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ABSTRACT 

General Aviation (GA) encompasses all aircraft operations, excluding scheduled, military, 

and commercial operations. GA accidents comprise approximately 94% of all aviation accidents 

in the United States annually. 75% of these accidents involve pilot-related factors (pilot actions or 

conditions). Inflight loss of control means that the flight crew was unable to maintain control of 

the aircraft in flight. With almost 50% of loss of control accidents being fatal yearly, it continues 

to be the deadliest cause of GA accidents. 

The most common approach to understanding accident causation is analyzing historical data 

from sources such as the National Transportation Safety Board (NTSB) database. The NTSB 

database has abundant rich information. In contrast to the extensive investigations into and detailed 

reports on commercial aviation accidents, GA accident investigations tend to be shorter, and the 

resulting reports tend to be brief and limited—especially regarding human factors’ role in accidents. 

Only relying on historical data cannot provide a complete understanding of accident causation. 

There is a clear need to better understand the role of human factors involved in GA accidents 

to prevent such accidents and thus improve aviation safety. In my research, I focus on a specific 

type of accidents, inflight loss of control (LOC-I), the deadliest cause of GA accidents. I aim to 

address the following research questions: 

1. What causes LOC-I? 

1.1 Which types of errors do pilots make in LOC-I incidents? 

1.2 What causes pilots to make these errors—what is the role of human factors in LOC-I 

accidents? 

2. How might we find additional causes from accident reports that are not coded? 

2.1 Can we better model accidents using all the available information in reports to gain a 

deeper understanding of accident causation? 

I use historical data analysis and human-subjects research with pilots to investigate the role 

of human factors in loss of control accidents. Building on previous work, I created a state-based 

modeling framework that maximizes data extraction and insight formation from the NTSB 

https://doi.org/10.3846/aviation.2021.15837
https://doi.org/10.3846/aviation.2021.15837
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accident reports by (1) developing a structured modeling language to represent accident causation 

in the form of states and triggers; (2) populating the language lexicon of states and triggers using 

insights from accident reports and pilots perspectives via surveys and interviews; and (3) applying 

Natural Language Processing (NLP) and machine learning techniques to automatically translate 

accident narratives into the language lexicon. The framework is focused on LOC-I but can be 

extended to other types of accidents. Figure 1 outlines my research. Findings from my study may 

help in consistent accident analysis, better accident reporting, and improving training methods and 

operating procedures for GA pilots. 

 

Figure 1: Research outline for the state-based modeling framework to analyze aviation accidents 

using historical data and human-subjects research. The modeling framework automatically 

translates NTSB codes into states and triggers to model accidents. I also used Natural Language 

Processing to predict states and triggers from accident narratives. The findings from the pilot 

survey and interviews provide insights into the role of human factors in aviation incidents. 

https://doi.org/10.2514/6.2022-3778
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 INTRODUCTION 

The International Civil Aviation Organization (ICAO) defines General Aviation (GA) as a 

category of aircraft operations, exclusive of all military operations, scheduled air services and non-

scheduled air transport operations for remuneration or hire (ICAO, 2009). GA accidents comprise 

approximately 94% of all aviation accidents in the United States annually (NTSB, 2023). Around 

70% of the GA accidents involved fixed-wing aircraft. 75% of these accidents involve pilot-related 

factors (i.e., pilot actions such as improper corrective action or pilot conditions such as 

disorientation). In my research, I take two main approaches to better understand the causes of 

LOC-I: (1) historical data analysis by using the accident reports recorded in the National 

Transportation Safety Board (NTSB); and (2) human-subjects research by surveying and 

interviewing pilots and certified flight instructors (CFIs) about their experiences, training, and 

perspectives. In this chapter, I discuss the research motivation and present the research outline. 

Section 1.1 discusses the background and motivation for the research and Section 1.2 presents the 

research outline and lays out the thesis outline. 

1.1 Background and Motivation 

Most fixed wing GA accidents result from inflight loss of control (LOC-I), controlled flight 

into terrain (CFIT), continued visual flight rules (VFR) flight into instrumental meteorological 

conditions (IMC), engine failures, and fuel exhaustion or contamination (cf. AOPA, 2018; GAJSC 

2016). Inflight loss of control (LOC-I) continues to be a significant cause of GA fixed-wing aircraft 

accidents each year. Loss of control is “a hazardous condition that involves an unintended 

departure of an aircraft from controlled flight regime” (FAA, 2019). In simple words, LOC-I 

means that the flight crew was unable to maintain control of the aircraft in flight. Nearly 20% of 

fixed-wing GA accidents in the last two decades in the United States (U.S.) involved LOC-I 

(NTSB, 2023). In 2020, 19% of total fixed-wing GA accidents involved LOC-I; for fatal accidents, 

this percentage increases to 52%. 49.2% of all LOC-I accidents in 2010–2020 were fatal with an 
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average of 163 fatalities per year (NTSB, 2023). Figure 2 shows the number of fatal GA accidents 

that happened in 2010–2021, as recorded by the NTSB database. 

 

Figure 2: Number of overall fatal accidents versus LOC-I fatal accidents involving GA fixed-wing 

aircraft. LOC-I is the deadliest cause in fatal GA accidents. Note that, as of March 2023, the NTSB 

has not completed its investigation for all 2021 accidents. 

Most LOC-I incidents involve some kind of pilot error (Belcastro et al., 2014). In 2019, 65% 

of LOC-I accidents and 51% of fatal LOC-I accidents were pilot-related (NTSB, 2023). Two of 

the most cited pilot-related triggers in 2009–2019 LOC-I accidents were improper inflight 

planning (12.91%) and improper action performance (7.08%) (Majumdar et al., 2021). These pilot-

related NTSB codes tend to be broad and vague. The accident reports do not explain specifically 

what lacked in inflight planning or pilot actions. 

There is a clear need to better understand the reasons for LOC-I accidents. One approach to 

improving our understanding is by analyzing historical accident reports. In the U.S., the National 

Transportation Safety Board (NTSB) investigates all civil aviation accidents. After concluding 

their investigation, the NTSB publishes a final report, which includes a prose section with 

summary analysis of the accident, a discussion of the probable cause and findings, and “factual 
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information” on the flight history, personnel, aircraft, meteorological conditions, medical and 

pathological information, and any tests and research the investigators conducted (NTSB, 2019). 

Each accident is also coded using a set of codes for occurrences, findings, and phases of flight to 

facilitate trend analysis. Rao et al. (2016) provides a detailed discussion of this system. 

Several researchers have used NTSB codes to identify GA accident causes. Boyd (2015) 

found that failure to follow single engine procedures following loss of an engine was the highest 

factor in fatal twin-engine piston aircraft GA accidents under visual weather conditions. Fultz and 

Ashley’s (2016) found that 60% of weather-related fatal accidents occurred in IMC. Bazargan and 

Guzhva (2007) found that hazardous weather and light conditions such as IMC and dark night 

conditions increased the likelihood that accidents would be fatal. Goldman et al. (2002) found that 

of maintenance errors, installation errors such as using the wrong parts were most likely to cause 

injury or fatality. Aguiar et al. (2017) found that GA accidents in mountainous terrain and high 

elevation environments most commonly involved CFIT and wind gusts/shear. Other analyses used 

NTSB accident narratives. Boyd and Stolzer (2016) identified accident-precipitating factors and 

found that not following the checklist/flight manual contributed the most to fatal or serious turbine-

powered GA accidents. Ballard et al. (2013) considered three major risk factors for fatalities, post 

crash fires, crashes after flight in IMC, and off-airport crashes (in other words, away from 

emergency services), and found that fatalities were most likely to occur in accidents occurring 

after flight in IMC contributed the most to fatal air tour accidents. Wiegmann et al. (2005) used 

the Human Factors Analysis and Classification System (HFACS) to identify unsafe operator acts. 

80% of the GA accidents were associated with at least one skill-based error such as handling. 

While these studies uncovered part of what causes GA accidents (e.g., flight into IMC is often 

involved in fatal accidents), they were not able to explain how, for example, IMC leads to fatal 

accidents. 

Studies using NTSB data to understand LOC-I accidents face similar challenges. Previous 

work attempted to build chains of events in accidents using occurrence codes in the NTSB database. 

Rao et al. (2016) provides a detailed discussion of this system. But their efforts have been stymied 

by the lack of (coded) data in the reports. For example, Rao and Marais (2015) found that 13.8% 

of 5051 GA rotorcraft fatal accidents had LOC-I as the first occurrence in accident sequences of 
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events. Houston et al. (2012) found that 75% of the 147 instructional LOC-I accident reports cited 

LOC-I as the first occurrence—thus we cannot determine what led to the LOC-I. Franza and 

Fanjoy (2012) also found that pilots’ failure to maintain directional control contributed to 50% of 

fatal accidents in both aircraft models. 

General Aviation accident reports include limited detail on human factor related causes. 

Houston et al. (2012) also identified top causal factors in LOC such as failure to maintain 

directional control, improper airspeed, inadequate supervision, and stalls or spins. In my MS thesis 

work, I used a state-based approach to find the most frequent causes in 10,417 GA LOC-I accidents 

(Majumdar, 2019). The study found some additional causes to LOC-I as compared to the previous 

research findings, such as improper angle of attack, exceeding aircraft performance limits, pilot’s 

improper remedial action, and lack of action. However, none of these causes that were cited in the 

NTSB reports specifically mention what kind of pilot actions were lacking or were improper. 

Understanding specific pilot actions and conditions rather than general aspects may help to focus 

on improving GA training methods and evaluating standard operating procedures (Ud-Din & Yoon, 

2018). 

A few researchers focused on identifying the role of human factors in LOC-I by analyzing 

accident reports that were not necessarily GA related. Belcastro and Foster (2010) studied 126 

Federal Aviation Regulations (FAR) Part 121 (including large transport and smaller regional 

carriers) loss of control (LOC) accidents and identified causal factor categories such as adverse 

onboard conditions (such as aircraft damage and inappropriate crew actions and crew impairment), 

vehicle upsets (such as abnormal attitude), and external hazards and disturbances (such as poor 

weather). While the study identifies the number of accidents that cited factors related to 

inappropriate crew response, it does not provide further detail on these pilot actions and conditions. 

Ancel and Shih (2012) developed a generic integrated LOC accident framework (LOCAF) 

model expressed in an Object-Oriented Bayesian belief network and applied it to 54 FAR Part 121 

and Part 135 (including private air charter and air taxi flights). They found that 42 out of 54 

accidents included human error either directly or indirectly. The study revealed that failure in 

aircraft systems, poor environmental conditions, and deficient air traffic management guidance 

can have a negative impact on the flight crew performance (such as distraction, performance 
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overload, confusion, panic, and task fixation or saturation). Other external disturbances can lead 

to spatial disorientation, fatigue, or medical illness. Ud-Din and Yoon (2018) found that poor 

health and impairment due to medication, followed by poor manual control and inadequate flight 

procedures were the most significant events for LOC during maneuvering. 

One way to improve understanding is by modeling accidents. Several researchers have used 

Bayesian networks to identify causal factors and assess risk (Ancel & Shih, 2012; Ancel et al., 

2015; Ayra et al., 2019; Xiao et al., 2020; Uğurlu et al., 2020). Ancel et al. (2015) developed an 

object-oriented Bayesian network (OOBN), based on HFACS, to model Part 121 and 135 LOC-I 

accidents. They identified organizational deficiencies as underlying flight-related and maintenance 

crew-related airline accidents. Bayesian networks are useful to visually represent a summary 

analysis of accidents. But they require detailed information that is often not available for GA 

accidents. The probability calculation for each node in a Bayesian network requires expert 

judgment and information from sources such as operators and aviation agencies. Further, some 

accident sequences have cyclic relationships, e.g., an aircraft stall may cause an LOC-I and vice 

versa. Since Bayesian networks are directed acyclic graphs, they cannot capture such cyclic 

relationships between aircraft states. 

Another way to identify LOC-I accident causation is by conducting surveys and interview 

pilots to reveal insights into aviation risk. Most of these studies were focused on military pilots to 

understand pilot fatigue and spatial disorientation (Caldwell & Gilreath, 2002; Holmes et al., 2003; 

Pennings et al., 2020; Lewkowicz & Biernacki, 2020; Taneja, 2007; and Dawson et al., 2017). 

Other studies on human factors of commercial airline pilots were focused on number of work hours 

per incident, fatigue, and pilots’ awareness of human factors related to aviation safety (O’Hagan 

et al., 2016; Bourgeois-Bougrine et al., 2003; and Zhou et al., 2018). Studies pertaining to General 

Aviation investigated pilots’ experiences with hypoxia, fatigue flying, pilots’ flight planning and 

decision-making processes, (Holt et al., 2019; Teo, 2020; Keller et al., 2019; and Psyllou et al., 

2017). To the best of our knowledge, no published survey or interview studies to date have 

investigated pilots’ LOC-I experiences and related human factors. 

While all these studies based on the NTSB database uncovered part of what causes LOC-I 

accidents (e.g., improper airspeed is often involved in LOC-I accidents), they were not able to 
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explain how these conditions initiate and lead to LOC-I accidents. Although the NTSB database 

has an abundance information for all aviation accidents, the accident data is not always logically 

complete, and information is often missing. Certain challenges of using the NTSB database are: 

1. Accident Coding Model and Redundant NTSB Codes 

The NTSB’s accident coding system is based on an event-based model, where one event in 

an accident leads to another, but not all aspects of accidents are events. For example, an impaired 

pilot is better understood as a continuing condition, or a state (Rao & Marais, 2020). The pilot’s 

impaired condition makes subsequent errors more likely, and therefore does not fit well as “only” 

an initiating event. Additionally, multiple codes in the NTSB database have similar meanings. For 

example, the subject codes 24518: Altitude and 24519: Proper altitude both indicate that the pilot 

did not maintain the correct altitude. Such redundancy in codes can lead to inaccurate counts in 

accident causes. Finally, the NTSB database does not present all findings as codes, for example, 

in the pre-2008 coding system, there are no codes to capture improper aircraft heading. 

2. Lack of Detailed Information 

Unfortunately, the prose content for GA accidents tends to be short. For example, in 2019, 

the average narrative length for the 144 accidents that had LOC-I codes was 971 words. The 

number of occurrence and finding codes for these 144 accidents is also short (mean chain length 

= 7.30, standard deviation = 2.29), albeit somewhat longer than that for all GA fixed-wing aircraft 

accidents (mean number of codes = 6.29, standard deviation = 2.19). 80% of these reports included 

a code related to crashing into terrain/water. 9.6% of LOC-I accidents do not record any codes 

relevant to the preflight state definitions (Majumdar, 2019). Thus, the potentially wide range of 

accident stories is reduced to a small set of short stories, most of which are some variation of “the 

pilot lost control and crashed into the ground/water.” For instance, the most frequently used cause 

for fixed-wing LOC-I accidents is aircraft control not maintained  in other words, the pilot lost 

control because they did not maintain control (Houston et al., 2012; Franza & Fanjoy, 2012). So, 

we have limited information to determine why LOC-I happens, what most often causes it, or 

whether there have been any changes in its causes. These problems are compounded by the limited 

information about pilot conditions and actions in LOC-I.  
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3. Limited Information About Pilot Conditions and Actions 

Most fatal GA accident reports do not provide detailed information about human factors. 

Due to lack of survivors, limited information is available about pilot’s conditions and actions. Even 

for non-fatal accidents, there is very little pilot-related information per accident. For example, in 

April 2011, a private pilot was on a solo cross-country flight from Lafayette, Louisiana to Tulsa, 

Oklahoma (NTSB Number: CEN11FA285). He was continuing his flight after spending the night 

at an enroute airport waiting for a storm to pass. Witnesses reported that during takeoff, it sounded 

like the engines were cutting out and it seemed like the pilot was trying to make a 180 degree turn 

back to the runway before the aircraft stalled and spun into the ground. The National 

Transportation Safety Board (NTSB) determined the probable cause of the accident to be the 

pilot’s loss of control during takeoff for undetermined reasons. The report mentioned the pilot’s 

action/decision as one of the findings in the accident, but it does not specify the type of pilot’s 

action or decision that contributed to the accident. 

4. Incomplete Translation of Accident Information from Narratives to Codes 

In some GA accident reports, the narratives provide detailed information about the accidents, 

but the codes cited in the reports do not represent all the findings mentioned in the narratives. Also, 

the type of codes used to describe the accidents do not describe the full story. Consider a Bellanca 

8KCAB accident from January 2009 in Moscow, Tennessee (NTSB Number: ERA09LA147). 

According to the detailed narrative of the accident, the private pilot was witnessed to be 

maneuvering at less than 1,000 feet above the ground and was observed vertically going up, nose 

over to the right, and eventually impacting the ground. The NTSB codes cited for this accident 

were: (1) loss of control in flight while maneuvering; (2) collision with terrain during uncontrolled 

descent phase of flight; and (3) Reason not determined. Additional findings that could have been 

considered (but were not cited) for this accident are low altitude and improper maneuvering. This 

incomplete translation of accident information from narratives to NTSB codes leads to a partial 

understanding of accident causation. Analyzing both the accident narratives as well the NTSB 

codes may provide a more accurate understanding of accident causation. 
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Although the NTSB database has an abundance of information for the accidents, the accident 

data is not always logically complete and has missing information, which limits our understanding 

of accident causation. Due to this shallow detail of accident information, a population level 

analysis of pilot conditions and actions becomes difficult by using only accident data. Additionally, 

because nearly half of the LOC-I accidents are fatal, and because GA aircraft typically do not have 

“black boxes”, it is often impossible to find out what exactly happened before and during the 

accident flight. Efforts to reduce LOC-I have focused on novel technology to prevent hazardous 

conditions (e.g., angle-of-attack based systems can help pilots avoid inadvertent stall which may 

lead to LOC-I), and various safety programs and training methods that are intended to reduce pilot 

error in general (GAJSC, 2014). Because the specific underlying issues and human factors that 

contribute to LOC-I are not completely known, we cannot determine whether these efforts are 

successful in reducing these factors. What we do know is that LOC-I continues to be a significant 

cause of accidents. Understanding the specific pilot actions and conditions that lead to LOC-I may 

help focus GA training methods appropriately to reduce LOC-I accidents. 

1.2 Research and Thesis Outline 

To better understand how pilot actions and other unsafe conditions lead to LOC-I, I lay out 

a two-fold approach where I (1) analyze the NTSB accident reports using their narratives and the 

NTSB codes and (2) gain pilots’ perspectives from sources such as articles, surveys, and interviews 

to provide a richer understanding of LOC-I accident causation. I extend my master’s work by using 

the state-based approach to model LOC-I accidents (Majumdar, 2019). The findings from my 

studies provides a deeper understanding of LOC-I causation and the role of human factors in LOC-

I accidents to prevent LOC-I in the future.  

In this research, I aim to address the following research questions: 

1. What causes LOC-I? 

1.3 Which types of errors do pilots make in LOC-I incidents? 

1.4 What causes pilots to make these errors—what is the role of human factors in LOC-I 

accidents? 
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2. How might we find additional causes from accident reports that are not coded? 

2.1 Can we better model accidents using all the available information in reports to gain a 

deeper understanding of accident causation? 

I created a state-based modeling framework by (1) modeling LOC-I accidents in the form of 

states and triggers and creating sequencing (grammar) rules for the states and triggers; (2) 

providing insights into pilots’ perspectives on their experiences and training using lessons learned 

articles, surveys, and interviews; and (3) extracting more information (states and triggers) from 

accident reports using Natural Language Processing (NLP) (see Figure 1). 

This thesis is laid out as follows: Chapter 2 presents aircraft and demographic data analysis 

of LOC-I accidents, Chapter 3 introduces the state-based approach for modeling fixed-wing 

aircraft accidents. Chapter 4 describes a comparison of findings using the NTSB codes and 

narratives in accident reports. Chapter 5 discusses an analysis of LOC-I related lessons learned 

articles from the AOPA Pilot magazine. Chapter 6 presents my study on pilots’ survey on their 

LOC-I experiences. Chapter 7 presents the interviews with pilots on LOC-I experiences and 

training. Chapter 8 lays out the method and results for extracting information from reports using 

NLP, and Chapter 9 (a) concludes the work and summarizes the contributions of this research; (b) 

provides recommendations for pilots and their training based on the insights gained from the 

survey and interviews to prevent LOC-I in the future; and (c) provides recommendations for future 

work. 
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 AIRCRAFT AND DEMOGRAPHIC DATA ANALYSIS OF INFLIGHT 

LOSS OF CONTROL ACCIDENTS 

In this chapter, I present an analysis of the demographic and aircraft data, as recorded in the 

NTSB database for inflight loss of control accidents in 2010–2022. 

2.1 Method 

The NTSB records LOC-I accidents using the occurrence code 240: Loss of control inflight. 

I identified 5,914 Part 91 LOC-I accidents from the NTSB database that occurred in 2010–2022 

using the code 240. The NTSB database has a downloadable M.S. Access dataset. The Access file 

has different tables titled “aircraft”, “flight crew”, “flight time”, etc. that contain relevant 

information about accidents. For example, the “aircraft” table includes information such as 

aircraft’s category (e.g., airplane, helicopter), FAR part under which aircraft was flying (e.g., 121, 

91), aircraft’s make and model (e.g., Cessna 172, Piper pa 28-161), and aircraft damage (e.g., 

substantial, minor). Similarly, the “flight crew” table consists demographic data for the pilots 

involved in accidents, such as crew category (e.g., pilot, flight instructor), crew age, and crew sex. 

The “flight time” table includes accident pilots’ hours of flying experience for different categories 

such as total flying hours, actual instrument, and make and model of accident aircraft. 

I analyzed aircraft data for the LOC-I accidents from the “aircraft” table and demographic 

data for the pilots involved in these accidents from the “flight crew” and “flight time” tables. In 

the next few sub-sections, I will discuss my findings from the demographic and aircraft data for 

LOC-I accidents. Of the 5,914 LOC-I accidents, 24.97% were fatal, 9.12% involved serious 

injuries, and 12.14% had minor injuries. There were a total of 2,497 fatalities in 2010–2022 LOC-

I accidents. 

2.2 Aircraft Data 

92.63% of the accident aircraft were single-engine and 7.37% were twin-engine. 87.98% of 

all aircraft had substantial damage. According to the Code of Federal Regulations 49 CFR 830.2, 
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substantial damage means “damage or failure which adversely affects the structural strength, 

performance, or flight characteristics of the aircraft, and which would normally require major 

repair or replacement of the affected component. Engine failure or damage limited to an engine if 

only one engine fails or is damaged, bent fairings or cowling, dented skin, small, punctured holes 

in the skin or fabric, ground damage to rotor or propeller blades, and damage to landing gear, 

wheels, tires, flaps, engine accessories, brakes, or wingtips are not considered “substantial damage” 

for the purpose of this part.” (CFR, 2023). 11.82% of aircraft were destroyed. The FAA considers 

an aircraft to be destroyed if all its primary structure is damaged to the extent that it would be 

impracticable to return the aircraft to an airworthy condition by repair (FAA, 2018a). 0.17% of 

aircraft had minor damage. Minor damage means the aircraft either is in an airworthy condition or 

is restorable to airworthy condition by minor repairs (FAA, 2018a). 

The majority of accident aircraft were Cessnas (29.97%). 17.29% were Pipers, and 4.86% 

were of the Beech make. The remaining 47.88% aircraft were of other makes such as Mooney, 

Cirrus, and Boeing. Table 1 shows the most common aircraft make and model combinations 

involved in LOC-I accidents. 

Table 1: Top aircraft make and model involved in 2010–2022 LOC-I accidents. 

Aircraft make and model Percentage 

Cessna 172 10.35% 

Piper PA28 5.22% 

Cessna 182 3.40% 

Cessna 180 2.16% 

Cessna 152 1.35% 

Four of the top five models involved in LOC-I accidents were Cessnas (Cessna 172, 182, 

180, and 152). Cessna 172 was the most common aircraft model involved in LOC-I, followed by 

Piper PA28. Cessna 172 is also the most registered aircraft in the U.S. The FAA maintains a 

registry that records total aircraft registrations in the U.S. for different aircraft models (FAA, n.d.). 

The Cessna 172 constitutes 36% of the top five aircraft models registered in the U.S. Table 2 shows 
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the most registered aircraft models in the U.S., as recorded by the FAA registry in March 2023. 

Piper PA28 is the second most registered aircraft model, followed by Cessnas 182, 180 and 152. 

Table 2: Total registrations for top aircraft models in the U.S. (FAA, n.d.) 

Aircraft make and model Total registered 

Cessna 172 19,951 

Piper PA28 17,870 

Cessna 182 13,323 

Cessna 180 2,560 

Cessna 152 1,697 

2.3 Demographic Data 

Of the 5,914 accidents, 77.7% were solo flights. Student pilots were flying solo in 6% of the 

total accidents. 5.95% of the flights were instructional and 10.80% of the flights had passengers. 

Figure 3 shows the pilot age distribution at the time of LOC-I. I analyzed the age for the following 

flight crew categories: pilot, co-pilot, student pilot, flight instructor, and check pilot. Almost half 

of the flight crew (47.05%) were 55–69 years at the time of their accident (55–59 years: 11.88%; 

60–64 years: 13.23%; and 65–69 years: 12.57%). These findings are consistent with previous 

NTSB accident analyses (Bazargan & Guzhva, 2011; Mortimer, 1991; AOPA Air Safety Institute, 

n.d.). Bazargan and Guzhva (2011) found that male pilots over age 60 were more likely to be 

involved in fatal accidents in 1983–2002. Mortimer (1991) analyzed 1985-1986 accidents and 

found that pilots aged 60 or older had an accident rate about twice that of the younger pilots. A 

2006 Air Safety Institute study (AOPA Air Safety Institute, n.d.) found that pilots from age 55 and 

above had more accidents. These findings may account for the possibility that older pilots fly more 

often than younger pilots (possibly due to more leisure time or disposable income for flying). 

Without sufficient data to eliminate these factors, it is difficult to draws conclusions about the 

susceptibility of older pilots to accidents. 
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There were two student pilots of age 14 and 15 years each. There were 17 pilots who were 

90 years and older. The oldest pilot was 94 years old. 

 

Figure 3: Age distribution of pilots at the time of LOC-I accident 

The FAA releases annual statistics for active civil airmen in the U.S. The statistics include 

pilot information such as the estimated active pilot certificates held by category and age group, 

and the average age of pilots by category (FAA, 2023). The FAA includes these statistics for pilots 

with an airplane, helicopter, glider, and gyroplane certificate in six categories: student, sport, 

recreational, private, commercial, and airline transport pilots. Table 3 shows the estimated active 

pilot certificates by category and age group (FAA, 2023). The FAA included private and airline 

transport pilots with an airplane, helicopter, glider, and gyroplane certificate. Pilots with multiple 

ratings were reported under the highest rating. For example, a pilot with a private helicopter and 

commercial airplane certificates was reported in the commercial category. 
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Table 3: Estimated active pilot certificates by category and age group (FAA, 2023). 

Age 

Group 
Total Student Sport Recreational Private Commercial 

Airline 

Transport 

Total 882,002 280,582 6,957 80 176,328 119,832 173,148 

14–15 640 640 0 0 0 0 0 

16–19 27,564 20,927 12 2 6,020 446 0 

20–24 87,798 43,183 69 0 20,231 14,689 1,496 

25–29 107,261 52,235 139 6 14,858 18,810 7,982 

30–34 96,373 45,265 232 8 13,434 12,894 11,846 

35–39 88,942 33,162 334 2 13,614 10,557 17,229 

40–44 79,074 24,407 346 0 12,632 8,595 19,842 

45–49 65,325 16,390 365 5 10,819 6,632 19,890 

50–54 68,909 13,520 515 4 12,897 7,355 22,949 

55–59 69,676 11,030 765 8 14,771 7,561 24,955 

60–64 65,526 8,417 999 6 17,101 7,887 21,745 

65–69 51,483 5,678 1,151 18 16,942 7,915 11,730 

70–74 35,309 3,300 899 9 12,089 6,688 6,425 

75–79 23,655 1,660 664 9 7,085 5,597 4,301 

80+ 14,467 768 467 3 3,835 4,206 2,758 

Based on the FAA statistics, most pilots (of all six certificate categories) are aged 25–29 

years (12.42%), followed by 30–34 years (11.06%) (FAA, 2023). 20.96% of active pilots are 55–

69 years old. The mean age of pilots involved in LOC-I accidents was 54 years. According to the 

FAA’s statistics, the average age of all six pilot certificate holders in 2010–2022 is 47 years (FAA, 

2023). Since the FAA does not release these statistics explicitly for Part 91 or GA pilots, we do 

not have sufficient information to comment on why pilots of age 55–69 years are mostly involved 

in LOC-I accidents. It is difficult to collect a consistently accurate count of pilots by different 

certificates and operations since pilots with the same certificate can fly under different parts. For 

example, an airline transport pilot can fly both a commercial jet and a private aircraft. The best 
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way to know the accurate count of pilots flying under different operations would be by conducting 

a nationwide survey. 

Figure 4 shows flight crew’s total hours of flying experience in the range size of 1,000 at the 

time of accident. Most pilots (53.01%) had less than 1,000 hours of experience at the time of their 

accident. Pilots with more experience were less likely to be involved in an accident, as shown in 

the figure. 

 

Figure 4: Total hours of flight experience of flight crew at the time of their LOC-I accident. 

Figure 5 shows a breakdown of 0–1,000 hours of the flight crew’s flying experience at the 

time of the accident. Most pilots (14.47%) were inexperienced, i.e., had less than 100 hours of 

flying experience at the time of their accident. Almost half (49%) of the 0–100 hours pilots had 

less than 40 hours of flying experience. Note that the FAA requires at least 40 hours of flight time 

for a private pilot certificate (14 CFR part 61) (CFR, 2023). 
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Figure 5: Percentage of total pilots with less than 1000 hours of flying experience at the time of 

LOC-I accident. 

Figure 6 shows pilots’ age and total flying experience at the time of LOC-I. Most pilots were 

50–60 years with 100–200 hours of flying experience at the time of their LOC-I. 
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Figure 6: Heat map of pilots’ age and total flying experience at the time of LOC-I. 

 Figure 7 shows the total hours of flying experience of flight crew in the accident aircraft 

make at the time of accident. 91.51% of the pilots had less than 1000 hours of flying experience 

in the accident aircraft make at the time of their accident. More than half (55.47%) of the pilots 

had less than 100 flying hours in the aircraft make. 8.47% of pilots had 1,000–15,990 flying hours 

in the aircraft make at the time of their LOC-I. 



 

 

 

 

36 

 

 

 

Figure 7: Percentage of pilots with flying experience in accident aircraft make at the time of 

LOC-I. 

Figure 8 shows pilots’ age and total hours of flying experience in accident aircraft make at 

the time of LOC-I. Most pilots were 60–70 years and had flown less than 10 hours in the accident 

aircraft make at the time of their LOC-I. 
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Figure 8: Heat map of pilots’ age and flying experience in accident aircraft make. 

Figure 9 shows the total hours of flying experience of flight crew (not necessarily in the same 

aircraft make) in the last 90 days before the accident. Most (41.55%) pilots had less than ten flying 

hours in the last 90 days before accident. 1.82% of pilots flew more than 100 hours in the last 90 

days. 
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Figure 9: Percentage of pilots with flying experience in the last 90 days preceding the accident. 

Figure 10 shows pilots’ age and flying experience in the last 90 days before accident. Most 

pilots were 55–75 years and had flown less than 10 hours in the last 90 days before their LOC-I. 

Mostly, 60–65 years old pilots less than 30 hours of flying were most involved in an LOC-I. 

 

Figure 10: Heat map of pilots’ age and flying experience in last 90 days before accident. 
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Overall, the NTSB accident data shows that Cessna 172 was the most common aircraft 

involved in LOC-I accidents, followed by Piper PA28, and Cessna 182, 180, and 152 models. Most 

accidents involved pilots aged 55–69 years. Most pilots had less than 100 hours of total flying 

experience. The heat maps of pilots’ age versus hours analysis show that pilots of age 50–75 with 

especially low (less than 10 hours) flying experience in the last 90 days and in the aircraft make 

were mostly involved in a LOC-I. 
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 A STATE-BASED APPROACH TO MODEL FIXED-WING AIRCRAFT 

ACCIDENTS 

Portions of this chapter were published in Majumdar, N., Marais, K., & Rao, A. (2021). 

Analysis of General Aviation fixed-wing aircraft accidents involving inflight loss of control using 

a state-based approach. Aviation, 25(4), 283-294. 

This chapter is based on the state-based approach that I developed to model fixed-wing 

aircraft accidents in my master’s work (Majumdar, 2019). In section 3.1, I describe my method of 

categorizing the NTSB codes into states and triggers. Next, in section 3.2, I describe the method 

of creating sequencing rules for the states and triggers. In section 3.3, I demonstrate the modeling 

of an example accident using the state-based approach. Section 3.4 discusses the results of the 

state-based analysis of inflight loss of control accidents using the NTSB database. Sections 3.1 

and 3.3 and some parts of Section 3.4 are based on my master’s work and the paper published in 

the Aviation journal (Majumdar, 2019 and Majumdar et al., 2021). 

In my master’s work, I augmented the state-based approach developed by Rao and Marais 

(2020) to model fixed-wing aircraft accidents (Majumdar, 2019). The state-based model consists 

of two core concepts: accidents are modelled as a series of states and triggers; and, states and 

triggers (the dictionary) are ordered and linked by rules (the sequencing), as shown in Figure 11. 

 

Figure 11: State-based representation of a notional system. 
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The state and trigger definitions are based on codes in the NTSB database system (occurrence 

codes, finding codes, modifier codes, and phase of flight codes). The system comprises the aircraft 

and pilot(s) operating the aircraft. A state is a segment of time wherein a system exhibits a 

particular behavior. The nodes in Figure 11 represent states of a notional system where the first 

state represents the default or start state of the system and the last (end) state represents the 

system’s behavior in the final segment of time in the accident. A system can be in only one state 

at any given point of time. There are two types of states: nominal and hazardous. A nominal state 

is a state of a system that is generally accepted as sufficiently safe by the applicable stakeholders. 

“Sufficiently safe” depends on the particular context and stakeholders. For example, safe states are 

those where the aircraft is operating in good weather with all systems functioning and with a 

competent and fit-to-fly pilot. A system is in a nominal state only when both the pilot and aircraft 

are in nominal states. A nominal state cannot lead directly to an accident state—it must be directly 

preceded by a hazardous state. 

A hazardous state is an off-nominal state that may lead to an accident or an incident. For 

example, a pilot’s poor physiological condition is a “pilot hazardous state”, and loss of engine 

power is an “aircraft hazardous state.” A system is in a hazardous state if either the pilot(s), the 

aircraft, or both the pilot(s) and aircraft are in hazardous states, as shown in Figure 12. 

I categorize hazardous states based on when they occur in an accident sequence. A preflight 

hazardous state is a hazardous state that exists before a flight starts, for example, preflight 

mechanical issue. An intermediary hazardous state occurs between a preflight state and an end 

state (in this case, an accident), for example, inflight loss of control. Each flight terminates in an 

end state, which can be nominal (e.g., safe landing), an incident (e.g., bounced landing), or an 

accident (e.g., midair collision). Figure 12 shows four possible scenarios of states used in accident 

modeling: (a) nominal pilot state and hazardous aircraft state; (b) hazardous pilot state and nominal 

aircraft state; (c) both pilot and aircraft in hazardous state; and (d) end state (accident state). 
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Figure 12: Illustration of four possible scenarios where a system is in hazardous state. Examples 

of these states are: (a) loss of engine power; (b) pilot’s poor physiological condition; (c) pilot’s 

poor physiological condition during a loss of engine power; and (d) on-ground collision with 

terrain/object end state. 

A trigger is an event that occurs at a precise instant of time, causing either the aircraft, pilot(s), or 

both the aircraft and pilot(s) to transition between states or remain in the same state. For example, 

failure of an engine can cause a system to transition from a nominal state to a hazardous state. The 

links connecting to each state in Figure 11 represent triggers to each state. The initiating trigger, 

points to the default or start state of the system. 

3.1 Fixed-wing Aircraft Dictionary of Hazardous States, Triggers, and Additional 

Information 

Building off on the rotorcraft data dictionary that had 84 state definitions and 182 trigger 

definitions, I extended the data dictionary to fixed-wing aircraft accidents. In my master’s work, I 

created 108 states and 226 triggers (Majumdar, 2019 and Majumdar et al., 2021). Additionally, I 

categorized codes which can neither be considered as a state nor a trigger as additional information. 

After several iterations of re-defining and re-categorizing the states, triggers, and additional 

information, the data dictionary now has 108 states, 194 triggers, and a total of seven additional 

information. In my Ph.D. work, I also created sequencing rules for states and triggers, as described 

in Section 3.2.  

The following sub-sections describe the process of my data dictionary definitions. 

Appendix D shows the descriptions for the states, triggers, and additional information. The coded 
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definitions for the states, triggers, and additional information can be found in my master’s thesis 

(Majumdar, 2019).   

3.1.1 Fixed-wing state definitions 

I grouped the NTSB codes that have similar meanings into states and triggers. For example, 

I grouped the codes 24518: Altitude and 24519: Proper altitude both indicate that the pilot did not 

maintain the correct altitude into improper altitude state. Table 4 shows a summary of the fixed-

wing aircraft states as compared to rotorcraft states. Fixed-wing aircraft differ from rotorcraft in 

four ways relevant to accident modelling: (1) Maneuvering. Rotorcraft and fixed-wing aircraft 

have different maneuvering capabilities due to different flight mechanics. For example, rotorcraft, 

unlike fixed-wing aircraft, can perform maneuvers such as hovering, and can autorotate in the 

event of losing engine power. So, these rotorcraft states are not applicable to fixed-wing aircraft. 

(2) Control surfaces. Fixed wing aircraft, unlike rotorcraft, have ailerons, a rudder, and an elevator 

for aerodynamic stability. For example, fixed wing aircraft have flaps, unlike rotorcraft. Therefore, 

I created a new state for improper flaps extended speed (VFE). (3) Takeoff and landing 

characteristics. Advanced rotorcraft with wheels that can perform running takeoffs, hover taxi, and 

air taxi, are relatively rare in civil aviation, and therefore rotorcraft accidents associated with these 

maneuvers are also rare (there were no such accidents in the 1982–2015 accidents covered in Rao 

and Marais’ 2020 analysis). I therefore created new fixed-wing states such as improper takeoff, 

improper taxi speed, water loop/swerve, and aircraft hydroplaning. (4) Airspeed factors. Fixed-

wing aircraft have additional airspeeds to rotorcraft. For example, fixed wing aircraft have five 

different airspeeds that convey takeoff or rotation speed: lift-off speed (VLOF), takeoff safety 

speed (V2), minimum takeoff speed (V2MIN), rotation speed (VR), and maximum speed from 

which the airplane can stop within the accelerate-stop distance (V1). 
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Table 4: Summary of the states for rotorcraft and fixed-wing aircraft 

 Rotorcraft 

States 

Fixed-wing 

States 
State Example 

States applicable only 

to rotorcraft 
13 N/A 

Improper autorotation only occurs in 

rotorcraft. 

Rotorcraft states 

applicable to both 

rotorcraft and fixed-

wing aircraft 

54 
Both rotorcraft and fixed-wing aircraft 

can experience hard landings. 

Rotorcraft states re-

coded for fixed-wing 

aircraft 

17 

Fixed-wing aircraft have additional 

airspeed types, compared to rotorcraft 

such as minimum takeoff speed 

(V2MIN). 

New states defined for 

fixed-wing aircraft 

only 

N/A 37 

Rotorcraft do not have flaps, unlike 

fixed-wing aircraft, so I created 

improper flaps extended speed (VFE) 

state for fixed-wing aircraft. 

Total states 84 108  

Finally, I added several states that may also apply to rotorcraft but did not appear in any of 

the rotorcraft accidents in the database. For example, Rao and Marais (2020) defined two LOC 

states for rotorcraft: inflight loss of control (LOC-I) and on-ground loss of control (LOC-G). 

Because the database does not always specify whether the LOC was inflight or on the ground, I 

created an unknown phase LOC state (LOC-U). Table 5 shows the definition and coding for the 

LOC-I state. Table 5 also shows the Boolean logic for the LOC-I state, which serves as input to 

my translation code in MATLAB. 
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Table 5: Inflight loss of control (LOC-I) state definition for fixed- wing aircraft accidents includes 

a combination of occurrence, phase of flight, and subject/finding and modifier codes from the 

NTSB database. I excluded the codes that do not specify the phase during which loss of control 

happens or convey loss of control on the ground. 

NTSB Codes (Pre-2008) Description 

250 Loss of control  in flight 

110 Altitude deviation, uncontrolled 

553 Descent  uncontrolled phase 

24524 AND (3140) Descent AND (“Uncontrolled”) 

24525 AND (3140) Proper descent rate AND (“Uncontrolled”) 

NTSB Codes (Post-2008) Description 

240 Loss of control in flight 

650 Uncontrolled Descent 

01062022 Pitch control 

01062023  Lateral/bank control  

3.1.2 Fixed-wing trigger definitions 

Using the NTSB codes used for fixed-wing aircraft accidents, and combining codes that 

convey the same meaning, I defined 194 triggers (see Table 6). Similar to hazardous states, I 

accounted for the differences between helicopters and fixed-wing aircraft when augmenting and 

creating new triggers for fixed-wing aircraft. For example, based on different speed characteristics 

of fixed-wing aircraft, I re-coded the rotorcraft trigger improper aborted landing/takeoff for fixed-

wing aircraft by adding a subject code 24503 Abort above V1 with its modifiers. V1 is the takeoff 

decision speed, beyond which a flight can continue to take off even in case of an engine failure. 
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Table 6: Breakdown of rotorcraft and fixed-wing aircraft triggers 

 Rotorcraft 

Triggers 

Fixed-wing 

Triggers 
Trigger Example 

Triggers applicable only 

to rotorcraft 
43 N/A 

Rotor system failure can occur 

only in rotorcraft. 

Rotorcraft triggers 

applicable to both 

rotorcraft and fixed-

wing aircraft 

76 
Both fixed-wing and rotorcraft 

can experience improper engine 

shutdown. 

Rotorcraft triggers re-

coded for fixed-wing 

aircraft 

63 

Both rotorcraft and fixed-wing 

aircraft can experience improper 

aborted landing/takeoff, but there 

are additional NTSB codes that 

apply for fixed-wing aircraft. 

New triggers defined for 

fixed-wing aircraft  
N/A 55 

Rotorcraft have rotors and not 

propellers, so they do not have a 

propeller control failure trigger. 

Total triggers 182 194  

3.1.3 Additional information 

I categorized the codes which can neither be considered as a state nor a trigger as additional 

information. There are two types of additional information: (1) Pre-existing condition; and (2) 

Information code. 

Pre-existing condition is a condition in the aircraft’s environment that remains true or 

applicable throughout a flight and is neither a state nor a trigger. I created four pre-existing 

conditions: (1) unsuitable airport facilities; (2) unsuitable runway; (3) unsuitable terrain; and (4) 

unsuitable physical environment. 

Information code is detail about a system that is neither a state, a trigger, nor a pre-existing 

condition. Information codes describe additional information about the accident. I created three 

information codes: (1) information about object that the accident aircraft collided with during 

accident (e.g., trees); (2) information about terrain (e.g., mountainous) and (3) information about 

accident event (e.g., aircraft missing after crash). 
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3.2 Creating Sequencing Rules for States and Triggers 

I created sequencing (or grammar) rules to sequence states and triggers to represent accident 

models. Sequencing the states means assigning states that can come immediately before, after, or 

both before and after a particular state. For triggers, I created rules that define which triggers can 

immediately lead to a particular state. Sequencing states and triggers may help us better understand 

the proximate causes of LOC-I and other states leading to an LOC-I.  

In my master’s work, I created sequencing rules for twelve states. In my Ph.D. work, I created 

sequencing rules for all 108 states and 194 triggers. I wrote a MATLAB code that extracted 

accidents citing certain two states, and outputted all states used in those accidents. Then, I read 

narratives of the extracted accidents and evaluated the sequence of states used in those accidents. 

I referred to the books published by the FAA such as the Airplane Flying Handbook (AFH) and 

the Pilot’s Handbook of Aeronautical Knowledge (PHAK) and used my knowledge from private 

pilot training to decide the sequencing for one state with another (FAA, 2021 and FAA, 2016a). I 

created a spreadsheet with all the 108 states in columns and rows. Inspired by the graph theory 

approach, I assigned values for each type of relationship of one state with another.  

Figure 13 shows a snippet of the spreadsheet that includes relationship of each state to 

another. For example, consider Intentional/inadvertent flight through poor weather state that 

represents pilot flying through a poor weather such as an instrument meteorological condition 

(IMC). States that immediately follow flight through poor weather are loss of engine power and 

loss of lift (assigned value 1). Low coolant (which a pre-flight state) can immediately precede flight 

through poor weather (assigned value –1). Low fuel state can either immediately come after (if 

pilot deviates their course in poor weather) or before flight through poor weather (if pilot starts 

with a low fuel) (assigned value 0). Flight through poor weather can also transition to itself with 

some triggers, e.g., lack of action by pilot (assigned value 3). There is no direct relationship of 

flight through poor weather with on-ground collision with terrain/object state in the accident 

reports. That means there must be intermediate states in between these two states, such as inflight 

loss of control state and on-ground loss of control states. 
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Figure 13: A snippet of sequencing rules for states with different values assigned to each cell. 1: 

The state mentioned in the row can immediately follow the state mentioned in the column; –1: The 

state mentioned in the row can immediately precede the state mentioned in the column; 0: The 

state mentioned in the row can appear either immediately before or after the state mentioned in the 

column; 3: Relationship of the state with itself—the state can transition to itself with a specific 

trigger(s); and 8: No direct relationship of the states mentioned in the corresponding row and 

column. 

I used a similar approach to create rules for the 194 triggers with the 108 states. I ran a 

MATLAB code that extracted accidents (and all their codes) that had a particular trigger and a 

state together. Then, I read narratives of the extracted accidents and referred to other resources 

such as the FAA’s AFH and PHAK to decide whether a particular trigger could lead to a state. I 

created another spreadsheet with the rows having all the 194 triggers and the columns with the 108 

states.  

Figure 14 shows a snippet of the spreadsheet that includes relationship of each trigger to a 

state. For example, consider the triggers for inflight loss of control (LOC-I) state. From the 

narratives, I found that the improper runway alignment trigger can either lead to the LOC-I state 

or exit from the LOC-I state (assigned value 3). Triggers such as improper touch-and-go, improper 

use of aerial application/external load equipment, improper use of aircraft systems component, 
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and improper use of autopilot system can lead to an LOC-I state (assigned value 1). Improper 

touchdown trigger can exit from the LOC-I state (assigned value 2), that means, an LOC-I can 

cause an aircraft to improperly touch down on the runway. I found no relationship between the 

triggers improper towing/taxiing and the LOC-I state. 

I use these sequencing rules as a basis to model LOC-I accidents from the NTSB database. 

 

Figure 14: A snippet of sequencing rules for triggers to the states with values. 1: The trigger 

mentioned in the row can go into the state mentioned in the column; 2: The trigger mentioned in 

the row can come out of the state mentioned in the column; 3: The trigger mentioned in the row 

can either go into or come out of the state mentioned in the column; and 8: No relationship of the 

trigger found with the given state. 

3.3 Modeling Accidents Using the State-Based Approach 

Here, I demonstrate the working of state and trigger definitions and the sequencing rules 

using an accident (NTSB Number: LAX99FA077) that happened in January 1999 in Chino, 

California involving a Beech F35. A non-instrument rated pilot’s intentional flight into known 

instrumental meteorological conditions (IMC) in hilly terrain led to a spatial disorientation. The 

pilot’s failure to maintain aircraft control led to a crash. The pilot and the three passengers were 
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fatally injured. The first two columns of Table 7 show the resulting NTSB codes for the accident 

report. I model the accident in five steps: 

1. Identify states and triggers from the accident data: I mapped the finding codes and 

occurrence codes from the database with corresponding states and triggers as shown in 

Table 7. Figure 15 shows the states and triggers. Since there are no codes indicating that 

the pilot was impaired or not fit to fly at the start of the flight, I indicated pilot’s state as 

nominal (in green). I also indicated the pre-existing condition as unsuitable terrain and 

information about terrain as mountainous/hilly (using the NTSB codes in Table 7). 

2. Identify preflight, intermediary, and end states: Next, I identified the preflight, 

intermediary and end states, as shown in the last column of Table 7.  

3. Sequence hazardous states: I applied the sequencing rules to sequence hazardous states. 

Sequencing rules are based on flight physics and the sequence that the NTSB used to report 

an accident. 

4. Link states and triggers: Using the sequencing rules, I linked triggers to the sequenced 

states, as shown in Figure 15. 

5. Infer triggers and states based on sequencing rules: Three states did not have entering 

triggers, because the accident report does not mention any applicable trigger related codes. 

The NTSB codes for an accident may not be sufficient to identify all states and triggers in 

that accident. So, I used the sequencing rules to infer some of the missing information, e.g., 

no/failed recovery after loss of control trigger. I infer this trigger whenever an end state 

succeeds a loss of control state in an accident, and the accident does not include any codes 

related to remedial action trigger (Loss of control state AND (end state) AND NOT 

(Remedial action trigger). 
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Table 7: NTSB codes and corresponding states or triggers (NTSB Number: LAX99FA077) 

Finding code Modifier code 
Corresponding 

State/Trigger 

Preflight/ 

intermediary/end 

state 

20100: Light 

condition 
2305: Dark night 

Prevailing weather and 

light state 
Preflight 

20000: Weather 

condition 

2204: Clouds 

2240: Drizzle/mist 

24022: Weather 

evaluation 

3115: Inadequate 

 

Improper weather 

evaluation trigger 
NA 

24010: inflight 

planning/decisio

n 

 

3115: Inadequate 

Improper inflight 

planning/decision-

making trigger 

NA 

24015: VFR 

flight into IMC 

3114: Intentional 

 

Flight through poor 

weather state 

 

Intermediary 

24566: Aircraft 

control 

3127: Not 

maintained 

Inflight loss of control 

state 
Intermediary 

33400: Spatial 

disorientation 
0: No modifier 

Disoriented/ lacking 

awareness state 
Intermediary 

19200: Terrain 

condition 

2416: 

Mountainous/hilly 

Unsuitable terrain pre-

existing condition 

Information about terrain: 

Mountainous/hilly 

NA 

Occurrence 

code 
Phase code 

Corresponding 

State/Trigger 

Preflight/intermediary/ 

end state 

240: In flight 

encounter with 

weather 

531: Climb to cruise 
Flight through poor 

weather state 
Intermediary 

250: Loss of 

control inflight 
531: Climb to cruise 

Inflight loss of control 

state 
Intermediary 

230: In flight 

collision with 

terrain/ water 

553: Descent- 

uncontrolled 

Inflight collision with 

terrain/water/object state 

 

End 
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Figure 15: State-based representation of the accident. Using the sequencing rules, I inferred 

missing triggers to the states. The arrows (and text) in blue are the inferred triggers. 

3.4 Top Hazardous States and Triggers in Inflight Loss of Control (LOC-I) Accidents 

I identified LOC-I accidents in 2009–2017 by mapping the LOC-I state to the NTSB codes 

in accidents (Majumdar et al., 2021). I calculated the presence of hazardous states and triggers in 

the LOC-I accidents using Equation (1). 

presence(Causej|Accident) =
∑ TRUE(Causej ≥ 1|Accidenti)

naccidents
i=1

Total Accidents
. 

(1) 

Figure 16 shows the top hazardous states for LOC-I accidents in 2009–2017. 77.74% of 

accidents resulted in an inflight collision with terrain, water, or object. Prevailing/existing weather 

conditions, followed by improper airspeed were the topmost causes in LOC-I accidents. I 

identified new findings such as preflight mechanical issue and insufficient qualification/training/ 

training/experience as new insights into LOC-I, with a presence of 8.13% and 10.15% respectively 

in 2009–2017 accidents. Preflight mechanical issue involves scenarios such as improper weight 

and balance calculations by pilot and operating an aircraft with known deficiencies. Insufficient 

qualification/training/experience/ familiarity includes lack of experience in a type of aircraft, night 
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or instrument flying, inadequate flight training, and the pilot not being current in their certification. 

I also inferred preflight aircraft hazardous state in 7.46% of accidents whenever an accident report 

did not cite any codes related to aircraft preflight hazardous state (such as preflight mechanical 

issue state and preflight low engine fluids states). I inferred this state by using other trigger codes 

that implied that the aircraft was in a hazardous state before starting the flight. 

 

Figure 16: Top hazardous states in 2009–2017 LOC-I accidents 

Figure 17 shows the top triggers in LOC-I accidents. I found additional findings such as 

improper inflight planning/decision-making, improper maintenance, improper preflight planning, 

and improper use of procedure or directives that were not identifiable in previous studies 

(Majumdar et al., 2021). Improper inflight planning/decision-making was most frequent cause 

(17.34%) in LOC-I accidents. Improper maintenance and preflight planning put a flight in a 

hazardous state (such as an unsafe to fly aircraft or severe weather conditions) even before it starts. 
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I also inferred triggers such as no/failed recovery after loss of control (94.8%) and no/failed 

recovery after disoriented state (6.29%) when the NTSB does not cite any codes related to 

improper remedial action with LOC-I and disoriented states respectively. In 19.59% of LOC-I 

accidents, aircraft clipped (hit) terrain or object and continued the flight, i.e., clipping of 

object/terrain trigger. I inferred time spent in poor weather (4.79%) as a trigger to pilot’s 

disoriented state when the NTSB cites prevailing weather/light or a flight through poor weather as 

the immediate former state with no related trigger information.  

 

Figure 17: Top triggers involved in 2009–2017 LOC-I accidents 

Figures 18 and 19 compare hazardous states and triggers in fatal and non-fatal LOC-I 

accidents. Figure 18 shows states that are more prevalent in fatal accidents as compared to non-

fatal accidents. Fatal accident reports cited pilots’ insufficient qualification/training/experience/ 

familiarity, physically impaired/incapacitated and disoriented/ lacking awareness states more 
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often than in non-fatal accidents. Exceeding aircraft performance limits and aircraft structure 

failure were also more involved in fatal accidents. 

 

Figure 18: Comparison of top hazardous states in fatal and non-fatal LOC-I accidents 

Figure 19 compares top triggers in fatal and non-fatal LOC-I accidents. Fatal accidents 

involved pilots’ improper inflight planning/decision-making more often than non-fatal accidents. 

Since pilot disoriented state was more prevalent in fatal accidents, I inferred no/failed recovery 

after disoriented state and time spent in poor weather triggers more often in fatal accidents. Pilots 

maneuvering improperly (such as low altitude buzzing) tended to be more involved in fatal 

accidents. Engine assembly failure and fuel system failure/contamination was only present in fatal 

accidents. 
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Figure 19: Comparison of top triggers in fatal and non-fatal LOC-I accidents 
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 COMPARING FINDINGS USING THE NTSB CODES AND 

NARRATIVES IN ACCIDENT REPORTS 

This section provides motivation for the question: Can we find additional causes from 

accident reports that are not coded? To determine whether the NTSB narratives have additional 

information as compared to the codes, I analyzed a set of accident reports by studying its narratives 

and counting the codes used in the accidents. Then, I compared the findings from both the analysis. 

4.1 Selecting Accidents for Analysis 

The General Aviation Joint Safety Committee (GAJSC) considered a subset of 175 LOC-I 

accidents from the NTSB database and evaluated their causes and possible preventive measures in 

detail (GAJSC, 2014). I used their accident subset as a starting point for studying the narratives 

and analyzing the codes. Since the GAJSC considered only fatal accidents and some of the 

accidents involved highly advanced aircraft, I considered another subset of 25 fatal and 25 

non-fatal accidents that involved traditional training aircraft such as Cessna 172 and Piper PA-28 

Cherokee. 

Since all the accidents chosen by the GAJSC were fatal, I randomly selected additional 25 

fatal and 25 non-fatal accidents in 2001–2017 involving FAR Part 91. I first applied a query on 

the MS Access NTSB database sheet to filter accidents that were operating under Part 91, happened 

between 2001 and 2017, and had the LOC-I occurrence code (250 for accidents before 2008 and 

240 for accidents starting 2008). Then, I randomly selected 25 accident IDs that were fatal and 25 

accident IDs that were non-fatal. After selecting the accident IDs, I extracted their detailed 

information such as the codes used in the accidents and their narratives.  

4.2 Analysis Method 

I analyzed accident reports by running the NTSB-coded information through the state-based 

algorithm that I built in my master’s work (implemented in MATLAB) and then manually reading 

the accident narratives to identify hazardous states and triggers. I compiled case study sheets to 
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record details about accidents from the NTSB reports: NTSB No. and date, aircraft model, 

personnel involved and certificates, information from the factual, brief, and probable cause reports, 

and finding codes as shown in Figure 20. For each accident, I identified and recorded the issues 

mentioned in the accident. Then, I mapped the identified issues to the state and trigger definitions 

from the state-based approach data dictionary. I also created new states and triggers if there was 

no corresponding state or trigger in the data dictionary that could be mapped to a certain issue. 

 

Figure 20: Snippet of Spreadsheet with details mentioned in the NTSB accident reports. 

4.3 Accident Case Studies 

Consider a fatal accident that happened in December 2006 (ATL07FA029). Table 8 shows the 

method of analyzing this accident. The report stated, “The pilot then responded that he would be 

landing on runway 18, and was advised by the employee that there was no "runway 18." The pilot 

then stated that he would land on runway 27, and shortly thereafter said that he would land on 

runway 22.” I deduced that the pilot was not familiar with the airport and lacked related runway 

information. I mapped this issue with the state insufficient qualification/training/experience or 

familiarity. I include all findings from the narratives in the second column. The second column 
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includes the corresponding codes cited in the report. The last column includes my mapping of the 

findings from the narratives and codes to respective states, triggers, or pre-existing conditions. The 

text in orange represents that the report did not use codes corresponding to those states. The 

narrative also did not mention the water terrain condition or how it may have contributed to the 

accident. 

Table 8: Narrative Analysis of an Example Accident (NTSB Number: ATL07FA029). The 

report did not use corresponding codes for the states in orange text (e.g., runway overshoot, 

improper turn, and improper airspeed). The narrative also did not mention anything about 

water terrain condition and how it contributed to the accident. 

 
Findings from 

Narratives 

Corresponding 

Codes Cited 

Corresponding 

State/Trigger/Pre-

existing Condition 

NTSB No. 

Month & Year of 

Accident 

ATL07FA029 

December 2006 
  

Aircraft Model Cessna 340A   

Personnel 

(Injury) 

Private pilot 

3 Passengers  

(All fatally injured) 

  

Factual 

Information 

(History of 

Flight) 

Lack of destination 

airport information  
 

Insufficient 

qualification/training/ 

experience or 

familiarity state 

Did not take a prompt 

decision of choosing a 

landing runway 

 

Improper inflight 

planning/decision 

making trigger 

Overshot the runway  
Runway overshoot 

state 

Brief Analysis 

Tight low right turn 

during approach  
 Improper turn state 

Stalled during approach 
24552-3113: 

Inadvertent 

stall/spin  

Aircraft stall/spin state  
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Table 8: Narrative Analysis of an Example Accident (NTSB Number: ATL07FA029). The 

report did not use corresponding codes for the states in orange text (e.g., runway overshoot, 

improper turn, and improper airspeed). The narrative also did not mention anything about 

water terrain condition and how it contributed to the accident. 

 
Findings from 

Narratives 

Corresponding 

Codes Cited 

Corresponding 

State/Trigger/Pre-

existing Condition 

Lost control 

250: LOC-I 

230: Inflight 

collision with 

terrain/water 

LOC-I state 

Inflight collision with 

terrain/water/object 

state 

Probable Cause 

and Findings 

Failure to maintain 

airspeed during a turn 

from base to final 

 Improper airspeed state 

Impairment of the pilot 

due to use of 

combination of drugs 

33140: 

Impairment 

(drugs) 

 

Physically impaired 

state 

No related information 

mentioned in the 

narratives 

19200-2430: 

Terrain condition 

(water) 

Unsuitable terrain 

condition pre-existing 

condition 

Here, I give two example accidents that demonstrate inconsistent translation of information 

in the narratives to accident codes. Consider a fatal accident (NTSB Number: CEN10FA028) that 

happened in October 2009 where a private pilot flying a Beech B100 with three passengers crashed 

after encountering sever weather enroute the flight. The NTSB recorded five different codes for 

the accident: 0303301084: Thunderstorm—decision related to condition; 0204103044: Lack of 

action by pilot; 0204103044: Lack of action by air traffic control (ATC) personnel; 402390: 

Enroute-cruise—Windshear or thunderstorm; and 402240: Enroute-cruise—Loss of control in 

flight. The two codes (0204103044 and 0204103044) used by the NTSB to explain pilot and ATC 

personnel actions are broad and do not provide specific detail about the actions. The narratives 

mention pilot’s and ATC personnel’s actions in detail, i.e., the pilot’s failure to avoid severe 

weather and the controller’s failure to provide adverse weather avoidance assistance that led to an 
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encounter with a severe thunderstorm and subsequent loss of control and inflight breakup of the 

aircraft. 

Consider another non-fatal accident (NTSB Number: ERA13LA279) that happened in June 

2013 where a pilot with three passengers received serious injuries and a substantial damage of a 

Cessna 172M. The NTSB listed six codes: 0106201711: Incorrect use/operation of aircraft 

configuration; 0106103508: Maximum weight capability exceeded; 0204152044: Decision 

making/judgment by pilot; 0206301544: Use of equipment/system by pilot; 0302000091: 

Environmental issues; and 0206101544: Weight/balance calculations by pilot. The NTSB 

determined that the pilot’s failure to set the correct flap position before takeoff and his inadequate 

preflight planning resulted in the aircraft operating over the maximum allowable gross weight, and 

subsequent stall at a significantly low altitude at which to recover. In the report, the NTSB does 

not include codes related to an aerodynamic stall, improper takeoff, and a low altitude. 

4.4 Comparison of Findings Using the NTSB Codes and Narratives 

My analysis showed that pilot-related issues were mentioned in more detail in the narratives 

than in the codes. Table 9 shows a comparison of the findings using the NTSB codes and narratives. 

100 out of 225 reports cited improper airspeed in their narratives, whereas 79 out of the 225 reports 

mentioned it in their codes. There were 21 accidents that involved improper airspeed (and had 

mentioned it in their narratives) but had not cited airspeed in their codes. Similarly, I found 42 out 

of 225 additional accident reports that mentioned a low or high altitude in their narratives, but not 

in their codes.  

Only four accidents mentioned improper preflight planning or inspection in their codes, 

whereas 27 accidents mentioned preflight planning or inspection in their narratives. 42 reports 

mentioned improper turns (such as steep angle while turning) in their narratives. No codes related 

to improper turns were cited in the reports. Similarly, although 13 accident narratives mentioned 

the pilot’s failure to maintain control during aborted landing, there were no related codes cited in 

the reports. Twelve reports cited codes related to the pilot’s incorrect action, lack of action, 

incorrect sequence of actions, and delayed actions. But none of these codes explain further the type 



 

 

 

 

62 

 

 

of actions or the phase of flight when these issues happened. In some cases, the NTSB system does 

not have any codes to explain some issues. For example, there are no codes in the NTSB system 

that can explain pilot induced oscillations or porpoising. Therefore, the codes-only analysis 

provides an incorrect and sometimes an incomplete count of causes in accidents. 

Table 9: Comparison of Findings Using Accident Narratives vs Accident Codes for 225 

LOC-I Accidents 

Hazardous conditions 
No. of accidents using 

NTSB codes analysis 

No. of accidents using 

narratives analysis 

Improper airspeed 79 100 

Low/high altitude 22 64 

Lack of experience/currency 
19 

13 

Lack of experience in IMC 13 

Impairment due to 

drugs/alcohol 17 
15 

Hypoxia 2 

Spatial disorientation 15 21 

Incorrect/lack of action by pilot 12 5 

Diverted attention 7 

9 Pilot's obstructed vision/lack of 

visual lookout 
2 

Improper inflight planning 6 24 

Improper missed approach/go-

around 
5 16 

Improper supervision 5 7 

Runway overshoot/undershoot 5 6 

Improper preflight 

planning/inspection 
4 27 

Improper use of flight controls 4 7 

Improper landing procedure 4 8 

Fatigued pilot 4 4 
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Table 9: Comparison of Findings Using Accident Narratives vs Accident Codes for 225 

LOC-I Accidents 

Hazardous conditions 
No. of accidents using 

NTSB codes analysis 

No. of accidents using 

narratives analysis 

Climb/descent at a steep angle 
3 

25 

Shallow climb 1 

Improper (aerobatic) 

maneuvering 
2 4 

Ostentatious 

display/complacency 

2 3 

Improper turn 0 41 

Improper weather assistance or 

briefing 
1 3 

Improper emergency procedure 1 1 

Improper circling approach 1 2 

Failure to maintain control 

during aborted landing 
0 13 

Failure to abort takeoff 0 3 

Unstabilized flight/porpoising 0 2 

The analysis of narratives and comparison with the codes clearly suggest that we can 

potentially extract more pilot-related information (with more specific detail) from studying the 

accident narratives as compared to only a code-analysis. 
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 MODELING ACCIDENTS BY EXTRACTING INFORMATION FROM 

REPORTS USING NATURAL LANGUAGE PROCESSING 

The NTSB accident reports provide an abundance of information in the form of narratives. 

Not all the information written in the narratives necessarily gets translated to the codes. Because 

most previous studies use only the NTSB codes to analyze accident causation, the incomplete 

causation in the form of codes leads to partial information extraction and therefore incomplete 

understanding of accident causation. Using all the available information in reports including 

narratives may help provide a better understanding of accident causation.  

5.1 Motivation 

To demonstrate the usefulness of accident narrative analysis, consider an accident that 

happened in 2006 in Charleston, South Carolina (NTSB Number: ATL07FA029). The private pilot 

and three passengers were fatally injured, and the airplane sustained substantial damage. The 

NTSB determined the probable cause of the accident to be “the pilot's failure to maintain airspeed 

during a turn from base to final, resulting in an inadvertent stall/spin. Contributing to the accident 

was the impairment of the pilot due to the combination of drugs found in his toxicological report.” 

Table 10 shows the findings and their corresponding states and triggers recorded in the NTSB 

report. Figure 21 shows the state-based model for the accident based on the NTSB codes. 

Table 10: Accident findings recorded in the NTSB report with their corresponding states, 

triggers, and additional information. 

Finding codes Modifier code State/Trigger/Additional Information 

24552: Stall/spin 3113: Inadvertent Aircraft stall/spin state 

33140: Impairment (drugs) 0: No modifier Pilot Physically impaired state 

19200: Terrain condition 2430: Water Unsuitable terrain pre-existing condition 
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Table 10: Accident findings recorded in the NTSB report with their corresponding states, 

triggers, and additional information. 

Event codes Phase code State/Trigger/Additional Information 

250: Inflight loss of 

control 

563: Approach - 

VFR pattern - base 

leg/base to final 

LOC-I state 

230: Inflight collision with 

terrain/water 

553: Descent - 

uncontrolled  
Inflight collision with terrain/object state 

 

Figure 21: State-based representation of the accident using the NTSB codes 

(NTSB Number: ATL07FA029). The blue arrow represents the trigger that I inferred using the 

sequencing rules. 

Figure 22 shows the narrative of the accident report. The highlighted text is the findings that 

were not recorded by the NTSB for this accident in the form of codes. 
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Figure 22: NTSB report narrative for the accident (NTSB Number: ATL07FA029). The 

highlighted text are additional findings identified from the narrative that were not recorded by the 

NTSB in the form of codes. 

I mapped these additional findings that I found from the narrative to the state and trigger 

definitions and therefore identified four more states and one additional trigger, as shown in 

Table 11. 
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Table 11: Highlighted findings from the narratives with their corresponding states and triggers 

Narrative findings State/Trigger/Additional Information 

“The pilot then responded that he would be 

landing on runway 18 and was advised by 

the employee that there was no “runway 

18.”  

Insufficient 

Qualification/Training/Experience or 

Familiarity State 

“… he would land on runway 27, and 

shortly thereafter said that he would land on 

runway 22.” 

Improper inflight planning/decision 

making trigger 

“… the airplane overshot the runway…” Runway Overshoot/Excursion State 

“… and began a tight, low turn.” Improper Turn/Bank State 

“… failure to maintain airspeed…” Improper Airspeed State 

After analyzing the narrative, the accident has total eight states (four from the NTSB codes 

and four from the narrative) and two triggers (one inferred from the NTSB codes and other from 

the narrative). Figure 23 represents the enhanced state-based model for the accident based on these 

eight states and two triggers. 
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Figure 23: State-based representation of the accident using both the NTSB codes and the narrative 

(NTSB Number: ATL07FA029). The blue arrow represents the trigger that I inferred using the 

sequencing rules. The red text represents the additional findings that I identified using the narrative. 

This enhanced state-based accident model clearly provides more complete understanding 

about accident causation. Because of the pilot’s lack of familiarity of the airport, he overshot the 

runway, which made him make a “tight and low turn” (improper turn) to get back to the runway, 

which caused an improper airspeed, leading to a stall, and eventually a collision with the terrain.  

In Chapter 4, I manually read 225 such accident narratives to reveal additional insights about 

LOC-I causation that were not identifiable only from the NTSB codes. For large volumes of data 

such as thousands of accident reports, it is time consuming and labor intensive to manually read 

such unstructured accident reports and manually code the data to map to the 309 states, triggers, 

and additional information. Artificial Intelligence (AI) such as Natural language processing (NLP) 

uses computational techniques and machine learning algorithms to allow a faster automated data 

analysis, hence reducing human workload associated with data analysis. Machine learning is a 
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branch of artificial intelligence (AI) and computer science that helps retrieve hidden patterns 

within the data (data mining) to classify or predict event(s) from the data. 

5.2 Literature review 

Many researchers have applied text mining tools on aviation incident reports and found that 

NLP can generate meaningful information from unstructured data in accident reports (Young et 

al., 2019). I conducted a literature review, as shown in Table 12, to evaluate different methods 

used in previous studies and their application.  

Table 12: Literature review of text mining tools used to analyze aviation accident reports. 

Method Type of Results Publications Dataset 

Unsupervised 

ML: 

Word frequency 

& Bag-of-Words 

(BoW) 

Top factors (word 

frequency) 
Huang (2020) NTSB (2013–2018) 

Typical words used in 

reports 
Nakata (2017) ASRS (2013) 

Unsupervised 

ML: 

Clustering 

Major clusters and sub-

clusters  

(k-means) 

Rose et al. 

(2020) 
ASRS (2010–2020) 

Categorized primary cause 

in reports (k-means) 

Robinson et al. 

(2015) 
ASRS (2011–2013) 

Top clusters (k-means) Liu et al. (2020) 
Chinese Civil 

Aviation reports 

(2017) 

Unsupervised 

ML: 

Topic Modeling 

Correlation between topics, 

n-grams (LDA) 
Kuhn (2018) ASRS (2010–2015) 

Top topics (LDA) Robinson (2019) ASRS (1995–2004) 

Top topics with terms 

(LSA) 

Irwin et al. 

(2017) 
ASRS (2010–2014) 

Supervised ML: 

Clustering 

Multi-label classification 

(k-NN) 

Ahmed et al. 

(2010) 

ASRS (10,000 

reports) 
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Table 12: Literature review of text mining tools used to analyze aviation accident reports. 

Method Type of Results Publications Dataset 

Text mining 

Software 

Top clusters (Statistica™ 

software) 

Anderson & 

Smith (2017) 
NTSB (2004–2011) 

Association between 

contributing factors (IBM® 

SPSS® Modeler 13) 

Andrzejczak et 

al. (2014) 
ASRS (1980–2010) 

Deep learning: 

Neural networks 

Key indicators of accident 

causes (SVM) 
Hu et al. (2019) NTSB (1982–2017) 

Primary and contributing 

factors (Attention-based 

long short-term memory 

(LSTM) model) 

Dong et al. 

(2021) 
ASRS (1988–2020) 

Multi-label classification 

(BERT model) 

Zhao et al. 

(2022) 
NTSB (1982–2008) 

Top events (RoBERTA) 
Kierszbaum et 

al. (2022) 
ASRS (2009–2018) 

Researchers have applied different text mining tools such as unsupervised and supervised 

machine learning algorithms to identify aviation accident causation. Unsupervised machine 

learning uses algorithms to analyze and cluster unlabeled datasets without the need for human 

intervention. Supervised learning algorithms use training data with labeled datasets that the 

machine learns to predict newer data. While supervised learning algorithms tend to be more 

accurate than unsupervised learning models, they require upfront human intervention to label the 

data appropriately (Alloghani et al., 2020). 

Previous efforts have used several unsupervised learning algorithms, such as word frequency 

and bag-of-words. Huang (2020) used word frequency to identify the top contributing factors and 

causes using the NTSB GA reports for accidents that happened during takeoff. Nakata (2017) used 

a modified bag-of-words (BoW) model to detect typical pairs of words used in the starting, middle, 

and beginning of ASRS reports. The study found three typical flows of accident story related to 
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(1) machine troubles (aircraft issues); (2) near miss on runway at airport; and (3) near miss during 

cruising.  

Researchers have also widely used methods like clustering and topic modeling on accident 

reports. Both topic modeling and clustering are unsupervised methods which yield different kinds 

of outputs. The goal of topic modeling is to discover latent topics or themes in the data. These 

topics are represented as a set of words that frequently co-occur in the text. Clustering is a 

technique used to group similar data points together based on their attributes or intrinsic 

characteristics. The goal of clustering is to identify groups or clusters of data points that are similar 

to each other and dissimilar to other clusters. The clustering algorithm partitions a dataset into 

groups, or clusters, of data points that have similar features or patterns. Previous studies on 

clustering focused on ASRS reports and aviation reports from other countries to identify the top 

clusters in accidents. Rose et al. (2020) categorized ASRS reports using k-means clustering to 

reveal trends from clusters such as issues during navigation and ground operations, that were not 

evident explicitly from the reports. Similarly, Robinson et al. (2015) and Liu et al. (2020) also used 

k-means clustering to identify top causes in incident and accident reports. 

Topic modeling on the ASRS reports helped researchers discover themes in accident 

causation. Kuhn (2018) and Robinson (2019) used the Latent Dirichlet Allocation (LDA) model 

to find the most prevalent topics and correlation between the topics in ASRS reports. Irwin et al. 

(2017) studied ASRS reports using Latent Semantic analysis (LSA) method to identify topics such 

as environment, phase of flight, and ATC interaction. 

Ahmed et al. (2010) proposed a multi-label classification method using supervised machine 

learning approach, Hierarchical Semi-supervised Impurity based Subspace Clustering (H-SISC) 

with k-NN clustering, to analyze ASRS reports. Multi-label classification is a type of classification 

where each instance (accident) can have multiple labels (causes). Other researchers used text 

mining tools such as Statistica™ and IBM® SPSS® Modeler 13 for identifying top clusters and 

association between contributing factors in accidents (Anderson & Smith, 2017; Andrzejczak et 

al., 2014). 

Researchers have also used deep learning algorithms to analyze accident causation. Deep 

learning is a subset of machine learning that uses multiple artificial neural networks to process and 
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learn from large amounts of data (Chassagnon et al., 2020). Deep learning algorithms can learn to 

recognize patterns in data without being explicitly programmed to do so. Hu et al. (2019) and Dong 

et al. (2021) used Support Vector Machines (SVM) and deep neural networks for multi-label 

classification of accident causes. Dong et al. (2021) used an attention-based long short-term 

memory (LSTM) model to identify primary and contributing factors in ASRS reports. Zhao et al. 

(2022) and Kierszbaum et al. (2022) used transformer-based language models such as 

Bidirectional Encoder Representations from Transformers (BERT) and Robustly Optimized 

BERT Pretraining Approach (RoBERTA) on NTSB and ASRS reports for multi-label 

classification of accident causation. 

Unsupervised machine learning is the most common and least time-consuming method. 

Clustering using k-means may be helpful when the research objective is to partition number of 

observations (in our case, reports) into k clusters. Word frequency, n-grams, and topic modeling 

may help to reveal latent themes in accidents that are not identifiable explicitly through the NTSB 

codes. I first started with an exploratory analysis where I used the two most common types of 

unsupervised machine learning methods: n-grams and topic modeling to identify the most 

prevalent word-combinations and themes in reports. Appendix A discusses the results from the 

n-grams analysis and topic modeling. 

5.3 Multi-Label Text Classification 

Although the findings from the exploratory analysis of unsupervised machine learning may 

be useful for an overall quick thematic analysis for large volumes of data, unsupervised machine 

learning classifies text in its own way and not in the form of pre-defined labels (in our case, states, 

and triggers) which may limit our understanding of state and trigger sequences in accidents. Since 

each accident can have multiple findings (states and triggers), my research objective is more suited 

to a “multi-label classification” which is a type of text classification where multiple labels are 

assigned to each instance. In our case, labels are states and triggers and instances are accident 

reports. Supervised machine learning methods and deep learning algorithms allow models to learn 

from multiple-labeled data to predict unlabeled data. Previous studies with deep learning models 
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and neural networks showed promise in multi-label classification of accident and incident reports 

(Hu et al., 2019; Dong et al., 2021; Zhao et al., 2022; and Kierszbaum et al., 2022).  

Zhao et al. (2022) and Kierszbaum et al. (2022) used transformer neural network architecture 

models such as BERT and RoBERTA to apply multi-label classification on accident reports and 

showed better performance as compared to traditional architecture models such as LSTM and 

SVM. Transformers rely on self-attention mechanisms to learn contextual relationships between 

words in a sentence, allowing for more efficient parallel computation (Vaswani et al, 2017). Self-

attention allows the model to encode the relative importance of each input token with respect to 

others by assigning different weights to different elements of the input sequence. This mechanism 

helps in capturing long-range dependencies and relationships between elements in the sequence. 

BERT (Bidirectional Encoder Representations from Transformers) is a type of pre-trained 

language model developed by Google researchers in 2018 (Google, 2018). One of the key 

innovations of BERT is its bidirectional training, which allows it to consider the entire context of 

a word or sentence, rather than just the left or right context as in previous models. So, BERT can 

capture more complex relationships between words and sentences and improve performance on 

natural language processing tasks (Devlin et al., 2018). 

5.4 Experimental Setup 

I chose Longformer which is a transformer neural network model because transformer 

models have previously proved to be successful on multi-label classification of aviation reports 

(Zhao et al., 2022 and Kierszbaum et al., 2022). Figure 24 shows a flowchart for a deep learning 

model. We first import an accident dataset, pre-process the data, and split it into three different 

datasets for three stages (1) training; (2) validation; and (3) testing. 

1. Training: The model uses labeled data to learn patterns and relationships in the data by 

optimizing its weights and biases through multiple iterations. Goal is to minimize the loss 

or error between the model's predictions and the actual labels, so that the model can make 

accurate predictions on unseen data. Training Dataset is the largest subset which is used to 

train the deep learning model. It contains labeled examples that the model uses to learn 
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patterns and relationships in the data. The model is trained on this dataset through multiple 

iterations of forward and backward passes to optimize its weights and biases. 

2. Validating: The validation stage is used to tune the hyperparameters of the model and to 

perform model selection. Hyperparameters are parameters that control the behavior of the 

model, such as learning rate and batch size. The model's performance on the validation 

dataset, which is separate from the training dataset, is used to evaluate different 

hyperparameter settings and model architectures to give the best performance. Validation 

Dataset is separate from the training dataset and is used to evaluate the model's 

performance during training and to make decisions about hyperparameter settings and 

model architecture. 

3. Testing: The testing stage is used to evaluate the final performance of the trained deep 

learning model after it has been optimized and fine-tuned using the training and validation 

datasets. The testing dataset is an unseen sample of data used to assess how well the model 

generalizes to the unseen data and evaluate the final performance of the trained deep 

learning model after it has been optimized and fine-tuned using the training and validation 

datasets. 

The next step is to design the architecture of the neural network such as selecting the number 

of layers and configuring the hyperparameters. Then, we train the model on a preprocessed training 

data and validate it on a validation data to evaluate its performance. Based on the model 

performance, we fine tune the model to get an optimal performance. After achieving good 

performance, we test the model on an unseen accident dataset to predict more states and triggers. 
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Figure 24: Flowchart for a deep learning model 

In the following sub-sections, I will describe the experimental setup of generating the dataset, 

inter-rater reliability (IRR) for the manually coded dataset, selecting the model, preprocessing the 

dataset, and implementing the model.  

5.4.1 Preparing the Dataset 

I collected data using two methods: (1) NTSB coded accidents; and (2) manually coded 

accidents.  

1. NTSB coded accidents 

I identified all accidents from the NTSB database that involved a LOC-I state (see Chapter 3 

Table 5). I extracted total 16,029 LOC-I accidents in 1982–2019. Using my MATLAB code, I 

retrieved state-based models (corresponding states, triggers, and additional information) for all the 

accidents based on their NTSB codes.  

2. Manually coded accidents 

Since the NTSB codes do not always completely represent all findings mentioned in 

accidents (see Section 1.1: Background and Motivation and Section 5.1: Motivation), I created a 

separate dataset of 90 accidents to be manually read and coded by raters. I retrieved the accidents 
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from the GAJSC’s subset of LOC-I accidents (GAJSC, 2014). I created a spreadsheet with the 90 

accident narratives in rows and corresponding blank columns for the corresponding 309 states, 

triggers, and additional information for each accident. I assigned the spreadsheets to two raters. 

Both raters were undergraduate students with private pilot certificates. Each rater analyzed the 

reports independent of the other. They had access to the state-based data dictionary definitions but 

did not have access to the NTSB codes listed in the accident reports. The final spreadsheet after 

analysis was a collection of binary codes (0s and 1s). Raters entered a “1” for a corresponding state 

or trigger if it was present in an accident. Raters put a “0” for all other states and triggers that were 

not present in the accident. 

3. Inter-rater reliability (IRR) of manually coded dataset 

To validate the measure of consistency between the two raters, I evaluated the inter-rater 

reliability (IRR) for the manually coded dataset. Inter-rater reliability is a measure of the degree 

of agreement or consistency between multiple raters for a given dataset. A higher IRR value 

indicates greater agreement and coding consistency between the raters. A low IRR value means 

that there is a low level of agreement or consistency among the raters in their evaluations. There 

are multiple methods for evaluating IRR such as percentage agreement, Cohen’s kappa, and Fleiss' 

kappa statistics (Hallgren, 2012). There is limited guidance in literature on what IRR method is 

best suited for which type of data. Further, each method has its own limitations. For example, 

percent agreement method, that gives the average percentage of agreement between raters, does 

not account for agreements that occur by chance or if a rater codes instances randomly (Belur et 

al., 2021). Percentage agreement also considers only absolute agreement instead of the degree of 

agreement. For example, on a scale of 1–5, two raters scoring 4 and 5 is much better than scores 

of 1 and 5. Although Cohen’s kappa statistic factors in the role of chance when evaluating inter-

rater reliability, it can show no agreement among raters even if the observed agreement is high 

(Eugenio & Glass, 2004). Further, Cohen's kappa does not consider the weight of categories in 

IRR calculations. It assumes that all categories have the same importance or weight, and therefore, 

each disagreement is treated equally. Weighted kappa statistic considers weights of ratings when 
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categories have different levels of importance or when some disagreements are more important 

than others (Hallgren, 2012). 

Since the accident dataset has only binary outcomes (i.e., 0s and 1s) and all ratings for states 

and triggers are considered to have the same level of importance, weighted statistical methods are 

not needed for IRR calculations. Further, because both raters had sufficient airplane flying 

knowledge (note that both are pilots) and had access to all state and trigger definitions, there is a 

low probability of raters randomly coding the accidents. So, I chose the percentage agreement 

method for the IRR analysis. Figure 25 shows a snippet of both the raters’ coding for the accidents.  

 

Figure 25: Snippet of raters’ coding for accidents. The shaded boxes represent the four IRR cases. 

Case C0 (teal), C1 (green), C2 (red), and C3 (orange). 

I considered four cases for the IRR calculation. Case C0 (shown in teal-colored cells in the 

figure) is when both the raters did not select a state or trigger. Case C1 (green) is when both the 

raters identified a particular state or trigger. Case C2 (red) is when rater 1 identified a state or 

trigger, but rater 2 did not. And Case C3 (orange) is when rater 2 identified a state or trigger, but 

rater 2 did not. I counted the average number of instances for each case for all 90 accidents and all 

309 states, triggers, and additional information. Table 13 shows the average percentage for each 

case between the two raters. 
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Table 13: Four cases for IRR calculation between the raters 

Case # Rater 1 Rater 2 Percentage 

C0 0 0 96.7% 

C1 1 1 1.4% 

C2 1 0 0.7% 

C3 0 1 1.3% 

There was an overall 98.1% agreement between the raters (C0 and C1). On average, rater 1 

identified 6.3 states and triggers per accident and rater 2 identified 8.2 states and triggers per 

accident. Both the raters identified a total of 109 states and triggers (Rater 1 = 1 OR Rater 2 = 1) 

for all the 90 accidents. Because both the raters did not identify the remaining 101 of total 309 

states and triggers, so C0 (Rater 1 = 0 AND Rater 2 = 0) dominates the results. Table 14 shows 

the percentage agreement for the three cases where at least one of the raters identified a state or 

trigger. 

Table 14: Percentage agreement in cases where at least one rater identified a state or trigger. 

Case # Rater 1 Rater 2 Percentage 

C1 1 1 41.39% 

C2 1 0 19.72% 

C3 0 1 38.89% 

Of the identified states and triggers, both raters agreed 41.39% times. Overall, there was a 

58.61% disagreement where one rater identified a state or trigger and the other did not. To resolve 

the disagreements between Rater 1 and 2, I re-evaluated the accident coding by re-considering the 

coding for the states and triggers which had a disagreement, i.e., cases C1 and C2. After reading 

the accident narratives, I re-coded the states and triggers with the disagreements. In this study, I 

call myself Rater 3. 

I also evaluated how closely all three raters’ coding matched with the NTSB coding. Table 15 

shows the different cases that I considered for this evaluation. Case A represents an agreement 
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between the NTSB and the raters, i.e., when the raters’ code matches the NTSB’s coding for the 

corresponding state or trigger. Case B is when the raters’ code does not match the NTSB’s coding 

for the corresponding state or trigger. For example, when the NTSB has cited LOC-I state for an 

accident, and rater also identified LOC-I state for the accident, then it is attributed as Case A 

(NTSB = 1 AND Rater = 1). For case A, I calculated the average percentage of number of states 

and triggers per accident that were present in both the NTSB and raters’ coding. For case B, I 

calculated the average percentage of number of states and triggers per accident that the rater missed 

the NTSB code. I calculated the percentage of the two cases separately for each rater using 

Equations 2 and 3. 𝑛 represents total number of accidents in the dataset (i.e., 90). 𝐿 represents total 

states and triggers (i.e., 309). 𝑁𝑇𝑆𝐵𝑖
𝑗
stands for the NTSB’s coding for the 𝑗𝑡ℎ  state or trigger and 

𝑖𝑡ℎ accident. 𝑅𝑎𝑡𝑒𝑟𝑖
𝑗
 is the rater’s code for the 𝑗𝑡ℎ  state or trigger and 𝑖𝑡ℎ accident. 

𝐶𝑎𝑠𝑒 𝐴 =
1

𝑛
∑ (

∑ (𝑁𝑇𝑆𝐵𝑖
𝑗

= 1 𝐴𝑁𝐷 𝑅𝑎𝑡𝑒𝑟𝑖
𝑗

= 1)𝐿
𝑗=1

∑ (𝑁𝑇𝑆𝐵𝑖
𝑗

= 1)𝐿
𝑗=1

)

𝑛

𝑖=1

 (2) 

𝐶𝑎𝑠𝑒 𝐵 =
1

𝑛
∑ (

∑ (𝑁𝑇𝑆𝐵𝑖
𝑗

= 1 𝐴𝑁𝐷 𝑅𝑎𝑡𝑒𝑟𝑖
𝑗

= 0)𝐿
𝑗=1

∑ (𝑁𝑇𝑆𝐵𝑖
𝑗

= 1)𝐿
𝑗=1

)

𝑛

𝑖=1

 
(3) 

Table 15: Three cases for comparing raters' coding with the NTSB coding 

Case # NTSB Code Raters’ Code Rater 1 Rater 2 Rater 3 

A 1 1 44% 70% 75% 

B 1 0 56% 30% 25% 

On average, Rater 1 correctly identified 44% of the NTSB codes, and Rater 2 identified 70% 

of the codes. Rater 1 missed 56% of the NTSB codes while Rater 2 missed 30% of the codes. I 

(i.e., Rater 3) identified 75% of the NTSB codes and missed 25% of the codes. Note that I had 



 

 

 

 

80 

 

 

higher scores than both the raters because during my re-evaluation of accident coding, I only re-

considered the coding for the states and triggers that had disagreements. 

Additionally, I calculated the average number of additional states and triggers that the raters 

identified that were not cited in NTSB codes, as shown in Equation 4: 

1

𝑛
∑ ∑(𝑁𝑇𝑆𝐵𝑖

𝑗
= 0 𝐴𝑁𝐷 𝑅𝑎𝑡𝑒𝑟𝑖

𝑗
= 1)

𝐿

𝑗=1

𝑛

𝑖=1

 
(4) 

On average, Rater 1 identified 3.4 more states and triggers per accident, Rater 2 identified 

3.6 more states and triggers per accident, and Rater 3 identified 4.3 more states and triggers per 

accident. These additional states and triggers may suggest more findings that the NTSB did not 

cite in the accident codes. I used Rater 3’s manual coding for the DistilBERT model since it 

resolved the disagreements between Rater 1 and 2. For the final dataset, I took the union of Rater 

3’s manual coding and the NTSB coding to generate a near-complete and richer coding of the 90 

accidents. 

5.4.2 Selecting the Model 

I first considered the DistilBERT model for the multi-label classification task. DistilBERT 

is a small, fast, cheap (to pre-train), and light version of the BERT model, developed by Hugging 

Face in 2019 (Hugging Face, n.d.-a). It is designed to provide similar performance to the original 

BERT model while requiring significantly fewer resources, making it more accessible for 

applications with limited computing power or memory (Sanh et al., 2019). DistilBERT has 40% 

fewer parameters than the BERT model and runs 60% faster while retaining 97% of BERT’s 

language understanding capabilities. 

One main limitation of DistilBERT, BERT, and RoBERTA is that these models have a 

maximum sequence length of 512 tokens, which may impact the model performance badly on long 

context sequences. The maximum sequence length of 512 tokens refers to the length of the input 

sequence after tokenization. Tokenization is the process of breaking up the input text into 

individual tokens or words, based on pre-defined vocabulary, that are used as input to the model. 

In the context of accident reports, 36% of the 1982–2019 LOC-I reports have more than 512 words. 
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The mean word count for these 16,029 accidents is 748 words. So, DistilBERT’s maximum length 

limitation of 512 tokens when applied to accident reports may negatively impact the model 

performance. 

Longformer is another transformer-based language model introduced by Allen Institute for 

Artificial Intelligence (AI2) in 2020. It is an extension of the BERT architecture designed to handle 

text of up to 4,096 sequence length. Longformer uses a self-attention operation that scales linearly 

with the sequence length and supports sequences of length up to 4,096. Longformer has proved to 

consistently outperform RoBERTa in previous studies (Beltagy et al., 2020). So, I converted the 

pretrained DistilBERT model to use the pre-trained Longformer self-attention model (Beltagy et 

al., 2020). 

5.4.3 Pre-Processing the Data 

I imported the accident reports in a raw data .dat file format and tokenized them with the pre-

trained Longformer tokenizer. Longformer tokenizer uses a combination of Byte-Pair Encoding 

(BPE) tokenization (GPT-2 BPE derived from the GPT-2 language model) and pre-processing 

methods, such as lowercasing the text and normalizing whitespaces and punctuation, to convert 

the input text into tokens (Hugging Face, n.d.-b). BPE is a sub-word tokenization algorithm that 

breaks down words into smaller sub-word units based on the frequency of their occurrences in the 

corpus. The tokenizer allows the model to handle out-of-vocabulary (OOV) words and to 

generalize better to unseen words. 

Additionally, I created a corresponding binary coded dataset for the 16,029 NTSB and 90 

manually coded accidents with 309 labels (states, triggers, and additional information). As the 

number of labels increases, the complexity of the problem also increases, and the model may 

require more data and computational resources to learn the correlations between the inputs and the 

multiple labels (Tarekegn et al., 2021). Moreover, if the distribution of the labels is imbalanced, 

i.e., some labels are more frequent than others, the model may struggle to learn the less frequent 

labels and may be biased towards the more frequent ones. So, I selected the ten of the most 

frequently cited states and triggers in LOC-I accidents for implementing multi-label classification 
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in the model. Table 16 shows the presence (number of times a state/trigger was cited at least once 

in an accident) of the ten states and triggers in 1982–2019 LOC-I accidents. 

Table 16: Presence of states and triggers in LOC-I accidents 

State/Trigger Presence 

No/failed recovery after loss of control 94.39% 

Aircraft stall/spin 37.42% 

Improper airspeed 24.05% 

Loss of engine power 15.21% 

Insufficient qualification/training/experience 14.38% 

Improper inflight planning/decision-making 13.53% 

Improper altitude/clearance 13.30% 

Flight through poor weather 12.97% 

Time spent in poor weather 8.08% 

Disoriented/lacking awareness 7.75% 

I separated the dataset into two parts: (1) 14,529 NTSB and 70 manually coded accidents for 

model training and validation (total 14,599 accidents); and (2) 1,500 NTSB and 20 manually coded 

accidents for testing the unseen dataset. The model randomly split the 14,599 training and 

validation data into 90% for training and 10% for testing. Figure 26 shows the split of the dataset 

for training, validation, and testing. 
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Figure 26: Spilt of the accident dataset into training, validation, and testing 

5.4.4 Implementing the Longformer Model 

I used the “allenai/longformer-base-4096” pre-trained Longformer self-attention model. I 

fine-tuned the model by tuning/optimizing the hyperparameters. Hyperparameters are the variables 

that determine the network structure and how the network is trained. Hyperparameters are set 

before training and optimized to achieve optimal model performance. Although the Longformer 

has a maximum length of 4,096 tokens, the memory and computational requirements of self-

attention (in Longformer) grow quadratically with sequence length, making it infeasible (or very 

expensive) to process long sequences (Beltagy et al., 2020). Since 75% of all LOC-I accident 

reports have less than 1,024 words, I set the maximum sequence length to 1,024. 

The “allenai/longformer-base-4096” model has 12 transformer layers. A transformer layer 

consists of two sub-layers: a multi-head self-attention mechanism and a feedforward neural 

network (Singh & Mahmood, 2021). Each transformer layer has 16 attention heads with a hidden 

size of 768 (Hugging Face, 2020). I used the default Adam optimizer and learning rate of 1𝑒 − 05. 

I set the dropout rate as 0.3. Dropout rate is a regularization technique used to prevent overfitting 

in neural networks. Overfitting occurs when a model is too complex and learns to fit the training 
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data too well, leading to poor performance on new unseen data (Li et al., 2019). A dropout rate of 

0.3 means that 30% of the neurons in a layer will be randomly dropped during training. Training 

and validation batch size was set to 5. Batch size is the number of samples passed to the neural 

network before the model weights are updated. I used 12 epochs for training the data. An epoch is 

the total number of iterations of all the training data in one cycle for training the model. The model 

had a linear transformation “pre_classifier” layer that has an input feature vector of size 768 and 

input tensor of size [5, 768] (where 5 is the batch size). The layer applies a linear transformation 

to this input tensor, mapping it to a tensor of size [5, 384]. The purpose of this layer is to reduce 

the dimensionality of the input feature vector from 768 to 384, which can help to reduce the number 

of parameters in the model and improve its efficiency. I conducted the experiments with PyTorch 

library on Google Collab Graphical Processing Unit (GPU) hardware accelerator. 

5.5 Model Performance Evaluation 

In the following sub-sections, I will describe the evaluation metrics for model performance 

and the results for model performance evaluation. 

5.5.1 Evaluation Metrics 

To evaluate the model performance on the validation dataset, I applied the traditional 

evaluation metrics for a multi-label classification: (1) accuracy and (2) hamming loss. 

For the testing dataset, I also calculated the F1 score for each state and trigger. F1 score is 

the harmonic mean of precision and recall. F1 score evaluates the overall effectiveness of a model 

in making correct positive predictions for each label. Additionally, I visualized the model 

performance using confusion matrices for the testing dataset. Equations 5–9 show how to calculate 

each metric. A confusion matrix is a matrix of actual labels versus predicted labels. Table 17 

summarizes the four possible outcomes in a confusion matrix: 

1. True Positive (TP): case where the model predicted a positive label, and the actual label was 

also positive. 



 

 

 

 

85 

 

 

2. False Positive (FP): case where the model predicted a positive label, but the actual label was 

negative. 

3. True Negative (TN): case where the model predicted a negative label, and the actual label was 

also negative. 

4. False Negative (FN): case where the model predicted a negative label, but the actual label was 

positive. 

Table 17: Four possible outcomes of a confusion matrix 

Outcome Actual Label Predicted Label 

True Positive (TP) 1 1 

False Positive (FP) 0 1 

True Negative (TN) 0 0 

False Negative (FN) 1 0 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
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𝐹1 𝑠𝑐𝑜𝑟𝑒 =
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑙𝑎𝑏𝑒𝑙𝑠
=
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=

1

𝑛
∑
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(9) 

𝑛 = number of accidents in training set 

⋀ = logical AND operator 

𝑌(𝑖) = true states and triggers for ith accident in training set 

 𝑍(𝑖) = predicted set of states and triggers for ith accident 

𝐿 = set of states and triggers 

𝐼 = Indicator function; 𝐼(𝑥): = {
1       if   𝑥 ∈ 𝑌𝑖 

0      if   𝑥 ∉ 𝑌𝑖
 

𝑌𝑗
(𝑖)

= true label for ith accident and jth state/trigger in training set 

𝑍𝑗
(𝑖)

= predicted label for ith accident and jth state/trigger in training set 

5.5.2 Model Performance 

1. Validating the Model 

For the validation dataset of 1,461 accidents, the model predicted 92.9% of the states and 

triggers. Hamming loss was 0.071. Table 18 shows the performance for the validation dataset.  

Table 18: Performance of Longformer on validation dataset 

Evaluation Metric Actual Label 

Accuracy 92.9% 

Hamming Loss 0.071 
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1. Testing and Predicting Unseen Data 

To evaluate the testing performance, I separated the 20 manually coded accidents and 1,500 

NTSB coded accidents for evaluating the model prediction and performance for the testing data. 

The best evaluation method for the model is to compare the model’s predictions with the manually 

coded accidents. I found the union of the NTSB codes and manual codes for the 90 accidents to 

ensure that all possible findings are included for those accidents. To the best of our knowledge, 

the union of the NTSB and manually coding for the 90 accidents are as complete as possible in the 

context of the findings. 

a. Predicting 20 Manually Coded Accidents 

Table 19 shows the testing performance for the 20 manually coded accidents. The model 

could predict 97.5% of the states and triggers for the 20 unseen manually coded accidents. Table 20 

shows the F1 scores for each state and trigger for the 20 accidents. Seven of the ten states and 

triggers had an F1 score of 1. The model also accurately predicted the inferred triggers, time spent 

in poor weather and no/failed recovery action after loss of control, with F1 scores of 1. Time spent 

in poor weather is inferred trigger that is based on sequencing rules (see Majumdar et al., 2021). 

No/failed recovery We infer this trigger when a pilot spent too much time in poor weather and 

became disoriented. If an accident has a flight through poor weather and disoriented, then we infer 

time spent in poor weather trigger to the disoriented state. We infer no/failed recovery action after 

loss of control if an accident does not specify pilot’s remedial action. 



 

 

 

 

88 

 

 

Table 19: Performance of Longformer on 20 manually coded accidents 

Evaluation Metric Actual Label 

Accuracy 97.5% 

Hamming Loss 0.025 

Table 20: F1 scores for states and triggers for the 20 manually coded accidents 

State/Trigger F1-Score 

No/failed recovery after loss of control 1.0 

Loss of engine power 1.0 

Disoriented/lacking awareness 1.0 

Improper airspeed 1.0 

Time spent in poor weather 1.0 

Improper inflight planning/decision-making 1.0 

Flight through poor weather 1.0 

Aircraft stall/spin 0.9 

Insufficient qualification/training/experience 0.7 

Improper altitude/clearance 0.7 

Figure 27 shows the confusion matrices for the ten states and triggers. The model could 

predict almost all states and triggers correctly. There were two false negatives each for aircraft 

stall/spin and improper altitude/clearance states. The model missed one accident with insufficient 

qualification/training/experience state. 

The model predicted five of 20 accidents incorrectly. For the two accidents with false 

negatives for aircraft stall/spin, one accident cited stall only in the NTSB code but did not mention 

stall or any relevant keywords (e.g., such as “stall”, “spin”, and “nose drop”) in its report (NTSB 

Number: CHI02FA215). For the second accident, the report mentioned “The airplane was 

observed by a witness entering a spin and continued spinning down...” (NTSB 

Number: DFW05LA012). The model did not capture the keyword “spin” as aircraft stall/spin. 
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For the third accident, the model did not predict insufficient qualification/training/experience, 

i.e., a false negative (NTSB Number: LAX06FA289). The report mentioned “… the non-

instrument rated pilot's decision to continue flight into instrument meteorological conditions...” 

For the remaining two accidents, the model did not predict improper altitude/clearance i.e., 

two cases of false negatives. On reading the accident narrative, I found that the reports mentioned 

about low altitude flying. One accident mentioned “a witness stated that he… noticed a low flying 

airplane buzzing the City of Hartselle and lining up to land at a local airport” (NTSB Number: 

ATL06LA110). The other accident mentioned “The airline transport rated pilot was maneuvering 

the airplane at low altitude over a sugar cane field for the purpose of scaring birds out of the field.” 

(NTSB Number: MIA03FA077). 

 

Figure 27: Confusion matrices for ten states and triggers for 20 manually coded accidents 

b. Predicting a different set of 20 Manually Coded Accidents 

To evaluate the consistency of model performance, I ran the model a second time to predict 

a different set of 20 manually coded accidents. For the second run, I separated the 90 manually 

coded accidents into a different set of 70 accidents for training (in addition to the 14,529 NTSB 

coded accidents) and the model predicted states and triggers for a different set of 20 accidents. 
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During the validation, the model had an accuracy of 93.1% and a loss of 0.068 for the 1,461 

accidents. Table 21 shows the testing performance for these different 20 accidents. The model 

predicted 96.5% of the states and triggers with a loss of 0.035.  

Table 21: Performance of Longformer on a different set of 20 manually coded accidents 

Evaluation Metric Actual Label 

Accuracy 96.5% 

Hamming Loss 0.035 

Table 22 shows the F1 scores for the ten states and triggers. Four states and triggers had an 

F1 score of 1. Improper airspeed had the lowest F1 score because of there were only two accidents 

that had this state. Out of the two accidents, the model predicted one correctly. 

Table 22: F1 scores for states and triggers for a different set of 20 manually coded accidents 

State/Trigger F1-Score 

No/failed recovery after loss of control 1.0 

Loss of engine power 1.0 

Disoriented/lacking awareness 0.8 

Improper airspeed 1.0 

Time spent in poor weather 0.8 

Improper inflight planning/decision-making 1.0 

Flight through poor weather 0.9 

Aircraft stall/spin 0.9 

Insufficient qualification/training/experience 0.8 

Improper altitude/clearance 0.7 

Figure 28 shows the confusion matrices for the ten states and triggers. The model could 

predict almost all states and triggers correctly. There were five false negatives, one each for 

disoriented/lacking awareness, time spent in poor weather, aircraft stall/spin, insufficient 
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qualification/training/experience, and improper altitude/clearance. The model missed one accident 

with insufficient qualification/training/experience and another with flight through poor weather 

state. The model could not predict five out of 20 accidents. 

For the first accident, the model could not predict three states and triggers: insufficient 

qualification/training/experience, Disoriented/lacking awareness, and time spent in poor weather. 

On reading the report, I found that the narrative mentioned the following that corresponds to 

insufficient experience: “the non-instrument rated pilot's continued flight into instrument 

meteorological conditions.” The report did not mention about the disoriented state and only cited 

it in the NTSB code. Therefore, the model did not capture disoriented and time spent in poor 

weather from the narrative. 

For the second accident where the model missed improper altitude/clearance, the report 

specified about low altitude flying by mentioning, “the pilot's failure to maintain adequate airspeed 

while performing a low-level pass, which resulted in an uncontrolled descent and collision with 

terrain.” For the third accident, the model missed aircraft stall/spin state although the report 

mentioned the following: “the non-certificated pilot's failure to maintain airspeed, which resulted 

in an inadvertent stall and a subsequent impact with the ground.” 

One of the two false positive cases where the model predicted insufficient 

qualification/training/experience, the report mentioned about pilot’s low instrument hours: “a 

review of the logbook indicated that the pilot had logged… 4.6 hours in simulated instrument 

meteorological conditions.” The second accident where the model predicted flight in poor weather, 

the report mentioned about fog: “the pilot's loss of control while performing an instrument 

approach. A contributing factor was the prevailing fog.” Both these accidents did not cite the 

corresponding states in the NTSB codes. The model’s performance and almost correct predictions 

for the 20 accidents suggests that it has the potential to predict the states and triggers quite 

accurately for accidents in general. 
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Figure 28: Confusion matrices for ten states and triggers for a different set of 20 accidents 

c. Predicting 1,500 NTSB Coded Accidents 

Table 23 shows the testing performance for the 1,500 manually coded accidents. The model 

could predict 93.2% of the states and triggers for the 1,500 unseen manually coded accidents. 

Table 24 shows the F1 scores for each state and trigger for the 1,500 accidents. Note that the 

evaluation metrics for the 1,500 accidents may not reflect the model’s true performance because 

these accidents are coded only using the NTSB codes and may have incomplete coding of states 

and triggers because of no manual intervention. 

Table 23: Performance of Longformer on 1,500 NTSB coded accidents 

Evaluation Metric Actual Label 

Accuracy 93.2% 

Hamming Loss 0.068 
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Table 24: F1 scores for states and triggers for 1,500 NTSB coded accidents 

State/Trigger F1-Score 

No/failed recovery after loss of control 0.94 

Loss of engine power 0.87 

Disoriented/lacking awareness 0.86 

Improper airspeed 0.78 

Time spent in poor weather 0.77 

Improper inflight planning/decision-making 0.76 

Flight through poor weather 0.67 

Aircraft stall/spin 0.69 

Insufficient qualification/training/experience 0.66 

Improper altitude/clearance 0.60 

Six of the ten states and triggers have F1 scores above 0.7. Since the F1 score evaluates the 

model’s overall effectiveness in making correct positive predictions, the F1 scores for the last four 

states are less than 0.7. Even though the model could correctly predict improper altitude/clearance 

95.7% of the times, it still has a low F1 score because F1 is based on true positive values (which 

is the lowest for this state). 

Figure 29 shows the confusion matrices for the ten states and triggers. The model could not 

predict 4.2% of all states and triggers. The false positives may suggest additional findings in the 

accidents and may imply under-reporting of codes for the accidents. If the model can predict more 

states and triggers which were originally not cited by the NTSB, then that would improve accident 

modeling and provide a richer understanding of accident causation.  
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Figure 29: Confusion matrices for ten states and triggers for 1,500 NTSB coded accidents 

I studied a few cases with large values for false positive and false negative to evaluate 

whether the reports mentioned the corresponding states or triggers. No/failed recovery after loss 

of control trigger had 154 cases of false positives. I looked at two accidents with false positive 

cases for the trigger. Both accidents mentioned pilots’ recovery or corrective actions in their 

reports but not in the codes. First accident report mentioned “… there was insufficient altitude to 

fully recover from the stall…” (NTSB Number: WPR14FA320). The second accident report 

mentioned “the pilot made corrective control inputs, but the airplane did not fully respond, 

bouncing again on the runway” (NTSB Number: WPR14CA365). The issues mentioned in the 

reports can be mapped to no/failed recovery after loss of control. 

Aircraft stall/spin had 115 cases of false positives. Out of the two accidents that I studied, 

the first accident report mentioned “The pilot's failure to maintain adequate airspeed… which 

resulted in an aerodynamic stall” (NTSB Number: WPR14FA303). The second accident report 

mentioned “The pilot's failure to maintain airspeed… resulting in a stall/mush.” (NTSB Number: 

CEN14FA396). Although issues mentioned in both the reports correspond to aircraft stall/spin, 

their codes did not cite the state. So, the model predicted the state for these two accidents correctly. 

I analyzed a few more randomly chosen accidents with false positive cases. For the first 

accident, the model predicted improper altitude/clearance when the NTSB did not cite a 
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corresponding code (NTSB Number: FTW95FA001). I found that although the report did not cite 

any altitude related codes, the narrative mentioned “an inadvertent pilot-induced stall at too low 

an altitude to affect a safe recovery.” The narrative correctly suggests improper altitude and the 

model accurately predicted the state. 

For another accident, the model predicted improper airspeed when the NTSB cited improper 

stall speed (Vs) only in its codes (NTSB Number: LAX94FA193). Improper stall speed is 

categorized as improper stall speed as per the state definitions. The narrative for this accident 

mentioned “… a failure of the pilot to maintain adequate airspeed which resulted in an inadvertent 

stall.” Hence, the model predicted the improper airspeed correctly based on the narrative. 

For a false negative case, the model did not predict aircraft stall/spin in an accident even 

when the NTSB had cited the code (NTSB Number: NYC94FA064). The report did not mention 

any stall or spin related keywords in its narrative (such as “stall”, “spin”, and “nose drop”). The 

absence of the keyword in narrative suggests that the model in fact did not miss the state incorrectly.  

5.6 Discussion and Conclusion 

Overall, the model performed well in predicting states and triggers from reports. Since 

accidents may have incomplete translation of findings in codes and narratives, some of the false 

negatives may mean that certain issues were only cited in the codes and not the narratives. Some 

of the false positives may mean that certain issues were only cited in the narratives and not in the 

codes. The predictions on the 1,500 accidents may suggest new findings that were not cited in the 

NTSB codes and may be able to infer missing states and triggers, e.g., time spent in poor weather 

(leading to a disorientation). Further, most accidents do not have any finding mentioned that 

explains what triggered the LOC-I to cause an accident. The predictions may suggest that most 

accidents involve no/failed recovery after loss of control. The model predicted improper airspeed 

in many accidents when the NTSB had not cited it in 56 out of 1,500 accidents. Based on the 

accurate prediction of improper airspeed on the 20 accidents, we can speculate that some of those 

56 accidents could have been under-cited in their NTSB coding. 
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For future work, we can configure the model to predict more than ten states and triggers. 

However, there could be potential challenges in including more states and triggers. One such issue 

is with imbalanced multi-classification datasets that contain an uneven distribution of labels across 

instances and may increase the problem complexity in training the model. For example, for the 

1982–2019 accidents, aircraft stall/spin state is present in 36.42% of accidents whereas improper 

takeoff state is present in 1.73% of accidents. The model may perform poorly in predicting the less 

occurred states such as improper takeoff because of a lack of representative samples of accidents 

involving the state. Some methods to address such an issue are (1) oversampling minority states 

and triggers to balance the distribution; (2) augmenting the data to generate synthetic data for 

minority labels; (3) using custom loss functions to assign higher weights to minority labels during 

optimization; and (4) fine-tuning the model, e.g., increasing the output layer nodes. Increasing 

number of output nodes allows the network to capture more fine-grained information and produce 

more detailed predictions for each class or label. More output nodes means that the neural network 

will be able to produce predictions for more labels. 

Additionally, the results from the model need to be evaluated and verified by subject matter 

experts before applying the findings in planning future safety studies (Kuhn, 2018 and Young et 

al., 2019). 

Some of the practical applications of automatically classifying information from accident 

reports are to: 

1. Provide an automatic analysis of reports regardless of their NTSB coding that may help 

in identifying additional findings and therefore a richer accident causation analysis. 

2. Improve reliability of coding and facilitate accident coding for the NTSB reporters 

based on the automatic analysis of written narratives. 

3. Use grammar rules from the state-based approach to infer missing information in 

accident reports and increase the quality of accident coding. 
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 ANALYZING LESSONS LEARNED ARTICLES INVOLVING 

INFLIGHT LOSS OF CONTROL 

To understand LOC-I causation from pilots’ perspectives, it is helpful to study sources other 

than the NTSB accident reports. More than 300 pilots have shared their LOC-I related stories in 

AOPA Pilot magazine’s “Never Again” series over the past 27 years, since the series was made 

online in 1994 (AOPA, n.d.). By studying these LOC-I stories, we may understand pilots’ 

perspective of what unsafe conditions and pilot actions lead to a LOC-I and how pilots prevent a 

potential LOC-I. 

The Pilot magazine’s “Never Again” series provides a forum for pilots to share their 

experiences of unsafe flying conditions and discuss probable causes and factors that led to the 

unsafe condition, their instinctive reaction to these conditions, corrective actions to mitigate the 

unsafe condition, and lessons learned from their mistakes. The National Transportation Safety 

Board (NTSB) has also investigated some of these incidents. For example, the NTSB investigated 

a near collision between a Cessna 185 and a Boeing 737 that happened in 1994 (NTSB Number: 

ANC94IA075B) and that was reported in the “Never Again: Close Call” article by Kramer (2020). 

6.1 Identifying Articles with LOC-I Incidents 

I studied 132 articles from the 2009–2020 (May 2020) Never Again” archives of the AOPA’s 

Pilot magazine. In these articles, pilots share their experiences of unsafe flying conditions and 

discuss probable causes and factors that led to the unsafe condition, their instinctive reaction to 

these conditions, corrective actions to mitigate the unsafe condition, and lessons learned from their 

mistakes. I documented all the articles in 2009–2019 that mentioned near LOC-I experiences or 

conditions that could have caused LOC-I if corrective action was not taken by the pilot. Some of 

these conditions mentioned in the articles are severe weather conditions, fuel starvation, and 

engine/aircraft control failure. I found 21 such LOC-related articles in the AOPA archives. Here, 

I present causal factors from those incidents, as mentioned in the articles. Additionally, I discuss 
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lessons learned from pilots’ LOC-I experiences as mentioned in the AOPA Never Again archives 

and provide insights and emerging themes from these archives. 

6.2 Identifying Causal Factors, Corrective Actions, and Lessons Learned 

Consider the March 2020 article that discusses a 1994 incident where the Cessna 185 pilot 

experienced partial loss of control due to a near miss with a Boeing 737 during the initial climb 

near the restricted airspace in Merrill Field, Alaska (Kramer, 2020; NTSB 

Number: ANC94IA075B). The NTSB recorded the Cessna pilot’s failure to maintain adequate 

visual separation from the Boeing and the ATC personnel’s failure to adjust the flightpath of both 

the aircraft as the only two probable causes of the incident. The NTSB report does not mention 

any other findings or contributing factors. The AOPA article discusses the Cessna pilot’s 

perspective on the incident. In the article, the pilot states “… my failure to be more aware of my 

surroundings played a significant role in what could have been an unthinkable tragedy for all 

involved.” He also mentions “I learned a valuable lesson with regard to complacency and 

situational awareness that evening.” I used such phrases from the articles to identify pilot mistakes 

and unsafe events/conditions. For example, based on the article, I determined an unsafe event such 

as near miss, a condition such as wake turbulence, and pilot mistakes such as lack of situational 

awareness and complacency as contributing factors to the partial loss of control. Similarly, I 

summarized articles to identify corrective actions taken by the pilot to mitigate loss of control and 

lessons learned. For example, in this incident, when the pilot encountered wake turbulence, he 

lowered the power to idle and pushed the yoke forward for a downward pitch. In the article, the 

pilot discusses that from this incident, he learned to be more aware and look around especially 

when entering restricted airspace and immediately react to the training scenarios and execute a 

sequence of correct actions. 

After identifying the causal factors for all the articles, I grouped them into categories based 

on similar themes. For example, I found two incidents that involved wake turbulence. So, I created 

a category called wake turbulence. Further, pilots mentioned in two articles that they were not 
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situationally aware. So, I created lack of situational awareness as another category. I used a similar 

method to create themes of corrective actions taken by pilots and lessons learned from the incidents. 

6.3 Causal Factors of LOC-I Incidents 

I created 24 categories that described causal factors in the incidents and counted the number 

of times each category was cited in the articles. Figure 30 shows all the 24 categories that I created 

from the findings from the 21 articles. 

 

Figure 30: 24 categories of causal factors leading to LOC-I, as mentioned in the articles. 
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Pilot conditions and actions were the most common factors in these LOC-I incidents. 

Figure 31 shows the most prevalent theme in the incidents. 

 

Figure 31: Theme of how pilot conditions and actions led to LOC-I incidents. 

I found that pilots most frequently (four articles) cited being complacent or overconfident in 

their own abilities during the flight as the sources of bad decisions (such as improper judgment) 

that contributed to potential loss of control incidents. Additionally, the articles most frequently 

cited the pilot’s decision to fly in known severe weather/wind conditions or other unsafe conditions 

such as low altitude or with foreign object debris (FOD) in the cockpit. The articles also suggest 

that failure to recognize severe weather/wind/other unsafe conditions mostly caused pilots to make 

judgment errors about weather/wind conditions, which led to a decision to fly in the known unsafe 

conditions. Further, being distracted and not following the instruments were other frequently cited 

factors that led to a loss of control. One such incident involved a pilot who got distracted while 

scud running (Herman, 2013). Scud running is a practice where pilots lower their altitude to avoid 

clouds or instrument meteorological conditions (IMC) to stay clear of weather to maintain visual 

contact with the terrain. The pilot did not follow the instruments which led to a loss in altitude and 

a failure to maintain aircraft control. The pilot mentioned that he remained calm and applied back 

pressure with full power to regain control. 

Complacent/
overconfident

Bad decisions 
during flight

Decision to fly in known 
unsafe conditions

Failure to 
recognize unsafe 

conditions

Judgment errors

Being distracted

Not following 
aircraft  

instruments

Loss of control

Pilot conditions and actions were the most prevalent factors 

in the LOC-I related articles
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Two articles mentioned pilots running out of fuel because they had diverted from their 

planned routes. Consider the incident where the pilot decided to fly in a headwind, diverted enroute, 

and misinterpreted the remaining fuel level which led to fuel starvation (Houghton, 2020). By 

deciding to land at a nearby airport for refueling, the pilot was able to prevent a potential loss of 

control. 

6.4 Corrective Actions Taken by Pilots 

One reason that these incidents did not turn into accidents is because the pilots took corrective 

actions at the appropriate time to mitigate a potential LOC-I. Apart from analyzing pilot mistakes 

and unsafe conditions, it is also important to analyze the set of corrective actions that helped pilots 

to come out of the unsafe conditions. I identified corrective actions taken by pilots in each incident 

and categorized them into 18 themes, as shown in Figure 32. 
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Figure 32: 18 themes of corrective actions that pilots took to mitigate or prevent an LOC-I 

Figure 33 summarizes the most prevalent theme of corrective actions taken by pilots that 

helped them prevent an LOC-I. The findings suggest that effective training and regular maneuver 

practices may help pilots prevent a potential LOC-I. 
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Figure 33: How pilots’ corrective actions helped them prevent or recover from LOC-I 

In five articles, pilots mentioned that their prior training knowledge (such as upset prevention 

and recovery training and aerobatics knowledge) helped them recognize an unsafe or hazardous 

condition and take a corrective action. One such article described an incident that involved an 

upset1 condition in a Zenith 601 due to wake turbulence from a Boeing 737 (Thomas, 2017). The 

pilot used his aerobatics training to recover from the upset state. NTSB accident reports suggest 

that not being able to recognize unsafe conditions generally leads to hazardous conditions 

culminating in an accident (NTSB, 2023). Four of the 21 articles that I studied mention that the 

pilot’s ability to recognize unsafe conditions helped them take early preventive measures to 

mitigate LOC-I accidents. In ten articles, pilots decided to land immediately (at a nearby airport 

or conduct forced landing) or go around whenever they encountered hazardous conditions such as 

adverse weather conditions, IMC (instrumental meteorological conditions), or malfunctioning 

aircraft controls. The articles also suggest that pilots tend to follow the instinct to take a wrong 

corrective action such as pulling the yoke during a spiral or when rolling over. Three such articles 

                                                

1 The FAA defines an upset as an event that unintentionally exceeds the parameters normally experienced in flight or 

training. These parameters are: 

 Pitch attitude greater than 25 degrees, nose up 

 Pitch attitude greater than 10 degrees, nose down 

 Bank angle greater than 45 degrees 

 Within the above parameters but flying at airspeeds inappropriate for the conditions. 

Recognize unsafe 
conditions early on

Effective training may help pilots prevent a potential LOC-I
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mentioned that recognizing and not following the instinct to take the wrong corrective action 

helped them prevent a hazardous condition and prevent a potential LOC-I accident. 

6.5 Lessons learned from the LOC-I Incidents 

Pilots in the articles discussed the lessons that they learned from the incidents that may help 

to prevent a LOC-I incident in the future. I identified more than 50 lessons learned for the 21 LOC-

I-related articles and categorized them into 13 themes, as shown in Table 25. 

Table 25: I found 13 themes of lessons learned, as mentioned by the pilots in the LOC-I 

articles 

Lessons Learned Themes 
No. of 

articles 

Stay situationally aware and cautious of cockpit and flight surroundings such 

as instruments, altitude, and traffic. 
6 

Plan ahead for flights and make sure all pre-flight checklist items are met. 9 

Gain adequate proficiency in aircraft type and model, and its systems. 5 

Consider aircraft and runway capabilities before making in-flight judgments. 3 

During emergencies, keep flying the aircraft instead of giving up. Maintain 

calm and do not panic to make correct judgments and decisions. 
5 

Estimate how different flight conditions and maneuvers can affect fuel usage. 2 

Learn from previous mistakes, read accident and incident reports, and be 

prepared for different possible scenarios. 
3 

Use other functioning controls and all back-up instruments and cockpit 

resources (such as passengers’ help) during control/instrument failure. 
3 

Pilots who recognized unsafe flight conditions early on had more time to 

make correct decisions and actions. 
4 

Rely on aircraft instruments while conducting maneuvers or an IMC flight. 3 

Don’t hesitate to use services such as flight following and declaring an 

emergency to the ATC. 
3 

When in doubt, go around. 2 
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Table 25: I found 13 themes of lessons learned, as mentioned by the pilots in the LOC-I 

articles 

Lessons Learned Themes 
No. of 

articles 

Regularly practice maneuvers and upset recovery training to immediately 

respond to unsafe flight scenarios. Training may also help pilots to not follow 

the natural but wrong corrective action by the help of re-enforcement. 

5 

In five articles, pilots mentioned that not panicking and maintaining calm helped in making 

a correct judgment in a hazardous scenario. The pilots continued flying the aircraft instead of 

giving up. Pilots in two articles suggested keeping the fuel tanks full for long distance flights and 

correctly estimating the fuel usage in headwinds and enroute diversions. Pilots state that refueling 

enroute even when the destination is close helps in avoiding risks of loss of control. One such 

article involved an incident where the pilot decided to fly in a headwind, diverted enroute, and was 

running out of fuel (Houghton, 2020). The pilot immediately landed at a nearby airport for 

refueling and avoided a potential LOC-I. Learning from previous mistakes, reading NTSB accident 

and incident reports, and constant practice to gain proficiency in aircraft type and model help to 

immediately react to training scenarios and perform a sequence of corrective actions. 

The findings of this study helped us to identify specific pilot errors contributing to LOC-I 

that were not mentioned in the NTSB reports. 
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 SURVEY OF PILOTS’ INFLIGHT LOSS OF CONTROL 

EXPERIENCES AND TRAINING 

The contents of this chapter were published in Majumdar, N., & Marais, K. (2022). A Survey 

of Pilots’ Experiences of Inflight Loss of Control Incidents and Training. In AIAA AVIATION 2022 

Forum (p. 3778). 

To gain a better understanding of pilots’ perspective and how pilot actions and other unsafe 

conditions lead to LOC-I, I conducted a survey of pilots who have experienced LOC-I. The target 

population for this study was pilots from all sectors of aviation who have experienced a partial 

inadvertent LOC-I or prevented a potential inadvertent LOC-I. Inadvertent means that the LOC-I 

was not intentional (such as an intentional stall maneuver during training). A stall is a loss of lift 

and increase in drag that occurs when smooth airflow over the aircraft’s wing is disrupted at an 

exceeded critical angle of attack (AOA).  

I focused only on inadvertent LOC-I experiences where a pilot was not prepared for the LOC 

event to happen (i.e., I did not consider cases where a pilot practiced stall, spin, or other LOC-I 

related maneuvers and successfully recovered from the unsafe condition). Participants were 

eligible to participate in the study if they were at least 18 years old, a student pilot or a certified 

pilot, and must have experienced an inadvertent LOC-I or prevented a potential LOC-I. 

The following sections are based on the paper presented at the 2022 AIAA AVIATION 

Forum (Majumdar & Marais, 2022). 

7.1 The Human Factors Analysis and Classification System (HFACS) Framework 

Inspired by Reason’s (Reason, 1990) Swiss Cheese model, (Wiegmann & Shappell, 2001) 

developed a Human Factors Analysis and Classification System (HFACS) framework that defines 

the holes in the Swiss Cheese Model and describes different kinds of active and latent failures, as 

shown in Figure 34. The HFACS framework includes most aspects of human errors and latent 

conditions such as operator conditions, unsafe supervision, environmental factors, and 

organizational influences. The taxonomic nature of the HFACS framework provides a systematic 
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approach for analyzing accidents. HFACS has been widely applied in the aviation industry and 

other industries such as rail, shipping, and marine and has gained wide acceptance as a tool to 

classify human factors in accidents and incidents (Xi et al., 2010; Zarei et al., 2019; Celik & Cebi, 

2009; and Chen, et al., 2013). 

 

Figure 34: The HFACS Framework [adapted from (Wiegmann & Shappell, 2003)] 

The HFACS framework classifies human error at four levels: 

1. Organizational Influences include (a) resource management (management, allocation, and 

maintenance of organizational resources such as human resources, monetary assets, equipment, 

and facilities); (b) organizational climate (working atmosphere, management culture, and 

policies); and (c) organizational process (formal processes, e.g., time pressures and schedules; 

procedures, e.g., documentation and performance standards; and oversight within the 

organization, e.g., risk management and safety programs). 

2. Unsafe Supervision includes (a) inadequate supervision (failures in supervision such as 

inadequate training and/or professional guidance); (b) planned inappropriate operations 

(aspects of improper crew scheduling and operational planning such as crew pairing and crew 

rest); (c) failure to correct problem (when a supervisor knows the deficiencies among 
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individuals, equipment, training, or other related safety concerns, and still chooses to not 

correct the issue); and (d) supervisory violations (instances when a supervisor willfully 

disregards the existing rules and regulations). 

3. Preconditions for Unsafe Acts address the latent failures that lead to active failures or unsafe 

events and include (a) environmental factors (physical environment, e.g., weather, altitude, and 

lighting; and technological environment, e.g., design of equipment and controls, 

display/interface characteristics, checklist layouts, and automation); (b) conditions of 

operators (adverse mental states, e.g., loss of situational awareness, complacency, and task 

saturation; adverse physiological states, e.g., medical illness, hypoxia, and physical fatigue; 

physical or mental limitations, e.g., visual limitations, incompatible physical capabilities, and 

information overload); and (c) personnel factors (crew resource management, e.g., poor 

communication or coordination with the crew, air traffic control (ATC), etc.; and personal 

readiness, e.g., inadequate training and certification). 

4. Unsafe Acts are active failures and are either (a) errors or (b) violations.  

Errors represent the mental or physical activities that fail to achieve their intended outcome 

(Wiegmann & Shappell, 2003). There are three basic types of errors. Skill-based errors refer 

to errors that involve flight skills that occur without significant conscious thought and can be 

classified into attention failures (e.g., lack of visual lookout and distraction), memory failures 

(e.g., omissions in checklist items or steps), and technique errors (e.g., improper use of flight 

controls). Decision errors represent “honest mistakes” that happen due to inadequate 

knowledge or just poor decisions. Decision errors can be classified into three broad categories: 

procedural errors (rule-based mistakes e.g., inappropriate maneuver or procedure); poor 

choices (knowledge-based mistakes e.g., improper preflight or inflight planning); and 

problem-solving errors (e.g., wrong response to an emergency). Perceptual errors occur when 

one’s perception of the world differs from reality. These types of errors happen when sensory 

input is either degraded or unusual such as during visual illusions, spatial disorientation, or 

vertigo (e.g., not being able to recognize hazardous conditions or not relying on instruments 

when flying at night or in instrument meteorological conditions). 
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Violations refer to the willful disregard for the rules and regulations that govern the safety of 

flight (Wiegmann & Shappell, 2003). Routine violations are habitual by nature and often 

tolerated by a governing authority (e.g., inadequate briefing for flight and failure to use ATC 

radar advisories). Exceptional violations appear as isolated departures from an authority, 

neither typical of the individual nor condoned by management (e.g., unauthorized acrobatic 

maneuver and not current/qualified for flight) (Reason, 1990). 

7.2 Research Instrument and Procedures 

I developed a web-based survey based on HFACS to gain insight into how and why pilots 

lose control in flight. The survey has two sections: (a) 27 questions about pilots’ inadvertent LOC-I 

experiences and the training that they received to prevent or recover from an LOC-I; and (b) seven 

demographic questions. I asked questions from each category of the HFACS framework except 

the categories that could likely involve a punishable offence—violations and adverse physiological 

conditions (e.g., drug use). The survey format gave respondents an option to discuss one or more 

LOC-I experiences before responding to demographic questions. Appendix B includes the consent 

form and survey questions. 

After the study was approved by Purdue’s Institutional Review Board, I disseminated the 

survey via various aviation groups, newsletters, and mailing lists such as the General Aviation 

News and Curt Lewis and Associates, LLC. I also used various social media messaging systems 

to send out the survey link. I contacted organizations such as the Purdue Pilots Incorporation, the 

Partnership to Enhance General Aviation Safety, Accessibility, and Sustainability (PEGASAS), 

the Ninety Nines, and Women in Aviation International to forward the survey to their members. I 

also encouraged snowball sampling by generating a constant survey link that respondents could 

forward to other pilots. Snowball sampling resulted in the survey being forwarded to additional 

flying clubs and pilots. After keeping the survey open for 45 days, I closed the survey and collected 

the responses. 
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7.3 Data Analysis 

638 individuals opened the survey and 308 consented to begin the survey. 203 respondents 

then selected that they had experienced an inadvertent LOC-I or prevented a potential LOC-I and 

were thus eligible to continue with the survey. 187 respondents went on to share their first LOC-I 

experience. Twelve pilots shared two LOC-I experiences and two pilots shared three LOC-I 

experiences. Overall, 128 pilots responded to all survey and demographic questions, and 75 gave 

partial responses. 

I first cleaned the data by removing outliers, repetitive answers, or nonsensical responses. 

For example, one participant said that they had 5,000 years of flying experience. 

7.3.1 Demographic Data Analysis 

Most (50) responses were from pilots 65 years and older. Figure 35 shows the current age of 

the pilots who participated in the survey. 115 male pilots and 13 female pilots shared their loss of 

control experiences. Two participants did not specify their gender. 

 

Figure 35: Age group of pilots who have shared their loss of control experiences. 



 

 

 

 

111 

 

 

Figure 36 shows the number of years of flying experience pilots had when they took the 

survey. The mean total flying years is 29.36. Figure 37 shows the number of flying hours of pilots. 

The mean total flying hours is 5,000. 

 

Figure 36: Number of years of flying experience. Six pilots did not answer. 
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Figure 37: Number of flying hours of pilots. Five pilots did not answer. 

The topmost grades of pilot certificates of the participants are private (54), commercial (47), 

and airline transport (36). Figure 38 shows the count for each grade of the pilot certificate. Eight 

participants chose “other” as an option and specified their pilot certificates as Certified Flight 

Instructor (CFI), Certified Flight Instructor-Instrument (CFII), Certificated Flight Instructor-

Multiengine (CFIME), or military. 
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Figure 38: Grade of pilot certificates of the participants. Eight participants chose other as an option 

and specified their pilot certificates as CFI, CFII, CFIME, or military. Two pilots chose “prefer 

not to say.” Some pilots had more than one type of rating. 

Figure 39 shows the types of ratings or endorsements for the pilots. 130 pilots have a single-

engine land rating and 95 have an instrument rating. The ten pilots who selected “other” specified 

ratings such as basic ground instructor, flight, or rotorcraft instructor, and aerobatic. 
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Figure 39: Pilot ratings and endorsements for the participants who have shared their loss of control 

experiences. Two participants did not respond. 

Figure 40 shows the number of days of flying per month for pilots. Most pilots (43 pilots) 

fly 2–7 days a week and 37 pilots fly once a week. 

 

Figure 40: Approximate number of days of flying per month. Four pilots did not answer. 
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7.3.2 Causes of LOC-I Incidents 

155 participants were certified pilots and 32 were student pilots at the time of their first 

LOC-I flight. Sixteen of these responses were from instructors and Designated Pilot Examiners 

(DPEs) who were not acting as a pilot-in-command (PIC) in the LOC-I flight. Thirteen student 

pilots were flying with an instructor and 18 student pilots (all with fewer than 70 flying hours) 

were flying solo. One student pilot did not indicate whether they were flying solo or with someone. 

Figure 41 shows the number of flying hours of pilots at the time of their LOC-I experiences. The 

mean number of flying hours at the time of the LOC-I is 2207.9. Most pilots (20.8%) had fewer 

than 100 hours of experience when their LOC-I happened. 

 

Figure 41: Number of flying hours of pilots at the time of their first LOC-I experience. Eight pilots 

did not respond. 
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Table 26 shows who the pilots were flying with during their LOC-I flights. Most pilots (87) 

were flying solo during their first LOC-I. 17 of 87 pilots were students flying solo. 

Table 26: Number of Pilots Flying Solo or With Someone During LOC-I Flight 

Pilots Flying Number of pilots 

Flying solo 87 

Flying with an instructor 21 

Flying with passenger(s) 58 

Flying with a certified pilot 38 

Prefer not to say 6 

Table 27 shows the kind of organization that they were flying with during their LOC-I flights. 

Most pilots (38.22%) were not flying with any organization. The twelve who selected “other” 

specified that they were flying or instructing in a personally owned airplane, rental aircraft, or were 

flying with an airplane flight test program, new aircraft development company, or the military. 

Seven out of thirteen pilots with two LOC-I experiences stated that they were flying with the same 

organization as before when the second LOC-I happened. 

Table 27: Type of Organization Pilots were Flying with 

Type of Organization Number of Pilots 

Flying Club 19 

Flight School 56 

Professional Company 21 

Volunteer Organization 6 

None 73 

Other (such as a rental company, military) 12 

Prefer not to say 4 

Pilots chose error-based options (such as inadequate pre-flight check and deciding to fly in 

known unsafe conditions) as a factor in their LOC-I most often. Out of 166 LOC-I events shared 
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by pilots, 132 events involved some kind of pilot error (skill-based, decision, or perceptual), 69 

events involved environmental factors (such as bad weather, light, or wind conditions), and 35 

events had aircraft system or mechanical issue. Other factors that contributed to their LOC-I were 

instructor’s improper supervision (nineteen events), pilot-related conditions (such as adverse 

mental or physiological state) (twelve events), and personnel factors (such as personal readiness 

and insufficient crew coordination) (twenty events). Figure 42 shows the issues identified in survey 

responses in the context of HFACS failure categories. 

 

Figure 42: Issues in the context of HFACS categories, as found in 166 LOC-I events. 

Pilots who chose the “other” option specified issues ranging from organizational influences 

to skill-based errors. Organizational issues (such as relevant safety-critical information withheld 

during pre-test briefing, and missing step(s) from the Pilot Operating Handbook (POH) or 

checklist), physical environment (such as turbulence, wind shear, strong winds, poor visibility, 

icing conditions, and dark night), and aircraft issues (such as an improperly rigged instrument, 
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equipment failure, autopilot failure, engine failure, insufficient instructions in aircraft manual, and 

propeller failure) contributed to the LOC-I. Pilots also mentioned how inadequate supervision such 

as not receiving adequate training in avoidance maneuvers or spin recovery contributed to the 

LOC-I. Pilot-related conditions such as fatigue from long shifts, overconfidence, arrogance, 

complacence, inadequate training or knowledge, lack of aircraft experience, and distraction from 

unsafe conditions also contributed to the LOC-I. Some of the errors that pilots mentioned 

frequently were not being able to engage/disengage the autopilot, failure to secure all items, 

improper preflight check, not following the ATC instructions properly, improper use of flight 

controls, not recognizing the risk of unsafe conditions, getting distracted while handling other tasks, 

improper maneuver practices, and pilot induced oscillations (e.g., due to overcontrol in severe 

weather). 

The findings indicate that the most prevalent themes were pilot error, poor weather or wind 

conditions, aircraft systems or mechanical malfunction, inadequate supervision, and organizational 

influences such as inadequate organizational processes. 

The next sub-sections discuss how failures in different HFACS categories contributed to 

pilots’ LOC-I experiences, based on the responses. 

1. Organizational Influences 

25 pilots mentioned that they had observed improper working conditions or management in 

their organization before or during the LOC-I flight, and 77 pilots denied observing improper 

working or management conditions. Nine pilots chose that they were unsure about observing any 

such conditions. 

Pilots who indicated that they had observed improper conditions or chose the “unsure” option 

were directed to a set of multiple-choice questions that asked more specific organizational 

influences related questions. Out of the 166 LOC-I events shared by pilots, 24 pilots mentioned 

issues with their organization’s process, nineteen mentioned issues related to their organization’s 

climate, and eighteen mentioned resource management issues. 

Figure 43 shows a theme of pilot responses for the six organization-related questions. 

Seventeen pilots who selected the “other” option specified more issues in organizational processes 
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(such as operator deferred critical aircraft maintenance and standards for performance exceeded 

the minimum requirements for FAA approval), and organizational climate (such as withholding 

safety-critical information from the team and not a robust enough safety program). One pilot 

responded that the instructors were inexperienced and never taught them how to identify and 

rectify an LOC-I condition. Another pilot responded that the private airport owner did not correct 

the runway conditions. 

Pilots also added more details about the organizational processes, climate, and resource 

management. Pilots mentioned improper organizational processes such as not staying updated with 

new procedures (e.g., stabilized approaches and collision avoidance techniques), disorganized 

processes within the organization, long hour blocks leaving minimal time for delays or preflight 

planning, and inadequate discussion or communication of procedures and rules. Organizational 

climate issues such as an adversarial relationship between management and employees caused 

employees to feel pressured to hide any errors for fear of overly severe discipline or termination. 

More such issues included management’s attitude to get the job done, using a “divide and conquer” 

style of management, ignoring the procedures if one had enough experience, and minimal regard 

for following rules. Pilots also discussed resource management issues such as observing overt and 

regular sexism, racism, rudeness, cavalier attitude within the management and CFIs, poor aircraft 

maintenance, inadequate supervision, and task saturation due to work overload. 
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Figure 43: Theme of pilot responses in the “other” text box about organizational influences 

1. Unsafe Supervision 

40 pilots mentioned issues related to instructor or organization’s supervision. 32 (25.8%) 

pilots mentioned that their instructor had not prepared them well or taught them methods to recover 

from an LOC-I. Ten pilots mentioned inappropriate supervisory operations (such as crew 

scheduling), and ten pilots mentioned that the instructor failed to correct a problem (such as not 

correcting student’s unsafe practices). Although there were no explicit questions regarding 

supervisory violations, one pilot wrote that their organization had minimal regard for following 

the rules. 29 pilots who chose the “other” option added further details. Figure 44 shows a theme 

of pilot responses in the unsafe supervision category. 
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Pilots mentioned that the instructors were not required to teach spin recognition and recovery 

during the primary flight training and therefore they did not provide experiences that could lead to 

unexpected LOC-I scenarios. Additionally, some instructors did not discuss various unsafe 

conditions with pilots, such as airspeed during unusual attitudes and handling a runaway autopilot. 

Some pilots also mentioned that their instructors helped them to recover from the LOC-I. Several 

pilots mentioned how aerobatic training experience helped them to safely mitigate a potential 

LOC-I. 

 

Figure 44: Theme of pilot responses about unsafe supervision 

2. Preconditions for Unsafe Acts 

For this category, I asked questions regarding pilots’ mental or emotional well-being (mental 

state), their crew coordination (crew resource management), and their personal readiness on the 

day of the LOC-I flight. For example, if a pilot chose the option “I was not mentally or physically 

fit to fly on the day of the LOC-I flight” or the “other” option from the HFACS categories-related 

question, they were directed to the question regarding their mental or emotional well-being. 69 out 

of 166 events involved environmental factors (such as poor weather) contributing to the LOC-I, 

twelve events involved pilot conditions (such as fatigue), and 20 events had issues related to 
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personnel factors (such as flying experience and crew coordination). Figure 45 shows a theme of 

pilot responses about the preconditions for unsafe acts. 

Regarding the pilot conditions, pilots specified that they did not recognize or expect unsafe 

conditions (e.g., assumed an easy approach, did not expect clear air turbulence, and sudden 

unpredicted weather change), had a long day of flying, and had many stressors (new plane, low 

flying hours, low experience with the aircraft, absence of instructor, or inadequate radio 

communication skills). Some pilots also mentioned that they were well-rested, on high alert, and 

situationally aware and therefore were able to prevent a potential LOC-I event. 

Ten pilots indicated that a lack of crew coordination contributed to their LOC-I and specified 

details such as their instructor managing tasks poorly, or not using the student pilot as a resource, 

and miscommunication between instructor and student. 

Nine pilots indicated that they were not sufficiently ready, mentioning that they did not have 

experience in IMC with a specific aircraft configuration, and had low flying hours in the aircraft 

type. 

The survey also had a text response question that asked pilots about the unsafe conditions or 

events that existed before or during the LOC-I flight. Seven pilots preferred not to say. 124 pilots 

responded with a text response. Most of these responses overlapped with the previous answers. 

The responses had themes of conditions of operators (e.g., anxiety or under pressure, airsickness, 

fatigue due to long day or inadequate crew rest, disorientation, mental lapse, lack of experience, 

distraction due to task overload, and student overconfident or not motivated), environmental 

factors (e.g., inadequate panel lighting, improperly placed instrument, unsuitable airport 

conditions, poor visibility, poor weather, strong/gusty winds, high density altitude, no lights on 

ground in a dark night, turbulence, low ceiling, wind shear, wake turbulence, and unforecast icing), 

personnel factors (e.g., not proficient/inexperienced in the aircraft flying, lack of 

knowledge/experience in recovery maneuvers, lack of knowledge of aircraft systems, and 

unfamiliarity with the airport flying to), organizational influences (improper maintenance, 

improper design, insufficient standards, withholding safety-critical information), and aircraft 

issue (defective aircraft component, uneven fuel tank levels, engine failure). 
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Figure 45: Theme of pilot responses about the preconditions for unsafe acts 

3. Unsafe Acts 

The survey asked pilots questions about their actions before or during the LOC-I flight such 

as types of errors, unsafe acts, and remedial acts that the pilots took to recover or prevent the LOC-I 

event. 

Out of the 132 LOC-I events that involved pilot error, most events involved skill-based (75 

events) and decision errors (72 events). Some of the skill-based errors apart from the given options 

were the student pilot’s poor flying skills, improper use of flight controls, pilot induced oscillations 

due to overcontrol in IMC, improper preflight or inflight planning, fixation, and omission of an 

action (e.g., failing to look at an instrument) that contributed to the LOC-I. Figure 46 shows a 

theme of pilot responses about their unsafe acts. 
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Pilots were also asked to list their unsafe actions in a chronological order that led to the 

LOC-I. The most common errors were low airspeed, misjudgment (e.g., not recognizing risks 

such as flying in featureless dark night or strong air turbulence, not recognizing that the aircraft 

was in a spin, unable to recognize spatial disorientation, over-estimating student’s capabilities, 

negative transfer, i.e., flying by “habit”), improper decision-making (e.g., attempting takeoff in 

unsuitable runway conditions with an overweight aircraft, choosing to fly in poor weather/strong 

wind conditions, continuing flight/landing in unsafe weather or runway conditions, not going-

around, failure to use supplemental oxygen), insufficient radio communication (e.g., changing 

frequencies, not calling ATC to renew flight plan, not advising “unable” when pilot could/had not 

performed a certain action, not requesting a non-circling approach), becoming distracted (e.g., 

diverting excessive attention towards a critical condition, failing to maintain instrument scan, 

losing visual scan), improper maneuvering (e.g., excessive bank, not using proper crosswind 

landing technique), improper use of checklist (e.g., not following maneuver checklist, missing a 

checklist item), improper remedial action (e.g., not following spin recovery technique, improper 

stall recovery), improper use of flight controls (e.g., not recognizing a disengaged autopilot, 

incorrect use of autopilot, improper aircraft configuration, under or over correction of rudder inputs, 

pilot induced oscillations), improper preflight check (e.g., uneven fuel tank levels, weight and 

balance check), uncoordinated flight or unusual aircraft attitude (e.g., not maintaining 

coordinated flight while practicing a departure stall, not recognizing uncoordinated attitude during 

a stall), and not relying on instruments. 
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Figure 46: Theme of pilot responses about unsafe acts 

7.4 Corrective Actions Taken by Pilots 

143 pilots specified their corrective actions. Seven out of 143 pilots mentioned that they were 

unable to recover from LOC-I, four of these pilots crashed (with no fatality), and the remaining 

three either made a hard landing or somehow naturally flew out of the poor weather. Eight pilots 

mentioned that their instructor took control of the aircraft and recovered from the LOC-I. 43 pilots 

mentioned that they used the recovery techniques that they learned for upset, unusual attitude, spin, 

or spiral. 22 pilots used stall recovery and spin prevention procedures that they learned from their 

training. Other pilots mentioned that effective radio communication with the ATC (e.g., declaring 

an emergency), deciding to land/go around immediately, flying out of poor weather (e.g., IMC), 

proper use of flight controls, staying alert and relying on instruments, and continuing to fly the 

aircraft helped them prevent a LOC-I. Some pilots also had comments about the use of autopilot. 

Five pilots mentioned that disengaging the autopilot and manually overriding the aircraft controls 

helped them prevent or recover from the LOC-I. One pilot mentioned that engaging the autopilot 

when the pilot was undergoing vertigo gave them time to regain situational awareness. 

Pilots also mentioned that during the LOC-I flight, there were certain things that they 

should/could have done to prevent or recover from the LOC-I. Some of them are to clearly 

communicate with the ATC and instructor, be more proficient in the aircraft system, be more alert, 
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focus on the airspeed, make better and faster inflight judgment and decisions, divert to another 

airport or attempted a go around, use appropriate spin recovery method, keep aircraft at a level 

attitude, use flight controls (rudder) properly, and use cockpit resources effectively (such as a co-

pilot or a passenger).  

Pilots who did not take corrective actions, blamed issues such as complacency, concern about 

going around in front of passengers, an urgency to land, distraction from flying the aircraft, fear, 

inadequate training, anxiety or under pressure, surprise and unfamiliarity with the situation, being 

unprepared to take proper corrective action, adverse psychological state leading to fixation or 

omission, pressure from the management, and time pressure. Multiple pilots reported that they 

could not prevent the LOC-I because of their lack of knowledge of how to recognize or recover 

from unsafe conditions (such as deteriorating weather or spin). 

7.5 Discussion 

Pilots mentioned the following preventive measures that may help in avoiding LOC-I: 

attentive use of autopilot (and knowing how and when to override autopilot), remaining calm in 

emergencies and flying the aircraft first, constant practice and learning, proper preflight planning, 

not following the instinct to take wrong corrective action (such as pulling on the yoke instead of 

pushing it during a roll), securing all items in the cockpit (so that they don’t jam the controls), 

quick decision-making, and alternative use of other flight controls in case one control fails. Pilots 

mentioned that LOC-I can happen even on the nicest of VFR days and to extremely experienced 

pilots. A pilot mentioned that there should be more IFR training since VFR into IMC accidents 

cause significant fatalities. Another pilot suspected from their own experience that a fair number 

of “pilot error” during base-to-final spin entries could be due to very local disturbances in wind 

velocity. Another pilot opined that current flight instruction leads to bad flying habits and 

suggested using concepts of pitch and power rather than airspeed to train pilots.  

Several pilots mentioned that they were not taught recovery techniques and suggested 

including recovery techniques for upset (out of control) conditions such as spins and spirals in 

training programs. Some pilots suggested learning spin recovery before a solo flight so that they 
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can recognize such unsafe conditions when flying without the instructor. A pilot mentioned that 

after the LOC-I incident “now I know what a spin feels like in practice, and not in theory.” Another 

pilot mentioned that pilots should be trained on how to recover from or prevent a spin in a pattern 

(which could rapidly turn into an accident since there is not enough altitude to recover). A pilot 

mentioned that they never got a helpful answer from any instructor on how to recover from pilot-

induced oscillations. Aerobatics training helped a few pilots to recognize and recover from an 

LOC-I. A pilot who has experienced two partial LOC-I events mentioned that they could prevent 

the second LOC-I because of their first experience. A CFI suggested additional training for 

instructors to help students who have frozen at the controls. Lastly, a pilot wrote “training is the 

difference between a story and a statistic (death).” Pilots strongly recommend that training should 

include more recovery techniques and IFR training. Pilots should do more practice of maneuvers 

and stay current so that they can take immediate remedial actions by muscle memory instead of 

taking wrong corrective actions. 

Most pilots who were able to recover from LOC-I mentioned that they used their knowledge 

from LOC-I prevention and recovery training. Some pilots who were not able to take a corrective 

action mentioned factors that precluded their ability to make corrective action. Most of these 

factors were related to pilot conditions and their readiness such as fear or anxiety, not being able 

to recognize the situation, unfamiliarity, and lack of knowledge to recover from unsafe conditions. 

7.6 Conclusion 

The findings from the study helped in identifying specific pilot errors and issues in training 

that lead to LOC-I, issues that are not mentioned explicitly in the NTSB reports. Pilot error 

(decision and skill-based) was the topmost issue in most events (80% of total 166 LOC-I events). 

Most of these errors such as improper maneuvering and a lack of or improper remedial action are 

direct results of inadequate training. The most frequent chains of unsafe actions or conditions in 

the reported LOC-I events were (1) improper preflight or infight planning leading to a flight in 

poor weather; and (2) pilot’s lack of visual lookout or distraction leading to an improper airspeed. 

25.8% of pilots mentioned that either their instructor had not prepared them well or taught them 
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methods to recover from LOC-I. Several pilots mentioned that because of their lack of LOC-I 

recovery training (such as upset, spin, spiral, and stall recovery), they were not able to recover 

from LOC-I. 

Not surprisingly, 41.6% of the LOC-I events involved poor weather or light conditions. This 

is a consistent statistic from previous studies (Majumdar et al., 2021 and Rao & Marais, 2020). 

21% of pilots reported issues in their organization such as a negative attitude within the 

management, organizational pressures, and inadequate procedures. Organizational pressure 

whether explicit or implicit is a challenge in most flight training environments (Keller et al., 2019). 

19% of the LOC-I events involved pilot conditions and factors such as fatigue, unfamiliarity with 

the unsafe conditions, and other stressors that contributed to their LOC-I.  

By garnering such perspectives directly from pilots, I found rich insights into human factors 

contributing to LOC-I. This study focused primarily on pilots who had experienced an LOC-I 

while piloting an aircraft. In the next phase of my research (Chapter 8), I delved deeper into the 

survey insights by interviewing pilots and instructors to understand their perspectives on LOC-I 

and the training in practice to prevent LOC-I. 
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 INTERVIEWS OF PILOTS AND FLIGHT INSTRUCTORS ABOUT 

THEIR INFLIGHT LOSS OF CONTROL EXPERIENCES AND 

TRAINING 

To delve deeper into the causes of LOC-I and to understand the LOC-I training in practice, 

I interviewed pilots and flight instructors about their experiences with LOC-I, if any, and their 

perspectives about LOC-I training. Building on the survey, in this study, I aimed to delve deeper 

into human factors issues wherever possible. Participants were eligible to participate in the study 

if they were at least 18 years old and a pilot who have experienced an LOC-I or a certified flight 

instructor.  

8.1 Research Instrument and Procedures 

I conducted virtual semi-structured interviews with pilots asking them about their 

perspectives on LOC-I, their LOC-I experiences, if any, and the training that they received or 

provide as an instructor to prevent LOC-I. The interview had a total of 58 standard questions 

including five demographic questions, along with time for more open-ended responses. Each 

interview lasted for about an hour. Appendix C includes the consent form and interview questions. 

After the study was approved by Purdue’s Institutional Review Board, I started identifying 

the participants who were interested in the study. During the survey study, nine participants had 

contacted the research team showing an interest in the research. I first contacted those participants 

to seek their interest to participate in the study. Additionally, I contacted seven more pilots using 

contacts from other pilots. Out of the 16 pilots that I contacted, nine participated in the study. 

I shared the consent form of the study with participants before scheduling an interview with 

them. I conducted the interviews over Zoom calls. I recorded the calls with participant’s verbal 

consent to participate in the study (a statement mentioned in the consent form). 
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8.2 Data Analysis 

I conducted nine interviews between 21st June 2022 and August 19th, 2022. I first transcribed 

the interview recordings to text and then destroyed the interview recordings. I used NVivo12, a 

qualitative data analysis software, to code responses from the interview into different categories. 

8.2.1 Demographic Data 

Out of the nine pilots I interviewed, there were four airline transport pilots (ATP), four 

commercial pilots, and one private pilot. Seven pilots were certified flight instructors. Pilots’ ages 

ranged from 44 to 73 years. There were seven male pilots and two female pilots. Pilots had multiple 

ratings and endorsements as shown in Figure 47. Pilots had a flying experience ranging from 603 

to 10,200 hours and 20 to 48 years. Eight pilots had flown more than 1,500 hours. 

 

Figure 47: Ratings and endorsements for the nine pilots interviewed. 
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8.2.2 A summary of the LOC-I Experiences 

Six pilots had experienced or prevented an inadvertent LOC-I. One pilot shared two of their 

incidents. At the time of their LOC-I incident, three pilots had a private certificate, two were 

commercial pilots, one was an ATP, and another was a student pilot. Out of the seven incidents 

shared, two resulted from an intentional attempted maneuver (a stall maneuver going wrong). 

Figure 48 shows the multiple ratings and endorsements at the time of their LOC-I. Table 28 shows 

the hours and years of flying experience, flying frequency, pilot certificate, aircraft make and 

model, and who the pilots were flying with at the time of their LOC-I. 

 

Figure 48: Ratings and endorsements of the pilots at the time of their LOC-I 
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Table 28: Flying experience, flying frequency, aircraft during the event, and who the pilots were 

flying with at the time of their LOC-I. The pilot number corresponds to the pilots who shared their 

LOC-I related incidents. Pilots 4, 6, and 7 did not have LOC-I experiences. 

Pilot 

No. 

Flying 

hours 

Flying 

years 

Flying 

frequency 

(average days 

a month) 

Grade of 

pilot 

certificate 

Aircraft 

make and 

model 

Flying solo or 

with someone 

Pilot 1 2000 25 6 ATP Cessna 175 Solo 

Pilot 2 700 25 2 Private Cessna 172 Solo 

Pilot 3 30 1 20 Student Cessna 172 Solo 

Pilot 5 
60 1.5 2 Private Cessna 172 

Two 

passengers 

750 24 1 Commercial Cessna R182 One passenger 

Pilot 8 1000 10 25 Commercial 
Piper 

Cherokee 

Student (who 

was acting as a 

passenger) 

Pilot 9 60 1 5 Private Cessna 172 
Instructor (for 

currency) 

8.2.3 How did the LOC-I incidents happen? 

This section describes each incident as told by the pilots. 

Event 1: Pilot 1 was in approach in gusty conditions. During the downwind leg, the aircraft 

stalled precipitously because of a wind gust. The pilot does not remember whether the stall warning 

horn came on. They were already at a higher-than-normal approach airspeed because of the gust. 

After the stall, they immediately added some more power and made sure that the wings were level, 

so they could recover from the upset. 

Event 2: Pilot 2 was prepared for instrument conditions during the flight. The pilot’s aircraft 

had a different heading indicator than what they were used to, and they had never flown in IMC in 

that aircraft. The pilot intentionally flew into IMC and quickly became disoriented and experienced 

vertigo. They think they became disoriented because they didn’t put their head back against the 

headrest, which is recommended practice when flying in IMC. When the ATC gave them a heading 
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change, they overcorrected the heading, leading to pilot induced oscillations, and ultimately lost a 

lot of altitude. The pilot could only recover once they were out of IMC and could use the ground 

as a reference. 

Event 3: Pilot 3 had initiated a go-around late in the landing phase (start of the flare). The 

aircraft was configured with full flaps and minimal power for landing. The pilot incorrectly 

retracted the flaps completely instead of one notch at a time and added power during the go around. 

Due to the incorrect procedure of retracting all the flaps at once, the aircraft immediately lost lift 

and the nose became very high. A high-pitched nose causes the wings to exceed their critical angle 

of attack, which can occur at any airspeed, in any attitude, and with any power setting. Exceeding 

the critical angle of attack can lead to a stall. The aircraft had yet not initiated a climb. The pilot 

lowered the nose slightly because of the low altitude and made sure to stay coordinated with proper 

rudder input to establish a controlled climb. 

Event 4: Pilot 5 was flying with two passengers and practicing a stall maneuver. The center 

of gravity was far aft (rearward CG) due to the passengers sitting in the rear seats. If the CG is too 

far aft, it will be too near the center of lift and the aircraft will become less stable and difficult to 

recover from a stall (FAA, 2016b). So, during the stall maneuver, the aircraft became unstable and 

the right wing dropped. The pilot had never seen that behavior in training. They recovered by 

rolling the wings back to level and pulling back on the yoke. 

Event 5: Pilot 5 was in an approach phase during strong crosswind conditions in a Cessna 

R182. During the landing phase, the pilot thought that the wind had abated and so did not prepare 

well for landing in the strong crosswind. The Cessna R182 Pilot’s Operating Handbook (POH) 

states “When landing in a strong crosswind, use the minimum flap setting required for the field 

length” (Cessna Aircraft Company, 1977). Flaps provides the aircraft with more lift, allowing it to 

fly at lower airspeeds. However, the lower the airspeed is, the less effective the controls become. 

In a strong crosswind, using partial flaps increases the final approach speed, and in turn, increases 

the controls’ effectiveness to make a stabilized approach during crosswind landing. The pilot 

mistakenly deployed full flaps during landing. Just after touchdown, the aircraft started to tilt to 

the right, skidded sideways, and bounced. The pilot tried to recover by pulling all the way back on 
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the yoke and rolling opposite to the wind direction. The pilot added that keeping the nose wheel 

up long enough during the landing prevented the aircraft to flip over. Unfortunately, the pilot could 

not maintain aircraft control which caused the propeller to strike the ground, and the pilot got 

injured. The pilot mentioned that they could have prevented the incident by not extending all the 

flaps and by being more aware of the risks of using improper aircraft configuration during a 

crosswind landing. 

Event 6: Pilot 8 was prepared to fly in VFR at night, as reported by the weather at the airport. 

However, after a few minutes of climbing, they encountered IMC. The pilot reported that the 

cockpit panel lights stopped working during the flight, which disoriented them. The pilot got into 

an unusual attitude and entered a spiral, losing a lot of altitude. They used their phone’s flashlight 

to scan the instruments, used the spiral recovery procedure, and eventually recovered. 

Event 7: Pilot 9 was doing a practice stall. During the stall maneuver, the aircraft was in an 

uncoordinated flight and thus experienced a wing drop. They tried to recover using an opposite 

aileron rather than the opposite rudder, which exacerbated the wing drop. Then the pilot lowered 

the nose to unstall the wings and recovered. 

8.2.4 What caused the LOC-I incidents? 

I identified causes in the LOC-I experiences, as mentioned by the pilots, and classified them 

into different categories. Figure 49 shows a tree-map of probable causes in the LOC-I experiences. 

The size of the boxes represents the relative frequency of the causes mentioned in the events. For 

example, pilot conditions were mentioned in six out of seven events and organizational factors, 

aircraft system issue, and ATC communication were each mentioned in one event. 
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Figure 49: Tree-map of hierarchical categorization of probable causes as found in the LOC-I 

experiences. The size of the boxes represents the relative frequency of the causes mentioned in the 

events. 

1. Pilot Conditions 

a. Spatial disorientation/Vertigo 

Pilots underwent conditions such as spatial disorientation and vertigo during IMC conditions 

due to improper practices (not putting the head back against the headrest during instrument 

conditions and using improper flight controls) and unusual flight attitude in night IMC. A pilot 

mentioned that because of their disorientation, even though they knew aerobatics and upset 

recovery, they could not have regained control of the aircraft, had they not entered IMC to VFR. 

b. Overconfidence 

A pilot mentioned that the incident happened due to their overconfidence due to which they 

did not perceive the severity of the situation. The pilot also mentioned that although they had done 

crosswind landings before, they had not experienced wind conditions of the same intensity as in 

their LOC event. 
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c. Not being able to rely on the instruments 

A pilot mentioned that they were not able to rely on the instruments in night IMC because 

the cockpit lights were not working that made them disoriented for a while before they could 

recover the aircraft control. 

d. Getting startled 

Getting startled (surprised) is a common phenomenon in unsafe situations. Pilots mentioned 

that they got surprised and startled for a brief moment, they were able to regain control quickly. 

One pilot mentioned that the startling effect happened because they never saw that situation in 

their training (a stall with a wing drop). 

e. Stress/Pressure 

A pilot underwent stress when they were not able to control the aircraft. Another pilot 

mentioned that some pilots felt slightly stressed before the flight (during their solo flight as a 

student and during their refresher flight with an instructor). A pilot mentioned that they had a self-

imposed pressure to initiate a go around during their flight which then led to an inflight upset 

during the initial climb (due to improper aircraft configuration). Another pilot mentioned that they 

felt pressure to fly on the day even when they felt that they should not because of the weather 

conditions. 

2. Perceptual Error 

Perceptual errors occur when one’s perception of the world differs from reality (Wiegmann 

& Shappell, 2003). These types of errors happen when sensory input is either degraded or unusual 

such as during visual illusions, spatial disorientation, or vertigo (e.g., not being able to recognize 

hazardous conditions). Pilots mentioned that they had perceived the flight or situation to be easy 

and doable. They were not mentally prepared for the threat and did not recognize the severity of 

the situation. One pilot who inadvertently flew into an unexpected IMC mentioned that they were 

not mentally prepared to fly in those conditions. 
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3. Weather Conditions 

Weather contributed to a LOC-I conditions in four of the seven incidents. Two pilots 

experienced an upset during approach and LOC-I during landing in gusty weather conditions, and 

other two pilots experienced a spatial disorientation and LOC-I in day IMC and night IMC 

respectively. 

4. Improper Action 

Pilots performed incorrect actions during the flights that caused an upset or a potential LOC-I. 

The most common types of actions were improper procedures, pilot induced oscillations, and 

fixation. 

a. Procedures 

Pilots used improper procedures such as using improper aircraft configuration (improper 

flaps configuration during a go around and performing a stall maneuver with the CG further aft 

due to passengers in the aircraft). Improper use of flight controls such as using opposite aileron 

instead of the opposite rudder during a spin caused a pilot to experience a near LOC-I.  

b. Pilot induced oscillations 

Pilot-induced oscillations are sustained or uncontrollable oscillations resulting from efforts 

of the pilot to control the aircraft (Department of Defense, 1997). They occur when the pilot of an 

aircraft inadvertently commands an often increasing series of corrections in opposite directions, 

each an attempt to cover the aircraft's reaction to the previous input with an overcorrection in the 

opposite direction. A pilot during their IMC flight exacerbated the condition due to overcorrecting 

the heading and altitude, winding up losing a lot of altitude during the process. 

c. Fixation 

A pilot mentioned that during the aircraft upset, they focused on the airspeed and altitude 

alone, fixating on the airspeed indicator and the altimeter, and thus ignoring other instruments such 

as the turn and heading indicator. 
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5. Lack of Experience 

a. Currency 

A pilot mentioned that during the incident they were an inexperienced student pilot on their 

possibly third solo flight. They did not remember their procedures well while performing the go-

around maneuver. Another pilot mentioned that because of their reduced number of flying hours, 

they did not take the correct recovery action, and instead took an instinctive wrong action to 

recover from a stall with a wing drop. 

b. Flying without autopilot 

Pilots mentioned that because they were so used to flying with an autopilot, they could not 

manually maintain control of the aircraft in conditions such as IMC and strong crosswind. A pilot 

mentioned that they could not control the aircraft (causing pilot induced oscillations) during IMC 

when they flew an aircraft without an autopilot. 

c. Specific aircraft in IMC 

A pilot mentioned that this was their first time flying the specific aircraft in IMC, that too 

without an autopilot. They had flown the aircraft many times but only in VFR conditions. 

d. Using an instrument 

The aforementioned pilot also stated that the aircraft that they flew during the incident had a 

different heading indicator than the ones that they had used before which made it difficult to 

determine and maintain the correct heading. 

6. Organizational Factors 

I identified issues with the culture at their organization and the weather reporting system in 

one of the incidents. 

a. Culture 

A pilot mentioned that when the incident happened, they did not feel comfortable to discuss 

it with their organization because they feared losing their job. They mentioned that they felt that 

the culture at the organization was not open enough to hear about the incident. The pilot also 
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mentioned that they did not know about the NASA ASRS database where they could report the 

incident anonymously. These insights suggest a critical issue at the organizational level where 

pilots did not feel encouraged to share their incidents and experiences. New pilots feel pressured 

to maintain a clean record since they cannot afford scrutiny on their record that might result in not 

getting certifications that they need to further their careers. 

b. Weather reporting 

A pilot stated that they received an incorrect weather reporting (VFR conditions) before the 

flight but when they took off, they inadvertently entered IMC at night. The pilot did not feel 

comfortable discussing the incident with their organization. 

7. Aircraft System Issue 

During a flight at night IMC, the lights in the cockpit panel went off and the pilot became 

disoriented and felt they could not rely on their instruments. The pilot hence entered a spiral and 

lost a lot of altitude before they finally recovered. 

8. ATC (Controller’s) Communication 

A pilot mentioned that they felt stressed communicating with the controller during the 

incident. The controller sounded stressed and did not communicate calmly which further 

exacerbated the situation. They added that calling the pilot by the aircraft tail number and 

eventually handing the pilot to a different controller clouded the communication and the pilot’s 

action even more. The pilot added “When ATC recognizes that a pilot may be in trouble, 

continuing the standard communication protocols does little, if anything, to solve the problem. In 

fact, it can make it worse. In my case I already knew I was in trouble. Repeating the desired heading 

and altitude did nothing to give me the tools to solve my problem. It only increased my stress level. 

As pilots we are trained to follow ATC commands, basically without question.” The pilot 

recommended calling the pilot by their names in such emergency situations and talking in a more 

empathetic way could help pilots get out of the threat more easily without creating a panic. 
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8.2.5 How did the pilots recover from LOC-I? 

During private pilot training, students learn recovery techniques for unexpected hazardous 

scenarios. The FAA specifies recovery techniques like stall recovery and unusual flight attitude 

recovery in the Airman Certification Standards (ACS) document (FAA, 2018b). 

A general way of training for a stall recovery involves the pilot using steady back-pressure 

on the yoke to raise the nose above the horizon. Raising the nose causes the wings to exceed their 

critical angle of attack. As airflow is disrupted over the wings, the airplane’s stall horn (or light) 

turns on and the controls start feeling “mushy”, i.e., loose and sloppy. The wings stall and the nose 

drops when airflow over the wings is suitably disrupted and the lift becomes insufficient to keep 

the wings flying. The pilot recovers by lowering the nose (and hence reducing the angle of attack), 

applying full power, and leveling the wings, which then increases airspeed and lift (AOPA, 2021).  

For unusual attitude recovery training, the instructor puts the student under a view-limiting 

device, such as a hood, and instructs the student to close their eyes and put their head down. The 

instructor then puts the aircraft into an abnormal climbing, descending, or steeply banked attitude. 

The student must then figure out what the aircraft is doing and react accordingly to bring the 

aircraft to a straight and level flight. 

The pilots mentioned using several techniques to recover from their LOC-I incident or to 

prevent a potential LOC-I: 

1. Stall and Spin Recovery Techniques 

A spin is an aggravated stall condition that may result after a stall. Mishandling of yaw 

control during a stall increases the likelihood of a spin entry (FAA, 2021). In a spin, both wings 

are in a stalled condition but one wing is in a deeper stall than the other, which results in the aircraft 

rotating around a vertical axis, following a downward corkscrew path. A pilot mentioned using the 

PARE technique to recover from a spin during a night IMC flight. PARE stands for Power (idle), 

Ailerons (neutral), Rudder (full opposite to the spin and held in that position), and Elevator 

(forward). The pilot mentioned that they could save themselves only because they knew spin 

recovery from their CFI training. Of all pilot certificates issued in the United States, only the initial 

CFI certificate requires spin training (14 CFR 61.183) (CFR, 2023). The FAA requires private and 



 

 

 

 

141 

 

 

commercial pilots to only demonstrate the understanding of spin recovery as “knowledge” and not 

as a “skill” (FAA, 2018b; FAA, 2018c; and FAA, 2016c). This lack of spin recovery skill caused 

one of the private pilot’s I interviewed to have the instinct for a wrong corrective action. When the 

private pilot stalled the aircraft with a wing drop, they first tried to recover incorrectly using the 

opposite aileron instead of the opposite rudder. However, immediately afterwards, they lowered 

the nose and recovered from the stall by leveling the wings. Another pilot who mistakenly retracted 

all the flaps immediately during a go-around corrected their action by lowering the nose slightly 

to regain lift and prevent a stall during takeoff. Some pilots mentioned that their aerobatic training 

helped them become more aware of the aircraft state to recover properly. 

2. Upset Recovery Techniques 

One pilot who experienced an aircraft upset during approach added power and ensured level 

wings to prevent an impending stall. Several pilots also mentioned in the survey that they could 

recover from a potential LOC-I using upset recovery methods. Some other pilots from the survey 

also mentioned that they could not recover from LOC-I because they did not know these recovery 

techniques. The training of these recovery techniques is popularly known as Upset Prevention and 

Recovery Training (UPRT). UPRT is mandatory only for FAR Part 121 Air Carriers (i.e., airlines, 

regional air carriers, and all cargo operators) and hence pilots with an Air Transport Pilot (ATP) 

certificate (FAA, 2015a). UPRT consists of maneuver-based exercises based on different scenarios 

(such as all-weather upsets, improper airspeed, slow flight, low altitude events, etc.) to ingrain 

pilots with both flying skills and the mental processes to address human factors such as startle, 

surprise, and fear and maintain positive aircraft control. 

3. Aeronautical Decision Making 

Aeronautical decision making (ADM) is a systematic approach to making best decisions to 

mitigate risk factors. Pilots from the interview mentioned how effective ADM helped them save 

their lives. For example, a pilot flying with their student mentioned that their student remained 

calm and followed their instructions to help. Since the cockpit lights were not working in the night 

flight, they used their phone’s flashlight to scan the instruments and recover from a spin. Another 



 

 

 

 

142 

 

 

pilot mentioned that spending the first few seconds to recognize the hazard before taking 

preventive actions helped them to prevent a potential LOC-I.  

Some pilots who flew into IMC or windy conditions mentioned that they could not take an 

immediate corrective action. A pilot who got disoriented during their IMC flight could only 

recover when they entered back into VMC. They used ground reference to level the wings and 

maintain altitude to finally regain aircraft control. Another pilot recounted that although they 

pulled back on the yoke and rolled the wing to the crosswind direction during landing, they could 

not maintain aircraft control, and ended up in a propeller strike. 

8.2.6 What could have the pilots done differently to prevent the incidents? 

When I asked pilots what they could have done differently to prevent their LOC-I, their 

responses had a theme around decision-making, planning, and situational awareness. This theme 

is consistent with the responses from the survey and the AOPA’s LOC-I related articles. Pilots 

who flew in gusty and crosswind conditions mentioned that they should have planned better and 

should not have flown that day. Pilots often misjudge and overestimate their capabilities and lose 

the ability to objectively evaluate the weather and the associated risks. A pilot in their interview 

mentioned that pilots need to evaluate the risks based on the particular day and not based on their 

prior accomplishments in similar risk conditions. Each flight has the same risk factors. The pilot 

quoted “…the environment or the airplane doesn’t care about your landing last week. It only cares 

about what’s happening now.” Another pilot mentioned that if they were more alert and recognized 

the risks well, they could have been more prepared for the strong crosswind landing. Pilots who 

were practicing stall maneuvers told that they could have been more aware of maintaining a 

coordinated flight to prevent a wing drop or could have immediately recovered by using the right 

recovery techniques. 

8.2.7 What did the pilots learn from their LOC-I experiences? 

Pilots had several remarks on the lessons that they learned from their experiences. Pilots 

should always stay prepared for risks such as an inadvertent flight in IMC and spins. Some pilots 
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mentioned that although they were momentarily startled, they could easily regain aircraft control 

because they were aware of the hazardous conditions and were prepared for the possible scenarios 

that could happen. VFR flight into IMC is the number one cause of spatial disorientation (AOPA, 

2014). Pilots are more susceptible to getting disoriented especially if they are not prepared well 

and are situationally unaware. A pilot recommended to turn at less than a standard turn rate (i.e., 

3° per second turn) in IMC when disoriented. In the process of banking too much, there is a 

tendency to overturn and experience more vertigo. The pilot also added that one should always 

plant their head at the headrest during IMC and rely on the instruments to minimize the vertigo 

symptoms. 

Effective ADM can help pilots identify and manage risks and minimize errors. The FAA 

prescribes several checklists and models for effective ADM, ranging from IMSAFE (Illness, 

Medication Stress, Alcohol, Fatigue, Emotion), PAVE (Pilot-in-command, Aircraft, environment, 

External pressures), 3P (Perceive, Process, Perform) to TEAM (Transfer, Eliminate, Accept, 

Mitigate) (FAA, 2016a). These checklists focus on human factors aspects in preflight and inflight 

planning.  

Crew Resource Management (CRM) is another crucial strategy to effectively use all 

available cockpit resources and follow procedures. It is critical to follow the prescribed procedures 

throughout the flight. However, there could be situations where pilots need to use their judgment, 

going beyond the procedures, to deal with the hazardous scenarios. Many pilots in the interview 

and survey mentioned that remaining calm and not panicking helped them to recover from LOC-I.  

Findings from the AOPA articles, survey, and interviews unanimously suggest that pilots’ 

decision to fly in known poor weather conditions was one of the top factors in LOC-I. Pilots who 

have relatively less experience in weather conditions and the specific aircraft should evaluate their 

risks accordingly to make critical decisions such as go or no-go and land or go around. Instrument 

training helps prepare pilots better to handle the aircraft in inadvertent VFR into IMC scenarios. 

During instrument training, pilots gain deeper knowledge about weather conditions and related 

human factors (e.g., vertigo) and learn to control the plane solely by instrument. Pilots also 

recommended to stay current and familiar with all instruments in different aircraft, maintain 
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manual flying skills (without using an autopilot), and practice various maneuvers to recover from 

unsafe scenarios. 

 

8.2.8 Pilots’ Training in Practice 

From the pilots’ survey, I found that inadequate training and instructors’ improper 

supervision contributed to loss of control. To gain a deeper understanding of training in practice, 

I asked all pilots (n = 9) in the interview about how their instructors trained them and specifically 

asked the CFIs (n = 7) about how they train their students. 

All pilots indicated that their instructors taught them maneuvers such as stalls with different 

aircraft configurations (power on and power off), slow flight, and landings, based on the FAA’s 

requirements for private pilot certification (14 CFR § 61.107) (CFR, 2023). All pilots also learned 

to maintain aircraft control during unusual attitudes, as required by the FAA. All pilots said that 

their instructors also trained them in strong winds and marginal weather. Pilots had inconsistent 

responses about whether their instructors taught them about pilot conditions and errors. While 

some pilots said that their instructors did not teach them about different conditions and errors, 

others said that their instructors taught them well. One pilot specifically said that they were never 

taught about the to-dos for IMC flying, such as putting one’s head back against the headrest to 

avoid disorientation or vertigo. The pilot also mentioned that their instructors did not know about 

pilot induced oscillations and how to recover from them. The pilot became disoriented and partially 

lost control in an IMC flight because they did not know to put their head back against the headrest 

and how to recover from the pilot induced oscillations. Some pilots indicated that their instructors 

trained them to prevent threats if a maneuver goes wrong, whereas others indicated that they were 

not trained for the same. One pilot mentioned that they could have potentially recovered from the 

LOC-I easily if they were trained well for the potential threats. 

Some CFIs indicated that they teach maneuvers such as stalls, spins, and spiral recovery. 

Other instructors mentioned that they do not teach full stall, spin, and spiral recovery since those 

maneuvers are not part of the FAA’s requirement for a private or commercial pilot certificate. Like 

the non-CFI pilots, all the CFIs also indicated that they train their students in marginal weather 
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and wind conditions. All of them mentioned that they train students about pilot conditions and 

errors, such as spatial disorientation and distraction. All but one CFI said that they train pilots to 

prevent threats if a maneuver goes wrong. Table 29 summarizes the agreement and disagreement 

areas between the pilots and CFIs. 

Table 29: Pilots’ responses on how their instructors trained them versus CFIs’ responses on how 

they train their students. There were three areas of agreement and two areas of disagreement 

between pilots’ and CFIs’ responses. 

Training areas 
Agreement/disagreement 

between pilots and CFIs 
Notes 

Maneuvers, as 

required by the FAA 
Agreement 

All pilots and CFIs agreed that their 

training included all maneuvers like 

stall and slow flight. 

Unusual attitude 

recovery, as required 

by the FAA 

Agreement 

All pilots and CFIs agreed that their 

training included unusual attitude 

recovery. 

Wind and weather 

conditions 
Agreement 

All pilots and CFIs agreed that their 

training included flights and landings in 

marginal weather and windy conditions. 

Pilot conditions and 

errors 
Disagreement 

Some pilots indicated that their 

instructors did not teach them about 

different conditions and errors, while 

others mentioned that their instructors 

taught them well.  

All CFIs mentioned that they train 

students about pilot conditions and 

errors. 

Potential threats Disagreement 

Some pilots indicated that their 

instructors trained them to prevent 

threats if a maneuver goes wrong, 

whereas others indicated that they were 

not trained for the same. 

All but one CFI mentioned that they 

train pilots to prevent threats if a 

maneuver goes wrong. 
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8.2.9 Gaps in the Training in Practice 

I also asked pilots and CFIs about their perspectives on the current training in practice. I 

analyzed their responses to find themes for the gaps in training. Pilots also provided 

recommendations for improving the training. Here, I discuss those gaps and recommendations, as 

discussed by the pilots and CFIs. 

1. Instrument: Inadvertent VFR into IMC is one of the topmost contributing factors in LOC-I. 

The FAA requires three hours of simulated instrument time for a private pilot certificate with 

an airplane category and single-engine class rating (CFR, 2023). Some pilots mentioned these 

three hours of simulated instrument training are not sufficient to safely fly out of an inadvertent 

VFR into IMC. They recommended that students should experience flying in real IMC with 

instructors or using flight simulators. 

2. Upset Prevention and Recovery Training (UPRT): As discussed in Section 8.2.5, UPRT is 

mandatory only for ATPs who fly under FAR Part 121 (air carriers). There is no mandatory 

focus on UPRT for pilots under Part 135 (charter-type services) or Part 91 (GA). A pilot 

recommended to include UPRT training for private pilots in the FAA requirements. Several 

pilots also indicated in the survey and interviews that they could recover from a potential LOC-

I using upset recovery methods. Some other pilots from the survey also mentioned that they 

could not recover from LOC-I because they did not know those recovery techniques. A pilot 

recommended high-fidelity simulator training for upset recovery and spin training for GA 

pilots. 

3. Hypoxia: Hypoxia is the lack of sufficient oxygen in the body tissues to maintain normal 

physiological function. It is a physiological condition that can impair pilots due to the effects 

of decreased oxygen pressure at an altitude (FAA, 2015b). The FAA allows GA pilots to fly 

without the use of supplemental oxygen up to an altitude of 12,500 feet mean sea level (MSL). 

However, hypoxia can occur at altitudes as low as 5,000 feet especially at night (Nesthus et al., 

1997). The FAA recommends that GA pilots use supplemental oxygen when flying 

unpressurized above 5,000 ft MSL at night, when the eyes become more sensitive to oxygen 

deprivation (FAA AC 61-107) (FAA, 2015c). Hypoxia has a range of symptoms and there is 
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no consistent physical reaction that signals critical impairment. Some of the symptoms include 

incoordination, tremors, lack of concentration, confusion, memory loss, flexibility, working 

memory, drowsiness, visual impairment, anxiety, depression, euphoria, shortness of breath, 

headache, dizziness, nausea, and light-headedness (Neuhaus & Hinkelbein, 2014). Due to the 

nature (e.g., euphoria) and variety of the  symptoms, it is difficult to identify hypoxia when 

experiencing it, especially if one is not trained to recognize the symptoms. An ATP 

recommended providing hypoxia awareness training to even GA pilots so they could learn to 

recognize their personal symptoms and use recovery procedures. 

4. Energy management: Automation is increasingly popular in small aircraft. Though 

automation assists pilots in long flights, overreliance on automation may impede pilots’ manual 

flying skills, thus contributing to accidents. Proficiency in stick and rudder skills may help 

pilots in emergencies, such as an autopilot malfunction or failure. Some CFIs mentioned that 

current training methods are inadequate to train the stick and rudder skills. They recommended 

that training should focus on the basic principles of roll, pitch, and yaw for energy management. 

Energy management is the process of planning, monitoring, and controlling altitude and 

airspeed targets in relation to the aircraft’s energy state (including fuel, engine power, and 

aerodynamic forces) to: (1) attain and maintain desired vertical flightpath-airspeed profiles; (2) 

detect, correct, and prevent unintentional altitude-airspeed deviation from the desired energy 

state; and (3) prevent irreversible deceleration and/or sink rate that results in a crash (FAA, 

2021). One CFI mentioned that once pilots understand the concept of energy management, 

instructors should teach how to apply those concepts in maneuvers, and how to correlate them. 

This CFI has their own training school where they train private pilots several other maneuvers 

in addition to the FAA requirements, such as spins, emergency maneuvers, and aerobatics. 

5. Distraction: A few CFIs mentioned that sometimes pilots tend to make operational errors 

because they get distracted or are too fixated on their target, e.g., on the runway touchdown 

point during a base to final turn. When a pilot overshoots a turn, they could decide to go around 

to make a better approach the next time. Instead, pilots tend to correct the turn by increasing 

the bank too much which may lead to a spin or a spiral, especially, if the pilot gets distracted 
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from maintaining the correct airspeed and pitch. A CFI recommended to teach pilots the 

concept of distractions while performing maneuvers and how to recover from pilot induced 

oscillations. Repetition and practice may help pilots to make better judgments and prevent 

errors. 

6. Quality of instructors: A CFI mentioned that new pilots lack proficiency in their skills due to 

inadequate instruction quality. Since instructors pass on the skills that they have learned from 

their instructors, inadequate instructions may lead to inadequate training even for the future 

generations of pilots. Current training mostly focuses on teaching scenarios rather than on the 

stick and rudder skills. The CFI suggested regular refresher clinics for flight instructors to keep 

them updated on effective training methods. 

8.2.10 Recommendations of Maneuvers for LOC-I Training 

Pilots recommended some useful maneuvers and practices for LOC-I training. A lazy eight 

is designed to develop the proper coordination of the flight controls across a wide range of 

airspeeds and attitudes (FAA, 2021). Pilots do not learn this maneuver in their private pilot training. 

A pilot suggested lazy eight training for private pilots could help them learn better about energy 

management. Other pilots recommended steep turns (at a bank angle between 45° and 60°), slow 

flights, and power-on stalls as some helpful maneuvers to learn to maintain coordination, altitude, 

and speed control. The FAA already requires private pilots to demonstrate these three maneuvers. 

Some pilots mentioned that full stall demonstrations, spin, and spiral training may help pilots to 

recognize and recover from potential threats. Pilots should learn how to recover from potential 

risks in maneuvers if the maneuvers go wrong. For example, instructors should train students to 

recover from a spiral or spin before endorsing them to for solo practices for a stall. 

8.3 Discussion and Conclusion 

The findings from the study helped in identifying additional context in LOC-I and provided 

a deeper perspective into LOC-I causation, recovery methods, and the training in practice. I found 

LOC-I causes ranging from pilot conditions to organizational factors. Weather contributed to four 
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of the seven LOC-I incidents. Lack of experience or familiarity of specific instrument was another 

common factor that contributed to LOC-I. Issues with the organizational culture suggests possible 

reasons why new pilots tend not to share their incidents and experiences. An open and honest 

working relationship of instructors with their students helped some pilots in debriefing issues 

clearly. Additionally, ATC’s communication style may contribute to pilots’ stress in emergencies. 

A pilot recommended calling the pilot by their names instead of aircraft tail numbers in emergency 

situations and talking in a more empathetic way could help pilots get out of the threat more easily 

without creating a panic. 

Pilots recovered using recovery knowledge such as spin recovery and UPRT. Consistent with 

the findings from the survey and AOPA lessons learned articles, pilots shared lessons learned such 

as always practicing maneuvers, staying current, and maintaining flying experience without an 

autopilot. Pilots also discussed gaps in the training and provided recommendations. A pilot 

recommended that training should be consistent at all levels from private pilot to ATP. Pilots who 

transition from GA to airlines end up discarding old training methods and re-learning new training 

methods. The findings from this study may help pilots improve their operating procedures and 

focus training methods to prevent LOC-I in the future. 

  



 

 

 

 

150 

 

 

 CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK 

In this chapter, I summarize the findings from my research, provide recommendations based 

on the insights from pilot surveys and interviews, and discuss future work. 

9.1 Discussion and Conclusion 

Despite many efforts, General Aviation accidents continue to occur at unacceptable rates. 

There has been extensive research into the General Aviation accident causation based on historical 

data from sources such as the NTSB accident database. The NTSB’s accident coding system is 

based on a chain of events model. But not all aspects of accidents are events. Moreover, unlike 

commercial aviation, General Aviation reports tend to focus more on environmental and aircraft 

factors such as bad weather and improper airspeed than pilot factors. The reports provide limited 

detail about pilot action and conditions. Even when the reports mention pilot factors, the 

information is vague and broad, e.g., “pilot took a delayed action.” Additionally, not all issues 

mentioned in narratives get translated to codes. Therefore, only relying on the historical data may 

yield incomplete stories and partial understanding about accident causation. Getting pilots’ 

perspectives using surveys and interviews about their experiences may help in provide a deeper 

understanding into the role of human factors in accidents. Only a few published studies have 

investigated General Aviation accident causation using human-subjects research. These studies 

tend to focus on specific pilot conditions, such as fatigue and hypoxia, rather than providing a 

comprehensive understanding of pilots’ experiences and incidents. Using historical data such as 

the NTSB database and pilots’ perspectives via surveys and interviews may help in providing a 

richer understanding of accident causation to prevent accidents in the future. 
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LOC-I continues to be the deadliest cause of General Aviation accidents. Most of these 

accidents involve pilot-related factors. For my research, I focused on LOC-I accidents. I addressed 

the following research questions to provide a better understanding of LOC-I accident causation 

and an enhanced framework for a comprehensive LOC-I causation analysis: 

1. What causes LOC-I? 

1.1 Which types of errors do pilots make in LOC-I incidents? 

1.2 What causes pilots to make these errors—what is the role of human factors in LOC-I 

accidents? 

For the first set of research questions, I created a state-based modeling framework by 

(1) modeling LOC-I accidents in the form of states and triggers and creating sequencing (grammar) 

rules for 309 states and triggers (Majumdar, 2019; Majumdar et al., 2021; Chapter 3); and (2) 

providing insights into pilots’ perspectives on their experiences and training using lessons learned 

articles, surveys, and interviews (Majumdar & Marais, 2022). 

Aircraft and Demographic Data: To understand the accident aircraft and demographic data 

for LOC-I, I first analyzed 5,914 LOC-I accidents in 2010–2022 from the NTSB database 

(Chapter 2). Cessna 172 was the most common aircraft involved in LOC-I accidents. 77% of the 

accidents were solo flights and 5.95% were instructional. Almost half of the pilots were 55–69 

years old at the time of their LOC-I accident. Most pilots had less than 100 hours of total flying 

experience. Older pilots (50–60 years) had 100–200 hours of flying experience at the time of their 

LOC-I. 

Lessons Learned LOC-I Articles: First, I provided insights into pilots’ perspectives on their 

experiences and training by analyzing pilots’ lessons learned articles, surveying, and interviewing 

pilots with LOC-I experiences (Chapter 6). From the pilots’ LOC-I related lessons learned articles, 

I found pilot factors contributing to LOC-I. Pilots performing energy depleting maneuvers and 

deciding to fly in known weather or other unsafe conditions were some of the additional insights. 

Pilots’ corrective actions e.g., deciding to land or go around immediately, helped them to prevent 

or recover from LOC-I. Some of the most common lessons learned were staying situationally 

aware and adequate pre-flight planning. 
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Pilots’ Survey: The findings from the LOC-I survey helped in identifying specific pilot 

actions and conditions that contributed to LOC-I, and that are not mentioned explicitly in the NTSB 

database (Chapter 7). Pilot error (decision-based and skill-based) was the topmost issue in most 

events (80% of total 166 LOC-I events). Most of these errors such as improper maneuvering and 

improper remedial action are direct results of inadequate training. 25.8% of pilots mentioned that 

either their instructor had not prepared them well or did not teach them methods to recover from 

LOC-I. Pilots could not take a corrective action due to factors, such as fear, fixation, and distraction. 

Pilots’ Interviews: Interviews with nine pilots provided a deeper perspective into LOC-I 

causation, recovery methods, and training in practice (Chapter 8). I found causes ranging from 

pilot conditions to organizational factors. Pilot conditions such as overconfidence were the most 

prevalent factors contributing to LOC-I. Lack of experience or familiarity of aircraft instrument 

was another common factor that contributed to LOC-I. I found several gaps in current training 

methods, such as lack of LOC-I recovery and inadequate simulated instrument training for private 

pilots. Pilots suggested maintaining flying skills by staying current, practicing maneuvers and 

manual flying without an autopilot. 

2. How might we find additional causes from accident reports that are not coded? 

2.1 Can we better model accidents using all the available information in reports to gain a 

deeper understanding of accident causation? 

Comparison of NTSB Codes with Narratives: I first compared the findings of LOC-I 

accidents from their NTSB codes to their narratives as a motivation to address the second set of 

research questions (Chapter 4). From my analysis of 225 accident narratives, I found that pilot-

related issues were most often mentioned in detail in the narratives rather than in the codes. In 

some cases, reports had a code cited but not mentioned in their narratives. In other cases, narratives 

mentioned an issue which did not get translated into a code. This incomplete translation of issues 

in narratives and codes provides inaccurate representations of accident models. The comparative 

analysis suggested that narratives may potentially provide additional findings into accident 

causation. 
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Natural Language Processing: Next, I applied Natural Language Processing (NLP) and 

machine learning techniques to automatically extract findings from accident narratives using the 

state-based approach and multi-label text classification method (Chapter 5). The Longformer 

model predicted ten states and triggers for 20 manually coded accidents with an accuracy of 97.5%. 

The model’s performance suggests that it has the potential to predict additional states and triggers 

from accident narratives.  

The contributions from my research findings are as follows: 

1. The state-based accident approach provides a more complete understanding of how accidents 

happen. The approach can help in consistent accident coding when reporting accidents. Since 

multiple codes have a similar meaning, NTSB reporters usually use different codes in different 

accidents to describe the same issue. For example, 24518: Altitude and 24519: Proper altitude 

both indicate that the pilot did not maintain the correct altitude. By using the state and trigger 

definitions, reporters can do more consistent coding by just using the states (improper altitude, 

according to the example) or triggers. Therefore, we can have a more accurate count of the top 

causes in accidents. 

2. The enhanced state-based model using Natural Language Processing helps in extracting 

additional information from accident reports. The model can serve as an “information 

extraction framework” that can (a) provide an automatic report analysis method to model 

accidents; and (b) facilitate the NTSB reporters with coding the NTSB reports based on an 

automatic analysis of the narratives. 

3. The human-subjects research identifies the role of human factors in LOC-I and provides a 

deeper understanding of LOC-I causation and the gaps in training. The findings from my work 

may help in improving training methods and operating procedures for GA pilots based on the 

recommendations that I have provided in the next section. 
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9.2  Safety Recommendations 

The findings from the survey and interviews show that human factors ranging from pilot 

conditions to organizational issues contribute to LOC-I. Figure 50 shows my recommendations 

based on the survey and interview findings. 

 

Figure 50: Safety recommendations based on insights gained from survey and interviews 

1. Strengthen flying skills 

Pilots with more flying experience tended to be less involved in LOC-I. Moreover, since 

most errors happen due to inadequate skills, pilots should strengthen their flying skills by 

constantly practicing maneuvers, staying current, maintaining flying skills without autopilot, and 

building judgment skills to recognize hazardous and unsafe scenarios and taking corrective actions 

promptly. Not having adequate skills caused pilots to become afraid, anxious, feel unfamiliar of 

the hazards, and unsure of how to recover. 
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2. Introduce recovery training  

Inadequate skills may stem from inadequate training. There are several gaps in training such 

as lack of recovery training and inadequate simulated instrument training for private pilots. Pilots 

and CFIs had varied agreements and disagreements on whether instructors use certain training 

methods (see Table 29). Aerobatic training and recovery techniques such as UPRT, spin, spiral, 

and stall may help pilots to recognize unsafe conditions and recover from LOC-I. 

Since weather contributes to a large fraction of accidents, more hours of simulated 

instrument training especially for VFR rated pilots may help in preventing VFR into IMC 

scenarios to turn into accidents. Students should also experience flying in real IMC with instructors 

or using flight simulators. Further, high-fidelity simulator training may help in instrument, upset 

recovery, and spin training for GA pilots. There should be additional training emphasis on concepts 

of energy management and applying those concepts to existing certification maneuvers such as 

slow flight, lazy eights, steep turns, power on, and accelerated stalls. Student pilots were flying 

solo in 6% of LOC-I accidents (NTSB) and 8% of incidents reported in the survey (see Sections 

2.3 and 7.3.2). Instructors should train their students spiral, spin, and stall recovery methods before 

endorsing them for solo flights. Further, regular refresher clinics for flight instructors may help 

them stay updated on effective training methods. 

3. Education on pilot conditions 

Further, pilots should also be educated consistently about different pilot conditions such as 

vertigo, spatial disorientation, and pilot induced oscillations and how to prevent or recover from 

them. Hypoxia awareness training for GA pilots could help them learn to recognize their personal 

symptoms and use recovery procedures. Finally, effective aeronautical decision making (ADM) 

and crew coordination may help pilots recover from LOC-I. 

Additionally, some design-related recommendations that could be implemented in the future 

are as follows: 

1. Incorporate advanced technology to improve aircraft design: Since stall and spin are major 

contributors to LOC-I, research into improved stall and spin recovery cockpit technology is 

needed. The GAJSC loss of control working group found that pilots’ lack of awareness with 
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respect to angle of attack (AOA) is one of the top factors in fatal LOC-I accidents (GAJSC, 

2014). The FAA stated that AOA indicators can have the highest possibility of significantly 

enhancing safety and reducing fatalities in General Aviation (FAA, 2013; FAA, n.d.). Existing 

GA aircraft should be installed with AOA-based systems such as AOA indicators to increasing 

pilots’ awareness of the aerodynamic effects of AOA and reduce the likelihood of LOC-I. The 

FAA has promoted AOA-based systems through their policy to streamline design and 

production approval of such non-required safety enhancing equipment. However, these 

systems are still not prevalent in the GA fleet (FAA, 2016d). Other advanced avionics systems, 

such as synthetic vision systems and enhanced ground proximity warning systems provide 

pilots with real-time information about their surroundings to improve situational awareness. 

These systems may help pilots avoid hazardous and unsafe states and take corrective actions 

promptly. Researchers should carefully consider whether and how such technology may help 

safety by studying their effects on pilot performance so that any associated negative impacts 

are minimized. 

2. Enhance pilot training using training devices: In their interviews, CFIs suggested more 

simulator training for GA pilots. Recently, two former FAA administrators also recommended 

introducing modern simulator technology to strengthen pilots’ flying skills in hazardous 

scenarios such as weather conditions (Wolfsteller, 2023). Aviation training devices such as 

flight simulators and virtual reality (VR) can be used to provide pilots with realistic scenarios 

of hazardous and unsafe states, allowing them to practice their judgment and decision-making 

skills in a safe and controlled environment. Pilots can also train for their instrument rating and 

learn recovery techniques such as UPRT, spin, spiral, and stall. 

3. Using the state-based approach to prompt pilots with mitigations: The state-based 

approach could be implemented as a “mitigation assistant” system in aircraft operations. The 

system can be implemented in aircraft design to determine probable hazardous outcomes if a 

pilot is in an unsafe state. Based on the unsafe state, the system can prompt the pilot to make 

corrective actions to mitigate the unsafe state. For example, most LOC-I accidents involve 

improper airspeed followed by a stall or spin. In such a case, if the airspeed is low, pilot can 
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be prompted to scan the attitude and angle-of-attack indicators to verify the aircraft attitude 

and the angle of attack. Such a prompt may help pilots prevent an impending stall or spin after 

improper airspeed. 

9.3 Recommendations for Future Work 

In this research, I created a state-based framework to maximize data extraction and insight 

formation from the NTSB accident reports and pilots’ perspectives. I propose the following 

recommendations for future work: 

9.3.1 Create Logic Rules to Infer More Missing States and Triggers in Accidents 

31.8% of LOC-I accidents do not record any codes relevant to the trigger definitions 

(Majumdar, 2019). I developed eleven inferred states and trigger definitions using grammar rules 

e.g., aircraft preflight hazardous inferred state. The grammar rules help infer some of the missing 

information in accidents. More such grammar rules may help in complete the incomplete 

sequences in accident models and provide more details about aircraft and pilot conditions in 

accidents. 

9.3.2 Improve the Robustness of the Longformer NLP Model 

The Longformer model performed well in predicting the 20 manually coded accidents. But 

how can we surmise the model’s actual performance when predicting the 1,500 NTSB coded 

accidents? One way to answer this could be by looking at the false negatives and false positives 

for the predictions. In future, we can manually read narratives for a subset of incorrectly predicted 

accidents to come to a more informed conclusion about the model’s capability to predict states and 

triggers. Additionally, I used ten states and triggers for my experiment. In future, we could fine 

tune the model to produce comparable results with more states and triggers.  
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9.3.3 Modeling Aviation Incidents Using the ASRS Database 

There has been extensive study using the NASA ASRS database. However, most studies 

have identified the most frequent causes and factors in the incidents, thus providing limited 

knowledge of how incidents started as normal flights and ended as unsafe events. Modeling the 

top types of incidents, such as loss of control and powerplant failure, from the ASRS database 

using the state-based modeling framework and the NLP model I developed may provide insights 

into LOC-I incidents. 

9.3.4 Investigate the association between pilot age and inflight loss of control 

Most LOC-I accidents recorded in the NTSB database (Chapter 2) involved older pilots (50 

years and older). In the LOC-I incidents survey (Chapter 7), most pilots who took the survey were 

65 years and older. Although the survey data for LOC-I incidents may be biased due to self-

selection, the NTSB LOC-I accidents suggest a potential association between age and LOC-I 

accidents. Based on the guidance from previous studies, future work could investigate this 

relationship to determine implications for factors such as technological designs, aircraft re-design, 

and training (Charness & Bosman, 1992 and Salvendy, 2012). 

9.3.5 Study the Effects of Different Training Methods on Pilot Proficiency 

Aviation training lays the foundation for learning flight physics and stick-and-rudder skills. 

Pilots carry those necessary skills throughout their flight careers and use them during emergencies 

to prevent accidents. However, most accidents involving pilot error, such as improper maneuvering 

or remedial action, directly result from inadequate training. There is a mismatch between how 

instructors train pilots and the skills pilots gain from their training to prevent or recover from 

unsafe events. Based on the findings from my survey and interviews, I recommend studying how 

do private pilots perceive risk, e.g., poor weather conditions and whether different training 

methods such as different flight school types affect pilot proficiency. As mentioned in the safety 

recommendations section earlier, the effect of increased reliance on flight simulators and VR 

devices on pilot proficiency should be investigated. 
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9.3.6 Modeling Next Generation Transportation Operations Using the State-based 

Approach  

The next few years are expected to experience a growth in next generation transportation and 

smart mobility solutions, such as unmanned aerial vehicles (UAVs), autonomous vehicles, and 

advanced air mobility (AAM). Although there are many benefits of NextGen such as convenience 

and sustainability, new variables will be introduced in the system due to the difference in 

operations, mission types, and maneuverability. Extending the state-based approach on these 

transportation modes may help in understanding the systems better, detecting risks early on, and 

preventing hazards and incidents. 
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APPENDIX A. UNSUPERVISED MACHINE LEARNING TECHNIQUES 

FOR NATURAL LANGUAGE PROCESSING 

As a starting point for analyzing the narratives (Chapter 5), I used the probable cause 

statements of accident narratives that describe the main events, causes, and factors contributing to 

an accident. I first pre-processed the text by implementing three steps on each report through the 

Python library Natural Language Toolkit (NLTK Documentation: https://www.nltk.org/): (1) 

tokenization (split each narrative into words (tokens), lowercase the words, and remove 

punctuation); (2) stop word removal (disregard words such as “the” or “and” which provide little 

meaningful insight in narratives); and (3) lemmatization (change words in third person to first 

person and verbs in past and future tenses into present, e.g., “preparing” will convert to “prepare”). 

Figure 51 shows the method of pre-processing of data. 

 

Figure 51: Method of pre-processing the narrative data from the NTSB reports 

https://www.nltk.org/
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1. N-Grams Analysis 

An N-gram means a contiguous sequence of N items or words. For example, in a sentence 

“Pilot lost aircraft control”, “pilot lost” is a 2-gram (a bigram), “pilot lost aircraft” is a 3-gram 

(trigram), and “pilot lost aircraft control” is a 4-gram. The same sentence has three sets of bigrams 

and two sets of trigrams, i.e., “pilot lost aircraft” and “lost aircraft control.” N-grams are useful in 

text analysis because they capture the local context of words or characters within a text. N-grams 

can be used in accident analysis to analyze and understand patterns in accident data. By extracting 

N-grams from accident reports or other relevant texts, we can gain insights on common 

occurrences and contributing factors. 

I used the NLTK library in Python to find the most frequent words in the probable cause 

statements of 5,515 LOC-I accident reports in 2010–2019. Figure 52 shows the most frequent 

words. Apart from the common words such as pilot, airplane, and control, some of the non-obvious 

most frequent words were landing, stall, takeoff, engine, and airspeed. This suggests that most 

LOC-Is are accompanied with aerodynamic stalls. 

 

Figure 52: Most frequent words in the probable cause statements in 2010–2019 LOC-I accident 

reports. 
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Figure 53 shows the top thirteen 2-grams in the probable cause statements. Apart from 

airplane control, and aerodynamic control, some of the most frequently used words that are 

insightful are engine power, adequate airspeed, angle (of) attack, pilot decision, spatial 

disorientation, and low altitude. We can infer from here that pilot’s decision making plays a key 

role in LOC-I accidents. Additionally, spatial disorientation and low altitude are some of the 

common events in LOC-I accidents. 

 

Figure 53: Most frequent 2-grams in probable cause statements in 2010–2019 LOC-I accident 

reports. 

Figure 54 shows the 5-grams in the probable cause statements. The 5-gram analysis reveals 

some insights. Findings suggest that flight instructor’s delayed remedial action is one of the top 

factors in LOC-I accidents. Loss of engine power is mostly due to fuel starvation in LOC-I 

accidents. Further, maneuvering at low altitude with an aerodynamic stall is a dangerous 

combination to end up in an accident. (Exceeding) aircraft’s design stress limitation leading to an 

inflight breakup is another event in LOC-I accidents. Gusting crosswind conditions could lead to 

an aerodynamic stall causing an LOC-I. Operation of airplane by a non-certificated pilot leads to 

some of the LOC-I accidents. 
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Figure 54: 5-grams in probable cause statements of 2010–2019 LOC-I accident reports. 

2. Topic Modeling 

Researchers have used topic modeling on ASRS reports to identify themes in the reports 

(Kuhn, 2018 and Robinson, 2019). Topic modeling is an approach that can identify latent structure 

within a corpus of documents. Topic modeling is a flexible approach that relies less on subject 

matter experts than alternative document categorization and clustering methods (Kuhn, 2018). It 

uses machine learning to automatically identify topics or themes within a collection of documents. 

With the goal of grouping documents together based on shared topical content, it can uncover 

hidden or latent topics in a set of incident reports. 

I used the WordStat text analysis software to analyze 5,515 accident reports in 2010–2019 

for topic modeling. WordState uses the topic extraction feature to uncover the hidden thematic 

structure of a text collection by applying a combination of natural language processing and 

statistical analysis method called factor analysis (Provalis Research, 2021). I extracted a total of 
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200 topics with their keywords and count. Table 30 shows the top topics found in narratives with 

their keywords. “Engine power total loss” was one of the most frequent topics, followed by “after 

takeoff shortly.” Pilot’s improper decision contributed to accidents frequently. Accidents also 

happened due to improper landing flare. Topics also show that student pilots were flying solo often 

in LOC-I accidents. Improper turns such as “steep left turn” also contributed to accidents. 

Table 30: Six of the most frequent topics in accident reports 

Topic Keywords Count 

ENGINE POWER 

TOTAL LOSS 

Loss; Power; Determined; Experienced; Based; Engine; 

Engine Power; Total Loss; Partial Loss; Left Engine; 

Power Loss  

13,833 

AFTER TAKEOFF 

SHORTLY 

After; Shortly; Takeoff; Touchdown; After Takeoff; 

Shortly After; Shortly After Takeoff; Takeoff Roll 
10,639 

IMPROPER 

DECISION 

CONTRIBUTING 

Contributing; Lack; Decision; Accident; Inadequate; 

Experience; Improper Decision; Inadequate Preflight 
9,350 

LANDING FLARE 

IMPROPER 

Improper; Flare; Resulted; Subsequent; Hard; Bounced; 

Inadequate; Loss; Decision; Landing Flare; Improper 

Landing Flare; Hard Landing; Bounced Landing; 

Subsequent Loss; Improper Decision; Improper Flare; 

Subsequent Failure 

6,760 

STUDENT PILOT 

SOLO 

Solo; Student; Student Pilot; Student Pilot Reported; 

Solo Flight; Solo Student Pilot Reported; Solo Cross 
4,873 

LEFT TURN 

STEEP 

Steep; Turn; Turns; Bank; Entered; Degree; Descending; 

Series; Making; Left Turn; Airplane Entered; Steep Left; 

Bank Angle; Left Bank; Degree Turn; Descending Turn; 

Steep Left Turn; Descending Left Turn 

4,831 
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APPENDIX B. SURVEY OF PILOTS’ EXPERIENCES OF INFLIGHT 

LOSS OF CONTROL INCIDENTS AND TRAINING 

Survey Flow 

Standard: Survey Description (1 Question) 

Block: Consent form (1 Question) 

Standard: First LOC-I Survey Questions (28 Questions) 

Branch: New Branch 

If 

If * Would you like to discuss another LOC-I or potential LOC-I experience? Yes Is 

Selected 

Block: Second LOC-I Survey Questions (28 Questions) 

Branch: New Branch 

If 

If * Would you like to discuss another LOC-I or potential LOC-I experience? No Is 

Selected 

Block: Demographic Questions (8 Questions) 

Branch: New Branch 

If 

If * Would you like to discuss another LOC-I or potential LOC-I experience? Yes Is 

Selected 

Block: Third LOC-I Survey Questions (28 Questions) 

Branch: New Branch 

If 

If * Would you like to discuss another LOC-I or potential LOC-I experience? No Is 

Selected 

Block: Demographic Questions (8 Questions) 

Branch: New Branch 

If 

If * Would you like to discuss another LOC-I or potential LOC-I experience? Yes Is 

Selected 
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Block: Fourth LOC-I Survey Questions (28 Questions) 

Branch: New Branch 

If 

If * Would you like to discuss another LOC-I or potential LOC-I experience? No Is 

Selected 

Block: Demographic Questions (8 Questions) 

Branch: New Branch 

If 

If * Would you like to discuss another LOC-I or potential LOC-I experience? Yes Is 

Selected 

Block: Fifth LOC-I Survey Questions (27 Questions) 

Block: Demographic Questions (8 Questions) 

Branch: New Branch 

If 

If * Would you like to discuss another LOC-I or potential LOC-I experience? No Is 

Selected 

Block: Demographic Questions (8 Questions) 

 

Start of Block: Survey Description 

The aim of this study is to further understanding of what leads to inadvertent inflight loss of control 

(LOC-I) in General Aviation. The survey asks questions about inadvertent LOC-I experiences you 

may have had and the training that you received to prevent an LOC I. 

LOC-I means that a pilot was unable to maintain control of the aircraft in flight, resulting in an 

unrecoverable deviation from the intended flight path. Inadvertent means that the LOC-I was not 

intentional (e.g., an intentional stall during training). 

If you have experienced an inadvertent LOC-I or prevented a potential LOC-I while piloting an 

aircraft, we ask that you consider participating in our study. If you are interested in potentially 

participating, please click Next to proceed to the Informed Consent page, which provides details 

on the study and your role in it. 

End of Block: Survey Description 
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RESEARCH PARTICIPANT CONSENT FORM 

 

Pilots’ Experiences of Inflight Loss of Control Incidents and Training 

Dr. Karen Marais 

School of Aeronautics and Astronautics 

Purdue University 

IRB No. IRB-2021-757 

 

1. Key Information 

Please take time to review this information carefully. This is a research study. Your participation 

in this study is voluntary which means that you may choose not to participate at any time without 

penalty or loss of benefits to which you are otherwise entitled. You may ask questions to the 

researchers about the study whenever you like. If you decide to take part in the study, be sure you 

understand what you will do and any possible risks or benefits. 

This study is a part of the Safety Analysis and General Aviation (SAGA) research project under 

Partnership to Enhance General Aviation Safety, Accessibility, and Sustainability (PEGASAS) 

Center of Excellence and funded by the Federal Aviation Administration (FAA). This survey asks 

questions about your inflight loss of control (LOC-I) experiences and the training that you received 

to avoid or recover from LOC-I. Our overall goal is to understand the underlying aspects of LOC-

I to develop focused training methods that help pilots to avoid LOC-I accidents. 

2. What is the purpose of this study? 

This study seeks to understand pilots’ inadvertent inflight loss of control (LOC-I) experiences 

during training and solo flights and identify the underlying aspects of LOC-I from a human factors 
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perspective. Through this research, we hope to assist the FAA in developing focused training 

methods that help pilots avoid LOC-I accidents.  

3. What will I do if I choose to be in this study? 

We are surveying student pilots and certified pilots from all sectors. If you choose to participate in 

this survey, you will be asked to answer specific questions related to your LOC-I experience(s) and 

flight training related to LOC-I knowledge and recovery. You must be at least 18 years old to 

participate in this survey. As a pilot, you can provide us insights into how LOC-I happens and how 

pilots are trained to recover from a potential LOC-I. If you indicate that you have had more than 

one LOC-I experience, we will give you an option to discuss your other LOC-I experiences. We 

will ask you to list out the conditions and actions that you took that led to the LOC-I. All the text 

response questions are optional. We encourage you to answer the questions as honestly as possible. 

At the end of the survey, we will ask you a few demographic questions. 

4. How long will I be in the study? 

This survey should take you approximately 20–50 minutes to complete; depending on how many 

LOC-I experiences you choose to share. 

5. What are the possible risks or discomforts? 

The risk level from participating in this study is minimal, no greater than you would encounter in 

daily life or during the performance of routine physical or psychological exams or tests. We will 

not be collecting any personally identifiable information during the study. Breach of 

confidentiality is always a risk with data, but we will take precautions to minimize this risk as 

described in the confidentiality section. 

6. Are there any potential benefits? 

There are no direct benefits to participating in this study. The results of this study may help us 

make General Aviation safer by implementing better training methods to help pilots prevent LOC‑I 

accidents. 

7. Are there costs to me for participation? 

There are no anticipated costs to participate in this research. 
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8. Will information about me and my participation be kept confidential? 

This study is funded by the FAA. We have anonymized the responses of this survey which means 

that the survey will not record participants’ IP addresses, location data, or contact information. We 

will not ask you to reveal any personally identifiable information in the survey. All responses will 

be reported only in aggregate at the end of the study. We may use direct quotes from the text 

response, but we will not link any personal identifiers to those quotes. Only the research team will 

have access to the raw data that we collect and will process and analyze the data at Purdue 

University. We will use Box, licensed through Purdue, to store data, and share data only among 

the research team members. We will share our findings and data analysis results in aggregate with 

our project sponsor (the FAA), and potentially publish the findings in a PhD thesis, peer-reviewed 

scientific journals, and conference proceedings. The project’s research records may be reviewed 

by departments at Purdue University responsible for regulatory and research oversight. 

9. What are my rights if I take part in this study? 

You do not have to participate in this research project. Your participation in this study is voluntary. 

You may choose not to participate, or, if you agree to participate, you can withdraw your 

participation at any time without penalty or loss of benefits to which you are otherwise entitled. If 

you decide to stop the survey without finishing, some of your responses may still be useful to the 

researchers. During the survey, you will be able to go back and forth as you wish within each block 

of questions. However, once you exit the current block of questions and enter the next one, you 

won’t be able to change your answers to the questions in the previous block. You may choose to 

not answer some questions and you may stop the survey at any time without any repercussion to 

you. If you do not wish to complete the survey in one sitting, you may save your progress and 

return where you left off if you use the same computer to re-access the link. You may ask questions 

to the researchers about the study whenever you would like. 

10. Who can I contact if I have questions about the study? 

If you have questions, comments, or concerns about this research project, you can talk to one of 

the researchers. Please contact Prof. Karen Marais at (765) 494-0063 or kmarais@purdue.edu or 

Neelakshi Majumdar at nmajumda@purdue.edu. 

mailto:nmajumda@purdue.edu
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To report anonymously via Purdue’s Hotline, see www.purdue.edu/hotline. 

If you have questions about your rights while taking part in the study or have concerns about the 

treatment of research participants, please call the Human Research Protection Program at (765) 

494-5942, email (irb@purdue.edu), or write to: 

Human Research Protection Program - Purdue University 

Ernest C. Young Hall, Room 1032 

155 S. Grant St., 

West Lafayette, IN 47907-2114 

11. Document of Informed Consent 

I have had the opportunity to read this consent form and have the research study explained. I have 

had the opportunity to ask questions about the research study, and my questions have been 

answered. I am prepared to participate in the research study described above.  If you wish to keep 

a PDF copy of the consent form, please click here. If you are 18 years old and above, agree to 

participate in the study and have reviewed the above information, please select “I consent, begin 

survey” and click Next to proceed to the survey questions. If you do not consent or do not wish to 

participate in the survey, please select “I do not consent, end survey” and click Next to exit the 

survey. 

o I consent, begin survey  (1)  

o I do not consent, end survey  (2)  

Skip To: End of Survey If   = 2 

End of Block: Consent form 

Page Break____________________________________________________________________ 

  

http://www.purdue.edu/hotline
https://purdue.ca1.qualtrics.com/CP/File.php?F=F_2nsNeelCNTWNeOW
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Start of Block: First LOC-I Survey Questions 

QS1.1 * Have you ever experienced an inadvertent inflight loss of control (LOC-I) or prevented a 

potential LOC-I?  

o Yes, I have experienced an inadvertent LOC-I or prevented a potential LOC-I  (4)  

o No, I have never experienced or prevented an inadvertent LOC-I  (5)  

o Do not wish to answer  (6)  

Skip To: End of Survey If QS1.1 = 5 

Skip To: End of Survey If QS1.1 = 6 

Page Break____________________________________________________________________ 

QS1.2 * Were you a student pilot or a certified pilot at the time of your LOC-I experience? 

o Student pilot  (1)  

o Certified pilot  (2)  

o Prefer not to say  (3)  

QS1.3 * Approximately how many flight hours did you have when you had your LOC-I experience? 

o Number of flight hours at the time of LOC-I  (2) 

________________________________________________ 

o Prefer not to say  (3)  
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QS1.4 * During your LOC-I experience, who were you flying with? Please check all that apply.  

▢  I was flying solo  (4)  

▢  I was flying with an instructor  (1)  

▢  I was flying with passenger(s)  (2)  

▢  I was flying with a certified pilot  (3)  

▢  Prefer not to say  (5)  

Page Break____________________________________________________________________ 

QS1.5 * What kind of organization, if any, were you flying with during the LOC-I flight? Please 

check all that apply. 

▢  Flying club  (1)  

▢  Flight school  (2)  

▢  Professional company  (3)  

▢  Volunteer organization  (4)  

▢  None  (5)  

▢  Prefer not to say  (7)  

▢  Other  (6) ________________________________________________ 

 



 

 

 

 

173 

 

 

Page Break____________________________________________________________________ 

Display This Question: 

If QS1.5 = 1 

Or QS1.5 = 2 

Or QS1.5 = 3 

Or QS1.5 = 4 

Or QS1.5 = 6 

Or QS1.5 = 7 

QS1.6 * Have you ever observed improper working conditions or management in your 

organization? 

o Yes  (1)  

o Unsure  (2)  

o No  (3)  

o Prefer not to say  (4)  

Display This Question: 

If QS1.6 = 1 

Or QS1.6 = 2 

QS1.7 * Which of the following hold(s) true regarding your operator’s practices before/during the 

LOC-I flight? Please check all that apply. 

▢  The operator did not correct a known deficiency in documents, processes, or 

procedures  (1)  

▢  The operator did not correct inappropriate or unsafe actions of individuals at the 

organization  (2)  

▢  Prefer not to say  (3)  
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▢  Other  (4) ________________________________________________ 

Display This Question: 

If QS1.6 = 1 

Or QS1.6 = 2 

QS1.8 * Have you observed any of these issues in your organization before/during the LOC-I flight? 

▢  Improper management of resources in my organization  (1)  

▢  My organization has/had a poor working atmosphere or culture  (2)  

▢  The procedures and rules in my organization were inadequate  (3)  

▢  Inappropriate crew scheduling and operational planning before the flight  (5)  

▢  Prefer not to say  (6)  

▢  Other  (4) ________________________________________________ 

 

Display This Question: 

If QS1.8 = 1 

QS1.9 * Would you like to add more details about the management of resources in your 

organization? Please do not enter any identifying information (e.g., colleague or company name). 

o Response  (9) ________________________________________________ 

o Prefer not to say  (10)  

 

Display This Question: 

If QS1.8 = 2 

QS1.10 * Would you like to add more details about the working atmosphere or culture in your 

organization? Please do not enter any identifying information (e.g., colleague or company name). 
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o Response  (4) ________________________________________________ 

o Prefer not to say  (5)  

 

Display This Question: 

If QS1.8 = 3 

QS1.11 * Would you like to add more details about procedures and rules in your organization? 

Please do not enter any identifying information (e.g., colleague or company name). 

o Response  (6) ________________________________________________ 

o Prefer not to say  (7)  

 

Display This Question: 

If QS1.8 = 5 

QS1.12 * Would you like to add more details about crew scheduling and operational planning in 

your organization? Please do not enter any identifying information (e.g., colleague or company 

name). 

o Response  (6) ________________________________________________ 

o Prefer not to say  (7) 

Page Break____________________________________________________________________ 

QS1.13 * Which conditions or factors do you think contributed to your LOC-I experience? Please 

check all that apply 

▢  I made decision-based or action-based errors before/during the LOC-I flight  (1)  

▢  I was not mentally or physically fit to fly on the day of the LOC-I flight.  (3)  
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▢  There was a lack of coordination between me, the ATC, ground staff, passenger(s), or the 

instructor before/during the flight.  (4)  

▢  I was not certified, prepared, or properly trained for the flight.  (5)  

▢  I had not received adequate training from my instructor or the ground school before the 

LOC-I flight.  (6)  

▢  My instructor(s) did not point out or correct unsafe actions/habits before/during the 

LOC-I flight.  (7)  

▢  My instructor did not correct a critical mistake that I made that led to the LOC-I.  (8)  

▢  Prefer not to say  (11)  

▢  Other  (10) ________________________________________________ 

 

QS1.14 * We reviewed last 11 years of LOC-I related incident articles written by pilots in the 

AOPA’s Pilot magazine and found some common issues that frequently caused loss of control. Do 

any of the following factors hold true for your LOC-I flight?  

▢  There was an aircraft instrument/control failure in my aircraft.  (1)  

▢  The flight controls were not responding normally.  (2)  

▢  There were inoperative/malfunctioning aircraft instrument(s).  (3)  

▢  There was an engine failure/malfunction.  (4)  

▢  My pre-flight aircraft check or flight planning was inadequate.  (5)  

▢  The aircraft was not serviced or repaired properly.  (6)  

▢  I did not follow the aircraft instruments while performing a maneuver.  (7)  
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▢  I did not follow the checklist properly.  (8)  

▢  I did not consider the aircraft’s capabilities.  (9)  

▢  I did not recognize severe weather/wind/other unsafe flight conditions.  (10)  

▢  I decided to fly in known unsafe weather/wind/other flight conditions.  (11)  

▢  I was using energy depleting maneuvers before the LOC-I.  (12)  

▢  The prevailing weather or light conditions were poor.  (13)  

▢  I diverted or went off-course from my planned route, leading to low fuel/fuel 

exhaustion.  (14)  

▢  I did not load enough fuel for my planned route, so I was low or out of fuel.  (15)  

▢  I inadvertently entered instrument meteorological conditions (IMC) from visual 

meteorological conditions (VMC).  (16)  

▢  I was flying at low altitude.  (17)  

▢  Prefer not to say  (18)  

▢  Other  (19) ________________________________________________ 

Page Break____________________________________________________________________ 

Display This Question: 

If QS1.13 = 10 

Or QS1.13 = 3 

QS1.15 * Which of the following hold true regarding your mental/emotional well-being on the day 

of the LOC-I flight? Please check all that apply. 

▢  I was feeling pressure to fly.  (1)  
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▢  I was stressed/mentally fatigued before the flight.  (2)  

▢  I lacked the motivation to fly.  (3)  

▢  I was not situationally aware during the flight.  (4)  

▢  I got distracted during the flight.  (5)  

▢  I had become overconfident/complacent during/before the flight.  (6)  

▢  Prefer not to say  (7)  

▢  Other  (8) ________________________________________________ 

Display This Choice: 

If QS1.13 = 10 

▢  Not applicable  (9)  

Display This Question: 

If QS1.13 = 4 

Or QS1.13 = 10 

QS1.16 * Which of the following hold(s) true regarding coordination during your LOC-I flight? 

Please check all that apply. 

▢  There was a miscommunication between me and my instructor.  (1)  

▢  There was a miscommunication between me and the ATC/ground radio.  (2)  

▢  I did not follow my instructor’s instructions properly before/during the flight.  (3)  

▢  There was a miscommunication between me and the ground staff.  (4)  

▢  There was a miscommunication between me and the passenger(s).  (5)  

▢  Prefer not to say  (6)  
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▢  Other  (7) ________________________________________________ 

Display This Choice: 

If QS1.13 = 10 

▢  Not applicable  (8)  

Display This Question: 

If QS1.13 = 5 

Or QS1.13 = 10 

QS1.17 * Which of the following hold(s) true regarding your personal readiness for the LOC-I 

flight? Please check all that apply. 

▢  Even though I was current in the aircraft, I did not feel comfortable flying the aircraft.  

(1)  

▢  I realized that I did not have recent experience in flying the aircraft.  (2)  

▢  Even though I was current in instrument or night conditions, I did not feel comfortable 

flying at night or in IMC.  (3)  

▢  I realized that I did not have recent experience flying at night or in IMC.  (4)  

▢  Prefer not to say  (5)  

▢  Other  (6) ________________________________________________ 

Display This Choice: 

If QS1.13 = 10 

▢  Not applicable  (7)  

 

Display This Question: 

If QS1.13 != 6 

QS1.18 * Which of the following hold(s) true regarding the training you received from your 

instructor(s) up until the day of your LOC-I flight? Please check all that apply. 
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▢  My instructor(s) had not prepared me well to recover from LOC-I before my first LOC-I 

flight.  (2)  

▢  My instructor(s) had never taught me methods to recover from LOC-I before my first 

LOC-I flight.  (3)  

▢  My instructor(s) had provided me adequate guidance on methods to recover from LOC-I 

before my first LOC-I flight.  (1)  

▢  Prefer not to say  (4)  

▢  Other  (5) ________________________________________________ 

Display This Choice: 

If QS1.13 = 10 

▢  Not applicable  (6)  

QS1.19 * Which of the following hold(s) true regarding the training you received from your 

instructor(s) up until the day of your LOC-I flight? Please check all that apply. 

▢  My instructor(s) had not prepared me well to recover from LOC-I before my first LOC-I 

flight  (1)  

▢  My instructor(s) had never taught me methods to recover from LOC-I before my first 

LOC-I flight  (2)  

▢  Prefer not to say  (3)  

▢  Other  (4) ________________________________________________ 
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Page Break____________________________________________________________________ 

Description S1 Unsafe conditions, events, and actions 

Generally, accidents and incidents happen due to a combination of unsafe flight, weather, pilot-

related, or other external conditions and events. Similarly, there can be multiple unsafe acts that 

lead to an incident or accident. 

Consider a case where a pilot experienced a potential LOC-I due to wake turbulence from a bigger 

aircraft. Before the approach, the pilot had changed his radio frequencies and did not hear any 

transmissions from the ATC regarding the larger aircraft’s approach. Moreover, the pilot was not 

situationally aware of their surroundings. Due to the wake turbulence, the aircraft rolled almost 

fully inverted several times. The pilot got disoriented and the plane was in an upset state. The pilot 

used their aerobatics knowledge to initiate an upset recovery by rolling the aircraft towards the sky 

and prevented a potential LOC-I. 

In this case, the following are the unsafe conditions and events: 

1. Wake turbulence 

2. The pilot got disoriented. 

3. The aircraft was in an upset state. 

Unsafe actions: 

1. The pilot was not situationally aware during the flight. 

2. The pilot did not maintain the correct radio frequency. 

Corrective actions: 

1. The pilot used their aerobatics knowledge to recover an inverted aircraft. 

Now, let's discuss the series of unsafe conditions, events, and actions in your LOC-I 

experience. 
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Display This Question: 

If QS1.13 = 1 

Or QS1.13 = 10 

QS1.20 * What kind of errors did you make during your LOC-I flight? Please check all that apply. 

▢  I made improper decision(s) before/during the LOC-I flight.  (1)  

▢  I took wrong action(s) or did not take correct actions, leading to the LOC-I.  (2)  

▢  I perceived the flight conditions incorrectly and made an incorrect decision based 

on that misperception.  (3)  

▢  Prefer not to say  (4)  

▢  Other  (5) ________________________________________________ 

Display This Choice: 
If QS1.13 = 10 

▢  Not applicable  (6) 

QS1.21 * What unsafe conditions or events existed before/during the LOC-I flight? 

o Response  (4) ________________________________________________ 

o Prefer not to say  (5)  

 

QS1.22 * What unsafe actions did you take before and during the LOC-I flight? Please list them 

in chronological order. If you do not wish to answer, then enter "N/A" or "NA" in the first text 

box. 

o 1st Unsafe action  (1) ________________________________________________ 

o 2nd unsafe action  (2) ________________________________________________ 

o 3rd unsafe action  (3) ________________________________________________ 
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o 4th unsafe action  (4) ________________________________________________ 

o 5th unsafe action  (5) ________________________________________________ 

o 6th unsafe action  (6) ________________________________________________ 

o 7th unsafe action  (7) ________________________________________________ 

o 8th unsafe action  (8) ________________________________________________ 

o 9th unsafe action  (9) ________________________________________________ 

o 10th unsafe action  (10) ________________________________________________ 

o 11th unsafe action  (11) ________________________________________________ 

o 12th unsafe action  (12) ________________________________________________ 

o 13th unsafe action  (13) ________________________________________________ 

o 14th unsafe action  (14) ________________________________________________ 

o 15th unsafe action  (15) ________________________________________________ 

o 16th unsafe action  (16) ________________________________________________ 

o 17th unsafe action  (17) ________________________________________________ 

o 18th unsafe action  (18) ________________________________________________ 
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o 19th unsafe action  (19) ________________________________________________ 

o 20th unsafe action  (20) ________________________________________________ 

Page Break____________________________________________________________________ 

QS1.23 * How did you recover from the LOC-I or prevent a potential LOC-I? 

o Response  (4) ________________________________________________ 

o Prefer not to say/Not applicable  (5)  

Page Break____________________________________________________________________ 

QS1.24 * If you did not take a corrective action, what do you think you could or should have done? 

o Response  (4) ________________________________________________ 

o Prefer not to say/Not applicable  (5)  

 

QS1.25 * If you did not take a corrective action, what made you not take an action? 

o Response  (4) ________________________________________________ 

o Prefer not to say/Not applicable  (5)  
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Page Break____________________________________________________________________ 

QS1.26 * Is there anything else that you would like to add about your LOC-I experience? 

o Response  (6) ________________________________________________ 

o Prefer not to say  (7)  

Page Break____________________________________________________________________ 

QS1.27 * Would you like to discuss another LOC-I or potential LOC-I experience? 

o Yes  (1)  

o No  (2)  

 

End of Block: First LOC-I Survey Questions 

 

Start of Block: Second LOC-I Survey Questions 

QS2.1 * Were you a student pilot or a certified pilot at the time of your LOC-I experience? 

o Student pilot  (1)  

o Certified pilot  (2)  

o Prefer not to say  (3)  

 



 

 

 

 

186 

 

 

QS2.2 * Approximately how many flight hours did you have when you had your LOC-I experience? 

o Number of flight hours at the time of LOC-I  (2) 

________________________________________________ 

o Prefer not to say  (3)  

 

QS2.3 * During your LOC-I experience, who were you flying with? Please check all that apply.  

▢  I was flying solo  (4)  

▢  I was flying with an instructor  (1)  

▢  I was flying with passenger(s)  (2)  

▢  I was flying with a certified pilot  (3)  

▢  Prefer not to say  (5)  

Page Break____________________________________________________________________ 

QS2.4 Were you flying with the same organization as before when the second LOC-I happened? 

o Yes  (1)  

o No  (2)  

 

Display This Question: 

If QS2.4 = 2 

<< Repeat QS1.5 to QS1.27>> 

End of Block: Second LOC-I Survey Questions 

 

Start of Block: Third LOC-I Survey Questions 
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<< Repeat QS2.1 to QS2.27>> 

End of Block: Second LOC-I Survey Questions 

 

Start of Block: Fourth LOC-I Survey Questions 

<< Repeat QS2.1 to QS2.27>> 

End of Block: Second LOC-I Survey Questions 

 

Start of Block: Fifth LOC-I Survey Questions 

<< Repeat QS2.1 to QS2.27>> 

End of Block: Second LOC-I Survey Questions 

 

Start of Block: Demographic Questions 

QD1 * How old are you? 

o 18–24 years  (1)  

o 25–34 years  (2)  

o 35–44 years  (3)  

o 45–54 years  (4)  

o 55–64 years  (5)  

o 65 or older  (6)  

o Prefer not to say  (7)  

 

QD2 * What gender do you identify with? 
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o Male  (1)  

o Female  (2)  

o Non-binary/third gender  (3)  

o Prefer not to say  (4)  

Page Break____________________________________________________________________ 

QD3 * What grade of pilot certificate do you currently have? Please click all that apply. 

▢  No certificate  (1)  

▢  Student  (2)  

▢  Private  (3)  

▢  Commercial  (4)  

▢  Airline Transport  (5)  

▢  Sport  (6)  

▢  Recreational  (7)  

▢  Prefer not to say  (8)  

▢  Other  (9) ________________________________________________ 

 

QD4 * Which ratings or endorsements do you currently have? Please click all that apply. 

▢  Single-engine land  (1)  

▢  Multi-engine land  (2)  
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▢  Instrument  (3)  

▢  Rotorcraft-Helicopter  (4)  

▢  Glider  (5)  

▢  Lighter-than-air  (6)  

▢  Single-engine sea  (7)  

▢  Multi-engine sea  (8)  

▢  Tailwheel  (9)  

▢  High altitude  (10)  

▢  High performance  (11)  

▢  Complex  (12)  

▢  Single-engine flight instructor  (13)  

▢  Multi-engine flight instructor  (14)  

▢  Instrument flight instructor  (15)  

▢  None  (16)  

▢  Prefer not to say  (17)  

▢  Other  (18) ________________________________________________ 

 

Page Break  
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QD5 * Approximately how many years of flying experience do you have? 

o Number of flying years  (1) ________________________________________________ 

o Prefer not to say  (2)  

 

QD6 * Approximately how many flight hours do you have logged? 

o Number of flying hours  (1) ________________________________________________ 

o Prefer not to say  (4)  

 

QD7 * Approximately how many days a month do you fly, on average? 

o 2–7 days a week  (1)  

o Once a week  (2)  

o Once a month  (3)  

o Once every 2–5 months  (4)  

o Rarely/never  (5)  

o Prefer not to say  (6)  

 

Page Break____________________________________________________________________ 

QSurveyEnd You have reached the end of the survey. To finish the survey, please click Submit. 

End of Block: Demographic Questions 
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APPENDIX C. INTERVIEW OF PILOTS’ EXPERIENCES OF INFLIGHT 

LOSS OF CONTROL INCIDENTS AND TRAINING 

RESEARCH PARTICIPANT CONSENT FORM 

Interview of Pilots’ Experiences of Inflight Loss of Control Incidents and Training 

Dr. Karen Marais 

School of Aeronautics and Astronautics 

Purdue University 

IRB No. IRB-2022-73 

 

1. Key Information 

Please take time to review this information carefully. This is a research study. Your participation 

in this study is voluntary which means that you may choose not to participate at any time without 

penalty or loss of benefits to which you are otherwise entitled. You may ask questions to the 

researchers about the study whenever you like. If you decide to take part in the study, be sure you 

understand what you will do and any possible risks or benefits. 

This study is a part of the Safety Analysis and General Aviation (SAGA) research project under 

Partnership to Enhance General Aviation Safety, Accessibility, and Sustainability (PEGASAS) 

Center of Excellence and funded by the Federal Aviation Administration (FAA). This research 

study is being conducted by Neelakshi Majumdar, a Ph.D. candidate in the School of Aeronautics 

and Astronautics at Purdue University, under the guidance of Dr. Karen Marais. Our overall goal 

is to understand what leads to inadvertent inflight loss of control (LOC-I) and how pilots are trained 

to prevent or recover from LOC-I. LOC-I means that a pilot was unable to maintain control of the 

aircraft in flight, resulting in an unintended departure of an aircraft from controlled flight regime. 

Inadvertent means that the LOC-I was not intentional (e.g., an intentional stall during training). 

Through this study, we aim to develop focused training methods that may help pilots to avoid 
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LOC-I accidents. In this study, we will ask you questions about your LOC-I experience(s) and the 

training that you received or provide as an instructor to prevent or recover from LOC-I. 

2. What is the purpose of this study?  

This study seeks to gain insight into what causes inadvertent inflight loss of control (LOC-I) and 

how training may prepare or fail to prepare pilots to avoid LOC-I. We are seeking both pilot and 

flight instructor perspectives. We hope to enroll about 10 participants in our study. We aim to 

identify the underlying causes of LOC-I from a human factors perspective. Through this research, 

we hope to assist the FAA in developing focused training methods that help pilots avoid LOC-I 

accidents. 

3. What will I do if I choose to be in this study?  

This study follows a semi-structured interview format. A semi-structured interview is a type of 

interview in which the interviewer asks only a few predetermined questions while the rest of the 

questions are not planned in advance. If you choose to participate in this study, we will ask you to 

answer some open-ended and specific questions related to LOC-I in general, the training you 

received (or give, if you are an instructor) as well as any LOC-I experience(s) you may have had. 

As a pilot, you can provide us insights into how LOC-I happens and how pilots are trained to 

prevent or recover from a potential LOC-I. If you indicate that you have had more than one LOC-

I experience, we will give you an option to discuss your other LOC-I experiences. All the questions 

are optional, and you may stop the interview at any time without any repercussion to you. We 

encourage you to answer the questions as honestly as possible. You must be at least 18 years old 

to participate in this study. 

4. How long will I be in the study?  

This interview should take approximately an hour to complete; depending on the depth of your 

responses and the number of LOC-I experiences you choose to share. 

5. What are the possible risks or discomforts?  

The risk level from participating in this study is minimal, no greater than you would encounter in 

daily life or during the performance of routine physical or psychological exams or tests. We will 
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not be collecting any personally identifiable information during the study. We will be recording 

the interview so that we can transcribe the recording into text and can analyze your responses. 

Only Neelakshi Majumdar will have access to the recording file. After transcription, we will 

destroy the recording file. Only the research team will have access to the transcribed text. This 

research is anonymous. Anonymous means that we will not record any information about you that 

could identify you. There will be no linkage between your identity and your response in the 

research. If you or the interviewer inadvertently reveal any direct identifiers during the interview, 

we will remove them from the transcribed text. Breach of confidentiality is always a risk with data, 

but we will take precautions to minimize this risk as described in the confidentiality section. 

6. Are there any potential benefits?  

There are no direct benefits to participating in this study. The results of this study may help us 

make General Aviation safer by implementing better training methods to help pilots prevent LOC-I 

accidents. 

7. Are there costs to me for participation? 

There are no anticipated costs to participate in this research. 

8. Will information about me and my participation be kept confidential? 

This research is anonymous. Anonymous means that we will not record any information about you 

that could identify you. There will be no linkage between your identity and your response in the 

research. This means that we will not record your name, address, phone number, date of birth, etc. 

in the transcribed response file. We will remove any such identifiers from the transcribed text. 

After transcription, we will destroy the recording file. All responses will be reported only in 

aggregate at the end of the study. We may use direct quotes from the responses, but we will not 

link any personal identifiers to those quotes. Only the research team will have access to the raw 

data (transcribed responses) and will process and analyze the data at Purdue University. We will 

use Box, licensed through Purdue, to store data, and share data only among the research team 

members. We will share our findings and data analysis results in aggregate with our project sponsor 

(the FAA), and potentially publish the findings in a PhD thesis, peer-reviewed scientific journals, 
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and conference proceedings. The project’s research records may be reviewed by departments at 

Purdue University responsible for regulatory and research oversight. 

9. What are my rights if I take part in this study?  

You do not have to participate in this research project. Your participation in this study is voluntary. 

You may choose not to participate, or, if you agree to participate, you can withdraw your 

participation at any time without penalty or loss of benefits to which you are otherwise entitled. If 

you decide to stop the interview without finishing, some of your responses may still be useful to 

the researchers. You may choose to not answer some questions and you may stop the interview at 

any time without any repercussion to you. You may ask questions to the researchers about the 

study whenever you would like. 

10. Who can I contact if I have questions about the study?  

If you have questions, comments, or concerns about this research project, you can talk to one of 

the researchers. Please contact Prof. Karen Marais at (765) 494-0063 or kmarais@purdue.edu or 

Neelakshi Majumdar at nmajumda@purdue.edu. 

To report anonymously via Purdue’s Hotline, see www.purdue.edu/hotline. 

If you have questions about your rights while taking part in the study or have concerns about the 

treatment of research participants, please call the Human Research Protection Program at (765) 

494-5942, email (irb@purdue.edu), or write to: 

Human Research Protection Program - Purdue University  

Ernest C. Young Hall, Room 1032  

155 S. Grant St.,  

West Lafayette, IN 47907-2114 

11. Document of Informed Consent 

If you are 18 years old and above, have reviewed the above information, and agree to participate 

in the study, we will ask you to verbally acknowledge the following statement before we start the 

interview: 

mailto:kmarais@purdue.edu
mailto:nmajumda@purdue.edu
http://www.purdue.edu/hotline
mailto:irb@purdue.edu
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“I have had the opportunity to read this consent form and have the research study explained. I have 

had the opportunity to ask questions about the research study, and my questions have been 

answered. I am prepared to participate in the research study described above.” 
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Semi-structured Interview 

Interview of Pilots’ Experiences of Inflight Loss of Control Incidents and Training 

 

Objective of the study: To understand pilots’ perspectives on their LOC-I experiences and their 

causes, LOC-I training, and their opinions on LOC-I. 

Interview Script: 

We are here to talk about your perceptions about LOC-I and the training in practice to prevent or 

recover from an inflight loss of control. Also, if you have personally experienced an LOC-I or 

prevented a potential LOC-I and are open to sharing that experience, we will ask you about that. 

We have prepared a set of standard questions on which we will base our conversation. I will not 

be asking any questions related to any violations that you may have made during your experiences 

or training, and if you volunteer such information, we will ask you to stop. I expect that this 

conversation will last about an hour. I will be recording the interview so that I can transcribe the 

recording into text and can analyze your responses. Only I will have access to the recording file. 

After transcription, I will destroy the recording file. Only Prof. Marais and I will have access to 

the transcribed text. 

Before we proceed, could you open the consent form that I sent you via email?  

Have you read all the instructions in the consent form, and do you understand them? 

Do you have any questions or concerns? 

Please let me know if you would like to proceed with the study. 

<Continue if the participant says “yes”. Stop otherwise.> 

Could you please verbally acknowledge the consent statement at the very end of the consent form. 

“I have had the opportunity to read this consent form and have the research study explained. I have 

had the opportunity to ask questions about the research study, and my questions have been 

answered. I am prepared to participate in the research study described above.” 

Great, thank you. I will now begin recording. 

<Start recording> 
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I will first start by asking you a few basic demographic questions. If you prefer not to answer a 

question, please just say “skip”. 

General/Demographic Questions 

1. What grade(s) of pilot certificate do you currently have (Student, Private, Commercial, 

Airline Transport, Sport, Recreational, Other)?  

▢ No certificate 

▢ Student 

▢ Private 

▢ Commercial, CFI 

▢ Airline Transport 

▢ Sport 

▢ Recreational 

▢ Prefer not to say 

▢ Other___________ 

 

2. Which ratings or endorsements do you currently have (Single/Multi-engine land, 

Single/Multi-engine sea, Instrument, Rotorcraft-Helicopter, Glider, Lighter-than-air, 

Tailwheel, High altitude, High performance, Complex, Single/Multi-engine/Instrument 

flight instructor)? 

▢ Single-engine land 

▢ Multi-engine land 

▢ Instrument 

▢ Rotorcraft-Helicopter 

▢ Glider 

▢ Lighter-than-air 
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▢ Single-engine sea 

▢ Multi-engine sea 

▢ Tailwheel 

▢ High altitude 

▢ High performance 

▢ Complex 

▢ Single-engine flight instructor 

▢ Multi-engine flight instructor 

▢ Instrument flight instructor 

▢ None 

▢ Prefer not to say 

▢ Other___________ 

 

3. As a student pilot, what FAA part did you fly under? Part 61 or 141?  

4. Approximately how many hours and years of flying experience do you have? 

Hours: ______ 

Years: ______ 

5. How old are you now?  

6. Have you ever experienced an inadvertent inflight loss of control or prevented a potential 

LOC-I?  

<If participant is a CFI and has not experienced an LOC-I themselves> 

Have you ever experienced an LOC-I with a student? 

Or did any of your students had an LOC-I experience while you were training them? 

<If the participant is a CFI and has NOT experienced an LOC-I incident, skip to Q40–53> 
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<If the participant has experienced an LOC-I incident (irrespective of whether they are a CFI 

or not), go over all the questions below Q6–53> 

7. Are you willing to discuss your LOC-I experience? 

8. How many times did you experience an LOC?  

9. <If the participant had multiple LOC-I experiences> Is there a particular LOC incident that 

you would like to talk about?  

Would you mind telling a few more details about your LOC-I experience. 

10. How old were you at the time of the LOC flight?  

11. What grade(s) of pilot certificate did you have at the time of the LOC flight?  

▢ No certificate 

▢ Student 

▢ Private 

▢ Commercial 

▢ Airline Transport 

▢ Sport 

▢ Recreational 

▢ Prefer not to say 

▢ Other___________ 

12. Which ratings or endorsements did you have at the time of the LOC?  

▢ Single-engine land 

▢ Multi-engine land 

▢ Instrument 

▢ Rotorcraft-Helicopter 

▢ Glider 
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▢ Lighter-than-air 

▢ Single-engine sea 

▢ Multi-engine sea 

▢ Tailwheel 

▢ High altitude 

▢ High performance 

▢ Complex 

▢ Single-engine flight instructor 

▢ Multi-engine flight instructor 

▢ Instrument flight instructor 

▢ None 

▢ Prefer not to say 

▢ Other___________ 

13. How many hours and years of flying experience did you have at the time of the LOC? 

Hours: ____ 

Years: ____ 

14. Approximately how many days a month on average were you flying at that time?  

15. Were you flying solo or with someone during the LOC flight?  

16. If a student pilot, what FAA part were you flying under? Part 61 or 141? 

<If flying with someone> who were you flying with? For example, a passenger, fellow-

student or instructor.  

Were you flying as a CFI during this LOC experience (or any other LOC experiences)? 
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17. <If the participant mentioned in Q16 that they were flying as a CFI with a student> Was it 

an instructional flight? Was your student acting as the PIC (pilot in control) when you both 

lost control? 

18. Did the LOC result from an attempted intentional maneuver that went wrong (e.g., during 

LOC-I training)? 

19. Can you tell me what happened on the day you experienced LOC? 

Checklist Questions 

<Ask these questions if the participant hasn’t included these points in their answer for Q19> 

20.  What was the purpose of the flight? What kind of flying were you doing? 

21.  What kind of aircraft were you flying in? 

22.  What airport were you flying from and where to? 

23.  What were the terrain conditions during the flight? 

24.  What airspace were you flying through? 

25.  Were you explicitly communicating with a tower or were you flying in an un-towered 

field? 

26.  When did you become aware that you were losing or had lost control? 

27.  Let’s talk about that particular day, how were the weather conditions (specifically 

ceiling, IMC, wind) on that day? What time of the day was it? Day or night? 

28.  Do you think the weather or wind conditions contributed to the LOC?  

29.  Did you feel stressed or under any external or internal pressure to fly on the LOC day?  

30.  Were you exhausted or overtired that day? 

<If the participant was flying as a CFI with a student during an instructional flight> 

31. Do you remember how your student was feeling, if they were stressed, under any 

pressure, or fatigued, and whether they shared that before or during the flight?  
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32.  Can you describe your sequence of actions and the maneuvers that you conducted to 

recover from the LOC or to prevent a potential LOC?  

What would have made it worse? 

<If the participant was flying as a CFI with a student during an instructional flight>  

33. Can you describe your and your student’s sequence of actions and the maneuvers that were 

taken to recover from the LOC or to prevent a potential LOC? 

 <If the participant did NOT take a corrective action>  

34. Why do you think you did not or could not take a corrective action? 

<If the participant was flying as a CFI with a student during an instructional flight> 

35.  Why do you think your student did not or could not take a corrective action? 

36.  What could you have done differently to prevent or recover from the LOC? 

Perceptual Errors and Training Questions 

I would like to now focus on whether you had made any kind of errors (i.e., wrong actions, 

lack of actions, or bad decisions) based on inaccurate perceptions of people, situations, or 

objects during the LOC-I flight. These kinds of errors are called perceptual errors. Perceptual 

errors often result from the pre-conceived ideas that people hold about other people, objects, 

and situations. For example, in the context of driving, sometimes one cannot see critical 

information while driving because it is dark, or a pedestrian's clothes have low contrast, i.e., 

they assume there is no critical information, when in reality there is some information. 

Perceptual errors may also happen when you rely on previous experiences to make decisions. 

For example, deciding to drive in a storm because the last time you drove in a storm, you got 

to your destination safely.  

37. Do you remember making any such perceptual errors during the LOC-I flight? 

<If the participant was flying as a CFI with a student during an instructional flight> 

38. Do you remember your student making any such perceptual errors during the LOC-I flight? 



 

 

 

 

203 

 

 

39. Have you ever formally reported or otherwise documented this incident?  

<If “yes”> where did you document it? Do you mind sharing the incident number or link 

to the article? Why do you think you did not document it? 

<If participant was not flying as a CFI 

during LOC> 

<If participant is a CFI (irrespective whether they 

had an LOC-I)> 

Thinking back to the training you had 

before the LOC-I flight… 

<If CFI has experienced LOC-I with a student 

during an instructional flight> Let’s talk about 

pilot training before the LOC-I flight. 

<If CFI has experienced LOC-I but NOT during 

an instructional flight or has NOT experienced 

LOC-I at all> Let’s talk about LOC-I related pilot 

training in practice. 

40. What kind of maneuvers or other 

practices did you learn to prevent or 

recover from a potential LOC-I? 

40. <Ask all CFI whether they experienced LOC 

or not> 

a) What kind of maneuvers or other practices did 

you learn to prevent or recover from a 

potential LOC? 

b) What kind of maneuvers or other practices do 

you teach your student to prevent or recover 

from a potential LOC-I? 

<If CFI has experienced LOC-I with a student 

during an instructional flight > What kind of 

maneuvers or other practices did you teach 

your student to prevent or recover from a 

potential LOC-I? 

41. Did your instructor teach you how to 

prevent and recover from potential 

threats if a maneuver goes wrong 

(e.g., a stall maneuver could lead to a 

spin)? 

41. Do you teach your student how to recover 

from potential threats if a maneuver goes 

wrong (e.g., a stall maneuver could lead to a 

spin)? 

<If CFI has experienced LOC-I with a student 

during an instructional flight>  

Did you teach your student how to recover 

from potential threats if a maneuver goes 

wrong (e.g., a stall maneuver could lead to a 

spin)? 
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<If participant was not flying as a CFI 

during LOC> 

<If participant is a CFI (irrespective whether they 

had an LOC-I)> 

42. Do you think that student pilots 

should be trained maneuvers if they 

don’t yet know how to recover if the 

maneuver goes wrong (like we 

discussed about a stall maneuver 

leading to a spin)? Why or why not? 

42. <Ask all CFI whether they experienced LOC-

I or not> Do you think that student pilots 

should be trained maneuvers if they don’t yet 

know how to recover if the maneuver goes 

wrong (e.g., a stall maneuver could lead to a 

spin)? Why or why not? 

43. Were you trained well for 

controlling the aircraft during 

weather conditions (such as gusty 

winds, mountain wave, crosswinds)? 

43. How do you train your student for controlling 

the aircraft during weather conditions (such as 

gusty winds)? 

<If CFI has experienced LOC-I with a student 

during an instructional flight > How did you 

train your student for controlling the aircraft 

during weather conditions (such as gusty 

winds)? 

44. Did your flight instructor, flight 

school, or ground school teach you 

about pilot conditions (such as 

fatigue, hypoxia, spatial 

disorientation) and errors (such as 

distraction or just freezing over 

controls) that may contribute to an 

LOC-I?  

44. Do you train your student about pilot 

conditions (such as fatigue, hypoxia) and 

errors (such as distraction or just freezing 

over controls) that may contribute to an LOC-

I?  

<If CFI has experienced LOC-I with a student 

during an instructional flight > Did you train 

your student about pilot conditions (such as 

fatigue, hypoxia) and errors (such as 

distraction or just freezing over controls) that 

may contribute to an LOC-I? 

45. <If the participant answered a 

“YES” to the previous questions>  

Did your instructor train you how to 

prevent or mitigate these conditions 

and errors? 

45. <If the CFI answered a “yes” to the previous 

questions> 

How do you train your student on how to 

prevent or mitigate these conditions and 

errors? 

<If CFI has experienced LOC-I with a student 

during an instructional flight> How do you 

train your student on how to prevent or 

mitigate these conditions and errors? 
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<If participant was not flying as a CFI 

during LOC> 

<If participant is a CFI (irrespective whether they 

had an LOC-I)> 

46. Do you think you were well-

prepared in terms of maneuver 

training and LOC-I recovery training 

before the LOC-I event? 

46. Do you think you prepare your students well 

in terms of training to prevent and recover 

from an LOC-I?  

<If CFI has experienced LOC-I with a student 

during an instructional flight>  

Do you think you had prepared your student 

well in terms of training to prevent and 

recover from an LOC-I, before the incident? 

47. <If the participant answered a “no” 

to the previous questions> How do 

you think you could have been 

prepared better to prevent or recover 

from the LOC-I? 

47. <If the CFI answered a “no” to the previous 

questions>  

What can you do differently to prepare your 

student to prevent or recover from an LOC-I?  

Do you want to add your opinions on LOC-I 

incidents and pilot training to prevent LOC-I? 

<If CFI has experienced LOC-I with a student 

during an instructional flight> What could 

you have done differently to prepare your 

student to prevent or recover from the LOC-I? 

48. What did you learn from your LOC-I experience? 

49. Is there anything else that you would like to add about your experience? 

50. What kind of maneuvers should the pilots be taught for PPL? 

51. What kind of maneuvers are not good enough in the current curriculum? 

52. If you had the authority to modify the training, what would you have modified? 

53. Do you want to add your opinions on LOC-I incidents and pilot training to prevent LOC-I? 
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APPENDIX D. STATES, TRIGGERS, AND ADDITIONAL INFORMATION 

This section includes descriptions for the 108 states, 194 triggers, and seven additional 

information, as described in Chapter 3. 

1. State Descriptions 

Table 31: Descriptions for hazardous states 

No. State Description 

1 Inflight Loss of Control State 

A hazardous state that involves an unintended 

departure of an aircraft from controlled flight 

regime (FAA, 2016).  

2 Improper RPM State  
Hazardous state where the propeller RPM is either 

too low or too high. 

3 
Improper Altitude/Clearance 

State 

Hazardous state where the aircraft is operating too 

close to the ground, terrain, water, or object. 

4 Improper Climb State 

Hazardous state where the aircraft’s climb was 

incorrect/climb capability was exceeded/climb rate 

was incorrect. 

5 Improper Distance State   
Hazardous state where the distance from the 

runway/landing site/object/aircraft is incorrect. 

6 Improper Heading State   
Hazardous state where the pilot failed to maintain 

heading/course. 

7 Improper Airspeed State   
Hazardous state where the pilot fails to maintain 

correct airspeed during the flight. 

8 Improper Descent State   
Hazardous state where the aircraft’s descent was 

incorrect/descent rate was incorrect. 
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Table 31: Descriptions for hazardous states 

No. State Description 

9 
Intentional/Inadvertent flight 

through poor weather State   

Hazardous state where the pilot intentionally or 

inadvertently flew into poor weather conditions. 

10 
Flight in Prevailing Poor 

Weather and Light State   

Hazardous weather state that existed during the 

start of flight. 

11 
Preflight Mechanical Issue 

State 

Hazardous state where the flight begins with a pre-

existing mechanical problem with the aircraft 

12 
Preflight Pilot Hazardous 

Inferred State 

Inferred using grammar rules: Hazardous 

preflight state of the pilot inferred when NTSB 

does not mention relevant state codes for an 

accident. 

13 
Physically 

Impaired/Incapacitated State 

Hazardous preflight state where the pilot was 

impaired or incapacitated 

14 
Overconfidence/ Lack of 

confidence State 

Hazardous state where the pilot demonstrated lack 

of/overconfidence in his/her/aircraft’s ability. 

15 

Insufficient 

Qualification/Training/Lack 

of Experience or Familiarity 

State 

Hazardous state where the pilot did not meet the 

qualification/training requirements to perform the 

flight 

16 Fatigued/Overworked State 
Hazardous state where the pilot was 

fatigued/overworked prior to flight. 

17 Anxiety/Under Pressure State 
Hazardous state where the pilot was anxious or 

under pressure while operating the aircraft 

18 Poor Psychological State 
Hazardous state where the pilot was in poor state of 

mind prior to the flight. 

19 Low Fuel State 
Hazardous state where the aircraft was operating 

with low fuel level.  
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Table 31: Descriptions for hazardous states 

No. State Description 

20 Low Oil State 

Hazardous state where the aircraft was operating 

with low or improperly maintained/serviced oil 

level.  

21 Low Hydraulic Fluid State 

Hazardous state where the aircraft was operating 

with low or improperly maintained/serviced 

hydraulic fluid level.  

22 Improper Supervision State 
Hazardous state where the instructor failed to 

correctly supervise the student pilot. 

23 Mental Overload State 
Hazardous state where the pilot’s abilities are 

limited as he/she is overwhelmed mentally. 

24 Unattended Aircraft State 
Hazardous state where the aircraft is left unattended 

with the engines running. 

25 Low Coolant State 
Hazardous state where the aircraft was operating 

with low coolant level. 

26 Low Grease State 

Hazardous state where the aircraft was operating 

with low or improperly maintained/serviced grease 

level. 

27 
Poor Interpersonal Relations 

State 

Hazardous state where the pilot has poor relations 

with his co-pilot/crew. 

28 
Controlled Flight into 

Terrain/ Object End State 

Hazardous state where which an airworthy aircraft 

(under pilot control) is inadvertently flown into 

terrain, water, or an object. 

29 
Inflight Collision with 

Terrain/ Object End State 

Hazardous state where the aircraft collided with 

terrain/water/object during flight. 

30 Hard Landing End State 
Hazardous state where the aircraft landing gear 

impacted the ground with great force. 
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Table 31: Descriptions for hazardous states 

No. State Description 

31 

Forced/Emergency 

Descent/Precautionary 

Landing State 

Hazardous state where the pilot is unable to choose 

the landing site and is forced to perform an 

emergency landing. 

32 
On-ground collision with 

Terrain/ Object End State 

Hazardous state where the aircraft collided with 

terrain/water/object while operating on the ground. 

33 
Propeller Contact to Person 

End State 

Hazardous state where rotating propeller blades 

contact a person, resulting in injuries. 

34 Dragged wing End State 
Hazardous state where the aircraft’s wing is 

dragged along the ground/water. 

35 Nose Down/Over End State 
Hazardous state where the aircraft’s nose contacts 

the ground/water/runway surface: 

36 Midair Collision End State 
Hazardous state where two or more aircraft collide 

during flight. 

37 Ditching End State 
Hazardous state where the crew makes a planned 

emergency landing in water. 

38 Ground Resonance State 

Hazardous state where the primary frequency of the 

main rotor is amplified by the stiffness (and 

frequency) of the landing gear, resulting in violent 

vibration of the helicopter. 

39 Fire/Explosion End State 
Hazardous state where the aircraft explodes or 

catches fire after impact with terrain/object. 

40 
Abnormal Runway Contact 

State 

Hazardous state where the pilot failed to execute a 

correct landing (other than hard landing). 

41 

Pilot Incapacitated 

Inflight/Vision Clouded 

Inferred State 

Inferred using grammar rules: This state 

represents when pilot's vision gets clouded or pilot 

is incapacitated inflight due to other hazardous 

states. This state generally leads to LOC state. 
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Table 31: Descriptions for hazardous states 

No. State Description 

42 Rollover End State 

Hazardous state where the aircraft landing gear 

pivots about an object and exceeds the critical roll 

angle. 

43 
Disoriented/Lacking 

Awareness State 

Hazardous state where the pilot fails to maintain the 

correct altitude/clearance from terrain or objects. 

44 Wake Turbulence State 
Hazardous state where the aircraft flew through the 

wake vortices of another aircraft. 

45 
Exceeding Aircraft Yaw 

Performance State 

Hazardous state where the aircraft is operated 

beyond its design yaw performance capabilities. 

46 Improper Turn/Bank State 
Hazardous state where the aircraft exceeds its 

banking/roll performance during flight 

47 Loss of Engine Power State 
Hazardous state where an aircraft’s engine loses its 

power.  

48 System Failure State 
Hazardous state where an aircraft’s 

system(s)/component(s) have failed/malfunctioned. 

49 Aircraft Stall/Spin State 

Hazardous state where the lifting surfaces of an 

aircraft (i.e., wings or rotor blades) exceed a critical 

angle of attack they experience a loss of lift, and 

enter a stalled state 

50 
Lack of Visual 

Lookout/Distracted State 

Hazardous state where the pilot failed to maintain 

visual lookout for terrain/other aircraft or was 

distracted. 

51 
On-ground Poor Weather 

State 

Hazardous state where the pilot 

intentionally/inadvertently flew through poor 

weather on the ground. 

52 Improper Go-around State 
Hazardous state where the pilot did not perform a 

correct go-around. 
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Table 31: Descriptions for hazardous states 

No. State Description 

53 
Exceeding Aircraft 

Performance Limits State 

Hazardous state where the aircraft is operated 

beyond its design performance capabilities. 

54 
Exceeding Aircraft Takeoff 

Performance State 

Hazardous state where the aircraft is operated 

beyond its design performance capabilities. 

55 
Exceeding Aircraft Landing 

Performance State 

Hazardous state where the aircraft exceeds its 

design landing performance. 

56 
Exceeding Aircraft 

Crosswind Performance State 

Hazardous state where the aircraft is operated 

beyond its design crosswind performance 

capabilities. 

57 Wheels-up Landing State 
Hazardous state where the pilot performs a landing 

without extending the landing gear. 

58 Runway Undershoot State 
Hazardous state where the aircraft landed short of 

the runway. 

59 Runway Incursion State 
Hazardous state where the aircraft entered runway 

incorrectly/without clearance 

60 
On-ground Loss of Control 

State 

Hazardous state where the pilot fails to maintain 

control of aircraft heading and attitude when on the 

ground. 

61 Improper Level-off State 

Hazardous state where the pilot fails to bring the 

airplane to a level attitude (usually in preparation 

for a landing). 

62 
Improper Run-on Landing 

State 

Hazardous state where the aircraft (rotorcraft) did 

not transition correctly from forward flight to 

landing. 

63 
Exceeding Design Stress 

Limits State 

Hazardous state where aerodynamic loads on the 

aircraft exceed the design stress limits. 
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Table 31: Descriptions for hazardous states 

No. State Description 

64 
Exceeding Aircraft Engine-

out Capability State 

Hazardous state where the aircraft is operated 

beyond its performance capabilities after the loss of 

engine power. 

65 
Runway 

Overshoot/Excursion State 

Hazardous state where the aircraft departed the 

runway surface during takeoff or landing. 

66 
Improper power-on landing 

State 

Hazardous state where the pilot performs an 

improper landing by maintaining the power to the 

engine during the descent and landing as opposed 

to cutting power to idle during the descent. Power-

on landing is typically used for scenarios that need 

higher approach speed such as short-field or 

crosswind landing.  

67 
Severity of Accident/Pilot 

Injuries Inferred State 

Inferred using grammar rules: This state 

represents pilot injuries or fatality or aircraft 

damage due to inadequate rescue or risk mitigating 

services. This is an end state. 

68 Improper Spiral State 

Hazardous state where the aircraft is in a steep 

descending turn in an excessively nose-down 

attitude and with the airspeed increasing rapidly. 

69 Improper Takeoff State 
Hazardous state where the pilot did not perform a 

correct takeoff. 

70 Decompression State 

Hazardous state where the pressure in the aircraft 

(cabin) decreases suddenly. Generally, this state 

happens with small aircraft at very high altitudes. 

71 

Personnel Physical 

Characteristics Limitation 

State 

Hazardous state where the physical characteristics 

of the pilot/personnel hinders the flight 

performance 

72 
Personnel Sensory Ability/ 

Limitation State 

Hazardous state where the sensory ability of the 

pilot/personnel hinders the flight performance 
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Table 31: Descriptions for hazardous states 

No. State Description 

73 
Improper/ Incorrect Use of 

Braking Capability State 

Hazardous state where the aircraft is operated with 

an improper braking capability or the pilot uses the 

braking incorrectly 

74 
Incorrect Use of Instrument 

Flight Capability State 

Hazardous state where the instrument flight 

capability is incorrectly used 

75 
Improper Aircraft 

Configuration State 

Hazardous state where configuration of aircraft is 

improper 

76 
Improper Circling Approach 

State 

Hazardous state where the pilot initiates an 

improper circling approach  

77 
Exceeding Dynamic Load 

Capability State 

Hazardous state where the dynamic load capability 

exceeded 

78 Improper Landing Flare State 
Hazardous state where the landing flare was 

improper 

79 
Loss of Tail Rotor 

Effectiveness (LTE) State  

Hazardous state where the helicopter tail rotor does 

not provide the requisite thrust to maintain 

directional control. 

80 
Improper Physical 

Workspace State 

Hazardous state where the physical workspace is 

improper or not suitable for proper functioning of 

the flight 

81 
Inadequate Operating 

Environment State 

Hazardous state where the operating environment is 

not suitable for a safe flight 

82 Aircraft Hydroplaning State 

Hazardous state in which standing water, slush, or 

snow, causes the moving wheel of an aircraft to 

lose contact with the load bearing surface on which 

it is rolling with the result that braking action on the 

wheel is not effective in reducing the ground speed 

of the aircraft. 
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Table 31: Descriptions for hazardous states 

No. State Description 

83 
Correcting Lenses not Worn 

State 

Hazardous state where pilot has not used/worn 

correcting lenses as stated in the medical certificate 

84 Vortex Ring State  

Hazardous state where a rapidly descending 

helicopter’s main rotor blades are engulfed by a 

doughnut-shaped vortex, resulting in a loss of lift. 

85 Emotional Reaction State 
Hazardous state where pilot is not able to manage 

his/her emotional reactions in a particular situation 

86 Expectancy State 

Hazardous state where pilot made unjustifiable 

expectancy, the state of thinking or hoping that 

something, especially something pleasant, will 

happen or be the case. 

87 Inflight Upset State 

Hazardous state where the aircraft shows abnormal 

attitudes and/or over/under speed conditions. It 

mostly leads to a loss of control. 

(FAA: AC120-111) An airplane in flight 

unintentionally exceeding the parameters normally 

experienced in line operations or training: 

• Pitch attitude greater than 25 degrees nose up; 

• Pitch attitude greater than 10 degrees nose down; 

• Bank angle greater than 45 degrees; or 

• Within the above parameters, but flying at 

airspeeds inappropriate for the 

conditions. 

88 
Aircraft Structure Failure 

State 

Hazardous state where the aircraft structure gets 

damaged, separates, or fails. 

89 
Improper Missed Approach 

State 

Hazardous state where the pilot did not perform a 

correct missed approach  

90 Water Loop/ Swerve State 
Hazardous state where the aircraft underwent a 

water loop or a swerve 
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Table 31: Descriptions for hazardous states 

No. State Description 

91 
Wheels-down Landing in 

Water State 

Hazardous state where the aircraft landed with 

wheels down 

92 
Porpoising/ Pilot Induced 

Oscillation State 

Hazardous state where sustained or uncontrollable 

oscillations occur resulting from efforts of the pilot 

to control the aircraft 

93 
Improper Formation Flying 

State 

Hazardous state where a disciplined flight of two or 

more aircraft is operated improperly 

94 Improper Taxi Speed State 
Hazardous state where the aircraft has an improper 

taxi speed 

95 
Near Collision Between 

Aircraft State 

Hazardous state where two aircraft almost avoided 

the collision with each other, also known as "near-

miss" 

96 Loss of Lift State 
Hazardous state where the aircraft is unable to 

maintain the lift and stalls. 

97 Improper Autorotation State  
This state represents improper autorotation such as 

delayed autorotation. 

98 
Preflight Aircraft Hazardous 

Inferred State 

Inferred using grammar rules: Hazardous 

preflight state of the aircraft inferred when NTSB 

does not mention relevant state codes for an 

accident. 

99 
Unknown Phase Loss of 

Control State 

A hazardous state that involves an unintended 

departure of an aircraft from controlled flight 

regime (FAA, 2016). 

100 
Poor Physical Health/Fitness 

State 

Hazardous state where the pilot is not physically fit 

or healthy to fly. 

101 
Improper Takeoff/Rotation 

Speed State  

Hazardous state where the pilot fails to maintain 

correct takeoff/rotation speed during the flight. 
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Table 31: Descriptions for hazardous states 

No. State Description 

102 Improper Stall Speed State  
Hazardous state where the pilot fails to maintain 

correct speed during the flight to avoid a stall. 

103 Improper Climb Speed State  
Hazardous state where the pilot fails to maintain 

correct speed during the climb. 

104 
Improper Landing Gear 

Operating/Extended Speed  

Hazardous state where the pilot fails to maintain 

correct speed with landing gear extended. 

105 

Improper Minimum Control 

Speed with Critical Engine 

Inoperative State 

Hazardous state where the pilot fails to maintain 

minimum speed when the critical engine 

malfunctions. 

106 
Improper Approach/Landing 

Speed State 

Hazardous state where the pilot fails to maintain 

correct speed during approach or landing phase. 

107 
Improper Flaps Extended 

Speed State 

Hazardous state where the pilot fails to maintain 

correct speed when the flaps are extended. 

108 
Improper Structural Speed 

Limits Exceeded State 

Hazardous state where the pilot fails to maintain 

speed within the aircraft structural limits. 
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2. Trigger Descriptions 

Table 32: Descriptions for triggers 

No. Trigger Name Description 

1 
Improper Preflight 

Planning/Inspection Trigger 

This trigger represents incorrect or insufficient 

planning or inspection by the pilot(s) before flight. 

2 Inflight fire/explosion Trigger 

This trigger represents fire/explosion that occurred 

during flight (before impact). Trigger defined after 

sequencing states. 

3 Engine Shutdown Trigger 
This trigger represents incorrect shutdown of an 

engine. 

4 
Inadequate Communication in 

Organization Trigger 

This trigger represents improper or ineffective 

communication within the management. 

5 
Time spent in poor weather 

Trigger 

Inferred using grammar rules: This trigger 

causes the system to move from a poor weather 

state to a disoriented/lack of awareness state. 

6 
Improper Compensation for 

Winds Trigger 

This trigger represents the pilot’s improper 

compensation for winds during flight. 

7 

Improper Inflight 

Planning/Decision-making 

Trigger 

This trigger represents incorrect planning or 

decisions taken by the pilot(s) during flight 

8 
Improper Maneuvering 

Trigger 

This trigger represents sudden or incorrect 

maneuvering by the pilot during flight. 

9 
Improper Aircraft Handling 

Trigger 

This trigger represents incorrect handling of the 

aircraft by the pilot, maintenance, or passenger. 

10 
Improper Use of Flight 

Controls Trigger 

This trigger represents the improper use of flight 

controls by the pilot. 



 

 

 

 

218 

 

 

Table 32: Descriptions for triggers 

No. Trigger Name Description 

11 

Insufficient Flight 

Advisories/ATC Services 

Trigger 

This trigger represents insufficient flight 

advisories/ATC services by the ATC controller. 

12 
Improper Load Jettison 

Trigger 

This trigger represents an improper jettison of 

external load by the pilot. 

13 

Failure of Aerial 

Application/External Load 

Equipment Trigger 

This trigger represents the failure of external load 

equipment. 

14 Control interference Trigger 
This trigger impedes the pilot from controlling the 

aircraft. 

15 
Clipping of Object/Terrain 

Trigger 

Inferred using grammar rules: This trigger 

represents clipping of an object or terrain during 

flight. I defined this trigger after sequencing states. 

16 Clipping of Wing Trigger 

Inferred using grammar rules: This trigger 

represents clipping of wing during flight that 

doesn't result in an end state (fire/ explosion). 

Trigger defined after sequencing states. 

17 Clipping in Midair Trigger 

Inferred using grammar rules: This trigger 

represents clipping of another aircraft during flight. 

Trigger defined after sequencing states. 

18 
Failure to Remove Aircraft 

Tie-down Trigger 

This trigger represents failure of ground personnel 

or pilot(s) to remove a tie-down before flight. 

19 Relinquishing Control Trigger 
This trigger represents when the pilot gives up 

control of the aircraft. 

20 
Disturbance by Passenger 

Trigger 

This trigger represents a disturbance/disruptive 

event for the crew/pilot. 

21 Remedial Action Trigger 
This trigger represents an improper or proper 

corrective action by the pilot. 
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Table 32: Descriptions for triggers 

No. Trigger Name Description 

22 
Incorrect Action Selection 

Trigger 

This trigger represents an incorrect choice made by 

the pilot to perform a particular action. 

23 

Improper Action 

(Unspecified) Performed 

Trigger 

This trigger represents an unspecified incorrect 

action is performed by the pilot. 

24 
Incorrect Sequence of Actions 

Trigger 

This trigger represents an incorrect sequence of 

actions taken by the pilot/maintenance personnel. 

25 Delayed Action Trigger This trigger represents delayed action by the pilot. 

26 Lack of Action Trigger 
This trigger represents no action taken by the 

pilot/maintenance personnel. 

27 
Forgotten Action/Omission 

Trigger 

This trigger represents a missed/forgotten action by 

the pilot/maintenance personnel. 

28 Incomplete Action Trigger 
This trigger represents an action that the 

pilot/maintenance personnel failed to complete. 

29 Unnecessary Action Trigger 

This trigger represents an action that the 

pilot/maintenance personnel took an unnecessary 

action. 

30 
Improper Use of Procedure or 

Directives Trigger 

This trigger represents situation where the 

pilot/maintenance personnel failed to follow or 

disregarded the specified procedure 

31 

Improper Use of 

Throttle/Powerplant Controls 

Trigger 

This trigger represents incorrect use of 

throttle/powerplant controls by the pilot. 

32 

Impossible/reduced control 

authority after system failure 

Trigger 

This trigger represents the situations where the pilot 

has limited or no control over the aircraft after the 

failure of critical flight control components 
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Table 32: Descriptions for triggers 

No. Trigger Name Description 

33 
None/Failed Recovery Action 

after Loss of Control Trigger 

Inferred using grammar rules: This trigger 

represents no action/failed attempt by the pilot to 

recover from an loss of control, and triggers an end 

state. 

34 

Improper Use of 

Weather/Wind Information 

Trigger 

This trigger represents improper advisory of the 

weather/wind before or during the flight by ATC or 

dispatcher or improper use of the same by flight 

crew. 

35 
Fuel Contamination/ 

Exhaustion Trigger 

This trigger represents fuel contamination or 

exhaustion 

36 
Door/Window Not 

secured/Damaged Trigger 

This trigger represents the failure of 

doors/windows, and contamination of windows 

37 
Aircraft Powerplant Failure 

Trigger 

This trigger represents the failure of aircraft 

powerplant and its components 

38 Engine Failure Trigger This trigger represents the failure of engine(s) 

39 

Improper Use of Aerial 

Application/External Load 

Equipment Trigger 

This trigger represents the improper use of external 

load equipment. 

40 
Ignition System Failure 

Trigger 

This trigger represents the failure of the ignition 

system 

41 
Engine Exhaust System 

Failure Trigger 

This trigger represents the failure of the egine 

exhaust system 

42 
Improper Use of Aircraft 

Systems Component Trigger 

This trigger represents when the pilot/flight crew 

improperly uses an aircraft systems component. 

43 
Reduction Gear Assembly 

Failure Trigger 

This trigger represents the failure of the reduction 

gear assembly 
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Table 32: Descriptions for triggers 

No. Trigger Name Description 

44 

Induction Air System 

Contamination/Failure 

Trigger 

This trigger represents the failure or contamination 

of the induction air system 

45 Oil System Failure Trigger This trigger represents the failure of the oil system. 

46 
Compressor Assembly Failure 

Trigger 

This trigger represents the failure of the compressor 

assembly 

47 
Combustion Assembly 

Failure Trigger 

This trigger represents the failure of the combustion 

assembly 

48 
Turbine Assembly Failure 

Trigger 

This trigger represents the failure of the turbine 

assembly 

49 
Accessory Drive Assembly 

Failure Trigger 

This trigger represents the failure of the accessory 

drive assembly 

50 Fuselage Failure Trigger  
This trigger represents the failure of the fuselage 

and its components 

51 
Wing Damaged/Failure 

Trigger  

This trigger represents the damage/failure of the 

wing and its components 

52 Nacelle Failure Trigger 
This trigger represents the failure of the nacelle and 

its components 

53 
Flight Control Surfaces/ 

Attachments Failure Trigger  

This trigger represents the failure of fuselage/wing 

components. 

54 
Failure of Landing Gear 

Trigger  

This trigger represents the failure of the landing 

gear and its components 

55 
Flight Control System Failure 

Trigger  

This trigger represents the failure of the flight 

control system and its components 

56 
Stabilizer System Failure 

Trigger  

This trigger represents the failure of the flight 

stabilizer system and its components 
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Table 32: Descriptions for triggers 

No. Trigger Name Description 

57 
Electrical System Failure 

Trigger  

This trigger represents the failure of electrical 

system components 

58 
Hydraulic System Failure 

Trigger  

This trigger represents the failure of hydraulic 

system components 

59 
Navigation/Communication 

Instrument Failure Trigger  

This trigger represents the failure of navigation or 

communication instruments 

60 
Failure of Deicing System 

Trigger  

This trigger represents the failure of the deicing 

system 

61 
Fire Warning/Protection 

System Failure Trigger  

This trigger represents the failure of the fire 

warning system. 

62 
Oxygen System Failure 

Trigger  

This trigger represents the failure of the oxygen 

system. 

63 

Improper Use of Radar/Air 

Navigation Aids (NAVAID) 

Trigger  

This trigger represents the improper use of the 

Radar/Air navigation aids (NAVAID) components 

64 
Insufficient Information/Steps 

Defined Trigger  

This trigger represents the inadequate information 

or step taken by the pilot 

65 
Auto Flight System Failure 

Trigger  

This trigger represents the failure of the autopilot/ 

flight system components 

66 
Air conditioning System 

Failure Trigger  

This trigger represents the failure of the air 

conditioning system. 

67 
Indicating/ Recording System 

Failure Trigger  

This trigger represents the failure of the indicating/ 

recording system. 

68 
Engine Assembly Failure 

Trigger  

This trigger represents the failure of engine 

assembly components 
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Table 32: Descriptions for triggers 

No. Trigger Name Description 

69 
Propeller System Failure 

Trigger  
This trigger represents the failure of the propeller 

70 
Constant Speed Drive System 

Failure Trigger  

This trigger represents the failure of the constant 

speed drive system 

71 
Engine Accessories Failure 

Trigger  

This trigger represents the failure of engine 

accessories 

72 
Bleed Air System Failure 

Trigger  

This trigger represents the failure of the bleed air 

system 

73 

Fuel System 

Failure/Contamination 

Trigger  

This trigger represents the failure/contamination of 

the fuel system 

74 

Lubricating System 

Failure/Contamination 

Trigger  

This trigger represents the failure/contamination of 

the lubricating system 

75 
Engine Installation Failure 

Trigger  

This trigger represents the failure of the engine 

installation 

76 
Improper Functioning/Failure 

of Engine Instruments Trigger  

This trigger represents the failure or improper 

readings from engine instruments 

77 
Cooling System Failure 

Trigger  

This trigger represents the failure of the engine 

cooling system 

78 
Thrust Reverser Failure 

Trigger  

This trigger represents the failure of the thrust 

reverser components 

79 
Turboshaft Engine 

Component Failure Trigger  

This trigger represents the failure of turboshaft 

engine components 

80 

Improper Functioning of 

Meteorological Services 

Trigger 

This trigger represents the improper functioning of 

meteorological services 
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Table 32: Descriptions for triggers 

No. Trigger Name Description 

81 
Mixture Control Failure 

Trigger  

This trigger represents the failure of the mixture 

cooling system 

82 
Oil Cooler Control Failure 

Trigger  

This trigger represents the failure of the oil cooling 

system 

83 
Improper Functioning of 

Approach Aids Trigger 

This represents the improper functioning or failure 

of approach aids 

84 
Failure of Air Navigation 

Aids (NAVAID) Trigger  

This trigger represents the failure of the Air 

navigation aids (NAVAID) components 

85 
Aircraft Light Not 

Available/Failure Trigger  

This trigger represents the unavailability or failure 

of aircraft lights 

86 
Failure of Radar Services 

Trigger  

This trigger represents the unavailability or failure 

of radar services or coverage 

87 

Improper Use of 

Meteorological Services 

Trigger  

This trigger represents the improper use of 

meteorological services 

88 

Improper Aircraft Rescue and 

Fire Fighting Service (ARFF) 

Trigger  

This trigger represents the improper functioning or 

failure of ARFF services 

89 
Improper/ Lack of Anti-ice 

Additive Trigger  

This trigger represents improper/ lack of anti-ice 

additive 

90 
Insufficient Synthetic Oil 

Trigger 

This trigger represents starvation/ lack of synthetic 

oil 

91 Improper Fuel Grade Trigger 
This trigger represents incorrect type/ grade of the 

fuel  

92 Improper Oil Grade Trigger 
This trigger represents incorrect type/ grade of the 

oil 
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Table 32: Descriptions for triggers 

No. Trigger Name Description 

93 
Exhaustion/Contamination of 

Aircraft Fluid Trigger 

This trigger represents the improper use of 

miscellaneous fluids such as fuel additive, oil 

additive, anti-ice/de-ice, lavatory fluid. 

94 
Improper Maintenance 

Trigger  

This trigger represents maintenance-related errors 

or violation 

95 
Vacuum System Failure 

Trigger 

This trigger represents the failure of vacuum 

system 

96 
Pneumatic System Failure 

Trigger 

This trigger represents the failure of pneumatic 

system 

97 
Water and Waste System 

Failure Trigger 

This trigger represents the failure of water and 

waste system 

98 

Insufficient Procedure, 

Directives, or Resources 

Trigger  

This trigger represents situations where the pilot(s) 

or maintenance personnel had procedures, 

directives, or manuals/resources that did not have 

requisite information. 

99 
Improper Use of Landing 

Gear Trigger  

This trigger represents failure of the pilot 

extend/retract the landing gear. 

100 
Improper Use of Brakes 

Trigger  

This trigger represents improper use of brakes of 

the aircraft 

101 
Improper Use of Fuel System 

Trigger  

This trigger represents the improper use of the fuel 

system 

102 
Improper Use of Electrical 

System Trigger  

This trigger represents the improper use of the 

electrical system 

103 
Improper Use of Deicing 

System Trigger  

This trigger represents the improper use of the 

deicing system 

104 
Improper Use of Autopilot 

System Trigger  

This trigger represents the improper use of the 

autopilot system 
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Table 32: Descriptions for triggers 

No. Trigger Name Description 

105 
Improper Use of Emergency 

Equipment Trigger  

This trigger represents the improper use of 

emergency equipment 

106 

Improper Use of Flight/ 

Communication/Navigation 

Instruments Trigger  

This trigger represents the improper use of flight/ 

navigation instruments  

107 

Improper Weather 

Observation/Evaluation 

Trigger 

This trigger represents improper observation of the 

weather by flight crew, ATC, or other personnel 

108 
Failure of Engine Starting 

Trigger  

This trigger represents the improper use of engine 

starting or its failure 

109 
Failure of Turbocharging 

Trigger  

This trigger represents the improper use or failure 

of turbocharging 

110 
Improper Aborted Landing/ 

Take off Trigger  

This trigger represents the improper aborted 

landing or takeoff 

111 
Inadequate Facilities Provided 

by Organization Trigger  

This trigger represents the inadequate facilities 

provided by the organization 

112 

Improper Design and 

Development of Aircraft 

Trigger  

This trigger represents the inadequate design of an 

aircraft 

113 

Inadequate Information/ 

Conditions/Steps Listed 

Trigger  

This trigger represents the inadequate information 

or conditions available to the pilot 

114 
Inadequate Aircraft Design 

Material Trigger  

This trigger represents the inadequate design 

material of an aircraft 

115 

Inadequate Oversight/ 

Surveillance by Management/ 

Regulator Trigger  

This trigger represents the lack of oversight by the 

management 
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Table 32: Descriptions for triggers 

No. Trigger Name Description 

116 
Insufficient Standards/ 

Requirement Trigger 

This trigger represents insufficient standards or 

requirements of aircraft or operator by the regulator 

or other organization  

117 
Inadequate Certification by 

Regulator Trigger  

This trigger represents inadequate certification by 

the regulator or other organization 

118 
Inadequate Documentation/ 

Record-Keeping Trigger  

This trigger represents the lack of record-keeping 

by the management 

119 
Cowl Flap Control Failure 

Trigger 

This trigger represents the failure of the cowl flap 

control 

120 
Remedial Action Taken 

Inferred Trigger 

Inferred using grammar rules: When the pilot 

takes a remedial action to get out of a hazardous 

state (recover from a hazardous situation) 

121 

Failure of Miscellaneous 

Airframe Component/ 

Hardware Trigger  

This trigger represents the failure of miscellaneous 

hardware or airframe component 

122 
Miscellaneous Intentional Act 

Trigger  

This trigger represents an unspecified intentional 

act by the pilot 

123 
Improper Communication 

Trigger  

This trigger represents incorrect communication by 

the pilot/crew or ATC 

124 
Improper Air Traffic/ 

Operating Procedure Trigger  

This trigger represents Improper Air Traffic/ 

Operating Procedure 

125 
Inadequate Pilot Training 

Trigger 
This trigger represents inadequate pilot training. 

126 
Improper Enforcement by 

Organization Trigger 

This trigger represents an organizational issue 

where enforcement such as regulatory requirements 

were improper by the organization 
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Table 32: Descriptions for triggers 

No. Trigger Name Description 

127 
Inadequate Safety Program 

Trigger 

This trigger represents an inadequate safety 

program by the FAA/ Regulator or Operator 

128 
Inadequate Management 

Culture Trigger 

This trigger represents an inadequate work culture 

such as safety and operating practices by the 

management. 

129 
Inadequate Scheduling by 

Management Trigger 

This trigger represents an inadequate task 

scheduling/ workload by the manufacturer of the 

aircraft 

130 
Unspecified Improper Task 

Performance Trigger  

This trigger represents an improper task 

performance that is unspecified, by the ground/ 

flight crew, passenger, maintenance, or any other 

personnel 

131 
Failure of Accessory Gear 

Boxes Trigger  

This trigger represents an improper use or wear/ 

corrosion or failure of accessory gear boxes of 

aircraft power plant 

132 
Unavailable Fire Protection 

System Trigger  

This trigger represents where fire protection system 

is not installed or unavailable 

133 

Failure/Malfunction of 

Aircraft System Component 

Trigger  

This trigger represents where a component of 

aircraft systems is not functioning properly 

134 
Engine Compartment Failure 

Trigger 

This trigger represents the failure of the engine 

compartment 

135 
Pitot-static System Failure 

Trigger 

This trigger represents the failure of the pitot-static 

system. 

136 
Warning/Safety System 

Failure Trigger  

This trigger represents failure of the warning/ 

safety system 

137 Mast Bumping Trigger This trigger represents mast bumping (Rotorcraft) 
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Table 32: Descriptions for triggers 

No. Trigger Name Description 

138 
Improper Canopy Jettison 

Trigger 
This trigger represents improper canopy jettison. 

139 
Improper Use of Auxiliary 

Power Unit (APU) Trigger 

This trigger represents the improper use/failure of 

the auxiliary power unit. 

140 

Improper Use of 

Miscellaneous Airframe 

Component/ Hardware 

Trigger 

This trigger represents the improper use of 

Miscellaneous Equipment/ furnishings 

141 
Carburetor Heat Control 

Failure Trigger  

This trigger represents the failure of the carburetor 

heat control 

142 
Malfunction of Cargo 

Compartment Trigger 

This trigger represents malfunction of cargo 

compartment of aircraft 

143 Tail strike Trigger 
This trigger represents the tail striking an object or 

terrain. 

144 
Protective Gear/ Clothing Not 

Used Trigger 

This trigger represents where the pilot does not use 

protective gear or clothing. 

145 
Improper Loading/Securing 

of Cargo Trigger  

This trigger represents incorrect loading or securing 

of cargo by the pilot or ground personnel. 

146 
Leak/ Explosion of Hazardous 

Material (HAZMAT) Trigger 

This trigger represents the fire/ leak or explosion of 

HAZMAT 

147 Engine Tearaway Trigger 

The trigger represents an occurrence in which one 

or more engines are torn away from an aircraft, but 

not due to contact with an external object.  

148 
Improper DF (direction-

finding) Steer Trigger 

This trigger represents improper direction-finding 

steer in the aircraft. 

149 
Not Recognizing Hazardous 

Condition Trigger 

This trigger represents the crew not recognizing or 

heeding a hazardous condition/warning. 
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Table 32: Descriptions for triggers 

No. Trigger Name Description 

150 
Improper Crew/Passenger 

Briefing Trigger 

This trigger represents improper crew or passenger 

briefing. 

151 
Improper Crew Coordination 

Trigger 
This trigger represents improper crew coordination. 

152 
Improper Use of Oxygen 

System Trigger 

This trigger represents the improper use of oxygen 

system 

153 
Improper Use of Aircraft 

Lights Trigger 

This trigger represents incorrect use of navigation 

lights by the pilot 

154 
Improper Ice/Frost Removal 

Trigger 

This trigger represents the failure to remove 

ice/defrost components before flight 

155 
Pilot Assistance not Used/not 

Available Trigger  

This trigger represents situations where the pilot 

does not seek proper assistance or did not have 

access to assistance 

156 
Improper Fuel Calculation 

Trigger 

This trigger represents situations where the pilot 

does not correctly calculate the rate of fuel 

consumption during the mission 

157 
Improper Use of NOTAMs 

Trigger 

This trigger represents situations where the pilot is 

not given sufficient NOTAMs or the pilot does not 

use NOTAMs correctly 

158 
Improper Use of Performance 

Data Trigger 

This trigger represents improper use of the 

aircraft’s performance capabilities data 

159 Improper Refueling Trigger 
This trigger represents improper refueling of the 

aircraft prior to flight 

160 
Flight to Alternate/ New 

Destination Trigger 

This trigger represents when the pilot decided or 

disregarded to fly to an alternate destination 
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Table 32: Descriptions for triggers 

No. Trigger Name Description 

161 

Poor Choice of 

Landing/Takeoff Area 

Trigger 

This trigger represents a poor choice of 

landing/takeoff/taxi area by the pilot 

162 
Improperly Planned Approach 

Trigger 

This trigger represents a poorly planned approach 

by the pilot 

163 
Improper Use of Available 

Runway Trigger 
This trigger represents an improper use of runway 

164 
Unstabilized Approach 

Trigger 

This trigger represents an unstabilized approach 

performed by the pilot 

165 
Use of Wrong Taxi Route 

Trigger 
This trigger represents use of wrong taxi route 

166 
Use of Inappropriate 

Medication/ Drugs Trigger 

This trigger represents use of inappropriate 

medication or drugs 

167 
Encounter with Jet/Propeller 

Blast Trigger 

This trigger represents encounter with jet/ propeller 

blast 

168 
Improper Rescue/Search/ 

Evacuation Trigger 

This trigger represents improper rescue, search and/ 

or evacuation. 

169 Sabotage Trigger 
This trigger represents sabotage before or during 

flight. 

170 
Improper Use of Inflight 

Briefing Service Trigger 

This trigger represents the improper use of 

briefs/information received during flight 

171 

Inadequate Updating of 

Recorded Weather 

Information Trigger 

This trigger represents the inadequate updating of 

recorded weather information by the pilot 

172 
Improper Decision Height 

Trigger 

This trigger represents improper decision height 

judged by the pilot 
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Table 32: Descriptions for triggers 

No. Trigger Name Description 

173 
Improper Minimum descent 

altitude (MDA) Trigger 

This trigger represents where pilot does not 

maintain a minimum descent altitude 

174 
Improper Runway Alignment 

Trigger 

This trigger represents improper runway alignment 

of the plane by the pilot 

175 
Central Maintenance 

Computer Failure Trigger 

This trigger represents the failure of central 

maintenance computer 

176 Improper Pull-up Trigger 
This trigger represents an improper pull-up by the 

pilot. 

177 
Improper Recovery from 

Bounced Landing Trigger 

This trigger represents an improper recovery from a 

bounced landing. 

178 
Improper Touch-and-go 

Trigger 
This trigger represents an improper touch-and-go. 

179 Improper Touchdown Trigger 
This trigger represents an improper touchdown by 

the pilot. 

180 
Incorrect Unicom/ Not 

Selected Trigger 

This trigger represents an incorrect unicom being 

operated or no selection of a unicom by the pilot. 

181 Hot Start Trigger 

This trigger represents when the aircraft exceeds 

the manufacturer defined limiting temperature for 

starting the engine. 

182 
Excessive Torque/P-Factor 

Trigger 

This trigger represents when the torque or p-factor 

is excessive and is not corrected. 

183 

Inadequate/ Improper 

Reading of Visual Approach 

Slop Indicator Trigger 

This trigger represents when the VASI system is 

inadequate or is misread by the pilot. 

184 

Improper Use of Flight 

Advisories/ATC Services 

Trigger 

This trigger represents improper use or inadequate 

flight advisories. 
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Table 32: Descriptions for triggers 

No. Trigger Name Description 

185 
No/Failed Recovery Action 

from Disoriented state Trigger 

Inferred using grammar rules: This trigger 

represents no action/failed attempt by the pilot to 

recover from a disoriented state before a loss of 

control state. 

186 Habit Interference Trigger 

Trigger where pilot displays habit interference, that 

is new skills interacts with "old learning" or 

behaviors from past learning. 

187 
Improper Angle of Attack 

Trigger 
Trigger where the angle of attack was improper 

188 
Improper Towing/Taxiing 

Trigger 

Trigger where towing or taxiing of aircraft was 

improper 

189 APU System Failure Trigger  
This trigger represents failure of airborne APU 

system in aircraft systems 

190 
Engine Indicating System 

Failure Trigger 

This trigger represents failure of engine indicating 

system 

191 
Water Injection System 

Failure Trigger  

This trigger represents failure of water injection 

system 

192 
Aircraft Part Separated 

Trigger 

This trigger represents when an aircraft part(s) 

separates from the aircraft before the end state of 

accident. 

193 
Terrain/Collision/Stall Warn 

Alert Trigger  

This trigger represents when aircraft system alerts 

about terrain/collision avoidance or stall warning 

194 
Rotorcraft Flight Control 

System Failure Trigger 

This trigger represents failure of rotorcraft flight 

control system or parts 
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3. Additional Information Descriptions 

Table 33: Descriptions for information and pre-existing conditions 

No. Information/ Pre-existing Condition Description 

1 
Unsuitable Airport Facilities Pre-

Existing Condition 

Pre-existing condition where the 

unsuitable airport and its facilities 

contributes to an accident. 

2 
Unsuitable Runway Pre-existing 

Condition 

Pre-existing condition where the 

unsuitable runway condition contributes 

to an accident. 

3 
Unsuitable Terrain Pre-existing 

Condition 

Pre-existing condition where the 

unsuitable terrain condition contributes 

to the accident. 

4 
Unsuitable Physical Environnent Pre-

existing Condition 

Pre-existing condition representing 

unsuitable physical environment for the 

flight. 

5 Information about Object 

This code contains detailed information 

about the specific objects that aircraft 

collided with during flight. 

6 Information about accident event 
This information provides more 

information about the accident event. 

7 Information about terrain  
This information provides details about 

the terrain where the aircraft was flying. 
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