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ABSTRACT

Online business models have become increasingly popular in recent years, providing new

opportunities for entrepreneurs and established companies alike. However, along with these

opportunities come new risks, particularly in the realm of web security. While traditional

threats typically affect the backend systems that provide web services, attackers nowadays

can also target the actual business model itself to make financial damage. The threats are

becoming more difficult to discover because of the wide-scaled and complex web ecosystem

that involves multiple parties.

In this dissertation, we present proposals to identify web security threats to online busi-

ness models. Specifically, we first introduce a novel ad budget draining attack, AdBud-

getKiller, in order to demonstrate a possible attack scenario with real-world cases and to

come up with prevention methods. AdBudgetKiller automatically discloses a targeting strat-

egy of an advertiser, then fabricate browsing profiles to dispatch advertisements from the

targeted advertiser.

We also present a testing-based approach to automatically identify client-side business

flow tampering vulnerabilities. In particular, our method systematically analyzes websites

to gather potential tampering locations by using dynamic execution data collection. We

then test the websites with tampering proposals to identify any business flow tampering

vulnerabilities. Further, we present an enhanced detection method for digital content services

that detects business flow tampering vulnerabilities. We perform differential analysis on

collected execution traces to determine how the business flow begins to differ. Then we test

if the divergence points can be tampered with.
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1. INTRODUCTION

The Internet is becoming a dominant platform for various types of business models. E-

commerce business is growing rapidly that the global online shopping market is forecast to

reach $7 trillion by 2025 [  1 ]. Advertising is the primary source of revenue for the overwhelm-

ing majority of online companies, and Internet advertising revenues in the United States

totaled $189 billion in 2021 [  2 ]. Revenue in the Video Streaming (SVoD) segment in the

United States is projected to reach $39.2 billion in 2023. [  3 ]. The increasing popularity of

online business has created an attractive attack surface. Unlike the traditional threats that

usually affect backend systems providing web services, attackers can target actual business

model itself by exploiting vulnerabilities or manipulating business flows, and these attacks

can cause financial damage directly. For example, most newspaper websites use paywall

methods that provide a few numbers of free articles for new users, then restrict access by

showing subscription messages. If an attacker can bypass the paywall method to see an

unlimited number of articles without the subscription, this would cause financial loss.

One of the reasons that online business suffers from this type of security threats is the

inevitable participation of multiple parties. Client-side web applications running on web

browsers play an important role such as coordinating internal conditions, collecting user-

specific footprints, or easing server-side work burdens. Sensitive business logic implemented

in the client-side can be easily targeted, and attackers might be able to manipulate the

workflow of the logic operations in a controlled manner and achieve various damages. Fur-

thermore, the client-side web applications nowadays are often integrated with content and

services from multiple sources. For example, the ad-delivery process, which is an essential

business operation of many web-based systems, is usually decoupled from the server-side (i.e.,

content publisher) and is rather performed on the client-side with the help of an external

entity (i.e., advertiser). Even if the server-side web service and system are well-protected,

the service provider cannot ensure the security levels of all participated third party entities.

Due to the complex integration of the client, server and other parties, online business is not

immune to web security threats.
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1.1 Dissertation Statement

In order to build a secure web ecosystem for online business, this dissertation is focused

on developing program analysis and testing techniques to identify web security threats to

online business models.

In particular, we identify a potential ad budget draining attack, called AdBudgetKiller,

targeting at specific advertisers by repeatedly pulling their ads to damage the budget. We

develop a testing-based approach to automatically identify client-side business flow tamper-

ing vulnerabilities. We further propose enhanced approach that discovers the business flow

tampering vulnerabilities for digital content service.

1.2 Contributions

The contributions of this dissertation are as follows:

• We propose a novel ad budget draining attack system, AdBudgetKiller, against specific

advertisers. By leveraging retargeting ads ubiquitously displayed in general websites,

the attack is able to repeatedly pull out the ads belonging to the targeted advertisers

and effectively drain their ad campaign budgets. We develop a novel technique called

ADHoneyClient to automatically train users’ browsing profiles and discover the target-

ing strategies used by advertisers using a black-box testing approach. We evaluate our

technique on Alexa Top 500 public advertisers, and successfully reveal the targeting

strategies of 254 out of 291 public advertisers considered in the experiments We perform

distributed attacks against a controlled advertiser as well as 3 real-world advertisers

using 10 distributed machines. Within an hour, the attack effectively fetched 40, 958

ads and drained up to $155.89 from the campaign budget of the targeted advertisers.

• We propose a testing-based approach to automatically identify business flow tampering

vulnerabilities. In particular, our method systematically examines websites as follows;

first, starting with business operation descriptions, we navigate the website and col-

lect a set of functions that may be relevant to the business logic. Then, We analyze

each candidate function and look for potential tampering locations, which may perturb

14



the intended behavior if modified. After that, We develop techniques to select func-

tions that are more likely to be vulnerable and generate tampering proposals for each

selected function. Finally, We revisit the website with the tampering proposals and

confirm if the detection results are indeed business flow tampering vulnerabilities. We

evaluate our technique on 200 popular real-world websites. With negligible overhead,

we have successfully identified 27 unique vulnerabilities on 23 websites, such as New

York Times, HBO, and YouTube, where an adversary can interrupt business logic to

bypass paywalls, disable adblocker detection, earn reward points illicitly, etc.

• We propose an automated approach that discovers business flow tampering flaws for

digital content service. Our technique automatically runs a web service to cover dif-

ferent business flows (e.g., a news website with vs. without a subscription paywall)

to collect execution traces. We perform differential analysis on the execution traces

to identify divergence points that determine how the business flow begins to differ,

and then we test to see if the divergence points can be tampered with. We assess

our approach against 352 real-world digital content service providers and discover 315

flaws from 204 websites, including TIME, Fortune, and Forbes. Our evaluation result

shows that our technique successfully identifies these flaws with low false-positive and

false-negative rates of 0.49% and 1.44%, respectively.
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2. ADBUDGETKILLER: ONLINE ADVERTISING BUDGET

DRAINING ATTACK

In this chapter, we present a new ad budget draining attack. By repeatedly pulling out

the ads belonging to the targeted advertisers using crafted browsing profiles, we are able to

reduce the chance of showing their ads to real-human visitors and trash their ad budget.

With the advertiser profiles collected by an automated ad crawler ADHoneyClient, we infer

the advertising strategies set by the targeted advertisers and train browsing profiles that

satisfy their strategies. We launched large-scale attacks using distributed machines hosted

on public cloud computing services. We evaluate our methods and reverse engineer the

targeting strategies of 291 public advertisers selected from Alexa Top 500. We successfully

revealed the strategies used by 87% of the public advertisers we considered. We also executed

a series of attacks against a controlled advertiser and 3 real-world advertisers within the

ethical and legal boundary. The attack result shows that we are able to fetch 40, 958 ads

from the targeted advertisers and drain up to $155.89 of the ad budget within an hour.

2.1 Introduction

Online advertising is the primary source of income for many Internet companies. In the

US market, Google and Facebook generated $168.44 and $112.68 billion [  4 ] from advertising

in 2022 respectively. According to a report by the Internet Advertising Bureau (IAB), the

revenues generated from Internet advertising in the United States totaled $189.3 billion in

the full year 2021 [  2 ], which represents an increase of 35.4% from the revenues reported in

2020. It is estimated that the U.S. digital advertising will continue its growth and the ad

revenue will reach $297.4 billion in 2023 [ 5 ].

In its basic form, online advertising entails selling spaces on websites to parties interested

in showing ads for a monetary fee. However, the mechanisms and backing up the online

advertising ecosystem are quite complex. The ad delivery infrastructure involves four major

parties: publishers, advertisers, ad network, and ad exchange. Publishers are websites owners

who offer space to display ads on their websites. Advertisers pay publishers for ad slots to
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place specific ad content with embedded links. Ad networks play the role of match-makers to

bring together publishers with advertisers who are willing to pay the most for the publisher’s

offered space. Ad exchanges are networks of ad networks. An ad exchange works similarly

as an ad network, except that the buying and selling entities within an ad exchange are ad

networks.

To reach the most receptive audience, advertisers often use sophisticated targeting meth-

ods to serve ads to the right viewers. The targeting strategies can either be geographical

based such as serving an ad to users in a specific country or demographically focused on

age, gender, etc. They can also be behavioral variables (such as a user’s browsing activities

and the purchase history) or contextually focused by serving ads based on the content of a

website. In addition, advertisers may employ different targeting strategies. Some advertisers

may value customers who placed an item in cart as more promising potential buyers than

customers who simply browsed the item page. So they deliver different ads to these two

types of customers. Others may consider them as equally favorable and apply the same

strategy.

Retargeting is a technique where advertisers use behavioral targeting strategies to pro-

mote ads that follow users after they have expressed a prior interest in an advertiser’s website,

such as looked at or purchased a particular product. Retargeting is very effective as a re-

targeting ad is personalized to an individual user’s interests, rather than targeting groups of

people whose interests may vary.

Given the underlying lucrative benefits, the involved ad parties have strong incentives

to conduct fraudulent activities. In fact, advertising fraud becomes a massive problem in

ad industry and is ruining this billion-dollar business. Ad fraud is costing the U.S. media

industry around $81 billion in 2022 and predicted to increase to $100 billion by 2023 [  6 ].

In this chapter, we propose an innovative ad budget draining attack by precisely fetch-

ing ads from the targeted advertisers. Our technique is able to reverse engineer targeting

strategies and train browsing profiles that satisfy the conditions set by the advertisers.

In summary, we make the following contributions.
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Figure 2.1. Ad ecosystem

• We propose a novel ad budget draining attack targeting at specific advertisers by

repeatedly pulling their ads to trash the budget.

• We develop a black-box testing based technique to automatically infer targeting strate-

gies and create satisfying browsing profiles.

• Out of 291 advertisers selected from Alexa Top 500, we successfully revealed the tar-

geting strategies used by 254 advertisers.

• We launched distributed attacks against a controlled advertiser and 3 real-world ad-

vertisers. We are able to fetch 40, 958 ads and drained up to $155.89 within an hour.

2.2 Online Advertising

In this section, we discuss the entities in the ecosystem and explain how retargeting ad

works. We also show existing threats of the ad ecosystem.

2.2.1 Ad Ecosystem

The entities in the ad ecosystem include publishers, advertisers, ad networks, and ad

exchanges. Publishers are the websites who earn money by selling ad space on their pages.
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Advertisers are the buyers who pay ad networks to deliver their ads. Ad networks are the

entities that connect advertisers with websites and help advertisers find right publishers.

Ad exchanges are networks of ad networks, which enable ad traffic transactions among ad

networks.

Fig.  2.1 explains how an ad is delivered by an ad exchange. When a user visits the

publisher website 1 , an ad request is sent to the ad exchange 2 . The ad exchange conducts

a real-time auction, where the exchange sends requests to ad networks 3 . Based on the

user’s characteristic, ad networks respond with their offers 4 . The ad exchange picks an

offer and delivers the winner’s ad to the user 5 . The whole auction is done in milliseconds.

The ecosystem delivers ads for a fee. There are several pricing models and cost per

thousand impressions (CPM) is commonly used. Assume the CPM is $7 in Fig.  2.1 . The

winning advertiser (Advertiser 2) pays 0.7 cents per ad, which will be split among the ad

network, the ad exchange, and the publisher.

2.2.2 Retargeting Ad

E-commerce websites want attract potential customers by all means, hoping they will

make purchases, become registered users, etc. The percentage of visitors attracted is called

the conversion rate. In reality, only 2% of visitors take desired actions in their first visit [  7 ].

Retargeting is created to attract the remaining customers by display personalized ads. It

tracks website visitors and delivers customized ads when they visit other websites.

In particular, advertisers need to identify a list of high-value visitors. To do so, adver-

tisers include a retargeting pixel, which is a small snippet provided by a retargeting service

provider, in their web pages. When a user arrives, the pixel drops an anonymous cookie and

enroll this visitor to the list. The anonymous cookie acts as the browsing profile, which is

a set of IDs and memorizes browsing activities. The retargeting service providers identify

unconverted visitors and deliver them personalized ads. To reach more visitors, the retarget-

ing service providers maintain partnership with major ad networks, such as Facebook, and

Google Display Network. They participates the real-time ads auctions and bids aggressively.
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Retargeting is very effective. E-commerce sites can save money and efforts by selectively

targeting visitors who have already expressed interests. According to Kimberly-Clark, a

global leader in selling paper products, they accounted for 50 − 60% conversion rates from

their retargeting efforts [ 8 ]. Similarly, [ 9 ] reported that online retailer ShopStyle gained a

200% increase in retargeting conversions. Retargeting also benefits customers because the

ads delivered are relevant to their interests.

2.2.3 Threats

While ad exchanges enable efficient and powerful campaigns, their pricing models make

the system a highly lucrative target for cyber-criminals. For instance, to artificially inflate

the actual impression amount and earn more money, a publisher can fabricate visits to

publisher pages such that the advertiser’s ad budget is wasted because the ads were not seen

by real human visitors. Such fraudulent activity is called impression fraud. Although ad

networks and exchanges perform real-time monitoring, it is always difficult to prevent from

various kinds of fraud activities because of the huge amount of ad traffic.

2.3 Ad Budget Draining Attack

In this section, we elaborate the ad budget draining attack. The victims of our budget

draining attack are people or companies that advertise their e-commerce websites using

retargeting ad services. The immediate consequence of the attack is the wasted advertisement

budget. Moreover, the chance of their ads being displayed can be reduced since it would be

difficult to win during the ad auction with the drained ad budget. The potential attackers

can be competitor advertisers who may try to drain the others’ ad budget and unfairly win

the competition. Another possible scenario is denial of service (DOS) attacks performed by

people who seek to make ads from the targeted advertiser unavailable for the purpose of

a protest. Fig.  2.2 shows the overall attack procedure. The attacker collects data about

the targeted advertiser, generates attack modules that automatically craft browsing profiles

and pull the victim’s ads. Note that the attack modules can be independently deployed to

launch distributed attack. Throughout these process, the attacker can drain the targeted
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Figure 2.2. Ad budget draining attack procedure

advertiser’s ad budget by repeatedly fetching ads. The details of our attack mechanism are

explained in the rest of this section.

2.3.1 Overview

As discussed in Sec.  2.2 , ad networks track website visitors and deliver targeted ads if

they satisfy the advertising strategies. Therefore, identifying the strategies is the first step to

attack a particular advertiser. Since ad networks may define arbitrary strategies, effectively

reverse-engineering the retargeting logic and craft corresponding browsing profiles are the

keys to reproducibly launch large-scale attacks. As shown in Fig.  2.3 , website modeling,

advertiser profiling, attack module generation and attack distribution are the major steps

involved in the ad budget draining attack.

1 Website Modeling. A website model represents structural designs and relationships

between web pages. In order to be classified as advertisers’ favored customers and eventually
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Figure 2.3. Attack Mechanism

see their ads, one effective way is to visit the advertisers’ websites and trigger the tracking

logic. However, identifying desired navigation sequences that effectively trigger the tracking

logic (e.g., products need to be put in the shopping cart) is not trivial due to the huge search

space. Therefore, our first step is to create a model for the targeted website to guide the

search. In particular, we navigate the targeted website, apply clustering algorithms to the

pages, then create a Finite State Machine (FSM) model. Details can be found in Sec.  2.3.2 .

2 Advertiser Profiling. In this step, we focus on inferring targeting strategies. We

develop ADHoneyClient to automatically discover the strategies based on black-box testing

techniques. We also identify the optimal ads fetch count to work around the rate limits set

by the ad networks. We explain our algorithms in Sec.  2.3.3 .

3 Attack Module Generation. The attack modules generated contain the training data

and the utilities to create satisfying browsing profiles, where training data is a set of HTML

page with ads tracking tags. The module also features an fetch page and an attack engine.

The fetch page is a single HTML page with several ads slots that pull the targeted ads. The

attack engine drives the whole training and ad fetching procedure. As ad networks may

equip IP based defense mechanisms, our attack engine can leverage the public proxy lists

and randomly change IP addresses to evade IP-based detections. Details can be found in

Sec.  2.3.4 .

4 Attack Distribution. The final step is to deploy the attack modules on multiple

machines to launch a distributed attack. In particular, each attack module trains a browsing
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profile satisfying the strategy from the training pages and repeatedly fetches ads using the

ad fetch page. We explain the details in Sec.  2.3.5 .

2.3.2 Website Modeling

A website model describes its structure and transitions among pages. It can be used to

guide the targeting strategy discovery. Fig.  2.4 shows the steps for model creation.

Browsing Trace Collector

The browsing trace collected at 1 in Fig.  2.4 is used to cluster pages. The collector

automatically records browsing activities while an attacker explores the targeted website.
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Table 2.1. Example of collected browsing trace
Trace

No
Page Event
ID URL ID Action XPath Data

1 P1 shopping.com E1 click //*[id="cat1"]
2 P2 ./cat1 E2 click //*[id="prod1"]
3 P3 ./item?prod=1 E3 dom //*[id="size"] 6
4 P4 #P3 E4 click //*[id="cat2"]
5 P5 ./cat2 E5 click //*[id="cat3"]
6 P6 ./cat3 E6 click //*[id="prod2"]

7 P7 ./item?prod=2 E7 dom //*[id="size"]
//*[id="color"]

7
white

8 P8 #P7 E8 click //*[id="AddToCart"]
9 P9 ./cart

Table  2.1 shows example traces. We record two types of data: pages visited and events

triggered. The page data contains the HTML source code and the corresponding URL. If no

redirection happens, the page ID is recorded (e.g., P4 in Table  2.1 ). The event data describes

the browsing action, the DOM object involved, and action attributes.

Note that we do not require a complete website model. Instead, we only need a few inputs.

In practice, we observed that usually a small number of actions are sufficient to trigger the

tracking logic. For example, if a visitor sees ads after she visited the advertiser’s product

page, only one action (i.e., visiting the advertiser’s product page) is needed. However, if an

advertiser targets visitors who added items to the shopping cart and left without buying,

the actions of 1) visiting a product page, 2) clicking the add-to-cart button and 3) visiting

the cart page are needed.

Page Clustering

With the trace collected, we group similar pages into clusters based on its functionality.

For example, P3 and P7 in Table  2.1 are grouped together as the product page. We apply

different clustering methods based on page types:
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• The Redirected Pages are ones clustered by context ( 2 in Fig.  2.4 ), where we compare

page structures. In particular, we calculate the DOM Tree Edit Distance (TED) [ 10 ,  11 ]

and measure the similarity using hierarchical clustering algorithms [ 12 ].

• The DOM Modified Pages are ones grouped using a link-based clustering method ( 3 in

Fig.  2.4 ). Specifically, DOM modified pages containing page IDs (links) in a same cluster

are grouped together. For example, in Table  2.1 , the page P4 is linked to the page P3, and

P8 is linked to the page P7. Since P3 and P7 are in the same cluster (product pages), P4

and P8 are grouped together.

Model Builder

The model builder connects the clusters based on the order observed in traces and assigns

event data to the edges. As a result, a Finite State Machine (FSM) is created, where nodes

represents states and edges with event annotations denote transitions. Fig.  2.5 shows a model

created from the example traces. By having a model, we can create proper browsing profiles

as many as possible, and more importantly, we can avoid creating redundant profiles.

2.3.3 Advertiser Profiling

As discussed in Sec.  2.2 , ad networks track website visitors and deliver targeted ads if

they satisfy the advertising strategies. As strategies are invisible to us, we have to infer the

strategies by profiling the targeted advertisers.

ADHoneyClient: An Automated Ad Crawler

We need a large amount of ads related data to infer the retargeting logic. To automate

the data collection process, we develop an ad crawler ADHoneyClient to fetch ads with

customized browsing profiles and emulate browsing activities. As ads are probably the most

complicated and dynamic snippets observed on general websites, ADHoneyClient has to

handle complicated DOM objects and dynamic JavaScript. ADHoneyClient has the following

two components:
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Figure 2.5. An example of website model

1) Browsing Profile Trainer. Browsing profiles are tracking IDs stored in cookies that

memorize the browsing history. Browsing profile trainer crafts browsing profiles by triggering

ads tracking logic. Starting from a fresh profile, the profile trainer produces customized

browsing profiles by simulating browsing activities. It navigates the website guided by the

model with example inputs. In the meantime, tracking scripts can update the browsing

profile and send browsing histories to the retargeting service providers.

2) Ad Extractor. The Ad extractor fetches ads using the crafted browsing profile generated

by the trainer. In particular, it infers the targeting strategy, ad specs and the optimal fetch

count. Details will be explained in Sec.  2.3.3 .

When ads arrive, Ad parser determines their sources, specifications (such as types and

sizes) and the ad network involved. It also extracts ads related HTML tags. In particular,

since ads are usually rendered in the nested <iframe> for security purposes, it drills down

and looks for specific ids (e.g. “google_ads_iframe_*” for DoubleClick). Once found,

it collects element attributes as well as HTML tags inside. To identify ad networks, we

manually developed 53 signatures. For example, the famous retargeting ad networks Criteo
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Table 2.2. HTML Tags Used for Ad Parser
HTML tag Attribute Ad information
<a> id, href ad_url, ad_network
<script> id, src, innerHTML ad_url, ad_network
<noscript> innerHTML ad_url
<iframe> id, src, name ad_network
<img>,<embed>,<object>,<video> width, height type, size

[ 13 ] can be identified if the src of <iframe> is *.criteo.com/delivery/r/afr.php?. Be-

sides, Ad parser harvests all URLs included in the HTML pages pointed by ads related

<iframe>. It also determines the size and type of the ads from the attributes of observed

<embed>,<object>, <video> and <img>. We found some tags found in ads related iframes

are not useful. We only collect the tags listed in Table  2.2 for better efficiency.

Advertiser Profiling

In this subsection, we explain the targeting strategy, Ad specification, and optimal Ad

fetch count produced by ADHoneyClient, which will be used as the training data in the next

step.

Targeting Strategy. A targeting strategy is a sequence of browsing activities which can

be used to identify high-value customers. For example, advertisers can target at visitors

who browsed the product pages or left something in carts without buying. A target strategy

simulates the browsing activities demonstrated by such favored visitors. Take the website

model in Fig.  2.5 as an example. A corresponding browsing activity example can be [visiting

a product page, choosing an option, adding it to a cart], which can be described by a path

covering states and transitions S3, T4, S5, T6 and S4. As our website model is deterministic,

the representation can be simplified to S3, T4 and T6. To concertize it, we pick a page/event

from each state/transaction and get a targeting strategy [P7, E7, E8].
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Algorithm  1 explains how we generate a target strategy from the website model graph

produced in Sec.  2.3.2 . The output target strategy is a list of browsing activities, where each

activity can be either a page or an event obtained from the model.

Algorithm 1 Finding Targeting Strategy
Input:

1. M = (S,T): website model graph, where vertex Si ∈ S denotes a page cluster {Pm, ..., Pn} and
edge Tj ∈ T is a set of events {Ex, ..., Ey}.

2. L: Max length of elements in a candidate.
3. N : Max number of candidates to test

Output: targeting strategy TS =[b1, .., bl]: a list of browsing activities, where bi ∈ {P1, ..., Pm}∪{E1, ..., En}
1: function FindTargetingStrategy(M, L, N)
2: for i← 1 to N do
3: TSc ← GenerateCand(M, L)

/* generate browsing profile guided by TSc and fetch Ad using ADHoneyClient */
4: ad← TrainAndFetchAd(TSc)
5: if base url of ad and M is same then
6: return TSc

7: return ∅
8: function GenerateCand(M, L)
9: l← RandomSelect({1, 2, ..., L}) /* length of the candidate */

10: TS ← [ GetRandomPage(M) ] /* the activities starts with a page */
11: for i← 1 to l − 1 do
12: type← RandomSelect({“state′′, “transition′′})
13: if type is “transition′′ and TS[i− 1] /∈ an accepting state then
14: if TS[i− 1] is an event Ek then /* continue to the next event */
15: TS ← Append(TS, Ek+1)
16: else if TS[i− 1] is a page Pk then
17: TS ← Append(TS, Ek)
18: else if type is “state′′ then
19: TS ← TSGetRandomPage(M)
20: if TS has been seen before then /* removes redundant candidates */
21: TS ← GenerateCand(M, L)
22: return TS

23: function GetRandomPage(M)
24: Sr ← randomly select a state from M except DOM modified states
25: Pr ← randomly select a page in the state Sr

26: return Pr

Function FindTargettingStrategy is the main procedure. It keeps generating differ-

ent strategy candidates (line  3 ) until a desired strategy is found (line  6 ) or the max number

of tries is reached (line  2 ). In particular, FindTargettingStrategy generates uncovered

strategy candidates. Given a strategy, AdHoneyClient follows the activity sequence in a
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strategy, trains the browsing profile and fetches ads (line  4 ). If the ads are from the targeted

advertiser (line  5 ), a targeting strategy is found.

Function GenerateCand generates a targeting strategy candidate. It starts by ran-

domly picking an initial a page in a state (line  10 ) and randomly selects pages or events as

consecutive activities.

A naive way to select the next activity is to follow the transitions in the FSM website

model. However, we observed it cannot effectively create diverse candidates. Instead, we

randomly select a page from a state when we want to have a “state” as the next activity. In

this way, we can produce more diverse models especially when the model coverage is low. For

instance, a strategy generated can be [P7, P1, E1], where we directly go to P1 after visiting

P7 even though there is no edge between them on the model. Intuitively, this simulates the

random jumps among pages during the navigation.

In particular, when we choose to have a “transition” as the next activity (line  13 ), we

append the consecutive event to the activity list (lines  15 and  17 ). If the type is “state”,

we select a random page from a random state (lines  24 and  25 ). Please note that the DOM

modified states are excluded as they require DOM modification events and thus not directly

accessible (line  24 ).

Ad Specification. Ad networks define ads parameters such as dimensions and formats

(e.g. image, flash, video, etc.) that advertisers have to follow. As we will need to seed

ad slots to obtain the desired ads, these specs are important too. For example, if the size

of an desired ad is 300 × 250 but we only supports 160 × 600, it will not be delivered due

to the inconsistency. Therefore, we also collect ads specs. Although some ad providers

support responsive banners, where the size can be automatically determined at the time of

fetching, ads specs are still useful as they may prevent potential inconsistencies and improve

the success rate.

Optimal Fetch Count. In practice, a browsing profile may expire after repeatedly fetching

a certain number of ads, as ad networks usually set a rate limit on the ads delivered to a

single user. Therefore, we also need to infer the optimal fetch count, which is the number of

the ads that can be fetched using a single profile. In particular, we monitor the fetch rate
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Figure 2.6. Targeted ads fetched with a single browsing profile

using a browsing profile until the rate drops significantly, we use the number of ads fetched

before drop as the optimal fetch count.

For example, we fetch 30 ads per batch using a single browsing profile from two advertis-

ers. Fig.  2.6 shows the number of ads fetched in each batch. For advertiser 1, the fetch rate

drops to 70% at batch 6 and then to 0. Similar patterns are observed for advertiser 2. After

the 3rd batch, the rate is decreased to 6%. Therefore, the optimal fetch counts for them are

180 and 90 respectively.

In our experience, we use 50% as the threshold to balance the efforts of creating new

profiles and ads fetching. In other words, once the targeted ads fetch rate drops below 50%,

we stop fetching and set the number of ads fetched so far as the optimal fetch count.
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{
”src”:”widget.criteo.com/*”
“src”:”static.criteo.net/*”
“src”:”*.tellapart.com/*”
“innerHTML” :”tag.marinsm.com/”
…
}

Tag-only Training
Page Builder

<html>
<head></head>
<body>
<script defer async="true" type="text/javascript" 
src="http://widget.criteo.com/event?a=9049&v=4.1.0&p0=e%3
Dexd%26ui_isNFLpage%3Dn%26site_type%3Dd&p1=e%3Dvp%26p%3D1
1102506&p2=e%3Ddis&adce=1" data-owner="criteo-
tag"></script>
<script type="text/javascript" async="" 
src="//static.criteo.net/js/ld/ld.js"></script>
</body>
</html>

Tracking Tag
Signature Data

Source code
after Rendering

Targeted E-commerce 
Website Page

Tag-only
Training Page

Figure 2.7. Tag-only training page building process

2.3.4 Attack Module Generation

An attack module contains three components: tracking tag-only page, the ad fetch page,

and the attack engine. The first two are HTML pages for browsing profile training and ads

fetching. The attack engine drives the process based on the attack parameters.

Tag-only Training Page Builder

To train browsing profiles, we emulate activities specified in targeting strategies. This

is one of the most time consuming parts as we have to repeatedly create new profiles. To

correctly set the tracking IDs and browsing histories, we have to trigger the tracking scripts
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(Sec.  2.3.3 ). Unfortunately, tracking scripts are usually executed after the page is fully

loaded, which significantly drags down the attack performance. To improve its efficiency,

we use the tag-only training pages extracted from the original pages that only contain the

tracking scripts.

Fig.  2.7 shows how tag-only training pages are built. We get the HTML source code from

the fully rendered page and extract JS snippets whose tags match pre-collected tracking

tag signatures. We then build a tag-only training page using the extracted scripts and

the mandatory DOM elements such as <html>,<head>, and <body>. The snippets at the

bottom in Fig.  2.7 is the example output.
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Ad Fetch Page Builder

An ad fetch page is an HTML file containing a set of ad slots. It is similar to the

crafted page created for ADHoneyClient (Sec.  2.3.3 ). We configure each ad slots based on

the collected ad specs. Besides, we need to optimize the number of ad slots per a batch

for better efficacy. However, it is difficult to predict the appropriate number because the

ad loading procedure varies. Therefore, we perform an experiment in this step to infer the

optimal number of ad slots per batch.

To be specific, we compare the total time spent to fetch a particular number of ads. As

explained in Sec.  2.3.3 , we can only fetch a limited number of ads with a single browsing

profile. Therefore, we use it as the upper bound in each experiment. For example, suppose

the optimal fetch count is 180. We first fetch 10 ads each time and repeat for 18 times.

Then, we try different batch size and compare the time needed to get all ads specified by

the optimal fetch count (180 in this example). The results are shown in Fig.  2.8 . We achieve

the best performance when we fetch 20 ads per batch. Therefore, we include 20 ad slots in

the ad fetch page in this example.

Attack Parameters

Attack parameters are a set of data used by the attack engine to customize the attack

process. We may specify the attack time including the start time and duration. We can set

the attack strategy, which can be exhaustive or smart. The exhaustive attack aims to drain

the advertising budget as fast as possible. But it has high risk of getting detected. The

smart attack is less aggressive and randomly sleeps to simulate human behaviors.

2.3.5 Attack Distribution

When the attack module is ready, it is deployed to virtual machines hosted on public cloud

services, such as Amazon EC2[ 14 ], Google Cloud Platform[ 15 ], and Microsoft Azure[  16 ].

Using public cloud services has the following advantages. First, it is cost effective. We can
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launch the attack for a few cents per hour (Sec.  2.4 ). Second, we can evade the IP address

based detections without additional cost.

The attack engine in the distributed attack modules repeats two operations: browsing

profile training and ads fetching. It loads the tracking-tag only pages in sequence to train

browsing profiles, and fetches ads using the ad fetch page. It repeats the whole procedure

until the optimal fetch count is reached and disposes the browsing profile by flushing the

cookies and local storages.

2.4 Evaluation

In this section, we describe the implementation and experiment results to validate the

efficacy of our attack. We implement the ADHoneClient in Python based on the Selenium

libraries [  17 ]. The attack module is built as a chrome extension for easy deployment. The

experiments are done on Microsoft Azure VMs. We choose the D1 v2 instances which provide

the 2.4 GHz Intel Xeon E5-2673 v3 (Haswell) processor, 3.5GB RAM and Windows Server

2016. The pricing plan for a single instance is $0.13 per hour.

We launch attacks against two types of advertisers. We first target at controlled ad-

vertisers, where we create the advertiser and set up the advertising strategies. The second

experiment is to attack public advertisers in the wild (after obtaining their approvals),

where advertisers run real-world e-commerce websites. More experiment details can be found

in [  18 ].

2.4.1 Controlled Advertiser

In this section, we evaluate our attack on the controlled advertiser created by us. As a

valid advertiser served by a real-world ad network, we can get the actual numbers of ads being

displayed, ad budget drained and the cost per 1, 000 impressions (CPM) to precisely calculate

the financial damage. Besides, we can perform large-scale attacks without concerning about

ethical issues. So, we can evaluate the full capacity using distributed VMs.

In particular, we created an e-commerce website that sells coffee beans and registered

in an ad network. We run an ad campaign with a banner image and set weekly ad budget
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Table 2.3. One hour attack against controlled advertiser
# of
VM ads CPM budget

drained cost cost /
drained

per VM
ads drained

1 2977 $3.30 $9.82 $0.13 0.01 2977 $9.82
2 4965 $2.84 $14.10 $0.26 0.02 2483 $7.05
3 10114 $4.72 $47.74 $0.39 0.01 3371 $15.97
4 12485 $4.55 $56.81 $0.52 0.01 3121 $14.20
5 16875 $3.28 $55.35 $1.04 0.02 3375 $11.07
6 21264 $3.55 $75.49 $1.56 0.02 3544 $12.58
7 28483 $2.16 $61.52 $2.08 0.03 4069 $8.79
8 30484 $3.95 $120.41 $4.16 0.03 3811 $15.05
9 37880 $3.77 $142.81 $6.24 0.04 4209 $15.87

10 40958 $2.95 $120.83 $8.32 0.07 4096 $12.08
Average 3506 $12.24

to $150. We target users who visit our product pages. To confirm if our ad is available

to public, we visit the page to create a satisfying browsing profile. Then we visit popular

websites and check if it can be fetched. As shown in Fig.  2.9 , our ad is actually displayed at

the right bottom corner on one of the top news websites, nbc.com.

We create an attack module performing exhaustive attack for an hour. Fig.  2.10 shows

a batch of the ads fetched using the attack module, where most of the ads are from our

advertiser. We also prepare a virtual image with the attack module installed. We create

10 virtual instances using the image in order to evaluate the distributed attack capability.

Using the attack machines, we conduct 10 rounds of attacks with different number of attack

machines.

Table  2.3 describes the result of the distributed attack against the controlled advertiser.

The first column shows the number of attack machines. The second column shows the total

number of our ads we fetched. We report the CPM, the budget drained and the cost. The

result shows that we successfully fetched about 40k ads using 10 attack machines. Moreover,

the number of fetched ads is increasing linearly with the number of attack machines. On

average, we fetched 3, 506 ads per machine and drained $142.81 with 9 attack machines. We

are able to drain 95% of the weekly budget within an hour. Note that we achieved better

performance with 9 machines (instead of 10). The reason is that the CPM is measured
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Figure 2.9. Our ad is displayed on popular sites like nbc.com

dynamically. Although more ads are fetched using 10 VMs, the drained budget is less

comparing to 9 VMs ($2.95 vs $3.77). We report the ratio of the cost to the drained budget.

The costs are merely 1% to 7% of the drained budget, which indicates that the attack using

distributed machines on public cloud is extremely cost effective.
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Figure 2.10. Ads fetched using the trained attack module

2.4.2 Public Advertisers

In this section, we evaluate the attack against real-world advertisers by executing attacks

within the ethical and legal boundary.

Advertiser Selection

We target at advertisers who own e-commerce websites and use retargeting ad services.

Although our implementation can be easily extended to support other ad networks, currently

we focus on DoubleClick. Therefore, we filter out the websites listed in the shopping cate-

gory in Alexa Top 500 [  19 ] based on the following criteria: 1) websites do not have online

shopping functionalities, 2) websites only providing posting and payment functionalities and

3) non-English websites. We also remove websites if they do not have ad tracking tags or
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only support social networks/mobile ads. We use the remaining 291 websites to infer their

targeting strategies.

As it may cause ethical issues if we run a large-scale attack to real advertisers, we reached

out and requested permissions for a 10 minutes attack. We were able to get approval from 3

advertisers. We anonymize their identity and represent them as advertiser 1, 2 and 3 in the

result. Besides, we only use a single attack machine for the experiments in order to minimize

damages.

Revealing Targeting Strategies

The first step of the budget draining attack is to verify if the target is vulnerable. In our

case, if we cannot reveal targeting strategies from a targeted advertiser, the advertiser is not

vulnerable. So, we first reverse engineer the targeting strategies for each websites using our

tool ADHoneyClient.

As shown in Table  2.4 , we successfully revealed targeting strategies from 254 out of 291

websites (about 87%). The first column lists the targeting strategy categories. After tar-

geting strategies are successfully reversed, we manually verify them the targeting strategies

discovered and put them in proper categories. If we cannot interpret the intention behind

the strategy, we mark them as arbitrary activities. The second column shows the av-

erage number of browsing activities in the targeting strategies. The third column shows the

number of websites using the targeting strategies.

The results suggest that most advertisers mainly target the users who visit product pages.

However, we can also see that 112 out of the 254 advertisers (about 44%) use sophisticated

targeting strategies containing more than 3 browsing activities, which suggests that it is

ineffective to get ads from such advertisers using the naive attack method like visiting only

the product pages or the front pages.

We manually inspected why we failed on the remaining 37 websites (13%). We found

that they either do not use the data collected from the tracking tags or deploy long-term

targeting strategies (showing ads after a week) that is robust to a transient attack. Besides,

some target users using geographic data, which is orthogonal to browsing profiles.
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Table 2.4. Reversed targeting strategies

Targeting Strategy Avg. # of
activities

# of
websites

Avg. training time (sec) RateFull page Tag-only page
Visiting a front page 1 31 4.78 0.70 6.87
Visiting a product page 1 111 4.37 0.57 7.65
Adding an item to a cart 3.48 79 8.55 1.17 7.29
Full shopping trip 4.94 28 19.59 2.00 9.77

Arbitrary activities

5 1 24.70 2.23 11.08
6 1 22.98 2.11 10.89
7 1 26.32 2.56 10.28
8 1 29.34 3.09 9.50
8 1 23.70 2.90 8.18

Total websites 254 Avg. rate 9.06

Table 2.5. 10 minutes attack result against selected public advertisers, and
estimated damage

Advertiser Ad
Network

Targeting
Strategy

Optimal
Fetch
Count

# of ad
slots per

batch

AD Size Ad
type

#
of

ads

Ad
category

Estimated Damage

CPM Budget
drained/hour

1 A Visiting a product page 180 20 300x250, 160x600, 728x90 Image 3134 E-commerce $8.29 $155.89
2 A Adding an item to a cart 180 20 300x250, 160x600, 728x90 Image 2742 Retail $5.85 $96.24
3 B Visiting a product page 90 30 300x250 Image 942 E-commerce $8.29 $46.86

To validate the efficacy of the tag-only training approach, we conducted another experi-

ment to show how significantly we improved performance comparing to the full page training.

As described in Sec.  2.3.4 , we create tag-only pages containing only tracking tags based on

the targeting strategies revealed from the advertisers’ websites. We record browsing profile

training times using the tag-only pages and the original fully-loaded pages. According to the

results in Table  2.4 , the tag-only training is about 9 times faster on average.

Estimating Attack Damages

After we got the approvals, we launched the attack against 3 public advertisers. However,

we cannot precisely obtain the numbers of ads displayed, CPM or budget because they are

confidential business information. Instead, we use the public ad reports providing category-

based average CPM for the first two quarters of 2016 [  20 ,  21 ] and do our best to estimate the
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damage. Although the estimation may be biased, we believe it approximately demonstrates

how much ad budget we could drain with our attack against real-world advertisers.

Table  2.5 shows the result of the attack and the estimated damage. The columns 2 to

7 describe the output of the advertiser profiling. The column 8 shows the number of ads

we fetched from each advertisers. We report the average CPM in column 10 and use them

to calculate the estimated damage. The estimated budget drained within one hour (column

11) ranges from $46.86 to $155.89.

2.4.3 Ethical Considerations

We would like to highlight that we take the ethical issues seriously in our evaluation.

This study was closely advised by a lawyer and conducted in a responsible manner. Our

evaluation process has been reviewed by IRB and we received IRB exemption.

In the experiment of attacking a controlled advertiser, we own the advertiser’s account

and we pay for the charges. In the experiment with the three real-world advertisers, we

explained our methods and potential damage to them. We start the experiments with their

approvals. We purposely performed a proof-of-concept experiment using only 1 attack ma-

chine within 10 minutes to minimize the damage. We reported our findings and suggestions

to them.

In spite of all of our efforts, due to the nature of the problem, ads from other advertisers

showed up in our experiments. However, we confirmed that total rewards we collected

from the untargeted advertisers as a publisher was less than $10. As the damages are

distributed among all of the advertisers, the financial loss of one advertiser is negligible.

More importantly, Google DFP is able to refund credits to advertisers when publishers

violate their policies. We are in communication with DFP so that they can refund we earned

throughout all of our experiments to the affected advertisers.

2.5 Countermeasures

In this section, we describe countermeasures against our attack. We introduce the detec-

tion and prevent methods.
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2.5.1 Detection

In order to detect our attack, ad providers or ad networks can look for anomalies in ad

request traffics. We discuss three possible detection approaches and their limitations in the

following paragraphs.

Browsing profile based detection. The number of ad requests generated by a benign

users is usually smaller than that from attack machines. Therefore, the number of ad requests

per browsing profile can be used as a detection feature. For example, if a large amount of

requests with the same browsing profile within certain period are observed, we can consider

this as the attack situation. However, this feature may not be effective since our attack does

not use the same browsing profiles for many times. Another viable feature is the number of

browsing histories in a single browsing profile. In order to increase efficiency of our attack,

we only train a browsing profile with few pages in a targeted website. Those profiles created

in that way contain the limited number of browsing histories, but benign users normally

have larger number of browsing activities.

IP address based detection. IP address based blacklists can be used too. We can mark

requests suspicious if an excessive number of requests are made from the same address. The

attack using the short-time-use profiles may evade the browsing profile based detection, but

it cannot bypass IP address based detection because requests are from the same IP address.

However, as we discussed, attack machines created using virtual instances can have different

IP addresses by simply rebooting them or leveraging publicly available proxies, which makes

IP address based detection less effective.

Click-Through-Rate (CTR) based detection. CTR is a metric that measures the num-

ber of clicks advertisers receive from a certain number of impressions. Our attack generate

a huge number of impressions without actually clicking them. Therefore, the CTR is low.

However, this can be bypassed by inserting valid clicks between our attacks so that CTR

can be increased.

Our attack is similar to distributed denial of service (DDoS) attack since both attacks

generate a large amount of traffic using distributed machines. Although detecting the DDoS

attack is not that difficult, the attack is still powerful due to the characteristic of distributed
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attack. Once an attack machine is blocked, a newly created machine can continue the attack.

Therefore, it is possible that our attack can be detected with various features. However, we

believe it is extremely challenging to nullify the attacks.

2.5.2 Prevention

As it is challenging for ad networks to effectively suppress the attack, in this section,

we suggest practical prevention approaches for advertisers. One possible solution is to use

event-based targeting strategies. They can track users who actually scroll pages or stay on

the website for a certain period of time. Such event tracking utilities are already supported

by many ad networks [  22 ,  23 ]. Although the methods may not completely prevent the attack,

it can minimize the probability of being selected as a target.

2.6 Related Work

Browsing profile manipulation. There are two existing studies that explore attack mech-

anisms based on browsing profile manipulation. Xing et al. [ 24 ] proposed an attack where

adversaries can change the customized content of services from popular providers, such as

YouTube, Amazon and Google, by manipulating browsing profiles. They provided specific

attack methods for each services, and showed what attacks could be possible. While the

proposed method worked well, their study only showed possibility of the attack. In contrast,

our approach provided more practical, and beneficial attack mechanism for advertisers. The

second attack is presented by Meng et al. [  25 ]. They proposed a fraud mechanism to increase

ad revenue for publishers by injecting higher-paying advertiser websites to publishers’ pages.

Although they successfully increased the revenue, their attacking perspective is different.

Ad fraud and mitigation. Representative attacks and countermeasures were discussed in

[ 26 ]. Recently, Stone-Gross et al. [  27 ] performed a large scale study on fraudulent activities

in online ad exchange and suggested practical detection methods.

Recent research are focused on specific fraud activities. Among them, click fraud/spam

is the most popular one. Dave et al. [ 28 ] proposed a method for advertisers to measure click

spam rates and conducted a large scale measurement study of click spam across ten major
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ad networks. Faou et al. [  29 ] proposed a click fraud prevention technique using the value

chain, the links between fraudulent actors and legitimate businesses. Their results showed

that pressuring a limited number of actors would disrupt the ability of click fraud. Recently,

Jaafar et al. [ 30 ] proposed FCFraud, a method for detecting automated clickers from the

user side in order to prevent from becoming victimized attackers of click fraud. It analyzes

web requests and events from user processes, classifies ad requests, and detects fraudulent

ad clicks.

Another prevalent ad fraud activity is impression fraud/spam. Springborn et al. [  31 ]

showed an impression fraud via pay-per-view (PPV) networks by analyzing ad traffic from

honeypot websites. Their results showed that hundreds of millions of fraudulent impressions

per day were delivered by the PPV networks. Marciel et al. [  32 ] proposed tools to audit

systems of five major online video portals to investigate fraud in video ads.

Ad frauds also target on mobile apps. Crussell et al. [ 33 ] performed a study on mobile ad

fraud perpetrated by Android apps. They developed MAdFraud, an automatic app analysis

tool, to emulating event and extract ADs. They found that about 30% of apps made ad

request are running in the background and identified 27 apps generating clicks without user

interactions. Liu et al. [ 34 ] proposed a system to detect placement frauds that manipulate

visual ads layouts to trigger unintentional clicks from users. They implemented a tool called

DECAF and characterized the prevalence of ad frauds in 50,000 apps.

Online behavior tracking. Roesner et al. [  35 ] investigated how third-party web tracking

services performed. They showed how tracking worked, where the data can be stored, and

how web tracking behaviors are classified. Englehardt et al. [ 36 ] proposed OpenWPM, a

web privacy measurement platform, to show how third-party tracking cookies can be used

to reveal browsing histories. Conti et al. [  37 ] proposed TRAP, a system to unveil Google

personal profiles using targeted AD. They focused on revealing topics a user is interested

in instead of her actual browsing histories. Recently, Bashir et al. [  38 ] showed information

flows between ad exchanges using retargeting ad. They showed how user profiles were shared

among ad exchanges by investigating 5,102 retargeting ads. Cahn et al. [  39 ] assessed a
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privacy threat caused by the third-party tracking. Our research was inspired by their study

and we utilized them to build our attack method.
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3. FINDING CLIENT-SIDE BUSINESS FLOW TAMPERING

VULNERABILITIES

The sheer complexity of web applications leaves open a large attack surface of business

logic. Particularly, in some scenarios, developers have to expose a portion of the logic to

the client-side in order to coordinate multiple parties (e.g. merchants, client users, and

third-party payment services) involved in a business process. However, such client-side code

can be tampered with on the fly, leading to business logic perturbations and financial loss.

Although developers become familiar with concepts that the client should never be trusted,

given the size and the complexity of the client-side code that may be even incorporated

from third parties, it is extremely challenging to understand and pinpoint the vulnerability.

To this end, we investigate client-side business flow tampering vulnerabilities and develop

a dynamic analysis based approach to automatically identifying such vulnerabilities. We

evaluate our technique on 200 popular real-world websites. With negligible overhead, we

have successfully identified 27 unique vulnerabilities on 23 websites, such as New York Times,

HBO, and YouTube, where an adversary can interrupt business logic to bypass paywalls,

disable adblocker detection, earn reward points illicitly, etc.

3.1 Introduction

The intrinsic complexity of the web ecosystem has created an attractive attack surface for

manipulation and exploitation. Adversaries have exploited many common flaws that plague

various entities in the ecosystem. Of particular interest are client-side business logic flaws.

If exploited, they may lead to devastating consequences.

As a side effect of exposing partial business logic to the client-side, by perturbing the

internal control flow of events, adversaries are able to change the intended behavior of a web-

site and cause various kinds of damages. For example, suppose an application’s ad delivery

mechanism is developed with the intention of playing a sponsor’s video before streaming the

actual content. Malice can directly skip the first step to circumvent the business model of

the website. Similarly, a website rewards airline miles after a participant fills out a survey.
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An attacker can illegitimately earn miles without finishing the survey. A plausible approach

to achieving this is to disable the condition check and force the execution of rewards logic,

with the help of userscript manager utilities like Greasemonkey [  40 ] or Tampermonkey [  41 ].

Although OWASP strongly recommends enforcing business logic on the server-side [ 42 ],

client-side implementations are commonly seen in practice. Sometimes, developers find it is

easier to do so on the client-side without thinking too much about the consequences. But

more importantly, it is unavoidable to devise some portion of the logic on the client-side to

connect the dots in some scenarios. Web applications nowadays commonly integrate third-

party content or services. In such cases, the client-side logic plays an important role in

coordinating the internal states with those of multiple parties. For example, a web store

may integrate a third-party payment service and implement the client-side logic to drive the

checkout procedure [ 43 ]. For websites that serve a huge number of anonymous users (e.g.,

YouTube), it is very expensive to rely on the server-side to maintain the comprehensive

states of all users.

Threat Model. We assume adversaries can manipulate client-side execution on the fly. For

instance, they can trigger web page events in arbitrary orders. They can modify client-side

scripts, change event handlers, bypass condition checks and alert, and send HTTP requests

to servers. However, we assume they do not have access to servers so they cannot modify

server-side logic.

Problem Statement. Web applications extensively incorporate code from multiple sources

and thus it is desirable to understand the risks hidden in the client-side implementations.

However, given the size and the complexities caused by JavaScript (JS) dynamic features and

event-based executions, it is extremely hard to audit client-side scripts (including those from

third parties) and identify the locations that are vulnerable to business flow tampering. To

this end, we propose a dynamic analysis based approach to help developers focus on places

that are more likely to be real vulnerabilities. By reporting the locations and the concrete

tampering instances, our method can help developers effectively evaluate if actions should

be taken to either relocate the logic to the server-side, deploy some runtime attack detection

technique or incorporate additional client-side defense techniques.
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In this chapter, we investigate the pervasiveness of the client-side DOM-related busi-

ness flow tampering vulnerabilities, To the best of our knowledge, this is the first study to

characterize the impact of the client-side business flow tampering vulnerabilities. As they

are commonly caused by insufficient process validation, we propose an automatic detection

method that addresses the following challenges:

• Pinpointing places vulnerable to business flow manipulation is difficult in multi-functional

web applications.

• Dynamic web application features should be handled as code can be injected and

generated on the fly.

• Code modification techniques and event-based dynamic executions make static analysis

difficult.

In particular, our method systematically examines websites as follows: (1) Starting with

business operation descriptions, we navigate the website and collect a set of functions that

may be relevant to the business logic. (2) We analyze each candidate function and look

for potential tampering locations, which may perturb the intended behavior if modified.

(3) We develop techniques to select functions that are more likely to be vulnerable and

generate tampering proposals for each selected function. (4) We revisit the website with the

tampering proposals and confirm if the detection results are indeed business flow tampering

vulnerabilities.

To understand the scope and magnitude of the vulnerabilities in practice, we evaluate our

method on 200 real-world websites. We are able to detect client-side business logic tampering

vulnerabilities on popular websites.Specifically, attackers can bypass paywalls and read an

unlimited number of articles without paying on NYTimes and WashingtonPost. Detected

flaws on Youtube and CWTV enable attackers to skip in-stream video ads. We also discover

a flaw in the popular reward-earning website InboxDollars; attackers can illegitimately earn

rewards points without finishing the required steps (e.g. watch videos). In our experiments,

we are able to stack $3.44 reward for an hour attack with a single machine without watching

videos, and if we continue this attack, we could steal around $80 per day.
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In summary, we make the following contributions:

• We investigate the pervasiveness of the DOM related client-side business flow tamper-

ing vulnerabilities.

• We develop a novel dynamic analysis based approach to automatically identifying

client-side business flow tampering vulnerabilities.

• We evaluate our method on 200 popular real-world websites. With negligible page

loading/rendering overhead, we found 27 unique vulnerabilities, where an adversary

can interrupt the business logic to bypass paywall, disable adblock detection, earn

rewards illicitly, etc.

3.2 Motivation

In this section, we use two real-world examples to show (a) how business logic can be

tampered with on the client-side, (b) why such vulnerabilities are common, and (c) why

identifying these vulnerabilities is challenging.

3.2.1 Bypassing a Metered Paywall

New York Times [ 44 ] (NYT) is a well known news publisher. Its main business model

is a metered paywall. It allows users to read a limited number of articles for free. After

that, paid subscription is required. NYT developers implemented the metered paywall in

March 2011. Within three months, the system generated 224,000 subscribers [ 45 ]. With the

paywall, after a user reaches the quota of 5 free articles, a subscription message box with a

black-colored background covering most of the screen will be displayed.

Inspired by NYT’s success, many publishers (e.g., Washington Post, The Boston Globe,

and Chicago Tribune) adopted a similar paywall system. Fig.  3.1 (a) describes part of the

simplified paywall implementation. Each time a news article is accessed, the article page

is loaded as if there was no paywall. The paywall logic is implemented in a JS file loaded

as part of the article page. In the JS file, function window.webpackJsonp invokes function

initMeter, which further calls checkMeterData (line 4) that implements the paywall logic.
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Function Call Graph

nytimes.com
window.webpackJsonp

checkMeterData

showPaywall

1: this.initMeter = ()=>{
2:  const meterPromise = this;
3:  if(!meterPromise

&& KYT.IS_BROWSER 
&& shouldCallMeter()){

4: checkMeterData();
5:  }
6: …

DOM Mutation Event

Subscribe
Now

...

initMeter

NYTimes
Web

Server

11: this.checkMeterData=()=>{
12:  …
13:  getdata((data)=>{
14:    showMeterStatus(data);
15:    if(data.free <= 0)
16:      showPaywall();
17:  });
18:  …

(a) NYTimes

Function Call Graph

youtube.com ...

BANNER

ytplayer.load

showAd

g.h.dispatchEvent

...

...

. . .

showVideoAd

showBanner

DOM Mutation Event

1: g.h.start = function() {
2:   …
3:   getAdsFromProviders(this);
4:   if (0 < this.ads.length) {
5:     showAd(this);
6:   } else {
7:     this.dispatchEvent

("contentResumeRequested");    
8:     …
9:   }
10:};

ZC

g.h.start

3rd party 
Ad Providers

Youtube
Content
Server

(b) Youtube
Figure 3.1. Motivating examples

In the function, the meter data is first accessed (line 13). If the current user exceeds the

free quota, function showPaywall (line 16) inserts the subscription message box. To bypass

the paywall, the attacker can disable the function call checkMeterData(). Consequently,

the subscription message box is elided and the attacker can continue to access articles for

free. A demo video of the attack (hosted on an anonymous website) can be found at [  46 ].

While OWASP recommends that critical access control should be performed solely on

the server-side to avoid any client-side tampering, NYT’s design simply delivers all the

content to the client and relies on client-side access control to protect the content. Further
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inspection suggests that there are reasons for such a flawed design. It looks like the paywall

system was introduced as a well-encapsulated and stand-alone add-on (i.e., a self-contained

JS file) to avoid any complex interference with the previous code-base. Properly implemented

access control has to monitor each page load from the server-side, requiring substantial code

changes. Furthermore, the number of free-readers is orders of magnitude larger than that of

the subscribers. A correct design requires maintaining some profile for each free-reader on

the server-side (e.g., the number of free articles accessed by the reader in a time duration),

which would be much more expensive than the current design that only needs to maintain

subscribers’ profile. The current design relies on the client-side resources to deal with a

large number of free readers. Such dilemmas are typical, leading to many flawed design and

implementation as shown by our results in Section  3.5 .

3.2.2 Skipping In-stream Ads

Ads revenue is crucial for business sustainability of streaming services like YouTube.

Although service providers try to make money from other sources such as membership sub-

scriptions, it turned out they often have to scale back and rely mostly on ads [  47 ]. In

particular, YouTube inserts ad videos before and in the middle of content videos. Recently,

it even started showing Hollywood movies with ad breaks for free [  48 ]. To implement this,

YouTube has to use client-side logic because it needs to coordinate states among multiple

parties and dynamically load videos from ad networks.

Fig.  3.1 (b) shows a simplified version of the process. The ad videos are controlled by

functions connected by blue arrows, while banner ads are managed by functions linked by

green arrows. Function ytplayer.load is invoked during page load and eventually invokes

function g.h.start. The function first gets available ads from third-party ad providers (line

3), then decides if ad videos should be played by checking if the list this.ads is empty (line

4). If yes, functions showAd and showVideoAd are called to play the in-stream video ads. Oth-

erwise, it skips and plays the actual content (lines 7− 8). Filling up this.ads is by a separate

thread in the background, controlled by a timer. Similarly, function g.h.dispatchEvent

is invoked regularly to deliver ad banners via function showBanner. By enforcing the false
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branch outcome at line 4, the ads are skipped and the user can watch the content video

without watching the ads. Note that this is different from using an ad blocker to block

ads. Many modern web applications are equipped with anti-adblocker mechanism, including

Youtube [ 49 ]. Anti-adblockers often work by monitoring DOM object changes after ads are

loaded. If no change is observed (meaning the ads are not displayed), it gets into a block-

ing mode requiring the user to turn off the adblocker. An anti-adblocker has to be closely

coupled with the ad display function. In this case, the anti-adblocker is part of the function

shownAd() (line 5). As such, by tampering with the JS code (i.e., line 4) directly, the ads,

together with the anti-adblocker logic, are silently evaded.

A key feature of these business models is that the content publisher (or service provider)

wants to ensure certain operations must be performed on the client-side, which cannot be

trusted. This is not a new problem. There are many other rigorous business logics such as

online shopping, credit card transactions, and online bank transactions. The key enabling

technique in those business models is to associate a crypto-protected credential (e.g., token)

with a user [  50 ]. The token is shared by the multiple parties in the business model such

that client-side operations can be remotely verified. For instance, an online shopping appli-

cation has to interact with at least a remote payment service provider and a remote product

provider. The payment is recorded by the payment service provider with the credential of

the user. The product provider can independently check with the payment service provider

to make sure the payment is in place before the product is sent. Such distributed integrity

protection mechanism is heavyweight and often deployed in applications where users are

properly profiled (e.g., users with accounts).

However, many web applications serve a vast number of users with most of them not

properly profiled and hence do not have associated credentials. Nonetheless, the content

publishers want their interest to be protected on those un-profiled users (by limiting their

quota like in NYT or forcing them to watch ads like in YouTube). Such light-weight business

models usually have to rely on client-side logic to conduct access control. In the YouTube

example, ad networks are designed in such a way that any third party, including individuals,

can bid for an ad slot (on YouTube). Most such third parties do not have the capacity to
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support remote authentication (like the payment service provider in online shopping), which

entails saving credentials of individual users. While a better scheme may be possible for

lightweight business models in the future (e.g., through some centralized service like Google

DoubleClick), client-side tampering is a realistic and prevalent vulnerability. As shown in the

above examples, such vulnerabilities can lead to financial loss. If such attacks were launched

at a large scale, websites may go out of business. Hence, it is in websites’ best interest to

identify such vulnerabilities so that they can take action to secure their interest, for example,

by employing more expensive authentication schemes, deploying on-the-fly attack detection

on the server-side, or even performing sophisticated client-side obfuscation.

Identifying Client-side Tampering Vulnerabilities Is Challenging. Client-side code

usually comes from multiple parties. In addition, as suggested by the results in Table.  3.2 ,

there are 8, 307 JS functions on average in a single page load. Due to the overwhelming

size and complexities (i.e., JS dynamic features, code minimization, and obfuscation) of the

client-side code, it is impractical for developers to manually locate the vulnerable points.

Developing an automated tool to expose such problems is necessary.

Therefore, we propose a dynamic search-based approach that applies a set of pre-defined

tampering operations on client-side JS code. These tampering operations include enforcing

branch outcomes, skipping or repeating functions. To reduce the search space, we develop

an analysis technique to identify JS code elements that are likely to be business logic related

and focus on tampering those. In particular, we observe that client-side business operations

are usually correlated to DOM mutations. Hence, we intercept such events and collect

the corresponding candidate JS functions. To deal with the prominent dynamic features of

JS code, our technique is dynamic, modifying the underlying JS engine to instrument the

internal intermediate representations of JS code on-the-fly, instead of directly instrumenting

JS source code. For the aforementioned Youtube ad banner case, our technique selects 159

code elements as potential tampering candidates from 8,191 functions. The vulnerability

disabling ad banners is identified after 10 trials. We have reported such problem to developers

along with the NYT case.
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Figure 3.2. Approach overview

3.3 System Overview

Fig.  3.2 provides an overview of our vulnerability detection procedure, which can be

largely divided into three phases.

Site information collection. By recording and inspecting user interactions, we collect

basic information about the targeted websites. In particular, we identify DOM objects that

should be monitored for mutation events and generate browsing automation scripts that

allow automatic website navigation. They will be used as inputs to the whole procedure.

Details can be found in Sec.  3.4.1 .

Identify potential JS code elements to tamper with. We analyze the website and

generate candidates for tampering. In particular, we monitor DOM mutation events and

collect the corresponding call stacks. By inspecting the functions on the stack, we identify

candidate functions that may be business logic related. The candidates are further ranked

based on the estimation how likely they are vulnerable to tampering attacks. For each

candidate, we generate potential tampering proposals that include the tampering points and

the corresponding tampering operations. We explain the components and algorithms in

Sec.  3.4.2 -  3.4.4 .

Vulnerability scanning by tampering testing. We repeatedly run the websites ac-

cording to the generated tampering proposals to filter out proposals that cannot lead to

tampering attacks. In order to reduce manual efforts to confirm if the outcomes are real at-

tacks, we develop automated techniques to group test results, based on DOM event tracking
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and clustering. Instead of examining all outcomes, testers only need to check one represen-

tative from each cluster. We produce a vulnerability report to explain the attack for each

exploit. We explain the details in Sec.  3.4.5 .

3.4 Design

In this section, we describe each component in detail and reason about our design choices.

3.4.1 Website Information Collection

Our system requires two pieces of information about the target website to start the

procedure: (a) identifiers of DOM objects that are related to business logic and (b) browsing

automation scripts. They are collected automatically by recording testers’ interactions with

the targeted websites. In the YouTube example discussed in Sec.  3.2 , testers can record

browsing activities to automate the operations such as “play video". In the meantime, testers

can also specify elements or regions on the webpage that might be related to the business

logic by simply clicking a button provided by our tool. Our system automatically collects

DOM selectors that identify the DOM objects involved. Note that our technique does not

require good code coverage of the application. Any test case that triggers the business model

is sufficient. Due to the essential role of business model, a typical use case would easily cover

it. Furthermore, such manual efforts are one-time. Our tool records the user operations

in an automatic script that can be repeatedly executed in the scanning phase. Hence, the

manual efforts required are minimal.

3.4.2 Identifying Potential Business Logic Related Functions

As testers already specified their areas of interest on the web page, we intercept the

mutation events on the DOM objects and collect the corresponding (asynchronous) call

stack. Then, we consider the functions on the stack that are more likely related to business

logic and give them high priorities. In particular, when mutation events such as attribute

updates, node modifications, or child DOM tree changes happen, a hook function will be

invoked to collect the function call trace containing the functions that directly/transitively
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trigger the changes. We exclude common JS libraries since they are unlikely tampering

vulnerability candidates. We remove them using a whitelisting approach.

Note that we may observe different call stacks for the same mutation event. We hence

construct a call tree, by merging the same functions in stack traces through a preprocessing

step. Take the YouTube case in Fig.  3.1 (b) as an example. The function “showAd” appears

in two different traces. It has two different callees (“showVideoAd” and “showBanner”) in

the two traces. They are hence the two children of “showAd” in the call tree. All nodes in

the call tree of a relevant DOM mutation are considered candidates and given high priorities.

3.4.3 Dynamic Page Data Collection

In order to overcome the challenges introduced by JS dynamic features, in this step, we

collect runtime information about the candidate functions obtained in the previous step.

In particular, we dynamically construct a Business Control Flow Graph (BCFG) for each

candidate, which abstracts away path conditions that are unlikely to do with access control

in business logic.

Business Control Flow Graph (BCFG)

The abstraction focuses on precluding predicates that are not related to business logic

access control. Specifically, loop predicates are abstracted away as we consider loop pred-

icates are unlikely to perform access control. While abstracting away loop predicates, we

retain the loop body which may contain important function calls. Note that BCFG is not

intended to be compiled and executed. It is more a representation for us to enumerate the

possible tampering schemes (called tampering proposals).

After abstraction, BCFG mostly contains the following conditional statements: if-then-

else, switch-case, and conditional ternary operator. A more heavy-weight analysis

(e.g., one that leverages data-flow analysis) may have difficulty dealing with the various

complex language features and the extremely dynamic nature of JS code, and hence is less

desirable.
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showAd = function(a) {
if (Bz(a, a.A)) {

var e = "contentResumeRequested";
if (Iz(a.o)){ //banner ad?

for(var i=0;i<a.o.n;i++)
Df(a.o);

a.dispatchEvent(e),
a.C.Jd(),
a.o.start();
if (null != a.F)

a.F.start();
}
else { //not banner ad

var f = a.o;
if (null != f && f instanceof gy)

a.C.ng(),
a.o.start(); //play video ad

else {
if (n)

a.dispatchEvent(e);
}

}        
} else

a.dispatchEvent(e), Mz(a)
}
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Figure 3.3. Source code and Business Control Flow Graph (BCFG) of func-
tion showAd with each node representing a basic block with a unique id followed
by the statements in the block

Example. Fig.  3.3a depicts a simplified version of the function showAd discussed in the

YouTube motivating example. Function “showAd” renders ads differently based on the ad

types (e.g., video ads or banner ads). At line 4, it checks the ad type (variable “a.o”) and

verifies if it’s a banner ad. If so, the function resumes the player (“a.dispatchEvent(e)” at

line 7) and displays the banner ad by invoking function “a.o.start” at line 9. Otherwise,

the function plays the video ad by invoking function “a.o.start()” at line 17. Fig.  3.3b 

shows the BCFG of the function “showAd”, where each box represents a block of instructions

and each arrow denotes control flow. In particular, the execution path (BB0, BB1, BB4 and
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BB6) represents the video ads delivery procedure. The yellow-colored block BB6 contains the

function call linking to the next function on the call stack. Besides, BB6 is control-dependant

on the green-colored blocks (BB0, BB1 and BB4). Observe that the loop predicate at line

5 is abstracted away.

In addition to stack traces and BCFG, we collect DOM mutation types, function execu-

tion frequencies, positions in source code, and the source URL. Such information is needed in

the later scanning phase. Note that we convert the position information (of a code element)

in the row and column format (in the source code) to its IR offset used inside the JS engine

as tampering is performed by the modified engine. For example, the position of function call

statement “showAd(this)” in Fig.  3.1 is “row:5, column:9”. We convert it to “offset:89”

with 89 the IR identifier of the statement.

3.4.4 Tampering Proposal Generation

With the call trees of DOM mutations and the BCFGs of the functions in the call trees,

the next step is to generate a set of tampering proposals that specify the code location to

tamper with and the tampering operation. Although these functions and predicates have

a higher priority compared to others, due to the large search space, we develop additional

techniques to further rank the functions and predicates. In particular, we first rank functions

using a learning-based method. Then the BCFGs of ranked functions are traversed in order

to derive tampering proposals.

Candidate Function Ranking

As we will show in Section  3.5 , the number of functions in the call trees of DOM mutations

is still very large. Ideally, we would like to develop a technique to determine which of these

functions are more likely to contain business access control. However, a solely program

analysis based solution may not have the desirable effectiveness as runtime information

provides strong hints. For example, a business access control JS file tends to be loaded

before many other JSs; the function that performs access control often has high execution

frequency than the content delivery function guarded by the access control; the URL of a
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business model related JS file tends to share common domain name as the main page, etc.

Unfortunately, these properties are uncertain and their importance is difficult to determine

by humans. Therefore we propose a learning-based method to predict the likelihood of

a function containing business access control. We then rank the functions based on their

likelihood.

Feature selection. Based on our observation of the properties that are possibly important,

we select 10 features, as shown in Table  3.1 . We use tampering locations we already know

(in a small number of web applications) to evaluate the significance of the features. To refine

selected features, ANOVA F-test [ 51 ] was leveraged. The null hypothesis of the test is that

the feature takes the same value independently of the output value to predict. As a result,

highly significant features were chosen for our classification task. All features are normalized

individually by subtracting the mean and scaling to the unit variance.

Estimation of likelihood by learning a classifier.

After selecting features, a classifier is learned from the training data. As our data may

be biased, we explore using the Balanced Random Forest (BRF) [ 52 ], the weighted-SVM (w-

SVM) [ 53 ], and the weighted-Logistic Regression (w-LR) [  54 ], which are more interpretable

than other classifiers (e.g., neural networks) and more robust when they have a small scale

of training data. Balanced Random Forest (BRF) is an ensemble algorithm by a balanced

Table 3.1. Ten features for function ranking
ID Features of Candidate Function fn
F1 Domain similarity between the website URL and fn’s script URL
F2 The loading order of the script containing fn
F3 The number of appearance of fn among all call stacks
F4 The position of fn on its call stack
F5 The collecting order of the call stack with fn
F6 The length of the call stack with fn
F7 The number of times fn is called
F8 The number of times fn’s callee is called
F9 The number of branches in fn
F10 fn’s callee directly mutates DOM (1: yes, 0: no)
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bootstrapping method. In particular, we use 1,000 as the number of estimators. In addition,

the gini impurity is used for split criterions. W-SVM (with RBF kernel) and w-LR use

the ratio of class labels in their cost functions and put more weight on the rare cases to

alleviate bias. In the testing stage, probabilities or regression values are used to estimate

the likelihoods and are ranked by the scores.

To collect the training set for selecting features and learning the classifier, we first prepare

a few confirmed tampering cases. After the training, we keep using the trained classifier to

rank the candidate functions without any additional training. The result of the feature

selection and learning will be discussed in Sec.  2 .

Tampering Proposal Generation

Tampering proposals are generated by Algorithm  2 . It takes two inputs: 1) the ranked

candidate functions, where each function has its abstracted BCFG, the call site to its callees

in the call tree, and the URL of the source code. 2) the tampering strategy, which can be

either bypass or repeat. Intuitively, bypass skips a function call to see if the logic can be

altered in the desired way, while the repeat strategy generates proposals that repeatedly

invoke the callee.

The output is a list of tampering proposals indicating where and how the execution

should be tampered with. In particular, a tampering proposal consists of (1) the URL of the

script containing the candidate function, (2) the source code offset of the tampering point,

(3) the branch index, and (4) the tampering action. The branch index specifies a branch

outcome that should be enforced. For example, a basic block ended with an if statement

may have two outgoing branches. If we want to execute the true branch next, we assign 0 to

the branch index. Otherwise, we set the branch index to 1. Beside predicates, we may also

tamper with the execution of non-predicate statements. In this case, the proposal simply

specifies the location of the statement without the branch index information. The action

indicates how the execution should be tampered with at a particular tampering point. The

action can be disable callee, disable caller, force branch outcome, or repeat callee. Details of

each action can be found in Sec.  3.4.5 .
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Algorithm 2 Tampering Proposal Generation
Input:

F : candidate functions sorted by the likelihood having tampering points. f ∈ F is a
function with the BCFG, the call site to its callee on stack, and the URL of the script
having f .

ts: the tampering strategy, which can be bypass or repeat
Output:

T : tampering proposal (script_URL, offset, branch index, action) ∈ T

1: function GenerateTamperingProposals(F, ts)
2: T ← []
3: for each f ∈ F do

// f.callsite is the call site in f to its callee on stack
4: co ← GetOffset(f.callsite)
5: if ts is bypass then
6: T ← T ∪ (f.url, co, none, “disable callee")
7: B ← GetControlDepBasicBlocks(f.callsite)
8: for each b ∈ B do

// b.branch_cnt is the number of outgoing paths of basic block b
9: for i← 0 to b.branch_cnt do

10: if HasPath(b, i, f.callsite.basic_block) then
// skip the existing path from b to the callsite

11: continue
// b.branching_stmt is the last stmt before branching in b.

12: bco ←GetOffset(b.branching_stmt)
// generate a non-existing path starting from b.branching_stmt

13: T ← T∪ (f.url, bco, i, “force branch outcome")
14: fo ← GetOffset(f)
15: T ← T∪ (f.url, fo, 0, “disable caller") // disable function f
16: else

// repeatedly invoke the callee of f on stack
17: T ← T∪ (f.url, co, none, “repeat callee")

For each candidate function f , we first locate the locations where f invokes its callees

observed on the stack (line  4 ). For example, in Fig.  3.1 (b), the invocation statement at line

5 is the call site where function g.h.start invokes its callee showAd. Although a candidate

function may invoke multiple callees in the execution, we separate them and create a trace

for each invocation. Therefore, in our representation, a candidate function only has one call

site to its callee in a trace. Under the strategy bypass, we generate a proposal that skips

the invocation of the callee function (line  6 ). Then, we obtain the basic blocks that the call

site control-depends on (line  7 ), where each basic block returned has a number of outgoing
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branches (i.e. 2 branches for basic blocks with an if statement, and n branches for basic

blocks ended with a switch-case).

Now we want to generate proposals that follow paths that are different from the one on

the stack. To do so, we check if the call site is reachable through a particular path. Among

them, we skip the path connecting the predecessor block and the call site (line  11 ). Since

we want to explore the remaining paths even the path conditions are not met, we generate

proposals for such paths (line  13 ) so that we can force the branch outcome.

The algorithm also creates a proposal to skip executing the entire function f (line  15 ).

On the other hand, if the generation strategy is repeat, the algorithm creates a proposal that

repeatedly invokes the callee function (line  17 ).

3.4.5 Business Flow Tampering Testing

After the tampering proposals are generated, we use a testing-based approach to confirm

the real vulnerabilities. For each proposal, we leverage the automated script (recorded in

the earlier phase) to load the target website. When the modified JS engine gets a script

specified by the tampering proposal, it mutates the bytecode IR on-the-fly according to the

action specified in the proposal. After a batch of tests, we gather test results and cluster

them based on similarities. Finally, a tester confirms the success of the testing by checking

the clustered results, which are usually just a few screen shots showing if the access control is

circumvented. In this section, we first discuss how our system manipulates the business flow.

Then, we describe how we filter out test results using DOM event tracking and clustering

techniques in order to minimize manual efforts.

Tampering Actions

As mentioned before, there are four possible actions: disable callee, disable caller, forced

branching, and repeat callee. Next, we explain how they are supported.

Disable callee. When the interpreter encounters the function call expression specified by

the tampering location, it skips the call.
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Disable caller. We disable the bytecode generation for statements in the function, which is

equivalent to generating an empty function. This is because we still need the definition of the

disabled function. Otherwise, the interpreter may crash if the disabled function is referred

to somewhere. Disabling caller can be beneficial because it disables all function calls from

other locations even not in the call stacks we collected. For example, in Fig.  3.1 (b), if

the website also plays the ad in the middle of playing the content, it can be turned off

by disabling the execution of function showAd, instead of disabling all the function calls.

Furthermore, callback functions triggered by native functions (e.g. event handler) or by

external JS libraries can only be disabled by this method since call statements are not

accessible.

Forced Branching. The branching target is forcefully set regardless of the result of the

predicate condition. However, we still interpret the condition expression because it may have

sub-operations (e.g. function calls).

Repeat callee. This tampering action is for duplicating desirable behavior (e.g. getting

rewards) by repeatedly invoking the function. A naive approach to repeating callee would

be to interpret the function call statement twice. However, business logic normally requires

network interaction between the client and web servers. So, it is very likely the duplicated

requests without interval will be ignored or considered as an error. We could add intervals

by calling the sleep function at runtime in the JS engine. However, this may block the

single-threaded JS engine and substantially interrupt the normal execution. To solve this

problem, we use setTimeout function and register the function to be repeated as a callback

function of the timer event.

Test Result Screening

After finishing each test trial, we need to check if the tampering proposal successfully

alters the original business flow in an intended way. Since our approach relies on DOM

changes, a simple solution is to track the existence of DOM mutation events. For the

NYT example mentioned in Sec.  3.2 , if the DOM mutation event that is triggered when

displaying the subscription message box is reproduced in testing, this tampering proposal
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is not successful. However, even if the DOM mutation event is not triggered, it does not

mean that this test trial succeeds for various reasons. For instance, the tampered execution

may stop showing the subscription message box, but it also blocks other DOM objects, such

as the article content. It is also possible that the event is not triggered because the page

is crashed. A more complex scenario is that the text message disappears, but the black

box still exists. Since there could be countless outcomes depending on web applications, a

tester’s intervention is inevitable to make the final decision. In order to minimize the manual

efforts, we group test results using a similarity-based clustering technique. Instead of asking

testers to check every result, they can just check one in each cluster. Such number is smaller

according to our experiment in Section  3.5 . Furthermore, for the rest of the testing batches,

the tester only needs to check when a new cluster is found. To be specific, for each test

trial, when the original DOM mutation event is not triggered, we take a screenshot, get the

corresponding HTML source code, and store as a test result entry. After testing a batch of

tampering proposals, we group the collected test results with a similarity-based clustering

algorithm. We use the Structural Similarity Index Method (SSIM) [  55 ] for screenshots, and

Tree Edit Distance (TED) [ 10 ] algorithm for HTML files to compute the structural similarity

between DOM trees. As a metric of the clustering algorithm, we combine the two similarity

scores since they complement each other. Specifically, clustering with the image similarity

metric usually generates fine-grained clusters especially if a screen changes frequently. In

the ad banner case from the motivating example, screenshots might vary depending on the

screenshot taking time since the video content is being played; therefore, there would be

many clusters. In this case, DOM tree similarity metric would reduce the number of clusters

if we combine them together. On the other hand, image similarity shows better performance

if DOM structures change dynamically, such as a front page of newspaper websites loading

dynamic contents. As a clustering algorithm, we select Density-Based Spatial Clustering

of Applications with Noise (DBSCAN) [ 56 ]. The advantage of DBSCAN is it does not

require the number of clusters as an input unlike other algorithms such as k-means. It is an

important factor since we do not have any clues about how many clusters exist in the test

results.
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Figure 3.4. System modules and flows

Note that we do not need this step for the repeat tampering strategy, instead, we can

simply check if the original DOM mutation event is triggered after the specified timeout.

3.5 Evaluation

3.5.1 Implementation

Our system  

1
 is implemented in Python and Node.js, and the modified JS engine is based

on V8 6.6.74. Fig.  3.4 describes the modules of our testing system. The testing module

leverages the Puppeteer library[  57 ], which provides high-level APIs to control Chromium over

the DevTools Protocol[  58 ]. To collect dynamic data and perform the business flow tampering

testing, we instrument the target JS code by modifying V8 engine [ 59 ] in Chromium. In

particular, the instrumentation works as follows: once the V8 engine loads a script file, an

Abstract Syntax Tree (AST) is built for each function and further translated to bytecode by

the bytecode generator. We modify InterpreterCompilationJob class to generate BCFGs

for JS functions after the ASTs are built. The BytecodeGenerator class is also modified to

collect dynamic data and mutate execution. Comparing to code rewriting approaches [  60 ],

we modified the JS engine because it brings in additional benefits. First, it can easily handle

dynamically generated codes as well as other sophisticated code modification techniques

discussed in Sec.  3.2 . Second, it has fewer side-effects. For example, it can work with code

integrity checking techniques (e.g., Subresource Integrity (SRI) features [  61 ]).
1

 ↑ We plan to make our system available at https://github.com/yirugi/JSFlowTamper
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Table 3.2. Statistics of websites from 5 categories

Category Total JS
Size (KB) # of JS # of Functions # of Branches

Newspapers 6,313 451 11,403 9,700
Magazine 4,334 258 8,046 6,884
Online Media 4,761 240 7,902 6,737
Surfer Rewards 2,521 132 3,931 3,330
Travel 4,402 220 7,031 5,854
Average 4,814 281 8,307 7,049

3.5.2 Research Questions

We investigate the following research questions in order to evaluate the effectiveness of

our system:

RQ1. How much overhead does our system introduce?

RQ2. How many real-world business flow tampering vulnerabilities can our system find?

RQ3. How well do we estimate the likelihood of vulnerable functions? In particular, what

are the results of the feature selection and the learning algorithm?

RQ4. How effective are tampering testing and result screening?

RQ5. How effective is our system on reducing search space?

To answer these research questions, we run our system on 200 real-world websites. The

websites are collected from 5 different categories in Alexa Top 500 since they use the most

common business models, such as advertisement, paywall, and point reward.

3.5.3 Experimental Methodology and Results

RQ1: Performance Overhead

Table  3.2 shows the benchmark statistics clustered by categories. On average, 8, 307

functions can be observed in a single page load, which points to the needs of our approach. We

measure three kinds of overhead, the first one is to collect the stack trace of DOM mutation

events, the second is caused by the instrumentation to collect dynamic page information
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Figure 3.5. Normalized execution overhead

such as function execution frequencies, and the third is the tampering testing overhead. To

reduce non-determinism caused by dynamic page content (e.g., ads), we crawl the pages

and resources to a local directory, and then load the local pages and resources with and

without our technique. The former is consider the baseline. We run each of the 200 websites

10 times and average the execution time. Fig.  3.5 depicts the normalized overhead. The

first 5 sets of bars show the overhead observed in each category and the last set denotes

the average overhead. The overhead for the call stack collection step is 2.41% (90ms) on

average. We observed the average number of DOM mutation events triggered during page

loading is 60.55. Hence, the overhead of handling one mutation event is around 1.5ms.

Similarly, the overhead for dynamic page data collection step is 1.39% (70ms). We do not

measure the overhead of executing tampering proposals for all 200 websites as it causes

exceptions and early termination in many cases, skewing the real overhead. From the cases

that terminate normally, the average overhead is 0.53% (4ms) which is lower than dynamic

page data collection.
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Table 3.3. Result of our testing on 200 websites
Case
No. Website T.A.* Vulnerable

Operation
Case
No. Website T.A.* Vulnerable

Operation
C-01 BostonGlobe DCE Paywall C-14 CNBC DCE

Anti-Adblock

C-02 NYTimes DCE C-15 CWTV FE
C-03 CWTV DCE Video Ad C-16 CBS FE
C-04 FoxNews DCE Anti-Adblock C-17 SeattleTImes DCE

C-05 NewsWeek DCR Offer
Notification C-18 MiamiHerald DCE

C-19 DenverPost DCE
C-06 CBS DCR

Video Ad

C-20 ETOnline DCE
C-07 Youtube FE C-21 AMC DCE
C-08 ETOnline DCE C-22 DallasNews DCE

PaywallC-09 AMC FE C-23 WashingtonPost FE
C-10 CartoonNetwork FE C-24 ChicagoTribune DCE
C-11 Fox FE Offer

Notification

C-25 Youtube DCE
EtcC-12 PCMag FE C-26 HBO FE

C-13 Business-Standard DCE C-27 Inboxdollars RC
T.A: Tampering Action
*: FE = Forced Branching, DCE = Disable Callee, DCR = Disable Caller, RC = Repeat Callee

RQ2: Effectiveness in Finding Vulnerability

Our technique discovers 27 vulnerable cases from 23 websites as shown in Table  3.3 . The

first and the fifth columns show the case number while the second and the sixth columns

describe the website. The third and the seventh columns indicate the tampering action, and

the last ones contain the vulnerable business logic. Observe many websites are mainstream

content publishers. We use the first 5 cases to produce the training set for the function

ranking model. After we trained the classifier, we found 22 more cases. Besides the NYT

case in the motivation section, we found 4 more vulnerable paywall systems (C-01, 02, and

22 - 24). Instead of using paywall, some websites show an offer notification popup at the

front page. We found 4 cases that the offer popup can be disabled (C-05, and 11 - 13).

From the websites in online media category, most of the findings are about skipping the ads

before or in the middle of video playing (C-03, and 06 - 10). We also try to tamper with

the protection method for their ad-related business logic against adblockers. We found 9

cases (C-04, and 14 - 21) in which the anti-adblock techniques can be bypassed. Youtube
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Table 3.4. Function ranking with classifiers
(a) Function rank using 3 algorithms

Case No.
Avg. Rank of Func.
w/ Tampering Point

w-LR w-SVM BRF
C-01 3.5 13.2 2.1
C-02 26.1 16.2 13.4
C-03 4.4 5.7 6.3
C-04 1.4 5.2 1.8
C-05 2 1.5 1.1

Average 7.48 8.36 4.94

(b) Function ranks of the 22 successful case (BRF)

Case
No.

Rank of Func. w/
Tampering Point Case

No.

Rank of Func. w/
Tampering Point

BRF Random BRF Random
C-06 1 82.5 C-17 3 10.4
C-07 4 90.4 C-18 1 3.8
C-08 8 47.4 C-19 1 9.3
C-09 1 31.4 C-20 9 46
C-10 6 25.2 C-21 4 69.5
C-11 5 19.4 C-22 1 7.1
C-12 1 4.3 C-23 2 63.2
C-13 3 4.6 C-24 1 9.1
C-14 1 5.6 C-25 1 3.5
C-15 1 8.5 C-26 2 12.3
C-16 8 26.3 C-27 11 12.4

Average 3.41 26.92

shows ad banners in the middle of video playing, and this can be skipped by disabling callee

(C-25). HBO prompts a user to provide personal information in order to watch free episodes

right before video starts. This can be skipped by forced branching (C-26). Inboxdollars

gives points to users at the end of watching a video. Our system found a way to repeat the

rewarding operation using the repeat callee tampering action (C-27).

We have uploaded demos of our findings (recorded screens of the successful tampered

cases) to a private website 

2
 . We only use these findings for research purpose. We have

responsibly reported the vulnerabilities to the victim websites and are in communication

with them for possible defense solutions.

RQ3: Feature selection and learning algorithm

We use candidate functions from the first 5 cases in Table  3.3 as the training set. For

these cases, we test every tampering proposals. If a vulnerability is found, the candidate

function containing the tampering proposal is marked as a positive sample. The others are

marked as negative samples. At the end, we acquire 56 positive samples and 402 negative
2

 ↑ https://sites.google.com/view/tampering-cases/
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samples. Using the training set, we perform the feature selection process for the 10 features

in Table  3.1 . We conduct the ANOVA test to find out which features are significant. As

a result, the first 5 features whose p-value is less than 0.1 are selected (F1, F4, F5, F7,

and F8). Next, in order to check which learning algorithm works best for our scenario, we

tested 3 classifiers discussed in Section  3.4.4 using the training set with the 5 websites. In

particular, we learn each classifier on 3 randomly picked websites and test them on the rest

of the websites for its cross-validation. In order to evaluate the learned models, we order

candidate functions for each website based on the likelihood scores and got the rank of the

first function containing the real vulnerability. We perform this evaluation test 10 times,

then calculate the average rank values, and Table  3.4a describes the results of the 3 classifiers,

as a result, BRF shows the best average rank value. Table  3.4b shows the function ranks

of the 22 successful cases we find after we apply the trained classifiers (BRF). In order to

evaluate its efficacy, we also select functions 10 times randomly, then get the averaged rank

of functions containing the real vulnerability. As we can see in the table, the rank values

with the classifier show significantly better performance than the random method. In 10 of

the 22 cases, we find the vulnerability at the first candidate function using the ranking.

RQ4: Effectiveness of Tampering Testing and Result Screening

Table  3.5 shows the effectiveness of tampering testing and test result screening. The

second column shows the total number of tampering proposals. The third column describes

the number of tests until we find a successful case. The last two columns show the effects

of the test result screening, the number of test results after DOM event-based screening,

and the number of results after similarity-based clustering. The last column also indicates

that the number of results requiring a tester’s confirmation. In this experiment, we test 10

tampering proposals in one batch. As we mentioned, the first 5 cases are collected from

randomly picked candidate functions, and the rest 22 cases are found with the help of the

candidate function ranking method. In the first 5 cases (C-01 to C-05), the numbers of

tests vary from 10 to 170. The worst case is almost 80% of the total tampering proposals

(C-02), and on average, we test around 50% of the tampering proposals. The clustering and
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Table 3.5. Function ranking and screening results
Case
No. # of T.P. # of Tests

to Success
# of Results

after E.S.
# of Results

after Clustering
C-01 264 170 32 4
C-02 191 150 107 17
C-03 176 90 42 16
C-04 150 20 13 4
C-05 208 10 8 2

Average 197.80 88.00 40.40 8.60
C-06 486 10 10 4
C-07 281 20 8 3
C-08 440 20 16 2
C-09 99 10 10 3
C-10 460 20 12 2
C-11 45 20 14 6
C-12 209 10 8 4
C-13 93 10 3 1
C-14 66 10 10 3
C-15 211 10 5 3
C-16 225 50 27 3
C-17 173 10 2 1
C-18 35 10 4 1
C-19 623 10 10 1
C-20 722 20 18 4
C-21 113 10 7 2
C-22 53 10 1 1
C-23 529 10 7 2
C-24 933 10 10 3
C-25 159 10 2 2
C-26 57 10 6 3
C-27 42 19 - -

Average 275.18 14.50 9.05 2.57
T.P.: Tampering Proposal, E.S.: Event-based Screening
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screening significantly reduce manual efforts such that testers only need to check 8 results

on average, in comparison to the hundreds proposal executions. In the 22 cases found later

(C-06 to C-27), the number of tests needed to expose the real vulnerabilities is tremendously

reduced using the function ranking method. The average is 14.50, which is only 5% of the

total tampering proposals. Because of the reduction, testers only need to check 2.57 results

on average. In addition, we investigate the cases that do not have vulnerabilities, and we

observe that testers have to check 27.93 clusters on average. As checking a cluster is as

simple as inspecting a screenshot, we consider such manual efforts are manageable.

RQ5: Effectiveness in Reducing Search Space

In order to reduce search space, we collect call stacks by observing DOM mutation events,

and we remove redundant functions and those from JS libraries. Moreover, the functions have

zero call count during dynamic data collection are also removed in the tampering proposal

generation. To evaluate the effectiveness of our filtering method, we collect statistics for the

27 successful cases. Specifically, we collect the total number of 3 types of data (JS files,

functions, and branches) we have to consider before and after filtering. Fig.  3.6 shows the

normalized numbers of each data types from 27 cases, and the last bar denotes the average
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Figure 3.6. Effectiveness in reducing search space
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number. As we can see, we could reduce the number of each data type substantially. For

instance, we need to investigate 18,658 functions without filtering if we want to find the case

C-22. However, after filtering, there are only 84 functions left, and this is only 0.45% of the

original number. On average, we only need to inspect 3.18% of the JS files, 1.31% of the

functions, or 2.13% of the branches of those in the original execution.

3.5.4 Case Study

In this section, we show two case studies to demonstrate how our system finds the business

flow tampering vulnerabilities.

Bypassing Adblock Detection

The website we use in this case study (C-16) is cbs.com which is one of the biggest

television networks in the US. They provide the subscription-based online streaming service,

createResourceConfig

loadAndPlayResource

e.loadAndPlayVideo

n.showPanel

dispatchAdBlocked

9 functions

createResourceConfig: function(a) {
...
if (m && this.checkForAdBlocker()) {

if (true === h.missingSDK) {
n = k ? "IMA" : "DAI";

}
this.dispatchAdBlocked(n, true);
return false;

} else {

1:
2:
3:
4:
5:
6:
7:
8:
9:

testMethod: function(…) {
…
o = e.document.createElement("script"),
o.addEventListener("load", function(e) {

t(n.createResult(f.a.NOT_PRESENT,
f.f.NO_LOAD_BLOCK,...))

}),
o.addEventListener("error", function(e) {

t(n.createResult(f.a.PRESENT, 
f.f.LOAD_BLOCK,...))

}),
e.document.body.appendChild(o);

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:

(a) Call Stack

(b) Code snippet of createResourceConfig

(c) Code snippet of function testMethod

Figure 3.7. Bypassing adblock detection in cbs.com
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and some of their episodes can be watched for free with video ads from sponsors. They also

protect their business logic using the anti-adblock technique. If a user tries to watch a free

episode with an adblocker-enabled web browser, the website blocks the actual contents with

a warning message.

In order to find if their anti-adblocker technique can be bypassed using our system,

we collect call stacks by tracking the warning message. After preprocessing, we have 95

functions, which are only 0.86% of the total functions on the page. There are 225 total

tampering proposals, and after 5 batches, which is 50 trials, we found the vulnerability.

Note that after the screening, only 3 test results required a manual check.

To analyze how our system found the success case, we checked the vulnerability report.

Our system found the tampering location in function createResourceConfig. Its call stack

and code snippet are described in Fig.  3.7 (a) and (b). It checks the presence of adblocker

using checkForAdBlocker (line 3), and it calls dispatchAdBlocked to show the warning

message (line 7). If we follow the function checkForAdBlocker, the function testMethod in

Fig.  3.7 (c) tries to inject a script containing "ad" string in its url (line 12) since the adblock

applications usually block those scripts. The tampering proposal that forces the false branch

of the if statement at line 3 succeeds. As shown, our system successfully found a way to

bypass the anti-adblocker technique. With the tampered business flow, users can watch free

episodes without watching video ads, and this would affect the business model of the website.

Repeating Point Reward

Inboxdollars (C-27) is an online marketing company that connects consumers and ad-

vertisers, and consumers can earn cash rewards for engaging in a variety of web activities.

According to their website, total cash paid to members surpasses $50 million in 2016[  62 ].

One of the services they provide is video reward; they offer points after a user watches a

video containing ad. To be specific, when a video player reaches the end of the video, it

increases a progress bar indicating the current reward status. In this case, we tried to repeat

the rewarding activity. In order to start testing, we first recorded browsing interactions

for logging in and clicking a play button, then gathered a DOM identifier by selecting the
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window.SC_increase
Progress

window.SC_animate
TotalProgressBar

window.SC_animate
ProgressBar

ended

doOnBeforeComplete

function doOnBeforeComplete() {
if (logItCalledAtLeastOnce) {

window.SC_increaseProgress(1);
}
clearTimeout(creditingTimeoutReset);
if (!logItCalledAtLeastOnce) {

...

1:
2:
3:
4:
5:
6:
7:

(a) Call Stack
(b) Code snippet of doOnBeforeComplete

before and after modification

trigger

function doOnBeforeComplete() {
if (logItCalledAtLeastOnce) {

window.SC_increaseProgress(1);
setTimeout(5000, window.SC_increaseProgress, 1);

}
clearTimeout(creditingTimeoutReset);
if (!logItCalledAtLeastOnce) {

...

1:
2:
3:
4:
5:
6:
7:
8:

Figure 3.8. Repeating point reward in inboxdollars.com

progress bar. The total number of functions that appeared during testing is 12,642, and

we could reduce it to 27 which is only 0.21% of the total number. Our system successfully

found the tampering location with 19 trials out of 42 tampering proposals. As we discussed

in Section  3.4.5 , it did not require the manual work to check the success case.

Fig.  3.8 illustrates the call stack and the code snippet of the function doOnBeforeComplete

that has vulnerability. Specifically, when the video is finished, the player calls the function

ended, then the function trigger calls the function doOnBeforeComplete. In the function, it

first checks if the video has finished (line 2). If so, it calls the function SC_increaseProgress(1)

to send a reward request to its server as well as to increase the progress bar. In order to

repeat the call, the modified JS enigne added the setTimeout function containing the name

of the function and a parameter, indicating the function will be called after 5,000 msec.

Using this vulnerability, we could get multiple rewards after watching a single video. As

mentioned, the rewarded points can be exchanged to actual cash. This directly causes finan-

cial damage to the website. We were able to stack $3.44 reward points for an hour attack
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with a single machine, and if we continue this attack, we would get around $80 per day. We

did not exchange the points we got from the vulnerability, and we are in communication

with Inboxdollars so that they can deploy defense mechanism.

3.6 Threats to Validity

There are a number of threats to the validity of our conclusion. Part of our technique

(i.e, function ranking) requires training. Although our training task is quite simple with

well defined features, we only use 458 training samples. While the training set and the test

set are strictly separated and our results indicate the effectiveness of the trained model, it

may be possible that the training set is not representative and hence the ranking model may

not be optimal. We will study the effect of including more cases in the training set in our

future work. Our results are only acquired on 200 top-ranked websites as our technique is

heavyweight testing-based, requiring processing thousands of dynamically loaded JS files and

substantial dynamic contents. It is possible that these 200 websites are not representative.

We plan to test on more websites. Checking the final results requires human efforts. It

is possible that we may miss some real vulnerabilities. We currently only support simple

tampering operations, which may not disclose complex business model flaws.

3.7 Related Work

Our work builds on extensive previous work on automatically testing web applications

for vulnerabilities. We briefly describe relevant approaches, as well as previous works that

detect business logic vulnerabilities in web applications.

Multiple Path Execution. Our work shares some similarity with recent work to ex-

plore execution paths by forcing program execution on JS programs [ 63 ], native binary

programs [  64 ], mobile apps [ 65 ,  66 ], and kernel rootkits [ 67 ]. Forced execution was first

proposed in [  67 ], which brute-forces control-flow at branches to explore program paths. X-

Force [  64 ] moves forward by designing a crash-free engine. In our work, forcing branch

outcome is one of the tampering actions. However, our technique addresses a much broader

problem. Guided mutation testing for JS web applications develops generic mutation testing
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approaches based on common mistakes made by JS programmers [  68 ,  69 ]. Our technique

mutates places specific to business models. It features sophisticated methods to narrow down

the candidates of such mutation. Symbolic and concolic execution based techniques [  70 – 73 ]

have also been proposed to analyze JS programs. Despite their great potential, handling

substantial dynamic features in complex websites remains a challenge.

Business logic vulnerability detectors. Recently, researchers have proposed a number

of techniques to test web applications for business logic vulnerabilities [  43 ,  74 – 80 ]. These

techniques focus mostly on the detection of web-based single sign-on systems and third-party

payment systems. Wang et al. are the first to analyze logic vulnerabilities on merchant

websites [ 43 ], and [  75 ] studied logic flaws on popular web single sign-on systems. These

techniques follow an API-oriented methodology that dissects the workflow in a particular

application by examining how individual parties affect the arguments of related API calls.

Sun et al. proposes a static detection of logic vulnerabilities in e-commerce web applications

by combining symbolic execution and taint analysis to detect invariant violations of correct

payment logic [ 74 ]. [ 77 ] proposes an approach to invoking static verification of the safety

property of multiparty online services.

Dynamic JS code analysis. Dynamic analysis is commonly used to deal with the highly

dynamic nature of JS applications. [ 81 ] builds a call graph on client-side codes embedded

in server-side codes as string literals. It handles all possible client-side JS code variation by

symbolically executing server-side code. AjaxRacer [ 82 ] detects AJAX event race errors in

JS web applications by testing pairs of user events that are potentially AJAX conflicting.

[ 83 ] proposes a dynamic slicer providing a comprehensive analysis to identify data, control,

and DOM dependencies for client-side JS code. ConfictJS [  84 ] finds conflicts between JS

libraries by identifying potentially conflicting libraries and testing them with generated client

applications that may suffer from the corresponding conflicts.
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4. BFTDETECTOR: AUTOMATIC DETECTION OF

BUSINESS FLOW TAMPERING FOR DIGITAL CONTENT

SERVICE

Digital content services provide users with a wide range of content, such as news, articles,

or movies, while monetizing their content through various business models and promotional

methods. Unfortunately, poorly designed or unprotected business logic can be circumvented

by malicious users, which is known as business flow tampering. Such flaws can severely harm

the businesses of digital content service providers.

In this paper, we propose an automated approach that discovers business flow tampering

flaws. Our technique automatically runs a web service to cover different business flows

(e.g., a news website with vs. without a subscription paywall) to collect execution traces.

We perform differential analysis on the execution traces to identify divergence points that

determine how the business flow begins to differ, and then we test to see if the divergence

points can be tampered with. We assess our approach against 352 real-world digital content

service providers and discover 315 flaws from 204 websites, including TIME, Fortune, and

Forbes. Our evaluation result shows that our technique successfully identifies these flaws

with low false-positive and false-negative rates of 0.49% and 1.44%, respectively.

4.1 Introduction

Digital content services are web-based e-businesses providing users access to various on-

line content, including news, entertainment, and technology articles. Those contents are

delivered in diverse formats such as text, audio/video, or image. For example, Netflix, Ama-

zon Prime Video, and The New York Times are well known digital content providers. Digital

content services take up a significant portion of the e-commerce business. Specifically, the

global digital content creation market size is estimated to be $11 billion USD in 2019 and is

expected to reach $38.2 billion by 2030 [ 85 ].

Business Models of Content Service Providers. Content providers use a few business

models to monetize their services. For example, news websites allow access to premium
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articles only to the users who have subscribed or paid for the access. Social networking

services such as Facebook make profits via advertisements instead of asking for payments

from users directly. We define four business models as follows:

1. Advertising model delivers promotional marketing messages (i.e., texts, images, and

videos) to users and content providers earn revenue from advertisers.

2. Subscription model typically uses a paywall method to restrict access to certain

content for the users who have not subscribed or paid for the content.

3. Donation model relies on voluntary contributions to support service providers (e.g.,

giving donation money).

4. Non-profit model is usually adopted by organizations dedicated to public or social

benefit (e.g., Wikipedia).

Advertising

55.8%

Advertising and Subscription

24.9%

Subscription

16.6%

Donation

2.2%

Non-profit

0.6%

Figure 4.1. Business Models of 178 Digital Content Service Providers in Alexa Top 500.

Figure  4.1 shows the business models of 178 digital content service providers we collected

from Alexa top 500 

1
 . Advertising (80.7%, including the websites with both advertising

and subscriptions) is the most common business model, followed by a subscription (or paid

content) business model. The result shows that the business models are common for digital

content service providers, and advertising and subscriptions are the two most popular models.
1

 ↑ The remaining 322 websites are not digital content providers. For example, websites like Dropbox and
Overleaf provide online application services (e.g., data creation and sharing functionalities), not focusing on
delivering digital contents. They are based on the subscription model.

78



Promotional Methods. A promotional method is a strategy facilitating business models to

maximize profits by either preventing adversarial techniques or directing users for payment.

1. Anti-adblocker: The advertising business model has been the most popular income

source for digital content service providers. However, Adblockers which allows users to

obtain contents without seeing the advertisements imposed a significant threat. Anti-

adblocker is a promotional method that detects the presence of Adblockers to prevent

users with Adblockers from accessing content. To access the content, users have to

disable/uninstall Adblockers or purchase an ad-removal pass.

2. Paywall: Paywall is a promotional method used in the subscription business model. It

restricts access to content and asks for a subscription. There are two types of paywalls:

hard and soft. A hard paywall requires a paid subscription to access any digital content,

and a soft paywall allows users to view the content a certain number of times before

requiring a paid subscription.

Business Flow Tampering (BFT). A recent work [ 86 ] introduces the concept of Business

Flow Tampering (BFT), which when successfully happens, allows an attacker to access con-

tent without going through a legitimate business flow (i.e., by changing the execution flow

of the business model implementation). While it requires a strong adversary who is capable

of monitoring and perturbing the execution of client web programs, the study shows that

various digital content services suffer from the BFT.

The consequence of the BFT can be catastrophic. For example, a service provider that

earns most of its revenue from subscriptions would go out of business if users can circum-

vent the subscription process (i.e., paywall). Moreover, a report [ 87 ] indicates that BFT

has become a real-world threat: software or browser extensions aim to circumvent paywalls

(e.g. [  88 ]) are becoming increasingly popular. As a response, content providers put their

effort into protecting their revenue by using techniques against BFTs. For example, almost

40% of the top 1,000 websites use anti-adblocker [ 89 ], showing the substantial interest of the

content providers on the BFT.

The cause of BFT is essentially an improper business model implementation that relies

on the insecure JavaScript execution (that can be manipulated by attackers) for critical
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logic. Hence, it is crucial to identify the implementation flaws so that protection strategies

can be applied. Unfortunately, a detection method outlined by the existing work requires

substantial manual effort and domain expertise, hence not scalable.

Proposed Approach. In this paper, we propose an automated approach that discovers

business flow tampering (BFT) flaws in the web client programs of digital content services.

To handle various web services where implementations of them may vary, our approach

leverages the fact that those web services share a few business models and their key business

flows (i.e., processes). Focusing on the business model, we develop generic approach that is

less dependent on concrete implementations of the web services.

Leveraging the business models, we propose a differential analysis-based technique to

identify the BFT flaws. First, we run a web service twice where the first execution covers

a legitimate business flow (e.g., accessing content with a subscription) while the second

execution tries to do the same operation without going through the same business flow

(e.g., without the subscription). Second, we perform a novel differential analysis on the two

executions to pinpoint the critical implementation of the business flow (e.g., checking the

subscription). Third, our approach automatically generates test inputs that can tamper with

legitimate business flows and executes the web service with the test inputs to find the flaws.

The key enabling technique of our approach is a novel differential analysis technique that

systematically locates the execution points that diverge, followed by execution mutations.

Specifically, we mutate the execution of client-side JavaScript programs by adding, modi-

fying, and removing statements. Our system also automatically validates test results using

a clustering algorithm (i.e., Balanced Random Forest classification). Mutated executions

(e.g., skipping subscription checking) achieving similar results to the executions of legiti-

mate business flows (e.g., access to premium content with subscription) suggest there can

be BFT flaws. To this end, our approach can automatically identify BFT flaws with little

to no manual effort and human interactions.

In summary, we make the following contributions:

80



• We propose a novel system, BFTDetector, to find BFT flaws. It automatically exercises

business process on a content provider’s website to identify the execution points that

can be tampered with.

• We generalize the business models and relate the models with website implementations,

using the models to exercise and trace diverse business flows.

• We develop a differential analysis algorithm to identify a critical decision point of the

business model by comparing call traces between multiple executions.

• We apply our approach to 352 real-world digital content service providers from Alexa

top 500, and find 315 flaws from 204 websites including TIME, Fortune, and Forbes.

4.2 Motivation

We use two real-world examples, Los Angeles Times (LA Times) [  90 ] and StudentShare [  91 ],

to demonstrate how our system can detect BFT in the real-world websites.

Advertisements on LA Times. LA Times is one of the most popular newspaper ser-

vice providers in the US, and it uses advertising and subscription business models. Non-

subscribers can see a limited number of articles by seeing ads on article pages. However,

Adblockers can remove those advertisements, undermining the business model. To safeguard

their income source, LA Times utilizes an anti-adblocker technique provided by Google Fund-

ing Choices [  92 ]. When Adblockers are detected, the user is prompted with a message that

directs the user to a subscription page, asking for payments.

Figure  4.2a shows the anti-adblocker process. When the main page of the website is

loaded, it injects ‘loader.js’ from Google Funding Choice. After a series of function calls,

the loader script also injects ‘detection.js’ that detects Adblockers. Specifically, the func-

tion Hf() gets a list of DOM objects containing ads (line 1). For each DOM object, it checks

the sizes of the inserted ads (line 5), and if any of them are not being shown properly, a.j()

is called. Lastly, ‘adwall.js’ is injected to show the Adblocker detection message.

Subscription on StudentShare. The StudentShare site offers a large number of essay

samples. It provides a limited number of free essays, and a monthly subscription is required
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1: Hf = function(a) {

2: …

3: for (b=0; b<a.h.length; ++b){

4: var c = a.h[b];

5: if (0 === c.offsetHeight ||

0 === c.offsetWidth) {

6: a.j(c);

7: return;

8: }

9: }

10:}

fundingchoicesmessages.
google.com

main
page

latimes.
com

a.j

JS JS JS

Function Call stack

Adblock
Detected!

Hf

loader.js detection.js adwall.js

D

S2

S1

D Divergence point S Solutions

(a) LA Times

1: function unlockCallback(response, …){

2: if(response.success) {

3: …

4: var downloadUrl = 

“/document/download?id=” + docId;

5: downloadUrl += getToken(docId);

6: location.href = downloadUrl;

7: …

8: return true;

9: } else {

10: location.href = getRedirect(response);

11: return true;

12: }

13: …

studentshare.com

JS

documentNewStructure.js

unlockDialogWithGa

unlockDialog

unlockCallback

$ $$

Pricing

Download

D

S3

(b) StudentShare

Figure 4.2. Motivating Examples.

to access the premium essay samples. Figure  4.2b shows its business process for down-

loading premium essays. When a user clicks the download button, it invokes the function

unlockDialogWithGa(), which further calls the function unlockDialog() to check if the

user has access to the essay. Then, the callback function unlockCallback() is triggered

when a response from the server arrives. It checks the variable ‘response.success’ (line 2),

and starts downloading if the variable’s value is ‘true’ (lines 2∼8). Otherwise, the user is

redirected to a subscription page (lines 10∼11).
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4.2.1 Business Flow Tampering Flaws

The two websites have BFT flaws. First, in LA Times (Figure  4.2a ), the function call

a.j(c) (line 6) that shows the Adblocker detection message can be bypassed by removing

the call statement, or altering the result of the if statement (line 5). Second, in the Stu-

dentShare website (Figure  4.2b ), any premium essays can be downloaded without purchasing

the subscription by forcibly entering the true branch (lines 3∼8) of the if statement (line

2). These attack scenarios are highly achievable because the important business process

written in JavaScript (JS) are running on the client-side, and an attacker can tamper with

the flow using JS debuggers provided by web browsers. To this end, the tampering flaws can

compromise the business well-being of these websites.

4.2.2 Business Model vs. Implementation

The underlying cause of the BFT flaws is a discrepancy between the assumption of the

business models and the models’ implementation. In other words, the business models do not

assume the possibility of tampering with the processes, while the real-world implementation

of the business models can be tampered with. Ideally, it is secure to implement the business

models and the promotional methods with two principles: 1) important business process

should be handled on the server-side, and 2) the client only displays final data rendered at

the server. However, the above principles are not well obeyed in practice: (i) developers

are often unaware or overlook the possibility that JS code can be tampered with on the

client-side. In Figure  4.2b , decisions to initiate download or redirect to a subscription page

are critical business logic that can be tampered with, as they are on the client-side. (ii)

existing web ecosystems’ complex internal structures make it hard to achieve the principles.

For example, ad ecosystems today integrate multiple 3rd-parties and run complex bidding

processes multiple times to provide effective interest-based ads. The ad ecosystems decide to

run them on the client-side due to the efficiency (i.e., running them on the server will cause

significant overhead).
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4.2.3 BFTDetector: Automated Tampering Detection

Our approach automatically detects the existence of BFT flaws, including the location

of the flawed code and its cause. Specifically, we automatically identify a business model of

the website by analyzing execution traces of the website following different business flows

(see Section  4.3.1 ). We then conduct differential analysis to identify divergence points of

the executions across different business flows. For instance, we detect the function Hf()

in Figure  4.2 a and unlockCallback() in Figure  4.2 b as divergence points ( D ) because

the executions of the different business flow paths become different from the points (Post-

Divergence).

Lastly, our technique tries to test whether the divergence points can be tampered with by

forcibly executing a branch or skipping statements. Specifically, in Figure  4.2a (LA Times),

our system visits the page with Adblockers, and try to mutate the original execution at the

divergence point (Hf()) by flipping the if branch ( S1 ) or skipping the call ‘a.j(c)’ ( S2 ). In

Figure  4.2b (StudentShare), we attempt to download a premium essay without a subscription

by forcibly executing the true branch of ( S3 ), as if it were part of the subscription flow.

4.3 System Design

① Dynamic 
Execution 

Trace 
Collection

P|B

Call
Divergence

② Call Trace
Differential 

Analysis

③ Test Input 
Generation ④ BFT Testing

Testing 
Inputs

Execution
Information

Test Results
Snapshots

⑤ Test Result
Verification

P B

Execution Result
Snapshots

P B

Call Trace

Figure 4.3. System Overview

Overview. Figure  4.3 shows a brief overview of our BFT detection system, which consists

of five phases:

1 Dynamic Execution Trace Collection (Section  4.3.1 ). BFTDetector collects dy-

namic execution trace by exercising business processes according to the business model. The

output includes call traces and execution result snapshots which are essentially screenshots

and HTML/DOM data.
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Figure 4.4. Generalized Business Process.

2 Call Trace Differential Analysis (Section  4.3.2 ). Our system performs differen-

tial analysis on the function call trace collected for different business flows, identifying call

divergences points where executions start to differ.

3 Test Input Generation (Section  4.3.3 ). We generate test inputs containing state-

ments data to be mutated by using the call divergence points from the previous step.

4 BFT Testing (Section  4.3.4 ). Our system repeatedly visits the web page to mutate

the execution according to the test inputs generated from the previous step.

5 Test Result Verification (Section  4.3.5 ). We measure whether our system success-

fully tampers with the business process by comparing snapshots from the test and the results

from the original execution. A machine learning technique is used to calculate the degree of

similarity between snapshots.
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Table 4.1. Business Process Procedures

Procedure Name Browsing Operations

Login(JS)
1. Open a browser
2. Perform logging in by replaying JS
3. Return the session S

TriggerPaywall(P | JS, S)
1. Open a browser with a session S
2. Visit all pages ∈ P or replay JS
3. Return the session S

CollectTrace(P | JS, S)

1. Open a browser with a session S
2. Visit any page ∈ P or replay JS
3. Collect execution trace & snapshot
4. Close the browser
5. Repeat 3 times∗

*: In all the evaluated cases, we have reached a fixed point within
three times repetition.

4.3.1 Dynamic Execution Trace Collection

Business Model Driven Trace Collection

Given a website using known business models such as advertising and subscription, we

automatically exercise the website to execute the business process. Figure  4.4 shows examples

of generalized processes of business models. The two diagrams on the right side represent the

processes of two business models and the corresponding promotional methods, and the left

side shows a generalized business process. The service providers first gather information and

then decide with respect to the promotional methods and users’ current states (e.g., whether

a user made a payment or not). The business flow diverges as a result of the decision,

delivering different contents to the users (e.g., showing premium content for a paid user,

or redirecting to a subscription page for a guest). Observe that the decision-making logic

causes business flows to diverge (i.e., divergence point), which can be tampered (i.e., BFT).
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Table 4.2. Business Process Execution Driver

Business
Model

Promotional
Method

Browsing Procedure
Passing Run Blocking Run

Subscription

Hard Paywall
1 S = Login(JSlogin)
2 CollectTrace(Psub, S) 1 CollectTrace(Psub,∅)

1 CollectTrace(Pfree,∅)∗ 1 CollectTrace(Psub,∅)

Soft Paywall 1 CollectTrace(Pfree,∅)
1 S = TriggerPaywall(
Ppaywall,∅)

2 CollectTrace(Pfree, S)

Advertising Anti-adblocker 1 CollectTrace(Pany,∅) 1 Enable Adblocker extension
2 CollectTrace(Pany,∅)

*: If free pages are also available.

Definition of Passing and Blocking Runs

To identify the divergence point in the business model, we first obtain executions covering

two different business flows: a business flow delivering desired content and another flow

blocking the content. Concrete executions of the two business flows are defined as passing

and blocking runs.

1. Passing Run. A passing run is an execution that successfully delivers the digital

content (e.g., an execution with a paid paywall or with advertisements displayed).

2. Blocking Run. A blocking run represents the business flow that blocks digital content

delivery for various reasons (e.g. no subscription, or Adblocker detected).

For instance, successfully downloading the premium essay with a valid subscription in

the StudentShare is a passing run, while redirecting to the subscription page is a blocking

run.

Automated Business Flow Execution Driver

Our system automatically exercises business flows with respect to the business model to

obtain the passing and blocking runs. We first define three key business process procedures,
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where each procedure is a sequence of browsing operations (e.g., open a browser and visit

a page) that can exercise key implementations of the business models when executed. We

then obtain the passing and blocking runs by executing the business process procedures on

the websites.

Variables of Business Process. We define five variables to describe business process

procedures (and browsing operations).

1. Psub is content pages requiring a subscription.

2. Pfree is a list of free pages (accessible without a subscription).

3. Ppaywall indicates a maximum number of pages allowing free access of content, before it

triggers a paywall.

4. Pany represents any content pages.

5. JS is a Puppeteer [ 57 ] script recorded by a tester providing automated browsing.

Business Process Procedures. Table  4.1 shows three business procedures that serve as

building blocks for exercising the flows in the business model. Table  4.2 shows the browsing

procedures for each promotional method to exercise the two distinct business flows (i.e.,

passing and blocking runs). Our system repeats the collection process three times in order

to gather enough execution traces that contain business processes. Our system also supports

replaying tester-recorded browsing activities (in JS file format) from the Chrome DevTool

recorder [ 93 ]. This enables our system to emulate website-specific browsing procedures (e.g.,

logging in or clicking the download button in the StudentShare case (Figure  4.2b )).

Call Trace Collection

We collect function call traces during the execution driven by the business flow execution

driver. On a function call, we record the (1) Caller function, (2) Function Call Statement,

and (3) Callstacks. Intuitively, the call trace includes information about who (Caller) called

whom/at where (Call statement) and in which circumstance (Callstack), and we call this set
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of data a call signature. The callstack is stored as a hashed string to enable fast comparison

in the differential analysis (Section  4.3.2 ).

Bytecode Level Instrumentation. Instrumenting complex and often obfuscated real-

world programs is challenging. Hence, we modify the V8 JS engine [  94 ] to dynamically instru-

ment at the JS bytecode level (we have changed around 1,600 LOC). This design choice also

handles various difficult-to-instrument primitives such as anonymous/asynchronous functions

and dynamically generated code.

Performance and Space Optimization. Call trace collection incurs high overheads due

to, in part, a high volume of function calls. To minimize the overhead, we optimize the

built-in call stack collection procedure. Specifically, when we retrieve a full-sized call stack

from the browser, it constructs an object containing various unnecessary information (e.g.,

metadata of scripts, functions, and stack trace), leading to substantial performance and

memory overhead. Hence, we prune out the unnecessary items in the call stack. In addition,

we deploy a blacklisting approach filtering out JS files that are not relevant to the business

process of our interest, such as internal functions of common JS libraries (e.g., jQuery)

or third-party tracking code. For those libraries, we only trace the interface functions in

our call trace (i.e., the first call to the libraries). As we show in Section  4.4.4 , the above

optimizations successfully reduce the overhead by half. Besides the call trace, we also record

a snapshot (screenshot and HTML/DOM data) of the resulting page for each run. The

recorded snapshots are used in the test result verification step described in Section  4.3.5 .

Contributions. BFTDetector automatically explores the business process (passing and

blocking runs) of the target website using our business process execution driver. In addi-

tion, it collects dynamic execution traces efficiently with bytecode-level instrumentation

and optimizations.

4.3.2 Call Trace Differential Analysis

Given the collected call traces of the passing and blocking runs, we perform a differential

analysis to identify a divergence point representing the critical decision-making point in the

business model. For instance, in Figure  4.2a (LA Times), Hf() is the call divergence point
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Algorithm 3 Call Divergence Point Discovery
Input: P, B : lists of call traces collected from passing and blocking runs, where Pi ∈ P or Bi ∈ B is a list

of call signature c, and ci ∈ c denotes a set (Caller, Call Statement, Callstack)
Output: CD : a list of call divergence data, where CDi ∈ CD denotes a set (Divergence function, Call

statement, Passing or Blocking Run)
1: function ExtractCallDivergence(P, B)
2: CD ← {}
3: Pint ← Intersection(P )
4: Bint ← Intersection(B)
5: Puniq ← Pint −Union(B)
6: Buniq ← Bint −Union(P )
7: PBint ← Intersection({Pint , Bint})
8: for each pb ∈ PBint do
9: for each p ∈ Puniq do

10: if pb.Callstack ⊂ p.Callstack then
11: CD ← CD ∪ {p.Caller , p.Call_Stmt, “Passing Run”}
12: for each b ∈ Buniq do
13: if pb.Callstack ⊂ b.Callstack then
14: CD ← CD ∪ {b.Caller , b.Call_Stmt, “Blocking Run”}
15: return CD

since the execution flows of passing and blocking runs reach the function, but only blocking

flow continues to a.j(). Similarly, unlockCallback() in Figure  4.2b is the call divergence

point.

Algorithm. Algorithm  3 describes how we identify the call divergence point. It takes two

lists of call traces (P and B) that are collected in Section  4.3.1 . Each element (Pi and Bi)

in the lists contains the call signatures, consisting of (caller, call statement, and callstack)

as discussed in Section  4.3.1 .

We first obtain intersections for each list of call traces P and B (lines  3 ∼ 4 ). Inter-

section() gathers call signatures that exist in all the runs in a set, essentially pruning

out execution flows that are not necessary. For example, assume that our system targets a

newspaper website using the subscription business model. In the passing runs, we visit three

subscription-only article pages with a paid account, and visit the pages without the account

in the blocking runs. Intersection() identifies and keeps call signatures from essential

business processes triggered every time such as checking subscription, filtering out processes

that are not always appearing (e.g., a video available only in one of the article pages).
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Then, we identify unique call signatures for passing (Puniq) and blocking runs (Buniq)

at lines  5 ∼ 6 using the function Union that combines call signatures. Specifically, to ob-

tain Puniq, we subtract the union of call signatures of blocking runs (Union(B)) at line  5 .

Similarly, we obtain Buniq by subtracting the union of P from the intersection of B at line

 6 . For instance, our major interest from the previous example is to identify and exercise

the exclusive business flows that depend on the outcome of subscription checking. The sub-

traction procedure can prune out executions from common business flows, such as getting

subscription data.

Next, it identifies call divergence points by leveraging the intersection (Pint and Bint;

pre-divergence) and unique (Puniq and Buniq; post-divergence) call traces. In particular, we

detect a divergence point if a function is (1) a callee of a common signature available in both

runs and also is (2) a caller of a distinct call signature existing on one side of the runs, and

(3) their context is identical. Specifically, the algorithm first gets the intersection of Pint and

Bint (line  7 ) to obtain common call signatures on both runs (pre-divergence). Then, it checks

whether the call stack before the divergence (PBint) can be found in after the divergence

(i.e., post-divergence represented by Puniq and Buniq) at lines  10 and  13 . If it finds such a

case, the caller of post-divergence is considered a call divergence point, and we store it to

CD (lines 11 and 14). For example, unlockCallback() in Figure  4.2b (the StudentShare

example) is the call divergence point. This is because (1) the call signature unlockDialog()

→ unlockCallback() is available in both passing and blocking runs (pre-divergence), and

(2) there exist call signatures from post-divergence: unlockDialog() → getToken() and

unlockDialog() → getRedirect(), (3) with the same call stacks.

Contributions. We propose and design a differential analysis to identify divergence

points where critical business decisions are made. Our algorithm automatically finds

divergence points that can be tested to find BFT flaws.

4.3.3 Test Input Generation

We generate test inputs that can potentially bypass blocking executions flows, or change

them to passing flows by leveraging the identified call divergence points. A test input contains
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1: function onArticlePageLoaded(){

2: var user = getUserInfo();

3: var contentMetadata = 

getContentMetaData();

4: if(user.loggedIn == false){

5: redirectToLogInPage();

6: } else {

7: if(user.accountType=="premium"){

8: showContent();

9: } else {

10: if (user.remainFreeView>0){

11: user.remainFreeView -= 1;     

12: showContentAndPaywallInfo();

13: } else {

14: showPaywall();

15: }

16: }}}

8

Figure 4.5. Illustrative Example for Test Input Generation

pairs of (1) a mutation point and (2) a mutation action. The mutation point indicates a

position of an expression/statement to be changed, and the mutation action describes how

to alter the point based on the type of the expression/statement. For example, if the type

is a conditional (e.g. if, switch, ternary, etc.), the action can be an identification of the

branch (e.g. true/false, or an index of a switch-case) that is to be entered forcibly. For

a function call type, the action can be skip, which essentially disables the call statement.

Building CFGs for Mutation. We build CFGs for each function containing the divergence

points in the call divergence data to compute control dependencies. If a call divergence is

from a passing run, we generate a test input containing a list of mutation points and mutation

actions that can drive the execution flow to the call divergence point. For a call divergence

point from blocking runs, we first generate a test input that skips the call statement. Finally,

we also generate separate test inputs that alter the branch outcomes.

We illustrate the test input generation process by using a simplified website with a

softer promotional method as shown in Figure  4.5 . Specifically, onArticlePageLoaded() is

triggered when a user clicks an article page. It then gets information about the user and the
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article (lines 1 and 2). If not logged in, it redirects to a login page (line 5). If logged in, it

checks the account type and then shows the contents for premium users (lines 7 and 8). For

a non-paid user, it shows the content with paywall information if the user’s free view count

is not used up (lines 10∼12); otherwise, it shows the paywall (line 14).

Assume that onArticlePageLoaded() is a call divergence point that has two branches

caused by the call statements showContent() from the passing run at line 8 and showPaywall()

from the blocking run at line 14. For the call divergence from the passing run, the call state-

ment at line 8 is dependent on the statements at lines 7 and 4. Therefore, the generated

test input that can trigger the call in any circumstances is (4:false,7:true). On the other

hand, in order to bypass the call statement at line 14 (which is dependent on the statements

at lines 10, 7, and 4), we generate four test inputs: (4:true), (7:true), (10:true), and

(14:skip).

4.3.4 Testing Business Flow Tampering (BFT)

We perform BFT testing to find whether executions with mutations can lead to a passing

run. For each test input, our system runs the web application by following the automated

browsing procedures described in Table  4.2 . We then apply the mutation actions at the mu-

tation point by intercepting the interpretation process and adjust the bytecode generated via

the modified V8 engine. For instance, to apply the skip mutation action, we disable the byte-

code generation for a target function call statements in ‘BytecodeGenerator::VisitCall’.

For the conditional statements and expressions, we simply copy the same bytecode of the

desired block to every branch outcome instead of changing the outcome itself. We record a

snapshot (a screenshot and HTML/DOM data) of each test page for verification.

4.3.5 Test Result Verification

Once each test is completed, we examine the snapshots recorded in the dynamic execution

trace collection and the BFT testing steps to verify the detected tempering flaws.

Crash Detection. Since our system forcibly mutates original execution flows, it may cor-

rupt the execution context causing unexpected crashes, such as accessing undefined objects,
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or calling function without proper arguments. We discard snapshots collected from crashed

executions because the results might not be valid (and may mislead the classifier training

process as well). We examine the amount of successfully rendered information to detect a

crashed execution. Compared to the non-crashed execution (i.e., execution from the trace

collection step in Section  4.3.1 ), if an execution renders substantially less information, we

consider them as crashed. Intuitively, a crashed execution tends to terminate the execution

before it renders all the elements. To estimate the amount of visually rendered elements, we

take a screenshot of the webpage and leverage Shannon’s entropy [ 95 ] that measures the level

of complexity. For the HTML/DOM data, we utilize their content sizes. We combine those

two metrics and compare them with average values from the original executions snapshots

from passing and blocking runs. If it contains less than 40% of the non-crashing runs, we

consider it crashed.

Test Result Classification. Intuitively, if a test result’s snapshot (i.e., a screenshot and

HTML/DOM) is similar to the snapshots of the passing runs, the mutated execution may

indicate the existence of a flaw. Hence, we utilize similarity scores between the snapshots,

and use them as a metric for a machine learning technique. We first extract common data

available for each set of snapshots collected from the passing and the blocking runs, and

these two data sets are used to check similarities. To be specific, we gather common pixels

between the screenshots, then calculate the structural similarity index measures [  55 ]. For

HTML/DOM data, we compare the existence of DOM elements. This method using the

common data is beneficial for computing structural similarities not disrupted by various

contents inside. By doing this process, we can get a total of 4 similarity scores, 2 scores

(screenshot and HTML/DOM data) from the passing and blocking runs each, and they are

used as features of a classifier. We employ Balanced Random Forest (BRF) as a classification

algorithm. Note that our training dataset is easy to be biased since the number of results

containing flaws is much less than the not-flawed ones. We use the BRF classifier because

it is designed to be robust for imbalanced dataset as it is less inclined to over-fitting. As a

training dataset, we utilize flawed websites presented in the recent work [  86 ]. We train the
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classifier with a total of 1,778 snapshots collected from 13 websites using the subscription

and advertising business models.

4.4 Evaluation

Implementation. BFTDetector [  96 ] is written in Python and JS (Node.js). We use

Chromium (91.0.4460) compiled with modified V8 JS engine (9.1.203). All experiments

are performed on a machine with an Intel Core i9 3.60 GHz CPU and 16 GB RAM running

Ubuntu 20.04 LTS.

Website Selection. For evaluation, we collect websites providing digital content services

from various resources, such as Google News, Yahoo News, or Alexa Top 500, then select

websites: 1) using one of the 3 promotional methods of the business models, 2) eligible for

automated browsing, and 3) providing passing and blocking runs.

We classify the collected websites by the promotional methods. For the paywall methods,

we first find websites having membership/subscription payment pages. If some paid content

is accessible, it indicates the website uses a soft paywall method; otherwise, it is a hard

paywall. For the anti-adblocker method, we utilize an adblocker browser extension, and

if we observe content differences (except for advertisements) between websites with and

without the adblocker extension, we classify it as anti-adblocker. If a website uses multiple

promotional methods, we obtain each case per the methods. To this end, we selected 449

cases in 352 websites.

Research Questions. We evaluate BFTDetector to answer the following five research

questions:

• RQ1. How effective is our system in detecting BFT flaws?

• RQ2. How efficient is our system in reducing search space?

• RQ3. How effective is our test result verification method?

• RQ4. What is the performance overhead of our technique?

• RQ5. How is our system compared to other approaches?
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4.4.1 BFT Detection Results

Table  4.3 shows the result and statistics of the BFT detection. The first column shows the

promotional methods. The numbers of websites for each method are in the second column,

and the third column represents the number of flaws identified.

Table 4.3. BFT Detection Result and Statistics

Promotional # # # Funcs # # Divg.1 Ratio
Method Sites Flaws (A) Calls (B) (B/A)

Hard Paywall 45 31 13,245 1,408,472 93 0.70%
Soft Paywall 127 67 10,313 899,207 258 2.50%

Anti-adblocker 277 217 12,885 1,396,466 19 0.15%
Total 449 315 Avg. 12,148 1,234,715 123 1.02%

1: Divergences.

Discovered BFT Cases. BFTDetector identified 315 flaws. Specifically, a total of 31

websites with hard paywalls and 67 with soft paywall methods were found to be flawed,

and this includes popular websites, such as TIME [  97 ], Fortune [ 98 ], Automotive News [  99 ],

Forbes [  100 ], and Bookmate [ 101 ]. Furthermore, we found flaws of the anti-adblocker meth-

ods from 217 websites. We manually verified the 315 flaws by following each website’s

business flow. For instance, for soft-paywall websites, we check if we can view articles more

than the number of free access with the mutation. All flaws we found are deterministically

and reliably exploitable. Details of the discovered cases including demo videos can be found

on our website 

2
 .

We reviewed the websites that our system was unable to find any BFT flaws. Since

manual and thorough investigation is required, we selected 2 cases for each promotional

method, a total of 6 websites as in Table  4.4 . New Scientist and Journal & Courier does not

have the BFT flaws since their business processes are operated in the server-side. On the

other hand, we discovered that it was necessary to alter multiple locations simultaneously

to bypass the hard paywall of AZ Central and the anti-adblocker of NY Daily News. From
2

 ↑ https://sites.google.com/view/bftcases
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Table 4.4. 6 Websites with No Flaws Detected

Promotional Method Website Investigation Result

Hard Paywall
New Scientist Server-side logic
AZ Central Multiple alteration needed

Soft Paywall
Journal & Courier Server-side logic
Orlando Sentinel Dynamic execution

Anti-
adblocker

Daily Herald Unable to analyze (Large codebase)
NY Daily News Multiple alteration needed

the Orlando Sentinel case, we find that a few similar functions containing the same business

process were being executed randomly. This protection technique, known as cloning, creates

clones of basic blocks or functions that can be executed interchangeably by selecting one of

them dynamically. Lastly, we failed to identify potential flaws in Daily Herald, due to, in

part, the large and complex codebase (e.g., 7,175 functions).

Findings. The detection result shows that our approach is effective in finding BFT flaws;

BFTDetector revealed 315 BFT flaws from real-world 449 cases.

4.4.2 Efficiency in Reducing Search Space

BFTDetector can pinpoint potential flawed locations from a large amount of functions.

In order to show the efficiency in reducing search space, we collect the number of functions

interpreted in a single run, and calls triggering them. We repeat the test 10 times for each

web application, then calculate the average values. The fourth and fifth columns in Table  4.3 

show the result of the test. The result indicates that there are 12,148 functions on average

in a single run, and they trigger about 100 times higher number of calls. Since our system

gathers call signatures from 6 runs (3 runs each passing and blocking sides), the average

number of calls our system needs to handle would be about 6 millions. By using the huge

number of call signatures, our system extracts call divergence by performing the call trace

differential analysis we discussed in Section  4.3.2 . The sixth column represents the number
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Table 4.5. Test Result Verification

Actual
Flawed Not Flawed

Predicted
Flawed TP = 1,645 (98.56%) FP = 197 (0.49%)

Not Flawed FN = 24 (1.44%) TN = 39,417 (99.51%)

of the call divergence our system discovers after the differential analysis, and there are only

123 divergences left after the analysis on average.

Findings. Our evaluation result shows that our approach reduces the search space effi-

ciently (1.02% of the original number of function).

4.4.3 Effectiveness of Test Result Verification

In the course of performing our BFT testing on the 449 websites, a total of 42,128

snapshots were generated. As we discussed in Section  4.3.5 , BFTDetector first checks if a test

result is from a crashed execution. As a result of the crash detection, our system successfully

filtered out 845 error snapshots. Furthermore, our test result classification process classified

1,842 of the remaining 41,283 test results as flawed. Specifically, we manually validate all the

test cases and the classification results. If the prediction from our system is flawed, we revisit

the website with the mutated execution and then check whether our system successfully

tampers with the business flow. If it succeed, we consider the classification result is valid

(true positive); otherwise, the prediction is incorrect (false positive). On the other hand,

if the prediction is not flawed, we first compare the screenshots of the snapshots from the

test result and the blocking run. If they are identical, the prediction is valid (true negative).

Otherwise, we revisit the website with the mutation. If the new mutation triggers the BFT

flaw, the prediction is not valid (false negative). If not, the prediction is valid (true negative).

Table  4.5 shows the confusion matrix of the test result classification. Within the 41,283

snapshots, our approach correctly classified 1,645 test results as flawed, while 39,417 are

not flawed. The result indicates that our classification method using 4 similarity scores is
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effective with a false negative rate of 1.44% (24 cases) and a false positive rate of 0.49% (197

cases). We investigated the 24 false negative cases, and found that most of them are from

the anti-adblocker method. For instance, NWITimes [ 102 ] displays ads covering about 80%

of the screen when the main page is loaded. If their anti-adblocker technique detects blocked

ads, it shows a warning message. One of our test inputs was able to mutate the execution to

prevent the warning message from appearing while the ads are not displayed. However, the

ad space is also removed, allowing 80% of the screen to be filled by remaining content or a

blank. The page is not similar to passing runs (webpages with ads) since the ad contents in

the mutated run do not exist. It is also different from blocking runs (webpages without ads,

but with an adblocker warning) because the blocking run screen is covered by the warning

message.

Findings. The evaluation indicates that our verification technique successfully classifies

test results with low false-positive (0.49%) and false-negative (1.44%) rates.

4.4.4 Performance Overhead

Table 4.6. Performance Overhead

Interpretation Call Trace Collection

Native Our
Approach

Built-in
Method

Optimized +
Blacklisting

Total 65.32 ms 65.76 ms Total 13.32 sec 6.54 sec
Per Function 6.46 µs 6.74 µs Per Call 10.74 ms 5.2 ms

Throughout the detection process of our system, there are two operations that can induce

the overhead: 1) instrumentation, and 2) call trace collection. Our system instruments

the tracking code by modifying the interpreter of the JS engine. Also, when the tracking

operation is triggered, it collects a call signature containing the call stack. As Table  4.3 

shows, there are 1,234,715 function calls on average in a single run, which indicates our

system needs to retrieve the call trace data about one million times for each run. To measure
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Table 4.7. BFT Detection using JSFlowTamper
(a) Detection Results on 315
Flawed Websites

Business
Model X �

Hard Paywall 8 23
Soft Paywall 17 50

Anti-adblocker 77 140
Total 102 213

(b) Reasons of Detection Failure

Reason of Failure # Cases

No DOM mutation event 63
No dynamic data collected 17

Random selector 84
No succeed tampering trial 49

X: Flaws found, �: Flaws not found

the performance overhead, we record the elapsed time of the two operations for 10 times

while our system performs the automated browsing, then we calculate the average values.

Table  4.6 shows the experiment results. The first two columns of the first row represent

the total execution time for a single run, and the second row indicates the interpretation

time per function. The result shows that the code instrumentation only took 0.28µs per

function (6.74 − 6.46), and 0.44ms (65.76 − 65.32) in total. Furthermore, the rest of the

columns indicate the overhead caused during the call trace collection. The third column

shows the results of using the built-in method of V8 JS engine as a baseline, and the last

column denotes the results after deploying our optimized method along with the blacklisting

approach as described in Section  4.3.1 .

Findings. The result (i.e., reduce the overhead by half) shows that our optimizations

are effective and BFTDetector can handle a heavy workload.

4.4.5 Comparison Study

We compare our technique with state-of-the-art technique JSFlowTamper [  86 ] on the 315

flawed websites our system discovered. Note that we compare the source code of JSFlowTam-

per and BFTDetector to confirm that JSFlowTamper implements a subset of BFTDetector’s
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methods. It means that JSFlowTamper can only find the same or fewer flaws than the flaws

BFTDetector detects. To this end, we focus on how many flaws JSFlowTamper can detect

from the 315 flaws found by BFTDetector. Since JSFlowTamper does not provide auto-

matic method, we manually prepared 315 sets of inputs including: 1) Puppeteer JS code

performing automated browsing, and 2) DOM object selectors related to business process.

We also manually reviewed the test results to verify the flaws, although it provides test result

grouping to minimize human effort.

We determine the reasons for detection failure for JSFlowTamper as follows: 1) No DOM

mutation event and No dynamic data collected: They are directly from JSFlowTamper’s error

messages, 2) Random selector: we observed that JSFlowTamper failed to identify prepared

DOM selectors as the server-side code randomizes the selectors, 3) No succeed tampering

trial: JSFlowTamper finishes without errors but no BFT flaws are found. This happens

because the business model’s core implementation is not related to DOM selectors (e.g., using

predicates) or the core logic is executed without function calls which JSFlowTamper cannot

handle. Table  4.7 shows the BFT detection result. As shown in Table  4.7a , JSFlowTamper

was able to find the flaws only in 102 websites. Additionally, we examined 213 unsuccessful

cases to determine the reason they failed, and each of them was caused by one of four reasons

in Table  4.7b . The first one was caused when there was no DOM mutation events related to

business process as in the StudentShare example (Figure  4.2b ). Secondly, we also found that

the system failed to collect dynamic data in 17 cases. The third reason was due to the random

selector. Since JSFlowTamper utilizes DOM selectors to catch DOM mutation events, it

cannot perform the detection if a targeted web application is equipped with randomization

techniques, such as in [ 103 ]. Lastly, there were 49 cases where JSFlowTamper could not

find flaws even after testing every trial. This indicates that the system was unable to locate

functions that need to be tampered with.

Findings. JSFlowTamper can only find 32.38% (102 out of 315) of the flaws that BFT-

Detector can find.
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4.4.6 Case Study

TIME.com

1: function(){
2: …
3: var wallType = 

dataElement.getAttribute('data-wall_type');
4: if (wallType) {
5: if (wallType === 'none') {
6: body.classList.add('allow-scroll');
7: } else if (wallType === 

'registration-wall') {
8: showRegistrationWall();
9: } else if …
10: …

article.js

2

loadComponents

anonymous

1

P B

D

meter-wall-client.js

JS

JS

P

B

Figure 4.6. Business Process of Time.com

TIME [  97 ] is a popular news magazine website employing a soft paywall for the sub-

scription business model. It allows users to access 2 articles for free; after that, it shows a

subscription message blocking the article page. To start test, we gathered 3 free pages; 2 for

Ppaywall to trigger the paywall and 1 for Pfree. Our system collected 129,774 call signatures

on average for each run, and it extracted 156 divergence points in total. We observe 11,403

functions and 635,445 calls on average in a single run, showing that our approach efficiently

reduced the search space. From the divergence points, we generated 124 test inputs and,

after trials, found 1 input that allows us to access more than 2 articles without a subscrip-

tion. Figure  4.6 shows the flaw. When an article page is loaded, loadComponents() in

‘article.js’ injects ‘meter-wall-client.js’ dynamically. After a series of calls, the logic

inside the anonymous function (function()) determines whether to allow access for the ar-

ticle by allowing scroll ( P ) or to show a registration message ( B ). Our system successfully

identified the divergence point ( D ), and found the test input that changes the blocking flow

by forcibly taking the then branches of the two if statements ( 1 and 2 ).
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Bookmate.com

1: function(){
2: var t = o.props
3: , r = t.maximumAllowedProgress
4: , n = t.onChapterClick
5: , c = t.showPaywall;
6: e.percent <= r ? n(e.src) : c()
7: }

bundle.f7cfa.js

d

anonymous

1
P B

D
9.chunk.d05ec.js

JS

JS

P B

Mouse click event

Figure 4.7. Business Process of Bookmate.com

Bookmate [ 101 ] is a social ebook subscription service, has 3 million readers and a cat-

alog of over 500,000 books. They employ the subscription business model with the hard

paywall method. The first one or two chapters of books are free to access, but users need

to subscribe to a premium plan for $8 per month to read more. In order to trigger the

subscription paywall, a series of mouse click events is required instead of just visiting a page.

We recorded 2 Puppeteer scripts (JSfree and JSsub) containing the browsing actions using

Chrome DevTool, then fed them into our tool for replay. During the dynamic execution trace

collection, our system collected 6,071 functions and 50,506 call signatures. After analyzing

the collections, 7 test inputs from 2 divergence points are generated. To this end, we found

1 input that can unlock the chapter limitation. Figure  4.7 shows the divergence point and

call stacks of the test input. When a user clicks a chapter, the triggered mouse click event is

handled by the function d(). Then, it calls the anonymous function (i.e., function()) in the

different script, which is a divergence point containing both paths to passing and blocking

runs. The function gathers data, and checks if the clicked chapter (‘e.percent’) exceeds

the maximum number of free chapters (‘r’) in line 6. If the clicked chapter is within the

‘maximumAllowedProgress’, it shows the chapter ( P ); otherwise, the paywall is displayed
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( B ). The test input our system found forcibly executes the true branch of the conditional

expression ( 1 ).

4.5 Mitigation: Server side Code Randomization

As we discussed in Section  4.2.2 , migrating every important business logic to the server-

side to solve the business flow tampering flaws is not only impractical but also causing

substantial overhead on the server side, leading to a high maintenance cost. Hence, in

this section, we present, implement, and evaluate a practical solution (that does not cause

high costs and substantial disruption in the existing service), which is a server-side code

randomization. It generates new JS code each time a request is received from the client.

Note that code randomization techniques are normally expensive. Hence, our solution is

to leverage BFTDetector to identify the flawed logic, and apply the randomization on the

identified code only.

Implementation. We implemented a proof of concept method to demonstrate the effective-

ness of the mitigation approach. Specifically, we configure a proxy server imitating Google

Funding Choice providing anti-adblocker service as in the LA Times case (Figure  4.2a ). It

intercepts requests from web browsers, then returns a JS file by applying the code random-

ization to the flawed function (Hf()) that our system discovered. To implement random

code generation, we use an open-sourced JS obfuscator [  104 ], which includes various anti-

analysis technique (e.g. control flow flattening and string encryption). We test the mitigation

approach on LA Times.

Result against BFTDetector. BFTDetector failed on the mitigation setup; it was unable

to identify any divergences. This is because BFTDetector locates statements and functions

using file offsets, that are randomized by the proposed mitigation. Also, BFTDetector

analyzes branches to infer the business models, where our mitigation approach eliminates

branches via the control flow flattening technique.

Result against Manual Analysis. The server-side code randomization also make manual

analysis difficult. JS debuggers cannot set breaking points or track variables since locations

of code and variables are constantly changing.
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Efficiency. One concern of the mitigation approach can be a performance since JS code

obfuscation techniques normally incur lots of computational and memory overhead. For

example, the control flow flattening slows down the performance up to 1.5x [ 105 ], and the

dead code injection increases the code size up to 200% [  106 ]. To compare the performance

overhead, we record the total time of the obfuscation operations applied only to the flawed

function and to the entire code. As in Table  4.8 , our mitigation approach increase only 287

bytes and 8.15 ms, which we believe reasonable.

Table 4.8. Performance Overhead of Mitigation Approach

Vul. Func. Only Entire Code

File
Size

Before 184 B 64,316 B
After 471 B 134,510 B

Time Overhead 8.15 ms 623.07 ms

Limitations. It is not immune to a code-reuse attack. Although we generate random code

for every request, that does not mean that previously generated codes are invalid. Further-

more, if a flawed function contains only a few statements (e.g., a single call statement), the

code randomization may not be effective.

4.6 Discussion

Ethical Considerations. The findings of this study are strictly for research purposes.

Our disclosures do not include detailed information that could be used to reproduce the

tampering. We have reported the flaws to all digital content providers, and we are actively

in contact with them for potential mitigations.

Limitations. While our system is highly effective, it is also not free of limitations. First,

BFTDetector performs the BFT testing using one input at a time. If multiple divergence

points need to be mutated together (as shown in Table  4.4 ), our approach would fail to

detect the flaws. Second, we use a file offset as an identification of JS objects (e.g. functions,

or statements). BFTDetector may fail to locate JS objects embedded in HTML because the
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offset varies based on its contents. Although we have not yet observed the cases in which

important business logic is implemented in embedded in HTML, our differential analysis

may miss divergence points in such cases. Third, while our test result verification shows low

false-positive/negative rates, the 1,778 training dataset from 13 websites may not represent

all possible cases.

Handling Soft-paywall Websites. In Section  4.4.1 , we observe that BFTDetector detects

fewer flaws in soft paywall websites. To understand the reason behind this, we inspected

the 60 soft-paywall websites that BFTDetector could not find flaws and found the following

4 cases are observed frequently. (1) 14 websites require multiple execution mutations (the

paywall is implemented across multiple files), which we do not support. (2) 7 websites are

high-ranked Alexa websites. They use a protection technique called cloning. (3) 4 websites

randomly decide the free-access policy (e.g., # of free-access pages), while we assume a

deterministic policy. (4) 2 websites implement the business logic on the server side. For

the remaining 33 websites, we found neither a flaw nor BFTDetector’s limitations on them

(probably not vulnerable).

4.7 Related Work

Testing-based Web Application Flaw Detection. Our work is closely related to au-

tomated web application testing for flaw detection. Black-box testing is widely used to

generate test cases and check applications for vulnerabilities [ 76 ,  80 ,  107 – 112 ]. Testers ana-

lyze the system and create test cases to check if the test cases expose flaws. Previous work

has employed black-box testing on web applications for various purposes, including detection

of side-channel vulnerabilities [  107 ], testing for checkout system flaws [  80 ], feedback-directed

automated test generation [  113 ]. Their common goal is to improve the coverage of the exe-

cution space to discover buggy, abnormal or malicious behavior. Nonetheless, they are not

suitable for detecting BFT flaws, which need to precisely pinpoint business logic related

functions.

JSFlowTamper [  86 ] is the state-of-the-art detection technique for BFT flaws. Unlike JS-

FlowTamper that only focuses on testing DOM selectors, BFTDetector defines and leverages
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business models. The business models help discover new BFT flaws related to predicates and

function calls, beyond DOMs. Also, BFTDetector proposes the differential analysis-based

algorithm to automatically identify divergence points, while JSFlowTamper requires manual

effort and domain expertise to identify DOM selectors. Furthermore, BFTDetector auto-

mates the end-to-end process, while JSFlowTamper focuses on manual dynamic testing.

Lastly, BFTDetector solved JSFlowTamper’s limitations: (1) handling randomized DOM

selectors, (2) handling websites without DOM mutation events (e.g., Figure  4.2b ), (3) de-

tecting flaws related to multiple JS files in the call chain (e.g., Figure  4.2a ).

JS Analysis Techniques. There are a variety of techniques analyzing JS code [  63 ,  71 ,

 73 ,  113 – 126 ]. Jalangi [  71 ] provides a dynamic analysis framework by instrumenting JS code.

Rozzle [ 73 ] is a virtual machine that performs multi-path execution experiments in parallel to

enhance the efficiency of dynamic analysis. J-Force [  63 ] uncovers hidden malicious behaviors

by forcibly exploring all possible execution paths. Dual-Force [  122 ] is a technique that

forcibly executes both Java and JavaScript code of WebView applications simultaneously to

reveal hidden payloads of malware. JSGraph [  123 ] records fine-grained details about how JS

programs are executed and how their effects are reflected in DOM elements within a browser.

JStap [  120 ] is a static malicious JavaScript detector that enhances the detection capability

of existing lexical and AST-based pipelines.
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