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ABSTRACT

Qudit, a multi-level computational unit for quantum computing, provides a larger state

space for information processing, and thus can reduce the circuit complexity, simplify the ex-

perimental setup. We promote the qudit-based quantum computing by providing an overview

that covers a variety of qudit topics ranging from gate universality, circuit building, algo-

rithm design, to physical realization methods. Among all the important qudit algorithms, we

perform the first experimental realization of a qudit-based phase estimation algorithm(PEA)

on a photonic platform, utilizing the high dimensionality in time and frequency degrees of

freedom (DoFs) in a single photon. In our scheme the controlled-unitary gates can be re-

alized in a deterministic fashion, as the control and target registers are now represented by

two DoFs in a single photon. Next we improve the PEA by introducing a new statistical

and variational approach to the PEA that we called SPEA. The SPEA can determine any

unknown eigenstate-eigenphase pair from a given unitary matrix by treating the probabilistic

output of an Iterative PEA (IPEA)-like circuit as an eigenstate-eigenphase proximity metric,

using this metric to estimate the proximity of the input state and input phase to the nearest

eigenstate-eigenphase pair and approaching this pair via a variational process on the input

state and phase. The SPEA can search over the entire computational space as well as some

specified given range efficiently and thus outperforms the original PEA.

The simulation of open quantum dynamics has attracted wide interests recently with a

variety of quantum algorithms developed and demonstrated. The second half of the thesis

focus on the simulation of the open quantum dynamics which is a useful application for

quantum computer based on qudit as well as qubit. We perform the first quantum simulations

of the radical pair mechanism(RPM) in the avian compass with a Sz.-Nagy dilation theorem-

based quantum algorithm to demonstrate the generality of the quantum algorithm and to

open new opportunities for studying the avian compass with quantum computing devices.

Next we apply the same quantum algorithm to simulate open quantum dynamics based on the

Generalized Quantum Master Equation (GQME). This approach overcomes the limitations

of the Lindblad equation by providing a rigorous derivation of the equations of motion for

any subset of elements of the reduced density matrix. We validate our quantum algorithm as

11



applied to the spin-boson benchmark model by analyzing the impact of the quantum circuit

depth on the accuracy of the results when the subset is limited to the diagonal elements

of the reduced density matrix. Our findings demonstrate that our approach yields reliable

results on noisy intermediate-scale quantum (NISQ) computers.
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1. INTRODUCTION

1.1 Quantum computation in qudit space

Quantum computation has received enormous attention in recent years with rapid progress

in both theoretical and experimental fronts[  1 ]–[ 4 ]. The development of quantum algorithms

used for quantum computation has been stimulated by the greater availability of more ca-

pable quantum devices[  5 ]–[ 11 ]. Qudit technology, with a qudit being a quantum version

of d-ary digits for d > 2 [ 12 ], is emerging as an alternative to qubit for quantum compu-

tation and quantum information science. Due to its multi-level nature, qudit provides a

larger state space to store and process information and the ability to do multiple control

operations simultaneously [ 13 ]. These features play an important role in the reduction of

the circuit complexity, the simplification of the experimental setup and the enhancement of

the algorithm efficiency [ 13 ]–[ 16 ]. The advantage of the qudit not only applies to the circuit

model for quantum computers but also applies to adiabatic quantum computing devices [ 17 ],

[ 18 ], topological quantum systems [ 19 ]–[ 21 ] and more. The qudit-based quantum computing

system can be implemented on various physical platforms such as photonic systems [  13 ], [  22 ],

continuous spin systems [ 23 ], [  24 ], ion trap [ 25 ], nuclear magnetic resonance [ 26 ], [  27 ] and

molecular magnets [ 28 ].

Although the qudit system’s advantages in various applications and potentials for future

development are substantial, this system receives less attention than the conventional qubit-

based quantum computing, and a comprehensive review of the qudit-based models and tech-

nologies is needed. Chapter  2 provides an overview of qudit-based quantum computing [ 29 ].

It covers a variety of topics ranging from circuit building [ 30 ]–[ 34 ], algorithm designs [ 24 ],

[ 27 ], [ 35 ]–[ 39 ], to experimental methods [ 13 ], [ 22 ]–[ 28 ]. In this part, high-dimensional gener-

alizations of many widely used quantum gates are presented and the universality of the qudit

gates is shown. Qudit versions of three major classes of quantum algorithms—algorithms for

the oracles decision problems (e.g., the Deutsch-Jozsa algorithm [ 35 ]), algorithms for the hid-

den non-abelian subgroup problems (e.g. the phase-estimation algorithms (PEAs) [ 37 ]) and

the quantum search algorithm (e.g. Grover’s algorithm [  39 ])—are discussed and the compar-

ison of the qudit designs versus the qubit designs is analyzed. Finally, it introduces various

13



physical platforms that can implement qudit computation and compare their performances

with their qubit counterparts.

Chapter  3 presents the quantum phase estimation with time-frequency qudits in a single

photon [ 13 ]. The phase estimation algorithm (PEA) is a key subroutine of several impor-

tant algorithms such as the Shor’s factorization algorithm[ 40 ] and the Harrow-Hassidim-

Lloyd (HHL) algorithm for solving linear systems of equations[  41 ], [  42 ]. PEA has also been

developed to find the ground-state energy of a molecular Hamiltonian[  10 ], [  43 ]–[ 45 ], and

experimentally demonstrated on various physical platforms[ 11 ], [ 46 ]–[ 48 ]. Currently most

platforms designed for quantum computation are based on quantum bits, or qubits, repre-

sented by quantum states in a two-dimensional Hilbert space. The scalability of quantum

computation requires representing high-dimensional quantum states with multiple interact-

ing qubits and realizing high-dimensional quantum gates with sequences of one-qubit and

two-qubit elementary gates. Due to experimental constraints and environmental noise, both

the number of interacting qubits (width) and the length of the gate sequence (depth) limit

the capability of quantum computing hardware.

As an alternative to qubits, qudits, represented by quantum states in a d-dimensional

(with d greater than 2) Hilbert space, has been proposed. Using qudits as the building block

can potentially reduce both the width and the depth of quantum circuits, and therefore

may offer unique advantages over the conventional qubit systems. Indeed, several benefits

of qudits, including higher information coding capacity, stronger non-locality, and enhanced

security, have been proposed[  49 ]–[ 53 ]. Various techniques have demonstrated the required

hardware to generate and process qudits by utilizing different degrees of freedom (DoFs) in

photons, including orbital angular momentum[ 54 ], time-bin[ 55 ], frequency-bin[ 56 ]–[ 58 ], and

hybrid time-frequency bin encoding[  59 ], [  60 ]. Performing quantum simulation and compu-

tation with qudits have also been proposed[ 61 ], [ 62 ], but the implementation of a functional

quantum algorithm (such as PEA) has not yet been realized on any qudit-based platform. In

this chapter, we experimentally realize a proof-of-principle qudit-based PEA on a photonic

platform by encoding two qutrits in a single photon, where the frequency DoF carries one

qutrit as the control register, and the time DoF carries another qutrit as the target register.

By working with two DoFs in a photon, the controlled-unitary operation required by the

14



PEA is realized within a single photon, thus circumventing the undesirable, probabilistic

photon-photon interaction[ 59 ], [ 60 ], [ 63 ], [  64 ]. Our qutrit-based implementation is tested on

diagonal 3 × 3 unitary matrices. Eigenphases (i.e. phases associated with the eigenvalues)

representable by one ternary digit (given by a single control qutrit) are retrieved with 98%

fidelity. For arbitrary eigenphases, we fit their respective photon statistics to theoretical

distributions, and minimize the mean squared error. The retrieved phases are all within

7.1% error. In the final section, we will discuss the possibility of increasing the dimension

and complexity of our future system, and show the exploitation of qudits can provide certain

advantage in this Noisy Intermediate-Scale Quantum (NISQ) era.

Chapter  4 presents a statistical approach to quantum phase estimation [ 65 ]. Efficient

spectral decomposition of large matrices is a key component to many optimization and ma-

chine learning algorithms, with applications ranging from factoring and searching algorithms

to computational chemistry [ 9 ]. On classical computers, spectral decomposition scales super-

linearly with the system dimension [ 66 ], making it intractable for large problems. Due to

the utility of spectral decomposition and its classical limitations, quantum approaches to

spectral decomposition and eigenvalue estimation have been pursued [ 67 ]. One significant

approach is the quantum phase estimation algorithm (PEA) [  68 ] – a means of determining

unknown eigenphases of a unitary matrix – which is a key subroutine in a number of quantum

algorithms including Shor’s factoring algorithm [ 69 ], quantum principal component analy-

sis [ 70 ], the generalized Grover’s search algorithm [ 71 ], and quantum simulations [ 10 ], [ 72 ],

[ 73 ]. Near-term quantum systems operate in the noisy intermediate-scale quantum (NISQ)

regime [  74 ], facing restrictions on both circuit depth and breadth due to decoherence and gate

infidelity. Consequently, interest in the traditional PEA [ 68 ] and quantum principal compo-

nent analysis [ 70 ] has been channeled toward developments in the iterative PEA (IPEA) [  75 ]

– a method which estimates an unknown phase over multiple circuit iterations – allowing

for significant reduction in both qubit usage (circuit breadth) and controlled-gate operations

(circuit depth). The IPEA has been demonstrated on photonic systems [ 48 ]. On the other

hand, variational quantum algorithms (VQA) – which use a classical computer to control and

optimize the parameters applied in a quantum circuit – have been developed for a variety of

15



problems as they leverage the speedup of quantum algorithm with lower-depth circuits [ 76 ],

[ 77 ].

Here, we introduce a quantum-classical hybrid algorithm combining the PEA with the

VQA – which we call the Statistical PEA (SPEA) – and show preliminary simulation re-

sults on the IBM Q platform with the Qiskit package [ 78 ] as well as simulations on a local

computer. The method is able to determine any unknown eigenstate-eigenphase pair from

a unitary matrix by utilizing hardware intended for the IPEA. Further, the SPEA can be

applied repeatedly to obtain a full spectral decomposition. The SPEA may be compared to

other variational quantum eigensolvers [ 79 ]–[ 81 ], the primary difference being other varia-

tional eigensolvers work directly on a (Hermitian) matrix encoded as a quantum state using

specially designed quantum circuits. The SPEA assumes access to a gate representation

of the unitary exponentiation of the state – or assumes simultaneous availability of several

copies of the quantum state to approximate the quantum gate à la [ 70 ]. In return, the

SPEA requires a polynomially-reduced number of (classical) optimization parameters – as

it optimizes for a single eigenstate, rather than diagonalize the entire matrix simultaneously

– and directly delivers eigenstate-eigenphase pairs (whereas other approaches may allow

on-demand generation of eigenstates, but require tomography if knowledge of the state is

needed). The SPEA is also able to search for eigenphases within specified ranges, allowing

those with some prior knowledge of their system to search for particular solutions, whether

ground state (near minimum eigenphase), principle (near-maximal eigenphase), or any other

region of interest.

1.2 Open quantum dynamics

This section introduce the topic of the second half of the thesis: the simulations of

open quantum dynamics that are important applications for quantum computer based on

qudit as well as qubit. Simulations of open quantum systems have become essential for

studying the dynamics of quantum systems in the condensed phase, allowing for the inclu-

sion of dissipative effects from the environment which are critical for accurate simulations.

These powerful computational tools have enabled a wide range of studies, from chemical and

16



physical processes to excited state lifetimes, spectral diffusion and line-broadening, across

multiple fields of research, including physical chemistry, molecular physics, condensed-phase

physics, nanoscience, molecular electronics, quantum optics, nonequilibrium statistical me-

chanics, spectroscopy and quantum information science. [ 82 ]–[ 111 ] Examples of open quan-

tum system dynamics include energy and charge transfer, dephasing, vibrational relaxation,

nonadiabatic dynamics and photochemistry (see Fig.  1.1 ). By harnessing the power of open

quantum system simulations, we can bridge the gap between theory and experiment, pro-

viding insight into various complex phenomena in a variety of light-induced physical and

chemical processes, including photoinduced processes such as energy and charge transfer,

vibronic relaxation, dephasing, and nonadiabatic dynamics. [ 9 ], [  96 ], [  97 ], [  102 ], [  112 ]–[ 129 ].

Open 
Quantum 
System

Dynamics

Photosynthesis

Charge 
& Energy 
Transfer

Quantum Processors

Quantum 
Optics

Photochemistry

Photovoltaics

Figure 1.1. The simulation of open quantum system dynamics is central to
many science and engineering disciplines (a few examples are showcased in the
figure).

Recent advances in quantum computing have enabled the development of numerous algo-

rithms for electronic structure calculations, [  77 ], [ 81 ], [ 130 ], [ 131 ] and simulations of quantum

dynamics of closed quantum systems [  132 ]–[ 135 ]. However, relatively few studies have ex-

plored the simulation of open quantum system dynamics [ 136 ]–[ 142 ]. These studies have been

mostly based on Lindblad-type quantum master equations (QMEs) which ensure complete

positivity and conservation of probability but rely on the Markov and Born approximations
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in the system-bath weak coupling limit [  111 ]. With the aim of developing a more general

approach, here we introduce a quantum algorithm based on the Generalized Quantum Mas-

ter Equation (GQME), which corresponds to the formally exact equation of motion (EoM)

for an open quantum system.

A major challenge facing the quantum simulation of open quantum system dynamics

is the fact that the time evolution operators are non-unitary whereas quantum gates are

unitary. To this end, we have previously developed a quantum algorithm for open quantum

dynamics based on the Sz.-Nagy unitary dilation theorem, which converts non-unitary op-

erators into unitary operators in an extended Hilbert space. This algorithm was originally

applied to simulating a Markovian two-level model on IBM quantum computers.[ 143 ] Later,

the same method was applied to simulating the non-Markovian Jaynes-Cummings model

on IBM quantum computers.[  144 ] In a recent work, the same Lindblad-QME-based quan-

tum algorithm was applied to simulate the dynamics of the Fenna-Matthews-Olson complex,

which includes five quantum states and seven elementary physical processes.[ 145 ] Thus far,

this quantum algorithm has been used to simulate the dynamics of open quantum systems

described by the operator sum representation or Lindblad-type QMEs.

Chapter  5 provides an examples of open quantum dynamics simulation: the Radical Pair

Dynamics of the Avian Compass [ 142 ]. This Lindblad-QME-based dynamics is simulated

with the quantum algorithm based on the Sz.-Nagy unitary dilation theorem. The radical

pair mechanism (RPM) is a theory proposed to explain the magneto-reception and navigation

abilities of certain bird species [ 146 ]–[ 148 ]. Many animals possess extraordinary abilities to

sense the direction by perceiving the geomagnetic field. This is probably the result of natural

selection over a very long time of evolution, since the ability to sense the direction is crucial

for certain animals to find their habitats, such as migratory birds that change habitats from

season to season.

In brief, the RPM involves two spatially separated electrons, which are correlated with

each other and affected by the external weak magnetic field and internal nuclear spin cou-

plings. The basic scheme of the RPM includes three stages: 1) the photons with certain

energies activate a certain type of molecules located in the bird’s eyes, enabling an electron

transfer reaction and generating a radical pair in the singlet state; 2) the state of the rad-
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ical pair converts between the singlet state and the triplet state under the influence of the

external magnetic field (the geomagnetic field) and the internal magnetic field (the hyper-

fine coupling effects); 3) the radical pairs in different states will generate different chemical

products which can induce a detectable signal for birds to recognize the direction [  149 ]. The

RPM is a promising hypothesis that can explain the three unusual properties of the avian

compass: 1. the inclination compass: the functional mode of the avian magnetic compass

is based on the inclination of the field lines instead of their polarity [ 150 ]–[ 153 ]; 2. the light

dependence: light with an energy above a certain threshold is needed for the RPM to work

[ 154 ]–[ 160 ]; 3. the narrow range of responsive magnetic field intensities: both higher and

lower magnetic fields will disable birds’ ability of navigation [ 161 ]. To understand the RP

mechanism, E. M. Gauger et. al. proposed a way to model the dynamics of the RPM system

with a Lindblad master equation by adding two “shelving states” for the singlet yield and

triple yield [  162 ]. In the following, we treat the same Lindblad formulation of the RPM

dynamics with our general quantum algorithm for open quantum dynamics and simulate

the RPM dynamics on the IBM QASM quantum simulator. To our best knowledge, this

is the first ever demonstration of any quantum algorithm applied to simulating the RPM

dynamics. This chapter not only shows the generality of the quantum algorithm, but also

opens new potential ways to study the avian compass with quantum computing devices.

It is worth noticing that the Lindblad QME used in Ref. [ 142 ], [ 145 ] relies on several

restrictive approximations, including Markovian dynamics, and the ensemble of Lindbla-

dian trajectories method in Ref. [ 144 ], while capable of describing non-Markovian dynamics,

involves user selection of ad-hoc system-bath parameters, therefore limiting the range of ap-

plications. Furthermore, while the operator sum representation of open quantum system

dynamics is general, it requires knowledge of the Kraus operators, which to the best of our

knowledge are only known in closed form for systems whose dynamics can be described by

Lindblad-type QMEs. Therefore, in the next chapter, Chapter  6 we would like to Extend the

range of quantum simulation of open quantum systems and therefore calls for formulating

the dynamics within a less restrictive theoretical framework [ 163 ]. The GQME formalism

introduced by Nakajima [ 164 ] and Zwanzig [ 165 ] represents such a general framework since

the GQME corresponds to the formally exact EoM of the open quantum system, as opposed
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to the Lindblad-type QMEs which correspond to approximate EoMs of the open quantum

system. Using the GQME

A comparison of the workflows for simulating the dynamics of a closed quantum system

governed by the quantum Liouville equation vs. an open quantum system governed by

the GQME is shown in Fig.  1.2 . The derivation of the GQME involves projecting out

the bath degrees of freedom (DOF) to obtain the EoM of the system’s reduced density

matrix, or a subset of its elements. Within this EoM, which is referred to as the GQME,

the memory kernel superoperator, K(τ), accounts for the main impact of the bath on the

system’s dynamics. Thus, the GQME replaces the Liouville equation as the formally exact

EoM of the system when we transition from a closed quantum system to an open quantum

system, with the memory kernel playing a similar role in the open system to that of the

Hamiltonian or Liouvillian in the closed system.

In chapter  6 , we develop a GQME-based quantum algorithm for simulating the dynamics

of an open quantum system. To this end, we develop a protocol for obtaining the non-unitary

time evolution superoperator, or popagator, from the memory kernel. Then the Sz.-Nagy

unitary dilation theorem is used to convert the GQME-based non-unitary propagator into

a unitary superoperator in an extended Hilbert space. Given this dilated and now unitary

time evolution superoperator and the initial state of the system, we can evolve the dynamics

for any open quantum system on quantum computers.

Given the fact that the GQME is the exact EoM of the open quantum system, this

quantum algorithm greatly extends the range of possible systems that can be simulated on

a quantum computer, including complex non-Markovian photosynthetic and photovoltaic

systems[ 102 ], [ 166 ], molecular electronics[ 122 ], linear and nonlinear spectroscopy[ 167 ], sys-

tems with inter-system crossing[ 168 ], and conical intersections[ 169 ]. Thus, this GQME-based

quantum algorithm provides an essentially universal protocol for simulating open quantum

system dynamics on quantum computing platforms. Given a powerful enough quantum com-

puter, this algorithm opens the door for simulating open quantum system dynamics of large

and complex molecular systems, which are currently beyond the reach of classical computers.
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Figure 1.2. A comparison of the workflows for simulating the dynamics of
a closed quantum system governed by the quantum Liouville equation vs. an
open quantum system governed by the GQME. 1. The EoM is established;
2. the time evolution superoperator is generated from the EoM; 3. A unitary
dilation is required in order to convert the GQME-based non-unitary time
evolution superoperator into a unitary superoperator in an extended Hilbert
space; 4. Translation of the unitary matrix into a quantum gate sequence.
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2. QUDITS AND HIGH-DIMENSIONAL QUANTUM

COMPUTING

The contents of this chapter are based on and modified from the article [ 29 ] Wang, Yuchen,
Hu, Z., Sanders, B. C., & Kais, S. (2020). Qudits and high-dimensional quantum computing.
Frontiers in Physics, 8, 479., Copyright (2020) by Wang, Hu, Sanders and Kais. This is an
open-access article distributed under the terms of the Creative Commons Attribution License
(CC BY). Published by Frontiers Media S.A.

This chapter gives a review of the Qudits and high-dimensional quantum computing and it

is organized as follows. Definitions and properties of a qudit and related qudit gates are given

in § 2.1 . The generalization of the universal gate set to qudit systems and several proposed

sets are provided in § 2.1.1 . Then § 2.1.2 lists various examples of qudit gates and discusses

the difference and possible improvement of these gates over their qubit counterparts. A dis-

cussion of the gate efficiency of synthesizing an arbitrary unitary U using geometric method

is given in § 2.1.3 . The next section, § 2.2 , provides an introduction to qudit algorithms: a

single-qudit algorithm that finds the parity of a permutation in § 2.2.1 , the Deutsch-Josza al-

gorithm in § 2.2.1 , the Bernstein-Vazirani algorithm in § 2.2.1 , the quantum Fourier transform

in § 2.2.2 , the PEA in § 2.2.2 and the quantum search algorithm in § 2.2.3 . § 2.3 is a section fo-

cused on the qudit quantum computing models other than the circuit model, which includes

the measurement-based model in § 2.3.1 , the adiabiatic quantum computing in § 2.3.2 and

the topological quantum computing in § 2.3.3 . In § 2.4 , we provide various realizations of the

qudit algorithms on physical platforms and discuss their applications. We discuss possible

improvements in computational speed-up, resource saving and implementations on physical

platforms. A qudit with a larger state space than a qubit can utilize the full potential of

physical systems such as photon in § 2.4.1 , ion trap in § 2.4.2 , nuclear magnetic resonance

in § 2.4.3 and molecular magnet in § 2.4.4 . Finally, we give a summary of the qudit systems

advantages and provide our perspective for the future developments and applications of the

qudit in § 2.5 .
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2.1 Quantum gates for qudits

A qudit is a quantum version of d-ary digits whose state can be described by a vector in

the d dimensional Hilbert space Hd [ 12 ]. The space is spanned by a set of orthonormal basis

vectors {|0⟩ , |1⟩ , |2⟩ , . . . |d− 1⟩}. The state of a qudit has the general form

|α⟩ = α0 |0⟩ + α1 |1⟩ + α2 |2⟩ + · · · + αd−1 |d− 1⟩ =



α0

α1

α2
...

αd−1


∈ Cd (2.1)

where |α0|2 + |α1|2 + |α2|2 + · · · + |αd−1|2 = 1. Qudit can replace qubit as the basic com-

putational element for quantum algorithms. The state of a qudit is transformed by qudit

gates.

This section gives a review of various qudit gates and their applications. § 2.1.1 provides

criteria for the qudit universality and introduces several fundamental qudit gate sets. § 2.1.2 

presents examples of qudit gates and illustrates their advantages compared to qubit gates.

In the last section, § 2.1.3 , a quantitative discussion of the circuit efficiency is included to

give a boundary of the number of elementary gates needed for decomposing an arbitrary

unitary matrix.

2.1.1 Criteria for universal qudit gates

This subsection describes the universal gates for qudit-based quantum computing and

information processing. We elaborate on the criteria for universality in § 2.1.1 and give

examples in § 2.1.1 .

Universality

In quantum simulation and computation, a set of matrices Uk ∈ U(dn) is called the

universal quantum gate set if the product of its elements can be used to approximate any
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arbitrary unitary transformation U of the Hilbert space H ⊗n
d with acceptable error measured

in some appropriate norm [ 170 ]. This idea of universality not only applies to the qubit

systems [ 171 ], but can also be extended to the qudit logic [ 31 ], [  172 ]–[ 176 ]. Several discussions

of standards and proposals for a universal qudit gate set exist. Vlasov shows that the

combination of two noncommuting single qudit gates and a two-qudit gate are enough to

simulate any unitary U ∈ U(dn) with arbitrary precision [ 170 ]. Qudit gates can themselves

be reduced to, and thus simulated by, sequences of lower-dimensional qudit gates [ 177 ], [ 178 ]

Brylinski and Brylinski prove a set of sufficient and necessary conditions for exact qudit

universality which needs some random single qudit gates complemented by one two-qudit

gate that has entangled qudits [ 12 ]. Exact universality implies that any unitary gate and any

quantum process can be simulated with zero error. Neither of these methods is constructive

and includes a method for physical implementation. A physically workable procedure is

given by Muthukrishnan and Stroud using single- and two-qudit gates to decompose an

arbitrary unitary gate that operates on N qudits [ 179 ]. They use the spectral decomposition

of unitary transformations and involve a gate library with a group of continuous parameter

gates. Brennen et al. identify criteria for exact quantum computation in qudit that relies on

the QR decomposition of unitary transformations [ 180 ]. They generate a library of gates with

a fixed set of single qudit operations and ”one controlled phase” gate with single parameter

as the components of the universal set. Implementing the concept of a coupling graph, they

proved that by connecting the nodes (equivalently logical basis states) they can show the

possibility of universal computation.

Examples of universal gate sets

An explicit and physically realizable universal set comprising one-qudit general rotation

gates and two-qudit controlled extensions of rotation gates is explained in this section [ 14 ].

We first define

Ud(α) :
d−1∑
l=0

αl |l⟩ 7→ |d− 1⟩ , α := (α0, α1, . . . , αd−1). (2.2)

as a transformation in the d-dimensiona that maps any given qudit state to |d− 1⟩. Complex

parameters of Ud may not be unique and have been addressed with probabilistic quantum

24



search algorithm [ 179 ]. Here in this scheme, Ud can be deterministically decomposed into

d− 1 unitary transformations such that

Ud = X
(d−1)
d (ad−1, bd−1) · · ·X(1)

d (a1, b1), al := αl, bl :=

√√√√l−1∑
i=0

α2
i (2.3)

with

X
(l)
d (x, y) =



1l−1

x√
|x|2+|y|2

−y√
|x|2+|y|2

y∗√
|x|2+|y|2

x∗√
|x|2+|y|2

1d−l−1


. (2.4)

The d-dimensional phase gate is

Zd(θ) :=
d−1∑
l=0

ei(1−sgn(d−1−l))θ |l⟩ ⟨l| , (2.5)

which changes |d− 1⟩ by a phase θ and ignores the other states, and sgn represents the sign

function.

Each primitive gate (such as X(l)
d or Zd) has two free complex parameters to be controlled

(x, y in the X(l)
d gate and θ in the Zd gate). Let Rd represents either X(l)

d or Zd, then the

controlled-qudit gate is

C2[Rd] :=

1d2−d

Rd

 , (2.6)

which is a d2×d2 matrix that acts on two qudits. Rd acts on d substates |d− 1⟩ |0⟩ , . . . , |d− 1⟩ |d− 1⟩,

and the identity operation 1d2−d acts on the remaining substates.

Now we work on an N = dn dimensional unitary gate U ∈ SU(dn) operating on the n-

qudit state. The sufficiency of the gates X(l)
d , Zd and C2[Rd] to construct an arbitrary unitary

transformation of SU(dn) is proved in three steps. The first step is the eigen-decomposition
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of U . By the representation theory, the unitary matrix U with N eigenvalues {λs} and

eigenstates |Es⟩ can be rewritten as

U =
N∑

j=1
eiλj |Ej⟩ ⟨Ej| =

N∏
j=1

Υj (2.7)

with eigenoperators

Υj =
N∑

s=1
ei(1−| sgn(j−s)|)λs |Es⟩ ⟨Es| . (2.8)

Then the eigenoperators can be synthesized with two basic transformations as [ 179 ]

Υj = U−1
j,N Zj,N Uj,N . (2.9)

Here Uj,N and Zj,N are the N -dimensional analogues of Ud and Zd such that Uj,N is applied

to the jth eigenstate to produce |N − 1⟩ and Zj,N modifies the phase of |N − 1⟩ by the jth

eigenphase λj, while ignoring all the other computation states. According to Eq. (  2.3 ), Uj,N

can be decomposed with primitive gates X(l)
j,N(x, y). Thus, Xj,N(x, y) and Zj,N are sufficient

to decompose U .

The second step is decomposing Uj,N and Zj,N . In other words, Uj,N and Zj,N need to be

decomposed in terms of multi-qudit-controlled gates. For convenience denote Cm[Rd] as

Cm[Rd] =

1dm−d

Rd

 , (2.10)

which acts on the dm-dimensional computational basis of m-qudit space. It is proved in the

appendix of Ref. [  14 ] that each Uj,N can be decomposed into some combinations of Cm[Rd]

and Cm[Pd(p, q)] where Pd(p, q) is the permutation of |p⟩ and |q⟩ state. The third step is

using the two-qudit gates C2[Rd] and C2[Pd(p, q)] to complete the decomposition of Cm[Rd].

Fig.  2.1 shows a possible decomposition for d > 2. There are r = ⌈(m− 2)/(d− 2)⌉ auxiliary

qudits in the circuits (⌈x⌉ denotes the smallest integer greater than x). The last box contains
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Rd = Zd or X(l)
d . Cm[Rd] is implemented with these gates combined. All of the three steps

together prove that the qudit gates set

Γd := {X(l)
d , Zd, C2[Rd]} (2.11)

is universal for the quantum computation using qudit systems.

One advantage of the qudit model (compared to the qubit model) is a reduction of

the number of qudits required to span the state space. To explain this, we need at least

n1 = log2 N qubits to represent an N -dimensional system in qubits while in qudits we

need n2 = logd N qudits. The qudit system has a reduction factor k = n1/n2 = log2 d.

According to Muthukrishnan and Stroud’s method in Ref. [ 179 ] a binary equivalent of their

construction requires a number of qubit gates in the scale of O(n2
1N

2). By analogy, the scale

of the required qudit gates using the same construction is O(n2
2N

2). So the qudit method has

a (log2 d)2 scaling advantage over the qubit case. Furthermore, in this reviewed method, for

an arbitrary unitary U ∈ SU(N), from eq. ( 2.7 ) and ( 2.8 ) N eigenoperators is needed and

each can be decomposed with three rotations shown in eq. ( 2.9 ). Deriving from the appendix

of Ref. [ 14 ], Uj,N can be decomposed with less than 3dn−1 multiple controlled operations.

Finally, as Fig.  2.1 has shown,Cm[Rd] needs m number of C2[Rd] and C2[Pd(p, q)]. Ud can be

composed with d− 1 numbers of X(l)
d as in eq.( 2.3 ). Therefore the total number of primitive

operations L in this decomposition method is

L ⩽ 2N × 3dn−1 × n× (d− 1) +N × n ⩽ 6nd2n + ndn. (2.12)

It is clear that there is an extra factor of n reduction in the gate requirement as the number

scale of this method is O(nN2). The other advantage is these primitive qudit gates can be

easily implemented with fewer free parameters [ 14 ].

For qudit quantum computing, depending on the implementation platform, other univer-

sal quantum gate sets can be considered. For example, in a recent proposal for topological

quantum computing with metaplectic anyons, Cui and Wang prove a universal gates set for

qutrit and qupit systems, for a qupit being a qudit with p dimensions and p is an prime num-
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Figure 2.1. The schematic circuit of Cm[Rd] with C2[Rd] and C2[Pd(p, q)].
The horizontal lines represent qudits. The auxiliary qudits initialized to |0⟩
is denoted by the red lines and the black lines denoting m controlling qudits.
The two-qudit controlled gates is shown as the verticle lines. Pd(p, q) is the
permutation of |p⟩ and |q⟩ state, and Rd is either X(l)

d or Zd.

ber larger than 3 [  19 ]. The proposed universal set is a qudit analogy of the qubit universal

set and it consists several generalized qudit gates from the universal qubit set.

The generalized Hadamard gate for qudits Hd is

Hd |j⟩ = 1√
d

d−1∑
i=0

ωij |i⟩ , j ∈ {0, 1, 2, . . . , d− 1}, (2.13)

where

ω := e2πi/d. (2.14)

The SUMd gate serves as a natural generalization of the CNOT gate

SUMd |i, j⟩ = |i, i + j(mod d)⟩, i, j ∈ {0, 1, 2, . . . , d− 1}. (2.15)

The Pauli σz, with the π/8 gate as its 4th root, can be generalized to Q[i] gates for qudits,

Q[i]d |j⟩ = ωδij |j⟩ , (2.16)
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with ω defined by Eq. ( 2.14 ) and the related P [i] gates are

P [i]d |j⟩ = (−ω2)δij |j⟩ , i, j ∈ {0, 1, 2, . . . , d− 1}. (2.17)

In general Q[i]p is always a power of P [i]p if p is an odd prime.

The proposed gate set for the qutrit system is the sum gate SUM3, the Hadamard gate

H3 and any gate from the set {P [0]3, P [1]3, P [2]3}. As an analogue of the standard universal

set for qubit {CNOT, H, T = π/8−gate}, the qutrit set generate the qutrit Clifford group

whereas the qubit set generate the qubit Clifford group (the definition of the Clifford group

can be found in § 2.1.2 ). Whereas the rigorous proof can be found in Ref. [ 19 ], the proving

process follows the idea introduced in Ref. [ 12 ] that the gate SUM3 is imprimitive, and the

Hadamard H3 and any gate from {P [0]3, P [1]3, P [2]3} generates a dense subgroup of SU(3).

Similarly, the proposed gate set for the qupit system is the sum gate SUMp, the Hadamard

gate Hp and the gates Q[i]p for i ∈ [p − 1]. The proof is analogous to that of the qutrit

set. The Hadamard Hp and the Q[i] gates are combined to form a dense subgroup of SU(p)

and SUMp is shown to be imprimitive. Implementing Theorem 1.3 in Ref. [ 12 ], the set is a

universal gate set. These universal gate sets for the qudit systems, with fewer numbers of

gates in each set compare to that in the previous examples, have the potential to perform

qudit quantum algorithms on the topological quantum computer.

2.1.2 Examples of qudit gates

In this section we introduce the qudit versions of many important quantum gates and

discuss some of the gates’ advantages compared to their qubit counterparts. The gates

discussed are the qudit versions of the π/8 gate in § 2.1.2 , the SWAP gate in § 2.1.2 and the

multi-level controlled gate in § 2.1.2 . in § 2.1.2 , we also introduce how to simplify the qubit

Toffoli gate by replacing one of the qubit to qudit. This gives ideas about improving the

qubit circuits and gates by introducing qudits to the system.
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Qudit versions π/8 gate

The qubit π/8 gate T has an important role in quantum computing and information

processing. This gate has a wide range of applications because it is closely related to the

Clifford group but does not belong to the group. From the Gottesman-Knill theorem [ 181 ]

it is shown that the Clifford gates and Pauli measurements only do not guarantee universal

quantum computation(UQC). The π/8 gate, which is non-Clifford and from the third level

of the Clifford hierarchy, is the essential gate to obtaining UQC [ 182 ]. This gate can be

generalized to a d dimensional qudit system, where, throughout the process, d is assumed to

be a prime number greater than 2 [ 30 ].

To define the Clifford group for a d-dimensional qudit space, we first define the Pauli Z

gate and Pauli X gate. The Pauli Z gate and Pauli X gate are generalized to d dimension

in the matrix forms [  23 ], [  183 ]–[ 185 ]

Xd =



0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
... ... . . . ... ...

0 0 · · · 1 0


, Zd =



1 0 0 · · · 0

0 ω 0 · · · 0

0 0 ω2 · · · 0
... ... ... . . . 0

0 0 0 · · · ωd−1


(2.18)

for ω the dth root of unity ( 2.14 ). The function of the Z gate is adding different phase factors

to each basis states and that of the X gate is shifting the basis state to the next following

state. Using basis states the two gates are

Zd |j⟩ := ωj |j⟩ Xd |j⟩ := |j + 1⟩ , j ∈ {0, 1, 2, . . . , d− 1}. (2.19)

In general, we define the displacement operators as products of the Pauli operators,

D(x|z) = τxz Xx
d Z

z
d , τ := e(d+1)πi/d, (2.20)
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where (x|z) correspond to the x and y in the exponent of τ , X and Z. This leads to the

definition of the Weyl-Heisenberg group (or the generalized Pauli group) for a single qudit

as [  23 ], [  183 ]–[ 185 ]

G = {τ cDχ⃗|χ⃗ ∈ Z2
d, c ∈ Zd} (Zd = {0, 1, . . . , d− 1}), (2.21)

where χ⃗ is a two-vector with elements from Zd. With these preliminary concepts defined in

Eqs. (  2.18 ) through ( 2.21 ), we now define the Clifford group as the following: the set of the

operators that maps the Weyl-Heisenberg group onto itself under conjugation is called the

Clifford group [ 185 ], [  186 ],

C = {C ∈ U(d)|CGC† = G}. (2.22)

A recursively defined set of gates, the so-called Clifford hierarchy, was introduced by Gottes-

man and Chuang as

Ck+1 = {U |UC1U
† ⊆ Ck}, (2.23)

for C1 the Pauli group [  187 ]. The sets Ck≥3 do not form groups, although the diagonal subsets

of C3, which is our focus here, do form a group.

The following derivations follow those in Ref. [ 30 ]. The explicit formula for building a

Clifford unitary gate with

F =

α β

γ δ

 ∈ SL(2,Zd), χ⃗ =

x
z

 ∈ Z2
d (2.24)

is

C(F |χ⃗) = D(x|z)VF , (2.25)

VF =


1√
d

∑d−1
j,k=0 τ

β−1(αk2−2jk+δj2) |j⟩ ⟨k| , β ̸= 0∑d−1
k=0 τ

αγk2|αk⟩ ⟨k| , β = 0.
(2.26)
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The special case β = 0 is particularly relevant to the later derivation, and

det
(

d−1∑
k=0

ταγk2|k⟩ ⟨k|
)

=τ
αγ
6 (2d−1)(d−1)d,

=


τ 2αγ, d = 3,

1, ∀ d > 3,

(2.27)

can be shown. In the d = 3 case, we use

C
1 0

γ 1


∣∣∣∣∣∣∣
x
z




∈ SU(p) ∀ p > 3 (2.28)

and

det


C

1 0

γ 1


∣∣∣∣∣∣∣
x
z





= τ 2γ for p = 3. (2.29)

With all the mathematical definitions at hand, we are ready to give an explicit form of

the qudit π/8 gate. We choose the qudit gate Uυ to be diagonal in the computational basis

and claim that, for d > 3, Uυ has the form

Uυ = U(υ0, υ1, . . .) =
d−1∑
k=0

ωυk |k⟩ ⟨k| (υk ∈ Zd). (2.30)

A straightforward application of Eqs. ( 2.20 ) and ( 2.30 ) yields

UυD(x|z)U
†
υ = D(x|z)

∑
k

ωυk+1−υk |k⟩ ⟨k| . (2.31)

As Uυ is to be a member of C3, the right hand side of Eq. ( 2.31 ) must be a Clifford gate.

We ignore the trivial case UυD(0|z)U
†
υ = D(0|z) and focus on the case UυD(1|0)U

†
υ in order to

derive an explicit expression for Uυ.
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We define γ, z, ϵ ∈ Zd such that

UυD(1|0)U
†
υ = ωϵC

1 0

γ 1


∣∣∣∣∣∣∣
1

z




(2.32)

From Eqs. ( 2.26 ) and ( 2.31 ) we see that the right-hand side of Eq. ( 2.32 ) is the most general

form, and we note that U ∈ SU(d) implies ωγU ∈ SU(d). We rewrite the left-hand side of

Eq. (  2.32 ) using Eq. ( 2.31 ) and right-hand side using Eq. ( 2.26 ) and obtain

D(1|0)
∑

k

ωυk+1−υk |k⟩ ⟨k| = ωϵD(1|z)

d−1∑
k=0

τ γk2 |k⟩ ⟨k| . (2.33)

After cancelling common factors of D(1|0), an identity between two diagonal matrices remains

such that

ωυk+1−υk = ωϵτ zωkzτ γk2 (∀k ∈ Zd), (2.34)

or, equivalently, using Eq. ( 2.20 ),

υk+1 − υk = ϵ+ 2−1z + kz + 2−1γk2. (2.35)

From here, we derive the recursive relation

υk+1 = υk + k(2−1γk + z) + 2−1z + ϵ. (2.36)

We solve for the υk with a boundary condition υ0 = 0,

υk = 1
12k{γ + k[6z + (2k − 3)γ]} + kϵ, (2.37)

where all factors are evaluated modulo d. For example, with d = 5, the fifth root of

unity ( 2.14 ) is ω = e2πi/5 and choosing z = 1, γ = 4 and ϵ = 0, we obtain

υ = (υ0, υ1, υ2, υ3, υ4) = (0, 3, 4, 2, 1) (2.38)
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so that

Uυ =



ω0 0 0 0 0

0 ω−2 0 0 0

0 0 ω−1 0 0

0 0 0 ω2 0

0 0 0 0 ω1


(2.39)

The diagonal elements of Uυ are powers of ω that sum to zero modulo d and, consequently,

det(Uυ) = 1.

For the d = 3 case, because of Eq. (  2.27 ) extra work is needed for solving a matrix

equation similar to Eq. (  2.32 ). We first introduce a global phase factor eiϕ such that

det
(

eiϕ
d−1∑
k=0

τ γk2|k⟩ ⟨k|
)

= 1 =⇒ ϕ = 4πγ/9. (2.40)

The ninth root of unity (  2.14 ) is ω = e2πi/9 and, from Eq. ( 2.29 ) we derive that

det


ω2γC

1 0

γ 1


∣∣∣∣∣∣∣
1

z





= 1. (2.41)

The qutrit version of Uπ/8 has a more general form than in Eq. ( 2.30 ); i.e.

Uυ = U(υ0, υ1, . . .) =
2∑

k=0
ωυk |k⟩ ⟨k| , υk ∈ Z9. (2.42)

Then the general solution is

υ = (0, 6z + 2γ + 3ϵ, 6z + γ + 6ϵ) mod 9. (2.43)
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For example, choosing z = 1, γ = 2 and ϵ = 0,

Uυ =


ω0 0 0

0 ω1 0

0 0 ω−1

 . (2.44)

The π/8 gate, with its close relation to the Clifford group, has many applications and

utilities in teleportation-based UQC [ 187 ], transversal implementation [ 188 ], [  189 ], learning

an unknown gate [ 190 ], or securing assisted quantum computation [ 191 ]. The generalized

qudit version of the π/8 gate, Uυ, is shown to be identical to the maximally robust qudit

gates for qudit fault-tolerant UQC discussed in reference [ 192 ].

This gate also plays an important role in the magic-state distillation (MSD) protocols

for general qudit systems, which was first established for qutrits [ 193 ] and then extended to

all prime-dimensional qudits [ 194 ].

Qudit SWAP gate

A SWAP gate is used to exchange the states of two qudit such that:

SWAP|ϕ⟩|ψ⟩ = |ψ⟩|ϕ⟩ (2.45)

Various methods to achieve the SWAP gate use different variants of qudit controlled gates [ 195 ]–

[ 201 ] as shown in Fig. 2.2 . The most used component of the SWAP gate is a controlled-shift

gate CXd that perform the following operation:

CXd |x⟩ |y⟩ = |x⟩ |x+ y⟩ (2.46)

with a modulo d addition. Its inverse operation is

CX†
d |x⟩ |y⟩ = |x⟩ |y − x⟩ (2.47)
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In some approaches, the operation Kd is required to complete the circuits, where

Kd |x⟩ = |d− x⟩ = |−x⟩ , (2.48)

which outputs the modulo d complement of the input. These circuits are more complex

and less intuitive then the qubit SWAP gate [ 198 ] because they are not Hermitian, i.e.,

CXd ̸= CX†
d.

One way to create a Hermitian version of the qudit CNOT uses the GXOR gate

GXOR |x⟩ |y⟩ = |x⟩ |x− y⟩ . (2.49)

However, this SWAP gate needs to be corrected with an Kd [ 201 ] as shown in Fig.  2.3 . A

partial SWAP gate Sp [ 31 ] works on a hybrid system where |i⟩ is a qudit of dimension dc

and |j⟩ is a qudit of dimension dt

Sp |i⟩ ⊗ |j⟩ =


|j⟩ ⊗ |i⟩ for i, j ∈ Zdp

|i⟩ ⊗ |j⟩ otherwise
(2.50)

where dp ⩽ dmin = min(dc, dt)

Figure 2.2. (A) is the qudit SWAP circuit using CXd and Kd gates [ 198 ],
[ 199 ]. (B) is the qudit SWAP circuits with the CXd, the CX†

d and the Kd

gates

In the rest of this section, we present a Hermitian generalization of the qudit CNOT gate

with a symmetry configuration and a qudit SWAP circuit with a single type of qudit gate as

shown in Fig.  2.4 A [ 32 ]. Compared with all the previously proposed SWAP gate for qudit,
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this method is easier to implement since there is only one type of gate CX̃ needed. To begin

with, we define a gate CX̃ acting on d-level qudits |x⟩ and |y⟩ such that

CX̃ |x⟩ |y⟩ = |x⟩ |−x− y⟩ , (2.51)

where |−x− y⟩ represents a state |i = −x− y⟩ in the range i ∈ {0, . . . , d− 1} mod d. Notice

that, for d = 2, the CX̃ gate is equivalent to the CNOT gate. The SWAP gate for qudit can

be built using three CX̃ gates.

Figure 2.3. Qudit SWAP circuits with the GXOR and the Kd gates [  200 ], [  201 ].

Figure 2.4. (A) is the qudit SWAP gate with the CX̃ gate. (B) is the
decomposing CX̃ gate. The QFT represents the quantum Fourier transform
while CZd is the selective phase shift gate.

CX̃ is generated with three steps: a qudit generalization of the CZ gate as CZd sand-

wiched by two quantum Fourier transform operations(QFT). The circuit illustration for the

sequence of theses gate is shown in Fig.  2.4 B. The QFT transforms the |x⟩ into a uniform

superposition

QFT |x⟩ = 1√
d

d−1∑
k=0

ei2πxk/d |k⟩ . (2.52)
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The CZd gate adds a phase to the target qudit depending on the state of the control qudit.

Its effect on the input qudits is

CZd |x⟩ |y⟩ = ei2πxy/d |x⟩ |y⟩ . (2.53)

The inverse QFT undoes the Fourier transform process and the inverse of CZd is

CZ†
d |x⟩ |y⟩ = e−i2πxy/d |x⟩ |y⟩ . (2.54)

The full evolution of the CX̃ is

|x⟩ |y⟩ QF T2−−−→ 1√
d

d−1∑
k=0

ei 2πky
d |x⟩ |k⟩ (2.55)

CZd−−→ 1√
d

d−1∑
k=0

ei 2πky
d ei 2πxk

d |x⟩ |k⟩ = 1√
d

d−1∑
k=0

ei 2πk(x+y)
d |x⟩ |k⟩ (2.56)

QF T2−−−→ 1
d

d−1∑
l=0

d−1∑
k=0

ei 2πk(x+y)
d ei 2πkl

d |x⟩ |l⟩ = |x⟩ |−x− y⟩ . (2.57)

It is easy to show that CX̃ is its own inverse and then CX̃ = CX̃†. For the proposed SWAP

gate, both the QFT and CZd operations are realizable on a multilevel quantum systems. For

example, there are implementations of them for multilevel atoms [  179 ], [ 202 ]. The resulting

SWAP gate provides a way to connect systems limited to the nearest-neighbour interactions.

This gate provides a useful tool in the design and analysis of complex qudit circuits.

Simplified qubit Toffoli gate with a qudit

The Toffoli gate is well known for its application to universal reversible classical compu-

tation. In the field of quantum computing, the Toffoli gate plays a central role in quantum

error correction [ 203 ], fault tolerance [ 204 ] and offers a simple universal quantum gate set

combined with one qubit Hadamard gates [ 205 ]. The simplest known qubit Toffoli gate,

shown in Fig.  2.5 , requires at least 5 two-qubit gates [ 206 ]. However, if the target qubit has

a third level, i.e., a qutrit, the whole circuit can be achieved with three two-qubit gates [ 33 ].
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A new qutrit gate Xa is introduced to the circuit that does the following: Xa |0⟩ = |2⟩

and Xa |2⟩ = |0⟩ with Xa |1⟩ = |1⟩. The simplified circuit is shown in Fig.  2.6 . The two

controlled gates are the CNOT gate and a control-Z gate, which is achieved with a CNOT

gate between two Hadamard gates. The Hadamard gate here operating on the qutrit is

generalized from the normal Hadamard gate operating on a qubit—it only works with the

|0⟩ and |1⟩, such that H |0⟩ = 1/
√

2[ |0⟩+|1⟩ ], H |1⟩ = 1/
√

2[ |0⟩ - |1⟩ ] and H |2⟩ = |2⟩.

Comparing the circuit in Fig.  2.6 to that in Fig.  2.5 , it is clear that the total number of gates

is significantly reduced.

Figure 2.5. Decomposing qubit Toffoli gate with the universal qubit gates.
H is the Hadamard gate, T is the π/8 gate and S is the phase gate.

Figure 2.6. The Simplified Toffoli gate. The first two lines represent two con-
trol qubits and the third line represents a target qutrit that has three accessible
levels. The initial and final quantum states of the quantum information carrier
are encoded in the |0⟩ and |1⟩. The H is the generalized Hadamard gate such
that H |0⟩ = 1/

√
2[ |0⟩+|1⟩ ], H |1⟩ = 1/

√
2[ |0⟩ - |1⟩ ] and H |2⟩ = |2⟩. Xa gate

is a qutrit gate such that Xa |0⟩ = |2⟩ and Xa |2⟩ = |0⟩ with Xa |1⟩ = |1⟩. With
the control being qubit, the target being qudit, the two qudit gate in this case
is a hybrid gate.

This method can be generalized to n-qubit-controlled Toffoli gates by utilizing a single

(n + 1)-level target carrier and using only 2n − 1 two-qubit gates [ 33 ]. In other words, the

target carrier needs an extra level for each extra control qubit. Compare to the best known
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realization previously that requires 12n − 11 two-qubit gates [ 206 ], this method offers a

significant resource reduction. Furthermore, these schemes can be extended to more general

quantum circuits such as the multi-qudit-controlled-unitary gate CnU .

The previous method turns the target qubit into a qudit; another method simplifies

the Toffoli gate by using only qudits and treating the first two levels of the qudit as qubit

levels and other levels as auxiliary levels. The reduction in the complexity of Toffoli gate is

accomplished by utilizing the topological relations between the dimensionality of the qudits,

where higher qudit levels serve as the ancillas [ 34 ].

Suppose we have a system of n qudits denoted as Qi, i ∈ {1, . . . , n} and each qudit has

dimension di ⩾ 2. Qudits are initialized into pure or mix states on the first two levels, i.e.,

the qubit states, and zero population for the other levels, i.e., the auxiliary states. This

scheme assumes the ability to perform single-qubit operations. We can apply the desirable

unitary operation on the qubit states and leave the auxiliary states unchanged. We also

assume that we have the ability to manipulate the auxiliary levels by a generalized inverting

gate Xm

Xm |0⟩ = |m⟩ , Xm |m⟩ = |0⟩ , Xm |y⟩ = |y⟩ , for y ̸= m, 0. (2.58)

At the same time, the two-qubit CZ gates are applied according to certain topological

connections between qudits. We introduce a set E of ordered pairs (i, j), such that i, j ∈

{1, . . . , n}, i < j to obtain this topology and the CZ gate is defined as

CZ |11⟩Qi,Qj
= − |11⟩Qi,Qj

CZ |xy⟩Qi,Qj
= |xy⟩Qi,Qj

forxy ̸= 1, (2.59)

with x ∈ {0, . . . di − 1} and y ∈ {0, . . . dj − 1}.

The set E describes an n-vertex-connected graph. Let Ẽ ⊆ E defines an n-vertex con-

nected tree (acyclic graph). The main result is: the n-qubit Toffoli gate can be achieved

with less number of operations if

di ⩾ ki + 1, (2.60)

where di is the dimension of a qudit and the number ki is the qudit’s connections to other

qudits within Ẽ. With this condition fulfilled, the n-qubit Toffoli gate can be realized by
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2n − 3 two-qudit CZ gates. The detailed realization of the n-qubit Toffoli gate by the

properties and special operations of the tree in topology can be found in Ref. [ 34 ]. The

advantage of this scheme is the scalability and the ability to implement it for the multi-qubit

controlled unitary gate CnU .

These CnU gates are a crucial component in the PEA which has many important ap-

plications such as the quantum simulation [  207 ] and Shor’s factoring algorithm [ 208 ]. This

idea of combining qudits of different dimensions or hybrid qudit gates can also be applied

to other qudit gates such as the SWAP and SUM gates as shown in Refs. [ 31 ], [ 209 ]. Thus,

introducing qudits into qubit systems to create a hybrid qudit system offers the potential of

improvement to quantum computation.

Qudit multi-level controlled gate

For a qubit controlled gate, the control qubit has only two states so it is a “do-or-don’t”

gate. Qudits, on the other hand, have multiple accessible states and thus a qudit-controlled

gate can perform a more complicated operation [ 210 ]. The Muthukrishan-Stroud gate (MS

gate) for a qudit applies the specified operation on the target qudit only if the control qudit

is in a selected one of the d states, and leaves the target unchanged if the control qudit is in

any other d− 1 states. Hence, the MS gate is essentially a ”do-or-don’t” gate generalized to

qudits and does not fully utilize the d states on the control qudit [  179 ].

To fully utilize the d states on the control qudit, people have developed the quantum

multiplexer to perform the controlled U operations in a qudit system as shown in Fig.  2.7 ,

where the MS gate and shifting gates are combined to apply different operations to the target

depending on different states on the control states [ 211 ]. Here we discuss the multi-value-

controlled gate (MVCG) for qudits, which applies a unique operation to the target qudit for

each unique state of the control qudit [ 13 ].
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Figure 2.7. d-valued Quantum Multiplexer for the second qutrit and its
realization in terms of Muthukrishan-Stroud gates(the control U operation
that only act on one specific control state). The gate labeled +1 is the shifting
gate that increases the state value of the control qudit by 1(mod d). Depending
on the value of the top control qudit, one of Ui is applied to the second qudit,
for i ∈ {0, 1, . . . d− 1}.

For a d-dimensional qudit system, a two-qudit multi-value-controlled gate is represented

by a d2 × d2 matrix

MVCG =



U0 0 0 · · · 0

0 U1 0 · · · 0

0 0 U2 · · · 0
... ... ... . . . 0

0 0 0 · · · Ud−1


, (2.61)

where each Ui (i = 0, 1, . . . , d−1) is a unique unitary single-qudit operation. The Ui operation

is applied to the target qudit when the control qudit is in |i⟩ state. In the later sections,

§ 2.2.2 and § 2.2.2 the controlled gates are MVCG and improve the efficiency of the qudit

algorithm. MVCG can be built in many physical systems and one example in a photonic

system is introduced in § 2.4.1 .

2.1.3 Geometrically quantifying qudit-gate efficiency

In a quantum computer, each qudit can remain coherent for a limited amount of time

(decoherence time). After this time, the quantum information is lost due to the outside

perturbations and noises. In the computation process, quantum gates take certain amount

of time to alter the states of the qudits. The decoherence time of a qudit state limits

the number of quantum gates in the circuit. Therefore, we need to design more efficient

algorithms and circuits. A method exists to do a general systematic evaluation of the circuit
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efficiency with the mathematical techniques of Riemannian geometry [  212 ]. By reforming

the quantum circuits designing problems as a geometric problem, we are able to develop

new quantum algorithms or to exploring and evaluating the full potential of the quantum

computers. This evaluation is able to generalized to qutrit systems, where the least amount

of the gates required to synthesize any unitary operation is given [ 15 ].

To begin with, we assume that the operations done by the quantum circuit can be

described by a unitary evolution U derived from the time-dependent Schrödinger equation

dU/dt = −iHU with the boundary condition tf, U(tf) = U . The complexity of realizing U

can be characterized by a cost function F [H(t)] on the Hamiltonian control H(t). This allow

us to define a Riemannian geometry on the space of unitary operations [ 213 ]. Finding the

minimal geodesics of this Riemannian geometry is equivalent to finding the optimal control

function H(t) of synthesizing the desired U .

Now we transform the problem of calculating a lower bound to the gate number to finding

the minimal geodesic distance between the identity operation I and U . Instead of Pauli

matrices for the qubit representation of the Hamiltonian, the qutrit version of Hamiltonian

is expanded in terms of the Gell-Mann matrices. Here we give an explicit form of the Gell-

Mann matrices representation in d-dimension [ 16 ] which is used for qutrit (where d = 3) as

well as other qudit systems in the later part of the section. Let ejk denote the d× d matrix

with a 1 in the (j, k) elements and 0s elsewhere, a basis can be described as

ud
jk = ejk + ekj, 1 ≤ j < k ≤ d, (2.62)

ud
jk = i(ejk − ekj), 1 ≤ k < j ≤ d, (2.63)

ud
jj = diag(1, . . . , 1,−j, 0d−2j), j ∈ [d− 1]. (2.64)

Here, diag represents the diagonal matrix, 0d−2j denotes the zeros of length d − 2j. ud
jk are

traceless and Hermitian and together with the identity matrix 1d serve as the basis of the

vector space of d×d Hermitian matrix. These generalized Gell-Mann matrices can be used to

generate the group representation of SU(d) while the other representations can be achieved
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by transform these matrices uniformly. To derive the bases of SU(dn), we first define xl = ud
jk

with l = jd+ k, l ∈ [d2] and

Xs
l = I⊗s−1 ⊗ xl ⊗ I⊗d−s (2.65)

acts on the s-th qudit with xl and leaves the other qudits unchanged. The bases of of SU(dn)

is constructed by {Y Pt
t }, t ∈ [n] , Pt = {i1, . . . , it} with all possible 1 < i1 < · · · < ik < n,

where

Y Pt
t =

t∏
k=1

X ik
jk . (2.66)

Y P
t denotes all operators with generalized Gell-Mann matrices xj1 , . . . , xjk acting on t qudits

at sites P = {i1, . . . , ik}, respectively, and rest with identity. It is easy to prove that with the

generalized Gell-Mann matrices representations,1-body and 2-body interactions can generate

all 3-body interactions.

Now the Hamiltonian in terms of the Gell-Mann matries (with the notation σ) can be

written as

H =
∑

σ

hσσ +
′′∑
σ

hσσ. (2.67)

All coefficients hσ are real and, in ∑
σ hσσ, σ goes over all possible one- and two-body

interactions whereas, in ∑′′
σ hσσ, σ goes over everything else. The cost function is

F (H) :=

√√√√∑
σ

h2
σσ + p2

′′∑
σ

h2
σσ, (2.68)

where p is a penalty cost by applying many-body terms. Now that the control cost is well

defined, it is natural to form the distance in the space SU(3n) of n-qutrit unitary operators

with unit determinant. We can treat the function F (H) as the norm related to a Riemannian

metric with a metric tensor g as:

g =



0, σ ̸= τ

1, σ = τ and σ is one or two body

p2, σ = τ and σ is three or more body

. (2.69)
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The distance d(I, U) between I and U which is the minimum curve connecting I and U

equals to the minimal length solution to the geodesic equation

〈
dH
dt ,K

〉
= i ⟨H, [H,K]⟩ , (2.70)

where ⟨, ⟩ denotes the inner product on the tangent space SU(3n) defined by the metric

components ( 2.69 ), and [, ] denotes the matrix commutator and K is an arbitrary operator

in SU(3n).

All lemmas backing up the final theorem have been proven in detail [ 15 ], but the reasoning

behind can be summarized in four parts. First let p be the three- and more-body items

penalty. With large enough p, the distance d(I, U) is guarantee to have a supremum that

does not depend on p. Secondly, we have

∥U − UP ∥ ⩽ 3nd([U ])/p, (2.71)

where ∥•∥ is the operator norm and UP the corresponding unitary operator generated by the

one- and two-body items projected Hamiltonian HP (t). Thirdly, given an n-qutrit unitary

operator U generated by H(t) with the condition ∥H(t)∥ ⩽ c in a time interval [0,∆], then

∥U − exp(−iH̄)∆∥ ⩽ 2(ec∆ − 1 − c∆) = O(c2∆2), (2.72)

where H̄ is the mean Hamiltonian. Lastly, for H as an n-qutrit one- and two-body Hamil-

tonian, a unitary operator UA exists that satisfies

∥eiH∆ − UA∥ ⩽ c2n
2∆3 (2.73)

and can be generated with at most c1n
2/∆ one- and two-qutrit gates, and constants c1 and

c2.

All these lemmas combined gives the final theorem for the qutrit system: for a unitary op-

erator U in SU(3n), O(nkd(I, U)3) one- and two-qutrit gates is the lower bound to synthesize

a unitary UA with the condition ∥U − UA∥ ≤ c, given a constant c. It is worth mentioning
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that for any groups of unitaries U , which is labeled by the number of qudits n, the final

theorem shows a quantum circuit exists with a polynomial of d(I, U) number of gates such

that it can approximates U to arbitrary accuracy. Alternatively,a polynomial-sized quantum

circuit exists if and only if the distance d(I, U) itself is scaling polynomially with n.

With appropriate modification, the Riemannian geometry method can be used to ascer-

tain the circuit-complexity bound for a qudit system [ 16 ]. In this scheme, the unitary matrix

U ∈ SU(dn) is represented by the generalized Gell-Mann matrices as defined in the earlier

part of the section. The main theorem in the qudit case of the Ref. [  16 ] is “ for any small

constant ε, each unitary UA ∈ SU(dn) can be synthesized using O(ε−2) one- and two-qudit

gates, with error ∥U − UA∥ ≤ ε.” To break up the constant ε to an explicit form, we have

ε−2 = N2d4n2, where d is the dimension of the qudit, n is the number of qudits and N is

the number of the intervals that d(I, U) divides into, such that a small δ = d(I, U)/N ⩽ ε.

The qudit case shows the explicit relation between the non-local quantum gate cost and

the approximation error for synthesizing quantum qudit operations. In summary, for the

quantum circuit model, one can decide a lower bound for the number of gates needed to

synthesize U by finding the shortest geodesic curve linking I and U . This provides a good

reference for the design of the quantum circuit using qudits.

2.2 Quantum algorithms using qudits

A qudit, with its multi-dimensional nature, is able to store and process a larger amount

of information than a qubit. Some of the algorithms described in this section can be treated

as direct generalizations of their qubit counterparts and some utilize the multi-dimensional

nature of the qudit at the key subroutine of the process. This section introduces examples

of the well-known quantum algorithms based on qudits and divides them into two groups:

algorithms for the oracle-decision problems in § 2.2.1 and algorithms for the hidden Abelian

subgroup problems in § 2.2.2 . Finally, § 2.2.3 discusses how the qudit gates can improve the

efficiency of the quantum search algorithm and reduce the difficulty in its physical set-up.
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2.2.1 Qudit oracle-decision algorithm

In this subsection we explore the qudit generalizations of the efficient algorithms for

solving the oracle decision problems, which are quite important historically and used to

demonstrate the classical-quantum complexity separation [ 214 ], [ 215 ]. The oracle decision

problems is to locate the contents we want from one of the two mutually disjoint sets that is

given. We start in § 2.2.1 with a discussion about a single-qudit algorithm that determines the

parity of a permutation. In § 2.2.1 , the Deutsch-Jozsa algorithm in qudit system is discussed

and its unique extension, the Bernstein-Vazirani algorithm is provided in § 2.2.1 .

Parity determining algorithm

In this section we review a single qutrit algorithm which provides a two to one speedup

than the classical counterpart. This algorithm can also be generalized to work on an arbi-

trary d-dimensional qudit which solves the same problem of a larger computational space [ 27 ].

In quantum computing, superposition, entanglement and discord are three important parts

for the power of quantum algorithms and yet the full picture behind this power is not com-

pletely clear [ 216 ].

Recent research shows that we can have a speedup in a fault tolerant quantum computa-

tion mode using the quantum contextuality [ 217 ]. The contextual nature can be explained

as “a particular outcome of a measurement cannot reveal the pre-existing definite value of

some underlying hidden variable” [ 218 ], [ 219 ]. In other words, the results of measurements

can depend on how we made the measurement, or what combination of measurements we

chose to do. For the qudit algorithm discussed below, a contextual system without any

quantum entanglement is shown to solve a problem faster than the classical methods [ 27 ].

Because this qudit algorithm uses a single qudit throughout the process without utilizing

any correlation of quantum or classical nature, it acts as a perfect example to study the

sources of the quantum speed-up other than the quantum correlation.

The algorithm solves a black-box problems that maps d inputs to d outputs after a

permutation. Consider the case of three objects where six possible permutations can be

divided into two groups: even permutation that is a cyclic change of the elements and odd

47



permutation that is an interchange between two elements. If we define a function f(x) that

represents the permutation on the set x ∈ {−1, 0, 1}, the problems become determining the

parity of the bijection f : −1, 0, 1 → −1, 0, 1. We use Cauchy’s two-line notation to define

three possible even functions fk, namely,

f1 :=

1 0 −1

1 0 −1

 , f2 :=

1 0 −1

0 −1 1

 , f3 :=

 1 0 −1

−1 1 0

 , (2.74)

and the remaining three odd function are

f4 :=

 1 0 −1

−1 0 1

 , f5 :=

1 0 −1

0 1 −1

 , f6 :=

1 0 −1

1 −1 0

 . (2.75)

The circuit for the single qutrit algorithm in a space spanned by {|1⟩ , |0⟩ |−1⟩} is shown in

Fig.  2.8 , where the operation Ufk
applies fk to the state: Ufk

(|1⟩ + |0⟩ + |−1⟩) = |fk(1)⟩ +

|fk(0)⟩ + |fk(−1)⟩), and FT is the single-qutrit Fourier transform

FT = 1√
3


ω 1 ω−1

1 1 1

ω−1 1 ω

 (2.76)

using ω as the cube root of unity ( 2.14 ). The process starts with state |1⟩ undergoing FT

and becoming |ψ1⟩ as FT |1⟩ = |ψ1⟩ = ω |1⟩ + |0⟩ + ω−1 |−1⟩. Then we obtain |ψk⟩ by

applying Ufk
to |ψ1⟩. It is easy to show that

|ψ1⟩ = ω−1 |ψ2⟩ = ω |ψ3⟩ (2.77)

and, similarly,

|ψ4⟩ = ω−1 |ψ5⟩ = ω |ψ6⟩ . (2.78)

Hence, application of Ufk
on |ψ1⟩ gives |ψ1⟩ (up to a phase factor) for an even permutation

and |ψ4⟩ = FT |−1⟩ for an odd permutation. Thus, applying inverse Fourier transform FT−1
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at the end, we measure |1⟩ for even fk and |−1⟩ for odd fk. We are able to determine the

parity of fk by a single application of fk on a single qutrit.

Generalizing to a d–dimensional qudit system,

|ψk⟩ := 1√
d

d∑
k=1

ω(k−1)(k−1) |k⟩ . (2.79)

In this scenario, a positive cyclic permutation maps |ψ2⟩ onto itself whereas negative permu-

tations give |ψd⟩. We then measure the results after applying an inverse Fourier transform to

solve for the parity of the permutation. This algorithm has been implemented on the NMR

system for both the qutrit [ 26 ] and ququart [  27 ] cases. It is also realized on a linear optic

system [ 220 ]. Although the model problem has no significant applications and the speedup in

the higher dimensional cases is not exponential, this proposed algorithm provides an elegant

yet simple example for quantum computation without entanglement.

Figure 2.8. Schematic view of the quantum circuit for the parity determining
algorithm. FT is the Fourier transform and Ufk

is the gate that does one of
the two permutations and the last box represents the measurement.

Qudit Deutsch-Jozsa algorithm

Deutsch algorithm (with its origin in [ 214 ] and improved in [ 209 ]) is one of the simplest

examples to show the speed advantage of quantum computation. Deutsch-Jozsa algorithm

is n-qubits generalization of the Deutsch algorithm. Deutsch-Jozsa algorithm can determine

if a function f(x) is constant, with constant output, or balanced, that gives equal instances

of both outputs [ 206 ]. The process itself consists of only one evaluation of the function f(x).

In this algorithm, Alice sends Bob N qubits in the query register and one in the answer

register where Bob applies the function to the query register qubits and stores the results in

the answer register. Alice can measure the qubits in the query register to determine whether

Bob’s function is constant or balanced. This algorithm makes use of the superposition
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property of the qubit and reduces the minimum number of the function call from 2n/2 + 1

classically to only 1 with quantum algorithm. This gives another example of the advantages

of quantum algorithms.

The Deutsch-Jozsa algorithm can be performed in the qudit system with a similar setup.

Furthermore, with the qudit system, Deutsch-Jozsa algorithm can also find the closed ex-

pression of an affine function accurate to a constant term [ 221 ]. The constant and balanced

function in the n dimensional qudit case have the following definition: “An r-qudit multi-

valued function of the form

f : {0, 1, . . . , n− 1}r → {0, 1, . . . , n− 1} (2.80)

is constant when f(x) = f(y) ∀x, y ∈ {0, 1, . . . , n − 1}r and is balanced when an equal

number of the nr domain values, namely nr−1, is mapped to each of the n elements in the

co-domain” [ 221 ].

It can be shown that all of the affine functions of r qudits

f(x1, . . . , xr) := A0 ⊕ A1x1 ⊕ · · · ⊕ Arxr, A0, . . . , Ar ∈ Zn, (2.81)

can be categorized to either constant or balanced functions [ 221 ]. If all the coefficients

Ai ̸=0 = 0 then the function is constant. For affine function with non-zero coefficient Ai ̸=0,

every element in its domain {0, 1, . . . , n − 1}r is reducible modulo n to a unique element

m ∈ {0, 1, . . . , n− 1}. As f(p) = f(q) if p ≡ q(modn), each of the elements in the codomain

{0, 1, . . . , n− 1} is mapped to nr−1 different elements in the domain. To finish the proof of

the n-nary Deutsch-Jozsa algorithm, another trivial lemma is needed: Primitive nth roots of

unity satisfy ∑n−1
k=0 ω

αk = 0 for nonzero integers α.

The circuit of the Deutsch-Jozsa algorithm in qudits is shown in Fig.  2.9 . This algorithm

of r qudits can both distinguish whether a function Uf is balanced or constant and verify

a closed expression for an affine function in Uf within a constant term which is a universal

phase factor of the x-register and thus is lost during the measurement. The other coefficients

50



of the affine function A1, . . . , Ar are determined by measuring the state of the x-register at

the output, |A1, . . . , Ar⟩.

A detailed derivation of the circuit has been shown [ 221 ], but the reasoning is an analogy

to the qubit version of the Deutsch-Jozsa algorithm. If the function Uf is constant, the final

state after the measurement is |0⟩⊗r |n− 1⟩ as for j ̸= 0 every states in the x-register have

null amplitudes. Therefore, if every x-register qudit yields |0⟩, it is a constant function;

otherwise the function is balanced.

The Deutsch-Jozsa algorithm in the qudit system shares the same idea while enabling

more applications such as determining the closed form of an affine function. Although this

algorithm is mainly of theoretical interest, the n-nary version of it may have applications

in image processing. It has the potential to distinguish between maps of texture in a Mar-

quand chart since the images of which are encoded by affine functions [ 35 ]. This algorithm

can also be modified to set up a secure quantum key-distribution protocol [ 35 ]. Other pro-

posed Deutsch-Jozsa algorithms exist such as a method that makes use of the artificially

allocated “subsystems” as qudits [ 222 ] and a generalized algorithm on the virtual spin rep-

resentation [ 223 ].

Figure 2.9. The Deutsch-Jozsa circuit in qudit system. The Fn are the qudit
Hadamard gates achieved with quantum Fourier transform.

Qudit generalization of the Bernstein-Vazirani algorithm

in § 2.2.1 we have discussed an application of a qudit Deutsch-Jozsa algorithm (DJA):

verify a closed expression of an affine function. This application is closely related to the

Bernstein-Vazirani algorithm discussed in this section. Given an input string and a function

that calculates the bit-wise inner-product of the input string with an unknown string, the
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Bernstein-Vazirani algorithm determines the unknown string [ 224 ]. This algorithm can be

treated as an extension of the Deutsch-Jozsa algorithm.

The qudit generalization of the Bernstein–Vazirani algorithm can determine a number

string of integers modulo d encoded in the oracle function [ 36 ], [ 225 ]. First we introduce a

positive integer d and consider the problem in modulo d throughout. Given an N -component

natural number string

g(a) := (g(a1), g(a2), g(a3), . . . , g(aN)), g(aj) ∈ {0, 1, . . . , d− 1}, (2.82)

we define

f(x) := g(a) · x mod d = g(a1)x1 + g(a2)x2 + . . .+ g(aN)xN mod d, (2.83)

for

x = (x1, x2, . . . , xN) ∈ {0, 1, . . . , d− 1}N . (2.84)

The oracle in the algorithm applies f(x) to the input string x and computes the result,

namely, the number string g(a) encoded in the function f(x).

The input state x is chosen to be |ψ0⟩ = |0⟩⊗N |d− 1⟩, where |0⟩ ⊗N means initialization

of the N control-qudits into their |0⟩ states and |d− 1⟩ means the target qudit is in its d− 1

state. Quantum Fourier transforms of the pertinent input states are

|0⟩ QF T−−−→
d−1∑
y=0

|y⟩√
d

(2.85)

and

|d− 1⟩ QF T−−−→
d−1∑
y=0

1√
d
ωd−y |y⟩ ,

for ω a root of unity ( 2.14 ). The component-wise Fourier transform of a string encoded in

the state |x1x2 . . . xN⟩ is

|x1x2 . . . xN⟩ QF T−−−→
∑
z∈K

ωx·z |z⟩√
dN

, (2.86)
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where

K = {0, 1, . . . , d− 1}N , z := (z1, z2, . . . , zN). (2.87)

We denote the Fourier transform of the |d− 1⟩ state as |ϕ⟩ and the input state after the

Fourier transform is

|ψ1⟩ =
∑
x∈K

|x⟩√
dN

|ϕ⟩ (2.88)

Now we introduce the oracle as the Of(x) gate such that

|x⟩ |j⟩
Of(x)−−−→ |x⟩ |(f(x) + j) mod d⟩ , (2.89)

where

f(x) = g(a) · x mod d. (2.90)

By applying the Of(x) gate to |ψ1⟩ and following the formula by phase kick-back, we obtain

the output state

Of(x) |ψ1⟩ = |ψ2⟩ =
∑
x∈K

ωf(x) |x⟩√
dN

|ϕ⟩ . (2.91)

Finally, obtain the |ψ3⟩ which is the state after inverse Fourier transform of the first N qudits

of |ψ2⟩. By measuring the first N quantum state of |ψ3⟩ we can obtain the natural number

string we want that is offset up to a constant

g(a1), g(a2), g(a3), . . . , g(aN) (2.92)

using a single query of the oracle function.

The Bernstein-Vazirani algorithm clearly demonstrates the power of quantum computing.

It outperforms the best classical algorithm in terms of speed by a factor of N [ 225 ]. The

qudit generalizations of the Bernstein-Vazirani algorithm helps us comprehend the potential

of the qudit systems.
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2.2.2 Qudit algorithms for the hidden Abelian subgroup problems.

Many of the widely used quantum algorithms such as the discrete Fourier transform, the

phase estimation and the factoring fit into the framework of the hidden subgroup problem

(HSP). In this section, we review the qudit generalization of these algorithms. The qudit

Fourier transform is discussed in § 2.2.2 and its application, the PEA is reviewed in § 2.2.2 .

A direct application of these algorithms, Shor’s factoring algorithm performed with qutrits

and in metaplectic quantum architectures is also introduced § 2.2.2 .

Quantum Fourier Transform with qudits

The quantum Fourier transform algorithm (QFT) is realizable on a qubit system [ 206 ].

QFT, as the heart of many quantum algorithms, can also be performed in a qudit sys-

tem [ 202 ], [ 226 ]. In an N -dimensional system represented with n d-dimensional qudits, the

QFT, F (d,N), where N = dn, transforms the computational basis

{|0⟩ , |1⟩ , . . . , |N − 1⟩} (2.93)

into a new basis set [ 37 ]

F (d,N) |j⟩ = 1√
N

N−1∑
k=0

e2πijk/N |k⟩ . (2.94)

For convenience, we write an integer j in a base-d form. If j > 1 then

j = j1j2 · · · jn = j1dn−1 + jn−2
2 + · · · + jnd0 (2.95)

and, if j < 1, then

j = 0.j1j2 · · · jn = j1d−1 + j2d−2 + · · · + jnd−n. (2.96)

54



The QFT acting on a state |j⟩ can be derived and rewritten in a product form as

|j⟩ = |j1j2 · · · jn⟩ 7→ 1
dn/2

dn−1∑
k=0

e2πijk/dn |k⟩

= 1
dn/2

d−1∑
k1=0

· · ·
d−1∑

kn=0
e2πij(

∑n

l=1 kld
−l)|k1k2 · · · kn⟩

= 1
dn/2

d−1∑
k1=0

· · ·
d−1∑

kn=0

n⊗
l=1

e2πijkld
−l |kl⟩

= 1
dn/2

n⊗
l=1

 d−1∑
kl=0

e2πijkld
−l |kl⟩

 .
This process can be realized with the quantum circuit shown in Fig.  2.10 , and the fully

expanded expression of the product form is shown on the right side of the figure. The

generalized Hadamard gate Hd in the figure is defined as Hd := F (d, d) which effects the

transform

Hd|jn⟩ = |0⟩ + e2πi0.jn |1⟩ + · · · + e2(d−1)πi0.jn |d− 1⟩ . (2.97)

The matrix representation of Hd is



1 1 · · · 1

1 e2πi0.1 · · · e2πi0.(d−1)

... ... . . . ...

1 e2(d−1)πi0.1 · · · e2(d−1)πi0.(d−1)


. (2.98)

In the circuit the Rd
k gate is a phase gate that has the expression

Rd
k =



1 0 · · · 0

0 e2πi/dk · · · 0
... ... . . . ...

0 0 · · · e2πi(d−1)/dk


. (2.99)

The black dots in the circuit are multi-value-controlled gates that apply Rd
k to the target

qudit j times for a control qudit in state |j⟩. In order to complete the Fourier transform
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and ensure the correct sequence of j1j2 · · · jn, a series of SWAP gates are applied at the end,

which are not explicitly drawn in Fig.  2.10 .

The QFT developed in qudit system offers a crucial subroutine for many quantum algo-

rithm using qudits. Qudit QFT offers superior approximations where the magnitude of the

error decreases exponentially with d and the smaller error bounds are smaller [ 226 ], which

outperforms the binary case [  227 ].

Figure 2.10. Quantum Fourier transform in qudit system. Hd is the d-
dimensional Hadamard gate and the expression of the Rd gate is shown in
Eq. (  2.99 ). Resultant states are shown to the right.

Phase-estimation algorithm with qudits

With the qudit quantum Fourier transform, we are able to generalize the PEA to qudit

circuits [  37 ]. Similar to the PEA using qubit, the PEA in the qudit system is composed by

two registers of qudits. The first register contains t qudits and t depends on the accuracy

we want for the estimation. We assume that we can perform a unitary operation U to an

arbitrary number of times using qudit gates and generate its eigenvector |u⟩ and store it

using the second register’s qudits [  38 ]. We want to calculate the eigenvalue of |u⟩ where

U |u⟩ = e2πir |u⟩ by estimating the phase factor r.

The following derivations follow those in Ref. [ 37 ]. For convenience, we rewrite the

rational number r as

r = R/dt =
t∑

l=1
R̄l/d

l = 0.R̄1R̄2 · · · R̄t. (2.100)
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As shown in Fig.  2.11 A, each qudit in the first register passes through the generalized

Hadamard gate H ≡ F (d, d). For the lth qudit of the first register, we have

F (d, d) |0⟩l = 1√
d

d−1∑
kl=0

|kl⟩ . (2.101)

Then the lth qudit is used to control the operation Udt−l on the target qudits of the state |u⟩

in the second register, which gives

CUdl−1 |k⟩ ⊗ |u⟩ = |k⟩ (Udt−l)k |u⟩ = e2πikdt−lr |k⟩ ⊗ |u⟩ . (2.102)

Note that the function of the controlled operation CUdt−l can be considered as a ’quantum

multiplexer’ [  174 ], [ 211 ], [ 228 ]. After executing all the controlled operations on the qudits,

the qudit system state turns out to be

 t∏
l=1

⊗ 1√
d

d−1∑
kl=0

e2πikld
t−lr |kl⟩

⊗ |u⟩ . (2.103)

Therefore, through a process called the “phase kick-back”, the state of the first register

receives the phase factor and becomes

|Register 1⟩ = 1
dt/2

dt−1∑
k=0

e2πirk |k⟩ . (2.104)

The eigenvalue r which is represented by the state |R⟩ can be derived by applying the inverse

QFT to the qudits in the first register:

F−1(d, dt) |Register 1⟩ = |R⟩ . (2.105)

The whole process of PEA is shown in Fig.  2.11 B. To obtain the phase r = R/dt exactly,

we can measure the state of the first register in the computational basis.

The PEA in qudit system provides a significant improvement in the number of the re-

quired qudits and the error rate decreases exponentially as the qudit dimension increases [ 229 ].

A long list of PEA applications includes Shor’s factorization algorithm [ 208 ], simulation of
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Figure 2.11. A The circuit for the first stage of the PEA. The qudits in the
second register whose states represent |u⟩ are undergoing the U operations and
the generated phase factors are kicking back to the qudits in the first register,
giving the results to the right. B The schematic circuit for the whole stage
of PEA. After the first stage of the PEA, inverse Fourier transform(FT−1) is
applied to the qudits in the first register and the phase factors can be obtained
by measuring the states of the first register qudits.

quantum systems [ 230 ], solving linear equations [ 41 ], [ 231 ], and quantum counting [ 232 ].

To give some examples, a quantum simulator utilizing the PEA algorithm has been used

to calculate the molecular ground-state energies [ 207 ] and to obtain the energy spectra of

molecular systems [ 67 ], [ 233 ]–[ 236 ]. Recently, a method to solve the linear system using a

qutrit version of the PEA has been proposed [ 237 ]. The qudit version of the PEA opens the

possibility to realize all those applications that have the potential to out-perform their qubit

counterparts.

Shor’s quantum algorithm for prime factorization gives an important example of super-

polynomial speed-up offered by a quantum algorithm over the currently-available classical

algorithms for the same purpose [  40 ]. The order-finding algorithm at the core of the factoring

algorithm is a direct application of the PEA. With the previous discussion on the qudit

versions of the quantum Fourier transform and phase estimation, we have the foundation

to generalize Shor’s factoring algorithm to the higher dimensional qudit system. Several

proposals for performing Shor’s algorithm on the qudit system, such as the adiabatic quantum

algorithm of two qudits for factorization [ 17 ], exist. This method makes use of a time-
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dependent effective Hamiltonian in the form of a sequence of rotation operators that are

selected accoding to the qudit’s transitions between its neighboring levels.

Another proposal carries out a computational resource analysis on two quantum ternary

platforms [ 38 ]. One is the “generic” platform that uses magic state distillation for universal-

ity [ 194 ]. The other, known as a metaplectic topological quantum computer (MTQC), is a

non-Abelian anyonic platform, where anyonic braiding and interferomic measurement is used

to achieved the universality with a relatively low cost [ 19 ], [ 20 ]. The article discusses two

different logical solutions for Shor’s period-finding function on each of the two platforms: one

that encodes the integers with the binary subspace of the ternary state space and optimizes

the known binary arithmetic circuits; the other encodes the integer directly in the ternary

space using the arithmetic circuits stemming in Ref [ 21 ]. Significant advantages for the

MTQC platform are found compared to the others. In particular the MTQC platform can

factorize an n-bit number with n+ 7 logical qutrits with the price of a larger circuit-depth.

To sum up the comparison, the MTQC provides significant flexibility at the period finding

algorithm for the ternary quantum computers.

2.2.3 Quantum search algorithm with qudits

The quantum search algorithm, also known as Grover’s algorithm, is one of the most im-

portant quantum algorithms that illustrates the advantage of quantum computing. Grover’s

algorithm is able to outperform the classical search algorithm for a large database. The size

of the computational space in an n-qubit system is a Hilbert space of 2n dimensions.

Since there is a practical limit for the number of working qubits, the working Hilbert

space can be expanded by increasing the dimension of each carrier of information, i.e., using

qudits and qudit gates. Several schemes of Grover’s quantum search with qudits have been

proposed, such as one that uses the discrete Fourier transform as an alternative to the

Hadamard gate [ 238 ] or another d-dimensional transformation [ 239 ] for the construction of

the reflection-about-average operator (also known as the diffusion operator). In this section,

an instruction on setting up Grover’s algorithm in the qudit system is reviewed as well as

a proposal of a new way to build a quantum gate F that can generate an equal-weight
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superposition state from a single qudit state [ 39 ]. With the new gate F , it is easier to realize

Grover’s algorithm in a physical system and improve the overall efficiency of the circuit.

Figure 2.12. (A) Circuit illustration for Grover iteration, G, in a qudit
system. The F gate is the proposed qudit gate that transforms the single-
qudit state |0k⟩ into an equal weight superposition state. (B) Schematic circuit
illustration of the qudit quantum search algorithm.

Grover’s algorithm solves the unstructured search problem by applying Grover’s oracle

iteratively as shown in Fig. 2.12 B. To construct the oracle, we build qudit gates to perform

the oracle function f(x) that acts differently on the search target s as compared to all the

others. The logic behind the algorithm is to amplify the amplitude of the marked state |s⟩

with the oracle function, while attenuating the amplitudes of all the other states. The

marked state is amplified enough to be located in O(
√
N) steps for an N dimensional search

space. In each step Grover’s oracle is executed one time. This oracle can be broken into

two parts: (1)Oracle query. The oracle shifts the phase of the marked state |s⟩ and leaving

others unchanged by doing

Rs(ϕs) = 1 + (eiϕs − 1) |s⟩ ⟨s| . (2.106)

(2)Reflection-about-average. This operation is a reflection about a vector |a⟩ with a phase

ϕa:

Ra(ϕa) = 1 + (eiϕa − 1) |a⟩ ⟨a| . (2.107)
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It is constructed by applying the generalized Hadamard gate H, applying phase shift to |0⟩

state and then applying H again. It is straightforward to show that

H⊗nR0(ϕa)H⊗n = Ra(ϕa).

The two steps combined form Grover’s operator G, which is one execute of Grover’s iteration.

This process of Grover’s iteration G is shown in Fig. 2.12 A.

Figure 2.13. Illustration of a qudit multipod linkage: the top is in the original
basis and the bottom is in the Morris-Shore basis. ∆ is a common detuning
between a common (ancilla) state and other qudit states, Ωk represents the
single-photon Rabi frequencies. State |b⟩ is a superposition of the qudit states
weighted by the couplings Ωk; |un⟩ are the states that are not in the dynamics.

Building Grover’s operator in a qudit system can be simplified both algorithmically and

physically. The most important improvement can be achieved by replacing the Hadamard
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gate H with F which drives the single-qudit state |0k⟩ into an equal weight superposition

state,

F |0k⟩ =
d−1∑
q=0

ξq|qk⟩, (2.108)

with |ξq| = d−1/2, in all qudits (k ∈ {1, 2, . . . , n}). The F function can be realized by a

single physical interaction in a multipod system easily. The multipod system consists of d

degenerate quantum states |0⟩ , |1⟩ , . . . , |d− 1⟩. A common (ancilla) state |c⟩ couples these

states to each other by two-photon Raman processes, as illustrated in Fig.  2.13 . The root-

mean-square (rms) Rabi frequency as the coupling factor of the two states is

Ω(t) =

√√√√d−1∑
k=0

|Ωk(t)|2. (2.109)

Then from the two-state solution, we can calculate the dynamics of the multipod [ 240 ].

This method of building F minimizes the number and the duration of algorithmic steps

and thus is fast to implement and, in addition, it also provides better protection against

detrimental effects such as decoherence or imperfections. Due to its conceptual simplicity,

this method has applications in numerous physical systems. Thus, it is one of the most

natural and simplest realizations of Grover’s algorithm in qudits.

2.3 Alternative models of quantum computing with qudits

The gate-based description of quantum computing is useful to establish principles of

quantum computing with qudits, similar to the case for qubits. There are various approaches

to quantum computing besides the gate-based model, such as the measurement-based [ 241 ],

adiabiatic quantum computing [ 242 ], [ 243 ] and topological quantum computing [ 244 ]. Qudit

versions of these approaches are barely explored to date, and we summarize the current

status of these studies below.
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2.3.1 Measurement-based qudit computing

Measurement-based quantum computing was introduced as an alternative approach to

quantum computing whereby a highly entangled state, such as a cluster state [ 245 ] or its

graph-state generalization [ 246 ], is prepared and then computation is performed by sequential

single-qubit measurements in bases that are determined by a constant number of previous

measurement outcomes [ 241 ], [  247 ]. Measurement-based quantum computing is appealing

in settings where preparing a highly entangled many-qubit graph state is feasible, such as

parallelized controlled-phase operations [  241 ] or cooling to the ground-state of a special

Hamiltonian [ 247 ].

Measurement-based qudit quantum computing is unexplored to date. Preparatory work

on generalizing graph states, implicitly including the cluster-state special case, to qudit

graph states has been reported [ 248 ]. Regarding implement, qudit-based approaches have

only been reported for the error-correction aspect of measurement-based qubit quantum

computing [  249 ]. In this approach, the cluster state is envisioned as comprising qudits, with

the high-dimensional nature of qudits serving to encode qubits for error correction. They

propose continuous-variable realizations of a qudit cluster state in a continuous-variable

setting [  249 ].

2.3.2 Adiabatic qudit computing

Adiabatic quantum computing approaches quantum computing by encoding the solu-

tion of a computational problem as the ground-state of a Hamiltonian whose description is

readily obtained; the solution is obtained by preparing the ground state of a Hamiltonian

whose ground-state is efficiently constructed and then evolving slowly, according to the adia-

batic condition, into a close approximation of the ground state of the Hamiltonian specifying

the problem [ 242 ]. The advantage of adiabatic quantum computing is evident in its natu-

ral correspondence to quantizing satisfiability problems [ 242 ], and current efforts to exploit

adiabatic quantum computing focus on quantum annealing, which is a quantum general-

ization of the simulated annealing metaheuristic used for non-quantum global optimization

problems [  250 ]–[ 252 ].
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Quantum annealing is an important branch of quantum computing, particularly at the

commercial level exemplified by D-Wave’s early and continuing work in this domain. As

D-Wave researchers themselves point out, realistic solid-state devices treated as qubits are

not actually two-level systems and higher-dimensional representations of the dynamics must

be considered to model and simulate realistic solid-state quantum annealers. The effect of

states outside the qubit space, namely the treatment of solid-state quantum annealing as

qudit dynamics, has been studied carefully with conditions established for soundness of qubit

approximations [ 18 ].

In fact the qudit nature of so-called superconduting qubits, i.e., the higher-dimensional

aspects of the objects serving as qubits, is not just a negative feature manifesting as leakage

error; remarkable two-qubit gate performance is achieved by exploiting adiabatic evolution

involving avoided crossings with higher levels [ 253 ], [ 254 ] with this exploitation for fast, high-

fidelity quantum gates extendable to three-qubit gates and beyond by exploiting intermediate

qudit dynamics and avoided level crossings [ 255 ], [  256 ]. Another suggestion for exploiting

qudit dynamics concerns using a degenerate two-level system with the additional freedom

perhaps improving the energy gap and thus increasing success probability [ 257 ].

A dearth of studies have taken place to date into qudit-based adiabatic quantum comput-

ing. The one proposal thus far concerns a quantum adiabatic algorithm for factorization on

two qudits [ 17 ]. Specifically, they consider two qudits of possibly different dimensions, thus

necessitating a hybrid two-qudit gate [ 31 ]. They propose a time-dependent effective Hamil-

tonian to realize this two-qudit gate and its realization as radio-frequency magnetic field

pulses. For this model, they simulate factorization of each of the numbers 35, 21, and 15 for

two quadrupole nuclei with spins 3/2 and 1, respectively, corresponding to qudit dimensions

of 4 and 3, respectively.

2.3.3 Topological quantum computing with qudits

Topological quantum computing offers advantages over other forms of quantum comput-

ing by reducing quantum error correction overheads by exploiting topological protection.
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Some work has been done on topological quantum computing with qudits by proposing

quantum computing with parafermions [ 258 ], [  259 ].

Majorana fermions are expected to exhibit non-abelian statistics, which makes these

exotic particles, or their quasiparticle analogue, sought after for anyonic quantum comput-

ing [ 260 ]. Majorana fermions can be generalized to Zd parafermions, which also exhibit

non-abelian statistics and reduce to standard Majorana fermions for d = 2. One advantage

of d > 2 is that parafermion braiding is an entangling operation. Importantly, encoding a

qudit of dimension d in the four-parafermion fusion space enables all single-qudit Clifford

gates to be generated modulo phase terms [ 258 ].

Clifford gates do not provide a universal set of gates for quantum computing. A non-

Clifford gate can be achieved for parafermions encoded into parafermion zero modes by ex-

ploiting the Aharonov-Casher effect, physically implemented by move a half-fluxon around

the parafermionic zero modes. Combining this non-Clifford gate with the Clifford gates

achieved by parafermion braiding yields a universal gate set of non-abelian quantum com-

puting with qudits [ 259 ].

2.4 Implementations of qudits and algorithms

The qubit circuit and qubit algorithm have been implemented on various physical systems

such as defects in solids [ 261 ]–[ 263 ], quantum dots [ 264 ], [  265 ], photons [  266 ], [ 267 ], super

conducting systems [  268 ], [ 269 ], trapped ions [ 270 ], [ 271 ], magnetic [  272 ]–[ 275 ] and non-

magnetic molecules [ 276 ], [ 277 ]. For each physical representation of the qubit, only two

levels of states are used to store and process quantum information. However, many quantum

properties of these physical systems have more than two levels, such as the frequency of

the photon [ 13 ], energy levels of the trapped ions [ 25 ], spin states of the nuclear magnetic

resonance systems [ 26 ] and the spin state of the molecular magnetic magnets [  278 ]. Therefore,

these systems have the potential to represent qudit systems. In this section, we briefly review

several physical platforms that have been used to implement qudit gates or qudit algorithms.

Although most of the systems have three or four levels available for computation, they

are extensible to higher level systems and scalable to multi-qudit interactions. These pio-
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neer implementations of qudit systems show the potential of future realization of the more

powerful qudit quantum computers that have real-life applications.

2.4.1 Time and frequency bin of a photon

Photonic system is a good candidate for quantum computing because photons rarely

interact with other particles and thus have a comparatively long decoherence time. In ad-

dition, photon has many quantum properties such as the orbital angular momentum [  54 ],

[ 279 ], frequency-bin [  280 ]–[ 283 ] and time-bin [ 55 ], [  284 ] that can be used to represent a qu-

dit. Each of these properties provides an extra degrees of freedom for the manipulation and

computation. Each degree of freedom usually has dimensions greater than two and thus

can be used as a unique qudit. The experimental realization of arbitrary multidimensional

multiphotonic transformations has been proposed with the help of ancilla state, which is

achievable via the introduction of a new quantum nondemolition measurement and the ex-

ploitation of a genuine high-dimensional interferometer [ 22 ]. Experimental entanglement of

high-dimensional qudits, where multiple high-purity frequency modes of the photons are in

a superposition coherently, is also developed and demonstrated [ 280 ].

Here we review a single photon system that has demonstrated a proof-of-principle qutrit

PEA [ 13 ]. In a photonic system, there is no deterministic way to interact two photons

and thus it is hard to build a reliable controlled gate for the photonic qudits. The fol-

lowing photonic system bypasses this difficulty via using the two degrees of freedom on a

single photon—i.e., the time-bin and frequency-bin to be the two qutrits. The frequency

degree of freedom carries one qutrit as the control register and the time degree of freedom

carries another qutrit as the target register. The experimental apparatus consists of the

well-established techniques and fiber-optic components: continuous-wave(CW) laser source,

phase modulator(PM), pulse shaper(PS), intensity modulator(IM) and chirped fiber Bragg

grating(CFBG). The device is divided into three parts [ 13 ]: 1. A state preparation part

that comprises a PM followed by a PS and a IM that encodes the initial state to qudits;

2. a controlled-gate part that is built with a PM sandwiched by two CFBGs to perform the

control-U operation; and 3. an inverse Fourier transformation comprising a PM and then
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a PS to extract the phase information. Note that the controlled-gate part can perform a

multi-value-controlled gate that applies different operations based on the three unique states

of the control qutrit. In the PEA procedure, eigenphases can be retrieved with 98% fidelity.

In addition to having long coherence lifetime, the photonic system also has a unique advan-

tage over other common quantum devices i.e., the ability to process and measure thousands

of photons simultaneously. This allows us to generate statistical patterns quickly and infer

the phase accurately whereas the normal PEA has to use additional qudits on the control

register to increase accuracy.

Table 2.1. Normalized photon counts and comparison of the true phase ϕ
and the experimentally estimated phase ϕ for each eigenstate of Û1 (Eq.  2.110 )
and Û2 (Eq.  2.111 ) [  13 ].

Û1
Eigenstate |0⟩t |1⟩t |2⟩t

E0 .9948 ± .0004 .0101 ± .0004 .0122 ± .0005
E1 .0023 ± .0002 .9805 ± .0009 .0120 ± .0005
E2 .0029 ± .0002 .0094 ± .0004 .9758 ± .0010

True Phase, ϕ 0 2π/3 4π/3
Est. Phase, ϕ̃ 1.972π .612π 1.394π

Error, |ϕ−ϕ̃|
2π

1.4% 2.7% 3.0%
Û2

Eigenstate |0⟩t |1⟩t |2⟩t

E0 .878 ± .002 .316 ± .003 .143 ± .002
E1 .032 ± .001 .530 ± .003 .318 ± .003
E2 .090 ± .002 .154 ± .002 .539 ± .003

True Phase, ϕ 0 .3511π 1.045π

Est. Phase, ϕ̃ 1.859π .377π 1.045π

Error, |ϕ−ϕ̃|
2π

7.1% 1.3% 0.0%

Here we provide an example for the statistical inference of the phase based on numerical

data generated by the photonic PEA experiment just described. The two unitary operations

used in the experimental setup are

Û1 = diag(1, ω, ω2), (2.110)
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with ω being the cube root of unity (  2.14 ), and

Û2 = diag
(
1, ei0.351π, ei1.045π

)
. (2.111)

In the experiment, photonic qutrits are sent through the control and target registers and the

state of the control register qutrits is measured and counted to obtain the phase information.

Given the eigenphase ϕ of an eigenstate of the target register, the probability for the

qutrit output state to fell into |n⟩, where n ∈ {0, 1, 2}, is

C(n, ϕ) = 1
9
∣∣∣1 + ei(ϕ− n2π

3 ) + ei2(ϕ− n2π

3 )
∣∣∣2 . (2.112)

Now let E0, E1, and E2 be the counts of the photons that fell into |0⟩f , |1⟩f , and |2⟩f .

The estimated phase, denoted ϕ̃, is the phase that has the smallest the mean-square error

between the measured and theoretical results:

min
ϕ̃

2∑
n=0

(En − C(n, ϕ̃))2 (2.113)

The estimated phases for Û1 ( 2.110 ) and Û2 ( 2.111 ) are shown in Table  2.1 [ 13 ]. The first

experiment with U1 estimates the phase of a eigenvector and gives the eigenvalue. The second

experiment with U2 estimates the phase of a state with an arbitrary value (not a fraction of

π ), but, by repeating the experiment, the eigenvalue can be estimated from the statistical

distribution of the results.

2.4.2 Ion trap

Intrinsic spin, an exclusively quantum property, has an inherently finite discrete state

space which is a perfect choice for representing qubit or qudit. When a charged particle

has spin, it possess a magnetic momentum and is controllable by external electromagneic

pulses. This concept leads to the idea of ion trap where a set of charged ions are confined

by electromagnetic field. The hyperfine (nuclear spin) state of an atom, and lowest level

vibrational modes (phonons) of the trapped atoms serves as good representations of the
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qudits. The individual state of an atom is manipulated with laser pulse and the ions interact

with each other via a shared phonon state.

The set-up of an ion trap qutrit system reviewed here can perform arbitrary single qutrit

gates and a control-not gate [ 25 ]. These two kinds of gates form a universal set and thus

can be combined to perform various quantum algorithms such as those discussed in § 2.2 .

The electronic levels of an ion are shown in Fig.  2.14 . The energy levels |0⟩ , |1⟩ , |2⟩ are used

to store the quantum information of a qutrit. The transition between the levels are driven

by the classical fields Ω03,Ω13,Ω04 and Ω24 of the Raman transitions through independent

channels linked to orthogonal polarizations. We first develop a system acting as a single

qutrit gate that can manipulate the energy levels of the ion via Raman transitions driven

by the classical fields. The following expressions follow those in Ref. [  25 ]. For single qutrit

gates, where the center-of-mass motion is excluded, we can include the spatial dependence

of the Raman fields as phase factors ∆ and assuming the conditions

∆ ≫ Ω04,Ω03,Ω31,Ω42, (2.114)

the effective Hamiltonian describing the ion in this system is

H

ℏ
= − |Ω31|2

∆ |1⟩ ⟨1| − |Ω42|2

∆ |2⟩ ⟨2| − |Ω30|2 + |Ω40|2

∆ |0⟩ ⟨0| − (2.115)

−
[

Ω31Ω∗
30

∆ |0⟩ ⟨1| + Ω42Ω∗
40

∆ |0⟩ ⟨2| + hc
]
. (2.116)

Knowing the Hamiltonian we are able to derive the evolution operator in the restricted

three-dimensional space spanned by {|2⟩ , |1⟩ , |0⟩} as the following

U(φ) =


1 + |g|2C(φ) gg′∗C(φ) −ig sinφ

gg∗C(φ) 1 + |g|2C(φ) −ig sinφ

−ig∗ sinφ −ig′∗ sinφ cosφ

 , (2.117)

where φ = Ωt represents interaction time and

C(φ) = cosφ− 1, Ω2 = |κ|2 + |κ|2. (2.118)
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The notation g and g represents

g := κ/Ω, g = κ/Ω, κ := Ω∗
42Ω40/∆, κ = Ω∗

31Ω30/∆. (2.119)

This evolution operator can perform all kinds of the required coherent operations that are

acting on any two of the logical states. It operates on the system and works essentially as

a single qutrit gate. All kinds of transitions can be realized by manipulating the κ and κ

coupling. Therefore with the proper manipulation of the parameters κ and κ we are able to

perform any arbitrary one-qutrit gate as desired.

Single qutrit gate alone is not sufficient to form a universal computational set, as we

need a conditional two-qutrit gate or a two-qutirt controlled-gate to achieve universality. To

define the conditional two-qutrit gate we need an auxiliary level |0⟩ as shown in Fig.  2.14 .

The conditional two-qutrit gate is achievable via the center-of-mass (CM) motion of ions

inside the trap. The ion CM coupled to the electronic transition |0⟩ → |q⟩ is described by

the Hamiltonian

Hn,q = Ωqη

2 [ |q⟩n ⟨0| ae−iδt−iϕ + a† |0⟩n ⟨q|eiδt+iϕ]. (2.120)

Here a is the annihilation operator and a† is the creation operator of the CM phonons. Ωq is

the effective Rabi frequency after adiabatic elimination of upper excited levels and ϕ is the

laser phase, and δ is the detuning. The Lamb-Dicke parameter is

η :=
√
ℏk2

θ/(2Mνx). (2.121)

This Hamiltonian governs the coherent interaction between qutrits and collective CM motion.

With appropriate selection of effective interaction time and laser polarizations, the CM

motion coupled to electronic transitions is coherently manipulated [ 25 ].

To complete the universal quantum computation requirements, we need to develop a

measurement scheme. In this scheme, von Neumann measurements distinguishing three

directions |0⟩, |1⟩, |2⟩ are made possible via the resonant interactions from |1⟩ and |2⟩ to

states |3⟩ and |4⟩, respectively. The single and two-qutrit controlled gate are combined to

perform various qutrit algorithms such as the quantum Fourier transform. Other variations
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Figure 2.14. Electronic level structure of the trapped ion. The carrier of the
quantum information is the qutrit states |0⟩, |1⟩, and |2⟩. |0′⟩ is an auxiliary
level used for the conditional two-qutrit gate.

of the ion-trap qutrit quantum computer designs use trapped ions in the presence of a

magnetic field gradient [ 285 ]. The qutrit ion-trap computer provides a significant increase

of the available Hilbert space while demanding only the same amount of physical resources.

2.4.3 Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) is an essential tool in chemistry and involves manip-

ulating and detecting molecules’ nuclear spin states using radio-frequency electromagnetic

waves [ 286 ]. Some technologies of this field are sophisticated enough to control and observe

thousands of nuclei in an experiment. The NMR has the potential to scale up quantum

computer to thousands of qudits [ 287 ].

In this section we review the implementation of a single-qudit algorithm that can de-

termine the parity of a permutation on an NMR system [ 26 ]. The algorithm itself is the

parity determining algorithm explained in § 2.2.1 . The molecule in this NMR setup is em-

bedded in a liquid crystalline environment and the strong magnetic field is used to adjust

the anisotropic molecular orientation. This addind a finite quadrupolar coupling term to the

Hamiltonian which is as follows

H = −ω0Iz + Λ(3I2
z − I2), (2.122)
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where Λ = e2qQS/4 is the effective value of the quadrupolar coupling [ 26 ]. The Fourier

transformation is implemented by a sequence of three transition-selective pulses. A series of

combinations of 180◦ pulses, both transition-selective and non-selective, is used to implement

the permutations.

Final states of the system can be derived from a single projective measurement. Pseudop-

ure spin states act as approximation of effect of the system on an ensemble NMR quantum

computer since it is impossible to do the true projective measurements [ 288 ]. The fidelity

measurement of the experiment is given as

F := tr(ρ†
thρexpt)√

tr(ρ†
thρth)

√
tr(ρ†

exptρexpt)
(2.123)

is used, where ρth and ρexpt are, respectively, theoretically expected and experimentally

obtained density matrices. Fidelities obtained for these proposed operations are 0.92 and

above.

Another set-up of the same algorithm treats a single ququart [ 27 ]. The algorithm im-

plementation is achieved using a spin–3
2 nuclei, which is commonly selected for NMR-QIP

applications. In their NMR systems the four energy levels needed is made via the Zeeman

splitting using a strong static magnetic field. All of the two implementations of the single-

qudit algorithm show that the NMR system provides a way to realize a reliable and efficient

qudit system for the quantum computing.

2.4.4 Molecular magnets

Molecular quantum magnets, also called the single-molecule magnets (SMM), provides

another physical representation of qudits [ 278 ]. They have phenomenal magnetic charac-

teristics and can be manipulated via chemical means. This enables the alternation of the

ligand field of the spin carriers and the interaction between the SMM with the other units.

As pointed out in one of the proposals, the nuclear spin states of the molecules, which have

a long life-time, are used to store the quantum information. This information is read out by
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the electronic states. In the mean time, the robustness of the molecule allows it to conserve

its molecular, electronic and magnetic characteristics at high temperatures [  289 ].

As one of the SMMs, the single molecule TbPc2 complex reviewed in this section pos-

sesses all necessary properties such as long lifetime and robustness. These properties are

integrated as important components of a serious quantum mechanical devices, for examples,

resonator [ 290 ], molecular spin valve [ 291 ] and transistor [ 237 ], [ 292 ]. TbPc2 gains its SMM

properties from the strong spin–orbit coupling of lanthanide ions and the ligand field [ 293 ].

Magnetic properties of TbPc2 are governed by the Hamiltonian:

H = Hlf + gJµ0µBJ ·H + AhfI · J + (I2
z − 1

3(I + 1)I), (2.124)

where Hlf is the ligand field Hamiltonian(lf), and gJµ0µBJ ·H represents the Zeeman energy.

AhfI · J accounts for hyperfine interactions(hf) and (I2
z − 1

3(I + 1)I) is the quadrupole term.

A sweeping magnetic field associated with mI = ±1/2 and ±3/2 can cause quantum tunnelling

of magnetisation, which preserves nuclear spin while changing electronic magnetic moment.

This field enables nuclear-spin measurement by suspending the TbPc2 molecule on carbon

nanotubes (CNT) and between gold junctions.

This measurement uses the technique of electro-migration. Initialisation and manipu-

lation of the four spin states of TbPc2 can be obtained from QTM transitions driven by

external ramping magnetic field. The transitions between the |+1/2⟩ ↔ |−1/2⟩ states and

|+3/2⟩ ↔ |−3/2⟩ is achieved via applying appropriate resonate frequencies ν12 and ν23. Relax-

ation and coherence times are important aspects to be analyzed for the TbPc2 system, and

this process is accomplished by imaging the initialized nuclear spin trajectory in real-time.

Statistical analysis of the nuclear spin coherence time makes use of the spin–lattice re-

laxation times by fitting the data for an exponential form (y = exp(−t/T1)) and yields

T1 ≈ 17 s for mI = ±1/2 and T1 ≈ 34s for mI = ±3/2 with fidelities of F (mI = ±1/2) ≈ 93%

and F (mI = ±3/2) ≈ 87% accordingly [ 278 ]. The TbPc2 SMM can be used to execute

Grover’s algorithm, where the alternation of the mI state contained in the TbPc2 molecular

qubit are treated by resonance frequencies [  28 ], [  294 ].
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2.5 Summary and future outlook of qudit system

2.5.1 Summary of the advantages of qudit systems compared to qubit systems

Throughout the article we discuss and review many aspects of the qudit systems such as

qudit gates, qudit algorithms, alternative computation models and implementations. Most

gates and algorithms based on qudits have some advantages over those for qubits, such as

shorter computational time, lower requirement of resources, higher availability, and the abil-

ity to solve more complex problems. The qudit system, with its high-dimensional nature, can

provide more degrees of freedom and larger computational space. This section summarizes

the advantages of the qudit system compared to the qubit system.

Qudit gates have the advantage of a larger working Hilbert space which reduces the

number of qudits needed to represent an arbitrary unitary matrix. In our discussion of

universality in § 2.1.1 , the qudit method proposed by Muthukrishnan and Stroud’s has a

(log2 d)2 scaling advantage over the qubit case. Furthermore, Luo and Wang show that with

their proposed universal computation scheme [  14 ], there is an extra factor of n reduction

in the gate requirement, where n is the number of qudits. By introducing qudits to the

construction of some well-known gates such as the Toffoli gate, the elementary gate required

are reduced from 12n − 11 gates in the qubit case to 2n − 1 gates by introducing a single

(n+1)-level target carrier [ 33 ] and to 2n−3 gates by utilizing the topological properties [ 34 ].

In our discussion of the geometrically quantified qudit-gate efficiency in § 2.1.3 , the qubit

system needs O(n6d(I, U)3) one- and two-qubit gates to synthesize a unitary [ 213 ] while in

the qutrit case the lower bound is O(nkd(I, U)3) where k is an integer that depends on the

accuracy of the approximation and can be smaller than 6 [ 15 ].

For many of the physical systems such as photons [ 266 ], [ 267 ], super conducting sys-

tems [ 268 ], [  269 ], trapped ions [ 270 ], [  271 ], magnetic [ 272 ]–[ 275 ] and non-magnetic molecules [ 276 ],

[ 277 ] there are usually more than two available physical states available for the applications.

The qudit system has a higher efficiency utilizing those extra states than the qubit system.

Also using the photonic system, we can perform the multi-level controlled gate (§ 2.1.2 ) which

can perform multiple control operations at and same time and largely reduce the number of

controlled gates requirement [  13 ].
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Other than computation, the qudit also has advantages in quantum communication as

it possesses a higher noise resilience than the qubit [ 295 ]. The qudit system has a higher

quantum bit error rate (QBER), which is a measure of resistance to the environmental noise

or eavesdropping attacks, compared to the qubit system. The higher noise tolerance of the

qudits helps to increase the secret key rate as it can be shown that the secret key rate

increases as the Hilbert space dimensions increase at the same noise level [ 296 ]. Notice that

in practical situation, the qudit system performed on each particular physical apparatus has

varied amount of advantages than the qubit and there might be cases in which the high-

dimensional states have a higher transmission distance [ 295 ]. This higher noise resilience

of qudits is more advantageous if the qudits are entangled. The entanglement becomes

more robust by increasing the dimension of the qudits while fixing their numbers. In other

words, as the noise sources act locally on every system, increasing the dimension d will

reduce the number of systems and thus reduce the effect of noise resulting in the robustness

increase [ 297 ]. The increasing noise level tolerance as the qudit dimension increases can be

shown on an photonic OAM system as an example of its implementation [  298 ].

In summary the qudit system possesses advantages in the circuit design, physical imple-

mentation and has the potential to outperform the qubit system in various applications.

2.5.2 Future outlook of qudit system

This review article introduces the basics of the high-dimensional qudit systems and pro-

vides details about qudit gates, qudit algorithms and implementations on various physical

systems. The article serves as a summary of recent developments of qudit quantum comput-

ing and an introduction for newcomers to the field of qudit quantum computing. Furthermore

we show the advantages and the potential for qudit systems to outperform qubit counterparts.

Of course these advantages can come with challenges such as possibly harder-to-implement

universal gates, benchmarking [ 299 ]–[ 301 ], characterization of qudit gate [ 302 ], [ 303 ] and

error correction connected with the complexity of the Clifford hierarchy for qudits [ 186 ].

Compared to qubit systems, qudit systems currently have received less attention in both

theoretical and experimental studies. However, qudit quantum computing is becoming in-
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creasingly important as many topics and problems in this field are ripe for exploration.

Extending from qubits to qudits ushes in some mathematical challenges, with these mathe-

matical problems elegant and perhaps giving new insights into quantum computing in their

own right. Connections between quantum resources such as entanglement, quantum algo-

rithms and their improvements, scaling up qudit systems both to higher dimension and to

more particles, benchmarking and error correction, and the bridging between qudits and

continuous-variable quantum computing [ 184 ] are examples of the fantastic research direc-

tions in this field of high-dimensional quantum computing.
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3. QUANTUM PHASE ESTIMATION WITH

TIME-FREQUENCY QUDITS IN A SINGLE PHOTON

The contents of this chapter are based on and modified from the article [ 13 ] Lu, H. H.,
Hu, Z., Alshaykh, M. S., Moore, A. J., Wang, Yuchen, Imany, P., ... & Kais, S. (2020).
Quantum phase estimation with time-frequency qudits in a single photon. Advanced Quantum
Technologies, 3(2), 1900074, Copyright (2019) by John Wiley & Sons, Inc.

This chapter presents the quantum phase estimation with time-frequency qudits in a sin-

gle photon [ 13 ]. It is organized in three sections, theory, experimental results and discussion.

3.1 Theory

Suppose |ψ⟩ is an eigenstate of a unitary operator Û with the unknown eigenvalue eiϕ,

the phase estimation algorithm can evaluate the phase (ϕ) with polynomial resource (in

terms of the number of qudits and gates needed)[ 206 ]. The PEA procedure is illustrated in

Figure  3.1 (a) with a target register to represent |ψ⟩ and a control register to hold the infor-

mation on ϕ which is then extracted by an inverse quantum Fourier transform (QFT)[ 206 ].

The dimension of the target register has to match that of |ψ⟩ to fully represent the quantum
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Figure 3.1. (a) Schematic for a general qubit-based PEA using n-qubit con-
trol and m-qubit target states. H⊗n is a set of Hadamard gates acting on
n qubits in parallel. U is an unitary operator operating on the target state.
n control-U gates, one for each control rail, are present. QFT † is the inverse
quantum Fourier transform on the n-qubit control register. (b) Schematic
for a single-qudit-based PEA. d-point discrete Fourier transform (DFT ) is a
Hadamard gate generalized to d-dimensional state (See Eq. (  3.1 )). A multi-
value-controlled-gate (MVCG) applies Û j to the target when the control is in
the |j⟩ state.
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state, while the dimension of the control register determines the precision of the evaluation

of ϕ. In particular, if we use n d-dimensional qudits for the control register then we can

evaluate ϕ with the precision 2π/dn. A Hilbert space of dimension N = 2m = dn can be

represented either by m qubits (d = 2) or n qudits (d > 2), therefore using a qudit based

PEA allows us to achieve the same precision or represent the same |ψ⟩ with fewer number

of qudits – more precisely m = n log2(d) implies a log2(d) reduction of the circuit width

(number of qudits) required. Using qudits may also reduce the circuit depth by reducing the

number of controlled gates used to realize the controlled-Û operation. The quantum circuit

for a qudit based PEA[ 37 ] generalizes the two-value controlled-Û gate for the qubit case to a

multi-value-controlled-gate (MVCG) that applies Û j to the target register when the control

register is in the |j⟩ state (j = 0, 1, ..., d−1). The functionalities of the n two-qubit controlled

gates utilized in the conventional qubit-based PEA circuit[ 206 ] can be realized with a single

MVCG having 2n controlled values, thus reducing the depth of our PEA circuit.

Figure  3.1 (b) shows the schematic of a qudit-based PEA. The DFT gate here is a d-

point discrete Fourier transform (DFT) defined as DFT (d) |j⟩ = 1√
d

d−1∑
k=0

e2πi(jk/d) |k⟩. The

DFT gate can be understood as a qudit generalization of the Hadamard gate to dimensions

beyond d = 2[ 57 ], [ 304 ]. When operating on a single qudit, both the Hadamard gates and

the QFT in Figure  3.1 (a) are reduced to a single DFT gate. We would like to emphasize

that, in this work we use the “DFT” to denote a single, high-dimensional gate capable of

applying the discrete Fourier transform to a single qudit state, while the “QFT” denotes

the standard quantum algorithm of applying the discrete Fourier transform to a multi-qubit

state. Different from the DFT, the QFT often requires a sequence of single-qubit and two-

qubit gates to implement. The MVCG then applies Û j on the target state conditional

on the control state |j⟩ (i.e., |j⟩ |ψ⟩ → |j⟩ Û j |ψ⟩). Finally, the phase kickback mechanism

in the PEA[ 206 ] allows us to evaluate the ϕ by applying an inverse DFT on the control

register, and performing measurements in the computational basis. The quantum circuit

can determinisitically evaluate the eigenphase ϕ for each eigenstate of Û , insofar as ϕ can be

written exactly with the given precision. If the input state is in superposition of eigenstates

instead, performing measurements on the control register will yield probabilistic results, and

one can obtain the correct statistics of ϕ.
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As a proof-of-concept implementation, here we limit our dimension to d = 3 (qutrit)

for both the control and target registers, capable of retrieving the eigenphase of a given

three-dimensional unitary with 2π/3 precision. We introduce the three-point DFT gate in

its matrix form,

DFT (3) = 1√
3


1 1 1

1 e2πi/3 e4πi/3

1 e4πi/3 e2πi/3

 . (3.1)

And the unitary (Û1) of interest in our first demonstration is simply a Pauli-Z gate generalized

to the qutrit space:

Û1 =


1 0 0

0 e2πi/3 0

0 0 e4πi/3

 (3.2)

where the eigenphases 0, 2π/3, and 4π/3 can be exactly represented with a single ternary

digit expansion.

3.2 Experimental results

In this experiment, we leverage the well-established techniques and fiber-optic compo-

nents developed for optical communication and wavelength division multiplexing to create

and manipulate high dimensional quantum states for PEA implementation. Figure  3.2 (a)

provides a schematic of the setup, which can be decomposed into three stages: state prepa-

ration, high-dimensional controlled operation, and measurement on the control qudit.

To prepare an equi-amplitude superposition of frequency qutrit as the control register,

we send a continuous-wave (CW) laser source operating in the C-band through a phase

modulator (PM1) driven at 18 GHz, which creates a total number of ∼10 frequency bins

with a spacing of 18 GHz. Subsequently, a pulse shaper (PS1) is programmed to filter out

all but three equi-amplitude frequency bins, now with a frequency spacing (∆f) of 54 GHz.

Note that since the controlled gate in our proposed setup is a one-photon operation, the
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Figure 3.2. (a) Experimental setup. (b) Implementation of controlled-phase
gate. See text for details. (PM/IM: Electro-optic phase/intensity modula-
tor; PS: Fourier-transform pulse shaper; CFBG: Chirped fiber bragg grating;
SNSPD: Superconducting nanowire single-photon detector; AWG: Arbitrary
waveform generator. Both radio-frequency oscillators (18 and 27 GHz) are
synchronized to the 10 MHz reference clock of the AWG.)

input photon number statistics have no impact on the operation, thus coherent states can

be used instead of true single photons as the input.

To prepare the target qutrit state, we employ an intensity modulator (IM) driven by an

arbitrary waveform generator (AWG), and carve out three narrow time bins each with a

6 ns spacing, a 24 ns repetition period, and a full width at half maximum of ∼0.2 ns which

broadens the frequency-bin line-width to 2.2 GHz. As our unitary matrix of interest (Eq

 3.2 ) is diagonal, the target qutrit eigenstates are single time bins. Thus, we choose to treat

each time bin as an independent eigenstate. Each experimental trial can be thought of as

three separate measurements made in quick (6 ns) succession. Considering only one of the
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time bins (eigenstates) at a time, the state after the state preparation stage can be written

as:

|ψ⟩in ∝
2∑

j=0
|j⟩f ⊗ |τ⟩t (3.3)

where τ = {0, 1, 2} denotes which time bin is chosen to operate. The controlled gate itself

consists of a phase modulator (PM2) sandwiched between two chirped fiber Bragg grating

(CFBG). The first CFBG has a dispersion of 2 ns/nm imparting a frequency-dependent

delay which splits each time bin into 3 daughter time bins, each of which corresponds to one

frequency mode [red, green and blue pulses in Figure  3.2 (b)]. The spacing between daughter

time bins (∆t) is 0.9 ns, which is larger than the time-bin coherence time (∼0.2 ns) and its

product with the frequency-bin spacing (54 GHz) exceeds the Fourier transform limit (i.e.,

∆f∆t > 1), allowing independent manipulation of the time and frequency DoFs. Using

the AWG, we program the phase modulator to apply the unitary U j defined in Eq. ( 3.2 )

to time-bin states conditional on the frequency-bin state |j⟩f . The second CFBG with an

opposite dispersion of −2 ns/nm cancels the first dispersion module and recombines the

three daughter time bins back into a single indistinguishable time bin. After the application

of MVCG, we can obtain an output state

|ψ⟩out ∝
2∑

j=0
e

i2πjτ
3 |j⟩f ⊗ |τ⟩t (3.4)

Note that the phases applied to the time-bin state are now attached to the control register,

a process called “phase kickback.”

An ideal three-point inverse DFT gate performs the following transformation:

1√
3

2∑
j=0

e
i2πjτ

3 |j⟩f
DF T −1
−−−−→ |τ⟩f (3.5)

and thus applying inverse DFT on the control state allows us to read out the phase based

on the detection pattern in the logical basis. Detection in output state |τ⟩f indicates the

retrieved phase ϕ̃ equals to 2πτ/3 (2π × 0.τ3 in ternary expression). Recently a near-

deterministic, three-dimensional DFT for frequency-encoded qutrit has been demonstrated
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with near-unity fidelity, utilizing a quantum frequency processor circuit[ 305 ] consisting of

two electro-optic phase modulators and one pulse shaper. Due to equipment availability,

we elect to implement a simpler, probabilistic  

1
 version of inverse DFT using a single phase

modulator (PM3), capable of performing the equivalent functions in a multi-shot fashion.

The control state, consisting of three frequency bins with 54 GHz spacing, is phase modu-

lated by a 27 GHz sine waves to create frequency sidebands. We fine-tune the modulation

index to 1.843 rad such that each frequency bin projects onto the central bin |1⟩f with equal

probability. We utilize another pulse shaper (PS2) as a bandpass filter to pick out this over-

lapped bin, and then route to a superconducting nanowire single-photon detector (SNSPD)

for measurement. Since the output now consists of projections from all three frequency bins,

the measured counts will reflect the relative phases due to interference.

Given a control register in the state ∝ ∑2
j=0 |j⟩f (LHS of Eq. ( 3.5 ) when τ = 0) as the

input of the PM3, after frequency mixing we have maximum photon counts in the overlapped

bin due to constructive interference. The other two orthogonal states will instead experience

destructive interference and thus contribute no photon counts. This operation is equivalent

to the transformation described in Eq. (  3.5 ) for τ = 0, namely the projection onto |0⟩f .

We can also tune the delays between the input photons and the electrical drive on PM3,

such that the other two transformations (Eq. ( 3.5 ) for τ = 1, 2) can be achieved. Different

delay settings can be achieved by introducing an additional pulse shaper prior to frequency

mixing, or a radio-frequency phase shifter to impart the required delay. Here we choose to

lump this function into PS1 in the state preparation stage to reduce the insertion loss and

the complexity of the system. To avoid any confusion, for the rest of the paper we name

the three delay settings required to realize the equivalent inverse DFT functions simply as

“projection onto |0⟩f , |1⟩f and |2⟩f”, respectively.

Under each delay setting, we measure the photon counts in three time bins recorded over

1 second. We note that these time bins are widely spaced and do not interfere, hence, this

measurement can be considered as three independent measurements of each eigenstate in
1

 ↑ A single phase modulator will necessarily scatter input photons out of the computational space, thus make
the gate probabilistic. See [ 57 ], [ 58 ], [ 306 ] for detailed discussions.
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series. As shown in Eq.  3.4 , the phase attached to the control register after the MVCG

matches the inverse DFT transformation described in Eq.  3.5 , thus we have

2∑
j=0

e
i2πjτ

3 |j⟩f ⊗ |τ⟩t
DF T −1⊗I−−−−−−→ |τ⟩f ⊗ |τ⟩t (3.6)

which shows for time-bin |τ⟩t as the input target, ideally we will only obtain photon counts

after projecting the control register onto |τ⟩f . Figure  3.3 (a) shows the experimental results

for estimating the eigenphase of Û1. For each target eigenstate, we stack three color-coded

vertical bars in a single slot to represent the registered counts for different frequency projec-

tions. The total number of counts remain stable across three successive measurements, and

most of the counts for eigenstate |τ⟩t are recorded after projection onto |τ⟩f . The results

match our prediction, as all three eigenphases for Û1 can be represented with exactly one

ternary digit, and thus the phase can be retrieved deterministically. The fidelity of this

measurement, here defined as the ratio of photon counts registered at the correct output to

the total number of received photons, is 98 ± 1%.

For the second part of the experiment, we reprogram our MVCG operation by applying

a different temporal phase mask imparted by the AWG to implement another unitary Û2:

Û2 =


1 0 0

0 ei0.351π 0

0 0 ei1.045π

 . (3.7)

Note that two of the eigenphases are no longer integer multiples of 2π/3, or namely, the phase

attached onto the control frequency bins (after phase kickback mechanism) does not match

the inverse DFT to transform into a single logical state. Figure  3.3 (b) shows the measured

counts for all eigenstates under different inverse DFT settings. For the first eigenstate, its

corresponding phase is 0 and hence most of the counts are still registered in |0⟩f . The other

two eigenstates, as discussed above, possess phases which cannot be accurately retrieved

given a single ternary digit precision, and thus the counts are distributed over different

projections. Following the conventional PEA approach, we report the retrieved phase (ϕ̃)
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based on the projection with the highest number of counts. For eigenphases ϕ equal to 0.351π

and 1.045π, the corresponding ϕ̃ are 2π/3 and 4π/3, respectively. In the following section, we

will discuss whether more information can be extracted from the counts distribution shown

in Figure  3.3 , given (i) the input state is already prepared in the eigenstate, and (ii) an

ample amount of counts are registered for further analysis.

3.3 Discussion

When the input target register of a PEA circuit is an eigenstate with a corresponding

eigenphase ϕ, the probability for the qutrit output control state to collapse to |n⟩, where

n = {0, 1, 2}, is

C(n, ϕ) = 1
9
∣∣∣1 + ei(ϕ− n2π

3 ) + ei2(ϕ− n2π

3 )
∣∣∣2 . (3.8)

All three C(n, ϕ), for n = {0, 1, 2}, are plotted in Figure  3.4 . Observe that for each ϕ, the

ordered set {C(0, ϕ), C(1, ϕ), C(2, ϕ)} is unique. Now let E0, E1, and E2 be the measured,

normalized (∑En = 1) photon counts projected, respectively, onto |0⟩f , |1⟩f , and |2⟩f . The

phase we estimate from our measurement, denoted ϕ̃, is the phase which minimizes the mean

squared error between the measured and theoretical probabilities:

min
ϕ̃

2∑
n=0

(En − C(n, ϕ̃))2 (3.9)

The estimated phases for Û1 (Eq.  3.2 ) and Û2 (Eq.  3.7 ) are shown in Table  3.1 . The results

for Û2 are plotted in Figure  3.4 alongside the three C(n, ϕ) curves of Eq.  3.8 . The largest

error in ϕ̃ is 7.1%, and the error is less than 3% in all other cases. Our photonic system’s

ability to execute large number of trials enables this statistical approach to phase estima-

tion. Agreement between estimated and true phase can be used to quantify error in the

experimental setup; however, because the statistical approach requires an eigenstate input,

it should not be viewed as a standalone method for determining an unknown phase. To

obtain a more precise phase estimate, where the input need not be an eigenstate and the
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line. The curves are described by Eq  3.8 ; the plotted values can be found in
Table  3.1 .

phase is not restricted to a value representable by a single ternary digit, an iterative PEA,

explained below, must be implemented.

The next steps for our qudit-based PEA are (i) implementing arbitrary unitaries (i.e.

non-diagonal) in addition to increasing the qudit dimension (d > 3); and (ii) increasing the

digits of precision for evaluating the phase. For Step (i) we choose to work with frequency

and time DoF in photons, since we can take advantage of their inherent high dimensionality

to encode more quantum information in a single qudit. For example, our group has recently

demonstrated a two-photon four-party GHZ state by encoding two 32 dimensional qudits

in each photon.[ 59 ] In addition, the recipe of constructing high-dimensional quantum gate,

though still relatively limited, has been proposed and experimentally realized on both time-

bin and frequency-bin platforms. Scalable processing of time-bin qudits has been proposed

using a cascade of electro-optic phase modualtor and coded fiber Bragg grating pairs.[  307 ]
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Table 3.1. Normalized photon counts and comparison of true phase ϕ and
experimentally estimated phase ϕ for each eigenstate of Û1 (Eq.  3.2 ) and Û2
(Eq.  3.7 ). Photon counts normalized from results in Figure  3.3 .

Û1

Eigenstate |0⟩t |1⟩t |2⟩t

E0 .9948 ± .0004 .0101 ± .0004 .0122 ± .0005

E1 .0023 ± .0002 .9805 ± .0009 .0120 ± .0005

E2 .0029 ± .0002 .0094 ± .0004 .9758 ± .0010

True Phase, ϕ 0 2π/3 4π/3

Est. Phase, ϕ̃ 1.972π .612π 1.394π

Error, |ϕ−ϕ̃|
2π

1.4% 2.7% 3.0%

Û2

Eigenstate |0⟩t |1⟩t |2⟩t

E0 .878 ± .002 .316 ± .003 .143 ± .002

E1 .032 ± .001 .530 ± .003 .318 ± .003

E2 .090 ± .002 .154 ± .002 .539 ± .003

True Phase, ϕ 0 .3511π 1.045π

Est. Phase, ϕ̃ 1.859π .377π 1.045π

Error, |ϕ−ϕ̃|
2π

7.1% 1.3% 0.0%
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Quantum state tomography of time-bin quqarts (d = 4) has also been realized with cascaded

Mach-Zehnder interferometers fabricated on planar light-wave circuit.[ 308 ] And finally, our

group has been involved in the design and construction of a quantum frequency proces-

sor[ 305 ], [ 309 ] consisting of a series of phase modulators and pulse shapers, found capable of

implementing qudit transformations with favorable component requirements. Though even-

tually to implement a general MVCG operation still demands careful design and perhaps

exploitation of other DoFs to realize the controlled operation, the basic formula is ready to

be explored.

For Step (ii), our current setup uses a single control qudit to estimate the phase with

2π/d precision (in this experiment, d = 3). To achieve higher precision phase estimation

we can either increase the number of control qudits or implement an iterative PEA.[ 75 ] The

iterative PEA is the more viable approach for photonic systems, as it avoids the difficulty in

manipulating and interacting multiple photon qudits. Using only one d-dimensional qudit

as the control register, the iterative PEA can evaluate the phase with 2π/dn precision by

running n iterations of a modified single-qudit PEA algorithm. Here each iteration requires a

modified MVCG and an additional quantum gate. For the kth iteration out of all n iterations,

the Û gate becomes Ûx, where x = d(n−k), and therefore the modified MVCG applies (Ûx)j

to the target qudit when the control qudit is |j⟩. As our current approach applies Û j directly

(i.e. not cascading Û j times), implementing the MVCG with (Ûx)j is no more challenging

than the MVCG with Û j. For the additional quantum gate, on the kth iteration the control

qudit undergoes an Rz-rotation of the angle θ = −
k−1∑
i=1

ϕi
dk−i where each ϕi is the phase

determined by the ith iteration prior to the kth iteration. Our successful implementation of

the controlled gate in this paper demonstrates all the capability needed for implementing the

arbitrary (diagonal) Rz-rotation. We note the two operations needed to achieve a standard

iterative PEA can also be used to implement a Bayesian phase estimation approach known

as rejection filtering phase estimation (RFPE)[ 48 ]. RFPE is robust to noise and promises a

speed up over standard iterative PEAs by gaining information about multiple bits (for us,

dits) of the phase at a time. For the standard (non-Bayesian) PEA, qudits provide a log2(d)

reduction in the number of iterations needed to estimate a given phase with success rate

identical to the qubit case. As with qubit systems, an arbitrarily-high success rate can be
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achieved via multiple trials for some (or all) iterations. As our photonic system provides

photon statistics easily, a low-error iterative PEA or RFPE is a natural next step. Using an

iterative PEA avoids cumbersome multi-photon gates for the control qudit; however, we note

that multiple target qudits may be needed to accommodate a unitary Û of a high dimension

M . To be precise, the number of target qudits m must be ≥ logd(M), thus Û becomes a

multi-photon gate when logd(M) > 1. Our ability to implement a high-dimensional Û scales

polynomially with the qudit dimension d and exponentially with the number of target qudits

m.

Combining Step (i) and (ii), we provide the outlook for a potential high-dimensional

single-photon PEA system capable of implementing any arbitrary (non-diagonal) unitary

U . Extending to higher dimensions, we prefer frequency as the target register as we have

developed a more concrete recipe to construct high-dimensional gates with favorable resource

requirement [ 309 ]. The state preparation will be similar to that of Fig.  3.2 , in which the

number of frequency bins should match the dimension of U . The dimension of the control

(time) qudit d, on the other hand, can be significantly smaller and arbitrarily chosen as the

desired precision of the phase retrieval can be achieved with the introduction of iterative

PEA. As described in the previous paragraph, each iteration provides an additional d-digit

of precision in phase estimation. To implement the MVCG for the kth iteration out of all n

iterations, we could introduce a Mach-Zehnder-based switch to route d time bins to d different

optical paths, in each of which we place a quantum frequency processor programmed to apply

a high-dimensional frequency operation (Ûx)j to the target qudit for the jth path (i.e., when

the control qudit is |j⟩t). The additional Rz-rotation on the control qudits required for the

iterative PEA amounts to an overall phase shift at each path, and can be absorbed in the

quantum frequency processor design as well. Finally, we can recombine all paths and utilize

a cascaded interferometer tree [  55 ] to realize the d-dimensional DFT gate for projective

measurement.

In conclusion, this work has successfully demonstrated the first implementation of the

PEA on a qudit-based photonic platform. This experiment utilized the high dimensionality

of the time and frequency DoFs on a single photon to realize the 2-qudit MVCG gate,

circumventing the inherently probabilistic photon-photon interactions. Although limited to a
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proof-of-principle model with arbitrary-phase diagonal unitaries, this work is a first physical

demonstration of a qudit-based PEA. Future improvements to our PEA include higher-

dimensional qudits (d > 3), arbitrary (non-diagonal) unitaries, and statistical estimation of

the phase via larges ensemble measurements.
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4. STATISTICAL APPROACH TO QUANTUM PHASE

ESTIMATION

The contents of this chapter are based on and modified from the article [  65 ] Moore, A.
J., Wang, Yuchen, Hu, Z., Kais, S., & Weiner, A. M. (2021). Statistical approach to
quantum phase estimation. New Journal of Physics, 23(11), 113027., Copyright (2021) by
The Author(s). Original content from this work may be used under the terms of the Creative
Commons Attribution 4.0 licence. Published by IOP Publishing Ltd on behalf of the Institute
of Physics and Deutsche Physikalische Gesellschaft.

This chapter presents a statistical approach to quantum phase estimation. It is organized

as follows: § 4.1 reviews the traditional and iterative PEA and introduces a statistical metric

C for quantifying the proximity of any given input-state to its closest eigenstate. § 4.2 de-

scribes the Statistical PEA and discusses the connections between the C factor and the quality

(in terms of proximity) of the derived eigenstate-eigenphase pairs (with the derivation details

in  A.1 ). § 4.2 also outlines the optimization process for obtaining the eigenstate-eigenphase

pairs. Simulation results on different platforms are reported and discussed in § 4.3 ; method-

ology details are provided in  A.2 and  A.3 . Scaling for larger systems is considered in § 4.4 .

We conclude with a discussion on the performance of the SPEA and propose future directions

and applications of the method in § 4.5 .

4.1 Phase Estimation Algorithms

Traditional PEA implementations, diagrammed in Figure  4.1 , take any given unitary Û

and any given eigenstate |ν⟩ of Û and return the corresponding eigenphase θ where

Û |ν⟩ = ei2πθ |ν⟩ . (4.1)

The (approximate) eigenphase θ̃ ∈ [0, 1) (equivalently, ∈ [− .5, .5)) may be directly measured

on the control qubits (or qudits, when the control is dc-dimensional) of the PEA. The target

register is typically unmeasured during the process. For an arbitrary target register input

|Φ⟩, the probability of the circuit representing a particular eigenstate |νk⟩ and the associated

eigenphase θk is |⟨νk|Φ⟩|2. If |Φ⟩ is not itself an eigenstate, the eigenphase retrieved varies
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each time the PEA circuit is run. The prototypical PEA thus approximates a particular θ

in a single trial.

The traditional PEA requires large quantum circuits which are often unreliable in the

NISQ regime. To overcome hardware constraints, the iterative PEA (IPEA) was developed.

The IPEA significantly reduces circuit depth requirements by approximating a particular θ

one qubit (or dc-level qudit) at a time, starting from the least significant qubit (qudit). The

IPEA requires a rotation gate – a linear phase across the control register – to “subtract”

off eigenphase information determined in previous iterations. (I.e. if the quantum circuit’s

state before Rz(θR) is ∑q αq |q⟩ |Φq⟩, then after the rotation gate the quantum circuit’s

state is ∑q αqe−iq2πθR |q⟩ |Φq⟩.) The iterative PEA, as the name suggests, requires a number

of iterations equal to the number of bits (dits) of precision desired from the eigenphase.

Additionally, the input to the target register of an IPEA must either be an eigenstate (and

identically prepared each iteration) or the previous iteration’s output must propagate forward

and serve as the next iteration’s input.

Figure 4.1. The traditional PEA using n control dc-dimensional qudits in the
control register. The quantum gates are colored in brown and the measurement
gates in blue. The target register is highlighted in purple with dashed outline
and control register in grey with dotted outline. Note that in the dc > 2
case, the H “Hadamard” gate acts as a discrete quantum Fourier transform
(QFT) gate. Additionally, in the dc > 2 case the control gates acts as MVCGs,
applying the gate to the qth power when the control qudit is in state |q⟩. The
circuit will estimate the phase θ̃k of eigenstate |νk⟩ to precision d−(n)

c . The
estimate of eigenphase θk is returned with probability |⟨Φ|νk⟩|2.
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Figure 4.2. The iterative PEA. See Fig.  4.1 for color-conventions and notes on
the MVCG. To retrieve n dits of the eigenphase (i.e. phase precision ±1/dn

c ),
run the circuit with x = n−1 and θR = 0; the measured control state is the nth

base-dc dit of the unknown phase. Proceed to run the circuit for x = n−2 and
set θR according to the previous control results; the measured control state is
the (n − 1)th dit. Continue the process iteratively until x = 0 and the entire
phase is recovered. Note that the iterative method is diagrammed for a single
qudit control, but may be realized with any number of control qudits, similar
to the traditional PEA

An IPEA circuit is diagrammed in Figure  4.2 . In the general case, the control qu-

dit may be high-dimensional (dc−level). In this case, the Hadamard gates represent a dc-

dimensional quantum Fourier transform gate and the control-Û gate is a multi-level control

gate (MLCG) [ 13 ]: when the control state is |q⟩, a Û q gate is applied to the target regis-

ter. Consider the IPEA in its “last” iteration’s settings (x = 0 in Figure  4.2 ). When the

target register is an eigenstate |Φ⟩ = |ν⟩ and the rotation gate is used to subtract off phase

2πθR = 2πθ, the control dits deterministically collapse to state |0⟩. When either the target

input is not an eigenstate and/or θR is not the corresponding eigenphase, the control dits

will collapse to |0⟩ with non-unity probability.

Indeed, for eigenstate input |ν⟩ with a dc-level control, the final state of the control qudit

before measurement is

|ΨC⟩ = 1
dc

dc−1∑
q=0

dc−1∑
n=0

e2πin(θ−θR− q
dc

) |q⟩ (4.2)

where θ is the eigenphase of |ν⟩ and −θR (θR ∈ [0, 1)) is the rotation applied by the rotation

gate. The probability of measuring the system in output bin |0⟩ is

Pθ(−θR) = |⟨0|ΨC⟩|2 = 1
d2

c

∣∣∣∣∣∣
dc−1∑
n=0

e2πin(θ−θR)

∣∣∣∣∣∣
2

= P0(θ − θR). (4.3)
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Figure 4.3. Plot of P0(∆θ) (Equation  4.3 ) from ∆θ ∈ [ − .5, .5) for various
dc. Note that P0 has infinite domain with period 1. Probability of the (dc-
level) control register of an iterative PEA collapsing to |0⟩ as a function of
difference between the eigenphase θ and the applied rotation θR, ∆θ ≡ θ − θR

for an eigenstate input. Note that when the applied rotation matches the
eigenphase (∆θ = 0), the control collapses to |0⟩ deterministically. Denote the
region around ∆θ = 0 (from dot to dot) as the central lobe of P0(∆θ), and
the small lobes with local maxima outside of it as the sidelobes. See that the
higher the system’s dimensionality, the narrower the probability curve’s central
lobe and the lower local maxima in the sidelobes. Note that dc = 2 has no
sidelobes (the probability is monotonic on either side of the central lobe). Also
note P(∆θ) = 0 for ∆θ = d−1

c and the width of the central lobe is therefore
∆θFWFM = 2d−1

c .

Pθ(−θR) goes to one as θR approaches θ, as shown in Figure  4.3 . In the most general case,

where the target register is an arbitrary (non-eigenstate) input state |Φ⟩ and the rotation

gate subtracts off phase 2πθR, the probability that the control qudits will collapse to to |0⟩

is

C(|Φ⟩ , θR) =
dt−1∑
k=0

|⟨νk|Φ⟩|2 Pθk
(−θR)

= 1
d2

c

dt−1∑
k=0

|⟨νk|Φ⟩|2
∣∣∣∣∣∣
dc−1∑
n=0

e2πin(θk−θR)

∣∣∣∣∣∣
2

. (4.4)

Where Û is dt-by-dt-dimensional and the target register is dt-dimensional. Appreciate

that C(|Φ⟩ , θR) = 1 if and only if |Φ⟩ is an eigenstate and θR is its corresponding eigenphase.
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4.2 Statistical Approach to PEA

The non-deterministic nature of the IPEA (in the non-eigenstate case) disqualifies the

circuit from use as an eigenphase estimator in the standard approach. The SPEA instead

considers the probabilistic outputs of the IPEA (and PEA) as valuable information which –

when coupled with a classical controller as in Figure  4.4 – allows quantum PEA-like hard-

ware to be used in a variational approach to determine any unknown eigenphase-eigenstate

pair. The quantum hardware required is that of a traditional PEA with single-dit pre-

cision (n = 1) and the rotation gate standard to the IPEA (i.e. an iterative PEA with

x set to 0). The classical controller determines |Φ⟩ and θR which are used in the PEA-

type circuit. Multiple trials of the quantum circuit are run to approximate the probability

C̃ ≈ C(|Φ⟩ , θR) (of Equation  4.4 ). Note that the PEA-like circuit need only detect two mea-

surement outcomes: |0⟩ and not(|0⟩), further reducing hardware requirements compared to

typical high-dimensional PEAs. Treating the estimate −1·C̃(|Φ⟩ , θR) as a cost function in an

optimization process (making C̃ the negative cost function), the classical controller adjusts

|Φ⟩ and θR, until the quantum circuit near-deterministically returns |0⟩ as the output state.

When C̃(|Φ⟩∗ , θ∗
R) ≈ 1, the classical controller has found the (approximate) eigenstate |Φ⟩∗

and the associated eigenphase θ∗
R.

The quality of the eigenstate |Φ⟩∗ and eigenphase θ∗
R retrieval can be quantified by C∗ =

C(|Φ⟩∗ , θ∗
R). C∗ can both (1) determine the maximum distance from the eigenphase θR to the

nearest eigenphase θk and (2) find the fidelity of |Φ⟩∗ to actual eigenstate(s). Derivations of

both are provided in  A.1 .

The (negative) cost function C acts as a metric for quality of eigenvalue-eigenstate re-

trieval as shown in  A.1 ; by finding |Φ⟩ and θR which maximize this metric, we arrive at

good estimates for an eigenstate (|Φ⟩) and eigenphase (θR) pair. Following is the classical

algorithm used to maximize C, which is similar to a gradient search algorithm:

(1) The classical controller chooses a |Φ⟩ at random

(2) The classical controller constructs an orthogonal basis {|Bm⟩} including |Φ⟩
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Figure 4.4. Diagram of variational classical-quantum system. Classical pro-
cesses are indicated by double blue lines and quantum processes by single black
lines. Quantum gates are shown in brown and measurement gates in blue. The
(potentially high-dimensional) PEA-type circuit is simplified from the typical
iterative PEA in that U need not be raised to high orders (dx

c ) corresponding to
desired eigenphase precision and the measurement gate need only distinguish
between the |0⟩-state and the not(|0⟩)-state. The (negative) cost function (es-
timate) C̃ is returned after a predetermined number of trials of the quantum
circuit, approximating a probability. The classical controller optimizes |Φ⟩ and
θR based on the (negative) cost function returned by the quantum circuit. Pro-
cess continues until C̃(|Φ⟩ , θR) = 1 or improvement in C̃(|Φ⟩ , θR) ceases.

(3) • (Standard Method: viable when the quantum circuit can measure output bins |0⟩

and not(|0⟩))

The quantum circuit evaluates C̃(|Φ⟩ , θR) over a range of θR and returns the

maximum value C∗

• (Alternative Method: viable when the quantum circuit can measure all dc output

bins: |0⟩ through |dc − 1⟩.)

The quantum circuit evaluates C̃(|Φ⟩ , 0) and uses this result to approximate the

eigenphase θ∗. The quantum circuit then evaluates C̃(|Φ⟩ , θR = θ∗) and returns

C∗.

(4) For all m = 0 to 2dt − 1, we set a=1 and the following occurs:

• if m ≥ dt then z =
√

−1. Otherwise z = 1.

• the classical controller generates the new state:

|Φ⟩ = |A⟩√
⟨A|A⟩

(4.5)
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where |A⟩ = |Φ⟩ + z · a · (1 − C∗) |Bm mod dt⟩.

• |Φ⟩ is fed to the quantum circuit, the maximum value returned is C∗

• if C∗ > C∗, then |Φ⟩ = |Φ⟩ and C∗ = C∗. Otherwise |Φ⟩ and C∗ are unchanged.

(5) If |Φ⟩ was not updated during step 4, set a = a/2 and repeat step 4.

(6) If C∗ is greater than the stopping condition or the maximum run-time has been ex-

ceeded, the classical controller concludes and returns |Φ⟩, C∗, and θ∗
R. Otherwise the

process continues from step 2.

A few observations on the optimization process may be made. For each iteration, at least

2dt distinct input states are used. For each of these input states a set of {θR} is applied

(when using the ‘standard approach’ in step 3). Initially, the {θR} range from 0 to 1 with

coarse resolution; as the optimization proceeds, {θR} will become fine and include phases

from a limited region. Notably, we can choose to run the optimization process limiting {θR}

to a narrow range of space from the outset. In this way, we may choose to look only for

ground state (small θ), principle (large θ), or any other particular solutions to Equation  4.1 .

In addition, we may eliminate known eigenstates or directions not of interest by excluding

them from {|Bm⟩} (step 2) each iteration. In this fashion, the SPEA may be used to

determine a complete (or partial) spectral decomposition of Û . Finally, we note while the

hardware conventional to a PEA is utilized, this system is superior to the original PEA, as

it determines both the eigenstate and the eigenphase, given no prior knowledge.

4.3 Statistical PEA Simulation

We test the proposed algorithm on the IBM Q platform and on a local computer. In both

cases, a classical computer is used to simulate the C parameter (of Equation  4.4 ) delivered

by a quantum circuit. These simulations of a quantum system are ideal: neither the IBM

Q nor the local computer simulations include any noise terms. I.e. all quantum gates are

assumed to operate with perfect fidelity. The IBM Q trials study the convergence of the

optimization algorithm to any single eigenstate on 2- and 4-dimensional systems. The local

computer simulations run a full spectral decomposition on a 16-dimensional system with
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various control levels dc. The local computer simulations also consider the convergence of

the optimization algorithm to any single eigenstate for various control levels dc on systems

ranging from 8 to 512-dimensional, to provide some indication of the method’s scalability.

Both simulations apply the variational algorithm as defined in Section  4.2 , with one pri-

mary difference: the local computer simulations follows the primary method of step 3 whereas

the IBM Q simulations follow the alternative method. The IBM Q simulation runs one mea-

surement with Rz(θR = 0) and applies the eigenphase estimation methodology introduced

in the Discussion of [  13 ] – under the (inaccurate first, but increasingly accurate) assumption

that the input state is an eigenstate – to obtain a phase estimate θ∗. Then, the measurement

is run with Rz(θR = −θ∗) to obtain the metric C used for the optimization. By contrast,

the local computer’s simulations follow the primary method, picking a representative sample

of input phases to apply to the Rz gate and selecting the largest C that arises. The local

computer’s simulations therefore require more runs of the quantum circuit per trial, but only

require two control-qudit detectors: one for the |0⟩ state and one for the not(|0⟩), whereas

the IBM Q methodology needs one detector for each control level (|0⟩ , |1⟩ , ..., |dc − 1⟩). The

alternative approach (or some hybrid approach) is generally preferable if the hardware is

available for dc detectors.

4.3.1 Qiskit Simulation

On the IBM Q experience platform, we developed our quantum algorithms with Qiskit,

the python-based programming package provided by IBM Q which offers all the facilities to

design, simulate and execute quantum algorithms on IBM’s quantum computers [ 78 ]. In this

section we present the simulation results of the SPEA on the Qiskit quantum simulator.

Three sets of simulations are run on the IBM Q, one with 2-dimensional operator U1 and

the other two with 4-dimensional operators U2 and U3, the matrix forms of which are shown

in  A.2 . U1 and U2 are operators directly built with the default gates offered by the IBM

Q and U3 is a unitary exponentiation based on the Hamiltonian of the hydrogen molecule

generated with Bravyi-Kitaev transformation[ 310 ]. The second quantization Hamiltonian of

a hydrogen molecule with a bond length 0.74Å is calculated by the STO−3G minimal basis
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using PySCF [ 311 ] and the transformation is done by OpenFermion[ 312 ]. We encode the

matrix into the “Operator” class provided by Qiskit[ 78 ]. In the simulations of each unitary

operation Ui where i = 1, 2, 3, we start with the input states that are good approximations

of one of the operator’s eigenstates and then move to input states which are nearly equal-

distance from every eigenstate. We quantify the distance of the input state |Φ⟩ to its nearest

eigenstate |ν⟩ by taking the absolute inner product |⟨Φ|ν⟩| as reported in Table  4.1 . In each

simulation we run the same input state 20 times and set the maximum iteration number to

be 50 (to save the resources) and the stopping condition, which is the difference between the

C factor and 1, to be 10−4. The stopping condition is set so that when it is met we will have

a reasonably good approximation of the eigenstate. We then calculate the average number of

iterations and standard deviation of the number of iterations required to exceed the stopping

condition. Most trials reach the stopping condition before exceeding the iteration limit and

give a good approximation of one of the eigenstate-eigenphase pair, as indicated by the low

mean phase error reported. The results are shown in Table  4.1 .

For each operator U1, U2, U3, input states which are initially close to an eigenstate (input

states with a large absolute inner product) have lower required iteration number than those

which are initially far from all eigenstates (low absolute inner product). Appreciate that

the eigenstate converged to is non-deterministic, as the optimizer itself is non-deterministic

due to randomness added by the random orthogonal basis in step 2. In other words, added

randomness may converge the input state to an eigenstate other than the closest eigenstate.

The mean phase error recorded in Table  4.1 is calculated by taking the absolute value of

the difference between the eigenphase of the converged input state and the true eigenphase

of the eigenstate that the input state converged to. As the input state can converge to

different eigenstates in the simulation, we report the absolute phase error rather than the

error percentage. No correlation between the phase error and the absolute inner product

is apparent, indicating the quality of the final eigenphase-eigenstate pair is agnostic to the

proximity of the initial input state to any eigenstate. Variations in mean phase error are

likely a function of which particular eigenphase-eigenstate pair was converged to. During the

simulation of U3 with an input state of equal weight combination of all the eigenstates – i.e.

the hardest input state to converge to an eigenstate – there are few cases that the iteration
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limit is reached and the simulation did not reach the stopping condition. This can usually

be fixed by increasing the iteration limit.

In summary, these results indicate that the SPEA method is capable of delivering high-

quality estimates of eigenphase-eigenstate pairs with no prior knowledge of the operator’s

eigenstates, in the case of both arbitrary (U1, U2) and physically relevant (U3) operators. The

quality of the estimates is not influenced by prior system knowledge; however, the resources

required to deliver an eigenstate-eigenphase pair may be reduced with prior knowledge.

4.3.2 Full Spectral Decomposition

The statistical approach differs from some other variational approaches [ 79 ] in that it does

not diagonalize the input state matrix, but solves for only one eigenphase-eigenstate pair.

This allows for significant reduction in the number of parameters (and iterations) needed

to perform the optimization. However, as shown below, a complete spectral decomposition

is realizable. As a representative case, we consider the 16-by-16 Hamiltonian HH2O for the

water molecule H2O with the H-O-H angle at 104.5◦ and the bond length at 1.0 a.u. given

in  A.3 [ 236 ]. The Hamiltonian is converted to a unitary exponentiation, UH2O = eiHH2O , and

the matrix’s spectral decomposition is simulated with the statistical variational algorithm

(SPEA) on a local computer.

The simulation is run for various control levels dc until 120 successful spectral decom-

positions are achieved. Each of the 16 eigenphases are retrieved in a random order. The

optimization runs until C∗ ≥ Cgoal. If the optimizer is unable to reach Cgoal, the process for

that eigenphase will conclude so long as C∗ ≥ Creq. If Creq is not met, the entire spectral

decomposition is abandoned and the trial is classified as failed. Generally, Cgoal is achieved

for the first 10 eigenvalues and the latter 2 to 6 eigenvalues must settle at a lower value (due

to small cumulative errors). Results are recorded in Table  4.2 and plotted in Figure  4.5 .

To determine the fidelity of the spectral decomposition, the retrieved eigenphase-eigenstate

pairs, (θk, |νk⟩) were used to create the matrix,

Uretrieved =
∑

k

ei2πθk |νk⟩ ⟨νk| . (4.6)
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Figure 4.5. (Left axis; black; circles) mean fidelity achieved for optimization
simulation at control level dc, with error bars from the 25th to 75th percentile.
(Right axis; blue; squares) mean phase error (per phase) for optimization sim-
ulation at control level dc, with error bars from the 25th to 75th percentile.

Letting M = U †
H2OUretrieved, the fidelity is defined as

fidelity = Tr(MM †) + |Tr(M)|2

n · (n+ 1) (4.7)

following the average fidelity definition of [ 313 ] where n is matrix dimension (i.e. n = 16).

The reported phase error is the average absolute phase error over all 16 phases,

phase error =
∑

k |2πθk − 2πθk,true|
n

. (4.8)

Note that the dc = 2 was run for two different sets of Cgoal and Creq. Increasing these

values increased the optimization failure rate, but also improved decomposition fidelity and

reduced the average eigenphase error. The high failure rate suggests superior results will

be achieved by increasing dc, the number of control levels, over increasing C∗ (analogous to

Cgoal), when possible. This is expected, as increasing dc leads to a narrower cost function.

Overall, these results indicate both the viability of the SPEA for full and partial eigenphase
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recovery and provides an example of a quantum algorithm which benefits from working with

high-dimensional quantum states, i.e. qudits.

4.3.3 Scaling to Higher Dimensions

The classical controller is a modified gradient descent algorithm and in this work has

not been optimized for scaling to very high-dimensional systems. Here the controller serves

to demonstrate that the function C – the output of the quantum circuit – is usable as a

(negative) cost function for any classical optimizer. Nevertheless, we consider randomly

generated systems from 8 to 512 dimensions under control levels dc = 2, 3, 4, 8 to briefly

observe how the SPEA may scale.

The classical controller was set to run with no value for the stopping condition. Instead,

the value of C∗ over the course of a single optimization was recorded for iterations 5, 20,

100, and 500 for randomly generated system U and a randomly selected starting state. One

iteration of this process is considered one trial. Over all trials, the average values of 1 − C∗

are reported in Table  4.3 . Each control level dc = 2, 3, 4, and 8 uses the same set of random

systems and starting points. Different trials may drive the optimizer to different eigenstates,

due to inherent randomness in the controller. After iteration 500, the absolute difference

between the final estimated eigenphase and the true eigenphase is recorded. This average

final absolute phase error is reported.

Under an ideal optimization, C∗ will approach 1 as rapidly as possible. It should be

noted (see  A.1 ) that C∗ should not be directly compared across different values of dc. The

higher the value of dc the lower C∗ will be for a given estimated eigenstate-eigenphase pair.

See that, for a given du, the final phase error decreases as dc increases, whether or not C∗

increases. Regardless, see that for du ≤ 64, higher values of dc may cause a lower initial

value for C∗, but generally achieves a lower C∗ near the end of the optimization process. The

final C∗ values for all dc for a given du are within an order of magnitude in all cases. All

tested dimensions are able to achieve a final C∗ better than 0.997. These results suggest the

system is capable of scaling favorably to high-dimensional systems. The Discussion section

addresses improvements to the classical controller for realizing this scalability.
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4.4 Discussion

Section  4.3 demonstrates that C of Equation  4.4 can be used effectively as a cost function

to determine an eigenphase-eigenstate pair of an arbitrary unitary system despite the sim-

plistic nature of the control algorithm (outlined in Section  4.2 ). No prior system knowledge is

required for successful convergence. The process was reported here for fundamental unitary

gates, unitary systems relevant to computational chemistry, and entirely arbitrary choices of

U . For large U , concern over the coherence time of the operations which need to take place

can be reduced by systems which decompose U into a set of smaller gates whose operations

may take place concurrently [ 77 ], [ 314 ], [ 315 ]. Given the controlled-nature of the PEA, a

similar advantage may not be available to the SPEA, or its implementation may be more

complex. However, the SPEA only requires a single control gate – differentiating it from the

traditional PEA which has a number of operations scaling with 1/p where p is the desired

eigenphase precision – allowing the SPEA to be more competitive with other circuit-depth

sensitive variational approaches.

Other advantages common to variational algorithms can be applied to the SPEA – no-

tably the SPEA classical controller need not know the complete O(2d) parameters defining

the input quantum state, only a (potentially) smaller number of parameters necessary to

prepare the state, avoiding the N-representability problem. Like a more select number of

variational solvers, the SPEA offers self-verification of its results (the proximity of C to

one)[ 315 ]. The SPEA is not designed around systems which are representable with a poly-

nomial number of terms[ 77 ], [ 315 ]; the SPEA may be more suitable for non-representable

systems than other variational approaches.

As C is the expectation value of a quantum circuit’s output, the algorithm as outlined in

this work asks for an increasingly large number of runs of the quantum circuit in order to

estimate C with sufficient accuracy as C approaches one. Such requirements can be mitigated

with a more sophisticated classical controller, which may employ more efficient sampling

techniques (such as a Metropolis–Hastings algorithm) or make better use of the information

available from C (e.g. driving C(|ψ⟩ , θ) → 1 is closely related to forcing C(|ψ⟩ , θ+ 1
dc

) → 0).

The issue can also be ameliorated by substituting the control-U for control-Uk (for k > 1)
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as C approaches one, decreasing C for a given estimated eigenphase-eigenstate pair and thus

allowing it to be estimated with fewer calls to the quantum circuit. The quality of the

eigenstate-eigenphase retrieval may be more accurately defined by using Uk or (rather than

following  A.1 ) by fitting the distribution of C(|ψ⟩ , θ + x) over x to the ideal distribution of

Pθ(x).

4.5 Conclusion

In this work, we have proposed a novel statistical variational approach (SPEA) to the

quantum phase estimation algorithm (PEA). From the probabilistic output of a PEA circuit

using non-eigen input states, we have defined a statistical metric C indicating the proximity

of any given input state to the nearest eigenstate and develop an optimization process that

can variationally retrieve all the eigenstate-eigenphase pairs of a given unitary operator.

The SPEA takes advantage of the hardware intended for the Iterative PEA and therefore

requires no novel quantum hardware development. The main disadvantage of the SPEA

is the non-deterministic nature of the measurements requires running the quantum circuit

repeatedly for each measurement setting. However, in the near-term era, repeated runs of

a quantum circuit per measurement is already the norm, due to noise and imperfect gate

fidelity. One of the main advantages of the SPEA compared to the PEA and IPEA is the

ability to systematically find both the eigenstates and associated eigenphases, rather than

just the eigenphases.

The simulations on the IBM Q platform with Qiskit proves the feasibility of applying the

SPEA on standard quantum computation platforms. On the local computer, the full spectral

decomposition of the operator generated from the water molecule Hamiltonian demonstrates

the viability of the SPEA for applications in quantum chemistry. The ability to retrieve

eigenstates and efficiency (in terms of low iterations requirement) of this method shows the

improvement to the original PEA methods and offers the clear potential to work with larger

physical and chemical systems. Further, SPEA is demonstrated to work with arbitrary U

and does not require that the U be expanded into a sum of simpler operations. As compared
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to variational approaches that search only for the ground state, the SPEA is able to search

for any eigenstate with no modifications to the quantum circuit.

Future work includes improving the optimization process with a more sophisticated al-

gorithm for the classical controller. In addition to improving efficiency and failure rate, this

may also improve the accuracy of the eigenphase-eigenstate retrieval as well as the fidelity

of the full spectral decomposition. The efficiency and the viability of our methods enable us

to simulate more complex systems in quantum chemistry. Future work also includes imple-

menting this method on real computational systems provided by the IBM Q and also on a

photonic platform with high-dimensional control qudit capabilities.
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Table 4.1. IBM Q Qiskit QASM simulator results. Three unitary operators
are simulated on the IBM Q platform. The SPEA is run 20 times starting from
each input state. The distance from the input state to the nearest eigenstate
is quantified by the absolute inner product of the two vectors (inner product
1 being identical and smaller values indicting greater difference). The table
records the mean and standard deviation (S.D.) of the number of iterations
needed to reach the stopping condition (1 − C̃ = 10−4). The average absolute
phase error is reported in radians. For each Ui the input states range from
good approximations of one of the operator’s eigenstates to input states which
are nearly equal-distance from every eigenstate. See that the iteration mean
tends to increase with decreasing inner product but the ultimate phase error
is generally agnostic to the input state difference.

Unitary Input State
Abs. Inner Iteration Phase Error

Product Mean S.D. Mean

(0.1951, 0.9808) 0.98 6.20 2.82 1.099 · 10−2

U1 (0.3827,0.9239) 0.92 8.15 3.41 1.005 · 10−2

(0.7071,0.7071) 0.71 8.90 3.34 1.005 · 10−2

(0 , 0, 0.7432, 0.6690) 0.99 5.85 8.14 2.083 · 10−2

(0 , 0,0.6690, 0.7432 ) 0.99 6.7 10.42 2.168 · 10−2

U2 (0,0,1,0) 0.71 17.7 6.06 1.663 · 10−2

(1,0,0,0) 0.71 23.05 11.22 2.167 · 10−2

(0.7071, 0 , 0.7071, 0 ) 0.50 21.3 10.71 2.262 · 10−2

(-0.1379, 0 , 0 , 0.9904) 0.99 1.15 0.36 1.885 · 10−2

(0 , 0.7807, 0.6247, 0) 0.99 1.1 0.3 1.508 · 10−2

U3 (0,1,0,0) 0.71 4.35 4.17 1.414 · 10−2

(0.7071, 0 ,0 , 0.7071 ) 0.62 4.15 1.01 1.570 · 10−2

(0.5774, 0.5774, 0 , 0.5774) 0.51 21.5 11.06 2.199 · 10−2
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Table 4.2. Statistics for 120 successful trials of complete spectral decompo-
sition of UH2O matrix. Cgoal is the C̃ value the optimizer attempts to reach,
and generally does reach for at least the first 10 (of 16) eigen-estimates. Creq

is the C̃ value the optimizer is required to reach for all eigen-estimates, else
the trial is abandoned. For successful trials, the mean Fidelity and standard
deviation are reported, as well as the mean eigenphase error (in radians). Note
that dc = 2 was run on two different Cgoal, Creq levels for comparison.

dc Cgoal Creq Trials Fails
Fidelity Phase Error

Mean S.D. Mean S.D.

2 0.999 0.95 120 77 0.984 7.29 · 10−3 2.84 · 10−2 10.7 · 10−2

2 0.995 0.9 120 13 0.966 10.68 · 10−3 4.34 · 10−2 17.3 · 10−2

3 0.995 0.9 120 17 0.981 6.62 · 10−3 3.12 · 10−2 9.14 · 10−2

4 0.995 0.9 120 32 0.986 5.32 · 10−3 2.40 · 10−2 7.36 · 10−2

5 0.995 0.9 120 30 0.986 7.10 · 10−3 1.86 · 10−2 4.98 · 10−2

6 0.995 0.9 120 26 0.989 4.80 · 10−3 1.53 · 10−2 3.80 · 10−2

7 0.995 0.9 120 60 0.991 7.05 · 10−3 1.37 · 10−2 3.65 · 10−2

8 0.995 0.9 120 132 0.992 6.13 · 10−3 1.20 · 10−2 3.54 · 10−2
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Table 4.3. For du-by-du dimensional randomly generated unitary systems U ,
the quantity 1 − C∗ is averaged over multiple trials at for SPEA systmes with
varying control levels dc. Quantity 1 − C∗ is reported at iterations 5, 20, 100,
500 over the course of an optimization run with no stopping conditions. After
iteration 500, the mean absolute phase error is reported in radians.

du dc Trials
Average 1 − C∗ Mean Final

5 20 100 500 Phase Error

8

2

100

3.84 · 10−2 8.39 · 10−3 0.69 · 10−4 3.43 · 10−5 0.04 · 10−2

3 4.36 · 10−2 6.63 · 10−3 0.38 · 10−4 1.63 · 10−5 0.02 · 10−2

4 4.71 · 10−2 3.97 · 10−3 0.23 · 10−4 1.01 · 10−5 0.01 · 10−2

8 6.37 · 10−2 2.84 · 10−3 0.17 · 10−4 0.48 · 10−5 0.005 · 10−2

16

2

100

4.16 · 10−2 8.04 · 10−3 1.29 · 10−4 11.76 · 10−5 0.33 · 10−2

3 6.38 · 10−2 7.45 · 10−3 0.67 · 10−4 3.24 · 10−5 0.04 · 10−2

4 8.93 · 10−2 6.51 · 10−3 0.48 · 10−4 1.73 · 10−5 0.02 · 10−2

8 14.95 · 10−2 6.93 · 10−3 0.17 · 10−4 0.82 · 10−5 0.01 · 10−2

32

2

100

5.03 · 10−2 9.11 · 10−3 1.48 · 10−4 12.79 · 10−5 0.54 · 10−2

3 11.12 · 10−2 10.46 · 10−3 1.4 · 10−4 18.31 · 10−5 0.45 · 10−2

4 18.44 · 10−2 12.17 · 10−3 1.16 · 10−4 10.86 · 10−5 0.17 · 10−2

8 31.71 · 10−2 22.15 · 10−3 0.95 · 10−4 2.34 · 10−5 0.01 · 10−2

64

2

100

8.74 · 10−2 10.48 · 10−3 1.79 · 10−4 27.74 · 10−5 1.12 · 10−2

3 23.27 · 10−2 25.76 · 10−3 2.27 · 10−4 20.49 · 10−5 0.50 · 10−2

4 33.65 · 10−2 96.27 · 10−3 2.32 · 10−4 38.2 · 10−5 0.63 · 10−2

8 49.44 · 10−2 154.09 · 10−3 1.54 · 10−4 5.97 · 10−5 0.04 · 10−2

128

2

100

16.45 · 10−2 24.17 · 10−3 2.26 · 10−4 34.45 · 10−5 1.12 · 10−2

3 35.69 · 10−2 175.24 · 10−3 4.59 · 10−4 65.51 · 10−5 0.98 · 10−2

4 44.98 · 10−2 135.54 · 10−3 4.68 · 10−4 54.59 · 10−5 0.78 · 10−2

8 58.69 · 10−2 137.72 · 10−3 4.78 · 10−4 59.57 · 10−5 0.41 · 10−2

256

2

100

25.29 · 10−2 156.88 · 10−3 5.37 · 10−4 60.39 · 10−5 0.68 · 10−2

3 43.44 · 10−2 124.12 · 10−3 9.71 · 10−4 110.67 · 10−5 0.64 · 10−2

4 51.71 · 10−2 193.64 · 10−3 11.82 · 10−4 136.93 · 10−5 0.59 · 10−2

8 65.86 · 10−2 400.17 · 10−3 20.37 · 10−4 119.06 · 10−5 0.48 · 10−2

512

2

26

32.12 · 10−2 146.61 · 10−3 19.61 · 10−4 117.08 · 10−5 0.44 · 10−2

3 49.53 · 10−2 288.44 · 10−3 22.36 · 10−4 227.46 · 10−5 0.44 · 10−2

4 58.17 · 10−2 398.08 · 10−3 51.21 · 10−4 239.06 · 10−5 0.37 · 10−2

8 73.14 · 10−2 411.68 · 10−3 26.01 · 10−4 173.41 · 10−5 0.28 · 10−2
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5. QUANTUM SIMULATION OF THE RADICAL PAIR

DYNAMICS OF THE AVIAN COMPASS

The contents of this chapter are based on and modified from the article [ 142 ] Zhang, Y., Hu,
Z., Wang, Yuchen, & Kais, S. (2022). Quantum Simulation of the Radical Pair Dynamics
of the Avian Compass. The Journal of Physical Chemistry Letters, 14, 832-837., Copyright
(2023) by American Chemical Society

In this Chapter, we apply the general quantum algorithm to simulating the radical pair

mechanism in the avian compass and further demonstrate its generality. We introduce the

Sz.-Nagy dilation theorem-based quantum algorithm in § 5.1 and the basic scheme of the

RPM is discussed in § 5.2 . We perform a complexity analysis to our quantum simulations

in § 5.3 and provide our conclusion remarks in § 5.4 . An example of the quantum circuit for

our simulation is given in  B.1 .

5.1 The quantum algorithm

The general quantum algorithm for open quantum dynamics has different versions that

can evolve the Kraus representation [ 316 ], the Lindblad master equation [ 317 ], and the

generalized quantum master equation [ 163 ]. In this work we use the version for the Lindblad

master equation [ 317 ].

We first review how the generalized quantum algorithm converts the non-unitary matrix

that encodes the open quantum dynamics into a unitary evaluation based on the Sz.-Nagy

unitary dilation procedure [  316 ], [ 317 ]. We assume the initial density matrix that describes

the physical system is composed of a set of unique pure quantum states |ϕi⟩ that are weighted

by their corresponding probabilities pi:

ρ =
∑

i
pi|ϕi⟩⟨ϕi|
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we want to simulate the time evolution of ρ(t) given the initial ρ and the Kraus operators

Mk’s. This task can be achieved by preparing each input state |ϕi⟩ in a vector form vi in a

given basis and then building a quantum circuit that generates the quantum state:

|ϕik(t)⟩ = Mkvi
unitary dilation−−−−−−−−→ UMk

(vT
i , 0, · · · , 0)T . (5.1)

The UMk
is generated via the 1-dilation of Mk:

UMk
=


Mk DM†

k

DMk
−M †

k

 , (5.2)

where DMk
=
√
I −M †

kMk, DM†
k

=
√
I −MkM

†
k [ 318 ]. After obtaining each |ϕik(t)⟩, we can

calculate the population of each basis state in the current basis from the diagonal vector:

diag(ρ(t)) =
∑
ik
pi · diag(|ϕik(t)⟩⟨ϕik(t)|), (5.3)

where diag(|ϕik(t)⟩⟨ϕik(t)|) can be efficiently obtained by applying projection measurements

on the first half subspace of UMk
(vT

i , 0, · · · , 0)T .

For the dynamics of an open quantum system, the time evolution of the density matrix

can be represented as:

ρ(s+ δs) =
∑

k

Mskρ(s)M †
sk (5.4)

where ρ(s) is the density matrix at time step s, and δs is considered as the discrete time step,

during which the Kraus operators Msk are assumed to be constant. The formula eq.(  5.4 )
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Figure 5.1. The basic scheme of the radical pair mechanism. After absorbing
light, donor (D) and acceptor (A) molecules form radical pairs in its singlet
state. Then, under the influence of the magnetic fields, the states of the radical
pair interconverse between the singlet states and triplet states. Finally, the
singlet and triplet radical pairs end up with different products.

can be used iteratively until reaching the time of interest. Explicitly, the dynamics of the

density matrix is described as:

ρ(1) = ρ(1δt) =
∑

k

M0kρ(0)M †
0k (5.5)

ρ(2) = ρ(2δt) =
∑

k

M1kρ(1)M †
1k =

∑
k

∑
j
M1kM0jρ(0)M †

0jM
†
1k (5.6)

ρ(3) = ρ(3δt) =
∑

k

M2kρ(2)M †
2k =

∑
k

∑
j

∑
i
M2kM1jM0iρ(0)M †

0iM
†
1jM

†
2k (5.7)

. . .

Here without losing any generality, the Kraus operators Msk are indexed by the time step s,

which allows each time step to have a different set of Kraus operators. However, the RPM

dynamical model used in this work is a Markovian process described by the Lindblad master

equation, therefore all the time steps have the same set of Kraus operators Mk where the

time step index s has been removed.
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5.2 The Radical Pair Mechanism Theory and Dynamics

The basic scheme of the RPM is shown in Fig.  5.1 . To simplify the fields, we assume that

only the electron near the donor interacts with the nucleus, and the electron away from the

donor is not affected by the anisotropic hyperfine coupling [ 162 ]. Therefore, the Hamiltonian

of the system is

H = γ[Î · A · Ŝ1 + B · (Ŝ1 + Ŝ2)] (5.8)

where A is the anisotropic hyperfine tensor coupling the nucleus and one of two spatially sepa-

rated electrons, and A = diag{Ax, Ay, Az} withAx = Ay = Az/2; B = B0(cosφ sin θ, sinφ sin θ, cos θ),

and B0 is the magnitude of the geomagnetic field; φ is the angle between the x-axis of the

radical pair and the external magnetic field; θ is the angle between the z-axis of the radical

pair and the external magnetic field; γ = 1
2µ0g, and µ0 is the Bohr magneton and g = 2 is

the electron-spin g-factor.

To model the dynamics of the system with a quantum master equation formulation, two

“shelving states” were added to the 8-dimensional Hilbert space of the three spins (two

electron spins and one nuclear spin) [ 162 ]. We employ operators as shown in Eq.( 5.9 ) to

represent the spin-selective relaxation into the singlet shelf |S⟩ from the electron singlet

state, or the triplet shelf |T ⟩ from the electron triplet state. The final populations of |S⟩ and

|T ⟩ give the singlet and triplet yields.

With the usual definition of singlet |s⟩ and triplet states |ti⟩ in the electronic subspace,

while |↑⟩ and |↓⟩ describing the states of the nuclear spin, we define the following decay

operators:
P1 = PS,↑ = |S⟩⟨s, ↑ |, P2 = PT0,↑ = |T ⟩⟨t0, ↑ |

P3 = PT+,↑ = |T ⟩⟨t+, ↑ |, P4 = PT−,↑ = |T ⟩⟨t−, ↑ |

P5 = PS,↓ = |S⟩⟨s, ↓ |, P6 = PT0,↓ = |T ⟩⟨t0, ↓ |

P7 = PT+,↓ = |T ⟩⟨t+, ↓ |, P8 = PT−,↓ = |T ⟩⟨t−, ↓ |

(5.9)

This gives a standard Lindblad master equation:

ρ̇ = − i
ℏ

[H, ρ] + kd

8∑
i=1

[PiρP
†
i − 1

2(P †
i Piρ+ ρP †

i Pi)], (5.10)
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Table 5.1. Parameter values used in the calculation.
Parameter Details

Symbol Description Values

Ax Anisotropic hyperfine tensor 1 × 10−4T

B0 Magnitude of the geomagnetic field 5 × 10−5T

γ Half of the product of the Bohr magneton and electron-
spin g-factor

9.27 × 10−24J/T

ℏ Reduced Planck constant 1.05457 × 10−32J · s

φ Angle between x-axis of the radical pair and the mag-
netic field

0

kd Decay Rate of the singlet and triplet states 1 × 104s−1
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where kd is the decay rate of the singlet and triplet states. Note the decay rate kd is

independent of the radical pair states, so we have assigned the same decay rate kd to all

eight projectors.

Now to apply the general quantum algorithm to the RPM dynamics, we first consider

the non-unitary part on the right side of Eq. ( 5.10 ) which can be rewritten as:

δρ(t)
δt

= L(ρ) = kd

8∑
i=1

[PiρP
†
i − 1

2{P †
i Pi, ρ}] (5.11)

Given a very small δt, Eq. ( 5.11 ) becomes:

ρ(t+ δt) − ρ(t) = kdδt
8∑

i=1
[Piρ(t)P †

i − 1
2{P †

i Pi, ρ(t)}] + O(δt2). (5.12)

Now assuming M0 =
√

I − 1
2kdδt

∑8
k=1 P

†
kPk and Mk =

√
kdδtPk for k > 0, and ignoring

the second order of δt as δt → 0, Eq. ((  5.12 )) can be rewritten as:

ρ(t+ δt) = M0ρ(t)M †
0 +

8∑
k=1

Mkρ(t)M †
k (5.13)

Eq.( 5.13 ) is in the same form of Eq.( 5.4 ), thus knowing the initial state ρ(0) we can evolve

the density matrix to a certain time with the iterative procedure described in Eq.( 5.5 ) to

Eq.( 5.7 ).

In the meantime,

8∑
k=0

M †
kMk = M †

0M0 +
8∑

k=1
M †

kMk (5.14)

= I − kdδt
8∑

k=1
P †

kPk + +O(δt2) + kdδt
8∑

k=1
P †

kPk

= I + O(δt2)

When δt → 0, according to the above equation, we have:

M0 =

√√√√I − kdδt
8∑

k=1
P †

kPk (5.15)
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Figure 5.2. The comparison of the singlet(in blue) and triplet(in red) yields
between the results obtained from exact calculation and the quantum simu-
lation of the RPM dynamics. The exact curves are generated from the cubic
interpolation of the exact calculation of the yields at each data points. The
dots represent the results simulated by the general quantum algorithm as im-
plemented on the IBM QASM simulator. The parameters used are shown in
Table  5.1 . The yields are calculated around 7.5 × 10−4s after the system has
already reached the steady-state. The y-axis is the final singlet/triplet yields
– i.e. the populations of singlet/triplet shelf state; and the x-axis is the angle
between z-axis of the radical pair and the magnetic field.

115



Figure 5.3. The comparison of the dynamics of the singlet(in blue) and
triplet(in red) yields between the exact and quantum simulated results. The
exact curves are generated from the cubic interpolation of the exact calculation
of the yields at each data points. The dots represent the results simulated by
the general quantum algorithm as implemented on the IBM QASM simulator.
After about 2 × 10−4s, both yields reach steady-state. The y-axis is the final
singlet/triplet yields – i.e. the populations of singlet/triplet shelf state; and
the x-axis is the time.
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With Eq. (  5.15 ), we can formulate the Kraus operators to satisfy the condition ∑k M
†
kMk =

I. Thus, we have defined all the 9 Kraus operators Mk required to describe the RPM

dynamics.

There is one additional term containing the Hamiltonian, − i
ℏ [H, ρ], in Eq. ( 5.10 ) as

compared with Eq. ( 5.11 ). This “oscillating part” of the dynamics is unitary and thus can

be easily realized by multiplying each Kraus operator by a unitary matrix obtained through

the diagonalization of the Hamiltonian [  317 ].

With the parameters in Table  5.1 , we simulated the RPM dynamics by iteratively apply-

ing Eq. ( 5.13 ) on the IBM QASM quantum simulator and then used the output results to

calculate the singlet and triplet yields. Also, we assume the initial state of the two electron

spins is 1√
2(|↑↓⟩− |↓↑⟩), and the initial state of the nuclear spin is 1√

2(|↑⟩− |↓⟩). In our

simulation, the time interval δt is set as 0.5/kd = 5 × 10−5s. We then apply the procedure

shown in Eq.( 5.5 ), Eq.(  5.6 ) and Eq.( 5.7 ). As mentioned above, the populations of | S⟩

and | T ⟩ is the singlet and triplet yields respectively, after the system reaches the steady

state. The populations are calculated by the procedure explained in Eq. ( 5.3 ), where the

diagonal elements of the density matrix are obtained by projection measurements into the

computational subspace.

The results are compared with those obtained from classical methods in Fig.  5.2 , where

the quantum algorithm results are highly consistent with the classical method results. Fig.

 5.3 shows the dynamical evolution of the singlet and triplet yields (when θ = π

2) as simulated

by the general quantum algorithm on the IBM quantum simulator. After 2×10−4s, the yields

almost reach steady-state, which is consistent with the chosen decay rate of kd = 1 × 104s−1.

5.3 Complexity analysis

One factor that contributes to the complexity of the quantum algorithm is the system’s

size. For a density matrix of the size n × n, the cost to realize the unitary dilation of a

most general n× n Kraus operator Mk is O(n2) [ 316 ], [ 317 ]. However, in our calculation of

the dynamics of the RPM, the Kraus operators each represents a single elementary physical

process and thus the Mk matrices are often sparse with few non-zero elements. This means

117



the practical complexity scaling of implementing each Mk matrix on a quantum circuit can

be greatly reduced to O(log2 n). Taking into account the total K number of Mk matrices

to be simulated on the quantum circuit, the total complexity scaling is O(K log2 n) for

our given system. It is worth noting that the K is determined on a case-by-case basis by

the dynamical model and different Mk matrices can be evolved in parallel, therefore the

scaling in K is a “soft” scaling that does not contribute to either the depth or the width of

each individual quantum circuit [ 316 ], [  317 ]. Another contributing factor to the quantum

algorithm’s complexity is the number of time steps. In the most general case, as can be seen

from Eq.(  5.5 ) to Eq.( 5.7 ), taking s steps requires Ks matrices to be evolved, which is an

exponential scaling in the number of time steps. However, fortunately the actual number

of matrix terms to be simulated can be greatly reduced once again due to the sparsity of

the Mk matrices. As mentioned above, the Kraus operators represent elementary physical

processes and thus the Mk matrices are often sparse with very few non-zero elements: this

means that most matrix product terms in e.g. Eq.( 5.7 ) are zero matrices or matrices with

negligible norms. The actual number of matrix products we need to evaluate is determined

on a case-by-case basis. In the current simulation, in theory the total number of terms in

n-th iteration will be 9n with nine Kraus operators {Mk|k = 0, 1, 2, ..., 8}. However, since

the product of each pair of the the decay operators {Pk|k = 1, 2, 3, ..., 8} is 0, the product

of each pair of the Kraus operator {Mk|k = 1, 2, 3, ..., 8} is 0. Therefore, there will be only

8 more terms when adding one more iteration. Thus, there will be 8 × n + 1 terms in n-th

iteration, reducing the terms significantly. More simulation details are in the Supplementary

Information.

5.4 Conclusion

Based on the calculations and results, we can conclude that the general quantum algo-

rithm based on the Sz.-Nagy dilation can accurately simulate the RPM dynamics described

by the Lindblad master equation. As discussed above, the RPM is an important theory that

can explain the magneto-reception process of the avian compass. The RPM also acts as an

ideal model to help explaining the isotope effects in xenon anaesthesia and lithium treatment
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of hyperactivity, magnetic field effects on the circadian clock, as well as hypomagnetic field

effects on neurogenesis and microtubule assembly [ 319 ], [ 320 ]. Our simulation of the RPM

model with the quantum algorithm not only demonstrates the generality of the algorithm

but also helps bridging the gap between applying tools of quantum-information science to

the investigation of new areas of quantum biology.
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6. SIMULATING OPEN QUANTUM SYSTEM DYNAMICS

ON NISQ COMPUTERS WITH GENERALIZED QUANTUM

MASTER EQUATIONS

The contents of this chapter are based on and modified from the article [ 163 ] Wang, Yuchen;
, Mulvihill, E.; Hu, Z.; Lyu, N.; Shivpuje, S.; Liu, Y.; Soley, M. B.; Geva, E.; Batista, V.
S.; Kais, S. Simulation of open quantum system dynamics based on the generalized quantum
master equation on quantum computing devices. arXiv:2209.04956, Copyright (2022) by the
authors.

In this chapter we develop a GQME-based quantum algorithm for simulating the dynam-

ics of an open quantum system [  163 ]. We provide details for calculating the GQME-based

non-unitary propagator for the reduced density matrix of the open quantum system in § 6.1 

and describe using the Sz.-Nagy’s unitary dilation procedure to convert the non-unitary

quantum open system propagator in § 6.2 . The quantum simulation results for the spin-

boson benchmark model is provides in § 6.3 and the results for the reduced-dimensionality

GQME-based simulaion is in § 6.4 . The concluding remarks with a future outlook is in § 6.5 .

We include further details concerning the quantum algorithm, including the dilation pro-

cess, circuit transpiling, QASM simulations, and simulations running on the IBM quantum

computers in  C.1 .

6.1 GQME-based propagators

In this section, we outline our approach for calculating the GQME-based non-unitary

propagator for the reduced density matrix of the open quantum system (see Eq. ( 6.9 )). The

analogous procedure for calculating the non-unitary propagator for a subset of the reduced

density matrix elements is outlined in Sec.  6.4 .

Previously developed quantum algorithms for open system dynamics involved mapping

Lindblad operators to Kraus operators before using the Sz.-Nagy dilation theorem to reach

a unitary quantum algorithm[ 143 ]–[ 145 ]. While useful for many systems, these methods are

either Markovian[ 143 ], [  145 ] or involve user selection of ad-hoc system-bath parameters[ 144 ],

therefore limiting the range of applications. In this paper, we introduce a method based on

the GQME, a formally exact EoM for the dynamics of an open quantum system. Instead
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of casting the non-unitary propagator in terms of Kraus operators and dilating them, this

method uses the GQME to obtain the system’s time evolution superoperator, or propagator,

G(t), and perform the dilation on it to obtain a unitary quantum algorithm. This subsection

describes the first step in the workflow outlined in Fig.  1.2 , namely obtaining the time

evolution superoperator of an open quantum system starting from its formally exact EoM

in GQME form.

For the sake of concreteness, we will focus on molecular systems with an overall Hamil-

tonian of the following commonly encountered form:

Ĥ =
Ne∑
j=1

Ĥj|j⟩⟨j| +
Ne∑

j,k=1
k ̸=j

V̂jk|j⟩⟨k| (6.1)

and an overall system initial state of the following commonly assumed single-product form:

ρ̂(0) = ρ̂n(0) ⊗ σ̂(0) . (6.2)

It should be noted that the GQME approach is not limited to this form of Hamiltonian and

initial state and that the choice to focus on them is solely motivated by clarity of presentation

and the wide range of applications based on an Hamiltonian and an initial state of this form.

The system and bath in this case correspond to the electronic and nuclear DOF, respectively.

In Eqs. ( 6.1 ) and ( 6.2 ), Ĥj = P̂2/2 + Vj
(
R̂
)

is the nuclear Hamiltonian when the system is

in the diabatic electronic state |j⟩, with the index j running over the Ne electronic states;

R̂ =
(
R̂1, ..., R̂Nn

)
and P̂ =

(
P̂1, ..., P̂Nn

)
are the mass-weighted position and momentum

operators of the Nn ≫ 1 nuclear DOF, respectively;
{
V̂jk|j ̸= k

}
are the coupling terms

between electronic states (which can be either nuclear operators or constants); and ρ̂n(0) and

σ̂(0) are the reduced density operators that describe the initial states of the nuclear (bath)

and electronic (system) DOF, respectively. Throughout this paper, boldfaced variables, e.g.,

A, indicate vector quantities; a hat over a variable, e.g., B̂, indicates an operator quantity;

and calligraphic font, e.g., L, indicates a superoperator.
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Using projection operator techniques, one can then derive the following formally exact

EoM, or GQME, for the reduced electronic density operator, σ̂(t) [  101 ]–[ 103 ], [  105 ]:

d

dt
σ̂(t) = − i

ℏ
⟨L⟩0

nσ̂(t) −
∫ t

0
dτ K(τ)σ̂(t− τ) . (6.3)

The open quantum system dynamics of the reduced electronic density matrix described by

this GQME is generated by the two terms on the R.H.S. of Eq. ( 6.3 ). The first term is given

in terms of the projected overall system Liouvillian ⟨L⟩0
n ≡ Trn {ρ̂n(0)L} (where L(·) = [Ĥ, ·]

is the overall system Liouvillian and Trn{·} is the partial trace over the nuclear (bath) Hilbert

space), which is represented by a N2
e × N2

e time-independent matrix. The second term is

given in terms of the memory kernel K(τ), which is represented by a N2
e ×N2

e time-dependent

matrix.

The GQME formalism provides a general framework for deriving the exact EoM for

any quantity of interest. The derivation begins with the Nakajima-Zwanzig equation [ 164 ],

[ 165 ], which describes the dynamics of a projected state P ρ̂(t), where P is a projection

superoperator and ρ̂(t) is the density operator of the overall system:

d

dt
P ρ̂(t) = − i

ℏ
PLP ρ̂(t) − 1

ℏ2

∫ t

0
dτPLe−iQLτ/ℏQLP ρ̂(t− τ) (6.4)

− i
ℏ

PLe−iQLt/ℏQρ̂(0).

Here, L is the overall system-bath Liouvillian and Q = 1 −P is the complimentary projection

superoperator to P . Importantly, the only requirements are that L is Hermitian and P

satisfies P2 = P . Otherwise, there is complete flexibility in the choice of L and P , with each

choice leading to a different GQME for a different quantity of interest [ 105 ].

Following Ref. [ 101 ] we focus an overall system-bath Hamiltonian of the form of Eq. (  6.1 )

and the following choice of projection operator which gives rise to the GQME for the system

reduced density matrix, σ̂(t):

P(Â) = ρ̂n(0) ⊗ Trn{Â}. (6.5)
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Plugging Eq. (  6.5 ) into Eq. ( 6.4 ) and tracing over the nuclear (bath) Hilbert space leads to

the GQME in Eq. ( 6.3 ). The memory kernel in Eq. ( 6.3 ) is given by

K(τ) = 1
ℏ2 Trn

{
L e−iQLτ/ℏQLρ̂n(0)

}
, (6.6)

and can be obtained by solving the following Volterra equation [  101 ]:

K(τ) = iḞ(τ) − 1
ℏ

F(τ)⟨L⟩0
n + i

∫ τ

0
dτF(τ − τ)K(τ). (6.7)

Here, F(τ) and Ḟ(τ) are the so-called projection-free inputs (PFIs), which are given by

F(τ) = 1
ℏ

Trn

{
Le−iLτ/ℏρ̂n(0)

}
,

Ḟ(τ) = − i
ℏ2 Trn

{
Le−iLτ/ℏLρ̂n(0)

}
.

(6.8)

The memory kernels for the spin-boson model used in this paper were adopted from Ref. [ 321 ],

where they were obtained from quantum-mechanically exact PFIs calculated via the tensor-

train thermo-field dynamics (TT-TFD) method.

The quantum open system’s non-unitary time evolution superoperator, or propagator,

G(t), is defined by:

σ̂(t) = G(t)σ̂(0) . (6.9)

Substituting Eq. ( 6.9 ) into Eq. ( 6.3 ) and noting that the GQME should be satisfied for an

arbitrary choice of σ̂(0), it is straightforward to show that G(t) satisfies the same GQME as

σ̂(t):

d

dt
G(t) = − i

ℏ
⟨L⟩0

nG(t) −
∫ t

0
dτ K(τ)G(t− τ) . (6.10)

Thus, given the projected Liouvillian and memory kernels (⟨L⟩0
n and K(τ), respectively), G(t)

can be obtained by solving Eq. ( 6.10 ) numerically , which in this work was accomplished

via a Runge–Kutta fourth-order (RK4) algorithm [ 102 ]. This superoperator, G(t), serves a

role similar to that of the Kraus operators in the operator sum representation and can also
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be dilated to a unitary form which can be implemented on a quantum computer. Impor-

tantly, while the Kraus operators are only known in closed form for the Markovian Lindblad

equation, the non-unitatry propagator G(t) can always be obtained from the formally exact

GQME (see Eq. ( 6.10 )).

6.2 A GQME-based quantum algorithm for simulating open quantum system
dynamics

In this subsection, we describe the next step in the workflow outlined in Fig.  1.2 , namely

using the Sz.-Nagy’s unitary dilation procedure [ 318 ] to convert the non-unitary quantum

open system propagator G(t) [see Eqs. ( 6.9 ) and (  6.10 )] into a unitary propagator in an

extended Hilbert space. It should be noted that the Sz.-Nagy unitary dilation procedure is

one out of several methods that can convert non-unitary operators into unitary operators

(e.g. block-encoding represents an alternative method [  322 ], [  323 ]).

The Sz.-Nagy’s unitary dilation procedure starts out by calculating the operator norm of

G(t) to determine if it is a contraction. For G(t) to be a contraction, the operator norm of

G(t) needs to be less than or equal to 1, i.e., ||G(t)||O = sup ||G(t)v||
||v|| ≤ 1. In the case where

the original G(t) is not a contraction, we introduce a normalization factor nc = ||G(t)||O in

order to define a contraction form of G(t), namely G ′(t) = G(t)/nc.

In the next step, we apply a 1-dilation procedure to G ′(t) to obtain a unitary UG′(t) in

an extended Hilbert space of double the dimension of the original system’s Hilbert space:

UG′(t) =


G ′(t) DG′†(t)

DG′(t) −G ′†(t)

 . (6.11)

Here, DG′(t) =
√
I − G ′†(t)G ′(t) and DG′† =

√
I − G ′(t)G ′†(t), where DG′(t) is the so-called

defect superoperator of G ′(t). The 1-dilation procedure generates a unitary superoperator

UG′(t) that operates in the extended Hilbert space and replicates the effect of the contraction

form of the original time evolution superoperator, G ′(t), when the input and output vectors

are both projected onto the original smaller Hilbert space.
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In the original system’s Hilbert space, the system reduced density operator σ̂(t) is rep-

resented by an Ne ×Ne matrix:

σ̂(t) .=



σ11(t) . . . σ1Ne(t)

... . . . ...

σNe1(t) · · · σNeNe(t)


. (6.12)

Alternatively, the same system reduced density operator can also be represented by an N2
e -

dimensional vector in Liouville space:

σ̂(t) .= (σ11(t), ..., σ1Ne(t), ... ..., σNe1(t), ..., σNeNe(t))
T . (6.13)

Since the GQME formalism is given in terms of superoperators, it is convenient to work in

Liouville space, which we will do from this point on. We also define the norm of the vector

representing σ̂(t) in Liouville space as the Frobenius norm: ∥σ(t)∥F =
√∑

ij
|σij|2 and divide

σ̂(t) by ∥σ(t)∥F to normalize σ̂(t). [  143 ]

Given the dilated unitary operator UG′(t) and the initial quantum input state σ̂(0), oper-

ating with the non-unitary G(t) on σ̂(0) has now been converted into a unitary transformation

as follows:

G ′(t)σ̂(0) unitary dilation−−−−−−−−→ UG′(t)
(
σ̂(0)T , 0, · · · , 0

)T
. (6.14)

The 0s in the input vector on the R.H.S. are added to match the dimension of the input

vector with that of UG′(t). The unitary process can then be simulated on a quantum circuit

with unitary quantum gates. The electronic populations, {σjj(t) ≡ ⟨j|σ̂(t)|j⟩|j = 1, ..., Ne}

can be retrieved by taking the square roots of the probability of measuring each basis state

Pj(t) = |σ′
jj(t)|2 and multiplying by the nc factor.

Finally, we perform a complexity analysis of the quantum algorithm. Given that G(t)

in its most general form is represented by a matrix of N4
e non-zero elements, the defect

superoperators DG′(t) as well as −G†(t) as shown in Eq. ( 6.11 ) all have N4
e non-zero elements.

Generally speaking, the number of the two-level unitaries necessary to decompose a unitary
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gate is comparable to the number of non-zero elements in the lower-triangular part of the

gate [ 177 ], [ 206 ]. Therefore, the gate complexity to simulate this specific UG′(t) is O(N4
e ).

If the two-level unitaries are further decomposed into 1-qubit and 2-qubit elementary gates

commonly used to design conventional quantum circuits, they need to be transformed to

the Gray code sequences and some multi-control gate sequences, adding another factor of

complexity logarithmic in N2
e , and the total complexity becomes O(N4

e log2 N2
e ) [  206 ]. This

means that the maximum total complexity of a GQME-based simulation of a open quantum

system dynamics is comparable to classical methods [ 143 ]. However, as demonstrated in

previous simulations of certain dynamical models, our quantum algorithm can take advantage

of the case when the G(t) is a sparse matrix, and thus the gate complexity scaling for G(t)

can be reduced to O(log2 N2
e ) instead of O(N4

e ) [  143 ], [  145 ].

6.3 A demonstrative application to the spin-boson model

In this subsection, we test the applicability of the quantum algorithm outlined in the pre-

vious sections on the spin-boson benchmark model. This model and its derivatives have a

wide range of applicability to chemical and physical systems, including electron, proton, en-

ergy, and charge transfer processes; polaron formation and dynamics in condensed phase en-

vironments; vibrational relaxation, impurity relaxation in solids, spin-lattice relaxation, and

qubit decoherence [ 96 ], [ 97 ], [ 324 ], [ 325 ]. It should also be noted that quantum-mechanically

exact memory kernels for this model are available [ 321 ], [  326 ], [  327 ].

The spin-boson Hamiltonian has the form of Eq. (  6.1 ) with Ne = 2 and {Ĥj, V̂jk} given

by:

Ĥ0 ≡ ĤD = ϵ+
Nn∑
k=1

P̂ 2
k

2 + 1
2ω

2
kR̂

2
k − ckR̂k,

Ĥ1 ≡ ĤA = −ϵ+
Nn∑
k=1

P̂ 2
k

2 + 1
2ω

2
kR̂

2
k + ckR̂k,

V̂01 ≡ V̂DA = V̂10 ≡ V̂AD = Γ.

(6.15)

Here, the two electronic states are designated as the donor and acceptor (|D⟩ and |A⟩,

respectively), 2ϵ is the shift in equilibrium energy between the donor (D) and acceptor (A)
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Table 6.1. Spin-boson model and simulation parameters.
Model Parameters Numerical Parameters

Model # ϵ Γ β ξ ωc ωmax Nn ∆t
1 1.0 Γ 1.0 5.0 Γ−1 0.1 1.0 Γ 5 Γ 60 1.50083 ×10−3 Γ−1

2 1.0 Γ 1.0 5.0 Γ−1 0.1 2.0 Γ 10 Γ 60 1.50083 ×10−3 Γ−1

3 1.0 Γ 1.0 5.0 Γ−1 0.4 2.0 Γ 10 Γ 60 1.50083 ×10−3 Γ−1

4 0.0 Γ 1.0 5.0 Γ−1 0.2 2.5 Γ 12 Γ 60 4.50249 ×10−3 Γ−1

states, and Γ is a positive constant describing the electronic coupling between the donor

and acceptor states. Since Γ is a constant, this system is assumed to satisfy the Condon

approximation.

The results shown below were obtained for the case where the nuclear modes’ frequen-

cies and coupling coefficients {ωk, ck} are sampled from an Ohmic spectral density with

exponential cutoff:

J(ω) = π

2

Nn∑
k=1

c2
k

ωk

δ(ω − ωk)
Nn → ∞
−−−→ πℏ

2 ξωe−ω/ωc . (6.16)

Here, ξ is the Kondo parameter and ωc is the cutoff frequency. The reader is referred to

Appendix C of Ref. [ 101 ] for a description of the procedure used to obtain a discrete set of

Nn nuclear mode frequencies {ωk} and coupling coefficients {ck} from the spectral density

in Eq. ( 6.16 ).

The initial state is assumed to be of the form of Eq. (  6.2 ), with the initial electronic

(system) reduced density operator given by

σ̂(0) = |D⟩⟨D| (6.17)

and the initial nuclear (bath) reduced density operator given by

ρ̂n(0) = e−β(ĤD+ĤA)/2

Trn

{
e−β(ĤD+ĤA)/2

} . (6.18)
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Calculations were carried out for four different sets of parameter values (see Table  6.1 ).

Models 1 and 2 correspond to systems with an energy bias between the donor and acceptor

states (ϵ ̸= 0) and differ in their cutoff frequencies, with model 2 having a higher cutoff

frequency. Model 3 corresponds to a biased system with the same parameters as model 2

except for a larger Kondo parameter. Model 4 corresponds to a symmetric system with zero

energy bias between the donor and acceptor states (ϵ = 0). The results reported in this

paper were obtained with a time step of ∆t = 1.50083 × 10−3 Γ−1 for models 1-3 and a time

step of ∆t = 4.50249 × 10−3 Γ−1 for model 4.

Starting with the quantum-mechanically exact memory kernels (adopted from Ref. [ 321 ]),

the time evolution superoperator for the electronic reduced density matrix G(τ) was gener-

ated for the four models given in Table  6.1 by solving the corresponding GQME, Eq. ( 6.10 ).

The GQME-based quantum algorithm for simulating the electronic dynamics within the

spin-boson model was implemented on the IBM quantum platforms via the Qiskit pack-

age [ 78 ]. The quantum implementation involved the translation of G ′(t) into UG′(t) at each

time step, followed by the construction of a quantum circuit based on UG′(t), and lastly the

use of the quantum circuit to simulate the time evolution of the reduced electronic density

matrix. To build the circuit, we dilated the 4 × 4 G ′(t) into a unitary 8 × 8 UG′(t) by us-

ing a 1-dilation procedure [see Eq. ( 6.11 )]. The unitary UG′(t) was then transpiled into a

3-qubit quantum circuit composed of three elementary quantum gates: RZ ,
√
X, and CX.

Examples of UG′(t) and details of the elementary quantum gates and circuits are given in

the supplementary information (SI). The initial electronic state is set to (1, 0, 0, 0, 0, 0, 0, 0)T ,

where the last four 0s are the extra dimensions from the dilation procedure. The QASM

simulator and the real quantum devices initialize the input state (1, 0, 0, 0, 0, 0, 0, 0)T and

apply the unitary operation UG′(t) to the input state followed by projection measurements

to retrieve the probability distribution of all the 8 basis states. Each circuit runs 2000 shots

and the resulting probabilities P000(t) of measuring the state |000⟩ and P011(t) of measur-

ing |011⟩ correspond to the diagonal elements of the modified density matrix |σ′
00(t)|2 and

|σ′
11(t)|2. The populations of the donor state, σ00(t), and acceptor state, σ11(t), are retrieved

as follows:

σ00(t) =
√
P000(t) × nc and σ11(t) =

√
P011(t) × nc . (6.19)
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 6.1. The spin-boson model simulated by the GQME-based quantum
algorithm as implemented on the IBM QASM quantum simulator, showing the
electronic population difference between the donor state and acceptor state
σz(t) = σDD(t) − σAA(t) as a function of time for (a) model 1, (b) model
2, (c) model 3, and (d) model 4 as given in Table  6.1 , with units scaled to
the electronic coupling, Γ. Each figure shows the comparison between the
GQME-based exact results represented by the black curves and the QASM-
based results represented by the yellow dots. The time step for both the
exact and simulated results is ∆t = 1.50083 × 10−3Γ−1 for models 1-3 and
∆t = 4.50249 × 10−3Γ−1 for model 4. Each model is simulated for 4000 time
steps. The number of projection measurements applied by the QASM simulator
to obtain a single time step is 2000 shots.

In what follows, we report results in terms of the difference between the donor and acceptor

populations, σz(t) = σ00(t) − σ11(t).

The comparison between the exact results obtained by solving the GQME on a classical

computer and results obtained by performing the quantum algorithm on the QASM simulator

is shown in Fig.  6.1 . The QASM simulator results are in excellent agreement with the exact

results for all four models under consideration. The small amplitude oscillations of the
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 6.2. The spin-boson model simulated by the GQME quantum algo-
rithm as implemented on the IBM quantum computers ibmq belem, ibmq
quito and ibmq lima, showing the electronic population difference between
the donor state and acceptor state σz(t) = σDD(t) − σAA(t) as a function of
time for (a) model 1 , (b) model 2 (c) model 3 and (d) model 4 as given in Ta-
ble  6.1 , with units scaled to the electronic coupling, Γ. Each figure shows the
comparison between the GQME-based exact results represented by the black
curves and quantum-computer-based results represented by the red dots with
error bars. The time step for the real machine simulation is ∆t = 0.150083 Γ−1

for model 1,2 and 3 and ∆t = 0.450249 Γ−1 for model 4. The experiments of
both models take 40 evenly-spaced time steps out of the 4000 time steps used
in the QASM simulator runs and the error bars represent the standard deriva-
tions of the 10 separate runs on the ibmq belem, ibmq quito and ibmq
lima for models 1 to 4. The number of projection measurements applied by
all the devices to obtain a single time step is 2000 shots.

QASM-based results around the exact results can be traced back to the inherent uncertainty

associated with projection measurements. These results validate the GQME-based quantum

algorithm and demonstrate its ability to reproduce results obtained via the GQME-based

classical algorithm.

To test the performance of the quantum algorithm on real quantum devices, we also

performed the simulations on the quantum computers provided by IBM Quantum (IBM Q).
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The simulations were performed for models 1 to 4 on ibmq quito, ibmq belem and ibmq

lima. All devices are equipped with 5 qubits that have the same qubit connectivity and use

IBM’s Falcon r4T processor with the same architecture. In each simulation of a given model,

three qubits were used and 10 repeated experiments were performed. In a single experiment,

40 time steps are chosen at an equal spacing out of the 4000 time steps used in the QASM

simulations, i.e., the time step in each experiment is 100 times greater than the time step

used in the QASM simulations as listed in Table  6.1 . The average CX gate error and readout

error are (1.191 × 10−2, 5.194 × 10−2) for the ibmq quito, (1.160 × 10−2, 2.590 × 10−2) for

the ibmq belem and (1.032 × 10−2, 2.834 × 10−2) for the ibmq lima as of the time of

the experiments. The quantum circuits are the same in both the QASM simulations and

the real machine simulations. The transpiled quantum gate counts for each of the UG′(t)

superoperators are 153 RZ gates, 98
√
X gates, and 41 CX gates. The transpiling process

is done internally by the Qiskit package and examples of the quantum circuits can be found

in the SI.

The comparison between the GQME-generated exact results and real machine simulations

is given in Fig.  6.2 . In the figure, the red dots are the average of the 10 experiments and the

error bars represent standard derivations of the 10 experiments. While the results obtained on

the IBM Q quantum computers reproduce some of the trends exhibited by the exact results,

the agreement is qualitative at best. The lack of quantitative agreement can be traced back

to the rather extensive circuit depth, which makes the calculation susceptible to noise. In

the next section, we propose a way to lower the circuit depth and enhance the accuracy of

the calculation on the IBM Q quantum computers by using reduced-dimensionality GQMEs.

6.4 Reduced-dimensionality GQME-based

Since the quantum algorithm on the QASM simulator was able to accurately reproduce

the exact results, as shown in Fig.  6.1 , we attribute the lack of quantitative agreement

between the exact results and the results obtained via the IBM Q quantum computers, as

seen in Fig.  6.2 , to noise within the real quantum devices. If so, reducing the circuit depth

would improve the accuracy. In this subsection, we validate this hypothesis by reducing the
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dimensionality of the non-unitary propagator G(t), and thereby lowering the circuit depth

to levels that allow for an accurate calculation on the NISQ quantum computers.

To this end, we take inspiration from reduced-dimensionality GQMEs, which correspond

to EoMs for subsets of the open quantum system’s reduced density matrix elements, rather

than the full reduced density matrix.[ 105 ], [ 321 ] For example, for the spin-boson model

described in Sec.  6.3 , the memory kernel in the GQME for the full reduced density matrix,

σ̂(t), is a 4 × 4 matrix, while the memory kernel in the GQME for only the two populations

(the diagonal elements of the reduced density matrix, σ00(t) and σ11(t)) is a 2 × 2 matrix.

[ 105 ], [  321 ] Below, we demonstrate how one can take advantage of this reduced dimensionality

to lower the circuit depth and thereby improve the accuracy of the simulation on quantum

machines.

For the spin-boson model under consideration in this paper, the electronic populations

can be propagated using only the four corner elements of G(t), i.e.,


σ11(t)

σ22(t)

 =


G11,11(t) G11,22(t)

G22,11 G22,22(t)



σ11(0)

σ22(0)

 . (6.20)

It should be noted that this equality only holds when the initial electionic state is of the

form σ̂(0) = ∑Ne
j=1 σjj(0)|j⟩⟨j|, which is consistent with the initial state under consideration

in this paper (see Eq. ( 6.17 )). It should also be noted that Eq. ( 6.20 ) is still exact, in the

sense that the time evolution of σ11(t) and σ00(t) as described by the equation is exactly

the same time evolution as described by Eq. ( 6.9 ). Thus, the only price one pays for the

reduced dimensionality is the loss of the ability to simulate the dynamics of the off-diagonal

matrix elements σ10(t) and σ01(t). However, given that the primary goal is often to simulate

the dynamics of electronic energy/charge transfer, the populations of the corresponding

electronic states is all that one needs.

The 2 × 2 propagator in Eq. ( 6.20 ), which we will refer to as Gpop(t), can be dilated

following a procedure similar to that we used to dilate the 4 × 4 propagator for the full

density matrix, G(t). More specifically, Gpop(t) can be divided by a normalization factor
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npop
c = ||Gpop(t)||O to obtain its contraction form Gpop′(t) = Gpop(t)/npop

c . Applying a 1-

dilation procedure to Gpop′(t), similar to that in Eq. ( 6.11 ), then leads to the following

unitary propagator:

UGpop′(t) =


Gpop′(t) DGpop′†(t)

DGpop′(t) −Gpop′†(t)

 . (6.21)

Notably, for the spin-boson model, while UG′(t) is an 8 × 8 time-dependent matrix, UGpop′(t)

is a 4 × 4 time-dependent matrix.

A comparison between the exact results and results obtained by performing the quantum

algorithm based on Eq. ( 6.21 ) on IBM Q quantum machines is shown in Fig.  6.3 . The

results shown were obtained for models 1-4 on ibmq belem, ibmq lima, ibm oslo and

ibm nairobi, respectively. Here, ibm oslo and ibm nairobi are each equipped with 7

qubits of the same qubit connectivity and both use IBM’s Falcon r5.11H processor. The

average CX gate error and readout error are (1.038×10−2, 2.280×10−2) for the ibm nairobi

and (8.537 × 10−3, 2.310 × 10−2) for the ibm oslo as of the time of the experiments. The

new simulations use the same time steps, experiment shots and follow the same procedures

as that used to obtain the results in Fig.  6.2 . The quantum circuits are re-transpiled to

implement the reduced-dimensionality GQME-based quantum algorithm where only two

qubits are used. The transpiled quantum gate counts for each of the UGpop′(t) superoperators

are 17 RZ gates, 12
√
X gates, and 2 CX gates. The transpiling processes are done internally

by the Qiskit package.

The results in Fig.  6.3 confirm that the lack of quantitative agreement seen in Fig.  6.2 

can be attributed to noise on the real quantum devices. More specifically, significantly more

accurate results are obtained when the populations-only reduced dimensionality GQME-

based propagators are used, which can be traced back to their ability to give rise to shallower

quantum circuits. Thus, reduced dimensionality make it possible to accurateley simulate the

open quantum system dynamics on NISQ quantum computers.
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 6.3. A comparison between the exact results for the spin-boson model
and results obtained by performing the quantum algorithm based on Eq. ( 6.21 )
on the IBM Q quantum machines. The electronic population difference be-
tween the donor state and acceptor state, σz(t) = σDD(t) − σAA(t), is plot-
ted as a function of time for (a) model 1 , (b) model 2 (c) model 3 and (d)
model 4 as given in Table  6.1 , with units scaled to the electronic coupling,
Γ. Each panel shows the comparison between the exact results represented by
the black curves and the population-only-GQME-based quantum-computer-
simulated results represented by the red dots with error bars. The time step
for the real machine simulation is ∆t = 0.150083 Γ−1 for model 1,2 and 3
and ∆t = 0.450249 Γ−1 for model 4. The experiments of both models take
40 evenly-spaced time steps out of the 4000 time steps used in the QASM
simulator runs and the error bars represent the standard derivations of the 10
separate runs on the ibmq lima, ibmq belem, ibm oslo and ibm nairobi
for models 1-4, respectively. The number of projection measurements applied
by all the devices to simulate a single time step is 2000 shots.

6.5 Concluding Remarks

The GQME-based quantum algorithm proposed herein substantially expands the range

of open quantum systems that can be simulated on a quantum computer. In this paper,

we demonstrated the applicability and versatility of the algorithm by using it to simulate
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the dynamics of electronic populations within the benchmark spin-boson model on the IBM

QASM quantum simulator and IBM quantum computers.

The results obtained via the noise-free QASM simulator were found to be highly accurate,

with the only errors inherently associated with the quantum projection measurements and

giving rise to very slight deviations from the exact results. However, while the implemen-

tation of the algorithm on the NISQ IBM Q quantum computers was found to reproduce

some of the trends exhibited by the exact results, the agreement was qualitative at best.

This lack of quantitative agreement was traced back to the rather extensive circuit depth,

which made the calculation susceptible to noise. This issue was confirmed and fixed by

implementing a populations-only reduced-dimensionality version of the quantum algorithm,

which significantly shortened the circuit depth and as a result gave rise to quantitatively

accurate results.

Further improvement can be achieved by reducing the circuit depth via optimizing the

quantum circuit design. This can be achieved by optimizing the decomposition of unitary

operations into elementary gate sequences [  328 ]–[ 331 ]. One particularly interesting idea is to

reduce the circuit depth by adding qubits.[  332 ] To this end, it should be noted that we have

only used 3 qubits out of the 5 currently available on the IBM quantum computers. Another

way for improving accuracy is by active error correction using dynamical decoupling (DD)

protocols, that employ pulses to suppress the system’s coupling with the environment.[  333 ]–

[ 337 ] Recent implementations of DD on IBM machines was found to improve the fidelity of

the overall performance [ 338 ]–[ 340 ]. Yet another direction is to implement the circuit on

high-dimensional qudit machines. Quantum computers based on three-dimensional circuit

quantum electrodynamics (3D cQED) microwave cavities are particularly promising in this

respect, as they feature unique quantum error correction schemes [ 341 ]–[ 343 ] and longer

coherence times [ 344 ], [ 345 ] than standard superconducting quantum computers. Bosonic

quantum computing algorithms have also been recently shown to significantly reduce the

number of quantum gates required for the calculation of the Franck-Condon factors [ 346 ]

and dynamics of rhodopsin near conical intersections [ 347 ]. Lossless 3D cQED systems have

not yet been employed to simulate open quantum system dynamics. An adaptation of the

algorithm presented here to bosonic quantum computing could therefore provide another
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way to efficiently simulate open quantum system dynamics and demonstrate how qudit-

based quantum architectures can reduce the computational cost and enhance the accuracy

of quantum simulations.
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7. SUMMARY

Qudit is a multi-level computational unit alternative to the conventional 2-level qubit. It

provides a larger state space for information processing, and thus can reduce the circuit

complexity, simplify the experimental setup. The first half of this thesis includes a review

of the qudit quantum computing, presents an implementation of the qudit phase estimation

algorithm on a photonic system and introduces a statistical and variational approach to the

phase estimation algorithm. Chapter  2 is an overview of qudit-based quantum computing.

It covers a variety of topics ranging from circuit building, algorithm design, to experimental

methods. It first discusses the qudit gate universality and a variety of qudit gates and then

presents the qudit version of several representative quantum algorithms. Finally it discusses

various physical realizations for qudit computation such as the photonic platform, iron trap,

and nuclear magnetic resonance. Chapter  3 presents the implementation of the qutrit phase

estimation algorithm on a photonic system. The Phase Estimation Algorithm (PEA) is an

important quantum algorithm used independently or as a key subroutine in other quantum

algorithms. This chapter reports the first experimental realization of a qudit-based PEA

on a photonic platform, utilizing the high dimensionality in time and frequency degrees of

freedom (DoFs) in a single photon. The controlled-unitary gates can be realized in a deter-

ministic fashion, as the control and target registers are now represented by two DoFs in a

single photon. A new statistical and variational approach to the phase estimation algorithm,

or SPEA, is introduced in Chapter  4 . The SPEA can determine any unknown eigenstate-

eigenphase pair from a given unitary matrix utilizing a simplified version of the hardware

intended for the Iterative PEA (IPEA). This is achieved by treating the probabilistic output

of an IPEA-like circuit as an eigenstate-eigenphase proximity metric, using this metric to es-

timate the proximity of the input state and input phase to the nearest eigenstate-eigenphase

pair and approaching this pair via a variational process on the input state and phase. This

method may search over the entire computational space, or can efficiently search for eigen-

phases (eigenstates) within some specified range (directions), allowing those with some prior

knowledge of their system to search for particular solutions.
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The second half of the thesis focus on the simulation of the open quantum dynamics which

is a useful application for quantum computer based on qudit as well as qubit. The simulation

of open quantum dynamics on quantum circuits has attracted wide interests recently with

a variety of quantum algorithms developed and demonstrated. In the Chapter  5 , we apply

a Sz.-Nagy dilation theorem-based quantum algorithm to simulating the dynamics of the

radical pair mechanism(RPM) in the avian compass on the IBM QASM quantum simulator.

This first quantum simulations of the RPM in the avian compass not only demonstrates the

generality of the quantum algorithm, but also opens new opportunities for studying the avian

compass with quantum computing devices. Chapter  6 presents a quantum algorithm based

on the Generalized Quantum Master Equation (GQME) approach to simulate open quantum

system dynamics on noisy intermediate-scale quantum (NISQ) computers. This approach

overcomes the limitations of the Lindblad equation by providing a rigorous derivation of

the equations of motion for any subset of elements of the reduced density matrix. The

GQME generated non-unitary propagator is transformed into a unitary one in a higher-

dimensional Hilbert space with the dilation-based algorithm, which can then be implemented

on a quantum circuit. We validate our quantum algorithm as applied to the spin-boson

benchmark model by analyzing the impact of the quantum circuit depth on the accuracy of

the results when the subset is limited to the diagonal elements of the reduced density matrix.

Our findings demonstrate that our approach yields reliable results on NISQ IBM computers.
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A. APPENDIX FOR CHAPTER  4 

A.1 Quality of Eigenphase-Eigenstate retrieval

Preliminary note: All phases θ ∈ [0, 1). The difference between two phases can be

found via the function

d(θa, θb) ≡ arg(ei2π(θa−θb))
2π

(A.1)

where d(θa, θb) ∈ [ − .5, .5). In short, as the phase wraps around the phase difference

also wraps around. E.g. d(1
8 ,

3
4) = 3

8 , not −5
8 . And d(3

4 ,
1
8) = −3

8 , not 5
8 . Like usual

differences, d(θa, θb) = −d(θb, θa). Appreciate that – for P0 of Equation  4.3 – P0(d(θa, θb)) =

P0(θa − θb)∀θa, θb.

Here, we quantify the quality of the eigenstate |Φ⟩∗ and eigenphase θ∗
R using C∗ =

C(|Φ⟩∗ , θ∗
R). When C∗ is greater than the largest (non-global) local maximum of Pθ (of

Equation  4.3 ), then θ∗
R must be within the primary lobe of Pθ (examples shown in Fig-

ure  4.3 ). That is, when

C∗ > max
ζ∈[ 1

dc
, 0.5]

P0(ζ) (A.2)

we are within the primary lobe of Pθ. Let θk∗ be the eigenvalue closest to θR and define

δ∗ ≡ d(θk∗ , θR). When Equation  A.2 is true, then P0(δ∗) ≥ P0(θk − θR)∀k and

C∗ =
dt−1∑
k=0

|⟨θk|Φ⟩|2 P0(θk − θR) ≤
dt−1∑
k=0

|⟨θk|Φ⟩|2 P0(δ∗)

= P0(δ∗)
dt−1∑
k=0

|⟨θk|Φ⟩|2 = P0(δ∗)

C∗ ≤ P0(δ∗) (A.3)

As P0 is symmetric and monotonic within the primary lobe,

|δ∗| ≤ P−1
0 (C∗). (A.4)

Therefore the estimated eigenphase θ∗
R is within ±P−1

0 (C∗) of the nearest eigenphase (when-

ever Equation  A.2 is met).
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Now to quantify the eigenstate estimate. Define a ∆-eigenstate |ν∆⟩ as any superposition

of eigenstates where the corresponding eigenphases are within ±∆ of θ∗
R

|ν∆⟩ =
∑
m

αm |νm⟩ , (A.5)

where |d(θm, θ
∗
R)| ≤ ∆∀m

(and where ∑m |αm|2 = 1). That is, |ν∆⟩ is a superposition of eigenstates (indexed {m}∆)

that are nearly degenerate: the corresponding eigenphases are all within 2∆ of one another.

Proceeding from Equation  4.4 (whenever Equation  A.2 holds),

C∗ = C(|Φ⟩∗ , θ∗
R) =

dt−1∑
k=0

|⟨νk|Φ⟩|2 P0(θk − θ∗
R)

≤
∑

k∈{m}∆

|⟨νk|Φ⟩|2 (1) +
∑

k /∈{m}∆

|⟨νk|Φ⟩|2 P0(θk − θ∗
R)

≤
∑

k∈{m}∆

|⟨νk|Φ⟩|2 +
∑

k /∈{m}∆

|⟨νk|Φ⟩|2 P0(∆). (A.6)

Letting ∑k∈{m}∆ |⟨νk|Φ⟩|2 = f ,

C∗ ≤ f + (1 − f)P0(∆)

∴ f ≥ C∗−P0(∆)
1−P0(∆) (A.7)

The estimated eigenstate |Φ⟩∗ matches some ∆-eigenstate (as defined by Equation  A.5 ) with

fidelity f given by Equation  A.7 (whenever Equation  A.2 holds and |∆| ∈ [0, 1
dc

]).

A.2 Details for the IBM Q SPEA calculations

On IBM Q we realize an SPEA with a four-dimensional control register by using two

qubits (the top two rails) as controls. The target is either two- or four-dimensional, using

the bottom one or two rails, respectively.

We list out the three operators in matrix form used in our simulations on the IBM Q

accompanied by the eigenstates of each matrix as well as showing how we achieved these

matrices with the Qiskit.
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In the following we use the rotation-Z gate as defined by Qiskit [ 78 ]:

RZ(θ) =


e−iθ/2 0

0 eiθ/2

 (A.8)

as well as the phase gate:

P (θ) =


1 0

0 eiθ

 (A.9)

and the Hadamard gate:

H = 1√
2


1 1

1 −1

 (A.10)

The first operator U1 is a single qubit rotation-Z gate with θ = π/2,

U1 = RZ(π/2) =


e−iπ/4 0

0 eiπ/4

 with eigenstates v1 =


0

1

 , v2 =


1

0

 (A.11)
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The second operator is a two qubit operation achieved by a phase gate P (θ = π/4) acting

on the first qubit and a rotation-Z gate RZ(θ = π/2) sandwiched between two Hadamard

gates H, acting on the second qubit. The matrix form is

U2 = P (π/4) ⊗
(
H ·RZ(π/2) ·H

)
= 1√

2



1 −i 0 0

−i 1 0 0

0 0 ei π

4 e−i π

4

0 0 e−i π

4 ei π

4


(A.12)

with eigenstates

v3 =



0

0

1

1


v4 =



0

0

1

−1


, v5 =



1

1

0

0


, v6 =



1

−1

0

0


(A.13)

The gate representations of the two operators can be found in Figure  A.2.1 .

Figure A.2.1. Gate representation of the unitary operators applied in the
simulation. (A) represents operator U1, a 2-dimensional operator applied to
a single qubit. (B) represents operator U2, a 4-dimensional operator applied
to two qubits. RZ is the rotation-Z gate, P is the phase gate and H is the
Hadamard gate. When a control qubit is present the RZ gate and the P gate
become controlled gates. The Hadamard gates will serve as their own inverse
and therefore do not need to be implemented as controlled gates.
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Figure A.2.2. Illustration of the 4-level control (dc = 4) SPEA circuit imple-
mented using Qiskit. H is the Hadamard gate, RZ is the rotation-Z gate, P
is the phase gate, and M represents a measurement. The top two rails are the
control qubits and realize a 4-dimensional control register. The bottom two
rails represents the target register. The initialize block prepares the input state
differently throughout the optimization process. Ui represents the unitary the
SPEA is running. For i = 2, 3 we implement the circuit as diagrammed. For
i = 1, the unitary is 2-dimensional and we use only a single target rail. The
three control gates together realize a multi(4)-level control gate as described in
the main text. The two RZ-gates together realize a realize four-level Rz(−θR)
as described in the main text. The double line at the bottom represents the
classical information retrieved from the measurement gates (a total of 2 bits).

For the third operators we start with the lowest energy Hamiltonian of the hydrogen

molecule generated with Bravyi-Kitaev transformation in STO − 3g basis,

H =



0.487049 0 0 0.180653

0 −0.337700 0.180653 0

0. 0.180653 −0.337700 0

0.180653 0 0 −1.117194


. (A.14)

Then we take the exponential of the Hamiltonian to generate our unitary operator
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U3 = eiH =



0.8686 + 0.4687i 0 0 0.0499 + 0.1531i

0 0.9282 − 0.3259i 0.0595 + 0.1695i 0

0 0.0595 + 0.1695i 0.9282 − 0.3259i 0

0.0499 + 0.1531i 0 0 0.4256 − 0.8905i


.

(A.15)

The exponential of the Hamiltonian is done with the scipy.linalg.expm in the scipy python

package [ 348 ]. The eigenstates are

v7 =



−0.1105

0

0

0.9939


v8 =



0

0.7071

−0.7071

0


, v9 =



0

0.7071

0.7071

0


, v10 =



−0.9939

0

0

0.1105


(A.16)

We design the phase estimation algorithms that work with up to two qubits in the control

register and four qubits in total as shown in Figure  A.2.2 . Due to the restrictions in the

qubit numbers, the simulations on the IBM Q are focused on the lower dimensional systems,

i.e. one or two qubits in the target register. The rotation RZ gates are applied to each

qubit in the control register after the controlled-Ui operations but before inverse Fourier

transform. Every time the quantum algorithm is called to generate a new C factor (following

the “alternative method” in step 3 of Section  4.2 ), the algorithm runs twice: the first time

the RZ gates are set to zero and the phase factor θR is calculated statistically; the second

time the upper RZ gate applies phase −θR and the lower gate applies phase −2θR, together

acting as a −θR-rotation would on a dc = 4 qudit system. The classical optimization process

described in Section  4.2 is implemented using python. The basis set {|Bm⟩} is generated

using the Gram-Schmidt methods with the input vector plus a set of linearly independent
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vectors obtained from a randomly generated unitary matrix. As a deviation from how the

algorithm is described in the main text, the search step a factor is set to 1/2 in step 4 and

is doubled in step 5 (rather than halved) if C-factor is not updated, up to seven times. The

optimization concludes when the C factor meets the stopping condition which means the

input state is converged to an eigenstate, or when the maximum iteration time is exceeded.

A.3 Full H2O Matrix

The Hamiltonian of the water molecule with the H-O-H angle at 104.5◦ and the bond

length at 1.0 a.u. is calculated by STO−3G minimal basis using PySCF [ 311 ] and chemistry

package provided by the Qiskit[ 78 ]. The 16-by-16 Hamiltonian of the water molecule [  236 ]

used for the local computer’s spectral decomposition simulations is sparse with nonzero

entries,

HH2O(1, 1) = 1.027 · 10−15, HH2O(2, 2) = −2.594,

HH2O(3, 3) = −2.654, HH2O(4, 4) = −4.583,

HH2O(5, 5) = −2.594, HH2O(6, 6) = −4.427,

HH2O(7, 7) = −4.529, HH2O(8, 8) = −5.696,

HH2O(9, 9) = −2.654, HH2O(10, 10) = −4.529,

HH2O(11, 11) = −4.428, HH2O(12, 12) = −5.637,

HH2O(13, 13) = −4.583, HH2O(14, 14) = −5.696,

HH2O(15, 15) = −5.637, HH2O(16, 16) = −6.085,

HH2O(6, 11) = HH2O(11, 6) = 0.054,

HH2O(7, 10) = HH2O(10, 7) = 0.054. (A.17)

The exponential of the Hamiltonian is done with the MATLAB expm function.
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B. APPENDIX FOR CHAPTER  4 

B.1 Quantum Simulation Details

Here we give an example of the quantum circuit of the M1 =
√
kdδtP1 at the first time

step, 5 × 10−5s to evolve the states. After multiplied by the unitary matrix accounting for

the coherent part as in Eq. (  B.1 ), M1 becomes a 10 × 10 sparse matrix shown in Eq. ( B.2 )

and the non-zero values are shown in Eq. ( B.3 ).

ρ̇ = − i
ℏ

[H, ρ] + kd

8∑
i=1

[PiρP
†
i − 1

2(P †
i Piρ+ ρP †

i Pi)], (B.1)



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

m1 m2 m3 m4 m5 m6 m7 m8 0 0

0 0 0 0 0 0 0 0 0 0



(B.2)
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m1 = −5.22 × 10−2 − 4.05 × 10−1i

m2 = −6.53 × 10−4 + 1.23 × 10−2i

m3 = −2.93 × 10−1 + 3.80 × 10−3i

m4 = −1.70 × 10−2 + 1.38 × 10−4i

m5 = 2.93 × 10−1 + 3.78 × 10−3i

m6 = −7.39 × 10−1 − 2.62 × 10−3i

m7 = −5.22 × 10−3 + 4.05 × 10−1i

m8 = 5.63 × 10−4 + 5.37 × 10−3i

(B.3)

UMk
=


Mk DM†

k

DMk
−M †

k

 , (B.4)

After we apply the unitary dilation described in Eq. ( B.4 ) on the M1, we obtain a

20 × 20 unitary matrix UM1 . To simulate this operation on quantum simulator, we have

to use 5 qubits to cover the 20 dimensions. Leveraging the Qiskit’s transpile function

(qiskit.compliler.transpile), we decomposed the resulted unitary operator UM1 to 2097 gates

where a portion of the circuit is shown below (Fig.  B.1.1 ) using the basis gates: ‘u3’,
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Figure B.1.1. An example of a portion of the quantum gate sequence of a
Kraus operator. This is only a small portion of the circuit. The full circuit
has 2097 gates and the details will be available from the authors on reasonable
request.

‘cx’ and ‘rz’ as shown in Eq.(  B.5 ) , on the backend of qasm simulator. The details of the

decomposition of all the quantum circuits used are available on reasonable request.

U3(θ, ϕ, λ) =


cos

(
θ
2

)
−eiλ sin

(
θ
2

)
eiϕ sin

(
θ
2

)
ei(ϕ+λ) cos

(
θ
2

)


CX = I ⊗ |0⟩⟨0| +X ⊗ |1⟩⟨1| =



1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0



Rz(θ) =


e−i θ

2 0

0 ei θ
2



(B.5)
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C. APPENDIX FOR CHAPTER  6 

C.1 Quantum circuit examples

In this section, we include further details concerning the quantum algorithm, including

the dilation process, circuit transpiling, QASM simulations, and simulations running on the

IBM quantum computers ibmq quito and ibmq lima. The normalized time evolution

operator of the electronic reduced density operator G ′(t) = G(t)/nc (where G(t) is generated

from the GQME formalism) is dilated into a unitary operator UG′(t). We start with G3, which

corresponds to the G(t) of the 1500th time step from model 3, and G4, which corresponds to

the G(t) of the 1500th time step from model 4. The matrix of G3 and G4 are, respectively:

G3 =



0.38 − 3.76 × 10−10j 0.04 + 2.90 × 10−2j 0.04 − 2.90 × 10−2j 0.06 − 1.88 × 10−10j

−0.13 + 7.04 × 10−2j 0.28 − 2.63 × 10−2j 0.02 + 2.37 × 10−2j −0.15 − 3.06 × 10−2j

−0.13 − 7.04 × 10−2j 0.02 − 2.37 × 10−2j 0.28 + 2.63 × 10−2j −0.15 + 3.06 × 10−2j

0.62 + 3.77 × 10−10j −0.04 − 2.90 × 10−2j −0.04 + 2.90 × 10−2j 0.94 + 1.87 × 10−10j


, (C.1)

and

G4 =



0.54 + 4.7 × 10−11j −1.7 × 10−6 + 5.7 × 10−2j −1.6 × 10−6 − 5.6 × 10−2j 0.46 + 7.1 × 10−11j

−0.46 + 5.7 × 10−2j 3.6 × 10−2 + 6.1 × 10−5j −1.6 × 10−2 − 5.7 × 10−5j −0.46 − 5.7 × 10−2j

−0.46 − 5.7 × 10−2j −1.6 × 10−2 + 5.7 × 10−5j 3.7 × 10−2 − 6.1 × 10−5j −0.46 + 5.7 × 10−2j

0.54 − 4.7 × 10−11j 1.6 × 10−6 − 5.6 × 10−2j 1.6 × 10−6 + 5.6 × 10−2j 0.54 − 7.1 × 10−11j


. (C.2)

The normalization factors used for model 3 and model 4 are nc3 = 1.376 and nc4 = 1.376.

Following the 1-dilation process, the 4 × 4 G ′(t) [derived from corresponding G(t) divided

by the nc factor] is converted into a unitary 8 × 8 UG′(t). We show UG′
3

and UG′
4

in the form

of heat maps in Fig.  C.1.1 .

The unitary operation UG′(t) is transpiled into a 3-qubit quantum circuit composed of

three elementary quantum gates: RZ ,
√
X, and CX, which have the matrix form:
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(a) UG3 real part (b) UG3 imaginary part

(c) UG4 real part (d) UG4 imaginary part

Figure C.1.1. Heat map illustrations of the dilated 8 × 8 unitary matrix UG3

and UG4 for the 1500th G(t) matrix, G3 at t = 2.25Γ−1 for model 3 and G4 at
t = 6.75Γ−1 for model 4.
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RZ(λ) = exp
(

−iλ2Z
)

=


e−i λ

2 0

0 ei λ
2

 (C.3)

√
X = 1

2


1 + i 1 − i

1 − i 1 + i

 (C.4)

CX q0, q1 = I ⊗ |0⟩⟨0| +X ⊗ |1⟩⟨1| =



1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


(C.5)

The full quantum circuits for UG3 and UG4 are shown in Fig.  C.1.3 and  C.1.4 . The probability

distribution of the projection measurement results of the two circuits are shown in Fig.  C.1.2 .

Both the QASM simulator results and the real machine simulated results are recorded.
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(a) QASM simulation of model 3 (b) ibm quito simulation of model 3

(c) QASM simulation of model 4 (d) ibmq lima simulation of model 3

Figure C.1.2. Probability distribution of the quantum state after the pro-
jection measurement applied to the circuit for UG3 and UG4 on the QASM and
real quantum devices. The |000⟩ state corresponds to the population squared
of the donor state σDD(t) and the |100⟩ state corresponds to the population
squared of the acceptor state σAA(t). The last four states are ancilla states.
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Figure C.1.3. Transpiled quantum circuit of the dilated UG3 matrix at 1500
time steps for model 3. Each horizontal black line denotes a qubit. The

√
X

gate (blue square) is the square root of X gate; the Rz gate (magenta square) is
the rotation Z gate. The two-qubit gates are the controlled-NOT gate, where
the dot denotes the controlled qubit and ⊕ denotes the target qubit. The
black gates at the end of the circuit denote the projection measurements. The
number of required Rz,

√
X, and CNOT gates are 153, 98, and 41, respectively.
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Figure C.1.4. Transpiled quantum circuit of the dilated UG4 matrix at 1500
time steps for model 4. Each horizontal black line denotes a qubit. The

√
X

gate (blue square) is the square root of X gate; the Rz gate (magenta square) is
the rotation Z gate. The two-qubit gates are the controlled-NOT gate, where
the dot denotes the controlled qubit and ⊕ denotes the target qubit. The
black gates at the end of the circuit denote the projection measurements. The
number of required Rz,

√
X, and CNOT gates are 153, 98, and 41, respectively.
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