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ABSTRACT

Simultaneous localization and mapping (SLAM) is a general device localization technique
that uses realtime sensor measurements to develop a virtualization of the sensor’s environ-
ment while also using this growing virtualization to determine the position and orientation
of the sensor. This is useful for augmented reality (AR), in which a user looks through a
head-mounted display (HMD) or viewfinder to see virtual components integrated into the
real world. Visual SLAM (i.e., SLAM in which the sensor is an optical camera) is used in
AR to determine the exact device/headset movement so that the virtual components can
be accurately redrawn to the screen, matching the perceived motion of the world around
the user as the user moves the device/headset. However, many potential AR applications
may need access to more than device localization data in order to be useful; they may need
to leverage environment data as well. Additionally, most SLAM solutions make the naive
assumption that the environment surrounding the system is completely static (non-moving).
Given these circumstances, it is clear that AR may benefit substantially from utilizing a
SLAM solution that detects objects that move in the scene and ultimately provides localiza-
tion data for each of these objects. This problem is known as the dynamic SLAM problem.
Current attempts to address the dynamic SLAM problem often use machine learning to de-
velop models that identify the parts of the camera image that belong to one of many classes
of potentially-moving objects. The limitation with these approaches is that it is impractical
to train models to identify every possible object that moves; additionally, some potentially-
moving objects may be static in the scene, which these approaches often do not account for.
Some other attempts to address the dynamic SLAM problem also localize the moving objects
they detect, but these systems almost always rely on depth sensors or stereo camera configu-
rations, which have significant limitations in real-world use cases. This dissertation presents
a novel approach for registering and localizing unknown moving objects in the context of
markerless, monocular, keyframe-based SLAM with no required prior information about ob-
ject structure, appearance, or existence. This work also details a novel deep learning solution
for determining SLAM map initialization suitability in structure-from-motion-based initial-

ization approaches. This dissertation goes on to validate these approaches by implementing
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them in a markerless, monocular SLAM system called LUMO-SLAM, which is built from
the ground up to demonstrate this approach to unknown moving object registration and
localization. Results are collected for the LUMO-SLAM system, which address the accuracy
of its camera localization estimates, the accuracy of its moving object localization estimates,
and the consistency with which it registers moving objects in the scene. These results show
that this solution to the dynamic SLAM problem, though it does not act as a practical
solution for all use cases, has an ability to accurately register and localize unknown moving
objects in such a way that makes it useful for some applications of AR without thwarting

the system’s ability to also perform accurate camera localization.
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1. INTRODUCTION

Augmented reality (AR) has been the focus of increasing interest in recent years due to both
broad advancements in technology as well as the recent commercialization of virtual reality
(VR). AR and VR are emerging interfaces that enable users to experience computing with
a heightened sense of immersion. In VR, a user is completely immersed in a 3D virtual
environment; whereas in AR, a user is able to perceive the real world with the addition of
virtual elements integrated into their perception of the 3D space. The functionality afforded
by integrating real and virtual worlds can be useful in basic applications, such as one that
enables a user to cast multiple dynamic computer screens into their environment at will;
or, it can be useful in applications that are significantly more complex, such as applications
which provide precise, 3D instructions for performing realtime maintenance on a piece of
complex machinery.

In order to implement any AR or VR system, the system developer must first implement
a realtime approach for localizing a device, such as a head-mounted display (HMD). This
is so that virtual objects can be rendered to the end-user’s view in a way that makes them
appear spatially-consistent with the real world, even as the device changes its viewpoint.
Increasingly, various forms of visual simultaneous localization and mapping (SLAM) have
been used to provide this underlying functionality in AR and VR systems. SLAM is a
process that uses a sensor (such as a camera in the case of visual SLAM) to continually
generate a virtual mapping of the environment while also using this map in conjunction with
the sensor measurements to localize the sensor in realtime. Though many approaches to
device localization may lend themselves well to VR, the potential interaction between real
and virtual scene elements implied by AR makes SLAM particularly well-suited for device
localization in this context, as many applications of AR may utilize SLAM’s virtual mapping
to support some degree of scene understanding.

SLAM, and in particular visual SLAM, has been studied extensively and its research
has led to the development of several general solutions to the basic SLAM problem. At
this point in time, it seems there is little new theoretical ground to be covered in regards

to solving the basic SLAM problem; however, since the typical SLAM problem formulation
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adopts the constraint that the scene elements are assumed to be still/static, this constraint
can be relaxed to expose a new and useful derivative of the SLAM problem that provides
expansive opportunities for fresh discovery. This expanded view of the SLAM problem (in
which the scene may contain moving elements) is often referred to as the dynamic SLAM
problem. Dynamic SLAM is particularly relevant to AR systems, as these systems may
often operate in environments that contain moving elements such as people, vehicles, and
any other moving object that is common in day-to-day life. This makes a basic SLAM
solution a less-appropriate choice for facilitating an AR application than a dynamic SLAM
solution. Additionally, a solution to the dynamic SLAM problem that can localize moving
objects (rather than just registering them to make the system more robust) could facilitate
a plethora of AR applications that have yet to be seen. For example, perhaps a developer
wishes to implement an AR application in which an end-user can scan their environment,
place virtual labels on some objects in the environment, and trigger the application to
automatically translate the labels to a different language. This application could be useful
for language-learning; however, its usability quickly collapses if a user moves some of the
labeled objects in the room and the application fails to re-localize the objects’ corresponding
labels accordingly. A SLAM system that can register and localize moving objects can provide
a layer of functionality that enables an application to overcome this limitation.

Though it’s clear that this layer of functionality is necessary in order to implement many
real-world AR applications, implementing a SLAM system that can provide this functionality
is challenging. To solve this problem, one must propose a process for registering when certain
map points belong to moving objects and one must also propose a process for continually re-
localizing those points. In many works that address these problems, the object registration
problem is solved by developing the system to search for specific potentially-moving objects
based on object appearance, but this approach is not generalized for any object in the scene
that might move. Additionally, though a solution to the object localization problem may be
straightforward in theory, poor feature tracking and poor localization constraints can cause
dynamic object localization to be troublesome in practice.

The primary focus of this dissertation is the proposal and exploration of a novel approach

for registering and localizing unknown moving objects in the context of markerless, monoc-

15



ular SLAM. That is, the approach is a solution to the monocular (single-camera) SLAM
problem which can detect the existence of moving objects in the scene with no prior knowl-
edge of the objects’ structure, appearance, or existence. This approach is far more general
and less constrained than many existing related works, which often pre-train their systems
to recognize specific types of objects that have a high likelihood of moving. The generalized
nature of the approach presented in this dissertation is designed with the intention of en-
hancing the basic functionality of SLAM, as AR applications of the future will likely need to
leverage more than just device localization data from the lower-level systems they are built

on top of in order to achieve their desired level of functionality.

1.1 Contributions

This dissertation presents and details the following contributions to the field of computer

vision (and more specifically, visual SLAM):

o A novel deep-learning model for determining the suitability of two image frames for use
in structure-from-motion-based point cloud reconstruction, specifically in the context

of visual SLAM map initialization (detailed in Chapter 4).

o A novel, geometric approach for registering when an unknown object in a scene has
begun to move during the SLAM process, as well as a corresponding approach to re-
localize the reconstruction of the object as it subsequently moves through the scene

(detailed in Chapter 5).

o« LUMO-SLAM: a proof-of-concept markerless, monocular SLAM system, designed and
developed from the ground up, which implements the aforementioned approach for
registering and localizing unknown moving objects in scene, in realtime, with no prior
knowledge of the objects’ structure, appearance, or existence required (detailed in
Chapter 6). Additionally, source code for LUMO-SLAM is made openly available
under the MIT license at: https://github.com/batroutman/LUMO-SLAM.
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1.2 Assumptions and Constraints

Regarding the proposed unknown moving object registration and localization approach,

the following assumptions are made to clearly constrain the problem domain:

The camera’s calibration parameters are given.
o The moving objects to-be-tracked are rigid and non-deformable.
e These moving objects are feature-rich and yield many easily-trackable points.

o The SLAM system that implements the approach can observe the moving objects from

multiple angles before the objects begin to move.

o The initial movement of the objects is observed by the implementing SLAM system.

1.3 Peer-Reviewed Publications

1.3.1 Published Works

The contributions discussed in this dissertation cover research that has also been previ-

ously published in [1], [2], [3], and [4]:

1] B. Troutman and M. Tuceryan, “Towards fast and automatic map initialization for
monocular SLAM systems,” in Proceedings of the 2nd International Conference on
Robotics, Computer Vision and Intelligent Systems - ROBOVIS, INSTICC, SciTePress,
2021, pp. 22-30, 1SBN: 978-989-758-537-1. DOI: 10.5220/0010640600003061.

2] B. Troutman and M. Tuceryan, “Rapid structure from motion frame selection for
markerless monocular SLAM,” in Robotics, Computer Vision and Intelligent Sys-
tems, P. Galambos, E. Kayacan, and K. Madani, Eds., Cham: Springer International
Publishing, 2022, pp. 172-189, 1sBN: 978-3-031-19650-8. po1: 10.1007/978-3-031-
19650-8_ 9.

3] B. Troutman and M. Tuceryan, “Registration and localization of unknown moving ob-
jects in monocular SLAM,” in 2022 IEEFE 2nd International Conference on Intelligent
Reality (ICIR), 2022, pp. 43-48. Dor: 10.1109/1CIR55739.2022.00025.
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4] B. Troutman and M. Tuceryan, “Towards dynamic realtime object labeling in aug-
mented reality,” in 2022 IEEE 2nd International Conference on Intelligent Reality
(ICIR), 2022, pp. 49-53. po1: 10.1109/ICIR55739.2022.00026.

1.3.2 Other Works

This dissertation also presents new system details and results that have yet to be pub-
lished. Accordingly, an article covering these details and results is being developed for

publication to act as a canonical reference for the LUMO-SLAM system.

1.4 Dissertation Organization

This dissertation is organized into eight chapters. This first chapter has motivated the
dynamic SLAM problem and provided a brief specification of the proposed contributions
while also indicating the assumptions and constraints of the primary problem addressed in
this research (unknown moving object registration and localization). Chapter 2 provides an
overview of many of the existing works in both the visual SLAM literature and the dynamic
SLAM literature, including brief explorations of the notable techniques used in these existing
systems. This is followed by Chapter 3, which provides an explanation of the theoretical
concepts necessary to implement modern, keyframe-based visual SLAM systems.

After these preliminary chapters, Chapter 4 covers the first contribution proposed in this
dissertation: a deep-learning approach for determining initialization suitability in markerless,
monocular SLAM. It is worth noting, however, that this specific contribution veers slightly
from the focus of the rest of this body of work, as this dissertation is primarily focused on
the registration and localization of unknown moving objects. The contribution discussed in
Chapter 4 ultimately ties back into the rest of the work when it is contextualized in the
implementation of LUMO-SLAM, discussed in Chapter 6.

Once the contribution regarding initialization suitability is covered, Chapter 5 explains
the contribution of unknown moving object registration and localization in a theoretical con-
text. Then, Chapter 6 provides a detailed system overview of the proof-of-concept SLAM
system that implements the approaches from Chapter 4 and Chapter 5. This system, LUMO-
SLAM, acts as the principal contribution of this body of work. Chapter 7 then provides
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extensive experimental results and analysis of LUMO-SLAM'’s performance with regards to
standard SLAM accuracy, moving object localization accuracy, and moving object registra-
tion accuracy. Finally, Chapter 8 concludes this dissertation and discusses notable areas for

future work.
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2. LITERATURE REVIEW

2.1 Visual SLAM

Many solutions to the visual SLAM problem have emerged over the past several decades.
There exist a number of strong SLAM implementations that leverage stereo (binocular)
cameras [5]-[7], as well as implementations that leverage RGB-D (depth) cameras [8]-[11].
However, both of these sensor configurations fundamentally come with limitations. For in-
stance, stereo camera configurations often require a significant baseline in order to leverage
the stereo nature of the cameras; this large baseline requirement may disqualify stereo con-
figurations from applications in which the physical size of the system must remain small.
Additionally, the technology that facilitates RGB-D cameras typically struggles in outdoor
settings that contain high amounts of natural light. Thus, a solution to the monocular
(single-camera) SLAM problem can be viewed as more desirable than solutions to the stereo
and RGB-D variants of the problem, as monocular systems have potential to be more ver-
satile. However, the monocular SLAM problem can also be more difficult to solve, as these
systems must solve the SLAM problem with less data than the aforementioned approaches.

Early solutions to monocular SLAM primarily relied on filtering approaches, in which
probabilistic models are used in conjunction with each incoming frame measurement to
estimate the pose of the camera and location of the landmarks, or “map points”, in realtime
[12]-[15]. However, these classical filtering approaches have largely been replaced in the visual
SLAM literature by various forms of pose graph optimization. These approaches are typically
known as “keyframe-based” approaches, as savepoints of camera poses (“keyframes”) are
periodically recorded in the map along with their feature observations to repeatedly refine
the map point and keyframe estimates in the map. Among the most notable keyframe-based
monocular SLAM systems are PTAM [16], [17] and ORB-SLAM [18].

Parallel Tracking and Mapping, or “PTAM?”, is a seminal monocular SLAM system de-
veloped by Klein and Murray in 2007 [16]. The architectural novelty of PTAM is that it
organizes the process of map generation and refinement into a separate thread from the cam-
era localization process. It also employs bundle adjustment to achieve extremely accurate

localization, which is significant for AR as slight errors in camera localization can become

20



noticeable when virtual objects are overlayed onto the scene. The approach demonstrated in
PTAM is also particularly interesting due to Klein and Murray’s successful mobile adapta-
tion of the system, in which PTAM was able to run in realtime on an Apple iPhone 3G, circa
2009 [17]. The accuracy and realtime capability of PTAM (in addition to its openly-available
source code) has made it a foundational system in the visual SLAM literature.

A more recent visual SLAM system that has proven to be foundational in the literature
is ORB-SLAM, developed by Mur-Artal et al. in 2015 [18]. ORB-SLAM is an openly-
available monocular SLAM system (with later iterations adding stereo and RGB-D sup-
port [19]) that has grown increasingly-popular over the past several years. In addition to
incredibly-accurate realtime camera localization, ORB-SLAM also implements a number of
useful features. Among these features include a novel (and reliable) automatic map ini-
tialization algorithm, place recognition, and loop closing. These features make ORB-SLAM
incredibly versatile; ORB-SLAM'’s versatility, accuracy, and openly-available source code are
responsible for cultivating the substantial researcher interest around the system.

Though there are a number of other notable monocular SLAM systems in the literature
(see [20], [21], [22], [23], and [24]), PTAM and ORB-SLAM are perhaps the most notable
keyframe-based approaches. LUMO-SLAM draws inspiration from PTAM and ORB-SLAM
for the implementation of its basic SLAM pipeline. Specifically, the separation of map refine-
ment and localization threads, the usage of ORB-SLAM’s robust map initialization criteria,
the extensive use of bundle adjustment for map refinement, and the utilization of visual
bag-of-words vectors for loop detection are all features that follow in the footsteps of PTAM
and ORB-SLAM. However, despite drawing inspiration from these systems, LUMO-SLAM’s
pipeline is substantially different than either of these foundational systems, as LUMO-SLAM

is adapted to also address the dynamic SLAM problem.

2.2 Dynamic SLAM

Currently, the basic visual SLAM problem is mostly a problem of engineering and system
optimization, as it seems there is little new theoretical ground to cover in this area while

there is also great utility in making SLAM implementations both more robust in real-world
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scenarios and also less computationally expensive. The pursuit of higher robustness has
helped motivate a derivative of the SLAM problem: the dynamic SLAM problem.

The domain of dynamic SLAM is quite broad, as it largely includes any SLAM solution
that is designed to address scenes with non-static components. This basic subset of SLAM is
important, as work from Fuentes-Pacheco et al. [25] indicates that typical SLAM approaches
tend to struggle in environments that contain many moving objects. The current attempts
at solving the dynamic SLAM problem fall into two categories: (1) systems that address
moving objects to add robustness to a standard SLAM implementation, and (2) systems that
address moving objects in order to extend the standard SLAM solution to provide additional
functionality related to moving objects (typically in the form of object localization data)

Dynamic SLAM implementations that address moving objects solely to increase the ro-
bustness of the system’s localization accuracy accomplish this by implementing some form of
motion segmentation (the process of separating features associated with static objects from
features associated with moving objects), and then using the results of the motion segmenta-
tion to ignore non-static features. This task has frequently been implemented with semantic
segmentation networks which classify each pixel into a number of categories corresponding
to pre-trained object types. For example, DynaSLAM [27] makes use of Mask R-CNN [28§]
to identify pixels in the image that are associated with potentially-moving objects and then
uses this segmentation information for static map reconstruction and background inpaint-
ing. Similarly, DS-SLAM [29] and SOF-SLAM [30] make use of SegNet [31] instead of Mask
R-CNN for this motion segmentation process while the work of Brasch et al. [32] employs
ICNet [33]. PSPNet-SLAM [34] and the system proposed by Han and Xi [35] segment moving
objects with a pyramid scene parsing network (PSPNet) [36] instead of the aforementioned
semantic segmentation models. In addition to semantic segmentation networks, object de-
tection networks have also been used to perform motion segmentation. Object detection
networks are similar to semantic segmentation networks; except, object detection networks
typically identify bounding boxes for instances of a class, rather than classifying each pixel.

Examples of object detectors being used for motion segmentation in SLAM include the work
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of Ai et al. [37] which uses YOLOv4 [38], Dynamic-SLAM [39] which uses SSD [40], and
PLD-SLAM [41] which uses MobileNets [42].

The aforementioned approaches only make use of motion segmentation to increase the
robustness of the system localization estimates. There are other approaches, however, which
continue to utilize semantic segmentation networks and object detection networks for motion
segmentation, but also provide some degree of moving object tracking. Some examples
include ClusterVO [43] which uses YOLO9000 [44] for motion segmentation, DynaSLAM
IT [45] which builds off of its predecessor (DynaSLAM, mentioned above), DOT [46] which
uses Detectron2 [47], VDO-SLAM [48] which uses Mask R-CNN [28], and EM-Fusion [49]
which also uses Mask R-CNN. Each of these approaches, however, utilize RGB-D or stereo
camera configurations. Thus, the object localization is somewhat straightforward as depth
information is available.®

A couple of monocular approaches that still utilize supervised models for motion seg-
mentation include CubeSLAM [51] (leveraging YOLO9000 [44]) and the work of Nair et
al. [52] (leveraging Mask R-CNN). These approaches can estimate the depth/scale of the
moving object by assuming that it is close to the ground plane. This enables these systems
to contextualize the points of the moving object against static points with known locations
in the map. However, the ground plane assumption limits these implementations by making
them only capable of tracking objects that are on the ground plane.

Systems that perform motion segmentation with semantic segmentation networks or ob-
ject detection networks are very common in the domain of dynamic SLAM; however, the
usage of trained models comes with a steep limitation. For any of these systems, they can
only detect moving objects that their respective models have been trained to identify. This
poses a practical challenge, as the models cannot be trained to identify every possible object
in practice. Additionally, these models identify specific objects, but do not analyze their
movement. This can cause inefficiency in the system, as static objects that might move
(such as a still chair) may be detected as a potentially-moving object and its features will be

ignored, even if the object is not moving and could otherwise be used for camera localization.

4Though VDO-SLAM [48] supports monocular camera configurations, it requires depth information to be
predicted with MonoDepth2 [50].
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There are a couple of notable systems that manage to provide dynamic SLAM solutions
without requiring a priori knowledge of the moving objects via supervised models. Specifi-
cally, DymSLAM [53] performs motion segmentation by computing permutation preferences
[54] for the quantized residuals of feature matches and then uses these metrics to cluster fea-
tures by the motion models they belong to. Additionally, Judd et al. [55] presented MVO,
which is a multimotion visual odometry approach that clusters “tracklets” based on their re-
projection errors. Though both of these approaches are more generalized than systems that
implement motion segmentation with supervised models, these specific implementations also
require stereo/RGB-D configurations.

The work of Migliore et al. [56] and that of Hsiao and Wang [57] both propose monoc-
ular SLAM systems that identify and estimate moving object trajectories. Both of these
systems are based on filtering approaches and attempt to use various filtering techniques to
localize individual map points. This limits the accuracy of the moving object localization
significantly. Though modern SLAM literature has mostly moved from filtering approaches
to keyframe-based implementations, these works are still notable because they are among
the earliest solutions to dynamic SLAM while also providing moving object localization (in
addition to constraining their systems to the monocular configuration).

For further exploration of dynamic SLAM literature, Saputra et al. [58] provide a com-
prehensive survey of the growing body of literature surrounding visual SLAM (and also
structure from motion) in dynamic environments. Additionally, Xu et al. [26] offer a similar
overview of the current efforts to solve the dynamic SLAM problem, with particular focus
on feature choice.

The existing literature on dynamic SLAM often presents systems that solve the motion
segmentation problem with supervised models and provide moving object localization data
by leveraging depth information. There are very few works, however, that aim to provide
monocular dynamic SLAM solutions that do not depend on prior information about the
nature of the moving objects. Though the principal contribution of this dissertation, LUMO-
SLAM, is not a “silver bullet” solution to the dynamic SLAM problem, as it leaves great
room for improvements in robustness, it fills this void in the literature by implementing

a more-generalized approach to unknown moving object registration and localization in a
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modern, markerless, monocular context with no required prior knowledge of object structure,

appearance, or existence.
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3. THEORETICAL BACKGROUND

Visual SLAM is a complex process that requires the implementation of several algorithms to
work together in order to provide realtime camera localization and scene mapping. The al-
gorithms, as well as the underlying mathematical framework supporting them, are somewhat
specialized; thus this chapter provides brief summaries of the flagship topics that are neces-
sary to understand in order to develop visual SLAM systems (in particular, LUMO-SLAM,
which is discussed extensively in Chapter 6).

First, this chapter covers the SE(3) Lie group and how it is used to model points and
transformations in 3D space. Then, the SE(3) Lie group is used to present the pinhole
camera model, which models the perspective-based projections of 3D points into images.
After these theoretical pillars are covered, the topic of image features is explored, as the
observation of image features provides the first direct link between the theoretical models
and the real world. This is followed by a section that covers a number of increasingly-popular
approaches for performing structure from motion with image features, which is a common
approach used to initialize the map in markerless, monocular systems. The exploration of
structure from motion approaches is followed by a section on point triangulation, which
is necessary for map growth. After these topics, the Perspective-n-Point problem and its
subsequent solution (EPnP) is covered, as EPnP is the backbone of camera localization
in many systems, including LUMO-SLAM. Finally, this chapter is concluded with a brief
explanation of bundle adjustment, which is an optimization process used to refine visual

SLAM maps.

3.1 Geometric Transformations in 3D with the SE(3) Lie Group

The goal of visual SLAM is to determine a set of 3D points that are observed in the
environment while also deducing the transformation (or “pose”) of the camera as it moves
through the environment in realtime. SE(3) is an important topic in visual SLAM, and in
computer vision in general, as it provides a model for representing transformations and their

effect on 3D points in a scene.
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A point, (z,vy, z), can be transformed by representing the point as a homogeneous column
vector, X = [z y 2z 1 ]T. With homogeneous vectors, vectors that only differ in scale are
considered equivalent. The point can then be transformed (rotated and translated in space)

by premultiplying X with a 4 x 4 SE(3) transformation matrix, where

SE(3) = {T ‘ T- ,ReSO(S),teIRf”} (3.1)

01><3 1

and

SO(3) = {R ‘ ReR>* R'R—RR' =1,[R| = 1} (3.2)

Specifically, R is a 3 x 3 matrix in the SO(3) Lie group which represents the rotation to
be applied to the current coordinate frame and t is a 3 x 1 matrix representing the desired
spatial translation of the current coordinate frame (with respect to the given rotation, R).

Thus, if T € SE(3) with rotation R and translation t, X can be transformed by R and
t with the product TX. This results in a new column vector, [ * y* 2* 1|7, where the
newly-transformed point coordinates are given by (x*, y*, z*).

Transformations in SE(3) can also be composed of multiple sub-transformations, such

that

X* = TX st. T=T,...T\T, (3.3)

where X* is the transformed point and T; is the i** transformation applied to the point
(note that the order of transformations starts with the rightmost transformations and ends
with the leftmost transformations). The chaining of multiple transformations is useful for
decomposing the movement of specific objects into object movement and overall scene/cam-
era movement. This is explored further in Chapter 5. For a comprehensive review of the

SE(3) Lie group, see [59].
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3.2 The Pinhole Camera Model

The framework demonstrated in Section 3.1 can be extended to additionally model the
projection of 3D points into a standard image using the pinhole camera model. The pinhole
camera model relates a point in the 3D scene with its perspective-projected image coordinates

with the following equation:

x = KX (3.4)

In this model, the 3D point is represented with the column vector, X = [z y 2 |7, K is
the intrinsic camera parameter matrix (sometimes referred to as the “calibration matrix”),
and the projection of the 3D point in the camera is derived from the resulting homogeneous
column vector x = [ u v w |7, where the image coordinates are given by (u/w,v/w).!

Specifically, the intrinsic camera parameter matrix, K, takes the form

fe s ¢
K=1]0 fy ¢y (3.5)
0 0 1

where f, and f, are the theoretical x- and y-scaled focal lengths for the camera?, c,
and ¢, are the image pixel coordinates of the principal point of the image (which typically
coincides with the center of the image), and s is a special-case skew parameter, which almost
always takes a value of 0.

Though Equation 3.4 models the projection of a 3D point into an image with a given
focal length and principal point, it assumes that the camera is oriented at the origin with
no rotation. To account for the camera taking on a different viewing direction and position,

Equation 3.4 is expanded with

1 Note, the pinhole camera model assumes the image uses coordinate axes such that x increases to the right
and y increases downward, with (0,0) representing the top-left corner of the image.

21Theoretically, the focal length need only be represented by a single parameter, f. However, in the case
of real-world CCD cameras (which often use sensors with pixels that are slightly non-square), two different
focal lengths are needed for each direction in order to accurately model the projection.
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x=KEX  where E=[Rt] (3.6)

where X now takes the form of a homogeneous column vector, [ z y z 1], and R and
t take the form of a rotation matrix and translation vector, as described in Section 3.1. In
this form, E indicates the transformation that must be applied to all scene points in order
to simulate the scenario of a camera that is not positioned at the origin while exhibiting
no rotation. Thus, E actually indicates the opposite of the camera localization parameters;
however, this distinction is seldom relevant in solving the SLAM problem. Thus, E is viewed
as the representation of the camera’s localization parameters and is often referred to as the
“extrinsic camera parameters” or the “camera pose”. This model is useful, as continuous
estimation of the extrinsic camera parameters is one of the primary goals of the SLAM

process.

3.3 Salient Feature Extraction, Description, and Matching

As many of the theoretical methods used in the visual SLAM process rely on 2D point
projections as input, image feature extraction acts as the foundation that makes these theo-
retical methods applicable to the real world. Feature collection involves identifying salient,
easily-trackable patches (or “features”) of an image and providing an identification process
for these features such that each feature is distinct from other features in the image, but
similar to the corresponding feature in a different image that views the same scene. A pair of
corresponding features are both, presumably, projections of the same 3D scene point. This
assumption provides a basis for the methods used for triangulation and camera localization
in the visual SLAM process.

Strong feature locations in an image can be deduced in many ways, but one of the fastest
standard approaches is the FAST feature detection algorithm [60]. Assuming a greyscale
image, the FAST algorithm classifies an image patch as a salient feature by comparing the
intensity of the patch’s center pixel with the intensities of the pixels that make up a small,
7 x 7 circle around the center pixel. In the 7 x 7 patch configuration, the patch is classified

as a salient feature if 12 contiguous pixels along the circle are either all brighter or all
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Figure 3.1. Example of the FAST algorithm’s analysis of an image patch
using circle of diameter 7, first presented in the original FAST paper, [60].
Note that the patch is classified as a salient feature because the 12 pixels that
intersect with the dotted line contain higher intensity values than the center
pixel, C.

darker than the center pixel (given some additional threshold to account for noise). Many
implementations also use an adaptation of this approach by using a 9 x 9 image patch while
requiring 16 contiguous pixels in order to determine salience. Figure 3.1 (forwarded directly
from [60]) illustrates how the FAST algorithm is applied to an arbitrary 7 x 7 image patch.

The FAST feature detector is able to scan through an image and provide a useful collec-
tion of feature locations quickly, but each feature also needs to be prescribed an identifier, or
“descriptor”, so it can be recognized and properly associated with the corresponding feature
in other images that view the same scene. Many specifications exist for feature description,
including foundational descriptors such as SIFT [61] or SURF [62]. However, these standard
approaches are known for relatively slow matching speed; thus, other descriptor specifications
have emerged specifically to rectify this shortcoming. One of the most significant alternatives

to SIFT and SURF is BRIEF [63].
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BRIEF speeds up the matching process by specifying the feature descriptor as a binary
vector. This is useful because even brute-force matching of binary descriptors can be per-
formed quickly by simply computing the Hamming distance between pairs of descriptors,
which can be done rapidly on most hardware as this is equivalent to getting the sum of the
XOR values between bit pairs. The individual features of the binary vector correspond to
preset pixel-pair comparisons within the image patch. For each feature’s preset pixel pair,
(p1,p2), if I(p1) < I(p2) (where I(p) is the image intensity at pixel p), then the feature value
is set to 1; otherwise, it is set to 0. The preset pixel pairings for each feature are arbitrarily
determined by sampling from an isotropic Gaussian distribution, further specified in [63].

Though BRIEF provides a strong framework for fast-matching descriptors, its matching
recall struggles when there is rotation disparity between a pair of corresponding features.
ORB [64], on the other hand, is a binary feature descriptor that adds rotation invariance to
the BRIEF framework. It achieves this by computing an angle for each FAST feature with
the intensity centroid [65] of the feature’s image patch. Specifically, the angle, 6, of a feature

is computed with

0 = arctan2(mg, m1g) (3.7)

where m,, are the moments of the patch, defined by

Mpg = Y aPy?1(z,y) (3.8)

:E,y

The preset pixel pairs are then stored in lookup tables, where each table acts as an atlas
for the pixel pairings under a specific rotation. Specifically, ORB precomputes a lookup table
for every 12 degrees. In addition to rotation invariance, ORB also provides a more robust set
of pixel pairings than initially proposed by BRIEF; this was achieved by identifying the 256
uncorrelated pairings with the highest variance from a large training set. For more details,
see [64].

ORB, acting as a FAST detector with a rotated BRIEF descriptor, yields strong matching

performance while also maintaining low computation cost. Consequently, it is used heavily
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in systems such as ORB-SLAM [18] as well as LUMO-SLAM, which is discussed in detail in
Chapter 6.

3.4 Map Initialization with Structure from Motion

In a monocular SLAM system, the map can be continuously grown by triangulating 3D
locations for feature matches across pairs of previously-observed image frames. However,
before additional points can be triangulated into the map, the camera poses associated with
each prospective point must be either known or estimated by the system. Yet, estimation
of the camera poses is typically carried out with a PnP algorithm [66], which requires a
set of 3D-to-2D correspondences. With these approaches typically used for map growth,
the generation of new points requires the estimation of camera poses while the estimation
of camera poses requires the estimation of point locations. This presents a challenge for
markerless systems, in which no reference points are given to provide a set of starting points
for the map to build onto. This challenge motivates the process of map initialization, which
aims to estimate an initial set of camera poses and 3D points to represent the map without
relying on known marker information.

Map initialization for monocular SLAM systems is particularly challenging, as a single
frame does not contain sufficient information to infer the 3D localization data for its image
features. Thus, it has become common for monocular SLAM systems to perform map ini-
tialization by silently observing many frames as the user begins to move the camera, and
then identifying a pair of these frames to use for feature matching and structure from motion
(SfM). SfM is a process which uses a set of 2D-to-2D image feature correspondences from
a pair of images in order to deduce the difference between their camera poses. Once the
difference between the camera poses is estimated, the first camera can be oriented at the
origin and the second camera can be localized with the estimate provided from the SfM
process. From this point, the camera poses can be used in conjunction with their 2D-to-2D
feature correspondences to triangulate each feature’s respective 3D point location using the

triangulation approach described in 3.5.
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Popular SfM algorithms tend to compute either the essential matrix, the fundamental
matrix, or the homography matrix in order to then solve for the SE(3) transformation be-
tween the viewing cameras. These matrices and their relationships to the SfM process are

described in the following sections.

3.4.1 The Essential Matrix

The essential matrix [67] is a real, 3 x 3, non-zero matrix that relates a pair of camera

poses with

E=[t)xR (3.9)

where F is the essential matrix and R and t are the rotation and translation components

of the pose difference between the cameras.® For further specification, [t]y, is the skew-
symmetric matrix representation that would be used to perform a vector cross product with

t. This takes the form

0 —t. t,
the=|t. 0 —t, (3.10)
—t, t, 0

where t,,1,, and ¢, are the components of t. In addition to this formulation, the essential
matrix is also acts as a representation of epipolar geometry, which is further discussed in
Section 3.4.2.

The essential matrix is particularly useful in the SfM process because, if known, the
essential matrix can be decomposed into the components of the camera pose difference, R
and t, at an arbitrary baseline scale. For the purpose of map initialization, the deduction of
R and t can be viewed as the ultimate goal of the SfM process. The decomposition of E into
R and t is performed by using the singular value decomposition (SVD) of E in conjunction

with the following standard theorem [68]:

34Note that the essential matrix, F, is distinct from the extrinsic camera parameter matrix, E.
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Theorem 3.4.1. Let the singular value decomposition of E be Udiag(1,1,0)V". The four

possible factorizations of E = [t|«R are

[t]x =UZU'or UZ'U", R=UWV'ior UW'V' (3.11)
where
0 -1 0 0 10
W=1|1 0 0/ Z=|-10 0 (3.12)
0 0 1 0 00

Theorem 3.4.1 results in two values for t and two values for R. The four possible (R, t)
pairings each provide a hypothesis for the true pose difference between the cameras. The
correct pose can then be selected by evaluating the cheirality constraint* [69] for each pose
hypothesis.

To select the correct pose difference among the four hypotheses, each pose is paired with
the default pose, [ I 0 ], which represents a translation at the origin with no rotation. The
default pose assumes the role of the primary camera (associated with the first image) and the
hypothesis pose assumes the role of the secondary camera (associated with the second image).
Given this pairing of camera poses, a single, accurate 2D-to-2D feature correspondence can
then be triangulated with the approach described in Section 3.5. The resulting 3D point can
be used to evaluate the cheirality constraint, as the triangulated point will only appear in
front of both cameras when the correct pose is used.

The technical details of the cheirality check are fairly straightforward. Given the trian-
gulated point, X = [z y 2 w |7, the point is in front of the primary camera (with pose
[10]) if zw > 0 and the point is also in front of the secondary camera (with pose hypothesis
[ R t])if 2’w > 0, where 2’ is the third component of [ R t ]X. Once the cheirality check
exposes the correct pose hypothesis, the first camera can be associated with the default pose

while the second camera can be associated with the correct pose hypothesis. At this point,

41¢“Cheirality” is the constraint that dictates that points viewed by a camera must be located in front of the
camera in the 3D space.
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the goal of the SfM process has been achieved, as the pose difference between the cameras,
[ R t |, has been successfully deduced.

Though this process illuminates the utility of the essential matrix and how it can be
used to deduce the pose difference between a pair of cameras, it does not address how the
essential matrix is obtained without prior knowledge of this pose difference. However, the
essential matrix for a pair of images can, in fact, be estimated without prior knowledge of
the pose difference by leveraging a set of 2D-to-2D feature correspondences from the two
images. This can be accomplished with one of a number of algorithms, the most popular of
which may be Nistér’s five-point algorithm [70].

The five-point algorithm is a relatively sophisticated algorithm which uses at least five
2D-to-2D feature correspondences from the image pair to estimate the essential matrix. It
does this by generating an n x 9 matrix (where n is the number of correspondences), which is
composed of the components of the correspondences. The algorithm then requires deducing
four vectors which span the right nullspace of this matrix. Nistér asserts that the components
of the essential matrix are a linear combination of these vectors, and thus the remainder of
the algorithm requires solving for the coefficients of this linear combination. For brevity, full
details of the algorithm, including details on efficient implementation of its steps, are left to
Nistér’s paper [70].

Though the five-point algorithm is robust, it tends to be more computationally expensive
than other approaches. Another (and generally much faster) way to estimate the essential
matrix is to first estimate the fundamental matrix with the eight-point algorithm and then
convert the fundamental matrix to the essential matrix by using the theoretical relationship

between the two matrices. This process is described in Section 3.4.2.

3.4.2 The Fundamental Matrix

The fundamental matrix is an analog of the essential matrix, related by the equation

E=K'FK (3.13)
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where FE is the essential matrix, F is the fundamental matrix, and K is the intrinsic
camera calibration matrix.” The fundamental matrix also expresses an important constraint
derived from epipolar geometry. Epipolar geometry refers to the relationship between 3D
points and the constraints on their projections in a given pair of stereo images. The funda-

mental matrix encodes this epipolar constraint with the following equation:

x'"Fx =0 (3.14)

where F is the fundamental matrix and x and x’ are homogeneous column vectors of
the image keypoint locations for a single 3D point in the first image and second image,
respectively.

The epipolar constraint from Equation 3.14 can be used to estimate the fundamental
matrix with a set of eight or more 2D-to-2D image correspondences from a given pair of
stereo images. This approach is aptly named the “eight-point algorithm.”

The eight-point algorithm is a simple alternative to the five-point algorithm, as it func-

tions by reformulating the constraint from Equation 3.14 into the following flattened form:

fo

fi
v’ yx' o owy oyy oy ooy 1| =0 (3.15)

| fs]

where fy... fs are the components of the fundamental matrix (in row-major order), and
(z,y) and (2’,y’) represent the image keypoint locations of a single 3D point in the first
and second images, respectively. The leftmost matrix can be expanded vertically with the
keypoint locations of seven or more additional points to yield an n x 9 matrix, where n
is the number of points used. It then follows that the components of the fundamental
matrix coincide with the right nullspace of this matrix, which is also the singular vector
corresponding with the smallest singular value of this matrix (i.e., the last column of V if

the SVD of this matrix is UDV "), as the fundamental matrix is defined up to an arbitrary

541n this context, it is assumed that both of the cameras use the same intrinsic camera calibration matrix,
K.
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scale. Deeper exploration of both the fundamental matrix and the eight-point algorithm is
provided in [68].

Upon estimation of the fundamental matrix, the known intrinsic camera calibration ma-
trix, K, can be used with Equation 3.13 to deduce the essential matrix and recover the
camera pose difference with the process described in Section 3.4.1. It is also worth noting,
for implementation purposes, that a set of scene points that all lie on one of a few degen-
erate ruled quadrics (namely, a plane), the eight-point algorithm is ill-suited to accurately
estimate the fundamental matrix. Thus, in some SLAM systems [18], the estimation of
the fundamental matrix is paired with the estimation of a homography, which suffers from

complementary degenerate cases. This is further explored in the next section.

3.4.3 The Homography Matrix

Another matrix that is useful for the SfM process is the homography matrix. Where
the essential and fundamental matrices are representations of epipolar geometry, the ho-
mography matrix is instead a homogeneous 3 x 3 matrix that represents a planar, projective
transformation. That is, it can describe how points on some plane are projected onto another

plane with

x' = Hx (3.16)

where H is the homography matrix, x is a homogeneous column vector representing
the 2D plane coordinates for a point on some plane, and x’ is a homogeneous column vector
representing the 2D plane coordinates of the same point as it is projected onto another plane.
With this relation, x and x’ can also be seen as image keypoint locations for a 2D-to-2D
correspondence, much like in Equation 3.14.

As homographies only define planar, projective transformations, homographies can only
be used to relate sets of 2D-to-2D correspondences that map to coplanar points in 3D. This
is complementary to the degenerate case of the eight-point algorithm, which requires the

3D points to be non-coplanar. Thus, SLAM systems may employ both fundamental matrix

37



estimation as well as homography estimation during map initialization to provide a higher
degree of robustness.

Like the other SfM approaches, the homography matrix can be estimated from a small set
of 2D-to-2D feature correspondences from a pair of images by using the four-point algorithm.
The four-point algorithm is a low-cost, straightforward algorithm that requires at least four
feature correspondences to deduce the homography matrix. This is achieved by using the
constraint in Equation 3.16 to deduce that x’ and Hx are parallel, and thus

x' x Hx =0 (3.17)

where X is the cross product of the two vectors. When computed with the matrix
multiplication formulation of the cross product, [x']«, the components of H can be factored

out in the form of

_hO_
0 0 0 —x —y -1 vz vy )

1
x y 1 0 0 0 —az —ay —2 =0 (3.18)
—y'x —yy —y 2z 2y 2 0 0 0

_hS_

where hq, hq, . .. hg are the components of H in row-major order, and (x,y) and (2, y) are
the image coordinates for a correspondence in the first image and second image, respectively.
For implementation purposes, the third row of the leftmost matrix is typically omitted, as

it is not linearly independent. Thus, the formulation becomes

0

X

0 0

—X

-y

-1
0

y'x
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—x'y —u

ho
hy

hs

(3.19)

The leftmost matrix in Equation 3.19 can then be expanded vertically with at least three

additional 2D-to-2D correspondences, resulting in an n X 9 matrix, where n is twice the

number of correspondences used. Since H is only determined up to an arbitrary non-zero
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scale factor, the right nullspace of this n x 9 matrix coincides with the unit singular vector
corresponding to its smallest singular value. This vector, as described in Section 3.4.2, is
the last column of V, given the SVD of the matrix is UDV . Thus, the components of this
vector provide the solution for the components of the homography matrix, H.

There are a number of popular approaches that recover the parameters of the camera
pose difference, R and t, from the estimated homography matrix, including [71], [72], and
[73]. The approach proposed in [73] is common, as it is implemented in the popular OpenCV
computer vision library [74]. The approach ultimately manages to estimate two hypotheses
for both R and t, in the form of R,, Ry, t,, and t,. The final pose hypotheses are then
grouped as [ R, to |, [Ry to |, [ Ra —to |, and [ Ry, — t; |. Much like in the case of
essential matrix decomposition, the correct pose hypothesis is selected by evaluating the
cheirality constraint, as discussed in Section 3.4.1. As exact implementation details of this

decomposition process are extensive, the remaining technical details of the approach are left

in [73].

3.5 Point Triangulation

Point triangulation is the process of estimating the location of a 3D point by using two
or more images that contain the point’s projections. It is an important component of the
SLAM process, as it is used to continually grow the system’s map and can even be used to
facilitate the initial generation of the map. To triangulate a point into 3D space, the intrinsic
camera parameters, K, are assumed to be known as well as the poses of two cameras viewing
the point, [ R t ] and [ R’ t' ], and the point’s projections in each image, x and x’.

To formulate the process for point triangulation, recall the standard pinhole camera

model,

x = KEX (3.20)

where X is a homogeneous column vector of some point in 3D space, E is the pose of

the camera ([ R t |), K is the intrinsic camera parameter matrix, and x is a homogeneous
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column vector representing the projection of X into the image. For simplicity, K and E are
combined into a single matrix, P, yielding

x = PX (3.21)

Since homogeneous matrices are used, Equation 3.21 indicates that x and PX are parallel,

and thus x x PX = 0. This constraint can be also be written as [x],PX, where

0 -1 y
Xx=|1 0 -z (3.22)
-y x 0

where (x,y) is the observed image keypoint location for X through the camera associated

with P. Since the goal of triangulation is to solve for X, [x],PX can be viewed as an AX = 0
problem, where

TPy — Pg
A= [X]XP yp;— — pI (323)
Tp] — yPgy

and p; is the i row of P such that P = [ pJ p; py | . In practice, the third row of A

is typically ignored as it is not linearly independent.

To triangulate the point X, this constraint can be formulated for two separate cameras,

P and P’, that each view the point from a different position. The resulting value for A
becomes

Tp; — Pg
T AT
A YP2 — P1 (3.24)
aval s
TPa2 =Py
YDy — P
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where (z,y) are the image coordinates resulting from camera matrix P (the first camera)
and (2/,y") are the image coordinates resulting from camera matrix P’ (the second camera).
The right nullspace of A coincides with the homogeneous solution for X. Thus, as discussed
in Section 3.4.1 and Section 3.4.3, this nullspace can be deduced directly as it coincides with
the last column of V, given that the SVD of A = UDV'. However, the last column of V
is equivalent to [ zw yw zw w |, where (z,y, 2) is the 3D location of X. Consequently, this
column vector must be normalized by its w component to recover the true values for the 3D

point location, (z,v, 2).

3.6 Camera Localization with the Efficient Perspective-n-Point Algorithm

One of the primary goals of visual SLAM is to estimate the pose of the camera on every
frame. This localization task is often framed as a Perspective-n-Point (PnP) problem, in
which a set of 3D points and their observed 2D projections in a single image are provided
and the goal is to use these 2D-to-3D correspondences to estimate the camera pose. There
are many proposed solutions to this problem, the earliest of which include [75], [76], [77],
[78], and [79]; however, a particularly efficient solution to the PnP problem is the Efficient
PnP (EPnP) algorithm proposed by Lepetit, et al. [80].

The EPnP algorithm is an efficient, non-iterative solution to the PnP problem that has
O(n) complexity with respect to the number of correspondences. It has also become a
standard approach, as it is implemented in the OpenCV computer vision library. To briefly
summarize the algorithm, the novelty of the approach is that it represents each given 3D

point as a weighted sum of four control points, such that

4 4
pi' =) ayc, D oay=1,  i=1...n (3.25)
=) =1

where p¥ is the it 3D reference point provided in the world-coordinate frame, c{” is the jth
control point in the world-coordinate frame, and o;; make up the homogeneous barycentric
coordinates for point p;. The control points are selected such that the centroid of the
reference points acts as one of the control points and three vectors which form a basis along

the principal directions of the set of reference points act as the remaining control points.
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With known control points, all values for «;; can be estimated trivially using the known
values of p}.

This formulation is useful, as the same property is upheld in the camera-coordinate frame:
4
plc = Z ozijcjc (326)
=1

In this equation, p© and c© represent a reference point and a control point, respectively,
in the camera coordinate space. The next step of the approach is to then solve for the control
points in the camera-coordinate frame, as the camera pose can be solved in many ways if a
set of points is known in both the world- and camera-coordinate frames.

Substituting Equation 3.26 into the standard pinhole model presented in Section 3.2

yields the following two constraints:

4
> o forf + agj(es —wi)zf =0 (3.27)
=1
and
4
Zaijfyyf + aij(ey —vi)2y =0 (3.28)

j=1

where control point j in the camera-coordinate frame takes the form (f,yf, 2{) and, in
this context, x is assumed to take the form [ u v 1|7, where the scalar, w, is already factored
out. Thus, (u;,v;) represents the observed image projection coordinates for point i.

These constraints can then be used to to formulate a 2n x 12 matrix, M, such that
Mx = 0, where x = [ c§' c§' ¢§' c5' ]. Though there are many ways to estimate M,
Lepetit, et al. propose that an efficient approach is to represent the vector, x, as a weighted
sum of the columns of the right-singular vectors of M that correspond to the null singular
values of M. For more extensive implementation details, see [80]. At this point, the control
points are known in both the world-coordinate frame and the camera-coordinate frame; thus,

computing the transformation between them (which coincides with the camera pose) can be

computed both directly and quickly with one of a number of standard approaches.
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3.6.1 Outlier Robustness with Random Sample Consensus

Random Sample Consensus (RANSAC) [81] is a generalized framework used for perform-
ing robust model fitting. Specifically, it enables model fitting algorithms to identify gross
outliers in their input data and exclude them from the model estimation. The simplicity of
RANSAC makes it easily applicable to a wide variety of algorithms, including EPnP.

When applied to EPnP, RANSAC requires the random selection of some subset of the
2D-t0-3D correspondences. This subset is then fed as input to the EPnP algorithm and the
camera pose is estimated from these correspondences. Next, the resulting camera pose is
used to compute the reprojection error for each correspondence. Correspondences which are
outliers will trend towards high reprojection errors, while correspondences that are inliers will
trend towards low reprojection errors. Consequently, an error threshold is set ahead of time
to discriminate between presumed inliers and outliers. Correspondences with sufficiently
high reprojection errors are omitted from further calculation (and denoted as outliers), and
the remaining low-error correspondences are fed as input to the EPnP algorithm again. This
process iterates until either a set number of iterations takes place or until all input points

are viewed as inliers for the resulting camera pose.

3.7 Bundle Adjustment

A set of 2D-t0-3D correspondences from a single camera frame is often sufficient to esti-
mate a usefully-accurate pose for the camera and a single 2D-to-2D feature correspondence
between two cameras (with known poses) may be sufficient to triangulate the correspon-
dence’s 3D point location; however, the accuracy of these estimates is often limited, as the
estimates are developed with somewhat narrow constraints and are thus particularly af-
fected by noise in the data. This limited accuracy becomes troublesome as new points are
triangulated with increasingly-inaccurate camera poses and new camera poses are, in turn,
estimated with increasingly-inaccurate point locations. To improve these estimates, a subset
of the estimated camera poses and all triangulated points are stored in the map and refined

with a process known as “bundle adjustment.”
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Bundle adjustment, in short, is a non-linear least-squares minimization of the reprojection
errors of a set of feature observations; this optimizes the camera poses and 3D point locations

associated with these measurements. The objective function for this problem takes the form

i (3.29)

min ZZ

Ci7xjv(i»j) i=1j=1

xi; — f(Ci, X;)

where C; and X are vectors that denote the parameters of camera pose i and 3D point
j, respectively, given m camera poses and n triangulated points, x;; is the observed image
keypoint coordinates of point j in camera i, and f(C;, X|) is the pinhole projection function
that predicts the keypoint location of point j in camera i.

Since the pinhole camera model uses homogeneous coordinates, the formulation of the
reprojection error is non-linear. Thus, the Levenberg-Marquardt algorithm [82] is commonly
used to perform this minimization by computing the adjustment vector, ¢, for all values

being optimized, {C, X}, with the equation

(JTT+ D)6 =T (x — f(C,X)) (3.30)

where J is the Jacobian matrix containing the gradients of pinhole projection function,
f, with respect to the camera poses and point locations, {C,X}, and A is an adjustable
damping factor used to aid in optimization. The Jacobian’s columns represent the optimiza-
tion parameters (camera poses and point locations) while its rows represent the the image
keypoints observed. This typically results in a large, but sparse, Jacobian; consequently,
this sparsity is typically exploited to accelerate the bundle adjustment process. For more
implementation details, see [83].

When performed on an entire map containing thousands of triangulated points and hun-
dreds of camera poses, bundle adjustment is far from a realtime process. However, bundle
adjustment is often applied to subsets of a SLAM system’s map in order to achieve a useful
degree of refinement in realtime or near-realtime. This variant of bundle adjustment is re-
ferred to as “windowed bundle adjustment” and it is leveraged extensively in LUMO-SLAM,
which is further discussed in Chapter 6.
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4. INITIALIZATION SUITABILITY IN MARKERLESS
MONOCULAR SLAM

In order for a visual SLAM system to continually localize a camera in its environment,
the system must have access to a virtual mapping of the corresponding environment to
use as a reference. In markerless SLAM systems, this mapping does not exist prior to the
system’s runtime. Instead, the system’s environment map (or at least a subset of it) must be
generated programmatically at the beginning of the system’s execution. This programmatic
map generation process is also known as map initialization, as SLAM systems still continue
to build and refine their maps after this initial subset of the map is generated.

Map initialization is a relatively easy problem to solve in the context of RGB-D and
stereo SLAM systems, as these modalities of visual SLAM are provided with enough data to
initialize the map in a single frame. RGB-D SLAM systems utilize both color imagery and
depth maps, which can be used to back-project image features into the 3D space directly.
Stereo SLAM systems make use of two independent cameras, each of which view the same
scene at slightly different positions. In this case, each iteration of the SLAM loop has access
to two frames which can be analyzed for feature matches; this enables the system to initialize
the map in a single loop iteration with one of the SfM approaches shown in Section 3.4.

Monocular SLAM systems, however, pose an additional challenge to the map initialization
problem in that they do not have access to depth data or synchronous stereoscopic imagery.
To solve this problem, keyframe-based monocular SLAM systems will often make use of SfTM
approaches (much like stereo SLAM systems) by recording multiple image frames over time
and isolating a pair with a sufficiently large baseline. Assuming that sufficiently few scene
objects have moved during this initial camera movement, this image pair can then be used
to facilitate map initialization with SfM techniques, as seen in stereo SLAM systems.

Though this map initialization approach can successfully generate the initial subset of the
map in monocular systems, it also presents a unique challenge to overcome if the system is
to be functional in a real-world setting. The challenge posed by this approach is the problem

of frame selection.
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Frame selection is the problem of selecting two image frames that are well-conditioned for
map initialization via SfM techniques. For example, a pair of frames are ill-conditioned for
map initialization if there is an insufficiently-small ratio between the baseline of the cameras
and the average Euclidean distance between the observed points and cameras. Though the
average parallax of the triangulated map points (with respect to the cameras) can be used
as an analog for this metric, it is impossible to compute this value without first generating
the map. Additionally, for reliable accuracy, some SfM approaches require the scene points
to be mostly coplanar (Section 3.4.3) and other SfM approaches require the scene points to
be mostly non-coplanar (Section 3.4.2).

The fact that the evaluation of these conditions is interdependent with map existence is
troublesome for two reasons: (1) if the image pairs are ill-conditioned, the resulting map may
be too unreliable to facilitate an accurate evaluation of its own reliability, and (2) attempts
at map initialization are often computationally expensive and are best kept at a minimum
if applied to a real-world SLAM system. Thus, the goal of evaluating the initialization
suitability of a pair of image frames is to determine if the image pair is likely to result in a

reliable mapping before attempting to generate the map.

4.1 Existing Approaches

Out of the growing body of visual SLAM literature, relatively few works address the frame
selection problem. This is, in part, due to the vast utility and ease afforded by constraining
the SLAM problem to make use of known environment data or fiducial markers. Though
systems that make use of known environment data often go as far as to leverage this data
for camera localization [84]-[88], even largely-markerless systems like MonoSLAM [12] still
utilize fiducials to aid in solving the map initialization problem, which enables the system
to avoid the frame selection problem altogether.

However, though markers help to simplify the SLAM problem as a whole (and can even
be used to enhance monocular SLAM capabilities by providing scale data [89]), their use
constrains the applicability of any SLAM system that requires them. Marker-based systems

require environment preparation on behalf of the user and are unable to perform pose es-
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timation when the markers fall out of view; these traits are meaningfully restrictive when
considering real-world applications of SLAM. Thus, there has been increased interest in the
development of SLAM systems that forego the dependency on markers by instead tracking
natural features and initially reconstructing their 3D locations with SfM techniques [16]-[18],
[90], [91]. The frame selection problem is relevant to these types of SLAM implementations,
as they are monocular configurations with SfM-based map initialization.

To address the frame selection problem, Parallel Tracking and Mapping (PTAM) [16], [17]
and a later work by Sun, et al. [90] require the end-user to manually indicate which frames
are to be used for map initialization during runtime. Though this approach is straightforward
and effective, it is not ideal for real-world SLAM applications as user intervention may be
inconvenient or may even require a high degree of savvy from the end-user.

ORB-SLAM [18], on the other hand, implements an automated approach to frame se-
lection. It accomplishes this by first recording a reference frame during runtime and then
attempting initialization on each subsequent frame, using the reference frame and current
frame as the frame pair. After attempting initialization, the system uses a novel suitability
criteria to determine if the resulting map quality is sufficient to move on from the initializa-
tion module. Specifically, ORB-SLAM checks that the resulting map contains a large number
of triangulated points that uphold the cheirality constraint [69], have low reprojection error,
and have high parallax with the two localized camera frames. These metrics provide a ro-
bust assessment of the map quality; however, this brute-force approach is computationally
expensive, as the entire map initialization process is performed on every frame. This makes
it ill-suited for applications that need to be implemented on resource-limited platforms like
mobile phones or low-cost embedded systems.

Outside of user-assisted and brute-force frame selection techniques, there are relatively
few works that attempt to provide a fast, automatic approach for frame selection. One
of the earliest relevant works that proposes a solution to this problem is a contribution
by Tomono [92]. In this work, Tomono presents a frame selection approach in which the
feature matches in the image pair can be used to predict the degeneracy of the fundamental
matrix before its computation. This approach, however, only applies to the estimation of the

fundamental matrix, making it unsuitable for systems that use essential matrix estimation or
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homography estimation to perform map initialization. Additionally, the degeneracy metric
provided in this approach does not distinguish between degeneracies caused by poor baseline
and degeneracies caused by high coplanarity of the scene points. This distinction would be
particularly useful for systems that utilize multiple SfM approaches for high applicability.
Lastly, this approach presents a threshold parameter to determine the suitability of the
frame selection; however, the appropriate value for this parameter changes as the number
of correspondences changes, which could make the implementation of this approach on a
real-world application of SLAM challenging.

A simpler, yet still effective, approach to frame selection is used in VINS-Mono [91].
VINS-Mono implements a suitability criteria in which a frame pair is used for map initial-
ization if the frames share at least 30 correspondences that have endpoint disparities over
20 pixels. A later SLAM system [93] implements a similar approach, except it evaluates
the median and standard deviation of the endpoint disparities to not only determine the
suitability of the frame pair, but to also determine the specific StM approach that the frame
pair is most suited for. Though these approaches are very practical, they fail under pure

rotational cases and their accuracy leaves much room for improvement, as shown in [1].

4.2 A Deep Learning Solution

Though the approaches used in [93] and [91] are straightforward and effective, deep
learning can be used to achieve significantly improved accuracy over these methods while
maintaining low computation cost. This can be accomplished by extracting correspondences
from the candidate frame pair and then deducing summary data from this set of correspon-
dences. This summary data can then be used as input for a small classifier to determine if
the set of correspondences is likely to yield a successful mapping. If the model indicates that
a successful mapping is likely, then an SfM technique can be used to initialize the map. Oth-
erwise, the system can skip to the next frame, collect correspondences between the reference
frame and the new frame, and start the process over.

Since different SfM algorithms have different degeneracy conditions, a specific classifier

can be developed for each approach. This way, if a SLAM system needs to perform map
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initialization and is currently looking at a planar scene, the classifier for the fundamental
matrix approach (see Section 3.4.2) may indicate a negative result while the classifier for
the homography approach (see Section 3.4.3) may indicate a positive result. If a SLAM
system incorporates multiple SfM approaches for map initialization, this combination of
model outputs can be used to inform the system as to which approach is viable for the

current frame pair.

4.2.1 Model Configurations

To demonstrate this concept, five classifiers are trained for each of the three SfM ap-
proaches described in Section 3.4, totaling 15 classifiers. Each classifier receives the same 23
correspondence summary features as input. Given that a single correspondence consists of a
point in the first image, (x,y), and a point in the second image, (z/,y’), the model input fea-
tures include: the number of correspondences extracted for the image pair, the mean of the
correspondence endpoint disparities (the distance between (z,y) and (2/,y')), the standard
deviation of the correspondence endpoint disparities, the minimum and maximum values for
each component of the correspondences (z,y, 2’ and y’), the range of each component of the
correspondences, and a normalized eight-vector which acts as an analog for the distribution

of correspondence directions. Specifically, the direction, #, of a correspondence is defined by

,_
f = arctan (y/ y) (4.1)

Tr —T

After the direction is computed for a correspondence, the direction is used to increment
one of the eight features in this vector. Once all directions have been computed, this vector is
normalized before being appended to the model inputs. Figure 4.1 shows a concrete example
of the computation of the direction vector.

For each SfM approach, five classifiers are developed in an attempt to maximize model
accuracy. The first classifier is a basic logistic regression model that simply runs the 23
input features through a sigmoid activation, interpreting 1 as the positive class and 0 as the

negative class. These classifiers were first presented in [1] and showed improved precision
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(a) (b)

Figure 4.1. (a) An example of four tracked features (circled) with their
motion correspondences indicated by green lines. The uncircled endpoints of
the motion correspondences indicate the initial positions of the features (from
a previous frame) and the circled endpoints indicate the features’ positions
in the current frame. (b) Visualization of the computed direction for each
correspondence. Note that each feature’s direction coincides with the angle of
its correspondence shown in (a). These directions are discretized about the
eight cardinal directions (N, NE, E; SE, S, SW, W, NW) for the construction
of the model’s directional input vector. In this example, since the topmost
correspondence is mostly southwest-facing while the other correspondences
are mostly west facing, the direction vector would be (0, 0, 0, 0, 0, 1, 3, 0), or
(0, 0,0, 0,0, 0.32, 0.95, 0) after normalization.
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over the approach described in [93]. The remaining four models are deeper neural networks
that run the 23 input features through two dense hidden layers (with ReLU activations) and
result in two-class softmax output layers. The only difference between each neural network

is the size of the hidden layers, which are 8 x 8, 16 x 16, 32 x 32, and 64 x 64.

4.2.2 Training and Labeling Criteria

To train each model, sample image pairs are extracted from sequences of the TUM RGB-
D dataset [94]. Each sequence makes up a video of a different scene as the camera undergoes
different movements in the environment.

Model data is generated from these sequences by segmenting each sequence into smaller
batches of frames and extracting feature correspondences between pairs of frames in each
batch. To compensate for the dramatic differences in camera movements between different
sequences, each sequence is segmented with a different batch size. Specifically, the batch
sizes used include 10 frames, 30 frames, 45 frames, and 60 frames. Within each batch, image
pairs are extracted by simply pairing the first frame in the batch with every other frame in
the batch. This helps ensure that each batch provides image pairs that demonstrate little
camera movement as well as image pairs that demonstrate substantial camera movement.

As it is useful to prepare training data that is similar to that which the models will see
in a real-world scenario, correspondences are extracted from each image pair by detecting
and matching ORB [64] features, which are extracted homogeneously throughout the image.

The classification label for each image pair is determined by reconstructing the scene
with each model’s associated SfM approach and then evaluating the quality of the map in a
fashion similar to that seen in ORB-SLAM [18]. This means that each image pair will have
three labels associated with it: a label for the fundamental matrix classifiers, a label for the
essential matrix classifiers, and a label for the homography matrix classifiers. Re-evaluating
the labels for each approach is necessary because the SfM approaches may generate maps of
substantially different quality given a single set of correspondence data.

After an SfM approach is used to reconstruct a map of the correspondences, map quality

is determined by three characteristics of the triangulated points: parallax, reprojection error,
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and cheirality. Specifically, the reconstruction is classified in the negative class if it contains
less than 50 triangulated points with parallax greater than 2° or if it has less than m points
that both uphold the cheirality constraint and also have less than a 4 pixel reprojection error,
where m is the maximum between the values 50 and 0.9 x n, and n is the number of inliers
deduced from the corresponding RANSAC scheme used in the SfM matrix estimation process.
If neither of these failure conditions are met, then the map quality is considered sufficient
and the image pair is given a label associated with the positive class for the corresponding
classifier.

After labels are generated for each sample, the samples are duplicated for each SfM
approach and then balanced to include the same number of positive and negative samples
to improve training. This is achieved by duplicating samples from the deficient class. The
resulting data is shuffled and 20% is split into a validation group to evaluate the model
performance. Additionally, 2,498 samples of validation data are generated from a separate
sequence from the TUM RGB-D dataset (a sequence that is never used in training), to further
evaluate model performance. In total, classifiers evaluating suitability for essential matrix
estimation are trained on 23,537 samples, classifiers evaluating suitability for fundamental
matrix estimation are trained on 31,619 samples, and classifiers evaluating suitability for
homography matrix estimation are trained on 23,372 samples. Their validation set sizes are

5,885 samples, 7,905 samples, and 5,844 samples, respectively.

4.2.3 Model Accuracy

The cross-validation results for each model are shown in Tables 4.1, 4.2, and 4.3, and
validation results against the unseen sequence are shown in Tables 4.4, 4.5, and 4.6.

The results from cross-validation show a relatively high F1 score for the best model in
each initialization approach, with the 16 x 16 neural network reporting an F1 of 0.7853
for predicting suitability of essential-matrix-based initialization, the 32 x 32 neural network
reporting an F1 of 0.8476 for predicting suitability of fundamental-matrix-based initializa-
tion, and the 64 x 64 neural network reporting an F1 of 0.7948 for predicting suitability

of homography-matrix-based initialization. When moving to the results measured with the
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Table 4.1.

respectively.

Cross validation performance for models trained for essential-
matrix-based initialization using 80%-20% data split for training and testing,

H Model

\ Accuracy \ Precision \ Recall \ F1 Score H

Logistic Regression
Neural Network (8 x 8)
Neural Network (16 x 16)
Neural Network (32 x 32)
Neural Network (64 x 64)

0.6384
0.7288
0.7845
0.7976
0.7691

0.6556
0.7974
0.7684
0.8334
0.7806

0.6109
0.5997
0.8030
0.7344
0.7365

0.6325
0.6846
0.7853
0.7808
0.7579

Table 4.2. Cross validation performance for models trained for fundamental-
matrix-based initialization using 80%-20% data split for training and testing,

respectively.

H Model

\ Accuracy \ Precision \ Recall \ F1 Score H

Logistic Regression
Neural Network (8 x 8)
Neural Network (16 x 16)
Neural Network (32 x 32)
Neural Network (64 x 64)

0.6114
0.7462
0.7598
0.8521
0.7820

0.6115
0.7847
0.8593
0.8691
0.8587

0.6223
0.6749
0.6182
0.8273
0.6723

0.6169
0.7257
0.7190
0.8476
0.7542

Table 4.3. Cross validation performance for models trained for homography-
matrix-based initialization using 80%-20% data split for training and testing,

respectively.

H Model

\ Accuracy \ Precision \ Recall \ F1 Score H

Logistic Regression
Neural Network (8 x 8)
Neural Network (16 x 16)
Neural Network (32 x 32)
Neural Network (64 x 64)

0.6458
0.7435
0.7827
0.7707
0.8126

0.6379
0.8136
0.8462
0.8851
0.8983

0.6437
0.6438
0.7006
0.6317
0.7127

0.6407
0.7188
0.7665
0.7373
0.7948

Table 4.4. Validation performance for models trained for essential-matrix-

based initialization, using test data generated from an unseen sequence.

H Model

‘ Accuracy ‘ Precision ‘ Recall ‘ F1 Score H

Logistic Regression
Neural Network (8 x 8)
Neural Network (16 x 16)
Neural Network (32 x 32)
Neural Network (64 x 64)

0.5969
0.7870
0.7226
0.7030
0.6869

0.7089
0.7525
0.6084
0.5943
0.5663

0.6001
0.6468
0.7372
0.6638
0.7181

0.6500
0.6957
0.6667
0.6271
0.6332
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Table 4.5.

Validation performance for models trained for fundamental-
matrix-based initialization, using test data generated from an unseen sequence.

H Model \ Accuracy \ Precision \ Recall \ F1 Score H
Logistic Regression 0.4696 0.1897 0.5598 0.2834
Neural Network (8 x 8) 0.5965 0.8724 | 0.5897 | 0.7037
Neural Network (16 x 16) | 0.5733 0.8713 | 0.5571 | 0.6797
Neural Network (32 x 32) | 0.7354 0.8312 | 0.8463 | 0.8387
Neural Network (64 x 64) | 0.6137 0.8716 0.6153 | 0.7213

Table 4.6. Validation performance for models trained for homography-
matrix-based initialization, using test data generated from an unseen sequence.

H Model \ Accuracy \ Precision \ Recall \ F1 Score H
Logistic Regression 0.5857 0.6265 | 0.6324 | 0.6294
Neural Network (8 x 8) 0.7118 0.7256 | 0.5632 | 0.6341
Neural Network (16 x 16) | 0.6749 0.6667 | 0.5343 | 0.5932
Neural Network (32 x 32) | 0.6962 0.7257 | 0.5063 | 0.5965
Neural Network (64 x 64) | 0.6277 0.5808 | 0.5776 | 0.5792
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unseen sequence, the scores are slightly lower than the scores of the cross-validation set, as
the models neither have exposure to this sequence nor to sequences of the same scene during
training. Regardless, the F1 scores of the deep neural network models show an improvement
over the baseline logistic regression models.

In addition to the accuracy metrics provided, each model runs inference for a single sample
in 4 milliseconds on a machine sporting a Ryzen 7 5800X CPU and GTX 1080 GPU using
DeepLearning4j. Coupled with the accuracy metrics discussed above, the results indicate
that these models can be usefully integrated into real-world SLAM systems to accelerate the
suitability evaluation process during map initialization. Consequently, the 32 x 32 neural
network model for predicting fundamental-matrix-based initialization suitability is used to

aid in the map initialization of LUMO-SLAM, which is discussed in detail in Chapter 6.
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5. MOVING OBJECT REGISTRATION AND LOCALIZATION

As AR and VR are developed to become more pervasive technologies, the need for a higher
degree of functionality from underlying tracking solutions becomes apparent. For example,
imagine a developer wants to create an AR application that enables an end-user to annotate
arbitrary objects in their environment with labels that specify the names of the objects. This
sort of application could then programmatically translate the labels to a target language for
the end-user, enabling them to engage in an immersive language-learning process. If this
application is supported by a normal SLAM system, then problems arise when an agent
begins moving labeled objects in the environment. Modern SLAM systems do not account
for deformations in the mapped scene, so object labels would remain static in the environment
even after scene objects have been moved. This would likely disrupt the user’s experience
and potentially cause the environment to become polluted with inaccurate labels. However,
if the underlying SLAM system dynamically registered and relocalized moving objects in the
environment, then it could enable the application to relocalize any labels that are intended to
be associated with moving objects. This is just one basic example of how robust AR systems
of the future will be made possible with the advent of dynamic moving object registration
and localization in SLAM.

It is also worth noting that AR applications of the future will take particular advantage
of a moving object registration and localization approach that does not require the system to
be trained on specific objects ahead of time. Though there are many existing dynamic SLAM
implementations that offer some degree of moving object registration and localization, most
of them rely on this kind of training, which greatly limits the applicability of this function-
ality. The approach discussed in the following sections, however, is a general approach for
solving the moving object registration and localization problem, and its integration into the
SLAM process will enable the system to register and localize arbitrary moving objects in the

scene without any prior knowledge of the objects’ structure, appearance, or existence.
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5.1 Modeling Moving Objects in SE(3)

Before exploring how moving objects can be detected and relocalized, it is important to

first cover how an object’s position and orientation can be represented in the pinhole camera

model. To review from Sections 3.1 and 3.2, the pinhole camera model is a mathematical

abstraction that projects 3D points into a 2D image plane with the following equation:

x = KEX
Expanded, this equation becomes:
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In this equation, the point (z,y, 2) is transformed by the camera’s extrinsic parameters,

E, and then perspective-projected into the image plane represented by the camera’s intrinsic

parameters, K, to the image point, (u/w,v/w). This model can also take on a slightly

modified representation in which the extrinsic parameters are represented as a true SE(3)

matrix:
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This representation is particularly useful, as multiple transformations can now be mod-

eled in the projection of a point. Specifically, the transformation of a point (before it is

projected into the image) can be viewed as a composition of transformations in which the

point is first transformed by a model transformation, M, and then transformed by the cam-
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era’s extrinsic parameters, E, before finally being projected into the image with the camera’s
intrinsic parameter matrix, K. This is demonstrated in the following adaptation of the pin-

hole camera model equation:

x = KEMX (5.4)

Now, the motion of moving objects can be modeled with a different model transformation
matrix, M, for each moving object. If a point is part of the static map (and thus does not
have an associated model transformation), then its model matrix, M, can simply take the
form of the identity matrix, I.

Given this formulation, it becomes clear that the goal of moving object localization is to
solve for the value of the model transformation matrix, M, for each moving object, given the
object points represented with varying values of X, their projected locations in the image,

(u/w,v/w), and the camera’s parameters, K and E.

5.2 Localizing Moving Objects with EPnP

As the EPnP algorithm shown in Section 3.6 can be used to deduce the extrinsic camera
parameter matrix, E, it can also be used to deduce the model transformation matrix, M,
for a set of points if the extrinsic camera parameters are already known (or have already
been estimated). This is accomplished by viewing the result from the EPnP algorithm as a
single transformation, T, that composes all transformations from a point, X, to the point’s

projected location in the image, x, such that

x = KTX (5.5)

If all points, X, are object points of the same potentially-moving object (as opposed to

points associated with the static map), then the constraint from Equation 5.4 also accurately
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models the motion of the object points for some value of M. Given this additional constraint,

it follows that

KTX = KEMX (5.6)

and

T = EM (5.7)

where T is the resulting transformation estimated from the EPnP algorithm, E is the
extrinsic camera parameter matrix, and M is the model transformation matrix for the object
points of the potentially-moving object. If the EPnP algorithm is first used on a batch of
static map points, then the resulting transformation will represent the extrinsic camera
parameters, E, as the model transformation for the static map is defined as the identity
matrix, I. Given the extrinsic camera parameters from this calculation, the EPnP algorithm
can then be used on a batch of potentially-moving object points to deduce the composite
transformation, T, from which the model transformation for the object, M, can be extracted

with

E'T=M (5.8)

5.3 Registering Moving Objects with RANSAC and EPnP

The above approach is sufficient for localizing a set of map points belonging to a non-
static object; however, the approach does not provide a technique for differentiating between
static map points and moving object map points. Given purely-monocular image data, the
problem of automatically distinguishing between static and non-static map points is non-
trivial. Despite the challenges posed by this problem, however, a practical solution exists by
taking advantage of the reprojection error utilized by the RANSAC algorithm, discussed in
Section 3.6.1.
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When coupled with the EPnP algorithm, the RANSAC algorithm identifies outlier points
by evaluating the error between the observed feature points and their corresponding projec-
tions in the image, using the 3D object points and the candidate transformation model that
is being estimated. Normally, object points with high reprojection error are interpreted as
either noisy points that have not been triangulated properly, or as points that were incor-
rectly associated with their corresponding image feature points. However, high reprojection
error may also be the result of an object moving in the scene.

If a majority of the map points that are matched in a frame are static in the scene, then the
RANSAC/EPnP algorithm will deduce the extrinsic camera parameters while classifying any
moving object points as outliers, as their motion is not sufficiently explained by the camera
movement alone. This resulting camera transformation matrix can then be used to determine
the map points with high reprojection error, which includes map points associated with
objects that are not currently in their initially-triangulated position. The RANSAC/EPnP
algorithm can then be used on these high-error points in an attempt to identify any additional
consistent motion. If a geometric transformation is estimated among these points with at
least six inliers (as the localization problem has six degrees of freedom), then this result can
be interpreted as a composite motion between the camera and a moving object. From this
point, the inlier map points from this estimate can be removed from the static map and
subsequently grouped together into a data structure unifying them under a single model
transformation, M, which can be deduced with the previously-computed camera extrinsics,
E, and the resulting transformation from applying RANSAC/EPnP on the outlier points,
T, using Equation 5.8.

This process can be repeated on the remaining set of outlier points by removing map
points that are found to be associated with moving objects until fewer than six points remain.
This means that, theoretically, any number of moving objects can be identified in a single
frame, given that at least six points are accurately registered on each object.

It is worth noting, however, that this approach has a few practical limitations. Firstly,
in practice, this approach requires that moving objects be feature-rich to ensure a higher
likelihood of registering at least six points on the object. Secondly, this approach expects the

moving object points to have been triangulated while the object was static, before it begins
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moving. This constraint is necessary in a monocular system, as there is insufficient data to
jointly localize and triangulate an object while it moves without facing troublesome scale
ambiguity. Lastly, some motions may result in some of the object points yielding relatively
low reprojection error (imagine an object that is rotated about one of its feature points; the
feature point at the origin of this rotation is otherwise static in the context of the rest of the
map). This means that, under some motions, there may be a small number of object points
that are not properly registered as moving object points. It is the burden of the system
developer to work around this largely-innocuous limitation; however, a simple real-world

solution is implemented and discussed in Chapter 6.
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6. LUMO-SLAM

LUMO-SLAM is a proof-of-concept, keyframe-based SLAM system that performs marker-
less, monocular simultaneous localization and mapping while also registering and localizing
unknown moving objects in the scene using the approach described in Chapter 5. This sys-
tem is a significant contribution, as it is the first markerless, monocular SLAM system to
perform moving object registration and localization with no prior knowledge of the objects’
structure, appearance, or existence.

A system diagram of LUMO-SLAM is shown in Figure 6.1. The following sections explain
the components of the system, including each of its processes, in detail. After exploring the
system details in this chapter, the next chapter covers LUMO-SLAM’s quantitative results
and their analysis.

Additionally, the source code for LUMO-SLAM is made publicly available at https://
github.com/batroutman/LUMO-SLAM.

MAIN SYSTEM THREAD
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Image Processing l[{):ii::?':::f)ri ] ¢

LOCALIZATION
MAP KF—Elaseq C_amera
OPTIMIZATION Localization
MAP ' MAP v
T | Principal Descriptor | | INITIALTZATION Moving Object
Iy ! Selection : Registration

v

: i Smart Initialization
m E SiM Estimation ¥

H Short-Range i Broad Camera Re-
W Windowed BA L Iocali:ation

Suitability Evaluation
Map Point ' Long-Range

Failure Evaluation

Partition Table Windowed BA ¥
~— Keyframe & Point T
! ! Insertion
Loop Closing 5 Paoint Triangulation
_______________________ v
(Running concurrenthy) Keyframe Insertion
QOutput
‘ [ Camera Pose ] [ Moving Object Poses ] If.

Figure 6.1. LUMO-SLAM system diagram.
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6.1 Image Processing

Every iteration of LUMO-SLAM’s main loop begins with the same image processing
approach. As a new frame is pulled by the system, it is converted to greyscale (if not
already in monochrome format) and then it is used to construct an image pyramid for feature
extraction. Specifically, the image pyramid consists of 8 copies of the frame, each downscaled
from the previous copy by a factor of 1.2. This allows the system to extract salient features
of many sizes without changing the feature extraction algorithm. Once the image pyramid
is constructed, ORB features (as discussed in Section 3.3) are extracted evenly throughout
the image.

Even-spread feature extraction is useful for well-conditioning the collection of features
for map initialization and also for providing better constraints for camera localization. In
order to extract features evenly, FAST features with a score! of at least 20 are extracted
throughout the entire image. 20 is a weak feature extraction threshold, but it enables the
system to gather keypoints in many areas of the image. This large collection of feature points
is then filtered down by organizing the features into bins, grouped by the regions of the image
that they were extracted from. The system then evaluates each bin and prunes features until
there are between Nmin and nmax features in each cell>. To accomplish this, the features of
each bin are classified as either “strong” or “weak” by assessing the response scores of each
feature. A feature is classified as “strong” if its FAST response is at or above 60; otherwise,
the feature is classified as “weak”. For each bin, if the number of strong features meets or
exceeds Nmax, then just the strongest ny,ax features are retained in that bin. Otherwise, if
the number of strong features still meets or exceeds npmin, then all of the strong features are
retained in the bin while all weak features are pruned. Finally, if neither of these conditions
are met (indicating that the bin is populated with few strong features and, potentially, many
weak features), then the strongest nmin features are retained in the bin, given that there are

already at least npyi, features in the bin. After extraneous features are pruned, a global limit

1A feature’s FAST score coincides with the sum of the absolute differences between the feature’s central
point and each of the contiguous high-contrast points within the feature’s evaluation circle.

219Though the values for nmin and nmax are configurable, good values that work well on most datasets are
4 and 8, respectively.

63



(a) Default ORB extraction in OpenCV (b) LUMO-SLAM feature extraction

Figure 6.2. ORB feature distribution comparison between the API provided
by OpenCV (a) and the approach implemented in LUMO-SLAM (b). Each ex-
ample extracts 700 features; however, the features are excessively concentrated
towards the center of the image when using OpenCV’s API while the features
are spread-out in LUMO-SLAM’s implementation. The consistent extraction
of features in many parts of the image provides more-informative constraints
for localization and mapping.

on the total number of features in the image is imposed to prevent excessive computational
overhead in subsequent modules. This configurable global limit is typically set between 700
and 900 features to ensure realtime performance.

Figure 6.2 illustrates the difference in feature distribution between the default feature
extraction approach used in OpenCV and the feature extraction approach used in LUMO-
SLAM. Basic feature extraction places all emphasis on the strength of the features, causing
the extracted features to overpopulate some regions of the image and underpopulate others.
However, when extracting features with the approach described above, usable features are
extracted from more regions of the image.

Once the final FAST features have been extracted from the image, their intensity centroid
angles are calculated and are subsequently used to compute an ORB descriptor for each

feature. The ORB features’ keypoint and descriptor values are passed on to the remaining
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modules of the system, and the original image is unused for the remainder of the loop

iteration.

6.2 Map Initialization

As LUMO-SLAM is a markerless, monocular SLAM system, map initialization must be
performed by the system before the normal camera localization process can be performed.
Map initialization is the process of establishing an initial set of triangulated map points
to track while also recording an initial set of keyframes to aid in map optimization. With
no fiducial markers in the environment, the problem of map initialization is challenging,
especially for a monocular system.

To solve the problem of map initialization, LUMO-SLAM records features in a reference
frame (typically, the first frame pulled by the system), and matches them to features in the
current frame. From there, these 2D-to-2D image correspondences are evaluated for their
initialization suitability, and then used in an SfM estimate to construct the initial elements
of the map.

Not every frame will result in a set of correspondences that are suitable for an SfM
estimate, so the map initialization module may require many frames to establish an initial
map. Because of this, the reference frame is reset (set to the current frame) every 300 frames
to maintain sufficient feature tracking.

Once map initialization completes successfully, the map initialization module is retired
and remains unused for the remainder of the system runtime. The following sections describe,

in detail, the steps associated with map initialization for every SLAM loop iteration.

6.2.1 Smart Initialization

To accelerate the map initialization process, the initialization suitability evaluation ap-
proach described in Chapter 4 is used to quickly predict the likelihood of successful initializa-
tion, given the current set of correspondences. For ease of implementation, LUMO-SLAM
only utilizes a fundamental matrix estimation approach, and thus only makes use of the

32 x 32 fundamental-matrix-based model from Chapter 4. However, the system could easily
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be adapted to make use of homography estimation as well, and consequently could make use
of a homography suitability model in addition to its current fundamental matrix suitability
model.

As described in Chapter 4, the system computes a small set of summary features for the
set of correspondences it has collected between the reference frame and the current frame. It
then feeds these features through a forward pass of the trained 32 x 32 fundamental matrix
model to predict the likelihood that this set of correspondences will result in a sufficient
reconstruction, given that they would be used to estimate the fundamental matrix.

If the model indicates a high likelihood of initialization success, then the correspondences
are forwarded on to the next stage of map initialization. Otherwise, map initialization is
interrupted and the system skips to the next frame to attempt map initialization again,

repeating this process until the map is initialized.

6.2.2 Structure from Motion Estimation

If the classifier from the previous process indicates that the set of correspondences are
suitable for map initialization, then they are used as input for the eight-point algorithm to
estimate the fundamental matrix between the pair of views. For ease of implementation, this
is the only SfM approach used in this process; however, additional SfM techniques could be
added in the future to provide more robustness. It is also worth noting that a consequence of
only using a fundamental matrix estimate for map initialization is that the system can only
reliably initialize the map when viewing a scene that contains points that are not mostly
coplanar in 3D space. The addition of a homography estimation could complement the
current approach by enabling the system to also initialize the map with coplanar points,
but this addition is currently left for future work, as it is not a necessary component of the
SLAM process.

As described in Section 3.4.2, the eight-point algorithm solves for the fundamental matrix,

F, by using the constraint,

x'Fx =0 (6.1)
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for at least eight 2D-to-2D image correspondences, where x and x’ are homogeneous
column vectors representing the image coordinates of a projected point in the primary image
and the secondary image, respectively.

After solving for the fundamental matrix, the camera poses for the primary and secondary
cameras are deduced by first using the known camera intrinsic parameters, K, to convert

the fundamental matrix into the essential matrix, FE, with Equation 6.2.

E=K'FK (6.2)

The essential matrix is then decomposed into four camera pose hypotheses using its
singular value decomposition (SVD), as shown in Section 3.4.1. Specifically, the reference
frame is always assumed to be positioned with the default pose (represented with a 4 x 4
identity matrix in SE(3)), and the current frame’s pose is hypothesized with each of the four
factorizations of F.

To select the correct pose hypothesis for the current frame, all of the correspondences
are triangulated with the assumed reference frame pose and the respective hypothesis pose.
For each triangulated point, the cheirality is evaluated against both the reference frame and
the current frame. Ultimately, the hypothesized pose with the most triangulated points that
uphold the cheirality constraint for both the reference frame and the current frame is selected

as the correct pose for the current frame.

6.2.3 Suitability Evaluation

Before committing to the usage of the pose selected from the process described above, the
map’s quality is evaluated directly by temporarily constructing the map with the selected
pose and assessing a number of criteria regarding the reconstruction. Notably, this highly
useful suitability evaluation process is largely inspired by the approach used in ORB-SLAM
[18].

To evaluate the quality of the map, the correspondences are triangulated using the default
pose for the reference frame while the current frame’s pose is assumed to coincide with the

pose selected from the SfM estimation process. After triangulating all correspondences, three
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factors are observed for each point: the point’s cheirality about both of the cameras, the
point’s reprojection error in each camera, and the parallax of the two vectors that are derived
by connecting the point to each of the cameras.

For this evaluation, a point is considered high-quality if it upholds the cheirality constraint
in both cameras and has a reprojection error of less than 4 pixels in each camera. The map
quality is then deemed sufficient if two criteria are met: (1) the number of high-quality
points meets or exceeds max(50,0.9 * n), where n is the number of inliers deduced from
the eight-point algorithm estimate, and (2) the number of points resulting in parallax values
greater than 2° meets or exceeds 50.

If these criteria indicate that the map quality is sufficient, then the system commits to
the pose selection and its corresponding map reconstruction. Otherwise, the temporary map
is thrown out, the processes is halted, and map initialization makes another attempt on the

next frame.

6.2.4 Initial Keyframe and Point Insertion

Upon passing the suitability evaluation, the estimated pose and corresponding triangu-
lated points are used to populate the map with its initial data. Specifically, a keyframe
is generated for both the reference frame and the current frame. The keyframes primarily
consist of a camera pose, the images’ keypoint locations, the keypoints’ corresponding ORB
descriptors, and references to any triangulated points that correspond to the keyframes’ key-
points. The first keyframe in the map corresponds to the reference frame and its pose is set
to the default pose (which constitutes zero rotation and a translation vector at the origin).
The second keyframe in the map corresponds to the current frame and its pose is set to
coincide with the pose estimated from the eight-point algorithm. In addition to the first two
keyframes, the triangulated map points for the correspondences between the two frames are
also inserted into the map. With the insertion of triangulated map points, each keyframe is
also given a list of references to the map points it observes. This aids in map optimization

and allows the system to quickly extract relevant map points during camera localization.
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After inserting the initial keyframes and triangulated map points, the map is briefly
refined with 100 iterations of full bundle adjustment. As discussed in Section 3.7, bun-
dle adjustment is the non-linear minimization of the reprojection error of the map points’
projections into their observing keyframes. This process increases the accuracy of the map
elements and can also be completed quickly (specifically, sub-second) when the map contains
the limited amount of data that it has at this stage of initialization. Upon completion of
bundle adjustment, points with very high reprojection error are pruned, and then the map
is refined with 100 more iterations of bundle adjustment.

Once these two rounds of bundle adjustment are complete, the map is considered initial-
ized, as it contains a robust set of triangulated map points and corresponding keyframes to
use for localization. From this point forward, the system defaults to the localization module

and the map initialization module is not revisited for the remainder of the system’s runtime.

6.3 Localization

Once the map is initialized, the localization module can use the map data to perform
normal camera localization on each incoming frame. In addition to performing basic camera
localization, the localization module is also responsible for registering map points as moving
object points, localizing any moving objects it has registered, and growing the map by
recording new keyframes and triangulating new map points. The localization module is
composed of a set of seven sequential processes. In order, these processes include keyframe-
based camera localization, moving object registration, moving object localization, broad
camera re-localization, failure evaluation, point triangulation, and keyframe insertion. Each

of these processes are detailed in the following sections.

6.3.1 Keyframe-Based Camera Localization

The first process executed in the localization module is keyframe-base camera localization.
The primary goal of this process is to get a quick initial estimate of the camera’s current pose
without relying on guided feature matching. In order to accomplish this, the system keeps

track of the keyframe that was inserted into the map most recently (referred to as the “current
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keyframe”). Since the current keyframe is frequently updated as features move, ORB features
can be reliably brute-force matched between the current frame and the current keyframe
without needing to predict the features’ locations in the current image. The utilization of
unguided feature matching is particularly useful in facilitating moving object registration,
which relies on the system’s ability to register features that are moving in unexpected ways.

Given that the feature matching is unguided, a hamming distance of 40 is used as the
threshold to determine good matches between two binary ORB descriptors. After these 2D-
to-2D correspondences are developed, substantial mismatches are pruned by removing any
correspondences that have endpoint disparities greater than 25% of the image width. With
these finalized matches, the current keyframe’s descriptors are updated with the matching
descriptors from the current frame to improve matching capability in future frames.

To perform camera localization, the correspondences are evaluated individually to iden-
tify those that are associated with triangulated map points, as some correspondences will be
associated with map points that have not existed in the system long enough to deduce their
3D location. Once the applicable correspondences have been converted into 3D-to-2D cor-
respondences (consisting of the triangulated map points and their respective feature points
in the current frame), these correspondences are used as input for the EPnP algorithm in a
RANSAC scheme, followed by an iterative optimization that minimizes the reprojection error
of the input points. The result of this solver is the camera’s six degree-of-freedom (6DoF')
pose and a mapping of the inlier and outlier correspondences. The inlier/outlier discrimi-
nation made by the RANSAC scheme is not only useful for enabling the EPnP algorithm
to estimate a pose that is robust to outliers, but this explicit identification of the outliers is
also useful for registering unknown moving objects in the scene, which is completed in the

next stage of the localization module.

6.3.2 Moving Object Registration

The second stage of the localization module is moving object registration. This process
uses the approach described in Section 5.3 to identify triangulated map points that are

attached to objects that are moving in the scene. As described in Section 5, this task

70



is achieved by exploiting the assumption that map points on moving objects are likely to
have high reprojection error when the object is moving. Since the outlier classification
from the keyframe-based camera localization is based on reprojection error, the outlier 3D-
to-2D correspondences deduced from the previous process are useful for evaluating object
movement.

To register if any matched map points are being influenced by the presence of an un-
known object moving in the scene, the outlier correspondences from keyframe-based camera
localization are fed back into the EPnP/RANSAC solver. If a valid pose is estimated with
at least 6 inliers, the inlier correspondences are evaluated with a small set of practical condi-
tions to confirm their status as moving object points. Specifically, for these inliers to qualify
as moving object points, the spread of their feature points in the current frame has to be
greater than 10% of the image width and less than 30% of the image width. This ensures
that the object is at a suitable distance from the camera to facilitate a reliable localization
estimate.

If the above conditions are met, then the inlier map points and their neighboring map
points are removed from the static map and are all consolidated into a unifying data struc-
ture, indicating that the associated map points are part of a moving object. Neighboring
map points can be identified quickly because triangulated map points are organized into a
partition table, which is best described as a hash table in which the map points are indexed
based on their discretized positions in the map.

In addition to the collection of associated map points, the model pose for the object is
also saved to the moving object data structure. The model pose is computed using Equation
5.8, as the camera pose is already known from the previous process and the composite
transformation, T, is the result of the EPnP/RANSAC solver on the outlier correspondences.

This moving object registration process is repeated on the remaining outliers until fewer
than six inliers remain. The consequence of this decision is that the system can register
multiple moving objects in a single frame (assuming the objects all begin moving on the
same frame and with different motions). To maintain realtime performance, the system also
implements a configurable limit to the number of iterations that the registration process

performs; though, it is worth noting that this is seldom needed in practice.

71



Figure 6.3 illustrates the moving object registration process on a sequence involving a
user physically moving a game controller. While the controller is static, its feature points
are mapped out. Then, the user moves the controller and the outlier feature matches are fit
to a consistent motion model, causing the system to register the corresponding map points

as moving object points.

6.3.3 Moving Object Localization

The third stage of the localization module performs moving object localization. In this
process, each moving object that has been registered in the system during runtime is re-
localized if it is found in the current frame, regardless of whether or not it was registered on
the same frame.

To perform object localization for a given object in the system, the principal descriptors
(described in Section 6.4.1) are extracted from the object’s associated map points. These
descriptors are used to perform unguided feature matching on the current frame, which
establishes correspondences between the moving object points and their projections in the
image.

If there are at least six matches, these 3D-to-2D correspondences are fed into the EPnP
solver in a RANSAC scheme to estimate a composite transformation for these points. As in
the previous process, the composite transformation estimated by the EPnP solver is used in
conjunction with the previously estimated camera pose to deduce a new model pose for the
object. This is accomplished with Equation 5.8. If this model pose places a majority of the
object points in front of the camera and the median reprojection error of these transformed
points is sufficiently small (i.e., under approximately 4 pixels), then the model pose is trusted
to be accurate and the associated moving object data structure is updated to reflect this new
model pose. The updated model poses on the system’s registered objects can be used by
higher level applications that need access to moving object localization data, like the object

labeling application demonstrated in Figure 6.4.
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(¢) Unknown object during movement, registered as a moving object (indicated
by the bounding box around the object)

Figure 6.3. LUMO-SLAM running on a sequence in which a game controller
is physically moved by the user. In this sequence, features of a game controller
on a desk are mapped out (a) and then registered into a new moving object
structure when the controller is picked up by the user (b) and (c).
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(a) Initial static scene, including AR view (left) and LUMO-SLAM’s correspon-
dence tracking (right)

(b) Initial movement of the book: outlier features are detected, leading to the
registration of a moving object and a user-defined label being attached to the
object.

(c) Proper label localization when the camera moves away from the book

Figure 6.4. An object labeling application supported by LUMO-SLAM’s
camera localization and unknown object localization capabilities. In this ap-
plication, the user pre-defines a label (“Book”) for an object they want to
annotate (in this case, a textbook). Then, after mapping out the environment
(a), the user moves the object and the user’s label is visually attached to the
object using LUMO-SLAM’s object localization data (b), displaying the label
in the augmented view (left). Even as the user views the object from a differ-
ent distance or angle, the localization data of the object is used to keep the

label visually consistent with the textbook (c).
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6.3.4 Broad Camera Re-Localization

After moving object localization, the localization module performs a process called broad
camera re-localization. There are many different types of camera movements that would
cause tracking loss if the system only localized the camera with keyframe-based localization.
For example, the camera may pan in on a mapped portion of the environment and then
rotate towards a different mapped portion of the environment. In this scenario, keyframe-
based localization may fail as the current keyframe likely would not be connected to the map
points that are currently in-view. So, the primary goal of broad camera re-localization is to
rectify this limitation by matching features from the current frame to map points that have
been triangulated in the broader map, rather than confining feature matching to the points
viewed by a single keyframe.

To fulfill this task, the triangulated map points used in keyframe-based localization are
gathered along with their neighboring map points. As mentioned in Section 6.3.2, neighbor-
ing map points are extracted quickly with the partition table, which indexes triangulated
map points by their discretized position in the map. Using this larger pool of triangulated
map points, the estimated camera pose is used to compute the projected locations of each
point. Any points whose projections fall outside of the viewable image space are pruned to
maximize the efficiency of the following steps of the process.

After pruning points that are predicted to fall off-screen, the principal descriptors of each
map point are extracted. Using the information associated with a given principal descriptor,
the system computes the normal vector of the descriptor’s viewing direction as well as the
projected viewing direction of the corresponding map point in the current frame. Since
descriptor values are subject to change under significant viewpoint changes, the map point
is then pruned if there is at least a 60° difference between the descriptor normal and the
current viewing direction of the map point.

Once the map points are pruned based on the consistency of their viewing directions,
they are pruned once more using a form of non-maximum suppression in which map points
with higher tracking frequency are prioritized over those with low tracking frequency. This

step is useful for both reducing the computation cost of feature matching and avoiding
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low-quality points that are likely to eventually be pruned by the concurrent point pruning
process, described in Section 6.4.2.

Guided ORB matching is performed on these finalized map points by constraining the
feature search of each map point to the area near its predicted feature location. With guided
matching, a much weaker matching threshold of 100 is used, as mismatches are less likely
due to the feature localization constraint. To confirm a high-quality match, a Lowe ratio
test [61] with a threshold of 0.8 is used to filter out matches in which the quality of the best

and second-best matches are too similar. Specifically, this ratio, r, is calculated with

_d

=3 (6.3)

r

where dj is the hamming distance between the principal descriptor and its closest localized
match, and d; is the hamming distance between the principal descriptor and the second-
closest localized match. If the resulting ratio exceeds 0.8, the match is thrown out as to
avoid uncertain matches.

After completing guided ORB matching, these remaining matches are used to update the
recorded tracking frequency of the searched map points. Specifically, for each of the map
points that were searched for, it is noted that the map point either matched to a feature in
the current frame (as expected), or failed to be matched to a feature in the current frame,
despite being expected to appear. This information is later used in the point pruning process
to remove low-quality map points.

Finally, the 3D-to-2D correspondences provided by guided ORB matching are fed back
into an EPnP solver in a RANSAC scheme to estimate the 6DoF camera pose. Once this
camera pose is refined with an iterative minimization of the reprojection error, it replaces

the old camera pose estimate.

6.3.5 Failure Evaluation

The previous four processes constitute the entirety of LUMO-SLAM’s localization pro-
cedures. After these localization processes have concluded, the system evaluates a number

of criteria to determine if the final camera localization estimate is sufficient, or if the sys-
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tem failed to provide a reasonable estimate. If this failure evaluation determines that the
localization estimate is insufficient, then the pose estimate is not forwarded to higher level
applications and the localization module skips the remaining processes, starting over on the
next frame.

To evaluate the sufficiency of the camera’s localization estimate, there are a number of
criteria that are assessed. The first criteria involves comparing the localization estimate with
a prediction of the camera pose. To do this, the system keeps track of a constant velocity
motion model for the camera pose on each frame. This simple model is used to predict the
camera’s pose based on its pose in the last tracked frame with the added camera velocity
(scaled by the number of frames that have passed since the velocity was last computed). If
the localization estimate is not within 10 units® of this predicted pose, then the process halts
and concludes that camera localization has failed for this frame.

If the localization estimate is sufficiently similar to the motion model’s estimate, then the
inlier rate from keyframe-based camera localization and total number of tracked map points
are used to evaluate the quality of the localization estimate. Specifically, if the ratio of inliers
to total correspondences falls below 0.6, then the system deems the localization estimate to
be insufficiently poor. Additionally, if the number of tracked map points (triangulated map
points that were registered in the current frame) is less than 10, the system also deems the
localization estimate to be poor, and skips to the next frame.

Given that each of the above conditions pass, the final evaluation of this process is a
cheirality check. Put simply, if less than 50% of the triangulated map points in the image
are projected to be in front of the image (based on the camera localization estimate), then
the system qualifies the estimate as poor, and subsequently halts the process and skips to

the next frame.

6.3.6 Point Triangulation

If all quality checks from the previous process pass, then the localization module moves

on to a point triangulation process that grows the map by calculating the position of un-

31A “unit” in LUMO-SLAM’s map equates to the baseline between the first two keyframes inserted as a
result of map initialization.
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triangulated map points. Keyframe-based camera localization often matches ORB features
in the current frame to ORB features that have not yet been triangulated from the cur-
rent keyframe; these correspondences are triangulated in this process, barring that they are
ill-conditioned.

Before a correspondence is triangulated, the epipolar constraint (described in Section
3.4.2) is used to check if the point is a mismatch, making it unsuitable for triangulation.
To do this, the prospective triangulating camera poses are selected. For point triangulation,
the current frame’s pose is used as the primary camera and the secondary camera is selected
from the collection of keyframes associated with the map point. Specifically, the keyframe
farthest from the current frame is used as the secondary camera in order to maximize the
baseline between the cameras. Once the camera poses have been selected, the similarity

transformation between the cameras, Tj;, is computed with

Tji = r:[‘j’:[‘-i1 (64)

where T; is the primary camera and Tj is the secondary camera. This similarity transfor-
mation is used to compute the essential matrix, E, directly with Equation 3.9. The essential
matrix is then converted to the fundamental matrix, F, with the following adaptation of

Equation 3.13:

F=(K"') EK (6.5)

Note that this formulation uses K=!, the inverse of the known intrinsic camera param-
eter matrix. With the fundamental matrix, the epipolar constraint from Equation 3.14 is
evaluated with the projected image points. If the product x'' Fx exceeds a value of 1, then
the correspondence is considered a mismatch and is subsequently rejected from the rest of
the triangulation process.

If the correspondence sufficiently upholds the epipolar constraint, then a 3D point is

triangulated for the map point using the approach described in Section 3.5, using the primary
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and secondary poses specified above, along with their respective image feature locations for
the map point.

After triangulating the map point, the reliability of this estimate is evaluated with a
number of criteria similar to that used in map initialization. A triangulated point is consid-
ered reliable if its parallax with the triangulating cameras exceeds 1°, its reprojection error
is less than 4 pixels in each of the triangulating cameras, and the point upholds the cheiral-
ity constraint with both of the triangulating cameras. If a triangulated point is considered
reliable, it is linked to its corresponding map point and added to the map.

Once the process has triangulated each point, it refines the estimates by performing a
small-windowed bundle adjustment on the map. This small window consists of the current

frame and the current keyframe to keep the computation time within realtime constraints.

6.3.7 Keyframe Insertion

The last process of the localization module is keyframe insertion. This process is not only
performed in order to maintain consistent camera localization as the camera moves, but it
is also used to grow the map and facilitate map optimization with bundle adjustment.

By the time the localization module reaches this step, the quality of the estimated camera
localization is assumed to be high. With that assumption, the current frame may be used
to register a new keyframe in the map. A new keyframe consists of the keypoints and
descriptors from the current frame, references matching those keypoints and descriptors to
existing map points, new untriangulated map point objects for the unmatched keypoints,
and the estimated camera pose for the current frame. To prevent overloading the system
with excessive data and slowing down the frametime, the current frame is conditionally used
to generate a new keyframe if there are fewer than 70 feature matches with the current
keyframe or if the median endpoint disparity of these matches exceeds 3.5% of the frame
width. These criteria indicate that the viewpoint is changing significantly and the system’s
ability to deduce feature matches is waning. Inserting a new keyframe into the map effectively

revives the system’s ability to make strong feature matches.
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After the keyframe insertion process is complete (regardless of whether or not a keyframe
is inserted), the localization model submits its relevant data, such as the estimated camera

pose and moving object poses, to the output buffer for higher level applications to make use

of.

6.4 Map Optimization

When triangulating new points and inserting new keyframes, the localization module
prioritizes maintaining its ability to consistently localize the camera throughout the runtime
of the system. The consequence of this is that points and keyframes are often inserted as
soon as possible, and the accuracy of their placement may be lacking as the map continues
to grow.

To rectify this shortcoming, the map optimization module provides a number of inde-
pendent, concurrent threads, each of which address a different map refinement process. All
of these processes are bootstrapped upon the completion of map initialization and they do
not terminate until the containing application shuts down with the rest of the system.

Each of these processes (which, unlike each process from the previous modules, runs

concurrently to the other processes) is described in detail throughout the following sections.

6.4.1 Principal Descriptor Selection

As a map point is connected to additional keyframes, its collection of associated descrip-
tors grows. Realtime matching is not feasible in the broad camera re-localization process if
the current frame’s features must be compared to every descriptor associated with a given
map point. The volume of descriptors even grows so rapidly that attempting to filter through
the descriptors with other criteria (such as viewing direction) is not practical under realtime
constraints either. To rectify this, a single descriptor is appointed among the complete col-
lection of a given map point’s descriptors to act as the point’s principal descriptor. This
descriptor is then used for the map point when performing ORB matching in the broad

camera re-localization process.
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To select a map point’s principal descriptor, this process runs a loop that frequently
updates the principal descriptors for any map points that have recently become associated
with new keyframes (and thus, new descriptors as well). However, since map points may
need a principal descriptor before this process has had a chance to select one for them,
the default principal descriptor for all new map points is simply configured to be the first
descriptor that was associated with the map point. This remains as the principal descriptor
for the map point until this process selects a new descriptor for the point.

To select the principal descriptor for a specific map point, the system compares each of the
map point’s associated descriptors to each of the other associated descriptors. Specifically,
the hamming distance is computed for every combination of descriptor pairings. For each
descriptor, the values of its hamming distances with every other descriptor are then sorted in
ascending order and then the median of these values is selected to quantify the descriptor’s
likeness to the others. The descriptor whose median hamming distance is the lowest is then
appointed as the principal descriptor for the map point. This approach is largely inspired by
ORB-SLAM [18], and an example of this process can be seen demonstrated in Figure 6.5.

Once a principal descriptor is selected for a map point, the map point begins to use
this descriptor during the broad camera re-localization process. The principal descriptor
for a given map point will only be re-evaluated (and potentially updated) if the map point

becomes associated with new keyframes in future frames.

6.4.2 Point Pruning

As LUMO-SLAM is generous in its triangulation of new map points, it is clear that
point pruning is necessary to enforce high map quality. Without pruning, the map will
become oversaturated with triangulated points that largely go unused. This hinders the
system’s ability to quickly identify points that are useful for localization. Furthermore,
poorly-triangulated map points, if erroneously used for localization, can cause the system to
fail outright. The concurrent point pruning process runs alongside the rest of the system to
rectify these issues by evaluating the quality of triangulated points and pruning those that

may be a liability to the system.
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Descriptors Hamming Distances  Sorted Distances

co1 1 1 1 a b c d

o: 10010 O}a 2 2 3 a: 2,2 3
be LT OO Ty Ly b: 2,3, 4
c:[10100110}024 3 c: 2,3 4
d:[11111110}d333 d: 3,3,3

Figure 6.5. An example of the principal descriptor selection process for a map
point that holds four descriptors, a, b, ¢, and d. Note that, in practice, the ORB
descriptors are 256 bits long; however, the descriptors in this example are only
8 bits for demonstration. The hamming distances are recorded for each pair
of descriptors and, in this demonstration, are organized in a matrix. For each
descriptor, the values of its corresponding row in the matrix are extracted
and sorted. From these sorted distances, the median is used to compare each
descriptor. Descriptor a is selected as the principal descriptor in this example,
as it has the lowest median distance to the other descriptors (a value of 2).
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This process performs pruning in a manner similar to that seen in ORB-SLAM [18].
Specifically, the process continually evaluates a queue of newly-triangulated map points,
which is repeatedly updated as new points are triangulated. When the system evaluates a
point from the queue, it first checks that the point has been given sufficient opportunity to
strongly integrate into the map. Thus, if fewer than five keyframes have been inserted since
a given point was triangulated, then the system skips the point on this iteration and leaves
it in the queue. Otherwise, it evaluates the corresponding map point for potential pruning.

There are two criteria used to determine if a map point needs to be removed from the
map. Firstly, the map point will be removed if it is observed by fewer than 3 keyframes. If
this is the case, it is assumed that the point is weak, as it is unlikely to be viewed in future.
Secondly, the map point will be removed if it is tracked less than 25% of the time that it
has been expected to be tracked during broad camera re-localization. It follows that, if the
system is repeatedly projecting a point into the image and cannot find it, then the point’s
use is limited.

Barring these two conditions, a map point will be deemed high quality and is consequently

removed from the queue, signifying its permanent membership of the map.

6.4.3 Short-Range Windowed Bundle Adjustment

An important process for maintaining high reconstruction quality for recently-triangulated
map points is short-range windowed bundle adjustment. As explained in Section 3.7, bun-
dle adjustment is a non-linear minimization of the reprojection error of a collection of
3D points and the cameras that have imaged them. This optimization problem is solved
with a Levenberg-Marquardt solver, which optimizes the map’s triangulated map points and
keyframes by using their corresponding keypoint locations as constraints for this minimiza-
tion problem.

With an increasingly large pool of points and keyframes populating the map, bundle
adjustment becomes infeasible under realtime constraints if performed on the entire map.
However, bundle adjustment can be repeatedly performed on a subset of the map and still

rapidly provide meaningful refinement.
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To perform short-range windowed bundle adjustment, the system repeatedly collects
the 10 most-recent keyframes and all of their shared triangulated map points. Reprojection
errors for each of the point-to-keyframe associations are computed and points with extremely
high reprojection errors (more than 50 pixels) are retriangulated if possible (in case the high
error is the result of a previous, bad bundle adjustment), or pruned from the map otherwise.
This pruning is important, as just a few substantial outliers can cause the entire bundle
adjustment process to fail.

After this pruning step, the remaining points and keyframes are optimized with 10 itera-
tions of bundle adjustment. With the optimization confined to this small subset of the map,
refinement can be performed approximately realtime. So, though a currently-visible subset
of the map is being modified, the modification occurs too quickly to cause visible disruption

in the eventual image augmentation (assuming that LUMO-SLAM is being used for AR).

6.4.4 Long-Range Windowed Bundle Adjustment

As short-range windowed bundle adjustment is responsible for refining the quality of
recently-triangulated points quickly, long-range windowed bundle adjustment is responsible
for refining a substantially larger view of the map. This is particularly useful for sequences
with loops, as they are more likely to reap the benefits of this optimization upon revisiting
past sections of the map.

In contrast to the bundle adjustment process described in the previous section, long-range
windowed bundle adjustment isolates the first 60 keyframes of the map for refinement. Since
the optimization process will be significantly slower with this larger set of data, this process
also maintains a 15-keyframe distance from the current (most-recently inserted) keyframe
to prevent map updates from being noticeably visible in image augmentation. If the system
determines that the last keyframe in the current window is too close to the current keyframe
(in terms of the number of keyframes separating the two), then the process simply stalls,
waiting for more keyframes to be inserted to maintain the appropriate following distance.

If the keyframe window upholds the required following distance, then bundle adjustment

is performed on these 60 keyframes and all of their shared map points for 20 iterations.
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Additionally, this process also fixes the location of the first and last keyframes in the window
as to prevent fragmentation between optimized and un-optimized sections of the map over
time.

After updating the optimized map points and keyframe poses, this process shifts the
keyframe window down 30 keyframes (half of the window size) and repeats the process for
the next 60 keyframes. With these large windows, long-range windowed bundle adjust-
ment requires several seconds to optimize a batch of data; however, its contribution to the

improvement of the map and localization accuracy is indubitably invaluable.

6.4.5 Loop Closing

As small inaccuracies accumulate in the system’s map point and keyframe estimates,
the camera localization estimates can suffer from noticeable “drift” if the camera revisits a
previously-mapped area. The standard approach to solving this problem is to detect when
drift may have occurred and subsequently correct it. This process is known as loop closure.

To implement loop closure, this concurrent process compares every new keyframe to all
previous keyframes. As the map may grow to a substantial size, it is necessary to perform
this loop detection process with an approach that is faster than unguided feature match-
ing to ensure that the process does not fall behind the rate at which new keyframes are
inserted. LUMO-SLAM instead compares the likeness of keyframes by comparing a hier-
archical bag-of-words (BoW) vector for each keyframe, which summarizes the descriptors
associated with its respective keyframe. This approach is based off of the work presented
in [95], in which binary descriptors are collected from a large set of training images and
then recursively clustered with k-medians clustering to develop a tree structure to efficiently
index new descriptors. LUMO-SLAM borrows the BoW descriptor vocabulary developed in
[96], in which the vocabulary is built in the same fashion described in [95], but with ORB
descriptors from the Bovisa 2008-09-01 dataset [97] instead of regular BRIEF descriptors.

When loop detection is performed on a given keyframe, the system computes the Eu-
clidean distance between the keyframe’s BoW vector and the BoW vectors of all previous

keyframes. Given these BoW distances, unguided ORB matching is performed between the
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given keyframe and each of the 10 most-similar keyframes to gather stronger criteria for
determining loop existence. Going through the most-similar keyframes first, if any of these
top 10 keyframes result in 50 or more ORB feature matches, then the system considers there
to be a loop between the given keyframe and the matching keyframe. Subsequently, the
system begins the loop closure process between these keyframes.

The first step of LUMO-SLAM’s loop closure process is to merge the matching map
points between the “dangling keyframe” (the given keyframe that was evaluated for loop
existence) and the “ground truth keyframe” (the older keyframe that the dangling keyframe
matched to). To do this, the matching map points of the dangling keyframe are updated to
point to the original map points, which are referenced by the ground truth keyframe.

Once map point merging is complete, the sequence of keyframes separating the ground
truth keyframe from the current keyframe as well as all of their associated triangulated map
points are used to develop constraints that will later be used for optimizing the map after
the pose of the dangling keyframe is corrected. Specifically, there are two primary pieces of
data that are computed for these constraints. The first piece of data is the similarity trans-
formation between pairs of keyframes that are adjacent to each other in the aforementioned
keyframe sequence. The similarity transformation, Tj;, between a keyframe at position i and
an adjacent keyframe at position j =i+ 1, can be modeled in SE(3) as

Tji - r_F'rJ_j-_1 (66)

J1

where T; and T; are the poses of the keyframes at positions i and j, respectively. How-
ever, rather than using the SE(3) formulation for this calculation, this optimization solution
uses LUMO-SLAM’s internal representation of poses, which consists of a versor (unit quater-
nion), q, to represent the pose’s rotation and a translation vector, t, to represent the pose’s
translation, which is applied before the rotation. The computation of the rotation of the

similarity transformation, qj, is then computed with

Qi =qoq (6.7)
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where q; is the rotation component of the keyframe at position j, qi = (¢w, ¢z, gy, ¢-) is the
rotation component of the keyframe at position i, q; ' = (—qu, ¢s, ¢y, q-) is the quaternion
inverse of q;, and o denotes a composition operation between the quaternions, implemented
with the Hamilton product.

The translation component of the similarity transformation, t;, can then be easily com-

puted with

tji = (t:rj — Lai, tyj

— by o —ta) (6.8)

where t,, indicates the w'" translation component of the k** keyframe pose. Thus, the
loop closing process records similarity transformations in the form of (qj;, t;) for each pair
of adjacent keyframes in between the ground truth keyframe and current keyframe. These
values are ultimately used in the eventual optimization step.

The second piece of data that must be recorded is the set of point transformations between
triangulated map points and their associated keyframes. To specify, each triangulated point
]T

in the keyframe sequence, X = [z y z 1] , is paired with the pose of a keyframe that

observes it, T. The point’s position with respect to the keyframe, X', is computed with

X' =TX (6.9)

Though this example is demonstrated with the SE(3) Lie group, the system instead opts
to use the versor/vector formulation, like in the computation of similarity transformations.
A point’s transformed position, (2,1, 2’), with respect to a given keyframe pose, (q,t), can

be computed with the following versor /vector formulation:

0, 2, ¢, 2')=qo (0, x+t,, y+t, z+t.)oq " (6.10)

Note, in this formulation, (x,y,z) represents the point’s world-space position while

(«',y', 2") represents the point’s position with respect to the keyframe pose, (q,t).

87



Though every possible pairing between triangulated map points and their observing
keyframes’ poses could be computed to maximally constrain the optimization, this may
not be practical if the size of the keyframe sequence is excessively large. So, to save on
computation cost, point transformations are computed for at most 10 observing keyframes
for any given point.

After these values are computed, the map correction process begins. The first step of
this process is to accurately re-localize the dangling keyframe by feeding the correspondences
associated with its newly-merged map points into a Levenberg-Marquardt solver. The system
also uses the pose of the ground truth keyframe (rather than that of the dangling keyframe)
to initialize this optimization reliably, as loop detection indicates that the ground truth
keyframe’s pose is close to the true pose for the dangling keyframe. Once the dangling
keyframe’s pose is corrected, it is locked for the remainder of the process.

At this point, the drift in the keyframe position has simply been shifted back by a single
keyframe. To morph the remainder of the keyframe sequence (and its associated map points)
into the correct state, a two-step optimization process occurs using the values computed
previously.

First, the keyframe poses are corrected by minimizing the error in the similarity trans-

formations between corresponding pairs of adjacent keyframes. This takes the form

’ (6.11)

min ZHqJ o qi_1 — qui

qi,q;V(1,j) 1)

where qJ(i is the previously-computed rotation component of the similarity transformation
from keyframe i to keyframe j, and gjoq; ' is the value of the rotation component using the
current keyframe poses. Additionally, the objective function for the translation components

takes the form

2

(6.12)

. /
ti,][trjlvlaj) %HtJ —t —t;
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where tin is the previously-computed translation component of the similarity transforma-
tion from keyframe i to keyframe j, and t; — t; is the value of the translation component
using the current keyframe poses.

These objective functions are solved with a gradient descent approach that automatically
tunes the associated hyperparameter, «, by evaluating the translation error each on step.
With a typical loop size of 270 keyframes, this optimization requires approximately 30 to 40
milliseconds when performed on a high-end desktop computer.

After the keyframe poses are corrected, their associated map points are corrected by min-
imizing the error in the transformed point positions between map points and their observing

keyframes. The objective function for this problem takes the form

2

Imin Zqu o (0, @i+taj, Yi+ty;, 2+1s)0 q; ' — pj; (6.13)

Ti,Yi,2i Vi (i)

where pj; is the previous transformed point position for point i in keyframe j and qj o
(0, @ + tay, vi + by 2+ tj) o qj_l is the value of the transformed point position using the
current values for point i and keyframe j.

This optimization problem is also solved with gradient descent and uses the same «
value computed from the keyframe optimization process. A typical indoor environment may
generate upwards of 50,000 point transformations to use for this optimization when loop
closure is performed. In practice, this takes approximately 80 to 90 milliseconds under the
same conditions as described above.

Once these optimizations have morphed the map into a state that is more consistent
with the observed matches between the ground truth keyframe and current keyframe, the
loop has been closed. The use of these optimization approaches allow the map to retain the
refinement gained from any previous bundle adjustment processes that have been performed;
this is in contrast to simply retriangulating map points after the drift is corrected.

To conclude the loop closure process, 10 iterations of fixed-window bundle adjustment are
run on the last 10 keyframes in the keyframe sequence along with the ground truth keyframe

and all triangulated map points shared between them. After the loop closing process finishes,
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Figure 6.6. Top-down trajectory-comparison graphs for two runs of the
freiburg2_ desk sequence from the TUM RGB-D dataset [94], one without loop
closure enabled (a) and one with loop closure enabled (b). For each chart, the
ground truth trajectory is denoted in black, the estimated trajectory is denoted
in blue, and the error between them is denoted in red. The sequence begins
and ends on the left side of each chart. Note that the errors are pronounced at
the end of the sequence when the system does not perform loop closure, while
the system is substantially more accurate when making use of loop closure.

a brief 30-keyframe countdown is implemented to block loop closure from being performed
excessively as the camera continues to explore the previously-visited area.

In total, this loop closure process typically takes between 300 and 400 milliseconds on a
high-end desktop computer. This efficiency is necessary for permitting realtime map use for
the other processes in the system. The substantial impact of this loop closing approach is

demonstrated in Figure 6.6.

90



7. EXPERIMENTAL RESULTS AND ANALYSIS OF
LUMO-SLAM

To evaluate the overall performance of the LUMO-SLAM system described in the previous
chapter, experimental results are compiled for several sequences to illustrate the system’s
capabilities and limitations. The following experiments are organized into three categories:
(1) experiments that evaluate the camera localization accuracy of LUMO-SLAM, (2) exper-
iments that quantify the accuracy of the moving object localization estimates that LUMO-
SLAM provides, and (3) experiments that illustrate LUMO-SLAM’s capacity to accurately
register unknown moving objects.

To evaluate standard SLAM accuracy, the absolute trajectory error of the system is
evaluated for several standard SLAM sequences and compared to a number of state-of-the-
art SLAM systems. In order to evaluate the accuracy of LUMO-SLAM’s moving object
localization estimates, custom sequences with ground truth moving object data are used
to compare LUMO-SLAM’s estimates against real-world measurements. Finally, LUMO-
SLAM’s moving object registration capabilities are assessed with several custom sequences

that contain moving objects under varying conditions.

7.1 Standard SLAM Accuracy

The most fundamental assessment for any visual SLAM system is the evaluation of
the system’s camera localization accuracy, as estimating the camera pose is the primary
function of SLAM systems. To evaluate the accuracy of LUMO-SLAM’s camera localization
estimates, the system is run on several sequences from the popular TUM RGB-D [94] dataset!
and its estimates are compared with the ground truth measurements provided by the dataset.

The metric used to quantify the system’s accuracy is absolute trajectory error (ATE).
ATE is a popular and straightforward metric for evaluating SLAM accuracy. The ATE
between two sequences of corresponding camera positions is computed by minimizing the

root mean square error (RMSE) between the positions of each corresponding pair of cameras

14Though the dataset from [94] provides RGB-D data, the depth data is not used in the evaluation of
LUMO-SLAM’s accuracy, as LUMO-SLAM is a monocular SLAM system.
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along their respective trajectories. This optimization is typically performed with Horn’s
method [98] or Arun’s method [99], which both fit one trajectory to the other with seven
degrees of freedom (7DoF). When this optimization is used to fit an estimated trajectory to
a ground truth trajectory, the resulting RMSE is observed as the ATE between them.

The ATE is computed for LUMO-SLAM’s keyframe trajectory estimates using the tool
provided by [94], which utilizes Horn’s method to fit the estimated trajectory to the ground
truth. Though this approach isn’t fully robust against outliers [100], the results computed do
not indicate that the use of ATE or Horn’s method is troublesome for the estimates provided
by LUMO-SLAM. These results are displayed in Table 7.1.

To contextualize the results, the data presented in [18] is forwarded to Table 7.1 so
that LUMO-SLAM can be compared to other state-of-the-art visual SLAM systems. These
systems include ORB-SLAM [18], PTAM [16], LSD-SLAM [20], and RGB-D SLAM [101],
[102]. Additionally, for each system, every sequence is processed five times and the results
provided in the table denote the median ATE for each set of runs.

Given the results shown in Table 7.1, it is clear that, though LUMO-SLAM’s camera
localization accuracy falls short of the results achieved by ORB-SLAM and PTAM, it is still
usefully accurate, as its results rival those of LSD-SLAM. This observation is interesting, as
bundle adjustment is typically credited with causing increased accuracy in SLAM systems
which utilize it; however, LUMO-SLAM does not achieve the same accuracy as the other
systems that also make extensive use of bundle adjustment.

To hypothesize the cause of this reduced accuracy, it is likely that LUMO-SLAM’s camera
localization results are hindered by the system’s separation of feature extraction from feature
matching. Both ORB-SLAM and PTAM perform true guided searches for map points when
performing camera localization. That is, these systems start their localization processes by
deducing predicted feature locations in the image, and then begin evaluating all of the pixels
in each feature’s predicted image patch to deduce the best match. LUMO-SLAM, on the
other hand, performs feature extraction first and largely ignores any other data from the
image after the features have been blindly extracted. These features are then used in both
unguided and guided matching; however, this causes a likely-meaningful difference between

LUMO-SLAM and these predecessors. When LUMO-SLAM performs guided searching for
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Table 7.1. Median absolute trajectory errors comparing LUMO-SLAM,
ORB-SLAM, PTAM, LSD-SLAM, and RGB-D SLAM with the TUM RGB-D
dataset. Results for ORB-SLAM, PTAM, LSD-SLAM, and RGB-SLAM are
forwarded from the work presented in [18]. Results are aligned to the provided
ground truth with 7DoF before computing error. Note, “X” indicates tracking
loss that causes significant portions of the sequence to go unprocessed while
“-” indicates missing results, as RGB-D SLAM results are provided from the
benchmark website for only a subset of the sequences evaluated here.

Absolute Keyframe Trajectory RMSE Error (cm)
Sequence LUMO- ORB- PTAM LSD- RGB-D
SLAM SLAM SLAM SLAM
frl xyz 3.50 0.90 1.15 9.00 1.34
fr2_ xyz 4.85 0.30 0.20 2.15 1.42
fr1 floor 7.11 2.99 X 38.07 3.51
fr1_desk 5.98 1.69 X 10.65 2.52
fr2_ 360_kidnap 40.72 3.81 2.63 X 100.5
fr2_ desk 23.24 0.88 X 4.57 3.94
fr3_long office 24.43 3.45 X 38.53 -
fr3 nstr tex far 20.88 (ambiguity | 4.92/34.74 | 18.31 -
detected)
fr3 nstr tex near | 41.79 1.39 2.74 7.54 -
fr3 str tex far 3.29 0.77 0.93 7.95 -
fr3 str tex near 6.42 1.58 1.04 X -
fr2 desk person 24.01 0.63 X 31.73 2.00
fr3_sit_ xyz 8.42 0.79 0.83 7.73 -
fr3 sit_ halfsph 10.47 1.34 X 5.87 -
fr3_walk_xyz 12.48 1.24 X 12.44 -
fr3 walk halfsph 30.69 1.74 X X -
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image features, it ignores a majority of the search patch and only evaluates a handful of
features for each map point. It is likely that this is introducing noise into the feature
matches, as the few features provided by the image processing stage may not always include
the optimal feature location for each relevant map point. This presents a new problem
for exploration, as a SLAM system which provides unknown moving object registration is
ill-suited for the guided feature matching approaches of ORB-SLAM and PTAM, since the
projected image locations of moving object features are likely to be unpredictable.

Despite this limitation in LUMO-SLAM’s camera localization accuracy, the overall qual-
ity of its estimates here is still usefully high. These results indicate that the algorithm
implemented by LUMO-SLAM is sufficient for providing realtime camera localization and
the comparison with other state-of-the-art systems also informs areas for future work and

improvements.

7.2 Moving Object Localization Accuracy

In addition to evaluating standard SLAM metrics, such as the ATE of the camera localiza-
tion estimates, it is also important to quantify the accuracy of LUMO-SLAM’s localization
estimates for moving objects. This task is challenging, as there are few standard, public
datasets which include ground truth values for moving objects. Additionally, as LUMO-
SLAM is a proof-of-concept system and its current implementation still requires certain
conditions to be met in order to successfully register and localize moving objects in the
real world (which is explored in the next section), the few public datasets that provide this
ground truth information are often ill-suited for use with LUMO-SLAM.

To rectify this, a custom scene that makes extensive use of ArUco fiducial markers [103]
is built. This scene contains several static fiducial markers of varying sizes scattered across a
table as well as the wall behind it. It also includes a small set of markers taped to a clipboard,
which acts as the moving object in the following experiments. Given the known real-world
distance between a pair of the static markers, a custom-built offline marker-based mapping
application analyzes a video of the scene to accurately map the position of the markers at

real-world scale. This mapping can then be used to accurately localize the object as it is
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(a) Prepared environment (b) Static camera view

Figure 7.1. Prepared, marker-based environment used for collecting ground
truth localization data for a moving object while the LUMO-SLAM system
observes the object movement. (a) shows a wide view of the environment,
as seen by LUMO-SLAM, while (b) shows the narrow, stationary view cap-
tured by the static camera. The view in (b) is used for determining ground
truth localization data for the moving clipboard by leveraging the pre-mapped
marker locations. This provides localization data at real-world scale that can
be compared against LUMO-SLAM’s estimates.

moved during any given experiment. To accomplish this, an additional camera is mounted in
a static position, observing many static markers in the scene as well as maintaining a constant
view of the object. This static camera is eventually used to determine the trajectory of the
object at real-world scale. The different views of the static camera and SLAM camera are
illustrated in Figure 7.1.

For each experiment, the static camera records the object while the SLAM camera moves
freely throughout the environment. During the experiment, the clipboard is moved with a
string and is consequently registered and localized by LUMO-SLAM. Once the run has
concluded, the static camera’s footage is then fed into a custom-built offline localization
application which uses the known marker mapping to calculate the object’s trajectory with
respect to the markers at real-world scale.

This procedure is used to collect three different sequences of the environment containing
object movement. When LUMO-SLAM detects a moving object, it is clear that the primary

factor that may affect its object localization accuracy is the distance that the object is from
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(a) Close view (b) Midrange view (c) Far view

Figure 7.2. Example views of each of the three experiments for evaluating
moving object localization accuracy. (a) shows the sequence in which the
camera maintained a short distance from the moving object (clipboard), (b)
shows the sequence in which the camera maintained a moderate distance from
the moving object, and (c¢) shows the sequence in which the camera maintained
a large distance from the moving object.

the camera. Thus, each of the three sequences observe the object being moved in the scene
at different object-camera distances. The distances at which the camera observes the object
during movement are demonstrated in Figure 7.2, which includes a view of the sequence
which has a short object-camera distance, a view of the sequence which has a midrange
object-camera distance, and a view of the sequence which has a large object-camera distance.

After recording each of these sequences and computing the ground truth object trajectory
with the static camera’s footage, LUMO-SLAM’s estimated object trajectory is fit to the
ground truth object trajectory with 7DoF. The resulting object ATEs are computed for each
sequence and displayed in Table 7.2. Visualizations of the object trajectories (both ground
truth and estimated) are also provided in Figure 7.3.

The results predictably indicate that the system tends to provide more accurate object
localization estimates when the object is closer to the camera, as the median object ATE is
5.78 cm during the close-camera sequence, 7.86 cm during the midrange-camera sequence,
and 30.95 cm during the far-camera sequence. These specific results also indicate a con-
straint on this approach’s applicability: accurate object localization may only be reasonably
expected when the object is less than approximately one meter from the camera. This in-

forms potential use cases for this approach. For instance, this approach may be suitable for
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Table 7.2. Median absolute trajectory errors (ATEs) for moving objects
when fit and evaluated against ground truth data. The errors are organized
by the objects’ approximate distance from the camera during the sequence.
Since the SLAM camera is free-hand and the object movement is not precisely
controlled during each take, the object-camera distance is slightly different on
each frame of any given sequence; thus, approximate object-camera distances
for the whole sequence are provided in parentheses. Note, when the camera
is farther away from the object, localization accuracy dwindles. However,
localization accuracy is very strong under 100 cm.

Object-Camera Distance | Median Object ATE
Close (~70 cm) 5.78 cm
Midrange (~100 cm) 7.86 cm
Far (~150 cm) 30.95 cm
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Figure 7.3. Visualizations of the ground truth object movement (shown in
blue) and the estimated object movement (shown in black). (a) shows the
localization results during the sequence in which the camera is approximately
70cm away from the object, (b) shows the localization results during the se-
quence in which the camera is approximately 100cm away from the object,
and (c) shows the localization results during the sequence in which the camera
is approximately 150cm away from the object. Note that, though all cases
contain outliers, as the distance from the camera increases, the localization

estimates become less stable.

98




an application that involves a user moving objects on their desk, but not so much for an
application that has to estimate the position of neighboring cars on the road that are several
meters away.

It is also important to note that object-camera distance is the only factor controlled
in these experiments because other reasonable factors (such as lighting conditions, object
speed, camera movement, etc.) tend to have a significant impact on object registration ca-
pability rather than localization accuracy. These factors are instead, consequently, explored

in Section 7.3.

7.3 Moving Object Registration Accuracy

Though there are few factors that may have an impact on the accuracy of the moving
object localization estimates computed by LUMO-SLAM, there are a significant number of
factors that may impact moving object registration. For instance, low lighting conditions
may make feature matching more challenging, thus hindering the system’s ability to register
moving objects. Additionally, excessively-fast object motion may cause blurring that makes
the matching of moving object features unstable.

To illuminate LUMO-SLAM’s capacity for unknown moving object registration, 70 se-
quences are created, each of which involves moving objects (specifically, one or two textbooks)
that satisfy one of seven different, likely-relevant, conditions. Each of the sequences can thus

be categorized by the condition it satisfies. These categories include:

o Fast Motion: These sequences involve very fast initial movement from the moving
object. This condition is relevant, as fast, real-world motion may cause motion blur

that affects LUMO-SLAM’s ability to accurately match the object’s features.

o Slow Motion: In contrast to the sequences in the “fast motion” category, these
sequences involve very slow initial object movement. This condition is relevant, as slow
object movement leaves time for keyframe insertion, which may continually register

minor outliers as new map points, causing object registration to fail.
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o High Light: These sequences act somewhat as a baseline, in which a single moving
object is translated through the environment with sufficient lighting. The system is

expected to perform best on these sequences.

o Low Light: These sequences involve the object moving through the environment as
in other cases, except the lighting of the environment is very low. This condition is
relevant as low lighting may cause reduced contrast in the image, and consequently
may negatively impact feature extraction and matching. This may make moving object

registration more challenging.

e« Moving Camera: These sequences involve camera movement that takes place during
the object’s initial motion. This contrasts other tests, in which the camera is mostly
still during object registration. This condition is relevant, as camera motion may cause
repeated keyframe insertion, which may result in duplicate map point generation for

moving object points which could cause object registration to fail.

o Multiple Objects: These sequences include two moving objects, one of which is
moved (and ideally registered) before the other. Though there is no clear reason why
this type of experiment would fail, testing these sequences can help validate the fact

that this approach can be applied to multiple concurrent moving objects.

e Rotation-Only: Most sequences involve object registration via object translation;
however, these sequences register the object by rotating it. This condition is relevant, as
rotational movements result in lower reprojection errors towards the center of rotation
and higher reprojection errors away from the center of rotation. This may cause
moving objects to fail registration, as points close to the center of rotation may not be

registered as outliers.

Each category contains 10 different sequences, resulting in a total of 70 sequences ran
through LUMO-SLAM to evaluate its capacity for accurately registering moving objects
under these conditions. The results of these runs are summarized in Table 7.3.

As shown in Table 7.3, LUMO-SLAM broadly has high capacity to accurately register

moving objects across these conditions. However, it still demonstrates notable weaknesses.
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Table 7.3. Successful object registrations performed by LUMO-SLAM in
sequences demonstrating varying conditions. The values in the right-hand
column indicate the number of times LUMO-SLAM successfully registered
the moving object in the respective sequence out of ten runs. The table also
includes the results for the sequence containing multiple objects, in which a
successful registration is counted when both objects were registered and when
at least one object was registered (denoted in parentheses).

H Sequence Type \ Successful Registrations H

fast motion 0/10
slow motion 10 / 10
high Tight 10 /10
Tow Tight 8 /10
moving camera 6 /10
multiple objects 7 /10 (9 / 10)
rotation-only 10 / 10

For instance, LUMO-SLAM failed to register the moving object on any of the sequences in
which the object is moved very quickly. This is likely the result of motion blur on the object
obfuscating its features. Additionally, the system appears to have reduced capacity to regis-
ter objects when the camera is moving, registering the object in only 6 out of the 10 related
sequences. This is likely caused by continuous keyframe insertion, which in turn likely causes
the moving object features to suffer from duplicate map point generation, causing the repro-
jection errors to be continually truncated. Surprisingly, despite the slightly reduced number
of successful registrations (8 out of 10), the system appears to maintain fairly strong regis-
tration capability in low light. It is also somewhat surprising that the system demonstrated
such strong performance on the rotation-only sequences, as it managed to successfully reg-
ister the object on all 10 sequences. This is likely partially afforded by the fact that the
book’s rotation was always parallel to the table it rested on, which caused substantial fea-
ture movement across the object. In addition to the rotation-only sequences, LUMO-SLAM
also successfully registered the object in all of the high light and slow motion sequences.
Finally, the system interestingly demonstrated slightly-reduced success in the multi-object

sequences. Specifically, LUMO-SLAM successfully registered the first object on 9 out of 10
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of the sequences, but only registered both objects in 7 out of the 10 sequences. Given that
the first object was more-consistently registered than the second (and given that the first
object is the same book used in the other sequences), it is likely that the second object is
simply less suited for moving object registration, as its features may be lower quality.
These results help illustrate the capabilities and limitations of LUMO-SLAM’s moving
object registration implementation. Ultimately, though the system doesn’t have substantial
robustness yet, the results indicate that LUMO-SLAM is usefully functional under the right
conditions. As in the other experiments, these results also greatly inform areas for future

work and improvements.
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8. CONCLUSION AND FUTURE WORK

In conclusion, the dynamic SLAM problem poses a challenging, yet necessary, enhancement
to the functionality of SLAM. In addition to a novel deep learning approach for determining
map initialization suitability, this dissertation has proposed, implemented, and validated a
general, novel approach for registering and localizing unknown moving objects in the scene
with no required prior knowledge of the objects’ structure, appearance, or existence.

The approach itself proposes accomplishing this goal by mapping out feature points of the
objects before they begin moving and then analyzing the reprojection error of these points
after they begin moving to solve the motion segmentation problem. Additionally, feature
points can be appropriately clustered (based on the moving objects they are associated with)
by using the EPnP algorithm in a RANSAC scheme. This ultimately provides a mapped
reconstruction of the moving object which can be re-localized each frame in realtime with
the same EPnP process. This approach was also validated by implementing it in the custom-
built, monocular SLAM system, LUMO-SLAM. This dissertation has also shown, through
quantitative results of LUMO-SLAM’s general SLAM performance in comparison to state-
of-the-art SLAM systems, that LUMO-SLAM maintains localization accuracy comparable to
existing SLAM implementations despite being designed to also register and localize moving
objects. Though there are certain practical limitations that prevent LUMO-SLAM from
being a dynamic SLAM solution for all use cases, the results achieved for its registration
and localization accuracy indicate that this approach is highly-appropriate for some use
cases, such as those in which a user needs to track the movement of a dynamic moving
object but can also manually mediate the registration of the object.

The results also illuminate some of the limitations of the current implementation. For
example, ORB features appear to be surprisingly brittle for unguided feature matching,
as their matching strength diminishes greatly as the camera baseline increases, even in a
reasonable range. Additionally, the system seems to struggle registering the features on an
already-registered moving object if the object is not being viewed from its principal viewing
angle. This greatly limits the functionality of the system and is likely the result of insufficient

feature choice. The system also experiences lower camera localization accuracy than its
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keyframe-based counterparts, ORB-SLAM and PTAM. It is likely that this limitation is a
result of unrefined feature matching.

Given these limitations, a few appropriate areas for future work are noted below:

o As one of the major challenges in the development of the system revolved around
successful, unguided feature matching, the development of features stronger than ORB

would likely be a worthy direction for future research.

o To improve localization accuracy, the initial unguided feature matches could be re-
fined by searching for the optimally-matching image patch, localized around the initial

matching image patch.

o To improve the recall of already-registered moving objects, multiple descriptors for
moving object points could be searched for in the current image to yield better results.

The runtime capability of this, however, warrants further investigation.

o To enable the system to initialize in planar scenes as well as non-planar scenes, homog-
raphy estimation could be added to the initialization process, similar to the approach

used in ORB-SLAM.

 Place recognition (i.e., the ability to quickly determine the best subset of the map to
match an image frame against) is perhaps one of the most important problems in the
practical SLAM domain as it is used to detect loops and recover from tracking loss.
The place recognition approach implemented in LUMO-SLAM is highly dependent
on trained models and yields limited useful results. The development of a stronger
(and perhaps, even “tunable”) place recognition approach would enable better results
in loop detection and even pave the way for a simplification in the system’s overall

architecture.

« On the note of place recognition, recovery from severe tracking loss could be imple-
mented using the current place recognition approach in order to provide a high degree

of real-world robustness to the system.
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Overall, this body of work provides an interesting and useful step in the direction of
developing an enhanced SLAM solution. This solution, among many other efforts in the
field of dynamic SLAM, gives reason to be both excited and optimistic about the future
capabilities of SLAM and their corresponding AR applications.
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