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ABSTRACT

In this thesis, a theory of fluid–structure interaction (FSI) between an oscillatory Newto-

nian fluid flow and a compliant conduit is developed for canonical geometries consisting of a

2D channel with a deformable top wall and an axisymmetric deformable tube. Focusing on

hydrodynamics, a linear relationship between wall displacement and hydrodynamic pressure

is employed, due to its suitability for a leading-order-in-slenderness theory. The slenderness

assumption also allows the use of lubrication theory, which is used to relate flow rate to the

pressure gradient (and the tube/wall deformation) via the classical solutions for oscillatory

flow in a channel and in a tube (attributed to Womersley). Then, by two-way coupling

the oscillatory flow and the wall deformation via the continuity equation, a one-dimensional

nonlinear partial differential equation (PDE) governing the instantaneous pressure distribu-

tion along the conduit is obtained, without a priori assumptions on the magnitude of the

oscillation frequency (i.e., at arbitrary Womersley number).The PDE is solved numerically

to evaluate the pressure distribution as well as the cycle-averaged pressure at several points

along the length of the channel and the tube. It is found that the cycle-averaged pressure (for

harmonic pressure-controlled conditions) deviates from the expected steady pressure distri-

bution, suggesting the presence of a streaming flow. An analytical perturbative solution for

a weakly deformable conduit is also obtained to rationalize how FSI induces such streaming.

In the case of a compliant tube, the results obtained from the proposed reduced-order PDE

and its perturbative solutions are validated against three-dimensional, two-way-coupled di-

rect numerical simulations. A good agreement is shown between theory and simulations for

a range of dimensionless parameters characterizing the oscillatory flow and the FSI, demon-

strating the validity of the proposed theory of oscillatory flows in compliant conduits at

arbitrary Womersley number.
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1. INTRODUCTION

1.1 Literature survey on pulsatile flows in microscale fluid–structure interac-
tions

Pulsatile flows in microfluidics, which involves the unsteady flows of fluids at the mi-

croscale [  1 ], have a variety of applications in mechanical systems such as the generation of

emulsions of droplets, mixing, particle separation, and clog mitigation [  2 ]. One of the most

important uses of pulsatile flow in microfluidics involves flow control and shaping, which is

used by various lab-on-a-chip technologies [ 3 ]–[ 6 ]. Flow shaping usually involves employing

microfluidic circuits consisting of capacitors and diodes (see Fig.  1.1 ), made of deformable

elastomers like polydimethylsiloxane (PDMS), to ensure an accurate frequency-specific flow

response [ 3 ]. The capacitors get their name from their ability to store fluid in the deformed

bulge, while the diodes permit or obstruct the flows in a particular direction [  3 ]. The flow

conduits in both of these components undergo significant deformation. This flow-induced

deformation necessitates a thorough understanding of pulsatile flows and the effect of two-

way coupled fluid–structure interaction (FSI) on them. The effect on the flow due to the

deformable walls must be understood in order to accurately maintain flow control as well as

for the design and manufacturing of such devices.

In biological systems, pulsatile flows are essential for enabling bioassay automation, en-

hancement, or alteration of cell cultures [  2 ]. Pulsatile flows are also omnipresent inside the

human body, such as in the form of blood flow through the arteries [  7 ], [ 8 ], as well as the

flow experienced by endothelial cells of the cardiovascular system, or air flow in and out of

the lungs [  2 ], [  9 ]. In recent years, there has been a lot of progress made in the development

of organ-on-a-chip technologies [ 10 ], [  11 ], which like lab-on-a-chip are miniaturized devices

used for mimicking the physiology of human organs in a laboratory setting (see Fig.  1.2 ).

These devices also make use of PDMS or other such deformable elastomers. Similar to the

flow control chip discussed above, the fluid flow inside the organs and blood vessels is pul-

satile and affected by the movement of the vessel or the organ walls, which again makes

understanding the two-way coupled FSI of pulsatile flows necessary to accurately mimic the

physiology of the human organs.
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Figure 1.1. An example of a flow control microfluidic circuit with its
schematic, which highlights the key components of the circuit. The fluid de-
sired at high frequency is in the upper branch, while the low-frequency fluid
is in the lower branch. Both the branches, along with the capacitor and the
diode are connected to the single oscillating pressure input. The pressure pulse
drives the input capacitor at a controlled frequency, which produces a specific
dynamic response in the system. Reproduced with permission from [  3 ] © 2009
Springer Nature.

Several theoretical studies have contributed to the understanding of pulsatile flows in

deformable conduits (see Table  1.1 ). Womersley [  12 ], [  13 ] is credited with the earliest theory

of pulsatile flows, including an analytical solution for the velocity profile in a rigid cylindrical

tube with a flow driven by a constant, but pulsatile pressure gradient. This theory was then

extended to an elastic tube, with the purpose of understanding the physics of blood flow in the

arteries. Specifically, Womersley’s theory considered the wall inertia in analyzing the flow,

11



Figure 1.2. An example of a organ-on-a-chip device named lung-on-a-chip,
mimicking the breathing process. A shows the stretching of the PDMS mem-
brane during inhalation, mimicking the actual behavior of the lung, which is
shown in B. C shows the internal structure of the device. D shows the top
view of the manufactured microfluidic chip. Reproduced with permission from
[ 10 ] © 2010 AAAS.

assuming the pressure to be a known sinusoidal function, and did not consider the effect of

cross-section deformation on the pressure itself, thus neglecting the two-way coupled effect

of the FSI on the flow. Additionally, the deformation was considered to be infinitesimal,

thus not changing appreciably the cross-section area of the tube. This assumption has

been extensively used in the modeling of lumped parameters (resistance, capacitance, and

inductance) for microscale hydraulic systems. In cardiovascular systems, these lumped-

parameter models are sometimes known as windkessel models [  14 ]. On the other end of the

deformation spectrum, Pedley [  7 ] and Grotberg and Jensen [  8 ] reviewed fully coupled FSI

modeling of large blood vessels as collapsible tubes with the fluid flow inside them assumed

to be in the inertial regime (moderate-to-high Reynolds number). Čanić, Lamponi, Mikelić,

et al. [ 15 ] studied the two-way coupled incompressible viscous flow in a compliant tube and

used Greens-function methods to obtain analytical solutions by performing a perturbation

expansion in the weak FSI limit. This expansion is sometimes referred to as the ‘domain

perturbation approach’.

12



T
ab

le
1.

1.
A

ch
ro

no
lo

gi
ca

l
se

le
ct

io
n

of
st

ud
ie

s
on

lo
w

-R
ey

no
ld

s-
nu

m
be

r,
os

ci
lla

to
ry

flo
w

s
in

lo
ng

,
sle

nd
er

co
m

pl
ia

nt
co

nd
ui

ts
.

U
nl

es
s

ot
he

rw
ise

no
te

d,
st

ud
ie

s
in

vo
lv

e
N

ew
to

ni
an

flu
id

s
an

d
lin

ea
rly

-e
la

st
ic

wa
lls

.
W

al
l

in
er

tia
is

ne
gl

ec
te

d
un

le
ss

ot
he

rw
ise

st
at

ed
.T

he
W

om
er

sle
y

nu
m

be
rq

ua
nt

ifi
es

th
eo

rd
er

of
m

ag
ni

tu
de

of
un

st
ea

dy
in

er
tia

l
fo

rc
es

co
m

pa
re

d
to

vi
sc

ou
s

fo
rc

es
.

T
he

co
m

pl
ia

nc
e

nu
m

be
r

qu
an

tifi
es

th
e

or
de

r
of

m
ag

ni
tu

de
of

th
e

hy
dr

od
yn

am
ic

pr
es

su
re

to
th

e
wa

ll’
s

el
as

tic
re

sis
ta

nc
e.

T
he

pa
pe

rs
cl

as
sifi

ed
as

“t
he

or
y”

ab
ov

e
of

te
n

al
so

ne
ce

ss
ita

te
th

e
nu

m
er

ic
al

so
lu

tio
n

of
a

re
du

ce
d

m
od

el
(a

s
in

th
is

th
es

is)
.

R
ef

er
en

ce
Fo

cu
s

G
eo

m
et

ry
W

om
er

sle
y

nu
m

be
r

C
om

pl
ia

nc
e

nu
m

be
r

W
om

er
sle

y
[ 1

2 ]
,[

 13
 ]

T
he

or
y

Tu
be

A
rb

itr
ar

y
=

0,
wa

ll
in

er
tia

co
ns

id
er

ed
Č

an
ić

,L
am

po
ni

,M
ik

el
ić

,e
ta

l.
[ 1

5 ]
T

he
or

y
Tu

be
O

(1
)

�
1

Č
an

ić
,T

am
ba

ča
,G

ui
do

bo
ni

,e
ta

l.
[ 1

6 ]
T

he
or

y
&

ex
pe

rim
en

t,
vi

sc
oe

la
st

ic
tu

be
Tu

be
O

(1
)

�
1

W
un

de
rli

ch
,K

le
ßi

ng
er

,a
nd

B
au

sc
h

[ 4
 ]

T
he

or
y

&
ex

pe
rim

en
t

3D
ch

an
ne

l
�

1
=

0,
lu

m
pe

d-
pa

ra
m

et
er

m
od

el
,

de
fo

rm
at

io
n

se
en

in
ex

pe
rim

en
t

Ve
de

l,
O

le
se

n,
an

d
B

ru
us

[ 1
7 ]

T
he

or
y

&
ex

pe
rim

en
t

Tu
be

A
rb

itr
ar

y
=

0,
lu

m
pe

d-
pa

ra
m

et
er

m
od

el
Sa

n
an

d
St

ap
le

s
[ 1

8 ]
T

he
or

y
Tu

be
A

rb
itr

ar
y

C
om

pl
ia

nc
e

id
ea

liz
ed

as
sli

p
El

ba
z

an
d

G
at

[ 1
9 ]

T
he

or
y

Tu
be

�
1

=
0

B
oy

ko
,B

er
co

vi
ci

,a
nd

G
at

[ 2
0 ]

T
he

or
y,

no
n-

N
ew

to
ni

an
flu

id
Tu

be
�

1
=

0
K

ira
n

R
aj

,D
as

gu
pt

a,
an

d
C

ha
kr

ab
or

ty
[ 2

1 ]
Ex

pe
rim

en
t,

no
n-

N
ew

to
ni

an
flu

id
Tu

be
0

to
2.

17
U

nk
no

w
n,

de
fo

rm
at

io
n

ob
se

rv
ed

Tu
lch

in
sk

y
an

d
G

at
[ 2

2 ]
T

he
or

y
2D

ch
an

ne
l

A
rb

itr
ar

y
=

0,
wa

ll
in

er
tia

co
ns

id
er

ed
A

na
nd

an
d

C
hr

ist
ov

[ 2
3 ]

T
he

or
y,

co
m

pr
es

sib
le

flu
id

Tu
be

�
1

�
1

&
vi

sc
oe

la
st

ic
tu

be
V

ish
wa

na
th

an
an

d
Ju

ar
ez

[ 2
4 ]

Ex
pe

rim
en

t
3D

ch
an

ne
l

1.
5

to
15

N
o

de
fo

rm
at

io
n

ob
se

rv
ed

T
hi

s
th

es
is

T
he

or
y

&
3D

di
re

ct
sim

ul
at

io
n

2D
ch

an
ne

l&
Tu

be
A

rb
itr

ar
y

N
ot

as
su

m
ed

sm
al

l

13



Elbaz and Gat [  19 ] studied the effect of oscillatory viscous flow, for low Womersley

number, in an elastic tube subject to an external force, while Boyko, Bercovici, and Gat

[ 20 ] studied the effect of oscillatory non-Newtonian flow in an elastic tube. Both of these

studies obtain the governing unsteady equation for the pressure distribution by assuming

the deformation to be infinitesimal, thus not changing appreciably the cross-section area

of the tube. Tulchinsky and Gat [  22 ] studied the oscillations of a thin film surrounded by

the elastic walls excited by a traveling pressure wave, where wall inertia was considered to

calculate the frequency response of the film. Like the approach in [  19 ], [  20 ] and Womersley’s

solution, this study also did not consider the change in the cross-section area of the channel.

On the other hand, Anand and Christov [ 23 ] studied compressible fluid flow in a viscoelastic

tube in the lubrication limit for low Womersley number with finite compliance of the tube,

obtaining perturbation solutions to the two-way coupled problem like in [ 15 ].

On the experimental side, Wunderlich, Kleßinger, and Bausch [  4 ] studied the effects of

pulsatile flows in a three-dimensional (3D) microchannel and compared the results with

a theoretical model comprising of lumped parameters. The theoretical model though was

restricted to low Womersley numbers. Vedel, Olesen, and Bruus [ 17 ] also made a similar

comparison between the lumped-parameter models and experimental results for a tube, but

they considered arbitrary Womersley numbers. In both of the latter studies, the effect

of two-way coupled FSI was not taken into account in the way the lumped parameters

were calculated. Vishwanathan and Juarez [  24 ] also studied pulsatile flow in a 3D channel

at sub-kHz frequency but did not report observing any channel deformation. Meanwhile,

Kiran Raj, Dasgupta, and Chakraborty [ 21 ] studied the effect of non-Newtonian rheology

(shear thinning) and reported observing deformation in their experiments, however, their

mathematical model does not consider the wall’s compliance.

1.2 Knowledge gap and organization of the thesis

The key knowledge gaps identified from Sec.  1.1 are as follows:

14



• Despite significant progress being made in the understanding of pulsatile microflows,

there is a lack of theory for a two-way coupled pulsatile flow in a deformable conduit

in the lubrication limit.

• Many of the studies discussed in Sec.  1.1 assume the pressure to be a known sinusoidal

function, or to obey a linear diffusion equation.

• The last assumption neglects the effect of the deformation on the pressure itself, which

prevents these theories from capturing the nonlinear pressure gradients experienced by

the tubes due to two-way FSI coupling.

• When the effect of FSI was considered (as in [ 15 ], [  16 ], [  23 ], for example), the resulting

PDEs were expanded in a perturbation for weak FSI. Some of the analytical expressions

obtained from the perturbation solution were unwieldy and not of practical use, except

in the low Womersley number limit (as in [ 23 ]).

• Though experiments have shown significant deformations of the channel or tube during

pulsatile low Reynolds number flow [  17 ], [  21 ], a mathematical model of the two-way

coupled FSI for such pulsatile flow is absent in the literature.

Realizing that there is a need for understanding pulsatile flows in compliant conduits at

arbitrary Womersley numbers, this thesis addresses the above knowledge gaps as follows:

• A reduced 1D model is developed for the canonical geometries of a two-dimensional

(2D) channel with a compliant top wall in Chap.  2 , and a 3D axisymmetric tube in

Chap.  3 .

• The velocity profile is obtained at each cross-section by simplifying the Navier–Stokes

equation in the lubrication limit. Then, the volumetric flow rate from this oscillatory

velocity profile.

• A deformation model based on linear elasticity is used to understand the variation of

channel height and tube radius with the pressure in the flow.

15



• The relations between volumetric flow rate and pressure gradient and pressure and

deformation are used to obtain a nonlinear partial differential equation (PDE) for the

pressure evolution in a deformable conduit conveying pulsatile flow, ensuring two-way

FSI coupling.

• 3D direct numerical simulations are performed to verify the validity of the proposed

reduced model (the latter PDE).

For the sake of simplicity, only purely oscillatory flows are discussed, which do not have the

mean flow component.

16



2. OSCILLATORY FLOW IN A TWO-DIMENSIONAL

CHANNEL WITH A COMPLIANT TOP WALL

2.1 Governing equations: scaling and lubrication approximation

Consider a two-dimensional (2D) channel in the (y, z) plane as shown in Fig.  2.1 . The

width w in the spanwise x-direction (into the page, not shown) is so large that the flow

may be considered 2D and independent of x. Assume a Newtonian fluid with its dynamic

viscosity and density being µf and ρf , respectively. The flow is driven by an oscillatory

pressure (frequency ω, amplitude p0) imposed at the inlet, and the channel is open to the

atmosphere at its outlet. Neglecting any body forces, the mass and momentum conservation

equations for this fluid flow [ 25 ] are

∂vy

∂y︸︷︷︸
O(1)

+ ∂vz

∂z︸︷︷︸
O(1)

= 0, (2.1a)

ρf
∂vy

∂t︸ ︷︷ ︸
O(ε2α2)

+ ρfvy
∂vy

∂y︸ ︷︷ ︸
O(ε3Re)

+ ρfvz
∂vy

∂z︸ ︷︷ ︸
O(ε2Re)

= µf
∂2vy

∂y2︸ ︷︷ ︸
O(ε2)

+ µf
∂2vy

∂z2︸ ︷︷ ︸
O(ε4)

− ∂p

∂y︸︷︷︸
O(1)

, (2.1b)

ρf
∂vz

∂t︸ ︷︷ ︸
O(α2)

+ ρfvy
∂vz

∂y︸ ︷︷ ︸
O(εRe)

+ ρfvz
∂vz

∂z︸ ︷︷ ︸
O(εRe)

= µf
∂2vz

∂y2︸ ︷︷ ︸
O(1)

+ µf
∂2vz

∂z2︸ ︷︷ ︸
O(ε2)

− ∂p

∂z︸︷︷︸
O(1)

. (2.1c)

The scales used to determine the orders of magnitude of terms in Eqs. ( 3.1 ) are given in

Table  3.1 . Three dimensionless numbers (ε, Re and α) arise. They are defined in Table  2.2 ,

where their typical values are also given.

Table 2.1. The scales for the variables in the 2D incompressible Navier–
Stokes equations (  2.1 ). Note that we have used the lubrication-theory scales
for vy, vz based on the pressure scale imposed by p0 [ 26 ].

Variable t y z vy vz p

Scale 2π/ω h0 ` εVz Vz = εh0p0/µf p0

17



b

y

z

uy(z) = kp(z) h0

ℓ

p0cos(ωt) h(z)

Figure 2.1. Schematic of a 2D compliant microchannel, indicating key quan-
tities and notation for the geometry.

As usual, the Reynolds number Re gauges the order of magnitude of convective inertial

forces compared to viscous forces. (As discussed in [  26 ], the effective Reynolds number

εRe is actually the relevant quantity herein, on which we make assumptions in Sec.  2.2 

below.) Meanwhile, the Womersley number α measures the order of magnitude of unsteady

inertial forces compared to viscous forces. Although we consider the case of h = h(z, t), we

assume that maxz h(z, t) is always on the order of h0, to be consistent with the lubrication

approximation, which we now make.

2.2 Flow solution at arbitrary Womersley number

For a microfluidic system of interest, as discussed in Sec.  1.1 , Table  2.2 presents the

typical values of the relevant dimensional and dimensionless parameters. Thus, we are led to

consider the limit of ε � 1, εRe � 1, and ε2α2 � 1. This limit is the well-known lubrication

approximation [ 25 ], [  26 ], but observe that ε2α2 � 1 allows the Womersley number α to be

O(1), or even large (say, O(ε−1)), within the same approximation. In this regime, Eq. ( 2.1c )

reduces to

ρf
∂vz

∂t
= µf

∂2vz

∂y2 − ∂p

∂z
, (2.2)

subject to no slip along the channel walls, vz(y = 0, t) = vz(y = h, t) = 0. Observe that

Eq. (  2.2 ), arising from the lubrication approximation for a deformable channel of variable
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Table 2.2. The dimensional and dimensionless parameters of the model for
a two-dimensional channel with a compliant wall. The typical fluid is taken
to be water, while the typical elastic solid is taken to be polydimethylsiloxane
(PDMS), for which ρs ' ρf , νs ' 0.5, and E can be varied. The stiffness
constant is estimated as k = 0.272(1 − ν2

s )h0/E [ 28 ], while the deformation
scale is calculated as U = βh0 (see Sec.  2.4 ).

Quantity Notation Typical value Units

Channel’s length ` 1.0 cm
Channel’s undeformed height h0 10 to 100 µm
Top wall’s thickness b 10 to 100 µm
Solid’s Young’s modulus E 0.1 to 1 MPa
Solid’s Poisson’s ratio νs 0.49 to 0.5 –
Solid’s density ρs 1.0 × 103 kg m−3

Fluid’s density ρf 1.0 × 103 kg m−3

Fluid’s dynamic viscosity µ 1.0 × 10−3 Pa s
Pressure pulse amplitude p0 1 to 10 kPa
Pressure pulse frequency ω/2π 1 to 1000 Hz

Channel’s height-to-length aspect ratio ε = h0/` 0.001 to 0.01 –
Reynolds number Re = ρfεh2

0p0/µ2
f 0.1 to 100 –

Womersley number α = h0
√

ρfω/µf 0.03 to 7 –
FSI (or, compliance) number β = kp0/h0 0.001 to 0.1 –
Strouhal number St = ρsbUω2/(4π2p0) ≈ 10−9 to 10−6 –

height h, is the same as the axial momentum equation in a rigid channel of constant height

h0, reduced identically for 2D unidirectional flow [  25 ]. Indeed, the channel height h does not

have to be constant under the lubrication approximation, as long as it varies slowly [ 27 ].

Now, if the oscillatory pressure gradient along the channel were separable and time-

harmonic, as −∂p/∂z = Geiωt, then, the post-transient oscillatory flow solution, vz(y, t) =

f(y)eiωt, to Eq. (  2.2 ) is easily found in complex form (see also [ 29 , p. 89] and the discussion

in [ 30 ], [ 31 ] for several other forms of the solution):

vz(y, t) = h2
0

iµfα2

1 −
cos

(
i3/2(1 − 2y/h)αh/2

)
cos (i3/2αh/2)

 Geiωt︸ ︷︷ ︸
≡−∂p/∂z

. (2.3)

The velocity field solution in Eq. (  2.3 ) is given in complex-variable form for convenience,

and we may take the real or imaginary part, depending on the boundary conditions. To
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introduce α into the solution (  2.3 ), we let h = h0h. From Eq. (  2.3 ), the volumetric flow rate

is found to be

q :=
∫ w

0

∫ h=h0h

0
vz dydx = h3

0hw

iµfα2

[
1 − 1

i3/2αh/2 tan
(
i3/2αh/2

)](
−∂p

∂z

)
, (2.4)

For oscillatory flow in a rigid channel, h = 1, G = G0, and Eq. ( 2.4 ) can be directly

integrated as an ordinary differential equation to find the relationship between the amplitude

of the flow rate’s oscillations and the applied pressure gradient’s constant amplitude. For

oscillatory flow in a non-uniform (or deformable) channel, however, h and G are not constant,

so further closures are needed, which we now discuss.

2.3 Model for the elastic deformation of the channel wall

First, we must specify how the height of the channel varies. We are interested in the

case of flow-induced deformation. Therefore, the channel height varies with the applied load

from the hydrodynamic pressure in the channel. This type of channel height variation can

generally be expressed as (see, e.g., [ 28 ], [ 32 ], [ 33 ]):

h(p) = h0 + kp = h0 (1 + kp/h0)︸ ︷︷ ︸
h(p)

, (2.5)

where k is an effective “stiffness” constant that can be related to the elastic properties of

the compliant wall, as well as the geometry [  33 ]. In the context of blood flow in the lungs,

Fung [  14 , Sec. 6.8] uses Eq. (  2.5 ) to model the elasticity of the pulmonary alveolar sheet.

The deformation–pressure relation implied by Eq. (  2.5 ), namely uy := h − h0 = kp, can also

be obtained from the reduced deformation model of a 3D microchannel proposed in [ 28 ]:

ρsb
∂2uy

∂t2︸ ︷︷ ︸
inertia, O(St)

+ uy

k︸︷︷︸
stiffness, O(1)

− χt
∂2uy

∂z2︸ ︷︷ ︸
tension, O(θt)

+ χb
∂4uy

∂z4︸ ︷︷ ︸
bending, O(θb)

= p︸︷︷︸
load, O(1)

, (2.6)

where b is an (effective) thickness of the fluid–solid interface, which is the same as the

thickness of the wall in our analysis, k is the stiffness of the wall, χt is the tension per unit
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length, and χb is the plate-like bending rigidity. Equation ( 2.6 ) is also commonly used in

models of high-speed flow over compliant coatings (the so-called “Kramer’s surface”) [ 34 ].

Next, we denote the characteristic scale of uy as U and show it can be determined by

balancing the surface stiffness term (the second term on the left) with the flow pressure.

Let us also introduce St = ρsbUω2/(4π2p0) as the Strouhal number, which represents the

(squared) ratio of a characteristic solid deformation time scale (∼
√

ρsbU/p0) to the char-

acteristic fluid flow time scale chosen earlier (2π/ω) [  35 ]. In the present analysis (as in [ 28 ]

but unlike [  35 ]), we assume that the wall deformation develops faster than the flow so that

St � 1. Then, the solid inertia is a weak effect, and we neglect it at leading order. We

can also write χt = Ēbεz and χb = Ēb3/12, where Ē = E/(1 − ν2
s ), with E and νs being

the Young’s modulus and the Poisson’s ratio of the solid wall, respectively, and εz is the

longitudinal strain resulting from either weak pretension or the bulging of the wall. As an

example for the latter, for a von Kármán beam, εz ∼ (U/`)2 is given in [  35 ]. Assuming that

U � ` and also the compliant top wall is made slender with b � `, it is not difficult to show

that θt = χtU/(p0`
2) ∼ (b/`)(U/`)3 � 1 and θb = χbU/(p0`

4) ∼ (b/`)3(U/`) � 1, so that

the bending and tension are negligible. Then, from Eq. ( 2.6 ), we obtain uy = kp at leading

order, so that U = βh0. Here, β := kp0/h0 is the dimensionless FSI parameter, which gauges

the strength of fluid–solid coupling.

Note, however, that though Eq. ( 2.5 ) may, on the face of it, appear to be a Winkler-

foundation-like model [  36 ] for deformation, no such assumption needs to be made here (see

[ 28 ]), unlike earlier works [ 37 ], [  38 ]. In a “truly” 2D elastic wall, an incompressible Winkler-

foundation-like model has certain limitations, as discussed in [  39 ]. Having previously derived

an “effective” 2D elastic model from a 3D one obviates this issue.
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2.4 Reduced model: Governing equation for the pressure

Following the standard procedure (see, e.g., [  7 ], [  25 ], [ 26 ]), the conservation of mass

equation (  2.1a ) can be averaged over y ∈ [0, h], and using the kinematic condition vy(y =

h, t) = ∂h/∂t yields the continuity equation

∂q

∂z
+ ∂A

∂t
= 0, (2.7)

where A = wh(p) is the channel’s cross-sectional area. On substituting q from Eq. (  2.4 ) and

h from Eq. ( 2.5 ) into Eq. ( 2.7 ), we obtain

h3
0

iµfα2
∂

∂z

{
−∂p

∂z
h(p)

[
1 − 1

i3/2αh(p)/2 tan
(
i3/2αh(p)/2

)]}
+ k

∂p

∂t
= 0. (2.8)

Next, we introduce dimensionless variables (based on the scales from Table  2.1 ), denote

them by capital letters, and eliminate h(p) via Eq. ( 2.5 ) from Eq. ( 2.8 ), to obtain:

∂

∂Z

{
−∂P

∂Z
(1 + βP )

[
1 − 1

i3/2α (1 + βP ) /2 tan
(
i3/2α (1 + βP ) /2

)]}
+ iα4β

2πεRe
∂P

∂T
= 0,

(2.9)

where β := kp0/h0 has been defined as the FSI (or, compliance) number. The boundary

conditions for Eq. (  2.9 ) corresponding to time-harmonic oscillatory flow (driven by a pressure

difference along the channel) are

P (Z = 0, T ) = cos(2πT ), (2.10a)

P (Z = 1, T ) = 0. (2.10b)

Equation ( 2.9 ) is a complex-valued, nonlinear PDE for the pressure distribution P (Z, T )

accounting for the oscillatory flow in the 2D channel two-way coupled to the flow-induced

deformation of the channel’s top elastic wall. Although the PDE (  2.9 ) is based on the long-
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time, post-transient flow solution, it still requires an initial condition on P to be marched

forward in time. For simplicity, we may impose a zero initial pressure distribution:

P (Z, T = 0) = 0, (2.11)

and solve the PDE ( 2.9 ) for “sufficiently large” T so that this initial condition is “forgotten”

and a post-transient state is achieved.

Note that the velocity profile used to obtain the flow rate and the corresponding PDE

( 2.9 ) assumes that the pressure gradient is separable as −∂p/∂z = G(z)eiωt, however, the

same separation of variable ansatz cannot be used to solve the governing PDE ( 2.9 ), owing

to its nonlinear nature from two-way coupling of the FSI. This apparent contradiction is

resolved by understanding that we have essentially assumed a velocity profile to “close” the

cross-sectionally-averaged model. Borrowing the terminology from boundary-layer flows, this

closure is generally referred to as the von Kármán–Pohlhausen approximation in a (weakly-

)inertial flow in a channel with a deformable wall [ 28 ], [ 32 ], [ 35 ], [ 40 ], [ 41 ], wherein a steady

parabolic profile is used to close the cross-sectionally-averaged momentum equation. (A

similar closure problem arises in depth-averaged models of weakly-inertial thin film flows

[ 42 , Ch. 6].) Here, we use the unidirectional oscillatory flow solution toward the same goal.

Unfortunately, as is the case with the von Kármán–Pohlhausen approximation, our ap-

proximation can only be justified a posteriori. In particular in Sec.  3.6 , by comparing it

to 3D direct numerical simulations. The only other alternative is to consider a weakly de-

formable conduit and expand the governing equations in β � 1 [ 15 ], [  16 ], [  23 ], which is often

referred to as the “domain perturbation” approach. However, as Van Dyke [ 27 ] argues, the

latter approach is expected to have a more limited range of accuracy. Furthermore, even

though the resulting linear coupled system of the unsteady mass, momentum, and elasticity

equations can be solved analytically at each order in β using, e.g., Green’s function methods

[ 15 ], [ 16 ], the analytical expressions are unwieldy and not of practical use. Meanwhile, our

approximation of using the separable oscillatory flow profile to eliminate the momentum

equation yields a closed-form reduced-order, two-way coupled FSI model ( 2.9 ) that does not

assume β � 1 a priori.
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2.5 Analytical results

From Eq. ( 2.9 ), further analytical progress can be made in two distinguished limits, which

we now consider.

2.5.1 Steady flow

Diving Eq. (  2.9 ) by iα2 and taking the limit α → 0, we obtain an ordinary differential

equation for the steady pressure distribution in a 2D channel with a deformable wall:

d
dZ

{
−dP

dZ

[ 1
12(1 + βP )3

]}
= 0. (2.12)

With the boundary conditions P (0) = 1 and P (1) = 0, we obtain the solution for the

pressure as:

P (Z) = 1
β

({
(1 + β)4 − [(1 + β)4 − 1]Z

}1/4
− 1

)
. (2.13)

As expected [  43 ], the pressure distribution (  2.13 ) is not linear in the deformable channel at

steady state (dP/dZ 6= const.), but limβ→0 P (Z) = 1 − Z as usual.

2.5.2 Weakly deformable channel

Following [ 15 ], [ 16 ], [ 23 ], we can seek a perturbation solution to Eq. (  2.9 ) for weak FSI

(i.e., β � 1). To this end, let

P (Z, T ) = P0(Z, T ) + βP1(Z, T ) + · · · . (2.14)

Judiciously expanding the nonlinear term within the Z derivative and substituting the ex-

pansion from Eq. ( 2.14 ) into Eq. ( 2.9 ), we obtain:

∂

∂Z

{
− ∂

∂Z
(P0 + βP1)

[
f0(α) + β(P0 + βP1)f1(α)

]}
+ iα4β

2πεRe
∂(P0 + βP1)

∂T
= 0, (2.15)
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where, for convenience, we have defined

f0(α) := 1 − 1
i3/2α/2 tan

(
i3/2α/2

)
, (2.16a)

f1(α) := − tan2
(
i3/2α/2

)
. (2.16b)

Assuming that α4β/(2πεRe) = O(β) asymptotically, collecting O(1) terms in Eq. (  2.15 )

yields
∂2P0

∂Z2 = 0 (2.17)

subject to

P0(Z = 0, T ) = cos(2πT ), (2.18a)

P0(Z = 1, T ) = 0. (2.18b)

The solution to the leading-order problem, i.e., Eqs. ( 2.17 ) and ( 2.18 ), is thus simply:

P0(Z, T ) = (1 − Z) cos(2πT ). (2.19)

Next, collecting O(β) terms in Eq. ( 2.15 ) yields

f0(α)∂2P1

∂Z2 = − ∂

∂Z

[
f1(α)P0

∂P0

∂Z

]
+ iα4

2πεRe
∂P0

∂T
(2.20)

subject to

P1(Z = 0, T ) = 0, (2.21a)

P1(Z = 1, T ) = 0. (2.21b)

The solution for the first-order correction is found, from Eqs. ( 2.20 ) and ( 2.21 ), to be:

P1(Z, T ) = 1
6Z(1 − Z)

[
3 f1(α)
f0(α) cos2(2πT ) + 2(2 − Z) iα4

2πεRe f0(α) sin(2πT )
]

. (2.22)
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Now, we define the cycle average as

〈·〉(Z) :=
∫ T +1

T
(·)(Z, T ′) dT ′, (2.23)

recalling that the dimensionless period is unity in our chosen dimensionless variables. The

perturbative, real-valued pressure distribution is then found from Eqs. (  2.19 ) and (  2.22 ) as

Re [P0(Z, T )] + β Re [P1(Z, T )]. Using the cycle averaging defined in Eq. ( 2.23 ), we that the

real-valued cycle-averaged pressure is

〈P 〉(Z) = Re [ 〈P0〉︸ ︷︷ ︸
=0

+β〈P1〉] + O(β2) = β

4 Z(1 − Z) Re
[
f1(α)
f0(α)

]
+ O(β2)

= β

4 Z(1 − Z)
(

3 − 43
2100α4

)
+ O(βα8, β2),

(2.24)

where we have given the α � 1 expansion for completeness. Note that we cannot compare

the α → 0 limit of the Eq. (  2.24 ) to the β � 1 expansion of Eq. (  2.13 ) (i.e., the α → 0

and β → 0 limits do not commute) because in Eq. (  2.18a ) we imposed a time-dependent

boundary condition on P0, while P in Eq. ( 2.13 ) satisfies a time-independent one. Taking

the real part in the expression in Eq. (  2.24 ) has to be done numerically (for plotting and

evaluation purposes).

Evidently, Eq. ( 2.24 ) implies the existence of a steaming pressure gradient ∂〈P 〉(Z)/∂Z,

which engenders a non-zero mean flow rate 〈Q〉. From the dimensionless flow rate corre-

sponding to Eq. ( 2.4 ) a lengthy, but straightforward, calculation shows that

〈Q〉 = − β

4α2 Re [if1(α)] + O(β2)

= β

4α2 Re
[
i tan2

(
i3/2α/2

)]
+ O(β2) = β

16

(
1 − 17

720α4
)

+ O(βα6, β2),
(2.25)

which is independent of Z. Further, Re [〈Q〉/β] is a decreasing function for small α and

decays to zero as α → ∞. Interestingly, Re [〈Q〉/β] becomes negative between α ≈ 4.4429

and α ≈ 8.8858.
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2.6 Numerical results and discussion

The proposed reduced-order model, namely the PDE (  2.9 ), is a non-degenerate nonlinear

diffusion equation. However, we need to solve this PDE numerically because, as discussed

above, the pressure cannot be assumed to be time-harmonic (as it would be in the classi-

cal Womersley-style one-way coupled FSI analysis), and two-way coupling of the flow and

deformation leads to a nonlinear PDE. There are many numerical methods suitable for solv-

ing such a PDE with ease [ 44 ]. For convenience, we simply the built-in pdepe of Matlab

2020b (Mathworks, Inc.) to solve Eq. (  2.9 ) subject to Eqs. (  2.10 ) and ( 2.11 ). Pdepe uses

an auto-generated finite-element spatial discretization of the nonlinear parabolic (or elliptic)

PDE provided [  44 ] and the method of lines for time integration, which is accomplished by

Matlab’s adaptive, variable-order multistep stiff solver ode15s [ 45 ]. The relative tolerance

of the solver is set to 10−15, while the absolute tolerance is set to 10−8. A total of 1000

spatial grid points were used. Although Eq. (  2.9 ) is a complex-valued PDE, it depends only

upon the real variables Z and T , hence it can be solved using pdepe just like a real-valued

PDE.

An example numerical solution is shown in Fig.  2.2(a) over one cycle of the forcing, after

sufficient time has elapsed for the solution to reach a time-periodic state (observe that the

P curves at the beginning and end of the cycle shown overlap). By “sufficient time,” we

mean that the maximum pressure difference between two consecutive cycles is less than a

prescribed tolerance, namely a T such that maxZ |P (Z, T ) − P (Z, T + 1)| < 10−8

Having established a solution procedure for the governing PDE, in Fig.  2.2(b) , we next

highlight how the pressure distribution obtained from solving Eq. (  2.9 ) numerically varies

with the Womersley number, and how it compares to perturbation solution (for the case of

α2 = 1 and β = 10−3). In Fig.  2.2(c) , we show the normalized cycled-averaged pressure

〈P 〉/β, for the same parameters. The cycle averaged pressure for the numerical solution is

calculated using the trapz function (trapezoidal rule for integration) in Matlab, with a

dimensionless time-step of ∆T = 0.1, while the cycle averaged pressure from perturbation

solution is given by Eq. ( 2.24 ). In both Fig.  2.2(b) and  2.2(c) , the perturbation solutions
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Figure 2.2. (a) The dimensionless pressure distribution at different times,
computed by numerically solving Eq. (  2.9 ) subject to Eqs. ( 2.11 ) and (  2.10 )
for α2 = 1, β = 0.1, and εRe = 0.01. (b) The dimensional pressure distribu-
tion from (a) at T = 59.4 for different values of the Womersley number α and
the FSI number β. The dashed curve with circle symbols represents the ana-
lytical perturbation solution Re [P0 + βP1] found from Eqs. (  2.19 ) and (  2.22 ).
(c) The corresponding “universal” normalized streaming pressure 〈P 〉/β pro-
files.(d)Normalized streaming pressure for α2 = 1, 5 and the effect of FSI
parameter(β) on the agreement between the numerical and the perturbative
solution. In (c,d), the dashed curves with circle symbols represent the analyt-
ical perturbation solution found from Eq. ( 2.24 ).
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and the numerical solutions are in good agreement with each other, thus demonstrating the

utility of the analytical results from Sec.  2.5.2 in the weak FSI regime.

Observe that 〈P 〉/β, as calculated in Eq. (  2.24 ) using the perturbation solution, has

a “universal” shape with respect to Z, in the sense it only depends solely upon α and

no further details of the FSI. The perturbative result agrees very well with the numerical

solution, demonstrating that FSI leads to a non-zero pressure despite the inlet forcing having

a zero mean. Riley [  46 ] defines steady streaming to refer to precisely the latter phenomenon,

namely when the “time-average of a fluctuating flow often results in a nonzero mean.”

More generally, viscous streaming refers to the induction of a steady mean flow from time-

harmonic oscillations (of the boundaries, inlet conditions, or another mechanism driving the

flow). One of the most well-known examples of streaming arises due to small-amplitude, high-

frequency oscillations of a body in a viscous (or inviscid) fluid [  47 ], as famously featured in

Van Dyke’s An Album of Fluid Motion [ 48 , p. 23]. Although classically streaming is induced

by the motion of rigid objects (or boundaries) in a flow, soft streaming has become of

interest recently in the context of both external [  49 ] and internal [  23 ] flows. In the context

of the present problem of flow in a slender conduit, another classical example of streaming

in a viscous flow in a channel is the so-called mechanism of peristaltic pumping, which

Jaffrin and Shapiro [  50 ] define as “fluid transport that occurs when a progressive wave of

area contraction or expansion propagates along the length of a distensible tube containing a

liquid.” Traditionally, however, the viscous flow in peristalsis is driven by moving a wavy wall,

but Fung and Yih [  51 ] have speculated that peristalsis may be related to the spontaneous

oscillations of blood vessels (“vasomotion”), perhaps somewhat akin to the present context

in which the conduit walls are not externally actuated.

Earlier work by Hall [ 52 ] showed that weak inertia (at the leading order in a suitable

Reynolds number) generates a streaming flow when an oscillatory pressure difference is main-

tained between the ends of a tube of axially varying radius. This phenomenon was success-

fully analyzed by perturbation expansions for both small and large Womersley number [ 52 ].

Recently, however, it was further demonstrated that viscous streaming can arise even a van-

ishing Reynolds number if the tube radius’ axial variations are due to two-way coupled FSI

with the flow [  23 ]. In a sense, FSI self-generates peristaltic pumping without the need of
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external intervention (such as moving the wall). However, this zero-Reynolds-number mech-

anism was only analyzed in [  23 ] at low Womersley numbers and for compressible flow. On

the other hand, as our results in this chapter demonstrate, the model proposed in this work

is able to capture viscous streaming induced by FSI at an arbitrary Womersley number in

an incompressible flow.

Finally, returning to Figs.  2.2(c) , we observe that the small-β perturbative analytical

solution agrees with the numerical solution of the governing PDE only for β � 1 because

this assumption was needed to obtain the perturbation solution in Eq. (  2.24 ). Note that, for

larger values of the Womersley number, the value of β has to be lowered further to obtain

agreement between the perturbation solution and the numerical solution of the PDE. This

issue is highlighted in Fig.  2.2(d) for α2 = 5, showing that beta needs to be lowered to

β = 10−4 from β = 10−3 in order to obtain a good agreement. This change is needed due

to the fact that, in deriving the perturbation solution, we assumed that the coefficient of

the unsteady pressure term ∝ α4β/(εRe) in Eq. (  2.9 ) is O(β). However, this coefficient’s

dependence upon α4 can easily make it O(1) when α > 1. To satisfy the assumptions of

our perturbation expansion, we thus have to take β = 10−4 (for example) when α2 = 5, as

evidenced by Fig.  2.2(d) 
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3. OSCILLATORY FLOW IN A COMPLIANT 3D

AXISYMMETRIC TUBE

3.1 Governing equations: scaling and lubrication approximation

Consider a pressure-driven axisymmetric flow without swirl, such that vθ = 0 and

∂(·)/∂θ = 0, of a Newtonian fluid in a cylindrical tube with z being the axial direction,

as shown in Fig.  3.1 . Then, neglecting body forces, the mass and momentum conservation

equations for this flow [ 25 ] are

1
r

∂

∂r
(rvr)︸ ︷︷ ︸

O(1)

+ ∂vz

∂z︸︷︷︸
O(1)

= 0, (3.1a)

ρf
∂vz

∂t︸ ︷︷ ︸
O(α2)

+ ρfvr
∂vz

∂r︸ ︷︷ ︸
O(εRe)

+ ρfvz
∂vz

∂z︸ ︷︷ ︸
O(εRe)

= µf
1
r

∂

∂r

(
r

∂vz

∂r

)
︸ ︷︷ ︸

O(1)

+ µf
∂2vz

∂z2︸ ︷︷ ︸
O(ε2)

− ∂p

∂z︸︷︷︸
O(1)

, (3.1b)

ρf
∂vr

∂t︸ ︷︷ ︸
O(ε2α2)

+ ρfvr
∂vr

∂r︸ ︷︷ ︸
O(ε3Re)

+ ρfvz
∂vr

∂z︸ ︷︷ ︸
O(ε3Re)

= µf
∂

∂r

[
1
r

∂

∂r
(rvr)

]
︸ ︷︷ ︸

O(ε2)

+ µf
∂2vr

∂z2︸ ︷︷ ︸
O(ε4)

− ∂p

∂r︸︷︷︸
O(1)

(3.1c)

The scales used to determine the orders of magnitude of terms in Eqs. ( 3.1 ) are given in

Table  3.1 . Three dimensionless numbers (ε, Re and α) arise. Three dimensionless numbers

(ε, Re and α) arise. They are defined in Table  3.2 , where their typical values are also given.

Table 3.1. The scales for the variables in the axisymmetric incompressible
Navier–Stokes equations (  3.1 ). We have used the lubrication-theory scales for
vr, vz based on the pressure scale imposed by p0.

Variable t r z vr vz p

Scale 2π/ω a0 ` εVz Vz = εa0p0/µf p0
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Figure 3.1. Schematic of an axisymmetric compliant microtube, indicating
key quantities and notation for the geometry.

3.2 Flow solution at arbitrary Womersley number

Based on the typical values given in Table  3.2 , we are led to consider the regime of ε � 1,

εRe � 1, ε2α2 � 1, which reduces Eq. ( 3.1b ) to

ρf
∂vz

∂t
= µf

1
r

∂

∂r

(
r

∂vz

∂r

)
− ∂p

∂z
, (3.2)

subject to no slip along the tube wall, vz(r = a, t) = 0. As before, Eq. ( 3.2 ) is valid for

arbitrary α2 (as long as ε2α2 � 1). As expected, Eq. (  3.2 ) is the same in a rigid tube of

constant radius a0, as well as a deformable tube of variable radius a. Indeed, the tube radius

a does not have to be constant under the lubrication approximation, as long as it varies

slowly [ 27 ]. (In this context, this result was also shown explicitly by Hall [  52 ].)

If the oscillatory pressure gradient along the channel is separable and time-harmonic,

as −∂p/∂z = Geiωt, then, the post-transient oscillatory flow solution, vz(r, t) = g(r)eiωt, to

Eq. (  3.2 ) is known explicitly from, e.g., Ayyaswamy [ 54 ] (credited to Womersley, but also

derived earlier by Sexl and contemporaneously by Uchida, see [ 55 , Sec. 4.6]) in complex form:

vz(r, t) = a2
0

iµfα2

1 −
J0
(
i3/2αar/a

)
J0 (i3/2αa)

 Geiωt︸ ︷︷ ︸
≡−∂p/∂z

, (3.3)
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Table 3.2. The dimensional and dimensionless parameters of the model for
a compliant microtube. The typical fluid is taken to be water, while the
typical elastic solid is taken to be PDMS, for which ρs ' ρf , νs ' 0.5, and
E can be varied. The stiffness constant’s order of magnitude is estimated as
k = (1 − ν2

s )a2
0/(Eb) [ 53 ], while the deformation scale is calculated as U = βa0

(see Sec.  3.4 ).

Quantity Notation Typical value Units

Tube’s length ` 1 to 100 mm
Tube’s undeformed radius a0 0.08 to 0.5 mm
Tube’s thickness b 0.008 to 0.05 mm
Solid’s Young’s modulus E 0.5 MPa
Solid’s Poisson’s ratio νs 0.49 to 0.5 –
Solid’s density ρs 1.0 × 103 kg m−3

Fluid’s density ρf 1.0 × 103 kg m−3

Fluid’s dynamic viscosity µf 1.0 × 10−3 Pa s
Pressure pulse amplitude p0 0.1 to 2 kPa
Pressure pulse frequency ω/2π 1 to 100 Hz

Tube’s radius-to-length aspect ratio ε = a0/` 0.002 to 0.06 –
Reynolds number Re = ρfεa2

0p0/µ2
f 2 to 400 –

Womersley number α = a0
√

ρfω/µf 0.3 to 12 –
FSI (or, compliance) number β = kp0/a0 0.005 to 0.1 –
Strouhal number St = ρsbUω2/(4π2p0) ≈ 10−10 to 10−8 –

where Jn(·) is the Bessel function of the first kind of order n. To introduce α into the

solution ( 3.3 ), we let a = a0a. As in the 2D case, the solution is given in complex-variable

form for convenience, and we may take the real or imaginary part, depending on the boundary

conditions. Then, from Eq. (  3.3 ) the flow rate–pressure gradient relation is found to be

q(z, t) := 2π

∫ a=a0a

0
vz rdr = πa4

0a
2

iµfα2

1 −
2J1

(
i3/2αa

)
i3/2αaJ0 (i3/2αa)

(−∂p

∂z

)
. (3.4)

For oscillatory flow in a rigid tube, a = 1, G = G0, and Eq. ( 3.4 ) can be directly integrated

as an ordinary differential equation to find the relationship between the amplitude of the

flow rate’s oscillations and the applied pressure gradient’s constant amplitude. For oscillatory

flow in a non-uniform (or deformable) tube, however, a and G are not constant, so further

closures are needed, which we now discuss.
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3.3 Model for the elastic deformation of the tube wall

As in Sec.  2.3 , the variation of the radius of the tube, due to flow-induced deformation,

can generally be expressed as (see, e.g., [ 19 ], [ 33 ], [ 53 ]):

a(p) = a0 + kp = a0 (1 + kp/a0)︸ ︷︷ ︸
a(p)

, (3.5)

where k is again an effective stiffness constant related to the elastic properties of the com-

pliant wall, as well its geometry. In the biofluid mechanics context, Eq. (  3.5 ) is often

termed a “tube law” [ 54 ], [ 56 ]. The deformation–pressure relationship implied by Eq. (  3.5 ),

ur := a − a0 = kp can be obtained from a suitable shell theory for thin cylindrical structures

(see, e.g., [ 57 ]). Assuming a long, slender axisymmetric tube, it has been argued in the

biomechanics literature (see, e.g., [ 16 ] and the numerous references therein and thereof) that

linear shell theory generally yields an equation of motion of the form

ρsb
∂2ur

∂t2︸ ︷︷ ︸
inertia, O(St)

+ ur

k︸︷︷︸
stiffness, O(1)

− χt
∂2ur

∂z2︸ ︷︷ ︸
tension, O(θt)

+ χb
∂4ur

∂z4︸ ︷︷ ︸
bending, O(θb)

= p︸︷︷︸
load, O(1)

(3.6)

for the radial displacement ur, having neglected axial displacements. Here, a Strouhal num-

ber is defined as St = ρsbUω2/(4π2p0), and the scale for ur is again U .

Next, in the present analysis (as in [  19 ], [  20 ], [  58 ] but unlike [  23 ]), we assume that the wall

deformation develops faster than the flow so that St � 1. Then, the solid inertia is a weak

effect, and we neglect it at leading order. As an example, if Eq. ( 3.6 ) is derived from linear

Koiter shell theory, we have χt = Ēb3νs/(6a2
0) and χb = Ēb3/12 (see, e.g., [  16 ]). The use of

shell theory requires small strains (U � `) and a thin (b � a0) and slender (b � `) tube. It

follows that θt = χtU/(p0`
2) ∼ (b/`)(b/a0)2(U/`) � 1 and θb = χbU/(p0`

4) ∼ (b/`)3(U/`) �

1, so that the bending and tension are negligible. Then, from Eq. (  3.6 ) we obtain ur = kp at

the leading order, so that U = βa0. (For alternative approaches, starting from the equations

of linear elasticity and considering different geometric configurations, boundary conditions,

and external loading see [ 19 ], [ 58 ], [ 59 ].)
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3.4 Reduced model: Governing equation for the pressure

Following the standard procedure (see, e.g., [  7 ], [  25 ]), the conservation of mass equa-

tion (  3.1a ) for incompressible flow in an axisymmetric deforming tube can be shown to take

the same form as the continuity equation for a 2D channel, i.e., Eq. (  2.7 ) (see also [  60 ], [  61 ]).

Then, on substituting q from Eq. (  3.4 ) and A(p) = πa(p)2 with a = a0a into Eq. (  2.7 ), we

obtain

πa4
0

iµfα2
∂

∂z

−∂p

∂z
a(p)2

1 −
2J1

(
i3/2αa(p)

)
i3/2αa(p)J0 (i3/2αa(p))

+ 2π(a0 + kp)k∂p

∂t
= 0. (3.7)

Next, we introduce dimensionless variables (based on the scales from Table  3.1 ), denote

them by capital letters, and eliminate a(p) via Eq. ( 3.5 ) from Eq. ( 3.7 ), to obtain:

∂

∂Z

−∂P

∂Z
(1 + βP )2

1 −
2J1

(
i3/2α (1 + βP )

)
i3/2α (1 + βP ) J0 (i3/2α (1 + βP ))

+ i α4β

πεRe
(1 + βP )∂P

∂T
= 0,

(3.8)

where β := kp0/a0 has been defined as the FSI (or, compliance) number. As in Sec.  2.4 ,

for time-harmonic pressure-driven oscillatory flow, the dimensionless initial and boundary

conditions for Eq. ( 3.8 ) are once again given by Eqs. ( 2.11 ) and ( 2.10 ), respectively.

Again, we observe that although a separable form of the pressure gradient, in terms of a

function of z times a function of t, was used to obtain the flow profile ( 3.3 ) from the reduced

momentum equation ( 3.2 ) and close the relation ( 3.4 ) between flow rate and pressure gra-

dient, the final PDE ( 3.8 ) for P (Z, T ) is nonlinear and, strictly speaking, has no separable

solutions. We reconcile this apparent contradiction, as done at the end of Sec.  2.4 , by noting

that we have essentially used a von Kármán–Pohlhausen-type approximation to close the

cross-sectionally-averaged model for oscillatory flow in a deformable conduit. This approxi-

mation’s validity is checked a posteriori in Sec.  3.6 by comparing Eq. (  3.8 )’s predictions to

3D direct numerical simulations.
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3.5 Analytical results

From Eq. ( 3.8 ), further analytical progress can be made in two distinguished limits (as

in Sec.  2.5 ), which we now consider.

3.5.1 Steady flow

Diving Eq. (  3.8 ) by iα2 and taking the limit α → 0, we obtain an ordinary differential

equation for the steady pressure distribution in an axisymmetric deformable tube:

d
dZ

[
−dP

dZ
(1 + βP )4

]
= 0. (3.9)

With the boundary conditions P (0) = 1 and P (1) = 0, we obtain the solution for the

pressure as:

P (Z) = 1
β

({
(1 + β)5 − [(1 + β)5 − 1]Z

}1/5
− 1

)
. (3.10)

Observe that the latter is simply the solution for the pressure in a deformable tube in the

pressure-controlled regime, complementing the solution for the flow-controlled presented in

[ 53 ]. As expected [  43 ], the pressure distribution (  3.10 ) is not linear in the deformable tube

at steady state (dP/dZ 6= const.), but limβ→0 P (Z) = 1 − Z as usual.

3.5.2 Weakly deformable tube

As in Sec.  2.5.2 , following [  15 ], [  16 ], [  23 ], let us seek a perturbation solution for weak

FSI (i.e., β � 1). Judiciously expanding the nonlinear term within the Z derivative and

substituting the expansion from Eq. ( 2.14 ) into Eq. ( 3.8 ), we obtain:

∂

∂Z

{
− ∂

∂Z
(P0 + βP1)

[
g0(α) + β(P0 + βP1)g1(α)

]}

+ i α4β

πεRe
[1 + β(P0 + βP1)]

∂

∂T
(P0 + βP1) = 0, (3.11)
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where, for convenience, we have defined

g0(α) := 1 −
2J1

(
i3/2α

)
i3/2αJ0 (i3/2α) = −

J2
(
i3/2α

)
J0 (i3/2α) , (3.12a)

g1(α) := −
2J1

(
i3/2α

)2

J0 (i3/2α)2 . (3.12b)

Assuming that α4β/(πεRe) = O(β) asymptotically, collecting O(1) terms in Eq. (  3.11 )

yields
∂2P0

∂Z2 = 0 (3.13)

subject to

P0(Z = 0, T ) = cos(2πT ), (3.14a)

P0(Z = 1, T ) = 0. (3.14b)

The solution to the leading-order problem, i.e., Eqs. ( 3.13 ) and ( 3.14 ), is thus simply:

P0(Z, T ) = (1 − Z) cos(2πT ). (3.15)

Next, collecting O(β) terms in Eq. ( 3.11 ) yields

g0(α)∂2P1

∂Z2 = − ∂

∂Z

[
g1(α)P0

∂P0

∂Z

]
+ i α4

πεRe
∂P0

∂T
(3.16)

subject to

P1(Z = 0, T ) = 0, (3.17a)

P1(Z = 1, T ) = 0. (3.17b)

The solution for the first-order correction is found, from Eqs. ( 3.16 ) and ( 3.17 ), to be:

P1(Z, T ) = 1
6Z(1 − Z)

[
3g1(α)
g0(α) cos2(2πT ) + 2(2 − Z)i α4

εRe g0(α) sin(2πT )
]

. (3.18)
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The perturbative, real-valued pressure distribution is then found from Eqs. (  3.15 ) and

( 3.18 ) as Re [P0(Z, T )] + β Re [P1(Z, T )]. Finally, using the cycle averaging defined in Eq.

( 2.23 ), we find that the real-valued cycle-averaged pressure is

〈P 〉(Z) = Re [ 〈P0〉︸ ︷︷ ︸
=0

+β〈P1〉] + O(β2) = β

4 Z(1 − Z) Re
[
g1(α)
g0(α)

]
+ O(β2)

' β

4 Z(1 − Z)
(

4 − 17
288α4

)
+ O(βα8, β2),

(3.19)

where we have given the α � 1 expansion for completeness. For the same reasons as in

Sec.  2.5.2 , we cannot compare the α → 0 limit of the Eq. (  3.19 ) to the β � 1 expansion

of Eq. (  3.19 ) (i.e., the α → 0 and β → 0 limits do not commute). Taking the real part

of the expression in Eq. ( 3.19 ) has to be done numerically (for plotting and evaluation

purposes). Observe that Eq. (  3.19 ) has the same form as Eq. ( 2.24 ) for a channel, save for the

different dependence on α, highlighting the “universal” nature of the streaming phenomenon

in compliant conduits.

Evidently, Eq. ( 3.19 ) implies the existence of a steaming pressure gradient ∂〈P 〉(Z)/∂Z,

which engenders a non-zero mean flow rate 〈Q〉. From the dimensionless flow rate corre-

sponding to Eq. ( 3.4 ), a lengthy, but straightforward, calculation shows that

〈Q〉 = − β

4α2 Re [ig1(α)] + O(β2)

= β

2α2 Re

i
J1
(
i3/2α

)2

J0 (i3/2α)2

+ O(β2) = β

8

(
1 − 11

1536α4
)

+ O(βα6, β2),
(3.20)

which is evidently independent of Z. Furthermore, unlike 2D channel result in Eq. ( 2.25 ),

Re [〈Q〉/β] from Eq. (  3.20 ) is a monotonically decreasing function of α, decaying to zero as

α → ∞. As a consistency check, note that the leading β/8 term in Eq. (  2.25 ) matches the

α = 0 case analyzed in [  23 ], specifically Eq. (90) therein (upon neglecting wall inertia and

fluid compressibility, and simplifying).
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3.6 Numerical results and discussion

We performed 3D direct numerical simulation using svFSI, a solver within the open-

source cardiovascular modeling software SimVascular [ 62 ], [ 63 ]. SvFSI uses the arbitrary

Eulerian–Lagrangian framework in the finite element method to solve the two-way coupled

FSI problem in a monolithic approach [ 64 ]. The large-deformation ‘Saint-Venant–Kirchhoff’

solid model was used in svFSI. The 3D, unsteady incompressible Navier–Stokes equations

are solved in the fluid domain, without the assumption of axisymmetry. Following [  59 ], the

simulation was set up by creating a cylindrical fluid domain surrounded by an elastic solid

mesh representing a thin tube, maintaining an aspect ratio of ε = 0.0667. For the simulations,

a conforming unstructured mesh was used for each of the fluid and solid domains, with

a combined 160, 859 tetrahedral elements, which was created in the commercial software

ANSYS and converted to a format compatible with svFSI. An oscillatory input was given by

a time-varying boundary condition at the inlet, specifically a cosine variation of the pressure,

whose amplitude was matched to yield β = 0.06 and whose frequency was matched to yield

the desired value of α. (Note that, since we are considering a thin elastic tube, β does not

have to be too large to observe nonlinear effects due to FSI, and indeed it cannot be too

large before nonlinear deformations of the tube itself emerge; see the discussion in [ 53 ].)

Three different simulations corresponding to Womersley numbers α2 = 0.1, 1, and 5

were performed with a time step of 10−6 s for 60 periods of the forcing. The simulation

data was saved in dimensionless time steps of ∆T = 0.1, which is the same interval used to

compute the cycle-averaged pressure. An additional simulation for α2 = 1 with β = 0.001

and ε = 0.0667 was performed to compare the results with the perturbation solution, which

requires different dimensionless parameters to ensure its validity (the weakly deformable

regime).

As in Sec.  2.6 , the proposed reduced-order model (  3.8 ) for the pressure, which we remind

is valid for β = O(1) (having taken into account two-way FSI coupling), is solved numerically

in Matlab using pdepe using the same settings as before. Upon obtaining the numerical

solution, we take its real part and compare it to the direct numerical simulation from svFSI.

To enable this comparison, the 3D pressure solution from svFSI is averaged across several
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Figure 3.2. (a) The dimensionless pressure distribution at the non-
dimensional time of T = 59.4. Symbols denote the results from svFSI sim-
ulations, while curves denote the numerical solution of Eq. ( 3.8 ) subject to
Eqs. ( 2.11 ) and (  2.10 ). The dashed curve with circle symbols represents the
analytical perturbation solution Re [P0 + βP1] found from Eqs. (  3.15 ) and
( 3.18 ). (b) The ‘universal’ normalized streaming pressure 〈P 〉/β profile for
different values of the Womersley number α and the FSI number β. Symbols
denote the results from svFSI simulations, while the curves denote the numer-
ical solution of Eq. (  3.8 ). The dashed curve with circle symbols represents the
analytical perturbation solution from Eq. ( 3.19 ).

different cross-sections along the length of the tube and made dimensionless using the scales

from Table  3.1 .

In Fig.  3.2(a) , the pressure distribution obtained from the numerical solution of Eq. ( 3.8 )

is compared with the simulation data obtained from svFSI, for different Womersley numbers,

at the dimensionless time of T = 59.4. We observe good agreement between the instanta-

neous pressure profiles from the reduced model and the 3D simulations. The perturbative

analytical solution from Eqs. (  3.15 ) and ( 3.18 ) is also shown for a Womersley number of

α2 = 1. In Fig.  3.2(b) , the corresponding normalized steaming pressure profile, 〈P 〉/β com-

puted again in Matlab using trapz with a dimensionless time step of ∆T = 0.1, obtained

from 3D svFSI simulations, the pdepe solution of Eq. ( 3.8 ), and the perturbation solution

from Eq. (  3.19 ), are shown and compared for different values of the Womersley number. We

find a good agreement between all three, thus demonstrating the validity of the proposed the-
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ory of oscillatory flows in compliant conduits at arbitrary Womersley number. As discussed

in Sec.  3.5.2 , the perturbative result is valid only for β � 1 such that α4β/(πεRe) = O(β),

thus it is only shown for α2 = 1 and β = 10−3 in Fig.  3.2 . However, the numerical solution of

Eq. (  3.8 ) accurately captures both the pressure variation in Fig.  3.2(a) and the normalized

streaming pressure trend in Fig.  3.2(b) , demonstrating that the proposed model in this work

is able to capture viscous streaming induced by FSI at an arbitrary Womersley number in

an incompressible flow.
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4. SUMMARY AND OUTLOOK

4.1 Thesis summary

Thesis developed a theory of two-way coupled fluid-structure interaction for deformable

conduits undergoing oscillatory flows. Specifically, two canonical geometries comprising a 2D

channel and a 3D axisymmetric tube undergoing flow due to an oscillatory pressure gradient

were considered in chapters  2 and  3 , respectively. The velocity profile and the subsequent

flow rate for each of the geometries were evaluated in the lubrication limit of the flow and

were used as an approximation to close the momentum equation, similar to the von Kármán–

Pohlhausen approximation used in boundary layer theory. A simple deformation model based

on linear elasticity was introduced to characterize the variation of the channel height and

the tube radius with the hydrodynamic pressure in the oscillatory flow. The deformation

equation, along with the flow rate were substituted into the mass conservation equation to

obtain a nonlinear PDE governing the pressure evolution, ensuring a two-way coupled FSI

model. The proposed PDE was solved numerically and an analytical perturbative solution of

the same PDE, in a weak FSI limit, was obtained to ensure and demonstrate its applicability

in the said limit. A cycle-averaged pressure was also evaluated from both the numerical and

perturbation solutions, which showed the mean pressure profile deviating from the steady

one. Thus, it was concluded that a streaming flow was induced by the coupling between

oscillatory flow and channel or tube deformation due to FSI. Additionally, for the case of the

tube in chapter  3 , a 3D direct numerical simulation was performed in the open-source finite-

element solver svFSI. The direct numerical simulations showed a good agreement with the

numerical and perturbative solutions of the reduced 1D model, thus validating our proposed

PDE for the pressure evolution in deformable conduits undergoing oscillatory flows.

4.2 Future work

Although this thesis focused on purely oscillatory flows, the proposed reduced model can

be extended to understand pulsatile flows which include an added mean flow component on
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top of the oscillating component by simply changing boundary conditions of the PDE, e.g.,

Eq. ( 3.8 ).

The proposed reduced model can also be extended to accurately model microfluidic hy-

draulic systems by calculating new expressions for the lumped parameters of the circuit. As

discussed in Sec.  3.1 , the windkessel models used in the modeling of cardiovascular systems

include a number of assumptions such as a negligible change in the cross-section area of

the conduit (thus, in a way, they are ‘linearized’). As explained by Morris and Forster [ 65 ]

when such approximate lumped parameters were compared with experiments, it resulted in

a 400% error in the frequency response. As also explained in [  65 ], the lumped parameter

should be derived from the full flow solutions, or in the present case from the solution of

the two-way coupled FSI problem. Hence, in future work, it can be explored if the reduced

models from this thesis can rectify some issues regarding hydraulic compliance, and perhaps

explain some observed experimental results.

The validity of the reduced model proposed in this thesis could further be tested by

comparing it with the experiments. Additionally, a 3D direct numerical simulation using

svFSI can be performed for other geometries of interest, such as the ones described in the

review [ 33 ] or the recent paper [ 59 ].

On the mathematical side, in future work, it would be of interest to re-evaluate the

perturbation solutions in the distinguished limit in which the unsteady term in Eqs. ( 2.15 )

and (  3.11 ) is not neglected at O(β0). This would extend the scope of analytical solutions

for larger values of the FSI parameter, thus ensuring greater applicability of the proposed

model.

Finally, more work can be done to further justify the von Kármán–Pohlhausen-type

approximation for velocity made in Chap.  2 , Eq. (  2.3 ) and Chap.  3 , Eq. (  3.3 ). Right now, the

assumption can only be justified a posteriori. A more mathematically justifiable reasoning

would enhance the case for using such approximations in deriving reduced 1D models for

more complex, deformable microfluidic systems experiencing pulsatile flow.
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