Questions . 25

1.5 Scope . 25

1.6 Limitations . 26

1.7 Delimitations . 27

1.8 Assumptions . 27

1.9 Summary . 28

2 REVIEW OF THE LITERATURE . 29

2.1 Limitation of current systems . 29

4

2.2 Architectures of Modern Autopilot Systems 31

2.3 Challenges in dynamic management of software architectures 32

2.4 Approaches for implementing resilient systems through dynamic software com-

ponent management . 35

2.4.1 Smart Components . 36

2.4.2 Component Interactions . 37

2.4.3 Component Authentication . 39

2.4.4 Contracts for Software Components 39

2.4.5 Software Rejuvenation . 43

2.4.6 Tools For Enforcement of Contracts 44

ACSL . 44

JML . 44

Domain Specific Languages . 45

2.4.7 Component Management and Root of Trust 46

2.5 Dynamic Run-Time Changes of System of Systems 47

2.6 Conclusion . 49

3 METHODOLOGY . 50

3.1 Research Design . 50

3.2 Procedure/methods employed to conduct the study 53

3.3 Discussion of the sample to be used in the study 57

5

3.4 Data collection procedures . 57

3.5 Data analysis procedures . 58

3.6 Conclusion . 58

4 RESILIENT ARCHITECTURES THROUGH DYNAMIC RECONFIGURATION 59

4.1 Prerequisites for Dynamic Architectures through Component Updates 60

4.2 Management of Dynamic Architectures . 64

4.3 Dynamic Architectures Incarnations . 65

4.4 Complexity Assessment of Dynamic Software Architectures 71

4.4.1 Publish-Subscribe Architectures and ROS for Dynamic Management . 71

4.4.2 Complexity Derivation for Publish-Subscribe Systems 72

4.5 Conclusion . 73

5 DYNAMIC RUN-TIME BEHAVIOR FOR IMPROVING SECURITY 74

5.1 The Case for Security through Dynamic Component Management 75

5.2 Attack Model . 77

5.3 Specifics of Dynamic Mechanisms for Security 78

5.4 Case Study . 82

5.5 Conclusion . 88

6 MODELING TECHNIQUES FOR DYNAMIC ARCHITECTURES 91

6.1 Modeling Techniques . 92

6.2 Code Generation of Systems Based on Models 96

6

6.3 Verification and Validation of System Models 98

6.4 Simulation of Models . 101

6.4.1 AADL Simulation . 102

6.4.2 SysML Simulation . 104

6.5 Practical Approaches for System Generation and Maintenance through Modeling 105

6.6 Conclusion . 110

7 DYNAMIC RECONFIGURATION OF SYSTEM OF SYSTEMS 111

7.1 Specifics of System of Systems with Respect to Dynamic Reconfiguration . . 111

7.2 Design and Deployment of SoS . 112

7.2.1 Design-time Approaches . 113

Generation of SoS . 115

7.2.2 Run-time Approaches . 117

Rapid Development of Systems . 119

Assurance of SoS . 119

Mission-Based Validation . 124

7.3 Conclusion . 126

8 DYNAMIC ARCHITECTURE DESCRIPTION LANGUAGE 127

8.1 Motivation . 127

8.2 Influencing Architecture Description Languages 127

8.2.1 GML . 128

7

8.2.2 Thrift . 128

8.2.3 AADL . 130

8.2.4 Acme . 130

8.3 Language Development Technologies and Tools 134

8.3.1 Xtext . 134

8.3.2 TextX . 134

8.3.3 Antlr . 135

8.4 dynADL - Dynamic Architecture Description Language 135

8.5 Conclusion . 147

REFERENCES . 149

A DEVELOPMENT SETUP . 164

A.1 Dependencies and Makefile . 164

A.2 IDE . 164

A.3 Debugging . 164

A.4 Running . 168

B DYNADL . 169

B.1 Command Line Interface . 169

B.2 Architecture Description Sample . 169

B.3 Code Generation . 169

B.4 EBNF Grammar . 174

8

VITA . 193

9

LIST OF TABLES

3.1 Comparing Popular Architectures. 53

8.1 Supported Data Types . 142

8.2 Supported Commands . 147

10

LIST OF FIGURES

2.1 General Architecture for an Autopilot . 31

2.2 Publish-Subriber Setup . 32

2.3 Software architecture graph . 38

3.1 Mission Experiment Setup . 51

3.2 Dynamic Refresh Approach . 52

3.3 Attack Simulation . 55

4.1 Software Architecture Configurations . 61

4.2 Smart component . 63

4.3 Dynamic Software Architecture - Case 1 . 65

4.4 Dynamic Software Architecture - Case 2 . 66

4.5 Dynamic Software Architecture - Case 3 . 66

4.6 Simplex Architecture . 67

4.7 Run-Time Enforcers . 69

4.8 Rejuvenation of a running process . 70

5.1 Dynamic Component Update . 76

5.2 Component States . 78

5.3 Component Exchange Activity Diagram . 80

5.4 Kernel Implementation of Component Manager 81

5.5 Trajectory Normal Case . 88

5.6 Trajectory Alternate Case . 88

5.7 Local Position X Normal Case . 88

5.8 Local Position X Alternate Case . 88

5.9 Local Position Y Normal Case . 89

5.10 Local Position Y Alternate Case . 89

5.11 Actuator Controls Normal Case . 89

5.12 Actuator Controls Alternate Case . 89

5.13 Angular Velocity FFT Normal Case . 89

5.14 Angular Velocity FFT ALternate Case . 89

11

5.15 Vibrations Normal Case . 90

5.16 Vibrations Alternate Case . 90

5.17 CPU & RAM Normal Case . 90

5.18 CPU & RAM Alternate Case . 90

6.1 Model to Code Bidirectional Process . 108

6.2 Component Centric Model-Code Integration 109

7.1 System Design Process . 114

7.2 SoS Design Process . 115

7.3 SoS Control Element . 118

7.4 Model to Implementation Diagram . 122

7.5 Run-Time Assurance Architecture Embedded in a SoS 123

8.1 dynADL Development Process . 137

8.2 dynADL Overall Structure . 139

8.3 System Generation from dynADL . 140

12

LIST OF LISTINGS

2.1 Formal Contract in LTL . 42

5.1 Component Manager Main Function . 83

5.2 PX4 Commands . 84

5.3 Mission Application . 85

5.4 Serialization/Deserialization of Position Controller 86

5.5 Serialization/Deserialization Routines . 87

8.1 GML Example . 129

8.2 Thrift Example . 131

8.3 AADL Example . 132

8.4 Acme Example . 133

8.5 Interface Glossary Definitions . 143

8.6 Packages and Systems Definitions . 144

8.7 Functions in dynADL . 145

8.8 Control Statements . 146

A.1 Makefile . 165

A.2 tasks.json . 166

A.3 launch.json . 167

B.1 General Architecture Description . 170

B.2 General Architecture Description (cont.) . 171

B.3 Generated Directory Structure for ROS . 172

B.4 Generated Files Contents for ROS . 173

B.5 Generated Files Contents for Posix . 175

B.6 Generated header files . 176

B.7 Generated main file contents sample for each component 177

B.8 Generated configuration file contents . 178

B.9 Generated diagnostics file contents . 179

B.10 Generated state file contents . 180

B.11 Antlr grammar for dynADL . 181

13

B.12 Antlr grammar for dynADL(continued) . 182

B.13 Antlr grammar for dynADL(continued) . 183

B.14 Antlr grammar for dynADL(continued) . 184

B.15 Antlr grammar for dynADL(continued) . 185

B.16 Antlr grammar for dynADL(continued) . 186

B.17 Antlr grammar for dynADL(continued) . 187

B.18 Antlr grammar for dynADL(continued) . 188

B.19 Antlr grammar for dynADL(continued) . 189

B.20 Antlr grammar for dynADL(continued) . 190

B.21 Antlr grammar for dynADL(continued) . 191

B.22 Antlr grammar for dynADL(continued) . 192

14

ABBREVIATIONS

AADL Architecture Analysis and Design Language

ACSL ANSI C Specification Language

ADL Architecture Description Language

Antlr Another Tool for Language Recognition

ASP Aspect Oriented Programming

AST Abstract Syntax Tree

BNF Backus-Naur Form

C&C Component and Communication

COTS Commercial Off-the-Shelf

CPLD Complex Programmable Logic Device

CPS Cyber Physical Systems

CPU Central Processing Unit

CS Constituent System

DOD Department of Defense

DSA Dynamic Software Architecture

DSL Domain Specific Language

EBNF Extended Backus-Naur Form

EKF Extended Kalman Filter

EMF Eclipse Modeling Framework

FAA Federal Aviation Administration

FPGA Field Programmable Gate Array

FSM Finite State Machine

GCS Ground Control Station

GPL General Purpose Language

IBD Interface Block Diagram

IDL Interface Definition Language

IDE Integrated Development Environment

IoT Internet of Things

15

JSON JavaScript Object Notation

JML Java Modeling Language

LSS Large Scale Systems

LTL Linear Temporal Logic

MDA Model-Driven Architecture

MDD Model-Driven Development

MDE Model-Driven Engineering

MBSE Model-Based Software Engineering

ML Machine Learning

MOF Meta Object Facility

MTD Moving Target Defense

OMG Object Management Group

QVT Query/View/Transformation

ROS Robotic Operating System

RTA Run-Time Assurance

RTOS Real-Time Operating System

RV Robotic Vehicles

SA Software Architecture

SAT Solvers and Tools

SoS System of Systems

SOA Service Oriented Architecture

SysML System Modeling Language

TEE Trusted Execution Environment

UAV Unmanned Aerial Vehicles

UGV Unmanned Ground Vehicles

ULSS Ultra Large Scale System

UML Unified Modeling Language

VHDL (Very High-Speed Integrated Circuit) Hardware Design Language

XMI XML Interchange Language

16

XML Extensible Markup Language

17

ABSTRACT

The architecture of software-intensive systems is determined by their functionality and the

environment they operate in. For Cyber-Physical Systems (CPS), the environment can vary

in complexity and change with time. These systems operate independently, with little or

no supervision, and with little maintenance. They are expected to last for long periods,

that can extend to even decades. Since their operating conditions can change over time

and the requirements for the systems can evolve, it is necessary to have a non-intrusive way

to instantiate newer software components as the system is operating. This can extend the

usability, adaptability, and longevity of such systems.

The ability to replace software components as systems are operating can also be a way to

improve software diversity, safety and security. Techniques that include redundancy and

diversification of the software can become a reality only if a dedicated approach for software

components update is available during run-time. The practicality of this can be achieved

if component interfaces, state, and dynamic management are handled appropriately. This

study explores the mechanisms, and the challenges of dynamic changes through the manipu-

lation of software components while the system is in running. The focus is on safety-critical

embedded systems, which may be resource-constrained and have real-time requirements. Im-

proving security and reliability through fault-tolerant mechanisms is the primary goal of this

work.

The study of dynamic architecture is not solely restricted to individual systems. The prin-

ciples that are presented are discussed in the scope of large scale systems and system of

systems. Run-time assurance is also receiving attention as part of the life of dynamic sys-

tems. Techniques such modeling and validation are explored in the same context. The work

presents some experimental results and discusses possible practical approaches for designing

dynamic system of systems.

18

1. INTRODUCTION

1.1 Purpose of the study

Our dependence on the Internet of Things (IoT) and smart sensors increases with the

deployment of many of these devices in all industries. These systems are generally part of the

Cyber-Physical Systems (CPS) class. They have access to their environment through sensors

and are connected to a network through their cyber components. CPS can be built with

limited processing power and memory and typically need to be energy efficient. A subclass of

these systems are the robotic vehicles (RV) which can be mainly UAV or UGV . Since they

are being deployed in different environments, this determines the large surface of potential

attacks against them. These characteristics determine the challenges associated with their

design, operation, and vulnerabilities. The interaction between their physical and cyber

parts brings new challenges and potential exploits. Therefore the successful implementation

and design of such systems will continue to challenge the current state-of-the-art and state-

of-the-practice techniques.

One of the salient characteristics of CPS is their complex and evolving operating envi-

ronment. This leads to interaction with a multitude of sensors and exposure to possible

sensor security challenges. Another characteristic of CPS is the need for autonomous op-

eration. The autonomous work of CPS means adaptation to changing conditions. This

brings the requirement of adaptability during the course of the operation of such systems.

In the cases where CPS are moving, such as Unmanned Aerial Vehicles (UAV) or Unmanned

Ground Vehicles (UGV), we can expect unpredictable environmental changes. As a result of

the changing conditions, different sensors and control algorithms may be needed, affecting

functionality. An example could be a drone flying through different terrain and relying on

different localization methods, thus requiring different software components to be used. For

such circumstances, we need the ability for software adaptation and dynamic reconfiguration.

Dynamic behavior is also helpful in preserving safety while combating security threats.

Most modern systems are based on some architecture that utilizes independent soft-

ware components with a common mechanism for exchanging messages. An example is the

widespread Autosar architecture in the automotive industry [1]. This type of architecture

19

provides much flexibility since components communicate with other parts of the system

through messages. Unfortunately, the typical systems deployed today, including Autosar

and ROS, have a static structure with predefined components and messages as well as ser-

vices and actions. This makes it difficult to expand, repair or fortify existing systems by

bringing new components dynamically without disrupting them. This study explores the

feasibility of a new class of systems using smart components and techniques to allow for the

seamless integration of such components in existing systems and in newly designed ones. The

future autonomous systems will be much more dynamic and adaptive, and their reliability

and safety cannot be compromised.

The study analyzes the practicality and limitations of such systems and the approach

to dynamic software adaptation. The research hypotheses are tested on realistic systems

and assessed on the effect of dynamism on their operational characteristics. This would

require modifications to an existing autopilot and other robotic software. The resilience of

the augmented capabilities need to be tested through the simulation of cyber-attacks and

throughout the execution of simulated missions. Objective measures of the impact of the

new approach need to be compared with the base system without any changes.

1.1.1 Class of systems

The class of systems that are part of this study are UAVs and UGVs performing au-

tonomous missions, although the techniques can apply to any CPS, even if it is not an RV.

Many of these systems offer small prototypes for research purposes that are more practical

and safe. In addition, the most widespread ones have simulation models that help run con-

tinuous experiments without any fear of destroying any equipment. The class of systems we

focus on is real-time, resource-constrained CPS with some portable energy storage in the

form of rechargeable batteries. They are characterized as nonlinear control systems because

of the nature of their electrical and mechanical design. The two major sub-classes of systems

used for vehicles are holonomic and nonholonomic. A holonomic system is, for example, a

UAV such as a quadcopter, characterized by the ability to move independently without any

restriction at any point. On the other hand, a nonholonomic system can move in specific

20

directions and cannot change any direction quickly in a 3D space (for example, a UGV). A

nonholonomic system is a winged aircraft, and a typical holonomic example is a helicopter

or a quadcopter .

One popular autopilot system is PX4 [2]. It is used mainly for UAVs but can support other

vehicles. This autopilot software is pretty attractive because it has a very extensive ecosystem

and works well with other tools. For example, it can connect with mission generation tools

such as MAVSDK through the Mavlink protocol [3]. The simulation environment it supports

includes several options among well-supported simulators such as Gazebo and Jmavsim . It

coexists nicely with QGroundcontrol for managing missions. An additional benefit of PX4

and similar systems is that the code that it executes through simulation is the same code

executed in an actual vehicle except for the actuator and sensor code, which is replaced by

the simulator. This guarantees that any simulation environment modifications can be tested

the way they are in an actual vehicle.

The main characteristic of such systems is that they are moving in some cases in 2D or

3D space and are therefore safety-critical. This comes from the fact that they can crash and

be destroyed and endanger other systems and people in the process. Because of the fact

that they are moving, such systems can encounter large areas where unforeseen dangers can

exist, and many new cyber attacks can be launched against them. Therefore the reliability

and adaptability of such systems are crucial to their survival. A common goal for civilian

or military CPS that can move is that they need to complete their mission with acceptable

mission success and quality. In many cases, just completing the mission is not enough, but

completing it while meeting specific criteria is the desired outcome.

We can consider that every mission has some essential priorities for its completion. Some

of these priorities may be conflicting, and strategies for optimizing the mission results may

be needed. Commonly used priorities can be time, survival, and mission efficiency. If

some missions can be successful based on the environment just by achieving the time goal,

others may be in a hostile environment where survival is paramount, and everything else

is secondary. Similarly, the efficiency of the mission may refer to the distance traveled,

the terrain passed, and the resources used to travel, such as fuel, for example. Defining

mission utility parameters can help to perform an objective assessment of the mission quality.

21

The assessment of how well the mission is accomplished can be achieved through mission-

validation techniques.

1.1.2 Problems that need to be solved

Numerous problems need to be resolved to make the dynamic architecture management

approach practical and quantifiable. The issues stem from the fact that different software

components or systems differ in size, complexity, internal state, and parallelism. Therefore,

the approach needs to focus on representing the most critical aspects of any software compo-

nent or system, such as interfaces, states, and contracts, including non-functional properties

such as timing and memory safety. The timing issue is significant for real-time CPS, which

is the class of systems on which the study focuses. The same is valid with memory safety

and interactions between different parts of the system.

Software components and even systems can be designed by different vendors, and teams

and can use different technologies and programming languages, and undergo different types

of testing, verification, and validation. There is no universal method that guarantees the

applicability of a software component in existing architectures. This comes from the fact

that the testing and the operational environments may differ significantly. This could hinder

integration and make the process more costly. This shortcoming is a significant hurdle in

the adoption and integration and the ability to perform any run-time replacement with

COTS components. A general formal approach is needed to make this task possible. This

study explores the possibility of creating a framework and using a Domain Specific Language

(DSL) to facilitate component interfaces and properties that can help in dynamic component

management . A DSL can be very valuable in defining component interfaces explicitly. Such

interfaces can then be assessed and compared through programmatic techniques and tools.

One problem when a component needs to be shut down and replaced by a new one is

that it can have a significant and complex state that has been accumulated and continuously

evolves as the system operates. Therefore, saving the state and being able to recreate it in

a different component instance is a compelling challenge, especially if we attempt to do it

in a generic way. Suppose the state is defined and given as a requirement to a component

22

vendor. In that case, it becomes possible to think of components as equivalent if they have

the same state and interfaces, even with different implementations. This is definitely one of

the great challenges in this work.

The other very significant problem that needs to be tackled is the presentation of the

interface and the embedded software contract of the component or system. Replacing one

component with another one that may have a very different implementation can only happen

if the interfaces are preserved. The first important thing is to define what goes into defining

an interface. Then how the interface is defined follows. Finally, how the interface definition

is used is very important. There is no universal way to describe interfaces for off-the-shelf

components that developers can use in an arbitrary architecture.

1.2 Significance of the study

With the astounding achievements in hardware and software development, the possi-

bilities of current and future systems are continuously improving. The trend is going to

continue with the adoption of AI in CPS . There is a need for continuous maintenance of

such complex systems, which is challenging to meet with the current approaches. At the

same time, there is a push for self-adaptive systems that can react to complex and dynamic

environments. Even if these systems are designed well, they can reach a limit after their

deployment and will need to be updated or repaired. The current study focuses on methods

for seamless component replacement, the refresh of the state, and other techniques that can

provide better reliability and longevity for a system equipped with such capabilities. These

new features can save money and time for the maintenance of future systems developed with

such capabilities. The approach can also reduce the number of defects due to integration

issues.

Dynamic control of components that are part of the software system allows for better

reactions to security threats by exploiting diversity and redundancy during run-time. Such

techniques make the job of any attacker much harder and minimize the window of opportu-

nity and the predictability of replay attacks. Another outcome of diversity and redundancy

is increased reliability and overall resilience . With the increase in hardware power and mem-

23

ory, running more diverse software will continue to become more affordable. The solution

has to come from smart software architectures taking advantage of the advances in hardware

and advances in dynamic software architectures.

Finally, replacing components at appropriate moments of time can help with handling the

energy consumption of a CPS . This directly affects systems that are dependent on energy

harvesting or battery life and is part of the overall adaptation objective. For example, in

conditions where solar energy is abundant, we may need to use a different set of components

instead of when the device is working with very little or no solar energy and needs to

be executing its mission frugally for energy conservation. Similarly, a newly redesigned

component with energy efficiency in mind may prove crucial in systems that need to be

optimized for consumption after deployment.

The significance of the dynamic refresh of components or even systems is most profound

in changing environmental conditions and in the presence of potential security threats. Au-

tomatic component replacement can bring new capabilities or optimize behavior for handling

environmental changes, including energy consumption. In the presence of threats, techniques

that periodically turn on and off components that can execute similar tasks differently can

significantly increase the time for preparation of the attack and decrease or eliminate its

chances of success. Variations in time and space in how components are dynamically re-

freshed can further strengthen the approach, making the attacker’s task even harder. All

this can even be done as an upgrade option after the system is deployed.

1.3 Hypotheses

The study is based on the following hypotheses:

• Dynamic component management is an approach that can benefit the operation, secu-

rity, and maintenance of software-intensive systems working in a changing environment

• Resilience of software architectures can be achieved through a shift in the design

methodology to run-time mechanisms in order to allow for the creation of systems

with better quality, re-usability, and adaptability.

24

1.4 Research Questions

Research questions:

• What kind of interfaces are necessary for smart software components and systems so

that they can become suitable for dynamic reconfiguration?

• How can the state of a software component be represented, saved, and restored so that

it can continue operating after it has been reloaded or replaced?

• How can software components or systems be replaced with alternative instances with-

out interrupting the flow of operations in a typical software system?

One of the major goals of this dissertation is to propose a methodology that can help im-

prove an existing system as well as design a new system with specific qualities. By answering

the following question, we make sure that the study results are applicable to a large class

of systems and not only to a specific autopilot software. Since these fundamental questions

apply to widespread systems such as Autosar and ROS , the results from this research can

be applied to current and future versions of systems. The findings and methodologies can

be applied to an even larger class of CPS because of their generic nature.

1.5 Scope

There are many classes of software-intensive systems that will come into existence in

the future. The types of systems that we concentrate on are embedded systems used for

CPS. These types of systems represent small and larger devices but are generally resource-

constrained compared to other software systems used in IT . To further reduce the scope

and make the study more concrete, we focus mainly on autonomous systems such as UAVs

and UGVs , also known as robotic vehicles (RV) . The architectures of such systems use

different software and hardware platforms, but they have many similarities as far as their

main hardware and system software components. The primary focus of this work is the

infrastructure for software components working in the application space. This is determined

by the fact that the smarts of such devices are in the application, and its ability to continue

25

to be resilient and adaptable comes from the characteristics of the software. The scope can

also include some aspects of the existing system software, including the OS, drivers, and

hypervisors, when necessary.

The results are not be only applicable to CPS , although the study focuses on such

systems to provide a more specific direction. Dynamic software reconfiguration is relevant to

desktop and mobile applications alike and for systems with different complexity and purpose.

One can even extend the scope to devices that use hardware and special firmware, such as

the one used in FPGAs and CPLDs . Narrowing the scope for CPS that includes motion

and focusing on software components only does running experiments and analyzing results

more manageable and gives some boundaries to the study for practical purposes.

1.6 Limitations

The study focuses on a specific class of systems, but nevertheless, some limitations need

to be considered.

• One limitation is the fact that real-time systems such as UGV and UAV are safety-

critical, and any software glitch can turn an executing mission into a catastrophe.

Therefore the research hypotheses and tests need to be verified predominantly through

simulation before trying them on a real physical system. Safety precautions need

to be taken, primarily if UAVs are used for experiments, given the restrictions of

where they can be flown and how accessible are special UAV testing sites. There are

FAA restrictions for certain classes of UAVs, and licensed pilots are required. Smaller

prototypes and simulations can therefore be more practical.

• While performing any reconfiguration of software components, there is a time depen-

dence and sensitivity of the system on the refresh of components. This dependency

needs to be further assessed, and its impact on the overall system needs to be studied

and simulated. The applicability of the techniques proposed in this study may not

be universal and may not be achievable for very time-sensitive components or such

with very complex states. We aim to find these boundaries and propose guidelines and

metrics for applying the methods.

26

• Some very complex components can behave like black boxes. This is true for some

systems that use AI solutions. In these situations, general component refresh or update

may be impractical and prohibitive to the system’s health while it operates. The

study starts with more manageable components and attempt to study real-world cases

used in some autopilot software such as PX4 and robotic software such as the Robotic

Operating System (ROS) . Simpler AI components may also be considered if they allow

some form of analysis. Good possible choices are the controllers used in a UAV/UGV

since they are relatively specialized and contained, and their interfaces can be described

well. They also do not usually have complex states, unlike some AI solutions.

1.7 Delimitations

• The study focuses on existing autopilot systems for UAVs and UGVs. The approach

needs to be general to be applied to other similar systems. The goal would be to

create a universal solution based on a Domain-Specific Language (DSL) or a general

Architecture Description Language (ADL) to capture component interfaces and tools to

enforce them. That way, we can capture attributes for software components to quantify

their interfaces and behavior. Such an approach can used to design a methodology and

tools to perform experiments that can prove the theory.

• The testing can happen with existing software through simulation or on actual proto-

types running the software.

• The approach is quantitative so that metrics can be compared and studied for different

systems and use cases.

1.8 Assumptions

The following assumptions are considered valid for this study:

• The studied systems are real-time, resource-constrained, and safety-critical.

• These systems are adaptable in some form, even in a limited fashion, with the potential

to increase their adaptability

27

• The studied systems are made up of software components or systems and use a message-

based publish-subscribe mechanism, e.g., PX4, Ardupilot or ROS

• The used UAVs or UGVs or any other Robotic Vehicles (RV) should be able to be

simulated or exist in a physical prototype

• The systems need to be open-source, and their code and documentation should be

publicly available

• The developed software and documents associated with this research are made available

as open-source according to the requirements of the university for such publications

1.9 Summary

This work strives to provide a comprehensive study of the subject of dynamic reconfigura-

tion of software architectures at run-time. This includes refresh, replacement, updates, and

bug fixes in existing components while the system is operating. The objective of providing

a seamless operation during such dynamic changes is central to the study. Other objectives,

such as increased reliability, security, and adaptability are also important, especially since

the focus is on safety-critical, real-time systems. The study presents a framework, method-

ology, and quantitative results on the feasibility and limitations of meeting these objectives.

All experiments use real-world systems to prove the approach’s feasibility and quantify the

findings.

28

2. REVIEW OF THE LITERATURE

2.1 Limitation of current systems

Most systems that control robotic vehicles are based on a design-time paradigm, where

the entire architecture is well-established and fixed. Such architectures are static and de-

signed to work in a particular way without any possibility of being changed [4]. Unfortu-

nately, the usage of such systems is in ever-evolving environmental conditions, under different

forms of threats and cyber-attacks , and in the presence of component failures and degrada-

tion throughout the life of the systems due to aging and other factors, such as temperature

and humidity. This type of environment and usage necessitates a different architecture that

enables dynamic instantiation of components, enabling redundancy, reliability, and fault-

tolerance, which leads to better resilience .

Many systems used today employ the publish-subscribe paradigm that allows for indi-

vidual components to communicate asynchronously with other components in the system

[5]. This allows any component to register a message topic to which one or many other com-

ponents can subscribe. Such architecture can keep the components loosely coupled where

only messages or services can determine their interaction. Individual components can be

designed separately with different technologies and by different vendors. Publish-subscribe

is a universal mechanism and allows the addition and removal of components by letting them

subscribe to messages on and off. Even when publish-subscribe is used, the existing system

has predetermined components, messages, services, and actions at design time.

There are several issues about how current systems are architected and built, and it all

comes from their components. One issue is that they need to be built with a straightforward

way to present their interfaces, behaviors, and restrictions. This makes it difficult to replace,

repair or refresh components at run-time. Another issue is that the characteristics of software

components need to be described in a formal way that can be used by programmatic tools

for analysis or dynamic management [6]. Many of these characteristics are embedded in

the code and are thus not made explicit at a system level. This restricts the building of

automation and analysis tools as the information is implicitly hidden in the implementation.

29

A typical system needs a way to know the dependence of components on each other

and what needs to happen if a component is removed and replaced by another one while

the system is operating. In other words, the architecture is not explicitly defined when the

system is deployed. Due to reconfiguration , timing, overall system instability, or overall

survival is hard to predict or reason about without explicit knowledge about dependencies.

Therefore the failure of a specific application component can bring unforeseen circumstances

that can affect the whole system without a way to perform an analysis and to have a solid

recovery plan [7]. Individual components only know their state and functionality and cannot

be responsible for the entire state of the system. The effects of each component’s or system’s

failure need to be analyzed and acted upon if we desire better and more reliable systems or

system of systems(SoS).

Another restriction for typical maintenance and operation is that a system upgrade typ-

ically requires a reboot of the entire system. This is needed since individual components are

not entirely independent, and their interfaces and effects on the rest of the system still need

to be discovered. For some systems, this type of upgrade may not be an option, and a reboot

of the entire system can be a long process that can take it out for some time, affecting other

system interactions. This scenario may not be an option for some applications as the inces-

sant operation may be a desirable trait. Therefore the upgrade of individual components in

flight is a necessary operation that can help achieve a smooth operation and can increase

the robustness of the deployed solution [8].

The changing environmental conditions of a complex system require adaptation, which

can happen through loading new and appropriate components that can work in the new

environment [9]. Regular systems do not have this ability, and part of it is because of the

difficulty in deploying systems with components or subsystems that have well-established

functionality and interfaces and a way to describe their interactions with other components

that are part of the system. For self-sufficient CPS, though, it has become pretty common

to expect operation without supervision for years, and the ability to perform adaptation can

benefit the product’s life.

30

2.2 Architectures of Modern Autopilot Systems

A modern autopilot system has an architecture that consists of multiple components, as

shown in figure 2.1 . The components shown at the diagram’s top run in separate execution

units and are completely decoupled. A central piece in the architecture is the micro ORB

component which handles all communication through messages and events. For real drones,

the system relies on a Real-Time Operating System, which provides the execution of tasks

with strict timing limits. This is the system software layer on the diagram. The system

software interacts with the physical world, where actuators and sensors live.

Figure 2.1. General Architecture for an Autopilot

Figure 2.2 shows the publish-subscribe communication mechanism utilized in many mod-

ern systems such as PX4, Ardupilot , and ROS. A process that wants to send messages pub-

lishes topics, and subscriber processes subscribe to one or more topics. This initialization

typically happens at startup but can also happen dynamically during run-time if needed.

31

The publish-subscribe paradigm makes it easier to think of components as replaceable and

dynamic units. As each component is free to publish as many messages, it can add new mes-

sages at run-time. Similarly, components can subscribe to new messages at run-time. For

architectures that support services and actions, as is the case with ROS, the same freedom

applies to services and actions.

Figure 2.2. Publish-Subriber Setup

2.3 Challenges in dynamic management of software architectures

Dynamic reconfiguration at run-time is becoming a necessary feature for many different

scenarios [10]. One of the main applications of dynamic reconfiguration is to adapt to

changing environmental conditions. These variables can necessitate different algorithms and

components with new capabilities. Such adaptation can optimize performance, energy, and

overall seamless operation. Another benefit is creating more resistant architectures to cyber-

attacks because of the ability to quickly change components and refresh components with

compromised states. Finally, the ability to upgrade existing components by adding fixes

and new features is the promise of having unattended systems that need to operate without

32

rebooting for years or decades. Meeting these scenarios requires overcoming the specific

challenges of existing approaches.

Expressing the functional and non-functional characteristics is the first challenge that

needs to be overcome to make the dynamic management of components possible [11]. The

functional interfaces are better studied and easier to implement, but in real-time and safety-

critical systems, the non-functional characteristics such as timing, memory safety, and self-

diagnostics are more challenging to express and implement. Each component can have

multiple interfaces and contracts that define its functional and non-functional behavior. The

challenge needs to be addressed by defining a way to specify these component characteristics

in a descriptive way that can be used programmatically and through tools. Utilizing such

a domain-specific language will be one of the main focuses of this study. Describing the

dynamic architecture of a system or a system of systems in an expressive and formal language

can create the ability to build systems with tools and new qualities.

For the majority od systems the state is local to the individual components. The state

can be modified at system initialization or at run-time [12]. Some systems can assess their

state statically, although the state evolves and it is different during the course of the usage

of the system. This happens because many components’ internal state changes continuously

[13]. Some have very many state variables, and some may have a very minimal state or be

even stateless. Recovering this internal state of a component is a primary challenge because

the state can have effects on the system. The difficulty in representing state universally

comes from the fact that the state of a component is in flux, and the dynamic changes

can be fast. In addition, components can support parallelism, making things even more

complicated. This can mean that the state can be distributed throughout parallel execution

contexts that are part of the component.

Software components maintain state in variables; in many cases, they can be complex

objects and structures. To be able to save the state of each variable, one can use a technique

called serialization [14]. The variables of an object are converted into bits- sequences and

can be stored in a non-volatile memory. Deserialization is the opposite and converts the

stored data from non-volatile memory to primitive types that can restore the variable of

the previously serialized object. Some higher-level languages support serialization, but C++

33

does not support it in its standard libraries. Serialization can be achieved through specialized

C++ libraries. This is important to mention since the typical autopilot software is in C or

C++, and it is more difficult to use a separate language just for achieving this.

Another concern is the effects on timing when refreshing or updating components is

attempted[15]. Some components can take a long long time to reach a state, where they are

fully initialized, because they need to get data based on different sources. A representative

component that has such characteristics is the Extended Kalman Filter (EKF) , used in many

autopilots and control systems. This happens because the EKF performs sensor fusion on

the data that it receives from sensors and applies algorithms that can converge after some

time. Another consideration is how much time it takes for a component or a subsystem to

be restarted. This can have an effect on the system’s overall stability. This includes the

time it takes to load and initialize a component and to update its state. This is shown in

equation 2.1 where the time it takes is shown as a sum of three parts:

tr = tl + ti + ts (2.1)

where tr is the time to refresh a component

tl is the time to load

ti is the time to initialize

ts is the time to recover the state

Effects on the system, based on actions with individual components, are something that

we need to consider. When a component is stopped and restarted, we need to consider which

other components may be affected and the tolerance of absorbing this disturbance. Usually,

systems are still determining what components will be affected and how because components

are always running in most architectures. System-wide knowledge can be preserved by

a particular subsystem that can handle these component interactions [15]. On the other

hand, if components are refreshed fast enough, they may not significantly affect the system’s

34

behavior. The implementation of approaches for such systems is going to be one of the goals

of this study.

2.4 Approaches for implementing resilient systems through dynamic software
component management

Architecting resilient systems needs to be a deliberate process [16]. The most important

starting point is the notion of a smart component. Such components can have their diagnos-

tics, provide interfaces and contracts that they follow, and recover and export their state.

Typical software components do not have all these characteristics, affecting the overall flexi-

bility and resilience of the architectures built with them. Performing component replacement

during run-time is only possible when smart components are used.

The term component in this work has a more general meaning and can be described with

the following definition: A component is a combination of software, firmware, and hardware,

in some cases, allowing an independently functional unit to be part of a more extensive

system. A component can have separate parallel threads of execution and an internal state

and communication. It can be a single thread, a single process, or a combination of those,

but the specific part is that it has a clear interface for interacting with other components as

part of the system or even other systems. The emphasis on referring to a component this

way is to regard its interfaces and obligations instead of the specifics of its implementation.

If we extend this definition, an entire subsystem can be defined as a component.

There are some specifics when components are used in embedded systems that have real-

time characteristics. The most notable ones are: a.) Components that include software can

depend on hardware or be partially implemented in hardware. b.) Components need to

possess strict timing characteristics. Therefore the loose coupling of components and the

minimization of synchronous interfaces is crucial for this class of systems. Unique modeling

languages can help with addressing the timing requirements, for example, Timber [17], which

is a reactive language. Using higher-level languages has the benefit that one can model the

specification closely and then proceed with implementation.

Many modeling techniques advocate a top-down approach to defining the components

and interfaces. This approach is suitable when systems are first designed and may have some

35

significant difficulties when used with existing systems that already have millions of lines of

code written. A more practical approach for existing systems is to find a way to retrofit

them and enable new characteristics through modifications in their interfaces. A bottom-

up approach may be necessary for these situations, starting from the key components and

working on these components first and then fitting them into the existing system. This

approach can preserve the properties of existing systems, add new ones, and enable dynamic

changes in the life of systems retrofitted with smart components. The bottom-up approach is

also very suitable for system of systems where independent systems can evolve and maintain

compatibility with the rest.

2.4.1 Smart Components

Smart components include two completely separate interfaces, one for functionality and

one for diagnostics and control . The diagnostics portion of the interface can be implemented

independently and can live in a separate thread or a separate process so that it does not affect

or be affected by the normal operation of the component. In addition, the component has a

separate contract management block that handles all contract-related issues during run-time

. This type of smart component allows for self-diagnostics and contract management while

it works and executes its main functionality [18].

Components are sometimes classified as horizontal and vertical regarding their role in

architecture. In very loosely coupled architectures, components are not in a specific hierarchy

as they function according to their interfaces and can service any number of messages and

services that originate from any other component. A critical characteristic of components is

their suitability for reuse. The suitability for reuse can be improved significantly by keeping

the interfaces and implementation of components separate. With regards to reuse, vertical

components hold better promise with a higher percentage of reused functionality [19].

Special attention is applied to the way interfaces are designed. One component can have

one or more interfaces, and conversely, a single interface can be used by different components.

Both interface types are used in practice, significantly affecting how a component needs to

be implemented. According to [19], interfaces can be stateful, meaning that they preserve

36

the state between invocations and can also be stateless. Stateless interfaces provide a better

platform for component refresh and replacement, but stateful interfaces exist and need to be

considered in this study. We will still prefer stateless interfaces as the service-oriented and

message-based system interactions facilitate.

Interface adapters can augment the capabilities of an existing CPS through the enhance-

ment of existing components. An exciting approach described in this work [20] shows how a

scripting language, in this case, Lua, can be used to modify the interfaces of existing com-

ponents. This approach allows for adding new functionality to existing systems by creating

port monitors that can track all messages that the component receives, add functionality

and make decisions about the validity of the data. Modifying existing interfaces can be used

so that existing systems can be retrofitted to comply with a spec or an architecture that

can allow for easier dynamic reconfiguration and can provide better reliability of the whole

system.

This study will focus on the external interfaces as opposed to any internal interfaces that

a software component may have [21]. An external interface can represent the component and

how it fits into the existing architecture. This can be done by using a textual representation

in a formal language or a simple JSON format. There will be no focus on the component’s

functionality as it may vary, and it is not affecting the integration of the component in

the architecture. Determining if the component can fit in the architecture automatically is

crucial to the success of dynamic component management.

2.4.2 Component Interactions

Since the premise of dynamic management of components is that they can be replaced

or refreshed as the system is running, their effect on the entire architecture needs to be

accounted for [22]. The connections between components are implicitly determined by the

messages they publish and which messages they subscribe to. Similarly, components could

use inputs and outputs to connect to other parts of the system. These interactions can

be shown through the representation of the architecture in the form of a graph, where the

vertices are the components and the edges are the connections between them [23]. This type

37

of representation can help find the dependencies and predict the effects of changes made to

components. Such architecture is shown in figure: 2.3 .

Figure 2.3. Software architecture graph showing dependencies between components

Some approaches demonstrate frameworks that can enable the replacement of compo-

nents at run-time . There are a few such systems, one based on Erlang libraries and Corba

[24]. The framework uses OpenRTM-aist and OPRoS, which rely on representing the state

of each component and providing ports for connecting components. A special introspection

interface acts as a diagnostics tool to judge if a component is in a healthy or error state and

takes action. Since the approach relies heavily on Erlang libraries and tools, it is challenging

to directly apply it to existing systems written predominantly in C++ and Python. There-

fore a universal approach is needed that takes into consideration the architectures of existing

autopilots and other robotic frameworks.

38

2.4.3 Component Authentication

Using software components has its risk of loading a component that is not trustworthy

and can affect negatively the systems. Therefore it is necessary to have a way to ensure

that components can be trusted. Component authentication and attestation need to be

used before components are used. Architectures that use an attestation server and key

management have been proposed [25] to handle this. A fairly popular approach exploits a

shared key created during the build phase. It appends a signature to the component that

can be verified only by an entity that has the same secret key. This approach is good and

can be successful as long as the secret key is guarded and has sufficient length.

An HMAC approach is discussed in [26]. There a keyed hash algorithm is being used.

HMAC preserves data integrity and guarantees proof of origin. As in the previous method,

keeping the key secret is paramount for the approach to be secure. The overhead of checking

the HMAC is a practical consideration, although it may not be an issue since it is done only

once: during the initial loading of the component. Once the component is running and is in

memory, then it can be trusted as we apply different techniques to guard its execution from

that point on.

2.4.4 Contracts for Software Components

Contract-based software design can help with the generation of reliable components.

Systems that need to provide resiliency and longevity and work in a safety-critical context

need some assurances when a new component can be used [9]. This is the case because

components in critical CPS can interact with physical entities and can depend on timing. In

this scenario, software components’ requirements must be well specified and implemented to

have some guarantees during operation. Ideally, these components need to be validated and

verified before use in the system.

Another motivation for contracts is the growing complexity of systems. This complexity

creates difficulties in understanding the relationships and interactions between components

unless these interactions are clearly defined [11]. CPS has a cyber and a physical side, which

need to interact, and they may be very different. Each of these sides has different dynamics

39

too. Contracts can help with taming this complexity. Ultimately this can help reduce costs

and schedule during the development cycle.

The notion of defining pre-conditions, invariants, and post-conditions is a simple form of

defining software contracts. One can design a system with components that abide by soft-

ware contracts, facilitating the system’s composition from well-established building blocks.

Software contracts are defined as having assumptions A and promises, also known as guar-

antees G [11]. The assumptions define the contract’s expectations, and the guarantees are

what it promises to deliver. The original work on software contracts started with the Eiffel

language [27] and was adopted in some architectures over the last decades. An excellent way

to approach this is to use a formal language that allows the definition of contracts during

modeling.

The creation of contracts can help components to be documented better and can promote

their reuse [27]. If there is a need for a component to be replaced in the future, then its

contract obligations will be apparent and independent of the implementation. Therefore,

the component can be easily replaced by a different one. Contracts can specify what is

allowed to change and what is expected, and this limits the variability when components are

implemented [28]. The specified changes in software contracts can help when components

need to be upgraded or modified when some issues are discovered. This becomes a good

practice for systems that need to be resilient and work without supervision for long periods.

Contracts can also help when teams from different disciplines need to interact. In many

cases, engineers with various backgrounds need to implement different parts of the system

[29]. This is the case when software engineers need to work with hardware engineers or control

engineers. Contracts can help designs to progress concurrently and independently. The

same applies to component updates and optimizations. While the contract is not violated, a

component can be redesigned for better performance, for example, or better security. If the

contract is preserved, the component can replace an existing one.

Contracts can be horizontal and vertical depending on their use in the system architec-

ture. Vertical contracts define the interactions between components from different layers

in the architecture, and horizontal ones help with the interaction at the same level [11].

Contracts can be used throughout the development cycle and implemented through differ-

40

ent design methodologies. In this respect, they can help to start from requirements up to

verification and validation (V&V) .

The formal representation of contracts (C) can be described with the following pair shown

in equation 2.2 :

C = (A, G) (2.2)

where the set of A are the assumptions and G are the promises or guarantees [11] of the

contract. This definition lets us define components easier by specifying what they can guar-

antee and under what assumptions. Different sets of operations on A and G are also possible,

and thus we can have the ability to find, for example, the union of two contracts as shown

in equations 2.3 , 2.4 and 2.5 . This type of contract mixing allows the creation of complex

contracts based on already existing ones and some logical operators.

C1 = (A1, G1) (2.3)

C2 = (A2, G2) (2.4)

C1 ∪ C2 = (A1 ∪ A2, G1 ∪ G2) (2.5)

Contracts can become part of the interface of components. They always have an imple-

mentation that is not specified as long as the contract requirements are met. In this respect,

contracts are treated as part of the interface definition. Assumptions and guarantees can

refer to functional or non-functional aspects of the design. Unlike traditional IT systems,

CPS are especially dependent on non-functional requirements such as performance, timing,

safety, security, and energy efficiency. Meeting some of these non-functional guarantees can

be difficult and can happen with limited success.

One way to capture what components can do is to formalize their contracts. A language

that contains formalism, based on Linear Temporal Logic (LTL) semantics, can capture the

assumptions and guarantees with all the constraints as proposed in this work [30]. A textual

or graphical representation can be used with the ability to capture system requirements for

component contracts. Then the contracts can be verified through simulation. The Block

41

Listing 2.1. Formal Contract in LTL
r1 : Everytime [BRAKE_EFFORT > 0] then
[ACCELERATION < 0] with in [0 . 2 s]
r2 : [KEY ON] imp l i e s [KEY OFF] even tua l l y

Contract Language (BCL) accomplishes this through patterns that can be represented as

LTL constraints. An example of a formal contract [30] can be expressed in the following

example of two possible formal requirements as shown in listing 2.1 . One basic non-functional

assumption that needs to be guaranteed in a contract is timing. If time requirements are

not met, then we cannot expect safety, security, and other requirements. This can often

be achieved by using Real-Time Operating Systems (RTOS) and proper scheduling policies.

Verification of timing is not easy, and it requires special tools as described here [31]. The

paper’s authors propose using ACSL contract language to verify what they call a timing

enforcer. Timing adds a new dimension to contracts as they typically represent expected

functionality from the components instead of non-functional requirements.

As discussed in [29], timing contracts are important for control systems. Traditional

control theory assumes zero time for certain operations, which is not the case in real systems.

That is why the authors start with the formulation of a Zero-Execution Time contract. A

more realistic next step is the Bounded Execution Time contract, which guarantees that

inputs are sampled, and outputs are updated before the next period of the system expires.

A further step is the definition of Timing Tolerances contracts. This allows for fluctuations in

certain boundaries which becomes easier to implement in software systems, especially those

with no Real-Time Operating Systems (RTOS) .

Timing contracts have also been discussed in other works. The approach in [32] describes

a rich component interface where the interfaces cover all functional and non-functional view-

points. The non-functional viewpoints can be, for example, safety and security and, of

course, timing. The very high-level approach for timing contracts is to specify the latency

for the component and the contract associated with it. In a more detailed fashion, the timing

portion of a software contract can include the period, the execution time, and jitter [33].

42

In order to represent timing contracts, a general approach would be to have a constraints

language that can be constructed and used in the design and verification phases.

An example of such a framework is Cheddar which works well with AADL [34]. The tool

allows for easy integration with other tools. It primarily focuses on verifying the temporal

characteristics of real-time systems. This is achieved by expressing the system in XML

format. It comes with a GUI and a simulation engine. A system can be described through

processors, messages, shared resources, buffers, and tasks. Based on that, schedulability and

feasibility analyses can be performed on a system even before it is implemented.

2.4.5 Software Rejuvenation

Mitigation strategies can have a limited or profound effect on the entire system. One

method called software rejuvenation can be effective against attacks of different kinds that

can disturb the software of autonomous vehicles. It is a form of the dynamic behavior of

software architecture. The idea is that the software is restarted periodically as the system

executes. This prevents the accumulation of unexpected states due to component failures or

glitches or cyber attacks. The technique can be applied to systems or application software.

The application in the user space is being rejuvenated, and the root of trust is in the kernel

space. Other possible incarnations can be envisioned where the root of trust can be a

hypervisor or a separation kernel. The most challenging issues in this method are the issues

with timing and state. The time to save a checkpoint of a healthy state and recover that state

needs to happen without affecting the system’s operation. Once the software is recovered,

then some correction of the state needs to happen so that the control software can continue

smoothly to operate the vehicle.

Software rejuvenation can combat sensor, actuator, and controller attacks. The technique

proposed in [35] provides for periods of shutting off communication with the outside world

during software refresh and recovery of the state of the software. This reduces the proba-

bility of attacks from communication channels, for example, the GCS. Such interruption of

communications provides more difficulties for the attacker too. Therefore, this method holds

43

promising potential for some systems, can be applied independently of the type of attacks,

and does not depend on a detection mechanism.

2.4.6 Tools For Enforcement of Contracts

ACSL

Frama-C is a tool and methodology used to analyze source code written in C to provide

a practical approach for verifying existing and newly developed systems. It is offered as an

open-source project and has gained significant momentum in industry and research. It is

based on the ACSL language, which is a formal specification language [36]. It has several

plugins and is extendable. Different types of analyses are possible by using various plugins,

and the addition of new ones makes the language usable for different types of applications.

The ACSL, as part of the Frama-C package, has specific primitives to express annotations

in a textual format. The language supports function contracts modeled after the design

by contract paradigm as introduced in Eiffel by Bertrand Meyers [29]. Function contracts

provide pre-conditions, post-conditions, and loop invariants. They also define which variables

can be modified by the function as part of its state and the overall program state. The loop

invariant determines which properties will hold when a loop is entered and exited [37]. There

are also loop assigns that show which variables are allowed to be modified by the loop. Having

all these conditions specified for each function allows for rigorous analysis.

The focus of ACSL is rather specific to verifying contracts at the function level, and it is

targeting the C Language. Even if it is specialized in verifying contracts for a C function, its

grammar can be used and extended to create a parser that can check code used for contracts

pertinent to components. This is one approach that can take an existing language and

adapt it to the needs of this study. The direction can be the one taken instead of designing

a domain-specific language (DSL) from scratch.

JML

Java Modeling Language (JML) is a Java-based open-source tool that focuses on an

object-oriented design by contract paradigm [38]. JML, like ACSL uses special annotations

44

to describe the contracts. This includes the "requires" and "ensures" clauses that can model

assumptions and guarantees for software contracts. There is an Antlr grammar for JML, and

openjml is open source. This makes it possible to extend the JML language capabilities if

needed. One valuable part of JML is that it is Java-based and can be applied to Java classes

and interfaces. Using it for defining component interfaces is a possibility. The restriction

that it is largely a Java-based tool may be inconvenient, but it can be overcome as the

grammar can be parsed and used in various ways.

JML also supports invariants as specified by the design by contract paradigm, which could

be used to ensure that a particular state is preserved. In addition, the specification supports

quantifiers from Hoare’s logic, such as the universal and existential quantifiers. This can

help design more complex contract behavior that can express real-world scenarios. Finally,

JML allows design inheritance by contract specifications to add or modify new properties

without affecting original specs.

Domain Specific Languages

The proper representation of interfaces and contracts used by the components as part of

a system can be achieved with a strict and more formal approach. A possible solution is to

use or come up with a new Domain Specific Language (DSL) that can capture the interfaces

contracts that the component uses [39]. Using a DSL can enable the use of automatic tools

for integrity and run-time monitoring, component refresh and state handling. The DSL can

capture the following critical elements that can help creating software architectures by using

smart software components:

• Interfaces

• Contracts

• State of components

A DSL can be created by using different tools such as Antlr [40] or Xtext. Antlr can be

used for creating grammars for custom languages. It can also be used to do code generation,

based on the generated parser [41]. A DSL can have high-level constructs that unambiguously

45

define the behavior of components. Parsing the DSL constructs can produce C++ code or

code for a similar language that can be used at run-time. This approach allows working with

existing software components interfaces and providing necessary evolution. One popular

system, such as the PX4 autopilot software as it has all the characteristics of a multi-

component system with well-defined components [2]. The approach is a bottom-up approach

considering analyzing an existing system and adding new properties to it. This is the opposite

of the more predominant top-down paradigm through Model Driven Architecture (MDA)

approaches, where the system is designed in a high-level language and is then implemented.

A simpler way to use an alternative to DSL is to use a component description language

in JSON or XML format. This can be thought of as a simpler form of a full-fledged DSL,

without the specifics of a formal grammar. Both approaches can represent the component’s

interfaces in a very precise way. This could make reuse of components and all necessary

operations can be done at run-time . The interface definition of a component in association

with the code that can enforce the interface can be considered an adapter attached to an

existing component for the purposes described so far. Using JSON and XML is less rigorous

and formal than using a DSL and, albeit easier to implement, is not going to be the preferred

direction in this study.

2.4.7 Component Management and Root of Trust

Management of components to achieve dynamic refresh includes several actions, some of

them discussed already. Therefore the component manager needs to be carefully designed

and implemented. Its criticality is high since it determines how the whole process works.

Therefore it is wise to consider the possibilities of where the component manager can reside

so that it is shielded from attacks and tampering.

The main functions of the component manager subsystem are the following:

• Authenticating components and allowing only legitimate components to be used

• Handling component state

• Switching operation between components

46

• Loading and unloading new components

• Checking interfaces and comparing with interfaces of existing components

• Checking the health of running components through their diagnostics interface

• Maintaining dependencies graph for component interactions

The root of trust concept utilizes hardware or software implementations that are trusted

and can be used to authenticate and manage other components [42]. Sometimes it is referred

to as Trusted Execution Environment (TEE) . This could mean that the component manager

can be placed in the kernel. This gives more protection than running in user space. It could

allow for the rest of the system to run in user space. If a component in user space is

compromised, then the root of the trust component manager can refresh it or replace it and

maintain the system’s integrity. In a more extreme scenario, the component manager can

be implemented in a hypervisor and be completely protected against attacks. The approach

provides an additional benefit: the component manager can be easily verified along with

the hypervisor implementation because of the hypervisor’s small footprint. Implementing

a component manager as a root of trust component may be complex in practice and may

not be feasible in this study. However, its potential benefits can be considered a method for

industrial solutions.

2.5 Dynamic Run-Time Changes of System of Systems

System of systems (SoS) is an even more challenging field with respect to dynamic changes

during run-time [43]. Many reasons make this challenging. SoS are formed with diverse con-

stituent systems that have autonomy and may have been created in complete isolation.

Once put together, SoS may exhibit new behavior that is unpredictable during design time

[44]. What can make things worse is that with fairly different systems, it is hard to imple-

ment some common standards for development and interfaces between the different systems.

Complexity is another factor that is a challenge in individual systems and an even higher

challenge when they are put to work together.

47

The literature for SoS provides some sources that talk about dynamic reconfiguration of

Large Scale Systems (LSS) or SoS, but many of the sources have rather vague approaches

without some realistic examples and without precise methodologies on how to approach

dynamism in general. Since the field of SoS is still an area of active research, there are many

opportunities to provide practical and solid methodologies to handle dynamic reconfiguration

and to analyze its effects of it. Model-Driven Development (MDD) is a promising field that

also has to offer new ways of modeling the behavior of SoS instead of focusing primarily on

the design of one system [45].

Dynamic changes at run-time for SoS need to support the addition or removal of a

system. They also need to support the modification of a particular system. How to do

this with respect to the fail-safety, security, and timing of the entire SoS is an enormous

challenge. The issue with time is particularly important for real-time systems, especially

hard real-time ones. Safety analysis is also very important for safety-critical SoS [46]. The

same applies to security and how it can change through modifications in one system that is

part of the whole assembly.

In the field of SoS complexity is an important challenge. The Model-Based Engineering

approach is especially promising as a good way to tackle complexity. New modeling languages

such as SysML V2 have evolved and can handle SoS [47]. Other MDE languages such as

AADL also have such capabilities. Nevertheless, the issue is not trivial, and exploring how

to use such tools in this domain is an interesting research direction. The challenge will be

explored in later chapters of this study.

Techniques such as code generation from models can be used to speed up design and

bring the ability to see the big picture through modeling and provide a bridge toward im-

plementation. Many works focus on transforming state diagrams to source code as a proven

concept. UML, SysML, AADL, and Matlab are mainly used for generating C code and, in

some cases, other languages. One of the issues that need to be considered is the different

levels of a semantic representation that modeling languages have compared to programming

languages [48].

The majority of the efforts are focused on code generation from models. Few works look

at possibilities to go in the other direction and generate models from code. Such an approach

48

can be useful through the evolution of systems and is a form of a bottom-up approach. Some

examples include a transformation of VHDL code to SysML [49]. There are also techniques

called bidirectional transformations that allow conversion from one modeling language to

another, and they can be used for the transformation of production code into a model [50].

2.6 Conclusion

The process of designing fault-tolerant autonomous systems can be augmented with the

help of using reusable and reliable software components or entire systems. Some of them, for

example, in an autonomous vehicle, are more critical to the vehicle’s performance and safety.

Focusing on these components can provide better reliability and resilience to autonomous

systems. Creating reliable components requires techniques such as modeling, verification

, and validation . Most of the techniques and directions we discuss are used during run-

time, which is more challenging than design-time techniques but has a great potential for

building secure and reliable autonomous systems. The approach to express the properties of

components through a DSL has excellent potential during the design and usage of complex

software-intensive systems. The quality of creating systems can be improved through the

help of tools that can take advantage of verification techniques and automated testing.

49

3. METHODOLOGY

3.1 Research Design

The research approach uses well-established software systems such as autopilot software

systems for UAVs and UGVs . Some examples are well-established autopilots such as PX4

, Ardupilot , and ROS , among others. These systems are open-source, typically written

in C++ or Python, and are well-known in the research community. Their popularity keeps

increasing in the industry and the DOD . As a result, there are entire companies specializing

in consulting and development based on these platforms because of their popularity. The

limitations of such systems are well known, and there is much room for improvements that

bring new research opportunities. This is particularly true for improvements concerning

security and fault tolerance. Therefore they are excellent candidate platforms for this study.

The main objectives when approaching the research design are the following:

• The research should use accessible open-source software systems that are free for mod-

ification and deployment. This allows other researchers to verify the results, run the

same or different experiments, and use them in their research.

• Provide an implementation of a framework that can be extended and modified by the

research community.

• The research methods should be applicable in simulation and real environments.

• The results should be accessible to others through simulation environments and real

physical systems such as inexpensive UAVs and UGVs .

• The approach shall be based on solid and practical engineering principles to be applied

to real-life systems currently used in the industry and the DOD .

The main objective of such systems, especially the ones used by the DOD, is that they

constantly strive to complete their missions successfully. Therefore it is crucial to demon-

strate that the software continues to function during dynamic changes at run-time while

executing a mission. This can be done by simulating realistic missions and ensuring they

50

are within a certain margin of error that is measured quantitatively. For this to be possible,

metrics for mission quality have to be created and measured in order to be able to quan-

tify the results of the experiments. The approach leverages techniques already used in the

literature, but new ones may also be used if necessary.

Figure 3.1. The components for setting up experiments for mission consistency. [51]

The general setup that can be used for the experiments is shown in figure 3.1 . The

mission controller application is used to generate predefined missions that can be used as

baseline references for the experiments. The data collection and analysis subsystem is used

for storing and interpreting the results. Most of the systems that are used already have

extensive logging capabilities. This work’s main contribution is the dynamic framework

subsystem, where software components are refreshed during run-time. It provides the tools

51

to perform these dynamic updates during the regular operation of the system, as shown in

figure 3.2 .

Figure 3.2. Dynamic Refresh Approach

Our primary objective is to provide a dynamic framework and methodology that is appli-

cable to different robotic systems. Software components can be pretty different and can be

implemented as software processes or threads. The focus is on the data exchanged through

messages, the assumptions and guarantees for each component, and their non-functional

characteristics, such as timing and memory usage. In the case of system of systems (SoS) ,

the interaction may happen through services as systems may be even more loosely coupled,

being more diverse.

A thorough analysis of all options for experiments has discovered that from the most

popular systems for controlling RVs, PX4 has the best characteristics for our study, as

shown in table 3.1 . PX4 has all the traits that we want in a software system. It allows for

the easy addition of custom modules to extend the system. The components run in separate

threads or work queues sharing a thread. It can be integrated with MAVSDK , which is

a mission library. This makes the development of dedicated mission applications written

in C++ or another language that can communicate with the autopilot through Mavlink

52

messages. The code is very generic and independent of the vehicle type. The same code

that runs in simulation is the code that runs in an actual vehicle, with the exception of the

actuator and sensor code, which is vehicle-specific and abstracted in the simulator. Finally,

it has an excellent implementation of a publish-subscribe broker called micro ORB.

The other two popular options, Ardupilot and ROS, support some of the desired char-

acteristics, but not all of them, just about half of them. Some compromises are required

if Ardupilot or ROS are used, and therefore PX4 is the best choice for this research. It is

available through git for customization and experiments like other open-source systems.

Table 3.1. Comparing Popular Architectures.
Research Architectures

Traits / System PX4 Ardupilot ROS
Component Unit Thread Thread Process/Thread
MAVSDK Support Yes No No
Generic Code Yes No Yes
Real Code in Sim Yes Yes No
Custom Components Yes No Yes
Publish/Subscibe Yes Yes Yes

3.2 Procedure/methods employed to conduct the study

The study uses a quantitative approach since the data from simulations, or real missions

are collected through log files that represent the mission’s characteristics. The main criterion

for success is the completion of the mission within certain expected limits of deterioration

in the mission parameters.

The benefits of such an approach are the following:

• The information can be logged in real-time throughout the experiments and contain

data regarding different variables.

• The collected information can be further analyzed through statistical and other AI

techniques to extract meaning from the collected data.

53

• Information from multiple simulation runs can be compared and analyzed to perform

analyses such as Monte Carlo for better understanding and to provide objectivity in

forming conclusions.

• The information from experiments can be stored in a structured fashion to facilitate

further processing and analyses.

• Regression analysis becomes possible based on similar historical data, allowing the

possibility to expand the validity of experiments through modifications in the imple-

mentation of architectural changes.

The remediation techniques that are proposed in the improved architectures demonstrate

the ability to erase the effects of an attack. The study can use software simulation of an

attack that can use techniques to affect the system’s behavior under investigation. Multiple

rounds of simulation are performed in order to generalize the results and avoid the possibility

of measurement errors. A Monte Carlo approach may be utilized through automation of the

simulation trials to make this approach practical and easier to run. Figure 3.3 shows such

a possible setup. It shows an example of a buffer overflow attack in the well-known PX4

autopilot software. The attack can be initiated from a separate software process that can send

a buffer overflow message to a socket server which is added to the autopilot software. The

autopilot software can then read it and unknowingly call a function that can, in turn, send

a message that affects an existing software component. By compromising the component,

we can replace it with a new component with a different implementation but the equivalent

interface and thus return the system to a known good state.

The applicable methods to generate an attack against a software process such as an

autopilot can be very different, but two of them are very popular and easier to launch.

These attacks are among the ones that are also widespread not only for CPS but for other

systems based on Linux OS and C/C++ implementations. The first class of attacks is the

buffer overflow attack, as shown in figure 3.3 , where the attacker sends more bytes than

expected to a program that reads from a socket or standard input or even a file and makes

it jump to an address of a function installed in the code. This malicious function can then

inflict specific damage to the program it attacks. The attack uses the limitations of string

54

Figure 3.3. Attack Simulation [51]

representation in languages such as C and C++ to exploit the fact that the length of the

string is implicit and can be used to gain an advantage. This attack setup assumes that

some malicious code was loaded in advance in some fashion, possibly dynamically, and that

code can be triggered later at the moment of attack.

Another scenario that can be very effective is using the /proc file system in Linux. This

kind of attack does not have to install anything and can use the/proc file system’s ample

information. There is an entry for each running process in the /proc folder with its PID, and

it can be analyzed, and modifications can be performed while the process is running. This

approach makes it possible to attach each process thread and modify memory contents and

file handles. The attack assumes that the attacker can find the PID of the running process

and can have the correct privileges to modify the /proc entries associated with this process.

55

The study uses theoretical foundations for presenting contracts for software systems

embedded in their interfaces. For this purpose, Hoare’s logic [52] can be used. This type

of logic has been widely used for several decades. The logic presents a generic approach to

express relationships between inputs, outputs, and invariants. The mathematical formulation

can be further implemented in a DSL to express the contracts and interfaces governing the

interactions between components practically. Using such an approach can help with the

validation of the implementation.

The basic formula that Hoare’s logic starts with is shown in equation 3.1 where S is a

program, P is an assertion true before the program is executed, and Q is an assertion that

is true after the program is executed [53].

{P}S{Q} (3.1)

Hoare’s logic includes the following concepts that are used for verification of program

correctness [52].

• Axiom of assignment

{P [x := t]}x := t{P} (3.2)

• Rules of consequence
P → P1, {P1}S{Q1}, Q1 → Q

{P}S{Q}
(3.3)

• Rule of composition
{P}S1{R}, {R}S2{Q}

{P}S1; S2{Q}
(3.4)

• Rule of iteration
{P ∧ B}S{P}

{P}while B do S od {P ∧ ¬B}
(3.5)

The above concepts are utilized in some practical implementations, such as ACSL and

JML, as shown in chapter 2.

56

3.3 Discussion of the sample to be used in the study

The study sample uses enough experiments to get objective results representing the sys-

tem’s behavior in the selected testing scenarios. A typical autopilot software generates vari-

ous flight parameters stored in logs. The analyses use a subset of these to prove the quality

of the mission execution. The most critical data are the vehicle’s actual coordinates traveled

during the mission. This is usually referred to as the position during flight. In addition,

parameters such as vehicle speed, acceleration, and even the derivative of the acceleration

can contribute to assessing the quality of the mission execution. Another critical parameter

is the time for the execution of the mission throughout different scenarios. Any degradation

for various experiments are detected based on the above-mentioned basic parameters used

to describe the mission execution. Some additional parameters, such as consumed energy,

vibrations, and actuator variations, can also contribute to the assessment of the dynamic

effects on mission quality.

3.4 Data collection procedures

The current systems’ provisions used in this study can log detailed information. Some

of the data are likely be in a format that is not be directly suitable for analysis. Therefore

additional programmatic efforts may be needed to convert the data into a form that is suitable

for further analysis. One approach is to convert the unstructured or semi-structured data

into a structured form and store it in an SQL or object database. This would facilitate any

further analysis and comparisons of outcomes between different experiments.

Autopilot software systems can store flight-related information in log files that can be

used with visualization tools. This information can be very bulky for more extended missions,

but it contains much different information for the state of the system’s controllers, observers,

and sensors. They have a proprietary binary format but can be analyzed with existing tools.

This allows for doing before and after comparisons of data collected in logs before any changes

and after specific changes are implemented in the software.

57

3.5 Data analysis procedures

Data analysis is performed in two main ways: offline based on the data collected and

online while the experiments are performed. We need to react to specific parameters while

the system is executing to make real-time decisions. Simulators and direct feedback from

the performance of physical prototypes further aid the analysis. Some popular simulators

that are useful in this research are JMavsim and Gazebo. The reason for selecting these

two simulators is that they are integrated with PX4. Gazebo also supports ROS systems.

In addition, it allows for modifications through plugins which adds flexibility for running

experiments. The majority of the analyses of the logged data can be done offline. Various

statistical tools and machine learning techniques can be used for these analyses. Scripting

languages, such as Python and R, may be utilized because of their rich access to data

processing and visualization libraries. Other tools, such as Matlab and Modelica, can also

be used for data processing and visualization. In the case of analyzing PX4 logs, some web-

based utilities exist, such as Flight Review. They provide numerous plots of flight data that

can present valuable information for data analysis.

3.6 Conclusion

The approach in this work is based on quantitative techniques and experimental setups

using well-established open-source platforms. The developed software, tools, and documents

made available through source control repositories such as git. The objective is to answer the

research questions. A secondary objective is to make the findings valuable and reproducible

to researchers and make further investigations in this area possible. Using analyses based

on machine learning and statistical techniques can help understand the data and how well

the research objectives are accomplished. Using predominantly quantitative techniques fa-

cilitates this approach and make the conclusion objective and based on actual data from the

experiments. Such a decision can also facilitate the comparison of the fitness of techniques

and their quality in executing vehicle missions.

58

4. RESILIENT ARCHITECTURES THROUGH DYNAMIC

RECONFIGURATION

Resilience is a non-functional requirement that, like many non-functional requirements, is

hard to define and realize in practice through standard design approaches. Resilient systems

are recognized as something that is very relevant today as system engineering evolves and

complexity and security concerns grow. There are many different definitions of resilience

in the literature. One definition of resilience is the following: ”the capability of a system

with specific characteristics before, during and after a disruption to absorb the disruption,

recover to an acceptable level of performance, and sustain that level for an acceptable period

of time ” [54], p.2. This means that a system is expected to continue to execute its mission

and is ultimately successful. This chapter focuses on achieving resilience through dynamic

architectural changes at run-time.

The CPS work in harsh conditions and are expected to last long without much super-

vision. This could be years or even decades in an environment that may deviate from the

expected conditions envisioned during the design of these systems. As these conditions

change, the software needs to be resilient to the changes and to continue operation. This re-

quires systems to be designed with resilience and adaptability in mind. The environment can

change due to intentional security threats or gradual changes due to other factors. An utterly

static architecture has limitations in how to adapt to such changes. Thus the assumption

that dynamic changes are needed makes sense for both modern and future systems.

A resilient system needs to survive disruption and recover from it in a way so that it can

continue operating at the expected capacity. It is also important to note that the recovery

must be within certain time limits to be practical. Resilience can be achieved through

different approaches. One of them is the redundancy of software entities. Many approaches

exploit some sort of dynamic behavior at run-time that may have been planned during the

design phase but are executed at run-time. Another one is the diversity of solutions for

the same task. Diversity in time and space is a promising direction for generating resilient

solutions.

59

Implementing resilience in a system can happen with methods that work at design-time

and run-time. The design-time methods are well established and can rely on modeling

techniques and formal methods. One issue with design-time techniques is that the problem

space can become huge when trying to cover all possible cases. This type of design approach

can quickly become intractable and very expensive. The design-time approaches can still be

useful for smaller systems with smaller state spaces and minimal interactions. Unfortunately,

many contemporary systems are fairly large and complex to be fully analyzable during design-

time.

Methods such as fault tree analysis and end-to-end timing analysis can be very useful

design-time techniques for resilient systems once the domain is well understood. Modeling

languages such as AADL [55] can be used successfully to help these design efforts. Some

of the modeling languages, like AADL, support the notion of modes, another example of

dynamic behavior that can be conceived at design-time but used at run-time. The difficulty

in getting this right is that often the environment cannot be modeled precisely, giving the

designer a partial view of the system’s operating conditions. In such situations, run-time

methods provide more flexibility and can solve different problems with respect to resilience

and flexibility.

Run-time methods allow for reactions to environmental changes, including intentional

attacks on the designed system. They can also be proactive instead of reactive, making the

system less prone to external disruptions. The run-time techniques can, therefore, very well

complement the design-time ones. Run-time solutions are emerging as a more recent area of

research, and that is why they are covered in more detail in this work. They rely on dynamic

architectural solutions like the ones that will be presented in this chapter. The challenges

with run-time techniques are to provide assurances for the designed systems.

4.1 Prerequisites for Dynamic Architectures through Component Updates

Components and their connections can represent software architectures. This allows for

the representation of the architecture through graphs, as some researchers have suggested

[56]. Different possible combinations between components can then be assembled dynami-

60

cally, as shown in figure 4.1 . The figure demonstrates how three different architectures can

be formed using a subset of the nine components shown on the right. The possible combi-

nations can be very high, even for systems with a small number of components. A practical

approach is to select the pre-validated selected subset of working scenarios that can respond

to certain system properties and are sufficient to provide the desired behavior in practice.

Such selected architectures can be stored in a database and can be turned on when the right

conditions occur. This could happen when an internal or external event triggers mandating

a different response in order to provide for different behavior. This has a direct effect on how

resilient a system can be compared to a system with a static architecture. The approach

allows for adding new graph configurations in case the system is enhanced or needs to be

modified to work better for the existing requirements.

Figure 4.1. Software Architecture Configurations [57]

The prerequisites that are needed for dynamic architectures to be feasible can be pre-

sented explicitly in the following way. We can assume that systems are composed of compo-

nents that have well-defined interfaces and behavior. Some architectural frameworks have

attempted to come up with standards for interfaces when specifying components, for exam-

ple, Autosar [1], although such standards are domain specific and are not universal. For

61

the purposes of realizing dynamic behavior, the interfaces have to contain certain parts that

can help interchange components as the system operates. As discussed earlier, we can refer

to such components as smart components. Smart components do not just have input and

output messages but instead have other standard features between systems and architecture.

Such an attempt to standardize the interface of a smart component is presented here. Com-

ponents can have the following interface characteristics as shown in figure 4.2 [58]. Their

interfaces can be represented generically through the following equation 4.1 [59]. Some of the

elements listed in the proposed generic interface are influenced from well-established robotic

architectures such as ROS .

CI = M + N + S + A + P + Σ + ∆ (4.1)

, where CI represents the component’s interface,

M - the set of subscribed messages

N - the set of published messages

S - the set of services

A - the set of actions

P - the set of configuration parameters

Σ - the set of state variables

∆ - the set of diagnostics services

The main contributions when defining a component interface this way are that there is a

separate diagnostics and control block ∆, a state part Σ and a configuration part P . These

are essential for the dynamic management of components and are typically missing in COTS

components. The diagnostic block allows for a component’s state to be actively controlled

and monitored. The state Σ can be used for preparing a different component to start

working right away when an original component is replaced. The overhead of creating such

a rich interface representation allows for new opportunities that regular software components

cannot provide without significant rework.

62

Figure 4.2. Smart component with interfaces [58]

63

In addition to the interface, components should not be blindly trusted as they can come

from different sources. An authentication scheme of some kind should be added so that each

component is checked for authenticity before it is loaded in memory and becomes part of

the system. Different schemes are possible, and some of them can be fairly elaborate. A

public key versus shared key mechanisms can work as the decryption’s overhead will happen

only once when the component is loaded. Attaching a hash or some other type of security

mechanism can happen when the component is produced by a reliable source and can then

be verified by the architecture at run-time.

In order for dynamic changes to happen, one needs a subsystem that manages all dynamic

interactions. Such subsystem can be called component manager , and it can possess all the

rules for the possible configurations that can happen when certain events occur. The different

configurations can be kept in a database representing the architectures through graphs. The

component manager can act when it is safe to make dynamic reconfiguration of the system. It

can also qualify if components are compatible and perform authentication as they are loaded.

In the case of system of systems the components will be replaced by entire systems, and there

may not be a central authority to manage them. This is explored in later chapters of this

work as a system of systems presents different types of challenges for dynamic management.

4.2 Management of Dynamic Architectures

Previously, it was discussed that architecture could be represented as a graph with the

nodes representing the components and the edges, the actual communication channels. Given

that the interface of a smart component 4.2 contains the subscribed messages M and the

published message N , then each component’s connections are stored in the component’s

interface and do not need to be explicitly associated with the connections. This is because

the publish-subscribe paradigm takes care of the connections between components implicitly

through its message broker . This makes dynamic rearrangements of components even easier

with connections being created independently with respect to the participating components.

As described in previous work, the management of dynamic architectures can handle

three general cases [57] as shown in 4.3 , 4.4 and 4.5 . The first case is the simplest to handle

64

and shows how a single component can be replaced by another component in different places

of the architecture. The second case shows how one component can be replaced by more

than one or when a single component can replace several components. The last case is the

most general one, showing how a completely orthogonal architecture can be formed with no

partial connections. Each of these cases imposes different timing and energy requirements as

the system is dynamically reconfigured. The component manager subsystem needs to handle

all these cases if feasible for a particular system.

Figure 4.3. Dynamic Software Architecture - Case 1 [57]

4.3 Dynamic Architectures Incarnations

There have been some dynamic architectures helping build resilient platforms for some

time. Many of them stem from the popular simplex architecture 4.6 . The idea for this classic

architecture is straightforward yet powerful. Every control system has a controller that, in

some cases, may be fairly complex. Some of these controllers use complex math to solve

differential equations in real time to generate the right control output. A problem can arise

if this complex controller is wrong about the output based on a math exception or based

65

Figure 4.4. Dynamic Software Architecture - Case 2 [57]

Figure 4.5. Dynamic Software Architecture - Case 3 [57]

66

on a controller attack or some other implementation or a corner case problem. Thus the

system defaults to a simplified solution with reduced functionality but with increased safety.

In such situations, a switching component detects the anomaly, and to stabilize the system,

it switches the control to a secure controller component, which is much simpler and easier

to predict and verify.

The smaller and more trusted controller can be formally verified much easier because

it tackles a much smaller task. Its size allows it to live in a different memory space in the

kernel or in a hypervisor making the solution much more resistant to attacks. The same rigor

applies to the switching component. The secure controller and the switching component are

considered critical and trustworthy, while the other blocks are not. That is why they are

shown in a different color in figure 4.6 . The gray boxes show the untrusted components, and

the boxes with other colors show the trusted ones.

Figure 4.6. Simplex Architecture [60]

The development of the idea of the simplex architecture can lead to more elaborate

schemes, as shown in figure 4.7 . Here we introduce the concept of enforcers, which are

67

small and dedicated blocks that focus on certain concerns of the overall architecture. The

approach is similar to the aspects in Aspect Oriented Programming (ASP) , where one aspect

is universally introduced to be applicable in the entire system. We show a general control

diagram for a robotic vehicle that has a high-level mission application, a controller, and an

observer. A smaller controller called enforcer takes care of one concern that normally the

standard controller handles. If this concern is violated, then the MUX switches the control

to the enforcer, which starts controlling the system and thus keeps the system safe. The

difference between the simplex architecture and using enforcers is that multiple enforcers

could take care of different issues when needed. The approach is modular and flexible. It

allows the designer to focus on a particular aspect and develop a guarantee for it without

modifying the existing software. Enforcers can be added incrementally throughout the life

of a system as new needs arise. Enforcers can focus on issues such as timing, logic, security,

and other issues.

As shown in figure 4.7 the enforcer and the MUX or Trusted Execution Element (TEE)

are shown in a different color since they are the ones that are trusted. The assumption is that

they can be developed and proven to deliver expected behavior since their functionality is

simpler and very focused. The other components are much more complex and unpredictable

and impossible to verify with formal methods because of their size and complexity. One

advantage of using enforcers is that they can be applied before or after the design and when

the system evolves based on new concerns or even based on some that were missed during

the design.

The following mathematical representation can describe the enforcement function E [60]:

E(Ii, Si, Oi) → O
′

i (4.2)

where Ii are the inputs Si are the states of the components

Oi are the normal outputs O
′

i are the outputs after enforcement

68

When the enforcer takes control then, the normal output is overriden by the enforcer’s

output:

Oi = O
′

i

Figure 4.7. Run-Time Enforcers [60]

Another example of a dynamic approach is the software rejuvenation technique. The idea

behind software rejuvenation was discussed in previous chapters. A typical implementation

is shown in figure 4.8 . If we assume that we have a control process that is running and we

want to create checkpoints of its state periodically, then we can use these saved states of

the process to perform restores periodically. An implementation can achieve better security

if the stored image is in a protected location, for example, in the kernel, while the control

process is running in user space. The scheme is a proactive way to guard against attacks

against the control process. There are different levels of rejuvenation that can happen. One

is to restart the entire OS if time permits. This approach may not work for the majority

of OSes since the boot time is significantly large compared to the dynamics of the control

object. On the other hand, restoring a process or a thread as part of a running process is

69

entirely doable for many applications. This is another example of dynamic architecture that

can counteract intentional attacks against the controller, sensors, or actuators. The premise

is that the reboots happen fast enough so that even if attacks happen between a checkpoint

and a reboot, the state of the process can be recovered.

There are numerous aspects to consider when implementing software rejuvenation for

CPS, especially for real-time systems. One is the memory requirements, as we need to save

an image of the running application in memory and then restore it. The other important

thing to consider is the time it takes to store the image when performing a checkpoint and

the time to restore it. Since the application will essentially be frozen during this time,

albeit briefly, we need to ensure that the system’s overall dynamics do not get affected

by the perturbation. The last point to consider is how frequently to perform a recurring

rejuvenation. If performed too frequently, the controller may lose stability and crash or

become sufficiently unreliable. Overall, even if the technique can be applied in many cases,

some systems can be more sensitive than others. In such situations, some adaptation of the

approach may be necessary, or it can even be impossible to use it.

Figure 4.8. Rejuvenation of a running process [60]

70

4.4 Complexity Assessment of Dynamic Software Architectures

Software architectures are very different, and it is hard to think of their complexity with-

out having a particular methodology. This is even harder for dynamic architecture, where

the complexity can change as the architecture changes at run-time. Comparing one setup

of software components with another can help predict the complexity of the architectural

changes that are happening due to dynamic reconfiguration of the system. One of the chal-

lenges in calculating complexity is that the method used needs to be suitable for different

architectures and it is possible to assess it quantitatively so that the architecturs can be

compared objectively. This does not seem feasible across the board but is definitely doable

for architectures following a common paradigm.

The complexity of different engineering systems can be studied by considering the com-

ponents used in the system and the connections between them. This is true for software

and mechanical systems. The goal of estimating complexity is to develop a quantitative

mechanism that is applicable to different systems. Such a study is presented in [61]. The

complexity is attributed to the complexity of the used components, their interfaces and

the topology of the connections. This treatment is based on graph theory and utilizes the

adjacency matrix of a graph representing the system under investigation.

Many systems today rely on some form of middleware to communicate between subsys-

tems and components. The use of the Component and Communication (C & C) paradigm

is also fairly popular in the software industry, where component reuse is increasing. Unfor-

tunately, standardization of architectural approaches is hardly achieved; thus, many archi-

tectural styles exist. The three most widespread architectural styles are centralized, service-

based, and publish-subscribe [62]. Service-oriented architectures are used for system of

systems (SoS) and web-based deployments. On the other hand, Publish-subscribe is popular

for robotic systems and is used in several popular open-source projects.

4.4.1 Publish-Subscribe Architectures and ROS for Dynamic Management

As described in many sources, ROS has been built with modularity in mind and is based

on the publish-subscribe paradigm. Messages are handled in topics that a node can publish

71

or subscribe to. Every node can be started or stopped dynamically and can subscribe to

and publish different topics. Since nodes can be implemented in different languages, such as

C++ and Python, and can run on different computers, this allows for much flexibility in this

architecture. Therefore ROS is gaining popularity in the research field as a good platform

for experimentation.

ROS provides not only messages but services and actions in its ROS2 version, although

services are based on messages and so are actions. The best attribute of the architecture

is that all communications are asynchronous. This allows for nodes to be completely inde-

pendent. The replacement of nodes becomes fairly easy as long as they provide the same

messages, services, and actions processing of the component they replace. This also means

that one component can be replaced by two or more components collectively providing the

same interface.

4.4.2 Complexity Derivation for Publish-Subscribe Systems

One can expect that messages require the least processing and are completely asyn-

chronous. Services, on the other hand, are typically synchronous and require a bit more

processing. Actions introduce updates in addition to services and have the highest overhead.

The functionality that happens once a message or a service is received can be arbitrarily

complex and needs to be assessed on a case-by-case basis. This brings the complexity of

algorithms, which is a well-studied area.

A complete methodology for deriving the complexity of publish-subscribe systems is pro-

vided in [59]. Equation 4.3 provides the formula for calculating complexity of component

based systems. It is based on the complete interface definition of components. The architec-

tural complexity is the sum of all components’ complexities plus the number of subscribers

per each published message. The main contributors to the complexity are the components

and the work that they do. The message dispatching overhead is minimal and can be ignored

in some situations.

AC =
K∑

i=1
CCi +

M∑
i=1

Mi (4.3)

72

, where ∑K
i=1 CCi is the most significant term formed by the summation of all compo-

nents’ complexities.

The term ∑M
i=1 Mi accounts for the number of subscribers per each published message

in the system and, in this sense, measure the interconnections between the components.

4.5 Conclusion

This chapter was devoted to different solutions for achieving system resilience. Some

of the approaches are based on existing techniques, and some introduce new aspects of

completely dynamic systems. The difficulty in utilizing such schemes is to validate their

properties and to provide guarantees for the system in addition to increasing resilience. This

would require run-time verification and validation techniques and modeling of system prop-

erties at design-time. Resilient systems have gained popularity in the last two decades and

are becoming even more important as systems’ complexity increases. Only some techniques

that exist can be applied to every type of system. Thus a careful analysis of the run-time

effect is absolutely needed. Resilience for system of systems (SoS) is even more challenging,

as some of the next chapters explore.

73

5. DYNAMIC RUN-TIME BEHAVIOR FOR IMPROVING

SECURITY

Security is an essential topic with many implications in different industries. For robotic sys-

tems, security can mean a direct assault on safety . This is true for all safety-critical systems,

as they can affect people and infrastructure with costly consequences. There are significant

differences between IT systems and safety-critical systems when security is concerned. With

large IT systems, intrusion detection systems, firewalls, and security auditing scripts exist.

With CPS these luxuries are too expensive or too slow to deploy or can’t even be adapted to

the memory footprint of some devices. Another significant difference is that safety-critical

systems have physical sensors and actuators and interact with the environment in many

different ways. This requires a different approach to security.

The approach that is more appropriate for CPS is based on dynamic security, which

is a relatively new field of study. The idea is that all vulnerabilities cannot be known in

advance and that intrusion detection cannot always be successful and timely. The detection

of attacks is costly, and it may not always work. The number of attacks and their traits is

vast and a moving target with the sophistication of the attackers, so the approach has certain

limitations, even in IT systems. This leads us towards creating a dynamic environment so

that the attacker has much more difficulty in understanding what is going on and therefore

attacking the system [63]. The so-called Moving Target Defense (MTD) is a strategy that

aims to increase the cost and difficulty of the attack. Although dynamic security is a new

field, it is becoming relevant for IoT and other CPS as a proactive scheme that can thwart

attacks from different classes.

The implemented dynamic aspects that can be used for improving security can be very

different. They can fall into three major categories [63]. First, the selection of different

architectural configurations is one way to provide dynamic changes. A second way is to

constantly modify the behavior of the system. Finally, the timing of making all these changes

can be varied so that additional randomness is introduced. All three categories can be used

together so that the level of difficulty is increased and the system presents a significant

challenge to a potential attacker . The time component is essential as any attacker needs

74

time to detect patterns and devise a strategy. If the time of steady behavior is too short,

they cannot react and come up with a successful attack as the system changes constantly.

5.1 The Case for Security through Dynamic Component Management

One specific feature of safety-critical embedded systems is that they may not have sig-

nificant computational power. Sometimes this is determined by the cost and role of their

applications. For example, smart sensors that detect vibrations in a bridge structure may be

deployed in large numbers and may run without batteries and generate electricity from the

bridge’s vibrations. They have to run a very small CPU with minimal consumption. Even if

newer devices are coming with more powerful processors, many still use cheaper and smaller

chips. In addition, stand-alone devices do not have the luxury of experienced IT staff that

can mitigate the effects of a security breach. All these differences lead to unique approaches.

One of these approaches is the preventive dynamic component management discussed in this

chapter. The approach builds on the fact that software components and entire applications

can be dynamically restarted periodically, creating a more unpredictable memory presence

of the application.

This approach for security is fairly proactive and focuses on prevention rather than on

detection and mitigation, as most other typical approaches. The advantage of a proactive

approach is that it does not focus on the myriad possible threats. However, it just hard-

ens the devices to withstand attacks, independently of their origin and mechanism. It uses

time and space as changes can happen randomly in time, and software can be loaded to ran-

domly different base memory addresses. A further improvement can be to use diversity when

restarting components or applications by loading functionally equivalent but differently im-

plemented components or applications. This dramatically changes the software’s landscape

and thwarts attack plans based on knowledge of memory maps and specific architectural

patterns.

The concept of dynamic refresh of a software component is shown in figure 5.1 . In the

figure, a higher-level component manager is envisioned. It takes care of loading, unloading,

stopping, and restarting one component with another; for example, A is replaced by B.

75

There are many prerequisites for this operation to be successful at run-time, especially when

real-time systems are concerned. Some of the challenges come from a lack of standards and

the use of COTS components from different vendors. These challenges will be discussed in

the remaining parts of the chapter.

Replacing running components with functionally equivalent ones is a way to create dy-

namic changes that can lead to changes in structure, behavior, and time fluctuations. The

system will still maintain its overall functionality. It simply morphs into new behavior and

alternates it periodically while delivering similar quality of service and functionality while

improving security. To do this, not just one but many components can dynamically be

swapped with their replacements. Every time a component is loaded, it goes to a new mem-

ory address which is typically dynamically created by the operating system. Since it lives

for a short time, its patterns are hard to detect as a new component is periodically loaded

at a different starting address. As new components emerge and go away, the topology is

restructured continuously. Therefore the technique is fairly good against memory attacks

that rely on previously known memory layout.

Figure 5.1. Dynamic Component Update [51]

76

5.2 Attack Model

The attack model that is envisioned for the dynamic management of software architec-

tures is not a usual one. The usual attack model mentions particular vulnerabilities and

ways to penetrate the system. This assumes the presence of a detection mechanism and a

well-defined signature of each attack. The standard attack model definition also assumes a

particular response or mitigation against each attack . In this case, there is no assumption

on the types of attacks. There is no known attack signature that the application needs to

store in a database. There is no particular detection mechanism either.

The prevention scheme considered here is not concerned with the way the attack is

initiated as it tries to make the attack impossible by creating no-static conditions that

significantly reduce the risk or even eliminate it in some cases. The only assumption that is

considered is that the attacker has a way to get to the memory of the running system and

can modify its contents. This can allow the attacker to modify control algorithm coefficients

or sensor and actuator variables to affect the control software’s normal operation. Such

memory attacks can happen through buffer overflow or other techniques, as described in he

literature review in chapter 2.

Since the dynamic security approach is designed to guard against memory attacks tar-

geting the control application, the attack model can utilize any method to start this attack .

One such attack scheme is through the communication channels and can be using the buffer

overflow vulnerability. Another method if the CPS uses a Linux-based implementation is to

launch attacks through the /proc file system. Either of the methods relies on knowledge of

the controller’s memory layout and the program’s starting address in memory. Other similar

attacks also rely on static information that is well-known in advance based on the character-

istics of the system. For example, the attacker may know the version of the autopilot system

and have the source code for it, thus being able to exploit the memory layout of the running

instance of the autopilot software.

77

5.3 Specifics of Dynamic Mechanisms for Security

As shown in figure 5.1 , the component manager needs to consider many different aspects

of each component in order for the scheme to work. These are discussed in detail in a

previous work [51]. The main issue to consider is to provide well-structured interfaces for

components as shown in the previous chapter, so that different vendors can deliver compatible

solutions. The specific new additions to the interfaces that are considered critical here are

the support for diagnostics and state manipulation of the component. The diagnostics and

control portion of the interface allows for the component’s starting, stopping, and loading

and unloading. Extracting the current state allows for transferring the state to a newly

loaded and compatible component that can continue to function without perturbing the

system. As shown in figure 5.2 we can see that each component starts by being created and

then can move to a running state. From there, the component can be stopped, enter the

blocked state, and be unloaded, destroying its instance in memory. The same state diagram

can be used for subsystems or even entire systems.

Figure 5.2. Component States

78

The actual exchange of two equivalent components is shown in the sequence diagram in

figure 5.3 . The diagram shows all the steps to perform the exchange without significantly

affecting the system. Stopping a component may take some time as the component needs

to finish its current transaction before a new component can run. The operation assumes

that the two components are equivalent in their interface and internal state and provide the

diagnostics and control mechanisms to start, stop, load, and unload them. The diagram

can be elaborated for cases where more than one components replace a single component,

but the mechanism is similar. The sequence assumes that there is no global state and that

each component depends on its own state, which is independent of other components. This

assumption is certainly valid for a publish-subscribe architecture and others that are designed

with the principle of loose coupling.

Another important issue that needs to be considered is protecting sensitive parts of

the system, like the component manager. Since we assume that the component manager is

working to protect the software components by continuously restarting them, it is paramount

to think about how to protect it. To do this, we can use a compartmentalization technique

that puts sensitive parts of the system in areas that cannot be affected by the other parts of

the system. This can be allowed through hardware memory protection support from modern

chips. This is also a prerequisite for a system software solution that takes advantage of these

hardware features, such as OS or a hypervisor.

Figure 5.4 shows the placement of the component manager in kernel space. This makes

attacks that target user ineffective to the component manager . The assumption that it

resides in the kernel is just an example as it may exist in another secure place such as

a hypervisor too. The important fact is that it is not part of the user space where the

application resides. The principle that is followed here is that we need to rely on some form

of a Trust Execution Environment (TEE) that guarantees privileged access to some regions

of memory. This separation technique is not new, but the implementation of the approach

in the light of dynamic software management systems is new.

One side effect of using dynamic component management is the actual demand for more

resources, such as more memory and higher CPU load. Therefore it can be applied judiciously

to a system taking into consideration the specifics. Every system has several important

79

Figure 5.3. Component Exchange Activity Diagram [51]

80

Figure 5.4. Kernel Implementation of Component Manager [51]

components that are the most important from safety and security standpoint and need to

be guarded the most. Applying dynamic management only to them is a good approach that

can spare some computational power compared to when applied to all components. The

other factor that can be used judiciously is the time concerning how often components are

replaced. This decision can be made based on how much time a potential threat takes to

be realized. If a threat can be realized in seconds, then component replacement does not

need to happen very frequently to be effective. This also affects the overall increase in the

consumption of computational resources.

Testing the effects on the overall mission is a high-level approach that ensures the mission

is still possible, and the mission quality does not suffer below a certain level. Any dynamic

changes need to be assessed so that the system’s overall operation is not negatively affected.

Such a study on a UAV is done in [51]. Some authors refer to this as mission assurance, as

discussed in later chapters of this work. In addition, an analysis of the effects on the system’s

power consumption is important as higher CPU loads and memory usage leads to increased

81

power consumption which can affect battery life in CPS. This can encourage us to use the

technique only when we consider that the system operates in a hostile environment or when

a threat is detected. This assumes some form of adaptation ability concerning security.

5.4 Case Study

To experiment with these techniques, we chose to use the PX4 autopilot software, an

open-source platform. The PX4 is predominantly used for UAVs and supports simulation

platforms such as Jmavsim and Gazebo . The mission of the UAV was controlled through

MAVSDK , which is another open-source platform. The idea behind the experiments was

to continuously restart a key software component, such as the position controller or the

attitude controller, and to monitor the ability of the system to execute the mission. The

mission was selected to be several minutes long and challenging in order to assess the effects

of the dynamic changes in flight. The experiments described in this work are similar to this

previous work, although here we provide more details [51].

The component that is constantly being replaced is the position controller in PX4. The

original component is in the mc_pos_control folder. A separate folder is created to host the

new implementation of the position controller, called mc_pos_control_backup. The state

is saved and restored through serialization techniques, using an open-source C++ library

called bitsery. The rate and attitude controllers have also been used in the experiments,

although the position controller is a more compelling example. The component manager

implementation is shown in listing. 5.1

Starting the PX4 autopilot can happen through the following sequence that starts the

component_manager, and after the mission is run, the component_manager can be stopped.

This px4 command sequence is shown in listing 5.2 . These commands can be entered at the

PX4 command shell after it starts.

The mission plan needs to be created by the QGroundcontrol application and saved as a

separate file, for example, test_flight.plan. To start the mission application MAVSDK needs

to be installed, and the following commands need to be executed as shown in listing 5.3 .

The example shows a MAVSDK application that uses a flight plan in the form of a JSON

82

Listing 5.1. Component Manager Main Function
int component_manager_thread (int argc , char ∗ argv [])
{

PX4_INFO(" Component Manager ! ") ;
bool a l t e r n a t e = true ;

while (! thread_should_exit){
i f (a l t e r n a t e){

px4_daemon : : Pxh : : p ro c e s s_ l i n e
(" mc_pos_control s e t_sta te " , true) ;

PX4_INFO(" S ta r t i ng mc_pos_control_backup ! ") ;
u s l e ep (300000) ;
px4_daemon : : Pxh : : p ro c e s s_ l i n e

(" mc_pos_control_backup s t a r t " , true) ;
PX4_INFO(" Stopping mc_pos_control ! ") ;
u s l e ep (300000) ;
px4_daemon : : Pxh : : p ro c e s s_ l i n e

(" mc_pos_control stop " , true) ;
a l t e r n a t e = fa l se ;

}
else {

px4_daemon : : Pxh : : p ro c e s s_ l i n e
(" mc_pos_control_backup se t_sta te " , true) ;

PX4_INFO(" S ta r t i ng mc_pos_control ! ") ;
u s l e ep (300000) ;
px4_daemon : : Pxh : : p ro c e s s_ l i n e

(" mc_pos_control s t a r t " , true) ;
PX4_INFO(" Stopping mc_pos_control_backup ! ") ;
u s l e ep (300000) ;
px4_daemon : : Pxh : : p ro c e s s_ l i n e

(" mc_pos_control_backup stop " , true) ;
a l t e r n a t e = true ;

}
u s l e ep (300000) ; // 0.3 Sec

}

thread_running = fa l se ;

PX4_INFO(" Component manager Ex i t ing ") ;

return 0 ;
}

83

Listing 5.2. PX4 Commands
make px4_s i t l jmavsim
pxh> component_manager s t a r t
. . . Run t e s t
pxh> component_manager stop

84

Listing 5.3. Mission Application
cd ~/MAVSDK/examples / f ly_qgc_miss ion
mkdir bu i ld
cd bu i ld
cmake . .
make
. / f ly_qgc_miss ion udp :// : 14540
t e s t _ f l i g h t . plan

file created with the QGroundcontrol application. Since the mission executes for minutes,

the system can go through hundreds of replacements of the position controller component.

The saving and restoring of the state of the components happen through the following

two functions in the two components, the original and the alternate component - listing

 5.4 . Some representative serialization and deserialization routines are shown in listing 5.5 .

The entire implementation is not shown in the interest of saving space. The approach can

be used for components with different complexity and implementations other than C++.

Serialization is even supported naturally in languages such as Java and readily available to

C# and Python.

The same mission application was run in the normal case without any changes in the

code. The application was also run in the case where the component manager ran, and

component replacement happened continuously, as shown in listing 5.1 . We can refer to this

case as an alternate case. The following plots show the comparison of key parameters of

the normal case versus the alternate case. We can see that there is some deterioration in

all plots, but overall, the mission was successful, and the vehicle did not visibly show any

issues in the simulator. The test was fairly aggressively performing operations faster than

a second, which gives a lot of protection against an attacker who needs time to analyze the

environment.

Figures 5.5 and 5.6 show how the trajectory has been affected by the dynamic behavior.

Figures 5.7 and 5.8 show the position X. The remaining figures show the effects of the restart

of the position controller on the system. Since we preserve the state before loading a new

85

Listing 5.4. Serialization/Deserialization of Position Controller
bool Mult i copte rPos i t i onCont ro l : : s e t_sta te (){

s tar t_mc_pos_ser ia l i zat ion () ;
s e r_takeo f f_s ta t e (_takeo f f . g e tTakeo f fS ta te ()) ;
s e r_veh i c l e_ loca l_pos i t i on_se tpo in t (&_setpoint) ;
ser_vehicle_control_mode (&_vehicle_control_mode) ;
ser_timestamp_last_loop (_time_stamp_last_loop) ;
stop_mc_pos_ser ia l izat ion () ;
return _control . s e t_sta te () ;

}

bool Mult i copte rPos i t i onCont ro l : : get_state (){
star t_mc_pos_deser ia l i zat ion () ;
Takeo f fState t_state ;
de se r_takeo f f_sta te (&t_state) ;
_takeo f f . s e tTakeo f f S ta t e (t_state) ;
de s e r_veh i c l e_ loca l_pos i t i on_se tpo in t (&_setpoint) ;
deser_vehicle_control_mode(&_vehicle_control_mode) ;
deser_timestamp_last_loop(&_time_stamp_last_loop) ;
stop_mc_pos_deser ia l izat ion () ;
return _control . get_state () ;

}

86

Listing 5.5. Serialization/Deserialization Routines
void s tar t_mc_pos_ser ia l i zat ion (){

s_ptr = new std : : f s t ream {mc_pos_state_file_name ,
s_ptr−>binary | s_ptr−>trunc | s_ptr−>out } ;

ser_ptr = new b i t s e r y : : S e r i a l i z e r
<b i t s e r y : : OutputBufferedStreamAdapter> (∗ s_ptr) ;

}

void stop_mc_pos_ser ia l izat ion (){
ser_ptr−>adapter () . f l u s h () ;
s_ptr−>c l o s e () ;
delete (ser_ptr) ;
delete (s_ptr) ;

}

/∗ D e s e r i a l i z a t i o n rou t i n e s ∗/
void s tar t_mc_pos_deser ia l i zat ion (){

s_ptr = new std : : f s t ream {mc_pos_state_file_name ,
s_ptr−>binary | s_ptr−>in } ;

des_ptr = new b i t s e r y : : D e s e r i a l i z e r
<b i t s e r y : : InputStreamAdapter >(∗s_ptr) ;

}

void stop_mc_pos_deser ia l izat ion (){
delete (des_ptr) ;
delete (s_ptr) ;

}

87

position controller instance, we can see relatively small perturbations. The slight degradation

in flight quality is definitely better than a failed mission in real life, especially in the case

of safety-critical systems. The main goal is to increase security while still accomplishing the

mission.

Figure 5.5. Trajectory Normal Case Figure 5.6. Trajectory Alternate Case

Figure 5.7. Local Position X Normal Case Figure 5.8. Local Position X
Alternate Case

5.5 Conclusion

Dynamic changes during run-time are a novel method to counteract security threats. We

discussed the preconditions for devising such a scheme and the potential advantages and

drawbacks. It needs to be fully studied and its application domain is particularly suited to

smaller embedded devices that do not have traditional fortification tools like large IT systems.

The approach can affect how systems are designed and deployed and the potential adoption

of standards for software components and their interactions. The case study proved that

88

Figure 5.9. Local Position Y Normal Case Figure 5.10. Local Position Y
Alternate Case

Figure 5.11. Actuator Con-
trols Normal Case

Figure 5.12. Actuator Con-
trols Alternate Case

Figure 5.13. Angular Velocity
FFT Normal Case

Figure 5.14. Angular Velocity
FFT ALternate Case

the approach is feasible for robotic vehicles such as UAVs. Since the case study was based

on a world-class autopilot as PX4 with significant complexity, this guarantees that smaller

systems can do even better with the approach. The discussion here may have touched only

on some of the possibilities but also helped lay a foundation for future explorations and

experiments.

89

Figure 5.15. Vibrations Normal Case Figure 5.16. Vibrations Alternate Case

Figure 5.17. CPU & RAM Normal Case Figure 5.18. CPU & RAM Alternate Case

90

6. MODELING TECHNIQUES FOR DYNAMIC

ARCHITECTURES

Any model is a high-level system abstraction, emphasizing only some aspects of the system.

Therefore models may not be considered the ultimate truth by many. They could be viewed

as a mechanism to help understand the system and easily create the right architecture

without the final details. In some cases, languages like UML have been used to help exchange

ideas and create documentation. In many cases, models tend to be visual, although, in some

fields, textual representation has long ago set permanent presence, for example, VHDL for

representing hardware designs. Higher-level text-based programming languages provide a

mechanism for modeling while writing code [64]. This eliminates the need to have a modeling

language, an implementation language, and the necessary transformations between the two.

We have many modeling and programming languages in the software domain. Many tools

to do transformations between them exist. The desire to provide a language that can handle

all levels of abstraction and implementation is hard to achieve. Human perception also plays

a role in the proliferation of visual languages such as UML and SysML . It is preferred

as a design method, documentation, and modeling approach to help convey ideas between

different parties.

Modeling can be a money-saving approach and, most importantly, a safety guarantee

for complex systems. Unfortunately, many modeling platforms present a partial methodol-

ogy for designing a system. It has been proven that models could have avoided significant

design disasters that were not proactively found during the design phase [65]. One of the

achievements in the last decades has been the standardization of modeling languages. An-

other direction has been the generation of executable code from models such as AADL,

UML, SysML, Matlab , and others. The successful platforms have been the ones that are

standardized or supported by large organizations. Another factor for success has been the

generality of modeling languages. Some languages like AADL and SysML allow for the cre-

ation of extensions that can bring domain-specific features that can be extremely valuable

for the domain experts involved with modeling. In AADL, they are called annexes and allow

91

a lot of flexibility but require significant time and knowledge to make them a success in the

real world.

Formal modeling requires significant investment in better tools and processes to succeed.

A large percentage of organizations use modeling informally [65] to address issues such as

concept understanding or documentation of the architecture. The use of models in dynamic

systems can happen through strict coordination between the models and implementation,

and it must continue through all development phases. The argument about whether the

truth is in the model or in the code may be controversial, but the final product needs to

have code that reflects the model and model that reflects the implementation. The cohesion

between the different aspects of the design artifacts, models, and code is a major goal that

has not been completely and universally resolved.

6.1 Modeling Techniques

There are various ways to devise a software architecture for a system. Traditional design

methodologies have used requirements, design and testing documents for all phases of the

development a new system. Model-Based Software Engineering (MBSE) has so many benefits

compared to traditional methods, such as documenting the design, developing a proof-of-

concept, maintaining the model as the system evolves, and others. When the system changes,

the model can track the system changes, and verification can be performed on-the-fly assuring

the system parameters. The key to such model effectiveness is to create a bidirectional link

between the model and the implementation. Modeling and simulation are possibly the

cheapest and safest way to prevent disasters in the real system, and that is why modeling

has been getting more attention recently.

The typical flow when modeling is done is to use the top-down approach. This seems

to be favored by seasoned modelers as the approach allows for a cohesive design that links

the components into a solid architecture [66]. When a bottom-up approach is used, then

the modeler can use proven solutions in the design as low-level kernels and other verified

modules [67]. The reality is that both techniques complement each other, and even if the

92

top-down approach leads the overall design, the bottom-up techniques allow for the reuse of

components that are created and verified by other techniques.

The biggest challenge in modeling systems that have dynamic behavior is to represent

the changes of the components as they are expected to happen and to discover their effect on

the system. Some of the most important analyses that need to happen are fault analysis and

end-to-end time analysis . These two analyses are directly related to safety. The result of the

modeling phase needs to determine that the dynamic changes do not introduce adverse effects

such as new faults and that the timing is not affected according to the timing requirements

for the system. This can be done if the software components present information on timing

and state in their interfaces.

Another challenge when doing modeling for a real-world system is that one modeling

language may not be sufficient to represent all characteristics of the modeled system. A

combination of architecture models with AADL or SysML and models of physics and al-

gorithms through platforms such as Simulink and Modelica is very likely to address the

majority of the modeling needs for many stakeholders. This makes code generation, inte-

gration, verification, and validation very challenging and presents dependencies on many

tools from different sources. Making all this work together is much more time-consuming,

error-prone, and incomplete. A better approach is to have one modeling language that can

address all concerns, and although the design of such language is fairly compelling, there are

some recent attempts in this direction [68].

A scenario that is often followed in the creation of safety-critical systems is to use of

modeling languages to address various aspects of the design. Such an approach can use

SysML or UML to define the high-level design, Simulink for the algorithms, and maybe a

Domain Specific Language (DSL) for defining the real-time requirements for the system [69].

A concern with using several very different tools is to make sure that these same tools will

be available in the long run, as the dependencies of the design on tools need to be supported

through the maintenance phase. The code generation from different modeling languages is

also challenging as the final code needs to be assembled together and reviewed, which is a

slow and expensive process. The ideal situation would be to use one modeling language for

everything and to be able to generate code from it. This may become more realistic with

93

richer languages that do not focus only on the high-level system level architecture but allow

for the development of algorithms and real-time allocation of threads and communication

between them.

There are some challenges in using only SysML for modeling; otherwise, this modeling

language is the best candidate to represent the system architecture. This capability extends

to large-scale systems and system of systems. The latest version allows for SysML to be

extended with Domain Specific Languages (DSL) based on the KerML language as specified

by the Object Management Group (OMG) . This direction is sometimes a preferred direction,

compared to creating a brand-new DSL. The community that is already used to dealing with

a particular language can find it easier to add some minor extensions as opposed to learning

a new language.

SysML, especially version 1, is considered to be a semi-formal modeling language that

may not address all modeling challenges for systems with dynamic properties. Since there

are elements of uncertainty when dynamic reconfigurations occur, we need some special

tools. Known configurations can be addressed through SysML stereotypes as an extension

to the language. For unknown configurations, though, some authors suggest Stochastic

Process Algebra (SPA) [70]. This approach can add some probabilistic behavior that can be

integrated into the analysis. A promising direction is to augment existing modeling languages

with SPA to provide this analysis capability.

In order to represent a dynamic architecture in a modeling language, several characteris-

tics of the language need to be present. First, the language needs to support dynamic compo-

nent instantiation. Second, dynamic interfaces need to be supported with new services being

offered or removed from the interface. Finally, an event-driven architecture reconfiguration

has to be possible. One such language that supports these mechanisms is EmbeddedMon-

tiArc [71], which is a Component and Connector (C & C) language. The presented example

in the reference shows a platoon of vehicles resolving a dynamic reconfiguration problem.

Many modeling languages support modes that can partially help in modeling dynamic

architectures. One such modeling language is AADL because it supports modes in a par-

ticular architecture. Unfortunately, modes can only partially help and are not useful in

truly dynamic systems where a large number of reconfigurations are possible. Therefore, the

94

modeling language needs to support service-based dynamic components, dynamic interfaces,

and reconfiguration mechanisms. This requires either specialized modeling languages such as

EmbeddedMontiArc or an extension of an existing one such as SysML. A preferred approach

that is favored by many is to extend an existing and widely accepted language and provide

the necessary tool for the modeling and simulation of dynamic systems. This may require a

serious investment in time but has a better chance of success.

Many Architecture Description Languages (ADL) do not support dynamic behavior,

which is a challenge when they are used in modeling modern systems. The π-ADL language is

specifically designed to support dynamic architectures. It is based on higher-order π-calculus

for the dynamic run-time properties and modal µ-calculus for the expression of behavior. In

addition, it is considered a formal language which makes it suitable for modeling and code

generation of dynamic systems [72]. It complements the many semi-formal languages, such

as UML and SysML, that are used today but are not able to provide formal verification. Π-

ADL also uses the Component & Connector (C&C) paradigm to define architecture as other

languages do. Each component can have one or more ports that allow for connections to be

established between different components. The architecture can be described through the

ports’ definition and the components’ behavior. As the language is formal, this leads to the

easy creation of tools and integration with other existing languages and tools. The creation

of such tools contributes to the success of any language independently of its originality.

One aspect that needs to be considered when we want to use modeling is what would

be the generated language for simulation. There are options to perform a model-to-model

transformation to another modeling language such as Modelica [73] from the higher level

system modeling language such as SysML or UML. Another option is to do a model-to-code

generation, produce C, C++, or Rust code, and then run a system simulation. With SysML

representing the high-level modeling view, a transformation to some executable environment

is needed. The code generation approaches are discussed in more detail in the following

section.

95

6.2 Code Generation of Systems Based on Models

Code generation is possible from many modeling languages such as AADL, SysML, UML,

Matlab, Modelica, and others. Some of them have their own tools, like Ocarina for AADL

[74], which allows code generation for C or Ada implementation languages. Matlab generates

C code according to safety standards such as DO-178C and DO-331 [75]. The generated code

complies to the Misra-C software standard. SysML also is supported by MagicDraw and IBM

Rational Modeler to generate code [76]. Modelica has also been used to generate C and C++

code in certain domains [77]. This demonstrates that the model-to-code generation path is

considered one of the standard ways to move from architecture to implementation.

An important issue that needs to be explored is ensuring that the model and the generated

code have semantic consistency. This means that the generated code reflects the model and

that the simulation of the model is in sync with the execution of the generated code [78]. Even

if the model is validated if the generated code does not faithfully represent it, there will be

inconsistencies in the implementation. It is essential to determine the data elements, events,

states, and transitions in both domains and to verify that they have identical behavior. This

analysis can be performed manually or with tools, provided that such tools exist.

One of the most popular code generation techniques from models is to use Hierarchical

State Machines (HST) described in a model language such as SysML or UML. HSM allow

for sub-states to exist, thus reducing redundancy in specifying the system [79]. Such schemes

still require developers to add manual code after the code generation is done. The method

helps minimize the errors that would be introduced if manual coding was used to implement

complex state machines. Overall, state diagrams and their representation in a modeling

language have a more straightforward mapping to code compared to sequence diagrams or

activity diagrams, for example.

Code generation is a complex process that requires understanding of the model language,

the implementation language, and some code generation techniques. The creation of a code

generation tool can be very time-consuming. One approach advises using Machine Learning

(ML) to gather the mapping rules the model to the implementation language based on

examples [80]. The method uses Abstract Syntax Trees (AST) to map the two languages.

96

An alternative to the ML approach, which is data-driven, is to have a model of how the two

languages map.

As code generation needs to translate constructs from the model to code, it can benefit

from model-to-model transformation if necessary. Such transformation is discussed in [81]

where a UML model is first translated to an ANSI-C model. A second phase takes the ANSI-

C model and produces C code as a final output. The approach demonstrates that the actual

language generation can be platform specific and can be relatively static for a particular

platform. However, the model-to-model transformation can evolve as newer aspects of the

modeling language are added to the code generation process.

Generating source code for any platform is too ambitious but focusing on a certain

platform is much more realistic. This is true, especially when the platform defines a lot of

boilerplate code for its architectural entities. One such platform is ROS, as it specifies the

nodes and their interfaces in a fairly standardized way. Many works explore the generation

of code from UML or SysML to ROS. One such work looks at the possibility of generating

code from UML/MARTE to ROS [82]. The approach takes advantage of Aspect-Oriented

Model Driven Engineering to address different concerns when modeling. The code generation

uses a template-based approach representing the mapping from UML to ROS in XML files.

The fact that each ROS node is a separate process with a main() function in C++ and a

well-defined code structure significantly makes the task more practical.

Some authors suggest using DSLs for specifying the architecture and then generating

code for a platform such as ROS. The approach aims to generate safe code in some works,

and its correctness can be proven. The following work [83] suggests using the Coq language,

thus achieving formal verification of the solution. This can help certify the code generation

approach so that there is a guarantee of model-to-code conversion correctness. This code

generation focuses on the boilerplate code used to structure the ROS implementation. The

rest of the implementation that is done by hand needs to be verified separately.

There is a trend for programming languages to become higher level and, therefore, close

to modeling. On the other hand, some modeling languages have support for textual syntax.

These trends move the modeling languages closer to the implementation languages. This

prompts us to consider how to merge the modeling and implementation into one with the

97

benefits of being able to do modeling in addition to having executable code. For this to

become practical new types of tools are necessary. One example is the textual version of

SySML, which has fairly low-level syntax for a system modeling language. This makes it

a good candidate for describing the systems with enough precision to leave less for manual

code additions.

The modeling languages have some differences compared to programming languages

worth mentioning [84]. One such difference is that they can be visual and, therefore, not very

formal. The semantics of a modeling language can be open to interpretation and, therefore,

difficult to compile directly to an executable because of the abstractions from the operating

environment. Their specs are also way more extensive and ambiguous than the grammar of

programming languages. Their philosophy is on creating high-level concepts that can help

the design and understanding of the system. Some of the latest textual-based modeling lan-

guages have better semantic structures. A trend toward formality in modeling languages can

make code generation and simulation easier and propel modeling into a mainstream design

approach with the possibility of generating high-quality production code.

The specifics of the modeling language and the implementation language are essential to

the code generation process. If similar concepts can be easily mapped, the generation can be

performed more straightforwardly. An example of such a good match is described when code

generation is performed from π-ADL to the Go programming language [85]. The fact that

both languages are based on π-calculus makes the mapping between components and channels

straightforward. As the Go language implements goroutines and channels as embedded

constructs, it can directly express the model in the implementation. Π-ADL is designed to

support dynamic behavior in systems in addition to structural architecture, as most ADLs

do. This makes it a perfect candidate for code generation for modern languages with built-in

support for parallelism and support for building distributed networking applications.

6.3 Verification and Validation of System Models

The process of verification and validation strives to prove that the model correctly rep-

resents the requirements of the system and is generally correct and free of errors. Since the

98

model is part of the system design and implementation, the V & V process needs to start

with it. Some authors suggest an organizational process that includes domain experts for

validating models [86]. The best approaches require starting the process early and making

it as automatic and formal as possible. This can be accomplished when the verification and

validation rules are present in the modeling language and embedded in the model.

Other authors suggest creating a catalog of requirements for the models so that they can

be checked as models are created. The requirements can be verified by domain experts or

automatically. SysML models can be verified through scripts [87] written in different lan-

guages. This type of automation can be very useful in large models where human inspection

can miss some subtle errors. It is best if the verification and validation is built into the

modeling tool to guide the modeling engineer. This is another example of how modeling

can be made more successful in the industry through the existence of proper tools with rich

functionality and capabilities.

The complete verification and validation of a model may be impossible and too costly.

In this case, a set of criteria can determine if the validation is good enough. Sometimes the

cost of this activity may turn out to be excessive and impractical [88]. Whether the model

is valid can be made by the team developing the model, by the users, or by an independent

authority. The last choice is more expensive but provides more rigor and neutrality to the

decision-making of whether the model is valid or not. Special focus needs to be exercised on

whether the data used to generate the model is valid.

A critical aspect of validating systems is to start by validating their missions. In a

complex system, the correct behavior is determined by system’s capability to complete its

mission. A mission can be considered as a sequence of actions [89]. A special mission language

can even specify it. The mission elements can then be translated into executable code or

formal models representing the mission. Each action can be described with pre-conditions

and post-conditions as well as invariants. Proving that each action is doable can lead to

validating the entire mission. This type of validation is independent of the architecture of

the system or SoS.

The validation of the model can happen through a transformation to a different language.

A typical modeling language such as SysML is not entirely formal, and some authors suggest a

99

transformation to a more formal language to validate the model. Such a language can be, for

example, Event-B [90], a language used for system modeling and analysis. The bidirectional

transformation from SysML and Event-B may be challenging, which is inconvenient. The

approach can be used best with state machines expressed in SysML and then formally verified

in Event-B. Other SysML abstractions, such as activity diagrams and sequence diagrams or

block diagrams, may require different verification techniques that are not based on events.

Dynamic architecture can be verified through formal modeling languages such as Alloy

. The dynamic extensions proposed in [91] allows for actions that can modify the states

of components that are part of the architecture. Dynamic Alloy is developed based on the

Alloy modeling and verification language. Alloy is based on first-order logic, has formal

grammar, and has easily understood syntax and semantics familiar to software engineers.

The dynamic architectures can be represented through graph grammar, which makes the ap-

proach high-level and universal as it is agnostic to specific architectural specifics. Dynamic

reconfiguration can then be represented as production graph morphing rules describing pos-

sible transitions. These rules can be defined at design time and can be executed at run-time

when the conditions for them arise. The model can be visualized and simulated through

the Alloy Analyzer tool. Alloy’s language allows for the creation of formulas that have pre-

conditions and post-conditions. The user defines assertions that are automatically verified

which is one of the outstanding features of the language. The main analysis in Alloy is called

model finding, which allows for finding all possible dynamic architectures based on the used

graph, representing the used components and links. The other useful analysis is the invariant

analysis, which checks if a certain property holds for a number of configurations.

DynAlloy extends the Alloy language by allowing dynamic architectures to be represented

as a sequence of states. The run clause is used to find the possible dynamic solutions and

the assert clause helps find if a certain assertion is valid by trying to find counter-examples

[92]. Dynamic Alloy is not the only extension to Alloy that attempts to support dynamic

architectures. There are other developments such as Imperative Alloy [93], Electrum [94],

and Dash [95] that can be used for this purpose. All these extensions are possible because

Alloy’s grammar is formal and exists as Antrl .g4 file and can be extended by users who

want something more from the basic language.

100

6.4 Simulation of Models

We use modeling and simulation because systems are too complex to represent in any

other way, so we can ensure that they work properly. Analytical representation is nice if

it can be found to represent a system, but it is unlikely to be easy to find for a complex

system. That is why simulation can help check models without having a complete analytical

representation, for example, a set of differential equations. Another important part of the

simulation is the representation of time, which is necessary for simulating dynamic systems,

which are all physical systems interacting with the real world through sensors and actuators.

Concerning time, systems can be discrete or continuous. The majority of CPS are in most

cases continuous as they measure and control physical processes that are continuous. On

the other hand, many multi-agent systems and their interactions can be modeled as event-

based systems, depending on the type of model used. On the other hand, simulation can be

deterministic or probabilistic depending on how the inputs and the simulated environments

are perceived [96].

Since every model is an abstraction that presents certain aspects of the system, it needs

to be tested against variations of its inputs and to have its outputs evaluated. The simulation

provides an environment where tests can be run over ranges of inputs where the goal is to test

the model with different data and to estimate its fitness [97]. This makes simulation a vital

part of creating models as the complexity of models is very high, and their validity needs to

be tested. Therefore each modeling language that can be used in practice has to have access

to a simulation environment. Good simulators have facilities to generate input data streams,

analyze output data, and provide visualization and logging capabilities for analysis. They

also can allow for setting up multiple simulations using Monte Carlo techniques.

Simulation of multi-agent systems is a way to represent complex interactions between

systems and thus predict the behavior of the entire system of systems. Since the discrete

events simulation techniques are well-studied and easier to implement in such a complex

scenario, they are often preferred in this case. Continuous simulation is also used in tools

such as Simulink, which targets physical systems. Combined methods are also possible as

systems may have discrete and continuous variables that interact [96]. All this depends

101

on the simulation language’s capabilities and environment. In some cases, more than one

simulation tool may be utilized.

6.4.1 AADL Simulation

AADL and other system modeling languages are used to mostly present static architec-

tures. Nevertheless, the simulation tools need to be able to show all properties of the model.

This is not always the case as simulation environments focus on certain aspects, for example,

timing analysis or failure analysis . The simulation needs to provide tools that exercise all

components of the model. Since the AADL model is driven by discrete events, the type of

simulation is discrete. This is a bit of a drawback when the environment must be represented

where continuous processes may need to be represented [98].

The idea of the simulation is to represent the system’s behavior in every respect, including

the operation of different modes. Since modes are the way dynamic behavior is represented

in AADL, this is relevant to the topic of this study. The support of all annexes in simulation

is another challenge, as the developers of annexes may not provide a specialized simulation

tool. Lastly, handling time in the discrete event simulation approach is always a challenge

with simulators. Issues such as synchronization between simulation time and real-time and

how time progresses, in general, can hinder providing realistic simulation of the model [98].

The idea of a successful simulation tool is to provide better insight into all aspects of

the model. An important aspect of the simulation is considering how to log and present the

results. Since every component has important state variables that represent it at a certain

time, this can be used to represent the state of the entire system at a certain point in the

simulation. The information can be logged in a structured format that tools can easily parse.

This approach can allow separate visualization and processing to be used. Unfortunately,

the simulation tool must be tied to the modeling language and its capabilities. That is

why the decision of selecting a modeling language is so important not just for the semantics

supported but for the infrastructure of tools and utilities.

The AADL is a standardized language and has support from several well-established

tools. Some of them are the Osate development environment and the AADL inspector .

102

Such development tools provide simulation environments integrated with them. This allows

for quick verification of the model, typically before the implementation but also during any

time when simulation of the model is needed. The model in AADL allows for the definition of

processes. Each process can contain threads that can have different means of communication.

The language also allows for the definition of hardware resources as processors and buses.

There is support for different types of schedulers to do timing analysis of multi-threading

applications. The AADL Inspector tool allows for the addition of different plugins. The

Cheddar and Marzhin are the two most useful plugins for time analysis [99].

The Marzhin simulator is a multi-agent simulator. It allows for the random execution

of threads from each agent in the simulation. Each agent can have a processor, multiple

processes, and multiple threads in each process. The different processes are viewed as a par-

titioning scheme in time and space. The simulation environment has graphical visualization

of the results and is presented in table format. The real-time analysis uses some parts of the

Behavioral Annex from the AADL standard.

One benefit of the AADL language is the fact it is extendable through defining new

annexes. Since the language focuses on the communication between processes and threads

and the timing and failure analyses it does not support continuous dynamic simulation for

physical systems. The AADL model is discrete, and it focuses on presenting the architecture.

For this, it needs to be paired with a different modeling language like Simulink . An alter-

native is to extend the language with an annex as is done in this work [100] where AADL+

is proposed.

AADL+ is realized through an annex to the AADL specification. The main contribution

is the ability to support continuous processes through the definition of differential equations.

This introduces the equation clause in the language. Equations can then be embedded in

components such as sensors and actuators as part of the model. The new analyses can be

run in the Osate tools as it supports simulation environment textual and graphical repre-

sentation of the model. The dynamic analyses can be run in Modelica as an intermediary

file is generated to interface with Modelica . This type of model-to-model transformation is

performed through mapping rules used to connect the AADL model to the Modelica model.

103

The timing analysis and other analysis supported by Osate can still be executed in the

environment using the embedded analysis tools of Osate.

6.4.2 SysML Simulation

SysML was specifically designed to work at the system level, covering large systems with

complex interactions. It extended some of the capabilities of UML and therefore it is more

appropriate for embedded real-time systems. The existence of a mature specification of

the language leans toward the creation of tools that can help the modeler. Such tools are

commercial or open-source, although many do not have rich simulation capabilities. This

may change as SysML Version 2 becomes mainstream and tools start supporting the new

rich capabilities. The simulation of these capabilities is not standardized as different vendors

and approaches are used. There are some efforts to use a standard approach for converting

the SysML model to a simulated one by the query/view/transformation (QVT) standard

[101]. The SysML language is not designed to support simulation. Therefore, model-to-

model conversion to standard simulation standards such as the Meta Object Facility (MOF)

is a possible direction to bridge this gap.

As SysML can be used for modeling in different disciplines, the semantics can be defined

by the user in their specific discipline, for example, control or mechanical engineering. The

challenge in such transformations is to precisely define the semantics for each type of for-

malism for each model and their interactions in the system model. This can be a problem

in trying to simulate a system model that tries to integrate all models in the system. An

approach to achieve meaningful simulation is considered in the literature by using a model to

model transformation to SystemC and performing the simulation there [102]. Furthermore,

code generation is also easier to do from SystemC as a model-to-code transformation. The

approach uses a transformation language for SysML to SystemC model to model conversion

through Atlas. The model-to-text transformation is done by ACCELEO which generates

the SystemC to C++ code.

SystemC is just one possible modeling choice for simulation, but others solve the is-

sue similarly. Another successful direction that has been pursued is transforming SysML

104

into a modeling language with simulation support, such as Modelica. To this end, the

SYSML4Modelica specification has been created by the OMG . Another direction is to inte-

grate SysML with Simulink and other tools that enable the simulation of algorithms. This

though is not a way to enable the system capabilities of SysML, but to complement them

with continuous simulation. The creation of MOF compliant simulation model allows for

the DEVS formalism to be used as well as the tools based on it [101]. The DevSys frame-

work standardizes the process through the SysML4DEVS specification. The framework is

mostly based on Java and XML but does not restrict the user to add other languages. The

transformation can target different domains, where DSL can be developed based on SysML.

The latest version of SysML allows for easier creation of DSLs through extensions based on

KerML [103]

6.5 Practical Approaches for System Generation and Maintenance through
Modeling

The design of complex systems often involves multiple models addressing different as-

pects of the system. In some cases, they are developed in different modeling tools and

different modeling languages. Model-to-model transformation can become important as we

may want to consolidate models and do a simulation in common modeling language [104]. A

transformation from SysML to Modelica or some other modeling language has become the

main interest for many researchers. Such transformation use directed graphs to represent

the different models. As different models have different semantics, a bidirectional transfor-

mation may not always be easy to achieve, although many works have explored the value of

bidirectional transformations.

The representation of a model, independently of the modeling language, can happen by

using standard representation such as XML Interchange language (XMI) . This is a struc-

tured approach to represent a model universally and to facilitate the use of tools to do

transformation. The challenges when a transformation is performed are that there is a loss

of information and different semantics in one modeling language versus another modeling

or programming language. The significant problem is that the semantics of modeling lan-

guages like SysML and UML is not unambiguous as it is for other modeling languages or

105

programming languages and this is a problem for both model-to-model transformations and

model-to-programming language transformations.

Sometimes a modeling language may not be particularly suited to the project. In this

situation, the language may need to be extended to support new abstractions. An example

of a language that allows such extensions is SysML which provides the so-called stereotypes.

This allows for the creation of Domain Specific Languages (DSL) through profile-based ex-

tensions of SysML [105]. The described mechanism compensates for the generic nature of

the SysML modeling language.

In the usual case, the modeling approach involves a unidirectional model to code trans-

formation. This could involve code generation tools or other methods that create the imple-

mentation starting from the model. This is a top-down approach which is good at the initial

phases of the design and development of the system. In later stages, though, very often, the

implementation starts to deviate from the model. The reasons for that are many, but some

start from the maturity of tools, the used process or the knowledge of different groups that

do modeling or implementation. The capabilities of the implementation language are also

much more diverse than the modeling language. It is interesting to bring the implementation

in sync with the model, especially when dynamic behavior is expected. For this, a reverse

process of code-to-model generation can be useful if supported.

The difficulty in reverse engineering production code to model languages is the semantic

differences between modeling languages and implementation languages such as C++ . Such

reverse engineering for recovery of the model can be done by creating mappings between the

two languages [106]. The approach can be even more successful if the modeling language

has well-defined grammar and semantics. Modeling languages such as AADL and SysML

version 2 with their textual representation and formal Xtext grammar can be less ambiguous

and can be more successfully used in this direction. Since both languages can be represented

with Abstract Syntax Tree (AST) , the mapping can happen based on the associations of the

elements from the different languages. The main challenge is handling cases where semantics

from the implementation language cannot be represented with the modeling language.

In the hardware field, text-based languages have long replaced visual ones. Examples are

Verilog , SystemC , and VHDL as they are the ones predominantly used for hardware design.

106

A method to reverse engineer VHDL to SysML has been proposed in very few works[49].

The approach has focused on generating SysML block diagrams from VHDL code, but it

can also be used for any other SysML abstractions. Since VHDL is simpler than a standard

programming language, this transformation appears practical. The transformation steps are

analysis, parsing, mapping and model generation.

The reverse direction of code to model needs to be integrated into the development

cycle. Figure 6.1 shows such an integrated process. The original model generates code for

the system, which inevitably needs to be elaborated through manual coding as the system

is implemented. A model is generated based on the real code using the reverse engineering

approaches described above. Such automation can be helped by experts that help validate

the code by using tools. As a result, the model is updated and the system now has this

model as representing the true state of the implementation as much as it is possible, given

the gap between the semantics of the implementation language and the modeling language.

The process shown in figure 6.1 allows for quick re-certification of the design through

continuous modeling. The main premise is that the link between implementation and model

is never broken. Ideally, the implementation language could also be a modeling language, but

this does not sound realistic with the current level of abstraction in programming languages.

The burden of making the connection between the two has to be on good tools for code

generation, model generation, and model validation . The issue is that too generic tools may

not apply to every domain without domain-specific extensions or customization.

In certain situations, this approach may be easier to follow. Such is the case when

modeling languages with formal grammar are selected, such as SysML version 2 or AADL

. On the other hand, code generated for frameworks with a fairly structured architecture

can help too. An example is ROS2 , where the definition of the communication mechanisms

is formalized through configuration files, and the code of nodes follows well-defined idioms

and patterns. Therefore a bidirectional bridge between SysML and ROS2 is a promising

direction for tool development.

A further refinement of the process of modeling for dynamic systems is shown in figure

 6.2 . The process starts with generating a system model following a top-down approach

. After the system model is simulated and considered solid, the next step is to generate

107

Figure 6.1. Model to Code Bidirectional Process

code for all components. The difference here is that in addition to generating code for each

component, there is a model description of the component, which includes its interface and

behavior. The model is attached to the source code in text format. For this, we can assume

a text-based modeling language such as SysML version 2 or AADL .

Inevitably there will be code modification as the system needs to be developed or even

after it is developed when maintenance and upgrades are necessary. The component model

will be updated to match the code changes if they are relevant to the model and break any

promises. The updated model for each component will be automatically validated. The

following step will take each component’s model, assemble the system model again, validate

it, and ensure it still works. If it works then the system model will be updated with the

changes in the model.

108

Figure 6.2. Component Centric Model-Code Integration

On figure 6.2 , the design-time is shown, but a similar model validation scheme can be

utilized during run-time if a component’s code is modified as well as its model, then a system

model validation can be performed before the component is allowed to be used in the system.

The system model validation can serve as run-time assurance at a high level with certain

guarantees as much as they can be achieved through the expressiveness and granularity of

the model. The approach is not a one hundred percent replacement for testing but is a step

towards dynamic validation of newly added parts of the system. Techniques such as in-place

testing can complement the approach to provide even further guarantees before the dynamic

change gets the green light.

The scheme discussed so far can be successful only by adopting appropriate specialized

tools. The generation of model and code for each component and their arrangement in the

109

code needs to be human and machine-readable. The update of the model, even if done

manually, needs to follow a particular process so that the updated model is still machine-

readable and has to have the correct syntax. The assembling of the individual component

models will also need to happen automatically. The same is true for the model validation.

6.6 Conclusion

MBE has made significant progress over the last several decades. In many fields of the

industry, it still has not progressed enough due to some of the challenges mentioned in this

chapter. The use of modeling when designing systems with dynamic behavior is promising,

albeit challenging. The trend towards increasing the role of modeling in software engineering

is accelerating, and this applies to all phases of product development, from requirements to

maintenance and diagnostics. One of the critical issues is the connection between models

and implementation code and their interaction through all phases of product development.

Such connection is central to the success of modeling, used for dynamic systems throughout

the entire development cycle.

110

7. DYNAMIC RECONFIGURATION OF SYSTEM OF

SYSTEMS

7.1 Specifics of System of Systems with Respect to Dynamic Reconfiguration

System of Systems (SoS) are increasingly being used in many industries, although their

origins come from military applications [107]. Other terms that are related to Sos are Large

Scale Systems (LSS) and Ultra Large Scale Systems (ULLS) . The commonality between all

these classifications of systems is that they usually require reconfiguration as systems join

and leave or get updated while the SoS operates. There are many scenarios, from search

and rescue operations to IoT applications, where ad-hoc configurations can be formed based

on changed environmental conditions or the participating systems [108]. In such scenarios,

time is always of the essence, and the systems can be safety-critical . These factors require

a secure way of reconfiguration that guarantees safety, security, and functional integrity.

Dynamic reconfiguration is, an implicit expectation, although it needs to be treated as an

explicit requirement.

SoS have numerous characteristics that make them very difficult to reconfigure, although

they expect a dynamic environment more than standard IT systems. These characteristics

are well-described in the literature. They include operational and managerial autonomy,

emergent behavior , geographic distribution, and evolution of the SoS [109]. These very

characteristics encourage dynamic changes, although the lack of guarantees that come with

it is a major research challenge. The main hurdles come from the lack of standards and the

different organizations that participate in developing the constituent systems. The develop-

ment of each system in separation is not the actual problem but the process does not include

standardization in how to communicate with other systems and accommodate dynamism.

As in many other engineering disciplines, one approach to tackle a complex task is to

handle complexity by simplifying the interactions and making the interfaces more specific

and detailed. If systems are developed in isolation and adhere to different standards, then it

would be hard to integrate them with certain guarantees of quality, and results will always be

unpredictable. Therefore one promising direction is to set some standards for interfaces be-

tween systems, independently of their origin and implementation details. Such an approach

111

can be made through common representation as in examples of model-based engineering

[110]. Another element of compatible designs is to use interfaces that offer universal ways

to make the systems available to other systems. Systems can provide services as a common

paradigm through their interfaces to build compatible distributed systems.

The individual systems that compose a system of systems are called constituent systems

(CS) . A vital behavior of constituent systems worth mentioning is that each one has its state

and perception of the world independently of the other constituent systems. This makes the

possibility of a global state a non-feasible reality. For generality, we can assume that there

is no central system that has a full view of all CS, but rather every system is autonomously

making decisions that best achieve its own goals. Even if there are classes of systems with

central control, they are still rare, and their evolution is not so easy as it depends on the

ability of the central system to grow with the growth of the SoS [107]. The analysis presented

in this work focuses on distributed architectures without needing a central governing system,

as this is a more general and flexible approach. This class of SoS is known as collaboartive.

7.2 Design and Deployment of SoS

The design of SoS does not follow a universal methodology as the field is still developing,

and a great diversity of systems can participate in an SoS. This provides a lot of freedom and

opportunity for innovation in this growing field. As the complexity of such SoS is high, a

great many papers discuss Model Development Engineering (MDE) as a promising trend for

coping with the existing challenges [54]. MDE or Model-Based Engineering(MBE) has the

benefit of abstracting complex system concepts, and this alleviates the burden of growing

complexity and helps the designer focus on different aspects at a time. MBE is becoming

more popular, and the growth of SoS is accelerating this trend which brings opportunities

for a symbiosis of these domains.

The numerous combinations of system interactions limit the feasibility of traditional

design-time approaches when working on SoS. Nevertheless, static design architectures have

been studied extensively and widely accepted when regular systems are used. Therefore we

will start by exploring static approaches, along with their benefits and limitations. It is worth

112

noting that each system may also be a SoS in itself and have some dynamic properties, so the

purely static approach may not always be feasible unless applied in the right context [109].

Systems can have dynamic behavior through the components used to create the system.

This brings the dynamic aspect in and out of the system itself.

The deployment of systems can be done very infrequently as done traditionally or on a

more frequent basis as in the case of quickly formed system of systems in DoD or search

and rescue scenarios. We can consider changes to CS to happen at run-time or during a

system redesign. The run-time approach assumes special mechanisms that support run-time

adaptation through modifications of certain parts of the system. These operations bring up

issues such as safety, security, and stability of the deployed SoS . In addition, the reassurance

of such systems is a challenging field that is a developing research area. One of the main

challenges is the complexity and expression of the dependencies that arise from dynamic

changes.

7.2.1 Design-time Approaches

One of the characteristics of a SoS is the dynamic behavior at run-time. The complex

interactions between many systems can easily lead to an explosion in the complexity and the

state space and can become inconceivably hard to tackle. Some authors suggest restricting

how systems can interact with each other [111]. These interactions can be represented

through Interface Block Diagrams (IBD) in SysML to model the possible configurations

between the constituent systems. This way, a set of possible configurations can be used at

run-time.

To solve a complex problem, one can try to restrict all possible choices through the re-

duction of freedom that the design has. This approach focuses on the explosion of possible

combinations of connections, interfaces, and services. If each architecture supports a known

and limited number of configurations, then it is feasible to create code to support each one

during the design phase. If modeling is used, this can happen through code generation from

a validated model reflecting each configuration. Each system, as part of the SoS can undergo

the same approach. This can be time-consuming but generates validated systems that sup-

113

port a finite number of configurations. These systems can then be used in combination to

create a dynamic SoS. If this type of restricted dynamic behavior fits the requirements of a

SoS, then this solution is a sound and practical one. The process is illustrated in figure 7.1 .

Figure 7.1. System Design Process [112]

Different combinations can be selected during the design to check whether they work well

together. As a result of this process, only valid combinations can be marked as successful.

For example, Model11 from system1 can be checked against model21 from system2 and

model 31 from system3. Only these combinations can be allowed to run in the SoS . The

method has a disadvantage when there are many combinations, as it can quickly become

impractical. For some system of systems, though, it can be a very reliable and secure method

as it is done at design-time with more rigor.

The concept of designing a model that encompasses the existing models is called meta-

modeling [109]. In the SoS context, meta-models that take the models of the constituent

114

systems and validate the meta-model have much potential. The most important challenge

is to reflect the systems’ changes into their models to represent the evolution and dynamic

changes in each constituent system. Another challenge is that each model may represent the

same things differently, and consolidation of the models may be required before attempting

meta-modeling. This can help with dynamic assurance, which is ultimately the goal of having

some control over SoS evolution.

Figure 7.2. SoS Design Process [112]

Generation of SoS

Model-based engineering can be very useful for validating SoS architectures as well as in

other phases of their development. The model by itself is not going to reach its full potential

if it is not connected to the real implementation of the system. This makes automatic code

generation from models a promising direction for SoS. The connection of code to model

115

is a challenge that is especially difficult in going from code back to the model. Therefore

the code-to-model relationship is an essential concern in the evolution of SoS . The use of

specialized tools can be very instrumental in this direction so that it can be useful in practice.

The main challenge is the diversity of modeling languages and implementation languages and

the representation of semantic differences.

Model-based development aims to help cope with complexity and raise the level of ab-

straction. This appears very appealing in the large-scale system arena. When using code

generation from code, one can also avoid some coding inconsistencies that traditional tech-

niques can’t guarantee. Another reality that needs to be faced is the addition of manual code

to complete the implementation of the system and how this maps to the model. One such

modeling language is VDM-RT , targeting distributed embedded systems with abstractions

for an object, cpus, and buses [113]. This language leans towards validation and simulation

of the modeled system before the code is generated.

In some cases, a model-to-model generation is possible when one modeling language is

at a higher level and serves different objectives than another one. Such works have tried

model transformation, for example, from SysML to AltaRica [114]. The idea behind this is

to get to a model language closer to the implementation and to model additional aspects of

the system. With newer versions of SysML, specifically version 2, the textual representation

allows for creating many different concepts, such as state machines and others. This makes

the generation of final programming language code from the SysML model more manageable

and more straightforward compared to going through another modeling language, although

the chasm between a high-level modeling language such as SysML and the different pro-

gramming language implementations for different systems is a challenge that requires a lot

of new research ideas.

For example, automatic code generation has been proposed from different modeling lan-

guages such as UML . The generation of code from state diagrams has been studied exten-

sively [48]. The approach represents the systems as objects, and each object can have a

Finite State Machine (FSM) . Each FSM is controlled through events that come from other

objects or externally. The difficulty in using UML comes from the fact that UML represents

the state diagrams in a graphical form, and this makes it harder with the implementation of

116

automatic tools. Code generation is still focused on a particular small part of a system or

even a component, and tools and techniques do not cover the generation of code for SoS.

A universal method for deploying SoS is based on services as a universal mechanism for

building distributed systems. A system of systems can be considered a collection of devices

that present services, where each service presents a service interface. Such an approach [115]

allows for the building of SoS dynamically by connecting devices through services offered

by other devices. The proposed method uses an SoS composer based on a graph model of

the SoS, which helps match devices with the services they need. The IoT domain is ideal

for this approach as IoTs are added and removed, and new services can also become present

or disappear. This approach does not focus so much on the implementation but on the

capabilities and interfaces of the CS as part of the SoS.

7.2.2 Run-time Approaches

In order for run-time changes to be possible, each system has to be equipped with the

capability to connect to other systems and to present its services as they change dynamically.

As presented in figure 7.3 it can be practical to dedicate a control component as part of each

system that takes care of this job. This way, the remaining components of each system

can do their job to provide the local mission of the constituent system, and the control

component can be in charge of reorganizing them and presenting the updated system interface

to the other systems. Control components can comply with a common interface standard so

that independently developed systems can be easily integrated into different configurations.

Standardization in this area would be very beneficial in the long run, although it may be

difficult to proliferate because of all sorts of legacy systems.

Each constituent system can also have a state machine that reflects its overall state,

which is a function of the participating subsystems and components. Based on the state,

operations can be allowed in a safe manner or not allowed so that the system can work as

intended. The global SoS does not have to present a global state explicitly, as it depends

on its constituent systems and their state. The global state shall be avoided as we seek the

117

independence of individual systems and their independent growth. If some systems do not

have a state, then the integration is even easier, although this would rarely be the case.

Figure 7.3. SoS Control Element [112]

The ability to control individual component systems so that they can be added, removed,

or updated to the SoS is essential. We can think of each constituent system as equivalent

to a component in a regular system. In that respect, each system should have an interface

representing it to other systems. The more well-thought-out and standardized this interface

is, the easier it will be to assemble SoS. Finally, the ability for systems to propagate and

advertise their capabilities to other systems is another requirement for each CS that needs

to support run-time dynamic behavior.

118

Rapid Development of Systems

In some domains, rapid deployment of systems is a need that is fairly demanding but

necessary. Rescue and search missions, catastrophe response, and military operations all

have such requirements of assembling a system on-the-fly as the situation demands [108].

Even in areas such as Industry 4.0 and IoT, there are requirements for rapid reconfigurations

of systems. In such situations, time and quick guarantees are paramount, as there is no time

to go through the traditional development cycle. The only approach is to configure a system

at run-time based on the knowledge of the constituent systems and the run-time analysis

that can be done quickly. This type of situation puts run-time assurance as a central piece

in the puzzle of the validation of system of systems as they are formed.

The crisis response field has numerous examples of systems of systems that need to be

reorganized dynamically. They are also referred to as Smart Crisis Response System of

Systems (SCRSoS) [116] in the literature. Their dynamic behavior assumes dynamic links

between systems being formed and services being offered, depending on the environmental

characteristics. Switching to new behavior can be precipitated by events triggering changes

from the environment and the state of some of the constituent systems. The main focus

in achieving such quick reconfiguration capabilities of a SoS can happen through very good

cooperation of its constituent systems.

One approach for reconfiguring a SoS based on events is associating roles to each con-

stituent system. There are formal approaches to specify such reconfiguration behavior. One

such approach uses the Maude language [116]. The Maude language has support for dynamic

changes applicable to SoS in general, particularly for SCRSoS. The ArchSoS extension of

Maude is an Architecture Definition Language appropriate for representing SoS and their

dynamic evolution.

Assurance of SoS

The assurance of SoS is a complex subject, and there is no universal solution that can

work everywhere. It can be done offline or during run-time , although in both cases there

are significant difficulties in how a SoS is assured. Many validation and verification (V&V)

119

techniques that use tools such as ACSL are oriented to verify the behavior of individual

functions [36]. In some extensions of ACSL , like MetACSL , a set of meta-properties are

validated, and then a set of functions are included [117]. This is still a very limited approach

for SoS where the scope is much larger, and the implementation between different systems

can vary substantially. This means that a new approach is needed to achieve a higher level of

assurance for systems at scale. The same concept could be extended to a set of components

and systems instead of a set of functions, as in MetACSL.

The offline assurance methods rely on techniques that explore the state space and can

take a really long time and can become too difficult when applied to complex systems. Run-

time verification on the other hand monitors state transitions as the system executes [118].

If a discrepancy is found from a specified spec, the system can react in a specified way. This

approach is fine when the system is well-defined and does not have dynamic reconfiguration.

When the number of new reconfiguration sets are known, a set of respective system specs can

be used for each one as an interim solution. A complete solution for an arbitrary dynamic

reconfiguration requires a new approach since the combinations are many and unpredictable

at design-time .

As suggested in [118], a Domain Specific Language (DSL) such as Genom is a convenient

way to present the specification of a system. Such language can have formal grammar and,

therefore, can take advantage of automatic tools to parse the grammar. The DSL can specify

the system, and then the final system can be generated through code generation. A special

case is when the DSL allows modeling, and different properties of the design can be checked

at any point. Components and entire systems can then be specified and generated after

their properties are checked. If the models are kept up-to-date with the system changes,

then assurance is possible at run-time . This approach is explored in other chapters of this

work. Realistically, offline and run-time verification are needed for the assurance of complex

SoS.

The idea of expressing the system with something that is similar or the same as the

implementation language is explored in the following work [119]. The authors argue that the

specification, the implementation, and the assurance should be done with the same language

and tools. Within the SoS domain, where we may have different implementation languages,

120

we can only guarantee that the specification and verification are done in the same language.

For this, a plausible approach is to use the same language for specification and verification

and modeling and to generate different implementations based on the target language. As

long as there is a bidirectional correspondence between the implementation language and the

assurance and verification language, then we can argue that run-time verification is possible

for SoS .

This scheme is shown in figure 7.4 , where different implementation languages are as-

sumed for the three constituent systems. In order to be able to do assurance, we need to

represent each system in a common modeling/specification language. For this, a model-to-

implementation bridge is needed for each implementation language. The approach is flexible

as new implementation languages can be added, and only a new bridge will need to be

developed from the new implementation language to the model. Therefore scalability and

generality are achieved by keeping a common modeling and specification language for each

system, for example, SysML . This allows for meta-modeling for the entire SoS as shown in

the diagram.

The challenge of the shown approach is the bottom-up direction of updating the model

from the implementation languages. Since every implementation language has different se-

mantics that needs to be mapped to the model language, different mappings need to exist

for each implementation language. This process also will need to lose some semantic features

in the process. The final challenge is to ensure that the models of the individual systems

need to have the same formalisms so that the meta-model can be formed. It is also possible

to envision that the models of the individual systems are using a lower level of modeling

language that needs to be mapped to a higher system-level meta-model.

One direction of providing assurance is to shift parts of the assurance to run-time , not

only design-time as the more traditional approaches prescribe. This is required for highly

dynamic systems because of the large state space of possible configurations that cannot be

assured at design-time. For this, new paradigms, such as the system’s run-time models, need

to be used. The B-Space framework is such an attempt [120]. The framework’s focus is to

provide safety assurance at run-time through comprehensive models. There can be a plethora

of models addressing different aspects of the system, as one model cannot be comprehensive

121

Figure 7.4. Model to Implementation Diagram

enough for all design aspects. The collection of these models is referred to as B-Space, as

the models represent the system in virtual space.

Dynamic architectures can be formed by systems of systems requiring different services

and forming new dependencies after instantiation. As these architectures are formed, condi-

tional safety certificates are introduced to ensure safety conditions are not violated. These

safety contracts are called ConCerts [120], and their function is to provide guarantees to the

participating systems. The realization of ConCerts can happen through formal grammar, as

this allows their integration into existing modeling platforms and tools. They can be viewed

as additional entities in the architecture that can help with the run-time reconfiguration of

SoS while preserving certain safety properties. The approach tackles the run-time state space

enormity by introducing safety guards focused only on certain aspects and did not need to

122

know the entire state of the SoS. In other words, they act as intelligent blocks that are a

second architecture alongside the main system architecture. Since they are distributed and

agnostic to any particular place of residence, they can be applied to different configurations,

hierarchies, and topologies.

As in many other engineering disciplines, one way to tackle a problem is to use the

principle of separation of concerns. For example, the functional requirements differ from the

non-functional ones, and safety is in its own plane. This approach can be used in the design

of systems where safety and its run-time assurance can live in a parallel architecture that

focuses on just one thing. Keeping the run-time assurance architecture separate has a lot of

benefits, one of which is the ability to re-certify it easily if changes are needed and to use

different design techniques and tools [121]. A side benefit is that system’s complexity is on

the rise, and certifying the main system may not be feasible, especially with the use of AI

and other computer-intensive algorithms in contemporary systems, for example, in robotics.

The separation of concerns principle allows for keeping systems safe, even if they contain

some unsafe parts. The benefits are even greater in systems with dynamic behavior, such as

SoS, where analyzing all possible scenarios may be impossible. Simpler run-time assurance

becomes an alternative path to the traditional design with high returns on the invested time

and effort.

Figure 7.5. Run-Time Assurance Architecture Embedded in a SoS

123

An example of run-time assurance architecture embedded into a system of systems is

shown in figure 7.5 . Each system has a Run-Time Assurance (RTA) component dedicated to

run-time control. The RTA components are connected through an interface specific to the

overall RTA of the entire SoS. This can guarantee that if one of the RTA components senses

a violation this can be communicated to the other RTA components. The diagram shows a

parallel connection between each system’s control and diagnostic components. The shown

architectural approach shows how a SoS can be presented and controlled in different layers:

control, assurance, and function. This type of approach can be thought of as compositional

run-time assurance as we include each RTA portion from each constituent system.

The RTA components can use contract-based assumptions and guarantees [121] to make

them amenable to formal verification. Since RTA components determine the safety of the

system, they need to be expressed in a formal language that can use some formal verification

techniques. The interfaces between different systems’ RTA components can also benefit

from standardization. The same is true for the control components shown on the diagram.

These different logical networks can give new life to SoS implementation and development.

Even if the approach can be standardized for a particular domain, this is still a significant

improvement in the way SoS is architected.

Mission-Based Validation

Many authors start the argument for system validation by validating the mission [116].

This is the ultimate high-level goal that needs to be achieved for a SoS, and mission-driven

testing and validation is a popular approach. This is a fairly high-level approach and can

abstract itself from the actual SoS composition, especially in the context of dynamic recon-

figuration where the SoS can vary at run-time . Mission-based validation is still part of the

overall validation effort. Even if it has a narrow scope, it is a form of cross-cutting concept

that helps achieve a reasonable goal faster.

The SoS can be described by its mission and the missions of its constituent systems. Some

works have proposed the use of special languages for specifying goals in order to represent

the mission of the SOS. One such language is based on the KAOS requirements language

124

[122]. The global mission of the SoS describes the SoS, and the individual missions can be

very different, but they still need to help to accomplish the global mission. Various mission

description languages can be used for mission-based validation . Some of them are based on

XML or similar meta-languages, and others are specifically developed for this purpose.

Methods to validate the mission characterize the mission as a sequence of actions the sys-

tem takes to achieve the goals. The mission can be controlled by resuming an action, going

back to a previously known successful action, or can be completely aborted. The authors of

[89] advocate for the creation a mission language to represent and monitor the mission. Each

action can be individually validated by checking its preconditions and attributes. Automatic

code generation of monitors for each action can be performed based on the mission speci-

fication. This approach does not consider the actual design of each system but rather the

execution of the mission and focuses on its validation . This can be considered a high-level,

black-box approach for validating complex systems from the perspective of the final result -

the mission execution.

Large-scale systems that need to be quickly assembled in order to achieve a specific

goal are named mission-oriented system of systems. The challenge of such SoS is that

they need to guarantee interoperability [123]. The interoperability analysis can start at

the modeling phase, focus on the operational activities, and then consider the technical

capabilities that can enable the mission. A better way to describe the mission is to represent

it as a collection of activities and associated information exchanges. In addition, one needs

to set criteria for the success of the mission, for example, the time for completion and

successful achievement of the mission’s goals, for example, destroying the target or reaching

the destination and delivering a package. The operational activities need to be considered

as requirements for the technical capabilities. One area that requires some more special

attention is the communication between systems and their ability to perform actions based

on communicated information. This analysis can include the probability of communication

or execution failures that can lead to mission failure.

125

7.3 Conclusion

Dynamic reconfiguration of single systems is challenging as it is. It is even more chal-

lenging for SoS. The relatively new field is part of the problem, and another issue is the

fact that SoS is constantly developing with shifting definitions and expectations. This also

brings research opportunities and challenges, as described in this chapter. One of the most

challenging directions is the run-time assurance (RTA) of SoS, as complexity and diversity

defy existing design and analysis methodologies for standard systems. As described in pre-

vious chapters, growing momentum in the MBE approaches brings a lot of potential for the

future of SoS. This chapter presented some potential directions for addressing SoS dynamic

behavior in general.

126

8. DYNAMIC ARCHITECTURE DESCRIPTION LANGUAGE

8.1 Motivation

As the research of the literature in this study showed, the existing ADLs provide facilities

primarily for static design. They are not very suitable for the type of systems that will be

needed in the future. The modeling is mainly done at design-time, and the run-time behavior

is usually fixed. The advent of IoTs and self-configuration sensor networks will exacerbate

the need for run-time changes in the behavior of systems. The need to move modeling from

the design to run-time is a trend that is new but already well-established. When we look for

a solution in a new domain, there are usually two paths: to change and augment an existing

solution or to create a completely new one. Each approach has its pros and cons. The

first approach is certainly possible as many modeling languages, such as AADL and SysML

, support extensions. On the other hand, a brand-new language can thoroughly approach

dynamic behavior as a central design feature and provide a cleaner approach. This can also

be used in conjunction with existing modeling solutions to add the missing functionality.

As many of the modeling languages have semi-formal nature, it is not easy to provide

precise semantics without creating a new DSL extension, and even then, the remaining part

of the language is still semi-formal. Another concern when using an existing language is

the complexity of the language and the tools it comes with. A more straightforward and

targeted solution is sometimes a better and more elegant way that can be easy to adopt and

use. These reasons lead to choosing the approach of designing a new dynamic run-time ADL

called dynADL . This new architecture language has been influenced by several existing

modeling and interface languages that cover different aspects of design, graph notation,

interface definition, and contracts. These languages are presented with features that are of

interest to the creation of dynADL.

8.2 Influencing Architecture Description Languages

Developing a new Architecture Description Language (ADL) is a serious undertaking.

Doing all the work from scratch is exciting but very time-consuming and unnecessary. For

127

this reason, we want to look at existing languages that do certain things well and explore

the possibilities of reusing some of the ideas. Since our new ADL requires architectural

representation and handling, we can look at the Graph Modeling Language (GML) language,

which specializes in graph parsing and visualization. A central part of dynADL is the

representation of interfaces for components and systems. The Thrift specification, being

an Interface Definition Language (IDL), presents interfaces for messages and services in an

elegant way and can be used as a base to add other interface elements. A language like ACME

can serve as an example of how complex architecture is defined. Things like components,

connections, and ports can be reviewed from the point of view of the new dynamic ADL.

AADL is also considered because of the same reasons as ACME. These languages and others

provide specializations in how they address specific aspects of the design, and some of their

features can be used as influences to our development. They all do not address run-time

behavior explicitly that we would like to support in dynADL.

8.2.1 GML

GML stands for Graph Modeling Language. It has a format that is simple, flexible,

and expressive and has been used for some time. Its grammar exists in Antlr format, which

allows for features to be reused easily. It uses a simple text-based syntax to represent graphs.

The main keywords that are used are : graph, node, edge [124]. The language is based

on key-value pairs where the key is a keyword from the language, and the value can be

anything. GML provides even too much freedom in the choice of keys and values. The node

is something that can be extendable, and this is very convenient as nodes can be used to

represent software components or systems. A simple example is shown in listing 8.1 [124],p.1.

8.2.2 Thrift

Apache Thrift is an open-source framework that is built to support distributed applica-

tions. It presents messages and services in a very elegant way through an Interface Descrip-

tion Language (IDL) that is formally defined, and it has a grammar in Antlr. It supports

several programming languages, and it is relatively lightweight compared to other IDLs. It

128

Listing 8.1. GML Example
graph [

comment " This i s a sample graph "
d i r e c t e d 1
I sP lanar 1
node [

id 1
l a b e l " Node1 "

]
node [

id 2
l a b e l " Node2 "

]
node [

id 3
l a b e l " Node3 "

]
edge [

source 1
t a r g e t 2
l a b e l " Edge from node 1 to node 2 "

]
edge [

source 2
t a r g e t 3
l a b e l " Edge from node 2 to node 3 "

]
edge [

source 3
t a r g e t 1
l a b e l " Edge from node 3 to node 1 "

]
]

129

also supports serialization for data and the concept of services. Service Oriented Archi-

tecture (SOA) systems are attractive in the cloud and other areas where (SOA) is needed.

Thrift has pretty good productivity when deployed, although the main interest in this work

is the definition of interfaces that consist mainly of messages and services. An example of

the Thrift IDL, adapted from [125],p.430 is shown in listing 8.2 .

8.2.3 AADL

AADL supports both graphical and text-based modeling, and its grammar is defined

in Xtext format. The development environment of AADL is based on Eclipse through

specialized plugins. Although it has been created as a design-time modeling language for

predominantly static architectures, it has some support for dynamic behavior through modes.

It also has an excellent representation of processes, threads, components, and mechanisms

to communicate between them. Its Java-based development environment provides tools for

modeling and simulation in different operating system environments. Some of the constructs

of the language, like components and connections, can be important to the development

of this work. A representative example of the language syntax adapted from [126], p.24 is

shown in listing 8.3 .

8.2.4 Acme

Acme was created decades ago, although it has not been as popular as AADL or SysML,

primarily because of the lack of good tools. It is a well-designed ADL that can be serve

as inspiration for this development. In Acme, systems are represented as graphs with com-

ponents. Components, connectors, and ports are central to the language and many other

features that are less connected to this work. Acme has a formal grammar defined in Antlr,

which is really useful as our development is also using Antlr. The language’s syntax is some-

what complex and covers many different aspects of designing systems. The ideas in ACME

can be used by simplifying the syntax and using only the relevant concepts for dynamic

behavior. An example from the Acme language [127],p.57 is shown in listing 8.4 .

130

Listing 8.2. Thrift Example
enum Market {

Unknown = 0
Portland = 1
S e a t t l e = 2
SanFrancisco = 3
Vancouver = 4
Anchorage = 5

}
typedef double USD
struct TimeStamp {

1 : i 16 year
2 : i 16 month
3 : i 16 day
4 : i 16 hour
5 : i 16 minute
6 : i 16 second
7 : op t i ona l i 32 micros

}
union FishS izeUni t {

1 : i 32 pounds
2 : i 32 k i lograms
3 : i 16 standard_crates
4 : double metric_tons

}
struct Trade {

1 : s t r i n g f i s h
2 : USD p r i c e
3 : F i shS izeUni t amount
4 : TimeStamp date_time
5 : Market market=Market . Unknown

}
except ion BadFish {

1 : s t r i n g f i s h
2 : i 16 error_code

}
except ion BadFishes {

1 : map<st r i ng , i16> f i s h _ e r r o r s
}
s e r v i c e TradeHistory {

Trade GetLastSale (1 : s t r i n g f i s h)
throws (1 : BadFish bf)
l i s t <Trade> GetLastSa l eL i s t (1 : set<s t r i ng > f i s h
2 : bool f a i l _ f a s t=f a l s e)
throws (1 : BadFish bf 2 : BadFishes b f s)

} 131

Listing 8.3. AADL Example
p roce s s cont ro l_proce s s ing
f e a t u r e s
input : in data port sensor_data ;
output : out data port command_data ;
end cont ro l_proce s s ing ;

p roc e s s implementation cont ro l_proce s s ing . speed_contro l
subcomponents
contro l_input : thread contro l_in . input_process ing_01 ;
control_output : thread contro l_out . output_processing_01 ;
end cont ro l_proce s s ing . speed_contro l ;

thread contro l_in
end contro l_in ;

thread implementation contro l_in . input_process ing_01
end contro l_in . input_process ing_01 ;

thread contro l_out
end contro l_out ;

thread implementation contro l_out . output_processing_01
end contro l_out . output_processing_01 ;

data sensor_data
end sensor_data ;

data command_data
end command_data ;

132

Listing 8.4. Acme Example
System simple_cs = {

Component c l i e n t = {
Port sendRequest ;
P rope r t i e s { requestRate : f loat = 1 7 . 0 ;

sourceCode : e x t e r n a l F i l e = "CODELIB/ c l i e n t . c "
}

}
Component s e r v e r = {

Port r ece iveReques t ;
P rope r t i e s { idempotent : boolean = true ;

maxConcurrentClients : i n t e g e r = 1 ;
mult i threaded : boolean = f a l s e ;
sourceCode : e x t e r n a l F i l e = "CODELIB/ s e r v e r . c "

}
}
Connector rpc = {

Role c a l l e r ;
Role c a l l e e ;
P rope r t i e s { synchronous : boolean = true ;

maxRoles : i n t e g e r = 2 ;
p ro to co l : WrightSpec = " . . . "

}
}

}
Attachments {

c l i e n t . send−reques t to rpc . c a l l e r ;
s e r v e r . r e c e i v e −reques t to rpc . c a l l e e

}

133

8.3 Language Development Technologies and Tools

A great variety of tools can help develop an ADL, starting from the classical Lex and

YACC . Recently several modern tools have become mainstream because of their ease of use,

tool support, and capabilities. We look at the main features and compare Xtext , TextX , and

Antlr and determine which tool will be most appropriate for this development. Some of the

deciding factors come from the availability of a formal grammar for languages that employ

similar constructs that we would like to reuse or modify for our ADL . Another essential

factor would be the support of programming languages for the generated parser and lexer.

Some tools are centered around a specific development language, and their support for other

languages may be less comprehensive. Some of the tools are tied to a particular language

and IDE and have nice integration but may not be as universal as others.

8.3.1 Xtext

Xtext is a very well-established tool for building DSLs or General Purpose Languages

(GPL) . It can generate a parser written in Java that the user can customize. It is heavily

reliant on Java and Eclipse. It uses the Eclipse Modeling Framework (EMF) to create an

Abstract Syntax Tree (AST) [128]. This allows it to efficiently do model-to-model or model-

to-text transformation through the internal Ecore model in EMF . As the parser is generated

Xtext creates a smart editor for the designed language in the form of another Eclipse project

that is spawned from the primary Eclipse environment. The dependency on Java and Eclipse

makes the tooling standard but also can be considered a hindrance to those who need to

become more familiar with it or are not in favor of this family of tools.

8.3.2 TextX

TextX is based on Python and uses the Arpeggio parser. It is a tool that is not dependent

on a particular IDE. The only dependency is on Python and Arpeggio. It has a very different

philosophy compared to Xtext. It is a lightweight and universal tool that can fit in different

environments. TextX provides fast prototyping of DSLs as it can speed up the process from

134

grammar generation to testing. It is easy to install as it does not have many dependencies

[129]. Even if TextX is not tied to a particular IDE, it is still mainly a Python-based tool.

It is also a relatively new addition to the tools in this category, which can be a problem with

support from different tools, such as different editors and IDEs. This is a good solution if

one is satisfied with the Python ecosystem.

8.3.3 Antlr

Antlr has been established as a DSL and GPL development tool for the last several

decades. It is well supported by a number of IDEs such as Eclipse and Visual Studio with

the help of plugins [130]. A unique feature of Antlr is that it can support multiple languages

for the generated parsers. This is very convenient as developers can choose the language of

choice for their development. Antlr is more productive than the traditional Lex and Yacc

tools and is based on the Extended Backus Naur Form EBNF . The EBNF representation

is based on the standard BNF which is popular in most universities’ traditional compiler

courses in computer science programs. There are tools that allow for grammar debugging,

such as the Visual Studio Code extension, among others. Finally, numerous references and

examples exist for using Antlr, as it remains an excellent approach to the creation of DSLs

and GPLs.

8.4 dynADL - Dynamic Architecture Description Language

The most important part of a new design is to set the requirements that the design will

need to meet. This is certainly true for an ADL . Languages that can become practical pro-

vide both simplicity and expressiveness, as well as the ability to be extended. Dependability

on a particular technology for a particular language may be a good thing if the technology

is well-supported and has a future. The support of tools and licensing issues are definitely a

factor in their usefulness and possible adoption. All these factors express the following high-

level requirements for dynADL . The development of such ADL can happen with different

tools, although the analysis in the previous section leans towards the use of Antlr for the

reasons mentioned above.

135

• The language shall be minimalistic

• Dynamic architecture definition shall be supported

• Run-time execution shall be supported

• Architectures of both systems and system of systems shall be available

• The language shall be made available as an open-source project

• The language shall allow for run-time extensions for different platforms

• The language does not try to compete with already established ADLs that specialize

in certain areas

• The language shall be defined by a formal grammar in EBNF notation

• The generation of parsers from the grammar shall be supported in different program-

ming languages

• The high-level definition of the architecture shall be separated from the platform-

specific extensions

As proposed in the requirements for dynADL the main objective is to have a univer-

sal approach to defining dynamic architectures. For this to be possible, the design of dy-

nADL separates it into a high-level language parser defined through its EBNF grammar

and platform-specific extensions that can be added in addition as new platforms need to

be supported. This division separates the specifics of how components are handled by dif-

ferent platforms, as they can be processes or threads or even sharing threads from thread

pools. The platform-specific extensions support the actual handling of component loading,

unloading, interface validation, and running. In this work, we focus mostly on the high-level

definition of dynADL and its grammar. Examples of possible platforms are ROS, PX4, and

Posix. The first implementation focuses on Posix and a partial implementation of ROS,

whereas future versions can focus on PX4 and full support for ROS.

136

The process of designing an architecture with dynADL is shown in figure 8.1 . The EBNF

grammar of the language is used to produce a parser in C++. The Antlr tools also support

other languages, so a Java parser is one potential choice, if desired. The created parser has

listener files that define methods for each keyword in the language. This allows the user

to create platform-specific extensions that can provide the actual functionality for a given

platform. In the case of ROS, for example, the extension treats each component as a process

and uses ROS to load, unload and run it. The interface definition in dynADL needs to be

mapped to the actual interface definition of the generated system. In the case of ROS, these

are the message, service and action text-based configuration files. In the case of PX4, there

are message files and associated C++ code. The grammar of the dynADL language and its

usage is shown in appendix B .

Figure 8.1. dynADL Development Process

The overall structure of the language design is shown in figure 8.2 . A specification can

include several dynamic packages. The figure shows package two as an example. Here a

package signifies a collection of systems and can be used to represent a SoS. The description

starts with listing all standard interface components, such as messages, services, actions, state

137

variables, and configuration parameters. This forms the standard glossary for constructing

components that is used in constituent systems. The definition of each system starts with

some common attributes that describe the system. What follows is the specification of

each component in each system with its interface block and a definition block with general

identification information. After all, systems are presented, a special section lists all possible

system configurations that can be supported at run-time.

138

Figure 8.2. dynADL Overall Structure

dynADL allows for a detailed description of the architecture. There are two main phases

in how it can be used. The first one is the generation of the final system, which includes

source code and configuration files as shown in figure 8.3 . After system generation is done,

the user can add additional code to complete the functionality [58]. Then dynADL can

execute its run-time section and start all systems with their components and perform dy-

139

namic reconfiguration when needed. For this, dynADL can receive commands that generate

events leading to dynamic changes. In this respect, dynADL has dual nature in generating

the system before run-time and then executing it during run-time . The system generation

is platform-specific and different languages and configurations can be supported through

platform-specific plugins.

Figure 8.3. System Generation from dynADL

dynADL has been influenced by several languages, but the syntax has some similarities

with the C language, although the semicolon is not necessary at the end of each line. The

language has many declarative parts. The common interface definition and the system

definitions are simply declaring the architecture specifics. The following run-time section is

like a scripting language and defines dynamic behavior. That is why the tool can be used

in two modes. The first mode generates code based on the specified architecture of the SoS.

140

The second mode is used to run the packages and their systems and execute the dynamic

behavior in the run-time section. Both of the modes rely on platform-specific portions of the

implementation.

The packages keyword in dynADL symbolizes system of systems. The system can contain

multiple components that are presented with their interface sections. Each system’s config-

urations show only the components, as each component’s interface includes the connections

to messages or services. This design assumes a message and service broker of some sort or a

publish-subscribe mechanism. The system configurations are predefined and rely on selected

and pre-approved combinations of components. The run-time section of the dynADL code

allows for more arbitrary dynamic changes. This can be useful when a single component

needs to be replaced during maintenance or because of some failure.

The run-time portion of dynADL has a complete set of facilities to support the man-

agement of software entities. It has support for functions that run in separate threads.

Functions can also be called on the arrival of an event or through timers. Printing and

logging are also part of the language. The most important part in the language are the

commands. They can be run in any function or within the main function, where the exe-

cution starts. The commands allow for system configurations to be loaded and started as

well as stopped and unloaded. There are commands for swapping components and saving

and restoring the state of components. Commands can be run as a linear sequence or can

be controlled through if and while statements that the language supports. As events and

timers and all other functions run in their threads, the language supports parallelism, even

if synchronization is not part of it as it is not required. C-like comments are also supported

to serve as documentation.

A dynADL specification starts with the description of interfaces. Message definitions,

services, actions, configuration, state, and diagnostic services represent them. Each of these

can contain the basic types that are compatible with ROS and are also very similar to the

types in Thrift. The data types are shown in table 8.1 . Even if some of the types are not

supported by Thrift, we provide a superset that is suitable for most systems. Thus the code

generation for systems like ROS becomes straightforward.

141

Table 8.1. Supported Data Types
dynADL Data Types Compatibility

Type ROS Thrift

bool Yes Yes

byte Yes Yes

char Yes No

int16 Yes Yes

uint16 Yes No

int32 Yes yes

uint32 Yes No

int64 Yes Yes

uint64 Yes No

binary Yes No

float32 Yes No

float64 Yes No

double Yes Yes

string Yes Yes

A dynADL script starts with definitions of interface components as shown in listing 8.5 .

The listing shows an example of each type of definition that is supported, but in a real

example, there can be as many as needed. These definitions form a glossary and can be used

further when the architecture is specified later. All of them use the data types provided in

table 8.1 .

The description of a package that contains multiple systems is shown in listing 8.6 .

Following are the definitions of all systems that belong to the package. Each package can

have some key-value pairs to represent some features of the package. Each system can

also have its own key-value pairs describing it. It can consist of an arbitrary number of

components, and each component has a complete interface consisting of declarations from

the interface glossary in listing 8.5 .

142

Listing 8.5. Interface Glossary Definitions
message message1 {

in t32 i ,
s t r i n g s

}

s e r v i c e s e r v i c e 1 {
in s t r i n g s t r ,
out in t32 i ,
out s t r i n g r e s u l t

}

ac t i on ac t i on1 {
in in t32 par1 ,
out s t r i n g s ,
update s t r i n g r

}

component c o n f i g u r a t i o n params{
s t r i n g param1 ,
in t32 param2 ,
f l o a t 3 2 param3 ,
double param4

}

component s t a t e s t a t e_va r i ab l e s {
f l o a t 3 2 pos i t i on ,
f l o a t 3 2 ve l o c i t y ,
f l o a t 3 2 a c c e l e r a t i o n ,
s t r i n g mode

}

d i a g n o s t i c s s e r v i c e d i a g n o s t i c s 1 {
in s t r i n g r e su l t ,
out in t32 r ,
out s t r i n g cmd

}

143

Listing 8.6. Packages and Systems Definitions
package package1{

id 1
d e s c r i p t i o n "We have two systems "
comment " package1 comment "
// System1
system system1
{

id " 1 "
d e s c r i p t i o n " Cool ing system "
comment " system1 comment "
component component11{

i n t e r f a c e {
send message message1 ,
r e c e i v e message message2 ,
send s e r v i c e s e rv i c e1 ,
r e c e i v e s e r v i c e s e rv i c e2 ,
send ac t i on act ion1 ,
send ac t i on act ion2 ,
component c o n f i g u r a t i o n params ,
component s t a t e s ta t e_var i ab l e s ,
d i a g n o s t i c s d i a g n o s t i c s 1

}
} ,
component component12{

i n t e r f a c e {
send message message1 ,
send s e r v i c e s e rv i c e1 ,
r e c e i v e ac t i on act ion1 ,
component c o n f i g u r a t i o n params ,
component s t a t e s t a t e_va r i ab l e s

}
}

}
// System 2 , e t c .

}

144

Listing 8.7. Functions in dynADL
/∗ Functions can be used to wait on a p a r t i c u l a r event ∗/
func t i on f (){

de lay 1
p r i n t " Pr int from func t i on "
wait event event1

}

/∗ Functions can be c a l l e d from t imers ∗/
func t i on t (){

p r i n t " Timer func t i on "
}

/∗ Functions run in a separa te thread when c a l l e d with spawn ∗/
func t i on f sp (){

p r i n t " Function s t a r t ed through spawn command"
}

func t i on f c a l l (){
p r i n t " Function to be c a l l e d "

}

/∗ The run−time f u n c t i o n a l i t y s t a r t s in main ∗/
func t i on main (){

spawn f sp
c a l l f c a l l
t imer p e r i o d i c 1 . 5 t
de lay 15

}

The dynamic part of the script starts execution from the main function. Other functions

are also supported, as shown in listing 8.7 . The call operator can be used to call a function.

A function can also be spawned in a separate thread through the spawn command. All timer

and event functions are run in their separate threads. Each function can run commands and

can contain variable declarations and if and while statements. The two operators that are

supported are the increment and decrement operators. They are typically used with if and

while statements.

145

Listing 8.8. Control Statements
in t16 k = 10
inc k
p r i n t k
dec k
p r i n t k
i f (k) then

p r i n t " In i f "
en d i f
in t16 j = 3
whi l e (j) do

p r i n t j
de lay 0 .1
dec j

endwhi le
in t16 i = 0
i f (i) then

p r i n t " In i f i "
e l s e

p r i n t " In e l s e i "
en d i f

dynADL supports only if and while and variable declarations to control the execution.

Everything else is accomplished through commands that provide different functionality. An

example of how control statements can be used is shown in listing 8.8 . The inc and dec

operators are useful when a variable needs to be incremented and decremented. Within each

while and if any existing dynADL command can be invoked.

Table 8.2 shows the supported commands in dynADL.

146

Table 8.2. Supported Commands
dynADL Commands

Command Arguments Description

run identifier run a component or configuration

call identifier calls a function

load identifier load a component or configuration

unload identifier unload a component or configuration

stop identifier stop a component or configuration from

running

save identifier Save a component’s state

restore identifier Restore a component’s state

select package identifier Select a package as current context

select system identifier Select a system as current context

timer sinle or periodic identifier Starts a timer with a functionn call

delay double or integer Sleep for a certain period

print string literal Print a string at the console

event identifier function Register a functionn to be called for an

event

wait event identifier Wait for an event to occur

exec string literal Executes a command in a separate pro-

cess

log string file Logs a string to a file

spawn identifier Spawns a function in a thread

swap identifier Swaps two components

8.5 Conclusion

The idea behind the development of a dedicated dynamic ADL was to prove that this is

feasible in the first place. The other goal was to explore the challenges in actual implementa-

147

tion and assess the possibility of it becoming a more mature tool. This exploration has been

instrumental in finding complementary solutions to the plethora of design-time static model-

ing approaches. The effort strives to standardize the dynamic interactions and interfaces of

systems and their components. The hope is that this will inspire further development in this

domain. The architecture-specific extensions of dynADL can make it practical for many ex-

isting frameworks such as ROS . The availability of the grammar and the Antlr tools makes

it easy to extend and customize the core language for specific applications. Adding new

commands and operators can be done easily by following the example of the already-created

ones.

148

REFERENCES

[1] J. Axelsson and A. Kobetski, “On the conceptual design of a dynamic component
model for reconfigurable autosar systems,” SIGBED Rev., vol. 10, no. 4, pp. 45–48,
Dec. 2013. doi: 10.1145/2583687.2583698 . [Online]. Available: https://doi.org/10.
1145/2583687.2583698 .

[2] L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based multithreaded open
source robotics framework for deeply embedded platforms,” in 2015 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2015, pp. 6235–6240. doi:

 10.1109/ICRA.2015.7140074 .

[3] A. Kouba, A. Allouch, M. Alajlan, Y. Javed, A. Belghith, and M. Khalgui, “Micro air
vehicle link (mavlink) in a nutshell: A survey,” IEEE Access, vol. 7, pp. 87 658–87 680,
2019. doi: 10.1109/ACCESS.2019.2924410 .

[4] A. Dubey, G. Karsai, and S. Pradhan, “Resilience at the edge in cyber-physical sys-
tems,” in 2017 Second International Conference on Fog and Mobile Edge Computing
(FMEC), 2017, pp. 139–146. doi: 10.1109/FMEC.2017.7946421 .

[5] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many faces of
publish/subscribe,” ACM Comput. Surv., vol. 35, pp. 114–131, 2003.

[6] G. Brau, J. Hugues, and N. Navet, “Towards the systematic analysis of non-functional
properties in model-based engineering for real-time embedded systems,” Science of
Computer Programming, vol. 156, pp. 1–20, May 2018. doi: 10.1016/j.scico.2017.12.
007 . [Online]. Available: https://oatao.univ-toulouse.fr/20731/ .

[7] M. E. Shin, T. Kang, and S. Kim, “Blackboard architecture for detecting and notifying
failures for component-based unmanned systems,” Journal of Intelligent & Robotic
Systems, vol. 90, no. 3, pp. 571–585, 2018.

[8] F. Campean, S. Kabir, C. Dao, Q. Zhang, and C. Eckert, “Towards a resilience as-
surance model for robotic autonomous systems,” Proceedings of the Design Society,
vol. 1, pp. 3189–3198, 2021. doi: 10.1017/pds.2021.580 .

[9] A. Beugnard, J.-M. Jezequel, N. Plouzeau, and D. Watkins, “Making components
contract aware,” Computer, vol. 32, no. 7, pp. 38–45, 1999. doi: 10.1109/2.774917 .

149

https://doi.org/10.1145/2583687.2583698
https://doi.org/10.1145/2583687.2583698
https://doi.org/10.1145/2583687.2583698
https://doi.org/10.1109/ICRA.2015.7140074
https://doi.org/10.1109/ACCESS.2019.2924410
https://doi.org/10.1109/FMEC.2017.7946421
https://doi.org/10.1016/j.scico.2017.12.007
https://doi.org/10.1016/j.scico.2017.12.007
https://oatao.univ-toulouse.fr/20731/
https://doi.org/10.1017/pds.2021.580
https://doi.org/10.1109/2.774917

[10] A. Saadi, M. C. Oussalah, Y. Hammal, and A. Henni, “An approach for the dynamic
reconfiguration of software architecture,” in 2018 International Conference on Applied
Smart Systems (ICASS), 2018, pp. 1–6. doi: 10.1109/ICASS.2018.8651944 .

[11] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming dr. frankenstein:
Contract-based design for cyber-physical systems,” European journal of control, vol. 18,
no. 3, pp. 217–238, 2012.

[12] L. Kapova, B. Buhnova, A. Martens, J. Happe, and R. Reussner, “State dependence
in performance evaluation of component-based software systems,” in Proceedings of
the First Joint WOSP/SIPEW International Conference on Performance Engineer-
ing, ser. WOSP/SIPEW ’10, San Jose, California, USA: Association for Computing
Machinery, 2010, pp. 37–48, isbn: 9781605585635. doi: 10.1145/1712605.1712613 .
[Online]. Available: https://doi.org/10.1145/1712605.1712613 .

[13] M. Lauer, M. Amy, J. Fabre, M. Roy, W. Excoffon, and M. Stoicescu, “Resilient
computing on ros using adaptive fault tolerance,” Journal of Software: Evolution and
Process, vol. 30, 2018.

[14] K. Grochowski, M. Breiter, and R. Nowak, “Serialization in object-oriented program-
ming languages,” in Aug. 2019, isbn: 978-1-83880-333-9. doi: 10.5772/intechopen.
86917 .

[15] J. Knight and E. Nguyen, “Achieving critical system survivability through software
architectures,” vol. 3069, Jan. 2003, pp. 51–78, isbn: 978-3-540-23168-4. doi: 10.1007/
978-3-540-25939-8_3 .

[16] M. Stoicescu, “Architecting resilient computing systems: A component-based ap-
proach,” Dec. 2013.

[17] J. Wiklander, J. Eliasson, A. Kruglyak, P. Lindgren, and J. Nordlander, “Enabling
component-based design for embedded real-time software,” Journal of Computers,
vol. 4, Dec. 2009. doi: 10.4304/jcp.4.12.1309-1321 .

[18] P. Hehenberger, B. Vogel-Heuser, D. Bradley, B. Eynard, T. Tomiyama, and S.
Achiche, “Design, modelling, simulation and integration of cyber physical systems:
Methods and applications,” Computers in Industry, vol. 82, pp. 273–289, 2016, issn:
0166-3615. doi: https://doi.org/10.1016/j.compind.2016.05.006 . [Online]. Available:

 https://www.sciencedirect.com/science/article/pii/S0166361516300902 .

150

https://doi.org/10.1109/ICASS.2018.8651944
https://doi.org/10.1145/1712605.1712613
https://doi.org/10.1145/1712605.1712613
https://doi.org/10.5772/intechopen.86917
https://doi.org/10.5772/intechopen.86917
https://doi.org/10.1007/978-3-540-25939-8_3
https://doi.org/10.1007/978-3-540-25939-8_3
https://doi.org/10.4304/jcp.4.12.1309-1321
https://doi.org/https://doi.org/10.1016/j.compind.2016.05.006
https://www.sciencedirect.com/science/article/pii/S0166361516300902

[19] D. Brugali and P. Scandurra, “Component-based robotic engineering (part i) [tuto-
rial],” Robotics & Automation Magazine, IEEE, vol. 16, pp. 84–96, Jan. 2010. doi:

 10.1109/MRA.2009.934837 .

[20] A. Paikan, V. Tikhanoff, G. Metta, and L. Natale, “Enhancing software module
reusability using port plug-ins: An experiment with the icub robot,” in 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IEEE, 2014, pp. 1555–
1562.

[21] B. Y. Alkazemi, “A precise characterization of software component interfaces.,” J.
Softw., vol. 6, no. 3, pp. 349–365, 2011.

[22] O. J. Tilak and R. R. Raje, “Temporal interaction contracts for components in a
distributed system,” in 11th IEEE International Enterprise Distributed Object Com-
puting Conference (EDOC 2007), 2007, pp. 339–339. doi: 10.1109/EDOC.2007.47 .

[23] M. Stoicescu, J.-C. Fabre, and M. Roy, “Architecting resilient computing systems: A
component-based approach for adaptive fault tolerance,” Journal of Systems Archi-
tecture, vol. 73, pp. 6–16, 2017, Special Issue on Reliable Software Technologies for
Dependable Distributed Systems, issn: 1383-7621. doi: https://doi.org/10.1016/
j.sysarc.2016.12.005 . [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1383762116302715 .

[24] G. Biggs, N. Ando, and T. Kotoku, “Coordinating software components in a component-
based architecture for robotics,” in SIMPAR, 2010.

[25] J. Van, “Vulcan : Efficient component authentication and software isolation for auto-
motive control networks,” 2017.

[26] P. S. Beri and A. Mishra, “Dynamic software component authentication for au-
tonomous systems using slack space,” in 2019 3rd International Conference on Trends
in Electronics and Informatics (ICOEI), 2019, pp. 905–910. doi: 10.1109/ICOEI.
2019.8862570 .

[27] M. Grabowski, B. Kaiser, and Y. Bai, “Systematic refinement of cps requirements
using sysml, template language and contracts,” in Modellierung 2018, I. Schaefer, D.
Karagiannis, A. Vogelsang, D. Méndez, and C. Seidl, Eds., Bonn: Gesellschaft für
Informatik e.V., 2018, pp. 245–260.

151

https://doi.org/10.1109/MRA.2009.934837
https://doi.org/10.1109/EDOC.2007.47
https://doi.org/https://doi.org/10.1016/j.sysarc.2016.12.005
https://doi.org/https://doi.org/10.1016/j.sysarc.2016.12.005
https://www.sciencedirect.com/science/article/pii/S1383762116302715
https://www.sciencedirect.com/science/article/pii/S1383762116302715
https://doi.org/10.1109/ICOEI.2019.8862570
https://doi.org/10.1109/ICOEI.2019.8862570

[28] J. Yi, D. Qi, S. H. Tan, and A. Roychoudhury, “Software change contracts,” ACM
Trans. Softw. Eng. Methodol., vol. 24, no. 3, May 2015, issn: 1049-331X. doi: 10.
1145/2729973 . [Online]. Available: https://doi.org/10.1145/2729973 .

[29] P. Derler, E. A. Lee, M. Törngren, and S. Tripakis, “Cyber-physical system design
contracts,” in 2013 ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS), 2013, pp. 109–118. doi: 10.1145/2502524.2502540 .

[30] O. Ferrante, R. Passerone, A. Ferrari, L. Mangeruca, and C. Sofronis, “Bcl: A compo-
sitional contract language for embedded systems,” in Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA), 2014, pp. 1–6. doi: 10.1109/
ETFA.2014.7005353 .

[31] S. Chaki and D. de Niz, “Contract-based verification of timing enforcers: [extended
abstract],” Ada Lett., vol. 36, no. 2, pp. 27–30, May 2017, issn: 1094-3641. doi:

 10.1145/3092893.3092898 . [Online]. Available: https://doi.org/10.1145/3092893.
3092898 .

[32] W. Damm, A. Votintseva, A. Metzner, B. Josko, T. Peikenkamp, and E. Böde, “Boost-
ing re-use of embedded automotive applications through rich components,” Proceed-
ings of Foundations of Interface Technologies, vol. 2005, 2005.

[33] O. Scheickl, M. Rudorfer, and C. Ainhauser, “How timing interfaces in autosar can
improve distributed development of real-time software,” INFORMATIK 2008. Be-
herrschbare Systeme-dank Informatik. Band 2, 2008.

[34] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: A flexible real time schedul-
ing framework,” Ada Lett., vol. XXIV, no. 4, pp. 1–8, Nov. 2004, issn: 1094-3641.
doi: 10.1145/1046191.1032298 . [Online]. Available: https://doi.org/10.1145/1046191.
1032298 .

[35] R. Romagnoli, P. Griffioen, B. H. Krogh, and B. Sinopoli, “Software rejuvenation
under persistent attacks in constrained environments,” IFAC-PapersOnLine, vol. 53,
no. 2, pp. 4088–4094, 2020, 21st IFAC World Congress, issn: 2405-8963. doi: https://
doi.org/10.1016/j.ifacol.2020.12.2437 . [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2405896320331190 .

[36] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski, “Frama-c:
A software analysis perspective,” Formal Aspects of Computing, vol. 27, pp. 573–609,
2014.

152

https://doi.org/10.1145/2729973
https://doi.org/10.1145/2729973
https://doi.org/10.1145/2729973
https://doi.org/10.1145/2502524.2502540
https://doi.org/10.1109/ETFA.2014.7005353
https://doi.org/10.1109/ETFA.2014.7005353
https://doi.org/10.1145/3092893.3092898
https://doi.org/10.1145/3092893.3092898
https://doi.org/10.1145/3092893.3092898
https://doi.org/10.1145/1046191.1032298
https://doi.org/10.1145/1046191.1032298
https://doi.org/10.1145/1046191.1032298
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.2437
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.2437
https://www.sciencedirect.com/science/article/pii/S2405896320331190
https://www.sciencedirect.com/science/article/pii/S2405896320331190

[37] P. Baudin, F. Bobot, D. Bühler, et al., “The dogged pursuit of bug-free c programs:
The frama-c software analysis platform,” Commun. ACM, vol. 64, no. 8, pp. 56–
68, Jul. 2021, issn: 0001-0782. doi: 10 . 1145 / 3470569 . [Online]. Available: https :
//doi.org/10.1145/3470569 .

[38] G. T. Leavens and Y. Cheon, “Design by contract with jml,” 2006.

[39] S. Holthusen, S. Quinton, I. Schaefer, J. Schlatow, and M. Wegner, “Using multi-
viewpoint contracts for negotiation of embedded software updates,” in PrePost@IFM,
2016.

[40] L. Stockmann, S. Laux, and E. Bodden, “Architectural runtime verification,” in 2019
IEEE International Conference on Software Architecture Companion (ICSA-C), 2019,
pp. 77–84. doi: 10.1109/ICSA-C.2019.00021 .

[41] T. J. Parr and R. W. Quong, “Antlr: A predicated-ll(k) parser generator,” Softw.
Pract. Exper., vol. 25, no. 7, pp. 789–810, Jul. 1995, issn: 0038-0644. doi: 10.1002/
spe.4380250705 . [Online]. Available: https://doi.org/10.1002/spe.4380250705 .

[42] M. Vai, D. Whelihan, B. Nahill, D. M. Utin, S. R. O’Melia, and R. I. Khazan, “Secure
embedded systems,” 2015.

[43] Z. Fang, J. Liao, and X. Zhou, “Improving system-of-systems agility through dynamic
reconfiguration,” in 2020 IEEE International Conference on Systems, Man, and Cy-
bernetics (SMC), 2020, pp. 4466–4472. doi: 10.1109/SMC42975.2020.9283236 .

[44] N. Akhtar, M. M. S. Missen, N. Salamat, A. Firdous, and M. Husnain, “A study of
resilient architecture for critical software-intensive system-of-systems (sisos),” Inter-
national Journal of Advanced Computer Science and Applications, vol. 7, 2016.

[45] J. Parri, F. Patara, S. Sampietro, and E. Vicario, “A framework for model-driven engi-
neering of resilient software-controlled systems,” Computing, vol. 103, no. 4, pp. 589–
612, Apr. 2021, issn: 0010-485X. doi: 10.1007/s00607-020-00841-6 . [Online]. Avail-
able: https://doi.org/10.1007/s00607-020-00841-6 .

[46] D. Schneider and M. Trapp, “Runtime safety models in open systems of systems,”
in Proceedings of the 2009 Eighth IEEE International Conference on Dependable,
Autonomic and Secure Computing, ser. DASC ’09, USA: IEEE Computer Society,
2009, pp. 455–460, isbn: 9780769539294. doi: 10.1109/DASC.2009.111 . [Online].
Available: https://doi.org/10.1109/DASC.2009.111 .

153

https://doi.org/10.1145/3470569
https://doi.org/10.1145/3470569
https://doi.org/10.1145/3470569
https://doi.org/10.1109/ICSA-C.2019.00021
https://doi.org/10.1002/spe.4380250705
https://doi.org/10.1002/spe.4380250705
https://doi.org/10.1002/spe.4380250705
https://doi.org/10.1109/SMC42975.2020.9283236
https://doi.org/10.1007/s00607-020-00841-6
https://doi.org/10.1007/s00607-020-00841-6
https://doi.org/10.1109/DASC.2009.111
https://doi.org/10.1109/DASC.2009.111

[47] J. Pfeiffer, B. Rumpe, D. Schmalzing, and A. Wortmann, “The language of sysml v2
under the magnifying glass,” Journal of Object Technology, vol. 21, no. 3, D. D. R.
Sahar Kokaly, Ed., 3:1–15, Jul. 2022, The 18th European Conference on Modelling
Foundations and Applications (ECMFA 2022), issn: 1660-1769. doi: 10.5381/jot.
2022.21.3.a11 . [Online]. Available: http://www.jot.fm/contents/issue_2022_03/
article11.html .

[48] S. E. V. and P. Samuel, “Automatic code generation from uml state chart diagrams,”
IEEE Access, vol. 7, pp. 8591–8608, 2019. doi: 10.1109/ACCESS.2018.2890791 .

[49] F. Boutekkouk and O. Fartas, “Automatic generation of sysml diagrams from vhdl
code,” Sep. 2015.

[50] T. Zan, H. Pacheco, and Z. Hu, “Writing bidirectional model transformations as
intentional updates,” in Companion Proceedings of the 36th International Conference
on Software Engineering, ser. ICSE Companion 2014, Hyderabad, India: Association
for Computing Machinery, 2014, pp. 488–491, isbn: 9781450327688. doi: 10.1145/
2591062.2591102 . [Online]. Available: https://doi.org/10.1145/2591062.2591102 .

[51] A. Hristozov, E. Matson, E. Dietz, and M. Rogers, “Security of cyber-physical sys-
tems through dynamic component management,” in 2023 International Journal of
Engineering Research & Innovation, IAJC, 2023.

[52] C. A. R. Hoare, “An axiomatic basis for computer programming,” Commun. ACM,
vol. 12, no. 10, pp. 576–580, Oct. 1969, issn: 0001-0782. doi: 10.1145/363235.363259 .
[Online]. Available: https://doi.org/10.1145/363235.363259 .

[53] K. R. Apt and E.-R. Olderog, “Fifty years of hoares logic,” Form. Asp. Comput.,
vol. 31, no. 6, pp. 751–807, Dec. 2019, issn: 0934-5043. doi: 10.1007/s00165-019-
00501-3 . [Online]. Available: https://doi.org/10.1007/s00165-019-00501-3 .

[54] R. Buchanan, S. Goerger, C. Rinaudo, G. Parnell, A. Ross, and V. Sitterle, “Resilience
in engineered resilient systems,” The Journal of Defense Modeling and Simulation:
Applications, Methodology, Technology, vol. 17, p. 154 851 291 877 790, May 2018. doi:

 10.1177/1548512918777901 .

[55] H. Mkaouar, B. Zalila, J. Hugues, and M. Jmaiel, “A formal approach to aadl model-
based software engineering,” International Journal on Software Tools for Technology
Transfer, vol. 22, pp. 219–247, 2019.

154

https://doi.org/10.5381/jot.2022.21.3.a11
https://doi.org/10.5381/jot.2022.21.3.a11
http://www.jot.fm/contents/issue_2022_03/article11.html
http://www.jot.fm/contents/issue_2022_03/article11.html
https://doi.org/10.1109/ACCESS.2018.2890791
https://doi.org/10.1145/2591062.2591102
https://doi.org/10.1145/2591062.2591102
https://doi.org/10.1145/2591062.2591102
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/s00165-019-00501-3
https://doi.org/10.1007/s00165-019-00501-3
https://doi.org/10.1007/s00165-019-00501-3
https://doi.org/10.1177/1548512918777901

[56] D. Garlan, R. Monroe, and D. Wile, “Acme: An architecture description interchange
language,” in Proceedings of the 1997 Conference of the Centre for Advanced Studies
on Collaborative Research, ser. CASCON ’97, Toronto, Ontario, Canada: IBM Press,
1997, p. 7.

[57] A. D. Hristozov, E. T. Matson, J. C. Gallagher, M. Rogers, and E. Dietz, “Resilient ar-
chitecture framework for robotic systems,” in 2022 International Conference Automat-
ics and Informatics (ICAI), 2022, pp. 18–23. doi: 10.1109/ICAI55857.2022.9960094 .

[58] A. Hristozov, E. Matson, E. Dietz, and M. Rogers, “Component interface standard-
ization in robotic systems,” Annals of Computer Science and Information Systems,
vol. 32, pp. 305–312, 2022.

[59] A. Hristozov and E. Matson, “A methodology for estimation of software architectural
complexity in publish-subscribe systems,” in 2022 International Conference Auto-
matics and Informatics, IEEE, Oct. 2022, pp. 29–34. doi: 10.1109/ICAI55857.2022.
9960011 .

[60] A. Hristozov, E. Matson, J. Gallagher, E. Dietz, and M. Rogers, “Secure robotic ve-
hicles: Vulnerabilities and mitigation strategies,” in 2022 Virtual IEEE International
Symposium on Technologies for Homeland Security (HST), IEEE, 2022, pp. 1–6.

[61] K. Sinha and O. de Weck, “Structural complexity metric for engineered complex
systems and its application,” in Sep. 2012, pp. 181–192, isbn: 978-3-446-43354-0.
doi: 10.3139/9783446434127.015 .

[62] J. Axelsson, “Systems-of-systems design patterns: A systematic literature review and
synthesis,” in 2022 17th Annual System of Systems Engineering Conference (SOSE),
2022, pp. 171–176. doi: 10.1109/SOSE55472.2022.9812681 .

[63] Y. Zheng, Z. Li, X. Xu, and Q. Zhao, “Dynamic defenses in cyber security: Tech-
niques, methods and challenges,” Digital Communications and Networks, vol. 8, no. 4,
pp. 422–435, 2022, issn: 2352-8648. doi: https ://doi .org/10 .1016/ j .dcan .2021 .
07 .006 . [Online]. Available: https ://www.sciencedirect . com/science/article/pii /
S235286482100047X .

[64] D. Thomas, “Programming with models? modeling with code. the role of models in
software development.,” Journal of Object Technology, vol. 5, pp. 15–19, Jan. 2006.
doi: 10.5381/jot.2006.5.8.c2 .

155

https://doi.org/10.1109/ICAI55857.2022.9960094
https://doi.org/10.1109/ICAI55857.2022.9960011
https://doi.org/10.1109/ICAI55857.2022.9960011
https://doi.org/10.3139/9783446434127.015
https://doi.org/10.1109/SOSE55472.2022.9812681
https://doi.org/https://doi.org/10.1016/j.dcan.2021.07.006
https://doi.org/https://doi.org/10.1016/j.dcan.2021.07.006
https://www.sciencedirect.com/science/article/pii/S235286482100047X
https://www.sciencedirect.com/science/article/pii/S235286482100047X
https://doi.org/10.5381/jot.2006.5.8.c2

[65] A. Bucchiarone, F. Ciccozzi, L. Lambers, et al., “What is the future of modeling?”
IEEE Software, vol. 38, no. 2, pp. 119–127, 2021. doi: 10.1109/MS.2020.3041522 .

[66] G. Schweiger, H. Nilsson, J. Schoeggl, W. Birk, and A. Posch, “Modeling and simula-
tion of large-scale systems: A systematic comparison of modeling paradigms,” Appl.
Math. Comput., vol. 365, no. C, Jan. 2020, issn: 0096-3003. doi: 10.1016/j.amc.2019.
124713 . [Online]. Available: https://doi.org/10.1016/j.amc.2019.124713 .

[67] J. Hatcliff, J. Belt, Robby, and T. Carpenter, “Hamr: An aadl multi-platform code
generation toolset,” in Leveraging Applications of Formal Methods, Verification and
Validation: 10th International Symposium on Leveraging Applications of Formal Meth-
ods, ISoLA 2021, Rhodes, Greece, October 1729, 2021, Proceedings, Rhodes, Greece:
Springer-Verlag, 2021, pp. 274–295, isbn: 978-3-030-89158-9. doi: 10.1007/978-3-030-
89159-6_18 . [Online]. Available: https://doi.org/10.1007/978-3-030-89159-6_18 .

[68] L. Zhang, F. Ye, K. Xie, et al., “An integrated intelligent modeling and simulation
language for model-based systems engineering,” Journal of Industrial Information
Integration, vol. 28, p. 100 347, 2022, issn: 2452-414X. doi: https://doi.org/10.1016/
j.jii.2022.100347 . [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S2452414X2200019X .

[69] D. Lesens, “From system functional definition to software code,” in 8th European
Congress on Embedded Real Time Software and Systems (ERTS 2016), 2016.

[70] A. Mohsin, N. K. Janjua, S. M. S. Islam, and V. V. G. Neto, “A taxonomy of modeling
approaches for systems-of-systems dynamic architectures: Overview and prospects,”
ArXiv, vol. abs/1902.09090, 2019.

[71] N. Kaminski, E. Kusmenko, and B. Rumpe, “Modeling dynamic architectures of self-
adaptive cooperative systems,” J. Object Technol., vol. 18, 2:1–20, 2019.

[72] F. Oquendo, “Dynamic software architectures: Formally modelling structure and be-
haviour with pi-adl,” in 2008 The Third International Conference on Software Engi-
neering Advances, 2008, pp. 352–359. doi: 10.1109/ICSEA.2008.47 .

[73] M. Nikolaidou, G.-D. Kapos, A. Tsadimas, V. Dalakas, and D. Anagnostopoulos,
“Challenges in sysml model simulation,” Advances in Computer Science : an Inter-
national Journal, vol. 5, pp. 49–56, 2016.

156

https://doi.org/10.1109/MS.2020.3041522
https://doi.org/10.1016/j.amc.2019.124713
https://doi.org/10.1016/j.amc.2019.124713
https://doi.org/10.1016/j.amc.2019.124713
https://doi.org/10.1007/978-3-030-89159-6_18
https://doi.org/10.1007/978-3-030-89159-6_18
https://doi.org/10.1007/978-3-030-89159-6_18
https://doi.org/https://doi.org/10.1016/j.jii.2022.100347
https://doi.org/https://doi.org/10.1016/j.jii.2022.100347
https://www.sciencedirect.com/science/article/pii/S2452414X2200019X
https://www.sciencedirect.com/science/article/pii/S2452414X2200019X
https://doi.org/10.1109/ICSEA.2008.47

[74] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues, “Ocarina : An environment for aadl
models analysis and automatic code generation for high integrity applications,” in
Reliable Software Technologies – Ada-Europe 2009, F. Kordon and Y. Kermarrec,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 237–250, isbn: 978-3-
642-01924-1.

[75] J. Krizan, L. Ertl, M. Bradac, M. Jasansky, and A. Andreev, “Automatic code gen-
eration from matlab/simulink for critical applications,” in 2014 IEEE 27th Canadian
Conference on Electrical and Computer Engineering (CCECE), 2014, pp. 1–6. doi:

 10.1109/CCECE.2014.6901058 .

[76] M. Nikolaidou, G.-D. Kapos, A. Tsadimas, V. Dalakas, and D. Anagnostopoulos,
“Challenges in sysml model simulation,” Advances in Computer Science: an Interna-
tional Journal, vol. 5, no. 4, pp. 49–56, 2016.

[77] G. Agosta, E. Baldino, F. Casella, S. Cherubin, A. Leva, F. Terraneo, et al., “Towards
a high-performance modelica compiler,” in Proceedings of the 13th International Mod-
elica Conference, 2019, pp. 313–320.

[78] A. J. Kornecki and S. Johri, “Automatic code generation: Model-code semantic con-
sistency,” in Software Engineering Research and Practice, 2006.

[79] P. Godart, J. Gross, R. Mukherjee, and W. Ubellacker, “Generating real-time robotics
control software from sysml,” in 2017 IEEE Aerospace Conference, 2017, pp. 1–11.
doi: 10.1109/AERO.2017.7943610 .

[80] K. Lano and Q. Xue, “Code generation by example,” in Proceedings of the 10th
International Conference on Model-Driven Engineering and Software Development -
Volume 1: MODELSWARD,, INSTICC, SciTePress, 2022, pp. 84–92, isbn: 978-989-
758-550-0. doi: 10.5220/0010973600003119 .

[81] M. Funk, A. Nyßen, and H. Lichter, “From uml to ansi-c - an eclipse-based code
generation framework,” in ICSOFT, 2008.

[82] M. A. Wehrmeister, “Generating ros-based software for industrial cyber-physical sys-
tems from uml/marte,” in 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), vol. 1, 2020, pp. 313–320. doi: 10.
1109/ETFA46521.2020.9212077 .

[83] W. Meng, J. Park, O. Sokolsky, S. Weirich, and I. Lee, “Verified generation of glue
code for ros-based control systems,” Submitted for publication, 2014.

157

https://doi.org/10.1109/CCECE.2014.6901058
https://doi.org/10.1109/AERO.2017.7943610
https://doi.org/10.5220/0010973600003119
https://doi.org/10.1109/ETFA46521.2020.9212077
https://doi.org/10.1109/ETFA46521.2020.9212077

[84] M. Elaasar, “Definition of modeling vs. programming languages,” in Leveraging Appli-
cations of Formal Methods, Verification and Validation. Modeling: 8th International
Symposium, ISoLA 2018, Limassol, Cyprus, November 5-9, 2018, Proceedings, Part
I, Limassol, Cyprus: Springer-Verlag, 2018, pp. 35–51, isbn: 978-3-030-03417-7. doi:

 10.1007/978-3-030-03418-4_3 . [Online]. Available: https://doi.org/10.1007/978-3-
030-03418-4_3 .

[85] E. Cavalcante, F. Oquendo, and T. Batista, “Architecture-based code generation:
From π-adl architecture descriptions to implementations in the go language,” in Soft-
ware Architecture, P. Avgeriou and U. Zdun, Eds., Cham: Springer International Pub-
lishing, 2014, pp. 130–145, isbn: 978-3-319-09970-5.

[86] R. Baduel, M. Chami, J.-M. Bruel, and I. Ober, “Sysml models verification and
validation in an industrial context: Challenges and experimentation,” in Modelling
Foundations and Applications, A. Pierantonio and S. Trujillo, Eds., Cham: Springer
International Publishing, 2018, pp. 132–146, isbn: 978-3-319-92997-2.

[87] M. Hecht, J. Chen, and G. Pugliese-Rosillo, “Verification and validation of sysml
models,” in 2021 IEEE Aerospace Conference (50100), 2021, pp. 1–6. doi: 10.1109/
AERO50100.2021.9438224 .

[88] R. G. Sargent, “Verification and validation of simulation models,” in Proceedings of
the 37th Conference on Winter Simulation, ser. WSC ’05, Orlando, Florida: Winter
Simulation Conference, 2005, pp. 130–143, isbn: 0780395190.

[89] L. Viard, L. Ciarletta, and P.-E. Moreau, “A mission definition, verification and val-
idation architecture,” in Formal Methods. FM 2019 International Workshops: Porto,
Portugal, October 711, 2019, Revised Selected Papers, Part I, Porto, Portugal: Springer-
Verlag, 2019, pp. 281–287, isbn: 978-3-030-54993-0. doi: 10.1007/978-3-030-54994-
7_20 . [Online]. Available: https://doi.org/10.1007/978-3-030-54994-7_20 .

[90] N. Weidmann, S. Salunkhe, A. Anjorin, E. Yigitbas, and G. Engels, “Automating
model transformations for railway systems engineering,” J. Object Technol., vol. 20,
10:1–14, 2021.

[91] A. Bucchiarone and J. P. Galeotti, “Dynamic software architectures verification using
dynalloy,” ECEASST, vol. 10, Jan. 2008. doi: 10.14279/tuj.eceasst.10.145.139 .

158

https://doi.org/10.1007/978-3-030-03418-4_3
https://doi.org/10.1007/978-3-030-03418-4_3
https://doi.org/10.1007/978-3-030-03418-4_3
https://doi.org/10.1109/AERO50100.2021.9438224
https://doi.org/10.1109/AERO50100.2021.9438224
https://doi.org/10.1007/978-3-030-54994-7_20
https://doi.org/10.1007/978-3-030-54994-7_20
https://doi.org/10.1007/978-3-030-54994-7_20
https://doi.org/10.14279/tuj.eceasst.10.145.139

[92] G. Regis, C. Cornejo, S. Gutiérrez Brida, et al., “Dynalloy analyzer: A tool for the
specification and analysis of alloy models with dynamic behaviour,” in Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2017, Paderborn, Germany: Association for Computing Machinery, 2017, pp. 969–
973, isbn: 9781450351058. doi: 10.1145/3106237.3122826 . [Online]. Available: https:
//doi.org/10.1145/3106237.3122826 .

[93] J. P. Near and D. Jackson, “An imperative extension to alloy,” in Abstract State
Machines, Alloy, B and Z, M. Frappier, U. Glässer, S. Khurshid, R. Laleau, and S.
Reeves, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 118–131, isbn:
978-3-642-11811-1.

[94] J. Brunel, D. Chemouil, A. Cunha, and N. Macedo, “The electrum analyzer: Model
checking relational first-order temporal specifications,” ser. ASE 2018, Montpellier,
France: Association for Computing Machinery, 2018, pp. 884–887, isbn: 9781450359375.
doi: 10.1145/3238147.3240475 . [Online]. Available: https://doi.org/10.1145/3238147.
3240475 .

[95] Esmaeilsabzali, Shahram, Day, Nancy A., and Serna, Jose, “Dash: Declarative mod-
elling with control state hierarchy (preliminary version),” Tech. Rep., 2018. [Online].
Available: http://hdl.handle.net/10012/16037 .

[96] A. M. Law and D. M. Kelton, Simulation Modeling and Analysis, 3rd. McGraw-Hill
Higher Education, 2015, isbn: 0070592926.

[97] W. A. Menner, “Introduction to modeling and simulation,” 2015.

[98] J.-F. Tilman, R. Sezestre, and A. Schyn, “Simulation of system architectures with
aadl,” in Embedded Real Time Software and Systems (ERTS2008), Toulouse, France,
2008, isbn: insu-02269764.

[99] P. Dissaux and O. Marc, “Executable aadl real time simulation of aadl models,”
CEUR Workshop Proceedings, vol. 1233, Jan. 2014.

[100] J. Liu, T. Li, Z. Ding, Y. Qian, H. Sun, and J. He, “Aadl+: A simulation-based
methodology for cyber-physical systems,” Frontiers of Computer Science, vol. 13,
pp. 516–538, 2018.

159

https://doi.org/10.1145/3106237.3122826
https://doi.org/10.1145/3106237.3122826
https://doi.org/10.1145/3106237.3122826
https://doi.org/10.1145/3238147.3240475
https://doi.org/10.1145/3238147.3240475
https://doi.org/10.1145/3238147.3240475
http://hdl.handle.net/10012/16037

[101] G.-D. Kapos, A. Tsadimas, C. Kotronis, V. Dalakas, M. Nikolaidou, and D. Anag-
nostopoulos, “A declarative approach for transforming sysml models to executable
simulation models,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 51, no. 6, pp. 3330–3345, 2021. doi: 10.1109/TSMC.2019.2922153 .

[102] D. C. Café, F. V. dos Santos, C. Hardebolle, C. Jacquet, and F. Boulanger, “Multi-
paradigm semantics for simulating sysml models using systemc-ams,” in Proceedings
of the 2013 Forum on specification and Design Languages (FDL), 2013, pp. 1–8.

[103] E. Seidewitz., “On a metasemantic protocol for modeling language extension,” in
Proceedings of the 8th International Conference on Model-Driven Engineering and
Software Development - MODELSWARD,, INSTICC, SciTePress, 2020, pp. 465–472,
isbn: 978-989-758-400-8. doi: 10.5220/0009181604650472 .

[104] A. Berriche, F. Mhenni, A. Mlika, and J.-Y. Choley, “Towards model synchronization
for consistency management of mechatronic systems,” Applied Sciences, vol. 10, no. 10,
2020, issn: 2076-3417. doi: 10.3390/app10103577 . [Online]. Available: https://www.
mdpi.com/2076-3417/10/10/3577 .

[105] H. Li, C. Zhan, H. Wu, M. Yu, J. Dai, and W. Zou, “Architecting commercial aircraft
with a domain specific language extended from sysml,” Journal of Physics: Conference
Series, vol. 1827, no. 1, p. 012 100, Mar. 2021. doi: 10.1088/1742-6596/1827/1/
012100 . [Online]. Available: https://dx.doi.org/10.1088/1742-6596/1827/1/012100 .

[106] A. Sutton and J. Maletic, “Mappings for accurately reverse engineering uml class
models from c++,” in 12th Working Conference on Reverse Engineering (WCRE’05),
2005, 10 pp.–184. doi: 10.1109/WCRE.2005.21 .

[107] V. de Oliveira Neves, A. Bertolino, G. de Angelis, and L. Garcés, “Do we need
new strategies for testing systems-of-systems?” In 2018 IEEE/ACM 6th International
Workshop on Software Engineering for Systems-of-Systems (SESoS), 2018, pp. 29–32.

[108] N. Messe, N. Belloir, V. Chiprianov, I. Cherfa, R. Fleurquin, and S. Sadou, “De-
velopment of secure system of systems needing a rapid deployment,” in 2019 14th
Annual Conference System of Systems Engineering (SoSE), 2019, pp. 152–157. doi:

 10.1109/SYSOSE.2019.8753857 .

[109] C. E. Dridi, Z. Benzadri, and F. Belala, “System of systems engineering: Meta-
modelling perspective,” in 2020 IEEE 15th International Conference of System of
Systems Engineering (SoSE), 2020, pp. 000 135–000 144. doi: 10.1109/SoSE50414.
2020.9130465 .

160

https://doi.org/10.1109/TSMC.2019.2922153
https://doi.org/10.5220/0009181604650472
https://doi.org/10.3390/app10103577
https://www.mdpi.com/2076-3417/10/10/3577
https://www.mdpi.com/2076-3417/10/10/3577
https://doi.org/10.1088/1742-6596/1827/1/012100
https://doi.org/10.1088/1742-6596/1827/1/012100
https://dx.doi.org/10.1088/1742-6596/1827/1/012100
https://doi.org/10.1109/WCRE.2005.21
https://doi.org/10.1109/SYSOSE.2019.8753857
https://doi.org/10.1109/SoSE50414.2020.9130465
https://doi.org/10.1109/SoSE50414.2020.9130465

[110] J. Criado, L. Iribarne, and N. Padilla, “Heuristics-based mediation for building smart
architectures at run-time,” Computer Standards and Interfaces, vol. 75, p. 103 501,
2021, issn: 0920-5489. doi: https://doi.org/10.1016/j.csi .2020.103501 . [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0920548920303883 .

[111] F. Petitdemange, I. Borne, and J. Buisson, “Modeling system of systems configura-
tions,” in 2018 13th Annual Conference on System of Systems Engineering (SoSE),
2018, pp. 392–399. doi: 10.1109/SYSOSE.2018.8428737 .

[112] A. Hristozov and E. Matson, “Modeling aspects of dynamically reconfigurable system
of systems,” in Conference on Systems Engineering Research - CSER 2023, IEEE,
2023.

[113] M. Hasanagic, T. Fabbri, P. G. Larsen, V. Bandur, P. W. V. Tran-Jørgensen, and J.
Ouy, “Code generation for distributed embedded systems with vdm-rt,” Des. Autom.
Embed. Syst., vol. 23, pp. 153–177, 2019.

[114] N. Nguyen, F. Mhenni, and J.-Y. Choley, “Altarica 3.0 code generation from sysml
models,” in Jun. 2018, pp. 2435–2440, isbn: 9781351174664. doi: 10.1201/9781351174664-
306 .

[115] H. Derhamy, J. Eliasson, and J. Delsing, “System of system composition based on
decentralized service-oriented architecture,” IEEE Systems Journal, vol. 13, no. 4,
pp. 3675–3686, 2019. doi: 10.1109/JSYST.2019.2894649 .

[116] F. Belala, N. Hameurlain, and A. Seghiri, “Modeling the Dynamic Reconfigura-
tion in Smart Crisis Response Systems,” in 17th International Conference on Eval-
uation of Novel Approaches to Software Engineering, Online Streaming, Portugal:
SCITEPRESS - Science and Technology Publications, Apr. 2022, pp. 162–173. doi:

 10 . 5220 / 0011069300003176 . [Online]. Available: https : / / hal - univ - pau . archives -
ouvertes.fr/hal-03658634 .

[117] V. Robles, N. Kosmatov, V. Prevosto, L. Rilling, and P. Le Gall, “Metacsl: Specifica-
tion and verification of high-level properties,” in Tools and Algorithms for the Con-
struction and Analysis of Systems, T. Vojnar and L. Zhang, Eds., Cham: Springer
International Publishing, 2019, pp. 358–364, isbn: 978-3-030-17462-0.

[118] S. Dal Zilio, P.-E. Hladik, F. Ingrand, and A. Mallet, “A formal toolchain for offline
and run-time verification of robotic systems,” Robotics and Autonomous Systems,
2022. [Online]. Available: https://hal.laas.fr/hal-03683044 .

161

https://doi.org/https://doi.org/10.1016/j.csi.2020.103501
https://www.sciencedirect.com/science/article/pii/S0920548920303883
https://doi.org/10.1109/SYSOSE.2018.8428737
https://doi.org/10.1201/9781351174664-306
https://doi.org/10.1201/9781351174664-306
https://doi.org/10.1109/JSYST.2019.2894649
https://doi.org/10.5220/0011069300003176
https://hal-univ-pau.archives-ouvertes.fr/hal-03658634
https://hal-univ-pau.archives-ouvertes.fr/hal-03658634
https://hal.laas.fr/hal-03683044

[119] D. Bjørner and K. Havelund, “40 years of formal methods - some obstacles and some
possibilities?” In FM, 2014.

[120] D. Schneider and M. Trapp, “B-space: Dynamic management and assurance of open
systems of systems,” Journal of Internet Services and Applications, vol. 9, Dec. 2018.
doi: 10.1186/s13174-018-0084-5 .

[121] K. Hobbs, M. L. Mote, M. Abate, S. D. Coogan, and E. Feron, “Run time assurance
for safety-critical systems: An introduction to safety filtering approaches for complex
control systems,” ArXiv, vol. abs/2110.03506, 2021.

[122] E. Silva, T. Batista, and F. Oquendo, “A mission-oriented approach for designing
system-of-systems,” in 2015 10th System of Systems Engineering Conference (SoSE),
2015, pp. 346–351. doi: 10.1109/SYSOSE.2015.7151951 .

[123] R. Giachetti, S. Wangert, and R. Eldred, “Interoperability analysis method for mission-
oriented system of systems engineering,” in 2019 IEEE International Systems Con-
ference (SysCon), 2019, pp. 1–6. doi: 10.1109/SYSCON.2019.8836808 .

[124] M. Himsolt, “Gml: A portable graph file format,” Technical report, Universitat Pas-
sau, Tech. Rep., 1997.

[125] W. Abernethy, Programmer’s Guide to Apache Thrift. Simon and Schuster, 2019.

[126] P. Feiler, D. Gluch, and J. Hudak, “The architecture analysis & design language
(aadl): An introduction,” Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, Tech. Rep. CMU/SEI-2006-TN-011, 2006. [Online]. Available: http:
//resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7879 .

[127] D. Garlan, R. T. Monroe, and D. Wile, “Acme: Architectural description of component-
based systems,” in Foundations of Component-Based Systems, G. T. Leavens and M.
Sitaraman, Eds., Cambridge University Press, 2000.

[128] M. Eysholdt and H. Behrens, “Xtext: Implement your language faster than the quick
and dirty way,” ser. OOPSLA ’10, Reno/Tahoe, Nevada, USA: Association for Com-
puting Machinery, 2010, pp. 307–309, isbn: 9781450302401. doi: 10.1145/1869542.
1869625 . [Online]. Available: https://doi.org/10.1145/1869542.1869625 .

162

https://doi.org/10.1186/s13174-018-0084-5
https://doi.org/10.1109/SYSOSE.2015.7151951
https://doi.org/10.1109/SYSCON.2019.8836808
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7879
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7879
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625

[129] I. Dejanovi, R. Vaderna, G. Milosavljevi, and . Vukovi, “Textx: A python tool for
domain-specific languages implementation,” Knowledge-Based Systems, vol. 115, pp. 1–
4, 2017, issn: 0950-7051. doi: https://doi.org/10.1016/j.knosys.2016.10.023 . [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0950705116304178 .

[130] F. Ortin, J. Quiroga, O. Rodriguez-Prieto, and M. Rodríguez, “An empirical evalu-
ation of lex/yacc and antlr parser generation tools,” PLOS ONE, vol. 17, e0264326,
Mar. 2022. doi: 10.1371/journal.pone.0264326 .

163

https://doi.org/https://doi.org/10.1016/j.knosys.2016.10.023
https://www.sciencedirect.com/science/article/pii/S0950705116304178
https://doi.org/10.1371/journal.pone.0264326

A. DEVELOPMENT SETUP

A.1 Dependencies and Makefile

The build procedure requires the installation of a relatively recent version of Antlr ,

for example 4.7.2 or newer. A Makefile manages the build with make and make clean

commands. Part of the contents of the Makefile are shown in listing A.1 . The assumptions

are that Antlr and Java are installed. Another prerequisite is to have a C++ compiler since

the generated code is chosen to be C++.

A.2 IDE

There are several IDEs that support Antlr development. Among them are Eclipse, VS

Code, Netbeans and IneliJ. The first three of the IDEs are open-source and have pretty good

functionality. For this effort VS Code was selected because of its ease of use and the nice

Antlr extension. Visual Studio Code is a platform that can allow for development of C++

projects in a very elegant way. It comes with .json files that allow for flexible configuration.

The tasks.json file allows for performing build from the IDE. The easiest way to do this

from VS Code is to call the external make file for building and make clean for cleanup. The

tasks.json file is included in listing A.2 . Similarly the launch.json is used for the run and

debug command and for the project there are two configurations: one for the C++ project

and one for the grammar file as shown in listing A.3 . This approach allows for development

of the grammar and the parser code within the same IDE configuration.

A.3 Debugging

The two configurations for running and debugging allow to separately develop the gram-

mar and to work with the parse tree. The code generated from the grammar can be debugged

through the other configuration in the launch.json file as a usual C++ project. Since VS

Code is working on multiple platforms it can use different debuggers and compilers. In Linux

this can be gcc and gdb or clang. The VS Code Antlr extension allows for breakpoints to be

put in the EBNF grammar which is extremely helpful since the development of the grammar

164

Listing A.1. Makefile
OUTPUT=output
GENERATED=generated
RUNTIME=/usr / l o c a l
ANTLRJARDIR=/home/anton/ANTLR−VER
CCARGS=−c −I $ (RUNTIME)/ inc lude / ant l r4 −runtime /

−I $ (GENERATED) −std=c++11 −g
LDARGS=−g
LIBS=$ (RUNTIME)/ l i b / l i b a n t l r 4 −runtime . a
JAVA=/usr / bin / java
CC=g++
GRAMMAR=dynadl
ANTLR4=$ (JAVA) −j a r $ (ANTLRJARDIR)/ ant l r −4.9.3− complete . j a r

ANTLRGEN=BaseL i s tener Lexer L i s t en e r Parser
OBJS=$ (add su f f i x . o , $ (addpre f i x $ (OUTPUT)/ $ (GRAMMAR) ,

$ (ANTLRGEN)))
GSOURCES=$ (add su f f i x . cpp , $ (addpre f i x

$ (GENERATED)/ $ (GRAMMAR) , $ (ANTLRGEN)))

. p r e c i ou s : $ (GSOURCES)

a l l : dynadl

dynadl : d i r s an t l r 4 dynadl . cpp dynadlWalkListener . cpp $ (OBJS)
$ (CC) $ (CCARGS) dynadl . cpp −o $ (OUTPUT)/ dynadl . o
$ (CC) $ (CCARGS) dynadlWalkListener . cpp −o

$ (OUTPUT)/ dynadlWalkListener . o
$ (CC) $ (LDARGS) $ (OUTPUT)/ dynadl . o $ (OUTPUT)/ dynadlWalkListener . o

$ (OBJS) $ (LIBS) −o dynadl

an t l r 4 : $ (GENERATED) / . generated ;

$ (GENERATED) / . generated : $ (GRAMMAR) . g4
$ (ANTLR4) −Dlanguage=Cpp −o $ (GENERATED) $ (GRAMMAR) . g4
@touch $ (GENERATED) / . generated

$ (OUTPUT)/%.o : $ (GENERATED)/%. cpp
$ (CC) $ (CCARGS) $< −o $@

$ (GENERATED)/%. cpp : $ (GENERATED) / . generated ;

d i r s : ; mkdir −p $ (OUTPUT) $ (GENERATED)
c l ean : ; rm −r f dynadl Debug $ (OUTPUT) $ (GENERATED)

∗ . msg ∗ . a c t i on ∗ . s rv ∗ . c f g ∗ . s ta
165

Listing A.2. tasks.json
{

" ta sk s " : [
{

" type " : " cppbui ld " ,
" l a b e l " : "make " ,
"command" : "make " ,
" a rgs " : [] ,
" opt i ons " : {

" cwd" : " ${ f i l eD i rname } "
} ,
" problemMatcher " : [
" $ gcc "
] ,
" group " : " bu i ld " ,
" d e t a i l " : " Task generated by Debugger . "

} ,
{

" type " : " cppbui ld " ,
" l a b e l " : "C/C++ make c l ean " ,
"command" : "make " ,
" a rgs " : [
" c l ean "
] ,
" opt ions " : {

" cwd" : " ${ f i l eD i rname } "
} ,
" problemMatcher " : [
" $ gcc "
] ,
" group " : " bu i ld " ,
" d e t a i l " : " Task generated by Debugger . "

}
] ,
" v e r s i on " : " 2 . 0 . 0 "

}

166

Listing A.3. launch.json
{

" v e r s i on " : " 0 . 2 . 0 " ,
" c o n f i g u r a t i o n s " : [
{

"name" : " g++−9 − Build and debug a c t i v e f i l e " ,
" type " : " cppdbg " ,
" r eque s t " : " launch " ,
" program " : " ${ f i l eD i rname }/${ f i leBasenameNoExtension } " ,
" a rgs " : [" sample . expr "] ,
" stopAtEntry " : f a l s e ,
" cwd" : " ${ f i l eD i rname } " ,
" environment " : [] ,
" ex te rna lConso l e " : f a l s e ,
"MIMode" : " gdb " ,
" setupCommands " : [
{

" d e s c r i p t i o n " : " Enable pretty−p r i n t i n g f o r gdb " ,
" t ex t " : "−enable−pretty−p r i n t i n g " ,
" i g n o r e F a i l u r e s " : t rue

} ,
{

" d e s c r i p t i o n " : " Set Disassembly Flavor to I n t e l " ,
" t ex t " : "−gdb−se t disassembly−f l a v o r i n t e l " ,
" i g n o r e F a i l u r e s " : t rue

}
] ,
" preLaunchTask " : "C/C++: g++−9 bu i ld a c t i v e f i l e " ,
" miDebuggerPath " : " / usr / bin /gdb "

} ,
{

"name" : " Debug ANTLR4 grammar " ,
" type " : " ant l r −debug " ,
" r eque s t " : " launch " ,
" input " : " sample . expr " ,
" grammar " : " Thr i f t . g4 " ,
// " a c t i o n F i l e " : " grammars/ exampleActions . j s " ,
" s t a r tRu l e " : " main " ,
" pr intParseTree " : true ,
" v i sua lPar seTree " : t rue

}

]
}

167

may be even more challenging than the development of the parser extensions in the chosen

programming language.

A.4 Running

Running of the generated executable can happen from the command line. It consists

of two steps: code generation and runtime sequence. The command line interface of the

dynADL is simple. Examples of a typical command line sequence follow:

dynadl sample.script --generate posix

dynadl sample.script --runtime posix

The executable can also be run in VS Code. VS Code uses the launch.json file to run

the two different targets: the grammar itself and the executable parser, generated from the

grammar.

168

B. DYNADL

B.1 Command Line Interface

The executable for dynADL is run in a command shell. The implementation was devel-

oped on Linux, but because of the generic nature of Antlr, the code can be used in other

operating systems. The command syntax is shown in a general form:

./dynadl script_file.txt [--generate | --runtime] [posix | ros | px4]

In the case of providing the generate argument, dynadl will generate configuration files

and source code for the provided platform. When runtime is selected, then the dynamic

commands from the run-time section are executed for the selected platform. In both cases,

the process starts with parsing the dynADL code and ensuring it complies with the language’s

grammar rules. Depending on the arguments, different behavior follows. The run-time

section of the script always has a main function where the execution starts. Other functions

can be invoked from there.

B.2 Architecture Description Sample

The general description of a large-scale system can be accomplished by defining each SoS

as a package containing multiple systems. There can be multiple packages that allow for

aggregating several SoS in a bigger SoS. A general example is shown in listings B.1 and B.2 .

B.3 Code Generation

The generation of ROS focuses on the interfaces of components. The generation creates

a directory structure as shown in listing B.3 . Each component has a separate subfolder

for messages, services, actions, configuration, state, and diagnostics. The generated files

for messages, services, and actions comply to the format for ROS2 as shown in listing B.4 .

The config state and diagnostics files are generated in a similar fashion to complement the

standard ROS files.

The code generation for Posix follows a different approach. The files contain JSON

format for all portions of the component interface. This enables the user to parse the

169

Listing B.1. General Architecture Description
package package1{

// Package key−value p a i r s
system system1
{

component component11{
i n t e r f a c e {

// I n t e r f a c e contents
}

} ,
component component12{

i n t e r f a c e {
// I n t e r f a c e contents

}
} ,
component component13{

i n t e r f a c e {
// I n t e r f a c e contents

}
} ,
system c o n f i g u r a t i o n sys_conf ig1 {

// system c o n f i g u r a t i o n contents
} ,
system c o n f i g u r a t i o n sys_conf ig2 {

// system c o n f i g u r a t i o n contents
} ,

} , // end system1

170

Listing B.2. General Architecture Description (cont.)
system system2
{

// System key−value p a i r s
component component21{

i n t e r f a c e {
}

} ,
component component22{

i n t e r f a c e {
}

} ,
component component23{

i n t e r f a c e {
}

} ,
system c o n f i g u r a t i o n sys_conf ig3 {

// System c o n f i g u r a t i o n contents
} ,
system c o n f i g u r a t i o n sys_conf ig4 {

// System c o n f i g u r a t i o n contents
} ,

} , // end system2

// More systems

} , // end package1
package package2{

// Systems o f package2

. . .
}

171

Listing B.3. Generated Directory Structure for ROS
.
|−−−component11
| |−−−act i on
| | |−−−act ion1 . ac t i on
| | |−−−act ion1 . ac t i on . j son
| |−−−component11 . cpp
| |−− c o n f i g
| | |−−−params . c f g . j s on
| |−−−c o n f i g . cpp
| |−−−datatypes . h
| |−−−diag
| | |−−−d i a g n o s t i c s 1 . d iag . j son
| |−−−d i a g n o s t i c s . cpp
| |−−−d i a g n o s t i c s . h
| |−−−Makef i l e
| |−−−msg
| | |−−−message1 . msg
| | |−−−message1 . msg . j son
| |−−−s t a t e
| | |−−−sta t e_va r i ab l e s . s ta . j son
| |−−−s t a t e . cpp
| |−−−s t a t e . h
|−−−component12
| |−−−component12
| |−−−component12 . cpp
| |−−−c o n f i g
| | |−− params . c f g . j s on
| |−−−c o n f i g . cpp
| |−−−datatypes . h
| |−−−diag
| |−−−d i a g n o s t i c s . cpp
| |−−−d i a g n o s t i c s . h
| |−−−Makef i l e
| |−−−msg
| | |−−−message1 . msg
| | |−−−message1 . msg . j son
| |−−−srv
| | |−− s e r v i c e 1 . s rv
| | |−−−s e r v i c e 1 . s rv . j son
| |−−−s t a t e
| | |−−−sta t e_va r i ab l e s . s ta . j son
| |−−−s t a t e . cpp
| |−−−s t a t e . h

172

Listing B.4. Generated Files Contents for ROS
f i l e message1 . msg
s t r i n g s t r
in t16 i

f i l e s e r v i c e 1 . s rv
s t r i n g s t r

−−−
int32 i
s t r i n g r e s u l t

f i l e ac t i on1 . a c t i on
in t32 par1
−−−
s t r i n g s

−−−
s t r i n g r

f i l e params . c f g
s t r i n g param1
int32 param2
f l o a t 3 2 param3
double param4

f i l e s t a t e_va r i ab l e s . s ta
f l o a t 3 2 p o s i t i o n
f l o a t 3 2 v e l o c i t y
f l o a t 3 2 a c c e l e r a t i o n
s t r i n g mode

173

interface and process it easier. A Posix implementation relies on standard implementations

available on Posix-compliant OSes. In addition to the interface files, some C++ template

code is also produced. The C++ code takes care of the diagnostics interface, the component’s

configuration, and the state handling. This approach automates the procedure of interface

and boilerplate code generation to speed up development.

B.4 EBNF Grammar

The grammar is shown in the following listings in EBNF format used to generate a C++

parser through the Antlr tool. EBNF is an extension of the original BNF grammar definition

language. The existence of a formal grammar allows for easier extensions in the future. The

same EBNF grammar can be used to generate parsers in different programming languages

as Antlr supports many. The default language for parser code generation in Antlr is Java,

althoug C++ was used to develop dynADL.

174

Listing B.5. Generated Files Contents for Posix
f i l e message1 . msg
{

" id " : " message1 " ,
" var0 " : [
" s t r i n g " ,
" s t r "
] ,
" var1 " : [
" i n t16 " ,
" i "
]

}

f i l e ac t i on1 . a c t i on
{

" id " : " ac t i on1 " ,
" in " : {

" var0 " : [
" i n t32 " ,
" par1 "
]

} ,
" out " : {

" var1 " : [
" s t r i n g " ,
" s "
]

} ,
" update " : {

" var2 " : [
" s t r i n g " ,
" r "
]

}
}

175

Listing B.6. Generated header files
#i f n d e f DATATYPES_H
#d e f i n e DATATYPES_H

typedef int i n t16 ;
typedef unsigned int uint16 ;
typedef int i n t32 ;
typedef unsigned int uint32 ;
typedef int i n t64 ;
typedef unsigned int uint64 ;
typedef f loat f l o a t 3 2 ;
typedef double f l o a t 6 4 ;
typedef char byte ;
typedef char binary ;

struct MyStruct{
int id ;
char cmd [2 0] ;

} ;
#en d i f

#i f n d e f STATE_H
#d e f i n e STATE_H

void save (void) ;
void r e s t o r e (void) ;

#en d i f

#i f n d e f DIAGNOSTICS_H
#d e f i n e DIAGNOSTICS_H

void d_unload (void) ;
void d_start (void) ;
void d_stop (void) ;
void d_save (void) ;
void d_restore (void) ;
bool get_star t (void) ;

void diag (std : : s t r i n g component_id) ;

#en d i f

176

Listing B.7. Generated main file contents sample for each component
//Compile : g++ −s td=c++11 −pthread
// component11 . cpp −o component11

#inc lude <iostream>
#inc lude <thread>
#inc lude <uni s td . h>
#inc lude " s t a t e . h "
#inc lude " d i a g n o s t i c s . h "
using namespace std ;

void c o n f i g (void) ;
void s t a t e (void) ;

int main (int argc , char ∗ argv [])
{

cout << " Sta r t i ng component11 "<< endl ;
c o n f i g () ;
thread th1 (diag , argv [0]) ;
for (; ;) {

s l e e p (1) ;
}
return 0 ;

}

177

Listing B.8. Generated configuration file contents
#inc lude <iostream>
#inc lude <uni s td . h>
#inc lude " datatypes . h "
using namespace std ;

struct params{
s t r i n g param1 = " s t r " ;
in t32 param2 = 10 ;
f l o a t 3 2 param3 = 2 . 7 1 ;
double param4 = 3 . 1 4 ;

} c f g_st ruc t ;

params∗ get_conf ig_struct (void){
return &cfg_st ruc t ;

}

void c o n f i g (void)
{

cout << " Conf igurat ion handl ing rou t in e " << endl ;
cout << " Conf iguraton parameters : " << endl ;
cout << cfg_st ruc t . param1 << endl ;
cout << cfg_st ruc t . param2 << endl ;
cout << cfg_st ruc t . param3 << endl ;
cout << cfg_st ruc t . param4 << endl ;

}

178

Listing B.9. Generated diagnostics file contents
void diag (s t r i n g component_id)
{

d iagnos t i c s1_ in diag_struct_in ;
d iagnost i c s1_out diag_struct_out ;
MyStruct mystruct ;
cout << " Diagnos t i c s r ou t in e f o r component : "

<< component_id << endl ;
try{

//Open a message queue .
message_queue mq
(open_or_create
, " component11 "
,10
, s izeof (MyStruct)
) ;
unsigned int p r i o r i t y ;
message_queue : : s i ze_type recvd_s ize ;
// Receive some messages
for (; ;) {

std : : cout << " Blocking to read " << std : : endl ;
mq. r e c e i v e (&mystruct , s izeof (MyStruct) ,

recvd_size , p r i o r i t y) ;
i f (recvd_s ize != s izeof (MyStruct)){

std : : cout <<
" Received unexpected l ength "
<< std : : endl ;
continue ;

}
std : : cout << mystruct . id << std : : endl ;
s td : : cout << mystruct . cmd << std : : endl ;
i f (! strcmp (mystruct . cmd , " s t a r t ")){

d_start () ;
} // . . . More commands f o l l ow ,

}
}
catch (i n t e rp roc e s s_excep t i on &ex){

message_queue : : remove (" send_queue ") ;
s td : : cout << ex . what () << std : : endl ;
return ;

}
message_queue : : remove (" send_queue ") ;
return ;

}
#include <boost / i n t e r p r o c e s s / d e t a i l / config_end . hpp>

179

Listing B.10. Generated state file contents
struct s t a t e_va r i ab l e s {

f l o a t 3 2 p o s i t i o n ;
f l o a t 3 2 v e l o c i t y ;
f l o a t 3 2 a c c e l e r a t i o n ;
s t r i n g mode ;

} s t a t e_s t ruc t ;

auto ser_fi le_name = " ser_component11 . bin " ;
s td : : f s t ream ∗ s_ptr ;
b i t s e r y : : S e r i a l i z e r <b i t s e r y : : OutputBufferedStreamAdapter> ∗ ser_ptr ;
b i t s e r y : : D e s e r i a l i z e r <b i t s e r y : : InputStreamAdapter> ∗des_ptr ;

void save (void)
{

s_ptr = new std : : f s t ream {ser_file_name , s_ptr−>binary |
s_ptr−>trunc | s_ptr−>out } ;

ser_ptr = new b i t s e r y : : S e r i a l i z e r
<b i t s e r y : : OutputBufferedStreamAdapter >(∗s_ptr) ;

ser_ptr−>value4b (s t a t e_s t ruc t . p o s i t i o n) ;
ser_ptr−>value4b (s t a t e_s t ruc t . v e l o c i t y) ;
ser_ptr−>value4b (s t a t e_s t ruc t . a c c e l e r a t i o n) ;
ser_ptr−>text1b (s ta t e_s t ruc t . mode , s t a t e_s t ruc t . mode . l ength ()) ;
ser_ptr−>adapter () . f l u s h () ;
s_ptr−>c l o s e () ;
delete (ser_ptr) ;
delete (s_ptr) ;

}

void r e s t o r e (void)
{

s_ptr = new std : : f s t ream {ser_file_name , s_ptr−>binary
| s_ptr−>in } ;

des_ptr = new b i t s e r y : : D e s e r i a l i z e r
<b i t s e r y : : InputStreamAdapter >(∗s_ptr) ;

des_ptr−>value4b (s t a t e_s t ruc t . p o s i t i o n) ;
des_ptr−>value4b (s t a t e_s t ruc t . v e l o c i t y) ;
des_ptr−>value4b (s t a t e_s t ruc t . a c c e l e r a t i o n) ;
des_ptr−>text1b (s ta t e_s t ruc t . mode , s t a t e_s t ruc t . mode . l ength ()) ;
s_ptr−>c l o s e () ;
delete (des_ptr) ;
delete (s_ptr) ;

}

void s t a t e (void)
{

cout << " State handl ing rou t in e " << endl ;
}

180

Listing B.11. Antlr grammar for dynADL
grammar dynadl ;

prog
: packages
;

packages
: ML_COMMENT∗ SL_COMMENT∗ d e f i n i t i o n ∗ pckg∗
(f u n c t i o n _ d e f i n i t i o n)∗ main_funct ion_def in i t ion EOF

;

s c r i p t
: (commands | statement)∗
;

commands
: (start_command | load_command | unload_command |
stop_command | save_command | restore_command |
select_package_command | select_system_command |
swap_command | delay_command | event_command |
call_command | print_command | timer_command |
exec_command | log_command | spawn_command |
wait_command) ;

b lock
: (commands | dec_statement | inc_statement)∗
;

pckg
: PACKAGE IDENTIFIER ’ { ’ kv+ system∗ system ’ } ’
| COMMA
;

system
: SYSTEM IDENTIFIER ’ { ’ kv+ component∗ component

system_conf igurat ion ∗ ’ } ’ | COMMA
;

component
: ’ component ’ IDENTIFIER ’ { ’ i f a c e ∗ i f a c e ’ } ’
| COMMA
;

181

Listing B.12. Antlr grammar for dynADL(continued)
system_conf igurat ion
: ’ system ’ ’ c o n f i g u r a t i o n ’ IDENTIFIER
’ { ’ component_decl∗ ’ } ’ | COMMA
;

i f a c e
: ’ i n t e r f a c e ’

’ { ’ d e c l a r a t i o n ∗ d e c l a r a t i o n ’ } ’
;

d e c l a r a t i o n
: va r i ab l e_dec l a r a t i on | message_decl | s e r v i c e_dec l |
act ion_dec l | component_conf iguration_decl |
component_state_decl | d i agno s t i c s_dec l | COMMA
;

message_decl
: SEND_RECEIVE ’ message ’ IDENTIFIER
;

s e rv i c e_dec l
: SEND_RECEIVE ’ s e r v i c e ’ IDENTIFIER
;

act ion_dec l
: SEND_RECEIVE ’ ac t i on ’ IDENTIFIER
;

component_state_decl
: ’ component ’ ’ s t a t e ’ IDENTIFIER
;

component_conf iguration_decl
: ’ component ’ ’ c o n f i g u r a t i o n ’ IDENTIFIER
;

d i agno s t i c s_dec l
: DIAGNOSTICS IDENTIFIER
;

component_decl
: ’ component ’ IDENTIFIER
;

182

Listing B.13. Antlr grammar for dynADL(continued)
d e f i n i t i o n
: var iab l e_dec la rat ion_statement | message | s e r v i c e |
a c t i on | component_conf iguration | component_state | COMMA
;

message
: ’ message ’ IDENTIFIER ’ { ’ f i e l d ∗ ’ } ’ type_annotat ions ?
;

component_state
: ’ component ’ ’ s t a t e ’ IDENTIFIER ’ { ’ f i e l d ∗ ’ } ’
type_annotations ?
;

component_conf iguration
: ’ component ’ ’ c o n f i g u r a t i o n ’ IDENTIFIER ’ { ’ c f g _ f i e l d ∗ ’ } ’
type_annotations ?
;

s e r v i c e
: DIAGNOSTICS? ’ s e r v i c e ’ IDENTIFIER ’ { ’ (IN_OUT f i e l d)∗ ’ } ’
type_annotations ?
;

a c t i on
: ’ a c t i on ’ IDENTIFIER ’ { ’ ((IN_OUT | UPDATE) f i e l d)∗ ’ } ’
type_annotations ?
;

f i e l d
: f i e l d _ i d ? f i e l d_type IDENTIFIER (’=’ const_value)?
type_annotations ? l i s t _ s e p a r a t o r ?
;

f i e l d _ i d
: i n t e g e r ’ : ’
;

c f g _ f i e l d
: f i e l d_type IDENTIFIER ’=’ value l i s t _ s e p a r a t o r ?
;

f u n c t i o n _ d e f i n i t i o n
: ’ f unc t i on ’ IDENTIFIER ’ (’ ’) ’ ’ { ’ s c r i p t ’ } ’
; 183

Listing B.14. Antlr grammar for dynADL(continued)
main_funct ion_def in i t ion
: ’ f unc t i on ’ ’ main ’ ’ (’ ’) ’ ’ { ’ s c r i p t ’ } ’
;

type_annotations
: ’ (’ type_annotation ∗ ’) ’
;

type_annotation
: IDENTIFIER (’=’ annotat ion_value)? l i s t _ s e p a r a t o r ?
;

annotat ion_value
: dbl | i n t e g e r | LITERAL
;

f i e l d_type
: base_type | IDENTIFIER | container_type
;

base_type
: real_base_type type_annotations ?
;

container_type
: type_annotat ions ?
;

const_value
: i n t e g e r | dbl | LITERAL | IDENTIFIER
;

i n t e g e r
: INTEGER | HEX_INTEGER
;

INTEGER
: (’+’ | ’− ’)? DIGIT+
;

HEX_INTEGER
: ’− ’ ? ’ 0x ’ HEX_DIGIT+
;

184

Listing B.15. Antlr grammar for dynADL(continued)
dbl
: DOUBLE
;

DOUBLE
: (’+’ | ’− ’)? (DIGIT+ (’ . ’ DIGIT+)? | ’ . ’ DIGIT+)
((’E ’ | ’ e ’) INTEGER)?
;

l i s t _ s e p a r a t o r
: COMMA | ’ ; ’
;

real_base_type
: TYPE_BOOL | TYPE_BYTE | TYPE_CHAR | TYPE_INT16 |
TYPE_UINT16 | TYPE_INT32| TYPE_UINT32 | TYPE_INT64
| TYPE_UINT64 | TYPE_FLOAT32 | TYPE_FLOAT64 |
TYPE_DOUBLE | TYPE_STRING | TYPE_BINARY

;

start_command
: ’ s t a r t ’ IDENTIFIER
;

load_command
: ’ load ’ IDENTIFIER
;

unload_command
: ’ unload ’ IDENTIFIER
;

stop_command
: ’ stop ’ IDENTIFIER
;

save_command
: ’ save ’ IDENTIFIER
;

restore_command
: ’ r e s t o r e ’ IDENTIFIER
;

185

Listing B.16. Antlr grammar for dynADL(continued)
select_package_command
: ’ s e l e c t ’ PACKAGE IDENTIFIER
;

select_system_command
: ’ s e l e c t ’ SYSTEM IDENTIFIER
;

delay_command
: ’ de lay ’ (dbl | i n t e g e r)
;

timer_command
: ’ t imer ’ (SINGLE_PERIODIC) (dbl | i n t e g e r) IDENTIFIER
;

print_command
: ’ p r i n t ’ (STRINGLITERAL | IDENTIFIER)
;

event_command
: ’ event ’ IDENTIFIER
;

wait_command
: ’ wait ’ IDENTIFIER IDENTIFIER (’ (’ ’) ’)?
;

exec_command
: ’ exec ’ STRINGLITERAL
;

log_command
: ’ l og ’ STRINGLITERAL STRINGLITERAL
;

spawn_command
: ’ spawn ’ IDENTIFIER (’ (’ ’) ’)?
;

186

Listing B.17. Antlr grammar for dynADL(continued)
event_parameter_l ist
: ’ (’ (event_parameter (’ , ’ event_parameter)∗)? ’) ’
;

event_parameter
: real_base_type IDENTIFIER?
;

exp r e s s i on
: bas i c_expre s s i on
;

bas i c_expre s s i on
: va lue
| IDENTIFIER
| real_base_type
;

call_command
: ’ c a l l ’ IDENTIFIER (’ (’ ’) ’)?
;

statement
: i f_statement
| while_statement
| inc_statement
| dec_statement
| bas ic_statement
;

while_statement
: ’ whi l e ’ ’ (’ e xp r e s s i on ’) ’ DO block ENDWHILE ;

i f_statement
: ’ i f ’ ’ (’ e xp r e s s i on ’) ’ THEN block (ELSE block)? ENDIF
;

inc_statement
: ’ i nc ’ IDENTIFIER
;

187

Listing B.18. Antlr grammar for dynADL(continued)
dec_statement
: ’ dec ’ IDENTIFIER
;

bas ic_statement
: (var iab le_dec la rat ion_statement | exp r e s s i on)
;

var iab l e_dec la rat ion_statement
: (i d e n t i f i e r _ l i s t | v a r i ab l e_dec l a r a t i on |
’ (’ v a r i a b l e _ d e c l a r a t i o n _ l i s t ’) ’) (’= ’ exp r e s s i on)?
;

v a r i a b l e _ d e c l a r a t i o n _ l i s t
: v a r i ab l e_dec l a r a t i on ? (’ , ’ v a r i ab l e_dec l a r a t i on ?)∗ ;

va r i ab l e_dec l a r a t i on
: real_base_type IDENTIFIER
;

i d e n t i f i e r _ l i s t
: ’ (’ (IDENTIFIER? ’ , ’)∗ IDENTIFIER? ’) ’
;

swap_command
: ’ swap ’ IDENTIFIER IDENTIFIER ((AT (dbl | i n t e g e r)) | ONCE)
;

key_type
: KEY_ID | KEY_DESC | KEY_COMMENT
;

l i s t_kv
: ’ [’ kv + ’] ’
;

kv
: key value
;

188

Listing B.19. Antlr grammar for dynADL(continued)
value
: i n t e g e r
| realnum
| dbl
| s t r i n g l i t e r a l
| l i s t_kv
;

key
: key_type
;

realnum
: REAL
;

s t r i n g l i t e r a l
: STRINGLITERAL
;

STRINGLITERAL
: ’ " ’ ~ ’ " ’ ∗ ’ " ’
;

REAL
: SIGN? DIGIT∗ ’ . ’ DIGIT + MANTISSA?
;

SIGN
: ’+’ | ’− ’
;

MANTISSA
: ’E ’ SIGN DIGIT
;

KEY_ID: ’ id ’ ;
KEY_DESC: ’ d e s c r i p t i o n ’ ;
KEY_COMMENT: ’ comment ’ ;

SEND_RECEIVE
: ’ send ’ | ’ r e c e i v e ’
;

189

Listing B.20. Antlr grammar for dynADL(continued)
IN_OUT
: ’ in ’ | ’ out ’
;

UPDATE
: ’ update ’
;

DIAGNOSTICS
: ’ d i a g n o s t i c s ’
;

PACKAGE
: ’ package ’
;

SYSTEM
: ’ system ’
;

AT
: ’ at ’
;

ONCE
: ’ once ’
;

SINGLE_PERIODIC
: ’ s i n g l e ’ | ’ p e r i o d i c ’
;

DO
: ’ do ’
;

ENDWHILE
: ’ endwhi le ’
;

ENDIF
: ’ en d i f ’
;

190

Listing B.21. Antlr grammar for dynADL(continued)
THEN
: ’ then ’
;

ELSE
: ’ e l s e ’
;

TYPE_BOOL: ’ bool ’ ;
TYPE_BYTE: ’ byte ’ ;
TYPE_CHAR: ’ char ’ ;
TYPE_INT16: ’ in t16 ’ ;
TYPE_UINT16: ’ u int16 ’ ;
TYPE_INT32: ’ in t32 ’ ;
TYPE_UINT32: ’ u int32 ’ ;
TYPE_INT64: ’ in t64 ’ ;
TYPE_UINT64: ’ u int64 ’ ;
TYPE_BINARY: ’ b inary ’ ;
TYPE_FLOAT32: ’ f l o a t 3 2 ’ ;
TYPE_FLOAT64: ’ f l o a t 6 4 ’ ;
TYPE_DOUBLE: ’ double ’ ;
TYPE_STRING: ’ s t r i n g ’ ;

LITERAL
: ((’ " ’ ~ ’ " ’ ∗ ’ " ’) | (’ \ ’ ’ ~ ’ \ ’ ’ ∗ ’ \ ’ ’))
;

IDENTIFIER
: (LETTER | ’_ ’) (LETTER | DIGIT | ’ . ’ | ’_ ’)∗
;

COMMA
: ’ , ’
;

fragment LETTER
: ’A ’ . . ’Z ’ | ’ a ’ . . ’ z ’
;

fragment DIGIT
: ’ 0 ’ . . ’ 9 ’
;

191

Listing B.22. Antlr grammar for dynADL(continued)
fragment HEX_DIGIT
: DIGIT | ’A ’ . . ’F ’ | ’ a ’ . . ’ f ’
;

WS
: (’ ’ | ’ \ t ’ | ’ \ r ’ ’ \n ’ | ’ \n ’)+ −> channel (HIDDEN)
;

SL_COMMENT
: (’ // ’ | ’#’) (~ ’ \n ’)∗ (’ \ r ’)? ’ \n ’ −> channel (HIDDEN)
;

ML_COMMENT
: ’ /∗ ’ . ∗ ? ’ ∗/ ’ −> channel (HIDDEN)
;

192

VITA

Background

Anton D. Hristozov holds an Electrical Engineering degree from the Technical University

of Sofia, Bulgaria. He later graduated from the University of Pittsburgh with a Masters in

Telecommunications and Information Science. He is finalizing his doctoral degree in Tech-

nology at Purdue University. He works as a research engineer at the Software Engineering

Institute Carnegie Mellon University. He is involved with scientific research in the field of

safety assurance of real-time systems. His research interests involve embedded and real time

systems, including robotic systems. He is a Linux user and enjoys working with cyber phys-

ical systems which use sensors and physical phenomena. He has worked on various types of

UAVs and UGVs with focus on mission critical and fault-tolerant software. Anton is gener-

ally interested in runtime software assurance and better security, reliability and flexibility of

cyber physical systems.

Professinal Achievements

Created an Architecture Description Language for Dynamic Management of Software

Components

• Developed Antlr grammar and parser

• Created a code generation engine that outputs efficient C++ code for component

management and initialization

• Provide support for Posix and Ros platforms

Worked on enhancements of the PX4 autopilot software architecture

• State recovery for running software components

• Redundant components

• Resistance against software attacks

193

• Dynamic reconfiguration during run-time

Developed a secure framework for a UGV, based on Raspberry Pi

• Woked on implementation of hypervisor extensions for sensor driver

• Developed software attack scenarios to attack the line tracking sensor

• Implemented attack proof solutions for the UGV

Built a drone from scratch

• Researched all electrical and mechanical parts

• Worked with PX4 autopilot

• Conducted experiments in lab environment

Implemented a software rejuvenation for an embedded system

• Worked in VxWorks environment

• Modified the VxWorks kernel to support checkpoints and restore mechanisms for user

space processes

• Integrated the solution in a complete system

Taught Engineering Courses at CCAC, Pittsburgh and Technical University, Sofia as

adjunct faculty

• C programming

• Computer Architecture

• Analysis and Design of Software Systems

• Practical Control Solutions

Developed a Digital Signal Processing (DSP) Simulator

• Researched algorithms

• Implemented algorithms and graphical tools to display the results from the simulation

• Used Pascal and C++ for the development

194

Skills

Technical Skills

• Real Time Operating Systems (VxWorks,Integrity,OSE,QNX)

• Linux development, user space and kernel space

• C and C++ programming

• Python and shell scripting

• Embedded systems, including robotic systems, drones and other vehicles

• PX4 autopilot architecture

• Hypervisor architecture and development

• Hardware knowledge of electronic devices and embedded systems

• Writing technical documentation

• Writing scientific papers and performing research

Leadership Skills

• Project management

• Interviewing technical candidates

• Mentoring engineers

• Working in a distributed environment, including outsourcing

Work History

• Research Engineer Software Engineering Institute Carnegie Mellon University, Pitts-

burgh, PA Oct. 2018 until present

• Firmware Engineer NetApp Inc. Pittsburgh, PA Apr. 2011 Oct. 2018

195

• Senior Software Engineer Ansaldo STS Pittsburgh, PA Jan 2005 Apr. 2011

• Senior Software Engineer Compunetix Pittsburgh, PA Feb 2001 Jan 2005

• Team Lead TouchTown (startup) Pittsburgh, PA Mar. 2000 Jan 2001

• Quality Assurance Claritech (startup) Pittsburgh, PA Oct 1998 Mar. 2000

• Team lead Intransco (startup) Sofia, Bulgaria and Austin,Tx Oct 1996 Oct 1998

• Research Associate Bulgarian Academy of Science Sofia, Bulgaria Oct 1989 - Oct 1996

Education

• Bachelors of Science in Electronics and Automation Technical University Sofia, Bul-

garia June 1989

• Masters of Telecommunications and Information Science University of Pittsburgh, PA

2007

• Doctor of Technology Candidate Purdue University, Indiana Expected graduation

Spring 2023

Languages

• English (fluent)

• Bulgarian (native)

• Russian (fluent)

• French (working knowledge)

Publications

• Practical, Provable, End-to-End Guarantees on Commodity Heterogeneous Intercon-

nected Computing (CHIC) PlatformsPractical, Provable, End-to-End Guarantees on

196

Commodity Heterogeneous Interconnected Computing (CHIC) Platforms, HotSOS

Hot Topics of Science of Security, Apr 16, 2021

• TwinOps - DevOps meets model-based engineering and digital twins for the engineering

of CPSTwinOps - DevOps meets model-based engineering and digital twins for the

engineering of CPS, Models 20: Proceedings of the 23rd ACM/IEEE International

Conference on Model Driven Engineering languages and Systems, Oct 1, 2020

• The Software Communications Architecture. "Resource management in Future Inter-

net,"The Software Communications Architecture. "Resource management in Future

Internet," River Publishers, Mar 27, 2013

• Sensor Data Protection in Cyber-Physical Systems, 17th Conference on Computer

Science and Intelligence Systems, Sept. 2022

• Component Interface Standardization in Robotic Systems, 17th Conference on Com-

puter Science and Intelligence Systems, Sept. 2022

• A Methodology for Estimation of Software Architectural Complexity in Publish-Subscribe

Systems, International Conference Automatics and Informatics 2022, Oct. 2022

• Resilient Architecture Framework for Robotic Systems, International Conference Au-

tomatics and Informatics 2022, Oct. 2022

• Reviewing the role of machine learning and artificial intelligence for remote attestation

in 5G+ networks, 5G and Future Networks Technologies, Oct. 2022

• Security of Cyber-Physical Systems through Dynamic Component Management, IAJC

Conference 2022, Ocotber 2022

• Secure Robotic Vehicles: Vulnerabilities and Mitigation Strategies, 2022 Virtual IEEE

International Symposium on Technologies for Homeland Security, November 2022

• Software Rejuvenation for Safe Operation of Cyber-Physical Systems in the Presence

of Run-time Cyber Attacks, IEEE Transactions on Control Systems Technology, Jan.

2023

197

INDEX

µ-calculus, 95

π-ADL, 98

π-calulus, 98

\begin{vita}, 193

AADL, 48, 102, 106–108, 127

AADL inspector, 102

AADL+, 103

abbreviations, 14

abstract, 18

acknowledgements, 2

ACME, 128

Acme, 130

ACSL, 44, 120

actions, 72

ADL, 27, 95, 134, 135, 147

AI, 23, 53, 123

Alloy, 100

AltaRica, 116

ANSI-C, 97

Antlr, 45, 128, 134, 135, 148, 164

ArchSoS, 119

Ardupilot, 28, 31, 50

ASP, 68

assurance, 119–121

assurance architecture, 124

AST, 96, 106

attack, 54, 55, 74, 77, 79

attack detection, 74

attack model, 77

attacker, 55, 74, 77, 85

authentication, 64

autonomous systems, 25

autopilot, 54, 77

Autosar, 19, 25, 61

BCL, 42

BNF, 135

bottom-up design, 92

buffer overflow, 54, 77

C & C, 71

C++, 34, 46, 52, 55, 106, 164

C#, 85

code genration, 169

complexity, 71, 72

component manager, 64, 75, 78, 79, 82, 85

constituent systems, 111, 112

contract, 41, 42, 127

contract-based, 39

Coq, 97

COTS, 62, 76

CPLD, 26

CPS, 19, 21, 23, 24, 26, 54, 59, 74

CPU, 79

CS, 112, 113

cyber-attacks, 29, 32

198

deserialization, 85

desgin-time, 114

design-time, 60, 112, 120, 121

DEVS, 105

diagnostics and control, 36, 78

DOD, 50

DoD, 113

DSL, 22, 27, 45, 49, 94, 97, 105, 106, 120,

127

dynADL, 127, 135, 136, 140, 148

DynAlloy, 100

dynamic component management, 22, 24,

75, 79

dynamic management, 77

dynamic reconfiguration, 32, 37, 48, 64,

71, 111, 120, 124, 126

dynamic refresh, 24, 46, 75

dynamic security, 74, 77

EBNF, 135, 136

Eclipse, 134

Ecore, 134

EKF, 34

EmbeddedMontiArc, 95

emergent behavior, 111

EMF, 134

end-to-end time analysis, 93

FAA, 26

failure analysis, 102, 103

FPGA, 26

Frama-C, 44

FSM, 116

Gazebo, 21, 82

Genom, 120

GML, 128

GPL, 134, 135

Hoarse’s logic, 56

holonomic, 20

HST, 96

IBD, 113

IDE, 135

IDL, 128, 130

IoT, 19, 74, 111, 117, 127

IT, 25, 74, 111

Java, 134

Jmavsim, 21, 82

JML, 44

JSON, 46, 85

KAOS, 124

KerML, 94, 105

Lex, 134, 135

LSS, 48, 111

LTL, 41

Matlab, 91

Maude language, 119

Mavlink, 21, 53

MAVSDK, 21, 52, 82

199

MBE, 110, 112

MBSE, 92

MDA, 46

MDE, 112

memory attack, 76, 77

memory attacks, 77

memory layout, 76

memory map, 75

message broker, 64

messages, 62

MetACSL, 120

Misra-C, 96

mission-based validation, 124, 125

model-to-model, 134

model-to-text, 134

Modelica, 93, 103, 105

MOF, 104, 105

Monte Carlo, 54

Moving Target Defense, 74

nonholonomic, 20

OMG, 94, 105

Osate, 103, 104

Posix, 169

publish-subscribe, 29, 64, 71, 72, 79

publsih-subscribe, 32

PX4, 21, 27, 50, 52, 82

Python, 134

QGroundcontrol, 21, 82

quadcopter, 21

QVT, 104

real-time, 53, 58

reconfiguration, 30

resilience, 20, 23, 24, 29, 35, 49, 59, 73

resilient, 26, 35, 40, 59–61

resilient systems, 73

reverse engineering, 106

robotic vehicle, 89

root of trust, 43, 47

ROS, 25, 27, 50, 53, 62, 148

ROS2, 72, 107, 169

RTA, 124, 126

RTOS, 42

run-time, 33, 35, 36, 38, 46, 47, 59, 113,

117–124, 135, 136, 140, 147

run-time verification, 120, 121

RV, 19, 25

safety, 74, 81

safety-critical, 74, 75, 88, 111

SCRSoS, 119

security, 74–76, 81

serialization, 82

service-oriented architecture, 71

services, 72

Simulink, 93, 103

smart components, 62

SOA, 130

software rejuvenation, 43, 69

200

SoS, 47, 52, 71, 73, 111–114, 116,

118–121, 124

SPA, 94

SQL, 57

state, 78, 112, 117, 119

statement, 2

SysML, 49, 91, 93, 105, 106, 108, 113,

116, 121, 127

SysML4DEVS, 105

SystemC, 104, 106

TEE, 47, 68, 79

TextX, 134

threat, 81, 88

Thrift, 128

top-down design, 93, 106, 107

UAV, 19, 25, 26, 50, 81

UGV, 19, 25, 50

ULLS, 111

UML, 91, 105, 116

UML/MARTE, 97

V & V, 99

V&V, 41, 120

validation, 49, 98, 99, 107, 116, 124, 125

VDM-RT, 116

verification, 42, 43, 49, 97, 98, 100, 103,

121, 124

Verilog, 106

VHDL, 49, 91, 106, 107

vita, 193

XMI, 105

XML, 46, 105

Xtext, 106, 130, 134

YACC, 134

Yacc, 135

201

	TITLE PAGE
	COMMITTEE APPROVAL
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF LISTINGS
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	Purpose of the study
	Class of systems
	Problems that need to be solved

	Significance of the study
	Hypotheses
	Research Questions
	Scope
	Limitations
	Delimitations
	Assumptions
	Summary

	REVIEW OF THE LITERATURE
	Limitation of current systems
	Architectures of Modern Autopilot Systems
	Challenges in dynamic management of software architectures
	Approaches for implementing resilient systems through dynamic software component management
	Smart Components
	Component Interactions
	Component Authentication
	Contracts for Software Components
	Software Rejuvenation
	Tools For Enforcement of Contracts
	ACSL
	JML
	Domain Specific Languages

	Component Management and Root of Trust

	Dynamic Run-Time Changes of System of Systems
	Conclusion

	METHODOLOGY
	Research Design
	Procedure/methods employed to conduct the study
	Discussion of the sample to be used in the study
	Data collection procedures
	Data analysis procedures
	Conclusion

	RESILIENT ARCHITECTURES THROUGH DYNAMIC RECONFIGURATION
	Prerequisites for Dynamic Architectures through Component Updates
	Management of Dynamic Architectures
	Dynamic Architectures Incarnations
	Complexity Assessment of Dynamic Software Architectures
	Publish-Subscribe Architectures and ROS for Dynamic Management
	Complexity Derivation for Publish-Subscribe Systems

	Conclusion

	DYNAMIC RUN-TIME BEHAVIOR FOR IMPROVING SECURITY
	The Case for Security through Dynamic Component Management
	Attack Model
	Specifics of Dynamic Mechanisms for Security
	Case Study
	Conclusion

	MODELING TECHNIQUES FOR DYNAMIC ARCHITECTURES
	Modeling Techniques
	Code Generation of Systems Based on Models
	Verification and Validation of System Models
	Simulation of Models
	AADL Simulation
	SysML Simulation

	Practical Approaches for System Generation and Maintenance through Modeling
	Conclusion

	DYNAMIC RECONFIGURATION OF SYSTEM OF SYSTEMS
	Specifics of System of Systems with Respect to Dynamic Reconfiguration
	Design and Deployment of SoS
	Design-time Approaches
	Generation of SoS

	Run-time Approaches
	Rapid Development of Systems
	Assurance of SoS
	Mission-Based Validation

	Conclusion

	DYNAMIC ARCHITECTURE DESCRIPTION LANGUAGE
	Motivation
	Influencing Architecture Description Languages
	GML
	Thrift
	AADL
	Acme

	Language Development Technologies and Tools
	Xtext
	TextX
	Antlr

	dynADL - Dynamic Architecture Description Language
	Conclusion

	REFERENCES
	DEVELOPMENT SETUP
	Dependencies and Makefile
	IDE
	Debugging
	Running

	DYNADL
	Command Line Interface
	Architecture Description Sample
	Code Generation
	EBNF Grammar

	VITA
	COLOPHON

