
A SYSTEMATIC FRAMEWORK FOR ANALYZING THE
SECURITY AND PRIVACY OF WIRELESS

COMMUNICATION PROTOCOL IMPLEMENTATIONS
by

Imtiaz Karim

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

May 2023



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Elisa Bertino, Chair

Department of Computer Science

Dr. Ninghui Li

Department of Computer Science

Dr. Dave Tian

Department of Computer Science

Dr. Sonia Fahmy

Department of Computer Science

Approved by:

Dr. Kihong Park

2



To my family, who have always supported and encouraged me throughout my journey.

3



ACKNOWLEDGMENTS

I would like to express my deep gratitude to the following individuals who have supported

me throughout my journey toward completing this thesis:

First and foremost, I would like to thank my advisor, Dr. Elisa Bertino, for her invaluable

guidance, expertise, and encouragement. I would also like to thank my mentor, Dr. Syed

Rafiul Hussain for his constant support and guidance. Their unwavering commitment to

excellence and dedication to students have inspired me to strive for nothing less than the

best. Furthermore, I would like to thank all my co-authors: Dr. Ninghui Li, Dr. Omar

Chowdhury, Dr. Hyunwoo Lee, Fabrizio Cicala, Abdullah Al Ishtiaq, Mirza Masfiqur Mim,

and Kazi Samin Mubasshir who have helped me with their expertise.

I am also grateful to the members of my thesis committee for their constructive feedback

and insightful comments. Their expertise and knowledge have helped me to refine my ideas

and to ensure that my work meets the highest standards.

I am indebted to my Intel and Amazon collaborators: Jason Fung, Dr. Arun Kanuparthi,

Dr. Sayak Ray, Dr. Stephan Heuser, Dr. Vaibhav Sharma, and Dr. Saswat Padhi for

providing me with great learning opportunities during the summer internships.

I would also like to thank the faculty and staff of the Department of Computer Science, at

Purdue University for providing me with an outstanding academic environment, resources,

and opportunities to pursue my research interests.

I am deeply grateful to my family for their love, support, and encouragement, especially

during the challenging times of my graduate studies. Their unwavering support and belief

in me have been my constant source of strength and motivation.

Last but not least, I would like to express my sincere gratitude to all my friends and

colleagues who have supported me, shared their knowledge, and made my journey toward

the Ph.D. degree a memorable and enriching experience.

4



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 

1.1 Implementations of Wireless Communication Protocols . . . . . . . . . . . .  17 

1.2 Challenges in Analyzing Wireless Communication Protocol Implementations  18 

1.3 Existing Efforts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 

1.4 Dissertation Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

1.5 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

1.6.1 An Automated Security and Privacy Analysis Framework for Cellular

Network Implementations . . . . . . . . . . . . . . . . . . . . . . . .  20 

1.6.2 An Automated Black-box Noncompliance Checker for Cellular Net-

work Implementations . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

1.6.3 Scalable and Property-Agnostic Noncompliance Checking for BLE Im-

plementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

1.6.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . .  22 

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

2.1 4G LTE Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

2.2 Protocol Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

2.2.1 NAS Layer Procedures . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

2.2.2 RRC layer procedures . . . . . . . . . . . . . . . . . . . . . . . . . .  26 

2.3 Bluetooth Low Energy (BLE) . . . . . . . . . . . . . . . . . . . . . . . . . .  27 

3 PROCHEKCER: AN AUTOMATED SECURITY AND PRIVACY ANALYSIS

FRAMEWORK FOR CELLULAR PROTOCOL IMPLEMENTATIONS . . . . .  30 

5



3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 

3.1.1 Logical Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . .  33 

3.1.2 Properties of LTE Protocol Implementation . . . . . . . . . . . . . .  34 

3.2 Overview of ProChecker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35 

3.2.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35 

3.2.2 Protocol Finite State Machine . . . . . . . . . . . . . . . . . . . . . .  36 

3.2.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

3.2.4 Insights on Addressing Challenges . . . . . . . . . . . . . . . . . . . .  37 

3.2.5 High Level Description of ProChecker . . . . . . . . . . . . . . . . . .  37 

3.3 Detailed Design of ProChecker . . . . . . . . . . . . . . . . . . . . . . . . . .  38 

3.3.1 Model extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 

3.3.2 Model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 

3.4 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 

3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45 

3.6 Evaluation and Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48 

3.6.1 RQ1. Logical Vulnerability Detection . . . . . . . . . . . . . . . . . .  49 

3.6.2 RQ2. Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . .  57 

3.6.3 RQ3. Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 

3.7 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61 

4 NONCOMPLIANCE AS DEVIANT BEHAVIOR: AN AUTOMATED BLACK-

BOX NONCOMPLIANCE CHECKER FOR CELLULAR DEVICES . . . . . . .  62 

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66 

4.1.1 Active Automata Learning . . . . . . . . . . . . . . . . . . . . . . . .  66 

4.2 Design of DIKEUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 

4.2.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 

4.2.2 Problem Statement and Approach Skeleton . . . . . . . . . . . . . . .  68 

4.2.3 Workflow of DIKEUE . . . . . . . . . . . . . . . . . . . . . . . . . . .  69 

4.2.4 Challenges and Insights . . . . . . . . . . . . . . . . . . . . . . . . .  69 

6



4.2.5 Learning the 4G LTE Protocol State Machine of a UE . . . . . . . .  69 

4.3 FSM inference module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74 

4.3.1 Learner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74 

4.3.2 Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76 

Addressing multi-layer protocol: . . . . . . . . . . . . . . . . . . . . .  76 

Encoding and decoding custom NAS and RRC layer packets containing

predicates: . . . . . . . . . . . . . . . . . . . . . . . . . . .  79 

Triggering complex protocol interactions: . . . . . . . . . . . . . . . .  79 

Optimizing queries during model validation with cache: . . . . . . . .  80 

Resolving observational non-determinism with inconsistency resolver:  80 

Transparent reset without manual intervention or rebooting the device:  81 

OTA packet encoding/decoding with modified cellular stack: . . . . .  81 

4.4 FSM equivalence checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82 

4.4.1 Reduction to Model Checking . . . . . . . . . . . . . . . . . . . . . .  82 

4.4.2 Challenge of Obtaining Diverse Deviations . . . . . . . . . . . . . . .  83 

4.4.3 Identifying Diverse Deviations . . . . . . . . . . . . . . . . . . . . . .  84 

4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86 

4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86 

4.7 Deviations (RQ1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87 

4.7.1 Exploitable deviations . . . . . . . . . . . . . . . . . . . . . . . . . .  87 

Replayed GUTI_reallocation: . . . . . . . . . . . . . . . . . . . . . . . .  87 

Plaintext message acceptance after security context: . . . . . . . . . .  92 

Inappropriate state reset. . . . . . . . . . . . . . . . . . . . . . . . . .  94 

4.7.2 Interoperability issues . . . . . . . . . . . . . . . . . . . . . . . . . .  95 

4.7.3 Other deviant behaviors . . . . . . . . . . . . . . . . . . . . . . . . .  96 

4.7.4 Previous issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96 

4.8 Comparison with Baseline (RQ2) . . . . . . . . . . . . . . . . . . . . . . . .  96 

4.8.1 Comparison with conformance test cases . . . . . . . . . . . . . . . .  96 

4.8.2 Comparison with existing LTE works . . . . . . . . . . . . . . . . . .  97 

Comparison with LTEFuzz . . . . . . . . . . . . . . . . . . . . . . . .  97 

7



Comparison with property-guided testing . . . . . . . . . . . . . . . .  98 

4.9 Components performance (RQ3) . . . . . . . . . . . . . . . . . . . . . . . . .  98 

4.9.1 FSM inference module performance . . . . . . . . . . . . . . . . . . .  98 

RQ3.1. Impact of optimal alphabet set: . . . . . . . . . . . . . . . . .  99 

RQ3.2. Adapter context checking: . . . . . . . . . . . . . . . . . . . .  100 

RQ3.3. Impact of cache: . . . . . . . . . . . . . . . . . . . . . . . . .  100 

RQ3.4. Impact of inconsistency-resolver: . . . . . . . . . . . . . . . .  100 

4.9.2 FSM equivalence checker performance . . . . . . . . . . . . . . . . . .  101 

4.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103 

4.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104 

5 BLEDIFF: SALABLE AND PROPERTY-AGNOSTIC NONCOMPLIANCE CHECK-

ING FOR BLE IMPLEMENTATIONS . . . . . . . . . . . . . . . . . . . . . . . .  105 

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109 

5.1.1 Finite State Machine (FSM) . . . . . . . . . . . . . . . . . . . . . . .  109 

5.1.2 Active Automata Learning . . . . . . . . . . . . . . . . . . . . . . . .  110 

5.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110 

5.2.1 Scope of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 

5.2.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 

5.2.3 Problem and Solution Outline . . . . . . . . . . . . . . . . . . . . . .  111 

5.2.4 Challenges of Designing BLEDiff . . . . . . . . . . . . . . . . . . . . .  112 

Learning the BLE FSM of an implementation . . . . . . . . . . . . .  112 

Identifying noncompliance from FSMs . . . . . . . . . . . . . . . . .  115 

5.3 Detailed Design of BLEDiff . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116 

5.3.1 Divide and Conquer Based FSM Learning . . . . . . . . . . . . . . .  116 

Divide Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117 

Conquer Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122 

5.3.2 BLE Checking Module . . . . . . . . . . . . . . . . . . . . . . . . . .  123 

Reduction to Model Checking . . . . . . . . . . . . . . . . . . . . . .  124 

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125 

8



5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126 

5.6 Evaluation Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126 

5.6.1 RQ1. Deviations, Attacks, Impacts . . . . . . . . . . . . . . . . . . .  126 

Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129 

Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138 

No impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138 

5.6.2 Comparison with existing testing approach . . . . . . . . . . . . . . .  139 

Conformance or qualification testing framework . . . . . . . . . . . .  140 

Previous approaches on BLE testing . . . . . . . . . . . . . . . . . .  140 

5.6.3 BLEDiff performance . . . . . . . . . . . . . . . . . . . . . . . . . . .  141 

FSM inference module performance . . . . . . . . . . . . . . . . . . .  141 

Performance of the divide and conquer approach . . . . . . . . . . . .  142 

FSM equivalence checker performance . . . . . . . . . . . . . . . . . .  143 

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144 

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  146 

6 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147 

7 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS . . . . . . . . . . .  150 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152 

9



LIST OF TABLES

3.1 Summary of ProChecker’s findings. yes, no, – not implemented . . . . . . .  54 

3.2 Common properties of ProChecker and LTEInspector . . . . . . . . . . . . . . .  58 

4.1 List of input symbols and possible output symbols for each of them for NAS
layer. From the input symbols from predicates column only blue color symbols
are included in the optimized input alphabet set.
*Protected implies ¬is_plain_header(m) meaning the message is integrity pro-
tected and encrypted
± Replay messages are only true for protected messages, plain text messages do
not have sequence numbers and replay protection . . . . . . . . . . . . . . . . .  75 

4.2 List of input symbols and possible output symbols for each of them for RRC
layer. From the input symbols from predicates column only blue color symbols
are included in the optimized input alphabet set. . . . . . . . . . . . . . . . . .  77 

4.3 Example queries and responses. "." divides the prefix and suffix of the queries
and responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78 

4.4 Additions/modifications to the tools used in DIKEUE. . . . . . . . . . . . . . . .  86 

4.5 Deviations identified by DIKEUE. E- exploitable, I- interoperability issue, EI-
both exploitable and an interoperability issue, O- other deviating behavior, D-
deviation from standards, U- underspecification . . . . . . . . . . . . . . . . . .  88 

4.6 Deviations identified by DIKEUE. E- exploitable, I- interoperability issue, EI-
both exploitable and an interoperability issue, O- other deviating behavior, D-
deviation from standards, U- underspecification . . . . . . . . . . . . . . . . . .  89 

4.7 Deviations identified by DIKEUE. E- exploitable, I- interoperability issue, EI-
both exploitable and an interoperability issue, O- other deviating behavior, D-
deviation from standards, U- underspecification . . . . . . . . . . . . . . . . . .  90 

4.8 List of tested devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91 

4.9 M = Membership and E = Equivalence queries. . . . . . . . . . . . . . . . . .  92 

4.10 Comparison with existing approaches. . . . . . . . . . . . . . . . . . . . . . . .  94 

4.11 DIKEUE performance of different components. M = Membership queries and E
= Equivalence queries.

 99 

4.12 Number of unique deviants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101 

4.13 Performance of FSM equivalence checker. . . . . . . . . . . . . . . . . . . . . . .  103 

5.1 List of input, adversarial and output symbols. In case there is a timeout the
default output symbol is null_action . . . . . . . . . . . . . . . . . . . . . . . . .  118 

10



5.2 Additions/modifications to the tools used in BLEDiff. . . . . . . . . . . . . . . .  126 

5.3 List of tested devices. Fluoride [ 89 ] and iOS-BLE-Stack [ 90 ] are the BLE stacks
for Android and iPhone respectively . . . . . . . . . . . . . . . . . . . . . . . .  128 

5.4 Attacks to device mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129 

5.5 Timing comparison. Bold = BLEDiff, non-bold = DIKEUE . . . . . . . . . . . .  130 

5.6 Number of deviant issues comparison. Bold values are for BLEDiff and non-bold
values are for DIKEUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131 

5.7 Summary of deviations and time. . . . . . . . . . . . . . . . . . . . . . . . . . .  132 

5.8 Deviations identified by BLEDiff. E- exploitable, I- interoperability issue, O-
other deviating behavior, I- Implementation issue, S- Specification issue. . . . .  135 

5.9 Comparison with existing approaches. . . . . . . . . . . . . . . . . . . . . . . .  141 

5.10 Time, membership, and equivalence queries. S = States, T = Transitions . . .  142 

5.11 Comparison between divide and conquer learning and general model learning for
Nexus 6
* The learner just completed link layer connection . . . . . . . . . . . . . . . . .  143 

5.12 Summary of time, membership, and equivalence queries. . . . . . . . . . . . . .  144 

11



LIST OF FIGURES

2.1 The simplified 4G LTE Network Architecture . . . . . . . . . . . . . . . . . . .  23 

2.2 LTE control plane procedures. NAS and RRC layer procedures are shown in
black and blue, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 

2.3 BLE procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 

3.1 Architecture of ProChecker . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

3.2 Instrumented generic example implementation (instrumented lines in the code
are colored as blue) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 

3.3 Service disruption using authentication_request . . . . . . . . . . . . . . . . . .  48 

3.4 Sequence number handling in USIM . . . . . . . . . . . . . . . . . . . . . . . . .  50 

3.5 Linkability using authentication_response . . . . . . . . . . . . . . . . . . . . .  52 

3.6 Transition refinement between ProChecker and LTEInspector . . . . . . . . . . .  56 

3.7 Execution time of the common properties used in ProChecker and LTEInspector.
Properties are numbered according to Table  3.2 . . . . . . . . . . . . . . . . . . .  59 

4.1 Workflow of DIKEUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 

4.2 Flow of query in DIKEUE’s FSM inference module . . . . . . . . . . . . . . . .  74 

4.3 Equivalence Checking to Model Checking . . . . . . . . . . . . . . . . . . . . . .  82 

4.4 FSMs for understanding the challenge for identify diverse deviation-inducing in-
put sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83 

4.5 Steps of the replayed GUTI reallocation attack . . . . . . . . . . . . . . . . . .  91 

4.6 Impact of alphabet size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100 

4.7 Time required for each round of nuXmv query . . . . . . . . . . . . . . . . . . .  102 

5.1 Modules of BLEDiff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 

5.2 Mapper for BLE Learning Module . . . . . . . . . . . . . . . . . . . . . . . . .  119 

5.3 Link Layer protocol mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120 

5.4 FSM equivalence checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123 

5.5 Passkey entry bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127 

5.6 Out-of-Band pairing bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127 

5.7 Legacy pairing bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134 

5.8 Invalid DHKey Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135 

12



5.9 Coverage comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139 

13



ABSTRACT

Wireless communication technologies, such as cellular ones, Bluetooth, and WiFi, are

fundamental for today’s and tomorrow’s communication infrastructure. Networks based on

those technologies are or will be increasingly deployed in many critical domains, such as

critical infrastructures, smart cities, healthcare, and industrial environments. Protecting

wireless networks against attacks and privacy breaches is thus critical. A fundamental step

for the security and privacy of these networks is ensuring that their protocols are imple-

mented as mandated by the standards. These protocols are however quite complex and

unfortunately, the lack of secure-by-design approaches for these complex protocols often in-

duces vulnerabilities in implementations with severe security and privacy repercussions. For

these protocols, the standards are thousands of pages long, written in natural language, de-

scribe the high-level interaction of the protocol entities, and most often depend on human

interpretation—which is open to misunderstanding and ambiguity. This inherently entails

the question of whether these wireless protocols and their communication equipment im-

plement the corresponding standards correctly or whether the implementations introduce

vulnerabilities that can have severe consequences.

In this dissertation, we systematically analyze the security and privacy of these wireless

communication protocol implementations (e.g., cellular networks and Bluetooth) and develop

techniques useful for both white-box and black-box analysis. For the white-box analysis, we

propose a model-based testing approach–ProChecker which (1) extracts a precise semantic

model as a finite state machine of the implementation by combining dynamic testing with

static instrumentation, and (2) verifies the properties against the extracted model by com-

bining a symbolic model checker and a cryptographic protocol verifier. We demonstrate the

effectiveness of ProChecker by evaluating it on a closed source and two of the most popular

open-source 4G LTE control plane protocol implementations with 62 properties. ProChecker

unveiled 3 new protocol-specific logical attacks, 6 implementation issues, and detected 14

prior attacks. The impact of the attacks ranges from denial-of-service, broken integrity,

encryption, and replay protection to privacy leakage.

14



For the first black-box testing approach, we develop an automated, stateful noncom-

pliance checker–DIKEUE that can check non-compliance between different cellular device

implementations. DIKEUE adopts a property-agnostic, differential testing approach, which

leverages the existence of many different control-plane protocol implementations in COTS

devices. For deviant behavior identification, DIKEUE first uses black-box automata learning,

specialized for 4G LTE control-plane protocols, to extract input-output finite state machine

(FSM) for a given UE. It then reduces the identification of deviant behavior in two ex-

tracted FSMs as a model-checking problem. We applied DIKEUE in checking noncompliance

in 14 COTS UEs from 5 vendors and identified 15 new deviant behavior as well as 2 previ-

ous implementation issues. Among them, 11 are exploitable whereas 3 can cause potential

interoperability issues.

Lastly, we develop an automated, scalable, property-agnostic, and black-box protocol

noncompliance checking framework called BLEDiff that can analyze and uncover noncompli-

ant behavior in the Bluetooth Low Energy (BLE) protocol implementations. To overcome

the enormous manual effort of extracting BLE protocol reference behavioral abstraction and

security properties from a large and complex BLE specification, BLEDiff takes advantage of

having access to multiple BLE devices and leverages the concept of differential testing to

automatically identify deviant noncompliant behavior. In this regard, BLEDiff first auto-

matically extracts the protocol FSM of a BLE implementation using the active automata

learning approach. To improve the scalability of active automata learning for the large and

complex BLE protocol, BLEDiff explores the idea of using a divide-and-conquer approach.

BLEDiff essentially divides the BLE protocol into multiple sub-protocols, identifies their de-

pendencies and extracts the FSM of each sub-protocol separately, and finally composes them

to create the large protocol FSM. These FSMs are then pair-wise tested to automatically

identify diverse deviations. We evaluate BLEDiff with 25 different commercial devices and

demonstrate it can uncover 13 different deviant behaviors with 10 exploitable attacks.

15



1. INTRODUCTION

Wireless communication protocols and networks such as cellular networks, Bluetooth, and

WiFi are critical infrastructures. These are high-speed, high-capacity voice and data commu-

nication networks with enhanced multimedia and seamless roaming capabilities for support-

ing numerous devices. They are not any longer used for just phone calls and entertainment.

They have become the primary communication means for finance-sensitive business transac-

tions, lifesaving emergencies, and life-/ mission-critical services.

Recent versions of these technologies, such as the 5G New Radio (NR) for cellular net-

works, are further enhancing the transmission speed and capacity, as well as, reducing latency

through the use of different radio technologies and are expected to provide Internet connec-

tions that are an order of magnitude faster than previous generations, such as 4G Long

Term Evolution (LTE)—the previous generation of cellular networks. As a result, future

generations of these protocols and networks will be able to provide ubiquitous connectiv-

ity, interoperability, and massive-scale support to numerous network services and billions of

heterogeneous devices.

However, because of their ubiquitous presence, use for critical applications (e.g., emer-

gency alert system [  1 ]), and in low-energy communication, wireless networks are an attractive

attack target for malicious parties. Furthermore, we can expect that attacks on these net-

works will no longer be limited to simple (albeit significantly harmful) discrete events [  2 ],

such as a distributed denial-of-service attack against a portion of a network. Rather we can

expect stealthy, persistent, and sophisticated activities aiming at establishing a foothold in

core networks and maintaining such a foothold to carry out massive disruption operations or

sophisticated data-gathering operations. For instance, resourceful adversaries such as nation-

states, foreign intelligence agencies, and terrorists can rely on an ingenious range of attack

strategies and wreak havoc by exploiting vulnerabilities of the cellular ecosystem (e.g., cy-

berwarfare [ 3 ] and surveillance [ 4 ]). With the increasing adoption of wireless-enabled smart

devices [  5 ] and systems such as autonomous vehicles, and autonomous healthcare which re-

side in individuals’ personal space, the potential of such attacks is increasing. Therefore,

ensuring the security of the critical wireless networks and the privacy of the users is critical.

16



Lack of adequate protection, may result in huge monetary, and strategic advantages, and

even human life losses.

1.1 Implementations of Wireless Communication Protocols

An important building block for wireless network security and privacy is ensuring that

the communication protocols deployed in these networks be implemented as mandated by

the standards. Unfortunately, the lack of secure-by-design approaches for these complex

protocols often induces vulnerabilities in implementations with severe security and privacy

repercussions. While memory corruption vulnerabilities (e.g., buffer overflows, use-after-free)

can be detected without prior knowledge about the protocol, utilizing memory sanitization

techniques [  6 ], detecting logical vulnerabilities (e.g., resetting the counter to break the replay

protection of protocol messages), or bypassing key establishment procedure (aka., pairing

procedure) and accepting messages encrypted with the default key [ 7 ] in large and complex

protocol implementations is challenging since logical vulnerabilities do not have externally

discernible effects such as crashes or memory leaks. Instead, they require an in-depth se-

mantic understanding of the protocol interactions and are thus primarily detected through

manual analysis. For these complex protocols, the standards are thousands of pages long,

written in natural language, describe the high-level interaction of the protocol entities, and

most often depend on human interpretation—which is open to misunderstanding and am-

biguity. This inherently entails the question of whether the protocol devices implement the

corresponding standards correctly or whether implementations introduce vulnerabilities that

can be exploited by attackers. For instance, under specification, ambiguity, and implementa-

tion mismatch introduced a server vulnerability making it possible to completely bypass the

authentication of very popular smartphones [ 8 ]. It is hence pivotal to not only design and

improve secure protocols but also ensure that the implementations of such complex protocols

comply with the specification, and the security and privacy requirements.

17



1.2 Challenges in Analyzing Wireless Communication Protocol Implementa-
tions

Developing methodologies to evaluate the security and privacy of wireless communication

protocol implementations is challenging because it requires addressing several challenges: (i)

Lack of formal specification: The protocols do not have formal specifications. The specifica-

tions are written in natural language, and thus have ambiguities and underspecifications [  9 –

 14 ]. Furthermore, intricate protocol details written in natural languages cause misinterpre-

tations while developing the implementations; (ii) Lack of formal implementation: There is

no formal implementations to follow. Developers are free to design and implement the pro-

tocol in their own way with the only requirement of matching input/output behavior. Thus

implementations of internal protocol structures most often deviate from the standards; (iii)

Protocol complexity: The protocols are complex and stateful. The protocol implementations

are large and therefore existing static or dynamic testing approaches face scalability issues

when applied to these implementations.

1.3 Existing Efforts

Although prior works [  7 ,  15 – 30 ] focusing on the analysis of security, privacy, and noncom-

pliance of wireless communication protocols, such as cellular protocols and Bluetooth, have

identified several implementation flaws, they suffer from at least one of the following limita-

tions: (A) The approaches [ 8 ,  15 – 17 ,  23 – 27 ,  30 ] are completely manual and cannot uncover a

myriad of implementation-specific behaviors; (B) The analyses [ 8 ] perform semi-automated

stateless testing; (C) The approaches use fuzzing [  7 ,  31 ] through a hand-crafted bug oracle

or reference state machine; (D) The approaches based on formal verification [  20 ,  30 ,  32 – 34 ]

only test the protocol specification for noncompliance and also heavily rely on the coverage

and quality of the properties being tested—for which there is no official exhaustive list; and

(E) The analyses based on re-hosting and reverse-engineering the baseband software [  21 ,  22 ,

 28 ,  29 ] not only require a huge manual effort and expertise but also are not general enough

to be applicable to implementations from different vendors.

18



1.4 Dissertation Focus

It is evident that the state-of-the-art systematic analysis frameworks and vulnerability

detection techniques are inadequate for the analysis of complex communication protocol

implementations. Therefore, the focus of the dissertation is to provide a framework to analyze

these large, stateful, and complex protocol implementations. In our framework we tackle the

analysis in two broad directions: (i) white-box setup: analyzing the network implementations

when the source-code of the implementation is available; (ii) black-box setup: analyzing

implementations when the source code of the implementation is not available. Following

these broad directions, we first address the research question: “Is it possible to evaluate the

security and privacy of a stateful communication protocol implementation to uncover logical

vulnerabilities, when the source-code of the implementation is available?”

While a white-box approach to evaluate the security and privacy properties provides

assurance for the implementation, in most cases, protocol implementations are black-box,

proprietary, and closed systems which necessitates the development of black-box and system-

agnostic testing approaches. In this research, therefore, we develop analysis tools in the

black-box setup where the implementation is not available. One of the common causes of

vulnerabilities in implementations is when implementations deviate from the standards and

becomes noncompliant. The ramifications of noncompliance with respect to the standard

may result in: (1) critical security and privacy flaws (e.g., authentication bypass [  7 ,  8 ], lo-

cation exposure of a target user [  25 ]), and (2) interoperability issues in the devices. Since

manual identification of noncompliant protocol behavior in large and complex implementa-

tions is error-prone and time-consuming we tackle the second research question: Is it possible

to design an automated, black-box, and scalable protocol analysis framework that can uncover

noncompliant behavior in the protocol implementations in stateful wireless communication

protocols?

We address these research questions and develop tools from the perspective of cellular

networks and Bluetooth but our proposed techniques are general enough to adapt for any

communication protocols, e.g., WiFi, Voice Over WiFi (VoWiFI), cellular IoT, etc.

19



1.5 Thesis Statement

In this thesis, we demonstrate that: (i) it is possible to extract scalable formal models

from implementations leveraging static instrumentation and dynamic testing; furthermore,

these models can be used to reason about security and privacy properties of large scale imple-

mentations; (ii) it is possible to detect noncompliance of implementations without the need of

a formal model of the specification, by leveraging the idea that in case two implementations

deviate from each other then at least one of them is deviating from the standards; and (iii)

it is possible to improve the scalability of active automata learning for the large and complex

protocols by using the idea of using a divide-and-conquer approach.

1.6 Contributions

In this thesis, we present our research addressing the research questions. We make the

following contributions.

1.6.1 An Automated Security and Privacy Analysis Framework for Cellular
Network Implementations

We investigate the security and privacy of a commercial and two open-source cellular

network protocol implementations and uncover 6 implementation issues and 3 new protocol

specific logical attacks that are true for all the implementations. For the analysis we propose

a model-based testing approach–ProChecker which (1) extracts a precise semantic model as

a finite state machine of the implementation by combining dynamic testing with static in-

strumentation, and (2) verifies the properties against the extracted model by combining a

symbolic model checker and a cryptographic protocol verifier. For model extraction of com-

mercial 4G LTE implementations, instead of creating a separate framework for security and

privacy analysis, we capitalize on the functional conformance testing frameworks developed

by protocol standardization bodies and/-or commercial test-case developers. We deploy a

code instrumentation mechanism that automatically instruments the code and then utilizes

the conformance testing framework to generate a detailed log with rich metadata. Based

on such metadata, we design a model extraction algorithm that constructs the FSM of the

20



protocol implementation. Such an approach can be easily integrated to the mainstream

functional testing framework to uncover logical vulnerabilities.

1.6.2 An Automated Black-box Noncompliance Checker for Cellular Network
Implementations

We develop an automated, stateful noncompliance checker–DIKEUE that can check non-

compliance between different cellular device implementations. DIKEUE adopts a property-

agnostic, differential testing approach, which leverages the existence of many different control-

plane protocol implementations in COTS devices. DIKEUE uses deviant behavior observed

during differential analysis of pairwise COTS devices as a proxy for identifying noncompli-

ance instances. For deviant behavior identification, DIKEUE first uses black-box automata

learning, specialized for 4G LTE control-plane protocols, to extract input-output finite state

machine (FSM) for a given device. It then reduces the identification of deviant behavior

in two extracted FSMs as a model checking problem. We applies DIKEUE in checking non-

compliance in 14 COTS UEs from 5 vendors and identified 15 new deviant behavior as well

as 2 previous implementation issues. Among them 11 are exploitable whereas 3 can cause

potential interoperability issues

1.6.3 Scalable and Property-Agnostic Noncompliance Checking for BLE Imple-
mentations

We develop an automated, scalable, property-agnostic, and black-box protocol noncom-

pliance checking framework–BLEDiff that can analyze and uncover noncompliant behavior in

the Bluetooth Low Energy (BLE) protocol implementations. To overcome the huge manual

effort for extracting BLE protocol reference behavioral abstraction and security properties

from a large and complex BLE specification, BLEDiff takes advantage of having access to

multiple BLE devices and leverages the concept of differential testing to automatically iden-

tify deviant noncompliant behavior. In this regard, BLEDiff first automatically extracts the

protocol FSM of a BLE implementation using the active automata learning approach. To

improve the scalability of active automata learning for the large and complex BLE protocol,

BLEDiff explores the idea of using a divide-and-conquer approach. BLEDiff essentially divides

21



the BLE protocol into multiple sub-protocols, identifies their dependencies and extracts the

FSM of each sub-protocol separately, and finally composes them to create the large protocol

FSM. These FSMs are then pair-wise tested to automatically identify diverse deviations. We

evaluate BLEDiff with 25 different commercial devices and demonstrate that it can uncover

13 different deviant behaviors with 10 exploitable attacks.

1.6.4 Dissertation Outline

The remainder of the thesis is organized as follows: Chapter 2 provides a background

on some of the most popular wireless communication networks, e.g., cellular networks and

Bluetooth. Chapter 3 presents ProChecker, a model-based testing approach for analyzing

the security and privacy properties of cellular network implementations. Chapter 4 presents

DIKEUE, an automated, stateful, and property-agnostic non-compliance checker for cellular-

enabled 4G LTE devices. Chapter 5 presents BLEDiff, an automated, scalable, and stateful

non-compliance checker for Bluetooth. Chapter 6 discusses the state-of-the-art work. Finally,

Chapter 7 outlines concluding remarks and future works.

22



2. BACKGROUND

In this chapter, we provide a brief introduction to the cellular network protocol, specifi-

cally the 4G LTE protocol. We first discuss the simplified 4G LTE architecture (shown in

Figure  2.1 ) and then the relevant procedures of the protocol. Following this we provide a

introduction to the Bluetooth Low Energy (BLE) protocol. We refer the interested readers

to the specifications [ 9 – 14 ,  35 ] to explore further details.

2.1 4G LTE Network Architecture

The 4G LTE network is broadly comprised of three components: (i) the cellular device

(also known as User Equipment or UE); (ii) the radio access network (E-UTRAN); (iii) the

core network or Evolved Packet Core (EPC)(shown in Figure  2.1 ).

Core	Network
MME Other	Nodes

eNodeBUE

Figure 2.1. The simplified 4G LTE Network Architecture

User Equipment (UE). The UE, also called cellular device, is the user’s access terminal,

in most cases, a smartphone. The User Services Identity Module (USIM) stores the user

identifier, the master secret key, and shared session keys. With these credentials, the user

and the network performs mutual authentication. Note that we use the terms UE, device,

and cellular device interchangeably in the thesis. Usually, a baseband modem inside the

smartphone’s system-on-chip processes all LTE-specific functionality.

E-UTRAN. A geographical area, in the context of LTE is partitioned into hexagonal cells

where each cell is serviced by a single base station. The base stations, i.e., eNodeBs span

the wireless cells that users connect to. An eNodeB performs all connection management

through the Radio Resource Control (RRC) protocol with a UE. The UE first connects to a

base station with radio connections, which forwards all user data to the core network.

23



Core network and MME. The operator-run core network is a server landscape that

performs all management aspects of mobile networks. The Mobility Management Entity

(MME) is the central component managing users access, mutual authentication, and keeping

track of a user’s location. Most of these functions involve many other network nodes; however,

the MME orchestrates them. UE and MME communicate through Non-Access Stratum

(NAS) protocol with the eNodeB as a relay. The MME is connected to eNodeBs through

the S1AP protocol (shown in Figure  2.2 ).

2.2 Protocol Overview

When a UE is turned on, it first connects with a base station with three-way RRC layer

handshaking messages. This connection allows a UE to initiate the attach procedure with

the core network in which the UE and the MME mutually authenticate each other, negotiate

security algorithms for both NAS and RRC layers, and complete the attach process with IP

address and a temporary identifier assigned to the UE. The UE in idle-mode is notified of

incoming services with paging messages, whereas a UE requesting a cellular service or moving

to a different tracking area due to handover sends corresponding initiating messages to the

MME. We discuss in detail the relevant NAS and RRC layer procedures in the following

sections.

2.2.1 NAS Layer Procedures

We now briefly discuss the NAS layer procedures that are most relevant in the context

of our paper (shown in Figure  2.2 , the NAS layer procedures are shown in black).

Initial attach. After rebooting, the UE performs a radio setup procedure. After the radio

setup the UE establishes communication through the RRC layer following the RRC Connec-

tion Setup. The UE starts the NAS attach procedure by sending the attach_request message.

After successful authentication through auth_request and auth_response messages, the MME

moves towards the negotiation of ciphering and integrity algorithms through the security

mode command procedure. At this point, the NAS level security context is established be-

tween the UE and MME, and the selected encryption and integrity protection algorithms

24



UE MME

......

  RRC Security Mode 
Command/Complete

Paging 

... ...

NAS
RRC

NAS
S1APRRC S1AP

Attach Request
Authentication Request/Response

Security Mode Command/Complete

RRC Connection Request/
      Setup/Complete

        RRC Connection 
Re-configuration/Complete

         Attach Accept/Complete

RRC Release

UE Idle
Paging 

RRC Connection Request/
      Setup/Complete

Service Request

GUTI Reallocation Command/Complete
Downlink NAS Transport/ Uplink NAS Transport

Tracking Area Change ...

Tracking Area Update/Accept/Complete

eNodeB

Attach Reject

Identity Request/Response

Figure 2.2. LTE control plane procedures. NAS and RRC layer procedures
are shown in black and blue, respectively.

will be applied to subsequent NAS massages. The MME concludes the attach procedure by

sending attach_accept message with a Globally Unique Temporary Identity (GUTI) and the

UE responds attach_complete message.In case the attach cannot be accepted by the network,

the MME shall send an attach_reject message to the UE including an appropriate cause value.

Identification procedure. The procedure is used to know the identity, in most cases,

International Mobile Subscriber Identity (IMSI) of the device.

25



Detach procedure. To disconnect from the network, the UE can initiate a detach procedure

by sending a detach_request to which the network is expected to respond with a detach_accept.

Service procedure. The UE invokes this procedure when it recieves a paging request from

the network or the UE has pending uplink data. The UE initiates this procedure by sending

the service_request message to the MME.

GUTI reallocation procedure. The GUTI reallocation procedure is used by the MME

to reallocate a new GUTI to the UE. The procedure is started by the MME through sending

a GUTI_reallocation and the UE acknowledges with a GUTI_reallocation_complete.

Tracking area update. The tracking area update procedure is a standalone procedure

that occurs either when the UE detects a new tracking area (TA) or a periodic TA update

timer has expired. The tracking area update procedure can also be triggered if the RRC

connection is released with cause "load re-balacing TAU required".

Downlink NAS transport. Through this procedure the network can send an actual SMS

message in the NAS message. The procedure start with the network sending a DL_NAS_trans-

port message, the UE acknowledges with UL_NAS_transport.

2.2.2 RRC layer procedures

We now briefly discuss the RRC layer procedures that are most relevant in the context

of this thesis (shown in Figure  2.2 , the RRC layer procedures are shown in blue).

RRC setup. RRC setup procedure is the backdrop of the NAS attach procedure. The

purpose of this procedure is to establish an RRC connection and to transfer the initial NAS

dedicated information message from the UE to the network.

RRC security activation. RRC layer security is established through the RRC security

activation procedure. The procedure is started through the RRC_sm_command message from

the eNodeB and completed by the RRC_sm_complete message by the UE.

RRC release. This procedure is used by the network to release the established radio bearers

as well as all radio resources to suspend the RRC connection.

RRC connection reconfiguration. The purpose of this procedure is to modify an RRC

connection, e.g., to establish/modify/release radio bearers. As part of the procedure, dedi-

26



cated NAS information may be transferred from the network to the UE. Usually, after this

RRC procedure the UE completes the initial attach. To begin this procedure, the network

sends an RRC_reconf message which the UE replies with RRC_reconf_complete to complete

the procedure.

RRC Connection Re-establishment. A UE in RRC Connected state, for which security

has been activated, may initiate the procedure in order to continue the RRC connection. The

procedure initiates from the UE with RRC_con_reest_req and completes with RRC_con_reest,

and RRC_con_reest_complete messages.

2.3 Bluetooth Low Energy (BLE)

In this section, we discuss the other importat communication protocol we analyze in this

thesis: Bluetooth. Bluetooth is a well-established standard for short-range communication

over public radio frequency channels across a diverse range of devices, including mobile

phones, IoT devices, computers, headphones, smart watches, etc. Unlike Bluetooth Classic,

Bluetooth Low Energy (BLE) is more focused on the energy constraints of low-cost IoT

devices.

BLE Protocol Stack. The BLE protocol stack is divided into two parts. At the lowest level,

the BLE controller consists of the Physical Layer (PHY), which deals with transmission and

reception of over-the-air packets, modulation, antenna switching, etc., and Link Layer (LL),

which maintains connections at a logical level and encryption. Above that, the host includes

Logical Link Control and Adaptation Protocol (L2CAP), Attribute Protocol (ATT), Generic

Attribute Protocol (GATT), and Security Manager Protocol (SMP).The SMP defines all

security-related procedures, such as pairing, bonding, and authentication.

BLE Procedures. BLE communication works in a central-peripheral system, where the

peripheral device broadcasts advertisement indications to announce its presence, and the

central initiates the connection. After connection, a few link layer optional packets are ex-

changed between the two devices to negotiate several connection parameters. After that, the

pairing procedure takes place by exchanging PairReq/PairResp. These packets include different

I/O capabilities (keyboard, display, no input, no output, out-of-band data availability).

27



Central

Scan request/response
Connection request

Version request/response
Feature request/response
Length request/response

MTU Length request/response
O

ptional
Packets

Pairing Procedure

Pairing request/response

L
egacy

Pairing

Pairing Confirm
Pairing Random

Peripheral

AdvInd

Read Type request/response
Secure

C
onnections

Public Key
Pairing Confirm

Pairing Random
DHKey Check

L
L

E
ncryption

Encryption request/response
Start Encryption request
Start Encryption response

Key Distribution
ATT request/response
Terminate indication

R
econnec-

tion

Connection request
LL Encryption Procedure

ATT request/response

E
ncryp-
tion

Pause

Pause Encryption request/response
Pause Encryption response

Figure 2.3. BLE procedures

Based on these capabilities BLE has four types of association methods: just works,

numeric comparison, passkey entry, and Out-Of-Band (OOB). Just works association is

appropriate when at least one of the devices does not have any display (output) or keyboard

28



(input) and assumes the Temporary Key (TK) as 0 while pairing. In numeric comparison,

each end is shown a six-digit number for comparison, and users are prompted to enter “yes"

or “no." OOB association is possible when an out-of-band mechanism (e.g., NFC) can be

used to discover or exchange cryptographic numbers for pairing. Finally, in the passkey

entry association model, the user is shown a six-digit number on one device and is required

to input the same number on the other.

Furthermore, two types of pairing may be supported–legacy pairing and Secure Connec-

tions (SC). In secure connections, instead of a Short Term Key (STK) as the legacy pairing,

a Long Term Key (LTK) is generated. From version 4.2, all the devices support both legacy

and secure connections pairing. After the pairing procedure, the link layer encryption pro-

cedure is performed with a three-way handshake. At this point, the connection is encrypted,

and the key distribution procedure takes place, which establishes encryption information,

identification, address, and signing information. Other than these procedures, a BLE device

terminates a connection using TerminateInd or when a device goes out of range. It can also

reconnect with a paired and bonded device by sending ConReq and enable encryption by

repeating the link layer encryption procedure. The details of these procedures are shown in

Figure  2.3 , where packet sequences and directions are available as well.

29



3. PROCHEKCER: AN AUTOMATED SECURITY AND

PRIVACY ANALYSIS FRAMEWORK FOR CELLULAR

PROTOCOL IMPLEMENTATIONS

Implementations of cellular network protocols, such as 4G LTE and 5G NR, must adhere to

the specified security and privacy requirements. Unfortunately, lack of secure-by-design ap-

proaches for these complex protocols often induces vulnerabilities in implementations with

security and privacy repercussions. While memory corruption vulnerabilities (e.g., buffer

overflows, use-after-free) can be detected without prior knowledge about the protocol utiliz-

ing memory sanitization techniques [  6 ], detecting logical vulnerabilities (e.g., resetting the

counter to break the replay protection of protocol messages) in large and complex protocol

implementations is challenging since logical vulnerabilities do not have externally-discernible

effects such as crashes or memory leaks. Instead, they require an in-depth semantic un-

derstanding of the protocol interactions and are thus primarily detected through manual

analysis.

Problem. Recent work has demonstrated the effectiveness of formal verification in iden-

tifying logical vulnerabilities in 4G LTE [  32 ] and 5G NR [  34 ] protocols. Most of these

proposals, however, primarily focus on developing a standalone security and privacy analy-

sis framework for verifying specifications of protocols on a manually constructed simplified

model, which is hardly an option for commercial-scale complex implementations. On detect-

ing logical flaws of 4G LTE protocol implementations, previous approaches [  8 ,  23 – 27 ] have

one or more limitations: (A) The analysis [  23 – 27 ] is completely manual; (B) The analysis [  8 ]

performs stateless semi-automatic dynamic testing of the implementation but requires sig-

nificant manual analysis and can only test few pre-defined properties. Even though such

manual or semi-automated security analyses are effective to some extent, from a commercial

vendor’s point-of-view the use of different test infrastructures for separate functional and

security testing is often expensive and leaves security testing at a low priority. To address

these challenges, this work aims at answering the following research question: Is it possible

to evaluate the security and privacy properties of a commercial-scale 4G LTE protocol im-

30



plementation and integrate the evaluation with the mainstream functional testing framework

to uncover logical vulnerabilities?

Challenge. Prior work [  32 ,  34 ,  36 ,  37 ] evaluating the design of cellular network protocols

represents the high-level protocol interactions with finite state machines (FSMs) and evalu-

ates the FSMs against desired security and privacy properties. Such approaches can also be

naturally applied to the FSM’s of 4G LTE protocol implementations. One major challenge

in applying such model checking based formal verification to protocol implementations is,

however, the automatic extraction of the FSM from the implementation. It is critical that

the extracted model (represented by a FSM) is in bounds for the state-of-the-art model

checking tools, contains semantic meaning, and is explicit enough to allow one to identify

logical vulnerabilities. However, due to under-specifications in the standards, developers are

free to design and implement some part of the protocol in their own way— with the only

requirement of matching input/output behavior. Thus implementations of internal proto-

cols structure most often deviate from the standards. This necessitates a sophisticated and

automated model extraction technique to reverse-engineer a model from the implementation

to properly verify properties on protocol implementations.

Plausible approaches. Conceptually, one can extract the model using one of the following

two broad approaches: (1) static analysis, and (2) dynamic analysis. For a typical industrial

implementation with pointers and function redirections, static analysis techniques are unable

to meet the precision required to reason about both implementation soundness [  38 ] and

completeness. On the contrary, though dynamic analysis would appear to be effective because

of its high precision, it fails to scale for production-level and large-size implementations, when

executing all feasible paths and suffers from state space explosion. Nonetheless, existing

popular dynamic extraction techniques such as active-automata learning [ 39 ,  40 ] are used

to extract FSM’s of the implementations of other protocols e.g., TLS, SSH in a black-box

setting. However, such approaches are prohibitively expensive as they require a significantly

high time and number of queries to infer the target implementation’s FSM. Moreover, the

inferred FSM is not sufficiently large and semantically rich compared to that of the white-box

settings. For the FSM extraction, our goal is, therefore, to achieve the accuracy of dynamic

31



analysis without falling into state explosion [  6 ] and utilize the white-box information to

create a semantically rich model.

Our approach. We propose an automated white-box framework, ProChecker, that allows

developers to check whether a 4G LTE protocol implementation violates the desired security

and privacy guarantees. The violations can either mean the implementation deviates from

the standards, the protocol is underspecified or the vulnerability is in the protocol design.

ProChecker works with two major components: (1) model extraction, and (2) model checking.

For model extraction of commercial 4G LTE implementations, instead of creating a sepa-

rate framework for security and privacy analysis, we capitalize on the functional conformance

testing frameworks developed by protocol standardization bodies and/or commercial test-

case developers. We deploy a code instrumentation mechanism that automatically instru-

ments the code and then utilizes the conformance testing framework to generate a detailed

log with rich metadata. Based on such metadata, we designed a model extraction algorithm

that constructs the FSM of the protocol implementation.

For model checking, like LTEInspector [  32 ], we combine the reasoning powers of the

symbolic model checker and a cryptographic protocol verifier to detect logical vulnerabilities

that adhere to the cryptographic constructs of the protocol. The reason behind combining

the model checker and cryptographic protocol verifier is to: (i) efficiently capture all the

desired properties that we have observed; (ii) reason about rich temporal properties (e.g.,

safety, liveliness, correspondence) that could not be captured if one of them is solely used.

Implementation. We evaluate the effectiveness of ProChecker on a closed-source and two

open-source (srsLTE [ 41 ] and OpenAirInterface [  42 ]) 4G LTE implementations. We instan-

tiate the model checking component of ProChecker with the nuXmv infinite-state model

checker [  43 ] and the ProVerif cryptographic protocol verifier [ 44 ]. For properties, we use the

conformance test suite [ 9 ] suggested by the standard along with the properties which are

implicit in the standard. The key properties and insights leveraged by ProChecker and the

major procedures discussed here remain unchanged in the upcoming 5G deployment, making

our framework directly applicable to 5G and securing upcoming generations.

Contributions. This work makes the following contributions:

32



• We propose ProChecker, a framework for property-guided formal verification of com-

mercial 4G LTE implementations.

• We design a novel model extraction tool as part of the framework. It is scalable

and leverages the functional testing infrastructure (inherent to commercial products)

to extract a detailed formal model, e.g., a FSM, from the commercial and complex

codebase. This FSM can also be used to enhance testing by detecting missing test

cases.

• We evaluate ProChecker by implementing and integrating it into the existing functional

testing framework of a closed-source and two open-source LTE implementations and

analyze their implementations. We evaluate our extracted models against 62 proper-

ties. Along with uncovering 3 new protocol-specific logical attacks, 6 implementation

issues, ProChecker identified 14 prior attacks in the FSM’s derived from implementa-

tions. The issues range from denial-of-service attacks, broken integrity, encryption,

and, replay protection to severe privacy leakage.

Responsible Disclosure. We have reported the protocol vulnerability findings of ProChecker

to GSMA through the coordinated vulnerability disclosure (CVD) program and are actively

coordinating with GSMA regarding the issues. The CVD submission (CVD-20201-0043) has

been awarded Mobile Security Hall of Fame status by GSMA [  45 ]. We have also reported

implementation issues to open-source 4G LTE protocol stack developers [ 41 ,  42 ].

3.1 Background

We introduce logical vulnerabilities, and elaborate the key properties of cellular network

protocols leveraged by ProChecker.

3.1.1 Logical Vulnerabilities

Logical vulnerabilities are issues that force the protocol to deviate from (i.e., yield a trace

that violates) basic security (confidentiality, integrity, availability) and privacy guarantees

without having an externally-discernible effect such as crash or memory corruption. The de-

33



viations can be attributed to protocol level design-flaws, underspecifications in the standards,

and implementation mismatch. For instance, underspecifications and inadequate checks in

replay protection induce logical vulnerabilities in 4G/5G protocols enabling an adversary to

force a user to use the same session keys [ 23 ] (also known as key-reinstallation attack) and

reset the replay protection counters [  34 ]. Note that all these previously uncovered issues

have been identified manually or from manually derived models.

Implementation

Instrumentation

Conformance
			Test	suite

Detailed	Log

Model	Extractor

Finite	State	Model

Properties Model	Checker

counter-
example

		Cryptographic
Protocol	Verifier

Testbed

Validation

Model	Extraction

Model	Checking

verified

Figure 3.1. Architecture of ProChecker

3.1.2 Properties of LTE Protocol Implementation

We now briefly discuss common properties of 4G LTE implementations that ProChecker

leverages to extract a FSM of a given implementation. The properties are identified by

analyzing sample protocol implementations followed by commercial and most open-source

protocol implementations.

Event-driven communication architecture. 4G LTE follows an event-driven communi-

cation paradigm. For instance, whenever a protocol entity receives a message, it reciprocates

with a reply message. At a high-level, it means that every action by an entity depends on

the action taken by the other participating entity. We can thus translate the action of one

entity to the event (or condition) of the other communicating entity.

34



Statefulness of the protocol. As the 4G LTE protocol is stateful, every action of a par-

ticipant is decided based on the current state and the external/internal event (e.g., packet

reception or timer expiration) that occurred at the protocol level. Since events may be

triggered at different components of the protocol implemented/managed by different source

files, from an implementation’s design perspective, state variables or pointers to them are

represented with global variables so that they can be accessible from all the source files. This

observation holds irrespective of language or design patterns used for any implementation.

Besides, for tractability and efficient interoperation, implementations try to use the stan-

dard names of the protocol states and messages that are explicitly defined in the protocol

specifications.

Validation of well-formedness. Implementation guidelines for 4G LTE recommend check-

ing the well-formedness of cryptographic primitives (e.g., authenticity/integrity) of incoming

messages. For instance, when a message is received, the participant first unpacks the mes-

sage, checks the well-formedness and the sanity of specific fields of the payload, and then

validates the message authentication code (MAC). Therefore, whenever a packet is received,

it is passed to the respective message handler for performing these tasks.

3.2 Overview of ProChecker

In this section, we discuss the threat model followed by our definition of a FSM, challenges

in designing such a system and overview of our framework.

3.2.1 Threat Model

We consider a Dolev-Yao adversary model [  46 ] in which the communication channel

between the client and the server is subject to the following adversary actions: arbitrary

packet dropping, injection, or modification while impersonating a legitimate participant. In

this model, the adversary adheres to cryptographic assumptions, i.e., it can decrypt a packet

only if it has the keys.

35



3.2.2 Protocol Finite State Machine

We model the 4G LTE protocol abstractly as a set of deterministic FSM’s. A state

machine αµ communicates with another state machine βµ with two unidirectional chan-

nels, one carrying message from αµ to βµ and vice-versa. Each state machine is a 5-tuple

(Σ, Γ,S, s0, T ), where Σ and Γ are the non-empty sets of conditions and actions for the pro-

tocol respectively, S is a finite set of states in which the protocol can reside, s0 is the initial

state of the protocol, and T is a finite set of transitions in S. We consider a transition as a

4-tuple (sin ∈ S, sout ∈ S, σ ⊂ Σ, γ ⊂ Γ). Here, sin is the source state, sout the destination

state, σ and γ are the condition and action defined on this transition respectively.

3.2.3 Challenges

The most difficult problem in the design of ProChecker is to extract a high-level protocol

model of the implementation with minimal knowledge of the protocol code. Solving such a

problem requires addressing several challenges:

C1: (Colossal codebase). The main challenge is the sheer scale of the complex 4G LTE

protocol implementation; in the case of industrial implementations with legacy codes this

problem becomes intractable. For such implementations, both static and dynamic analysis

results in imprecision [  38 ] or state space explosion. The models generated from exclusively

applying different static or dynamic analysis techniques either contain low-level intricacies

of intra- and inter-procedural interactions and thus result in scalability issues.

C2: (Pointer aliases and cryptographic constructs). 4G LTE implementations contain large

amounts of pointer aliases and cryptographic constructs. This makes the extraction of FSM

challenging and results in intractability and false positives.

C3 (Semantic model). To detect logical vulnerabilities the extracted model must have seman-

tic meaning and should not include low-level details, such as parsers, cryptographic protocol

implementations, etc. Providing such an abstract model requires that someone with the

implementation knowledge extracts the high-level protocol semantics for the resulting model

to be amenable for automated analysis.

36



C4 (Layered protocol). 4G LTE has a layered architecture. A generated model that contains

the interaction and information of all the layers would break the scalability of general-purpose

model checkers. It is therefore important to extract the different layers separately to be in

bounds with model checkers limits. However, this imposes an additional requirement when

extracting a model of the underlying implementation, where all the layers are intertwined.

3.2.4 Insights on Addressing Challenges

For addressing C1 and C2, ProChecker does not rely directly on the codebase to extract

the FSM of the implementation; rather it leverages the execution logs of the protocol in-

teraction. The logs are captured from the execution of conformance test cases provided by

the protocol standard body and/or the code manufacturers. 3GPP, the 4G LTE standard

body, provides conformance test suites for protocol implementation verification [  47 ]. Also,

commercial vendors have their own functional testing infrastructure and code coverage in-

formation. To address C3 we automatically instrument the codebase to inscribe necessary

information in the execution logs to create a FSM with semantic information. For C4 we

only extract interactions of a particular layer from the execution logs and utilize the state

and protocol message names from the standards [  9 ].

3.2.5 High Level Description of ProChecker

ProChecker comprises of two components: (i) Model extraction; and (ii) Model checking

(see Figure  3.1 ). For inferring a 4G LTE implementation’s FSM, the model extraction lever-

ages the testing logs generated from the functional conformance test suite. It is, therefore,

important to provide a detailed execution log enriched with a sufficient-level of semantic

information to the model extractor. For this, our simple source-code level instrumentor au-

tomatically instruments the code to dump the values of global and local variables. Note

that, our instrumentor does not require any knowledge about the implementations, such as

control-flow, program-dependency or call graphs. The information-rich log is then passed

to the model extractor, which from the log extracts the specific state, condition, and ac-

tions of the FSM following a generic algorithm (see Algorithm  1 ). The algorithm utilizes

37



the traits of a generic 4G LTE implementation (that holds for both commercial and open-

source implementations) and state and protocol message names from the specification. Our

extracted model abstracts out all cryptographic assumptions and for all encrypted/integrity-

protected messages, the plain-text counterpart is extracted. For instance, a specific protocol

message may always be encrypted and transmitted with integrity protection; our extracted

model does not include that information and only includes the interaction as plain-text. for

analysis.

For model checking, our approach is based on the counter-example-guided-abstraction-

refinement principle (CEGAR) [ 48 ]. In the CEGAR framework, an initial abstract model,

and property are passed to the verifier. If the abstract model results in erroneous (or “spuri-

ous”) counterexamples, the model is revised to rule out the spurious counterexamples. This

continues until the verification goes through or a realizable counterexample is found. Based

on CEGAR, in ProChecker, (1) our extracted 4G LTE model abstracts out the cryptographic

assumptions. (2) We then instrument that model with Dolev-Yao [  46 ] adversarial assump-

tions and call it a threat-enhanced model. (3) The threat-enhanced model and properties

to check are passed to a general-purpose symbolic model checker. Note that the model may

generate a spurious counterexample due to the absence of cryptographic abstractions. (4)

To resolve this, we use a cryptographic protocol verifier. If the protocol verifier confirms that

all the steps in the counterexample adhere to the cryptographic assumptions, then the coun-

terexample (alternatively, the attack) is reported by ProChecker. Otherwise, we refine the

property to ensure this spurious counterexample is never generated again. Like the CEGAR

framework, this loop continues until the verification completes or a realizable counterexample

is found.

3.3 Detailed Design of ProChecker

In this section, we dive deep into both the components of ProChecker: model extraction

and model checking.

38



3.3.1 Model extraction

ProChecker leverages the properties discussed in Section  3.1.2 and extracts a scalable and

verifiable FSM from the logs with the following high-level operations.

(1) Creating an information-rich log. To build a FSM, we extract information on the curren-

t/next protocol state, condition variables defining the next state, and corresponding actions

from the log. The default execution log, however, only provides whether a particular func-

tion is executed, which is used for obtaining the coverage information. This information,

however, is not enough for obtaining protocol states, conditions, and actions. To address

this problem, we develop a source code-level instrumentation mechanism to automatically

incorporate certain information into the log.

(2) Code instrumentation. The challenge for code instrumentation is to add information

to the log with minimal implementation knowledge. To address this challenge, our code

instrumentation prints only the values of global variables, local variables and function en-

trance/entry points in the log for each function. The value of global variables on the entry

and exit for each function is used to detect state transitions, whereas the output of local

variables right before the exit of a function is used to detect those variables’ last value

in the current function scope. The instrumented source code, when executed through the

conformance test cases, thus creates a log containing the state information obtained from

global variables, condition/action as protocol interaction inferred from function entrance,

and even more detailed information, such as packet parsing/processing results, as local vari-

ables. This information-rich log is then used for extracting the FSM of the implementation.

The only required manual intervention is the identification of the specific source files of a spe-

cific layer of the protocol that requires instrumentation. From our experience of industrial

and open-source code, protocol source files of a specific layer are always located in sepa-

rate directories and to make the instrumentation scalable and automatic, it is recommended

to apply the instrumentation to the particular layer of the 4G LTE implementation under

analysis. To achieve this instrumentation with minimal knowledge of the source code, we

leverage insights from standard C/C++ coding practices such as (1) global variables defined

39



Algorithm 1 ProChecker Model Extractor
Require: Log, state_signatures, incoming_signatures, outgoing_signatures
Ensure: FSM(Σ, Γ,S, s0, T )

while end of Log not reached do
B← DivideBlock(Log, incoming_signatures)
for each line L ∈ B do

if L contains any s ∈ state_signatures then
append s to FSM.S
if s is the first state_signature ∈ B then

sin ← s
else

sout ← s
end if

else if L contains any σ ∈ incoming_signatures then
append σ to conditions set FSM.Σ

else if L contains any γ ∈ outgoing_signatures then
append γ to conditions set FSM.Γ

end if
if γ is empty then

γ ← null_action
end if
append transition tuple (sin, sout, σ, γ) to FSM.T
remove B from Log

end for
end while

in separate header (.h) files, (2) local variables defined in the first basic block in each function.

(3) Dissecting the log to detect relevant states, conditions and actions. The log created

through code-instrumentation and conformance test suite contains all the global, local vari-

able values, and function entrance indications that are executed/accessed during the test

case execution. The next challenge is to use this information with minimal implementation

knowledge to extract the FSM. We leverage key insights from the 4G LTE protocol and their

implementations for this step. As the 4G LTE protocol follows an event-driven paradigm,

we can dissect the log into blocks based on each incoming message to the protocol. After the

packet is received by the implementation, it is passed to the corresponding incoming mes-

40



sage handler designated for unpacking, decrypting, sanity checking (e.g., packet type and

well-formedness), and validation of cryptographic primitives (e.g., message authentication

code or MAC). Depending on which checks are passed, the internal state of the protocol is

changed accordingly and the control moves to the corresponding outgoing message handler

designated for taking the responsive action. Depending on the results of checks performed

by the incoming message handler and protocol context, the receiver may take an action, i.e.,

send a response packet (accept or reject based on the validation results) to the other commu-

nicating entity (UE/MME) or take no action at all (referred to in our FSM as null_action).

For example, whenever an authentication challenge is received, it is passed to the incoming

message handler for processing authentication challenges. Upon completion of sanity check-

ing and internal state transition, the authentication completion message is sent as a response

from the outgoing message handler. Since the condition variables used in the sanity checking

are local variables, we obtain their values from the information-rich log containing values of

all the local variables declared and defined in the corresponding message handler. In a sim-

ilar vein, we extract the current and next state information from the inscribed global state

variables in the log. Based on the incoming message handler (from the function entrance

indication in the log) and the outgoing message handler execution, we extract the type of

message received i.e., the condition and sent i.e., the action of the FSM.

(4) Mapping protocol specific variables to implementation. To map the 4G LTE protocol/-

standard specific state variables, incoming and outgoing messages, and condition variables

to the myriad of implementation-specific variables in the log, we leverage the following intu-

itions: (1) 4G LTE state names defined in the standards [ 9 ] are directly used in the imple-

mentations to ensure interoperability. Therefore, by simply knowing the name of each state

defined in the standards, we can detect the corresponding state represented with global vari-

ables. (2) Similarly, incoming/outgoing message names defined in the protocol specification

are indirectly used in the implementation as function signatures. For industrial implementa-

tions, the same signature is followed consistently throughout the implementation and even

for the open-sourced implementations, consistent signatures have been used. The consis-

tency aides tractability, efficient portability, and interoperability. For instance, a sample

signature is to prepend send_/recv_ (based on whether the protocol message is incoming or

41



outgoing) as a prefix before the actual protocol message name. Instances of this signature

can be send_authentication_request, recv_ authentication_response. Leveraging this insight,

we use the function entrance information to extract both the type of message received and

sent during protocol interaction and represent them as conditions and actions in a transi-

tion of the FSM. The algorithm for model extraction from the log is shown in Algorithm  1 .

The algorithm takes the generated Log, state, and incoming/outgoing message signatures as

inputs and outputs the FSM . First, the log is divided into a block based on the incoming

message signature that caused the protocol interaction. The block is then scanned line by

line to extract states (FSM.S), conditions (FSM.Σ), and actions (FSM.Γ) [line (4-18)].

Intuitively, the first extracted state of the block is denoted as the incoming state and the

second one as the outgoing state [line (6-11)]. As already discussed, there might be the

case when the incoming message does not trigger any action for the protocol (due to failed

validation); in that case, the action is denoted as null_action [line (20-21)]. At the end of

the extraction, the tuple (sin, sout, σ, γ) is added to FSM.T to keep track of the transition

relation system.

3.3.2 Model checking

Our approach combines a symbolic model checker (MC) and a cryptographic protocol

verifier (CPV). As the 4G LTE protocol can be considered as a set of communicating FSM’s,

we model each communication between two FSM’s, for instance, the communication between

the UE and MME as, UEµ and MMEµ, with two uni-directional channels; one from UEµ to

MMEµ and another from MMEµ to UEµ. The choice of using two unidirectional channels

instead of a single bidirectional channel provides more flexibility (e.g., one direction of the

public channels to be adversary controlled whereas the other to be reliable) in reasoning

about specific scenarios and filtering spurious counterexamples. From the extracted models

UEµ and MMEµ and including the two uni-directional channels, we enhance the model to

include a Dolev-Yao-Style adversary and create a threat instrumented model IMPµ. We then

use a general-purpose model checker [ 43 ] and a property to check whether the model satisfies

the property. If the model satisfies the property, we adjudicate the property to be verified

42



on the model. If, however, a counterexample is generated, there can be two possibilities: (a)

the implementation model violates the property; (b) due to the abstraction of cryptographic-

constructs, a spurious counterexample was generated. To prevent spurious counterexamples

we run steps of the counterexample to a symbolic CPV. If the CPV confirms that all steps

conform to the cryptographic assumptions, the counterexample can be considered valid. If

the CPV adjudicates one of the steps taken by the adversary to be infeasible, we refine

the property to ensure that the adversary does not exercise offending action in the future

iterations of the verification. The verification loop continues until either the property is

satisfied or a realizable counterexample is found.

3.4 Running Example

To illustrate our model extraction approach, we walk through a simplified example code

(see Figure  3.2 ) of the attach procedure for a device in 4G LTE UE. The code is abstracted

to include only the protocol interactions of Non-Access Stratum (NAS) layer of the cellular

stack. The same algorithm can be utilized for other protocol layers. For our running exam-

ple, we focus on the code of a UE for the final phase of the attach procedure, i.e., the protocol

interaction through attach_accept/attach_complete. For ease of exposition, we assume that

the simplified implementation contains three functions (see Figure  3.2 ). air_msg_handler

takes a message from the MME, parses the message, identifies its type, and passes it to

the corresponding handler associated with it. For our example, the incoming message is an

attach_accept and it is thus routed to recv_attach_accept. The first task in any implemen-

tation of recv_attach_accept is to check whether the message contains a valid MAC. If the

MAC check is passed, the control is transferred to the respective outgoing message handler

that sends an appropriate response– which in our case is send_attach_complete. In this

example code snippet, our instrumentation tool automatically includes few print statements

that inscribe all global and local variables values, and function entrance information (see

Figure  3.2 , the instrumented lines are shown in blue) when relevant test cases are executed.

For instance, consider a simple test case: “When a properly formatted attach_accept message

43



1 air_msg_handler(air_msg){
2 print "air_msg_handler"
3 print current_state
4 ... ... ... ... ... ...
5 ... ... ... ... ... ...
6 air_msg_id = parse(air_msg)
7 case(air_msg_id){
8 attach_accept:
9 recv_attach_accept( )

10 authentication_request:
11 recv_auth_request( )
12 ... ... ... ... ... ...
13 ... ... ... ... ... ...
14 }
15 print air_msg_id
16 print current_state
17
18 }

(a) air_msg_handler

1 recv_attach_accept(air_msg){
2 print "recv_attach_accept"
3 print current_state
4 ... ... ... ... ... ...
5 ... ... ... ... ... ...
6 mac_valid = extract(air_msg)
7 if(mac_valid){
8 send_attach_complete( )
9 }else{

10 send_emm_status( )
11 }
12 ... ... ... ... ... ...
13 ... ... ... ... ... ...
14 print mac_valid
15 print current_state
16 }

(b) recv_attach_accept

1 send_attach_complete( ){
2 print "send_attach_complete"
3 print current_state
4 ... ... ... ... ... ...
5 ... ... ... ... ... ...
6 #create attach_complete packet
7 send_tx_conf( ) #send to MME
8 ... ... ... ... ... ...
9 ... ... ... ... ... ...

10 print current_state
11 }

(c) send_attach_complete

1 air_msg_handler
2 current_state: UE_REGISTERED_INIT
3 recv_attach_accept
4 current_state: UE_REGISTERED_INIT
5 send_attach_complete
6 current_state: UE_REGISTERED_INIT
7 current_state: UE_REGISTERED
8 mac_valid: True
9 current_state: UE_REGISTERED

10 air_msg_id: attach_accept
11 current_state: UE_REGISTERED

(d) Generated detailed log
Figure 3.2. Instrumented generic example implementation (instrumented
lines in the code are colored as blue)

with appropriate MAC is sent to the UE, the UE responds with an attach_complete”. As the

test case gets executed with the instrumented code, we get a detailed log (see Figure  3.2 (d)).

Now the task of the model extractor is to build the FSM from the log. For building

the FSM, we need to extract four specific pieces of information from the log: (1) incoming

state, (2) outgoing state, (3) conditions, and (4) actions. in our example, line 3 of the

log (Figure  3.2 (d)) indicates that the control has moved to recv_attach_accept handler,

which essentially means that the condition for this transition is the incoming attach_accept

44



message. Down the trace, line 8 indicates that the MAC for the message is computed as

valid. Note that the initial state for this transition is extracted from line 6 and identified as

UE_REGISTERED_INIT. The final state is extracted from line 9 as before completing the specific

test case the state transitions to UE_REGISTERED state. Line 5 manifests that an attach_complete

message was sent by the device in response to this particular test case. This example shows

the effectiveness of our approach in building a FSM of an implementation without requiring

detailed knowledge about the source code. In a practical case, the generated log will contain

information about multiple rounds of interaction between the UE and the MME. In that

case, the log can be divided into blocks based on the incoming message signature names.

From the blocks, a similar strategy can be applied to extract the entire state machine.

3.5 Implementation

We now discuss the implementation of ProChecker. Though completed for LTE, we are

adapting the framework for 5G.

Formal property gathering. The set of properties that ProChecker aims to check includes

authenticity (e.g., disallowing impersonation attacks), availability(e.g., preventing denial of

service attacks), integrity(e.g., restricting unauthorized messages), privacy of user’s sensi-

tive information (e.g., preventing location data, activity profiling, and preserving users soft

identity), and replay protection. (e.g., restricting reception of the same message more than

once). We identify and extract the precise and formal security goals from the informal and

high-level descriptions given in the conformance test suites [  47 ] and technical specification

documents [  9 ] provided by 3GPP and translate them into properties. We extracted, for-

malized, and verified a total of 62 properties among them 25 are related to privacy and 37

related to security.

Codebases. For the closed-source implementation, the complete size of the codebase

is around 80 GB (including all testing infrastructure and legacy support). We integrate

ProChecker with the mainstream functional testing framework of the implementation. For

the open-source implementations we use the two most popular ones, srsLTE [  41 ] and Ope-

nAirInterface(OAI) [  42 ]. All the codebases are written in C++.

45



Conformance test suite. For the closed-source codebase, the conformance test suite we

leveraged is part of the codebase and contains 7087 test cases. These test cases can be con-

sidered as protocol level functional test cases, testing a separate protocol interaction. The

test suite is completely automatic and all test cases can be run together to get a detailed

log. Both srsLTE and OAI also have completely automatic testing environments as part of

their codebase but do not have the implementations of all the conformance test cases. To

test all the procedures of NAS layer and generate enough coverage we add 9 test cases to

srsLTE (getting to 84% coverage for the NAS layer), and 7 test cases to OAI. Note that

these additional test cases are not required for ProChecker, as any commercial LTE imple-

mentation must include the conformance testing framework following the 3GPP standards.

This part is included only for demonstrating the viability of ProChecker on open-source LTE

implementations.

Code instrumentation. We developed our instrumentation tool which takes the code di-

rectory of the specific protocol layer as input, and instruments the code with print statements

for function entrance, global and local variables. For all three of our implementations, source

files of a specific layer are located together in separate directories. We only instrument the

NAS layer of the protocol. After the source code of the NAS layer is instrumented, the whole

code is put through the conformance test suite to generate a detailed Log.

Model extractor. We implement the model extractor in Python 2.7 with around 1000

lines of code. We leveraged the protocol state names directly from the standards [ 9 ] as the

implementations use identical names. We mapped the incoming/outgoing message signa-

tures, sanity checking variable names following the incoming/outgoing message names from

the standards, and a manual inspection of the source files of the NAS layer. For future

generations, this mapping can be documented with minimal effort while designing the im-

plementation, thus eliminating this one-time manual intervention altogether. For the largest

log from the closed-source implementation, it takes our model extractor around 5 minutes

to analyze the log and generate the semantic model.

Adversarial model instrumentor. The adversarial model instrumentor takes two FSM’s—

UEµ and MMEµ for UE and MME as input and returns another model IMPµ which is an

extension of UEµ and MMEµ containing explicit adversarial influence. Given two public com-

46



munication channels– c1 from UEµ to MMEµ, and c2 from from MMEµ to UEµ, our ProChecker

incorporates adversarial capabilities into UEµ and MMEµ and thus combine them all to build

a new threat-instrumented abstract model IMPµ. For instrumenting threat to a given tran-

sition, the adversary non-deterministically decides either to drop/pass/change the message.

We have developed a model generator that takes as input the state machine of the protocol

written in Graphviz-like language and outputs a SMV [  43 ] description of the model. For our

implementation, we extracted the models of the UE by using our proposed model extraction

module. We, however, did not have access to the commercial/closed-sourced implementation

of a core network and thus used the open-source core network’s FSM manually constructed

by Hussain et al. [  32 ], which precisely served our purpose as we were interested in identifying

vulnerabilities on the UE side. But it is evident that, given the implementation and the test

cases, this approach can also be applied to the core network’s implementation.

Model checker (MC). To model check IMPµ, we use NuXmv[ 43 ]. A major challenge in

formal verification is scalability; the model checker may not be able to terminate when the

model is large. We want to report that it was indeed possible to run a model checker on

the model extracted from an industry-level large codebase. This is because of our semantic

model-extraction based on high-level protocol interactions from the log and abstracting out

low-level details of implementation.

Cryptographic protocol verifier (CPV). The counterexample generated from MC is fed

to the ProVerif [  44 ] CPV to determine its validity. For each adversary action in the model

checker provided as a counterexample, we query the CPV to check its feasibility. If all ad-

versarial actions can be proven feasible, then the counterexample is presented as a feasible

attack and tested on the testbed. Otherwise an invariant is added to the property ruling

out the infeasible adversarial action to refine the property. The verification loop between

MC and CPV is continued until either the property is satisfied by the model or a realizable

counterexample is found.

Testbed. We build a testbed using low-cost software-defined radios and open-source LTE

software stack, srsLTE [ 41 ], totaling to a cost of around USD $4000. After verifying the

counterexample, we manually analyze the counterexample to determine whether it is due

47



attach_request	(IMSI)

attach_request	(IMSI)

authentication_request SQN:	n	+	1SQN:	n	+	1

... ...

SQN:	n	+	p
...

authentication_request
SQN:	n	+	p

Complete	Attach	Procedure

authentication_request
SQN:	n	+	1 SQN:	n+1	accepted

key	Mismatch

Rouge	UE Victim	UE MME
SQN:	n	

Key	Desynchronization
attach_request	(IMSI)

Rouge	MME

Figure 3.3. Service disruption using authentication_request

to the implementation deviating from the protocol specification or the deviation is due to

underspecification, design-flaw in the standards.

3.6 Evaluation and Findings

The main goals of our evaluation of ProChecker are to answer the following research

questions:

• RQ1. Logical Vulnerability Detection: How effective are the extracted models

of ProChecker? Is it possible to reason about security and privacy properties to detect

logical vulnerabilities with the models?

• RQ2. Model Comparison: How expressive is the automatically extracted FSM of

ProChecker compared to the state-of-the-art model [  32 ] for formal verification?

• RQ3. Scalability: Is the generated model scalable with the COTS model checking

tools?

48



3.6.1 RQ1. Logical Vulnerability Detection

ProChecker uncovered 3 new protocol specific logical attacks (applicable to any imple-

mentation), 6 implementation issues, and identified 14 prior attacks (Table  3.1 ).

New counterexamples: We first discuss the 3 protocol specific (P1-P3) logical attacks,

which are true for all three implementations, and then 4 most severe implementation specific

(I1-I4) vulnerabilities.

(P1) Service disruption using authentication_request: With this attack, the adversary

exploits a potential vulnerability of authentication_request sequence number (SQN) handling.

The attack utilizes previously captured authentication_request to desynchronize keys, dis-

rupt service, and force the UE to go through power-consuming authentication procedure

over and over again, causing a denial of service and battery depletion.

Detection and attack description. We uncover this attack by model checking IMPµ with

respect to the property: “If the UE is in the registered initiated state, it will get authen-

ticated with an authentication sequence number (SQN) which is greater than the previously

accepted SQN ”. We observe a counterexample in IMPµ where the UE accepts a SQN value

smaller than the current value. We validate the capability of the adversary to fabricate

attach_request message to generate legitimate authentication_request by the MME using

ProVerif. The steps of the attack are shown in Figure  4.5 . The adversary using a malicious

UE sends attach_request message to the MME to capture authentication_request message to

be used later in the attack. At the time of the attack, the attacker replays such captured

authentication_request to the victim UE. Due to the specific design of the generation and

verification of authentication_request message’s SQN (which we describe in detail in the next

section), the victim UE accepts and processes this stale authentication_request message,

and regenerates all session keys causing a key desynchronization between the UE and the

legitimate MME. As a result, the UE will also keep discarding actual packets from the le-

gitimate MME until the connection is dropped and the authentication procedure is invoked

from scratch by the legitimate MME. By analyzing the traces of real operational networks,

we uncover that it is possible to use previously captured authentication_request messages–

which are days old to carry out such an attack. To extend the attack impact, the adversary

49



can keep using previously captured authentication_request messages and replay them to the

victim UE recurrently.

 

Array:

... ... ... ...

authentication
accept

authentication
accept

Sequence
part

Index
part

Received
message

Next
received
message

Figure 3.4. Sequence number handling in USIM

Vulnerability. The SQN generation and verification for authentication_request message is

performed through a complex scheme defined in TS 33.102 [  49 ] Annex C. The SQN is divided

into two concatenated parts SQN = SEQ || IND, namely the sequence (SEQ) and the index

(IND). To generate a fresh SQN, the core network increments both IND and SEQ, concatenates

them together and sends to the UE. For verification on the UE side, the USIM keeps track

of a SQN_array of a = 2IND items, where each item is a SQN as shown in Figure  3.4 . Whenever

a new SQNj = SEQj || INDj (0 ≤ INDj ≤ (a − 1)) in an authentication_request is received

by the UE, the USIM in the UE looks up its SQN_array, checks if INDi == INDj, and based

on that it retrieves the corresponding SEQi value from the SQN_array. After comparing

this saved SEQi with the received SEQj, the UE either accepts or rejects the SQN number

and the authentication_request message. In case SEQj ≤ SEQi, the USIM generates an

authentication synchronization failure message using the highest previously accepted SQN

anywhere in the SQN_array. Due to this design, the UE allows out-of-order SQN values.

Following our example, in case SQNj = SEQj || INDj is captured and dropped by an at-

tacker, the MME would generate another SQNk = SEQk || INDk (where INDk = (INDj + 1)%a

50



and 0 ≤ INDk ≤ (a − 1)) and send it to the UE. Upon receiving the message, the USIM

would look up the INDk = INDi+1 index of the SQN_array, retrieve SEQi+1, compare with

the received SEQk, and accept the SQN. Now, when the previously captured and dropped

SQNj = SQEj || INDj is replayed back to the UE by the attacker, the USIM would look

up SQN_array at index INDi = INDj and as the sequence part SEQi at this index is still

unchanged and smaller than the received SEQj the UE would accept this stale SQNj.

According to the specification, this design to accept authentication_request messages with

out-of-order SQN was designed to allow more efficient authentication of UEs that move be-

tween different regions of a serving network or between different serving networks in roaming

scenarios and thus frequently run into SQN desynchronization issues. From our experiments,

we, however, uncovered that COTS UEs choose 5 bits for IND and the rest for SEQ, which re-

sults in a SQN_array of a = 25 = 32 values. With this values, the USIM accepts 31 previously

captured stale authentication_request message. From the captured traffic of commercial

network operators, we observed that it takes at least a few (in some cases far more) days

to receive this much authentication_request from the MME. Therefore, the majority of the

COTS UE implementations accept a couple of days old authentication_request message sent

by the network, making it possible for the attacker to carry out attacks.

Interestingly, in TS 33.102 [ 49 ] Annex C 2.2, there is a freshness limit (L) on the range

of old accepted SQN. If the difference between the saved sequence part SEQi at index INDi

and the received sequence part, SEQj is SEQj−SEQi > L, it will be rejected. However, the

use of such a range is completely optional and the value is undefined for both 4G and 5G.

The specification states – “The use of such a limit is optional. The choice of a value for the

parameter L affects only the USIM. It has no impact on the choice of other parameters and it

is entirely up to the operator, depending on his security policy. Therefore no particular

value is suggested here". Apparently, being optional and unspecified none of the major

vendors are implementing such a check, paving the way to the acceptance of old sequence

numbers.

(P2) Linkability attack using authentication_response: This attack can enable an adver-

sary to track the presence of a user’s device in a particular cell area violating the user’s privacy

by exploiting the different responses of authentication_request message. From the counterex-

51



ample of the previous attack (P1), we identified that the UE accepts previously captured

stale authentication_request with a SQN value smaller than the current accepted value. We

utilize ProVerif’s capability to reason about observational equivalence and pose the query: “is

it possible to distinguish two UE’s based on their responses to an authentication_request?",

to identify this attack. The first phase of the attack to capture authentication_request is

similar to P1 (see Figure  4.5 ).

For the next step, the attacker with a malicious base station connects to all the UEs in

a particular cell area and replays the captured authentication_request to all of them. The

victim UE will accept this message and respond with authentication_response whereas all

the other UEs in the cell will respond with MAC failure due to integrity check failure (see

Figure  3.5 ) identifying and tracking the presence of the victim user. This attack is inspired

by the linkability attack using auth_sync_failure shown in 3G [ 50 ] with the caveat that the

distinction between different messages and a different vulnerability is utilized by the attacker

for the two attacks. In this attack, the attacker differentiates between an out-of-order ac-

cepted authentication_request and a synchronization failure auth_sync_failure message to de-

tect the presence of a user, whereas in the 3G attack two failure messages (auth_sync_failure

and auth_MAC_failure) are utilized for the attack. The root cause of this attack is same as P1.

authentication_requestauthentication_request
SQN	<	n

authentication_
response

authentication_
	MAC_failure

AttackerVictim	UE	 Other	UE

SQN	=	n

Figure 3.5. Linkability using authentication_response

Impact on 5G. The generation and verification scheme of sequence number (SQN) in authentication

_request message described in P1 (Section  3.6.1 ) is exactly the same in the 5G specifications,

thus making the 5G rollout directly vulnerable to P1 and P2 attacks.

(P3) Selective security procedure denial: In this attack, the adversary exploits the un-

derspecification of the sequence number checking to prevent important security procedures

52



entirely causing severe security and privacy issues.

Detection and attack description. We model check IMPµ against the property “If the

MME initiates a common procedure (e.g., Security Mode Command or GUTI Reallocation),

the UE will complete that procedure”. This is violated by a trivial counterexample where the

adversary drops packets in transit, but neither UE nor MME could detect such occurrences.

We, in fact, observed that the adversary can even drop an arbitrarily large number of packets

at once since the UE always accepts packets with higher sequence numbers, but does not

check the difference of sequence numbers of two consecutive received packets. As a result,

for the security procedures where a fixed number of trials is attempted, it is possible to drop

packets and surreptitiously prevent the security procedure altogether. To carry out this

attack, the attacker sets up a man-in-the-middle (MITM) relay between the UE and MME

and drops packets related to important security procedures, such as GUTI reallocation or

security mode command. The attacker, by inferring the message type (from the packet meta-

data, e.g., packet-length and temporal order of the encrypted/plaintext packets in transit),

can selectively drop relevant packets until the security procedure is abandoned by the MME

(in most of the times it is tried 4-5 times). This forces the victim UE and the core network

to keep using previous security contexts or the temporary identifier GUTI.

Vulnerability. Such kind of selective service denial attack is possible because of the under-

specification of the standards. In TS 24.301 [  9 ] it is specified that “Replay protection must

assure that one and the same NAS message is not accepted twice by the receiver. Specifically,

for a given NAS security context, a given NAS COUNT value shall be accepted at most one

time and only if message integrity verifies correctly.” However, the case where an adversary

is dropping packets surreptitiously is not handled in the specification. Due to the higher se-

quence number being the only satisfying condition and the inadequate check on the sequence

numbers of two consecutive packets, it is possible to carry out this attack without detection.

Impact. The impact of this attack can be catastrophic as it affects multiple crucial security

and privacy-preserving procedures. For instance, when the MME assigns a new GUTI to

the UE with GUTI_reallocation_command message, the adversary can drop the message with-

out being detected by the UE/MME and thus can induce both parties to use the same

GUTI for a longer time than expected. The consequence of such packet dropping on the

53



Table 3.1. : Summary of ProChecker’s findings. yes, no, – not implemented

Attack
Prop-
erty
Type

Implication Vulnerabil-
ity Type srsLTE [  41 ] OAI [ 42 ]

New Attacks
(P1) Service disruption using authen-
tication_request

Secu-
rity Service disruption Standards

(P2) Linkability using authentica-
tion_response (Inspired by [  50 ]) Privacy Location privacy leak-

age Standards

(P3) Selective service dropping Secu-
rity

Surreptitious service
disruption Standards

(I1) Broken replay protection with all
protected messages

Secu-
rity

Broken replay protec-
tion

Implementa-
tion

(I2) Broken integrity, confidentiality
with all protected messages

Security-
Privacy

Integrity, encryption
broken

Implementa-
tion

(I3) Counter-reset with replayed au-
thentication_request

Secu-
rity

Breaks replay protec-
tion

Implementa-
tion

(I4) Security bypass with reject mes-
sages

Secu-
rity Security bypass Implementa-

tion
(I5) Privacy leakage with identity_re-
quest Privacy IMSI leaking Implementa-

tion
(I6) Linkability with secu-
rity_mode_command Privacy Location tracking Implementa-

tion
Previous Attacks

Authentication sync. failure [  32 ] Secu-
rity Denial of Service Standards

Stealthy kicking-off [  32 ] Secu-
rity

Detaching victim sur-
reptitiously Standards

Panic attack [  32 ] Secu-
rity

Creating artificial
chaos Standards

Linkability using TMSI_realloca-
tion [ 51 ] Privacy Location privacy leak Standards – –
Linkability using IMSI to GUTI using
paging_request [ 50 ] Privacy Location privacy leak Standards
Linkability using auth_sync_fail-
ure [ 50 ] Privacy Location privacy leak Standards

Authentication relay [  32 ] Security-
Privacy

DoS, location history
poisoning Standards

Numb Attack [  32 ] Secu-
rity

Prolonged DoS, batter
depletion Standards

Downgrade using tracking_area_re-
ject [ 25 ]

Secu-
rity DoS Standards – –

Denial of all services [ 25 ] Secu-
rity DoS Standards

Paging hijacking [ 32 ] Secu-
rity Stealthy DoS, panic Standards

Detach/Downgrade [ 32 ] Secu-
rity DoS, battery depletion Standards

Service Denial [  32 ] Secu-
rity DoS Standards

Linkability (GUTI/TMSI) [ 32 ] Privacy Location Tracking Standards

GUTI reallocation procedure is critical because of the following specification - TS 24.301 [ 9 ]:

“The GUTI reallocation procedure is supervised by the timer T3450. The network shall,

on the first expiry of timer T3450, reset and restart timer T3450 and shall retransmit the

GUTI_reallocation_command. This retransmission is repeated four times, i.e. on the fifth ex-

piry of timer T3450, the network shall abort the reallocation procedure". This implies that an

adversary can surreptitiously drop five consecutive GUTI_reallocation_command messages and

prevent the procedure entirely. After the five tries, the MME thus aborts the procedure and

both MME and UE will keep using the previous GUTI. Since frequent updates of GUTI are

54



mandated by the standard to prevent user tracking, this attack forces the GUTI reallocation

to fail and thus enables the adversary to track the victim for a long period of time. Similar

implications also apply to the security mode command procedure, where it is also possible

to surreptitiously prevent the UE and MME from re-negotiating the keys. Such kind of

selective procedure denial enables the adversary to force a device to reuse the same GUTI

or session keys for an elongated time period and thus to track the victim device easily.

Impact on 5G. For the vulnerability and attack described here, the same procedures exist

with the same design in 5G [ 52 ] as well, making it vulnerable to selective security proce-

dure denial attack. Moreover, 5G introduces some new procedures which are also vulner-

able to this attack. For instance, in TS 24.501 [ 52 ] the 5G Configuration Update Proce-

dure it is stated–“The network shall, on the first expiry of the timer T3555, retransmit the

configuration_update_command message and shall reset and start timer T3555. This retrans-

mission is repeated four times, i.e. on the fifth expiry of timer T3555, the procedure shall be

aborted" making it possible to drop five messages, deny the procedure entirely and force the

use of the same 5G-GUTI. Similar to this attack on 4G LTE, the adversary exploiting the

vulnerability in the 5G network can track the user for long periods of time.

(I1) Broken replay protection with all protected messages: As discussed in the pre-

vious attack (P3), the UE should never accept any replayed packet after the security context

has been established. We, however, found that both srsUE [  41 ] and OAI [ 42 ] implementations

allow the adversary to replay packets. We tested the FSMs of these implementations with

the replay protection property and observed that OAI accepts only the last message when

replayed, whereas srsUE accepts any replayed messages and resets the downlink counter with

the counter value given in the replayed packet.

(I2) Broken integrity, confidentiality with all protected messages: The standard [  9 ]

also specifies a primitive property that a UE must not accept any plain-text messages after

the security context is established. However, while testing the FSM of OAI with this prop-

erty, we found a counterexample where the UE accepts plain-text messages with plain-NAS

(0x0) as the packet header after the security context is established. We validate the coun-

terexample in the testbed and indeed the OAI implementation accepts all security-protected

messages in plain-text and un-cyphered after establishing the security context, effectively

55



ue_register_

initiated ue_registered

security mode

command/

security mode

complete

ue_register_

initiated ue_registered

security mode

command and

ue_seq_no =0/
security mode


complete
(a) LTEInspector (b) ProChecker

(a) Mapping transitions with new conditions

ue_dereg

initiated


ue_

deregistered

detach

request/
 ue_dereg


initiated

ue_dereg_

attach_

needeednull_action

(a) LTEInspector (b) ProChecker

ue_

deregistered

!detach mac

failure/


detach

accept


detach

accept


detach

request/


(b) Mapping transitions with new states

Figure 3.6. Transition refinement between ProChecker and LTEInspector

breaking integrity and confidentially protection of the protocol implementation.

(I3) Counter-reset with replayed authentication_request: We uncover this attack by

model checking IMPµ with respect to the property: “If the UE is in the registered initiated

state, it will get authenticated with an authentication sequence number (SQN) which is greater

than the previously accepted SQN ”. We observe counterexamples where the implementations

of srsUE accept the same sequence number and reset the counter. Due to this attack, it is

possible to break the replay protection by sending replayed packets over and over again.

(I4) Security bypass with reject messages: As per the specification, the UE after receiv-

ing a release/reject message (e.g., attach_reject) should delete all the security contexts, move

to the de-registered state and perform authentication and security mode command proce-

dures again to reconnect to the network. While checking this property with the srsUE model,

we, however, found counterexamples in which the UE directly moves from de-registered to

registered state without completing authentication and security mode command procedures.

Thus the adversary can bypass the whole security and authentication procedure.

Proving previous attacks: Along with detecting new logical issues, ProChecker is able to

automatically identify 14 design-level logical vulnerabilities uncovered by previous works [  25 ,

 32 ,  50 ,  51 ] (see Table  3.1 ). These vulnerabilities were previously identified through manual

inspection or from models that were manually derived.

56



3.6.2 RQ2. Model Comparison

To evaluate the expressiveness of ProChecker’s automatically extracted models we com-

pare the extracted model from the closed-source implementation to the closest available 4G

LTE model from LTEInspector [ 32 ]. We compare the extracted model from the closed-source

implementation because it implements all the procedures and has a complete conformance

test suite. For the comparison we first introduce a notion of refinement for FSMs and use it

to compare the models.

Refinement. Let, M1
µ = (Σ1, Γ1,S1, s01 , T1) and M2

µ = (Σ2, Γ2,S2, s02 , T2) be two protocol

FSM’s. We say that M2
µ is a refinement of M1

µ if the following properties hold: (1) The set

of states S1 is a subset of the set of states S2. For this property to be true, for each state,

s ∈ S1, there is an one-to-one mapping to a state s′ ∈ S2. (2) The sets of conditions Σ2 and

actions Γ2 are a strict supersets of Σ1 and Γ1 respectively, containing new constraints on

the transitions. (3) The transitions in set T1 can be mapped to transitions in T2. For each

transition ti = (siin , siout , σi, γi) ∈ T1 there can be several cases: (i) ti can be directly mapped

onto a transition in T2; (ii) ti can be mapped to a transition tj = (siin , siout , σj, γj) ∈ T2, where

tj has the same incoming and outgoing state as ti. However the condition, σj has the form

σi ∧ φ, where φ is a new condition defined in Σ2, thus making the condition of tj stricter

than ti; (iii) ti can be mapped onto multiple transitions (based on the new states) in T2. The

transition ti from siin to siout can go through multiple new intermediate states such as sii ,

generating transitions of the form ti1 = (siin , sii , σi1, γi1) and ti2 = (sii , siout , σi2, γi2), which

can be mapped onto transitions in T2. The mapped transitions in T2 contain all the previous

conditions and actions on ti together with new conditions and actions defined on ti1 and ti2.

Comparison of the models. We now show that the model of the closed-source implemen-

tation extracted by ProChecker (Proµ) is a refinement of the model of LTEInspector (LTEµ).

First, the majority of the states in the set SLT E of LTEµ can be directly mapped onto the

states in the set SP ro of Proµ. States in SLT E that do not have a direct mapping in SP ro

(such as ue_registered and ue_deregistered) can be mapped onto the set of sub-states of the

respective states. This mapping from states to sub-states is done following the standards [ 9 ].

57



Table 3.2. : Common properties of ProChecker and LTEInspector
High Level Properties common to ProChecker and LTEInspector
1 If the UE is in the deregistered state, it is always the case that the UE initiates authentication
and moves to the registered initiated state from there on, eventually the UE gets authenticated
and moves to the registered state
2 When the MME is in the tracking area update initiated state and the UE sends track-
ing_area_update_request message, the MME will eventually move to registered state.
3 The UE sends a service_request only if the MME sent the paging message that is pending
4 If the MME sends a security_mode_command message, the security context will be eventually
updated.
5 When the MME is in the service initiated state and the UE sends service_request_message, the
MME will eventually move to the registered state
6 The UE will respond with the GUTI_reallocation_complete message only if the MME sends
GUTI_reallocation_command

Specifically, due to the automated extraction of FSM by ProChecker, it was possible to ex-

tract sub-states of several procedures; manually generating such sub-states would be severely

cumbersome. Second, the condition ΣP ro and action ΓP ro sets of Proµ are strict supersets

of ΣLT E and ΓLT E of LTEµ, respectively. Furthermore, as data and packet payload informa-

tion were also extracted in Proµ, new constraints (such as sequence numbers and back-off

counters) and new actions are included in ΣP ro and ΓP ro. Finally, some transitions fol-

low one-to-one mapping between Proµ and LTEµ. Others can be mapped based on new

states or new conditions following our definition of refinement. The transitions defining

new conditions impose stricter constraints (using predicates) that are based on the data

and packet payload. For instance, the transition tLT E ∈ TLT E presents a change of state

from ue_register_initiated to ue_registered for the condition security_mode_command and ac-

tion security_mode_complete. In tP ro ∈ TP ro, tLT E is mapped to tP ro, which is the refined

version of tLT E where both states and actions remain the same but the condition has the

form security_mode_command and ue_sequence_number=0, and it is thus stricter. These exam-

ple transitions for both LTEInspector and ProChecker are shown in Figure  3.6a . The rest of

the transitions in TLT E can also be mapped onto transitions on TP ro based on new states.

To illustrate this, let us consider the transition from ue_dereg_initiated to ue_deregistered

having the condition detach_request and action detach_accept in TLT E. In TP ro a new inter-

mediate state is introduced ue_dereg_attach_needed and the transition is broken into two,

introducing new conditions (shown in Figure  3.6b ). Proµ is, therefore, a refinement of LTEµ

58



and considers more procedures and critical aspects, including transitions based on data and

packet payload.

6.
69

0
2
4
6
8
10
12
14
16

6.
97

5.
68 6.
08 6.
57

6.
65

4.
04

7.
02

10
.5
9 14

.4
2

3.
54
6.
23

LTEInspector
ProChecker

Ti
m
e	
(s
ec
)

1 2 3 4 5 6

Figure 3.7. Execution time of the common properties used in ProChecker
and LTEInspector. Properties are numbered according to Table  3.2 .

3.6.3 RQ3. Scalability

We take our largest and most detailed extracted model– from the closed-source im-

plementation, and record the execution times for verifying the properties common to the

LTEInspector model (see Table  3.2 ). We used a laptop with an Intel i7-3750QCM CPU and

32 GB DDR3 RAM. The results in Figure  3.7 show that the time required by ProChecker

for each property is only a fraction higher than LTEInspector. This result also signifies the

scalability of our framework since it can run a COTS model checker on the automatically

extracted model from an implementation with negligible overhead.

3.7 Discussion and Limitations

Completeness of our model. Model completeness depends on the coverage of test suites.

In our experiments, we managed to extract state machines detailed enough to reason about

protocol aspects critical for security. For commercial 4G LTE implementations, having a

59



complete conformance testing suite is a must; therefore this automatically corresponds to

high coverage. We also showed that in the case of open-source implementations, it is pos-

sible to add some procedure-specific test cases and extract a formal model. Even though

ProChecker’s ability to extract details is limited by the coverage of the test suite, its true

strength lies in its efficiency. For a given test environment, it adds negligible resource over-

head to extract a state machine. As the test suite grows in coverage, ProChecker can generate

increasingly detailed FSMs.

Consistent message name signatures. ProChecker leverages consistent protocol message

and packet extraction signatures for extracting the FSM from the generated log. Our case

study of industrial and open-source 4G LTE implementations, in fact, substantiates this

assumption since those implementations follow a consistent signature because of tractability,

efficient portability, and interoperability. For instance, srsLTE and OAI use the consistent

signature of send_/parse_ and emm_send_/emm_recv_ followed by actual protocol message name

from the standards respectively.

FSM for both communicating parties. Since we did not have access to the source code

for the core network, we had to use an open-source standard model derived by the research

community. For protocols, such as Wi-Fi and Bluetooth, where both communicating parties

of the protocol are implemented by the same vendor, the same methodology can be applied.

ProChecker for 5G implementations. The design requirements of ProChecker for ana-

lyzing 5G implementations are similar to that of 4G (i.e., properly defined protocols states,

protocol message names [  52 ], conformance test case suite [ 53 ]). Therefore, this framework

can easily be adapted to evaluate any 5G implementations. More precisely, since ProChecker

works with a very minimal overhead with the existing testing infrastructure, it can be easily

adapted to verify the security and privacy properties of the 5G protocol implementations

from the get-go.

Access to the code and testing infrastructure of closed-source implementation.

We got access to the closed-source source-code and the conformation/functional testing in-

frastructure, through a collaboration with industry.

Threat to validity. We used automatically extracted models for UE FSMs. Due to the

low coverage of test suites and manually constructed MME FSMs extracted from the 3GPP

60



standard, the counterexamples derived from the model may not completely reflect the behav-

ior of real operational networks. Thus inaccuracies in the model may induce false positives

in commercial networks, although, we have not observed any such behavior. Due to ethical

considerations, we validate the attacks in a custom-built network, which may not faithfully

capture the operation network behavior.

3.8 Summary

We presented ProChecker—a framework for automatically verifying cellular network pro-

tocol implementations to uncover logical vulnerabilities. On the horizon of 5G deployment

ProChecker can have important impact in securing 5G implementations from the very start.

The properties discussed here for cellular networks apply to any communication protocol

in general; therefore, in the future, we plan to use ProChecker on other protocols such as

Bluetooth, and WiFi.

We present DIKEUE which can automatically infer the FSMs of 4G LTE UE implementa-

tions, and identify deviant behaviors among the implementations in a property-agnostic way.

To show the viability, we applied DIKEUE to 14 COTS devices from 5 vendors. DIKEUE un-

covered 15 deviant behaviors; among them 11 are exploitable. We have responsibly disclosed

the vulnerabilities to the affected stakeholders and they have acknowledged our findings.

61



4. NONCOMPLIANCE AS DEVIANT BEHAVIOR: AN

AUTOMATED BLACK-BOX NONCOMPLIANCE CHECKER

FOR CELLULAR DEVICES

4G Long-Term Evolution (LTE), developed by the 3rd Generation Partnership Project

(3GPP), is a global standard for cellular networks. 4G LTE protocols provide ubiquitous

connectivity, interoperability, and massive scale support to numerous network services and

billions of heterogeneous devices. As the security of cellular devices (also known as, User

Equipment or UE) is of utmost importance in this ecosystem, it is imperative that devices

correctly implement the cellular protocols as mandated by the standard. Faithful imple-

mentation of the cellular protocol is, however, challenging due to the ambiguities, under-

specification, and intricate protocol details present in the natural languages specification

[ 9 – 11 ]. As a consequence, misinterpretations of the standard are commonplace, which result

in implementations demonstrating noncompliant behavior with the cellular standard. As an

example, if a device responds to a particular message in a state whereas the standard pre-

scribes ignoring the message, it gives rise to a noncompliant behavior. The ramifications of

noncompliance with the standard may result in (1) critical security and privacy flaws (e.g.,

authentication bypass [  8 ], location exposure of a target user [  25 ]), and (2) interoperability

issues in the UEs. Since manual identification of noncompliant protocol behavior in large

and complex implementations is error-prone and time-consuming, in this work, we aim to

develop an automated approach for identifying noncompliance behavior in 4G LTE UEs.

Prior research. Although prior works [  15 ,  23 – 28 ,  54 ] analyzing security and noncompliance

of cellular proptocols have identified several implementation flaws, they suffer from at least

one of the following limitations: (A) The approaches [ 8 ,  15 ,  23 – 27 ] are completely manual and

cannot uncover a myriad of implementation-specific behavior; (B) The analyses [  8 ] perform

semi-automated stateless testing; (C) The approaches based on formal verification [  32 – 34 ]

only test the protocol specification for noncompliance and also heavily rely on the coverage

and quality of the properties being tested—for which there is no official exhaustive list; and

(D) The analyses based on re-hosting and reverse-engineering the baseband software [  28 ,  54 ]

62



not only require a huge manual effort and expertise but also are not general enough to be

applicable to implementations from different vendors.

Problem and scope. Since implementations of commercial base stations and core net-

works are not publicly accessible, we focus only on analyzing the commercial 4G LTE device

implementations. Among many different procedures, we further focus on the connection

management and the mobility management components of a UE. These components manage

the most critical control-plane procedures, including connection setup, termination, mobil-

ity, hand-off, service notification, and setup procedures. Without the correct and reliable

operations of these stateful procedures, most of the other control-plane (e.g., call setup) and

data plane (e.g., browsing Internet) operations are susceptible to critical security attacks,

such as MitM relay [  32 ,  55 ], eavesdropping [ 23 ] and DNS redirection [  55 ]. In summary, in

this research we address the following research question: Is it possible to design an automated

, black-box, and stateful protocol analysis framework that can uncover noncompliant behavior

in the control-plane protocol implementations in 4G LTE UEs?

Challenges. The first critical challange for developing a black-box noncompliance checker

for UEs is to automatically extract a behavioral abstraction of the protocol implementa-

tion. Once we have extracted the behavioral abstraction from an implementation, the sec-

ond challenge is to devise an approach for identifying diverse noncompliant behavior in a

property-agnostic way.

Our approach. In this work, for our automated and black-box efficient compliance checker

DIKEUE (in Greek mythology, Dike refers to the goddess of justice), we use the input-

output protocol finite state machine (FSM ) as the behavioral abstraction. One can consider

automatically extracting the protocol FSM from the implementation in one of the following

two ways: (1) passive trace-based learning approach; (2) active-learning based approach. The

effectiveness of learning the protocol FSM with the trace-based approach, however, critically

hinges on the diversity and coverage of the input traces. Although it is possible to obtain a

large number of crowd-sourced traces to be used as input to the passive learning algorithm,

these traces often only exercise expected behavior and miss out on capturing corner-cases

where noncompliance occurs.

63



DIKEUE thus relies on an active FSM learning approach for which we use an existing

automated black-box FSM learning technique [ 56 – 58 ]. Our FSM Learner starts from the

UE’s initial state, and using a controlled LTE network, sends queries (i.e., sequences of over-

the-air protocol messages) to the device-under-test; dubbed System Under Learning (SUL).

Based on the observed responses to the queries (i.e., sequence of protocol messages from

the SUL), it infers the FSM of the underlying implementation. Although automata learning

has been used in the context of testing various protocols [  39 ,  40 ,  59 – 63 ], applying it in 4G

LTE domain requires taking into account some protocol-specific challenges. First, 4G LTE

is a complex multi-layer protocol. Second, protocols in each layer entail multiple timers and

re-transmission counters, whose values are unobservable from the output interface, making

the device’s protocol FSM seem to behave in a nondeterministic way, violating one of the

pre-requisites of applying active, black-box automata learning approaches (i.e., deterministic

behavior). Third, after each sequence of messages, the SUL needs to reset transparently–

deleting all internal states and context information without any modification on the device.

Fourth, in addition to the general behavior, i.e., regular protocol flow of the SUL, the learner

needs to infer the implementation-specific atypical behavior, e.g., response to a replay packet,

to further aid the noncompliance checking. Finally, a substantial amount of engineering effort

is needed to develop an adapter, which facilitates the communication between the learning

algorithm and the SUL by converting abstract symbols to over-the-air messages. We rely on

some existing efforts and also develop some new insights to address the above aspects.

Once we have extracted the FSMs of the devices’ LTE control-plane protocol implemen-

tations, DIKEUE takes advantage of having access to multiple COTS UEs. Particularly, it

relies on the concept of deviant behavior as a proxy for identifying noncompliant behavior

in a property-agnostic way during the differential analysis of two FSMs belonging to two

different UEs. In our context, a deviant behavior is a sequence of inputs for which the

two FSMs that are being compared, when executed from the initial state, generate distinct

output sequences. When comparing two FSMs, if a deviant behavior is observed, then it is

clear that at least one of the implementations is noncompliant even though it is not clear

which one. These deviant traces are then triaged through consultation with cellular protocol

standards to classify them into one of the following two root causes: (1) the implementation

64



deviates from a clear specification; (2) the specification suffers from under-specification or

ambiguity. Automatic identification of diverse deviant traces between any two FSMs, how-

ever, is challenging, especially in the presence of loops in the FSMs. DIKEUE addresses this

challenge by reducing the problem of identifying deviant behavior in two different FSMs to

a model checking problem. The model checking problem checks the safety properties of a

model which parallelly composes the two FSMs under analysis.

Findings. To test the effectiveness of our system, we evaluate DIKEUE with 14 popular

UEs from 5 vendors, including Qualcomm, MediaTek, Exynos, HiSilicon, and Intel. DIKEUE

has uncovered 15 new distinct deviations and two previously reported issues. Some of these

issues are only evident when the implementation reaches a specific state and can only be

uncovered through stateful testing. We classify these deviant behavior based on root causes

and impacts. Among the reported issues 11 are exploitable, and 3 are susceptible to inter-

operability issues between UEs and network operators. The implications of these deviations

include implementations accepting replayed messages and plaintext messages, exposing pri-

vate information, and causing denial-of-service attacks.

Responsible disclosure. We have responsibly disclosed our findings to all the affected

stakeholders (i.e., GSMA, Qualcomm, MediaTek, Exynos, HiSilicon, Intel, Apple, Samsung,

Huawei, HTC, Android). GSMA has acknowledged with CVD-2021-0050 for all the 15 newly

discovered deviating behavior. The affected vendors are in the process of patching the issues

in future versions.

Contributions. To summarize, this work makes the following technical contributions:

• We propose DIKEUE— which, to the best of our knowledge, is the first tool that

designs a black-box FSM inference module to automatically infer the FSM from a

UE’s implementation without any manual interventions or modifications to the devices.

DIKEUE will be publicly available at [  64 ] after all the affected UEs are patched and

the responsible disclosure is completed.

• We design an FSM equivalence checking algorithm that automatically detects and

reports diverse deviant behavior of two FSMs by reducing it to a symbolic model

checking problem.

65



• We evaluate DIKEUE with 14 different devices from 5 vendors, and demonstrate that

it can uncover 17 deviant behaviors, including 11 exploitable weaknesses and 3 inter-

operability issues.

4.1 Background

DIKEUE infers the model of a protocol implementation in the form of a Mealy machine,

also known as a finite state machine (FSM). In the following, we define a Mealy machine,

provide an overview of model learning, and discuss relevant technologies in 4G LTE.

Finite State Machine (FSM). We define an FSM (M) as a 6-tuple (S,S0,Ψ, Σ, Λ, Ω),

where S is a finite set of states, S0 ∈ S is the initial state. Σ and Λ are the sets of input and

output alphabets representing the set of possible input and output messages, respectively.

The transition relation Ψ : S ×Σ→ S maps the pair of a current state and an input symbol

to the corresponding next state, and the output relationship Ω : S × Σ → Λ maps the pair

of a current state and an input symbol to the corresponding output symbol.

4.1.1 Active Automata Learning

Active automata learning approaches such as L∗ aim to learn the deterministic finite

automata (DFA) representation of an unknown regular language L for a given input alphabet

from a minimal adequate teacher (MAT). The learner asks the MAT the following two types

of queries, namely, membership queries and equivalence queries. A membership query is of

the form x ∈? L (i.e., the learner wants to check whether a concrete string x is a member of

the unknown language L). The MAT responds with a yes iff x ∈ L; otherwise, it responds

with a no. An equivalence query, on the other hand, checks whether a hypothesis DFA H

is equivalent to the DFA of the language L denoted by DL, i.e., both H and DL accept the

same set of strings. If H is not equivalent to DL, then the MAT should provide a concrete

string y that is accepted by one but rejected by another as a counterexample.

A majority of the automata learning approaches work iteratively in the following two

stages [  65 ,  66 ]. Hypothesis construction stage: In this stage, the learner asks a series

of membership queries to build a closed and consistent hypothesis DFA H for L. Model

66



validation stage: In this stage, the learner poses an equivalence query to the MAT to

check whether H is equivalent to DL. If H is equivalent to DL, the learning concludes, and

H is provided as the learned DFA. Otherwise, the approach goes back to the first stage to

create a new hypothesis based on the provided counterexample and additional membership

queries. This learning approach can be extended in the standard way [ 67 ] to learn Mealy

machines instead of a DFA.

In practice, directly applying active automata learning as discussed above is not feasible.

This is because obtaining a MAT with the capability of answering an equivalence query

(needed for the model validation stage) is absent in the majority of the cases. One can,

however, approximate an equivalence query with a series of carefully constructed membership

queries [  68 ]. We refer to this relaxed MAT (without equivalence query stage) as the System-

Under-Learning (SUL). Due to the approximate equivalence checking, the learned model in

such a case is not guaranteed to be correct but instead assured to be observationally equivalent

(i.e., the learned and original model behave equivalently for strings whose membership results

the learner has observed during learning).

4.2 Design of DIKEUE

We now present the threat model, formally define our problem, discuss the workflow of

DIKEUE, and outline the challenges of designing DIKEUE as well as insights on addressing

them.

4.2.1 Threat Model

We consider the communication channels between the UE and base station, and between

the UE and core network subjected to adversarial influence. Our attacker model follows

the one defined by previous works [  8 ,  15 ,  25 ,  32 ] and comprises of either a passive or an

active attacker that differs in capabilities and restrictions. The passive attacker can observe

arbitrary communication between the UE and the LTE network over the radio layer. The

active attacker can additionally intercept, replay, modify, drop or delay message, without

knowing the key material of devices not owned by the attacker. Moreover, the attacker

67



Noncompliance 
instance

Implementation 
Mismatch

(b) FSM Equivalence Checker Module

Hypothesis 
construction

Hypothesis
validation

Model Learning

(a) FSM inference module

Cross Validation of Protocol State 
Machine of Implemantions

Standard 
documentCellular devices (UEs)

iPhone Android 
Phone

USB
Dongle

Figure 4.1. Workflow of DIKEUE

can deploy a fake LTE base station impersonating a real LTE network. Note that, the

cryptographic constructs are considered to be perfectly secure. We also consider the core

network components, target user’s UE, and the USIM to be part of the trusted computing

base and free of adversarial influence.

4.2.2 Problem Statement and Approach Skeleton

Problem. DIKEUE aims to solve the following noncompliance problem. Given black-box

access to a LTE control-plane protocol implementation I of a UE, the noncompliance asks

is there an input sequence πi = σ1σ2σ3 . . . σm where σj ∈ Σ such that the output sequence

generated by I after feeding πi as input, γi = λ1λ2λ3 . . . λm in which λj ∈ Λ, is not the one

prescribed by the standard.

Approach skeleton. For addressing the above noncompliance problem, DIKEUE takes

advantage of its black-box access to multiple UE implementations 〈I1, I2, . . . , In〉. It also

requires that the input and output interfaces of these implementations are the same; that is,

the set of input and output symbols are Σ and Λ across all implementations. Suppose the

implementations simulate the following protocol state machines 〈M1,M2, . . . ,Mn〉, respec-

tively. DIKEUE’s approach has the following two steps: ¶ For each implementation Ij, using

active automata learning, extract an approximation M∗
j of the underlying FSM Mj; · For

each pair of extracted FSMM∗
j andM∗

k, find input sequences of the form πi such that when

it is fed as input to both M∗
j and M∗

k, the output sequences they generate are γj and γk,

68



respectively, and γj 6= γk. In such a case, πi is called a deviant-behavior-inducing input

sequence, and it also serves as an example of a noncompliant behavior.

4.2.3 Workflow of DIKEUE

DIKEUE (shown in Figure  5.1 ) works mainly with two components, namely, the FSM

inference module and the FSM equivalence checker module. The FSM inference module re-

quires black-box access to one or more UE implementations to be checked for noncompliance.

For each of these implementations, it uses active automata learning to extract a protocol

state machine of the input UE implementation. Once the protocol state machines of all the

implementations have been extracted, each pair of the state machines are fed into the FSM

equivalence checker module. The FSM equivalence checker module then tries to identify a

diverse set of deviant-behavior-inducing input sequences. Each of these sequences denotes a

sequence of input protocol messages for which the two input state machines disagree. For

each such input sequence, the outputs of the two state machines are manually compared to

the standard to identify which of these implementations deviate from the standard; identi-

fying the noncompliant behavior which is displayed as output.

4.2.4 Challenges and Insights

For realizing the skeleton approach for noncompliance detection presented just above,

DIKEUE has to address the following two sets of challenges. In addition, we also discuss how

we address these challenges using existing approaches as well as novel insights.

4.2.5 Learning the 4G LTE Protocol State Machine of a UE

As we have hinted before, we use an existing active automata learning algorithm for

extracting the 4G LTE protocol state machine of a UE. Effectively applying active automata

learning for 4G LTE protocol machine has the following three classes of challenges.

Challenge C1: Satisfying Pre-requisites of Automata Learning Algorithms. The

first challenge involves ensuring that the (implicit) prerequisites for active automata learn-

ing are satisfied so that one can apply L* like algorithms for learning the protocol state

69



machine. There are three prerequisites for applying L* like algorithms, namely, (P1) identi-

fying the input and output alphabet, (P2) ensuring that the SUL is deterministic, and (P3)

the membership queries are run from the known initial state of the protocol.

First, the number of input symbols relies on the kinds of considered protocol messages,

procedures, and also predicates over messages. Once the input symbols are selected, then

the output symbols can be obtained from the protocol specification. Note that, the consid-

ered input symbols are exponential to the number of considered predicates over messages

and linear to the kinds of messages. Let us consider an example protocol that has three

kinds of messages k1, k2, and k3, but the protocol transition conditions also rely on two

predicates over messages p1(·) and p2(·). In this case, we can have a total of 12 (= 3× 2× 2)

input symbols based on which message kind (synonymously, message type) it is and whether

p1(·) and p2(·) are true. As an example, two different input symbols are needed to cap-

ture the following two conditions, namely, message_kind(m) = k1 ∧ p1(m) ∧ p2(m) and

message_kind(m) = k1 ∧ ¬p1(m) ∧ p2(m) (m is a variable of type message). There are 12

such possible conditions requiring 12 input symbols. Note that, the size of the input al-

phabet impacts both termination of the learning and coverage of learned protocol behavior.

The larger the alphabet size the more of the protocol behavior will be covered, but it will

negatively impact the termination.

Second, despite the deterministic nature of the 4G LTE protocol state machine of a UE,

due to the unreliable over-the-air (OTA) transmission, link-failures, re-transmissions, and

timers, the outputs observed from the UE may not be deterministic, violating P2. Such

observational-nondeterminism causes the learned protocol state machine to never converge

as it spawns new states/transitions with a new observation of nondeterministic behavior.

Finally, in case of 4G LTE, satisfying P3 requires deleting all the keys, resynchronizing the

USIM sequence number, and taking the cellular device to the initial registration phase, which

require time and manual intervention to turn on/off the device and deleting information from

non-volatile memory.

LTE-specific Insight for P1. For input symbols, we consider a total of 16 pro-

tocol message kinds and the following four unary predicates over messages: is_replay(·),

is_plain_text(·), is_plain_h− eader(·), and is_null_security(·). This gives us a potential in-

70



put alphabet size of 256 (= 16 × 2 × 2 × 2 × 2). We also need to consider an additional 5

input symbols that trigger different procedures. As an example, one such input symbol is

to induce the UE to send an attach_request message and initiate the protocol session. The

different predicates we consider have the following semantics. is_replay(m) is true iff m is

replay of a previously sent message. is_plain_text(m) is true iff the content of m is in clear.

is_plain_header(m) is true iff the content of m should be encrypted and integrity protected

with value of the message authentication code (MAC) to be set to 0 but the value of security

header refers to a plaintext message message. Finally, is_null_security(m) is true iff null

security is chosen as the chosen ciphersuite in the sm_command message. The output symbols

are chosen accordingly from these possible input symbols.

Existing insight on satisfying P2. For addressing the observational nondeterministic

behavior of a UE, we conservatively pose each membership query twice. In case the outputs

for both these membership queries agree, we update the observational table. In case of a

conflict, however, we use the existing approach of using a majority voting scheme to resolve

conflicting output sequences [  69 ].

Novel LTE-specific insight on satisfying P3. For satisfying P3, we discovered a

protocol-specific behavior to transparently reset the device and take it to an initial state.

Having a software solution allows us to avoid the expensive approach of manually rebooting

the device; positively impacting the termination of learning.

Challenge C2: Balancing Termination and Coverage of Learning. Another major

challenging aspect of effectively applying automata learning for extracting the 4G LTE pro-

tocol state machine of a UE is achieving the right balance between termination and coverage.

On one hand, aiming to achieve a high coverage of the behavior negatively impacts the ter-

mination. Premature termination, on the other hand, negatively impacts coverage. The

termination of the learning algorithm is impacted by the following factors: (1) number of

posed membership queries (reliant on the input alphabet size); (2) the time to run each

membership query and obtaining a response; (3) the time it takes to resolve observational

nondeterminism.

71



Novel LTE-specific insight of input alphabet selection. Although we can po-

tentially have a total of 261 (= 256 + 5) input symbols, some of the input symbols are

irrelevant. As an example, consider a condition where message_kind(m) 6= sm_command in

which case the value of the predicate is_null_security(m) is not relevant as it only applies to

the sm_command message. In addition, to reduce the model learning time, we heuristically

prune away other input symbols that may not trigger interesting security-sensitive behavior.

After pruning, we end up with a list of 35 input symbols which is much smaller than the

original set of 261.

Novel LTE-specific insight of context checker. We develop a context-checker

with a set of invariants to automatically deduce outputs for certain input message sequences

posed as membership queries without having to run them in the UE. These invariants are

conservative rules (i.e., ruling out certain infeasible orderings of protocol messages) that one

can reasonably expect a UE to satisfy (e.g., not receiving certain protocol packets without

an established connection). Input sequences violating these invariants can be considered to

have the output sequence null_actionn where n is the length of the input message sequence.

Note that, null_action is a special output symbol that refers to the UE not generating any

outputs.

Existing insight on caching results. Running a query in the device is expensive.

We thus follow an existing approach [ 70 ,  71 ] of maintaining a cache of membership queries,

i.e., input sequences and their corresponding outputs encountered during the hypothesis con-

struction stage. Equivalence queries posed during model validation stage are first consulted

with the cache. If the cache is hit, then the response stored in the cache is used. Note that,

the cache is not used during the hypothesis construction stage.

Challenge C3: Designing a Protocol-specific Adapter. The final challenge for ap-

plying active automata learning in the context of 4G LTE protocol state machines involve

developing a 4G LTE-specific adapter. The adapter facilitates communication between the

learner and the UE device. It needs to convert the abstract input symbols in the member-

ship queries to concrete OTA packets and send them to the UE. In the same vein, it also

needs to decode the response from the UE and convert it back to abstract output symbols

72



comprehensible to the learner. Developing such a 4G LTE-specific adapter is challenging

because protocol layers are intertwined and have strong temporal correlations among their

operations. As an example, some NAS layer messages can only be sent after particular

RRC layer messages, and vice versa. Also, messages of both layers contain timers and re-

transmissions but, internal protocol states, e.g., transmission failures and timeouts, are not

observable from the input/output messages. In addition, for analyzing communication and

mobility management protocols, the adapter needs to trigger certain behavior and corner

cases in the UE that pose physical constraints on the UE. For instance, testing handover

scenarios requires the UE to be physically moved between multiple base stations, which is

not practical and non-trivial to test in any controlled environment.

LTE-specific adapter. We have developed a LTE-specific adapter by enhancing an

open-source protocol stack that can transparently send and receive messages based on the di-

rections of the learner. The adapter can handle the complex multi-level, stateful interactions

in 4G LTE, including different error conditions.

Novel LTE-specific insight on triggering complex operations. We developed

an adapter that can trigger complex 4G LTE behavior in the software that would otherwise

require physically moving the UE, e.g., similar to ones for analyzing the handover procedure.

Identifying Noncompliance from Protocol State Machines: Recall that, once we

have extracted the protocol state machines of the UE implementations under test, we use

differential testing of pairwise protocol state machines from different implementations to

identify deviant-behavior-inducing input sequences [  72 ,  73 ]. We use these input sequences

as a proxy for noncompliant behavior. The main challenge for achieving this goal is how to

automatically identify a diverse set of deviant-behavior-inducing input sequences. Existing

equivalence checking approaches are insufficient for our purpose as they neither have the

notion of diversity nor the capability to provide multiple deviant-behavior-inducing input

sequences.

Novel insight on differential testing. We propose a notion of diversity classes for

deviant-behavior-inducing input sequences (see Section  4.4 ). We use this notion of diversity

classes to develop a novel approach that reduces identifying deviant-behavior-inducing input

sequences to a model checking problem. This approach enables us to not only automatically

73



Cache         

Context 
checker

Packet
converter

Modified
cellular stack

UE

Cache
resolver If context

violation for 

NASnull 

If found
 in cache

if prefix mismatch
restart query

Inconsistency       
Resolver         

Adapter

3 4 6
Core network

Base station

NAS Layer connection
RRC Layer connection

1

RRC
         Learner

72

Device
resetter

5

Figure 4.2. Flow of query in DIKEUE’s FSM inference module

identify deviant-behavior-inducing input sequences from different diversity classes but also

identify different instances from the same class.

4.3 FSM inference module

We now explain in details the components that leverage LTE-specific insights to enable

a practical FSM inference module.

4.3.1 Learner

Following the model learning algorithm [  66 ], the learner systematically generates queries

as sequences of input alphabets, and based on the outputs, infers the underlying FSM.

Taming the time and state explosion with alphabet set optimization: The time

and the number of queries required to learn the model are directly proportional to the

number of input alphabets. We, therefore, first leverage LTE-specific insights to reduce

the potential input alphabet set of 261 input symbols (Section  4.2.4 ). We discard the

symbols that are irrelevant in the context of LTE. For example, is_null_security(m) does

not apply to messages other than RRC and NAS layers’ sm_command messages. Also,

some potential symbols generated by combining multiple predicates together eventually

refer to the same symbol. To illustrate, the following two conditions yield the same in-

put symbol: (1) message_kind(m)= identity_request∧¬is_replay(m) ∧is_plain_text(m) ∧

¬is_plain_header (m) ∧¬is_null_security(m); (2) message_kind(m) = identity_request ∧is_replay(m)

∧ is_plain _text(m) ∧ ¬is_plain_header(m) ∧¬is _null_security(m).

74



Table 4.1. : List of input symbols and possible output symbols for each of them for NAS
layer. From the input symbols from predicates column only blue color symbols are included in the
optimized input alphabet set.
*Protected implies ¬is_plain_header(m) meaning the message is integrity protected and encrypted
± Replay messages are only true for protected messages, plain text messages do not have sequence
numbers and replay protection

Message Input Symbols
(After irrelevant message pruning)

Input Symbols (After final op-
timization) Output Symbols (Λ)

NAS
Enable Attach Request enable_attach enable_attach attach_request

Identity Request

identity_request_replay±,
identity_re-
quest_plain_text, iden-
tity_request_plain_header,
identity_request_protected*

identity_re-
quest_plain_text identity_response

Authentication Request

auth_request_replay,
auth_request_plain_text,
auth_request_protected,
auth_request_plain_header

auth_request_plain_text
auth_response,
auth_MAC_failure,
auth_seq_failure

Security Mode Command

sm_command_re-
play, sm_com-
mand_plain_text, sm_com-
mand_plain_header,
sm_command_protected,
sm_command_null_secu-
rity

sm_command_re-
play, sm_com-
mand_plain_text,
sm_com-
mand_plain_header,
sm_command_protected,
sm_command_null_se-
curity

sm_complete, sm_reject

Attach Accept

attach_accept_protected,
attach_accept_replay, at-
tach_accept_plain_text, at-
tach_accept_plain_header

attach_accept_protected
attach_accept_plain_text attach_complete

Enable Tracking Area Up-
date enable_tau

enable_tau
tau_request

Tracking Area Update Ac-
cept

tau_accept_replay, tau_ac-
cept_plain_text, tau_ac-
cept_protected, tau_ac-
cept_plain_header

tau_accept_protected
tau_accept_plain_header tau_complete

GUTI Reallocation Com-
mand

GUTI_reallocation_re-
play, GUTI_reallo-
cation_plain_header,
GUTI_reallocation_pro-
tected, GUTI_realloca-
tion_plain_text

GUTI_reallocation_re-
play, GUTI_realloca-
tion_protected

GUTI_reallocation_com-
plete

Downlink NAS Transport

DL_NAS_tansport_re-
play, DL_NAS_trans-
port_plain_text,
DL_NAS_trans-
port_plain_header,
DL_NAS_transport_pro-
tected

DL_NAS_trans-
port_protected UL_NAS_transport

Paging paging paging service_request
Authentication Reject auth_reject auth_reject null_action
Tracking Area Update Re-
ject tau_reject tau_reject null_action

75



Since plaintext messages do not have any replay protection, replaying a previously sent

plaintext identity_request message is equivalent to sending a new plaintext identity_request

message. As such, we prune these irrelevant and redundant messages to reduce the alphabet

set to 59 symbols (listed in column 2 in Table  4.1 and Table  4.2 ). Since the predicates

are common to most of the messages in both NAS and RRC layers (except sm_command

and RRC_sm_command), to further minimize the input alphabet set, instead of considering

these variants for each input symbol, we consider testing one variant symbol per layer. For

instance, one replayed symbol in one RRC layer message is enough to test RRC layer replay

protection. Since NAS and RRC layers’ sm_command are special message kinds in LTE as

they are used to navigate the protocol from an unprotected state to security protected state

and create dependencies among layers [ 74 ], we consider these two messages separately and

also include their variants into the alphabet set. Hence, in total, our input alphabet set

includes 35, as shown in the third column of Table  4.1 and Table  4.2 .

Balancing termination and coverage: When the SUL completes exploring the control-

plane procedures of our interest, we terminate the learning and take the last inferred model

for equivalence checking. From empirical evaluation, we observed the learner needs running

queries for up to length 12 to explore the procedures.

4.3.2 Adapter

The adapter acts as a glue between all the components of FSM inference module (shown

in Figure  4.2 ), and builds a reliable interface from the learner to each control-plane layers

we want to analyze.

Addressing multi-layer protocol:

The adapter flattens the multi-layer protocol interactions by combining all layers under

a central component and controls the interactions of two interfaces between (i) base station

and UE, and (ii) core network and UE. Based on messages in queries issued by the learner, it

directs the message to appropriate interface and waits until the response or timeout occurs.

It thus enables learning multi-layer protocol.

76



Table 4.2. : List of input symbols and possible output symbols for each of them for RRC
layer. From the input symbols from predicates column only blue color symbols are included in the
optimized input alphabet set.

Message
Input Symbols
(After irrelevant message
pruning)

Input Symbols (After final
optimization) Output Symbols (Λ)

RRC
Enable RRC Connection Re-
quest enable_RRC_con enable_RRC_con RRC_con_request

RRC Connection Setup

RRC_connec-
tion_setup_re-
play, RRC_connec-
tion_setup_plain_text,
RRC_connec-
tion_setup_pro-
tected, RRC_connec-
tion_setup_plain_header

RRC_connec-
tion_setup_plain_text
RRC_connec-
tion_setup_plain_header

RRC_connec-
tion_setup_complete

RRC Security Mode Com-
mand

RRC_sm_command_re-
play, RRC_sm_com-
mand_protected,
RRC_sm_com-
mand_plain_text,
RRC_sm_com-
mand_plain_header,
RRC_sm_com-
mand_null_security

RRC_sm_command_re-
play, RRC_sm_com-
mand_plain_text,
RRC_sm_com-
mand_plain_header,
RRC_sm_com-
mand_protected,
RRC_sm_com-
mand_null_security

RRC_sm_failure,
RRC_sm_complete

RRC Connection Reconfigu-
ration

RRC_reconf_replay,
RRC_reconf_plain_text,
RRC_reconf_pro-
tected, RRC_re-
conf_plain_header

RRC_reconf_replay,
RRC_reconf_plain_text RRC_reconf_complete

Enable RRC Reestablish-
ment enable_RRC_reest enable_RRC_reest RRC_con_reest_req
Enable RRC Measurement
Report

enable_RRC_mea_re-
port

enable_RRC_mea_re-
port

RRC_mea_report

RRC Connection Reestab-
lishment

RRC_con_reest_replay,
RRC_con_reest_plain_text,
RRC_con_reest_pro-
tected,
RRC_con_reest_plain_header

RRC_con_reest_plain_text,
RRC_con_reest_pro-
tected

RRC_con_reest_com-
plete,
RRC_con_reest_reject

RRC UE Information Re-
quest

RRC_ue_info_req_re-
play,
RRC_ue_info_req_pro-
tected,
RRC_ue_info_req_plain_text,
RRC_ue_info_req_plain_header

RRC_ue_info_req_pro-
tected RRC_ue_info_req

RRC Connection Release RRC_release RRC_release null_action

77



Table 4.3. : Example queries and responses. "." divides the prefix and suffix of the queries and
responses.

ID Query ID Output

Q1
attach_accept

enable_RRC_con.enable_attach
R1

null_action
RRC_con_request.attach_request

Q2
enable_attach enable_RRC_con

enable_attach.auth_request
R2

null_action RRC_con_request
attach_request.auth_response

Q3
enable_RRC_con enable_attach,
GUTI_reallocation.auth_request

R3
RRC_con_request attach_request

null_action.auth_response

Q4

enable_RRC_con enable_attach
RRC_release

auth_request.enable_RRC_con
R4

RRC_connection_setup attach_request
null_action null_action.RRC_con_request

Q5
enable_RRC_con enable_attach

auth_request_replay.auth_request
R5

RRC_con_request attach_request
null_action.auth_response

Q6
enable_RRC_con enable_attach
GUTI_reallocation.auth_request

R6
RRC_con_request attach_request

null_action.auth_response

Q7 attach_accept enable_RRC_con
enable_attach.auth_request

R7
null_action RRC_con_request null_action.

(query terminated)
R8

null_action RRC_con_request
attach_request.auth_response

Improving time of learning with context-checker: To enhance the performance of the

FSM inference, the adapter tries to minimize the time-consuming OTA transmissions. For

this, the adapter is provisioned with a set of invariants extracted from cellular specifica-

tions [  9 – 11 ], which are used to decide if an input symbol’s communication context set by

previous symbols in the query is valid for OTA transmission. Whenever an input symbol

violates the context, it is dropped, and the default– null_action is returned immediately. In

case an input symbol passes all these context checks, it is transmitted OTA. The invari-

ants defined in the adapter are: 1 input symbols corresponding to common control-plane

procedures cannot appear before connection establishment symbols. For instance, for Q1

in Table  4.3 , the input symbol attach_accept is not propagated forward as the control-plane

connection has not been established yet with the connection initiation symbols (e.g., en-

able_RRC_con or enable_attach). 2 Lower layer connection (RRC) has to be established

before upper layer (NAS) connection establishment. To illustrate, for Q2, the first enable_at-

tach does not have any semantic meaning and will be responded with the default null_action

symbol; all symbols prior to the first enable_RRC_con in a query will thus result in null_action

as responses. 3 Security protected messages require proper security keys to be established.

Turning to Table  4.3 , for Q3, the security protected GUTI_reallocation message requires key

for integrity and encryption. However, before the authentication and security mode com-

78



mand procedures, session keys have not been established. Therefore, this GUTI_reallocation

violates the context check and the context-checker will return the default output symbol.

4 After a connection closing symbol, a new connection has to be established before trans-

mitting the subsequent symbols. For example, in the query shown in Q4, after the RRC

connection is released, all other symbols do not have any semantic meaning and will not be

propagated further until a new connection has been established with enable_RRC_con input

symbol. 5 A replay symbol has to come after its original counterpart. For instance, for Q5,

the first auth_request_replay does not correspond to anything and will be discarded until an

auth_request has been received.

Encoding and decoding custom NAS and RRC layer packets containing predi-
cates:

For an input symbol forwarded by the context checker, the packet converter builds the

corresponding NAS and RRC layer payload and header based on the current context. For

instance, it saves the previously sent packets so that it can replay those packets later. For

plain header, plaintext, and null security packets, the packet converter creates the fields as

per the input symbol requirements. For example, if a plain header input symbol is received,

instead of the usual integrity protected and ciphered header, the message is sent with plain

header. For plaintext messages, the packet is crafted by removing the MAC and without

encryption. For null security packets, the integrity and encryption algorithms are set to

null-integrity (EIA0) and null-encryption (EEA0), respectively.

Triggering complex protocol interactions:

The packet converted in the adapter also has to automatically trigger certain complex

interactions, which are often hard to test as they require physical movements of the SUL

or manual interventions. For instance, testing handover requires the user to move from one

cell/tracking area to another, whereas triggering a service request (e.g., making a phone call

and text) warrants a user to tap on the call button of the phone, dial numbers or enter texts.

For side-stepping such physical constraints and manual interventions, the converter crafts

specialized packets without requiring any mobility or special hardware. To illustrate, if the

79



learner issues enable_tracking_area_update to begin a handoff, the packet converter sends the

special RRC connection release message with cause "load re-balancing TAU required". For

triggering the service procedure without any manual interaction, the controller crafts paging

packets and send them to the SUL to trigger a service request. Also, the responses received

from the SUL are converted back to the output symbols by the packet converter.

Optimizing queries during model validation with cache:

In the model validation stage, the learner can generate the same query which has already

been resolved in the hypothesis construction phase. To avoid expensive OTA testing of these

duplicate queries in the SUL, the queries from the hypothesis construction phase are cached

in the database [  70 ,  71 ]. In the model validation stage, if the same query is found in the

cache, the query is not run OTA again, cutting down the overhead and time for the repeated

queries. For instance, let us assume Q6 is a query generated during the model validation

phase, and the previous queries are generated during the hypothesis construction phase. Q6

is checked against queries Q1 - Q5, and as the same query is cached in Q3, Q6 will not be

sent, and the saved response R3 will be returned.

Resolving observational non-determinism with inconsistency resolver:

As discussed in Section  4.2.4 , a prerequisite for deterministic model learning is to observe

consistent behavior of the SUL for the same sequence of input messages. To maintain such

consistency, we leverage existing insight from the prior work [  69 ] and develop an inconsistency

resolver that primarily performs two operations: (i) It lets the adapter run each new query

(i.e., not present in the cache) twice. If both the responses are the same, it saves the query in

the database. Otherwise, it triggers the adapter to run the query again. The inconsistency

resolver applies a majority voting scheme [ 69 ] on the results and stores the majority output as

a response to the query. (ii) It checks if the prefix of every response (a query and response is

divided into prefix and suffix as shown in Table  4.3 ) is consistent with the previously learned

results. To check this, the inconsistency resolver compares the response prefix of each query

with the previously reported results saved in the cache. If there is a mismatch, the adapter

80



restarts this query from scratch. For instance, for Q7 in Table  4.3 , the response prefix of the

query is not consistent with the previously saved response of R1. In such occurrences, the

query Q7 is terminated and started again from scratch. When the prefix of the new response

R8 is consistent with the previous result R1, the response is considered valid and saved in

the cache.

Transparent reset without manual intervention or rebooting the device:

The device resetter resets the SUL to the initial state and clears the security context

from the non-volatile memory of the device by only sending an OTA attach_reject message

with EMM cause#11 “PLMN not allowed". To further ensure that both UE and adapter

are synchronized with the same sequence number, the resetter sends auth_request to the

UE. Nevertheless, as the initial connection has to be initiated by the UE under test, the

resetter has to trigger the UE to generate an initial connection request (e.g., attach_request

for NAS or RRC_connection_setup for RRC) without any manual intervention. To achieve this

without any modification on the device, for Android devices key press events are simulated

through the ADB connection. For iPhones, libimobiledevice– a library to communicate with

iPhone to restart the device [libimobiledevice] is used, and for USB devices, the device is

toggled through the USB connection. Finally, for development boards and LTE dongles, AT

commands [atcommand] are injected through serial connections.

OTA packet encoding/decoding with modified cellular stack:

We modify an existing open-source cellular stack to set up the components of a base

station and a core network that DIKEUE controls. We remove the original FSM implemen-

tations of both the NAS and RRC layers from the open-source LTE stack and create direct

interfaces with the packet converter to use it only for encoding/decoding lower-layer payloads

(e.g., PDCP, RLC, MAC, and PHY) of a packet. The cellular stack receives the concrete

values for some specific fields of packets from the packet converter, and communicates with

UE through OTA-transmission.

81



Figure 4.3. Equivalence Checking to Model Checking

4.4 FSM equivalence checker

The FSM equivalence checker module of DIKEUE takes as input two protocol FSMs, in

the form of Mealy Machines and automatically identifies a diverse set of deviation-inducing

input sequences, if present. In what follows, we assume that the input FSMs have the same

input and output alphabet, denoted by Σ and Λ, respectively.

4.4.1 Reduction to Model Checking

We reduce this equivalence checking problem to a model checking problem of a safety

property in the following way (see Figure  4.3 ). For this reduction, a symbolic model checker

(e.g., nuXmV [  43 ]) that is able to reason about safety-properties would suffice.

Reduction. Suppose the two FSMs under differential test are denoted by M1 and M2. The

inputs to these two FSMS (downlink messages they can receive) are denoted by I1 (for M1)

and I2 (for M2), respectively. Similarly, let us denote their outputs (messages they can send)

as O1 (for M1) and O2 (for M2), respectively. We then construct a model M which contains

M1 and M2 as sub-components. M will take a single symbolic input I which will be fed

82



Figure 4.4. FSMs for understanding the challenge for identify diverse
deviation-inducing input sequences.

to both I1 and I2 (i.e., the same input for both M1 and M2). M will have two outputs O1

and O2, essentially outputs of M1 and M2, respectively. The model M can be viewed as

composing M1 and M2 with a parallel composition. We then assert the following property

of the model M : It is always the case that O1 and O2 should be equal in each step of the

execution (precisely, in linear temporal logic �(O1 = O2)). We want to emphasize that the

input I (which is essentially I1 and I2) is an environmental variable, i.e., we do not need to

provide any concrete inputs for I. The model checker aims to find a sequence of I values for

which the property is violated (i.e., O1 6= O2 in some steps). A counterexample idenfied by

the model checker suggests essentially a deviation-inducing input.

4.4.2 Challenge of Obtaining Diverse Deviations

Note that, we are interested in discovering many diverse deviation-inducing inputs. If we

want the model checker to give us diverse counterexamples, we have to somehow inform it

of the concept of diverse counterexamples. If we were to invoke the model checking multiple

times, it is highly likely that it will give the same counterexample, the shortest in many cases.

83



We indeed need the notion of diversity, but it is unclear how to precisely define it. After

getting a counterexample c1, one may consider updating the original property �(O1 = O2)

by blocking c1. This will make the model checker find a different counterexample if present.

However, the obtained counterexample may not match our intuitive notion of diversity. To

explain this situation, let us consider the following example.

Example. Suppose we have the two partial FSMs M1 (i.e., the top one) and M2 (i.e., the

bottom one), as shown in Figure  4.4 . For this example, let us only focus on the states a, b, and

c of M1 and M2. The transitions are denoted as si
xk/yo→ sj, which refers to a transition that

moves the current state from si to sj after receiving input xk, and in the process generating

output yo. In the example, M1 and M2 behave in the same way for all transitions except

for b → c (shown in red color). M1 and M2 generate two different output messages (i.e.,

y6 and y7, respectively) when taking the transition b → c under input x6. Using the above

approach, if we were to ask the model checker to find a counterexample, it would likely give

us the input sequence in which both FSMs traverse the following states: abc; as it is the

shortest one. Now when we block abc, the model checker may give a counterexample where

M1 and M2 traverse states abbc; being the next counterexample closest to the previous one.

This loop can go on where it spits out a variant of the (a+b+)+c counterexample (‘+’ signifies

one or more occurrences). These counterexamples show the same problem of the transition

b→ c.

One may consider removing the transition b → c altogether from both M1 and M2.

This may, however, result in a disconnected model in which the rest of the states become

unreachable making it infeasible to find other noncompliance instances infeasible.

4.4.3 Identifying Diverse Deviations

To identify diverse deviation-inducing input sequences, we propose the notion of diversity

classes. We use this notion to identify different noncompliance instances in a given pair of

FSMs.

Definition 4.4.1 (Diversity Class of Deviation-inducing Input Sequences). Given a fixed set

of output symbols Λ where | Λ |= n, there are a total of n×(n−1) possible diversity classes for

84



deviation-inducing input sequences; one for each pair of distinct output symbols (i.e., 〈λr, λs〉

where λr, λs ∈ Λ and λr 6= λs). For any pair of FSMs M1 and M2, a deviation-inducing input

sequence πi = σ1σ2σ3 . . . σm is an element of the 〈λr, λs〉-diversity class iff when πi is executed

on M1 and M2 to obtain output sequences γ1
i = λ1

1λ
1
2λ

1
3 . . . λ1

m and γ2
i = λ2

1λ
2
2λ

2
3 . . . λ2

m,

respectively, then there exists a 1 ≤ k ≤ m such that λ1
k = λr and λ2

k = λs.

As an example, suppose we are given two FSMs M1 and M2 for which Σ = {a, b, c} and

Λ = {1, 2, 3, 4}. Let us consider a deviation-inducing input sequence π = abcc for M1 and

M2 for which we obtain the output sequences γ1 = 1234 and γ2 = 1243 after executing π on

M1 and M2, respectively. π is an element of the 〈3, 4〉-diversity class as there exists a k = 3

for which γ1
3 = 3 and γ2

3 = 4. Note that, π is also an element of 〈4, 3〉-diversity class as there

exists k = 4 for which γ1
4 = 4 and γ2

4 = 3.

We use the above notion of diversity classes to identify a diverse set of deviation-inducing

input sequences. Without loss of generality, we use an example to explain our approach.

Suppose we are given two FSMs M1 and M2 with Λ = {1, 2, 3}. Instead of asserting the

safety property �(O1 = O2) in the composed model M (as shown in Figure  4.3 ), we would

pose a series of model checking queries; one for each of the following safety properties: (1)

�¬(O1 = 1∧O2 = 2) (read, it is not the case that at any step of the execution the output of

M1 is 1 whereas the output of M2 is 2); (2) �¬(O1 = 1∧O2 = 3); (3) �¬(O1 = 2∧O2 = 1);

(4) �¬(O1 = 2 ∧O2 = 3); (5) �¬(O1 = 3 ∧O2 = 1); (6) �¬(O1 = 3 ∧O2 = 2). Each of the

queries aims to find at least an element, if present, for each of the diversity classes. As an

example, any violation of property (1) above will result in an input sequence that is part of

the 〈1, 2〉-diversity class.

We go a step further by trying to identify multiple elements of each diversity class.

Finding other elements of a diversity class is important as the same deviation can happen

in different parts of the FSMs. Once we have obtained an element of a given diversity

class, for identifying other elements of that diversity class, we use the idea of removing the

transition responsible for the deviation from both FSMs (see Section  4.4.2 ), and posing the

appropriate model checking query again. Although removing the transition may result in

disconnected FSMs, it is not as disruptive as the approach discussed in Section  4.4.2 because

this phenomenon is localized to only a single equivalence class.

85



Table 4.4. : Additions/modifications to the tools used in DIKEUE.
Component Tools Lines of Code

Learner LearnLib [  75 ] 248 (Java)
Adapter – 1807 (Java)

Membership Cache – 507 (Mysql and Java)
Modified cellular stack srsLTE [  41 ] ∼4000 (C++)

Device resetter – 640 (Python 2.7)
FSM Equivalence Checker – 2240 (Python 2.7)

4.5 Implementation

The FSM inference module is implemented on top of LearnLib [  75 ] and srsLTE [  41 ]–an

open-source 4G LTE stack. For the learning algorithm, we use TTT [  66 ] as it requires

fewer queries compared to other algorithms [ 76 ], and for conformance testing, we use Wp-

method [  68 ]. We implement our adapter in Java. We use srsLTE v19.10 as the cellular

stack to implement our modified core network and base station. We replace the NAS and

RRC FSM implementations of the canonical srsLTE stack with our modified stack and

create interfaces between the stack and adapter to forward NAS and RRC packets in both

directions. The other layers of srsLTE are kept intact. We use USRP B210 as the software-

defined radio peripheral for OTA transmission. The FSM equivalence checker is developed

using the NuXmv model checker [  43 ] and a python 2.7 script as the wrapper. Table  5.2 

summarizes our efforts of modifying the tools and creating new components for DIKEUE.

4.6 Evaluation

To evaluate the performance of DIKEUE, we aim to answer the following research ques-

tions in the subsequent sections:

• RQ1. How effective is DIKEUE in finding deviant behaviors?

• RQ2. How does DIKEUE perform compared to the existing baseline testing ap-

proaches?

• RQ3. What are the effectiveness and performance of DIKEUE components, i.e., FSM

inference module and equivalence checker?

86



Evaluation setup. We use a laptop with Intel i7-3750QCM CPU and 32 GB DDR3 RAM

to run the FSM inference module with USRP. We use the same configuration laptop for FSM

equivalence checker.

Devices. We use 14 different COTS devices from 5 vendors (shown in Table  5.3 ) for eval-

uation. Our test corpus includes basebands from 5 vendors: Qualcomm, Intel, MediaTek,

HiSilicon, and Exynos. The devices range from Android 6.0 to Android 9.0, Apple iPhone

XS, USB Wi-Fi Modem, and to a cellular development board.

4.7 Deviations (RQ1)

DIKEUE has been able to uncover 17 distinct deviations in all the 14 devices tested.

Among them 15 are new and 2 are uncovered in previous works but on different devices.

Based on the root cause, we categorize the issues into two groups: (i) deviations from the

standards; (ii) underspecifications. Note that, we consider conflicting specifications as a

part of underspecifications. Furthermore, based on the impact we categorize the issues as:

exploitable attacks and interoperability issues. The attacks are constructed manually from

the deviant traces. We summarize DIKEUE’s findings in Table  4.5 and Table  4.6 .

4.7.1 Exploitable deviations

Among the deviations identified by DIKEUE, 11 are exploitable. In the following we

discuss some of the issues in detail.

Replayed GUTI_reallocation:

We identified the exploitable deviations E1 and E2 (from Table  5.8 ) in total 9 devices

from 2 different vendors. In E2, the implementation accepts replayed GUTI_reallocation any-

time after the attach procedure, whereas in E1 the implementation accepts GUTI_reallocation

at a specific state– after every sm_command message. Note that, all the devices affected by

E2 are also affected by E16 and accept replayed sm_command as well, posing the implemen-

tations in vulnerable situations.

87



Table 4.5. : Deviations identified by DIKEUE. E- exploitable, I- interoperability issue, EI- both
exploitable and an interoperability issue, O- other deviating behavior, D- deviation from standards,
U- underspecification

Issue Description
Root cause Device

D U

N
ex

us
6

H
T

C
1

G
al

ax
yS

6

H
T

C
10

N
ex

us
6P

G
al

ax
yS

8+

P
ix

el
3X

L

H
uw

ay
ei

Y
5

H
on

or
8X

H
uw

ae
iP

8

M
iA

1

Ip
ho

ne
X

s

U
SB

F
ib

oc
om

NAS
(E1) Replayed

GUTI_realloca-
tion at specific
sequence

Accepts replayed
GUTI_reallocation
when sent im-
mediately after
a sm_command

X X X X X X X X X

(E2) Replayed

GUTI_realloca-
tion anytime

Accepts replayed
GUTI_reallocation
when sent im-
mediately after
a sm_command

X X

(EI3) Plaintext

auth_request

Accepts plain-
text auth_request
after security
context has been
established

X X X X

(EI4) Plaintext

identity_re-
quest

Accepts plaintext
identity_request
(identification
parameter IMSI)
after security
context has been
established

X X X X

(E5) Selective re-

play of sm_com-
mand

UE accepts re-
played sm_com-
mand up to the
completion of of
the attach pro-
cedure. After at-
tach procedure,
the replayed
sm_command is
not accepted
anymore

X X

(O6)

DL_NAS_trans-
port without
RRC security

UE performs
Downlink NAS
Transport proce-
dure even before
RRC layer security
has been estab-
lished

X X X X

(O7) Attach proce-
dure without RRC
security

UE completes the
attach procedure
before RRC layer
security

X X X X X X

88



Table 4.6. : Deviations identified by DIKEUE. E- exploitable, I- interoperability issue, EI- both
exploitable and an interoperability issue, O- other deviating behavior, D- deviation from standards,
U- underspecification

Issue Description
Root cause Device

D U

N
ex

us
6

H
T

C
1

G
al

ax
yS

6

H
T

C
10

N
ex

us
6P

G
al

ax
yS

8+

P
ix

el
3X

L

H
uw

ay
ei

Y
5

H
on

or
8X

H
uw

ae
iP

8

M
iA

1

Ip
ho

ne
X

s

U
SB

F
ib

oc
om

NAS

(O8) GUTI_real-
location before
attach proce-
dure completion

UE performs
GUTI_realloca-
tion even before
the attach pro-
cedure has been
completed or
RRC security
has been estab-
lished

X X X X X X X X X

(O9) auth_response
after sm_reject

UE replies to re-
played auth_re-
quest even after
security mode
command proce-
dure

X X X X X X X X X X

(O10)

auth_seq_fail-
ure reply

After secure con-
text has been es-
tablished, some
implementa-
tions reply with
auth_MAC_fail-
ure while others
do not reply

X X X

RRC
(E11) Out-of-sequence

RRC_reconf
causes unre-
sponsiveness

RRC_re-
conf before
RRC_sm_com-
mand makes all
other symbols
unresponsive

X X X X X X X X X X X X X

(E12) Replayed

RRC_reconf
causes unre-
sponsiveness

Replayed RRC_re-
conf causes the
UE to be un-
responsive until
new attach pro-
cedure is started

X X X X X X X X X X X X X

(E13) Out-of-sequence

RRC_sm_com-
mand causes un-
responsiveness

RRC_sm_com-
mand before
NAS sm_com-
mand makes the
device unrespon-
sive

X X

89



Table 4.7. : Deviations identified by DIKEUE. E- exploitable, I- interoperability issue, EI- both
exploitable and an interoperability issue, O- other deviating behavior, D- deviation from standards,
U- underspecification

Issue Description
Root cause Device

D U

N
ex

us
6

H
T

C
1

G
al

ax
yS

6

H
T

C
10

N
ex

us
6P

G
al

ax
yS

8+

P
ix

el
3X

L

H
uw

ay
ei

Y
5

H
on

or
8X

H
uw

ae
iP

8

M
iA

1

Ip
ho

ne
X

s

U
SB

F
ib

oc
om

RRC
(E14) Downgraded

RRC_sm_com-
mand causes
unresponsive-
ness

After a downgraded
RRC_sm_com-
mand, the device
has to start at-
tach procedure
again

X X X X X X X X X

(I15) Overly restrictive

RRC_reconf

For some UE,
RRC_reconf
works exclu-
sively before or
only after the at-
tach procedure
is completed

X X X X X

Previous issues

(E16) Replayed

sm_command
[ 34 ]

Accepts replayed
sm_command af-
ter security con-
text has been
established

X X X X X X X X

(E17) Downgraded

RRC_sm_com-
mand accep-
tance [  15 ]

UE accepts
downgraded
RRC_sm_com-
mand and by-
passes the whole
RRC layer secu-
rity

X X

Root cause analysis. In TS 24.301 [ 9 ], section 4.4.3.2 it is explicitly stated- “Replay

protection must assure that one and the same NAS message is not accepted twice by the

receiver. Specially, for a given security context." The deviant behavior, therefore, is a clear

mismatch from the standards.

Adversary assumptions. To successfully carry out an attack exploiting this vulnerability,

the adversary is required to set up a fake base station [  8 ,  25 ] or Man-in-the-Middle (MitM)

relay [ 32 ,  55 ] that can replay previously saved messages.

Attack Description. This vulnerability can be exploited in two ways: (1) The adversary,

using a sniffer [  32 ,  55 ] or MitM relay [  55 ], captures the GUTI_reallocation message for a given

security context. Later on when the MME sends GUTI_reallocation again for refreshing the

90



Table 4.8. : List of tested devices
Device OS Version Baseband
Motorola Nexus 6 Android 7.1.1 Qualcomm APQ8084 Snapdragon 805
HTC One E9+ Android 6.0 Mediatek MT6795M Helio X10
Samsung Galaxy S6 Android 8.0 Exynos 7420 Octa
HTC Desire 10 Lifestyle Android 6.0 Qualcomm MSM8928 Snapdragon 400
Huawei Nexus 6P Android 8.0 Qualcomm MSM8994 Snapdragon 810
Samsung Galaxy S8+ Android 9.0 Qualcomm MSM8998 Snapdragon 835
Google Pixel 3 XL Android 11 Qualcomm SDM845 Snapdragon 845
Huawei Y5 Prime Android 8.1 Mediatek MT6739
Honor 8X Android 8.1 HiSilicon Kirin 710
Huawei P8lite Android 6.0 HiSilicon Kirin 620
Xiaomi Mi A1 Android 9.0 Qualcomm MSM8953 Snapdragon 625
Apple iPhone XS iOS 12 Intel XMM 7660 (Apple A12 Bionic)
Yoidesu 4G LTE USB
WiFi Modem – Not known
Fibocom L860-GL – Intel XMM 7560

Target UE MME
Attach procedure completed

GUTI Reallocation Command
GUTI Reallocation Complete... ...

GUTI Reallocation
 CommandReplayed GUTI 

Reallocation Command
GUTI Reallocation CompleteOld GUTI

GUTI 
desynchronization

Other UE
Replayed GUTI 

Reallocation Command
GUTI Reallocation 

Complete

Replayed GUTI 
Reallocation Command

no response

Attacker

Fake base station

Figure 4.5. Steps of the replayed GUTI reallocation attack

GUTI, the attacker drops this packet and replays the saved GUTI_reallocation to the UE.

The replayed packet will be successfully accepted by the victim UE. Since the GUTI_real-

location_complete message does not contain the agreed-upon GUTI, the MME also assumes

the completion of the procedure causing a GUTI mismatch between the UE and the core

network; (2) For the second attack, the adversary, using a fake base station, connects to all

the UEs in a particular cell area and replays captured GUTI_reallocation to all of them. The

victim UE accepts this message and responds with GUTI_reallocation_complete, whereas all

91



Table 4.9. : M = Membership and E = Equivalence queries.

Device M E Time
(min)

# of
states # of transitions

Motorola Nexus 6 3129 21300 37620 21 556
HTC One E9+ 8060 42432 77757 35 1172
Samsung Galaxy S6 3097 10612 21111 20 529
HTC Desire 10 Lifestyle 3129 21300 37676 21 560
Huawei Nexus 6P 3129 21300 37450 21 568
Samsung Galaxy S8+ 2908 20961 36762 21 554
Google Pixel 3 XL 3110 20501 36345 21 548
Huawei Y5 Prime 8100 44432 80899 35 114
Honor 8X 4623 16813 33011 28 725
Huawei P8lite 6228 7863 21700 34 1054
Xiaomi Mi A1 3105 21045 37191 21 570
Apple iPhone XS 2340 22450 75361 17 448
4G LTE USB Modem 2905 18332 39953 21 562
Fibocom L860-GL 2322 20470 35099 16 430

the other UEs in the cell do not respond, violating the unlinkability property and exposing

the victim’s presence in the cell area. The steps of both the attacks are shown in Figure  4.5 .

Impact. The first attack causes a GUTI mismatch between the UE and MME and forces a

victim user to use a fixed GUTI for an extended time. During this time, if the core network

tries paging the UE with new GUTI, the UE will not be able to receive any such notifications

or incoming services up to the point the device initiates an attach procedure (which can be

done by restarting the phone) or a tracking area update procedure (due to handover), or a

service procedure (initiating a service from the phone), or a UE initiated detach procedure

(detaching from the core network). Since a UE often does not invoke a tracking area update

even up to a week [  25 ], and may not generate service during idle hours, during the period

the GUTI remains desynchronized and the UE will keep running into this silent consistent

denial-of-service attack. Using the second attack, it is also possible for an adversary to track

or detect the presence of a victim UE in a cell utilizing the different responses of the same

GUTI_reallocation packet.

Plaintext message acceptance after security context:

The deviations EI3 and EI4 in Table  4.5 are identified in two different vendors. The

affected devices respond to plaintext identity_request and auth_request messages even if the

92



security context has been established. No other vendors accept plaintext messages after the

establishment of the security context. Note that previous work has shown attacks exploiting

the plaintext identity_request and auth_request messages. But those messages are sent by the

adversary before the security context is established, whereas our findings show some devices

accept those plaintext messages even after the security context is set up.

Root cause analysis. Initially, it may appear to be a straightforward deviation from the

specification; however, a deeper analysis of the specification paints out a different picture. In

TS 24.301 [  9 ]– the specification for the NAS layer, it is stated that plaintext identity_request

shall be processed by the UE until the secure exchange of NAS messages for the NAS signaling

connection. Once the secure exchange of NAS messages has been established, the receiving

entity shall not process any plaintext NAS message. However, in the security specification TS

33.401 [  10 ], it is explicitly stated that all NAS signaling messages except the listed messages

in TS 24.301 (the list includes identity_request, auth_request) as exceptions shall be integrity-

protected. This implies that plaintext identity_request and auth_request can be accepted by the

UE even after the security context has been established. These conflicting standards cause

the developers to pick one of the options, and in this case, it seems the security standard

(TS 33.401) has been followed. Therefore, conflicting specifications are the root cause of this

issue.

Adversary assumptions. The attacker needs the capability to set up a fake base station

and craft plaintext messages. We assume the adversary knows the victim UE’s C-RNTI [  55 ]

but does not need to eavesdrop or capture any messages apriori. The adversary can also

overshadow any downlink message between the network and the UE to carry out the at-

tack [adaptover].

Attack description. The adversary uses a fake base station to connect to a victim UE and

sends a crafted plaintext auth_request or identity_request message. Alternatively, the adversary

can also overshadow any downlink message with plaintext identity_request or auth_request even

after the security context is established. The UE accepts these messages and replies with

plaintext identity_response containing the IMSI/IMEI of the victim device, or replies with

plaintext auth_response.

93



Table 4.10. : Comparison with existing approaches.

Paper Automatic
Specifica-

tion
analysis

Implemen-
tation

analysis

Under-
specifica-

tion
detection

Stateful

LTEFuzz [  8 ] 7 7 3 7 7
LTEInspector [  32 ] 7 3 7 7 3
5GReasoner [ 34 ] 7 3 7 7 3
5G-Authentication [  33 ] 7 3 7 3 3
5G-AKA [ 37 ] 7 3 7 3 3
ProChecker [  77 ] 7 3 3 3 3
DIKUE 3 3 3 3 3

Impact. The exposure of IMSI even after security context establishment is particularly fatal.

This is because the illegal exposure of IMSI provides an edge to the adversary to further

track the location of the user or intercept phone calls and SMS using fake base stations [ 32 ,

 78 ] or MitM relays [  55 ]. Furthermore, it has been shown that auth_request can be used to

leak private information, including subscriber activity monitoring [ 79 ], launching DoS, and

tracking a user [  77 ,  79 ]. Implementations accepting plaintext auth_request are, therefore,

vulnerable to these attacks.

Inappropriate state reset.

In exploitable issues E11-E14 (of Table  4.6 ), out-of-sequence, downgraded, or replayed

RRC layer messages induce unwarranted reset of the affected devices’ state machines, causing

connection drops.

Root cause analysis and impact. The root cause for all four issues boils down to the

underspecification of the standard. In the RRC [  11 ] specification, it is stated that whenever

a device receives a message not compatible with the protocol state, the actions are imple-

mentation dependent. Due to this underspecification, different implementations treat these

non-compatible messages in different ways. Devices that are more restrictive than others

reset the FSM state, restart the connection, go through authentication and key agreement

again whenever such a non-compatible message is received. This creates the pathway to

94



unintentional DoS in which an attacker can send such unwarranted (plaintext/replayed/out-

of-sequence) messages from a fake base station intermittently.

Adversary assumptions and attack description. Similar to previous attacks, this at-

tack assumes the adversary knows the victim’s C-RNTI and can craft plaintext messages or

replay previously captured messages. The attacker connects to the victim device and based

on the implementation, either sends a replayed or an out-of-sequence or a downgraded or

a plaintext RRC message. Each time the attacker sends a new adversarial RRC message,

the victim just becomes unresponsive for 4-5 seconds and then reconnects to the actual

base station. To maintain a semi-persistent DoS, the attacker will have to keep replaying

plaintext/replayed/out-of-sequence messages at every 4-5 seconds interval, causing disrup-

tion of regular operations and fast battery depletion of the victim UE.

4.7.2 Interoperability issues

DIKEUE uncovered 3 potential interoperability issues EI3, EI4, I15 (shown in Table  4.5 

and Table  4.6 ). Due to space constraints, we discuss only I15 related to the handling of

RRC_reconf message. RRC Reconfiguration is the key step in establishing/modifying radio

connections between the UE and network. In most of the devices, RRC_reconf message is

accepted both before and after the attach procedure to create/modify a radio connection.

However, DIKEUE identified two UEs where either RRC_reconf message is exclusively ac-

cepted either before (MediaTek) or after the attach procedure (HiSilicon) is completed. This

may create interoperability issues if the core network sends RRC_reconf in the other way

around. In such a case, devices from one of the vendors (i.e., MediaTek or HiSilicon) may

fall into certain connectivity issues. From our experiments, a major network operator sends

the RRC_reconf exclusively before the attach procedure is completed. The root cause of these

issues is underspecification as TS 36.311 [ 11 ] states that the only condition for RRC connec-

tion reconfiguration is the UE has to be in the connected state with the base station. But a

UE can be in the connected state both before and after the attach procedure is completed.

95



4.7.3 Other deviant behaviors

DIKEUE also uncovered deviant behaviors O6 - O10 in Table  4.5 and Table  4.6 , whose

implications are not yet certain. For instance, in O9, some devices respond to replayed

auth_request messages even after an invalid sm_command is received, whereas other devices do

not. In the former case, the device accepts such replayed auth_request message until a valid

sm_command message is received. The acceptance of these replayed messages in that short

time interval do not apparently induce state changes or undesired behavior. Nonetheless,

these issues resulting from underspecification of the standards should be further analyzed

for verifying the impact of these deviant behaviors.

4.7.4 Previous issues

We have also found 2 previously discovered issues (E16 and E17), that have not been

resolved yet. For instance, in E17, Huawei P8lite accepts downgraded RRC_sm_command

with the choice of integrity algorithm EIA0. This makes the implementation vulnerable to

Man-in-the-Middle attacks. The attack was first identified and described by Rupprecht et

al. [  15 ] for a Huawei USB dongle.

4.8 Comparison with Baseline (RQ2)

We compare the effectiveness of DIKEUE with the conformance testing framework defined

in the 3GPP specification [ 80 ] and property-guided testing by previous approaches [ 32 – 34 ,

 37 ,  77 ].

4.8.1 Comparison with conformance test cases

We first compare the performance of DIKEUE with the 3GPP conformance test cases [  80 ]

based on two criteria: (i) test coverage; (ii) identified deviant behavior issues. Since it is not

possible to calculate coverage from a black-box UE implementation, such as an iPhone, we

apply DIKEUE to srsUE [  41 ] v20.10.1– the open-source implementation by srsLTE [ 41 ]. We

use the percentage of lines and functions executed, which are obtained by Gcov [  81 ], as the

96



indicator for code coverage. Since we are considering only the NAS and RRC layers of the

UE implementation, we do not compute the percentage of lines covered with respect to the

total number of lines and functions in srsUE. Instead, we calculate the percentage of lines

covered within each function and only take into account the functions that are related to our

analysis. Therefore, let Le(f) be the number of lines executed of function f in the srsUE

implementation and L(f) be the total number of lines of f , we define the line coverage as:∑m
i=1 Le(fi)/

∑m
i=1 L(fi) and function coverage as: n/m where f1, f2, . . . , fm are the functions

relevant to NAS and RRC layer and f1, f2, . . . , fn are functions executed in srsUE. For the

baseline coverage, we identify the 88 test cases related to the RRC and NAS analysis from

the 3GPP conformance test cases [  80 ] and run them on the srsUE implementation and

calculate the line and function coverage of all the test cases. The rationale is to compare

how DIKEUE covers compared to the standard defined test cases. The conformance testing

has line coverage of 82.58% and function coverage of 83.4375%, whereas DIKEUE performs

significantly better with 89.47% line coverage and 89.185% function coverage.

We also apply the 88 test cases to the 14 devices. In case the same conformance test

case induces different outputs in different implementations, we note it as a deviant behavior.

Through the conformance test cases, only 2 deviating behavior can be captured, compared

to the 17 issues automatically identified by DIKEUE.

4.8.2 Comparison with existing LTE works

Table  5.9 compares our approach with existing LTE testing approaches based on several

criteria such as automation, specification, implementation analysis, and stateful testing.

Comparison with LTEFuzz

LTEFuzz [  8 ] is a recent approach for dynamic testing of LTE protocol based on stateless

dynamic testing with pre-generated test cases. In contrast to LTEFuzz, DIKEUE is different

from few angles. First, DIKEUE not only performs dynamic testing but also automatically

reconstructs the FSM of the underlying UE implementation, allowing in depth analysis. Sec-

ond, DIKEUE can uncover stateful vulnerabilities, whereas the analysis done by LTEFuzz is

97



stateless. For instance, it is not possible for LTEFuzz to uncover the Replayed GUTI_reallo-

cation (discussed in section  4.7.1 ) attack discovered by DIKEUE and acknowledged by both

Qualcomm and Samsung as a high-severity issue. This is because the attack is triggered

only at a specific state of the protocol implementation, not for a GUTI_reallocation packet

replayed at an arbitrary protocol state. Therefore, the testcases generated by stateless prop-

erty guided testing of LTEFuzz will not be able to generate such a stateful testcase that can

trigger such a vulnerability.

Comparison with property-guided testing

Previous work [ 32 ,  33 ,  37 ,  77 ] has applied property-guided testing on FSMs derived from

standards [  32 ,  33 ,  37 ,  77 ] or extracted from white-box analysis [  77 ]. To compare DIKEUE

with the property-guided testing approaches, we test the properties from previous approaches

and run model checking on the FSMs derived from the implementations. As the previous

properties are all for the NAS layer only, for a fair comparison, we only test for NAS layer

property violations. Through property-guided testing, we identify 3 deviations (E2, E5,

O9) among the 10 issues found by DIKEUE in the NAS layer.

4.9 Components performance (RQ3)

We now evaluate the performance of DIKEUE’s main components.

4.9.1 FSM inference module performance

Table  4.9 shows the number of states and transitions in the inferred models for 14 devices.

Each model includes on an average 22 states and around 600 transitions. There are certain

notable exceptions in the model learning phase for different devices. For instance, both the

MediaTek phones (HTC One E9+ and Huwaei Y5) require substantially more queries and

time to learn the models. This is because MediaTek phones require at most 6 alphabets

(i.e., input symbols), including RRC_sm_command and RRC_reconf in a specific sequence, to

complete the attach procedure. Consequently, it takes the learner more time to generate

98



Table 4.11. : DIKEUE performance of different components. M = Membership queries and E =
Equivalence queries.

Approach
# Queries Time

(min)Total M E Adapter
context-violations

Read
from
cache

OTA

DIKEUE 5756 1416 4340 1620 1141 9392 11490
DIKEUE w/o

cache 5756 1416 4340 1968 0 11796 15552
DIKEUE w/o

optimiza-
tions

5756 1416 4340 0 1141 9392 14072

DIKEUE w/o
inconsis-

tency
resolver

5756 1416 4340 896 1141 5025 N/A∗

this specific sequence of messages, and without it none of the future procedures, i.e., GUTI

reallocation, tracking area update, service procedure, etc., can proceed.

We now evaluate the effect of different components of the adapter in FSM inference

module applying different domain-specific optimizations. The results of these evaluations

are shown in Table  4.11 .

RQ3.1. Impact of optimal alphabet set:

In case all the feasible input symbols from the predicates are included in the alphabet set,

the size of the input alphabet set would be 59 (Table  5.1 shows all the possible symbols from

the predicates and the symbols picked for the optimized alphabet set). With our optimized

design choice, we reduce the alphabet size to 35. To show the impact of the alphabet size,

we infer the model of two different devices of two different vendors with an alphabet set of

35 and 59 respectively up to the attach procedure. Note that with the optimized alphabet

set, we are able to reduce the queries required to learn the attach procedure by at least

35%. As the number of queries directly correlates to time, this substantially improves the

performance of DIKEUE.

99



Alphabet size

N
um

be
r o

f q
ue

rie
s

Galaxy S6
(Exynos)

Nexus 6P
(Qualcomm)

35 59

Figure 4.6. Impact of alphabet size

RQ3.2. Adapter context checking:

To evaluate the performance improvement of the context checker, we create a variation

of FSM inference module with all the optimizations in the context checker turned off and

compare it with the proposed FSM inference module’s performance. With optimizations the

system found 1620 invariant violations out of 5756 queries up to the attach procedure and

thus improved the time performance by 22%.

RQ3.3. Impact of cache:

To evaluate the performance improvement of the cache, we turn off caching and compare

it with the original FSM inference module performance. About 19% of the queries are cached,

which reduces the over-the-air queries by 20% and improves the performance of the system

by 26%.

RQ3.4. Impact of inconsistency-resolver:

To calculate the overhead of the inconsistency resolver, we disable the resolver and com-

pare it with the general system where each query is sent only once and the result is saved in

the cache. However, without the inconsistency resolver, after a certain time of the learning

100



Table 4.12. : Number of unique deviants.

N
ex

us
6

H
T

C
1

G
al

ax
yS

6

H
T

C
10

N
ex

us
6P

G
al

ax
yS

8+

Pi
xe

l3
X

L

H
ua

w
ei

Y
5

H
on

or
8X

H
uw

ae
iP

8

M
iA

1

Ip
ho

ne
X

s

U
SB

Fi
bo

co
m

Nexus6 8 11 0 0 0 0 8 9 12 0 6 2 6
HTC1 7 8 8 8 8 0 10 10 8 8 8 8

GalaxyS6 11 11 11 11 6 12 12 11 5 12 5
HTC 10 0 0 0 8 9 12 0 6 0 6
Nexus6P 0 0 8 9 12 0 6 0 6

GalaxyS8+ 0 8 9 12 0 6 2 6
Pixel 3XL 8 9 12 0 6 0 6
HuwaeiY5 10 10 8 8 8 8
Honor8X 6 10 9 10 9

Huwaei P8 12 10 13 10
MiA1 6 0 6

Iphone Xs 6 0
USB 6

Fibocom

process, the learner grinds into complete halt due to inconsistencies in the responses (shown

as N/A in Table  5.9 ). At that time, someone has to manually analyze the queries in the

cache and remove the inconsistent responses, which requires domain knowledge and time. In

our experiments, the learner without inconsistency resolver got stuck 15 times to learn up

to the attach procedure.

4.9.2 FSM equivalence checker performance

Table  4.12 presents pairwise all possible deviant behaviors among 14 devices identified

by our FSM equivalence checker. For instance, Nexus 6 and Samsung Galaxy S6 have

11 discrepancies, whereas Nexus 6 and Nexus 6P has no discrepancy. This is consistent

because Nexus 6 and Nexus 6P have the same vendor (Qualcomm) and a similar version of

baseband. Interestingly, among the devices from the same vendor, all the devices behave

similarly except HiSilicon. Particularly, two devices from HiSilicon– Huwaei Honor 8X (Kirin

710) and Huwaei P8lite (Kirin 620) behave quite differently and DIKEUE identifies 6 unique

differences among them. We manually analyze all the discrepancies and report 17 unique

issues in Table  4.5 .

101



To evaluate the timing performance of FSM equivalence checker, we calculate the time

required for all pairwise deviation checking 5 times and report the average, max, min and

standard deviation in Table  4.13 . On an average, FSM equivalence checker takes 42 minutes

to find all the deviations.

For further analysis, on the timing performance of the FSM equivalence checker, for each

output pair, we calculate the time required for the model checker for repeated queries and

take the average of each round. The results are shown in Figure  4.7 . After each round of

queries, a new invariant is added to the model and the search space is reduced. In case there

are multiple traces for the same input, and output pair, the model checker goes deeper into

FSMs and it requires much more time. This, in return, contributes to the time of our FSM

equivalence checker.

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0  2  4  6  8  10

T
im

e
 (

se
c
o
n
d
s)

nuXmv Rounds

Figure 4.7. Time required for each round of nuXmv query

To evaluate the timing performance of the FSM equivalence checker, we calculate the

time required for all the pairwise deviant checking 5 times and report the average, max, min,

and standard deviation in Table  4.13 . On an average, it takes our FSM equivalence checker

42 minutes to find all the deviations. Furthermore, the timing cost of repeated querying to

the model checker is shown in Figure  4.7 .

102



Table 4.13. : Performance of FSM equivalence checker.
Time (min)

Max Min Mean Median Standard deviation
82.51 13.08 41.84 35.975 21.3

4.10 Discussion

Limitations of DIKEUE. Similar to any testing paradigm, our approach is incomplete and

may result in false negatives due to— (1) not considering all possible message predicates in

model learning; (2) precluding infeasible message sequences from testing; (3) use of custom

termination condition for model learning to balance scalability and coverage; (4) discon-

nected FSMs resulting from removing a deviation-inducing transition used for identifying

other noncompliance instances of the same diversity class; and (5) inherent limitation of

not being able to detect noncompliance instances when both implementations under test

are noncompliant to standard but are equivalent. DIKEUE, however, pairwise checks the

equivalence of devices drawn from 14 different UE models belonging to 5 vendors (i.e.,
(

14
2

)
= 91 pairwise comparisons). It is, therefore, highly unlikely that all devices deviate from

the standard in the same way. If one device deviates from standard in a different way than

the rest, our equivalence checker can identify it.

Property agnostic. DIKEUE is not entirely property-agnostic if predicates (e.g., is_null_security(m))

of messages are considered as properties. In this work, we consider the typical notion of prop-

erty [ 32 – 34 ,  37 ] which refers to stateful end-to-end guarantees of a system. Since DIKEUE

does not require any such properties to identify noncompliance instances between any two

implementations, we consider DIKEUE to be property agnostic.

Applicability on 5G. To the best of our knowledge, there is no open-source protocol stack

for the standalone 5G core network that can be used to develop a 5G-adapter. Therefore, we

leave testing of 5G cellular devices with DIKEUE as future work. Our LTE-specific insights,

although are based on LTE protocol invariants, are equally applicable to 5G. As an example,

similar to LTE, 5G has a multi-layer design with most of the procedures unchanged from

103



LTE. Thus, the multi-layer protocol handling, context-checker, and other insights will largely

remain the same when adopting DIKEUE to 5G.

Parallelization. Parallelizing model learning by distributing different membership queries

from a learner to different UEs is plausible. This necessitates complex coordination for

maintaining soundness and efficiency of learning which is, however, challenging when incon-

sistencies are detected due to observational nondeterminism across different instances. In

exceptional cases (e.g., a majority of the UE instances having their timers fire at the same

time), In that case, it will also take a long time to complete the learning because of the

majority voting mechanism culminating in a wrong result. For this to resolve, learning has

to revert back. Restarting the learning process from the place of the wrong majority voting

result, however, may end up nullifying the performance gain due to parallelization. These

complex cases require more investigation and thus we leave it as future work.

Deviant behavior to automatic exploitation. DIKEUE automatically provides traces

depicting the deviant implementation specific behavior. This is a concrete evidence of either

implementation deviating from the specifications or the standards being underspecified or

containing conflicting specifications. Currently, we manually construct the attack strategies

from these traces, which we plan to automate in the future.

4.11 Summary

We present DIKEUE which can automatically infer the FSMs of 4G LTE UE implementa-

tions, and identify deviant behaviors among the implementations in a property-agnostic way.

To show the viability, we applied DIKEUE to 14 COTS devices from 5 vendors. DIKEUE un-

covered 15 deviant behaviors; among them 11 are exploitable. We have responsibly disclosed

the vulnerabilities to the affected stakeholders and they have acknowledged our findings.

104



5. BLEDIFF: SALABLE AND PROPERTY-AGNOSTIC

NONCOMPLIANCE CHECKING FOR BLE

IMPLEMENTATIONS

Bluetooth Low Energy (BLE) has been the most widely used low-energy communication

protocol for the last several years. With the recent impact of COVID-19, BLE devices have

seen an unprecedented surge, with 7 billion device shipments expected in 2026 [ 82 ]. As

these BLE devices are ubiquitous and support numerous services such as audio streaming,

data transfer, location service, medical equipment, and many more, it is essential that the

BLE devices are compliant with the protocol specifications to meet the security and privacy

requirements recommended by the standard. Recent works, however, have shown several

noncompliance instances of BLE devices with critical security and privacy consequences [ 7 ,

 30 ], including bypassing key establishment procedure (aka., pairing procedure) and accepting

messages encrypted with the default key. Noncompliance checking of BLE implementations

is, nonetheless, challenging due to a large protocol standard [  14 ] (3000+ pages) written in

natural language with underspecifications, ambiguities, and in some cases conflicting speci-

fications [  30 ]. Since manual identification of noncompliance protocol behavior in large and

complex BLE implementations is error-prone and time-consuming, in the paper, we aim to

develop the first automated and plug & play noncompliance checker for BLE devices.

Prior efforts [  7 ,  16 – 22 ,  30 ] on analyzing the security and noncompliance of the BLE

protocol have identified several implementation flaws. Although they show great promise,

they have at least one of the following limitations. The approaches: (i) are completely

manual and are not scalable for analyzing a large protocol such as BLE [ 16 ,  17 ,  30 ]; (ii)

only analyze the specifications either manually [  18 ,  19 ,  83 ] or using formal verification [ 20 ,

 30 ] with the manually extracted abstract protocol model and security properties; (iii) use

fuzzing [ 7 ,  31 ] through a hand crafted bug oracle or reference state machine; (iv) use reverse-

engineering [  21 ,  22 ], requiring heavy domain expertise and tedious manual effort, which are

not directly portable to devices of other vendors and models. To improve the unsatisfactory

state of affairs, in this paper, we set out to design an automated, scalable, property-agnostic,

and black-box protocol noncompliance checking framework called BLEDiff that can analyze

105



and uncover noncompliant behavior in the BLE protocol stack implementations. Performing

noncompliance checking in a black-box fashion makes BLEDiff agnostic to the device’s un-

derlying embedded operating systems, peripherals, and programming languages, and thus

enables it to cover a diverse set of BLE devices with different input/output capabilities,

many of which were not studied before.

Identifying noncompliant behavior in a property-agnostic way, however, warrants captur-

ing and representing the reference protocol behavior Bref in a formal language and comparing

it with a given BLE protocol implementation Bi. Capturing BLE protocol’s reference behav-

ioral abstraction from large and complex Bluetooth specifications, riddled with ambiguities

and underspecifications, requires a juggernaut manual effort which is often error-prone as well

as incomplete. BLEDiff capitalizes on having access to multiple BLE devices and leverages

the concept of differential behavior, in which if two implementations produce two different

output sequences for the same input sequence, at least one of the implementations is non-

compliant with respect to the specification, even though it is not clear which one. BLEDiff,

therefore, uses differential behavior, also called deviant behavior analysis, as a proxy for iden-

tifying noncompliant behavior in a property-agnostic way without requiring any reference

protocol behavior abstractions. Therefore, the underlying noncompliance checking problem

that BLEDiff addresses can be reduced to the problem of identifying deviant behavior among

multiple BLE implementations and can be further stated as follows: Given black-box access

to multiple BLE implementations (B1,B2, . . . ,Bn), is the implementation Bi equivalent to

Bj (i 6= j), failure of which approximates that at least one of Bi and Bj deviates from the

specification?

In this paper, for our automated and black-box compliance checker BLEDiff, we use a

Finite State Machine (FSM) as the input-output protocol abstraction and use the FSM

to identify diverse noncompliant behavior. For automatically extracting the protocol FSM

of BLE implementations, BLEDiff relies on an active FSM learning approach. In FSM

learning, the learner starts from a known initial state, sends a sequence of over-the-air

protocol messages (queries) to the device-under-test, and, based on the responses to the

queries, infers the FSM of the underlying protocol implementation. Although prior work

has used automata learning in the context of testing various protocols [  39 ,  40 ,  59 – 64 ,  84 ],

106



in most cases, automata learning has been shown to be viable for only a specific layer [  84 ],

or for specific procedures [  39 ,  59 ] or within a limited scope [  71 ]. This is primarily due to

the scalability issues even when the protocols are less complex and smaller than BLE. As

a consequence, active FSM learning often fail to learn security-critical interactions and to

complete FSM exploration. In addition, automata learning has been challenging and a never

tried technique for automated FSM extaction of BLE-like human-in-the-loop protocols where

human intervention (e.g., entering a passphrase aka., pass keys or checking numeric values

at devices) is essential.

To address the scalability challenge of FSM inference using automata learning, BLEDiff

explores the idea of using a divide and conquer approach. At its core, BLEDiff divides the

BLE protocol into multiple sub-protocols, identifies their dependencies and initial states,

extracts the FSM of each sub-protocol separately, and finally composes them. The critical

insights of dividing and merging/composing are the following: (i) input messages for one

sub-protocol (e.g., LenReq message in BLE link layer) in most of the cases do not induce

any changes to the state machine of other sub-protocols (e.g., pairing and bonding of SMP);

and (ii) completion of one sub-protocol enables the execution of another one. For instance,

the Security Manager Protocol (SMP), responsible for pairing and bonding of BLE devices,

can be executed only when the underlying link layer connection establishment procedure is

completed. To side-step human intervention during protocol runs, BLEDiff uses keystroke

simulation to tackle all the possible human-in-the-loop association methods, such as passkey

entry, numeric comparison, and out-of-band.

Once the FSMs have been extracted, the second part of BLEDiff is to devise an approach

to identify noncompliant behavior. To resolve this, BLEDiff designs a property- and refer-

ence FSM-agnostic differential analysis in which it identifies deviant behavior as a proxy for

identifying noncompliant behavior. In the context of BLE, deviant behavior is a sequence

of inputs for which the two FSMs under analysis generate distinct output sequences when

executed from the initial state of the protocol. BLEDiff, therefore, reduces the problem of

deviant behavior identification to a model-checking problem with a safety property. BLEDiff

composes two FSMs under analysis and identifies deviant behavior-inducing input sequences

(i.e., traces) by following the counterexamples, i.e., violations of the safety property: Two

107



FSMs will always generate same outputs for the same inputs. The automatic identification of

diverse deviant inducing traces between two FSMs is, however, challenging because existing

model-checking tools uncover only the first counterexample/deviation and then stop explo-

ration. To address this, we design a model-refinement-based deviant behavior identification

scheme in which BLEDiff, among two FSMs under comparison during a pairwise differential

analysis, refines an FSM based on the output of other FSM where two outputs initially

mismatched and runs the model checker again. This time the model checker finds a newer

deviation with a higher depth. We run the model checker until we run out of deviations and

both the FSMs are the same. The closest to our work is the elimination-based equivalence

checker designed for 4G LTE protocol [ 64 ]. This approach, however, eliminates deviation-

inducing transitions to further explore other deviant behavior, causing the FSMs to become

disjoint and thus failing to find higher depth deviations.

The deviant traces are then analyzed based on two root causes: implementations deviate

from specification [ 14 ] or the specification is ambiguous. These deviations are potential

vulnerabilities and are grouped into exploitable attacks or potential interoperability issues.

Findings. To test the effectiveness of BLEDiff, we evaluate it with 14 devices from 9 different

vendors. BLEDiff found a total of 13 unique deviations in the devices. Among them, 10 are

exploitable attacks, and two are potential interoperability issues between different devices.

After root cause analysis, eleven of them have been confirmed as deviations from the standard

and two as standard being unclear or ambiguous. Among the attacks, two cause security

bypass, two crash, and others cause denial-of-service attacks.

Contributions. In summary, the current paper makes the following contributions:

• We propose BLEDiff– an automated, scalable, property- and reference FSM-agnostic

noncompliance checking framework that analyzes and uncovers vulnerabilities in BLE

implementations based on automata learning and identifying deviant behavior.

• To the best of our knowledge, we are the first to utilize the idea of dividing and

conquering the state space to address the scalability of automata learning in FSM

extraction.

108



• We design a FSM equivalence checker that automatically identifies deviations at higher

depths of an FSM compared to the state-of-the-art.

• We implement and evaluate BLEDiff with 25 different devices and demonstrate it can

uncover 13 different deviant behaviors with 10 exploitable attacks including 2 security

bypass, 2 crash, and 7 denial-of-service attacks.

Responsible disclosure. We have responsibly disclosed the findings of our work to all the

affected vendors and Bluetooth SIG, and are actively cooperating with them for mitigation.

The bugs have been acknowledged by Google, Nordic Semiconductors, Huawei, Microchip,

Samsung, and STM electronics and 9 CVEs have been assigned so far. Other vendors are

still reviewing the vulnerabilities. The responsible disclosure’s status can be tracked here:

 https://blediff.github.io/ .

Open-source. To help vendors and foster future research, BLEDiff is open-sourced at:

 https://github.com/BLEDiff .

5.1 Background

In this section, we provide an overview of the BLE protocol, define finite state machines,

and discuss high-level details of active automata learning.

5.1.1 Finite State Machine (FSM)

For BLEDiff, we define a finite state machine (M) as a 6-tuple (S,S0,Ψ, Σ, Λ, Ω), where

S is a finite set of states, S0 ∈ S is the initial state of the FSM. Σ and Λ are the sets of input

and output alphabets, respectively, which represent the set of possible input and output

messages. The transition relation (Ψ : S×Σ→ S) maps the pair of the current state and an

input symbol to the corresponding next state, and the output relationship (Ω : S ×Σ→ Λ)

maps the pair of a current state and an input symbol to the corresponding output symbol.

109

https://blediff.github.io/
https://github.com/BLEDiff


5.1.2 Active Automata Learning

Automata learning is the process of learning the behavior of a system from a set of

execution traces. Automata learning techniques can be classified into two major classes–

passive automata learning and active automata learning. In passive learning, the system is

inferred from a set of given execution traces. On the other hand, active automata learning

is an interactive technique where the learner generates queries and infers the behavior of the

system from the outputs of those queries.

Active automata learning techniques are mostly built upon the L* algorithm [ 65 ]. These

techniques [  65 ,  66 ] learn the Deterministic Finite Automaton (DFA) for a given black-box

system. Given the input alphabet, Σ (e.g., a, b) where a,b are input symbols), the algorithms

generate sequences (e.g., a, aa, aba, abaa, ...), and probe the black-box system by resetting

it between sequences. With a series of input sequences, a hypothesis FSM consistent with

input-output pairs seen so far is built. This stage is called the hypothesis construction phase,

and the queries generated in this phase are called membership queries. The learner itera-

tively refines the hypothesis FSM until it is complete (i.e., the set of probing sequences cover

the state space of the hypothesis). After the hypothesis FSM is consistent and complete,

the learner moves on to the model validation phase, where it queries an equivalence oracle,

which checks whether the inferred FSM is identical to the black-box system and provides a

counterexample if they are not. If the oracle reports that the hypothesis is identical to the

black-box system, the algorithm terminates. Otherwise, the learner uses the counterexample

to further refine the hypothesis. This process repeats until the oracle reports no counterex-

amples. In real scenarios, the existence of an oracle is often not feasible. However, the lack

of a deterministic oracle can be approximated with a series of membership queries cleverly

produced for this purpose [  68 ].

5.2 Overview

In this section, we discuss the threat model, challenges, and a high-level description of

BLEDiff.

110



5.2.1 Scope of Analysis

Our analysis covers the security-critical layers of the host and controller of the BLE pro-

tocol. Particularly, we study interactions in the Link Layer (LL), Security Manager Protocol

(SMP), Logical Link Control, and Adaptation Protocol (L2CAP). These layers manage the

most critical security procedures, such as pairing, bonding, encryption, encryption pause

and authentication. Our approach BLEDiff also enables the analysis of all four association

methods (just works, numeric comparison, passkey entry, out-of-band) and different pairing

procedures (legacy and secure connections) associated with different I/O capabilities. Last

but not the least, since security-related protocol behavior is identical in both BLE centrals

and peripherals and BLE peripherals are more pervasive than BLE centrals [  82 ], this work

focuses on noncompliance checking for BLE peripheral implementations only.

5.2.2 Threat Model

We consider the communication channels between the central and the peripheral sub-

jected to adversarial influence. Our attacker model follows the one defined by previous

works [  7 ,  18 ,  19 ,  30 ] and comprises either a passive or an active attacker that differs in capa-

bilities and restrictions. The passive attacker can observe arbitrary communication between

the central and the peripheral. The active attacker acts as a central and can additionally

intercept, replay, modify, drop, or delay messages, without knowing the key material of

devices not owned by the attacker. Also, the adversary cannot replace the firmware of the

peripheral. Since BLE is a short-range communication protocol, we assume that the distance

between the adversary and the peripheral is within the BLE range.

5.2.3 Problem and Solution Outline

For a black-box BLE protocol implementation B of a BLE-enabled smartphone, devel-

opment board, IoT device, BLEDiff aims to find input sequences ∆i = σ1σ2σ3 . . . σj . . . σm

where σj ∈ Σ for which the corresponding output sequences does not follow the one provided

by the standards. The first challenge for solving this problem for BLE devices is to automat-

111



BLE implementations

... 


Deviating 

sequence

FSM
inference

FSM equivalence
checker

Figure 5.1. Modules of BLEDiff

ically extract the behavioral abstraction (e.g., FSM) of a protocol implementation. Since

the reference FSM of BLE protocol is not present yet and is hard to manually construct, the

second challenge is to devise an approach for identifying diverse noncompliant behavior in

the extracted implementation B without having access to the reference FSM.

To address the first challenge, BLEDiff extracts an approximate FSM (Mj) for each BLE

implementation Bj using active automata learning approach. To resolve the second challenge,

BLEDiff leverages the access to multiple BLE implementations, and for each pair of extracted

FSM Mj and Mk, find input sequences of the form ∆i such that for ∆i, both Mj and Mk

generate different output sequences. The output of BLEDiff is ∆i which induces the deviant

behavior.

5.2.4 Challenges of Designing BLEDiff

BLEDiff, as shown in Figure  5.1 , works with two main modules: the FSM inference

module and the FSM equivalence checker. The challenges of BLEDiff, therefore, can be

grouped into two broad categories: (i) learning the FSM of a diverse set of BLE protocol

implementations; (ii) identifying noncompliance from the learned FSMs.

Learning the BLE FSM of an implementation

For learning the FSM of a BLE implementation, we use an active automata learning

approach. However, effectively applying active automata learning for BLE protocol imple-

112



mentations requires solving some non-trivial challenges. In the following, we discuss these

challenges and the insights on addressing the challenges.

(C1) Scalability. Automata learning typically runs into severe scalability issues, partic-

ularly when the input/output alphabet size is large. Although this is not new, automata

learning with Over-The-Air (OTA) queries and responses makes the scalability issue worse

due to the highly unreliable nature of the wireless communication medium. This actually

warrants running the same query multiple times to meet sufficient confidence in learning,

and thus takes several days or months to extract an FSM. In case of BLE, this problem is

critical due to the following reasons. First, the BLE protocol has different security proce-

dures (secure connections, legacy pairing) based on the device’s capabilities. It is essential to

explore all the security procedures as it has already been shown that secure or legacy pair-

ings can affect each other and cause severe security issues [  7 ,  83 ]. Second, the BLE security

procedures are distributed over multiple layers. For instance, pairing and bonding are part of

the Security Manager Protocol (SMP), whereas encryption and encryption pause procedures

are part of the Link Layer (LL) protocol. Exploring all critical security procedures necessi-

tates the scope of BLEDiff to be tremendously large compared to previously tested protocols.

Although previous works [  39 ,  70 ] have adopted techniques such as caching and adding con-

straints, however, these are not enough to handle the scalability of BLE automata learning.

Insights on addressing C1: For addressing this important problem related to scalability,

instead of extracting one FSM, BLEDiff utilizes the idea of a divide-and-conquer approach.

In the case of BLE, applying a divide-and-conquer approach for FSM learning ensues the

challenge of dividing the protocol in such a way that, later on, they can be merged together

systematically. We divide the implementation space into three distinct sub-protocols: LL,

SMP, and reconnection procedures. BLEDiff learns the FSM for each of them separately.

The critical insight behind this divide is that one sub-protocol does not induce any change

to the state machine of the other sub-protocols i.e., the FSMs do not react instantaneously.

Now the next critical task is to merge the inferred FSMs together. To solve this challenge,

an idea can be to perform a cross-product-based cascade composition [  85 ]. However, that

will result in a large FSM, which is not necessarily optimized. As the completion of a sub-

protocol enables the execution of the next sub-protocol, we can detect the states where the

113



different layer procedures are completed (e.g., LL procedures complete and SMP procedures

start when the device responds with a PairResp). Coupled with this insight, we can do a

sequential merging for the FSMs, which entails a minimal but complete FSM of the large

protocol implementation.

(C2) Intertwined BLE protocol is not suitable for designing a mapper. Another

major challenge for applying active automata learning in the context of BLE protocol state

machines involves developing BLE specific mapper. The mapper facilitates communication

between the learner and the BLE device. It needs to convert the abstract input symbols in

the membership queries to concrete OTA packets and send them to the BLE device. In the

same vein, it also needs to decode the response from the BLE device and convert it back to

an abstract output symbol comprehensible to the learner. Developing such a BLE-specific

mapper is challenging because protocol layers are intertwined and have strong temporal cor-

relations among their operations. In our case, following a divide-and-conquer approach, we

need to develop three separate mappers that can operate independently from the logic of

the other protocol layers.

Insights on Addressing C2: We have developed three BLE-specific mappers that can set

the protocol to the required state, and transparently send and receive messages based on the

direction of the learner. The mapper can handle complex multi-level, stateful interactions

of the BLE protocol.

(C3) Standard-compliant non-determinism in link layer procedures. Unlike BLE’s

other layers’ procedures that are only triggered by a central, the procedures for central-

peripheral connection setup at the link layer, such as feature, and version requests, can be

triggered by both central and peripheral without following any strict ordering as specified by

the standard. As a result, the order of the origination of such procedures at the link layer is

implementation dependent. If usual model learning is applied here, due to this protocol de-

sign, this will create spurious deviations while comparing two implementations even though

none of them actually deviate from the specification.

Insights on addressing C3: We design our LL mapper differently from all the previous

works [  39 ,  59 ,  64 ]. The high-level idea is to abstract the peripheral-triggered request mes-

sages from the learner (shown in Figure  5.3 ). Concretely, whenever for an input request,

114



the mapper receives a peripheral-generated link layer request as output, the mapper takes

the following steps: (i) it sends a response to the peripheral internally without notifying

the learner about the output; (ii) waits for the response of previously send request; (iii)

whenever it receives the response for the previous input request, the response is passed to

the learner. Thus the mapper completely abstracts the peripheral-triggered LL requests and

let the learner learn a consistent FSM of the peripheral.

(C4) BLE random addressing and human interaction affect automation. For

automata learning, the learner needs to run a significant number of OTA messages to the

SUL. Each time a query is run, the device needs to be reset. But resetting a device also

changes the MAC address of a device, if a random address is used by a device to protect its

privacy. On the other hand, depending on the association model used (e.g., passkey entry

or numeric value comparison), human interaction may be required in the pairing procedure.

These become a challenge for building a fully automated FSM learning system.

Insights on addressing C4: We design a fully automated procedure to identify the chang-

ing random MAC address of the device. To learn the address, we design a probing and

set-subtraction method where the learner first probes for a time period T1 to get a set of

available BLE devices A. The learner then turns on the device under test and probes for

another time period T2 (T1 and T2 are non-overlapping) to get a set of available BLE devices

B. The learner obtains the address of the target device by computing a set subtraction

B − A. For addressing human interactions required during pairing procedures, the learner

simulates taps or keyboard inputs when prompted.

Identifying noncompliance from FSMs

Once we have extracted the protocol state machines of the BLE implementations under

test, we need to find noncompliance instances. This would have been simpler if a reference

FSM of the protocol was available. However, in the case of BLE, this poses a challenge

as there is no reference FSM available from the specifications [  14 ]. To resolve this, we use

the idea of pairwise differential testing of protocol state machines extracted from different

implementations to identify deviant behavior inducing input sequences. We use these input

115



sequences as a proxy for identifying noncompliant behavior. Another major challenge for

FSM comparison is how to automatically identify not only one but many diverse deviant

behavior inducing input sequences. Existing equivalence checking approaches [  86 ] are in-

sufficient for our purpose as they neither have the notion of diversity nor the capability to

provide multiple deviant behavior inducing input sequences.

Insight on addressing the challenge. To resolve this challenge, we reduce the problem

of equivalence checking to a model-checking problem of a safety property. We pose a series

of model-checking queries, one for each pair of distinct output symbols. However, checking

the safety property in a model usually returns the same deviant trace, which in most cases

is the shortest one. To find diverse deviations, we need to define a way to modify the FSM

so that we can get different deviations. For this, a recent work DIKEUE [  64 ] proposes the

idea of elimination-based model modification, where the transition that causes the deviation

is eliminated from the model. This has a critical limitation as eliminating the transitions

makes the FSMs disconnected and hinders the exploration of deviant behavior inducing

input sequences deep into the FSMs, which is highly desirable in finding noncompliance in

protocol implementations. To alleviate this, we adopt a refinement based model modification,

where instead of removing the transition, we refine the transition in one of the FSMs under

consideration by changing that transition’s output to that of the other FSM so that two FSMs

become equivalent up to that transition. Thus the same deviation will not be generated by

the model checker if run again. This refinement is carried out until there are no more

deviations left and both the FSMs are equivalent based on the posed safety property.

5.3 Detailed Design of BLEDiff

5.3.1 Divide and Conquer Based FSM Learning

Due to the BLE protocol consisting of multiple layers and numerous procedures, it is

extremely challenging to infer the whole FSM of the BLE implementation. Essentially, if

all input/output symbols of both layers are used at once, it runs into state space explosion

and takes an unreasonable time to infer the FSM. To resolve this, BLEDiff takes a divide-

and-conquer approach to infer FSMs separately. In the divide phase, the protocol is split

116



into three parts, and FSM for each part is inferred. In the conquering phase, the FSMs are

merged together to create the large FSM of the protocol implementation.

Divide Phase

In this phase, following our insight of creating non-instantaneously reacting FSMs, we

divide the protocol into three separate parts (i) Link Layer Control Protocol; (ii) Security

Manager Protocol (SMP); (iii) BLE reconnection, and learn FSMs for them separately.

Alphabet set selection. The first decision for model learning is to select the initial al-

phabet set, i.e., the set of input and output symbols. The number of input symbols relies

on the kinds of considered protocol messages. Once the input symbols are selected, then

the output symbols are obtained from the protocol specification. In order to reason about

security-critical behavior, we include several predicates of an input symbol. More elaborately,

we employ (i) field-level predicates of an input/output message by applying different opera-

tions, including changing the value of a field either to zero or to the max, and (ii) packet-level

predicates, e.g., changing an encrypted packet to plaintext. We apply packet-level predicates

to all possible encrypted packets and field-level predicates to only security-sensitive fields,

e.g., public keys, confirmation, interval, and timeout values. Note that each predicate applied

to a symbol introduces a new symbol. Such a packet- and field-level predicate mechanism

allows us to minimize the total number of input/output symbols. The list of all input/output

symbols for all three parts of the protocol is shown in Table  5.1 in the Appendix.

Termination. Termination is a critical issue for model learning. The termination strategy

should provide a balance between termination and coverage. As we are employing a divide-

and-conquer approach, we have to make sure each FSM reaches the connected state before

moving on to the next FSM. For example, the FSM of the SMP procedure starts after the

LL’s FSM completes the link layer connection. We can detect the states where the link layer

control procedure is completed based on the output symbols. The link layer procedure is

completed when a PairReq message is responded with a PairResp. Similarly, the SMP proce-

dures are completed with a DHKeyCheckSend responded with DHKeyCheckRecv, and finally, the

reconnection is completed when the encryption starts, i.e., the StartEncResp from central is

117



Table 5.1. : List of input, adversarial and output symbols. In case there is a timeout the default
output symbol is null_action

Message Input Symbol Adversarial Symbols Output Symbols (Λ)
Link Layer Control Protocol

Feature Request FeatureReq FeatureResp
Exchange MTU Request MTUReq MTUResp
Length Request LenReq LenResp
Read by Group Type
Request

ReadType-
Req

ReadTypeResp

Connection Request ConReq ConReqIntervalZero, ConReqTimeoutZero
Version Request VersionReq VersionReqMaxLen VersionResp

Security Manager Protocol (SMP)
Pairing Request (SC)
(NoInput NoOutput)

PairReq PairReqKeyZero, PairReqKeyMax PairResp
Pairing Request (SC)
(Display Yes/No)

PairReq PairResp
Pairing Request (SC)
(Keyboard Display)

PairReq PairResp
Pairing Request
(Legacy) (NoInput
NoOutput)

PairReqLe-
gacy

PairResp

Pairing Request
(Legacy) (Keyboard
Display)

PairReqLe-
gacy

PairResp

Pairing Request
(Legacy) (Display
Yes/No)

PairReqLe-
gacy

PairResp

Pairing Request (OOB) PairRe-
qOOB

PairResp

Public Key Exchange PublicKey-
Send

PublicInvalidKeySend PublicKeyRecv

Pair Confirm PairCon-
firmSend

PairConfirmWrongValueSend PairConfirmRecv

Pair Random PairRan-
domSend

PairRandomRecv

Diffie-Hellman Key
Check

DHKey-
CheckSend

DHKeyCheckInvalidSend DHKeyCheckRecv

Reconnection
Encryption Request EncReq EncResp, StartEncReq
Start Encryption Re-
sponse

StartEn-
cResp

StartEncRespPlainText StartEncResp

Encryption Pause Re-
quest

PauseEn-
cReq

PauseEncReqPlainText PauseEncResp

Encryption Pause Re-
sponse

PauseEn-
cResp

PauseEncRespPlainText

responded with a StartEncResp from the peripheral.We employ this domain knowledge, and as

soon as the respective FSM gets these output symbols and completes the layers connection,

we terminate the learning for that FSM. We utilize this termination strategy for merging

the FSMs in the conquering phase of FSM learning (discussed in  5.3.1 ).

Separate mappers for each part. One of the crucial components of FSM inference

module is the design of the mapper. The mapper acts as a glue between the SUL and the

118



LEARNER MAPPER
SUL

PairRequest

PairResponse

Packet(PairRequest)

Packet(PairResponse)

Figure 5.2. Mapper for BLE Learning Module

learner (shown in Figure  5.2 ) and builds a reliable interface from the learner to each protocol

layer. For each input symbol from the learner, the mapper waits a pre-defined time for an

output symbol to be received from the SUL. In case of a timeout, a pre-defined null_action

symbol is returned to the learner by the mapper. In our case, we design three mappers for

each part of the protocol. This is necessary as each mapper has separate initial states and

some unique challenges, which we discuss in detail below.

¬ Link Layer (LL) Mapper. For LL inference, the initial state is set to the beginning

of the link layer procedures. The LL protocol messages are selected as input symbols, and

the corresponding responses as output symbols. However, as discussed earlier, there can be

inconsistencies in the inferred LL FSM due to the protocol design. This is due to the fact

that the same procedure can be triggered by both the peripheral and the central. This can

create spurious deviations, i.e., false positives. To resolve this, the mapper abstracts out

SUL-originated LL messages and only pass on the response messages to the learner. For

instance, as shown in Figure  5.3 , in case the mapper receives an SUL-generated message

LenReq (red colored), it automatically responds with a LenResp. However, this LenReq is not

passed on to the learner. The mapper needs to respond to this LenReq internally because, in

some implementations, if the response is not received, the device does not respond to future

messages. Through this design, the mapper facilitates the learner to learn a consistent FSM

for all the devices and removes the possibility of false positives, i.e., a deviation that is

neither an implementation issue, nor an issue with the protocol standards.

119



Pkt(LenResp)

LEARNER
LL

MAPPER
LenReq
LenResp
LenReq Pkt(LenReq)

Pkt(LenResp)
Pkt(LenReq)
Pkt(LenReq)
Pkt(LenResp)LenResp SUL

Figure 5.3. Link Layer protocol mapper

­ SMP Layer Mapper. As the name suggests, the security manager protocol is the most im-

portant layer for BLE implementation with respect to security. For the SMP layer inference,

the initial state of the learner is set to the beginning of the SMP. Three critical security

operations, pairing, bonding, and authentication, are covered here. To cover all possible

association, pairing and authentication modes, we include all possible I/O capabilities (no

input no output, display yes/no, keyboard). To automate the learning process, we fix the

input to all zeroes in cases where an input is required from the central. Similarly, on the

peripheral side, we automate the process to input the required values to complete all the

SMP procedures. More on this is discussed in the following subsection on handling reset,

human interaction, and BLE random addressing.

® Reconnection Mapper. For this scenario, we move the initial state to the reconnection

state, i.e., both devices have already paired and bonded and they try to reconnect with each

other. To simulate the reconnection scenario, the mapper first pairs and bonds with the

peripheral and then intentionally drops the connection to create the scenario of reconnec-

tion. Reconnection is critical to test device authentication, encryption and encryption pause

procedures. To achieve this, we design our mapper to complete both link layer and SMP

procedures and go through pairing and bonding. After bonding, the connection is forcefully

disconnected and connected again to test the reconnection procedures.

Applying existing optimizations. Apart from this, we also include the previous approach

to improve scalability. One of the known and most popular approaches to improving the

scalability of model learning is query caching. In the model validation stage, the learner can

generate the same query, which has already been resolved in the hypothesis construction

120



phase. To avoid expensive OTA testing of these duplicate queries in the SUL, the queries

from the hypothesis construction phase are cached in the database [ 70 ,  71 ]. In the model

validation stage, if the same query is found in the cache, the query is not run OTA again,

cutting down the overhead and time for repeated queries. Another approach is to minimize

the time-consuming OTA transmissions by adding multiple constraints as invariants [  39 ,

 64 ]. For this, the mapper is provisioned with a set of invariants. In case the invariants are

violated, the query is not sent OTA, and a pre-designated symbol is returned. For BLEDiff

we use invariants such as: ¶ A connection has to be established before sending any other

symbol; · After disconnection and before establishing a connection, all the symbols will be

ignored; ¸ No security protected messages will be sent without establishing the necessary

keys. A prerequisite of model learning is for the SUL to be deterministic, which is not

always possible due to OTA communication. To maintain such consistency, we leverage

existing insight from prior works [  69 ,  71 ] and run the same query twice. In case the output

for both the queries are different, the query is run once more, and a majority voting scheme

is applied to the results to store the correct response.

Modified BLE stack. We modify the open-sourced BLE stack provided by Swyen-

Tooth [ 7 ] to develop the components of a central BLE device. We remove the original FSM

implementation used for the SwyenTooth fuzzer and create direct interfaces to convert pack-

ets to and from the learner. We introduce the LL Encryption Pause procedure, which was

missing from the open-source implementation. Furthermore, SwyenTooth’s implementation

is not able to communicate with devices that have Asynchronous Connection-Less (ACL)

fragmentation. This is a critical limitation for SwyenTooth to work with smartphones hav-

ing mandatory ACL fragmentation. To resolve this, we implement ACL fragmentation to be

able to analyze all the possible devices.

Handling reset, human interaction, and BLE random addressing. For model

learning, the device should be transparently reset to the known initial state. In our case, it

means setting to the corresponding initial states for the corresponding mapper. Furthermore,

as we are handling all the possible I/O capabilities, we are required to automate some of the

user inputs. For instance, when both the devices’ I/O capability is keyboard display, then in

the case of LE legacy pairing, the devices use the passkey entry association method. Here,

121



the central sends a passkey, and the peripheral needs to input this passkey. In our case, we

automate this process by setting the passkey to all zero (0x000000) throughout the learning

process. These automation schemes require significant engineering efforts. To achieve this,

for development boards, we reset the board using software reset and set the associate passkey

through UI automation, for Android smartphones, we use ADB and key press simulation,

and for iPhones, we use IOS13-SimulateTouch [ 87 ] to simulate touch events. After the reset is

complete, we bring the corresponding mapper to the respective initial state for learning. For

instance, for the SMP learning, we complete all the link layer connections. For reconnection,

we complete the pairing and bonding procedures. One of the critical challenges for most BLE

devices is that after a certain threshold time, and in case of smartphones, after each time

BLE is turned on/off, the BLE address is changed. This is challenging as we need to create

a fully automatic system. To resolve this, before running each query, we identify the new

BLE address by following our probing and set subtraction scheme discussed in Section  5.2 .

Furthermore, in case of smartphones, different prompts pop up during the pairing procedure

for different I/O capabilities, and we automatically handle them using key press simulation.

Conquer Phase

The task of conquer phase is to merge the three separate FSMs of the implementation

to create the large protocol FSM which allows the equivalence checker to find an end-to-

end trace of deviant behavior, i.e., from entry-point of BLE protocol to where deviation

occurs. Such a trace can be readily converted to a concrete test case for further testing.

A straightforward way to merge FSMs would be performing a cross-product-based cascade

composition. But this would create an unnecessarily large FSM. As the task here is to create

a merged FSM that maintains the scalability of the divided FSMs, we design a sequential

merging for the FSMs, which entails a minimal FSM of the large BLE implementation.

Sequential FSM merging. As the inferred FSMs do not react instantaneously and

coupled with our choice of termination (discussed in  5.3.1 ), we can detect the corresponding

terminating states in the FSMs and therefore, merge the FSMs sequentially. The terminating

states can be detected based on the output symbols. For example, the link layer procedure is

122



S0 S1 S2 S3 S4

(i) simplified FSM of Samsung Galaxy S6

S0 S1 S2
T22: EncPausePlain/


EncPauseResp S3 S4

(ii) simplified FSM of DA14531 (Dialog)

T23: PairReq/

PairResp

T21: ConReq/

Null

T11: ConReq/

Null

T25: EncPausePlain/

EncPauseResp

T12: EncPausePlain/

Null

T15: EncPausePlain/

Null

T13: PairReq/

PairResp S5

S5

T14: PublicKeySend/

PublicKeyRecv







T24: PublicKeySend/

PublicKeyRecv







Figure 5.4. FSM equivalence checker

completed when PairReq responds with a PairResp. The SMP procedures are completed when

DHKeyCheckSend responds with DHKeyCheckRecv. Upon detecting the terminating states, we

connect the terminating state of the first FSM to the initial state of the second FSM (which

we automatically get in the FSM). Here we formally define the conquered FSM with the

separate component FSMs.

Definition 5.3.1 (Merging of BLE FSMs). Let us assume the states where LL procedures

are completed as SLLComp
, and SMP procedures are completed as SLLSMP

. Let us also assume

M = (S,S0,Ψ, Σ, Λ, Ω) as the merged FSM and MLL = (SLL,S0LL
,ΨLL, ΣLL, ΛLL, ΩLL),

MSMP = (SSMP ,S0SMP
,ΨSMP , ΣSMP , ΛSMP , ΩSMP ), MRe = (SRe,S0Re ,ΨRe, ΣRe, ΛRe, ΩRe),

are the LL layer, SMP and reconnection FSMs, respectively. Following our discussion of

state merging, we define M as: S = SLL ∪SSMP ∪SRe, S0 = S0LL
, Σ = ΣLL ∪ΣSMP ∪ΣRe,

Λ = ΛLL∪ΛSMP∪ΛRe, Ψ = ΨLL∪ΨSMP∪ΨRe∪(SLLComp
×ε→ S0SMP

)∪(SSMPComp
×ε→ S0Re)

, Ω = ΩLL ∪ ΩSMP ∪ΨRe ∪ (SLLComp
× ε→ S0SMP

) ∪ (SSMPComp
× ε→ S0Re)

5.3.2 BLE Checking Module

For FSM equivalence checker, we reduce the problem to a model checking problem with

a safety property.

123



Reduction to Model Checking

Suppose the two FSMs under differential test are denoted by M1 and M2. The input

messages to these two FSMs are denoted by I1 and I2 and output messages as O1 and O2,

respectively. Using M1 and M2 we then construct a model M , where M1 and M2 are sub-

components. M will take a single symbolic input I, which will be fed to both I1 and I2, in

other words, the same input is fed to both M1 and M2. M will have two outputs O1 and

O2, essentially the outputs of M1 and M2, respectively. The model M can be viewed as a

parallel composition of both M1 and M2. Then for each pair of different output symbols, we

pose a query that Are there any same input sequence which generates this different output?

The model checker returns the sequence if there are any such input sequences. This will be

the deviating input for which the same input sequence generates different output sequences.

As we are aiming to find as many deviating traces as possible, we run the model checker

again. However, in most of the cases, the model checker will return the same input trace.

To resolve this, we need to modify our model.

Problem with elimination-based model modification. In previous work [ 64 ], the

authors use the idea of a elimination-based model modification by removing the deviation

transition from the models. Though promising at first glance, this idea raises some issues.

To illustrate, let us look into the two FSMs of Figure  5.4 . With the model checking of a

safety property, the two different outputs of the same input symbol PauseEncReqPlainText will

be identified as (PauseEncResp, null_action). To answer what is the input deviating sequence

is, there is a high probability the model checker will return S0→ S1→ S2 and the deviating

transition is T12 and T22. Now, if we follow elimination-based model modification, then both

the transitions will be removed, and model checking query will be run again. Due to the

transition removal, part of the FSM becomes unreachable, and the model checker returns

no more deviating traces, which is not true, as evident in Figure  5.4 . The other and more

interesting deviation is S0 → S1 → S2 → S3 → S4 → S5, which would be left undetected

by the previous elimination-based approach.

Refinement based model modification. BLEDiff takes a different approach, by instead

of eliminating the transition, it refines the transition in one of the FSMs under consideration

124



by changing that transition’s output to that of the other FSM so that two FSMs become

equivalent up to that transition. Thus the same deviation will not be generated by the model

checker if run again. Continuing with our example of Figure  5.4 , we modify the output of T22

as null_action and run the model checker safety property again. As the FSMs are identical

up to this point, it generates a more in-depth deviation between T15 and T25. One thing to

be noted here, our transition refinement does not affect the soundness of BLEDiff. Our goal

is to find the same input traces that produces different outputs, and a deviating trace can

deviate in multiple positions.

5.4 Implementation

The BLE Learning module is implemented on top of LearnLib [  75 ]. For the learning

algorithm, we use TTT [  66 ] as it requires fewer queries compared to other algorithms [ 76 ],

and for conformance testing, we use Wp-method [  68 ]. We specify TTT as the learning algo-

rithm and Wp-method as the validation approach in Learnlib. Learnlib is an abstract state

learning implementation that requires a custom interface to the SUL. LearnLib sends ab-

stract message sequences as queries. These are translated to BLE messages by the mapper.

Similarly, the responses from the SUL are translated back to an abstract form by the mapper

and forwarded to LearnLib. We implement our mappers in Java. We modify the implemen-

tation developed by SwyenTooth [ 7 ] as part of their fuzzer to implement our modified central

implementation. We replace the LL, SMP, and ATT implementations of the SwyenTooth

stack with our modified stack and create interfaces between the stack and the mapper to

forward LL, SMP, and ATT packets in both directions. We also introduce additional code to

handle reconnections and ACL fragmentation of BLE devices. We use nRF52840 Dongle [  88 ]

to send/receive raw link layer packets to and from the peripheral OTA. The FSM merger is

implemented in Python, which identifies final states from dot representations of the inferred

FSMs and merges them accordingly to create the large FSM of the implementation. The

BLE checking module is developed using the NuXmv model checker [  43 ] and a python 2.7

script as the wrapper. LearnLib outputs the FSMs as dot files. We transpile dot FSMs to

125



the SMV specification language. Table  5.2 summarizes our efforts in modifying the tools

and creating new components for BLEDiff.

Table 5.2. : Additions/modifications to the tools used in BLEDiff.
Component Tools Lines of Code

Learner LearnLib [ 75 ] 2157 (Java)
Mapper – 2288 (Java)

Modified BLE stack SwyenTooth [  7 ] 4488 (Python 2.7) & 15215 (C)
Device resetter – 965 (Python 2.7)
FSM Merger – 302 (Python 3.10)

FSM Equivalence Checker – 2240 (Python 2.7)

5.5 Evaluation

To evaluate the performance of BLEDiff, we aim to answer the following research ques-

tions: RQ1. How effective is BLEDiff in finding deviant behaviors in different BLE im-

plementations? RQ2. How does BLEDiff perform compared to existing baseline testing

approaches, i.e., BLE conformance testing suites [  35 ] and previous works on BLE testing?

RQ3. What is the effectiveness and performance of BLEDiff components: FSM inference

module and FSM equivalence checker?

The experimental setup and devices their vendors and BLE versions are described in

section  5.6 and Table  5.3 in the Appendix respectively.

5.6 Evaluation Setup.

For all the evaluations RQ1 - RQ3, we use 3 laptops with Intel i7-3750QCM CPU

and 32 GB DDR3 RAM. For the FSM inference module we use three nRF52840 Dongles to

send/receive raw link layer packets. All the experiments are done in a laboratory environment

with our own BLE devices without affecting any other BLE devices nearby.

5.6.1 RQ1. Deviations, Attacks, Impacts

BLEDiff identifies deviations between different BLE implementations. However, we ob-

serve that multiple deviations have the same root cause. We define unique deviant behaviors

as the ones having unique root causes. For example, for two deviations D1 and D2 with two

root causes R1 and R2, if R1 6= R2, we consider D1 and D2 as unique deviations. Otherwise,

126



Central

Scan request/response
Connection request

Pairing request/response (no SC)

Peripheral

AdvInd

...
Prompt for pass key

entry


Encryption request/response

Start Encryption request
Start Encryption response

Pairing and bonding completed without
passkey 

Pairing Confirm

Pairing Random

Key Distribution

Figure 5.5. Passkey entry bypass

Central

Scan request/response
Connection request

Pairing request/response (OOB)

Peripheral

AdvInd

...

Public Key

Check Confirm from

OOB not matched


Pairing should be failed here

Pairing Random

DHKey Check
Encryption request/response

Start Encryption request
Start Encryption response

Connection encrypted bypassing
OOB authentication

Pairing Random

Figure 5.6. Out-of-Band pairing bypass

127



Table 5.3. : List of tested devices. Fluoride [ 89 ] and iOS-BLE-Stack [ 90 ] are the BLE stacks for
Android and iPhone respectively

Development Boards
Board Vendor Sample Code BLE Ver.
DA14531 Dialog ble_app_security 5.1
NRF52-DK Nordic ble_app_multirole_lesc 5
NRF5340-DK Nordic ble_app_multirole_lesc 5.2
CYBLE-416045-
EVAL Cypress BLE_4.2_DataLength_Security

_Privacy01 4.2
CY8CPROTO-063-
BLE Cypress BLE_Pulse_Oximeter_Sensor 5.0
CC2640R2 Texas In. simple_peripheral_app 5.0
STEVAL-IDB008V2 STM security_peripheral 5.0
ESP32-C3 Espressif ble_ancs 5.0
DT100112 Microchip PIC_LightBlue_Explorer_Demo 4.2

Devices
Device Vendor OS/Stack BLE Ver.
Nexus 6 Motorola Android 7.1.1 4.2
Galaxy S6 Samsung Android 8.0 4.2
Desire 10 Lifestyle HTC Android 6.0 4.2
Galaxy S8+ Samsung Android 9.0 5.0
Pixel 3 XL Google Android 11 5.0
Pixel 4a Google Android 11 5.0
Y5 Prime Huawei Android 8.1 4.2
8X Honor Android 8.1 4.2
Mi A1 Xiaomi Android 9.0 4.2
iPhone XS Apple iOS 12 5.0
Galaxy A21 Samsung Android 10 5.0
G Power Motorola Android 10 5.0
7T OnePlus Android 10 5.0
8 OnePlus Android 12 5.1
Laptop Lenovo Ubuntu 18.04 Bluez 5.48
Laptop Lenovo Ubuntu 20.04 Bluez 5.53

the deviations are not considered unique. We manually identify root cause of the deviations

by consulting with the 3GPP specifications. Based on the root causes, we identify unique

deviant behaviors from all the deviant behaviors. The root cause can be boiled down to one

of the two reasons: either the implementation deviating from the standards or the standard

has ambiguities due to underspecification. It took around 2 days of human effort to identify

all unique deviations from all the deviant behaviors found in 25 devices. In total, BLEDiff

has identified 13 unique deviations in the 25 BLE implementations tested. Among them, 10

are exploitable attacks, 2 are potential interoperability issues, and for 1 the impact is still

not evident. We define interoperability issues as deviations that can hinder the communi-

cation between two devices and cause re-pairing. Upon root cause analysis, 11 deviations

were found due to the implementations deviating from the standards, and 2 were due to

underspecification in the standards. The identified issues, their impacts, and the root causes

128



Table 5.4. : Attacks to device mapping

D
1

N
ex

us
6

D
2

D
A

14
53

1

D
3

C
C

26
40

R
2

D
4

N
R

F5
34

0-
D

K

D
5

N
R

F5
2-

D
K

D
6

C
Y

B
LE

-4
16

04
5

D
7

C
Y

8C
P

R
O

T
O

-0
63

-B
LE

D
8

ST
E

VA
L-

ID
B

00
8V

2

D
9

D
T

10
01

12

D
10

E
SP

32
-C

3

D
11

G
al

ax
y

S6

D
12

D
es

ire
10

Li
fe

st
yl

e

D
13

G
al

ax
y

S8
+

D
14

P
ix

el
3X

L

D
15

P
ix

el
4a

D
16

Y
5

P
rim

e

D
17

8X

D
18

M
iA

1

D
19

iP
ho

ne
X

S

D
20

G
al

ax
y

A
21

D
21

G
Po

w
er

D
22

7T

D
23

O
ne

P
lu

s
8

D
24

La
pt

op
(1

8.
04

)

D
25

La
pt

op
(2

0.
04

)

E1 3 3 3 3 3 3 3 3 3 3 3 3 3
E2 3 3 3 3 3 3
E3 3
E4 3
E5 3 3
E6 3 3 3 3 3 3
E7 3 3 3 3 3
E8 3
E9 3

E10 3 3
I1 3 3 3 3 3 3 3 3 3
I2 3 3 3 3 3 3 3
O1 3

are shown in Table  5.8 . We characterize the impacts into three types: security bypass, crash,

and Denial-of-Service (DoS). We categorize crash as a separate class because the issues that

cause the device to crash and become unresponsive require manual intervention to recover

and can be seen as an enhanced form of DoS. The attacks to device mapping are shown in

Table  5.4 in the Appendix.

Attacks

(E1) Passkey Entry Bypass. mong the four association methods, passkey entry is consid-

ered secure against Man-in-the-Middle (MitM) attacks. In this method, the initiating device

displays a randomly generated value, which the responding device has to enter. However,

we have found 13 implementations where the device completes pairing and bonding without

needing to enter the passkey in the device and therefore effectively nullifying all the security

protection against MitM attacks. The steps of the deviation are shown in Figure  5.5 . In

regular workflows of the protocol, after the central sends a PairConfirmSend message, a prompt

is shown on the peripheral device for passkey entry. In LE legacy pairing, the peripheral

129



Table 5.5. : Timing comparison. Bold = BLEDiff, non-bold = DIKEUE

N
ex

us
6

D
A

14
53

1

C
C

26
40

R
2

N
R

F
53

40
-D

K

N
R

F
52

-D
K

C
Y

B
L

E
-4

16
04

5

C
Y

8C
P

R
O

T
O

-0
63

-B
L

E

ST
E

V
A

L
-I

D
B

00
8V

2

D
T

10
01

12

E
SP

32
-C

3

G
al

ax
y

S6

D
es

ir
e

10
L

if
es

ty
le

G
al

ax
y

S8
+

P
ix

el
3X

L

P
ix

el
4a

Y
5

P
ri

m
e

8X

M
i

A
1

iP
ho

ne
X

S

G
al

ax
y

A
21

G
P

ow
er

7T

O
ne

P
lu

s
8

L
ap

to
p

(1
8.

04
)

L
ap

to
p

(2
0.

04
)

Nexus6 –

23
.5

5

20
.9

3

27
.8

4

26
.8

5

17
.6

4

17
.5

4

19
.3

4

27
.3

23
.6

16
.6

5

18
.2

3

17
.2

9

17
.2

9

18
.4

8

16
.5

23
.5

5

18
.4

8

18
.4

8

16
.5

26
.3

24
.6

19
.5

4

24
.5

19
.6

3

DA14531

4
7

.5
2

–

27
.8

6

46
.9

7

45
.6

7

34
.4

2

33
.4

2

35
.6

2

24
.5

3

23
.6

3

24
.4

25
.8

6

35
.1

0

35
.1

0

34
.0

9

24
.4

19
.8

34
.0

9

34
.0

9

24
.4

37
.5

3

24
.6

3

34
.5

2

26
.6

4

24
.5

4

CC2640R2

3
6

.9
5

4
5

.7 –

26
.2

9

28
.3

1

18
.8

5

17
.5

5

16
.8

8

14
.3

18
.6

4

20
.6

8

21
.9

21
.7

21
.7

20
.1

4

20
.6

8

20
.9

3

20
.1

4

20
.1

4

20
.6

8

23
.4

24
.6

4

16
.7

8

24
.5

2

23
.5

3

NRF5340-
DK

3
8

.3
6

5
6

.1
4

4
5

.6
3

–

21
.2

0

32
.2

9

33
.2

1

35
.2

4

25
.5

3

24
.5

2

29
.3

29
.5

4

32
.6

8

32
.6

8

31
.8

9

29
.3

27
.8

4

31
.8

9

31
.8

9

29
.3

26
.5

5

35
.4

3

31
.1

9

24
.2

29
.6

5

NRF52-DK

3
8

.4

5
5

.1
9

4
4

.5
2

2
5

.4 –

31
.8

31
.9

3

36
.4

2

24
.5

3

26
.6

4

25
.4

3

26
.3

5

32
.8

32
.8

31
.0

6

25
.4

3

26
.8

5

31
.0

6

31
.0

6

25
.4

3

24
.6

4

23
.5

3

32
.8

35
.6

4

29
.6

5

CYBLE-
416045

3
8

.1
7

4
7

.6
2

2
0

.4
1

4
1

.9
1

4
0

.7
1

–

14
.6

4

17
.8

2

24
.4

2

28
.5

3

16
.2

3

17
.3

2

18
.7

6

18
.7

6

19
.5

16
.2

3

17
.6

4

19
.0

5

17
.6

4

16
.2

3

24
.6

5

25
.6

5

12
.5

3

23
.6

4

25
.5

4

CY8CPROTO-
063-BLE 3

9
.2

4
3

.7
1

2
1

.2
9

3
8

.6

3
9

.4
2

1
7

.4 –

16
.4

9

25
.5

4

25
.4

2

18
.4

9

19
.3

2

19
.8

19
.8

20
.2

18
.4

9

17
.5

4

20
.2

20
.2

18
.4

9

23
.5

4

24
.6

4

11
.4

9

37
.6

5

36
.6

4

STEVAL-
IDB008V2

3
9

.4
2

4
5

.6
2

2
1

.4
2

4
1

.9
4

4
0

.6
7

2
2

.6
4

2
3

.6
9

–

26
.7

5

24
.5

4

19
.4

2

21
.3

25
.5

2

24
.5

4

27
.5

4

19
.4

2

19
.3

4

28
.4

35
.3

19
.4

2

25
.2

19
.8

7

16
.8

2

25
.5

3

26
.6

4

DT100112

4
0

.7
2

5
4

.5
6

5
6

.7
8

5
3

.7
4

5
2

.3
9

3
6

.9
3

3
7

.3
4

4
8

.4
3

–

26
.3

9

14
.6

7

16
.8

23
.5

24
.6

26
.5

28
.7

4

29
.7

6

26
.5

2

23
.6

5

26
.7

4

25
.6

3

26
.4

25
.4

3

25
.4

7

28
.3

9

ESP32-C3

2
0

.2
5

3
9

.5
2

4
5

.2
9

5
2

.2

5
9

.2

4
0

.5
2

5
1

.2
9

5
2

.6

5
9

.6 –

24
.5

2

35
.5

2

36
.2

4

25
.6

7

24
.2

6

24
.6

3

24
.2

5

29
.5

5

31
.5

2

25
.6

3

25
.6

2

36
.7

3

29
.6

2

23
.5

2

29
.6

3

Galaxy S6

2
1

.9
8

4
9

.7
2

3
5

.2
5

3
7

.8
3

3
9

.9

3
9

.3
4

3
6

.2
1

3
9

.2

3
4

.6
3

4
5

.6
4

–

21
.6

3

18
.7

6

18
.7

6

19
.4

9

22
.6

5

31
.5

2

19
.4

9

19
.4

9

29
.6

3

26
.6

3

29
.6

3

18
.6

2

29
.5

3

30
.6

3

Desire 10
Lifestyle

2
2

.6
4

4
5

.6
4

3
7

.1
3

3
6

.7
4

3
8

.1
2

3
7

.3
2

3
5

.1
4

3
7

.9

3
5

.6
4

3
5

.5
2

2
2

.4
2

–

20
.2

3

20
.2

3

23
.6

3

24
.6

3

16
.4

19
.6

22
.5

2

22
.5

35
.7

46
.7

22
.6

42
.6

36
.5

Galaxy S8+

3
6

.6
2

5
6

.6
4

2
5

.6
5

4
1

.3
2

4
1

.5
4

2
9

.1
6

2
7

.6
1

5
2

.5

5
3

.6
4

5
3

.6
4

3
6

.5
2

3
4

.4
3

–

32
.5

3

21
.6

3

25
.7

4

31
.4

2

32
.7

4

36
.5

3

28
.6

3

24
.5

4

29
.5

3

24
.6

4

28
.4

6

46
.6

4

Pixel 3XL

3
5

.6
9

5
7

.6
4

3
5

.6
7

4
2

.3
7

4
0

.6

2
9

.5
4

2
9

.6
6

3
2

.3

5
3

.4
4

5
5

.5
3

3
9

.4

3
4

.5
6

4
6

.3 –

42
.3

5

26
.5

3

27
.6

3

27
.6

5

29
.6

3

29
.5

3

23
.5

3

15
.5

3

37
.5

3

35
.6

5

29
.5

6

Pixel 4a

3
5

.5
4

5
3

.7
4

2
4

.3
2

4
0

.3
8

4
2

.5
7

2
7

.2
7

2
8

.2
4

4
0

.5
3

3
9

.6
7

3
4

.4
3

3
6

.5
2

4
5

.5
3

4
2

.6
3

–

24
.3

2

25
.5

3

36
.5

2

37
.7

4

25
.6

3

24
.6

3

24
.6

3

22
.9

37
.6

3

35
.6

3

Y5 Prime

2
1

.9
8

4
9

.7
2

3
5

.2
5

3
7

.8
3

3
9

.9

3
9

.3
4

3
6

.2
1

3
9

.2

3
9

.5
2

2
4

.5
3

5
2

.4

5
3

.6

4
9

.6
3

3
6

.2
2

5
2

.5 –

42
.1

24
.5

2

23
.5

6

32
.6

3

24
.4

2

36
.5

2

24
.5

8

36
.4

2

36
.4

2

8X

4
5

.3
4

2
2

.9

4
5

.9

5
6

.1
4

5
5

.1
9

4
7

.6
2

4
3

.7
1

4
5

.6
2

4
2

.5
2

4
2

.6
3

4
9

.7
2

4
5

.6
4

5
6

.6
4

5
3

.7
4

4
9

.7
2

2
2

.9 –

15
.5

26
.4

39
.5

4

26
.6

3

29
.6

7

26
.6

4

26
.5

3

29
.6

3

Mi A1

3
5

.5
4

5
3

.7
4

2
4

.3
2

4
0

.3
8

4
2

.5
7

2
7

.2
7

2
8

.2
4

2
7

.6
5

2
9

.6
3

3
1

.6
4

3
4

.4
3

3
6

.5
2

3
3

.6
3

4
5

.5
3

5
2

.6
6

5
2

.6
3

6
3

.4 –

12
.4

6

18
.6

4

16
.6

3

15
.7

4

25
.7

4

35
.7

29
.4

3

iPhone XS

3
1

.0
2

5
2

.1
9

2
8

.6
4

4
2

.3
9

4
4

.5
9

2
9

.3
6

2
9

.6
2

4
8

.4
6

4
5

.6
4

5
7

.7
4

3
7

.3
4

3
6

.5
5

3
9

.6
3

4
6

.4
6

4
7

.6
3

4
2

.6
3

3
9

.7
6

4
0

.7
4

–

19
.6

3

20
.5

2

31
.7

3

29
.6

3

36
.5

2

29
.7

4
Galaxy A21

2
1

.9
8

4
9

.7
2

3
5

.2
5

3
7

.8
3

3
9

.9

3
9

.3
4

3
6

.2
1

3
9

.2

4
7

.5
7

4
5

.6
3

6
2

.6
3

4
5

.6
3

5
6

.4
6

5
6

.4
6

4
5

.6
5

6
3

.6
4

5
4

.5
3

3
9

.6
4

2
9

.6
4

–

22
.6

4

27
.7

4

29
.5

3

30
.3

2

43
.5

3

G Power

3
8

.6
2

5
9

.2
9

4
3

.6
5

5
0

.4

3
9

.0
3

4
8

.6
9

2
5

.4
2

2
7

.1

3
6

.8
4

4
0

.2
9

4
4

.5
2

4
4

.8
9

5
4

.4
3

5
2

.5
1

4
4

.4
2

4
3

.2
7

2
9

.7
3

4
6

.4
2

5
3

.1
2

5
2

.1 –

15
.0

3

20
.1

48

15
.1

2

23
.8

5

7T

4
4

.2
8

5
4

.3

4
2

.7
7

4
8

.3

4
6

.0
6

4
7

.0
2

2
4

.7
5

2
6

.3
5

4
1

.5
2

4
4

.1
2

2

3
9

.5
2

4
4

.4
2

4
8

.6
9

1

5
6

.0
1

4
9

.0
1

4
2

.6
4

4
7

.7
7

4
2

.8
7

4
9

.1
2

6

4
5

.7
5

4
9

.1
2

3

–

15
.2

2

13
.3

6

16
.6

9

OnePlus 8

3
9

.5
1

5
7

.5
9

4
7

.9
6

6

3
9

.4
8

4
6

.1
2

2
5

.0
5

2
6

.8

2
4

.8
4

4
2

.1

4
4

.4
5

4
3

.0
9

3
6

.1
4

5
5

.9
3

5
0

.9

4
7

.7
0

4
7

.7
1

4
2

.7
9

4
1

.4
1

4
7

.7
2

4
5

.6
2

4
3

.4
2

2
6

.3
2

–

13
.1

6

19
.7

4

Laptop
(18.04)

4
0

.2
5

5
8

.3
2

4
2

.6
4

4
9

.5

4
8

.6
9

3
2

.6

3
4

.3
4

2
9

.4
1

3
7

.1
8

5
1

.5
3

3
9

.6
8

4
1

.3
3

5
3

.0
1

5
4

.6
6

4
7

.7
2

3
3

.6
7

5
5

.9
6

4
7

.7
4

5
6

.5
3

4
2

.9

4
6

.3
9

2
4

.9
9

3
3

.1
2

–

23
.0

4

Laptop
(20.04) 3

5
.2

5
4

.7
4

3
7

.2
6

5
4

.1
2

5
1

.1
5

3
6

.7
4

4
0

.5
6

3
0

.4
2

4
2

.4
2

4
9

.6

4
0

.2
5

4
0

.7
5

5
0

.8
4

5
2

.8

4
7

.5
6

4
2

.2
5

5
9

.2

4
5

.0
8

4
5

.3
6

4
2

.2
5

4
6

.4

2
5

.3
5

2
5

.7
6

2
7

.0
4

–

130



Table 5.6. : Number of deviant issues comparison. Bold values are for BLEDiff and non-bold
values are for DIKEUE

N
ex

us
6

D
A

14
53

1

C
C

26
40

R
2

N
R

F
53

40
-D

K

N
R

F
52

-D
K

C
Y

B
LE

-4
16

04
5

C
Y

8C
P

R
O

T
O

-0
63

-B
LE

ST
E

VA
L-

ID
B

00
8V

2

D
T

10
01

12

E
SP

32
-C

3

G
al

ax
y

S6

D
es

ir
e

10
Li

fe
st

yl
e

G
al

ax
y

S8
+

P
ix

el
3X

L

P
ix

el
4a

Y
5

P
ri

m
e

8X

M
iA

1

iP
ho

ne
X

S

G
al

ax
y

A
21

G
P

ow
er

7T

O
ne

P
lu

s
8

La
pt

op
(1

8.
04

)

La
pt

op
(2

0.
04

)

Nexus6 – 14 19 25 24 14 14 15 11 18 8 9 15 15 14 8 14 13 14 8 16 14 18 19 16
DA14531 31 – 22 23 23 18 18 18 15 18 14 16 16 17 17 14 19 17 17 14 17 17 18 18 18
CC2640R2 34 43 – 25 25 18 18 18 18 18 19 19 19 21 19 19 19 19 19 19 19 19 18 18 18
NRF5340-
DK

33 24 32 – 9 23 23 23 26 23 24 25 25 23 25 24 24 25 25 24 25 25 23 23 23

NRF52-DK 33 24 32 13 – 23 23 23 13 23 21 21 21 23 23 21 24 23 23 21 25 25 20 23 23
CYBLE-
416045

29 37 25 30 30 – 13 12 14 10 14 15 15 19 17 14 14 17 17 14 23 23 10 12 13

CY8CPROTO-
063-BLE

24 37 29 30 30 21 – 12 16 12 14 14 15 19 17 14 14 14 16 14 17 17 10 14 15

STEVAL-
IDB008V2

27 37 26 30 30 16 15 – 13 15 16 19 15 16 15 14 15 20 15 14 14 12 17 16

DT100112 24 16 32 33 32 31 22 26 – 16 9 10 14 15 9 13 16 9 14 19 16 16 19 18 14
ESP32-C3 25 37 26 30 30 31 29 32 24 – 16 19 18 23 14 15 18 25 42 16 23 15 16 10 13
Galaxy S6 14 30 33 33 24 25 22 25 16 33 – 12 16 16 14 9 10 12 15 23 25 16 15 24 23
Desire 10
Lifestyle

12 30 30 35 24 25 23 27 11 28 22 – 15 15 16 18 19 22 16 23 16 19 14 20 21

Galaxy S8+ 19 37 23 35 32 33 24 26 22 31 27 29 – 9 12 16 15 16 18 17 18 17 24 19 25
Pixel 3XL 24 39 23 35 32 33 28 23 26 27 27 29 26 – 8 13 9 15 13 15 10 12 16 19 22
Pixel 4a 25 37 26 30 29 29 28 23 26 27 25 27 24 15 – 14 8 14 13 8 14 13 15 14 10
Y5 Prime 16 30 33 33 24 25 22 25 18 25 28 29 28 26 32 – 16 14 23 25 28 14 16 19 16
8X 31 21 43 24 24 37 37 37 33 25 30 30 39 39 37 30 – 19 15 18 14 16 13 14 19
Mi A1 21 37 26 30 27 29 15 16 23 29 25 27 37 15 29 25 37 – 10 14 13 14 12 10 14
iPhone XS 21 37 26 30 29 30 15 21 25 29 25 27 33 33 29 25 37 29 – 8 14 13 14 22 9
Galaxy A21 14 30 33 33 24 25 22 25 16 14 31 25 14 31 25 25 14 25 25 – 14 13 14 10 13
G Power 23 35 26 30 23 29 15 16 26 26 24 27 26 33 31 27 30 26 29 25 – 9 12 9 14
7T 27 33 26 30 28 28 15 16 29 26 24 27 29 33 29 26 29 26 29 27 29 – 9 8 10
OnePlus 8 24 35 29 24 27 15 16 15 23 27 26 25 34 31 29 29 29 26 28 25 29 16 – 8 12
Laptop
(18.04)

25 36 26 30 30 20 21 18 22 31 24 25 32 33 29 25 34 29 34 26 28 15 20 – 14

Laptop
(20.04)

22 34 23 33 31 22 24 18 26 31 25 25 31 32 29 25 37 28 28 25 29 15 16 16 –

device shall send a PairRandomSend only if the confirm value (Ccmp) computed on the device

matches the confirm value (Crcv) received from the central device , i.e., when Ccmp = Crcv. If

Ccmp 6= Crcv, then the responding device would terminate the pairing. However, in this devia-

tion, before the user can input anything on the prompt, if the central sends a PairRandomSend,

setting the value of TK = 0 the deviating BLE peripheral implementation responds with a

PairRandomSend, without sending a PairConfirmSend message and even before taking the input

from the user (deviating from the standards). The connection persists even after the user

inputs the passkey after the attack is performed. Furthermore, the peripheral implementa-

tion completes the pairing and bonding process and enables encryption, all assuming TK to

be zero. Surprisingly, one of the devices does not even show the prompt for passkey entry.

Thus effectively bypassing the MitM protection put into place through the passkey entry as-

131



sociation method. Among the four association methods, passkey entry is considered secure

against Man-in-the-Middle (MitM) attacks. In this method, the initiating device displays

a randomly generated value, which the responding device has to enter. Particularly, after

the central sends a PairConfirmSend message, a prompt is shown on the peripheral device for

passkey entry. In LE legacy pairing, the peripheral device shall send a PairRandomSend only

if the confirm value (Ccmp) computed on the device matches the confirm value (Crcv) received

from the central device , i.e., when Ccmp = Crcv. If Ccmp 6= Crcv, then the responding device

would terminate the pairing. BLEDiff, however, has uncovered 13 implementations where the

device completes pairing and bonding without requiring to enter the passkey in the device

and thereby effectively nullifying all the security protections against MitM attacks. In this

deviation as illustrated in Figure  5.5 , if the central sends a PairRandomSend, setting the value

of the user input passkey to zero, the deviating BLE peripheral implementation responds

with a PairRandomSend, without sending a PairConfirmSend message and even before taking the

input from the user (deviating from the standards). The connection persists even after the

user inputs the passkey after an attack with the deviation is performed. Furthermore, the

peripheral implementation completes the pairing and bonding process and enables encryp-

tion, all assuming the user input to be zero. Surprisingly, one of the devices (Pixel 4a) does

not even show the prompt for passkey entry, thus effectively bypassing the MitM protection

put into place through the passkey entry association method.

Table 5.7. : Summary of deviations and time.

Statistic BLEDiff Deviations DIKEUE
Deviations BLEDiff Time DIKEUE Time

Max 43 42 63.64 46.97
Min 11 8 17.4 11.49
Average 26.96 16.72 41.72 25.71
Median 27 16 42.25 24.65
Standard
Deviation 5.96 4.78 9.70 6.85

Root cause. The root cause of this issue can be attributed to implementation deviating from

the specification. The BLE specification clearly states that if the confirm values do not

match, the peripheral should not proceed with pairing [  14 , p. 1628]. Impact. Due to this

passkey entry bypass, it is possible for the attacker to perform a MitM attack on the vulner-

able BLE devices. As the key value TK is always set to zero for the vulnerable peripheral,

132



the attacker can impersonate both legitimate central and peripheral devices. In a hindsight,

this is actually worse than just works association method as the user thinks they are using

a high level of protection, but actually, they are not.

(E2) Out-Of-Band Authentication Bypass. During pairing, an out-of-band (OOB)

channel, e.g., NFC may be used to communicate information between central and periph-

eral, which is further used later in the pairing process. The OOB data flag shall be set

if a device has the peer device’s out-of-band authentication data. A device uses the peer

device’s out-of-band authentication data to authenticate the peer device. More specifically,

after public key exchange when a device receives the OOB confirm value, if the confirm

value does not match, or the peripheral does not have the central’s OOB data, then the de-

vice should immediately abort the pairing process by sending PairFailed message. However,

BLEDiff found 6 implementations where without receiving any OOB confirm data, the pe-

ripheral devices proceed to the next step, i.e., random value exchange, completely bypassing

the authentication as shown in Figure  5.6 . To make matters worse, the implementations

even pass DHKeyCheckSend with rb set to zero and complete pairing and bonding altogether.

Root cause. The root cause of this issue is that the implementation is deviating from stan-

dards. In the specification, it is mandated that if the confirm value received from OOB does

not match the calculated value, the peripheral will abort the pairing process [  14 , p. 1632].

Impact. An attacker in the radio range can abuse this vulnerability to completely bypass

OOB authentication in the affected BLE devices, which rely on secure connections with out-

of-band data to protect user privacy. As the OOB authentication is bypassed, an attacker

can send the usual BLE packets, impersonate both the legitimate central and peripheral,

and perform MitM attacks on BLE connections.

(E3) Legacy Pairing Bypass. In this deviation, it is possible to bypass the legacy pair-

ing procedure and start encryption on a device. During legacy pairing, an implementation

exchanges random values and confirms the values to generate Short Term Keys (STK).

Without these procedures, an implementation cannot move to the encryption procedure.

However, for the affected devices, the implementations skip part of the pairing procedures

and directly proceed to encryption (shown in Figure  5.7 ). In the specification, the flow

of pairing is clearly attributed, and hence starting the encryption procedure without even

133



Central

Scan request/response
Connection request

Pairing request/response (no SC)

Peripheral

AdvInd

Encryption request/response

...

Rest of pairing skipped

Figure 5.7. Legacy pairing bypass

completing the pairing is a deviation from the standards. For exploiting this deviation in

an attack, an attacker in the radio range can skip the pairing procedure and directly start

encryption and try to bypass BLE security.

Impact. There are two impacts of this deviation. The first impact is that it can cause secu-

rity bypass due to low-entropy key size. The STK is generated using s1 = (k, r1, r2). Each

of these parameters are 128-bit long. In the key generation phase, 64 bits of r1 and 64 bits

of r2 are discarded to create a 128-bit input, which together with k generates the STK.

In case the pairing procedures are bypassed, and with no input and no output capability

(k = 0), the implementation generates a key with only the 64-bits of r2, thus generating a

key with much smaller entropy. This can potentially lead to a security bypass. For other

I/O capabilities, the entropy will be higher with different k value, but lower than the envi-

sioned entropy when random values are exchanged. The second impact is DoS. As part of

pairing can be bypassed (including authentication), an attacker can start encryption without

completing the authentication. In case the attacker is unable to figure out the low-entropy

key, there is a key-mismatch and the connection is dropped. Since an attacker can drop a

connection without authentication, this can cause a DoS.

134



Central

Scan request/response
Connection request

Pairing request/response

Peripheral

AdvInd

DHKey Check

...

DHKey Check
(MacKey = 0, Na = 0, Nb = 0)

Figure 5.8. Invalid DHKey Check

Table 5.8. : Deviations identified by BLEDiff. E- exploitable, I- interoperability issue, O- other
deviating behavior, I- Implementation issue, S- Specification issue.

Issue Impact I/S
(E1) Bypassing passkey entry in legacy pairing Security bypass I
(E2) Bypassing Out-Of-Band Authentication Security bypass I
(E3) Bypassing legacy pairing DoS I
(E4) Accepts DHKeyCheckSend with all fields zero DoS I
(E5) Unresponsiveness with PauseEncRespPlainText Crash I
(E6) Unresponsiveness with ConReqTimeoutZero and ConReqInter-
valZero

Crash I

(E7) Accepts PauseEncReqPlainText before pairing is complete DoS I
(E8) Issue with incomplete PairReq DoS I
(E9) Accepts PairRandomSend before exchanging public keys DoS S
(E10) Accepts PairConfirmSend with wrong values DoS I
(I1) Issue with reject messages Interoperability S
(I2) Issue with OOB pairing failed Interoperability I
(O1) Accepting key size greater than max - I

(E4) Invalid DHKey Check. In this deviation, during BLE secure pairing, the BLE

implementations respond to DHKeyCheckSend message with MacKey, Na, and Nb set to zero

(shown in Figure  5.8 ). This behavior deviates from the standards as the implementations fail

to properly check the confirmation value. As specified in the standard, if the confirmation

value check fails, it indicates that the initiating device has not confirmed the pairing, and

the protocol must be aborted.

135



Impact. Due to this noncompliance, it is possible for an attacker to inject the DHKeyCheck-

Send packet with MacKey, Na, and Nb set to zero during the pairing procedure, forcing the

vulnerable device to stop communicating with a specific central device and causing DoS. Fur-

thermore, this deviation can be a stepping stone for a much more severe issue as illustrated

below. After DHKeyCheckSend, the encryption procedure is started which uses the generated

LTK to encrypt subsequent packets. The task of the DHKeyCheckSend is to ensure the right

key is generated. In case DHKeyCheckSend fails, the subsequent LTK is discarded due to

security reasons. Since it is possible to bypass DHKeyCheckSend by setting MacKey, Na, and

Nb to zero, the attacker may exploit it to bypass the security partially as well.

(E5) Device Unresponsiveness with PauseEncRespPlainText. The deviation happens

when a BLE device receives a plaintext PauseEncResp. Even before pairing, if the BLE

implementation receives PauseEncRespPlainText, then it crashes and becomes unresponsive.

This is a clear deviation from the standards. In case a device handles an invalid packet, there

are three ways to handle it (i) ignoring the packet, (ii) sending rejection, (iii) terminating

the connection. However, in this case, the packet causes a fault in the implementation.

Impact. It is possible to cause DoS by sending this packet to the implementation. The

packet is plaintext and does not have integrity protection; therefore, it can be sent by an

attacker anytime to an existing BLE connection. Moreover, the packet does not show any

prompt on the smartphone and turns off the Bluetooth for some time. It seems the packet

causes restart of the Bluetooth daemon of the device. Therefore, sending such packets in a

loop can create permanent DoS without any notification to the user.

(E6) Device unresponsiveness with ConReqTimeoutZero When a device receives a Con-

Req with the timeout field set to zero, the device becomes completely unresponsive. A user

has to manually turn on the Bluetooth service to make the device responsive. A similar at-

tack with invalid connection requests was shown in [  7 ] on two development boards. We have

found this issue in 5 different smartphones and 3 different development boards. Furthermore,

in their attack for the invalid connection request, both the interval and timeout fields have

to be set to zero. In our case, the interval field does not matter; as long as the timeout field

is set to zero, the device becomes unresponsive and automatically turns off Bluetooth.

136



Impact. An attacker in the radio range can exploit the issue to cause a surreptitious denial

of service of the Bluetooth. Though this attack is on BLE, the smartphone turns off both

BLE and BR/EDR without notifying the user. To resolve this, the user has to manually

restart BLE and, in some cases, the smartphone altogether.

(E7) DoS with PauseEncReqPlainText. In this deviation, the device responds with a

PauseEncResp in case a plaintext PauseEncReq is sent. As a result, the affected device moves

to an incorrect state of the implementation where it is not able to complete pairing and

not able to communicate with a specific central device. As stated in the previous section,

responding to an invalid message is a noncompliance. We found this issue in 5 different BLE

implementations.

Impact. The implementation goes to an incorrect state and discards subsequent messages

from the central. The deviation thus enables an attacker to induce DoS attacks on the

affected devices. An correctly implemented device ignores plaintext PauseEncReq messages

and does not change state.

(E8) DoS with PairReq. In this deviation, the implementations do not respond to subse-

quent PairReq’s if the first PairReq is not properly completed. In such a case, the peripherals

stop advertising altogether and are not able to communicate with any central device within

their radio range. This is a noncompliance with the standards as one connection should not

affect the other subsequent connections. An attacker in radio range acting as a central can

initiate a pairing but abruptly close the connection. This will create a service disruption in

the affected devices as those devices will not respond to any other legitimate device in the

radio range.

(E9) Accept PairRandomSend before PublicKeySend. The affected devices deviate from

the standard by responding to a PairRandomSend message before authentication and PublicK-

eySend. Because of accepting PairRandomSend, the implementations move to an incorrect state

from which it cannot complete the pairing procedure. Exploiting this an attacker can force

the vulnerable device to stop communicating with a specific central device. Although the

standard specifies the regular protocol flow, it does not explicitly state how to handle out-of-

order protocol messages. Hence, this behavior can be attributed due to the underspecification

of the standards.

137



(E10) PairConfirmSend Value Mismatch. The affected devices respond to PairConfirmSend

request with wrong confirm values. The deviation occurs when a PairReq is sent with the

secure connection flags turned on or the OOB flag turned on. Due to this, the implemen-

tations go to an unintended state, and do not complete pairing and bonding anymore. In

the correct implementations, the devices ignore PairConfirmSend and proceed with pairing as

mandated by the standard.

Interoperability

(I1) Interoperability with reject messages. In case a device receives an invalid message,

it can respond with a reject message. However, the specification does not specify the order

of the reject messages in a order sequence. In our experiments, the implementations respond

at different places in case of invalid messages and this can create a potential interoperability

issue among different devices. For instance, in case a device receives a PublicKeySend with an

invalid key, (i) some implementations send a reject message as soon as the invalid message

is received; (ii) some implementations still continue with the subsequent procedures and

respond to DHKeyCheckSend with a reject message; (iii) some implementations do not send

any reject messages. We found 16 devices following (iii), 6 devices following (i), and 3 devices

following (ii).

(I2) Interoperability with OOB Pairing Failed. As discussed in  5.6.1 , in case of pair-

ing with OOB data, if the confirm value fails, then the pairing should be aborted right away.

However, BLEDiff found implementations where even after the confirm value fails, the imple-

mentations still proceed with random value exchange. This deviates from the standards and

can cause potential interoperability issues. One thing to be noted, in these implementations,

the pairing eventually fails during DHKeyCheckSend, and it is not possible to pair and bond

with the device.

No impact

We found one deviation where the impact of the deviation is not clear. In this deviation,

an implementation accepts PairReq with a key size greater than the max value of 16 bytes.

138



The specification mandates using a key size of 7 to 16 bytes; however, in this case, the

implementation becomes noncompliant by accepting a key size greater than the max value.

A similar issue was found by Pferscher et al. in a different device [  31 ]. Although this is a

deviation from the standard, it is not evident how this can be exploited.

5.6.2 Comparison with existing testing approach

We compare the effectiveness of BLEDiff with the BLE conformance or qualification

testing framework defined in the BLE standards [  35 ] and the previous approaches on BLE

testing [ 7 ,  18 – 21 ,  31 ,  91 ], and summarize the results in Table  5.9 . e aim to compute line

coverage and function coverage of a device under testing as the metric to evaluate and com-

pare these frameworks and tools. However, we provide a black-box noncompliance checking

method, where extracting coverage data is infeasible. To address this issue, we run an open-

source BLE implementation, BTstack [  92 ], on an Ubuntu 18.04 machine with BLE version

5.0. We run the testing frameworks for 24 hours and compute line coverage and function

coverage using LCOV [  93 ], which is an extension of GCOV [  81 ]. The results of this en-

deavor is shown in Figure  5.9 in the Appendix and discussed below. Although line coverage

75

65

55

45

35

Pe
rc

en
ta

ge

Line Coverage Function Coverage

BLEDiff Conformance

Tests

SwyenTooth Finger-
printing

Black-box
Fuzzing

Figure 5.9. Coverage comparison

and function coverage of a device under test are commonly used metrics to fairly evaluate

139



and compare these frameworks and tools, BLEDiff being a black-box noncompliance check-

ing method poses a challenge of extracting coverage data from commercial BLE devices.

To address this challenge, we run an open-source BLE implementation BTstack [  92 ] on an

Ubuntu 18.04 machine with BLE version 5.0. We run all the testing frameworks for 24 hours

and compute line coverage and function coverage using LCOV [  93 ], which is an extension

of GCOV [  81 ]. The results of this endeavor is shown in Figure  5.9 in the Appendix and

discussed below.

Conformance or qualification testing framework

BLE standards [ 35 ] define conformance or qualification testing where different scenarios

and expected behavior are described. For a fair comparison, we consider only the test cases

which are relevant to the procedures in our scope. Results show that these standard tests

cover 59.47% of lines and 68.92% of functions, whereas BLEDiff achieves 63.29% line coverage

and 71.69% function coverage.

Previous approaches on BLE testing

Among the previous works on BLE testing, SwyenTooth [ 7 ], Fingerprinting [ 91 ], Black-

box Fuzzing [  31 ], and Frankenstein [ 21 ] are automatic approaches analyzing BLE implemen-

tations and do not require manual intervention, in general. On the other hand, BIAS [  18 ],

KNOB [ 19 ], Model-Driven [  20 ] are manual and perform analysis on specifications. How-

ever, none of these works can identify underspecifications or noncompliance. Compared to

these previous works, BLEDiff is automatic, can analyze both specifications and implemen-

tations, and can also discover underspecifications in the standards and noncompliance of

implementations. These features are summarized in Table  5.9 .

Among the previous works that do automatic testing, we do not calculate coverage for

Frankenstein [  21 ] as it is a reverse-engineering based approach which requires a significant

manual effort to run and is not a plug-and-play. We compute coverage for the other tools and

summarize results in Figure  5.9 . The comparison shows that BLEDiff is the most effective

approach. For SwyenTooth [  7 ], Fingerprinting [  91 ], and Black-box Fuzzing [  31 ], the line cov-

140



Table 5.9. : Comparison with existing approaches.

Paper Auto-
matic

Specific-
ation

analysis

Impleme-
ntation
analysis

Under-
specificat-

ion
detection

Non-
compliance-

checking

SwyenTooth [  7 ] 3 7 3 7 7
BIAS [ 18 ] 7 3 7 7 7
KNOB [ 19 ] 7 3 7 7 7
Model-Driven [ 20 ] 7 3 7 7 7
Fingerprinting [  91 ] 3 7 3 7 7
Black-box
Fuzzing [  31 ] 3 7 3 7 7

Frankenstein [ 21 ] 3 7 3 7 7
BLEDiff 3 3 3 3 3

erage are 59.68%, 43.79%, and 41.37%, respectively, and the function coverage are 68.92%,

53.85%, and 51.08%, respectively. Compared to these, BLEDiff has 63.29% line coverage and

71.69% function coverage.

During the comparison with existing approaches on BLE testing, though some of the

tools and approaches are automatic required some manual interventions in our experiments.

For instance, in the case of Fingerprinting [ 91 ], and Black-box Fuzzing [  31 ] the testing

apparatus’ frequent crashed or froze. Moreover, both these approaches: Fingerprinting and

Black-box Fuzzing have limited scope compared to our work and do not incorporate secure

pairing or encryption. Accordingly, these are not effective in discovering vulnerabilities at a

complex level. Also, Black-box Fuzzing requires that the finite state machine of the device

under test is first learned and then fuzzed. However, in our experiments, the tool could

not complete learning the finite state machine within 24 hours. Instead, we let the fuzzer

use a pregiven complete finite state machine so that it can explore further and get a fair

opportunity. Despite the efforts, its effectiveness was the worst among the tools we tested

in terms of coverage.

5.6.3 BLEDiff performance

FSM inference module performance

Table  5.12 shows the summary of membership queries, equivalence queries, time, states,

and transitions required for FSM inference module to infer the FSM of a BLE implementa-

tion. In the worst case, the FSM inference module requires 3 days to learn the FSM, with

141



Table 5.10. : Time, membership, and equivalence queries. S = States, T = Transitions
Device Membership Equivalence #S #T Time Time S TLL SMP Recon LL SMP Recon LL SMP Recon LL SMP Recon LL SMP Recon
Nexus 6 30 276 17 15 1904 27 3 4 2 30 88 13 38 2180 76 2294 7 121
DA14531 50 377 17 27 3644 27 3 5 2 30 110 13 25 1340 50 1415 9 152
NRF5340-
DK

30 287 21 27 1989 17 3 4 2 30 88 13 19 1517 51 1587 8 130

CC2640R2 30 66 17 27 223 27 3 5 2 30 110 13 27 192 55 274 5 77
CYBLE-
416045-
EVAL

30 998 17 27 3869 27 3 5 2 30 110 13 19 2858 52 2929 8 143

Pixel 4a 30 282 17 27 1936 27 2 4 2 20 88 13 57 2957 88 3102 7 121
STEVAL-
IDB008V2

30 990 17 27 3666 27 3 5 2 30 110 13 76 4656 73 4805 8 143

OnePlus
8

30 994 17 27 3442 27 3 5 2 30 110 13 38 4436 58 4532 8 143

CY8CPROTO-
063-BLE

30 990 17 27 3254 27 3 5 2 30 110 13 19 2829 59 2907 8 143

NRF52-
DK

30 325 21 27 2098 17 3 4 2 30 88 13 23 1615 63 1701 8 130

Galaxy
S6

30 286 17 15 1902 27 3 4 2 30 88 13 42 2188 73 2243 7 121

De-
sire 10
Lifestyle

30 295 17 15 1876 27 3 4 2 30 88 13 30 2171 77 2278 7 121

Pixel
3XL

30 292 17 27 1996 27 2 4 2 20 88 13 38 2288 74 2400 7 121

Galaxy
S8+

30 290 17 27 1886 27 2 4 2 20 88 13 57 2901 73 3031 7 121

Y5
Prime

30 290 17 15 2103 27 3 4 2 30 88 13 30 3190 88 3308 7 121

8X 50 342 17 27 3788 27 3 5 2 30 110 13 51 4130 74 4255 9 152
Mi A1 30 268 17 27 1842 27 2 4 2 20 88 13 32 1813 74 1919 7 121
iPhone
XS

30 244 17 27 1920 27 2 4 2 20 92 13 57 2164 69 2263 7 123

Pixel
3XL

30 188 17 27 1845 27 2 4 2 20 88 13 57 2710 66 2833 7 121

G Power 30 298 17 27 1934 27 2 4 2 20 88 13 45 1876 66 1987 7 121
7T 30 276 17 27 1988 27 2 4 2 20 88 13 66 2641 62 2769 7 121
Ubuntu
18.04

30 954 17 27 3562 27 3 5 2 30 110 13 21 2258 43 2322 8 143

Ubuntu
20.04

30 986 17 27 3958 27 3 5 2 30 110 13 23 2342 45 2410 8 143

ESP32-
C3

30 940 17 27 3968 27 3 5 2 30 110 13 19 2543 38 2600 8 143

DT100112 30 226 17 15 1952 27 3 4 2 30 88 13 38 1452 19 1509 7 121

the average being 1.7 days. The device-specific details for all the specific devices are shown

in Table  5.10 in the Appendix.

Performance of the divide and conquer approach

To improve the scalability of active automata learning, we propose the idea of using a

divide and conquer approach by extracting 3 different FSMs and merging them. To evaluate

the performance improvement of learning, we take a device (Nexus 6) run divide-and-conquer

approach without any caching or constraints additions. For the baseline, we run a general

model learning approach on the same device with all the input symbols (32) and the usual

techniques to handle scalability (e.g., caching, constraints addition) in hopes of inferring a

large FSM of the entire BLE implementation. We pick StartEncResp as the terminating symbol

as it marks the completion of the scope of encryption, pairing, and bonding. However, with

all the input symbols, it took the learner more than two days just to complete the link layer

142



procedure connection. For most of the input symbols, the response is null_action. This is

because symbols of SMP or reconnection do not induce any changes to LL FSM, but the

learner still has to run all the symbols over-the-air wasting precious time and queries. We

estimate that with all 32 symbols, it will take the general learner more than 5 days to learn

the full FSM, which is more than twice the time taken by BLEDiff with its divide-and-conquer

learning approach. The comparison of both approaches is shown in Table  5.11 .

Table 5.11. : Comparison between divide and conquer learning and general model learning for
Nexus 6
* The learner just completed link layer connection

Approach
Member-

ship
Queries

Equival-
ence

Queries
Time
(min) States Transitions

Divide and con-
quer learning 323 1946 2448 7 121
Automata learn-
ing with caching
and constraints

3077 1495 3077* 6 192

FSM equivalence checker performance

To evaluate the performance of FSM equivalence checker, we pair-wise compare the

number of deviations and the time required to find the deviations among all the devices with

the closest implementation to our FSM equivalence checker–the equivalence checker designed

in the context of 4G LTE called DIKEUE [  64 ]. On average FSM equivalence checker finds

62% more deviant traces compared with the DIKEUE equivalence checker. This is due

to the fact that FSM equivalence checker finds deviant traces with higher depths, whereas

DIKEUE finds the shortest trace only. On timing FSM equivalence checker takes on an

average of 17.4 sec to find all the deviating traces compared to 11.49 sec for DIKEUE. This

increase can be attributed to the calls to the model checker for finding counterexamples of

increasing length. Compared to finding deviation-inducing traces deep inside the FSM, this

time increase is reasonable. The statistics of the number of deviations identified and the time

of both the approaches are shown in Table  5.7 . For an interested reader, the detailed pair-

wise comparison of the number of deviations and time is shown in Table  5.6 and Table  5.5 ,

respectively in the Appendix.

143



Table 5.12. : Summary of time, membership, and equivalence queries.

Statistic Member-ship
Queries

Equival-ence
Queries Time (min) States Transi-

tions
Max 1045 4022 4805 9 152
Min 113 277 274 5 77
Average 519.32 2552.6 2546.92 7.44 128.68
Median 339 2042 2400 7 121
Standard
Deviation 327.85 979.99 994.95 0.82 15.73

To illustrate with a concrete example, the deviation and the corresponding attack E7

are not detectable through the elimination-based approach of DIKEUE. This deviation is

detected only through BLEDiff’s FSM equivalence checker because of its ability to detect

more in-depth deviation. The FSMs and the deviations are discussed in a simplified form in

the running example of section  5.3.2 and Figure  5.4 .

5.7 Discussion

Manual process of deviation to attack analysis. As multiple deviations may have the

same root cause, we manually analyze diverse deviations uncovered through our automated

technique BLEDiff and identify unique deviations. In Table  5.6 , all pairwise deviant behaviors

are reported and through consultation with the specification, the unique deviant behaviors

are elaborated. The high number of deviations in Table  5.6 as compared to 13 unique ones

is because:

1. If an input ij (e.g., ConReqTimeoutZero) in a query q = 〈i1i2 . . . ij . . . im〉 induces a crash to

a device D1, D1’s outputs for the remaining inputs 〈ij+1 . . . im〉 in q become null_action as

D1 becomes unresponsive after ij. While comparing D1 with another device D2 which

did not crash at ij, BLEDiff yields multiple deviant behavior inducing input sequences,

for instance, 〈i1 . . . ij〉, 〈i1 . . . ij+1〉, . . . , 〈i1 . . . ij+1 . . . im〉 for which the root cause is same;

2. If for an input sequence 〈i1i2i3i2〉, devices D1 and D2 yield 〈o1o2o3o2〉 and 〈o1o
′
2o3o

′
2〉 as

outputs, respectively, BLEDiff identifies both deviations 〈i1i2〉 and 〈i1i2i3i2〉 as it aims

to identify deviations of different depths. Although these are valid deviations but are

not considered unique as they occur from the same root cause.

144



Soundness. BLEDiff does not have any false positives. If BLEDiff finds a deviation in

the FSMs of two devices under consideration, for the same input sequence, two correspond-

ing implementations indeed behave differently. False positives could have occurred if: (1)

the extracted input/output FSMs had states/transitions that do not exist in devices/im-

plementations; or (2) input/output symbols were different for different devices. BLEDiff

addresses the former with formal soundness guarantees of active automata learning under-

pinning BLEDiff’s FSM extraction process [ 65 ]. To ensure the same input/output symbols

for all devices, BLEDiff defines input/output symbols (shown in Table  5.1 ) based on high-

level protocol messages and their security features that are consistent across BLE versions

(from 4.2 to 5.2). BLEDiff abstracts away non-security-related protocol features for instance

versions and modulation schemes in input/output symbols through mappers. For instance,

when Link Layer (LL) mapper receives a FeatureResp message from a device, it abstracts the

contents of the packet and responds with a FeatureResp to the learner. Similarly, when the

mapper receives a VersionResp, whatever the version number is (e.g., 4.2, 5.0, 5.1), the mapper

responds to the learner with a VersionResp message type as output. Furthermore, assump-

tions made in BLEDiff do not affect soundness/correctness. Since peripheral-originated LL

messages, e.g., LenReq are stateless and originated by a device anytime, LL mapper abstracts

those messages by not modeling them as input/output symbols. To ensure sound/correct

protocol flow, in response to peripheral-originated messages, the LL mapper sends valid and

protocol-compliant messages to the device under test but does not send corresponding output

symbols to the learner. As this learning process is consistent across all devices, the learner

learns consistent and sound FSMs, and this assumption does not affect the soundness of the

extracted FSMs.

Completeness. Testing a complex system is inherently an incomplete process and so is

BLEDiff. Our approach cannot uncover all possible deviations in different implementations

because: (1) the predicates included to reason about security-critical behavior may not be

complete. For instance, there may be other predicates apart from the field and packet level

predicates we used in BLEDiff, that can cause deviant behavior; (2) the abstractions made to

handle peripheral-originated messages from learner may also miss some deviant behaviors.

As discussed in the previous section, to handle peripheral originated messages such as LenReq,

145



LL mapper abstracts those messages by not modeling them as input/output symbols and

in turn causes incompleteness; (3) limitations of differential testing, especially, not having

access to a reference FSM from the specification. As a result, if two implementations deviate

in the same way, then the differential testing might miss it. But as we do pairwise differential

testing among all 25 device implementations, at least one pair of comparison will yield the

deviation if there is any. In a nutshell, BLEDiff is incomplete in the sense that it can not

guarantee all deviations, but in practice, it can identify the majority of them.

FSM Merging. BLEDiff first merges the FSMs of individual sub-protocols and compare the

entire FSM with that of other BLE implementations. An alternative design could be other

way around, i.e., instead of merging the FSMs of sub-protocols, comparing them separately.

From the perspective of finding deviations, this will not affect the results. However, the

reason for merging to create a complete protocol is twofold: (1) it allows the equivalence

checker to find an end-to-end trace of deviant behavior (i.e., from entry-point of BLE protocol

to where deviation occurs) that can be readily converted to a concrete test case for further

testing; (2) the complete protocol can be further leveraged by developers for other analysis,

e.g., stateful fuzzing.

Cross-sub protocol analysis. BLEDiff does not model cross-sub protocol interactions.

There can be deviations where one sub-protocol affects others and BLEDiff currently cannot

detect those. We leave it for future work.

5.8 Conclusion

We present BLEDiff a scalable, property-agnostic, and black-box protocol noncompliance

checking framework for BLE implementations. We also introduce the idea of divide-and-

conquer-based automata learning, where a protocol is divided into multiple sub-protocols,

for each sub-protocol, a separate FSM is learned, and then merged together to form the large

protocol FSM.

Future Work. In future, we will port this approach to BLE central implementations.

Furthermore, we will develop new techniques to further improve the scalability of active

automata learning approaches and model cross-sub-protocol interactions.

146



6. RELATED WORK

In this chapter, we discuss existing efforts that focus on the security and privacy of cellu-

lar network and Bluetooth implementations. Furthermore, we discuss the research that is

relevant to this work. The discussion is divided into few broad categories:

Security of Cellular Network Implementations. Previous work on 4G LTE imple-

mentation security has either been found by complete manual analysis [  23 – 28 ,  54 ,  94 ] or

semi automated testing [  8 ,  15 ]. Compared to previous works ProChecker can automati-

cally extract the FSM, reason about any security and privacy property, and easily scales

to the future generation and new releases of cellular network implementations such as 5G.

Other than protocol implementations, there is another body of work related to 4G protocol

specifications. Rupprecht et al. [  55 ] showed missing integrity allows the redirection of mali-

cious websites by an active attacker. Hussain et. al. used manually constructed models for

verifying certain parts of the 4G [  32 ] and 5G [ 34 ] protocols.

Formal Verification of Cellular Networks and Other Protocols. Approaches using

formal verification either rely on manually extracted models from specifications [  32 – 34 ,  37 ],

require models in formally-verifiable languages [ 95 ,  96 ], or require a reference implementation

of the protocol in a custom language [  97 ,  98 ]. These approaches are not scalable for com-

mercial protocol implementations [ 32 – 34 ,  37 ,  95 – 98 ]. Model-checking has also been applied

to verify properties of protocols [  99 – 101 ]. But these approaches are unable to reason about

properties that depend on protocol events. Execution-based model checking approaches [  102 ,

 103 ] do not require an explicit model but are prone to state-space explosion.

FSM extraction. There are approaches that infer protocol specifications as a model from

traces [  104 ], from network traces [  105 – 107 ], or using program analysis [  108 ]. However, the

FSM’s extracted through such approaches represent discernible external interactions of the

protocol (e.g., the sequence of exchanged messages) and do not contain enough semantic

meaning to reason about security and privacy properties. In a black-box setting active-

learning [  39 ] has been used to extract the FSM of a system. However, the extracted FSM

does not have a proper indication of states and in our white-box setup, we have a lot more

information to utilize. Symbolic execution has also been used to generate formally analyz-

147



able models of protocol implementations. Aizatulin et al. [ 109 ] combined symbolic execution

with proof techniques for extracting a ProVerif model from implementations in C. However,

their technique is limited to protocols without branching.

BLE implementation security. BlueBorne [  16 ] and Bleedingbit [  17 ] manually identifies

critical attack vectors that can be used to take control of affected devices even without

pairing. BIAS [ 18 ], and KNOB [ 19 ] also manually analyze the BR/EDR specifications and

present practical impersonation attacks. BLESA [  30 ], on the other hand, builds a ProVerif

model according to the BLE specifications and analyzes the model to find security implica-

tions. The authors present impersonation attacks using BLE spoofing in this work. Further-

more, Wu et. al. [  20 ] introduces an extensive ProVerif model that encompasses both key

sharing and data transmission phases in Bluetooth Classic, BLE, and Bluetooth Mesh. How-

ever, these works only consider the specifications, whereas we consider both implementations

and specifications. SweynTooth [  7 ] provides a testing framework to identify implementation

vulnerabilities, whereas Frankenstein [  21 ] uses firmware emulation to run fuzzing on firmware

dumps. Moreover, InternalBlue [ 22 ] releases a reverse-engineered Bluetooth implementation

for the research community. BLURtooth [  83 ] analyzes the Cross-Transport Key Derivation

(CTKD) feature of Bluetooth. They also uncover four different vulnerabilities in this fea-

ture and report corresponding attacks. However, none of these works aim to systematically

explore protocol noncompliance.

Model learning in different domains. Model learning can be distinguished between a

passive and an active approach. In passive learning, only existing data is used and based

on the data, a model is constructed. For example, in [  110 ], passive learning techniques are

used on observed network traffic to infer a state machine of the protocol used by a botnet.

This approach has been combined with the automated learning of message formats in [  111 ],

which then also used the model obtained as a basis for fuzz testing. When using active

automated learning techniques, as done in this paper, an implementation is actively queried

by the learning algorithm and based on the responses, a model is constructed. State ma-

chines learning has lately become a tool for analyzing the security protocol implementations

of various protocols, such as: TLS [  39 ], DTLS [  59 ], TCP [  60 ], IoT [  61 ], OpenVPN [ 62 ],

QUIC [  63 ], and SSH [  40 ]. In the area of cellular networks, recently Chlosta et al. [  112 ] aimed

148



to apply model learning to a component of the core network (MME). However, they only ap-

ply to open-source MME networks and do not experiment with real-world implementations

and therefore do not face a lot of challenges that DIKEUE encounters and solves. Stone et

al. [ 113 ] extend state learning to analyze implementations of the 802.11 4-way handshake.

In practice, model learning often falls to non-determinism due to unreliable commuinication

medium and requires an prohibitively large number of queries to learn an FSM of a protocol

implementation. Several approaches have been developed by the research community to deal

with these issues. HVLearn [  71 ] and SFADiff [  70 ] uses cache to avoid the communication

cost of repeated queries and improve performance. Furthermore, majority voting has been

used to deal with non-determinism [  59 ,  69 ,  113 ].

149



7. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this dissertation, we develop systematic frameworks for analyzing the security and privacy

of important wireless communication protocol implementations such as cellular networks and

Bluetooth.

We propose ProChecker—a framework to formally reason about communication protocol

implementations. ProChecker aims to automatically verify cellular network protocol imple-

mentations to uncover logical vulnerabilities. We evaluate ProChecker by implementing and

integrating it into the existing functional testing framework of a closed-source and two open-

source LTE implementations and analyze their implementations. We evaluate our extracted

models against 62 properties. Along with uncovering 3 new protocol-specific logical attacks,

6 implementation issues, ProChecker identified 14 prior attacks in the FSM’s derived from

implementations. The issues range from denial-of-service attacks, broken integrity, encryp-

tion, and, replay protection to severe privacy leakage. On the horizon of 5G deployment

ProChecker can have an important impact in securing 5G implementations from the very

start.

We propose DIKEUE— which, to the best of our knowledge, is the first tool that designs

a black-box FSM inference module to automatically infer the FSM from a UE’s implemen-

tation without any manual interventions or modifications to the devices. DIKEUE will be

publicly available at [  64 ] after all the affected UEs are patched and the responsible disclo-

sure is completed. We design an FSM equivalence checking algorithm that automatically

detects and reports diverse deviant behavior of two FSMs by reducing it to a symbolic

model checking problem. We evaluate DIKEUE with 14 different devices from 5 vendors, and

demonstrate that it can uncover 17 deviant behaviors, including 11 exploitable weaknesses

and 3 interoperability issues.

Lastly, we present BLEDiff– an automated, scalable, property- and reference FSM-agnostic

noncompliance checking framework that analyzes and uncovers vulnerabilities in BLE im-

plementations based on automata learning and identifying deviant behavior. To the best

of our knowledge, we are the first to utilize the idea of dividing and conquering the state

space to address the scalability of automata learning in FSM extraction. We design a FSM

150



equivalence checker that automatically identifies deviations at higher depths of an FSM com-

pared to the state-of-the-art. We implement and evaluate BLEDiff with 25 different devices

and demonstrate it can uncover 13 different deviant behaviors with 10 exploitable attacks

including 2 security bypass, 2 crash, and 7 denial-of-service attacks.

Future work. In the future, we would like to explore the following directions: (i) Ana-

lyzing other communication protocol implementations: The techniques proposed in

this thesis are applicable to any stateful communication protocol implementation. Therefore

we would like extend our analysis to other important protocols such as WiFi and impor-

tant IoT-based protocols; (ii) Automatic root cause analysis: Though the developed

techniques can automatically uncover issues in the protocol implementation, it still requires

manual root cause analysis to uncover the root cause of the issue. In the future, we aim to

develop machine learning-based techniques for automatic root cause analysis. More specifi-

cally we would like to develop Reinforcement Learning (RL) agents to automate this task;

(iii) Automatic property extraction: One of the major issues for protocol implementa-

tion testing is to manually identify the important security and privacy properties from the

implementation. In the future, we aim to automatically analyze protocol specifications to

extract important properties for implementation verification; (iv) Automatic implemen-

tation patching: Following the techniques discussed in this thesis, when an implementation

vulnerability is identified, it needs to be manually patched. One interesting and important

direction can be to develop approaches for automatic protocol implementation patching. In

that case, the code will be either automatically or semi-automatically patched to resolve the

implementation issue.

151



REFERENCES

[1] 2018 hawaii false missile alert,  https://en.wikipedia.org/wiki/2018_Hawaii_false_
missile_alert .

[2] J. Brtis and M. Mcevilley, Systems engineering for resilience. the MITRE Corpora-
tion: Bedford, MA, 2013.

[3] Hackers take down the most wired country in europe,  https://www.wired.com/2007/
08/ff-estonia/ .

[4] Hackers are tapping into mobile networks backbone, new research shows,  https ://
www.forbes.com/sites/parmyolson/2015/10/14/hackers-mobile-network-backbone-
ss7 .

[5] Major ddos attacks involving iot devices,  https://www.enisa.europa.eu/publications/
info-notes/major-ddos-attacks-involving-iot-devices  .

[6] G. Candea and P. Godefroid, “Automated software test generation: Some challenges,
solutions, and recent advances,” in Computing and Software Science, Springer, 2019,
pp. 505–531.

[7] M. E. Garbelini, C. Wang, S. Chattopadhyay, S. Sumei, and E. Kurniawan, “Sweyn-
Tooth: Unleashing mayhem over bluetooth low energy,” in 2020 USENIX Annual
Technical Conference (USENIX ATC 20), USENIX Association, Jul. 2020, pp. 911–
925, isbn: 978-1-939133-14-4. [Online]. Available:  https://www.usenix.org/conferenc
e/atc20/presentation/garbelini  .

[8] H. Kim, J. Lee, E. Lee, and Y. Kim, “Touching the untouchables: Dynamic security
analysis of the LTE control plane,” in 2019 IEEE Symposium on Security and Privacy,
SP 2019.

[9] 3gpp. non-access-stratum (nas) protocol for evolved packet system (eps); stage 3 spec-
ification 3gpp ts 24.301 version 12.8.0 release 12.

[10] Ts 33.401 3gpp system architecture evolution (sae).

[11] 3gpp. evolved universal terrestrial radio access (e-utra) and evolved universal terres-
trial radio access network (eutran); overall description; stage 2, specification 3gpp ts
36.300 version 12.4.0 release 12.

152

https://en.wikipedia.org/wiki/2018_Hawaii_false_missile_alert
https://en.wikipedia.org/wiki/2018_Hawaii_false_missile_alert
https://www.wired.com/2007/08/ff-estonia/
https://www.wired.com/2007/08/ff-estonia/
https://www.forbes.com/sites/parmyolson/2015/10/14/hackers-mobile-network-backbone-ss7
https://www.forbes.com/sites/parmyolson/2015/10/14/hackers-mobile-network-backbone-ss7
https://www.forbes.com/sites/parmyolson/2015/10/14/hackers-mobile-network-backbone-ss7
https://www.enisa.europa.eu/ publications/info-notes/major-ddos-attacks-involving-iot-devices
https://www.enisa.europa.eu/ publications/info-notes/major-ddos-attacks-involving-iot-devices
https://www.usenix.org/conference/atc20/presentation/garbelini
https://www.usenix.org/conference/atc20/presentation/garbelini


[12] 3gpp. technical specification group services and system aspects; study on the security
aspects of the next generation system (3gpp tr 33.899 v1.3.0 release 14).

[13] 3gpp release 15,  http://www.3gpp.org/release-15  .

[14] Bluetooth Special Interest Group, Core Specification 5.3,  https ://www.bluetooth .
com/specifications/specs/core-specification-5-3/ .

[15] D. Rupprecht, K. Jansen, and C. Pöpper, “Putting lte security functions to the test:
A framework to evaluate implementation correctness,” in Proceedings of the 10th
USENIX Conference on Offensive Technologies, ser. WOOT’16, Austin, TX: USENIX
Association, 2016, pp. 40–51.

[16] B. Seri and G. Vishnepolsky, “Blueborne: The dangers of bluetooth implementations:
Unveiling zero day vulnerabilities and security flaws in modern bluetooth stacks,” De-
partment of Computer Science, Michigan State University, East Lansing, Michigan,
Tech. Rep, 2017.

[17] B. Seri, G. Vishnepolsky, and D. Zusman, Bleedingbit: The hidden attack surface
within ble chips, 2019.

[18] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “Bias: Bluetooth impersonation
attacks,” in 2020 IEEE Symposium on Security and Privacy (SP), 2020, pp. 549–562.
doi:  10.1109/SP40000.2020.00093 .

[19] D. Antonioli, N. O. Tippenhauer, and K. B. Rasmussen, “The KNOB is broken:
Exploiting low entropy in the encryption key negotiation of bluetooth BR/EDR,” in
28th USENIX Security Symposium (USENIX Security 19), Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 1047–1061, isbn: 978-1-939133-06-9. [Online]. Available:

 https://www.usenix.org/conference/usenixsecurity19/presentation/antonioli .

[20] J. Wu, R. Wu, D. Xu, D. J. Tian, and A. Bianchi, “Formal model-driven discovery of
bluetooth protocol design vulnerabilities,” in 2022 IEEE Symposium on Security and
Privacy (SP), 2022, pp. 2285–2303. doi:  10.1109/SP46214.2022.9833777 .

[21] J. Ruge, J. Classen, F. Gringoli, and M. Hollick, “Frankenstein: Advanced wire-
less fuzzing to exploit new bluetooth escalation targets,” in 29th USENIX Secu-
rity Symposium (USENIX Security 20), USENIX Association, Aug. 2020, pp. 19–36,
isbn: 978-1-939133-17-5. [Online]. Available:  https://www.usenix.org/conference/
usenixsecurity20/presentation/ruge  .

153

http://www.3gpp.org/release-15
https://www.bluetooth.com/specifications/specs/core-specification-5-3/
https://www.bluetooth.com/specifications/specs/core-specification-5-3/
https://doi.org/10.1109/SP40000.2020.00093
https://www.usenix.org/conference/usenixsecurity19/presentation/antonioli
https://doi.org/10.1109/SP46214.2022.9833777
https://www.usenix.org/conference/usenixsecurity20/presentation/ruge
https://www.usenix.org/conference/usenixsecurity20/presentation/ruge


[22] D. Mantz, J. Classen, M. Schulz, and M. Hollick, “Internalblue - bluetooth binary
patching and experimentation framework,” in Proceedings of the 17th Annual In-
ternational Conference on Mobile Systems, Applications, and Services, ser. MobiSys
’19, Seoul, Republic of Korea: Association for Computing Machinery, 2019, pp. 79–
90, isbn: 9781450366618. doi:  10.1145/3307334.3326089  . [Online]. Available:  https:
//doi.org/10.1145/3307334.3326089 .

[23] D. Rupprecht, K. Kohls, T. Holz, and C. Pöpper, “Call Me Maybe: Eavesdropping
Encrypted LTE Calls With ReVoLTE,” in USENIX Security Symposium (SSYM),
USENIX Association, Aug. 2020.

[24] M. Chlosta, D. Rupprecht, T. Holz, and C. Pöpper, “Lte security disabled: Misconfig-
uration in commercial networks,” in Proceedings of the 12th Conference on Security
and Privacy in Wireless and Mobile Networks, ser. WiSec ’19, Miami, Florida: As-
sociation for Computing Machinery, 2019, pp. 261–266, isbn: 9781450367264. doi:

 10.1145/3317549.3324927 . [Online]. Available:  https://doi.org/10.1145/3317549.
3324927 .

[25] A. Shaik, J. Seifert, R. Borgaonkar, N. Asokan, and V. Niemi, “Practical attacks
against privacy and availability in 4g/lte mobile communication systems,” in 23rd
Annual Network and Distributed System Security Symposium, NDSS 2016, San Diego,
California, USA, February 21-24, 2016, The Internet Society, 2016.

[26] C.-Y. Li et al., “Insecurity of voice solution volte in lte mobile networks,” in Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15, Denver, Colorado, USA: Association for Computing Machin-
ery, 2015, pp. 316–327, isbn: 9781450338325. doi:  10.1145/2810103.2813618 . [Online].
Available:  https://doi.org/10.1145/2810103.2813618  .

[27] H. Kim et al., “Breaking and fixing volte: Exploiting hidden data channels and mis-
implementations,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’15, Denver, Colorado, USA: Association
for Computing Machinery, 2015, pp. 328–339, isbn: 9781450338325. doi:  10.1145/
2810103.2813718 . [Online]. Available:  https://doi.org/10.1145/2810103.2813718  .

[28] D. Maier, L. Seidel, and S. Park, “Basesafe: Baseband sanitized fuzzing through emu-
lation,” in Proceedings of the 13th ACM Conference on Security and Privacy in Wire-
less and Mobile Networks, ser. WiSec ’20, Linz, Austria: Association for Computing
Machinery, 2020, pp. 122–132, isbn: 9781450380065. doi:  10.1145/3395351.3399360  .
[Online]. Available:  https://doi.org/10.1145/3395351.3399360  .

154

https://doi.org/10.1145/3307334.3326089
https://doi.org/10.1145/3307334.3326089
https://doi.org/10.1145/3307334.3326089
https://doi.org/10.1145/3317549.3324927
https://doi.org/10.1145/3317549.3324927
https://doi.org/10.1145/3317549.3324927
https://doi.org/10.1145/2810103.2813618
https://doi.org/10.1145/2810103.2813618
https://doi.org/10.1145/2810103.2813718
https://doi.org/10.1145/2810103.2813718
https://doi.org/10.1145/2810103.2813718
https://doi.org/10.1145/3395351.3399360
https://doi.org/10.1145/3395351.3399360


[29] E. Kim, D. Kim, C. Park, I. Yun, and Y. Kim, “Basespec: Comparative analysis
of baseband software and cellular specifications for l3 protocols,” in Symposium on
Network and Distributed System Security (NDSS)(San Diego, CA, USA). ISOC, 2021.

[30] J. Wu et al., “BLESA: Spoofing attacks against reconnections in bluetooth low en-
ergy,” in 14th USENIX Workshop on Offensive Technologies (WOOT 20), USENIX
Association, Aug. 2020. [Online]. Available:  https://www.usenix .org/conference/
woot20/presentation/wu  .

[31] A. Pferscher and B. K. Aichernig, “Stateful black-box fuzzing of bluetooth devices
using automata learning,” in NASA Formal Methods: 14th International Symposium,
NFM 2022, Pasadena, CA, USA, May 2427, 2022, Proceedings, Pasadena, CA, USA:
Springer-Verlag, 2022, pp. 373–392, isbn: 978-3-031-06772-3. doi:  10.1007/978-3-031-
06773-0_20  . [Online]. Available:  https://doi.org/10.1007/978-3-031-06773-0_20 .

[32] S. R. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino, “Lteinspector: A systematic
approach for adversarial testing of 4g LTE,” in 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018, The Internet Society, 2018. [Online]. Available:  https://www.ndss-sympo
sium.org/wp-content/uploads/2018/02/ndss2018%5C_02A-3%5C_Hussain%5C_
paper.pdf  .

[33] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler, “A formal
analysis of 5g authentication,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’18, Toronto, Canada: Asso-
ciation for Computing Machinery, 2018, pp. 1383–1396, isbn: 9781450356930. doi:

 10.1145/3243734.3243846 . [Online]. Available:  https://doi.org/10.1145/3243734.
3243846 .

[34] S. R. Hussain, M. Echeverria, I. Karim, O. Chowdhury, and E. Bertino, “5greasoner: A
property-directed security and privacy analysis framework for 5g cellular network pro-
tocol,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security, ser. CCS ’19, London, United Kingdom: Association for Com-
puting Machinery, 2019, pp. 669–684, isbn: 9781450367479. doi:  10.1145/3319535.
3354263 . [Online]. Available:  https://doi.org/10.1145/3319535.3354263  .

[35] Bluetooth Qualification Test Requirements,  https://www.bluetooth.com/specificatio
ns/qualification-test-requirements/ .

[36] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler, “A formal
analysis of 5g authentication,” ser. CCS ’18, 2018.

155

https://www.usenix.org/conference/woot20/presentation/wu
https://www.usenix.org/conference/woot20/presentation/wu
https://doi.org/10.1007/978-3-031-06773-0_20
https://doi.org/10.1007/978-3-031-06773-0_20
https://doi.org/10.1007/978-3-031-06773-0_20
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018%5C_02A-3%5C_Hussain%5C_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018%5C_02A-3%5C_Hussain%5C_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018%5C_02A-3%5C_Hussain%5C_paper.pdf
https://doi.org/10.1145/3243734.3243846
https://doi.org/10.1145/3243734.3243846
https://doi.org/10.1145/3243734.3243846
https://doi.org/10.1145/3319535.3354263
https://doi.org/10.1145/3319535.3354263
https://doi.org/10.1145/3319535.3354263
https://www.bluetooth.com/specifications/qualification-test-requirements/
https://www.bluetooth.com/specifications/qualification-test-requirements/


[37] C. Cremers and M. Dehnel-Wild, “Component-based formal analysis of 5g-aka: Chan-
nel assumptions and session confusion,” 2019.

[38] P. Godefroid, “Higher-order test generation,” in Proceedings of the 32nd ACM SIG-
PLAN conference on Programming language design and implementation, 2011, pp. 258–
269.

[39] J. de Ruiter and E. Poll, “Protocol state fuzzing of TLS implementations,” in 24th
USENIX Security Symposium (USENIX Security 15).

[40] P. Fiteru-Brotean, T. Lenaerts, E. Poll, J. de Ruiter, F. Vaandrager, and P. Verleg,
“Model learning and model checking of ssh implementations,” in SPIN 2017.

[41] srsLTE,  https://github.com/srsLTE .

[42] OpenAirInterface,  https://www.openairinterface.org/  .

[43] R. Cavada et al., “The nuxmv symbolic model checker,” in International Conference
on Computer Aided Verification, Springer, 2014, pp. 334–342.

[44] B. Blanchet, “An efficient cryptographic protocol verifier based on prolog rules,” in
Proceedings. 14th IEEE Computer Security Foundations Workshop, 2001., Jun. 2001,
pp. 82–96. doi:  10.1109/CSFW.2001.930138  .

[45] Gsma mobile security hall of fame,  https://www.gsma.com/security/gsma-mobile-
security-hall-of-fame/ .

[46] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE Transactions
on information theory, vol. 29, no. 2, pp. 198–208, 1983.

[47] 3gpp conformance testing,  https://www.3gpp.org/technologies/keywords-acronyms/
108-conformance-testing-ue  .

[48] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided ab-
straction refinement,” in International Conference on Computer Aided Verification,
Springer, 2000, pp. 154–169.

[49] Digital cellular telecommunications system (phase 2+); universal mobile telecommu-
nications system (umts); 3g security; security architecture (3gpp ts 33.102 version
11.5.1 release 11).

156

https://github.com/srsLTE
https://www.openairinterface.org/
https://doi.org/10.1109/CSFW.2001.930138
https://www.gsma.com/security/gsma-mobile-security-hall-of-fame/
https://www.gsma.com/security/gsma-mobile-security-hall-of-fame/
https://www.3gpp.org/technologies/keywords-acronyms/108-conformance-testing-ue
https://www.3gpp.org/technologies/keywords-acronyms/108-conformance-testing-ue


[50] M. Arapinis et al., “New privacy issues in mobile telephony: Fix and verification,” in
CCS 12.

[51] M. Arapinis, L. I. Mancini, E. Ritter, and M. Ryan, “Privacy through pseudonymity
in mobile telephony systems.,” in NDSS, 2014.

[52] 5g; non-access-stratum (nas) protocol for 5g system (5gs); stage 3 (3gpp ts 24.501
version 15.0.0 release 15) ),  https://www.etsi.org/deliver/etsi_ts/124500_124599/
124501/15.00.00_60/ts_124501v150000p.pdf  .

[53] 5g; user equipment (ue) conformance specification; part 1: Protocol (3gpp ts 38.523-1
version 15.3.0 release 15).  http://www.3gpp.org/ftp//Specs/archive/32_series/32.
899/32899-f10.zip .

[54] E. Kim, D. Kim, C. Park, I. Yun, and Y. Kim, “Basespec: Comparative analysis
of baseband software and cellular specifications for l3 protocols,” in Symposium on
Network and Distributed System Security (NDSS)(San Diego, CA, USA). ISOC, 2021.

[55] D. Rupprecht, K. Kohls, T. Holz, and C. Pöpper, “Breaking lte on layer two,” in 2019
IEEE Symposium on Security and Privacy (SP), IEEE, 2019, pp. 1121–1136.

[56] H. Raffelt, B. Steffen, and M. Tiziana, “Dynamic testing via automata learning,” Oct.
2007, pp. 136–152, isbn: 978-3-540-77964-3. doi:  10.1007/978-3-540-77966-7_13  .

[57] F. Vaandrager, “Model learning,” Commun. ACM, vol. 60, no. 2, pp. 86–95, Jan.
2017, issn: 0001-0782. doi:  10.1145/2967606 . [Online]. Available:  https://doi.org/10.
1145/2967606 .

[58] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2006, isbn: 0123725011.

[59] P. Fiterau-Brostean, B. Jonsson, R. Merget, J. de Ruiter, K. Sagonas, and J. So-
morovsky, “Analysis of DTLS implementations using protocol state fuzzing,” in 29th
USENIX Security Symposium (USENIX Security 20), USENIX Association, Aug.
2020, pp. 2523–2540, isbn: 978-1-939133-17-5. [Online]. Available:  https : / / www .
usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean  .

[60] P. Fiteru-Brotean, R. Janssen, and F. Vaandrager, “Combining model learning and
model checking to analyze tcp implementations,” in Computer Aided Verification,
S. Chaudhuri and A. Farzan, Eds., Cham: Springer International Publishing, 2016,
pp. 454–471, isbn: 978-3-319-41540-6.

157

https://www.etsi.org/deliver/etsi_ts/124500_124599/124501/15.00.00_60/ts_124501v150000p.pdf
https://www.etsi.org/deliver/etsi_ts/124500_124599/124501/15.00.00_60/ts_124501v150000p.pdf
http://www.3gpp.org/ftp//Specs/archive/32_series/32.899/32899-f10.zip
http://www.3gpp.org/ftp//Specs/archive/32_series/32.899/32899-f10.zip
https://doi.org/10.1007/978-3-540-77966-7_13
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean


[61] M. Tappler, B. K. Aichernig, and R. Bloem, “Model-based testing iot communication
via active automata learning,” in 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST), 2017, pp. 276–287. doi:  10.1109/ICST.
2017.32 .

[62] L. Daniel, E. Poll, and J. de Ruiter, “Inferring openvpn state machines using pro-
tocol state fuzzing,” in 2018 IEEE European Symposium on Security and Privacy
Workshops (EuroS PW), 2018, pp. 11–19. doi:  10.1109/EuroSPW.2018.00009 .

[63] A. Rasool, G. Alpár, and J. de Ruiter, “State machine inference of QUIC,” CoRR,
vol. abs/1903.04384, 2019. arXiv:  1903.04384 . [Online]. Available:  http://arxiv.org/
abs/1903.04384 .

[64] Dikeue,  https://github.com/SyNSec-den/DIKEUE  .

[65] D. Angluin, “Learning regular sets from queries and counterexamples,” Information
and Computation, vol. 75, no. 2, pp. 87–106, 1987, issn: 0890-5401. doi:  https://doi.
org/10.1016/0890-5401(87)90052-6  . [Online]. Available:  http://www.sciencedirect.
com/science/article/pii/0890540187900526 .

[66] M. Isberner, F. Howar, and B. Steffen, “The ttt algorithm: A redundancy-free ap-
proach to active automata learning,” in Runtime Verification, B. Bonakdarpour and
S. A. Smolka, Eds., Cham: Springer International Publishing, 2014, pp. 307–322,
isbn: 978-3-319-11164-3.

[67] M. Shahbaz and R. Groz, “Inferring mealy machines,” in FM 2009: Formal Methods,
A. Cavalcanti and D. R. Dams, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 207–222, isbn: 978-3-642-05089-3.

[68] T. S. Chow, “Testing software design modeled by finite-state machines,” IEEE Trans-
actions on Software Engineering, vol. SE-4, no. 3, pp. 178–187, 1978. doi:  10.1109/
TSE.1978.231496 .

[69] S.-J. Moon et al., “Alembic: Automated model inference for stateful network func-
tions,” in Proceedings of the 16th USENIX Conference on Networked Systems Design
and Implementation, ser. NSDI’19, Boston, MA, USA: USENIX Association, 2019,
pp. 699–718, isbn: 9781931971492.

158

https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1109/EuroSPW.2018.00009
https://arxiv.org/abs/1903.04384
http://arxiv.org/abs/1903.04384
http://arxiv.org/abs/1903.04384
https://github.com/SyNSec-den/DIKEUE
https://doi.org/https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/https://doi.org/10.1016/0890-5401(87)90052-6
http://www.sciencedirect.com/science/article/pii/0890540187900526
http://www.sciencedirect.com/science/article/pii/0890540187900526
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.1978.231496


[70] G. Argyros, I. Stais, S. Jana, A. D. Keromytis, and A. Kiayias, “Sfadiff: Automated
evasion attacks and fingerprinting using black-box differential automata learning,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, ser. CCS ’16, Vienna, Austria: Association for Computing Machinery,
2016, pp. 1690–1701, isbn: 9781450341394. doi:  10.1145/2976749.2978383  . [Online].
Available:  https://doi.org/10.1145/2976749.2978383  .

[71] S. Sivakorn, G. Argyros, K. Pei, A. D. Keromytis, and S. Jana, “Hvlearn: Automated
black-box analysis of hostname verification in ssl/tls implementations,” in 2017 IEEE
Symposium on Security and Privacy (SP), 2017, pp. 521–538. doi:  10.1109/SP.2017.
46 .

[72] W. M. McKeeman, “Differential testing for software,” DIGITAL TECHNICAL JOUR-
NAL, vol. 10, no. 1, pp. 100–107, 1998.

[73] B. Evans and A. Savoia, “Differential testing: A new approach to change detection,”
Jan. 2007, pp. 549–552. doi:  10.1145/1295014.1295038 .

[74] Ts 24.301 universal mobile telecommunications system (umts); lte; 5g; non-access-
stratum (nas) protocol for evolved packet system (eps); stage 3 (3gpp ts 24.301 version
15.4.0 release 15).

[75] M. Isberner, F. Howar, and B. Steffen, “The open-source learnlib,” in Computer Aided
Verification, D. Kroening and C. S. Psreanu, Eds., Cham: Springer International
Publishing, 2015, pp. 487–495, isbn: 978-3-319-21690-4.

[76] M. Isberner, “Foundations of active automata learning: An algorithmic perspective,”
Ph.D. dissertation, 2015.

[77] I. Karim, S. Hussain, and E. Bertino, “Prochecker: An automated security and pri-
vacy analysis framework for 4g lte protocol implementations,” in Proceedings of the
41st IEEE International Conference on Distributed Computing Systems, ICDCS 2021,
2021.

[78] S. R. Hussain, M. Echeverria, O. Chowdhury, N. Li, and E. Bertino, “Privacy attacks
to the 4g and 5g cellular paging protocols using side channel information,” in 26th An-
nual Network and Distributed System Security Symposium, NDSS 2019, San Diego,
California, USA, February 24-27, 2019, The Internet Society, 2019. [Online]. Avail-
able:  https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019%
5C_05B-5%5C_Hussain%5C_paper.pdf  .

159

https://doi.org/10.1145/2976749.2978383
https://doi.org/10.1145/2976749.2978383
https://doi.org/10.1109/SP.2017.46
https://doi.org/10.1109/SP.2017.46
https://doi.org/10.1145/1295014.1295038
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019%5C_05B-5%5C_Hussain%5C_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019%5C_05B-5%5C_Hussain%5C_paper.pdf


[79] B. Beurdouche et al., “A messy state of the union: Taming the composite state ma-
chines of tls,” in 2015 IEEE Symposium on Security and Privacy, 2015, pp. 535–552.
doi:  10.1109/SP.2015.39 .

[80] Lte; evolved universal terrestrial radio access (e-utra) and evolved packet core (epc);
user equipment (ue) conformance specification; part 1: Protocol conformance specifi-
cation (3gpp ts 36.523-1).

[81] Gcov (Using the GNU Compiler Collection (GCC)),  https://gcc.gnu.org/onlinedocs/
gcc/Gcov.html  .

[82] 2022 Bluetooth Market Update,  https://www.bluetooth.com/2022-market-update/ .

[83] D. Antonioli, N. O. Tippenhauer, K. Rasmussen, and M. Payer, “Blurtooth: Exploit-
ing cross-transport key derivation in bluetooth classic and bluetooth low energy,” in
Proceedings of the 2022 ACM on Asia Conference on Computer and Communications
Security, ser. ASIA CCS ’22, Nagasaki, Japan: Association for Computing Machin-
ery, 2022, pp. 196–207, isbn: 9781450391405. doi:  10.1145/3488932.3523258 . [Online].
Available:  https://doi.org/10.1145/3488932.3523258  .

[84] M. Chlosta, D. Rupprecht, and T. Holz, “On the challenges of automata reconstruc-
tion in lte networks,” in Proceedings of the 14th ACM Conference on Security and Pri-
vacy in Wireless and Mobile Networks, ser. WiSec ’21, Abu Dhabi, United Arab Emi-
rates: Association for Computing Machinery, 2021, pp. 164–174, isbn: 9781450383493.
doi:  10.1145/3448300.3469133 . [Online]. Available:  https://doi.org/10.1145/3448300.
3469133 .

[85] S. L. Harris and D. Harris, Digital design and computer architecture. Morgan Kauf-
mann, 2015.

[86] Formal equivalence checking,  https://en.wikipedia.org/wiki/Formal_equivalence_
checking  .

[87] IOS13-SimulateTouch-iOS Automation Framework iOS Touch Simulation Library,
 https://github.com/xuan32546/IOS13-SimulateTouch  .

[88] nRF52840 Dongle,  https://www.nordicsemi.com  .

[89] Fluoride Bluetooth stack,  https://android.googlesource.com/platform/system/bt/
+/181144a50114c824cfe3cdfd695c11a074673a5e/README.md .

160

https://doi.org/10.1109/SP.2015.39
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://www.bluetooth.com/2022-market-update/
https://doi.org/10.1145/3488932.3523258
https://doi.org/10.1145/3488932.3523258
https://doi.org/10.1145/3448300.3469133
https://doi.org/10.1145/3448300.3469133
https://doi.org/10.1145/3448300.3469133
https://en.wikipedia.org/wiki/Formal_equivalence_checking
https://en.wikipedia.org/wiki/Formal_equivalence_checking
https://github.com/xuan32546/IOS13-SimulateTouch
https://www.nordicsemi.com
https://android.googlesource.com/platform/system/bt/+/181144a50114c824cfe3cdfd695c11a074673a5e/README.md
https://android.googlesource.com/platform/system/bt/+/181144a50114c824cfe3cdfd695c11a074673a5e/README.md


[90] iOS BLE Stack,  https://developer.apple.com/documentation/corebluetooth  .

[91] A. Pferscher and B. K. Aichernig, “Fingerprinting bluetooth low energy devices via
active automata learning,” in Formal Methods: 24th International Symposium, FM
2021, Virtual Event, November 2026, 2021, Proceedings, Berlin, Heidelberg: Springer-
Verlag, 2021, pp. 524–542, isbn: 978-3-030-90869-0. doi:  10.1007/978-3-030-90870-
6_28  . [Online]. Available:  https://doi.org/10.1007/978-3-030-90870-628  .

[92] BlueKitchen, BTstack: Dual-mode Bluetooth stack, with small memory footprint.  htt
ps://github.com/bluekitchen/btstack  .

[93] LTP GCOV extension (LCOV),  https://github.com/linux-test-project/lcov  .

[94] G. Hernandez and K. R. B. Butler, “Basebads: Automated security analysis of base-
band firmware: Poster,” in Proceedings of the 12th Conference on Security and Pri-
vacy in Wireless and Mobile Networks, ser. WiSec ’19, Miami, Florida: Association
for Computing Machinery, 2019, pp. 318–319, isbn: 9781450367264. doi:  10.1145/
3317549.3326310 . [Online]. Available:  https://doi.org/10.1145/3317549.3326310  .

[95] C. Hawblitzel et al., “Ironfleet: Proving practical distributed systems,” in SOSP 15.

[96] J. R. Wilcox et al., “Verdi: A framework for implementing and formally verifying
distributed systems,” in PLDI 15.

[97] C. Fournet, M. Kohlweiss, and P.-Y. Strub, “Modular code-based cryptographic verifi-
cation,” in Proceedings of the 18th ACM conference on Computer and communications
security, 2011, pp. 341–350.

[98] K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse, “Verified interoperable im-
plementations of security protocols,” ACM Transactions on Programming Languages
and Systems (TOPLAS),

[99] D. Kroening and M. Tautschnig, “Cbmc–c bounded model checker,” in International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
Springer, 2014, pp. 389–391.

[100] M. Canini, D. Venzano, P. Pereni, D. Kostiundefined, and J. Rexford, “A nice way
to test openflow applications,” in NSDI12.

161

https://developer.apple.com/documentation/corebluetooth
https://doi.org/10.1007/978-3-030-90870-6_28
https://doi.org/10.1007/978-3-030-90870-6_28
https://doi.org/10.1007/978-3-030-90870-628
https://github.com/bluekitchen/btstack
https://github.com/bluekitchen/btstack
https://github.com/linux-test-project/lcov
https://doi.org/10.1145/3317549.3326310
https://doi.org/10.1145/3317549.3326310
https://doi.org/10.1145/3317549.3326310


[101] M. Musuvathi, D. R. Engler, et al., “Model checking large network protocol imple-
mentations..”

[102] P. Godefroid, “Model checking for programming languages using verisoft,” in Proceed-
ings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, 1997, pp. 174–186.

[103] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The software model checker
b last,” International Journal on Software Tools for Technology Transfer, vol. 9, no. 5-
6, pp. 505–525, 2007.

[104] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst, and A. Krishnamurthy, “Using
declarative specification to improve the understanding, extensibility, and comparison
of model-inference algorithms,” IEEE Transactions on Software Engineering, vol. 41,
no. 4, pp. 408–428, 2015.

[105] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex: Protocol
specification extraction,” in 2009 30th IEEE Symposium on Security and Privacy,
IEEE, 2009, pp. 110–125.

[106] C. Y. Cho, D. Babi , E. C. R. Shin, and D. Song, “Inference and analysis of formal
models of botnet command and control protocols,” in Proceedings of the 17th ACM
conference on Computer and communications security, 2010.

[107] R. J. Walls, Y. Brun, M. Liberatore, and B. N. Levine, “Discovering specification vio-
lations in networked software systems,” in 2015 IEEE 26th International Symposium
on Software Reliability Engineering (ISSRE), 2015, pp. 496–506.

[108] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: Extraction of protocol message
format using dynamic binary analysis,” in CCS 2007.

[109] M. Aizatulin, A. D. Gordon, and J. Jürjens, “Extracting and verifying cryptographic
models from c protocol code,” in CCS 2011.

[110] P. M. Comparetti, G. Wondracek, C. Krügel, and E. Kirda, “Prospex: Protocol spec-
ification extraction,” 2009 30th IEEE Symposium on Security and Privacy, pp. 110–
125, 2009.

[111] Y. Hsu, G. Shu, and D. Lee, “A model-based approach to security flaw detection
of network protocol implementations,” in 2008 IEEE International Conference on
Network Protocols, 2008, pp. 114–123. doi:  10.1109/ICNP.2008.4697030 .

162

https://doi.org/10.1109/ICNP.2008.4697030


[112] M. Chlosta, D. Rupprecht, and T. Holz, “On the challenges of automata reconstruc-
tion in lte networks,” in Proceedings of the 14th ACM Conference on Security and Pri-
vacy in Wireless and Mobile Networks, ser. WiSec ’21, Abu Dhabi, United Arab Emi-
rates: Association for Computing Machinery, 2021, pp. 164–174, isbn: 9781450383493.
doi:  10.1145/3448300.3469133 . [Online]. Available:  https://doi.org/10.1145/3448300.
3469133 .

[113] C. McMahon Stone, T. Chothia, and J. de Ruiter, “Extending automated protocol
state learning for the 802.11 4-way handshake,” in Computer Security, J. Lopez, J.
Zhou, and M. Soriano, Eds., Cham: Springer International Publishing, 2018, pp. 325–
345, isbn: 978-3-319-99073-6.

163

https://doi.org/10.1145/3448300.3469133
https://doi.org/10.1145/3448300.3469133
https://doi.org/10.1145/3448300.3469133

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Implementations of Wireless Communication Protocols
	Challenges in Analyzing Wireless Communication Protocol Implementations
	Existing Efforts
	Dissertation Focus
	Thesis Statement
	Contributions
	An Automated Security and Privacy Analysis Framework for Cellular Network Implementations
	An Automated Black-box Noncompliance Checker for Cellular Network Implementations
	Scalable and Property-Agnostic Noncompliance Checking for BLE Implementations
	Dissertation Outline


	BACKGROUND
	4G LTE Network Architecture
	Protocol Overview
	NAS Layer Procedures
	RRC layer procedures

	Bluetooth Low Energy (BLE)

	PROCHEKCER: AN AUTOMATED SECURITY AND PRIVACY ANALYSIS FRAMEWORK FOR CELLULAR PROTOCOL IMPLEMENTATIONS
	Background
	Logical Vulnerabilities
	Properties of LTE Protocol Implementation

	Overview of ProChecker
	Threat Model
	Protocol Finite State Machine
	Challenges
	Insights on Addressing Challenges
	High Level Description of ProChecker

	Detailed Design of ProChecker
	Model extraction
	Model checking

	Running Example
	Implementation
	Evaluation and Findings
	RQ1. Logical Vulnerability Detection
	RQ2. Model Comparison
	RQ3. Scalability

	Discussion and Limitations
	Summary

	NONCOMPLIANCE AS DEVIANT BEHAVIOR: AN AUTOMATED BLACK-BOX NONCOMPLIANCE CHECKER FOR CELLULAR DEVICES
	Background
	Active Automata Learning

	Design of DIKEUE
	Threat Model
	Problem Statement and Approach Skeleton
	Workflow of DIKEUE
	Challenges and Insights
	Learning the 4G LTE Protocol State Machine of a UE

	FSM inference module
	Learner
	Adapter
	Addressing multi-layer protocol:
	Encoding and decoding custom NAS and RRC layer packets containing predicates:
	Triggering complex protocol interactions:
	Optimizing queries during model validation with cache:
	Resolving observational non-determinism with inconsistency resolver:
	Transparent reset without manual intervention or rebooting the device:
	OTA packet encoding/decoding with modified cellular stack:


	FSM equivalence checker
	Reduction to Model Checking
	Challenge of Obtaining Diverse Deviations
	Identifying Diverse Deviations

	Implementation
	Evaluation
	Deviations (RQ1)
	Exploitable deviations
	Replayed GUTI_reallocation:
	Plaintext message acceptance after security context:
	Inappropriate state reset.

	Interoperability issues
	Other deviant behaviors
	Previous issues

	Comparison with Baseline (RQ2)
	Comparison with conformance test cases
	Comparison with existing LTE works
	Comparison with LTEFuzz
	Comparison with property-guided testing


	Components performance (RQ3)
	FSM inference module performance
	RQ3.1. Impact of optimal alphabet set:
	RQ3.2. Adapter context checking:
	RQ3.3. Impact of cache:
	RQ3.4. Impact of inconsistency-resolver:

	FSM equivalence checker performance

	Discussion
	Summary

	BLEDIFF: SALABLE AND PROPERTY-AGNOSTIC NONCOMPLIANCE CHECKING FOR BLE IMPLEMENTATIONS
	Background
	Finite State Machine (FSM)
	Active Automata Learning

	Overview
	Scope of Analysis
	Threat Model
	Problem and Solution Outline
	Challenges of Designing BLEDiff
	Learning the BLE FSM of an implementation
	Identifying noncompliance from FSMs


	Detailed Design of BLEDiff
	Divide and Conquer Based FSM Learning
	Divide Phase
	Conquer Phase

	BLE Checking Module
	Reduction to Model Checking


	Implementation
	Evaluation
	Evaluation Setup.
	RQ1. Deviations, Attacks, Impacts
	Attacks
	Interoperability
	No impact

	Comparison with existing testing approach
	Conformance or qualification testing framework
	Previous approaches on BLE testing

	BLEDiff performance
	FSM inference module performance
	Performance of the divide and conquer approach
	FSM equivalence checker performance


	Discussion
	Conclusion

	RELATED WORK
	CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS
	REFERENCES
	INDEX
	COLOPHON

