
INCREMENTAL TEST PATTERN GENERATION FOR
STRUCTURALLY SIMILAR CIRCUITS

by

Jerin Joe

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

May 2023

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Irith Pomeranz, Chair

School of Electrical and Computer Engineering

Dr. Cheng-Kok Koh

School of Electrical and Computer Engineering

Dr. Milind Kulkarni

School of Electrical and Computer Engineering

Dr. T. N. Vijaykumar

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

2

To my parents and to Jom, for their unconditional love and support.

3

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisor, Dr. Irith

Pomeranz, for her unwavering support, patience, encouragement, and her willingness to

share her enormous expertise. Her prompt suggestions, meticulous scrutiny, and scientific

approach have helped me to a great extent. This work would not have been accomplished

without her guidance.

I would also like to thank Dr. Janusz Rajski and Dr. Nilanjan Mukherjee, my advisors

at Siemens Digital Industries Software, for providing funding and suggesting ideas for this

thesis. Their exceptional patience, guidance, and encouragement have helped me during my

studies and research.

I would like to thank Dr. Cheng-Kok Koh, Dr. Milind Kulkarni, and Dr. T.N. Vijaykumar

for serving on my advisory committee.

I would like to extend my gratitude to Dr. Chen Wang, and Dr. Yingdi Liu at Siemens

Digital Industries Software for going above and beyond to help me whenever I needed one.

I am deeply grateful to my friend, Dr. Binod Kumar, for his insightful comments and

unwavering support throughout my research.

Lastly, I would like to mention my sincere gratitude to Jom. Without his continuous

support and motivation, this Ph.D. journey would not have been possible.

4

TABLE OF CONTENTS

LIST OF TABLES . 9

LIST OF FIGURES . 10

ABSTRACT . 12

1 INTRODUCTION . 13

1.1 VLSI Design Flow . 13

1.2 Design for Testability . 15

1.2.1 Scan Design . 16

1.2.2 Built-In-Self-Test (BIST) . 17

1.2.3 Boundary Scan . 17

1.3 Fault Models . 18

1.3.1 Stuck-At Fault . 18

1.3.2 Transition Fault . 19

1.3.3 Path Delay Fault . 20

1.3.4 Bridging fault . 21

1.4 Previous Works . 21

1.4.1 Incremental Test Pattern Generation 21

1.4.2 Incremental Logic synthesis using structural similarity 23

1.4.3 Structural similarity during Place & Route 25

1.5 Contribution . 25

5

1.6 Thesis Overview . 27

2 FAST TEST GENERATION FOR STRUCTURALLY SIMILAR CIRUITS 28

2.1 Introduction . 28

2.2 Test Generation Process . 31

2.2.1 Overview . 31

2.2.2 Signature Computation . 32

2.2.3 Mapping between circuit1 and circuit2 38

2.2.4 Transforming the Pattern File . 40

2.2.5 Incremental ATPG . 41

2.3 Experimental Setup and Results . 41

2.3.1 Experimental Study on Signature Aliasing 41

2.3.2 Logic changes . 43

2.3.3 Sequential changes . 47

2.4 Conclusion . 49

3 TEST GENERATION FOR AN ITERATIVE DESIGN FLOW WITH RTL CHANGES 50

3.1 Introduction . 50

3.2 Motivation and Background . 53

3.2.1 Review . 53

3.2.2 Mapping between two versions of a circuit 54

3.2.3 Mapping between two versions of a circuit 55

6

3.2.4 Pattern Transformation and Fault Simulation 55

3.2.5 Examples of different types of RTL changes 56

3.3 Proposed Methodology . 59

3.3.1 Overview . 59

3.3.2 Unique Signature Mapping Illustration 60

3.3.3 Mapping Based on Unique Signature Pairs 62

3.3.4 Mapping Common Signature Pairs 64

3.3.5 Mapping for the Remaining Unmapped Outputs 65

3.4 Experiment and Results . 66

3.5 Conclusion . 71

4 GENERATION OF TWO-CYCLE TESTS FOR STRUCTURALLY SIMILAR CIR-

CUITS . 72

4.1 Introduction . 72

4.2 Motivation for two-cycle signatures . 76

4.3 Two-cycle Signature Computation . 79

4.4 Test Generation Procedure . 83

4.4.1 Mapping of Inputs and Outputs . 83

4.4.2 Transformation of Patterns . 86

4.4.3 Fault Simulation and Incremental ATPG 88

4.5 Experimental Results . 88

7

4.5.1 RTL changes . 89

4.5.2 Gate-level changes . 92

4.5.3 Discussion . 95

4.6 Conclusion . 95

5 CONCLUSION . 97

REFERENCES . 98

A ADDITIONAL EXPERIMENTS FOR CHAPTER-1 105

A.1 Single Changes . 105

A.2 Cumulative changes . 109

8

LIST OF TABLES

2.1 Categories of Gate Type and Prime Number Used as Mask 34

2.2 Output signature for different configurations . 42

2.3 Experimental Result for Logic Changes . 45

2.4 Experimental Result for Sequential Changes . 48

3.1 Input and Output Signatures for Figure 3.6 . 60

3.2 Average Combinational and Sequential Changes 67

3.3 Experimental Result for Circuits Modified at RTL 68

4.1 Input and Output Signatures for Figure 4.4 . 85

4.2 Pattern Transformation for LOC Tests . 87

4.3 Experimental Result for Circuits modified at RTL 90

4.4 Experimental Result for Gate-level Combinational Changes 93

4.5 Experimental Result for Gate-level Sequential Changes 94

A.1 Experimental Result for Single Changes . 106

A.2 Results of Runtime Gain and Test Pattern Increase for Table A.1 107

A.3 Results for Individual Runs for 10 Versions of Circuit 7 from Table A.1 108

A.4 Experimental Result for Cumulative Changes 110

A.5 Results of Runtime Gain and Test Pattern Increase for Table A.4 111

9

LIST OF FIGURES

1.1 VLSI Design Flow [4] . 14

1.2 Basic Principle of Testing of Digital Circuits [10] 15

1.3 Scan Flip Flop [13] . 16

1.4 Scan Based Design [13] . 17

1.5 Built-In-Self-Test [13] . 18

1.6 Stuck-At-Fault . 19

1.7 Slow-to-Fall . 20

1.8 Test Pattern for Input A s-a-1 Fault . 22

1.9 Test Pattern for Input B s-a-1 Fault Using Inherited Values 23

1.10 DeltaSyn Method From [29] . 24

1.11 Overview of ATPG flow in the thesis . 26

2.1 ATPG Flow of Circuit1 . 32

2.2 ATPG Flow of Circuit2 . 33

2.3 An Example of Output Signature Computation for a Logic Circuit 35

2.4 A Logic Circuit with Modification . 40

2.5 4-level AND-OR gate connection . 42

2.6 The minimum of deviation in logarithmic scale (base 10) 43

3.1 VLSI Design Flow [56],[57], [58] . 51

3.2 Overview of ATPG flow . 54

3.3 Transformation of a pattern . 56

3.4 RTL code snippet for two versions of the circuit 57

3.5 An example of a portion of a synthesized circuit before and after a modification 58

3.6 An example to illustrate unique signature mapping 61

3.7 Mapping information for different iterations in MAP 62

3.8 Runtime gain as a function of the number of changes 70

4.1 VLSI Design Flow [56],[57], [58] . 74

4.2 Overview of the ATPG Flow [59],[68] . 75

4.3 Two versions of a circuit . 77

10

4.4 Two time-frame expansion . 78

4.5 Example of output signature computation over two time-frames 81

11

ABSTRACT

The advancement of semiconductor technology has resulted in the development of de-

vices that are fast, cost-effective, low-power, and high-performance. To achieve this, many

gates are integrated into smaller areas, resulting in increased complexity of digital circuits.

Increased size and complexity result in a large number of faults, which increases the time

taken to test the circuit. However, as the size of the digital designs increases, they also

exhibit structural similarities. This thesis describes a test generation process that utilizes

structural similarity to speed up the test generation process. The property of structural

similarity can be seen in circuits that are subjected to engineering change order (ECO), cir-

cuits that are modified during place and route, circuits subjected to retiming, circuits with

multiple cores such as central processing units (CPUs), graphics processing units (GPUs),

and artificial intelligence (AI) chips. The goal of the thesis is to determine the testability

of a circuit (circuit2) given a test set for a structurally similar circuit (circuit1). This is

achieved by transforming a test set generated for circuit1 into a test set for circuit2 without

repeating the entire test generation process. The process described in the thesis starts with a

structural analysis of circuit1 and circuit2 that captures their structural properties using an

integer-arithmetic based computation called signatures. The signatures are used to obtain

a partial mapping between the inputs and outputs of the two circuits. The mapping is used

for transforming test patterns for circuit1 into test patterns for circuit2. The first chapter

looks into similar circuits obtained after modifying the gate-level netlist. In the next chap-

ter, structurally similar circuits were obtained by modifying the RTL, and the gate-level was

resynthesized. This chapter proposed a mapping methodology to accommodate the changes

introduced during the resynthesis of a netlist. Lastly, the thesis described a test generation

methodology where transition faults are considered, which required two-cycle tests to be

detected.

12

1. INTRODUCTION

Advancing growth in semiconductor technology has led to the development of fast, cost-

effective, low-power, and high-performance devices [1], [2]. Complex circuits consist of a large

number of gates that are integrated into small-sized chips, which increases the complexity of

integrated circuits. A decrease in size and an increase in complexity results in an increased

number of faults to be tested [2]. With complex and dense ICs, the time taken to test, debug

and verify the circuit becomes the bottleneck for chip design. [3].

The physical design flow [4] is iterative to fix errors, improve performance and solve power

issues. In order to meet the circuit specifications, designers make changes in the circuit [5],

[6]. The required changes are performed incrementally so that they would have less impact

on the existing design. Such changes are known as Engineering Change Orders (ECO).

Testability bottlenecks are addressed by performing test generation early in the design flow.

The generated test sets remain valid as long as the modifications do not alter the gate-level

description of the circuit. Every time a modification changes the gate-level description,

the test patterns for the original design become invalid, and new test patterns need to be

generated for the modified design. This visibly increases the overall test generation time and

time-to-market for the chip.

The solution explored in this thesis is to exploit structural similarity prevalent in the

current designs to speed up the test generation process. The thesis provides a solution for

incremental test generation for similar circuits obtained by modifying gate-level netlists and

the RTL when stuck-at and transition faults are considered.

This chapter presents the basics of design for test (DFT), its techniques, a few of the

fault models involved in the study and review of the previous works.

1.1 VLSI Design Flow

The VLSI chip density is expanding exponentially as transistor feature sizes continue to

shrink. As a result, the current and future VLSI technology are extremely complicated. In

13

order to meet the current demand, billions of transistors are integrated on a single chip.

In addition, every manufactured chip must be reliable and should be thoroughly tested. A

robust VLSI design and test flow which results in the production of reliable chips is reviewed

in this section.

Figure 1.1. VLSI Design Flow [4]

Figure 1.1 shows a flow diagram for the VLSI design. The initial stage of the VLSI design

flow is to defining the specifications of the circuit. The specifications define the necessary

power, area, timing constraints that needs to be met for the design. the behavioral aspect

of the circuit is defined using a hardware description language (HDL)[7], [8]. Every time,

before moving on to the next level, a verification step is performed.

Functional verification [9] is performed before synthesizing the RTL description to ensure

the design is done according to the specifications. After the verification, the RTL is converted

14

into a gate-level netlist using a synthesis tool. To ensure that the gate-level netlist meets all

the circuit requirements, the design needs to be tested. Automatic Test Pattern Generation

(ATPG) is performed on the circuit to determine the fault coverage achieved. Binary test

patterns are generated and applied to the circuit under test (CUT) to excite the faults in the

functional modules in the design[10]. This is shown in figure 1.2 . The output is compared

to the desired response of the circuit. If the response from the applied test pattern does not

match the desired response, the test pattern has detected a fault. These test patterns are

used to test the designs for any defects. The quality of the test patterns is determined by

the number of faults detected during automatic test pattern generation (ATPG). If these

patterns does not detect a reasonable number of faults, design needs to be incrementally

modified in order to meet the circuit requirements.

Figure 1.2. Basic Principle of Testing of Digital Circuits [10]

The final stage is the placement of the synthesized modules. The functional modules

need to be placed in precise locations within a chip to get an optimized design. After the

placement, the functional modules are connected using wires.

1.2 Design for Testability

A large, complex design consists of combinational and sequential logic. The circuit with

sequential logic is difficult to test as test patterns need to be applied over multiple cycles

to obtain the response at the output of the design. This increases the test volume and test

15

application time. With the increase in complexity of a design, digital circuits need to be

designed by taking into account the time taken for testing. Design for testability (DFT)

[11] techniques improve the testability of the circuit by adding more hardware in the CUT.

Using the DFT techniques, the difficulty of testing sequential circuits is minimized. Some of

the DFT techniques involved are scan design, Built-in-self-test (BIST), boundary scan.

1.2.1 Scan Design

Scan based [12] DFT technique is one of the widely used techniques. In this DFT

technique, the flip flop in the design is modified by adding a test mode to the design, as

shown in the figure. This makes the flip flop easier to test by making it controllable and

observable.

Figure 1.3. Scan Flip Flop [13]

The scan structure has an extra input known as scan-in (SI), which is fed to the flip flop

through a two-input multiplexer. The multiplexer is controlled using a scan enable (SE) pin,

which selects the data path (D input) or scan input path (SI input) as per the test mode.

One or more shift registers are formed by connecting the scan cells together, as shown

in Figure 1.4 . Each scan cell is made observable and controllable, thus gaining access to the

internal modules in the circuit. The scan structure can be set to any desired value during

the test mode by shifting the value in the shift registers. Combinational logic in the design

can be tested by assigning values to the scan cells. The responses to the applied stimuli will

be captured in the scan cells. By shifting out of the registers, the values in the scan structure

can be observed.

16

Figure 1.4. Scan Based Design [13]

1.2.2 Built-In-Self-Test (BIST)

BIST [14] was introduced to test the circuit by itself at the operating speed of the design.

This DFT technique uses additional hardware such as an internal test pattern generator

(TPG), an output response compacter, a comparator, and a ROM, as shown in Figure 1.5 .

A TPG is integrated within the design to generate the test patterns internally. Next, the

output responses of the CUT are sent through a data compacter. Finally, the compacted

value is compared with the reference value stored in the ROM to verify the correctness of

the design.

1.2.3 Boundary Scan

A boundary scan [15] enhances the access to test the components that are embedded

within the design. In this technique, a register with additional circuitry is placed at each of

the input/output (I/O) pins. These cells at the periphery are serially connected to form a

boundary-scan. The test stimuli can be serially shifted through the boundary scan during

the test mode. The cells in the boundary scan can either force the data onto the CUT or

17

Figure 1.5. Built-In-Self-Test [13]

capture the response. With direct access to I/O pins, the interconnects in the circuit can

also be tested separately, in addition to testing the logic of the circuit.

1.3 Fault Models

During the manufacturing, development, or operation of the design, a defect like short

or open can occur within a design. With the increasing size and shrinking feature size of an

integrated circuit, the number of physical defects can be enormous. A fault model is a way

to depict the behavior of the defects in the design accurately. Some of the basic fault models

are described in the following sub-section.

1.3.1 Stuck-At Fault

Stuck-At-fault [16] describes the faulty behavior of the signal line connecting the gates

within the design. The line can be tied to logic 1, which is called stuck-at-1 (s-a-1), or tied

to logic 0, which is called stuck-at-0 (s-a-0). Figure 1.6 shows an example of stuck-at-fault.

In Figure 1.6 , the output line of gate G2 is stuck at logic value ‘0’. By applying the test

vector ‘0011’ on the primary inputs, it can be seen that the fault-free output of gate G2

should be 1, but the faulty circuit will produce a 0. This effect of the stuck-at fault at the

output of gate G2 can be propagated to the primary output by setting the primary inputs

18

Figure 1.6. Stuck-At-Fault

P1 and P2 to 0. Thus, we get the test vector ‘0011’, for which the output response of faulty

and fault-free circuits differ at the primary output. Hence, the test vector ‘0011’ detects the

s-a-0 fault at the output of gate G2.

1.3.2 Transition Fault

The defects in the circuit can induce improper timing behaviors. These defects can cause

the circuit to fail when operated at the normal speed of operation. Such defects are modeled

by delay faults. The transition fault model [17], [18] is one of the most extensively used

delay fault models. A transition fault increases the time taken for a signal on a line to

change. Transition faults can be categorized into two: slow-to-rise and slow-to-fall faults.

When a signal takes a long time to change from 0 to 1, we see a slow-to-rise fault. Similarly,

a slow-to-fall fault can be observed when a signal takes a long time to transition from 1 to

0.

In order to detect the fault, we have to create a transition on the line. Two patterns

are required to excite a transition fault and be observed at the output. The first pattern

initializes the circuit to a stable state and the second pattern creates the necessary transition

to detect the fault. For example, for a slow-to-fall(rise) fault, the line first needs to be set to

19

1 (0), which is done using the first pattern. Then using the second pattern, the signal on the

line is transitioned to 0 (1). As the line is faulty, the signal will take more time to change

to logic value 0 (1), and this effect can be propagated to the primary output or a scan cell.

This is shown in the Figure. 1.7 .

Figure 1.7. Slow-to-Fall

There is a slow-to-fall fault at the output line of gate G2. The first pattern is applied

at time t1, which sets the output line of G2 to 1. Once the outputs are stable, the second

pattern is applied at time t2, creating a transition that forces the output line of gate G2 to

fall to logic 0 slower than the normal speed of operation. Due to the slow-to-fall fault, the

output remains at logic 1 at time t2 instead of logic 0, and the fault gets detected.

1.3.3 Path Delay Fault

Path delay faults [19] occur when the cumulative delay of a combinational path exceeds

the clock period due to the defects in the circuit. A combinational path consists of a primary

input or a scan cell connected to a primary output or scan cell via few combinational gates.

Similar to the transition faults, there are two types of faults associated with each path in the

circuit: rising path delay and falling path delay. The number of path delay faults increases

exponentially with the size of the circuit.

20

1.3.4 Bridging fault

Two interconnect wires can be placed close to one another during fabrication. Such wires

can unintentionally get shorted to each other. Such faults are modelled by bridge faults [20],

[21]. If two interconnect lines are bridged, then the fault on these lines can be excited when

the two lines have different logic values. There are various types of bridging fault: wired-OR,

wired-AND, and Dominant. When there is a wired-OR (AND) fault, a logic 1 (0) on any

line will force the other line to logic 1 (0). A dominant bridging fault will force the value of

the dominating line onto the other wire.

1.4 Previous Works

There are many different ways in the literature [22], [23], [24], [25], [26] where the test

generation effort is being improved. These methods help in reducing the overall test gen-

eration time, which is usually performed before moving on to the next stage of the design

flow. However, there is no framework to our knowledge that utilizes the test generated for a

circuit and transforms it into a test for another structurally similar circuit.

The concept of incremental test generation was introduced in [26] for a different context

that considered a single version of a design. This is reviewed in Section 1.4.1 . The concept

of incrementally modifying the flow has been explored in different fields like the synthesis of

a design, place and route. In these works, the knowledge from a structurally similar design

helps in reducing the effort for another structurally similar design. The following sections

review incremental changes done in synthesis [27], [28],[29] (Section 1.4.2), and place and

route [30] (Section 1.4.3).

1.4.1 Incremental Test Pattern Generation

The state-of-the-art test generation tools are fault-oriented. First, these tools generate

tests for a targeted fault. Once the targeted fault has been detected or considered unde-

tectable, the tool selects another fault and generates tests for it. The expectation in [26] is

that starting from a test generated for one fault, it is possible to modify the test into a test

21

for another fault more quickly than starting from an all-unspecified test. This is illustrated

next.

Figure 1.8. Test Pattern for Input A s-a-1 Fault

Figure 1.8 shows a circuit whose input A has an s-a-1 fault. To generate the test for input

A s-a-1, the fault needs to be excited. Therefore, all inputs are unspecified, and input A is

assigned logic value 0. In order to propagate this fault effect to the output, non-controlling

values are assigned to the gates along the output path.

After the test vector detects the s-a-1 fault at input A, another undetected fault is picked,

say s-a-1 at input B. In traditional tools, all the inputs are unspecified when a new fault

is picked. Whereas [26] reuses the line justifications used for detecting the earlier fault. In

order to excite the fault, input B is set to logic value 0, and input A is set to logic value 1,

which is the non-controlling value of the AND gate. With the help of inherited values for

the fault s-a-1 at input A, the injected faulty signal can be propagated to the output. This

is shown in Figure 1.9 .

In Figure 1.9 , on the value shows that the value on the line was determined from the

previous justification. Thus, in this example, for finding a test vector for the fault s-a-1 at

input B, the earlier test vector helped to reduce the number of justifications by 2, which

helps to speed up the test generation process.

22

Figure 1.9. Test Pattern for Input B s-a-1 Fault Using Inherited Values

1.4.2 Incremental Logic synthesis using structural similarity

Design is modified when the circuit does not meet the design requirements. A minor

modification can result in a different optimization when synthesizing the modified netlist

during logic synthesis. The literature shows that the effort and time spent synthesizing the

modified circuit can be reduced by incremental synthesis where gates are reused from the

previous implementation.

In [27], a method is proposed to identify the correspondence between gates and pins

of the baseline and the modified circuits. First, the correspondence between the circuits is

computed by creating an identification index for every gate based on the name of the primary

input/output (IO) lines, type of gate, number of fanins, and number of fanouts. Then, a

gate matrix is created using this index that includes every pair of gates in the baseline and

the modified circuits. The algorithm identifies gates that are structurally compatible in the

baseline and the modified circuits based on the gate matrix. Using the compatible gates, the

procedure of [27] generates a synthesized circuit by retaining a maximum number of gates

from the synthesized baseline circuit. This method identifies the logic gate components that

must be modified due to the functional changes in the design and thus reduces the effort

required for synthesis from the beginning.

23

The procedure of [28] first checks for isomorphic cones in the circuit, as all gates in

such cones are structurally equivalent. By identifying such isomorphic cones, the algorithm

can retain the implementation of all these cones during incremental synthesis. Next, the

algorithm evaluates every gate in both circuits to check the type of gate and the nets these

gates are connected. Using these two steps, the algorithm determines the structurally similar

gates. After the structural and functional equivalence is established between the baseline

and the modified circuits, a mapping is established between the circuits, which is used to

guide the synthesis process to generate a synthesized circuit with minimal change from the

baseline circuit.

Figure 1.10. DeltaSyn Method From [29]

The paper [29] introduces a two-phase flow approach. The steps involve identifying the

input and output boundaries of the modifications. The gates within these boundaries are

the ones that need to be replaced due to ECO. First, identification of the input boundary is

made using the structural and functional information to identify signals in the circuit that

are functionally equivalent. Then, using these signals, the input side boundary is determined

with the help of forward-sweeping algorithms. [31].

24

The output side boundaries are identified in the second step. This is done using a Boolean

matching algorithm [32]. A recursive backward traversal is done from the primary outputs

to obtain the logic equivalency. The output boundary is defined every time the circuit is

matched from the output side. The synthesis tool can reuse all the gates that are outside

the input and output boundary. This reduces the time taken for synthesis as the majority

of the synthesized circuit has been reused.

1.4.3 Structural similarity during Place & Route

In [30], an ordering technique is proposed for all gate instances in the design. This

technique is invariant to the changes in the circuit due to Engineering Change Order. For

the ordering, a value is obtained for each gate instance by a linear combination of the type

of the gate, number of fan-in gates, number of fanout gates, and terminal node name of

the gate instances. In addition, the terminal node name of the connected fan-in and fanout

gates are also used. This value is defined as a signature in [30]. After assigning signature

values to all gate instances, a traversal is done in the input and output cones to obtain the

updated signature values of the gate instances by linearly combining the signature of the

fanout and fan-in gates in the cone, respectively. Thus, the ordering of gate instances based

on the computed signature values guarantees a minimal change in the gate instance order

even if the ECO process changes the ordering of the gate instances.

1.5 Contribution

The state-of-the-art test generation tools do not take advantage of the structural simi-

larity in the circuits. Every time the gate-level is modified, the test generation must be done

from the beginning discarding all the patterns generated earlier.

This thesis provides a novel test generation procedure whose overview is shown in Figure

 1.11 and is described next.

In both original and modified designs, an integer arithmetic-based computation is per-

formed on each gate. This computed value is called the signature. The signature sets from

the original and modified designs are compared to find structural similarity between the ver-

25

Figure 1.11. Overview of ATPG flow in the thesis

sions. This comparison is used to map the inputs and outputs between both designs. Using

the mapping information, the generated test patterns for the original circuit are transformed

into test patterns for the modified circuit. Transformed test patterns are fault simulated, and

test patterns are generated incrementally for the remaining faults from the modified portion

of the design. The overall procedure can be applied to any structurally similar design and

26

any fault model. Identifying structural similarity and reusing of existing patterns speeds up

the test generation procedure compared to generating patterns from the beginning.

1.6 Thesis Overview

The thesis explores the aspect of accelerating the test generation for various structurally

similar circuits. This is done by transforming the test generated for one circuit into a test

pattern for another structurally similar circuit. The thesis is organized as follows.

Chapter 2 describes a fast test generation process for structurally similar circuits obtained

by modifying the gate-level netlist. Chapter 3 describes an iterative flow when designs are

modified at RTL. Chapter 4 explores a methodology when two-cycle tests are used to detect

faults in a structurally similar circuits. Finally, chapter 5 gives the summary of the thesis.

27

2. FAST TEST GENERATION FOR STRUCTURALLY

SIMILAR CIRUITS

©2022 Reprinted with permission from IEEE: J.Joe, N.Mukherjee, I.Pomeranz, and J.Ra-

jski, “Fast Test Generation for Structurally Similar Circuits” 2022 VLSI Test Symposium

(VTS), San diego, USA, 2022

This chapter describes a fast test generation process for digital circuits that exhibit

extensive structural similarity. The property of structural similarity can be seen in circuits

that are subjected to engineering change order (ECO), circuits that are modified during

place and route, circuits subjected to retiming, and circuits with multiple similar cores. The

goal of this chapter is to determine the testability of a circuit (circuit2) given a test set for a

structurally similar circuit (circuit1). This is achieved by transforming a test set generated for

circuit1 into a test set for circuit2 as efficiently as possible, without repeating the entire test

generation process. The process described in this chapter starts with a structural analysis of

circuit1 and circuit2 to obtain a mapping between their inputs and outputs. The mapping

is used for transforming test patterns from circuit1 into test patterns for circuit2. The

experiments conducted on industrial designs show an average of more than 10-fold reduction

in runtime, compared with running the entire test generation process for circuit2.

2.1 Introduction

The digital revolution has led to a steep increase in the complexity and density of Inte-

grated Circuits (IC) [33]. Multiple cores are integrated within a chip to increase its through-

put. For complex and dense ICs, the time to test, debug and verify the circuit becomes the

bottleneck for chip design [34], [35], [36].

State-of-the-art synthesis flows are iterative to accommodate the need to fix bugs, and

address performance and power constraints [37], [38]. Test generation [39], [40], [41], [42]

is performed early in the design flow to identify testability issues that cannot be identified

using approximations such as testability measures [43],[44]. The test set obtained at an early

28

stage of the design process does not need to be optimized, and the speed of test generation

is essential to the fast convergence of the design process. This chapter presents a novel

approach for fast test generation by observing that structural similarity is prevalent with the

current synthesis flow and state-of-the-art designs, as discussed next.

A large number of similar cores can be seen in conventional, gaming, and graphical pro-

cessors. ICs like CPUs, GPUs, and AI chips show structural similarity within cores [45], [46],

[47]. Moreover, a new design that reuses the same cores shows significant structural similar-

ity to a previous design. Netlists before and after place and route, and circuits subjected to

engineering change order (ECO) [38], [27], [48], [28], [49], or retiming [50], [51], also exhibit

significant structural similarity.

The property of structural similarity between circuits is not utilized in the current test

generation tools. As a result, test generation has to be run in its entirety after every change

that may affect the testability of a circuit. This chapter aims to analyze the testability of

a circuit (circuit2), which is structurally similar to another circuit (circuit1), by efficiently

transforming the test set generated for circuit1 into a test set for circuit2 without repeating

the entire test generation process. This is achieved through a process that uses incremental

test generation.

The concept of incremental test generation was introduced in [52] for a different context

that considered a single version of a design. The expectation in [52] is that starting from

a test generated for one fault, it is possible to transform the current test into a test for

another fault in the same design more quickly than starting from an all-unspecified test. In

this chapter, the goal is to accommodate the fact that two circuits are structurally similar.

Reusing an existing test set for circuit1 would significantly reduce the run time compared to

running test-pattern generation from the beginning for circuit2.

Among the variations that may occur between similar circuits, circuit1 and circuit2, is a

change in the order of the inputs or outputs. In this case, simply simulating an existing test

set of circuit1 on circuit2 may not result in the detection of a significant number of faults. An

incremental test generation solution needs to be independent of the order of the inputs and

outputs. It also needs to accommodate the fact that state-of-the-art CPU, GPU, or AI chips

have large numbers of identical logic blocks within them [46]. This creates more options by

29

which inputs and outputs of structurally similar circuits can be matched. An incremental

test generation approach suitable for this context is developed in this chapter. As a part of

the procedure described in this chapter, a structural correspondence is established between

circuit1 and circuit2.

Structural correspondence is also considered in [27], [28] and [30]. In [27] and [28],

structural similarity is used to determine the gates that can be re-used in synthesis after

ECO. In [30], structural similarity of the circuit before and after ECO is exploited in the

context of place and route.

In [30], an ordering technique is proposed for all gate instances. This technique is invari-

ant to the changes in the circuit due to ECO. For the ordering, an integer value is calculated

for each gate instance by a linear combination of the type of the gate, number of fan-in

gates, number of fan-out gates, and terminal node name of the gate instance. In addition,

the terminal node names of the connected fan-in and fan-out gates are also used. The value

assigned to a gate instance is defined as its signature in [30]. After assigning signature values

to all gate instances, a forward traversal is done from inputs to outputs to obtain updated

signature values for the gate instances. This is achieved by linearly combining the signatures

of the fan-in gates for each gate instance. The ordering of gate instances based on the com-

puted signature values guarantees a minimal change in the gate instance order even if the

ECO process changes the ordering of the gate instances.

An approach based on signatures is also followed in this chapter to determine the struc-

tural similarity between circuit1 and circuit2. The distinguishing feature in this chapter is

that the signature values are computed based on properties of the gates and are not de-

pendent on the predefined names of the gates. This is important because names may not

be preserved between circuit1 and circuit2. In addition, the procedure proposed in [30] for

signature computation traverses the circuit only once from inputs to outputs. In this chap-

ter, a forward traversal is done from inputs to outputs to calculate output signature values.

Using these values, a backward traversal is done from outputs to inputs to compute input

signature values. In this way, the input signature captures the structural difference in the

circuit even when the difference is not in the input cone of logic. This method of forward

and then backward traversal is done to embed the properties of the output and input cones

30

into the input signature. The mapping between the inputs of the two circuits is established

using these unique values on the input and output pins, and the input-output list of a logic

cone.

This chapter focuses on the application where a circuit is subjected to ECO or layout

changes that result in modifications in the combinational or sequential logic of the circuit.

These modifications change the netlist by the addition/removal of modules or modifying the

logic in the circuit. In these contexts, designers change the circuit incrementally to impact

only a small part of the design [53], [54]. The effectiveness of the proposed algorithm depends

on the two circuits being structurally similar, and on the accuracy of the mapping of the

circuit inputs. Synthesis can affect both of these properties. Hence to verify the algorithm,

structurally similar netlists were obtained by making changes to the gate-level netlist so that

the circuit before the change (circuit1) is structurally similar to the circuit after the change

(circuit2).

This chapter is organized as followsSection II details the test generation methodology.

Section III presents results for industrial designs followed by conclusions in Section IV.

2.2 Test Generation Process

2.2.1 Overview

The methodology we propose has three main steps. In the first step, we establish a map-

ping between the inputs and outputs of circuit1 and circuit2 based on structural equivalence

[27],[28],[30]. We use input and output signatures for this purpose. A signature is defined

by an integer-arithmetic based computation done on each gate of a logic cone to produce a

unique value that captures the structure of the cone. If the circuits are structurally equiva-

lent, the input and output signatures of circuit1 and circuit2 will allow us to find a perfect

match between them. Due to the variations between the circuits, the matching is not perfect

and some of the inputs and outputs remain unmatched. The corresponding input and output

cones are where circuit2 is expected to be structurally different from circuit1.

In the second step, we transform a test set T1 generated for circuit1 into a test set T2 for

circuit2. We use the mapping identified in Step 1 to copy values of matching inputs from T1

31

to T2 , leaving unmatched inputs unspecified. The unspecified inputs are assigned random

values and then simulated to determine the faults detected using the test set T2 .

In the third step, we carry out incremental test generation to detect faults in circuit2

that have not been detected. These patterns are appended to T2 .

Figure 2.1. ATPG Flow of Circuit1

Figure 2.1 describes the computations performed for circuit1, including test generation to

produce a test set for circuit1, and signature analysis to produce input and output signatures.

Figure 4.2 describes the computations performed for circuit2, including signature analysis

to produce input and output signatures, input mapping based on the signatures computed

for circuit1 and circuit2, computation of the test set T2 and incremental test generation to

extend T2 .

In the next sections, we describe each of these steps in more detail.

2.2.2 Signature Computation

This section describes the computation of the input and output signatures. We first

compute output signatures and then input signatures. A dictionary is created, where for

every output signature (referred to as a key), we store vectors of inputs that drive outputs

with a signature equal to the key. The dictionary is used for mapping inputs from circuit1

32

Figure 2.2. ATPG Flow of Circuit2

to circuit2. The input signatures and the dictionary are written to a file for later processing.

We experimented with different approaches to computing the signatures and concluded that

the one discussed next produces accurate results.

A signature needs to capture the structure of the design. To embed the gate types into

the signature, each type of gate was assigned a unique prime number. A large number is

33

chosen to reduce the probability of the same signature being obtained for different structures

(aliasing). Furthermore, the level of a gate is captured by rotating the computed value during

the traversal of the circuit. Rotation multiplies a number by two, causing larger numbers to

be obtained with more levels. Using this approach to signature computation, the aliasing of

signatures was not seen in the experiments performed.

For signature computation, the gate types are grouped into five categories. Each category

is assigned a unique prime number randomly selected in the range between 1 - 15 million.

This is called the mask for the group. The grouping of the gates and an example of the

masks used for each group are shown in Table 2.1 .

Table 2.1. Categories of Gate Type and Prime Number Used as Mask

Gate Types Prime Number (Mask)

1 AND, NAND 1,540,681
2 WIRE, BUS 2,572,261
3 OR, NOR 4,980,727
4 XOR, XNOR 5,210,099
5 BUFFER, INVERTER 9,137,657

A variable called “Output_Invert” is used during the signature computation to distin-

guish gate types in each category as shown in Table 2.1 . “Output_Invert” is set to false

for OR, AND, BUFFER, XOR, and WIRE gate types, whereas it is set to true for NOR,

NAND, INVERTER, XNOR, and BUS gate types. When the “Output_Invert” is true, the

bitwise complement of the computed value is stored as the signature of the gate.

For output signature computation, the inputs are initialized to a prime number randomly

chosen between 1-15 million. The signatures are computed by traversing the circuit from

inputs to outputs. The output signature of a gate is computed by an equation that takes

34

into account the signatures of the gate inputs and the mask of the gate. The equation for

gate types AND, WIRE, OR, XOR, and BUFFER is shown below in equation (2.1).

Output Signature of a Gatei =

Rotate
(∑

i
(Rotate (Output signature of fan_in

of Gatei) + Group Gate Mask of Gatei

) (2.1)

The equation for gate types NAND, BUS, NOR, XNOR, and INVERTER is shown below

in equation (2.2).

Output Signature of a Gatei =Rotate
(∑

i
(Rotate (Output signature of fan_in

of Gatei) + Group Gate Mask of Gatei

)C

(2.2)

The addition operations in equations (2.1) and (2.2) are done with carry. The C in

equation (2.2) stands for the bitwise complement. Rotate refers to a rotate left operation.

Output signature computation is illustrated in Fig. 2.3 .

Figure 2.3. An Example of Output Signature Computation for a Logic Circuit

35

Output signature computation is illustrated in Figure 2.3 . The circuit in Figure 2.3 has

four inputs (P1, P2, P3, P4), two outputs (O1, O2), one AND gate (G2), one OR gate (G1),

one NOR gate (G3), and two BUFFER gates (G4, G5). The output signature computation

of gate G1 is discussed next.

Gate G1 is an OR gate and belongs to group 2. The inputs of G1 are P1 and P2, whose

output signatures are initialized to 3,291,791. First, the output signatures of the inputs P1

and P2 are rotated to obtain 6,583,582. Next, the rotated output signatures of P1 and P2

are added along with the group gate mask of 2,572,261. This result is rotated, and the value

obtained is 31,478,850. This value is stored as the output signature of G1.

The output signatures of gates G2, G4, and G5 are computed in the same way by equation

(2.1), and for G3, the output signature is the bitwise complement of the value computed

using equation (2.1). The value 4,056,533,659 is obtained assuming 32-bit integers. The

output signatures of all the gates are shown in Figure 2.3 .

For the input signature computation of the logic circuit in Fig. 2.3 , the input signature

of the outputs O1 and O2 are initialized to their output signatures. The algorithm traverses

the circuit from outputs to inputs.

The equation for the computation of the input signature for gate types AND, WIRE,

OR, XOR, and BUFFER is shown below in equation (2.3)

Input Signature of a Gatei =

Rotate
(∑

j
Rotate

(
Input signature of fan_outj

of Gatei
)

+ Group Gate Mask of Gatei

) (2.3)

The equation for the computation of the input signature for gate types NAND, BUS,

NOR, XNOR, and INVERTER is shown below in equation (2.4)

36

Input Signature of a Gatei =Rotate
(∑

j
Rotate

(
Input signature of fan_outj

of Gatei
)

+ Group Gate Mask of Gatei

)C

(2.4)

The addition operations in equations (2.3) and (2.4) are done with carry. The input

signatures of gates G2, G4, and G5 are computed as shown in equation (2.3), and G3 is

computed as shown in equation (2.4).

Algorithm 1 Signature computation for a circuit

Input: Design

Output: Output signatures, Input signatures, Dictionary

1: Initialization :

2: For every gate, assign its output and input signatures to 0

3: Initialize all output signatures of primary inputs to prime-number1 randomly chosen

between 1-15 million.

4: Initialize all output signatures of pseudo primary inputs to prime-number2 randomly

chosen between 1-15 million.

5: Assign different prime numbers as masks for each type of gate

6: Output Signature

7: for each gatei from inputs to outputs do

8: Rotate the output signature at the inputs of gatei and add

9: Add mask of gatei to the result in step 8

10: Rotate the output signature obtained in step 9

11: end for

12: if Output_Invert is true then

13: Complement the signature

14: end if

15: Input Signature

37

16: Initialize all input signatures of primary outputs and pseudo-primary outputs to their

output signatures

17: for each gatei from outputs to inputs do

18: for each fanout of gatei do

19: Rotate the input signature

20: EXOR result in Step 19 with the mask of the gatei

21: end for

22: Add signatures after Step 20

23: end for

24: if Output_Invert is true then

25: Complement the signature

26: end if

27: Dictionary

28: for gatei that is an observation point do

29: Store the inputs driving the output in a vector

30: For each output signature, insert a vector of inputs driving the output cone.

31: end for

Algorithm 1 outlines the signature analysis done for a given design. The signature com-

putation is done on both circuit1 and circuit2 to compute all input and output signatures.

This generates two dictionaries: dict1 and dict2 pertaining to circuit1 and circuit2, respec-

tively. A dictionary contains output signatures as the key value. Each key is linked to a set

of vectors that correspond to the inputs driving the output whose signature is equal to the

key. All output cones with equivalent structures will have the same signature but possibly

different vectors of inputs. Using the generated dictionaries, a set of input vectors from a

cone in circuit1 is mapped to a set of input vectors of an identical cone in circuit2.

2.2.3 Mapping between circuit1 and circuit2

In this step, the goal is to establish a correspondence between circuit1 and circuit2 based

on the computed signatures. This step reads the dictionaries dict1 and dict2. For every key

38

in dict1 and dict2, a mapping is done when the input signatures of the input vector in dict1

match the input signatures of the input vector in dict2.

Algorithm 2 Comparing signatures from circuit1 and circuit2

Input: Input signatures, dict1, dict2

Output: Mapping Information

1: Mark all vectors in dict1 and dict2 as unselected

2: for each key in dict1 do

3: if key in dict2 then

4: for every unselected vector1 in dict1(key) do

5: for every unselected vector2 in dict2(key) do

6: if input signatures of vector1 and vector2 are equal then

7: Map the inputs in the vectors according to the input signatures

8: Mark vector1 and vector2 as selected

9: end if

10: end for

11: end for

12: end if

13: end for

In Algorithm 2, input signatures, dict1 and dict2 are given as inputs. The keys of these

dictionaries are the output signatures. The algorithm finds the output signatures common in

dict1 and dict2 and iterates through the input vectors to find ones that have the same input

signatures in dict1 and dict2. Once a vector in dict1 is matched with a vector in dict2, these

vectors are not considered in further mapping. In this way, inputs are mapped from circuit1

to circuit2 in those parts of the circuit where input and output cones are structurally iden-

tical. In all the experiments done on industrial circuits, the mapping algorithm accurately

identified cones that were identical in circuit1 and circuit2.

39

2.2.4 Transforming the Pattern File

In circuit1, ATPG produces the set of patterns T1 . Considering circuit2, the values of

inputs in circuit2 that have a match in circuit1 are copied from T1 to a new test set T2 .

Random values are assigned in T2 to inputs that do not have a match in circuit1. Circuit2

is fault simulated using T2 as the set of test patterns. This transformation helps detect

faults from the output cones of circuit2 which are structurally identical to the output cones

of circuit1. A structurally identical cone will have the same input and output signatures in

both circuits. All the faults from such input and output cones of circuit2 are detected by

T2 .

The transformed test set may not detect faults from a cone that does not have a match

in circuit1. In addition, it may not detect faults in a cone of circuit2 that shares inputs with

a cone that is structurally different in circuit1. This is illustrated next.

Figure 2.4. A Logic Circuit with Modification

Fig. 2.4 shows a logic circuit with five logic cones whose outputs are labeled as O1-O5 and

inputs are labeled as 1-12. This circuit (circuit2) differs from another circuit (circuit1) at the

shaded region in cone 2, such that cone 1, cone 3, cone 4, and cone 5 are structurally identical

in both circuits. The output of cone 2 is O2 and its inputs are 3, 4, and 5. The structural

difference causes the output and input signatures of cone 2 to be different in circuit1 and

circuit2. In contrast, the output signatures of O1, O3, O4, and O5 would remain the same.

Fig. 2.4 shows that some of the inputs of cone 2 are shared by cone 1 (inputs 3 and 4).

40

Hence, in cone 1, the signatures of inputs 3 and 4 would be different in circuit2 compared

to circuit1. After mapping of test patterns and fault simulation, the simulated test patterns

are guaranteed to detect all the faults from the structurally equivalent cones 3, 4, and 5 (all

the input and output signatures of these cones remain the same), whereas only some of the

faults are detected from cones 1 and 2. We accept this effect on cone 1 to ensure that the

mapping between inputs is accurate. Without computing input signatures, it would not be

possible to avoid matching inputs of cones that were structurally different in both circuits.

2.2.5 Incremental ATPG

The undetected faults of circuit2 are obtained after the fault simulation of T2 . Using the

reduced fault set, test pattern generation is carried out to detect the remaining faults. The

patterns generated are appended to T2 to obtain the complete test pattern set for circuit2.

2.3 Experimental Setup and Results

Several experiments were performed to determine the accuracy of the proposed signature

computation method, and to evaluate the test generation procedure. In Section A, three

experiments are described to demonstrate the effectiveness of the signature computation

method. Sections B and C evaluate the test generation procedure on 11 industrial circuits.

These experiments consist of logical (Section B) and sequential (Section C) changes. Single

stuck-at faults were used for the evaluation, and a compacted test pattern set was computed

for circuit1 using a commercial ATPG tool.

2.3.1 Experimental Study on Signature Aliasing

The goal of the experiments reported in this section is to verify experimentally whether

aliasing, which refers to obtaining the same signature for structurally different cones, occurs

in the circuits. This is important since the mapping algorithm relies on identical signatures

to identify identical cones. If two different cones produce the same signatures, the mapping

algorithm may result in an incorrect mapping of their inputs. The first experiment considered

41

a 4-level AND-OR gate connection, as shown in Figure 2.5 . The experiment considered the

16 possible gate combinations, as well as the addition of an input to each gate.

Figure 2.5. 4-level AND-OR gate connection

Table 2.2. Output signature for different configurations
Level 1 Level 2 Level 3 Output

1

29415690

133911286
551893670 2223823206

2 2225886366
3 553956830 2232075846
4 2234139006
5

135974446
560146310 2256833766

6 2258896926
7 562209470 2265086406
8 2267149566
9

31478850

142163926
584904230 2355865446

10 2357928606
11 586967390 2364118086
12 2366181246
13

144227086
593156870 2388876006

14 2390939166
15 595220030 2397128646
16 2399191806
17 42582854 186579942 762568294 3066521702
18 29415690 147078450 604562326 2434497830
19 29415690 133911286 565060834 2276491862
20 29415690 133911286 551893670 2236990370

The first 16 rows of the Table 2.2 show the output signature of all 16 possible combinations

of AND and OR gates, in the order AND-AND-AND-AND, AND-AND-AND-OR, . . . , OR-

OR-OR-OR and the last four rows of Table 2.2 show the four cases of adding a single input

to one of the gates of AND-AND-AND-AND configuration. All the configurations resulted

in unique output signatures. The use of a different mask for each type of gate resulted in

a distinct signature at each level. Furthermore, the rotate operation captures the level of

42

each gate during the gate traversal. This experiment also shows that replacing a 2-input

AND gate with a 3-input AND gate results in distinct output signatures. For the next two

experiments, 100 logic cones were chosen from 11 industrial designs. The first experiment

conducted exhaustive single gate changes where a single gate type is changed into every other

gate type. In the second experiment, the number of gates to be changed (between 1-8) in a

single modification was randomly chosen. Then, the chosen gates were randomly changed to

another gate type. In each case, the difference between the output signatures of the baseline

and modified cones was found. Its absolute value is referred to as the deviation.

Figure 2.6. The minimum of deviation in logarithmic scale (base 10)

Figure 2.6 shows the minimum deviation for the two experiments. Both experiments

together compared output signatures of 1.1 million modifications to the output signature

of the baseline cone. The results showed that aliasing was not seen in these circuits, i.e.,

two different structures produced distinct signatures, and it is very unlikely for two different

structures to have identical signatures.

2.3.2 Logic changes

A combinational logic change consists of changing the type of a gate, e.g., from AND to

OR, and adding or removing inputs from a multi-input gate. Similar designs are obtained

by introducing one change at a time, as well as a small number of changes simultaneously.

Such modified versions of a circuit represent designs that are very similar to one another,

43

or minor changes introduced due to ECO or after place and route. We experimented with

versions obtained by introducing a large number of changes and found that the test generation

procedure is also effective in these cases.

The experiment discussed next introduces one gate type change at a time and performs

test generation to study the effectiveness of the incremental test generation procedure. Then,

for each circuit, ten different versions are generated by introducing a single change at a

random location in each of the versions. The results for logic changes are tabulated in Table

 3.3 . The first part of Table 3.3 represents changing the gate type, and the second part

represents the addition or removal of inputs from multi-input gates.

44

T
ab

le
2.

3.
Ex

pe
rim

en
ta

lR
es

ul
t

fo
r

Lo
gi

c
C

ha
ng

es
T

ot
C

on
e

D
iff

R
un

T
im

e
(s

ec
on

ds
)

T
es

t
P

at
te

rn
s

Fa
ul

t
C

ov
er

ag
e(

%
)

Si
ze

in
B

as
e

C
on

es
B

as
e

M
od

G
ai

n
B

as
e

M
od

In
cr

B
as

e
M

od
C

ir
in

M
od

C
ir

C
ir

(R
at

io
)

C
ir

C
ir

(%
)

C
ir

C
ir

d1
8,

61
1,

74
9

42
9,

70
8

1,
26

2
7,

02
0

50
6

13
.8

7
2,

33
4

2,
84

2
21

.7
6

97
.0

6
97

.0
6

d2
3,

43
5,

49
3

27
6,

46
2

36
7

62
2

99
6.

28
1,

45
9

1,
56

5
7.

27
92

.9
92

.9
1

d3
4,

83
3,

05
2

33
4,

10
8

4,
21

8
1,

56
8

12
3

12
.7

4
1,

40
8

1,
50

9
7.

17
92

.0
8

92
.0

8
d4

10
,2

13
,2

81
60

1,
46

9
20

,5
48

9,
30

0
99

4
9.

35
7,

42
4

8,
02

2
8.

05
90

.8
5

90
.8

7
d5

15
,1

02
,0

44
1,

21
5,

33
7

5,
46

1
13

,7
40

1,
17

7
11

.6
7

4,
54

4
5,

06
7

11
.5

94
.4

6
94

.4
7

d6
3,

04
8,

59
9

17
4,

50
5

1,
15

1
1,

26
0

12
8

9.
84

2,
94

4
3,

19
8

8.
62

91
.9

2
91

.9
2

d7
3,

51
9,

13
5

21
9,

28
0

3,
04

3
5,

10
3

40
5

12
.6

5,
15

5
5,

78
0

12
.1

2
97

.0
2

97
.0

3
d8

6,
38

9,
26

0
30

2,
54

0
2,

74
1

1,
77

7
24

4
7.

28
2,

52
0

2,
64

9
5.

11
90

.8
3

90
.8

6
d9

12
,1

67
,3

08
44

0,
54

0
12

,0
63

6,
44

6
84

3
7.

64
7,

16
8

7,
29

7
1.

79
91

.6
5

91
.7

0
d1

0
1,

20
3,

56
8

45
,3

45
1,

36
1

48
4

26
18

.6
1

1,
81

1
2,

04
6

12
.9

7
88

.5
8

88
.5

8
d1

1
1,

69
9,

50
9

89
,9

08
5,

32
8

10
,1

68
45

9
22

.1
5

2,
16

3
2,

89
1

33
.6

5
97

.6
2

97
.7

1

d1
0

1,
20

3,
56

8
45

,3
45

86
1

48
4

23
21

.0
4

1,
81

1
1,

89
5

4.
63

88
.5

8
88

.5
8

d1
1

1,
69

9,
50

9
89

,9
08

4,
82

8
10

,1
68

52
1

19
.5

1
2,

16
3

2,
95

2
36

.4
7

97
.6

2
97

.6
5

45

In Table 3.3 , each row corresponds to one of the 11 industrial circuits. The row shows

the average of each one of several parameters for all the ten versions of the circuit. These

results are shown under the sub-column Mod Cir. Sub-column Base Cir shows the results

for the baseline circuit in the respective categories. The first column, “size” gives the total

number of gates in each circuit. Column “Tot Cone in Base Cir” shows the total number

of output cones in the baseline circuit. Column “Diff Cones in Mod" shows the number of

output cones that changed in the modified circuit compared to the baseline circuit. Column

Run Time shows the overall time taken in seconds for test pattern generation. For a modified

circuit, the total runtime includes the time taken for signature computation, mapping, fault

simulation, and incremental test generation. Sub-column “Gain" is the ratio of the runtime

of the baseline circuit to the average of the runtime of the modified circuits. Column Test

Patterns shows the total number of test patterns after test generation. The sub-column

“Incr (%)" gives the percentage increase in the number of test patterns. The last column,

Fault coverage, shows the fault coverage achieved in the baseline circuit and the average

fault coverage seen in the different versions of the modified circuit.

From column “Diff Cones in Mod” in Table 3.3 , it can be seen that introducing a single

change can affect between 0.13% to 5.9% of the total number of output cones for the 11

industrial circuits. Within the 10 different versions of a circuit, an average of 11% variation is

seen between the minimum and the maximum number of cones that are affected. The number

of output cones different in the modified circuit compared to the baseline circuit directly

affects the time taken for the incremental test generation. The lower the number of different

cones, the higher the number of matched inputs, resulting in a larger number of faults being

detected in the modified circuit after mapping of test patterns. By transforming the test set

from T1 to T2 and then fault simulating, faults from cones that are structurally identical in

the modified and baseline circuits are detected. The transformation of test patterns results

in an improvement in the total runtime of the modified circuit. The improvement in runtime

is observed because only a small subset of the total faults require test generation. This

translates to an average of 13-fold gain in runtime to achieve the same fault coverage in the

modified circuit compared to the baseline circuit for all the different industrial circuits. The

46

gain in runtime depends on the circuit and varies from 6 to 22-fold. This shows that the test

generation time can be considerably reduced by utilizing the structural similarity between

the circuits for various changes.

The algorithm proposed in this chapter focuses on determining the testability of a circuit

given a test set for another structurally identical circuit and does not optimize the number of

test patterns. As a result, there is an average of 13% increase in the number of test patterns

in circuit2 compared to circuit1. This can be mitigated by rerunning test pattern generation

after the design converges or when the number of patterns increases significantly.

Multiple changes within a circuit

Multiple changes in the range of 10 to 10,000 were introduced in a circuit at random

locations to see how the test generation procedure performs in the presence of multiple

changes. The procedure was able to determine the changed cones, and faults in the circuit

were detected in less than 25% of the total runtime of the baseline circuit. The proposed

method took more time to detect all the faults as the number of changes in the circuit

increased. It should be noted that these numbers of changes are not realistic, and they were

considered only for the purpose of verifying the performance of the test generation procedure.

2.3.3 Sequential changes

The second experiment considers sequential changes in a circuit. Basic steps of forward

and backward retiming are done where registers are moved forward or backward in the

combinational blocks. This changes the total number of scan cells in the modified circuit

compared to the baseline circuit. The results for sequential changes are tabulated in Table

 2.4 .

Column “# of Mod SC" in Table 2.4 gives the average of the number of scan cells added

or removed in 10 modified versions of each circuit. Column “Test Pat Inc (%)" gives the

percentage increase in the number of test patterns. The change in the number of scan cells

in the modified circuit varies from 3-11 compared to the baseline circuit. Table 2.4 shows an

average of 11-fold gain in runtime to achieve the same fault coverage in the modified circuit

47

Table 2.4. Experimental Result for Sequential Changes
Diff # of RunTime (seconds) Test

Cones Mod Base Mod Gain Pat Inc
in Mod SC Cir Cir (Ratio) (%)

d1 3,418 7 7,020 685 10.25 19.66
d2 721 6 622 79 7.87 2.6
d3 1,282 6 1,568 141 11.12 19.38
d4 2,335 7 9,300 821 11.33 2.35
d5 2,104 6 13,740 975 14.09 7.54
d6 920 5 1,260 130 9.7 3.34
d7 2,593 6 5,103 328 15.6 13.13
d8 2,785 7 484 51 9.49 32.21
d9 1,355 5 10,168 391 26.0 20.29
d10 981 6 1,777 278 6.39 5.9
d11 21,043 6 6,446 899 7.17 3.29

48

compared to the baseline circuit. The results from sequential changes are consistent with the

observations drawn from Table 3.3 . The time taken for incremental ATPG depends on the

number of cones affected by the change introduced in the baseline circuit. As the procedure

focuses on the testability of the circuit, the average increase of 12% seen in the number of

test patterns of the modified circuit compared to the baseline circuit is acceptable. This can

be mitigated as discussed earlier.

2.4 Conclusion

This chapter described a fast test generation procedure that can be used for analyzing

the testability of structurally similar circuits. The procedure finds the similarities between

the two circuits, maps the inputs, transforms the test patterns, fault simulates, and performs

incremental test pattern generation for the remaining faults. Two sets of experiments were

conducted to demonstrate the performance of the procedure. The experiments were per-

formed on 11 industrial circuits, and a summary of both experiments showed an average of

13-fold gain and 11-fold gain, respectively, in runtime compared with running the complete

ATPG process.

49

3. TEST GENERATION FOR AN ITERATIVE DESIGN FLOW

WITH RTL CHANGES

©2022 Reprinted with permission from IEEE: J.Joe, N.Mukherjee, I.Pomeranz, and J.Ra-

jski, “Test Generation for an Iterative Design Flow with RTL Changes” 2022 Internation

Test Conference (ITC), Anaheim, USA, 2022

A typical VLSI design flow is iterative, implying that performance, power, area and

testability are improved iteratively. With the shift left paradigm, most of the changes made

to a design, including to a large extent changes to address testability, occur at the RTL. Test

generation is an exception with a gate level netlist being required by ATPG tools. Within an

iterative flow, repeated ATPG to reevaluate the testability of a design after its RTL has been

changed becomes a bottleneck. To address this bottleneck, the test generation process needs

to transform a test set generated for an earlier version of the design into a test set for a new

version without repeating the entire test generation process. To enable the transformation,

it is necessary to find a mapping between the inputs and outputs of the earlier and new

versions of the design. The main contribution of this chapter is to compute such a mapping

after RTL changes and resynthesis produce a new gate level netlist, where signal names may

have changed, new signals may have been introduced, and signals that existed earlier may

have been removed. Experimental results for industrial circuits with changes made at the

RTL show an average of 5-fold reduction in test generation time.

3.1 Introduction

The complexity of designing digital circuits has grown significantly with lower technol-

ogy nodes, larger design sizes, and heterogeneous integration of multiple dies into a single

package. It has been estimated that the total design effort needed to manufacture a de-

sign in lower technology nodes more than doubles with every new generation [33], [34], [55].

Therefore, there is an urgent need for EDA tools to keep up with the increasing complexity

of such designs by constantly finding new ways to address the challenges associated with

50

performance, memory footprint, and cost of running the tools. Designing such a complex

circuit consists of numerous steps [56],[57], [58], as shown in Figure 4.1 .

Figure 3.1. VLSI Design Flow [56],[57], [58]

Traditionally, Design-for-Test (DFT) [11] was restricted to the gate-level after the func-

tional logic had been finalized and synthesized into gates. However, this has become a

challenge for lower technology nodes, as logic insertion at the gate-level impacts area and

timing optimization, affecting the overall design cycle time. Designers are often reluctant

to add any logic at the gate-level post-synthesis. Consequently, there has been a signifi-

cant increase in the adoption of a “Shift-Left” strategy across the industry, where significant

effort is being placed to execute DFT-related tasks at RTL. Some of these tasks include

running DFT-related DRCs, fixing the design to make it scan-friendly, DFT analysis, in-

sertion of BIST bist, compression, boundary-scan, and in-system test execution engines in

RTL. Moreover, because of the emergence of domain-specific accelerators, designers are cre-

ating slightly different versions of the same design and fine-tune per the requirements of the

particular application.

51

Although the “Shift-Left" strategy allows moving most of the DFT analysis and insertion

tasks to RTL, there are a few key aspects such as scan stitching and Automatic Test Pattern

Generation (ATPG) [39], [40], [41], [42] that are still done at the gate-level. ATPG allows

one to verify the fault coverage (assuming certain fault models) needed to meet the target

quality goals. If the fault coverage does not meet the desired goals, one has to iteratively

circle back-and-forth between RTL and gate-level to make design changes or add more DFT

fixes to improve testability. Consequently, there is a push towards having the ability to

quickly compute ATPG fault coverage during RTL development. DFT engineers can iden-

tify testability-related issues early on and get the designer’s help to modify the design by

considering testability, in addition to power, performance, and area constraints.

Typically, the ATPG tools require the test generation process to be performed from the

beginning whenever the gate level netlist has changed. Although the designs obtained in

consecutive iterations are similar, the present-day commercial tools cannot map two similar

gate level circuits based on their structure accurately enough to make it effective to reuse

the generated test patterns from earlier iterations. This can slow down the convergence of

the design process considerably.

The methodology proposed in [59] reuses patterns generated for earlier versions of the

design when there are changes made to the gate level netlist directly because of last-minute

Engineering Change Orders (ECO) [60], [27], [54]. To enable the transformation, one of the

steps of the procedure from [59] finds a mapping between the inputs and outputs of the

earlier and new versions of the design. This step from [59] is not applicable when changes

are made at the RTL, and resynthesis produces a new and substantially different gate level

circuit, where signal names may have changed, new signals may have been introduced, and

signals that existed earlier may have been removed.

The main contribution of the chapter is to compute a mapping between the inputs and

outputs after RTL changes and resynthesis produce a new gate level netlist. The proposed

methodology is primarily targeted for DFT engineers working in tandem with designers to

evaluate the testability of the design early on and catch any design changes that have a

negative impact on the overall testability. It reduces the expensive loop turn-around time

between DFT and RTL engineers, which in turn affects the overall design cycle time.

52

The experimental results for industrial circuits showed a 5-fold reduction in test genera-

tion time when modifications on average affected 6.34% of the total cones. The gain remains

meaningful even with large numbers of changes that, on average affected 22% of the total

cones in the circuit. In general, the efficiency of the proposed methodology is expected to

decrease when there are significant structural variations between two versions of the design.

It is developed for the iterative design flow from Figure 4.1 where changes are expected to

create structurally similar circuits.

The chapter is organized as follows. Section 4.2 discusses the motivation for this work,

and provides background for the proposed methodology. Section 3.3 presents the proposed

methodology for test generation. Section 3.4 presents results for industrial designs followed

by conclusions in Section 3.5 .

3.2 Motivation and Background

In this section, we discuss the motivation for this work, and provide background for the

proposed methodology.

3.2.1 Review

The authors in [59] describe a test generation process based on transformation of patterns

of an earlier version of a design into patterns for a new version when changes are made to

the gate level netlist. Figure 3.2 shows an overview of the test pattern generation process

from [59] which is discussed next.

A signature set is associated with the previous and new versions of the gate level circuit.

The signature set contains two integers for every gate, referred to as its input and output

signatures. The signatures capture the structure of the input and output cones of the gate.

Output signatures are computed by traversing the circuit from inputs to outputs. Using these

signature values at the outputs, a traversal from outputs to inputs is performed to compute

the input signatures. Every additional logic level causes the signatures to be doubled in

every traversal of the circuit. In addition, every gate type has a different contribution to

the signatures. As a result, the signatures assigned to the inputs and outputs of the circuit

53

Figure 3.2. Overview of ATPG flow

capture its structure in a unique way. Signatures were found to be useful in other applications

as described in [27], [61], [29], [60] and [30].

3.2.2 Mapping between two versions of a circuit

The input and output signatures of the inputs and outputs, respectively, are used for

establishing a mapping between the pins of the previous and new versions of the circuit.

The mapping algorithm in [59] compares vectors that consist of an output, and its output

signature, the inputs of its logic cone, and the corresponding input signatures. A vector of

the previous version is considered to match a vector of the new version if all the signatures

match. The two logic cones represented by the vectors are identical in this case. Accordingly,

the inputs with the same signatures in the two vectors are mapped. This simple approach

54

to mapping worked well for gate level changes, but it is unable to provide effective mappings

after RTL changes, as discussed below.

3.2.3 Mapping between two versions of a circuit

The input and output signatures of the inputs and outputs, respectively, are used for

establishing a mapping between the pins of the previous and new versions of the circuit.

The mapping algorithm in [59] compares vectors that consist of an output, and its output

signature, the inputs of its logic cone, and the corresponding input signatures. A vector of

the previous version is considered to match a vector of the new version if all the signatures

match. The two logic cones represented by the vectors are identical in this case. Accordingly,

the inputs with the same signatures in the two vectors are mapped. This simple approach

to mapping worked well for gate level changes, but it is unable to provide effective mappings

after RTL changes, as discussed below.

3.2.4 Pattern Transformation and Fault Simulation

In the procedure from [59], the mapping between the inputs is used for transforming the

test patterns generated for the previous version into test patterns for the new version of the

circuit. Specifically, if an input A1 in the earlier version has a corresponding input B1 in the

new version, the values of A1 are copied to B1. Inputs of the new version that do not have

corresponding inputs in the earlier version are left unspecified and filled randomly.

Figure 3.3 shows the different steps involved in the transformation of a pattern from the

previous version to the new version. Figure 3.3a shows how inputs of the previous version

are mapped to the new version. An x in Figure 3.3a indicates that no mapping decision has

been made. Figure 3.3b shows one of the patterns of the previous circuit. The steps involved

in transforming the pattern in Figure 3.3b to a pattern for the new version are shown in

Figure 3.3c .

Fault simulation is carried out using the transformed patterns. Among the undetected

faults after fault simulation, test generation is carried out only for those faults that are

left undetected in the modified logic cones. A fault may be present in the intersection of

55

(a) Mapping between two circuits

(b) One pattern from previous version of pattern set

(c) Transformation of pattern in Figure 3.3b

Figure 3.3. Transformation of a pattern

several cones. In this case, if any one of the cones has been modified, and the fault is not

detected after fault simulation, it will be considered during incremental test generation. The

combined set of test patterns is used to determine the testability of the new version of the

circuit.

3.2.5 Examples of different types of RTL changes

The approach in [59] performs well for changes done at the gate level. However, when

changes are made at the RTL, more regions of the circuit are affected. This is because

designers use different techniques like clock gating and area minimization during synthesis

56

to meet the power and area constraints. In addition, timing and boundary optimizations

are performed during synthesis for performance improvement. Such changes modify the gate

level netlist.

These changes can result in addition or removal of inputs and outputs, and alter their

order and names in a modified gate level netlist. With such changes, the mapping algorithm

of [59] fails to map the inputs accurately. This reduces the efficiency of the test generation

process. It necessitates a different mapping approach that can efficiently handle the changes

observed in a circuit when modifications are done at the RTL, and the circuit is resynthesized.

(a) RTL code snippet for the previous version (b) RTL code snippet for the new version

Figure 3.4. RTL code snippet for two versions of the circuit

The following example illustrates how changes to the RTL affect the gate level netlist

after synthesis.

Figure 3.4a shows an RTL code snippet in Verilog for a previous version of a design.

Figure 3.4b shows an RTL code snippet for a new version of the same design. In Figure 3.4 ,

the RTL code snippet of the new version differs from the previous version, as highlighted in

red. Figure 3.5 shows the synthesized circuits for the RTL code snippets shown in Figure

 3.4 . The inputs A3 and A4 in the previous version, and the inputs with the same names

in the new version, do not have identical output cones. The input A5 in the new version

replaces input A4 in the previous version as the select input of the multiplexer, and it is

57

Figure 3.5. An example of a portion of a synthesized circuit before and after
a modification

added following A4. A simple mapping of test patterns based on the input names will not

be effective in detecting faults in the new version because of these changes.

In addition, RTL designers use complex Verilog constructs, such as System Verilog Inter-

faces, multi-dimensional array instances, or generate for-loops to instantiate modules that

help represent design intent in the RTL. This can result in significant changes in the naming

of the signals at the gate level. Designers often use synthesis tool options to incorporate

global name changes for the entire design or a subset of Verilog modules, which further

58

complicates identifying the similarities between two revisions of an RTL design based on

their names. For example, experimentation with the name-changing options during synthe-

sis showed up to 70% change in the name of the sequential cells in the synthesized netlist.

This shows that the use of names of the pins to map between different versions is not a robust

method. A new mapping approach to transform patterns generated from earlier iterations

is required, which is described next.

3.3 Proposed Methodology

The proposed methodology follows the process illustrated in Figure 3.2 . The key dif-

ference is that the mapping of the inputs accommodates the complexities introduced when

changes are made at the RTL and the gate level netlist is resynthesized. The use of the

signatures is also modified to compute independent input and output signatures, and utilize

both input and output signatures for every input and output.

The input to the mapping algorithm is the signatures of the previous and new versions

of the gate level netlist. The signatures are given in the form of a list. This list contains

a vector for every output. The vector includes the output, the inputs of its logic cone, and

both their input and output signatures. Each vector describes a logic cone. Each entry is

associated with a pair of signatures, an input and an output signature. The list for the earlier

version is denoted by CONES1, and the list for the new version is denoted by CONES2.

3.3.1 Overview

An overview of the proposed mapping algorithm is shown in Figure ??. The algorithm has

three main steps. The first step finds a mapping between the circuits based on the outputs

with unique input and output signatures. An input-output signature pair is considered

unique when the signature pair appears only once among the signature pairs of all the

outputs in the circuit. A unique input-output signature pair at the output of a logic cone

shows that the structure of the logic cone is distinct among all the logic cones in the circuit.

If the same structure appears only once in the new version, then a mapping between the

logic cones is performed.

59

In the second step, the algorithm finds vectors that have identical input-output signature

pairs in both versions of the circuit. It extends the input mapping based on such vectors.

In the third step, the algorithm uses the unmapped outputs with the same input-output

signature pairs in both versions. It maps only those inputs whose signature pairs match

in both versions, leaving the remaining inputs of the set unmapped. This is called partial

mapping of inputs.

The mapping information is stored in an array, denoted by MAP. The array is updated on

every iteration of the algorithm. Next, we illustrate the use of unique input-output signature

pairs, and describe the three steps of the procedure.

3.3.2 Unique Signature Mapping Illustration

Table 3.1. Input and Output Signatures for Figure 3.6

Previous Version

Pins Input
signature

Output
signature

A1 2293139 2084757
A2 2293139 2084757
A3 6126959 3291791
A4 7158539 4301876
A5 7158539 5182193
A6 6126959 4301876
A7 5857759 3291791
A8 4839217 3291791
A9 8196213 3291791
A10 9402730 3291791
A11 8196213 3291791
A12 4839217 3291791
A13 5857759 3291791

New Version

Pins Input
signature

Output
signature

B1 2293139 2084757
B2 2293139 2084757
B3 6126959 4301876
B4 7158539 3102078
B5 7158539 4301876
B6 6126959 3291791
B7 5857759 3291791
B8 4839217 3291791
B9 8196213 3291791
B10 1723395 3291791
B11 8196213 3291791
B12 4839217 3291791
B13 5857759 3291791

Figure 3.6 shows two versions of the same circuit. The circuit consists of five logic cones

and 13 pins in both versions. A1 and A2 of the previous version, and B1 and B2 of the new

version, are primary outputs. A3, A7-A13 of the previous version, and B6-B13 of the new

version, are primary inputs. A4, A5, and A6 of the previous version, and B3, B4, and B5

60

(a) Previous version of the circuit (b) New version of the circuit

Figure 3.6. An example to illustrate unique signature mapping

of the new version, are scan cells, and act as both inputs and outputs of logic cones. Table

 3.1 shows pairs of input-output signatures for all the inputs and outputs in both versions of

the circuit. The primary inputs all have the same output signature, 3291791, and primary

outputs have the same input signature, 2293139 in Figure 3.6 .

In this example, the modification made to obtain the new version has affected the shaded

portion in cone 4, such that the inputs shared by other cones do not see the effect of the

modification in their input cones. For the new version, the affected signatures are shown

61

in red in Table 3.1 . Among the five logic cones, A4, A5, and A6 have unique input-output

signature pairs in the previous version. Similarly, B3, B4, and B5 have unique input-output

signature pairs in the new version.

The first iteration finds that A4 with signature pair (7158539, 4301876) has the same

signature pair as B5 in the new version. The corresponding vectors in CONES1 and CONES2

are A7, A8, A9, and B11, B12, B13 with their input-output signature pairs. All the entries

of the two vectors have the same input-output signature pairs and can be mapped according

to their signatures. In the same way, A6 and B3 have the same signature pairs in their

corresponding vectors in CONES1 and CONES2 and can be mapped. Figure 3.7 shows the

progress of MAP with every iteration for the first step of unique signature mapping. The

first row shows the initial MAP, where an x indicates that no mapping decision has been

made. The second row shows the mapping after the outputs A4 and B5 are considered.

The third row shows the mapping after considering the outputs A6 and B3. In this way,

the algorithm distinctly identifies logic cones with unique structures in two versions of the

circuit.

Figure 3.7. Mapping information for different iterations in MAP

3.3.3 Mapping Based on Unique Signature Pairs

The first step of the mapping algorithm establishes a mapping between inputs and outputs

of logic cones that have distinct input-output signature pairs. Every pair of outputs with

unique and equal signature pairs is added to the queues Q1 and Q2. An iteration considers

the first outputs in the queues Q1 and Q2. It compares the input-output signature pairs of

all the inputs in the respective vectors. If all the signatures are equal, the outputs and inputs

62

of these logic cones are mapped. They are marked as matched and are added to the queues

for further mapping of their respective vectors. In this way, the algorithm identifies logic

cones with distinct structures in both circuits and aids in the first step towards accurate

mapping between the circuits.

Algorithm 1.1 MapUniqueSignature

Input: CONES1, CONES2

Output: Unique Mapping Information

1: Mark all inputs and outputs as unmatched

2: Empty sets U1 and U2

3: for every output of previous version do

4: if input-output signature pair is unique then

5: Store the corresponding output position from CONES1 in U1

6: end if

7: end for

8: for every output of new version do

9: if input-output signature pair is unique then

10: Store the corresponding output position from CONES2 in U2

11: end if

12: end for

13: Empty queues Q1 and Q2

14: for every output in U1 do

15: if U2 contains an output with the same input-output signature pair then

16: Insert outputs from U1 and U2 into Q1 and Q2, respectively.

17: end if

18: while Q1 and Q2 are not empty do

19: Pop Q1 to pos1 and pop Q2 to pos2

20: if input-output signature pairs of every element in the vectors corresponding to the

outputs at pos1 and pos2 are equal then

63

21: Map the unmatched elements in vectors corresponding to pos1 and pos2 according

to their input-output signature pairs

22: Mark the elements in vectors corresponding to pos1 and pos2 as matched

23: Add matching inputs from vectors of pos1 and pos2 to Q1 and Q2, respectively

24: end if

25: end while

26: end for

27: End

3.3.4 Mapping Common Signature Pairs

The second step of the mapping algorithm establishes a mapping between the unmapped

outputs with structurally identical output cones in both versions of the circuit. A mapping

is done when the input-output signature pairs of two vectors in both versions of the circuit

match, but they are not unique. In this case, the pairs of outputs are selected arbitrarily. The

use of unique signature pairs reduces the number of inputs that are matched by Algorithm

1.2, reducing the effects of arbitrary selection.

Algorithm 1.2 MapCommonSignature

Input: CONES1, CONES2

Output: Mapping Information

1: for every unmapped output O1 of previous version do

2: for every unmapped output O2 of new version do

3: if Input-output signature pairs in the vector for O1 are equal to those of output O2

then

4: Insert the output position of O1 and O2 in Q1 and Q2, respectively

5: end if

6: end if

7: while Q1 and Q2 are not empty do

8: Pop Q1 to pos1 and pop Q2 to pos2

64

9: if input-output signature pairs of every element in the vectors corresponding to

output at pos1 and pos2 are equal then

10: Map the unmatched elements in vectors corresponding to pos1 and pos2 ac-

cording to their input-output signature pairs

11: Mark every element in vectors corresponding to pos1 and pos2 as matched

12: Add matching inputs from vectors of pos1 and pos2 to Q1 and Q2, respectively

13: end if

14: end if

15: end while

16: end for

17: end for

18: End

3.3.5 Mapping for the Remaining Unmapped Outputs

The third step establishes a partial mapping of the inputs of the logic cones that have

not been matched yet. A complete matching of inputs is not possible due to the structural

variations in the gate level netlist from the modifications at the RTL.

Algorithm 1.3 PartialMap

Input: CONES1, CONES2

Output: Mapping Information

1: for every unmapped output O1 of previous version do

2: for every unmapped output O2 of new version do

3: if input-output signature pair of O1 is equal to input-output signature pair of O2

then

4: for every unmatched inputi in vector of O1 do

5: for every unmatched inputj in vector of O2

6: if input-output signature pairs of inputi and inputj are equal then

7: Map inputi to inputj

65

8: Mark inputi to inputj as matched

9: end if

10: end if

11: end for

12: end for

13: end if

14: end for

15: end for

Algorithms 1.1, 1.2, and 1.3 form the mapping algorithm that finds a correspondence

between the inputs and outputs of two versions of the design.

3.4 Experiment and Results

In the experiment described next, ten industrial designs are used to evaluate the perfor-

mance of the proposed algorithm for test generation. The evaluation was performed using

single stuck-at faults [62]. A compacted test pattern set was obtained using a commercial

ATPG tool for each design. Different versions of the same design were obtained by intro-

ducing changes into the RTL and resynthesizing the design. Changes were introduced by a

commercial tool at random locations in the design. Modifications resulted in the addition

or removal of logic gates and changed the number of sequential elements. These changes

emulate modifications done at the RTL due to the iterative nature of the design flow.

For each design considered as the previous version, ten new versions were obtained. A

commercial synthesis tool optimizes the circuit differently every time a modification is done

at the RTL. The optimization can result in an increase or decrease in the total number of

gates in the new version compared to the previous version.

Table 3.2 shows the average change in combinational and sequential logic in a circuit when

modifications are done at the RTL. The results shown in Table 3.2 use the absolute value of

change in the number of gates in the new version compared to a previous version. Column

“Size” of Table 3.2 gives the total number of gates present in the design, which is considered

as the previous version of the circuit. Columns “Number of Gates” and “Number of Scan

66

Table 3.2. Average Combinational and Sequential Changes
Previous
Version Average Change in New Version

Size Number of
Gates

Number of
Scan Cells

d1 1,521,890 4,276 6
d2 968,281 2,366 5
d3 5,266,903 1,585 5
d4 2,369,026 1,604 6
d5 6,411,557 1,474 6
d6 1,121,605 1,230 4
d7 1,089,511 10,527 4
d8 1,492,011 2,159 5
d9 3,836,692 9,935 5
d10 735,616 747 6

Cells” show the average number of gates and scan cells, respectively, added or removed in

a gate level netlist of the new version after modifying the RTL. An average of 5 sequential

elements and thousands of gates are added in all the versions of the circuit. The results show

that a modification at the RTL changes the logical and sequential portion of the circuit in

the resynthesized gate level netlist.

67

T
ab

le
3.

3.
Ex

pe
rim

en
ta

lR
es

ul
t

fo
r

C
irc

ui
ts

M
od

ifi
ed

at
RT

L

T
ot

C
on

e
D

iff
C

on
es

R
un

T
im

e
(s

ec
on

ds
)

T
es

t
P

at
te

rn
s

Fa
ul

t
C

ov
er

ag
e(

%
)

in
P

re
v

in
N

ew
P

re
vi

ou
s

N
ew

G
ai

n
P

re
vi

ou
s

N
ew

In
cr

ea
se

P
re

vi
ou

s
N

ew
V

er
si

on
V

er
si

on
V

er
si

on
V

er
si

on
(R

at
io

)
V

er
si

on
V

er
si

on
(%

)
V

er
si

on
V

er
si

on
d1

11
3,

17
2

6,
75

6
51

2
11

3
4.

53
8,

75
1

11
,2

90
29

.0
1

94
.7

6
94

.7
6

d2
48

,1
62

5,
30

9
39

9
51

7.
82

4,
65

6
61

67
32

.4
5

93
.4

1
93

.4
1

d3
25

5,
02

5
3,

81
8

1,
89

2
43

3
4.

37
5,

68
2

6,
75

8
18

.9
4

95
.6

3
95

.6
3

d4
11

9,
06

9
13

,1
46

48
1

76
6.

33
2,

87
4

3,
64

2
26

.7
2

96
.6

1
96

.6
9

d5
29

4,
86

3
3,

84
7

1,
19

8
24

5
4.

89
5,

32
0

58
96

10
.8

2
94

.1
2

94
.1

3
d6

52
,9

31
3,

29
6

32
1

56
5.

73
4,

51
9

4,
76

7
5.

49
94

.7
6

94
.7

6
d7

44
,1

16
3,

70
6

38
9

95
4.

09
2,

82
4

3,
40

5
20

.4
6

92
.3

1
92

.3
1

d8
86

,8
54

4,
92

0
31

2
62

5.
03

2,
46

1
3,

25
1

32
.1

0
93

.7
2

93
.7

1
d9

22
4,

97
7

8,
99

8
2,

59
7

49
4

5.
25

9,
24

0
11

,7
41

27
.0

6
94

.5
1

94
.5

1
d1

0
37

,3
37

3,
12

9
38

6
10

4
3.

71
1,

85
6

2,
21

7
19

.4
5

98
.5

5
98

.5
5

av
g

5.
17

22
.2

5

68

Each row in Table 3.3 corresponds to one of the 10 industrial circuits. The average of

several parameters for all ten versions of the circuit is shown in each row. These results are

shown under the sub-column New version. Sub-column Previous Version shows the results

for the previous version (the original design) in the respective categories. Column “Total

Cone in Prev Version” shows the total number of logic cones present in the previous version of

the design. Column “Diff Cones in New Version" shows the number of output cones affected

compared to the previous version when the RTL is modified, and the circuit is resynthesized.

Column Run Time shows the total time taken in seconds for test pattern generation. For

the previous version, test generation is run for all the faults starting from an empty test

pattern set. The overall runtime for a new version includes the runtime for computing the

signatures, mapping between two versions, fault simulation, and running the ATPG to detect

the remaining faults. The ratio of the runtime of the previous version to the average of the

runtime of the new version is shown in sub-column “Gain”. The total number of test patterns

required to achieve the fault coverage is shown in column Test Patterns. The percentage

increase in the number of test patterns in the new version compared to the previous version

is shown in sub-column “Increase (%)". Column Fault coverage shows the fault coverage of

the previous version and the average fault coverage of the ten different versions of the circuit

after modification at RTL.

From column “Diff Cones in New Version" in Table 3.3 , it can be seen that modifying

the RTL and resynthesizing the gate level affects 1.4% to 11.02% of the total number of

logic cones in the ten industrial circuits. On average, for all ten designs, the modifications

result in 6.34% of the total cones of the new version that are not similar to the previous

version. Between the ten versions of a design, the number of logic cones structurally different

in the new version compared to the previous version of the circuit directly affects the time

taken for detecting faults in the new version. A lower number of structurally different logic

cones results in more inputs matching between two versions of a design. With more inputs

accurately mapped, more faults will be detected in the new version after transforming the

test patterns from a previous version.

The total time taken to detect the faults of a new version is reduced by using the trans-

formed test patterns generated for the previous version. The reduction in runtime occurs

69

because test pattern generation is performed on a small set of faults. An average of 5-fold

reduction in runtime is observed in the new version compared to the previous version for all

the industrial circuits considered to obtain the same fault coverage. In addition, with higher

structural similarity, the algorithm maps the inputs and outputs between two versions more

efficiently, which results in a higher reduction in overall runtime.

There is an average of 22.25% increase in number of test patterns as the algorithm does

not attempt to optimize the number of patterns required. Its goal is to assess the testability

of a circuit by checking the fault coverage. The increase in number of test patterns can be

mitigated by performing ATPG again starting from an empty test set after the design has

converged.

Figure 3.8. Runtime gain as a function of the number of changes

We also experimented with larger numbers of changes introduced into every version of

the circuit, considering five of the designs. The larger number of changes resulted in larger

numbers of sequential elements as well as larger numbers of gate changes. The results are

described by Figure 3.8 that shows the runtime gain as a function of the increase in the

70

number of sequential elements. Figure 3.8 demonstrates that the efficiency of the proposed

methodology decreases monotonically with an increase in the number of changes, but the

improvement in runtime remains high even when a large number of changes are made.

3.5 Conclusion

This chapter described a mapping methodology to reuse the patterns generated in an

earlier iteration of the design process when a circuit is resynthesized due to changes at

the RTL. The proposed mapping procedure addresses the complexities introduced when

changes are made at the RTL. This is achieved by first identifying and mapping logic cones

that have distinct structures in both versions of the circuit. This is followed by mapping

the inputs and outputs of all other structurally identical and structurally similar cones.

The mapping obtained is used to transform the patterns, simulate faults, and perform test

pattern generation for the remaining undetected faults. An experiment was performed on ten

industrial designs where different versions of a design were obtained by changing the RTL.

The experiments showed an average of 5-fold reduction in runtime compared with running

the test pattern generation from the beginning.

71

4. GENERATION OF TWO-CYCLE TESTS FOR

STRUCTURALLY SIMILAR CIRCUITS

©2022 Reprinted with permission from IEEE J.Joe, N.Mukherjee, I.Pomeranz, and J.Rajski,

“Generation of two-two cycle tests for structurally similar circuits” under review in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems.

VLSI design flows improve design parameters (performance, power, area, and testability)

iteratively. Whereas the “shift left” trend implies that changes at the RTL are preferred for

improving the design, it is sometimes necessary to make gate-level changes, e.g., because

of layout changes or ECO. In an iterative design flow, repeated ATPG to evaluate the

testability of a design after design changes have been made creates a bottleneck. The goal

of this chapter is to address this bottleneck considering two-cycle tests for transition faults.

The test generation procedure described in the chapter transforms a LOC test set generated

for an earlier version of the design into a LOC test set for a new version without repeating

the entire test generation process. To enable the transformation, it is necessary to find a

mapping between the inputs and outputs of the earlier and new versions of the design, taking

into consideration that RTL resynthesis may produce a new gate-level netlist, with new signal

names and different input and output orders. To address two-cycle tests, the mapping is

performed over two time-frames of the design. Experimental results for industrial circuits

with changes made at the RTL as well as gate-level demonstrate significant runtime gains

with the test generation procedure described in this chapter.

4.1 Introduction

Developments in silicon fabrication processes support higher transistor densities while

maintaining chip size [33], [34], [55]. Many steps are involved in designing a complex and

dense circuit [56],[57], [58]. As shown in Fig. 4.1 , the physical design flow is iterative. This

allows incremental changes to be made to the design to fix errors and meet the necessary

design requirements related to performance, power, area, and testability. The testability of

72

a circuit is evaluated by running automatic test generation (ATPG)[39], [40], [41], [42], [63]

during the iterative design process to compute the fault coverage. If the fault coverage is

not sufficiently high, incremental changes are made to improve the testability of the circuit.

Whereas many of the physical design steps are performed at the RTL [64], ATPG is

run at the gate-level. Incremental changes to improve the design can also be made at the

RTL or at the gate-level [54]. Making changes at the RTL is consistent with the industry

“shift-left" trend [64] to make most of the design decisions and adjustments at the RTL. The

gate-level circuit may go through ECO [60], [27], [65],[66], or layout changes that modify the

combinational or sequential logic [67]. These modifications may add or remove a module or

modify the logic within a module. Changes to the gate-level description of the design can be

made such that they would affect a single or a small number of logic cones without otherwise

disturbing the structure of the circuit. Changes made at the RTL require resynthesis to

produce a modified gate-level description. After resynthesis, in addition to changes to the

logic, the design may have more or fewer inputs and outputs, and the names of the inputs

and outputs, as well as their order, may change.

Since the effects of incremental changes on the gate-level description are unpredictable,

current solutions run the complete ATPG process every time the design is modified during

the incremental design process and its testability needs to be evaluated. The simple solution

of performing ATPG once and using the same test set throughout the design process is not

sufficient since the test set achieves a low fault coverage, especially after the number and

order of the inputs and outputs have changed.

A methodology for speeding up ATPG for testability evaluation that fits with the design

flow of Fig. 4.1 was described in [59] and [68]. These works rely on the fact that the circuits

before and after design changes are structurally similar. The ATPG process described in

[59] addresses the simpler scenario where design changes are made at the gate-level. The

ATPG process described in [68] is suitable when design changes are made at the RTL and

the gate-level circuit is resynthesized.

An overview of the methodology described in [59] and [68] is shown in Fig. 4.2 . The first

step analyzes the structural similarity between the earlier and new versions of the design.

The second step finds a mapping between the inputs and outputs of the two circuits. Two

73

Figure 4.1. VLSI Design Flow [56],[57], [58]

inputs (outputs) are mapped when their logic cones are structurally similar. The pattern

transformation step transforms the patterns generated for the earlier version into patterns

for the new version using the mapping between their inputs. Fault simulation is carried out

next for the new version, followed by incremental ATPG to detect faults in the new version

that are not detected by the transformed patterns. Since the transformed patterns detect all

the faults in the logic cones of the new version that have not changed, the overall runtime is

reduced significantly compared with running the entire ATPG process for the new version.

To perform the mapping between the inputs and outputs of the earlier and new versions

of the design, the procedures described in [59] and [68] capture the structure of a logic cone by

performing two traversals of the circuit, from inputs to outputs, and from outputs to inputs.

Integer arithmetic performed during each traversal associates two integers with every line.

The integer computed during the forward traversal is referred to as the output signature,

and the integer computed during the backward traversal is referred to as the input signature.

During the traversals, the integers capture the types of the gates encountered, their fanin or

74

Figure 4.2. Overview of the ATPG Flow [59],[68]

fanout, and the number of levels traversed. As a result, logic cones with the same structure

will have the same signatures on their inputs and outputs. The mapping procedure uses this

fact to match the inputs and outputs of the earlier and new versions of the design.

Experimental results presented in [59] and [68] demonstrate the importance of an accurate

mapping between the inputs and outputs of the earlier and new versions of the design. With

an accurate mapping, the runtime gains reported in [59] and [68] are 11x and 5x on average

for industrial designs. The difference between [59] and [68] is in the mapping algorithm. The

algorithm in [68] accommodates unique signatures and partial mapping to address the more

extensive changes introduced by the resynthesis of the RTL description. When the mapping

is not sufficiently accurate, the transformed patterns of the earlier version achieve a lower

75

fault coverage for the new version, and the runtime for incremental ATPG is higher. The

runtime gain in this case is lower.

The overall process in Fig. 4.2 is suitable for any fault model. Single stuck-at faults are

considered in [59] and [68] under single-cycle tests. Experimental results using transition

faults and two-cycle LOC tests show that the mapping from [59] or [68] is not sufficiently

accurate when ATPG generates two-cycle tests targeting transition faults [69], [70], [71]. An

analysis of the results shows that the source of the problem is the signatures. The signatures

in [59] and [68] consider a single time-frame of the circuit. An accurate mapping of two-cycle

tests for transition faults requires signatures that capture two time-frames of the circuit.

Such signatures are introduced in this chapter.

The methodologies proposed for both single-cycle tests and two-cycle tests are for incre-

mental changes that affect a smaller percentage of the logic cones in the design.

The chapter is organized as follows. Section 4.2 explains the need for signatures computed

over two time-frames referred to as two-cycle signatures. Section III describes the computa-

tion of the two-cycle signatures. Section IV provides additional details of the test generation

process from Fig. 4.2 in the context of two-cycle tests. Section V presents experimental

results for industrial designs. Section VI concludes the chapter.

4.2 Motivation for two-cycle signatures

This section discusses the need for two-cycle signatures using an example.

Fig. 4.3a shows a circuit with three primary inputs, A, B, and C, three gates G1, G2,

and G3, a primary output Z, and two scan elements, F1 and F2. The present-state variable

associated with scan element F1 (F2) is y1(y2), and the next-state variable is Y1 (Y2). The

combinational logic of the circuit has five inputs, y1, y2, A, B, and C, and three outputs,

Y1, Y2, and Z. The example will focus on the input cones of these outputs (the logic cones

driving them) and their output signatures. The same discussion applies to the inputs of

the combinational logic, the logic cones they drive (their output cones), and their input

signatures.

76

(a) Earlier version of the circuit (b) New version of the circuit

Figure 4.3. Two versions of a circuit

Fig. 4.3b shows the circuit after a design change where the type of G3 was changed from

OR to NAND, and the names of the inputs and outputs were changed during resynthesis.

An analysis of a single time-frame of the circuit shows that the input cones of Y1 and W1

are the same, and the input cones of Z and R are the same. The input cones of Y2 and W2

are different because of the change in the type of G3. The single-cycle signatures from [59]

and [68] will produce the same signatures for Y1 and W1, the same signatures for Z and R,

and different signatures for Y2 and W2. As a result, the mapping will associate W1 with

Y1, and R with Z.

With two-cycle tests applied over two time-frames, it is important to analyze the circuit

over two time-frames. The two time-frame expansion of the circuit from Fig. 4.3 is shown

in Fig. 4.4 . Considering the circuit that consists of two time-frames, the logic cone of Z

includes G3 in the first time-frame, and G2 in the second time-frame. The same applies to

R. In this case, the input cones of Z and R are different because of the change in the type of

gate G3.

When the single-cycle signatures cause the test generation procedure to assume that the

input cones of R and Z are the same, the mapping between the circuits of Fig. 4.3a and

77

(a) Earlier version

(b) New version

Figure 4.4. Two time-frame expansion

78

 4.3b will be inaccurate. In addition, faults in the input cone of R will be dropped from

consideration, assuming that the faults are already detected by the test set for the circuit

from Fig. 4.3a . The inaccurate mapping will increase the run time for incremental test

generation, and the removal of target faults from consideration may result in a loss of fault

coverage.

For example, considering the design referred to in Section V as c5, test generation for

transition faults yields a transition fault coverage of 88.34%. With one of the changes

made to the design c5 at the RTL, the single-cycle signatures indicate that 2,432 input

cones are affected by the change, and the remaining 110,747 input cones are not affected.

After dropping from consideration the faults in the input cones that appear to be unaffected,

incremental test generation for the remaining faults yields a reduced transition fault coverage

of 85.12%. The two-cycle signatures reveal that 3,953 input cones are affected. The transition

fault coverage after incremental test generation is 88.34%.

Two points are important to note. (1) Dropping of unaffected faults from consideration

is important for the efficiency of the procedure. (2) Although fewer faults are dropped

from consideration under incremental ATPG when more cones are found to be affected, the

runtime gain is still high with higher fault coverage.

The next section describes the computation of the two-cycle signatures that will allow

faults in unaffected input cones to be dropped from consideration.

4.3 Two-cycle Signature Computation

This section describes the computation of the two-cycle input and output signatures. The

computation yields input and output signatures for the inputs of the combinational logic in

the first time-frame, and the outputs of the combinational logic in the second time-frame.

These signatures will be used for mapping of the inputs and outputs. The computation uses

randomly selected prime numbers in the range between 1 and 15 million.

Output signatures are computed during a traversal of the circuit from the inputs of the

first time-frame to the outputs of the second time frame. For initialization, all the primary

inputs in the first and second time-frame are assigned a random prime number R1, and all

79

the present-state variables in the first time-frame are assigned a random prime number R2.

After assigning a value to a next-state variable Yi in the first time-frame, the value is copied

to the present-state variable yi in the second time-frame.

The input to output traversal captures the structure of the input cones as follows. To

capture the gate types in an input cone, each gate type is associated with a random prime

number RTYPE, where TYPE is the gate type. To capture the number of levels, signatures are

rotated left twice at every level. This causes the signature values to approximately quadruple

with every additional level. The computation of the signatures is given by algorithm 1.

Algorithm 1 Output Signatures

1: for time-frame = 1 and 2

2: Initialize the primary inputs to a random prime number R1.

3: if time-frame = 1

4: initialize the present-state variables →a random prime number R2.

5: end if

6: else for every present-state variable yi

7: Copy the output signature of Yi in time-frame 1 to the output signature of yi in

time-frame 2.

8: for every gate Gi considering the gates from inputs to outputs

9: Initialize the output signature of Gi to 0.

10: for every fan-in Hi,j of Gi

11: Rotate the output signature of Hi,j left and add it to the output signature of Gi.

12: end for

13: for Gi of type TYPE, add RTYPE to the output signature of Gi.

14: Rotate the output signature of Gi

15: if Gi is an inverting gate

16: Complement its output signature

17: end if

18: end for

19: end for

80

END

(a) Earlier version

(b) New version

Figure 4.5. Example of output signature computation over two time-frames

81

Fig. 4.5 shows the output signature computation over two time-frames for the earlier and

new version of the design from Fig. 4.3 . The new version is considered next. In time-frame

1, the output signature of primary inputs M, N and P are initialized to 3291791, and the

output signatures of the present-state variables w1 and w2 are initialized to 9137657. The

output signatures are computed according to algorithm 1. The computed output signature

of W1 in time-frame 1 is 27431157, for W2 it is 420859725 and for R it is 26399577. For

time-frame 2, the output signatures of M, N and P are again initialized to 3291791. The

output signatures of W1 and W2 in time-frame 1 are copied to the output signatures of w1

and w2 in time-frame 2, respectively. Using these initial values in time-frame 2, the output

signatures are computed for W1, W2, and R.

For the earlier version of the design, the output signatures obtained are 64018157 for Y1

and Y2, and 6298657 for Z. Comparing with the output signatures obtained for W1, W2

and R in the new version of the design, the mapping algorithm will be able to identify that

the input cones of Y1 and W1 are the same, but the input cones of Z, Y2, R and W2 are

different, and they will not be mapped.

Algorithm 2 computes the input signatures for two time-frames.

Algorithm 2 Input Signatures

1: for time-frame = 2 and 1

2: Initialize the primary outputs to a random prime number R3.

3: if time-frame = 2

4: Initialize the next-state variables to a random prime number R4.

5: end if

6: else for every next-state variable Yi

7: Copy the input signature of yi in time-frame 2 to the input signature of Yi in

time-frame 1.

8: for every gate Gi considering the gates from outputs to inputs

9: Initialize the input signature of Gi to 0.

10: for every fan-out Hi,j of Gi

11: Rotate the input signature of Hi,j left and add it to the input signature of Gi.

82

12: end for

13: for Gi of type TYPE, add RTYPE to the input signature of Gi.

14: Rotate the input signature of Gi

15: if Gi is an inverting gate

16: Complement its input signature

17: end if

18: end for

19: end for

END

Single-cycle signatures are obtained by considering only time-frame=1 in Algorithm 1 and

time-frame=2 in Algorithm 2. Experimental results presented in [59] and [68] demonstrate

the accuracy of the single-cycle signatures in capturing variations in the structures of the

logic cones that require new single-cycle tests to be computed.

4.4 Test Generation Procedure

The test generation procedure outlined in Fig. 4.2 is described in this section.

4.4.1 Mapping of Inputs and Outputs

For the purpose of mapping the inputs and outputs of the earlier and new versions of

the design, each output of the second time-frame of each design is associated with a vector

describing its input cone. The input cone spans the two time-frames of the circuit. The

vector includes the inputs of the first time-frame, as well as primary inputs from the second

time-frame, that drive the output.

For example, for R in Fig. 4.4 , the vector includes primary input N from the second time-

frame, and P and w2 from the first time-frame. No distinction is drawn between primary

inputs from the first time-frame, and primary inputs from the second time-frame. This is

consistent with the use of two-cycle tests with primary input vectors that do not change

between the first and second clock cycles.

83

Considering a vector for an input cone, each one of the inputs, as well as the output, is

associated with an input signature from the first time-frame and an output signature from

the second time-frame. Algorithms 1 and 2 yield the signatures shown in Table 4.1 for all the

inputs and outputs of both versions of the design in Fig. 4.4 . Table 4.1 lists all the outputs

of the earlier and new versions of the design and the vectors describing their input cones. In

Table 4.1 , some signatures are in bold in the new version to signify that these signatures are

different from the ones obtained for the earlier version.

84

T
ab

le
4.

1.
In

pu
t

an
d

O
ut

pu
t

Si
gn

at
ur

es
fo

r
Fi

gu
re

 4.
4

Ve
rs

io
n

O
ut

(I
np

ut
,O

ut
pu

t)
In

pu
t

(I
np

ut
,O

ut
pu

t)
sig

na
tu

re
ve

ct
or

pu
t

Si
gn

at
ur

e
pa

ir
ve

ct
or

Ea
rli

er
Z

(2
29

31
39

,6
29

86
57

)
B

,C
,y

2
(9

41
87

50
,3

29
17

91
),(

26
70

59
36

,3
29

17
91

),
(8

13
50

65
7,

64
01

81
57

)
Y

1
(3

60
00

93
7,

64
01

81
57

)
A

,y
1

(3
01

55
07

1,
32

91
79

1)
,(

36
00

09
37

,6
40

18
15

7)
Y

2
(8

13
50

65
7,

64
01

81
57

)
C

,y
2

(2
67

05
93

6,
32

91
79

1)
,(

81
35

06
57

,6
40

18
15

7)

N
ew

R
(2

29
31

39
,8

49
84

37
13

)
N

,P
,w

2
(9

41
87

50
,3

29
17

91
),

(4
29

09
89

29
,3

29
17

91
),

(5
11

25
10

9,
34

45
12

35
82

)
W

1
(3

60
00

93
7,

64
01

81
57

)
M

,w
1

(3
01

55
07

1,
32

91
79

1)
,(

36
00

09
37

,6
40

18
15

7)
W

2
(5

11
25

10
9,

34
45

12
35

82
)

P,
w

2
(4

29
09

89
29

,3
29

17
91

),
(5

11
25

10
9,

34
45

12
35

82
)

85

Mapping consists of three steps. The first step uses unique vectors of input and output

signatures. To call a vector unique, it should appear only once for the circuit it belongs to

(the earlier or new version of the design). In Table 4.1 , all the vectors are unique. If a unique

vector of the earlier version and a unique vector of the new version are equal, except for the

order of inputs that may be different, all the inputs and outputs they contain are matched.

In Table 4.1 , the signatures for the input cone of W1 in the new version match completely

with the signatures for the input cone of Y1 in the earlier version. This allows us to match

input M of the new version with A of the earlier version, and w1 of the new version with y1

of the earlier version. The same matching would occur if the order of M and w1 (or A and

y1) had been reversed.

The second mapping step considers pairs of vectors of the earlier and new versions that

contain identical signatures but are not unique. The procedure selects pairs of identical

vectors arbitrarily. It then maps their inputs and outputs.

Finally, the third mapping step considers logic cones whose outputs have the same input-

output signature pair in both versions of the design, but the signatures of the input vector

do not match completely.

Among the five inputs in Fig. 4.4 , inputs N, P and w2 remain unmapped after the three

steps of mapping. In the new version, inputs N, P, and w2 drive a logic cone that was

modified.

4.4.2 Transformation of Patterns

Once a mapping of the inputs is available, the set of patterns of the earlier design is

transformed into a set of patterns for the new design as follows. For every input I of the

new design that is matched with an input J of the earlier design, the values assigned to J

are copied to I pattern by pattern. Inputs of the new design that are unmatched are left

unspecified.

To demonstrate the transformation in the case of LOC tests, a LOC test is denoted by

〈s1,v1,v2〉 where s1 is the scan-in state, and v1 and v2 are primary input vectors. After s1 is

scanned in, the circuit is clocked in functional mode for two clock cycles. The primary input

86

Table 4.2. Pattern Transformation for LOC Tests
FIRST CYCLE PATTERN

Scan Elements Primary Inputs

s1 v1=v2

Earlier Version y1 y2 y3 y4 A1 A2 A3
s1v1 1 0 1 0 1 0 1

(a) One of the LOC Patterns for the Earlier Version

MAPPING

Scan Elements Primary Inputs

New version w1 w2 w3 w4 M1 M2 M3
Earlier version x y1 y3 x x A1 A2

(b) Mapping Information

PATTERN TRANSFORMATION

Scan Elements Primary Inputs

New version w1 w2 w3 w4 M1 M2 M3
Copy Values x 1 1 x x 1 0
Random Fill 0 1 1 1 1 1 0

(c) Pattern Transformation

87

vectors v1 and v2 are applied to the primary inputs during the functional clock cycles. For

the tests considered in this article, v1=v2.

Table 4.2 (a) shows an example of a LOC test for a circuit whose earlier version has

present-state variables y1, y2, y3, and y4, and primary inputs A1, A2, and A3. The test

〈1010,101,101〉 is shown in Table 4.2 (a). Table 4.2 (b) shows the mapping obtained from the

earlier version to a new version that has present-state variables w1, w2, w3, and w4, and

primary inputs M1, M2, and M3. The transformed pattern is shown in Table 4.2 (c). For

example, the value of y1 is copied to w2 based on the mapping. When an input does not

have a mapping, its value is unspecified (x). Unspecified values are filled randomly, as shown

in Table 4.2 (c).

4.4.3 Fault Simulation and Incremental ATPG

With the transformed set of patterns of the new design, fault simulation is carried out for

the new design. Test pattern generation is performed only for faults that remain undetected

in the logic cones modified by the change. The logic cone of an output X is considered

modified if at least one of the inputs of the logic cone of X has not been mapped. The

undetected faults from such modified logic cones are retained, and incremental test generation

is carried out to obtain a complete test set for the new design.

For example, considering the circuit from Fig. 4.4 , outputs R and W2 have inputs in their

input cones that have not been mapped. The faults in these input cones will be retained.

For output W1, all the inputs have been mapped. Therefore, the faults in its input cone

that are detected by the test set of the earlier version are guaranteed to be detected by the

transformed patterns, and they are not considered for incremental test pattern generation.

This is important for avoiding incremental ATPG targeting undetectable faults.

4.5 Experimental Results

The test generation procedure was evaluated using several experiments. Transition faults

are used for the evaluation. A compacted LOC test set generated using a commercial ATPG

tool is used for detecting transition faults in the earlier version of a design. In Section 4.5.1 ,

88

different versions of the same design are obtained by making changes at the RTL and resyn-

thesizing it. In section 4.5.2 , different versions are obtained by changing the combinational

and sequential logic at the gate-level. Section 4.5.3 discusses the difference between the

results of the RTL and gate-level changes.

4.5.1 RTL changes

Ten different industrial designs are used for demonstrating the effects of RTL changes,

as described next. A new version of a design is obtained by altering the RTL of the earlier

version and resynthesizing it. Modifications at random places are made to the earlier version

of the design using a commercial tool. Each modification results in changing some of the

combinational and sequential logic of the design. For each of the ten designs, ten different

modifications are done at the RTL.

89

T
ab

le
4.

3.
Ex

pe
rim

en
ta

lR
es

ul
t

fo
r

C
irc

ui
ts

m
od

ifi
ed

at
RT

L
In

p
C

on
es

A
ff

C
on

es
%

R
un

T
im

e
(s

ec
on

ds
)

Fa
ul

t
C

ov
er

ag
e(

%
)

T
es

t
P

at
te

rn
s

in
E

ar
lie

r
in

N
ew

of
A

ff
E

ar
l

N
ew

G
ai

n
E

ar
l

N
ew

V
er

E
ar

l
N

ew
In

cr
V

er
si

on
V

er
si

on
C

on
es

V
er

V
er

(R
at

io
)

V
er

M
ap

F
in

al
V

er
V

er
(%

)
c1

86
,8

54
9,

40
8

10
.8

3
1,

64
5

54
5

3.
02

90
.0

7
83

.3
8

90
.0

8
12

,5
31

15
,8

82
26

.7
4

c2
29

4,
86

3
4,

52
9

1.
54

9,
84

7
3,

63
4

2.
71

92
.0

7
88

.8
9

92
.0

7
20

,0
36

23
,1

18
15

.3
8

c3
52

,9
31

6,
12

2
11

.5
7

1,
28

1
39

4
3.

25
94

.7
6

91
.1

2
94

.7
6

10
,8

16
13

,4
49

24
.3

4
c4

11
9,

06
9

4,
98

2
4.

18
3,

57
5

60
5

5.
91

94
.2

7
92

.9
1

94
.2

7
10

,4
55

13
,7

14
26

.7
9

c5
11

3,
17

9
3,

95
3

3.
49

4,
22

7
1,

14
2

3.
70

88
.3

4
84

.7
6

88
.3

4
21

,8
20

25
71

2
17

.8
3

c6
48

,1
62

16
,6

07
34

.4
8

17
,6

92
4,

70
2

3.
76

90
.7

8
80

.4
0

90
.7

7
6,

77
8

8,
41

0
24

.0
7

c7
37

,3
42

5,
87

5
15

.7
3

8,
35

2
2,

08
1

4.
01

98
.4

6
92

.5
2

98
.4

6
11

,3
77

17
,7

62
56

.1
2

c8
10

7,
50

1
23

,0
22

21
.4

2
48

,1
31

15
,1

00
3.

19
95

.0
8

88
.0

8
95

.0
8

6,
87

6
9,

84
4

43
.1

6
c9

44
,1

16
4,

39
6

9.
96

1,
93

8
63

6
3.

05
90

.0
4

85
.4

3
90

.0
4

7,
12

1
9,

30
5

30
.6

6
c1

0
22

4,
97

7
18

,2
06

8.
09

71
,5

31
14

,1
17

5.
07

93
.0

8
90

.1
0

93
.0

8
84

,2
44

90
,2

21
7.

09
av

g
12

.1
3

3.
77

27
.7

4

90

The results are shown in Table 4.3 . Each row shows the various parameters for one

of the ten industrial designs. The average of several parameters for all ten versions of

the circuit is shown in each row. These results are shown under the sub-column New ver.

Sub-column Earl Ver shows the results for the previous version (the original design) in the

respective categories. Column “Inp Cones in Earlier Version" shows the total number of

input cones in the earlier version. Column “Aff Cones in New Version” shows the average

number of input cones affected in the ten modified versions of the design in comparison to

the earlier version. Column “% of Aff Cones” shows the percentage of modified input cones

between the new and earlier versions of the design. Column “Runtime” shows the runtime

for test generation in seconds, considering the earlier and new versions of the design. For

the new version, the runtime includes the time for signature analysis, mapping between two

versions, pattern transformation, fault simulation, and incremental test pattern generation.

Sub-column “Gain” shows the ratio where the runtime for the earlier version is divided by

the average runtime for the new version. This is the improvement in test generation time.

Column “Fault Coverage(%)” shows the fault coverage for the earlier and new versions. For

the new design, sub-column “Map” shows the fault coverage achieved by fault simulation of

the transformed patterns, and sub-column “Final” shows the fault coverage achieved by the

proposed methodology. Column “Test Patterns” shows the number of test patterns. Sub-

column “Incr (%)” shows the percentage increase in the number of test patterns between the

new and earlier versions of the design.

Overall, the gain in test generation time is 3.77x on the average across all the circuits.

The gain is higher when a lower percentage of cones are affected. For example, the highest

gain of 5.91x is obtained for circuit c4 when 4.18% of the cones are affected. Exceptions

occur because of the presence of hard to detect faults. For example, the lowest gain of 2.71x

is obtained in circuit c2 when only 1.54% of the cones are affected, and fault simulation of

the transformed patterns achieves a fault coverage of 88.89% out of 92.07%.

There is an average 27.74% increase in the number of test patterns. This is because the

proposed methodology does not try to optimize the number of patterns needed. Instead,

the objective is to evaluate the testability of a circuit as fast as possible, given test patterns

91

for another structurally similar circuit. ATPG can be run from the beginning on the new

version when there is a significant increase in pattern count after the design has converged.

4.5.2 Gate-level changes

Two experiments that modify the combinational and sequential logic, respectively, are

conducted to evaluate the proposed test generation procedure when changes are made at the

gate-level. For each design in both experiments, ten different modifications are introduced

at random locations.

The first experiment changes the combinational logic. The type of a gate is changed,

e.g., from OR to NAND. The second experiment performs sequential modifications, which

are introduced into the gate-level netlist by following the basic steps of forward and backward

retiming. Table 4.4 tabulates results for combinational changes, and Table 4.5 for sequential

changes. Column “# of mod SCs” in Table 4.5 shows the average increase or decrease in the

number of scan cells in ten new versions of a design due to retiming steps.

92

T
ab

le
4.

4.
Ex

pe
rim

en
ta

lR
es

ul
t

fo
r

G
at

e-
le

ve
lC

om
bi

na
tio

na
lC

ha
ng

es
In

p
C

on
es

A
ff

C
on

es
%

R
un

T
im

e
(s

ec
on

ds
)

Fa
ul

t
C

ov
er

ag
e(

%
)

T
es

t
P

at
te

rn
s

in
E

ar
lie

r
in

N
ew

of
A

ff
E

ar
l

N
ew

G
ai

n
E

ar
l

N
ew

V
er

E
ar

l
N

ew
In

cr
V

er
si

on
V

er
si

on
C

on
es

V
er

V
er

(R
at

io
)

V
er

M
ap

F
in

al
V

er
V

er
%

d1
41

7,
62

6
98

2
0.

24
17

,7
40

1,
44

0
12

.3
2

97
.0

8
97

.0
7

97
.1

2
3,

45
6

3,
96

5
14

.7
2

d2
27

0,
42

8
2,

69
9

0.
99

2,
51

7
31

8
7.

92
91

.7
7

90
.6

1
91

.7
7

6,
28

1
8,

96
2

42
.6

8
d3

32
5,

88
5

77
2

0.
24

5,
47

2
76

6
7.

14
89

.0
8

88
.2

1
89

.0
8

5,
74

5
6,

19
6

7.
85

d4
45

,1
04

45
1

0.
99

81
4

93
8.

75
93

.4
1

93
.3

8
93

.4
1

8,
04

7
8,

07
4

0.
34

d5
30

0,
54

2
1,

18
7

0.
39

4,
83

6
51

2
9.

45
93

.1
9

93
.1

5
93

.1
9

8,
06

6
8,

21
9

1.
90

d6
88

,0
65

59
1

0.
67

13
,1

07
98

8
13

.2
7

95
.8

7
95

.2
3

95
.8

7
6,

26
0

7,
31

1
16

.7
9

d7
60

1,
46

9
5,

61
1

0.
93

10
,2

16
72

4
14

.1
1

91
.2

3
90

.6
5

91
.2

3
29

,1
22

31
,3

93
7.

80
d8

59
5,

49
6

10
,2

19
1.

71
66

,3
61

6,
28

2
10

.5
6

90
.5

3
89

.2
7

90
.5

5
27

,2
95

28
,3

18
3.

75
d9

17
3,

84
0

88
5

0.
50

3,
72

9
41

2
9.

05
91

.3
4

90
.5

6
91

.3
4

11
,3

67
12

,6
22

11
.0

4
d1

0
21

2,
25

6
11

74
0.

55
69

,0
45

46
84

14
.7

4
96

.0
0

95
.9

7
96

.4
5

73
,1

12
75

,2
52

2.
93

av
g

0.
72

10
.7

3
10

.9
8

93

T
ab

le
4.

5.
Ex

pe
rim

en
ta

lR
es

ul
t

fo
r

G
at

e-
le

ve
lS

eq
ue

nt
ia

lC
ha

ng
es

In
p

C
on

es
A

ff
C

on
es

%
#

of
R

un
T

im
e

(s
ec

on
ds

)
Fa

ul
t

C
ov

er
ag

e(
%

)
T

es
t

P
at

te
rn

s
in

E
ar

lie
r

in
N

ew
of

A
ff

m
od

E
ar

l
N

ew
G

ai
n

E
ar

l
N

ew
V

er
E

ar
lie

r
N

ew
In

cr
V

er
si

on
V

er
si

on
C

on
es

SC
s

V
er

V
er

(R
at

io
)

V
er

M
ap

F
in

al
V

er
V

er
%

d1
41

7,
62

6
99

7
0.

23
7

17
,7

40
1,

42
1

12
.4

8
97

.0
8

97
.0

7
97

.1
0

3,
45

6
3,

66
9

6.
16

d2
27

0,
42

8
2,

31
9

0.
86

6
2,

51
7

29
7

8.
47

91
.7

7
90

.9
5

91
.7

7
6,

28
1

7,
62

8
21

.4
4

d3
32

5,
88

5
1,

10
6

0.
34

6
5,

47
2

60
2

9.
09

89
.0

8
88

.5
6

89
.0

8
5,

74
5

6,
00

5
4.

52
d4

45
,1

04
23

1
0.

51
6

81
4

87
9.

36
93

.4
1

93
.4

0
93

.4
1

8,
04

7
8,

16
5

1.
46

d5
30

0,
54

2
1,

48
8

0.
49

7
4,

83
6

53
2

9.
09

93
.1

9
93

.1
6

93
.1

9
8,

06
6

8,
21

1
1.

79
d6

88
,0

65
43

8
0.

50
6

13
,1

07
80

4
16

.3
0

95
.8

7
95

.2
3

95
.8

7
6,

26
0

6,
51

4
4.

05
d7

60
1,

46
9

3,
23

9
0.

54
7

10
,2

16
70

1
14

.5
7

91
.2

3
90

.8
1

91
.2

3
29

,1
22

30
,2

85
3.

99
d8

59
5,

49
6

9,
81

1
1.

64
5

66
,3

61
5,

91
1

11
.2

3
90

.5
3

89
.7

7
90

.5
4

27
,2

95
28

,1
61

3.
17

d9
17

3,
84

0
67

1
0.

39
5

3,
72

9
41

2
9.

37
91

.3
4

90
.8

7
91

.3
4

11
,3

67
11

.9
81

5.
40

d1
0

21
2,

25
6

87
6

0.
41

7
69

,0
45

44
69

15
.4

5
96

.0
0

95
.9

9
96

.1
4

73
,1

12
74

,2
17

1.
51

av
g

0.
59

6
11

.5
4

5.
35

94

An average of 10-fold improvement in runtime when modifications change the combina-

tional logic, and an average of 11-fold improvement in runtime when modifications change

the sequential logic are observed. The increase in the number of test patterns of the new

version of the circuit compared to the earlier version can be mitigated, as discussed earlier.

4.5.3 Discussion

Modifications in the gate-level netlist result in an average of 0.72% of the logic cones

being affected compared to an average of 12.13% of affected logic cones in the RTL. This

is a result of the fact that RTL designs with changes require the gate-level circuit to be

resynthesized, which affects a larger portion of the design due to re-optimization; whereas

netlist modifications at the gate-level are localized and impact smaller parts of the design.

The smaller percentage of changes for gate-level modifications translates to a lower per-

centage of faults that need to be targeted in the new version after the transformation of

patterns and fault simulation. A lower percentage of faults for incremental test pattern gen-

eration directly translates to a higher gain in runtime. Similarly, with a smaller percentage

of faults to detect after fault simulation of the transformed patterns, a smaller increase in

the number of patterns is required to detect those faults during incremental test pattern

generation.

4.6 Conclusion

This chapter proposed a methodology to reuse test patterns generated for transition

faults from one structurally similar circuit to another. An analysis of transition faults, that

require two-cycle tests, showed that it is important to analyze a design over two time-frames

to identify structural similarities. The proposed methodology found structural similarities

between the two versions of a design over two time-frames by computing signatures. It used

the signatures to map the inputs and outputs in both versions of the design. The patterns

were transformed from the earlier to the new version according to the mapping information

and fault simulated. Incremental test pattern generation was run on the remaining unde-

tected faults from the modified logic cones. Three experiments were conducted to evaluate

95

the proposed test generation methodology for transition faults where changes were made at

the RTL and gate-level. Experiments on two sets of ten industrial designs showed an average

improvement of 3.77-fold in runtime when changes were made at the RTL, and more than

10-fold when changes were done at the gate-level compared to the case where the entire test

generation process is run for the new version.

96

5. CONCLUSION

This thesis proposed a fast methodology to analyze the testability of a design, given the

test patterns generated for another structurally similar design. The test generation time

is reduced by exploiting the structural similarity prevalent between the designs. The test

generation methodology described finds the similarities between the two circuits by perform-

ing the structural analysis and uses this information to map the inputs between the two

circuits. The patterns generated for one design is transformed into test patterns for another

design using the mapping information. The design is fault simulated using the transformed

test patterns, and an incremental test pattern generation is performed for the remaining

undetected faults.

The first chapter of the thesis describes a test generation methodology where structurally

similar circuits were obtained by modifying the gate-level netlists. The second chapter pro-

posed a mapping methodology where structurally similar designs were obtained by modifying

the RTL, and the gate-level was resynthesized after every modification. The suggested map-

ping method handles the complexities that arise from the RTL modifications. The last

chapter of the thesis described a test generation methodology that performed the signature

analysis of the design over two-time frames to accommodate two-cycle patterns used to detect

transition faults.

Experimental analysis using the proposed test generation methodology in different scenar-

ios showed improvement in runtime compared to generating test patterns from the beginning.

When the gate-level netlists were modified, more than an 11-fold improvement in runtime

was observed. For designs where the RTl was modified and gate-level was resynthesized,

the reduction in runtime was an average of 5-fold compared to running test generation from

the beginning. For transition faults that required two-cycle test patterns, the improvement

in runtime was 3.77x for designs where RTL was modified and the gate-level was resynthe-

sized. An average of 10x improvement was observed when structurally similar designs were

obtained by modifying the gate-level netlists.

97

REFERENCES

[1] R. Aitken, “Nanometer technology effects on fault models for ic testing,” Computer,
vol. 32, no. 11, pp. 46–51, 1999. doi: 10.1109/2.803640 .

[2] S. K. Jena, S. Biswas, and J. K. Deka, “Approximate testing of digital vlsi circuits
using error significance based fault analysis,” in 2020 24th International Symposium
on VLSI Design and Test (VDAT), 2020, pp. 1–6. doi: 10.1109/VDAT50263.2020.
9190571 .

[3] K.-T. Cheng and A. Krstic, “Current directions in automatic test-pattern generation,”
Computer, vol. 32, no. 11, pp. 58–64, 1999. doi: 10.1109/2.803642 .

[4] S. H. Gerez, Algorithms for VLSI Design Automation, 1st. USA: John Wiley Sons,
Inc., 1999, isbn: 0471984892.

[5] L. Trevillyan, D. Kung, R. Puri, L. Reddy, and M. Kazda, “An integrated environment
for technology closure of deep-submicron ic designs,” IEEE Design Test of Computers,
vol. 21, no. 1, pp. 14–22, 2004. doi: 10.1109/MDT.2004.1261846 .

[6] H. Ren, R. Puri, L. Reddy, et al., “Intuitive eco synthesis for high performance cir-
cuits,” in 2013 Design, Automation Test in Europe Conference Exhibition (DATE),
2013, pp. 1002–1007. doi: 10.7873/DATE.2013.209 .

[7] Z. Navabi, VHDL: Analysis and Modeling of Digital System. McGraw-Hill, 1997.
[8] Z. Navabi, Verilog Digital System Design (Professional Engineering). McGraw-Hill,

1999.

[9] A. Sagahyroon, G. Lakkaraju, and M. Karunaratne, “A functional verification envi-
ronment,” in 48th Midwest Symposium on Circuits and Systems, 2005., 2005, 108–111
Vol. 1. doi: 10.1109/MWSCAS.2005.1594051 .

[10] M. L. B. D. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-
Signal VLSI Circuits. Springer, Boston, MA, 2002.

[11] J. Aerts and E. Marinissen, “Scan chain design for test time reduction in core-based
ics,” in Proceedings International Test Conference 1998 (IEEE Cat. No.98CH36270),
1998, pp. 448–457. doi: 10.1109/TEST.1998.743185 .

98

https://doi.org/10.1109/2.803640
https://doi.org/10.1109/VDAT50263.2020.9190571
https://doi.org/10.1109/VDAT50263.2020.9190571
https://doi.org/10.1109/2.803642
https://doi.org/10.1109/MDT.2004.1261846
https://doi.org/10.7873/DATE.2013.209
https://doi.org/10.1109/MWSCAS.2005.1594051
https://doi.org/10.1109/TEST.1998.743185

[12] E. B. Eichelberger and T. W. Williams, “A logic design structure for lsi testability,”
in Proceedings of the 14th Design Automation Conference, ser. DAC ’77, IEEE Press,
1977, pp. 462–468.

[13] L.-T. W. C.-W. W. X. Wen, VLSI Test Principles and Architectures. Morgan Kauf-
mann.

[14] E. J. McCluskey, “Built-in self-test techniques,” IEEE Design Test of Computers,
vol. 2, no. 2, pp. 21–28, 1985. doi: 10.1109/MDT.1985.294856 .

[15] A. Hassan, J. Rajski, and V. Agarwal, “Testing and diagnosis of interconnects using
boundary scan architecture,” in International Test Conference 1988 Proceeding@mNewFrontiersinT esting,
1988, pp. 126–137. doi: 10.1109/TEST.1988.207790 .

[16] J. Patel, “Stuck-at fault: A fault model for the next millennium,” in Proceedings
International Test Conference 1998 (IEEE Cat. No.98CH36270), 1998, pp. 1166–.
doi: 10.1109/TEST.1998.743358 .

[17] K.-T. Cheng, “Transition fault testing for sequential circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 12, no. 12, pp. 1971–
1983, 1993. doi: 10.1109/43.251160 .

[18] H. Cox and J. Rajski, “Stuck-open and transition fault testing in cmos complex gates,”
in International Test Conference 1988 Proceedings m_New Frontiers in Testing, 1988,
pp. 688–694. doi: 10.1109/TEST.1988.207853 .

[19] K. Fuchs, F. Fink, and M. Schulz, “Dynamite: An efficient automatic test pattern
generation system for path delay faults,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 10, no. 10, pp. 1323–1335, 1991. doi:

 10.1109/43.88928 .

[20] T. Storey and W. Maly, “Cmos bridging fault detection,” in Proceedings. International
Test Conference 1990, 1990, pp. 842–851. doi: 10.1109/TEST.1990.114102 .

[21] S. Ma, I. Shaik, and R. Fetherston, “A comparison of bridging fault simulation meth-
ods,” in International Test Conference 1999. Proceedings (IEEE Cat. No.99CH37034),
1999, pp. 587–595. doi: 10.1109/TEST.1999.805783 .

[22] M. Schulz, E. Trischler, and T. Sarfert, “Socrates: A highly efficient automatic test
pattern generation system,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 7, no. 1, pp. 126–137, 1988. doi: 10.1109/43.3140 .

99

https://doi.org/10.1109/MDT.1985.294856
https://doi.org/10.1109/TEST.1988.207790
https://doi.org/10.1109/TEST.1998.743358
https://doi.org/10.1109/43.251160
https://doi.org/10.1109/TEST.1988.207853
https://doi.org/10.1109/43.88928
https://doi.org/10.1109/TEST.1990.114102
https://doi.org/10.1109/TEST.1999.805783
https://doi.org/10.1109/43.3140

[23] D. Pradhan and J. Saxena, “A design for testability scheme to reduce test application
time in full scan,” in Digest of Papers. 1992 IEEE VLSI Test Symposium, 1992,
pp. 55–60. doi: 10.1109/VTEST.1992.232724 .

[24] A. Pandey and J. Patel, “An incremental algorithm for test generation in illinois
scan architecture based designs,” in Proceedings 2002 Design, Automation and Test
in Europe Conference and Exhibition, 2002, pp. 368–375. doi: 10.1109/DATE.2002.
998300 .

[25] K. Yang, K.-T. Cheng, and L.-C. Wang, “Trangen: A sat-based atpg for path-oriented
transition faults,” in ASP-DAC 2004: Asia and South Pacific Design Automation
Conference 2004 (IEEE Cat. No.04EX753), 2004, pp. 92–97. doi: 10.1109/ASPDAC.
2004.1337546 .

[26] S.-H. Song and L. Kinney, “Incremental test pattern generation,” in Digest of Papers
Eleventh Annual 1993 IEEE VLSI Test Symposium, 1993, pp. 244–250. doi: 10.1109/
VTEST.1993.313353 .

[27] T. Shinsha, T. Kubo, Y. Sakataya, J. Koshishita, and K. Ishihara, “Incremental logic
synthesis through gate logic structure identification,” in 23rd ACM/IEEE Design
Automation Conference, 1986, pp. 391–397. doi: 10.1109/DAC.1986.1586119 .

[28] D. Brand, “Incremental synthesis,” in IEEE/ACM International Conference on Computer-
Aided Design, 1994, pp. 14–18. doi: 10.1109/ICCAD.1994.629736 .

[29] S. Krishnaswamy, H. Ren, N. Modi, and R. Puri, “Deltasyn: An efficient logic dif-
ference optimizer for eco synthesis,” in 2009 IEEE/ACM International Conference
on Computer-Aided Design - Digest of Technical Papers, 2009, pp. 789–796. doi:

 10.1145/1687399.1687546 .

[30] A. Dutta, N. Tuttle, and K. Anandh, “Canonical ordering of instances to immunize
the fpga place and route flow from eco-induced variance,” in International Symposium
on Quality Electronic Design (ISQED), 2013, pp. 359–363. doi: 10.1109/ISQED.2013.
6523635 .

[31] Q. Zhu, N. B. Kitchen, A. Kuehlmann, and A. Sangiovanni-Vincentelli, “Sat sweep-
ing with local observability don’t-cares,” in Advanced Techniques in Logic Synthesis,
Optimizations and Applications, K. Gulati, Ed. New York, NY: Springer New York,
2011, pp. 129–148, isbn: 978-1-4419-7518-8. doi: 10.1007/978-1-4419-7518-8_8 .
[Online]. Available: https://doi.org/10.1007/978-1-4419-7518-8_8 .

100

https://doi.org/10.1109/VTEST.1992.232724
https://doi.org/10.1109/DATE.2002.998300
https://doi.org/10.1109/DATE.2002.998300
https://doi.org/10.1109/ASPDAC.2004.1337546
https://doi.org/10.1109/ASPDAC.2004.1337546
https://doi.org/10.1109/VTEST.1993.313353
https://doi.org/10.1109/VTEST.1993.313353
https://doi.org/10.1109/DAC.1986.1586119
https://doi.org/10.1109/ICCAD.1994.629736
https://doi.org/10.1145/1687399.1687546
https://doi.org/10.1109/ISQED.2013.6523635
https://doi.org/10.1109/ISQED.2013.6523635
https://doi.org/10.1007/978-1-4419-7518-8_8
https://doi.org/10.1007/978-1-4419-7518-8_8

[32] C.-F. Lai, J.-H. Jiang, and K.-H. Wang, “Boom: A decision procedure for boolean
matching with abstraction and dynamic learning,” in Proceedings of the 47th Design
Automation Conference, 2010, pp. 499–504. doi: 10.1145/1837274.1837398 .

[33] W. M. Holt, “1.1 moore’s law: A path going forward,” in 2016 IEEE International
Solid-State Circuits Conference (ISSCC), 2016, pp. 8–13. doi: 10.1109/ISSCC.2016.
7417888 .

[34] S. Borkar, “Design perspectives on 22nm cmos and beyond,” in 2009 46th ACM/IEEE
Design Automation Conference, 2009, pp. 93–94.

[35] K.-T. Cheng and A. Krstic, “Current directions in automatic test-pattern generation,”
Computer, vol. 32, no. 11, pp. 58–64, 1999. doi: 10.1109/2.803642 .

[36] S. Borkar, “Gpu accelerated vlsi design verification,” in 2010 10th IEEE International
Conference on Computer and Information Technology, 2010, pp. 1213–1218.

[37] L. Trevillyan, D. Kung, R. Puri, L. Reddy, and M. Kazda, “An integrated environment
for technology closure of deep-submicron ic designs,” IEEE Design Test of Computers,
vol. 21, no. 1, pp. 14–22, 2004. doi: 10.1109/MDT.2004.1261846 .

[38] H. Ren, R. Puri, L. Reddy, et al., “Intuitive eco synthesis for high performance cir-
cuits,” in 2013 Design, Automation Test in Europe Conference Exhibition (DATE),
2013, pp. 1002–1007. doi: 10.7873/DATE.2013.209 .

[39] X. Lin, R. Press, J. Rajski, et al., “High-frequency, at-speed scan testing,” IEEE
Design Test of Computers, vol. 20, no. 5, pp. 17–25, 2003. doi: 10.1109/MDT.2003.
1232252 .

[40] X. Lin and S. M. Reddy, “On gate function based tests for scan designs,” in 2016
International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2016,
pp. 1–4. doi: 10.1109/VLSI-DAT.2016.7482582 .

[41] A. Kumar, J. Rajski, S. M. Reddy, and T. Rinderknecht, “On the generation of
compact deterministic test sets for bist ready designs,” in 2013 22nd Asian Test
Symposium, 2013, pp. 201–206. doi: 10.1109/ATS.2013.45 .

[42] H. Ma, R. Guo, Q. Jing, et al., “A case study of testing strategy for ai soc,” in
2019 IEEE International Test Conference in Asia (ITC-Asia), 2019, pp. 61–66. doi:

 10.1109/ITC-Asia.2019.00024 .

101

https://doi.org/10.1145/1837274.1837398
https://doi.org/10.1109/ISSCC.2016.7417888
https://doi.org/10.1109/ISSCC.2016.7417888
https://doi.org/10.1109/2.803642
https://doi.org/10.1109/MDT.2004.1261846
https://doi.org/10.7873/DATE.2013.209
https://doi.org/10.1109/MDT.2003.1232252
https://doi.org/10.1109/MDT.2003.1232252
https://doi.org/10.1109/VLSI-DAT.2016.7482582
https://doi.org/10.1109/ATS.2013.45
https://doi.org/10.1109/ITC-Asia.2019.00024

[43] L. Goldstein, “Controllability/observability analysis of digital circuits,” IEEE Trans-
actions on Circuits and Systems, vol. 26, no. 9, pp. 685–693, 1979. doi: 10.1109/TCS.
1979.1084687 .

[44] K.-H. Tsai, “Testability-driven fault sampling for deterministic test coverage estima-
tion of large designs,” in 2014 IEEE 23rd Asian Test Symposium, 2014, pp. 119–124.
doi: 10.1109/ATS.2014.32 .

[45] A. Kamran and Z. Navabi, “Homogeneous many-core processor system test distribu-
tion and execution mechanism,” in 2014 19th IEEE European Test Symposium (ETS),
2014, pp. 1–2. doi: 10.1109/ETS.2014.6847839 .

[46] I. Ma, H. K. Lau, J. Reynick, and Y. Huang, “Innovative practices on dft for ai chips,”
in 2019 IEEE 37th VLSI Test Symposium (VTS), 2019, pp. 1–1. doi: 10.1109/VTS.
2019.8758655 .

[47] M. Sharma, A. Dutta, W.-T. Cheng, B. Benware, and M. Kassab, “A novel test access
mechanism for failure diagnosis of multiple isolated identical cores,” in 2011 IEEE
International Test Conference, 2011, pp. 1–9. doi: 10.1109/TEST.2011.6139171 .

[48] Y. Watanabe and R. Brayton, “Incremental synthesis for engineering changes,” in
[1991 Proceedings] IEEE International Conference on Computer Design: VLSI in
Computers and Processors, 1991, pp. 40–43. doi: 10.1109/ICCD.1991.139840 .

[49] C.-C. Lin, K.-C. Chen, and M. Marek-Sadowska, “Logic synthesis for engineering
change,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 18, no. 3, pp. 282–292, 1999. doi: 10.1109/43.748158 .

[50] C. E. Leiserson, F. M. Rose, and J. B. Saxe, “Optimizing synchronous circuitry by
retiming (preliminary version),” in Third Caltech Conference on Very Large Scale
Integration, R. Bryant, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 1983,
pp. 87–116.

[51] C. E. Leiserson and J. B. Saxe, Retiming synchronous circuitry, 1991.

[52] S.-H. Song and L. Kinney, “Incremental test pattern generation,” in Digest of Papers
Eleventh Annual 1993 IEEE VLSI Test Symposium, 1993, pp. 244–250. doi: 10.1109/
VTEST.1993.313353 .

102

https://doi.org/10.1109/TCS.1979.1084687
https://doi.org/10.1109/TCS.1979.1084687
https://doi.org/10.1109/ATS.2014.32
https://doi.org/10.1109/ETS.2014.6847839
https://doi.org/10.1109/VTS.2019.8758655
https://doi.org/10.1109/VTS.2019.8758655
https://doi.org/10.1109/TEST.2011.6139171
https://doi.org/10.1109/ICCD.1991.139840
https://doi.org/10.1109/43.748158
https://doi.org/10.1109/VTEST.1993.313353
https://doi.org/10.1109/VTEST.1993.313353

[53] Y. Watanabe and R. Brayton, “The maximum set of permissible behaviors for fsm
networks,” in Proceedings of 1993 International Conference on Computer Aided De-
sign (ICCAD), 1993, pp. 316–320. doi: 10.1109/ICCAD.1993.580075 .

[54] J.-H. R. Jiang, V. N. Kravets, and N.-Z. Lee, “Engineering change order for combina-
tional and sequential design rectification,” in 2020 Design, Automation Test in Europe
Conference Exhibition (DATE), 2020, pp. 726–731. doi: 10.23919/DATE48585.2020.
9116504 .

[55] J. McPherson, “Reliability trends with advanced cmos scaling and the implications
for design,” in IEEE Custom Integrated Circuits Conference, 2007, pp. 405–412.

[56] H. Reyserhove and W. Dehaene, Efficient Design of Variation-Resilient Ultra-Low
Energy Digital Processors. Springer, 2019.

[57] L. Lavagno, A. Kondratyev, Y. Watanabe, et al., “Incremental high-level synthesis,”
in 2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC),
2010, pp. 701–706. doi: 10.1109/ASPDAC.2010.5419798 .

[58] K. Chakravadhanula, V. Chickermane, P. Cunningham, et al., “Advancing test com-
pression to the physical dimension,” in 2017 IEEE International Test Conference
(ITC), 2017, pp. 1–10. doi: 10.1109/TEST.2017.8242035 .

[59] J. Joe, N. Mukherjee, I. Pomeranz, and J. Rajski, “Fast test generation for structurally
similar circuits,” in 2022 IEEE 40th VLSI Test Symposium (VTS), 2022, pp. 1–7. doi:

 10.1109/VTS52500.2021.9794232 .

[60] H. Ren, R. Puri, L. Reddy, et al., “Intuitive eco synthesis for high performance cir-
cuits,” in 2013 Design, Automation Test in Europe Conference Exhibition (DATE),
2013, pp. 1002–1007. doi: 10.7873/DATE.2013.209 .

[61] A. Stempkovskiy, D. Telpukhov, and R. Soloviev, “Fast and accurate resource-aware
functional eco patch generation tool,” in 2018 Moscow Workshop on Electronic and
Networking Technologies (MWENT), 2018, pp. 1–6. doi: 10.1109/MWENT.2018.
8337192 .

[62] K. Mei, “Bridging and stuck-at faults,” IEEE Transactions on Computers, vol. C-23,
no. 7, pp. 720–727, 1974. doi: 10.1109/T-C.1974.224020 .

103

https://doi.org/10.1109/ICCAD.1993.580075
https://doi.org/10.23919/DATE48585.2020.9116504
https://doi.org/10.23919/DATE48585.2020.9116504
https://doi.org/10.1109/ASPDAC.2010.5419798
https://doi.org/10.1109/TEST.2017.8242035
https://doi.org/10.1109/VTS52500.2021.9794232
https://doi.org/10.7873/DATE.2013.209
https://doi.org/10.1109/MWENT.2018.8337192
https://doi.org/10.1109/MWENT.2018.8337192
https://doi.org/10.1109/T-C.1974.224020

[63] S. Eggersglüß, R. Krenz-Bååth, A. Glowatz, F. Hapke, and R. Drechsler, “A new
sat-based atpg for generating highly compacted test sets,” in 2012 IEEE 15th In-
ternational Symposium on Design and Diagnostics of Electronic Circuits Systems
(DDECS), 2012, pp. 230–235. doi: 10.1109/DDECS.2012.6219063 .

[64] V. Bhardwaj, “Shift left trends for design convergence in soc: An eda perspective,”
in International Journal of Computer Applications, 2021, pp. 22–27.

[65] J.-H. R. Jiang, V. N. Kravets, and N.-Z. Lee, “Engineering change order for combina-
tional and sequential design rectification,” in 2020 Design, Automation Test in Europe
Conference Exhibition (DATE), 2020, pp. 726–731. doi: 10.23919/DATE48585.2020.
9116504 .

[66] I. H.-R. Jiang and H.-Y. Chang, “Ecos: Stable matching based metal-only eco syn-
thesis,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20,
no. 3, pp. 485–497, 2012. doi: 10.1109/TVLSI.2011.2104377 .

[67] N.-Z. Lee, V. N. Kravets, and J.-H. R. Jiang, “Sequential engineering change order
under retiming and resynthesis,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2017, pp. 109–116. doi: 10.1109/ICCAD.2017.
8203767 .

[68] J. Joe, N. Mukherjee, I. Pomeranz, and J. Rajski, “Test generation for an iterative
design flow with rtl changes,” in 2022 IEEE International Test Conference (ITC),
2022, pp. 1–9.

[69] J. A. Waicukauski, E. Lindbloom, B. K. Rosen, and V. S. Iyengar, “Transition fault
simulation,” IEEE Design Test of Computers, vol. 4, no. 2, pp. 32–38, 1987. doi:

 10.1109/MDT.1987.295104 .

[70] J. Savir, “Skewed-load transition test: Part i, calculus,” in Proceedings International
Test Conference 1992, 1992, pp. 705–. doi: 10.1109/TEST.1992.527892 .

[71] J. Savir and S. Patil, “Scan-based transition test,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 12, no. 8, pp. 1232–1241, 1993.
doi: 10.1109/43.238615 .

104

https://doi.org/10.1109/DDECS.2012.6219063
https://doi.org/10.23919/DATE48585.2020.9116504
https://doi.org/10.23919/DATE48585.2020.9116504
https://doi.org/10.1109/TVLSI.2011.2104377
https://doi.org/10.1109/ICCAD.2017.8203767
https://doi.org/10.1109/ICCAD.2017.8203767
https://doi.org/10.1109/MDT.1987.295104
https://doi.org/10.1109/TEST.1992.527892
https://doi.org/10.1109/43.238615

A. ADDITIONAL EXPERIMENTS FOR CHAPTER-1

A.1 Single Changes

The first experiment introduces one change at a time. For each circuit, ten different

versions are generated by introducing a single change at a random location in each of the

versions. The modifications involve changing a gate type, for example, AND to OR, AND

to NAND, etc., in the gate-level netlist.

In Table A.1 , each row corresponds to one of the 11 circuits. The row shows the average,

minimum, and maximum of each one of different parameters for all the ten versions of the

circuit. These results are shown under the sub-columns "avg", "min", and "max". Sub-column

"Circuit1" shows the results for circuit1 in the respective categories. The first column, "size,"

gives the total number of gates present in each circuit. Column "Output cones" gives the

total number of output cones in the circuit. The next column, "Different Output Cones",

shows the number of output cones that changed in circuit 2 compared to circuit1. Column

"Incremental ATPG" gives the time taken in seconds to run incremental ATPG on circuit2.

Column "Run Time" shows the overall time taken in seconds for test pattern generation. For

circuit2, the total runtime includes the time taken for signature computation, mapping, and

fault simulation, as well as for incremental ATPG. Column "Test Patterns" shows the total

number of test patterns in both the circuits after ATPG. The last column, "Fault coverage",

shows the fault coverage achieved in circuit1 and the average fault coverage seen in the

different versions of circuit2.

105

T
ab

le
A

.1
.

Ex
pe

rim
en

ta
lR

es
ul

t
fo

r
Si

ng
le

C
ha

ng
es

Si
ze

O
ut

pu
t

C
on

es
D

iff
er

en
t

O
ut

pu
t

C
on

es
In

cr
em

en
ta

lA
T

PG
(s

)
Ru

nT
im

e
(s

ec
on

ds
)

av
g

m
in

m
ax

av
g

m
in

m
ax

C
irc

ui
tl

av
g

m
in

m
ax

1
8,

61
1,

74
9

42
9,

70
8

1,
56

2
16

10
,1

46
26

6
18

1,
04

0
7,

02
0

50
8

26
6

1,
27

1
2

3,
43

5,
49

3
27

6,
46

2
37

7
12

9
41

,0
81

30
9

35
62

2
99

77
10

4
3

4,
83

3,
05

2
33

4,
10

8
9,

48
6

3
69

,2
57

31
0

13
9

1,
56

8
12

5
93

23
3

4
10

,2
13

,2
81

60
1,

46
9

30
,3

80
64

7
14

0,
36

9
34

0
59

1,
10

5
9,

30
0

1,
34

5
1,

04
5

2,
10

5
5

15
,1

02
,0

44
1,

21
5,

33
7

8,
38

0
34

0
30

,1
46

21
6

85
48

5
13

,7
40

1,
20

7
1,

07
4

1,
47

2
6

3,
04

8,
59

9
17

4,
50

5
3,

75
1

21
4

21
,6

87
20

5
42

1,
26

0
13

3
11

5
15

2
7

3,
51

9,
13

5
21

9,
28

0
7,

00
3

53
37

,6
69

19
0

9
42

1
5,

10
3

41
4

22
8

64
3

8
1,

20
3,

56
8

45
,3

45
2,

36
1

21
8,

24
0

15
4

35
48

4
28

17
48

9
1,

69
9,

50
9

89
,9

08
11

,0
97

2,
43

6
22

,8
24

36
2

5
1,

18
1

10
,1

68
46

9
90

1,
31

7
10

6,
38

9,
26

0
30

2,
54

0
7,

31
7

57
33

,7
56

28
10

78
1,

77
7

25
2

20
2

28
1

11
12

,1
67

,3
08

44
0,

54
0

24
,0

63
40

5
16

1,
26

7
18

1
20

62
9

6,
44

6
88

2
71

2
1,

32
9

Te
st

Pa
tt

er
ns

Fa
ul

t
C

ov
er

ag
e(

%
)

C
irc

ui
t1

av
g

m
in

m
ax

C
irc

ui
t1

av
g

1
2,

33
4

2,
86

1
2,

34
2

4,
00

6
97

.0
6

97
.0

6
2

1,
45

9
1,

56
5

1,
45

9
1,

66
5

92
.9

0
92

.9
1

3
1,

40
8

1,
51

5
1,

40
8

1,
73

7
92

.0
8

92
.0

8
4

7,
42

4
8,

37
8

7,
44

4
12

,4
80

90
.8

5
90

.8
8

5
4,

54
4

5,
27

1
4,

54
7

7,
69

2
94

.4
6

94
.4

7
6

2,
94

4
3,

21
0

2,
98

5
3,

56
9

91
.9

2
91

.9
2

7
5,

15
5

5,
90

0
5,

15
5

7,
49

9
97

.0
2

97
.0

3
8

1,
81

1
2,

09
1

1,
80

4
3,

01
7

88
.5

8
88

.5
8

9
2,

16
3

3,
01

7
2,

16
8

4,
35

8
97

.6
2

97
.8

7
10

2,
52

0
2,

71
8

2,
52

0
3,

28
4

90
.8

3
90

.8
6

11
7,

16
8

7,
35

5
7,

10
2

8,
73

3
91

.6
5

91
.9

0

106

From the column "avg" under "different Output Cones" in Table A.1 , it can be seen that

introducing a single change can affect between 0.1% to 12.3% of total number of output

cones for the 11 circuits. An average of 16% variation is seen between the minimum and

the maximum number of different cones within ten versions of each circuit. The number

of output cones different in circuit 2 compared to circuit1 has an affect on time taken for

the incremental ATPG. The higher the number of different cones, the higher the number

of unmatched inputs, which results in fewer faults being identified after mapping. This

will increase the time taken for incremental ATPG which translates to increase in the total

runtime. From Table A.1 , it can be seen that there is an average of 11-fold gain in runtime

to achieve the same fault coverage in circuit2 compared to circuit1 for all the circuits.

Table A.2. Results of Runtime Gain and Test Pattern Increase for Table A.1

Runtime Test
Patterns

Gain Increase(%)
1 13.82 22.58
2 6.30 7.27
3 12.54 7.60
4 6.91 12.85
5 11.38 16.00

Runtime Test
Patterns

Gain Increase (%)
6 9.47 9.04
7 12.33 14.45
8 17.29 15.46
9 21.68 39.48
10 7.05 7.86
11 7.31 2.61

For a more detailed analysis of the results, each one of the 10 versions of circuit 7 in

Table A.1 is described in Table A.3 .

In Table A.3 , each row shows a different version of circuit 7. Column "Different cones"

shows the number of output cones that changed in circuit2 compared to circuit1. Column "Inc

ATPG" gives the time taken in seconds for running incremental ATPG on circuit2. Column

"Fault Coverage" is further subdivided into "Map" and "ATPG" .Sub-column "Map" gives

the fault coverage after mapping the patterns read from circuit1, while sub-column "ATPG"

gives the total fault coverage after the whole process. Column "Test Patterns" shows the

total number of test patterns in circuit2, and column "Run Time" shows the overall time

taken in seconds for test pattern generation.

107

Table A.1 shows that before any change was done on circuit 7, it had a fault coverage of

97.02%. This was achieved with a total number of 5,155 test patterns in 5,103 seconds. From

Table A.3 , it can be seen that a single change can affect 54 to 37,669 different cones for this

circuit. For version 4, with 37,669 different cones, the final fault coverage was achieved with

6,881 patterns. On the other hand, for version 10 with 10,703 different cones, the final fault

coverage was achieved with 7,499 patterns. This difference in the number of test patterns

generated during incremental ATPG is explained by the total number of hard to detect faults

remaining after mapping patterns.

Table A.3. Results for Individual Runs for 10 Versions of Circuit 7 from Table A.1

Different Inc Fault Coverage Test Run-
Cones ATPG Map ATPG Pattern Time

% % (secs)
1 59 20 97.02 97.03 5,157 241.5
2 1,734 218 97.02 97.15 5,922 440.5
3 15,144 376 96.97 97.15 6,134 596.7
4 37,669 359 96.94 97.28 6,881 597.5
5 1,662 224 97.02 97.15 5,923 448.0
6 281 12 97.02 97.03 5,173 238.0
7 988 38 97.02 97.03 5,222 260.0
8 54 9 97.02 97.04 5,155 228.4
9 1,724 223 97 97.15 5,937 443.4
10 10,703 421 96.55 97.03 7,499 643.3

Table A.2 shows the runtime gain and percentage increase in the number of test patterns

based on the data in Table A.1 . From Tables A.1 , A.3 and A.2 , it can be seen that with

a small change, a large number of output cones can be affected. However, by utilizing

the structural similarity between the circuits, the test generation time can be considerably

reduced. The algorithm proposed in this paper focuses on determining the testability of a

circuit given a test set for another structurally identical circuit and does not optimize the

pattern inflation. There is an average of 14% increase in the number of test patterns in

circuit2 compared to circuit1. This can be mitigated by rerunning test pattern generation

after the design converges or occasionally when the number of patterns increases significantly.

108

A.2 Cumulative changes

For the second experiment, ten different versions for each circuit are created. The mod-

ifications are carried forward to the next versions, i.e., the first version has one change, the

second version has one change on top of the first version, and so on. The signature and

pattern file read for the analysis in circuit 2 comes from the previous version.

Table A.4 is tabulated in the same way as Table A.1 . Here, the results for the cumulative

changes in the modified circuit are shown. Table A.5 shows the summary of runtime gain

and percentage increase in number of test patterns in similar way it is reported in Table

 A.3 . From Table A.4 , it can be seen that on average there is a 11x gain in runtime when

the changes in the circuit is cumulative. There is an average of 58% increase in number of

test patterns compared to the baseline circuit. This, again, can be mitigated by running test

pattern generation from the beginning.

109

T
ab

le
A

.4
.

Ex
pe

rim
en

ta
lR

es
ul

t
fo

r
C

um
ul

at
iv

e
C

ha
ng

es
D

iff
er

en
t

O
ut

pu
t

C
on

es
Ru

nT
im

e
Te

st
Pa

tt
er

ns
Fa

ul
t

C
ov

er
ag

e
av

g
m

in
m

ax
Ba

se
lin

e
av

g
m

in
m

ax
Ba

se
lin

e
av

g
m

in
m

ax
Ba

se
lin

e
av

g
1

1,
56

2
16

10
,1

46
7,

02
0

59
3

24
2

1,
43

1
2,

33
4

3,
93

8
2,

34
2

5,
88

0
97

.0
6

97
.0

7
2

7,
33

6
12

9
41

,0
81

62
2

77
68

84
1,

45
9

1,
79

4
1,

47
1

2,
01

8
92

.9
0

92
.9

6
3

9,
48

6
3

69
,2

57
1,

56
8

13
2

93
24

4
1,

40
8

1,
87

0
1,

49
9

2,
39

6
92

.0
8

92
.1

0
4

33
,4

69
64

7
14

0,
36

9
9,

30
0

1,
45

1
98

8
2,

35
0

7,
42

4
10

,8
96

7,
47

3
16

,0
97

90
.8

5
90

.9
2

5
8,

38
0

34
0

30
,1

46
13

,7
40

1,
16

0
97

1
1,

41
6

4,
54

4
7,

38
3

4,
60

8
9,

32
1

94
.4

6
94

.4
9

6
3,

75
1

21
4

21
,6

87
1,

26
0

14
4

12
0

15
8

2,
94

4
4,

56
0

3,
04

4
5,

23
9

91
.9

2
91

.9
8

7
7,

00
3

53
37

,6
69

5,
10

3
42

6
21

8
72

5
5,

15
5

7,
82

1
5,

15
7

10
,6

59
97

.0
2

97
.2

3
8

2,
36

1
21

8,
24

0
48

4
30

18
43

1,
81

1
3,

29
1

1,
90

5
4,

14
5

88
.5

8
88

.5
8

9
11

,0
97

2,
43

6
22

,8
24

10
,1

68
40

3
11

1
1,

31
7

2,
16

3
5,

41
4

3,
49

8
6,

59
2

97
.6

2
97

.8
9

10
7,

31
7

57
33

,7
56

1,
77

7
25

5
21

8
28

1
2,

52
0

4,
14

1
3,

28
4

4,
54

7
90

.8
3

90
.8

7
11

24
,0

63
40

5
16

1,
26

7
6,

44
6

80
5

65
2

1,
19

8
7,

16
8

7,
91

4
7,

13
9

9,
25

6
91

.6
5

91
.7

5

110

From Tables V and VI, it can be seen that there is an average of 11-fold gain in runtime to

achieve the same fault coverage in circuit2 compared to circuit1. The results from cumulative

changes remain consistent with the observations drawn from Tables A.1 , A.3 and A.2 . The

time taken for incremental ATPG and total test generation process depends on the number

of cones affected by the change introduced in the previous versions of a given circuit. For

cumulative changes, the pattern file of the previous version is considered as T1 which gets

transformed to T2. This results in accumulation of test patterns during TABLE A.4 :

Table A.5. Results of Runtime Gain and Test Pattern Increase for Table A.4

Runtime Test
Patterns

Gain % increase
1 11.84 68.72
2 8.08 22.96
3 11.88 32.81
4 6.41 46.77
5 11.84 62.48

Runtime Test
Patterns

Gain % increase
6 8.75 54.89
7 11.98 51.72
8 16.13 81.72
9 25.23 150.30
10 6.97 64.34
11 8.01 10.41

111

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	VLSI Design Flow
	 Design for Testability
	Scan Design
	Built-In-Self-Test (BIST)
	Boundary Scan

	Fault Models
	Stuck-At Fault
	Transition Fault
	Path Delay Fault
	Bridging fault

	Previous Works
	Incremental Test Pattern Generation
	Incremental Logic synthesis using structural similarity
	Structural similarity during Place & Route

	Contribution
	 Thesis Overview

	FAST TEST GENERATION FOR STRUCTURALLY SIMILAR CIRUITS
	Introduction
	Test Generation Process
	Overview
	Signature Computation
	Mapping between circuit1 and circuit2
	Transforming the Pattern File
	Incremental ATPG

	Experimental Setup and Results
	Experimental Study on Signature Aliasing
	Logic changes
	Sequential changes

	Conclusion

	TEST GENERATION FOR AN ITERATIVE DESIGN FLOW WITH RTL CHANGES
	Introduction
	Motivation and Background
	Review
	Mapping between two versions of a circuit
	Mapping between two versions of a circuit
	Pattern Transformation and Fault Simulation
	Examples of different types of RTL changes

	Proposed Methodology
	Overview
	Unique Signature Mapping Illustration
	Mapping Based on Unique Signature Pairs
	Mapping Common Signature Pairs
	Mapping for the Remaining Unmapped Outputs

	Experiment and Results
	Conclusion

	GENERATION OF TWO-CYCLE TESTS FOR STRUCTURALLY SIMILAR CIRCUITS
	Introduction
	Motivation for two-cycle signatures
	Two-cycle Signature Computation
	Test Generation Procedure
	Mapping of Inputs and Outputs
	 Transformation of Patterns
	 Fault Simulation and Incremental ATPG

	Experimental Results
	RTL changes
	Gate-level changes
	Discussion

	Conclusion

	CONCLUSION
	REFERENCES
	ADDITIONAL EXPERIMENTS FOR CHAPTER-1
	Single Changes
	Cumulative changes

