
PRACTICAL METHODS FOR
FUZZING REAL-WORLD SYSTEMS

by

Prashast Srivastava

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

May 2023

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Mathias Payer, Co-Chair

School of Computer Science

Dr. Antonio Bianchi, Co-Chair

School of Computer Science

Dr. Dongyan Xu

School of Computer Science

Dr. Pedro Fonseca

School of Computer Science

Dr. Sonia Fahmy

School of Computer Science

Approved by:

Dr. Kihong Park

2

To my family

3

ACKNOWLEDGMENTS

I am greatly indebted to my major advisor, Mathias Payer who gave me a chance to

pursue my PhD under his tutelage. He has been a constant source of knowledge for how

to conduct research and communicate its results effectively. His guidance has not just been

limited to my academic pursuits. I have learned a great deal about what it means to lead

people with empathy and that is a lesson that I hope to carry forward with me into the

future. It was also an absolute privilege to have Antonio Bianchi as my co-advisor. His

feedback was instrumental in not only refining my research directions but also figuring out

how to navigate academia as well.

This dissertation also would not have come to fruition without the support of my peers

and collaborators along the way. I am greatly indebted to both past and present members

of HexHive for not only providing lively research discussions but also serving as a source

of much needed levity. Furthermore, I would like to thank PurSec lab members for being

a constant source of encouragement as well. In addition, I would also like to thank all

the people who were a part of this journey during my time at Purdue. Finally, and most

importantly I would like to thank my family who served as an anchor for me throughout the

course of my PhD.

4

TABLE OF CONTENTS

LIST OF TABLES . 9

LIST OF FIGURES . 11

ABBREVIATIONS . 12

ABSTRACT . 13

1 INTRODUCTION . 15

2 GRAMATRON: EFFECTIVE GRAMMAR-AWARE FUZZING 22

2.1 Introduction . 22

2.2 Background . 24

2.2.1 Context-Free Grammars . 25

2.2.2 Automaton Classes . 25

2.2.3 Grammar-Aware Mutation Operators 26

2.3 Gramatron Overview . 27

2.4 Grammar Automatons . 28

2.4.1 Motivating Example . 28

2.4.2 Automaton Construction . 30

2.4.3 Automata-Based Mutation . 34

2.5 Implementation . 35

2.5.1 Fuzzing Workflow . 35

2.6 Evaluation . 36

2.6.1 Performance Microbenchmarks . 37

2.6.2 Faster Bug Discovery . 43

2.6.3 Bug Discovery Performance in the Wild 47

2.7 Discussion and Future Work . 49

2.8 Threats to Validity . 50

2.9 Related Work . 52

5

2.10 Conclusion . 54

3 FIRMFUZZ: AUTOMATED IOT FIRMWARE

INTROSPECTION AND ANALYSIS . 55

3.1 Introduction . 55

3.2 Firmware Preprocessing . 57

3.2.1 Information Gathering Phase . 58

3.2.2 Firmware Preparation . 58

Peripheral Mapping . 58

Helper Injection . 59

Network Configuration . 60

3.3 Firmware Fuzzing . 60

3.3.1 Syntactically Legal Input Generation 61

3.3.2 Deterministic Bug Discovery . 62

3.3.3 Elimination of Fuzzing Side-Effects 63

3.3.4 Payload Delivery . 63

3.4 Evaluation . 66

3.4.1 Firmware Images Tested . 66

3.4.2 Case Study . 67

TRENDnet TEW-673GRU Router 67

3.4.3 Comparison with Existing Analysis Frameworks 68

Firmadyne . 68

w3af . 69

Zed Attack Proxy . 69

3.4.4 Runtime Performance . 70

3.4.5 Vulnerability Detection Accuracy . 70

3.5 Discussion and Future Work . 71

3.6 Related Work . 71

3.7 Conclusion . 73

4 SIEVEFUZZ: TARGET-TAILORED PROGRAM STATE RESTRICTION 74

6

4.1 Introduction . 74

4.2 Background . 76

4.3 Pitfalls of Distance Minimization . 77

4.4 Overcoming the Bottlenecks of Directedness 80

4.5 Preemptive Termination . 81

4.5.1 Tripwiring . 81

4.6 Implementation: SieveFuzz . 84

4.6.1 Architectural Overview . 84

4.6.2 High-level Fuzzing Workflow . 84

4.6.3 Maintaining Fast On-demand Analysis 85

4.6.4 Maintaining Fast SUT Execution . 86

4.6.5 Maintaining Exploration Diversity . 87

4.7 Evaluation . 88

4.7.1 RQ1: Tripwiring’s Search Space Restriction 90

4.7.2 RQ2: Targeted Defect Discovery . 92

4.7.3 RQ3: Target Location Feasibility for Tripwiring 96

4.8 Discussion and Future Work . 98

4.9 Related Work . 99

4.10 Conclusion . 100

5 CRYSTALLIZER: DESERIALIZATION VULNERABILITY

DISCOVERY FRAMEWORK . 101

5.1 Introduction . 101

5.2 Deserialization Attacks . 103

5.2.1 Serialization and Deserialization . 103

5.2.2 Payload Formalization . 104

5.2.3 Payload Example . 105

5.2.4 Challenges . 107

5.3 Crystallizer Design . 108

5.3.1 Static Analysis Module . 109

7

5.3.2 Sink Identification . 109

5.3.3 Probabilistic Concretization . 111

5.4 Implementation . 114

5.5 Evaluation . 115

5.5.1 RQ1: Library-based evaluation . 116

5.5.2 RQ2: Comparison against state-of-the-art tools 119

5.5.3 RQ3: Comparative Performance Evaluation 123

5.5.4 RQ4: Sink Identification Evaluation 124

5.5.5 RQ5: Crystallizer in-the-wild . 126

5.6 Discussion and Future Work . 127

5.7 Related Work . 128

5.8 Conclusion . 129

6 SUMMARY . 130

REFERENCES . 132

8

LIST OF TABLES

2.1 Input diversity comparison using branch cov showing absolute cov% and cov
increase% relative to baseline of Gramatron (G), NautilusGH (NGH), and NGH-G:
NautilusGH with GNF grammar. 38

2.2 % improvement in terms of space, time, and mutation scale of Gramatron against
NautilusGH. Effect size quantifies the improvement magnitude (> 0.8 = large,
> 0.5 = medium). 41

2.3 Performance breakdown of time to bug discovery across 10 fuzzing campaigns.
G: Gramatron, (NP, NGH): NautilusP and NautilusGH. 45

2.4 Fuzz targets with types of bugs discovered. Key: OOB: Out-of-bounds read,
(H)BO: (Heap) Buffer Overflow, AV: Assertion Violation, and UAS: Stack use-
after-scope. 48

2.5 Median standard deviation of the time taken to find different bug triggers. . . . 49

3.1 Firmware images tested . 66

3.2 Vulnerability Detection Comparison of FirmFuzz against Zed Attack Proxy(ZAP),
Firmadyne and w3af . 68

4.1 Information about our ground-truth bug benchmark corpus. Key: R: real-world,
S: synthetic, UAF: use-after-free, FPE: floating point exception, BoF: buffer over-
flow, OOB: out-of-bounds and NPD: NULL pointer dereference. 88

4.2 Percentage of code regions (at function level) removed by tripwiring during fuzzing,
and the analysis time spent in tripwiring’s pre-fuzzing initialization. 90

4.3 Bug exposure effectiveness; and mean exposure times and effect sizes for SieveFuzz
versus minimization-directed AFLGo and undirected AFL++ across 10×24-hour
fuzzing trials per our ten ground-truth bugs. Bold effect sizes reflect statistically-
large (i.e., Vargha and Delaney A12 > 0.71) improvements in bug exposure times;
while [n/a] denotes that the statistical test cannot be performed due to an
insufficient number of exposing trials by SieveFuzz’s competitor. 92

4.4 Bug exposure effectiveness; and mean exposure times and effect sizes for SieveFuzz
versus precondition-directed BEACON across 10×24-hour fuzzing trials per our
eight ground-truth bugs. In this experiment, we run SieveFuzz with the same
fuzz target configuration as BEACON. Bold effect sizes reflect statistically-large
(i.e., Vargha and Delaney A12 > 0.71) improvements in bug exposure times; while
[n/a] denotes that the statistical test cannot be performed due to an insufficient
number of exposing trials by BEACON. 94

9

4.5 Comparisons of the mean test case throughputs (executions/sec) between Sieve-
Fuzz (tripwiring-directed), and BEACON (precondition-directed). Values > 1.0
represent a relative speedup (shown in bold), while values < 1.0 represent a rela-
tive slowdown. 95

5.1 Evaluation Benchmarks paired with their ground truth chains. 115

5.2 Gadget graph size of the target libraries and the time taken by Crystallizer to
create it. 116

5.3 Candidate chains explored by Crystallizer along with chains that were successfully
concretized, chains that were deemed to be interesting, and chains that were
manually validated to be exploitable. 117

5.4 Novel gadget chains found by Crystallizer along with their average gadget fre-
quency and a comparison of the unique classes present in the discovered ground
truth chain and the novel chains. 120

5.5 Comparison of Gadget Inspector against Crystallizer in terms of gadget chains
reported for libraries and the ones which were confirmed to be exploitable. . . . 121

5.6 Comparison of Crystallizer against Crystallizer-NG in terms of gadget chains
reported for libraries and the ones which were confirmed to be exploitable. . . . 123

5.7 “Pre-filtering” refers to the set of sink gadgets flagged by Sink Identification’s
oracle. “Post-filtering” shows the number of remaining sink gadgets after applying
the static filters. These are the sinks that Crystallizer tries to concretize paths to.
“% reduction” refers to the difference between the number of pre- and post-filtered
sinks. 124

10

LIST OF FIGURES

2.1 Gramatron overview. 27

2.2 Parse tree for the input <?php rand (); return; ? >. 31

2.3 FSA for the grammar in Listing 2.2 . 31

2.4 Visualization of a representative run of microbenchmark comparison of Grama-
tron against NautilusGH. 40

3.1 FirmFuzz Workflow . 57

3.2 FirmFuzz fuzzing workflow . 60

3.3 FirmFuzz Mutation Strategy . 65

4.1 A visualization of tripwiring-directed fuzzing. 80

4.2 SieveFuzz’s high-level state machine. Here, reachable denotes that our analysis
identifies some path(s) from the program entry point to the target location. . . . 85

4.3 Amount of function state space removed during tripwiring, and SieveFuzz’s and
AFLGo’s discovery times per each real-world bug benchmark. 97

5.1 A simplified example for the gadget chain executed upon the payload (Listing 3)
being deserialized. 105

5.2 Architectural overview of Crystallizer. 108

5.3 Time required by Crystallizer to discover the exploitable gadget chains. 118

11

ABBREVIATIONS

AFW Arbitrary File Write

AV Assertion Violation

BO Buffer Overflow

CI Command Injection

CG Call Graph

DoS Denial Of Service

FSA Finite State Automatons

IoT Internet of Things

NPD Null Pointer Dereference

OOB Out-of-bounds

RCE Remote Code Execution

SUT Software Under Test

UAS Use-After-Scope

12

ABSTRACT

The current software ecosystem is exceptionally complex. A key defining feature of this

complexity is the vast input space that software applications must process. This feature

inhibits fuzzing (an effective automated testing methodology) in uncovering deep bugs (i.e.,

bugs with complex preconditions). We improve the bug-finding capabilities of fuzzers by

reducing the input space that they have to explore. Our techniques incorporate domain

knowledge from the software under test. In this dissertation, we research how to incorpo-

rate domain knowledge in different scenarios across a variety of software domains and test

objectives to perform deep bug discovery.

We start by focusing on language interpreters that form the backend of our web ecosys-

tem. Uncovering deep bugs in these interpreters requires synthesizing inputs that perform a

diverse set of semantic actions. To tackle this issue, we present Gramatron, a fuzzer that em-

ploys grammar automatons to speed up bug discovery. Then, we explore firmwares belonging

to the rapidly growing IoT ecosystem which generally lack thorough testing. FirmFuzz in-

fers the appropriate runtime state required to trigger vulnerabilities in these firmwares using

the domain knowledge encoded in the user-facing network applications. Additionally, we

showcase how our proposed strategy to incorporate domain knowledge is beneficial under al-

ternative testing scenarios where a developer analyzes specific code locations, e.g., for patch

testing. SieveFuzz leverages knowledge of targeted code locations to prohibit exploration

of code regions and correspondingly parts of the input space that are irrelevant to reaching

the target location. Finally, we move beyond the realm of memory-safety vulnerabilities

and present how domain knowledge can be useful in uncovering logical bugs, specifically

deserialization vulnerabilities in Java-based applications with Crystallizer. Crystallizer uses

a hybrid analysis methodology to first infer an over-approximate set of possible payloads

through static analysis (to constrain the search space). Then, it uses dynamic analysis to

instantiate concrete payloads as a proof-of-concept of a deserialization vulnerability.

Throughout these four diverse areas we thoroughly demonstrate how incorporating do-

main knowledge can massively improve bug finding capabilities. Our research has developed

tooling that not only outperforms the existing state-of-the-art in terms of efficient bug dis-

13

covery (with speeds up to 117% faster), but has also uncovered 18 previously unknown bugs,

with five CVEs assigned.

14

1. INTRODUCTION

Real-world software systems are highly complex. A way to characterize this complexity

is through the vast input state space that they can process. These systems will inevitably

have bugs creep in, owing to errors made by programmers [1]. These bugs cause software to

reach an invalid state, and some states may be leveraged by an adversary to perform security

violations [2]. These bugs, therefore, become vulnerabilities.

To prevent exploitation of vulnerabilities and to limit the impact of bugs, developers

perform software testing to find and fix bugs. Fuzzing is a highly effective dynamic software

testing methodology for finding bugs [3]. Fuzzing tests a program by creating or mutating

inputs followed by executing the program under test with the generated input. Observing

the execution of the target can inform future input generation and any inputs that cause

the target to crash are set aside for later analysis. However, current approaches can have

trouble finding deep bugs in complex systems. We define a bug as being deep if it requires

a complex set of preconditions to be met to be triggered.

In this work, we focus on building practical fuzzing solutions for finding deep bugs in

widely-used software systems that are public-facing. Such systems require rigorous security

vetting. First, we concentrate on language interpreters that form the backbone of the inter-

net. Second, we look into the rapidly growing Internet of Things (IoT) ecosystem, specifically

Linux-based firmware running on these IoT devices. Third, we propose a targeted fuzzing

solution for testing specific parts of the software to make objectives like patch testing more

viable. Finally, we examine deserialization-based attack vectors focusing on enterprise ap-

plications written in Java due to their longstanding prevalence. Designing each of these

solutions comes with its own set of unique challenges:

• Diverse semantic structure: Language interpreters, e.g. PHP, accept input as

defined by a context-free grammar. Deep bugs in these can only be uncovered by

synthesizing inputs that are not only syntactically correct but also perform a diverse

set of semantic actions. Existing methodologies are inefficient at generating inputs

with a diverse semantic structure to trigger deep bugs.

15

• Appropriate runtime state: In IoT firmware, vendor-developed applications that

perform the core device functionality are riddled with deep bugs as this software has

never been thoroughly tested. These bugs can only be triggered if their preconditions

have been satisfied with an appropriate runtime state. Existing methodologies have

failed at providing a convincing solution for inferring this state. This is because the

runtime state can be setup in a myriad of ways and finding the appropriate one is

non-trivial.

• Global search in input space: For some testing scenarios, such as patch testing

we may want to test a specific code location in the software under test. Targeted

fuzzing methodologies have been proposed for such instances. However, a key problem

with existing solutions is that they perform a global search through the input space

with each input being treated as a potential candidate to reach the targeted location

which is inefficient. This inhibits the fuzzer from uncovering deep bugs in the targeted

location.

• Complex payload creation: Security vulnerabilities that stem from performing de-

serialization occur due to the lack of proper input validation. Exercising deserialization-

based vulnerabilities requires synthesizing a set of nested objects which divert the

control flow towards sinks that perform attacker-intended functionality. As of now,

the process of discovering such vulnerabilities is predominantly manual. Incorporat-

ing more automation into the process of uncovering such vulnerabilities requires: (i)

devising an effective way for identifying sinks, and (ii) efficiently traversing the large

state space of possible payloads.

Thesis statement and Dissertation Layout

The root cause of all these challenges is that the input space of complex, real-world

software is too vast for a fuzzer to explore efficiently to find deep bugs. To address this key

issue, my thesis is:

16

Fuzzing can find more bugs by meaningfully reducing the input space to be

explored through sampling inputs from a distribution that incorporates domain

knowledge about the software under test.

As evidence to support my thesis, I will present in subsequent chapters four pieces of

work. Across these works, varying sources of domain knowledge are employed as detailed

below to reduce the input space based on software functionality or the test objective. All

of these works have been peer-reviewed and published, except Crystallizer which is, at the

time of writing, under review.

• Gramatron [4], a grammar-aware, coverage-guided fuzzer that utilizes the context-free

grammar, explicit grammar accepted by the software under test, to create grammar

automatons. These allow for unbiased sampling from the input space creating a diverse

set of semantic constructs which in turn allows for finding deep bugs reliably and faster.

• FirmFuzz [5], a device-independent emulation and dynamic analysis framework for

Linux-based IoT firmware. It performs firmware emulation and then systematically

interacts with user-facing network applications to leverage its implicitly-specified gram-

mar for bug discovery.

• SieveFuzz [6] employs tripwiring—a directed fuzzing methodology that uses targeted

program state as a guide to statically remove parts of the input space that are irrelevant

to reaching a target location.

• Crystallizer, a hybrid testing framework to automatically identify deserialization vul-

nerabilities in Java-based applications. Crystallizer uses the control-flow information

of the software coupled with information about language semantics to create an im-

plicit grammar. It then uses this implicitly-specified grammar to generate inputs that

uncover deserialization vulnerabilities.

Gramatron

Language interpreters accept input as defined by a context-free grammar. Fuzzers that

aware of the input grammar can explore deeper program states through grammar-aware

17

mutations. For example, awareness of the PHP grammar allows the fuzzer to generate syn-

tactically valid inputs that test the interpreter’s functionality and not just the initial parsing.

Grammar-aware fuzzers employ the context-free grammar in conjunction with the parse trees

for input generation. However, the current methodology has a twofold problem: (i) Fuzzers

when using existing grammars perform biased sampling from the input space, and (ii) Ex-

isting mutation operators that operate on parse trees perform small-scale mutations. These

problems together contribute to prohibiting existing grammar-aware fuzzers from reliably

generating complex bug triggers.

Gramatron uses grammar automatons in conjunction with aggressive mutation opera-

tors to synthesize complex bug triggers faster. We build grammar automatons to address

the sampling bias. It restructures the grammar to allow for unbiased sampling from the

input state space. We redesign grammar-aware mutation operators to be more aggressive,

i.e., perform large-scale changes. Gramatron can consistently generate complex bug triggers

efficiently as compared to using conventional grammars with parse trees. Inputs generated

from scratch by Gramatron have higher diversity as they achieve up to 24.2% more coverage

relative to existing fuzzers. Gramatron makes input generation 98% faster and the input

representations are 24% smaller. Our redesigned mutation operators are 6.4× more aggres-

sive while still being 68% faster at performing these mutations. We evaluate Gramatron

across three interpreters with 10 known bugs consisting of three complex bug triggers and

seven simple bug triggers against two Nautilus variants. Gramatron finds all the complex

bug triggers reliably and faster. For the simple bug triggers, Gramatron outperforms Nau-

tilus four out of seven times. To demonstrate Gramatron’s effectiveness in the wild, we

deployed Gramatron on three popular interpreters for a 10-day fuzzing campaign where it

discovered 10 new vulnerabilities. This work was published at ISSTA’21 [4]. Furthermore,

Gramatron has been incorporated into mainline AFL++ [7] and LibAFL [8], two leading

coverage-guided fuzzers, as a dedicated testing mode by their respective developers.

18

FirmFuzz

With the number of IoT devices growing at an exhilarating pace, their security remains

stagnant. Imposing secure coding standards across all vendors is infeasible. Testing indi-

vidual devices allows an analyst to evaluate their security post-deployment. Any discovered

vulnerabilities can then be disclosed to the vendors to assist them in securing their prod-

ucts. The search for vulnerabilities should ideally be automated for efficiency and device-

independent for scalability.

We present FirmFuzz, an automated device-independent emulation and dynamic analysis

framework for Linux-based firmware images. It employs a greybox-based generational fuzzing

approach coupled with static analysis and system introspection to provide targeted and

deterministic bug discovery within a firmware image. We evaluate FirmFuzz by emulating

and dynamically analyzing 32 images (from 27 unique devices) with a network accessible from

the host performing the emulation. During testing, FirmFuzz discovered seven previously

undisclosed vulnerabilities across six different devices: two IP cameras and four routers. So

far, four CVE’s have been assigned. This work was published at IoTSP’19 [5].

SieveFuzz

Fuzzing is the de-facto default technique to discover software flaws, randomly testing

programs to discover crashing test cases. Yet, a particular scenario may only care about

specific code regions (for, e.g., bug reproduction, patch or regression testing)—spurring the

adoption of directed fuzzing. Given a set of pre-determined target locations, directed fuzzers

drive exploration toward them through distance minimization strategies that (1) isolate the

closest-reaching test cases and (2) mutate them stochastically. However, these strategies are

applied onto every explored test case—irrespective of whether they ever reach the targets—

stalling progress on the paths where targets are unreachable. Accelerating directed fuzzing

requires prioritizing target-reachable paths.

To overcome the bottleneck of wasteful exploration in directed fuzzing, we introduce trip-

wiring: a lightweight technique to preempt and terminate the fuzzing of paths that will never

reach target locations. By constraining exploration to only the set of target-reachable pro-

19

gram paths, tripwiring curtails directed fuzzers’ search noise—while unshackling them from

the high-overhead instrumentation and bookkeeping of distance minimization—enabling di-

rected fuzzers to obtain up to 99× higher test case throughput. We implement tripwiring-

directed fuzzing as a prototype, SieveFuzz, and evaluate it alongside the state-of-the-art

directed fuzzers AFLGo, BEACON, and the leading undirected fuzzer AFL++. Overall,

across nine benchmarks, SieveFuzz’s tripwiring enables it to trigger bugs on an average 47%

more consistently and 117% faster than AFLGo, BEACON and AFL++. This work was

published at ACSAC’22 [6].

Crystallizer

Applications leverage serialization and deserialization to exchange data between instances.

Serialization allows developers to exchange messages or perform remote method invocation

in distributed applications. However, the application logic itself is responsible for security.

Adversaries may abuse bugs in the deserialization logic to forcibly invoke attacker-controlled

methods by crafting malicious bytestreams (payloads).

Crystallizer presents a novel hybrid framework to automatically identify deserialization

vulnerabilities by combining static and dynamic analyses. Our intuition is to first over-

approximate possible payloads through static analysis (to constrain the search space). Then,

we use dynamic analysis to instantiate concrete payloads as a proof-of-concept of a vulner-

ability (giving the analyst concrete examples of possible attacks). Our proof-of-concept

focuses on Java deserialization as the imminent domain of such attacks. We evaluate our

prototype on seven popular Java libraries against state-of-the-art frameworks for uncovering

gadget chains. In contrast to existing tools, we uncovered 47 previously unknown exploitable

chains. Finally, we show the real-world security impact of Crystallizer by using it to syn-

thesize gadget chains to mount RCE and DoS attacks on two popular Java applications

automatically. We have responsibly disclosed all newly discovered vulnerabilities. This work

is currently under review.

20

Permissions and Attributions

While all the work presented in this dissertation was lead by me as the primary author, it

did greatly benefit from collaborations with the following people: (i) The content of Chapter 2

is the result of a collaboration with Mathias Payer, and part of a previously published

paper [4], (ii) The content of Chapter 3 is the result of a collaboration with Hui Peng,

Jiahao Li, Hamed Okhravi, Howard Shrobe, and Mathias Payer, and part of a previously

published paper [5], (iii) The content of Chapter 4 is the result of a collaboration with

Stefan Nagy, Matthew Hicks, Antonio Bianchi, and Mathias Payer, and part of a previously

published paper [6], and (iv) The content of Chapter 5 is the result of a collaboration with

Flavio Toffalini, Kostyantyn Vorobyov, Francois Gauthier, Antonio Bianchi, and Mathias

Payer, and part of a paper that is under review as of the time of this writing.

Outlook

The subsequent chapters in the dissertation are organized as follows. Chapter 2 presents

grammar automatons and Gramatron, a tool that uses these automatons to perform ef-

fective grammar-aware fuzzing. The design behind our IoT firmware analysis framework

(FirmFuzz) is detailed in Chapter 3 . In Chapter 4 , we showcase SieveFuzz, our tool that

employs tripwiring: a lightweight approach to perform directed fuzzing. Chapter 5 describes

Crystallizer, our hybrid approach to automatically identify deserialization vulnerabilities in

Java-based applications. In each of these chapters, we also provide the necessary back-

ground, experimental evaluation results, and discussion about relevant related and future

work. Finally, Chapter 6 concludes our dissertation.

21

2. GRAMATRON: EFFECTIVE GRAMMAR-AWARE

FUZZING

2.1 Introduction

Language interpreters like PHP, JavaScript (JS), or Ruby accept input whose structure

is defined as per a grammar. These interpreters form the building blocks for complex ap-

plication frameworks but are themselves highly vulnerable to exploitation with 98 reported

bugs between January 2018 and January 2021 [9 – 11]. Hence, they are lucrative targets for

adversaries. Testing these building blocks, i.e., the interpreters, is essential to ensure the

safety of software running on top of them such as web applications.

Fuzzing is an effective software security testing methodology. However, current fuzzing

approaches are ineffective at performing deep testing of interpreters. A majority of the

test inputs generated by grammar-unaware fuzzers [12 , 13] are rejected by the interpreter

during parsing. Interpreters reject all inputs that violate the grammar, and when fuzzers

are unaware of the accepted grammar, they will mostly create syntactically incorrect input.

For example, a common mutation operator is flipping random input bits. A fuzzer unaware

of the grammar may flip bits in input keywords, creating invalid mutants that are rejected

by the parser. The interpreter components past the parsing stage corresponding to semantic

analysis remain untested if fuzzers are grammar-unaware.

Fuzzing the semantic analysis components requires generating syntactically valid inputs.

Existing grammar-aware fuzzers [14 – 17] use: (i) a context-free grammar (CFG) to generate

test inputs, and (ii) parse trees to represent the syntactic structure of the input. The fuzzer

mutates the parse trees using the grammar to generate syntactically valid inputs for testing—

grammar-aware mutations. We observe a twofold problem with the current methodology for

grammar-aware fuzzing:

• Biased sampling: Fuzzers when using existing grammars perform biased sampling

from the input state space. This bias occurs due to how the production rules in the

CFG are laid out for generating inputs. This bias can make it harder for the fuzzer to

22

generate complex bug triggers which require chaining multiple parts of the input state

space.

• Small-scale mutations: Grammar-aware fuzzers employ parse trees for input gen-

eration and mutation. Existing mutation operators for parse trees perform localized

small-scale changes. This slows down the fuzzer while trying to discover bugs with

complex bug triggers if it wastes its time fuzzing grammar parts not relevant towards

triggering the bug.

We propose a two-fold solution to the above problem: (i) Restructuring the production

rules in the grammar to eliminate the sampling bias, and (ii) Redesigning mutation operators

to perform larger-scale changes. However, implementing these solutions on top of inputs

represented as parse trees imposes a performance overhead. This overhead arises from a

fuzzer having to maintain metadata in the form of the input derivation structure for each

input as its being generated or mutated. To remove this overhead and implement our solution

in a performance-optimal way, we convert the input grammar to a finite state automaton

(FSA), which we refer to as grammar automatons.

Grammar automatons restructure the grammar to eliminate the sampling bias. Further-

more, grammar automatons allow performing aggressive mutations (more terminals may be

changed) efficiently. Aggressive mutations ensure that the fuzzer does not get stuck per-

forming localized search of grammar parts that are not relevant towards triggering bugs.

We present Gramatron, a proof-of-concept for our claim that grammar automatons are an

effective solution for performing grammar-aware fuzzing. It represents inputs as automaton

walks and uses grammar-aware mutation operators that have been redesigned for fast and

aggressive mutations.

We evaluated using performance microbenchmarks if: (i) Gramatron resolves the sam-

pling bias in a performant manner, and (ii) redesigned mutation operators perform aggressive

changes efficiently. Gramatron generates higher diversity inputs as they achieve up to 24.2%

more coverage. This indicates that our generated inputs cover richer semantics of the input

grammar. Additionally, on average, inputs represented as automaton walks are 24% smaller

23

and input generation is 98% faster. Our redesigned mutation operators are on an average

68% faster and 6.4× more aggressive in their mutations.

To showcase that using conventional grammars coupled with small-scale mutations can be

a problem while trying to discover complex bug triggers, we compared Gramatron against two

variants (detailed in § 2.6) of the current state-of-the-art grammar-aware fuzzer Nautilus [18].

We evaluate all systems against a set of three interpreters with 10 known bugs consisting

of three complex bug triggers and seven simple bug triggers. For the three complex bug

triggers, Gramatron outperforms one variant on all of them and the other variant on two of

them. Gramatron finds four out of the seven simple bug trigger faster than one variant and

three out of the seven than the other variant. Furthermore, to prove its effectiveness in the

wild, we deployed Gramatron on three popular interpreters for a 10-day fuzzing campaign.

It discovered 10 new vulnerabilities. Additionally, we discuss a bug found as a case-study to

show how Gramatron is effective at generating complex bug triggers.

The main contributions of Gramatron are:

• We leverage grammar automatons which restructures grammars to allow generating

highly diverse inputs reliably as an effective methodology to synthesize complex bug

triggers

• We redesign and optimize mutation operators for grammar automatons to enable them

to do aggressive mutations for faster discovery of bugs with complex triggers.

• As a proof-of-concept, we build and evaluate Gramatron, an efficient grammar-aware

fuzzer. Source code of our framework is available at https://github.com/HexHive/

Gramatron .

• Gramatron discovered 10 new vulnerabilities over a 10-day fuzzing campaign, so far

one CVE has been assigned.

2.2 Background

Gramatron transforms grammars to an automaton to resolve the sampling bias and

enable performing aggressive mutations efficiently. This section introduces the necessary

24

https://github.com/HexHive/Gramatron
https://github.com/HexHive/Gramatron

background for automaton generation. We also introduced the mutation operators which

are customized for this new representation.

2.2.1 Context-Free Grammars

Language interpreters define the input format accepted by them using a Context-Free

Grammar (CFG). Formally, a Context-free Grammar (CFG) [19] is defined as: CFG =

(T, N, R, S). T is a finite set of terminals (characters in the generated string). N is a finite

set of nonterminal symbols (placeholders for patterns of T that can be generated by N). R

is a finite set of rules for substituting N with T . The rules are of the form A→ a where A is

always a nonterminal symbol. However, a can be a permutation of symbols from both N and

T . S is the starting nonterminal symbol from which all strings belonging to the grammar

are derived.

In order to eliminate sampling bias, Gramatron restructures the grammar using the

normal form by enforcing certain rules. We focus on two normal forms, used together by

Gramatron to create grammar automatons from a CFG: Chomsky Normal Form (CNF) [20]

and Greibach Normal Form (GNF) [21].

Both CNF and GNF are similar to CFG except they have constraints placed on their rules

(R). For CNF, each nonterminal can either generate a single terminal or two nonterminals.

For GNF, each nonterminal can either generate a terminal or a terminal followed by any

number of nonterminals.

2.2.2 Automaton Classes

We give formal definitions of different automaton classes that Gramatron employs to

create grammar automatons. Additionally, we detail the necessary background for the the-

oretical challenges involved in creating grammar automatons.

Finite State Automatons

Gramatron creates grammar automatons for performing fuzzing using finite state automa-

tons (FSA). This allows Gramatron to create lightweight input representations that enable

25

fast and aggressive mutations. Formally, a FSA is defined as M = (Q, Σ, δ, q0, F) [22]. Here,

Q is a finite set of states. Σ is the finite set of terminals. δ defines the set of all transitions

over the automaton states. q0 is the start state in the automaton corresponding to the start

symbol of the grammar. F is the accepting state in the automaton. A set of transitions from

the start state to the final state describe an input string that belongs to the grammar.

Pushdown Automatons

Gramatron leverages pushdown automatons (PDA) to create grammar automatons. A

PDA is a language recognizer for a CFG. In the context of Gramatron, we will consider

the 1-state PDA that accepts inputs by an empty stack. Formally, a PDA is defined as

M = (Q, Σ, Γ, δ, q0, Z, F) [23]. Here, Q is a finite set of states. Σ is the finite set of

terminals. Γ is a set of symbols that can be pushed and popped from the stack (referred to

as stack symbols). Z is the start symbol pushed to the stack. q0 is the start state and F

is the accepting automaton state. δ is the transition function that governs the automaton

behavior. It takes as argument δ(q, a, X) where, q ∈ Q, a ∈ Σ, and X ∈ Γ. The output of δ

is a finite set of pairs (p, γ) where p is a new state and γ is the string of symbols that replace

X at the top of the stack by being pushed in reverse. If γ is empty then only X is popped

from the stack.

2.2.3 Grammar-Aware Mutation Operators

Grammar-aware mutation operators mutate inputs while maintaining syntactic validity.

They take in as input a grammar along with a syntactically valid test case to create mutants.

There are three mutation operators which have proven successful in finding deep bugs [18]:

random mutation (pick a random non-leaf nonterminal node and create a new subtree),

random recursive (find recursive production rules and unroll up to n times), and splice

(combine two inputs while preserving syntax). We implemented them in Gramatron and

tailored them for fast and aggressive mutant generation.

26

Context-Free
Grammar

GNF
Grammar

Grammar
Automaton

Grammar
Preprocessor

Mutation
Module

Bugs

Test Input

Coverage Feedback

Oracle

Fuzz
Target

1

2

Normalization Transformation

Figure 2.1. Gramatron overview.

2.3 Gramatron Overview

Gramatron is a coverage-guided, grammar-aware generational fuzzer. As input, Grama-

tron takes a CFG accepted by the target. Gramatron outputs crashing test cases . Figure 2.1

highlights Gramatron’s two distinct phases: 1 preprocessing phase, followed by a 2 fuzzing

phase. In the preprocessing phase, Gramatron transforms a grammar into its corresponding

grammar automaton. It first converts the grammar into a form for unbiased input sampling

from which it creates the grammar automaton. It is an FSA that encodes the input space

represented by the grammar.

In the fuzzing phase, Gramatron uses the automaton and mutation operators redesigned

for fast and aggressive mutations. This enables Gramatron to rapidly find bugs with complex

triggers. Furthermore, to guide the fuzzing towards interesting parts of the grammar, it uses

coverage feedback to guide its mutation.

27

2.4 Grammar Automatons

A fuzzer must generate syntactically valid inputs to fuzz beyond the application parser.

Previous fuzzers employ parse trees with CFG for input generation and mutation. A parse

tree encodes the replacement rules applied to generate the input from the grammar. The

fuzzer uses this information to perform mutations. Existing grammar-aware fuzzers are

ineffective at synthesizing complex bug triggers due to biased sampling and localized small-

scale mutations.

Conventional grammar structure introduces bias during input generation when a fuzzer

is choosing replacement rules at random to expand. Grammar rules are laid out in a way

that makes it probabilistically harder to generate certain parts of the input state space. This

bias in turn causes the fuzzer to generate certain patterns less effectively, slowing down bug

discovery. Existing fuzzers use mutation operators designed for parse trees which perform

localized small-scale changes. These small-scale mutations are detrimental if the fuzzer gets

stuck fuzzing parts of the grammar that are not relevant towards triggering a bug.

Gramatron performs an automatic two-step transformation on the CFG to create a gram-

mar automaton. First, it transforms the CFG into its GNF which performs the grammar

restructuring. Second, it converts the GNF of the grammar into an automaton. Gramatron

can encode any input that abides by the grammar as an automaton walk. Grammar au-

tomatons restructure the grammar enabling the fuzzer to perform unbiased sampling from

the input state space. This enable the fuzzer to generate inputs with higher diversity more

frequently. We also redesign the mutation operators to operate on grammar automatons and

perform aggressive changes efficiently to discover bugs with complex triggers.

2.4.1 Motivating Example

The following concise example gives an intuition as to how grammar automatons perform

unbiased sampling from the input distribution and allow for aggressive mutations to be

performed efficiently. Listing 2.1 presents a subset of the PHP grammar [24].

28

program −> '<?php ' phpBlock '? > '
phpBlock −> stmt |

stmt phpBlock
stmt −> ca l lS tmt |

retStmt
ca l lS tmt −> func ' () ; '
retStmt −> ' re turn ; '
func −> ' rand ' |

'mt_rand '
Listing 2.1 Subset of PHP grammar.

program −> '<?php ' phpBlock C
phpBlock −> ' rand ' A |

'mt_rand ' A |
' rand ' A phpBlock |
'mt_rand ' A phpBlock |
' r e turn ; ' phpBlock |
' r e turn ; '

A −> ' () ; '
C −> '? > '

Listing 2.2 The same PHP grammar in GNF.

Biased sampling

The CFG in Listing 2.1 shows how a conventional structure forces the fuzzer to perform

biased sampling from the input distribution. A fuzzer generating an input from this CFG will

start from the symbol (program) and iteratively keep applying the rules until the resulting

string has no nonterminals. callStmt that can generate twice as many distinct subtrees as

the retStmt has the same 50% probability of being picked for generation. Therefore, the

fuzzer undersamples the subtrees corresponding to callStmt. This leads to low diversity in

the inputs generated which in turn leads to lesser test coverage during fuzzing.

The grammar automaton as shown in Figure 2.3 describes the GNF of the CFG (List-

ing 2.2). GNF allows Gramatron to perform unbiased sampling from the input state space. It

restructures the grammar to explicitly enumerate all distinct subtrees that can be generated

by each nonterminal. Thus, we see that subtrees corresponding to the function invocation

29

become twice as likely to be picked for generation because they can generate twice as many

subtrees.

Aggressive mutations

Gramatron uses aggressive mutation operators. Specifically, given an input string and a

point of mutation, Gramatron mutates until the end of the string relative to the mutation

point. Automatons have a design that is more conducive for performing such changes as

compared to parse trees.

To understand why automatons are more optimal, lets assume we have a sample program

<?php rand(); return; ?>. Figure 2.2 shows the parse tree for this program. From Fig-

ure 2.3 , Gramatron would represent this input as a sequence of automaton transitions. This

would be [0_1, 1_4, 4_1, 1_3, 3_1]. Lets assume we chose the return; statement as the

mutation point.

If we wanted to make an aggressive change relative to the nonterminal node stmt, we

would need to maintain a parse stack while performing the mutation. The parse stack keeps

track of the unexpanded nonterminal nodes as the input is being generated. The overhead of

maintaining this stack has a worst case complexity of O(n) where n is the number of parse

tree nodes.

This overhead of maintaining a parse stack can be completely avoided by performing

this mutation on an automaton-based representation. This is because the parse stacks are

implicitly encoded in the automaton states. Therefore, just by diverging the walk from a

state, we can perform an aggressive mutation.

2.4.2 Automaton Construction

We first describe the automaton construction algorithm used by Gramatron. Then we

will go over the challenge faced while applying this algorithm and the insight we used to

solve that challenge.

30

Program

<?php phpBlock

stmt

callStmt

?>

();func

rand

phpBlock

phpBlock

stmt

retStmt

return;

Figure 2.2. Parse tree for the input <?php rand (); return; ? >.

0

1

4

2

3

5

<?php

();

?>

rand

();
2_1

3_1

4_1

State transition ID

Terminal emitted

Legend

rand

1_1

mt_rand

1_2
1_4

mt_rand

1_5

return;

1_3

0_1

return;

1_6

Figure 2.3. FSA for the grammar in Listing 2.2 .

31

Construction Algorithm

Gramatron performs a two-step procedure to transform a grammar into its corresponding

automaton is: (i) transforming the grammar to its GNF and (ii) converting the transformed

grammar into an automaton. First, Gramatron converts a grammar G to its CNF [20] and

then performs fixed point iterations over its CNF to convert it into its GNF. Gramatron

performs its grammar construction by first specifying the transition function of the PDA for

each CFG production rule. For a grammar in GNF, the transition function is:

δ(q, t, A) = {(q, W) | A→ tW ∈ R}. (2.1)

Here, t is a terminal, A is a nonterminal and W corresponds to a nonterminal set.

Gramatron uses this transition function to build the grammar automaton. It does so by

enumerating (if possible) all valid PDA stack states belonging to the CFG. The final state in

the grammar automaton corresponds to an empty stack. For each stack state, there exists a

state in the grammar automaton.

Gramatron uses a worklist-based algorithm to build the automaton. It initializes the

worklist with a tuple consisting of the initial automaton state and its parse stack with the

start symbol of G. It iterates over the worklist until it is empty. For each iteration, it:

(i) pops an element from the worklist, (ii) from the parse stack (P) of the element, pops

the topmost stack symbol (S) to create a new P ′. For the stack symbol, finds all possible

transitions as per the transition function, (iii) for each transition, computes the new stack

P ′′ from P ′ by pushing the stack symbols (if any) in reverse, (iv-a) if P ′′ is equivalent to

a parse stack for a previously generated automaton state, then creates a transition from

current state using the terminal t to that state, and (iv-b) if P ′′ is a new stack state, then

creates a transition from current state using terminal t to a new automaton state with stack

P ′′ and add the new automaton state along with its parse stack to the worklist. Performing

an automaton walk on the FSA creates a new seed input.

32

Construction Challenge/Insight

It is theoretically impossible to create an algorithm that converts any arbitrary CFG

into a FSA. The impossibility arises out of a specific grammar type called self-embedding

grammars with infinite automaton states. A CFG is self-embedding [25] if it contains a

production rule of the form:

ω
∗=⇒ uωv | {u, v} ∈ T + ∧ ω ∈ N (2.2)

Here, T , and N follow the standard notation as specified in § 2.2.1 .

However, a key insight we had is that grammar-aware fuzzers impose an upper-bound

on the generated input size. This ensures that they do not generate arbitrarily large inputs.

Hence, they instantiate a subset (under-approximation) of the language specified by the CFG.

Here, language refers to the (possibly) infinite state space of inputs that can be generated

from a CFG. Gramatron leverages this insight to address the theoretical impossibility while

creating grammar automatons. It approximates the CFG with a regular language [26 – 28].

This regular approximation is then transformed into grammar automata.

In order to perform this regular approximation, Gramatron limits the size of the parse

stack (denoted by P in the algorithm) to an upper bound while generating the automa-

ton [29 , 30]. Hence, the construction algorithm terminates and an automaton is constructed.

The trade-off incurred is that the generated automaton can express only a subset of the lan-

guage specified by the self-embedding grammar. In the context of programming language

grammars, it implies that constructs from self-embedding rules can only be nested up to a

static depth. This depth is directly proportional to the allowed stack size as specified by the

user and can be tuned accordingly.

However, this tradeoff is not detrimental in the context of fuzzing. Grammar-aware

fuzzers already limit the input size to prevent generating arbitrarily large inputs. Hence,

grammar automatons allow Gramatron to be as expressive as existing grammar-aware fuzzers

while being more performant.

33

An exception to the above discussion of generating an under-approximation of the lan-

guage are non-self-embedding grammars. They do not contain any self-embedding rules.

Such grammars have a finite number of possible states and transitions [31]. Therefore Gra-

matron can generate a grammar automaton that can generate the exact language as specified

by the non-self-embedding CFG.

2.4.3 Automata-Based Mutation

In Gramatron, the mutation operators (splicing, random mutation, and random recur-

sive) operate on grammar automaton walks. To address the risk of getting stuck in a local

subtree, we enable the splice and random mutation operator to perform more aggressive

changes. Given an input string and a target mutation point in it, Gramatron mutates it

until the end of the string. For each mutation operator, let an input I be mutated. Its corre-

sponding representation in the form of a walk is W = [T1, ..TN], consisting of N transitions

to go from the start state of the FSA to its final accepting state. Let the visited automaton

states be S = [S1, ..SN+1].

Splice

Let there be two inputs represented as automaton walks, W1 and W2. A random tran-

sition from W1 is chosen as the point to splice it with W2 — TC where 1 ≤ C ≤ N . The

subwalk originating from this point is replaced with a fitting subwalk from W2, one that

originates from the same state as TC , which is SC . Automatons outperform parse trees for

splicing, as parse trees require heavyweight restructuring of parse tree nodes. The operator

is not only changing the subtree rooted under the chosen splice point but also everything

to the right of the subtree as well. For automatons, the same mutation simply requires

concatenating two lists.

Random Mutation

Gramatron undertakes a three-step procedure to perform this mutation. First, it chooses

a random transition in the walk W , TC to diverge the walk. Second, it generates the

34

unmutated part of the input verbatim using the C−1 transitions. Third, from the divergent

state, Gramatron performs a random walk over the automaton until it reaches the final state

to generate the mutant. This operator becomes faster at generating inputs represented as

automaton walks. This is because it requires generating a new substring for the mutant from

the provided grammar. Since grammar automatons make input generation faster, substring

generation for the new mutant is also faster.

Random Recursion

Without preprocessing, finding recursions in a parse tree has the runtime complexity of

O(n log n) where n is the number of tree nodes. This is because for each node you have to

traverse its parents recursively to find all recursive features. Gramatron limits the runtime

complexity for finding recursive features to O(m) where m is the number of terminals in the

input and m << n. Grammar automatons enable Gramatron to traverse W only once to

log all recursive features. It then replicates the subwalk corresponding to a randomly picked

recursive feature upto n times. In the current implementation n = 5.

2.5 Implementation

Gramatron is implemented in C and Python: the (ahead of time) grammar preprocessor

is implemented in Python and the (performance critical) input generator and mutator are

implemented in C. It takes as input a grammar accepted by the fuzz target. Gramatron

modifies AFL++ [32] to leverage grammar automatons to perform input generation and

mutation while fuzzing. Furthermore, it uses code coverage feedback from the fuzz target to

guide its mutation.

2.5.1 Fuzzing Workflow

Gramatron is a coverage-guided grammar-aware fuzzer. There are three main stages

to performing coverage-guided fuzzing [33 , 34]: (i) seed scheduling, picking a seed from a

set of seeds for generating mutants, (ii) seed mutation, generating mutants from the seed,

and (iii) seed selection, selecting seeds as interesting candidates for further fuzzing based

35

on feedback. Gramatron extends the seed mutation of AFL++ making it grammar-aware

to generate syntactically valid inputs. To prevent mutants from growing arbitrarily large,

Gramatron deprioritizes (but does not prohibit) inputs that have reached a size greater than

2048 bytes.

Gramatron proceeds in two stages: corpus generation and the fuzzing stage. During cor-

pus generation, Gramatron generates a predefined number of syntactically valid seed inputs

by performing random walks over the grammar automatons. In the current implementation,

Gramatron generates 100 seed inputs. Using this seed corpus, Gramatron transitions to the

fuzzing stage.

A fuzz iteration consists of four steps: (i) choose a seed from the queue, (ii) pass the seed

through each of the mutation operators, and (iii) test generated mutants on the fuzz target,

(iv) select candidates for further testing based on the coverage feedback. Furthermore, to

prohibit the fuzzer from getting stuck in a local coverage minimum, it also generates a

candidate through random walk over the grammar automaton for each fuzz iteration.

2.6 Evaluation

Our evaluation answers the following research questions:

• RQ1: Do grammar automatons perform unbiased sampling from the input state space?

• RQ2: Does Gramatron perform aggressive mutations efficiently?

• RQ3: Can Gramatron discover complex bug triggers faster?

• RQ4: Can grammar automatons find new vulnerabilities?

We compared Gramatron against two Nautilus variants, the state-of-the-art grammar

aware fuzzer that uses parse trees: NautilusP: the prototype presented in the paper [18]

with AFL-style mutation operators that may generate syntactically invalid inputs [35], and

NautilusGH: the performance-optimized version released recently that removed AFL-style

mutation operators [36].

36

For RQ1–RQ2, we performed the following experiments by comparing Gramatron against

NautilusGH, since it is performance-optimized: (i) measure complexity and diversity of in-

puts generated from scratch using grammar automatons against conventional grammars

(RQ1), (ii) performance evaluation of input generation, mutation, and mutation aggres-

siveness (RQ2). To answer RQ3, we evaluated the elapsed time to discover known bugs of

varying complexity in three fuzz targets against both NautilusP and NautilusGH. Finally, for

RQ4, we deployed Gramatron for 10 days on three popular and well-fuzzed interpreters to

find new vulnerabilities.

We performed the evaluation on an Intel Xeon Bronze 3106 1.7GHz processor with 45GB

RAM running Debian 9.3. For a fair comparison, we ran all tools in single-threaded mode

on a single core. Gramatron was compiled with Clang-8.0 at Ofast optimization. NautilusP

and NautilusGH are implemented in Rust and use its nightly branch. We used the optimized

build (i.e., the release build [37]) for our evaluation.

2.6.1 Performance Microbenchmarks

We compare inputs generated using grammar automatons against conventional grammars

using parse trees along three axes: (i) complexity and diversity of the inputs generated

(RQ1), (ii) length of mutated substrings (RQ2), and (iii) time taken to generate and mutate

these representations (RQ2).

However, fuzzing consists of auxiliary stages apart from input generation and mutation.

While testing NautilusGH, we observed these stages intertwined with each other. This in-

troduced noise in the performance measurements. To avoid this noise during performance

measurement, we created seven microbenchmarks each taking in as input a CFG to answer

RQ1–RQ2. For a fair comparison, we crafted our evaluation grammars from the same

grammars used by the Nautilus authors in their evaluation. Table 2.1 lists the number of

rules in each grammar. The average time taken to build grammar automatons per grammar

was 2.09s, i.e., the automaton construction itself is lightweight.

We also performed statistical tests for each run to: (i) quantify the performance gain and

(ii) check whether the improvement is statistically significant. For magnitude quantification,

37

we performed Cohen’s-D Effect Size [38] and for significance testing we used the Mann-

Whitney U-Test [33]. As per the Mann-Whitney U-test , a result is significant if p-value <

0.05. All results reported for the microbenchmarks are statistically significant.

Table 2.1. Input diversity comparison using branch cov showing absolute
cov% and cov increase% relative to baseline of Gramatron (G), NautilusGH
(NGH), and NGH-G: NautilusGH with GNF grammar.

Target Rules Branch Coverage % (Absolute/Relative Increase)
Baseline NGH NGH-G G

mruby 1185 17/0 17.3/+1.8 17.4/+2.4 18.5/+8.8
PHP 8685 2.9/0 3.0/+3.4 3.2/+10.3 3.7/+27.6
JS 171 8.4/0 8.5/+1.2 8.6/+2.4 8.8/+4.8

RQ1: Unbiased Sampling.

In this experiment, we validated whether generating inputs using grammar automatons

enable unbiased sampling from the input state space. Unbiased sampling creates inputs with

higher diversity. Hence, we use input diversity as a proxy to validate if Gramatron performs

unbiased sampling. We quantify input diversity using branch coverage. The intuition is that

input diversity is directly proportional to the branch coverage obtained. To account for the

inherent randomness incorporated by fuzzers during input generation, we generated a large

(105) number of inputs each over five different trials.

We performed the input diversity comparison against NautilusGH and a baseline input

generator. Both the baseline and NautilusGH employ parse trees along with conventional

grammars. However, a key difference between them is the strategy employed while picking

which grammar rules to exercise during input generation. The baseline generator picks

rules at random while NautilusGH tries to bias its generation towards larger inputs through

probabilistic weighting of the grammar production rules. Additionally, since Gramatron

restructures the grammar by leveraging its GNF to perform unbiased sampling from the

input state space, we wanted to see if NautilusGH could become as performant as Gramatron

if we just supplied the GNF of the grammar to it (NautilusGH-G).

38

As evident from the branch coverage results in Table 2.1 , Gramatron outperformed all

other approaches across all grammars with respect to generating higher diversity inputs. It

obtained up to 24.2% more coverage compared to the other approaches. This is because

grammar automatons enable unbiased sampling from the input state space, increasing test

coverage.

The baseline coverage and observed improvement are low for two reasons. First, Nautilus

authors manually designed the grammars to focus on specific target functionality which

is common while performing grammar-aware fuzzing. Second, we generated inputs from

scratch using the grammar without leveraging coverage feedback or mutation operators. We

did this to perform an evaluation of the performance improvement solely from the grammar

restructuring as performed by Gramatron.

Another interesting observation is that NautilusGH-G variant outperforms NautilusGH

(which uses conventional grammars) but does not perform on par with Gramatron. This

happens because when NautilusGH biases its generation it ends up biasing towards specific

kind of syntactical constructs (e.g., single function invocations with a large number of ar-

guments). These inputs, while still interesting are not helpful towards expanding the test

coverage of the fuzzer. Hence, this experiment showed that Gramatron, through grammar

automatons, removes sampling bias most optimally.

RQ2: Aggressive mutations

In this experiment, we validated if the mutation operators adopted by Gramatron are

indeed aggressive (i.e., perform large-scale changes). We did so by comparing the mutation

operators of Gramatron against those of NautilusGH (that perform small-scale changes). We

generated inputs over 8 length buckets at intervals of size 10. Here, length corresponds

to the number of terminals in the input. Each microbenchmark generated 1000 inputs for

each bucket creating a sum total of 8000 inputs. We used this length threshold because, for

the evaluation grammars, NautilusGH did not generate inputs with more than 80 terminals

frequently with random walks. This occurred because generating large inputs requires trig-

39

gering recursive grammar features consecutively which became probabilistically harder with

each trigger.

1-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79
Terminal frequency intervals

0

10

20

30

40

50

M
ut

at
io

n
le

ng
th

 (t
er

m
in

al
s)

(a) Mutation Scale
Gramatron
NautilusGH

(a) Mutation Scale

1-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79
Terminal frequency intervals

0

250

500

750

1000

1250

1500

1750

Sp
ac

e
ta

ke
n

(b
yt

es
)

(b) Representation Size
Gramatron
NautilusGH

(b) Representation Size

1-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79
Terminal frequency intervals

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

Ti
m

e
ta

ke
n

(n
s)

(c) Input Generation
Gramatron
NautilusGH

(c) Input Generation

1-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79
Terminal frequency intervals

0

200000

400000

600000

800000

1000000

Ti
m

e
ta

ke
n

(n
s)

(d) Splice Mutation
Gramatron
NautilusGH

(d) Splice Mutation

1-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79
Terminal frequency intervals

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

Ti
m

e
ta

ke
n

(n
s)

(e) Random Mutation
Gramatron
NautilusGH

(e) Random Mutation

1-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79
Terminal frequency intervals

0

5000

10000

15000

20000

25000

30000

35000

40000

Ti
m

e
ta

ke
n

(n
s)

(f) Random Recursive Mutation
Gramatron
NautilusGH

(f) Random Recursive Mutation

Figure 2.4. Visualization of a representative run of microbenchmark
comparison of Gramatron against NautilusGH.

To validate that Gramatron performs aggressive mutations, we compared the number of

terminals in the substring generated by the mutation operator from both tools. This metric

accurately quantifies the mutation scale. We compared the random mutation operator for

this microbenchmark. The results are representative of the splice mutation operator as

well since both are functionally equivalent. The only difference between them is how the

substring is generated: for random mutation, its generated from the grammar and for the

splice operator its generated from another input.

Figure 2.4 a shows a representative microbenchmark run for the PHP grammar. It is

evident that Gramatron performs more aggressive mutations than NautilusGH since the mu-

tation scale is much larger. This is expected because for random mutation and splice, given

an input string and a mutation point, Gramatron mutates till the end of the string while

NautilusGH mutates a substring relative to the mutation point. These aggressive mutations

40

allow Gramatron to synthesize complex bug triggers faster by performing a broader, more

global search through the input state space without being tunnel-visioned on specific parts

of the input state space.

Table 2.2. % improvement in terms of space, time, and mutation scale of
Gramatron against NautilusGH. Effect size quantifies the improvement mag-
nitude (> 0.8 = large, > 0.5 = medium).

Microbenchmark % Improvement (Effect Size)
mruby PHP JS

Representation Size 23.66 (0.44) 15.26 (0.29) 32.27 (0.66)
Input Generation 98.48 (1.88) 99.78 (1.87) 96.66 (2.15)
Splice Mutation 99.84 (3.03) 97.94 (2.45) 98.26 (1.91)
Random Mutation 26.82 (0.40) 77.75 (0.80) 73.16 (0.87)
Random Recursive 46.77 (1.19) 38.94 (0.78) 52.25 (1.11)
Mutation Scale 134.17 (-0.09) 930 (1.08) 877 (1.12)

We also calculated the percentage improvement of Gramatron by calculating the median

time taken across input buckets and then comparing the mean of those medians. As evident

from the “Mutation Scale” row of Table 2.2 , Gramatron performed significantly more aggres-

sive mutations. The average effect size across the different grammars is reported in Table 2.2 .

We see a large effect size for mutator aggressiveness in Gramatron.

However, for the mruby grammar, the observed effect size is minimal. This occurred

due to the effect size not being robust to outliers. For this grammar, we observed the

anomalous behavior that NautilusGH generated larger-scale mutations than Gramatron only

for the smallest inputs with < 10 terminals. This occurred because for the smallest inputs

built from this mruby grammar, the probability of NautilusGH extending the input further

was significantly higher due to lack of nonterminal nodes for mutation. However, for inputs

of all other sizes in the mruby grammar, Gramatron outperformed NautilusGH. This is

evident from the fact that Gramatron still generated on average 134.17% larger mutations

as compared to NautilusGH. Hence, we can conclude that the negligible effect size for mruby

grammar is due to the outlier behavior of NautilusGH for small inputs.

41

RQ2: Generation/Mutation Efficiency

Finally, we validated whether our adopted methodology to remove the sampling bias

from input distribution and perform aggressive mutations was efficient in terms of space and

time. To do so, we evaluated two aspects of Gramatron: (i) space and time efficiency of

automaton-based input representations, and (ii) time efficiency of the mutation operators.

The evaluation methodology for these set of microbenchmarks was the same as that for

evaluating aggressive mutations. From Table 2.2 , we observe that Gramatron improved over

all measured aspects. We see a large effect size along all evaluated components except space

for which we see a close to medium effect.

To evaluate space efficiency, we compared the disk space size of their JSON-serialized

representation size across inputs belonging to different length intervals, showing that our

representation is more lightweight. Then, Figure 2.4 c visualizes the time taken to perform

input generation using grammar automatons and parse trees. Grammar automatons provide

a significant runtime improvement. This is due to the fact that when a fuzzer is performing

an automaton walk to generate an input, it does not need to keep track of the parse stack

since its implicitly encoded in the automaton itself.

For performance evaluation of mutation operators, we designed the microbenchmarks

to perform a three-step task: (i) create any metadata necessary for mutation, (ii) mutate

the input and (iii) unparse the mutated input, i.e., from the input representation create a

concrete test input. These three tasks together correspond to creating a mutant. The total

time taken for these tasks was recorded and then bucketed based on the number of terminals

in the generated mutant. We will now go over each of the mutation operators.

For random mutation, our intuition is that if the input generation is fast, this mutation

will be fast too since it requires generating a new input part. Figure 2.4 e validates our

intuition empirically where we can see the time taken to generate mutants using Gramatron

is much lesser than NautilusGH.

When evaluating the random recursive operator, we removed randomness introduced from

the number of times chosen by both tools to multiply a recursive feature. To do so, we fixed

the recursive feature multiplication, to be performed 5 times by both tools. Furthermore,

42

inputs with less than 10 terminals did not have any recursive features. Hence, for this bucket

the random recursive mutation operator performed no operations and we marked the time

as zero for both tools. From Figure 2.4 f , we observe a performance gain when this mutation

is done on grammar automaton walks. The primary reason Gramatron is faster because

finding all recursive features in an input ends up being more expensive when done on parse

trees as opposed to grammar automaton walks.

The splice mutation operator requires two inputs. Hence, for each iteration we first gen-

erate two random inputs: base input and the candidate. For the base input, we generate the

metadata structure corresponding to each tool. Then, we perform splicing with the candi-

date. Gramatron drastically outperforms NautilusGH as shown in Figure 2.4 d . The overhead

of NautilusGH comes primarily from creating metadata for the base input for performing

the splice operation. Their metadata creation is more heavyweight because their mutation

operator is designed to splice the candidate by searching through a corpus of base inputs

rather than a single base input.

2.6.2 Faster Bug Discovery

Gramatron can find bugs with complex triggers faster in fuzz targets by using grammar

automatons with aggressive mutation operators. In order to validate this claim, we created a

corpus of three fuzz targets with 10 known bugs in them acting as ground truth. We created

this corpus using the bugs discovered by Nautilus [18], Grammarinator [39] and from bug

trackers of the fuzz targets [40]. We evaluated NautilusP, NautilusGH, and Gramatron on

this corpus and compared the time taken to find each bug across ten fuzzing trials with ASan

enabled and a time budget of 24 hours each.

The bug corpus used is detailed in Table 2.3 ; we will be referring to the bugs by their

listed Bug-ID. For PHP, we used two different versions 7.2.6 [41] and 7.4.0 [42]. We sourced

each of the bugs in mruby and JerryScript from six different git commits. All these bugs

have syntactically valid proof-of-concept (PoC). Therefore, they all lied beyond the parser

of the fuzz target.

43

The input state space covered by the grammar highly influences the time taken to discover

a bug. Therefore, for this experiment, the grammar should challenge the fuzzer while also

ensuring that the input state space is not so large that it makes it infeasible for the fuzzer

to find the bug in a reasonable amount of time.

We built the input grammars using the subset of the grammars from the Nautilus repos-

itory [36]. For each bug in the corpus, we use a separate grammar. A single grammar for

each target is not enough as some of our targets contain multiple bugs. A generic grammar

that covers all bugs may cause the fuzzer to get stuck at finding alternate paths to a single

bug hindering progress. Having different grammars for each bug allows a fair evaluation that

enables the fuzzers to search for a particular bug without being distracted by other potential

bugs. The only exception to this rule were PHP-3 and PHP-4. These can be triggered from

the same grammar. We encountered difficulties in decoupling the bug triggers for both so

we post-processed results to infer when each bug triggered.

Based on the bug PoC, each grammar consists of required built-in language features to

trigger the bug along with non-required features to expand the input state space. Non-

required features are primitives that are not in the PoC. Each grammar had the ability

to build different statement types such as assignments, or function invocations. Hence, we

argue that these subsetted grammars are representative of the core functionality exercised

by the fuzz targets.

Note, that our tailoring primarily reduced the set of keywords to keep bugs discoverable.

If we forced the fuzzers to explore thousands of different keywords with all the statement

constructs, the time budget for each fuzzing campaign would exceed 24 hours by orders of

magnitude. Restricting the grammars enables us to perform exhaustive testing on our bug

corpus. We believe this is a fair comparison since for each bug, all fuzzers are provided

exactly the same input space to explore, hence allowing us to evaluate how efficiently they

search the input space to find the bug.

To evaluate bug discovery performance, we calculate the median time to discover the bug

across ten fuzzing trials. We allowed all tools to generate their own seed corpus for each trial

because of two reasons. First, at the start of each campaign, both NautilusP and NautilusGH

build a corpus of seed inputs from scratch from the grammar. Hence, we did not change

44

their default design by giving it a pre-existing seed corpus to prevent introducing unintended

side-effects. Second, the seed corpus plays a pivotal role in deciding the time taken to find

a bug [33]. Hence, by using a randomly generated seed corpus for each trial, we ensure an

unbiased evaluation. However, a side-effect of this evaluation choice is that we could not

establish statistical significance for this experiment.

Table 2.3. Performance breakdown of time to bug discovery across 10 fuzzing
campaigns. G: Gramatron, (NP, NGH): NautilusP and NautilusGH.

Bug-ID Bug Type PoC Complexity Successful Campaigns Median Time (s) Effect Size
(Branching rules) NP NGH G NP NGH G G v/s NP G v/s NGH

PHP-1 Segmentation Fault Simple (15) 10/10 10/10 10/10 1217 894 472 0.93 0.71
PHP-2 Division by Zero Simple (15) 10/10 10/10 10/10 505 164 61 1.64 1.58
PHP-3 Segmentation fault Simple (12) 10/10 10/10 10/10 1616 659 2288 -0.97 -2.06
PHP-4 Null-pointer-deref Simple (17) 10/10 10/10 10/10 2509 1065 6074 -2.79 -4.30
mruby-1 Use-after-free Complex (27) 3/10 8/10 10/10 2269 17341 4346 0.53 1.15
mruby-2 Segmentation Fault Simple (8) 10/10 10/10 10/10 725 268 889 -0.02 -0.46
JS-1 Heap buffer overflow Complex (26) 5/10 10/10 10/10 3866 335 1450 0.85 -0.67
JS-2 Failed assertion Complex (23) 4/10 9/10 10/10 2527 1620 1199 0.60 0.71
JS-3 Failed assertion Simple (12) 10/10 10/10 10/10 118 47 19 1.40 0.19
JS-4 Floating point error Simple (12) 10/10 10/10 10/10 481 33 78 0.67 -0.60

 Table 2.3 shows the experimental results. The PoC complexity column specifies the

number of branching rules to trigger in the original CFG to generate the PoC. The original

CFG here refers to the grammar used by Nautilus variants as-is and from which Gramatron

generates automatons. We classify a rule as branching if its RHS contains more than one

possible rewrite rule. We use this as a metric to quantify bug trigger complexity. The Effect

Size column showcases the magnitude difference between results of Gramatron and Nautilus

variants. The higher the number, the better is Gramatron and vice-versa. Nautilus did

not find several bugs within the 24-hour time budget. Hence, we had incomplete data for

those. We calculated effect size in such instances by only considering the trials for which we

had data for both Nautilus and Gramatron. We did this to ensure we did not incorrectly

estimate time-to-discovery for the Nautilus variants, potentially over-estimating Nautilus

performance.

Gramatron finds all bugs consistently across all fuzzing campaigns. However, NautilusP

and NautilusGH can only find seven and eight bugs out of the 10 respectively. Notably,

45

NautilusP is unable to discover mruby-1, JS-1, and JS-2 while NautilusGH fails to find mruby-

1 and JS-2 within the 24-hour time budget for certain fuzzing campaigns.

We divide the discussion based on the bug trigger complexity: (i) complex bugs: trig-

gers with > 20 branching rules, and (ii) simple bugs: triggers with ≤ 20 branching rules.

Branching rules are appropriate to quantify the complexity for generating a bug trigger. For

each branching rule, the fuzzer must make a set of choices (e.g., function invocations, or

utilized variable names). Increasing the number of required branching rules to generate a

trigger increases the risk that a fuzzer makes mistakes (e.g., by adding incorrect function

invocations, or using undefined variables).

Complex Bugs

From our ground truth corpus, mruby-1, JS-1 and JS-2 can be categorized as complicated

bugs. Gramatron outperforms NautilusP in finding them and NautilusGH in finding mruby-

1 and JS-2. NautilusP fails to find these complex bugs consistently within the given time

budget. This is due to the use of both AFL mutators and grammar-aware mutation operators.

For the failed fuzzing campaigns where NautilusP did not discover the bug, we observed

that the paths discovered by the AFL-mutators were disproportionately higher than other

mutation operators. We attribute this to the cascading effect caused by AFL mutators

generating syntactically invalid mutants. These mutants give shallow coverage in the parser

but are still added to the corpus which biases NautilusP towards performing shallow fuzzing.

NautilusGH tries to remediate the above problem by removing the AFL-mutation oper-

ators. However, we observe that NautilusGH still has difficulty in discovering complex bug

triggers. This difficulty arises because its mutation operators perform spot mutations (as

discussed in § 2.4.3). Thus, on finding an interesting input, NautilusGH performs localized

search around the grammar parts corresponding to the input. This can be detrimental when

grammar parts being explored are not relevant to the bug. Hence, this mutation policy slows

down its advance towards complex bug triggers.

Gramatron outperforms NautilusP by performing purely grammar-aware mutations. It

also outperforms NautilusGH due to its aggressive mutation policy. As per this policy, on

46

finding an interesting input, Gramatron does not fixate on performing localized search around

the grammar parts corresponding to the input. Instead, it biases towards performing a more

global search with its aggressive mutations. Hence, it rapidly progresses towards discovering

complex bug triggers.

JS-1 is the only complex bug in which NautilusGH outperforms Gramatron. On closer

inspection of the bug trigger, we noticed that even though it requires triggering 26 branching

rules, all of them were localized within a specific part of the grammar. This made it ideal

for the spot mutators used by Nautilus variants to discover this bug faster.

Simple Bugs

From our ground truth corpus, all other bugs apart from mruby-1, JS-1, and JS-2 can

be classified as simple bugs. From the results, its evident that Gramatron outperforms

NautilusP in finding simple bugs except mruby-2, PHP-3, and PHP-4. The mruby-2 effect

size is 0.02 hence the magnitude of performance difference is close to negligible. In the case

of NautilusGH, its able to outperform Gramatron in finding the simple bugs except PHP-1,

PHP-2, and JS-3.

The root cause as to why NautilusP fails at finding simple bugs faster than Gramatron

can be attributed to its use of AFL-style mutation operators. An exception to this trend were

mruby-2, PHP-3, and PHP-4 where both the Nautilus variants outperformed Gramatron.

Upon inspection, we observe that their generation was highly localized to a specific part of

the grammar and hence Nautilus variants were able to find it faster than Gramatron.

NautilusGH outperforms Gramatron in finding simple bugs. This performance gain can

be attributed to the spot mutators utilized by NautilusGH. They are better at finding simple

bugs for the same reason they were worse at finding complex bugs. The localized mutations

allow NautilusGH to find simple bugs faster.

2.6.3 Bug Discovery Performance in the Wild

To demonstrate that grammar automatons preserve bug-finding capabilities of grammar-

aware fuzzers, we deployed several fuzzing campaigns against three interpreters: mruby,

47

PHP, and Jerryscript. We chose these targets for two reasons: (i) they are widely used,

which makes security bugs in them relevant, (ii) they are well-tested and have been fuzzed

previously by grammar-aware fuzzers like Nautilus and Grammarinator [39], this ensures

that bugs found by Gramatron are not low-hanging fruits due to lack of testing.

For each of these targets, we created grammar automatons for Nautilus grammars which

are self-embedding. Hence, the grammar automatons expressed a subset of the language

specified by the CFG as discussed in § 2.4.2 . To quantify their size, the number of rules in

each of these grammars is present in Table 2.4 . The same table lists the commit ID and

versions fuzzed for each of these targets.

Table 2.4. Fuzz targets with types of bugs discovered. Key: OOB: Out-of-
bounds read, (H)BO: (Heap) Buffer Overflow, AV: Assertion Violation, and
UAS: Stack use-after-scope.

Target Version Rules Bugs Bug Type
mruby 9840d6, 96bae1 1177 3 2 OOB, 1 (H)BO
PHP 7.4.8, 7.4.9 8712 4 1 UAS, 3 OOB
Jerryscript 04f0a7 589 3 3 AV

Gramatron fuzzed these targets for 10 days. During this campaign, it found 10 new

vulnerabilities, so far one CVE (CVE-2020-15866) was assigned. Four of these have been

responsibly disclosed to the affected vendors who have acknowledged and rolled out patches

for the same. For the remaining six we are in the process of reporting them to the affected

vendors. The vulnerability type breakdown and the affected applications are presented

in Table 2.4 . For Jerryscript, the assertion violations causes it to crash.

Bug Case Study

Here we showcase the effectiveness of Gramatron at synthesizing complex bug triggers.

The bug is an out-of-bounds (OOB) read in the mruby interpreter (which has now been

patched). Its root cause existed in rehash, an API provided by mruby for rebuilding a

hash data structure. An OOB read was triggered if a hash made empty was rehashed and

manipulated. The reason is that the internal metadata structure for the newly generated

48

hash would point to stale metadata. This in turn caused any operations on the new hash to

cause an OOB read. This vulnerability is only triggered if the original hash structure had

been emptied, not if it was empty from the beginning.

To synthesize the bug trigger, Gramatron overcame two challenges: (i) emptied a popu-

lated hash and (ii) performed the correct sequence of operations on the emptied hash. The

supplied grammar did not express how to add to an existing hash . So, Gramatron solved

the first challenge by using another API to get a populated hash. After that, it learned

how to empty it by performing the correct number of eviction operations. From there, it

synthesized the API to perform the operations needed for the second challenge, which in

turn triggered the vulnerability.

2.7 Discussion and Future Work

Table 2.5. Median standard deviation of the time taken to find different bug triggers.
Bug Trigger Std Deviation Median (h)

NautilusP NautilusGH Gramatron
Simple 0.14 0.07 0.18
Hard 2.72 5.75 1.15

Trade-off between Aggressive and Spot mutators

Aggressive mutators (as used by Gramatron) primarily generate mutants that are sig-

nificantly different from the source input owing to the large-scale changes. Spot mutators

(as used by Nautilus) primarily generate mutants with smaller changes compared to the

source input. Consequently, aggressive mutators sample from a more diverse set of mutants

while spot mutators sample from a more localized set of mutants corresponding to the source

input.

Since spot mutators perform local search, they have a higher chance of getting stuck in

local coverage minima while trying to synthesize complex bug triggers. To validate this, we

calculated the median standard deviation for different types of bug triggers used in § 2.6.2 .

49

As evident in Table 2.5 spot mutators have a higher standard deviation when trying to

synthesize complex bug triggers.

We showed in § 2.6.2 that both mutator types have their own merits. The spot mutators

used by Nautilus are better at uncovering bug triggers which require exercising a specific part

of the grammar. However, aggressive mutators excel at synthesizing complex bug triggers

that require triggering multiple different grammar parts. A promising avenue to explore

would be how a fuzzer can schedule these different mutators efficiently by crafting this as an

optimization problem [43].

Augmentations to Regular Approximation

In Gramatron, we used grammar automatons to generate an under-approximation of

the language specified by the CFG. An interesting avenue to explore would be generating

grammar automatons that accept an over-approximation of the language specified by the

CFG [27 , 29]. Here, over-approximation refers to a superset of the language. This allows the

fuzzer to generate inputs that can test both the syntactic and semantic stages of the parser

simultaneously.

In the presence of self-embedding rules in the grammar, the expressiveness of the grammar

automaton directly depends on the user-provided stack depth. The larger the stack depth the

more expressive Gramatron can be during input generation. As a trade-off, larger stack depth

increases the final automaton which is generated in terms of number of states and transitions.

Consequently, the one-time cost of generating the automaton itself is larger. However, the

size of the automaton will not affect the time taken to generate or mutate inputs since those

operations depend on the size of the inputs themselves. As future work, we plan to explore

alternative strategies for regular approximation to make more concise automatons. One

alternative could be to convert grammars into GNF form in a more efficient manner [44].

2.8 Threats to Validity

Here we discuss potential threats to validity of our evaluation and the steps we take to

mitigate them.

50

External Validity

The external validity (i.e, the generalizability of our results) primarily depends on how

representative our evaluation targets are of a real-world testing scenario. To address this

threat, we chose widely-used, large, and well-tested software accepting different languages

as our fuzz targets. Furthermore, our in-the-wild testing experiment (described in § 2.6.3)

showcases the ability of Gramatron to find previously undiscovered bugs. We do note that

while our evaluation focuses on language interpreters (since related work evaluates those),

Gramatron can be applied to any software that accepts inputs as defined by a context-free

grammar.

Internal Validity

Fuzzers are composed of multiple modules that intertwine with each other during a

fuzzing campaign. Therefore, a potential threat to our internal validity is the measurement

noise that is introduced from auxiliary stages (i.e., stages that do not correspond to input

generation or mutation). To minimize this noise, we built microbenchmarks that isolate the

stages that we are interested in for our measurements. Another potential threat specifically

pertaining to our ground-truth bug experiment was the presence of multiple bugs in our fuzz

targets. This can introduce noise in the evaluation if a fuzzer finds alternate bugs before the

targeted one, causing the fuzzer to tunnel-vision on that specific bug and input space around

it. To eliminate this noise, we crafted grammars that discover the bugs of interest mixed with

benign functionality to make it non-trivial for the fuzzers to find these bugs. Furthermore,

for all our experiments against Nautilus we followed the guidelines as laid down by Klees

et.al. [33] to eliminate effects of randomness while evaluating fuzzers.

Construct Validity

There is only a single threat to construct validity (i.e., we are measuring what we claim

to be measuring [45]) in our experiments. This manifests when evaluating the unbiased

sampling of Gramatron. In this case, a potential threat to construct validity arises out of

51

using code coverage as a proxy metric for input diversity. However, we claim that in the

context of fuzzing, we are primarily interested in higher input diversity corresponding to

richer semantics. Hence, for evaluating this goal, branch coverage is the most appropriate

metric as higher branch coverage directly corresponds to inputs with richer semantics.

2.9 Related Work

Fuzzing approaches can be broadly divided into two categories: mutational and gen-

erational. Gramatron is a generational fuzzer that use code coverage feedback to guide its

fuzzing. We will discuss mutational fuzzing and the challenges it faces while fuzzing software

that accepts structured input. Then, we will discuss existing generational fuzzers in detail

and how they differ from Gramatron.

Off-the-shelf mutational fuzzers such as AFL [12 , 13] use operators such as bitflips to

drive the input generation from a seed input corpus. However, such mutational operators

may often create syntactically invalid mutants. This leads to such fuzzers being unable to

fuzz past the parser of applications that accept structured input. Gramatron uses the input

grammar to overcome this limitation.

Generational fuzzers use an input model for input generation during fuzzing. This model

can either be user-provided as a CFG [14 , 16 , 18 , 46 – 48] or inferred from the application [49 ,

 50]. Generational fuzzers that leverage a user-provided model can be broadly divided into two

categories: (i) language-specific: Designed for fuzz targets that accept a specific language,

(ii) language-agnostic: Designed to fuzz any type of fuzz target regardless of the type of

language that it accepts. We will discuss each of these below.

Language-specific Fuzzers

These fuzzers are designed and optimized to fuzz targets that accept a specific language

(e.g., for C [48 , 51], or JS [15 , 52 , 53]). Language-specific fuzzers are customized to ad-

dress language idiosyncrasies for deeper testing. C-smith [48] generates programs that avoid

exercising undefined behavior as specified in the C standard. CodeAlchemist [53] employs

JS-specific analysis techniques to generate semantically valid programs. DIE performs struc-

52

ture and type-preserving mutations to inputs by using custom-annotated Abstract Syntax

Trees [52]. All such customizations come at the cost of generalizability to other languages.

In contrast to these tools, Gramatron is designed as a grammar-aware but language-agnostic,

generational fuzzer.

Language-agnostic Fuzzers

Language-agnostic fuzzers [14 , 16 , 18 , 52] use techniques that do not assume anything

about the target language. This enables wider applicability while still allowing for deep

testing. LangFuzz [14] creates a set of code fragments from a pre-existing input corpus

sourced from a test suite using the grammar. It then recombines different fragments together

to create more failing inputs. IFuzzer [16] has a similar design but instead it adopts a genetic

algorithm to perform the input recombination. Gramatron instead uses coverage feedback

to guide its input generation and aggressive mutations using the restructured grammar.

Recent work has explored incorporating coverage feedback into grammar-aware fuzzing.

Nautilus used coverage feedback in conjunction with grammar-aware and AFL-like muta-

tion operators. After a year, the authors released another performance-optimized version,

removing the AFL-style mutation operators [36]. Gramatron differs from both variants in

two ways: (i) it restructures the grammar to perform unbiased sampling from the input

state space, and (ii) it introduces novel grammar-aware mutation operators to synthesize

complex bug triggers faster and more reliably. Superion [17] (released simultaneously with

Nautilus) implements the same functionality as Nautilus; specifically, coverage-guided feed-

back in conjunction with grammar-aware fuzzing. Therefore, Gramatron differs from it in

the same way as Nautilus. Zest [54] performs coverage-guided fuzzing using user-specified

Quickcheck-like [55] input generators. Our approach is orthogonal to that employed by Zest

in two ways: (i) we use context-free grammars modeled as grammar automatons instead

of generators to perform input generation, and (ii) Gramatron performs large-scale changes

using aggressive mutators while the structural mutations performed by Zest are analogous

to the spot mutators used in existing grammar-aware fuzzers. While the Zest algorithm

itself is language-agnostic, its current implementation is designed to test Java-based pro-

53

grams specifically. This constraint does not apply to Gramatron since its implementation is

language-agnostic.

There have also been research efforts directed towards exploring how to make input

generation from the grammar effective. Skyfire [56] is a data-driven input seed generator

for fuzzers. It learns a probabilistic model for the grammar that specifies the likelihood of a

production rules being triggered. This enables it to perform smarter input seed generation.

Other approaches such as Dharma [57], and F1 [58] have focused on optimizing the process of

input generation from the grammar itself. Gramatron adopts an approach that is orthogonal

to these tools. It uses coverage feedback to guide its fuzzer that uses the grammar in

conjunction with grammar-aware mutation operators to generate new inputs.

2.10 Conclusion

Fuzzing interpreters past the parsing stage is notoriously challenging, since it requires

generating syntactically valid inputs. We made the observation that grammar automatons

coupled with aggressive mutations enable a fuzzer to reach and trigger complex bugs in

interpreters effectively. Our prototype implementation, Gramatron, uses grammar automa-

tons which restructure the grammar to perform unbiased sampling from the input state

space. The unbiased sampling coupled with aggressive mutations allows Gramatron to find

deep bugs with complex triggers. In addition to discovering all 10 bugs in our benchmark,

Gramatron also discovered 10 new bugs in popular interpreters. Gramatron is available at

 https://github.com/HexHive/Gramatron .

54

https://github.com/HexHive/Gramatron

3. FIRMFUZZ: AUTOMATED IOT FIRMWARE

INTROSPECTION AND ANALYSIS

3.1 Introduction

With 30 billion expected embedded devices by 2020 [59], the Internet of Things (IoT) has

already proliferated across all aspects of our lives. The rise of IoT devices has been accompa-

nied by increasing attacks on or through them. These attacks range from forming a botnet

of embedded devices like the Mirai botnet [60] to a myriad of exploitable vulnerabilities that

are reported in the corresponding firmwares [61 – 65].

In this work, we focus on analyzing Linux-based firmwares due to its widespread adop-

tion. A Linux-based embedded firmware has three major parts that can be exploited by

an adversary: (i) a variant of the Linux kernel, (ii) a set of open-source software packages,

and (iii) a set of custom vendor-developed applications. The first two components are used

in widely different contexts and can be vetted independently from embedded systems. The

third component, custom vendor-developed applications, may be more prone to vulnerabil-

ities because these proprietary applications are neither open-source nor openly vetted. We

therefore focus on vendor-developed applications.

Evaluating vendor-developed applications in embedded firmware presents three chal-

lenges. First, these applications only accept syntactically legal inputs, therefore in order

to perform deep analysis one has to infer and respect this syntax. Inferring the input syntax

from a blackbox binary is a non-trivial problem [56 , 66]. Second, to ensure triggered vulner-

abilities do not escape the analysis, fine-grained monitoring of the runtime environment is

required. Third, these applications rely on the runtime environment of the firmware for their

functionality. Therefore, fuzzing these applications as standalone binaries is not sufficient.

In this chapter, we describe an analysis framework, FirmFuzz, that finds deep vulnera-

bilities in vendor-developed applications of embedded firmwares. We overcome the above-

mentioned challenges in FirmFuzz by: (i) utilizing the web application interface of these

embedded devices as entry points to generate syntactically legal inputs, (ii) injecting runtime

monitors into the runtime environment of the embedded firmware to allow for context-aware

monitoring, and (iii) emulating the firmware image to keep our approach device-independent.

55

To further enhance our greybox-based generational fuzz testing capability, we leverage in-

formation collected from static analysis to guide our fuzzer.

Previous efforts have studied emulation on a large-scale for closed-source firmware [63 ,

 64]. These efforts focused on scaling an analysis to many images, but the undertaken analysis

was generic, searching for specific vulnerabilities. An off-the-shelf analysis may miss vulner-

abilities because it is not tailored to embedded systems and does not inspect the actions on

the system.

Although we use web applications as an end-point for dynamic analysis, using web ap-

plication scanners is insufficient. These scanners treat the analysis target as a blackbox

while performing the vulnerability assessment. Emulating the firmware allows us to tune

the runtime environment and to introspect the running system during execution, observing

the vulnerability scanner interactions with the system. This, in turn, allows us to find deep

vulnerabilities.

We provide a framework that, after some light-weight configuration, adapts to the em-

ulated firmware and performs context-sensitive analysis. The focus of our work is not the

breadth (number of images analyzed) but the depth (testing deep code paths for a variety of

vulnerabilities) of the analysis undertaken.

Unlike conventional web application scanners, FirmFuzz leverages the degrees of freedom

offered by an emulated firmware to enhance the vulnerability detection process. It integrates

runtime monitors into the firmware filesystem, modifying the firmware itself to improve the

bug finding process. Using our syntactically-legal input generation strategy and runtime

monitors, we tailor our analysis on a per-firmware basis allowing us to trigger deep bugs in

the firmware.

We analyzed 6,427 firmware images scraped from three vendors (Netgear, D-Link, and

TRENDNet). Out of those, in 32, we found seven previously unknown vulnerabilities across

six different devices comprising of two IP cameras and four routers. The vulnerabilities dis-

covered include one post-authentication Command Injection (CI), three pre and one post-

authentication Buffer Overflow (BO), one pre-authentication reflected XSS vulnerability and

one pre-authentication Null Pointer Dereference (NPD). For the sake of responsible disclo-

sure, we informed the vendors of these vulnerabilities.

56

In summary, we make the following contributions:

• We develop FirmFuzz (with open source code available at https://github.com/HexHive/

FirmFuzz), an automated emulation and dynamic analysis framework for finding deep

vulnerabilities in embedded firmware.

• We develop a generational fuzzer for syntactically legal input generation that leverages

static analysis to aid fuzzing of the emulated firmware images while monitoring the

firmware runtime (helper binaries and kernel monitors to enable deterministic bug

discovery).

• We automatically test firmware images scraped from vendor websites and find seven

previously unknown vulnerabilities.

3.2 Firmware Preprocessing

Devices NIC

Preparation PhaseInformation Gathering Phase Fuzzing Phase

Network
Configuration

Devices NIC

Peripheral
Mapping

Host
OS

Helper
Injection

Hardware

Cross-Site Scripting
Buffer Overflow
Command Injection
Null Pointer Dereference

Runtime
Monitoring

Hardware

FirmFuzz

Static
Analysis

****** Authentication
Credentials

Attack
Surface

Mapping

Input

Input

Firmware List of
VulnerabilitiesHost OS

Firmware

Figure 3.1. FirmFuzz Workflow

FirmFuzz is a framework for the automatic analysis and fuzz testing of Linux-based IoT

firmware through a QEMU-based emulation layer. It analyzes firmwares in three phases:

57

https://github.com/HexHive/FirmFuzz
https://github.com/HexHive/FirmFuzz

information gathering, preparation, and fuzzing as depicted in Figure 3.1 . Our framework

currently supports analyzing MIPS-architecture and little endian ARM-architecture based

firmware images.

3.2.1 Information Gathering Phase

This phase serves two goals. First, discovering the username-password pair required

for authentication with the web application in order to increase the coverage of the fuzzer.

Second, static analysis of the attack surface to find inputs for vulnerable code paths in PHP.

FirmFuzz brute-forces authentication credentials for a firmware through a crowdsourced

credential corpus [67].

CI vulnerabilities in PHP-based applications arise from unsanitized user input being

passed to unsafe PHP functions e.g., system, or shell_exec. FirmFuzz performs intrapro-

cedural static taint analysis of the PHP scripts. It taints user-controlled variables, $_GET,

$_POST and logs the code paths where the taint flows to unsafe functions. For each of these

code paths, a constraint set is built. This set is used by FirmFuzz to generate inputs that

can trigger vulnerable code paths.

3.2.2 Firmware Preparation

This phase creates a firmware image ready for emulation with a corresponding emulator

configuration. A close approximate of the runtime environment as expected by the firmware

is created using the peripheral mapping strategy. FirmFuzz leverages full-system emulation

and injects helper binaries into the filesystem and augments the kernel to discover vulner-

abilities with a low false positive/negative rate. The network of the emulator backend is

configured to allow interaction between the firmware programs and the bug finding tools.

Peripheral Mapping

An embedded firmware often expects the presence of certain hardware peripherals during

boot-time, runtime or both.

58

In the absence of these peripherals, a firmware may silently log an error or go into a busy

loop trying to query the peripheral. In the former case, it is hard to infer what side-effect

the absence of a peripheral may have on the functionality of the emulated firmware. In the

latter case, the firmware may not reach a stable state.

If the firmware requests an unknown peripheral, FirmFuzz provides a mapping of that

peripheral to a fake peripheral driver that always returns True on being queried. We ac-

knowledge that this approach may not result in a stable state for all firmwares due to the

diverse set of available IoT peripherals.

The firmware image is run under an emulator with our custom kernel. The kernel is

configured to panic if unsupported devices are accessed. FirmFuzz uses this panic log to

create a mapping of the device to the fake device driver. FirmFuzz iteratively performs this

process until all the unsupported devices are mapped to a fake device.

Helper Injection

Helper binaries allow FirmFuzz to inspect the firmware during emulation. The helpers

operate within the runtime environment of the firmware and in the current implementation

allow us to detect CI vulnerabilities. During fuzzing, if this helper binary is executed, Firm-

Fuzz flags a CI vulnerability. This approach is completely automated and firmware agnostic;

i.e., we are not reliant on the utilities present on the firmware to detect the vulnerability.

The closest previous work to ours, Firmadyne [63], does not have support for the detection of

CI vulnerabilities. The ones reported in its paper were discovered through manual analysis

of the webpages.

To detect BO vulnerabilities, we utilize the exception handling mechanism of the Linux

kernel similar to Firmadyne. FirmFuzz leverages the mechanism further to detect NPD vul-

nerabilities. The major difference between FirmFuzz and Firmadyne in detecting BO is that

the Firmadyne authors manually discovered a BO vulnerability in a webpage served by a spe-

cific Netgear router which they validated by crafting a curl request to that specific webpage

to trigger that vulnerability. However, FirmFuzz requires no manual analysis to detect BO

vulnerabilities. Using the custom fuzzing driver, it automatically triggers BO vulnerabilities

59

in the emulated firmware and packages a PoC exploit to recreate the vulnerability. For the

XSS vulnerability targeted by FirmFuzz, we observed that host-side monitoring is sufficient

for detection.

Network Configuration

Firmware images differ in how they name and assign addresses to their LAN/WAN inter-

faces. We follow the same approach as Firmadyne to infer these network configurations. We

first run the emulation in a ‘network inference’ mode in which FirmFuzz logs all the interac-

tion of the firmware with the networking interface of the kernel. Using these logs, FirmFuzz

infers the network configuration and creates the appropriate virtual network interfaces to

allow interaction with the emulated firmware.

3.3 Firmware Fuzzing

FirmFuzz detects vulnerabilities using a custom-developed automated generational fuzzer.

Existing vulnerability scanning approaches for embedded firmware [63 , 64 , 68] require human

guidance.

Augmented
Filesystem

FirmFuzz
Kernel

Web
Application

Headless
Browser

Seed
Input

Payload
Generator

Proxy
Server

Context

Feedback

Payload

Guest

Host

Figure 3.2. FirmFuzz fuzzing workflow

FirmFuzz changes the paradigm of vulnerability detection in emulated firmware by aug-

menting the emulation environment of the fuzzed target to aid in vulnerability discovery,

see Figure 3.2 . Our approach removes the reliance on server feedback and allows a direct

observation of the triggered vulnerability in situ. Three main features of the FirmFuzz fuzzer

60

are: (i) Context-driven input generation — It incorporates contextual information provided

by the firmware while interacting with different parts of the attack surface, (ii) Determin-

istic vulnerability detection — The vulnerability monitors operating both in the guest (i.e.,

the emulated firmware) and the host allow deterministic vulnerability detection, and (iii)

“Fuzzing side-effects” elimination — FirmFuzz with the help of its emulation framework,

automatically reverts the firmware back to a stable state if the firmware reaches an inconsis-

tent state while being fuzzed. This allows continuous fuzzing of the emulated target without

requiring manual intervention to reset the firmware state.

The web application setup by the firmware provides its functionality by employing a

combination of client-side JavaScript code and server-side code. FirmFuzz uses a headless

browser controlled by our fuzzer to interact with the firmware through the web application

to execute the client-side JavaScript code. Using the contextual information from these

interactions, it generates fuzzing inputs. All network traffic between the fuzzer and the

emulated firmware passes through a proxy server. This allows the proxy server to capture

candidate inputs that will be mutated by FirmFuzz.

The four vulnerability types targeted by FirmFuzz during the fuzzing phase are: CI,

BO, NPD, and XSS. To detect these vulnerabilities, FirmFuzz first interacts with the web

application to generate a legal HTTP request as seed input to fuzz a part of the attack

surface, see § 3.3.1 . It then mutates the legal request with payloads based on the vulnerability

being targeted, and sends it to the firmware. Upon sending a mutated request, FirmFuzz

monitors the firmware to detect vulnerabilities. If a vulnerability is detected, the mutated

request is logged as a Proof-of-Concept (PoC) input along with the recipient URL to allow

reproducibility.

3.3.1 Syntactically Legal Input Generation

Since FirmFuzz uses a headless browser for firmware interaction, the burden of creating

a well-formed HTTP request that effectively tests the vendor-written software is offloaded

to the web application. Additionally, the browser handles executing client-side code to give

itself access to the full functionality of the application.

61

However, using a web application interface as an oracle to generate syntactically-legal

input opens a challenge. FirmFuzz must be aware of the web interface setup of the emulated

firmware in order to interact with it successfully. During our experiments, we observed

that the web interface setup highly varies across vendors and devices. During evaluation

of FirmFuzz, based on the images we fuzzed, we created templates for interacting with the

encountered web interfaces. Note, however, that this interface support requires some manual

validation by the analyst. This minimal manual validation is the limiting factor for scaling

the analysis to additional devices. This highlights one of the primary differences between

FirmFuzz and the previous work in this area: we strive to perform deeper analysis, but at a

slight cost to scale.

3.3.2 Deterministic Bug Discovery

Current automated approaches for detecting vulnerabilities (CI, BO and NPD) employed

by scanners like ZAP [68] are reliant on the server-side response for detecting them. This

approach is imprecise as it may either fail to localize a vulnerability, e.g., BO, NPD, or miss

a vulnerability altogether, e.g., CI if a particular Linux utility does not exist. Even if a

vulnerability is detected, there is no guarantee that it exists since the server-side response

may be inaccurate.

To deterministically detect the above mentioned vulnerabilities, FirmFuzz modifies the

emulation environment of the firmware and the firmware itself.

FirmFuzz detects CI, BO and NPD vulnerabilities by monitoring the logs generated by

the augmented firmware when a test input is executed. For CI, it monitors the execve system

call to log execution of the poison binaries (see § 3.2.2). For BO and NPD, it monitors the

kernel logs to see if any firmware process tried to access unmapped memory.

Detecting an XSS vulnerability does not require any guest-side assistance; host-side mon-

itoring by FirmFuzz is sufficient to detect it, similar to existing vulnerability scanners. This

monitoring is in the form of detecting if the snippet of JavaScript code that was sent as a

payload in the request is executed in the machine.

62

3.3.3 Elimination of Fuzzing Side-Effects

Since FirmFuzz actively interacts with the emulated firmware during fuzzing, it may

become unresponsive. The inconsistent states include the firmware trying to reboot itself to

apply certain changes or an infinite cycle due to the triggered functionality being emulated

incorrectly. In such a state, the firmware becomes non-responsive to fuzzing and requires a

roll back to a stable state.

The above problem often requires manual intervention to perform the rollback. However,

to keep the fuzzing process fully automated, FirmFuzz employs a “snapshot and rollback”

strategy. During the dynamic analysis, if the firmware is pushed into an inconsistent state,

FirmFuzz reverts the emulated firmware back to a stable state (right after the completion

of initialization) to be ready for the next request. This allows for continuous fuzzing of the

target without manual intervention.

3.3.4 Payload Delivery

The web application performs client-side validation checks on the input values, such as

checking if the input values are formatted according to the syntax expected by the applica-

tion. Therefore, to effectively fuzz the firmware, a legal request from the web application is

required, which can be mutated and sent to the firmware directly bypassing the client-side

validation checks.

Our fuzzer requires a set of seed inputs and valid URLs that are accepted by the web

application. As web applications often consist of a JavaScript host component and a server

component, we need to trigger the generation of all possible host paths by driving their host

component. FirmFuzz leverages the headless browser to load webpages from the firmware

and then walks through the DOM to trigger all possible state changes by iterating through all

button elements on the web page (often firing JavaScript events along the way). In addition,

our host components fill input fields with syntactically legal values that are inferred through

the names of fields and a set of possible data ranges.

If FirmFuzz infers legal input values, then a seed request is generated by interacting with

a button element. This seed request is mutated for fuzzing. The mutation strategy followed

63

by FirmFuzz is a substitution strategy in which the relevant parameters of a request are

modified to contain malicious payloads. This substitution strategy is used across all the

vulnerability detection modules of FirmFuzz. The substituted payload is adjusted based on

the vulnerability being tested. Note that a finite number of payloads are tested for each

vulnerability. Therefore, a fixed number of mutants are created for each seed request.

Methodology

Here, we provide an extended description of how FirmFuzz generates inputs to fuzz test

the emulated firmware. FirmFuzz uses Algorithm 1 . First, on receiving a webpage served by

the web application, FirmFuzz finds all the button elements in it. These elements are used

to interact with the firmware and are added to a list using the find_buttons subroutine.

Algorithm 1 Payload delivery
Require:

WebPage: The current webpage being evaluated
Firmware: The emulated firmware
procedure Deliver_Payload(WebPage)

buttons[]← W ebPage.f ind_buttons()
input[]← W ebPage.infer_input()
while len(buttons)>0 do

send_mutate(input, buttons[0])
if Firmware.isInconsistent() then

Emulation.restore()
end if
buttons.pop()

end while
end procedure

Second, FirmFuzz needs to infer legal values for the input fields presented by the inter-

face performed by the infer_input subroutine. FirmFuzz employs two strategies based on

whether an input field is empty or non-empty: (i) Non-empty field—Field is populated with

a default value filled in by the firmware. In this case, FirmFuzz leaves the value unchanged.

(ii) Empty field—FirmFuzz does a pattern match on the HTML ID attribute of the corre-

sponding input element. Based on whether the ID attribute contains familiar strings such

as “mac” or “IP”, a dummy MAC address or an IP address is filled into the input field

64

respectively. If none of these strings match then FirmFuzz fills the input field with dummy

text.

The names and types of these ID elements (parameters) are not based on a standard

but chosen by vendors who developed the web application. Therefore, it is possible that the

heuristic employed by FirmFuzz unable to infer the legal value requested.

In the event that FirmFuzz incorrectly infers values for the input fields and cannot make

the web application generate a request, the “ID” attribute is logged for manual classification

later as either an input “ID” for a MAC or an IP address. FirmFuzz maintains a database

for the incorrectly inferred input elements so that future runs of FirmFuzz can better infer

legal values.

Mutate

POST /bin/apply.cgi HTTP/1.1

<HTTP headers>

name1=value1&name2=value2

POST /bin/apply.cgi HTTP/1.1

<HTTP headers>

name1=payload&name2=payload

Figure 3.3. FirmFuzz Mutation Strategy

If FirmFuzz manages to infer legal input values, then send_mutate subroutine will gen-

erate a seed request by interacting with a button. This seed request will then be mutated

for fuzzing. The mutation strategy followed by FirmFuzz is a simple substitution strategy

in which the relevant parameters of a request are modified to contain malicious payloads

as depicted in Figure 3.3 . A similar strategy is followed for GET requests to mutate its pa-

rameters. This substitution strategy is used across all the vulnerability detection modules

of FirmFuzz. The substituted payload is adjusted based on the vulnerability that is being

tested by FirmFuzz.

65

At any point during the seed request generation or the mutated requests delivery, the

firmware reaches an inconsistent state, the emulation is rolled back automatically to a stable

state by FirmFuzz and the fuzzing is carried forward.

3.4 Evaluation

Table 3.1. Firmware images tested
Vendor Scraped Images Linux FS found Network Inferred Fuzzed (Unique Devices) Unique Web UI
TRENDnet 359 129 26 6 (5) 2
Netgear 2646 675 162 20 (17) 3
D-Link 3422 209 15 6 (5) 1
Total 6,427 1,013 203 32 (27) 6

We evaluate FirmFuzz by testing it on a set of 6,427 firmware images. We first give a

breakdown of the dataset on which FirmFuzz was able to be evaluated as well as the number

of unique web interfaces encountered. We discuss one of our discovered bugs as a case study

and how the discovered vulnerabilities are not detected by existing state-of-the-art tools. We

also evaluate our runtime performance and discuss our vulnerability detection accuracy.

FirmFuzz is evaluated on a machine with an Intel i7 processor and 16GB RAM and

running Ubuntu 16.04. To emulate firmwares, FirmFuzz uses QEMU [69] version 2.5.0 as

the emulation backend. For fuzzing, FirmFuzz uses a headless browser as one of its fuzzing

drivers. The headless browser used is the Selenium WebDriver [70] version 3.4.0. In addition,

FirmFuzz uses a proxy server, mitmproxy version 0.18.2 [71], to monitor the network traffic

sent between the fuzzer and the emulated firmware.

3.4.1 Firmware Images Tested

6,427 images were scraped from three vendor websites to create our image dataset. From

the dataset, 1,013 images had a Linux-based File System (FS). Out of these, 203 images had

their network configuration inferred and 32 images from this set had accessible web interfaces

which were used by FirmFuzz as entry points for fuzzing the image. The breakdown is

presented in Table 3.1 .

66

There is a sharp drop-off between the images for which the network configuration was

inferred and those which were successfully fuzzed. This drop-off occurs due to missing

emulation for specific required devices (e.g., a system waits for a camera to be accessible

before starting the web server). Without an accessible web interface as an entry point,

FirmFuzz cannot fuzz the firmware image.

Out of the fuzzed images,there is high reusability of web interfaces between different

devices from the same vendor — 6 unique web interfaces in 27 unique device images across

3 different vendors. Therefore, with minimal manual effort we can cover a large number of

emulated devices.

3.4.2 Case Study

FirmFuzz, using its analysis detects vulnerabilities hidden deep in the firmware which

are not immediately apparent. A case study of such a vulnerability is presented below.

TRENDnet TEW-673GRU Router

This is a MIPS-based Wireless Gigbabit router. A CI vulnerability was found in this

wireless router. It can be remotely exploited if a user is logged in to the device’s configuration

webserver with administrative credentials.

The vulnerability exists in the vendor-written program timer on the firmware. This

program runs by default as a daemon on the router with root privileges. The timer uses

another vendor-written software arpping to periodically check if the router is reachable every

three minutes.

The vulnerability lies in the passing of the parameters from timer to arpping. Five

parameters are retrieved from device memory and passed to arpping without any validation

or sanitation. Out of the five parameters, three of them are under user-control through a web

application setup by the router which performs client-side validation on these parameters.

FirmFuzz using its syntactically legal input generation, inferred the input request and

the CGI binary responsible for updating those user-controlled parameters. FirmFuzz then

sent a POST request targeted at discovering a CI vulnerability directly to the CGI binary

67

which updates the device memory with the sent values respectively without validating them.

Using the firmware runtime monitoring, FirmFuzz detected the vulnerability because it was

triggered every three minutes by the timer program.

3.4.3 Comparison with Existing Analysis Frameworks

To show the effectiveness of FirmFuzz, we compare against other state-of-the-art open-

source web vulnerability scanners. We chose two of the most popular ones, Zed Attack Proxy

(ZAP) [68] and w3af [72], for our evaluation. We also evaluated the automated vulnerability

detection of Firmadyne on our sample set of firmware images as well. The evaluation was

performed on the basis of the number of vulnerabilities found by the tools.

Table 3.2. Vulnerability Detection Comparison of FirmFuzz against Zed
Attack Proxy(ZAP), Firmadyne and w3af

Number Vulnerability Vendor Device CVE-ID FirmFuzz ZAP Firmadyne w3af

1 Command Injection TRENDnet TEW-673GRU CVE-2018-19239 3 7 7 7

2 Reflected XSS TRENDnet TEW-634GRU, 673GRU, 632BRP, – 3 3 7 7

3 Buffer Overflow TRENDnet TEW-673GRU, 632BRP CVE-2018-19242 3 7 7 7

4 Buffer Overflow TRENDnet TV-IP110WN, IP121WN – 3 7 7 7

5 Buffer Overflow TRENDnet TV-IP110WN, IP121WN CVE-2018-19240 3 7 7 7

6 Buffer Overflow TRENDnet TV-IP110WN,IP121WN CVE-2018-19241 3 7 7 7

7 Null Pointer Dereference Netgear DG834 – 3 7 7 7

Firmadyne

Firmadyne runs a set of Metasploit modules of known exploits for embedded devices

during its automated dynamic analysis. Additionally, it tests the emulated image for a set of

vulnerabilities that the authors of the framework found manually in some embedded devices.

As evident from Table 3.2 , this approach, even though completely automated and ap-

plicable at large-scale, fails to find any of the vulnerabilities in our sample set of firmware

images. The Firmadyne tests were originally built for specific embedded devices and the

probability of the same exploit working across the different devices and different vendors is

low.

68

w3af

As w3af cannot infer the credentials to the administrative interface by itself, we provide

it as a head start for a fairer comparison. However, even after providing the necessary

credentials to the authentication plugin and configuring several parameters including the

HTML tags for the input fields manually, w3af was still unable to authenticate with the

firmware. This is the reason why w3af failed to detect any of the vulnerabilities detected by

FirmFuzz.

Zed Attack Proxy

To ensure that ZAP had access to the same attack surface as FirmFuzz, the credentials

to the firmware for administrative access were provided to ZAP as it does not have the

authentication discovery capability of FirmFuzz. With the credentials provided, we ran the

Active Scan feature of ZAP on the emulated image which is an automated scan feature that

tries to find vulnerabilities by deploying known attacks including the ones FirmFuzz targets.

As can be observed in Table 3.2 , ZAP only discovered the XSS vulnerability but failed

to discover any other vulnerability. This is because ZAP treats the firmware as a black box

during its automated scan and does not actively interact with the firmware to gain context

about the application like FirmFuzz does. Additionally, ZAP does not have the capability to

monitor the runtime environment of the firmware to detect any erroneous conditions while

performing the scan. This limits its capability to detect those vulnerabilities which, when

triggered, do not provide any feedback to the scanner through the web application entry

point.

Even if the PoC for the discovered vulnerabilities in the image are provided to ZAP, it

still cannot infer their existence. This is because ZAP relies on overtly observable signals

for vulnerability detection. For example, for CI vulnerabilities, ZAP relies on server-side

replies. The vulnerabilities we discovered do not send such a response from the server when

triggered because they exist in an auxiliary program that does not interact with the web

application directly.

69

3.4.4 Runtime Performance

We further evaluate the runtime performance of FirmFuzz during the fuzzing phase. The

average runtime for the fuzzing phase is 16m 42s. The comparatively low runtime overhead

is primarily because our fuzzer is a generational fuzzer rather than a mutational one. With

our generational fuzzer, we constrain the state space of inputs drastically, thus achieving

better overhead.

3.4.5 Vulnerability Detection Accuracy

As shown in Table 3.2 , existing automated scanners incur a high false negative (FN)

rate when testing web applications. Their automated scans employ a brute-force approach

to detect vulnerabilities. The brute-force approach includes strategies such as mutating

the URL under test with payloads and performing blind directory traversals. The brute-

force approach, reliance on server feedback for detecting such vulnerabilities, and the the

automated scans being blind, i.e., they do not actively interact with the application to gain

context about the web application leads to the high FN rate.

FirmFuzz using its runtime monitoring of the firmware under test along with the con-

textual input generation lowers the number of FN bugs while detecting BO, NPD, and CI

compared to the existing automated scanners. We do not completely remove all instances

of FN bugs since FirmFuzz relies on template request generation for fuzzing. Therefore,

if a request is not generated for a particular page using our heuristics then a bug may be

missed. However, such instances are clearly logged by FirmFuzz and an analyst can provide

feedback to FirmFuzz in terms of acceptable input for the page which can be used to lower

the chances of a FN bug.

As discussed in § 3.2.2 , FirmFuzz monitors the execution of a poison binary and memory

access violation handler in the kernel for detecting CI and BO, NPD respectively. These

detection methods not only ensured that none of the bugs caught by FirmFuzz that belonged

to the class of CI, BO, and NPD were false positives (FP) but also gave information which

firmware resource was buggy. This is a drastic improvement over the existing scanners which,

due to their lack of system introspection, are neither able to localize a bug if it exists or give

70

guarantees that the bug detected by these scanners is not a FP warranting further manual

analysis.

3.5 Discussion and Future Work

An inherent limitation of the dynamic analysis component of FirmFuzz is that it can only

be deployed on firmware images that are successfully emulated by the framework. Future

advancements in emulation techniques will allow analysis of more firmware images. Improv-

ing mapping and analysis techniques for firmware images will be our prime focus of future

work.

The set of devices which an embedded system may use is inexhaustible due to the diverse

use-cases of IoT systems. Trying to support all possible devices in the emulation layer is

infeasible. In this work, we use the opportunistic approach of mapping unsupported devices

to fake devices. However, this approach may not result in a steady state for all firmwares.

Devices may expect a different return value than the default one returned by our fake driver.

As an extension to our approach, the firmware can be analyzed statically or dynamically to

infer the return values expected by the firmware from the device for more effective device

mapping. We leave this to future work.

In our prototype, we mutate all parameter values to the payload targeting a vulnerability.

This mutation strategy may be improved further by performing selective mutation based on

analysis of the targeted attack surface to increase coverage.

The firmware introspection and inspection carried out by FirmFuzz in the form of its

dynamic and static analysis modules can also be enhanced with more sophisticated analyses.

To improve coverage, a more fine-grained static analysis can be carried out to find the control

parameters to be mutated. Similarly, the detection modules could retrofit sanitizers [73] to

detect more complex memory corruption bugs.

3.6 Related Work

A large body of work has contributed to security analysis of firmware images for embedded

devices. However, the closest efforts to our work in terms of the targeted device domain (i.e.,

71

embedded Linux-based devices) are the framework by Costin et al. [64] and Firmadyne, the

framework by Chen et al. [63].

Firmadyne

Chen et al. [63] presented Firmadyne, a full-system emulation based framework for dy-

namic analysis of embedded firmwares. They carried out the most extensive analysis in

terms of the number of firmware images analyzed to date. However, dynamic analysis done

by Firmadyne was simple. Their only automated vulnerability discovery pass consisted of

running known exploits as Metasploit modules and their own PoC for manually discovered

vulnerabilities.

Running a pre-defined set of exploits, while helpful in finding known vulnerabilities, is

not effective in discovering new ones (as evident from Table 3.2) since the probability of the

same exploit invoking different vulnerabilities across different classes of devices and vendors

is low. On the contrary, FirmFuzz tailors the payloads to the target emulated firmware

allowing it to test deep code paths and finds new vulnerabilities.

Firmware Analysis by Costin et al.

Costin et al. [64] built an emulation framework targeted specifically at emulating the web

interface of the firmware and performed static and dynamic analysis on it.

Their approach was dependent on existing tools, RIPS [74] for their static analysis of

PHP scripts, vulnerability scanners like [68] for the dynamic analysis. These tools, however,

have high chances of false positive and false negative rates respectively.

FirmFuzz, on the other hand, incorporates its own custom tools into the framework to

lower the false positive/negative rates. The static discovery module is constrained to look

only for potential CI vulnerabilities and is designed to output constraints for each vulnerable

code path present. The dynamic analysis module (i.e., the fuzzer) is aware of the other

modules in FirmFuzz and leverages all information available from them, e.g., output from

the runtime monitors on the emulated image and the information acquired during the static

analysis phase. This provides enhanced bug discovery.

72

3.7 Conclusion

The increasing range of IoT devices have access to our personal data and impact our

everyday life, calling for additional scrutiny when evaluating their security. We present

FirmFuzz, an automated framework for whole-system emulation and fuzz testing of em-

bedded firmware images. We used FirmFuzz to test for four types of vulnerabilities in the

firmware images that we studied: CI, BO, NPD and XSS. We found and reported seven

previously undiscovered vulnerabilities using FirmFuzz.

73

4. SIEVEFUZZ: TARGET-TAILORED PROGRAM STATE

RESTRICTION

4.1 Introduction

Quality assurance is an important component of the software development life cycle,

requiring significant resources for identifying, triaging, and fixing defects both pre- and post-

deployment. In working toward offsetting this burden, the last two decades has seen software

fuzz testing (fuzzing) become the most successful and ubiquitous approach for automated

software defect discovery.

Most fuzzers target broad defect discovery (e.g., OSS-Fuzz [75], libFuzzer [76], and

AFL++ [77])—embracing code coverage guidance to explore the software under test (SUT)

by maximizing code coverage of generated test cases. But, despite the success of coverage-

guided fuzzing [78 – 82], its from-scratch, all-or-nothing exploration style is unsuited to the

many critical software QA tasks that target specific code locations (e.g., bug reproduction,

regression testing, or patch testing). In such contexts, software testers instead turn to tar-

geted fuzzing approaches known as directed fuzzing.

Directed fuzzers replace fuzzing’s conventional broad search with one targeting pre-

determined locations (e.g., a suspected defect location), using distance minimization [83 – 85]

to drive fuzzing closer and closer to them. To achieve directedness, distance minimization

computes the distance of every generated test case relative to each target location, saving

only those that shorten this distance as fuzzing continues. However, as distance measure-

ment is performed at runtime for all test cases—including the overwhelming majority that

are incapable of ever reaching the target locations—directed fuzzers incur significantly more

overhead per execution due to the higher instrumentation cost associated with distance

measurement. Furthermore, the current scheme of using distance minimization is specifi-

cally ill-suited for disjoint target locations—locations that can be reached without requiring

a large part of the software functionality to be exercised. For such target locations, distance

minimization’s costly, always-on analysis becomes overwhelmed by target-unreachable paths,

thus slowing down directed fuzzers’ progress—beyond even their undirected counterparts.

74

To break free from distance minimization and quickly filter-out target-unreachable paths,

we introduce tripwiring: a lightweight approach to accelerate directed fuzzing through a

target-tailored restriction of program state. At the core of our efforts is our observation that

a fuzzer’s search is stochastic and highly influenced by the program’s observable code cover-

age; and should a code region be made inaccessible, a fuzzer’s exploration will shift toward

pursuing whatever program paths remain accessible. We demonstrate that, through a hybrid

static and dynamic analysis technique, it is feasible to identify and refine the set of target-

relevant code regions while tripwiring (i.e., preempting and terminating) target-irrelevant

ones—enabling effective directed fuzzing of disjoint target locations that is unburdened by

distance minimization.

To evaluate tripwiring’s effectiveness, we implement a proof-of-concept directed fuzzer

called SieveFuzz, and evaluate it alongside the state-of-the-art directed fuzzers AFLGo [83]

and BEACON [86], as well as the state-of-the-art undirected fuzzer AFL++ [77]. We examine

a real-world context in which directed fuzzing is deployed for targeted defect discovery—

reproducing third-party-reported security vulnerabilities—and demonstrate that across a

corpus of ten disjointly-located security vulnerabilities in nine varied benchmarks, tripwiring

accelerates directed fuzzing by an average of 140%, 93%, and 118% faster than AFL++,

AFLGo, and BEACON, respectively, while obtaining 37%, 42%, and 61% more consistent

targeted defect discovery, respectively.

In summary, we make the following contributions in this chapter:

• We introduce tripwiring: a lightweight technique for target-tailored directed fuzzing

that restricts fuzzing to only the program search space guaranteed relevant to reaching

user-determined target locations.

• We expose the fundamental limitations that impede state-of-the-art directed fuzzers

from achieving effective and efficient directedness for disjoint target locations. For such

target locations, we show that tripwiring is a more optimal directed fuzzing method-

ology than distance minimization.

• We design SieveFuzz: an implementation of tripwiring for accelerated directed fuzzing.

We evaluate it on a corpus of nine benchmarks with ten known disjointly-located

75

security vulnerabilities; and show that, on average, SieveFuzz exposes these bugs in

117% less time and 47% more consistently than the leading undirected and directed

fuzzing techniques.

• Source code of our framework along with the evaluation artifacts are made available

at https://github.com/HexHive/SieveFuzz

4.2 Background

Below we provide relevant details on software fuzzing, and the differentiation between

guided and directed fuzzing policies.

Guided Fuzzing.

Fuzzing is a popular and successful software testing approach [75 – 77 , 87 , 88]. Guided

fuzzing integrates a feedback loop controlling exploration of the SUT based on a user-defined

policy. Recent fuzzing efforts adopt policies related to resource consumption [79 , 89], mem-

ory allocations [85], and program state [82 , 90]. However, the most ubiquitous form of guided

fuzzing has long remained coverage-guided fuzzing [77 , 87], which aims to maximize coverage

of the SUT by prioritizing the mutation of test cases exercising previously unseen control-

flow. Coverage-guided fuzzers dominate the current fuzzing landscape (e.g., AFL [77], hong-

gfuzz [88], libFuzzer [76]), and form the backbone of software quality assurance processes

throughout the modern software industry.

Directed Fuzzing.

For targeted exploration objectives such as patch testing, security researchers introduced

the concept of directed fuzzing [83 , 91 , 92], which layers conventional guided fuzzing with

additional mechanisms to “direct” fuzzing toward specific target locations. Most state-of-the-

art directed fuzzers embrace distance minimization as their mechanism of directedness [83 –

 85 , 93]. In this technique, the SUT’s inter- and intra-procedural control-flow graphs are first

instrumented to log distances of each basic block relative to the intended target site. Second,

76

https://github.com/HexHive/SieveFuzz

at runtime, the fuzzer computes each test case’s harmonic mean distance over its covered

code. Lastly, mutation candidates are chosen from the pool of seeds with shortest distances

to the target, ideally guiding fuzzing to converge on the shortest path.

4.3 Pitfalls of Distance Minimization

Distance-minimization-based directed fuzzers converge on target locations by focusing

only on those test cases whose execution paths are closest to reaching them. Yet, this

approach requires a directed fuzzer to (1) compute the path-to-target distances for every

test case, including the overwhelming majority that will inevitably be discarded because

they cannot reach target locations; and (2) perform a greedy search across all observed

paths to pinpoint the small set of desired paths to continue exploring. The high costs of

both of these steps creates a compounding bottleneck for directed fuzzing—incurring a much

higher overhead per execution than undirected fuzzing—making it exceedingly difficult to

recover when exploration plateaus on paths that will never reach target locations.

To quantify the performance cost of distance minimization, we replicate a common di-

rected fuzzing usage scenario: identifying a target location (e.g., a suspected security vul-

nerability) [83 , 84 , 93] and using directed fuzzing to synthesize a proof-of-concept violating

input. We perform a case study on a synthetic benchmark popular in the fuzzing liter-

ature [90 , 94 – 96] that is known to contain a critical memory safety vulnerability (NULL

pointer dereference), and detail our experimental results below.

Experiment Setup.

For our defect discovery experiment, we select the DARPA Cyber Grand Challenge

benchmark KPRCA-00038: a language interpreter containing a NULL pointer dereference

in the function cgc_program_parse. As shown in Listing 1 , to trigger this memory safety

violation, a fuzzer must (1) satisfy the language semantics to first insert an empty state-

ment; and (2) insert a non-empty statement that triggers the dereference. In this program,

cgc_parse_statements represents a disjoint target because most of the program’s function-

ality (eg. cgc_program_run and everything following it) does not precede it in execution.

77

Listing 1 Simplified code snippet to show distance minimization’s wastefulness.
1 int main(void) {
2 io_t io;
3 program_t p;
4 cgc_io_init_fd(&io, STDIN);
5 cgc_program_init(&p, &io);
6 // Bug-triggering path through cgc_program_parse
7 if (cgc_program_parse(&p)) {
8 // Irrelevant functionality below not
9 // relevant towards triggering the bug

10 if (!cgc_program_run(&p, &io)) { ... }
11 }
12 // Irrelevant functionality below not relevant
13 // towards triggering the bug
14 else { ... }
15 }
16 static int cgc_program_parse(program_t *prog) {
17 ...
18 stmt_t * tail = NULL;
19 while(1) {
20 stmt_t *tmp;
21 // cgc_parse_statements may return NULL value in `tmp`
22 if (!cgc_parse_statements(prog, &tmp)){
23 goto fail;
24 }
25 if (stmt == NULL) { tail = stmt = tmp; }
26 // Possible null dereference below due to missing null check on `tmp`
27 else { tail = tail->next = tmp }
28 }
29 }

To evaluate distance minimization, we select the state-of-the-art directed fuzzer AFLGo [83]

and configure it to target the aforementioned vulnerable function; and further evaluate

it alongside AFL [13], the state-of-the-art undirected (i.e., coverage-guided) fuzzer which

AFLGo is implemented atop of. Following Klees et al. [97], we perform 10×24-hour fuzzing

campaigns per each fuzzer.

Consequence 1: Poor Performance.

After performing all fuzzing campaigns, we post-process observed crashes to ascertain

which fuzzer trials successfully triggered cgc_parse_statements’s NULL pointer derefer-

ence. We compute and compare two metrics between both fuzzers: (1) the relative time at

which each fuzzer exposed the security vulnerability in the campaign; and (2) the unique

number of trials which succeeded in exposing the vulnerability.

78

Overall, we observe that directed fuzzer AFLGo is outperformed by the undirected AFL,

with AFL exposing the bug 92% faster. Furthermore, we observe that AFL successfully

reaches and exposes the bug in 2 of 10 trials, while directed fuzzer AFLGo succeeds only

once. Thus, distance minimization—despite its machinery designed to quickly converge on

target locations—ultimately performs both slower and less reliably than undirected

fuzzing in reproducing this disjointly-located security vulnerability.

Consequence 2: Unconstrained Exploration.

To further evaluate the performance disparity between distance-minimization-directed

and undirected fuzzing, we profile both fuzzers’ campaigns to measure the magnitude of effort

spent on code irrelevant to reaching target locations. We observe that AFLGo has separate

Exploration (i.e., undirected) and Exploitation (i.e., directed) modes, with Exploitation being

where distance minimization is performed; and thus, we limit our profiling of AFLGo to its

Exploitation mode. We cross-reference the set of code regions exercised by each fuzzer with

the execution path of the vulnerability’s proof-of-concept (PoC) input, marking any non-PoC

code regions as extraneous.

On average, our results show that both directed AFLGo and undirected AFL execute

over 29% more program functions than contained in the vulnerability PoC trace. Thus, for

disjoint target locations such as the vulnerable function cgc_program_parse, distance mini-

mization is no more effective than undirected fuzzing at constraining the search down the set

of target-relevant program paths. Coupled with its higher per-execution overhead, distance

minimization pays a significant price for its greedy search across the program

state space—leaving undirected fuzzing often more successful at targeted defect

discovery.

Impetus: Distance minimization facilitates directedness via dynamic distance calcula-

tion and repeated fuzzing per test case. Yet, only a small minority of test cases converge on

target locations. This higher common-case overhead leaves distance minimization costlier

than undirected fuzzing—particularly when exploration stalls in regions that never reach

79

target locations. Achieving faster and more consistent directedness necessitates an

approach focusing on target-relevant code regions.

4.4 Overcoming the Bottlenecks of Directedness

Current directed fuzzers rely on distance minimization, performing directed search by

prioritizing test cases reaching closer to target locations. However, as § 4.3 reveals, the

sensitivity of distance minimization to search noise significantly impedes the effectiveness of

directed fuzzing. Thus, as distance minimization’s problems are inherited by most directed

fuzzers, the full performance potential of directed fuzzing remains unrealized.

Static Analysis
Module
Fuzzer

Tripwires

Dynamic
Feedback

Target Function

Tripwired
Code Regions

Dynamic
Feedback

Figure 4.1. A visualization of tripwiring-directed fuzzing.

To overcome the bottlenecks of directed fuzzing, we leverage the observation that a

fuzzer’s search in the program state space is stochastic and highly influenced by the program’s

reachable control-flow. An undirected fuzzer will aim to maximize exploration across all

program paths; but, should only a subset of control-flow be reachable, it will aim to maximize

its search across the subset. We thus envision an approach that achieves directed fuzzing by

tailoring (i.e., restricting) the search space to only the subset of reachable paths that are

guaranteed relevant to reaching the target location.

We call this approach tripwiring (Figure 4.1): at a high level, we repurpose conventional

control-flow and path detection to identify (and refine ad hoc) the set of paths to the target

location; and modify the coverage-guided fuzzing workflow to only explore these regions, pre-

empting and terminating when a fuzzing execution “trips” this region’s boundary—thereby

achieving directedness through constraining stochastic search toward the target.

80

4.5 Preemptive Termination

Existing directed fuzzers rely on distance minimization to steer exploration toward target

locations. However, this mechanism is kept always-on for all test cases—irrespective of their

relevance to reaching the target locations—making these fuzzers highly sensitive to search

noise: code regions (e.g., functions and basic blocks) guaranteed to never precede target

locations in execution flow. The inability to recognize and suppress search noise leaves

minimization-directed fuzzers crippled by the instrumentation and bookkeeping costs that

they waste on these paths—and thus, too slow to be effective at bug discovery.

We posit that directed fuzzing wastefulness is avoidable by preemptively terminating

exploration of regions proven to never precede target locations. This presents two key per-

formance advantages: (i) SUT execution—over 90% of fuzzers’ runtime [98]—will not be

wasted on repeatedly measuring the code coverage and target distances of target-irrelevant

paths, and (ii) as we filter-out these paths before they are ever explored, fuzzers will not

waste any resources on processing these test cases in succession.

4.5.1 Tripwiring

In this section, we present our methodology for identifying regions guaranteed to be

search noise (i.e., will never precede target locations). Furthermore, we detail how we resolve

analysis obstacles caused by indirect control-flows.

Methodology.

To eliminate directed fuzzing search noise, SieveFuzz requires knowing which code regions

are (1) on target-reachable paths and (2) not on them. To this aim, we statically analyze the

SUT’s inter-procedural control flow graph (ICFG) and call graph (CG), and flag all regions

on identifiable paths from the program entry to the target sites. Algorithm 2 details our

approach.

We deploy our lightweight analysis atop the SUT’s ICFG and incorporate calling-context

sensitivity using the CG for higher precision. First, we initialize a work-list (Line 2) of the

81

target location’s entry node (Line 1) as well as an empty allow-list (Line 3). Then, for each

work-list member, we perform the following: (i) Pick all incoming edges for the node from

the ICFG, (ii) For each edge, identify its source and corresponding node from the ICFG, and

(iii) Using the CG, check if the target is reachable from the source; and if so, add the source

to the allow-list and the corresponding node to the work-list. All regions outside the above

constructed allow-list are marked unnecessary and tripwired for termination (Line 19).

Algorithm 2 Tripwiring algorithm for pruning target-unreachable code regions.
Require: Target code location T , ICFG I , and call graph C .
Ensure: Set of tripwired code regions S.

1: N ⇐ I.getEntryNode(T)
2: W ⇐ [N]
3: Allow ⇐ ∅
4: while W 6= ∅ do
5: N ′ ⇐ W.pop()
6: E ⇐ I.getInEdges(N ′)
7: for E ′ ∈ E do
8: if notSeen(E ′) then
9: N ′′ ⇐ E ′.getSource()

10: if C.isReachable(N ′′, T) then
11: Allow.add(N ′′.getRegionID())
12: W.add(N ′′)
13: end if
14: addSeen(E ′)
15: end if
16: end for
17: end while
18: U ⇐ C.getAllRegions()
19: return S ⇐ U − Allow

As our ICFG is insensitive to calling contexts, our analysis may initially over-approximate

the set of target-relevant code regions. Consider the code snippet shown in Listing 2 : a

context-insensitive ICFG for this example contains the call edge from qed to bar, while the

CG shows qed does not reach (i.e., is not an ancestor of) target. Therefore, if the tripwiring

algorithm (Algorithm 2) does not consider the CG in performing the reachability check from

qed to bar, it will incorrectly include qed in the allow-list. To mitigate this, we incorporate

the results of a function reachability analysis performed on the CG.

82

Listing 2 A code example to highlight the imprecision of context-insensitive ICFG analysis.
In this example, determining that edge qed→bar is unreachable requires the additional
consideration of the call graph.

1 void foo() {
2 bar();
3 target();
4 }
5
6 void qed() {
7 bar();
8 }
9

10 void target() {
11 printf(argv[1]); // vulnerable
12 }

Indirect Transfers.

Because we rely on static analysis to generate our ICFG and CG, another challenge in

supporting tripwiring is handling indirect transfers: control-flow to dynamically-determined

destinations. Solving indirect transfers statically for real-world codebases using techniques

such as points-to and/or value-set analyses results in significant over-approximation of can-

didates targets for these transfers. This in turn brings a high risk of under-tripwiring—i.e.,

over-approximating the code that should be explored and, hence, an inability to uphold

fuzzing directedness.

To avoid the risk of under-tripwiring, we dynamically update our CG with every newly-

covered indirect branch. With each new piece of information, we re-perform our analysis

to refine our view of the reachable area and adjust our tripwiring accordingly. Though

this re-analysis interposes some overhead on fuzzing, the exponentially-decreasing rate of

new coverage [98] ensures that re-analysis is a rare event in practice—and thus adds no

discernible slowdown.

As we resolve indirect calls dynamically, target locations may be absent from our initial

reachability analysis. However, we observe that it is sufficient to merely seed our analysis

with traces from a few fuzzer-generated program test cases. Should a more diverse set of

seed traces be needed, we expect to incur only a slightly higher upfront cost (e.g., an initial

cycle of undirected fuzzing).

83

4.6 Implementation: SieveFuzz

In this section we introduce SieveFuzz : our implementation of tripwiring for accelerated

directed grey-box fuzzing. In its current prototype, it operates over the source code of the

fuzz target. Below we discuss SieveFuzz’s core architecture.

4.6.1 Architectural Overview

We implement SieveFuzz atop the industry-standard grey-box fuzzer AFL++ [77]. To fa-

cilitate on-demand reachability analysis (§ 4.5.1), we integrate a client-server communica-

tion between our fuzzer and analysis components—forwarding any indirect edges captured

to our static analysis, which then updates the dynamic control-flow graph before updat-

ing reachability and tripwiring analyses. For our static analysis we utilize the LLVM-based

SVF framework [99]. We inject the instrumentation to perform preemptive termination at

function-level granularity using an LLVM pass.

4.6.2 High-level Fuzzing Workflow

SieveFuzz follows the state machine model presented in Figure 4.2 , comprising of the

following three steps:

Initial Analysis (INIT):

Initially, our fuzzer queries to determine whether the target is reachable from our initial

ICFG and CG analyses. Should the target be unreachable, we conclude some statically-

unidentifiable indirect call edge(s) are missing and attempt to recover them by briefly running

the Exploration state (EXP). However, as discussed in § 4.5.1 , we often avoid exploration

by repurposing commonly-provided developer test suites or test cases from prior fuzzing

campaigns as seed traces to recover these edges. When the target is reachable, we then move

on to our Fuzzing (FUZZ) stage.

84

Exploration (EXP):

If the target is unreachable (i.e., no path(s) exist to it from the SUT’s entry), we turn to

undirected, non-tripwired fuzzing to diversify the set of candidate seed traces. At each step,

we monitor for new indirect edges and update our reachability analysis accordingly; should

a new path(s) be seen intersecting the target location, we exit and move on to our Fuzzing

(FUZZ) stage.

Tripwired Fuzzing (FUZZ):

As soon as the targets are reachable (i.e., there are some path(s) to the target), tripwired-

directed fuzzing begins: preempting and terminating execution of regions not within our

target-reachable coverage set. As in the Exploration phase, we report any newly-covered

indirect edges to our static analysis server. Following reachability analysis updates, we

amend our tripwiring instrumentation (e.g., adding or removing tripwires). As this process

continues and our tripwiring evolves, we steer fuzzing closer to reaching the

target location.

INIT FUZZ

EXP

Target reachable

Target reachable

Target
unreachable

Target
unreachable

Figure 4.2. SieveFuzz’s high-level state machine. Here, reachable denotes
that our analysis identifies some path(s) from the program entry point to the
target location.

4.6.3 Maintaining Fast On-demand Analysis

To refine our tripwiring, we engage reachability analysis on-demand when new indirect

edges are found during fuzzing. While we can perform this analysis between fully stopping

85

and restarting fuzzing, the cost of reinitiating fuzzing from a terminated state incurs a

prohibitively-high startup overhead that cripples fuzzing throughput. We instead adopt

a client-server communication protocol: upon analyzing a new indirect edge, we resume

the client fuzzer from a paused (but not terminated) state after the static analysis server

reports its completion. Our current implementation adopts a single-core sequential design,

Regardless, the negligible rate of coverage-increasing test cases (less than 1 in 10,000 on

average [98]) means that this analysis is only invoked sparingly—amortizing this infrequent-

case cost over the course of fuzzing.

4.6.4 Maintaining Fast SUT Execution

SieveFuzz maintains high-throughout directed fuzzing through its lightweight instrumen-

tation passes to accommodate tripwiring’s (1) preemptive termination and (2) indirect edge

monitoring.

Preemptive Termination.

As the SUT is being instrumented for fuzzing, we assign a unique numeric ID to each

code region in the SUT (in our current prototype: functions). Then, we hook the start of

each region to call into a runtime library with its ID; we link this library to the SUT, and

utilize it to enforce (and dynamically update) our tripwiring preemptive termination policy.

In our prototype implementation, we maintain an activation bitmap with each bit corre-

sponding to the unique ID assigned to each code region (i.e., function) in the SUT. If a bit

is unset, then the function corresponding to that bit is tripwired and prevented from being

executed. If a bit is set, the corresponding function is permitted uninterrupted execution.

SieveFuzz dynamically maintains this bitmap in sync with the set of target-relevant regions

identified by the static analysis module (§ 4.6.3). Thus, all regions marked for tripwiring

will have their corresponding activation map bit unset.

86

Indirect Call Tracking.

We instrument all indirect branch sites to extract these edges’ destinations during run-

time. We utilize this technique in our current function-level prototype to track indirect

(caller, callee) pairs: we assign each function a unique 32-bit ID; and for every indirect

call edge, we compute a 64-bit edge ID by splicing-together the ID’s of its caller and callee.

As tracking such calls (1) requires only constant-time operations and (2) attains a linear

complexity (O(e) where e = the total number of unique indirect edges), our analysis cost

adds insignificant overhead.

4.6.5 Maintaining Exploration Diversity

Tripwiring achieves directedness by driving conventional fuzzing’s coverage-maximizing

search strategy toward target locations: constraining the region of accessible control-flow

to only the code relevant to reaching the target. However, in case no new coverage is

found, most fuzzers will begin shuffling seeds for mutation at random. Yet, such strategies

are incompatible with certain bugs’ complex triggering semantics that require successive

execution of the target itself (e.g., stack exhaustions). Thus, an effective directed fuzzer

must not only reach a target bug—but also trigger it.

To overcome this issue in SieveFuzz, we develop an on-demand execution diversity heuris-

tic to prioritize the mutation of test cases with greater coverage of target-relevant code

regions. It focuses SieveFuzz’s available fuzzing on program paths that intersect more bug-

relevant program subroutines. By steering a plateaued fuzzing expedition in this way, we

increase the likelihood of triggering new runtime states to reach and trigger complex bugs.

We insert instrumentation in the fuzz target to keep track of trace length for each test

case. Here, trace length refers to the number of target-relevant code regions triggered by a

test case. In SieveFuzz, the trace length corresponds to the number of functions executed

by a test case and to calculate the trace length, SieveFuzz inserts a single integer increment

operation at function-level granularity.

The observed trace lengths can drastically vary depending on the fuzz target complexity

and the fuzzer capabilities to explore the underlying program state space. Consequently,

87

using the trace length as a metric as-is to decide on test case prioritization can lead to

SieveFuzz wasting its computation cycles fuzzing test cases with a large trace length. To

address this issue, SieveFuzz keeps track of the average trace length observed over the course

of a fuzzing campaign. The computation cycles allocated to a test case are decided on the

basis of the degree to which an test case is proportionally larger or smaller than the average

trace length observed until that point.

4.7 Evaluation

Our evaluation of the effectiveness of tripwiring-directed fuzzing is guided by three fun-

damental research questions:

• RQ1: Is tripwiring effective and fast at restricting fuzzing-reachable search space?

• RQ2: Do the benefits of tripwiring improve directed fuzzing effectiveness and speed?

• RQ3: Are there properties that make a target location well suited to tripwiring?

Table 4.1. Information about our ground-truth bug benchmark corpus.
Key: R: real-world, S: synthetic, UAF: use-after-free, FPE: floating point ex-
ception, BoF: buffer overflow, OOB: out-of-bounds and NPD: NULL pointer
dereference.

Benchmark Bug Type Functionality Type Benchmark Bug Type Functionality Type
CROMU-00039 Stack BoF Network protocol S gif2tga NPD GIF format converter R
KPRCA-00038 NPD Language Interpreter S jasper Heap BoF Image processing tool R
KPRCA-00051 Global BoF Bookkeeping S listswf Heap BoF Flash format processor R
mJS FPE Language interpreter R Tidy Heap UAF Markup language parser R
tiffcp-1 OOB Read TIFF format manipulator R tiffcp-2 Resource Exhaustion TIFF format manipulator R

We compare our tripwiring prototype, SieveFuzz, against the state-of-the-art distance-

minimization-directed fuzzer AFLGo [83]. To examine how SieveFuzz performs versus undi-

rected fuzzing, we further evaluate the state-of-the-art undirected fuzzer AFL++ [77]. Lastly,

we evaluate the newly-released (at the time of writing) directed fuzzer BEACON [86], which

employs an alternative directedness approach that aims to synthesize and satisfy target-

specific path preconditions (i.e., “precondition-directed”). Below details our evaluation

benchmarks and procedures.

88

Benchmarks.

To replicate the conditions under which directed fuzzing is deployed in real-world targeted

defected discovery, we distill a set of three ground-truth memory bugs sourced from the

DARPA Cyber Grand Challenge (CGC) [100] corpus due to its popularity in the fuzzing

literature [80 , 94 , 101]. We further expand this set with five benchmarks from real-world,

open-source software bug reports and two ground-truth bugs in real-world programs from the

Magma fuzzing benchmark suite [102]. As Table 4.1 shows, our benchmark selection covers

a diverse range of defect semantics (e.g., overflows and dangling pointers) and functionality.

Furthermore, as we will show later in § 4.7.1 , this selection of benchmarks contain ground

truth bugs in target locations that are disjoint from the rest of the program to a varying

degree.

Experiment Procedure and Infrastructure.

To answer RQ1, we compute SieveFuzz’s search space reduction as the percentage of

target-irrelevant code regions tripwired (i.e., functions irrelevant to reaching bug locations).

For answering RQ2, we record each fuzzer’s time-to-exposure for all ten bugs. To answer

RQ3, we investigate if there is a correlation between the disjointness of a target location

and the performance of SieveFuzz and AFLGo.

We follow the evaluation standard in the literature [95 , 97 , 103 – 105] and select a 24-hour

trial duration for each experiment at 10 trials to attain sufficient statistical certainty. To

determine the magnitudes of statistical differences, we perform the Vargha and Delaney A12

test [106] in comparing bug exposure times. For each campaign, we run each fuzzer on a

single core in single-threaded mode. We configure both AFLGo and SieveFuzz by targeting

them on the source code locations corresponding to each benchmark’s bug (i.e., the crashing

instruction as reported by triage tools like AddressSanitizer [107]). All fuzzing trials are

seeded with a one-character starting test case except for bugs from the Magma benchmark

for which we use the author-provided seeds. We conduct all evaluations on an Intel Cascade

Lake instance on the Google Cloud Platform with 40GB RAM running Debian 9.

89

Table 4.2. Percentage of code regions (at function level) removed by trip-
wiring during fuzzing, and the analysis time spent in tripwiring’s pre-fuzzing
initialization.

Benchmark Reduction Analysis Cost (ms) New Indir Edges Re-runs Re-run Cost (s)
CROMU-00039 54% 1 0 0 0.00
KPRCA-00038 54% 5 0 0 0.00
KPRCA-00051 34% 23 4 3 0.07
gif2tga 38% 2 0 0 0.00
jasper 8% 60 71 29 1.74
listswf 12% 10 73 31 0.31
mjs 39% 26 2 2 0.05
Tidy 20% 91 87 44 4.00
tiffcp-1 18% 194 87 29 5.62
tiffcp-2 18% 175 87 29 5.07
Mean: 29% 59 ms 41 16.7 1.69s

4.7.1 RQ1: Tripwiring’s Search Space Restriction

To understand tripwiring’s effectiveness and efficiency in supporting directed fuzzing, we

perform experiments to (1) measure the percentage of code regions tripwired-out (restricted

from fuzzing); and (2) compute the costs of pre-fuzzing (tripwiring initialization) and on-

demand analysis (handling new indirect edges). We discuss our procedures and results below.

Results: Magnitude of Space Restriction.

To perform effective directed fuzzing, tripwiring must remove target-irrelevant function-

ality. To capture the extent to which tripwiring achieves this goal, we modify SieveFuzz to

report the total number of code regions (at function-level) culled when the target function

becomes reachable, and report our results in Table 4.2 .

Across all benchmarks, tripwiring eliminates 29% of code regions on average as target-

irrelevant functionality—preventing directed fuzzing from wasting computation on the many

paths that do not reach these bugs. For two bugs in jasper and listswf, tripwiring omits

a smaller percentage of code regions (8–12%); in manually examining these, we observe that

90

both bugs intersect the majority of code paths, forcing tripwiring to perform a conservative

reduction.

Results: Initialization Cost.

Current directed fuzzers [83 , 84] incur significant initialization overheads [85] due to the

excessive instrumentation-time effort needed to compute and embed target distances for

all code regions. As it is crucial for developers to spin-up directed fuzzing as timely and

effortlessly as possible, we measure the initialization cost of tripwiring-directed fuzzing by

profiling SieveFuzz’s analyses times and report our results in Table 4.2 .

On average, we see that it takes SieveFuzz on an average just 59 ms to complete the trip-

wiring process across our nine benchmarks. More importantly, throughout our evaluation,

we observe a linear relationship between the tripwiring analysis time and the benchmark

size showcasing evidence of the scalability of our approach. In addition, we observe that

AFLGo and BEACON incur mean initialization costs 188x and 36.3x higher than Sieve-

Fuzz’s cumulative runtime analyses (Re-run Cost in Table 4.2) time respectively. Recently,

AFLGo added an alternative feature aimed towards reducing this overhead. With this fea-

ture, AFLGo’s initialization overhead drops down to 2.2x more than SieveFuzz’s cumulative

runtime analyses time. Therefore, beyond attaining a low fuzzing-startup cost, we conclude

that tripwiring’s negligible analysis time is well-suited to deployment during fuzzing—making

tripwiring supportive of high-throughput directed fuzzing.

Results: On-demand Analysis Cost.

As discussed in § 4.5.1 , we update the dynamic ICFG and CG with every newly-discovered

indirect edge to ensure that tripwiring’s reachabilty analysis does not miss edges that precede

target locations. However, should tripwiring analysis be re-run frequently (i.e., when the rate

of new indirect edges is high), then directed fuzzing performance will quickly deteriorate due

to the accumulated overhead. To measure the impact of tripwiring’s ad hoc analysis on

directed fuzzing, we profile SieveFuzz’s 10×24-hour fuzzing campaigns to record (1) the

91

total indirect edges discovered and (2) the mean instances that tripwiring is re-run. Our

results are shown in Table 4.2 .

Across all directed fuzzing trials, we observe a maximum of 87 new indirect edges—

confirming that re-performing tripwiring reanalysis is, at worst, an infrequent-case event

relative to the total test cases generated. However, we see that reanalysis is often invoked

a fewer number of times than the total indirect edges discovered (e.g., jasper, listswf,

tiffcp-1, tiffcp-2, and Tidy). In examining this, we find that individual test cases

generally cover multiple indirect edges; and as tripwiring operates on the full coverage trace,

its overall footprint on directed fuzzing overhead is minimal. Thus, in 24 hours of directed

fuzzing, the cost of re-running tripwiring is at most less than 6 seconds of fuzzer runtime.

Takeaway: Tripwiring is effective and efficient at culling target-irrelevant state space

from directed fuzzing’s efforts.

4.7.2 RQ2: Targeted Defect Discovery

Table 4.3. Bug exposure effectiveness; and mean exposure times and ef-
fect sizes for SieveFuzz versus minimization-directed AFLGo and undirected
AFL++ across 10×24-hour fuzzing trials per our ten ground-truth bugs. Bold
effect sizes reflect statistically-large (i.e., Vargha and Delaney A12 > 0.71) im-
provements in bug exposure times; while [n/a] denotes that the statistical
test cannot be performed due to an insufficient number of exposing trials by
SieveFuzz’s competitor.

Benchmark Bug Exposure Effectiveness (#trials) Mean Exposure Time (hrs) Relative Exposure Time Effect Size (A12)
(higher is better) (lower is better) (higher is better)

AFL++ AFLGo SieveFuzz AFL++ AFLGo SieveFuzz SieveFuzz / AFL++ SieveFuzz / AFLGo
CROMU-00039 9 8 5 1.25 3.81 0.58 0.68 0.72
KPRCA-00038 10 1 10 2.43 1.71 2.45 0.53 1.00
KPRCA-00051 7 9 10 9.90 7.86 0.19 1.00 1.00
gif2tga 2 0 4 9.86 n/a 6.83 0.5 n/a
jasper 4 8 8 16.85 6.10 8.77 0.89 0.37
listswf 10 9 10 3.49 5.27 0.97 0.74 0.88
mJS 2 8 5 8.16 10.02 7.20 0.5 0.69
Tidy 4 5 7 19.10 14.28 6.20 1.00 0.67
tiffcp-1 4 2 10 4.20 4.80 1.36 0.75 1.00
tiffcp-2 0 0 2 n/a n/a 0.32 n/a n/a

Mean: 5.2 5 7.1 8.36 6.73 3.49 0.73 0.79

To answer RQ2 and determine whether tripwiring translates to improved directed fuzzing

effectiveness, we evaluate SieveFuzz, alongside minimization-directed AFLGo, precondition-

92

directed BEACON, and undirected AFL++ in discovering ten reported bugs (Table 4.1)—a

common real-world application of targeted testing—comparing their bug-triggering (1) con-

sistency and (2) speed (Table 4.3).

Results: Tripwiring vs. Minimization-directed Fuzzing.

In 10 trials per each of our ten ground truth bugs, tripwiring-directed SieveFuzz at-

tains a 42% higher average bug exposure effectiveness over minimization-directed AFLGo

(7.1 versus 5.00, respectively). Compared to AFLGo’s 6.73-hour mean exposure time,

tripwiring accelerates directed fuzzing to find these bugs in just 3.49 hours—close to

less than half the time of AFLGo—with a statistically-large mean improvement in

bug exposure times (A12 = 0.79 > 0.71). Note that SieveFuzz is the only tool which finds

tiffcp-2. This performance can be attributed to the use of tripwiring which allows Sieve-

Fuzz to synthesize the complex preconditions to trigger the bug. While AFLGo is slightly

more consistent on CROMU-00039, we see that SieveFuzz is able to find it 6.56x faster (3.81h

vs 0.58h). On jasper, and mJS, we also see AFLGo perform slightly better; however, the

difference is not statistically large (A12 < 0.71), meaning that SieveFuzz is on-par with

AFLGo. Overall, tripwiring accelerates directed fuzzing for faster and more consistent de-

fect discovery.

Results: Tripwiring vs. Precondition-directed Fuzzing.

BEACON does not use LLVM’s sanitizer instrumentation. For a fair comparison between

SieveFuzz and BEACON, we evaluate a variant of SieveFuzz that matches BEACON’s in-

strumentation style without sanitizer instrumentation. We exclude benchmark mJS in this

experiment as BEACON’s instrumentation pass crashes during its compilation; as well as

benchmarks KPRCA-00051 and tidy as their respective bugs are undetectable without sani-

tizer instrumentation.

As shown in Table 4.4 , SieveFuzz achieves 2.19x faster bug discovery over BEACON

(2.82 hours versus BEACON’s 6.17 hours). This performance improvement is statistically

large (A12 = 0.71), indicating a substantial speedup of SieveFuzz over BEACON. Further-

93

more, SieveFuzz attains 1.60x more consistent bug discovery than BEACON (8.7 successful

campaigns versus BEACON’s 5.4).

Table 4.4. Bug exposure effectiveness; and mean exposure times and effect
sizes for SieveFuzz versus precondition-directed BEACON across 10×24-hour
fuzzing trials per our eight ground-truth bugs. In this experiment, we run
SieveFuzz with the same fuzz target configuration as BEACON. Bold effect
sizes reflect statistically-large (i.e., Vargha and Delaney A12 > 0.71) improve-
ments in bug exposure times; while [n/a] denotes that the statistical test
cannot be performed due to an insufficient number of exposing trials by BEA-
CON.

Benchmark Bug Exposure Effectiveness (#trials) Mean Exposure Time (hrs) Relative Exposure Time Effect Size (A12)
(higher is better) (lower is better) (higher is better)

BEACON SieveFuzz BEACON SieveFuzz SieveFuzz/BEACON
CROMU-00039 10 10 0.67 0.43 0.68
KPRCA-00038 0 10 n/a 3.9 n/a

gif2tga 10 10 2.15 0.17 0.59
jasper 10 6 8.51 7.8 0.58
listswf 8 10 13.36 0.51 1.00
tiffcp-1 0 9 n/a 0.30 n/a
tiffcp-2 0 6 n/a 6.65 n/a

Mean: 5.4 8.7 6.17 2.82 0.71

For three benchmarks (KPRCA-00038, tiffcp-1, and tiffcp-2), BEACON fails to un-

cover their corresponding bugs in any trials. To investigate why BEACON fails in these

cases—and why SieveFuzz succeeds—we manually examined BEACON-instrumented bina-

ries alongside their SieveFuzz-instrumented counterparts. Compared to SieveFuzz, BEA-

CON’s path analysis over-prunes—eliminating reachable, bug-relevant program states in all

three benchmarks—making it impossible for BEACON to synthesize the complex program

states needed to reach and trigger these bugs.

For KPRCA-0038, BEACON’s reachability analysis incorrectly marks a bug-relevant con-

ditional branch as unreachable. This bug exists in the else branch in one of the program’s

conditional statements; however, triggering the bug requires that the adjacent if branch is

hit first. Because BEACON’s basic-block-level analysis deems the if branch irrelevant to

the bug, it only permits the else branch to be taken—leaving BEACON unable to ever

reach the bug-triggering state hidden in the if branch. SieveFuzz’s function-level analysis

does not restrict either branch, enabling SieveFuzz to reach the correct sequence of branches

needed to trigger the bug.

94

Table 4.5. Comparisons of the mean test case throughputs (execution-
s/sec) between SieveFuzz (tripwiring-directed), and BEACON (precondition-
directed). Values > 1.0 represent a relative speedup (shown in bold), while
values < 1.0 represent a relative slowdown.

Benchmark BEACON Throughput SieveFuzz Throughput Factor Improvement
CROMU-00039 1868 2367 1.3
KPRCA-00038 8 793 99.1
gif2tga 6 154 25.7
jasper 233 231 1.0
listswf 4 147 36.8
tiffcp-1 709 282 0.4
tiffcp-2 743 282 0.4
Mean Factor Improvement: 23.5x larger

For tiffcp-1 and tiffcp-2, BEACON incorrectly prunes an indirectly-called function

along the path to each bug. We observe that this function is passed as comparator function

to a C standard library function, which then calls them. Because BEACON’s path analysis

is only performed statically—unlike SieveFuzz’s which updates itself with new information

as it is uncovered during fuzzing—BEACON will miss complex indirect control flows like

this. We confirm that SieveFuzz successfully observes and incorporates the corresponding

indirect edge in its dynamic control-flow graph.

On three of our remaining four benchmarks, we observe that SieveFuzz outperforms BEA-

CON’s bug discovery. After profiling BEACON’s performance, we observe that the signifi-

cant runtime overhead of its precondition-directed fuzzing is BEACON’s main bottleneck—

resulting in an overall low throughput. Our results show that SieveFuzz averages a 23.5x

higher fuzzing test case throughput than BEACON (Table 4.5). The only exception to this

performance trend in bug discovery is jasper where BEACON finds it more consistently

than SieveFuzz (10 vs 6 campaigns). From Table 4.2 , we infer that the bug lies in the least

disjoint location among our target set with only 8% of the code regions being removed during

tripwiring. Thererfore, BEACON’s finer-grained analysis is a better fit for uncovering this

bug.

95

Though BEACON attains higher throughput on tiffcp-1 and tiffcp-2, its over-

pruning of their respective state spaces prohibits BEACON from exposing either bug (Ta-

ble 4.4). For this target, SieveFuzz’s lower throughput is due to it covering more of the

bug-relevant paths that incur a higher runtime overhead from intersecting subroutines that

set up bug-critical program state (e.g., key data structures). In general, SieveFuzz’s higher

overall speed—and effectiveness—indicates that tripwiring is a less invasive directedness

strategy than BEACON’s path precondition-directed approach, and thus is better suited for

fuzzing disjoint target locations.

Results: Tripwiring vs. Undirected Fuzzing.

As Table 4.3 shows, SieveFuzz’s advantages also hold over undirected fuzzing: with

140% faster bug exposure time than AFL++ (3.49 hours versus AFL++’s 8.36 hours) and

a statistically-large mean effect size (A12 = 0.73 > 0.71). In CROMU-00039, AFL++

outperforms SieveFuzz; yet our statistical analysis shows that these differences are in fact

insignificant, as comparison results in statistically-small effect sizes (A12 = (0.68 < 0.71).

Interestingly, on three benchmarks (KPRCA-00038, listswf, tiffcp-1), we see that undi-

rected fuzzer AFL++ attains both a consistency and overall mean exposure time better

than minimization-directed AFLGo—revealing that distance minimization often translates

to worse-than-undirected-fuzzing effectiveness in targeted testing. Thus, tripwiring enables

SieveFuzz to surpass both minimization-directed AFLGo and undirected AFL++, while

expanding directed fuzzing’s reach to use cases where current directed fuzzers fall short.

Takeaway: By filtering out all target-irrelevant exploration, tripwiring achieves effective,

high-speed directed fuzzing.

4.7.3 RQ3: Target Location Feasibility for Tripwiring

To help practitioners pinpoint locations well-suited to tripwiring-directed fuzzing, we be-

lieve that the percentage of search space removed by tripwiring represents the most promising

metric. Figure 4.3 shows the amount of tripwiring-removed search space per target location

(showing its disjointness) and the mean time taken to uncover the ground truth bug at this

96

10 15 20 25 30 35 40
Percentage code regions (functions) removed

0

2

4

6

8

10

12

14

Ti
m

e
ta

ke
n

fo
r b

ug
 d

isc
ov

er
y

(h
ou

rs
)

SieveFuzz
aflgo

Figure 4.3. Amount of function state space removed during tripwiring, and
SieveFuzz’s and AFLGo’s discovery times per each real-world bug benchmark.

location by both AFLGo and SieveFuzz. We do not include BEACON in this analysis since

we do not have enough timing data corresponding to bug discovery for this framework (only

4 out of the 10 ground truth bugs were successfully triggered by BEACON). We exclude

the synthetic benchmarks (CROMU-00039, KPRCA-00038, and KPRCA-00051) to ensure

no unintended noise is added to this experiment. Then, we use Spearman’s rank-order cor-

relation coefficient [108] to identify if there exists a correlation in the performance difference

of distance-minimization (AFLGo) against tripwiring (SieveFuzz) during bug discovery and

the degree to which a target location is disjoint.

The Spearman’s rank-order shows a strong positive correlation (0.30) in the performance

difference observed between distance-minimization and tripwiring and the amount of state

space removed by tripwiring. I.e., the more disjoint a target site is—shown by an increasing

percentage of code regions removed—the larger is the performance difference seen between

a distance-minimization-based fuzzer and a tripwiring-directed fuzzer. Correspondingly, the

more disjoint is a target location, the faster tripwiring becomes at uncovering the bug. We

thus conclude that (1) quantifying the percentage of code that cannot reach target locations is

a reliable metric for identifying disjoint target locations; and (2) for such locations, tripwiring

(SieveFuzz) is a better choice for directed fuzzing than distance minimization (AFLGo).

97

Takeaway: Tripwiring is an optimal directedness strategy for fuzzing target locations

which exhibit disjointness.

4.8 Discussion and Future Work

Below we discuss several opportunities for enhancing and extending tripwiring in support

of more powerful directed fuzzing.

Refinements in Path Analysis

In SieveFuzz’s approach to perform tripwiring, the dynamic resolution of indirect transfers

is a source of incompleteness while identifying target-reachable paths. Specifically, if the

target location is already reachable in the CG of the fuzz target, SieveFuzz will not identify

alternative target-reachable paths via unresolved indirect calls that may exist in tripwired

code regions. Consequently, there is a corner-case where these missed alternative paths are

bug-triggering. While we did not observe this corner-case as a part of our evaluation, we do

acknowledge that it may occur in other testing scenarios.

The root cause of the above mentioned scenario is the reliance of SieveFuzz on dy-

namically resolving indirect calls and its opportunistic movement towards performing trip-

wired fuzzing as soon as the target location becomes reachable. Therefore, to mitigate it,

we envision several possible improvements, such as alternating between Exploration and

Tripwired Fuzzing (§ 4.6.2) or a new phase specifically targeting resolving indirect calls.

In addition, incorporating additional data sources will improve the resolution of tripwiring’s

target-reachability analyses. NEUZZ [96] and FuzzGuard [109] show that machine learning

can model the likelihood of exercising program paths; and as directed fuzzing is commonly

deployed on well-fuzzed targets, we expect that it is practical to leverage prior information

(e.g., test cases and bug reports) to train reachability models in support of probabilistic state

reduction.

98

Path Prioritization

While tripwiring aims to steer exploration down the set of target-reaching paths, deciding

which of these paths to prioritize is a universal challenge for all directed fuzzers. Wüstholz

et.al [110] gave mutation priority to inputs that were statically deemed to exercise paths

not containing the target location. The intuition being that mutants generated from such

inputs will exercise target-reachable paths. In future work, we will explore incorporating

mutation priority enhancements into tripwiring to prioritize promising target-specific paths

in an effort to reach and trigger bugs in the target location faster and more effectively.

4.9 Related Work

This section discusses related literature on directed fuzzing, as well as orthogonal efforts

to improve fuzzing performance.

Directed Fuzzing.

Recent works extend fuzzing’s success at general-purpose software testing to more tar-

geted testing scenarios (e.g., patch testing, bug reproduction). Most fuzzers of this type

approach this as a distance minimization problem. AFLGo [83] performs simulated anneal-

ing optimization across call and control-flow graphs to find the shortest-length paths to the

user-specified target locations. Hawkeye [84] expands AFLGo’s technique with algorithmic

and analysis refinements, and additional coverage heuristics to avoid biasing unfruitful paths.

ParmeSan [93] obtains its interesting target locations from sanitizer metadata (e.g., Ad-

dressSanitizer [107]). UAFuzz [85] and UAFL [111] mine target locations based on memory

allocation patterns to maximize the chances of triggering heap corruptions. BEACON [86]

performs directed fuzzing by identifying necessary preconditions for a given target location

and then instrumenting the fuzz target to terminate paths that do not satisfy these precon-

ditions. This approach is significantly more heavyweight which in turn drastically lowers the

fuzzing testcase throughput (as shown in Table 4.5). In comparison, tripwiring is much more

lightweight and as such a better fit for uncovering bugs in disjoint target locations. Though

99

our evaluation shows SieveFuzz attains a better overall trade-off of speed-versus-directedness

over conventional distance minimization, we posit that the concept of tripwiring is comple-

mentary to most existing directed fuzzing approaches—and that they can be combined for

a synergistic improvement.

Improving Fuzzing Performance.

As maintaining high test case throughput is critical to fuzzing bug-finding effective-

ness, several recent works aim to optimize fuzzing’s most performance-critical components.

Instrumentation-level enhancements include efforts to accelerate the conventionally-slow

tracing of opaque targets (e.g., AFL-Dyninst [112], AFL-QEMU [113], RetroWrite [114],

ZAFL [115]); and coverage-guided tracing [98 , 116], which restricts the expense of tracing

to only the few test cases guaranteed to increase coverage. As these enhancements offer

general-purpose speedups, we expect that they are complementary to SieveFuzz.

4.10 Conclusion

Existing distance-minimzation based directed fuzzers are universally bottlenecked by

their employed search strategies. Tripwiring speeds-up directed fuzzing by culling irrelevant

code—preempting and exiting unwanted paths to guide fuzzing only toward targeted loca-

tions. SieveFuzz demonstrates how tripwiring effectively supports directedness for security-

critical targeted testing tasks like bug reproduction while interposing near-zero runtime

overhead; and significantly outperforms conventional distance-minimization-based directed

fuzzing in consistency, and efficiency.

100

5. CRYSTALLIZER: DESERIALIZATION VULNERABILITY

DISCOVERY FRAMEWORK

5.1 Introduction

Serialization is a key feature in modern languages (e.g., Java, C#, or PHP) that en-

ables cross-platform communication, remote method invocations, and object persistence.

Serialization converts object graphs into bytestreams. Symmetrically to serialization, deseri-

alization rebuilds the original object graph from the bytestream. By default, deserialization

ensures that the deserialized objects are valid but it does not enforce security constraints.

Security (both during and after deserialization) is the sole responsibility of the application

logic. Incomplete security checks allow attackers to bend the control-flow/data-flow of a

program. These attacks can hijack the deserialization process, granting the attacker remote

code execution (RCE), denial of service (DoS), or information persistence capabilities such as

Arbitrary File Writes (AFW). Deserialization vulnerabilities showed a catastrophic security

impact [117]. E.g., the Equifax data breach [118] was caused by a deserialization vulnerabil-

ity enabling RCE in the [119]. More recently, the Log4Shell vulnerability in the widely used

Log4j2 library can be exploited in newer versions of the JDK that were previously thought

safe by leveraging deserialization-based attack vectors [120].

Payloads for deserialization attacks are composed of nested objects that, when dese-

rialized, force the application to invoke an attacker-controlled sequence of methods, also

called a gadget chain. The last gadget of the chain is usually called sink and may invoke

system functions, e.g., Runtime.exec() with attacker-specified arguments, effectively allow-

ing the attacker to execute arbitrary system commands. The gadgets in the deserialization

domain share some conceptual similarities with gadgets in Return-Oriented Programming

(ROP) [121 , 122] for binary exploitation: small pieces of code in the vulnerable program that

are stitched together by an attacker. However, deserialization gadgets do not operate at the

machine code level, instead, they bend the serialization logic to express malicious actions.

Attack chains heavily depend on the application logic. Therefore, finding such gadget

combinations that bypass the application logic is crucial to fix vulnerabilities. As of now,

101

discovering deserialization vulnerabilities is predominantly manual and requires solving three

main challenges:

• C1. Sink Gadgets Identification: New sink gadgets that are useful to the attacker

are currently identified through heuristics, e.g., marking calls to Runtime.exec().

However, we observe this approach overlooks non-trivial sinks and inhibits discovering

other interesting types of attacks (e.g., DoS).

• C2. Large State Space: The search space for gadget chains in current applications

is massive with thousands of gadget combinations. This makes finding a gadget chain

that can be used to mount a deserialization attack is akin to finding a needle in a

haystack.

• C3. Complex Payload Creation: Deserialization payloads require careful instanti-

ation of classes and arguments that obey the execution constraints of the gadget chain.

Consequently, valid bytestream creation becomes exceedingly complex due to the large

number of possible combinations that nested objects can assume.

To overcome the aforementioned challenges, we design Crystallizer: a hybrid framework

that combines static and dynamic analysis to synthesize concrete payloads for gadget chains

and find deserialization vulnerabilities automatically. First, our framework identifies new

sink gadgets in an application. Then, it uses static analysis to construct a gadget graph: a

data structure that encodes all possible gadget chains within a target software (up to a certain

length). This greatly reduces the explorable state space for gadget chains. Crystallizer

creates payloads as bytestreams out of the reduced state space dynamically. Our framework

synthesizes payloads in a chain-aware manner: it keeps track of the execution chain order,

and performs a best-effort approach to create well-formed arguments for each of the gadgets

while obeying language semantics. We implement our proof-of-concept tool for Java as it is

widely adopted as backbone for software development [123 , 124].

We evaluate Crystallizer on seven libraries and two applications. Across the seven li-

braries, it finds 47 new chains in addition to seven previously known gadget chains [125].

102

This demonstrates Crystallizer’s ability to find both existing and new gadget chains auto-

matically. Furthermore, we compare our tool against two state-of-the-art tools [126 , 127] for

finding Java-based deserialization vulnerabilities and showcase that Crystallizer drastically

outperforms existing state-of-the-art in terms of finding exploitable gadget chains. Finally,

we showcase the real-world security impact of Crystallizer by synthesizing concrete payloads

that we use to demonstrate DoS and RCE attacks on two popular Java applications. The

corresponding proof-of-concept exploits were responsibly disclosed. In summary, we make

the following contributions in this chapter:

• We perform a systematic analysis of how deserialization vulnerabilities manifest them-

selves in the form of gadget chains, including challenges to uncover them automatically.

• We present Crystallizer, a new hybrid framework to automatically uncover deserializa-

tion vulnerabilities by crafting bytestreams that exercise gadget chains present in the

target.

• We evaluate it against seven libraries and find 47 new chains in addition to seven

previously known chains.

• Crystallizer outperforms state-of-the-art tools for finding Java-based deserialization

vulnerabilities and demonstrate real-world security impact by using it to mount DoS

and RCE attacks on two popular real-world applications.

5.2 Deserialization Attacks

We discuss basics of Java serialization. Then, we establish terminology relevant to dese-

rialization attacks and showcase an example attack on a popular Java-based library Apache

Commons Collections [128]. Finally, we discuss domain-specific challenges.

5.2.1 Serialization and Deserialization

Serialization is the action of transforming objects into a bytestream. Deserialization later

rebuilds the objects from the received stream. Serialization for Java revolves around the

103

Serializable interface [129]. Serialized objects of classes that implement this interface can

be created using the writeObject method provided by the JDK [130]. The method encodes

the object’s fields into a bytestream to, e.g., send it across the network or store it into a file.

On the other end, the method readObject [131] deserializes the byte stream and rebuilds

the original object automatically. Note that the derserialized object’s class must be in the

classpath [132], otherwise deserialization fails. Java allows specifying custom serialization

and deserialization routines to instruct the receiver application about custom data processing,

i.e., post-processing data while filling an objects’ fields. As these mechanisms allow great

flexibility, they also leave a large exploitable attack surface.

5.2.2 Payload Formalization

Let us establish terminology relevant to deserialization attacks. A gadget is any invoked

method during deserialization. It forms the basic building block for an attack. A gadget chain

corresponds to a sequence of method invocations triggered upon deserialization of a payload.

Payload refers to a bytestream corresponding to a set of serialized nested objects. A payload

that exploits a deserialization vulnerability forces the application to call an attacker-specified

gadget chain which can be used to mount an attack, e.g., RCE. In general, a deserialization

attack is possible because the deserialization process automatically re-builds the received

object from the attacker-specified bytestream and, in doing so, potentially enable attacker-

specified code to be executed.

Gadgets fall into three categories [133]: (i) Trigger Gadgets are the first elements

invoked during deserialization and serve as the attack’s entry points. In Java, such gadgets

are usually classes that override specific magic methods (e.g., readObject()). Custom

deserialization routines operate on data which may be attacker-controlled allowing the trigger

gadgets to kickstart a chain, (ii) Link Gadgets orchestrate the flow of attacker-controlled

data from a trigger to a sink gadget, and (iii) Sink Gadgets launch the attack by running

attacker-specified malicious actions.

Our Gadget Graph represents an over-approximation of all the possible gadgets chains

in a program. Hence, a payload exercises only a specific path in the graph between the trigger

104

gadget and the sink gadget. Since gadgets are the methods executed through the standard

deserialization process, we model the gadget graph as a subcomponent of the application

callgraph whose nodes are marked as gadgets (trigger, link, or sink). § 5.3.1 describes our

approach to extract the gadget graph.

5.2.3 Payload Example

 BadAttributeValueExpException {

 void readObject(ObjectInputStream ois) { // trigger gadget
 Object valObj = ois.readField("val");

 valObj.toString(); // valObj instance of TiedMapEntry
 }

}

 TiedMapEntry {

 String toString() { // link gadget
 this.getValue();

 }

 Object getValue() { // link gadget
 // this.map instance of LazyMap
 // this.key instance of String ("foo")
 this.map.get(this.key);

 }

}

 LazyMap {
 Object get(Object key) { // sink gadget
 // the transformer triggers a command

 Object val = this.factory.transform(this.key);
 }
 }

 // An application invokes .readObject()
 // to deserialize the byte stream ois
 BadAttributeValueExpException.readObject(ois);

➊

➋

➌

➍

➎

Figure 5.1. A simplified example for the gadget chain executed upon the
payload (Listing 3) being deserialized.

105

We present a known deserialization attack on Apache Commons Collections library

explaining: (i) execution flow in the form of a gadget chain vulnerable to a deserialization

attack, and (ii) the creation of a payload that exercises this vulnerable chain.

 Figure 5.1 shows the vulnerable gadget chain. The readObject() (1) method of the

BadAttributeValueExpException class is executed first, making it the trigger gadget.

This gadget rebuilds the object (instance of BadAttributeValueExpException) from the

bytestream and invokes a toString() method on one of its field members (val). The object

valObj is an instance of the class TiedMapEntry, then its toString() method is called (2)

which in turn calls its getValue() method. The getValue() method retries a key from a

map (3). If the map is an instance of LazyMap, it will try to build an item corresponding

to the key parameter “foo” (4) by using a Transformer class whose object can be instan-

tiated in such a way that the item building performs RCE (5). Since executing the gadget

get() method inside the LazyMap can lead to RCE [134], we categorize it as a sink gadget.

The gadgets belonging to TiedMapEntry are referred to as link gadgets since they chain the

invocation from the trigger gadget to the sink gadget.

Listing 3 Simplified Java code creating the payload targeting Apache Commons Collection.
 Figure 5.1 describes the control flow execution observed upon deserializing this payload.

1 // command to execute
2 final String[] execArgs = { "/bin/bash" };
3
4 // Preparing object for Transformer which
5 // is used inside the sink gadget to grant RCE to an attacker
6 final Transformer[] transformers = new Transformer[] {
7 new InvokerTransformer("exec", new Class[]
8 { String.class }, execArgs), /*...*/ };
9

10 final Map innerMap = new HashMap();
11 // Preparing object for LazyMap which acts as the sink gadget
12 final Map lazyMap = new LazyMap(innerMap, transformers);
13 // Prepraring object corresponding to a link gadget
14 TiedMapEntry entry = new TiedMapEntry(lazyMap, "foo");
15
16 // Preparing object corresponding to the trigger gadget
17 BadAttributeValueExpException val = new BadAttributeValueExpException(val);
18
19 ObjectOutputStream os = new ObjectOutputStream(new FileOutputStream("payload.bin"));
20 // Writing the object into serialized bytestream (payload)
21 os.writeObject(val);

106

The gadget chain highlights two key observations: (i) the gadget chain is a subgraph of

the application callgraph, and (ii) exercising this gadget chain requires a bytestream that is

crafted from a set of nested objects in such a way that the above gadget chain is invoked.

The payload that exercises the above-mentioned gadget chain to achieve RCE is shown

in Listing 3 . The first step is to instantiate a Transformer that executes exec("/bin/bash")

(Line 8). The Transformer is then used to instantiate a LazyMap object (Line 12). The

LazyMap automatically instantiates any missing entry using the Transformer class instance;

thus invoking exec(). We then use the LazyMap to build a TiedMapEntry (Line 14) and

bind it to a BadAttributeValueExpException instance (Line 17). Specifically, this class

overrides the readObject() method and acts as our trigger gadget. val is the final payload

which is serialized (Line 21) to a bytestream, ready to be sent to a vulnerable application.

5.2.4 Challenges

Recalling the example in Listing 3 , we identify three main challenges for automating chain

creation: sink gadget identification, large state space, and complex payload generation.

C1 Sink Gadgets Identification. While trigger gadgets are easy to locate (i.e., they

are overrides of known magic methods such as readObject()), and link gadgets are generic

nodes in a gadget graph. Identifying sink gadgets requires non-trivial knowledge of the

code. Previous works use heuristics [126] to locate the usage of specific functions (e.g.,

Runtime.exec()). However, we observe that they overlook a large group of possible other

sinks. Therefore, in our work, we adopt a broader definition: a gadget is considered a sink

if it may use an arbitrary class object. We purposely choose a “vague” definition for two

reasons. First, this behavior can be achieved in different ways, e.g., using reflection or

Object instances (as per Listing 5 or Listing 6). Second, our definition allows Crystallizer to

target and find a wide spectrum of threats (e.g., logic-based DoS chains) that were ignored

by previous works.

C2 Large State Space. To estimate the explorable state space of gadget chains, we

conduct a preliminary analysis in Apache Commons Collections. First, we extract a callgraph

through Soot [135], and then build a gadget graph on top of it (see § 5.3.1). The callgraph

107

consists of 2, 009 gadgets and 38, 579 edges. Our analysis reduces this large space to 295

gadgets and 2, 168 edges in our gadget graph.

Even within a gadget graph, the number of candidate chains to be explored is still large,

thus necessitating automated exploration. We quantified candidate gadget chains in this

gadget graph from trigger to sink gadgets using a Djikstra-like algorithm [136]. To keep the

analysis concise, we upper-bound the maximum length of discovered candidate chains. For

a maximum path length of 5, there are 25, 866 candidate chains to be explored.

C3 Complex Payload Generation. Payloads are composed of well-formed objects

that obey the execution constraints of the gadget chain. In Listing 3 , a LazyMap object re-

quires instances of Map and Transformer to be passed to its constructor (Line 14). Moreover,

we need to obey the language semantics and pass objects as arguments that implement the

respective Map and Transformer interfaces. Next, as we create the object for the predecessor

gadget (TiedMap), we must ensure that the previously created object for LazyMap is correctly

passed as an argument. Therefore, building concrete payloads that exercise gadget chains is

challenging because it requires: (i) inference of correct parameters and (ii) instantiation of

valid connections between objects.

5.3 Crystallizer Design

Static Analysis
Module

Payload Feedback

Deserialization
Vulnerability

➊

Probabilistic Concretization

Deserialization
Probing

Dynamic Analysis
Module

Candidate Chains
Extraction

library
Trigger

Gadgets

➌

Gadget Graph

Gadget Graph Legend:

Trigger SinkLink

Sink
Identification

➋
Gadget Graph

Figure 5.2. Architectural overview of Crystallizer.

Crystallizer is a hybrid path analysis framework to automatically uncover deserialization

vulnerabilities by finding gadget chains in targets. Given a gadget graph, our intuition is to

automatically identify sink gadgets and then find possible paths leading to sinks that can be

instantiated as a set of connected objects (§ 5.2.3).

108

Crystallizer produces payloads as long as there exists a sequence of gadgets that reach a

sink. Crystallizer takes a set of trigger gadgets and a target as input, then it outputs concrete

payloads that execute the gadget chain, demonstrating potentially exploitable gadget chains.

Developers can use this information to patch deserialization bugs; attackers can use adjust

the parameters to fine-tune the execution of the chain. Figure 5.2 shows an overview of Crys-

tallizer’s three components: Static Analysis Module (1 in Figure 5.2), Sink Identification

(2 in Figure 5.2), and the Probabilistic Concretization phase (3 in Figure 5.2).

5.3.1 Static Analysis Module

This module produces a gadget graph starting from a library and a list of trigger gadgets.

Specifically, the gadget graph produced by this module has only the trigger and link gadgets

marked, while we mark the sinks in this gadget graph with the help of the Sink Identification

module.

We build the gadget graph in four steps. (i) We extract an over-approximated callgraph

using Class Hierarchy Analysis (CHA) [137] from the target software, (ii) In the callgraph, we

select all classes that implement the Serializable interface directly or through one of their

ancestors (§ 5.2.1), and mark their methods as gadgets, (iii) We use the list of trigger gadgets

to mark the nodes in the gadget graph accordingly, while we mark all the other nodes as link

gadgets, and (iv) Finally, we discard all nodes that are unreachable from trigger gadgets.

5.3.2 Sink Identification

Starting from the Static Analysis Module’s gadget graph, we infer which gadgets can be

used as sinks. Here, we describe a module that implements the sink definition in § 5.2.4 :

gadgets that use arbitrary class objects. Our module enables Crystallizer to identify sinks

to mount attacks such as RCE, DoS, or AFW. All the gadgets recognized as sinks are then

marked in the gadget graph.

To infer sink gadgets, Crystallizer performs a two-step process. First, it dynamically

infers candidate gadgets that may use arbitrary objects. Second, the candidates are passed

through a set of static filters to validate if the candidate gadgets are using the arbitrary

109

object. The candidate gadgets not filtered out during the static filters are flagged as sink

gadgets. The intuition behind this hybrid approach is that the dynamic inference gives initial

evidence of whether a gadget has potential for executing malicious actions and the static

inference incorporates access patterns from known sinks to increase precision over this initial

inference.

Dynamic Inference

Crystallizer flags gadgets that may use an arbitrary object either as one of its declaring

classes’ fields or as a method parameter passed to the gadget itself. It performs this dynamic

inference with the help of a honeypot class—a custom class that raises an exception when

instantiated. Crystallizer randomly picks one of the reachable gadgets from the gadget graph

and flags it as a candidate for static filtering if it can instantiate an object of the honeypot

class into (i) one of the field members of the declaring class of the gadget, or (ii) one of the

method parameters of the gadget can be instantiated with the honeypot class. Crystallizer

flags a candidate gadget, if one of the previous two conditions is fulfilled. Crystallizer also

logs the argument type through which the honeypot class was instantiated (referred to as

the tainted argument type). This information is used during the static filtering phase for

making Crystallizer more precise in identifying sink gadgets.

Static Filtering

The candidates flagged during the dynamic inference must pass a set of static filters.

These static filters are necessary to weed out candidate gadgets that do not use the tainted

argument. The filters are designed based on the characteristics of known sinks. We use

the argument type instead of the actual argument through which the honeypot class was

instantiated for filtering since there can exist multiple arguments (field members or method

parameters) of the same type. If a candidate gadget passes through any of the static filters

then it is flagged as a sink gadget. In case a field member was used to load in the honeypot

class, we apply a set of three filters: (i) We flag gadgets that directly refer to a field having

the same type as the tainted argument. (ii) We extend the previous analysis to all reachable

110

methods using a field with the same tainted argument type. (iii) We also flag gadgets that

indirectly use the tainted argument. We identify indirect usage by checking if the tainted

argument is cast to another type in the class constructor and then see usage for this new type

in the gadget. However, in case the argument is loaded in through a method parameter then

we flag the gadget if any of the method parameters corresponding to the tainted argument

were used in a method invocation.

5.3.3 Probabilistic Concretization

Leveraging the gadget graph, we propose a probabilistic method to generate payloads that

trigger deserialization vulnerabilities. We achieve this goal by using three modules. First,

we use a Candidate Chain Extractor module to find a gadget chain that connects a trigger

and a sink. Second, we feed the candidate chains to a Dynamic Analysis Module, which

attempts to create a payload for the corresponding chains. Finally, we submit the payload

to the Deserialization Probing module that deserializes the payload and returns feedback to

the Dynamic Analysis Module. The feedback can be adjusted according to the threat model

and recognize chains exhibiting the intended behavior. Specifically, we show how adopting

different heuristics enables us to identify RCE, AFW, or DoS chains. Crystallizer adopts a

dynamic approach to concretization to ensure that it only reports chains for which it can

create payloads that exercise them. This is in stark contrast to purely static approaches

that are plagued with false positives, i.e., reporting chains that cannot really be exercised

due to not taking into consideration the execution constraints of the chain or the language

semantics (discussed in § 5.5.3)

Candidate Chain Extractor

This module uses a Djikstra-like algorithm [136] to identify candidate gadget chains that

map paths from target to sink gadgets. We further define a threshold to upper-bound the

length of candidate chains. Without this threshold, the state space of candidate gadget

chains would become intractable for an exhaustive exploration. In our experiments, we set

a threshold of up to five gadgets as inspired by known exploitable gadget chains.

111

Dynamic Analysis Module

A gadget chain is fully concretized if there exists an input payload that exercises the

gadget chain upon being passed to a deserialization entry point. To concretize a gadget

chain, we instantiate objects for each of the gadgets in the chain. The objects must provide

two prerequisites: language-specific (in our case Java): create well-formed for declaring

classes of the gadgets, and chain-specific: instantiate the objects in such a way that the

execution flows successfully from one gadget to another.

Algorithm 3 Dynamic Analysis Module
Require: Candidate Gadget Chain G
Ensure: Payload for concretized gadget chain P
1: procedure ConcretizeChain(G)
2: objectCache← ∅
3: revIterator ← G.nodes.revIterator()
4: while revIterator.hasP revious() do
5: node← revIterator.previous()
6: object← ObjectF actory(node, objectCache)
7: objectCache.put(object)
8: end while
9: return P ← objectCache.getT opNode()
10: end procedure
11: procedure ObjectFactory(node, objectCache)
12: cls← node.getDeclaringClass()
13: if objectCache.isP reInstantiated(node) then
14: if objectCache.hasExactT ype(node) then
15: mustReturn(objectCache, node)
16: else
17: mayReturn(objectCache, node)
18: end if
19: end if
20: clsObj← cls.pickConstructor().instantiate();
21: return clsObj
22: end procedure

Based on the insight described above, we present our concretization methodology for

gadget chains in Algorithm 3 . The procedure takes as input a candidate gadget chain and

outputs a payload that can be tested by the Deserialization Probing module. The concretiza-

tion process instantiates the nodes in reverse order, i.e., from sink to target (Line 4). We

adopt this strategy to fulfill the chain-specific prerequisite described previously. Further-

more, this allows the algorithm to terminate early if no objects can be instantiated.

To satisfy chain-specific prerequisites, Crystallizer uses an object cache to store previ-

ously instantiated objects. When a node is passed to the ObjectFactory for instantia-

tion (Line 11), it checks if the object cache contains an object of the same type, or can be

112

cast into, the requested node. If these conditions are met, we distinguish two cases. (i) The

object has the same type as the requested node. Thus, we reuse it as is (Line 15). (ii) The

object can be cast into the requested node type. Thus, we randomly create a new object

or return the existing one from the cache (Line 17). We perform this action randomly in-

stead of in a guided manner since reasoning about the semantics is more expensive than just

exercising all possible combinations. If the object cache does not contain suitable objects,

then we instantiate a new node (Line 20) by satisfying the language-specific prerequisites.

For primitive data types, we use a pre-defined finite set created from commonly-used val-

ues in known vulnerabilities. For user-defined data types, we instantiate using a randomly

chosen constructor synthesizing the required parameters recursively if necessary. As an ex-

ample, the constructor for a user-defined type LazyMap requires (as a parameter) another

user-defined datatype (Transformer). Crystallizer instantiates an object of Transformer

type first before trying to instantiate a LazyMap object.

Deserialization Probing

Once a payload is successfully instantiated, we submit it to the Deserialization Probing

to test if the payload expresses the intended behavior, i.e., RCE, AFW, or DoS. We use

different feedback according to the attack to detect.

For our prototype, we implement feedback to model RCE, AFW, and DoS chains, thus

showing the flexibility of Crystallizer. For RCE and AFW, Crystallizer reports a payload

if it can execute each gadget in the chain from the trigger to the sink. For this purpose,

we use method-level coverage feedback, that guarantees the payload expresses a valid chain

and possibly loads arbitrary classes. However, to transform the chain in a concrete exploit,

human assistance is needed to fine-tune the loaded class according to the application scenario

(discussed in § 5.5.1). For the DoS chains, instead, we are interested in payloads that keep

the CPU busy for a long time, therefore, we consider the deserialization execution time

represents as feedback. Specifically, we consider possible DoS chains that require time more

than a given threshold to be executed (5s in our experiments). In contrast to RCE/AFW

113

payloads, no human intervention is needed since the synthesized payload by itself exhibits

the intended behavior.

We, on purpose, use the same sink gadgets for RCE, AFW and DoS chains. Our intuition

is that a sink operating on arbitrary classes can be easily tuned to express different attacks

by combining heuristics and different feedback.

5.4 Implementation

Here, we describe the static analyzer, Dazzer—our Probabilistic Concretization tool built

on top of Jazzer, and the method-level instrumentation.

Static analyzer. We develop our static analyzer on top of Soot version 4.2.1 [138]. Soot

is the standard tool for analyzing Java bytecode and provides built-in analysis for callgraph

and class hierarchy [137]. Our analyzer consists of 1.1K Java LoC.

Dazzer. To assist the object creation, we develop Dazzer. Our tool aids the payload

synthesis in Dynamic Analysis Module (§ 5.3.3) and the identification of sink gadgets in

Sink Identification (§ 5.3.2). Dazzer extends Jazzer, which is originally designed to fuzz

methods in isolation by creating concrete arguments for them [139]. In contrast, Dazzer

is designed to perform effective gadget chain concretization which requires adopting unique

and generalized strategies for object creation. We devised the three strategies based on

our analysis of a large number of previously known deserialization-based vulnerabilities and

deriving commonalities in terms of how they manifest themselves. First, we make the object

creation chain aware by introducing the concept of an object cache and designing it to be used

probabilistically. Second, in addition to regular instantiation, Dazzer employs reflection-

based strategies to force create objects in case there are no public constructors, that we

employ during payload creation of a gadget chain. Finally, we extend the capabilities of the

object creation module to instantiating generic types (e.g., Map and Object) by including

semantically diverse constructs. Overall, we added 2K Java LoC on top of the original Jazzer.

Method-level Feedback. Crystallizer creates an instrumented version of the target

library by adding method-level coverage feedback at the bytecode level. We use Soot to

insert instrumentation at the start of each method to log its execution. We use this feedback

114

during Probabilistic Concretization for identifying concretized gadget chains(§ 5.3.3). The

method-level feedback and deserialization tracing support were implemented in 470 Java

LoC.

5.5 Evaluation

Table 5.1. Evaluation Benchmarks paired with their ground truth chains.
Benchmark Version(s) Description GT Vuln
Apache Commons Collections (ACC 3.1) 3.1 Data Structure Manipulation [134]
Apache Commons Collections (ACC 4.0) 4.0 Data Structure Manipulation [140]
Aspectjweaver 1.9.2 Language Feature Extension [141]
Beanshell 2.05b Embeddable interpreter [142]
Beanutils 1.9.2 Utility Library [143]
Groovy 2.3.9 Object-oriented Language [144]
Vaadin 7.7.14 Web Application Development [145]

Our evaluation of Crystallizer revolves around five research questions.

• RQ1: Can Crystallizer find deserialization vulnerabilities in previously well-tested

libraries? (§ 5.5.1)

• RQ2: How does Crystallizer perform against state-of-the-art tools? (§ 5.5.2)

• RQ3: How do Crystallizer’s components influence the gadget chain discovery? (§ 5.5.3)

• RQ4: What sinks does Crystallizer find? (§ 5.5.4)

• RQ5: Can Crystallizer detect novel deserialization vulnerabilities in enterprise soft-

ware? (§ 5.5.5)

Environment

We evaluate Crystallizer on seven popular Java-based libraries (Table 5.1) and two pop-

ular enterprise applications (§ 5.5.5). These cover a diverse range of functionality and have

been previously well-tested for deserialization vulnerabilities. Moreover, we compare Crys-

tallizer against two related tools: Gadget Inspector [126] and Rasheed et al. tool [127]. We

115

perform the evaluation on an Intel Xeon E5-2450 2.1GHz processor with 47G RAM running

Ubuntu 20.04. For each benchmark, Crystallizer was configured to be run in single-threaded

mode and was compiled with javac version 11.0.11.

5.5.1 RQ1: Library-based evaluation

We assess the effectiveness of Crystallizer at uncovering deserialization vulnerabilities

by running it on the previously well-tested seven libraries described in Table 5.1 . To run

Crystallizer on these libraries, we follow the methodology in Figure 5.2 .

Table 5.2. Gadget graph size of the target libraries and the time taken by
Crystallizer to create it.

Benchmark Gadget Graph Time (s)#gadgets #edges
ACC 3.1 295 2,168 73
ACC 4.0 573 4,069 40
Aspectjweaver 440 3,108 112
Beanshell 357 1,882 86
Beanutils 73 490 80
Groovy 110 271 113
Vaadin 2,119 8,378 153
Average 567 2,909 94

First, Crystallizer creates gadget graphs as a part of the Static Analysis Module. Table 5.2

details the size of the graphs for each target library as well as the time taken to create them.

After the gadget graph is created, we perform Sink Identification for which we allocate a

time budget of 1 hour.

In the Probabilistic Concretization phase, Crystallizer identifies candidate gadget chains

and then attempts to concretize them. We allocate a time budget of up to 24 hours for this

phase. Table 5.3 provides an overview of this phase. Across all seven libraries, Crystallizer

concretizes 888 gadget chains. We manually deemed 630 chains as being interesting, i.e.,

the sink gadgets in these chains perform semantic functionality that could be potentially

exploitable. From these 630 chains, 54 were manually validated to be exploitable.

116

The sink gadgets in interesting chains perform a wide range of potentially exploitable se-

mantic functionality. Certain sink gadgets perform traditionally vulnerable functionality like

using reflection to invoke arbitrary methods or writing arbitrary bytestreams to files. How-

ever, there is also a subset of sinks that are performing functionality that would not be cat-

egorized as traditionally vulnerable but when coupled with other primitives provided by the

target, they become exploitable. A representative example of such a sink is LazyMap.get()

(shown in Figure 5.1). This sink gadget allows using classes called Transformers that allow

transformations to be performed on the key that is being inserted into the map. It is possi-

ble to use a set of Transformers which when executed mount an RCE attack. Crystallizer

owing to its Sink Identification can identify not only the LazyMap.get() method but also

all Transformers that are instrumental in mounting the RCE attack.

Table 5.3. Candidate chains explored by Crystallizer along with chains that
were successfully concretized, chains that were deemed to be interesting, and
chains that were manually validated to be exploitable.

Benchmark Gadget Chains

Candidates Concretized Interesting Confirmed
Exploitable

ACC 3.1 25,866 691 479 7
ACC 4.0 2,23,367 4 4 4
Aspectjweaver 794 100 100 23
Beanshell 915 6 4 1
Beanutils 629 55 32 16
Groovy 1,146 7 3 1
Vaadin 31,095 25 8 2
Average 40,544 127 90 8

29.05% of the concretized chains are not deemed interesting since the sinks do not per-

form exploitable functionality. This included functionality such as wrapping objects into

containers like hashmaps. These sinks are flagged because our current methodology for

Sink Identification only infers whether a sink gadget may operate on potentially attacker-

controlled objects but does not reason about the semantic functionality performed on such

objects. We plan to integrate this semantic functionality reasoning as a part of future work

to make our Sink Identification more precise.

117

To assess the exploitability of the gadget chains concretized by Crystallizer, we manually

see if the payload for a concretized gadget chain showcasing a potential deserialization vul-

nerability that can be tweaked to mount an exploit. The exploitability is assessed with the

help of a synthetic application that deserializes user-provided data and has the vulnerable

library on its application classpath. This methodology is in line with the approach adopted

by Park et.al. [146] to perform their library-based evaluation. Using the methodology out-

lined above, we confirm exploitablity of 54 chains concretized by Crystallizer by successfully

mounting RCE attacks for six out of the seven libraries and an Arbitrary File Write attack

for the remaining library (Aspectjweaver).

The amount of manual effort required to convert a payload synthesized by Crystallizer

into a payload that mounts an exploit varied across our evaluation targets. The payloads

synthesized for Vaadin, Beanutils, and ACC4.0 by Crystallizer did not require any further

manual tweaking to mount an exploit. For Aspectjweaver and Groovy, we had to perform

minimal tweaking where only the String parameters used in the sink gadget had to be

adjusted to mount the exploit. The remaining two libraries, ACC3.1 and Beanshell require

additional reasoning about the library semantics to convert the synthesized payload by Crys-

tallizer into a payload that mounts an exploit. Specifically, we have to infer what primitives

provided by the library could be used as parameters in the sink gadget to call exec() with

an attacker-controlled string.

0.016 0.062 0.250 1.000 4.000 16.000
Time (h)

0

5

10

15

20

Co
nf

irm
ed

 E
xp

lo
ita

bl
e

Ch
ai

ns

ACC 3.1
Vaadin

Aspectjweaver
ACC 4.0

Beanutils
Groovy

Beanshell

Figure 5.3. Time required by Crystallizer to discover the exploitable gadget chains.

118

Finally, we perform a deeper analysis of the chains that are concretized by Crystallizer.

The first observation is that Crystallizer successfully discovers the seven known ground truth

chains (listed in Table 5.1) across all our evaluation targets. In addition to finding these

ground truth chains, Crystallizer concretizes new gadget chains as well. Figure 5.3 shows

the time taken by Crystallizer to create payloads for exploitable gadget chains.

 Table 5.4 summarizes our findings with respect to the novel chains uncovered: Crystal-

lizer automatically concretizes up to 22 previously undiscovered chains per library, that are

composed of up to six gadgets. We quantify the complexity of the novel chains by mea-

suring the unique classes they are composed of. Intuitively, the more unique instantiated

classes a chain contains, the more language and chain-specific prerequisites Crystallizer ful-

fills (§ 5.3.3). Our results show the novel chains are more complex than the ground truth

ones, containing almost twice as many unique classes. We present an example of a novel

gadget chain in Listing 4 . As demonstrated, through its automated reasoning about gadget

chains, Crystallizer uncovers gadget chains corresponding to complex paths.

Listing 4 A simplified example of a gadget chain corresponding to a novel path found by
Crystallizer.

1 // trigger
2 BadAttributeValueExpException.readObject();
3 // links
4 TiedMapEntry.toString();
5 TiedMapEntry.getValue();
6 SingletonMap.get();
7 SingletonMap.isEqualKey();
8 FastArrayList.equals();
9 // sink

10 LazyMap.get();

Takeaway: We demonstrate that Crystallizer can both synthesize payloads for previ-

ously known chains in libraries, as well as create concrete payloads for novel gadget chains

in well-tested libraries in an efficient manner.

5.5.2 RQ2: Comparison against state-of-the-art tools

We compare Crystallizer against two state-of-the-art tools for finding Java-based deseri-

alization vulnerabilities:

119

• Gadget Inspector [126] is a pure static analysis tool that, given a library as input,

uses a set of heuristics to report potential gadget chains. This tool does not create

concrete payloads for the statically discovered chains.

• Rasheed et al. [127] employ heap abstractions [147] to identify gadget chains corre-

sponding to deserialization-based vulnerabilities. This tool creates concrete payloads

for gadget chains, similarly to Crystallizer.

Table 5.4. Novel gadget chains found by Crystallizer along with their aver-
age gadget frequency and a comparison of the unique classes present in the
discovered ground truth chain and the novel chains.

Benchmark #Novel Avg Unique Classes
Chains Gadgets #Known #Novel

ACC 3.1 6 5 2 3
ACC 4.0 3 4 2 3
Aspectjweaver 22 6 3 4
Beanshell 0 — 1 —
Beanutils 15 4 1 3
Groovy 0 — 1 —
Vaadin 1 3 2 3
Average 7 4 2 3

Crystallizer v/s Gadget Inspector

We compare Crystallizer against Gadget Inspector by running both tools on the library

dataset specified in Table 5.1 and evaluate the reported gadget chains. For this experiment,

we run Crystallizer end-to-end on the libraries (illustrated in Figure 2.1). Furthermore, we

configure both tools to uncover gadget chains corresponding to attack patterns that have

been previously found in these libraries (RCE in all libraries except for aspectjweaver,

in which an Arbitrary File Write (AFW) exists). The reason behind this configuration is

two-fold. First, this configuration ensures feature parity with Gadget Inspector, since the

latter cannot detect DoS chains like Crystallizer. Second, it allows us to use known chains

from available datasets [125] to validate false negatives, i.e., exploitable chains that exist

120

but are undiscovered. For Crystallizer, we execute the Sink Identification for 1-hour and

Probabilistic Concretization for 24 hours. Gadget Inspector terminates in a few minutes.

 Table 5.5 reports our finding. First, Crystallizer, using its hybrid analysis methodology,

finds confirmed exploitable chains for mounting the targeted attack type in all libraries in

our dataset. Specifically, Crystallizer finds previously known exploitable chains in addition

to previously unknown ones. Conversely, Gadget Inspector discovers only one exploitable

chain for the ACC 3.1 library and misses reporting even the previously known exploitable

chains in the remaining six libraries.

Table 5.5. Comparison of Gadget Inspector against Crystallizer in terms of
gadget chains reported for libraries and the ones which were confirmed to be
exploitable.

Benchmark Gadget Inspector Crystallizer
Reported Exploitable Concretized Exploitable

ACC 3.1 2 1 691 7
ACC 4.0 3 0 4 4
Aspectjweaver 2 0 100 23
Beanshell 0 0 6 1
Beanutils 0 0 55 16
Groovy 2 0 7 1
Vaadin 3 0 25 2
Average 1.7 0.1 127 7.7

We investigated the exploration methodology adopted by Gadget Inspector to understand

further why it does not find even the previously known exploitable chains in the two libraries.

One of the reasons we uncovered was that, as a part of its exploration methodology, once it

deems a gadget as explored based on its set of employed heuristics, it does not try to uncover

any chains further using the same gadget. This strategy prevents Gadget Inspector from

reporting certain gadget chains. We found a concrete example of this happening in Vaadin.

In this library, Gadget Inspector failed to find the previously known exploitable chain because

of this methodology. This also shows the importance of exercising and exploring alternative

paths while performing gadget chain discovery as done by Crystallizer.

We also performed a deeper analysis of the chains reported by Gadget Inspector to see

if we could create exploitable payloads for any of them. Our first observation is that three

121

chains reported by Gadget Inspector in three out of the 7 libraries (ACC 3.1, Aspectjweaver,

and ACC 4.0) cannot be made exploitable due to its incorrect reasoning about Java language

semantics. As an example, in certain chains, Gadget Inspector would incorrectly assume that

class members declared as transient [148] can be attacker-controlled during deserialization.

Second, since Gadget Inspector is a static tool, it does not give any guarantees whether it

is possible to create a concrete payload for any of the reported chains. This drastically

inhibited our ability to build exploitable payloads for the remaining eight out of the 13

reported chains. As an example, all the three reported chains in Vaadin used a gadget that

required an HTTP servlet session to be setup upon instantiation and hence was beyond the

scope of our assessment since the chain relied on external factors. In contrast, Crystallizer

does not face the above-mentioned issues since it reasons about gadget chains dynamically

ensuring that it only reports chains for which it can create concrete payloads.

Crystallizer v/s Rasheed et al.

Here, we compare Crystallizer against the results presented in the paper by Rasheed et

al. Ideally, we would perform a comparative evaluation similar to Gadget Inspector, but

were unable to do so. Specifically, it failed while running the path analysis algorithm on our

evaluation dataset.

Consequently, we compare against their reported results for ACC 3.1 and ACC 4.0 since

these are the only two libraries in their dataset for which they were able to create a concrete

payload.

For each of these libraries, their tool only found one path from a trigger to a sink gadget.

This path corresponded to the known ground truth chain for which they manually created a

concrete payload. In contrast, Crystallizer not only concretized payloads to the two ground

truth chains but also nine new gadget chains (shown in Table 5.5). This drastic performance

difference can be attributed our hybrid analysis methodology. Instead of relying on heavy-

weight value-flow analysis to build heap access paths, which can be prone to imprecision,

our use of lightweight static analysis to build the gadget graph coupled with our dynamic

122

analysis module that performs path concretization allows us to uncover and concretize more

gadget chains.

Takeaway: With the help of its hybrid analysis methodology, Crystallizer is more ef-

fective at uncovering and creating concrete payloads for gadget chains than the existing

state-of-the-art tools

5.5.3 RQ3: Comparative Performance Evaluation

Since Crystallizer employs a hybrid path analysis methodology, we want to evaluate

the relative importance of its static and dynamic components. To do so, we create a vari-

ant of Crystallizer that attempts to synthesize concrete payloads for a gadget chain but

without the knowledge of a gadget graph (Crystallizer-NG). However, we do provide

Crystallizer-NG the knowledge of trigger gadgets and serializable gadgets to it to cre-

ate a stronger baseline for comparison. Given this knowledge, Crystallizer-NG uses the

same Probabilistic Concretization module as used in Crystallizer and attempts to uncover

exploitable gadget chains by creating concrete payloads for them. By comparing Crystallizer

against Crystallizer-NG, we can get an accurate estimate of the benefits of building a

gadget graph and using it to uncover gadget chains. Similar to our evaluation of Crystallizer,

we deploy Crystallizer-NG on nine target libraries for 24 hours.

Table 5.6. Comparison of Crystallizer against Crystallizer-NG in terms
of gadget chains reported for libraries and the ones which were confirmed to
be exploitable.

Benchmark Crystallizer-NG Crystallizer
Concretized Exploitable Concretized Exploitable

ACC 3.1 4 0 691 7
ACC 4.0 0 0 4 4
Aspectjweaver 0 0 100 23
Beanshell 6 1 6 1
Beanutils 1 1 55 16
Groovy 9 1 7 1
Vaadin 20 0 25 2
Average 5.7 0.4 127 7.7

123

 Table 5.6 presents an overview of the results. First, Crystallizer is 22.2x and 18.0x

more performant on average than Crystallizer-NG in concretizing gadget chains and

uncovering exploitable chains respectively. Second, as evident, the three exploitable gadget

chains that Crystallizer-NG uncovers are in three libraries (Beanshell, Beanutils, and

Groovy) each of which are (i) previously known, and (ii) simplest to construct requiring only

one class to be instantiated correctly. In addition to previously known ones, Crystallizer can

uncover novel gadget chains that are exploitable and drastically more complex (as shown

previously in Table 5.4).

Takeaway: With the help of the knowledge of the gadget graph, Crystallizer reduces the

state space that it explores. Consequently, Crystallizer improves concrete payload creation

for gadget chains by 22.2X and the ability to find exploitable gadget chains by 18.0X.

5.5.4 RQ4: Sink Identification Evaluation

Table 5.7. “Pre-filtering” refers to the set of sink gadgets flagged by Sink
Identification’s oracle. “Post-filtering” shows the number of remaining sink
gadgets after applying the static filters. These are the sinks that Crystallizer
tries to concretize paths to. “% reduction” refers to the difference between the
number of pre- and post-filtered sinks.

Benchmark Pre-filtering Post-filtering % reduction
(Sinks) (Sinks) (Sinks)

ACC 3.1 403 148 63.3
ACC 4.0 647 221 65.8
Aspectjweaver 72 11 84.7
Beanshell 116 83 28.4
Beanutils 44 5 88.6
Groovy 152 36 76.3
Vaadin 681 326 52.1
Average 302 119 65.6

Here, we perform an in-depth analysis of the sinks detected with our framework as a part

of the library-based evaluation(§ 5.5.1). Furthermore, we also evaluate the efficacy of the

static filters used by Crystallizer at improving the precision of Sink Identification (discussed

in § 5.3.2).

124

We detect two new sinks in Commons Collections that led to nine new exploitable

chains missed by Gadget Inspector. For one of the exploitable chains, Crystallizer marked

FastArrayList.equals() as a sink and created a concrete payload to reach this sink from a

trigger gadget. Upon tinkering with this payload, we noticed that if FastArrayList were to

be instantiated with a LazyMap, we manually found a way to exercise known dangerous func-

tionality (factory.transform) by routing it through a JDK function (AbstractMap.equals)

as shown in Listing 5 . This particular chain was not reported by Gadget Inspector, because

according to its analysis, it did not infer that FastArrayList.equals() could be routed

to dangerous functionality which as we showed is not the case. This example shows our

approach can find non-trivial sinks.

Filters are useful when performing sink identification We evaluate the effectiveness of

static filters in making the Sink Identification more precise. Specifically, the filters ensure the

tainted arguments that can be attacker-controlled are used by the gadget under consideration

(discussed in § 5.3.2). Precision while performing Sink Identification is important since it

directly impacts the number of gadget chains explored. The results of this evaluation are

presented in Table 5.7 . We see that the filtering is highly effective in drastically reducing

the state space to be explored by removing 66% of the sinks that are not using the tainted

argument.

Listing 5 A simplified chain showing how an exploitable payload was created by creating a
route through a JDK function.

1 // previous gadgets
2 ...
3 // sink
4 FastArrayList.equals();
5 // JDK method
6 java.util.AbstractMap.equals();
7 // link
8 LazyMap.get();

Takeaway: The Sink Identification is suitable to discover non-trivial sink gadgets and

the static filters it employs are effective at filtering false positive candidate sink gadgets.

125

Listing 6 Gadget chain showcasing DoS behavior.
1 // trigger
2 BadAttributeValueExpException.readObject();
3 // links
4 TiedMapEntry.toString();
5 TiedMapEntry.getValue();
6 LazyMap.get();
7 ClosureTransformer.transform();
8 // sink
9 WhileClosure.execute();

10 // links
11 TruePredicate.evaluate();
12 NOPClosure.execute();

5.5.5 RQ5: Crystallizer in-the-wild

To showcase the effectiveness of Crystallizer at finding deserialization vulnerabilities

in the wild, we deployed it on two widely used Apache applications: Pulsar [149] and

Kafka [150]. With the help of Crystallizer, we were able to mount a RCE attack against

Pulsar and a DoS attack against Kafka. These vulnerabilities were responsibly disclosed

and acknowledged by the corresponding project maintainers.

Kafka

Kafka is a framework that enables building data processing pipelines [151]. It provides

the ability to capture data from varying sources which in turn can then be stored and

processed. Kafka uses entities called connectors that move data in and out of Kafka as

serialized bytestreams [152]. Consequently, deserialization of untrusted data that may be

attacker-controlled opens up Kafka to attacks mounted using deserialization-based vulnera-

bilities.

Kafka uses Java-based serialization and deserialization to store and retrieve data from

a file on a local file system. Since the file that it uses for storage could be manipulated

by an attacker, it employs a filtering-based mechanism to prevent deserialization of a set of

specific classes [153]. The primary insight we had from the denylist is that it did not prevent

deserialization of all classes belonging to known gadget chains but only classes that were

instrumental in mounting known attacks for RCE specifically.

126

Based on the above insight, we deploy Crystallizer to synthesize gadget chains to mount

DoS attacks instead. Crystallizer found a chain in the Apache Commons Collections li-

brary that exhibits DoS behavior. Specifically, Crystallizer synthesized a chain that upon

deserialization performs the semantic action of executing an infinite loop (while(1)). The

gadgets employed in the chain are shown in Listing 6 . Evidently, none of the gadgets used

in the chain are a part of the denylist employed by Kafka. This in turn allowed us to mount

a DoS attack on the latest release of Kafka (as of February 2023) with the help of this chain.

Pulsar

Pulsar provides a framework for server-to-server messaging. As a part of its messag-

ing subsystem, it provides extended functionality using light-weight processes to process

messages. These compute processes allow for employing Java-based serialization and deseri-

alization for message handling [154]. Processing messages that point to untrusted data makes

Pulsar prone to deserialization attacks. There is no serialization filtering performed by the

deserialization API used by Pulsar [155]. Therefore, it is possible to mount a deserialization-

based attack using any of the classes present in the application’s classpath. For Pulsar

(v2.2.0), we noticed that the classpath includes the Commons Collections library. Crystal-

lizer discovered a gadget chain in this library with which we mounted an RCE attack against

Pulsar.

Takeaway: Crystallizer effectively leverages the complete application classpath to launch

attacks against real-world enterprise applications even in the presence of specific bypass

protections.

5.6 Discussion and Future Work

The manual effort required to analyze concretized chains by Crystallizer is lower than

expected. The reason is that we can reuse knowledge across chains in the form of the

unique sinks that they target. For Aspectjweaver (§ 5.5.1), instead of analyzing 100

concretized chains, we only had to examine 2 sinks manually. This strategy works because

the exploitability of a concretized gadget chain hinges on whether the sink gadget can be

127

repurposed to mount an attack. Once the exploitation strategy for a sink is figured out, this

information can then be reused in all the other concretized chains that are targeting the same

sink. On average, it took an experienced Java developer with knowledge of deserialization

attacks less than 5 minutes per chain to validate their exploitability once the conditions for

exploitation were identified.

The hybrid analysis methodology adopted by Crystallizer can suffer from false negatives,

i.e., not creating concrete payloads for certain vulnerable chains that do exist in a target.

These false negatives may creep in from two main sources. First, bounded search up to a

user-configurable maximum length inherently misses longer gadget chains. However, this

can be addressed by increasing the maximum path length and allocating more computation

time. Second, the capability of Crystallizer to concretize a gadget chain depends on the

concretization module capabilities in solving chain constraints. In some instances (as shown

for Vaadin), these constraints may correspond to the setup of the environment. We plan to

investigate concretization of such chains as a part of future work.

5.7 Related Work

Security analysts [156 , 157] describe how to abuse the Java deserialization and provide

the first systematic knowledge for this attack vector. In this regard, Crystallizer extends their

work by proposing a mechanism to discover real gadget chains. Rasheed et al. [127] leverage

partial instantiation of gadget chains by relying on heap abstraction, and using a fixed

set of sinks. Conversely, Crystallizer has an automatic oracle to identify sink gadgets and

validate the payload correctness. Pacheco et.al proposed automatic techniques to instantiate

objects [158]. Crystallizer could benefit from these strategies to improve Sink Identification

or Deserialization Probing, we plan to explore them as future work. Gauthier et al. [159]

propose an active mitigation technique to recognize malicious chains through Markov-based

modeling, while Crystallizer is a testing tool to find deserialization vulnerabilities. Regarding

DoS bugs, Dietrech et al. [160] manually create a payload that, upon deserialization, triggers

large call trees recursively leading to resource exhaustion. In contrast, Crystallizer provides

an automated framework to discover DoS-like gadget chains (e.g., while(1) loops).

128

Deserialization attacks affect other programming languages, such as PHP and .NET.

Dahse et. al [161] use a static analysis-based approach to identify PHP object injection (POI)

chains, thus being prone to false positives. Park et. al [146] expand POI construction with

an automatic exploit generation technique. Both works achieve strong results, however, their

methods are fundamentally tied to the PHP environment. Furthermore, in the case of Park

et al., their approach is source-code dependent and uses pre-defined sinks. In contrast, our

methodology does not assume the presence of source code and identifies sinks automatically.

Moreover, PHP deserialization attacks require a different strategies than Java because PHP

heavily relies on dynamically generated code. Therefore, works such as [146] are not easily

ported for Java applications. Furthermore, with Java being statically-typed, the language

imposes a harder set of constraints while performing gadget chain concretization than PHP,

which is dynamically typed. Shcherbakov et. al [162] uncover .NET-based deserialization

vulnerabilities. Their focus is on identifying known vulnerable chains in applications as

opposed to Crystallizer’s focus towards new gadget chains as well.

5.8 Conclusion

Deserialization vulnerabilities are common in complex distributed applications. We in-

troduce a hybrid approach to automatically discover such deserialization vulnerabilities,

highlighting incomplete checks when objects are deserialized in target applications. Our

method uses static analysis to identify candidate gadget chains and dynamic analysis to

generate concrete payloads to exercise gadget chains showing proof of a deserialization vul-

nerability. Crystallizer outperforms existing state-of-the-art tools in uncovering Java-based

deserialization vulnerabilities and is shown capable of mounting attacks on popular real-world

applications.

129

6. SUMMARY

Fuzzing real-world software systems in a manner that is both exhaustive and efficient

is challenging due to their underlying complexity. This complexity stems from the vast

input space that these systems can process. Throughout this dissertation, across a variety of

software types and test objectives, we show how the input space can be efficiently explored

and how it can be drastically reduced by incorporating domain knowledge. In turn, the

developed techniques make fuzzing and, correspondingly, bug discovery more effective.

With Gramatron, we showed the efficacy of grammar automatons at finding bugs with

complex triggers in language interpreters. It not only outperformed existing state-of-the-art

grammar-aware fuzzers but also uncovered 10 new vulnerabilities across three popular inter-

preters. FirmFuzz uses the domain knowledge encoded in user-facing network applications

of IoT firmware to make its testing more effective. This source of domain knowledge enabled

us to find seven previously undisclosed vulnerabilities across six different devices with four

CVE’s assigned. We also showed how a different testing objective like patch testing can be

made more efficient by introducing the concept of tripwiring—preemptively terminating exe-

cution of unwanted paths to guide fuzzing towards the target location of interest. SieveFuzz

employs tripwiring-directed fuzzing enabling it to trigger bugs 47% more consistently and

117% faster than existing state-of-the-art fuzzers. Finally, moving beyond just uncovering

traditional memory-safety vulnerabilities, we also showed how incorporating domain knowl-

edge can be beneficial when trying to uncover deserialization vulnerabilities in Java-based

applications. Crystallizer with its hybrid analysis approach uncovered 47 new vulnerabili-

ties in the form of exploitable gadget chains across seven popular Java libraries outperform

existing state-of-the-art tools for finding such vulnerabilities. Combined, this dissertation

showcased the efficacy of domain knowledge in trying to uncover memory safety vulnerabili-

ties with an initial foray into the realm of logic errors with deserialization vulnerabilities. To

encourage adoption and further research, all tooling that is part of published work presented

in this dissertation has been open-sourced [163 – 165].

Looking at how our existing software ecosystem is slowly evolving, there has been re-

cent proliferation of performant memory-safe languages like Rust specially into parts of the

130

open-source ecosystem. Consequently, we are seeing a downwards trend of memory safety

vulnerabilities in parts of the ecosystem that are adopting these safe languages [166]. How-

ever, a blind spot with this adoption that requires further inquiry in the future is the semantic

bug space. Specifically, we will be looking into how domain knowledge can be leveraged in

the form of (tailored feedback metrics or custom oracles) to sample inputs in a manner that

allows for efficient semantic bug discovery.

131

REFERENCES

[1] G. J. Holzmann, “The logic of bugs,” in Proceedings of the 10th ACM SIGSOFT
Symposium on Foundations of Software Engineering, 2002.

[2] T. Dullien, “Weird machines, exploitability, and provable unexploitability,” IEEE
Transactions on Emerging Topics in Computing, 2020.

[3] Google, oss-fuzz, https://bugs.chromium.org/p/oss-fuzz/issues/list?q=&can=1 .

[4] P. Srivastava and M. Payer, “Gramatron: Effective grammar-aware fuzzing,” in Pro-
ceedings of the 30th ACM Sigsoft International Symposium on Software Testing and
Analysis, 2021, pp. 244–256.

[5] P. Srivastava, H. Peng, J. Li, H. Okhravi, H. Shrobe, and M. Payer, “Firmfuzz: Au-
tomated iot firmware introspection and analysis,” in Proceedings of the 2nd Inter-
national ACM Workshop on Security and Privacy for the Internet-of-Things, 2019,
pp. 15–21.

[6] P. Srivastava, S. Nagy, M. Hicks, A. Bianchi, and M. Payer, “One fuzz doesnt fit all:
Optimizing directed fuzzing via target-tailored program state restriction,” in Proceed-
ings of the 38th Annual Computer Security Applications Conference, 2022, pp. 388–
399.

[7] M. Heuse, Gramatron integration in AFL++, 2021. [Online]. Available: https : / /
github.com/AFLplusplus/AFLplusplus/tree/stable/custom_mutators/gramatron .

[8] A. Fioraldi, Gramatron integration in LibAFL, 2022. [Online]. Available: https ://
github.com/AFLplusplus/LibAFL/tree/main/fuzzers/baby_fuzzer_gramatron .

[9] C. Han, Javascript Engine CVE database, https://github.com/tunz/js-vuln-db ,
2021.

[10] NVD, Vulnerabilities in PHP interpreter, https://nvd.nist.gov/vuln/search/results?
form_ type=Basic&results_ type=overview &query =php+interpreter&search_
type=all , 2021.

[11] NVD, Vulnerabilities in Ruby interpreter, https://nvd.nist.gov/vuln/search/results?
form_ type=Basic&results_ type=overview&query=ruby+interpreter&search_
type=all , 2021.

132

https://bugs.chromium.org/p/oss-fuzz/issues/list?q=&can=1
https://github.com/AFLplusplus/AFLplusplus/tree/stable/custom_mutators/gramatron
https://github.com/AFLplusplus/AFLplusplus/tree/stable/custom_mutators/gramatron
https://github.com/AFLplusplus/LibAFL/tree/main/fuzzers/baby_fuzzer_gramatron
https://github.com/AFLplusplus/LibAFL/tree/main/fuzzers/baby_fuzzer_gramatron
https://github.com/tunz/js-vuln-db
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=php+interpreter&search_type=all
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=php+interpreter&search_type=all
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=php+interpreter&search_type=all
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=ruby+interpreter&search_type=all
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=ruby+interpreter&search_type=all
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=ruby+interpreter&search_type=all

[12] R. Swiecki, Honggfuzz — Coverage-guided mutational fuzzer, https://github.com/
google/honggfuzz .

[13] M. Zalewski, AFL — Coverage-guided mutational fuzzer, https://github.com/google/
AFL.git .

[14] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,” in Presented as
part of the 21st USENIX Security Symposium (USENIX Security 12), 2012.

[15] S. GroB, “Fuzzil: Coverage guided fuzzing for javascript engines,” M.S. thesis, Karl-
sruhe Institute of Technology, 2018.

[16] S. Veggalam, S. Rawat, I. Haller, and H. Bos, “IFuzzer: An evolutionary interpreter
fuzzer using genetic programming,” in European Symposium on Research in Computer
Security, 2016. doi: https://doi.org/10.1007/978-3-319-45744-4_29 .

[17] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware greybox fuzzing,”
in Proceedings of the 41st International Conference on Software Engineering, 2019.
doi: https://doi.org/10.1109/icse.2019.00081 .

[18] C. Aschermann, P. Jauernig, T. Frassetto, A.-R. Sadeghi, T. Holz, and D. Teuchert,
“Nautilus: Fishing for deep bugs with grammars,” in 26th Annual Network and Dis-
tributed System Security Symposium (NDSS19), 2019.

[19] Wikipedia, Context-Free Grammar, https://en.wikipedia.org/wiki/Context-free_
grammar , 2021.

[20] N. Chomsky, “On certain formal properties of grammars,” Information and control,
1959.

[21] S. A. Greibach, “A new normal-form theorem for context-free phrase structure gram-
mars,” J. ACM, 1965. doi: https://doi.org/10.1145/321250.321254 .

[22] M. Sipser, “Introduction to the theory of computation,” ACM Sigact News, vol. 27,
no. 1, pp. 27–29, 1996.

[23] J. E. Hopcroft and J. D. Ullman, Introduction to Automata theory, Languages, and
Computation. 1979.

133

https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
https://github.com/google/AFL.git
https://github.com/google/AFL.git
https://doi.org/https://doi.org/10.1007/978-3-319-45744-4_29
https://doi.org/https://doi.org/10.1109/icse.2019.00081
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://doi.org/https://doi.org/10.1145/321250.321254

[24] PHP, PHP grammar for ANTLR, 2021. [Online]. Available: https ://github.com/
antlr/grammars-v4/tree/master/php .

[25] M. Takahashi, “An improved proof for a theorem of n. chomsky,” Proc. Japan Acad.,
1969. doi: https://doi.org/10.3792/pja/1195520719 .

[26] M. Mohri and M.-j. Nederhof, Regular approximation of context-free grammars through
transformation, 2000. doi: https://doi.org/10.1007/978-94-015-9719-7_6 .

[27] F. C. N. Pereira and R. N. Wright, “Finite-state approximation of phrase structure
grammars,” in Proceedings of the 29th Annual Meeting on Association for Computa-
tional Linguistics, 1991. doi: https://doi.org/10.3115/981344.981376 .

[28] Ö. Egecioglu, “Strongly regular grammars and regular approximation of context-free
languages,” 2009. doi: https://doi.org/10.1007/978-3-642-02737-6_16 .

[29] M. Johnson, “Finite-state approximation of constraint-based grammars using left-
corner grammar transforms,” in 36th Annual Meeting of the Association for Compu-
tational Linguistics and 17th International Conference on Computational Linguistics,
Volume 1, 1998. doi: https://doi.org/10.3115/980845.980948 .

[30] A. W. Black, “Finite state machines from feature grammars,” 1989.

[31] M. Anselmo, D. Giammarresi, and S. Varricchio, “Finite automata and non-self-
embedding grammars,” in Proceedings of the 7th International Conference on Im-
plementation and Application of Automata, 2002. doi: 10.1007/3-540-44977-9_4 .

[32] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “Afl++: Combining incremen-
tal steps of fuzzing research,” in 14th USENIX Workshop on Offensive Technologies
(WOOT 20), 2020.

[33] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz testing,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018. doi: https://doi.org/10.1145/3243734.3243804 .

[34] J. Wang, Y. Duan, W. Song, H. Yin, and C. Song, “Be sensitive and collaborative:
Analyzing impact of coverage metrics in greybox fuzzing,” in 22nd International Sym-
posium on Research in Attacks, Intrusions and Defenses RAID 2019), 2019.

134

https://github.com/antlr/grammars-v4/tree/master/php
https://github.com/antlr/grammars-v4/tree/master/php
https://doi.org/https://doi.org/10.3792/pja/1195520719
https://doi.org/https://doi.org/10.1007/978-94-015-9719-7_6
https://doi.org/https://doi.org/10.3115/981344.981376
https://doi.org/https://doi.org/10.1007/978-3-642-02737-6_16
https://doi.org/https://doi.org/10.3115/980845.980948
https://doi.org/10.1007/3-540-44977-9_4
https://doi.org/https://doi.org/10.1145/3243734.3243804

[35] Nautilus, GitHub Repository for original research prototype, 2019. [Online]. Available:
 https://github.com/RUB-SysSec/nautilus .

[36] Nautilus, Github repository for new version of nautilus, 2021. [Online]. Available:
 https://github.com/nautilus-fuzz/nautilus .

[37] Rust, Rust Build Profiles, https://doc.rust-lang.org/book/ch14-01-release-profiles.
html , 2021.

[38] R. L. Rosnow and R. Rosenthal, “Computing contrasts, effect sizes, and counternulls
on other people’s published data: General procedures for research consumers,” 1996.
doi: https://doi.org/10.1037/1082-989x.1.4.331 .

[39] R. Hodován, Á. Kiss, and T. Gyimóthy, “Grammarinator: A grammar-based open
source fuzzer,” in Proceedings of the 9th ACM SIGSOFT International Workshop on
Automating TEST Case Design, Selection, and Evaluation, 2018. doi: https://doi.
org/10.1145/3278186.3278193 .

[40] PHP, PHP Bug tracker, https://bugs.php.net/ , 2021.
[41] PHP, PHP-7.2.6, https://www.php.net/distributions/php-7.2.6.tar.gz , 2021.
[42] PHP, PHP-7.4.0, https://downloads.php.net/~derick/php-7.4.0RC1.tar.gz , 2021.

[43] C. Lyu et al., “MOPT: Optimized mutation scheduling for fuzzers,” in 28th USENIX
Security Symposium (USENIX Security 19), 2019.

[44] N. Blum and R. Koch, “Greibach normal form transformation revisited,” Information
and Computation, 1999. doi: https://doi.org/10.1007/bfb0023447 .

[45] R. Gopinath, A. Kampmann, N. Havrikov, E. O. Soremekun, and A. Zeller, “Abstract-
ing failure-inducing inputs,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2020. doi: https://doi.org/10.1145/
3395363.3397349 .

[46] P. Fuzzer, Peach Generational fuzzer, https://www.peach.tech/ , 2021.

[47] J. Viide et al., “Experiences with model inference assisted fuzzing.,” WOOT, 2008.

[48] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding bugs in c
compilers,” in ACM SIGPLAN Notices, 2011. doi: https://doi.org/10.1145/2345156.
1993532 .

135

https://github.com/RUB-SysSec/nautilus
https://github.com/nautilus-fuzz/nautilus
https://doc.rust-lang.org/book/ch14-01-release-profiles.html
https://doc.rust-lang.org/book/ch14-01-release-profiles.html
https://doi.org/https://doi.org/10.1037/1082-989x.1.4.331
https://doi.org/https://doi.org/10.1145/3278186.3278193
https://doi.org/https://doi.org/10.1145/3278186.3278193
https://bugs.php.net/
https://www.php.net/distributions/php-7.2.6.tar.gz
https://downloads.php.net/~derick/php-7.4.0RC1.tar.gz
https://doi.org/https://doi.org/10.1007/bfb0023447
https://doi.org/https://doi.org/10.1145/3395363.3397349
https://doi.org/https://doi.org/10.1145/3395363.3397349
https://www.peach.tech/
https://doi.org/https://doi.org/10.1145/2345156.1993532
https://doi.org/https://doi.org/10.1145/2345156.1993532

[49] O. Bastani, R. Sharma, A. Aiken, and P. Liang, “Synthesizing program input gram-
mars,” in Proceedings of the 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 2017. doi: https ://doi .org/10.1145/3140587.
3062349 .

[50] M. Höschele and A. Zeller, “Mining input grammars from dynamic taints,” in Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, 2016. doi: https://doi.org/10.1145/2970276.2970321 .

[51] Mozilla, JSFunFuzz - Javascript-specific generational fuzzer, 2021. [Online]. Available:
 https://github.com/MozillaSecurity/funfuzz .

[52] S. Park, W. Xu, I. Yun, D. Jang, and T. Kim, “Fuzzing javascript engines with aspect-
preserving mutation,” in 2020 IEEE Symposium on Security and Privacy (SP), 2020.
doi: https://doi.org/10.1109/sp40000.2020.00067 .

[53] H. Han, D. Oh, and S. K. Cha, “Codealchemist: Semantics-aware code generation to
find vulnerabilities in javascript engines.,” in NDSS, 2019. doi: https://doi.org/10.
14722/ndss.2019.23263 .

[54] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon, “Semantic fuzzing
with zest,” in Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2019. doi: https://doi.org/10.1145/3293882.3330576 .

[55] K. Claessen and J. Hughes, “Quickcheck: A lightweight tool for random testing of
haskell programs,” in Proceedings of the fifth ACM SIGPLAN international conference
on Functional programming, 2000. doi: https://doi.org/10.1145/351240.351266 .

[56] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed generation for
fuzzing,” in 2017 IEEE Symposium on Security and Privacy (SP), 2017. doi: https:
//doi.org/10.1109/sp.2017.23 .

[57] Firefox, Repository for Mozilla input generator, 2021. [Online]. Available: https://
github.com/MozillaSecurity/dharma .

[58] R. Gopinath and A. Zeller, “Building fast fuzzers,” arXiv preprint arXiv:1911.07707,
2019.

[59] A. Nordrum, Popular Internet of Things Forecast of 50 Billion Devices by 2020 Is
Outdated - IEEE Spectrum, https://spectrum.ieee.org/tech-talk/telecom/internet/
popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated , 2018.

136

https://doi.org/https://doi.org/10.1145/3140587.3062349
https://doi.org/https://doi.org/10.1145/3140587.3062349
https://doi.org/https://doi.org/10.1145/2970276.2970321
https://github.com/MozillaSecurity/funfuzz
https://doi.org/https://doi.org/10.1109/sp40000.2020.00067
https://doi.org/https://doi.org/10.14722/ndss.2019.23263
https://doi.org/https://doi.org/10.14722/ndss.2019.23263
https://doi.org/https://doi.org/10.1145/3293882.3330576
https://doi.org/https://doi.org/10.1145/351240.351266
https://doi.org/https://doi.org/10.1109/sp.2017.23
https://doi.org/https://doi.org/10.1109/sp.2017.23
https://github.com/MozillaSecurity/dharma
https://github.com/MozillaSecurity/dharma
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated

[60] M. Antonakakis et al., “Understanding the Mirai Botnet,” in Proceedings of the 26th
USENIX Security Symposium, 2017.

[61] A. Nervaux, Vulnerability disclosure TP-Link multiples CVEs - pentest - try harder,
 https://chmod750.com/2017/04/23/vulnerability-disclosure-tp-link/ , 2018.

[62] K. Pierre, Pwning the Dlink 850L routers and abusing the MyDlink Cloud protocol -
IT Security Research by Pierre, https://pierrekim.github.io/blog/2017-09-08-dlink-
850l-mydlink-cloud-0days-vulnerabilities.html , 2018.

[63] D. D. Chen, M. Egele, M. Woo, and D. Brumley, “Towards Fully Automated Dy-
namic Analysis for Embedded Firmware,” Network and Distributed System Security
Symposium, 2016.

[64] A. Costin, A. Zarras, and A. Francillon, “Automated Dynamic Firmware Analysis at
Scale: A Case Study on Embedded Web Interfaces,” Proceedings of the 2016 ACM
Asia Conference on Computer and Communications Security (AsiaCCS’16), 2016.

[65] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, “Firmalice - Au-
tomatic Detection of Authentication Bypass Vulnerabilities in Binary Firmware,”
Proceedings 2015 Network and Distributed System Security Symposium, 2015.

[66] P. Godefroid, H. Peleg, and R. Singh, “Learn&Fuzz: Machine learning for input
fuzzing,” in ASE 2017 - Proceedings of the 32nd IEEE/ACM International Conference
on Automated Software Engineering, 2017.

[67] Router, Default Router Passwords - The internets most comprehensive router pass-
word database, http://routerpasswords.com/ , 2018.

[68] ZAP, OWASP Zed Attack Proxy Project - OWASP, https://www.owasp.org/index.
php/OWASP_Zed_Attack_Proxy_Project , 2018.

[69] QEMU, QEMU, https://www.qemu.org/ , 2018.

[70] Selenium, Selenium - Web Browser Automation, http://www.seleniumhq.org/ , 2018.

[71] Mitmproxy, Mitmproxy, https://mitmproxy.org/ , 2018.

[72] w3af, w3af: web application attack and audit framework, http://w3af.org/ , 2018.

137

https://chmod750.com/2017/04/23/vulnerability-disclosure-tp-link/
https://pierrekim.github.io/blog/2017-09-08-dlink-850l-mydlink-cloud-0days-vulnerabilities.html
https://pierrekim.github.io/blog/2017-09-08-dlink-850l-mydlink-cloud-0days-vulnerabilities.html
http://routerpasswords.com/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.qemu.org/
http://www.seleniumhq.org/
https://mitmproxy.org/
http://w3af.org/

[73] Valgrind, Valgrind: Tool Suite, http://valgrind.org/info/tools.html{#}memcheck ,
2018.

[74] RIPS, RIPS - PHP Static Analyser, https://www.ripstech.com/ , 2018.

[75] K. Serebryany, “OSS-Fuzz - Googles continuous fuzzing service for open source soft-
ware,” in USENIX Security Symposium, ser. USENIX, 2017.

[76] K. Serebryany, “Continuous fuzzing with libfuzzer and addresssanitizer,” in IEEE
Cybersecurity Development Conference, ser. SecDev, 2016.

[77] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining Incremen-
tal Steps of Fuzzing Research,” in USENIX Workshop on Offensive Technologies,
ser. WOOT, 2020.

[78] S. Gan et al., “CollAFL: Path Sensitive Fuzzing,” in IEEE Symposium on Security
and Privacy, ser. Oakland, 2018.

[79] C. Lemieux, R. Padhye, K. Sen, and D. Song, “PerfFuzz: Automatically Generat-
ing Pathological Inputs,” in ACM SIGSOFT International Symposium on Software
Testing and Analysis, ser. ISSTA, 2018.

[80] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-Fuzz: Fuzzing by program transforma-
tion,” in IEEE Symposium on Security and Privacy, ser. Oakland, 2018.

[81] C. Lv et al., “MOPT: Optimize Mutation Scheduling for Fuzzers,” in USENIX Secu-
rity Symposium, ser. USENIX, 2019.

[82] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz, “REDQUEEN:
Fuzzing with Input-to-State Correspondence,” in Network and Distributed System
Security Symposium, ser. NDSS, 2018.

[83] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed Greybox
Fuzzing,” in ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS, 2017.

[84] H. Chen et al., “Hawkeye: Towards a Desired Directed Grey-box Fuzzer,” in ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS, 2018.

138

http://valgrind.org/info/tools.html{#}memcheck
https://www.ripstech.com/

[85] M.-D. Nguyen, S. Bardin, R. Bonichon, R. Groz, and M. Lemerre, “Binary-level Di-
rected Fuzzing for Use-After-Free Vulnerabilities,” in International Symposium on
Research in Attacks, Intrusions and Defenses, ser. RAID, 2020.

[86] H. Huang, Y. Guo, Q. Shi, P. Yao, R. Wu, and C. Zhang, “Beacon: Directed grey-box
fuzzing with provable path pruning,” in IEEE Symposium on Security and Privacy,
ser. Oakland, 2022.

[87] M. Zalewski, American fuzzy lop, 2017. [Online]. Available: http://lcamtuf.coredump.
cx/afl/ .

[88] R. Swiecki, Honggfuzz, 2018. [Online]. Available: http://honggfuzz.com/ .

[89] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana, “SlowFuzz: Automated Domain-
Independent Detection of Algorithmic Complexity Vulnerabilities,” in ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS, 2017.

[90] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu, “Steelix: Program-
state Based Binary Fuzzing,” in ACM Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE, 2017.

[91] T. Wang, T. Wei, G. Gu, and W. Zou, “TaintScope: A Checksum-Aware Directed
Fuzzing Tool for Automatic Software Vulnerability Detection,” in IEEE Symposium
on Security and Privacy, ser. Oakland, 2010.

[92] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox fuzzing,” in
International Conference on Software Engineering, ser. ICSE, 2009.

[93] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida, “ParmeSan: Sanitizer-guided Grey-
box Fuzzing,” in USENIX Security Symposium, ser. USENIX, 2020.

[94] N. Stephens et al., “Driller: Augmenting Fuzzing Through Selective Symbolic Execu-
tion,” in Network and Distributed System Security Symposium, ser. NDSS, 2016.

[95] L. Zhao, Y. Duan, H. Yin, and J. Xuan, “Send Hardest Problems My Way: Proba-
bilistic Path Prioritization for Hybrid Fuzzing,” in Network and Distributed System
Security Symposium, ser. NDSS, 2019.

139

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
http://honggfuzz.com/

[96] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, “NEUZZ: Efficient Fuzzing
with Neural Program Smoothing,” in IEEE Symposium on Security and Privacy,
ser. Oakland, 2019.

[97] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating Fuzz Testing,” in
ACM SIGSAC Conference on Computer and Communications Security, ser. CCS,
2018.

[98] S. Nagy and M. Hicks, “Full-speed Fuzzing: Reducing Fuzzing Overhead through
Coverage-guided Tracing,” in IEEE Symposium on Security and Privacy, ser. Oak-
land, 2019.

[99] Y. Sui and J. Xue, “Svf: Interprocedural static value-flow analysis in llvm,” in Pro-
ceedings of the 25th international conference on compiler construction, ACM, 2016,
pp. 265–266.

[100] T. O. Bits, Cgc challenge dataset, 2017. [Online]. Available: https://github.com/
trailofbits/cb_multios .

[101] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing,” in USENIX Security Symposium, ser. USENIX,
2018.

[102] A. Hazimeh, A. Herrera, and M. Payer, “Magma: A ground-truth fuzzing benchmark,”
Proc. ACM Meas. Anal. Comput. Syst., 2020.

[103] W. Xu, H. Moon, S. Kashyap, P.-N. Tseng, and T. Kim, “Fuzzing File Systems via
Two-dimensional Input Space Exploration,” in IEEE Symposium on Security and
Privacy, ser. Oakland, 2019.

[104] S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim, “Finding Semantic Bugs
in File Systems with an Extensible Fuzzing Framework,” in ACM Symposium on
Operating Systems Principles, ser. SOSP, 2019.

[105] E. Güler et al., “Cupid: Automatic Fuzzer Selection for Collaborative Fuzzing,” in
Annual Computer Security Applications Conference, ser. ACSAC, 2020.

[106] A. Vargha and H. D. Delaney, “A Critique and Improvement of the CL Common
Language Effect Size Statistics of McGraw and Wong,” Journal of Educational and
Behavioral Statistics, 2000.

140

https://github.com/trailofbits/cb_multios
https://github.com/trailofbits/cb_multios

[107] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “AddressSanitizer: A Fast
Address Sanity Checker,” in USENIX Annual Technical Conference, ser. ATC, 2012.

[108] Scipy, Spearman rank-order correlation coefficient, 2021. [Online]. Available: https:
//docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html .

[109] P. Zong, T. Lv, D. Wang, Z. Deng, R. Liang, and K. Chen, “Fuzzguard: Filtering
out Unreachable Inputs in Directed Grey-box Fuzzing through Deep Learning,” in
USENIX Security Symposium, ser. USENIX, 2020.

[110] V. Wüstholz and M. Christakis, “Targeted greybox fuzzing with static lookahead
analysis,” in International Conference on Software Engineering, ser. ICSE, 2020.

[111] H. Wang et al., “Typestate-guided fuzzer for discovering use-after-free vulnerabilities,”
in International Conference on Software Engineering, ser. ICSE, 2020.

[112] M. Heuse, AFL-Dyninst, 2018. [Online]. Available: https://github.com/vanhauser-
thc/afl-dyninst .

[113] A. Biondo, Improving AFL’s QEMU mode performance, 2018. [Online]. Available:
 https://abiondo.me/2018/09/21/improving-afl-qemu-mode/ .

[114] S. Dinesh, N. Burow, D. Xu, and M. Payer, “RetroWrite: Statically Instrumenting
COTS Binaries for Fuzzing and Sanitization,” in IEEE Symposium on Security and
Privacy, ser. Oakland, 2020.

[115] S. Nagy, A. Nguyen-Tuong, J. D. Hiser, J. W. Davidson, and M. Hicks, “Breaking
Through Binaries: Compiler-quality Instrumentation for Better Binary-only Fuzzing,”
in USENIX Security Symposium, ser. USENIX, 2021.

[116] S. Nagy, A. Nguyen-Tuong, J. D. Hiser, J. W. Davidson, and M. Hicks, “Same
Coverage, Less Bloat: Accelerating Binary-only Fuzzing with Coverage-preserving
Coverage-guided Tracing,” in ACM SIGSAC Conference on Computer and Commu-
nications Security, 2021.

[117] C. C. Galhardo, P. Mell, I. Bojanova, and A. Gueye, “Measurements of the most
significant software security weaknesses,” in Annual Computer Security Applications
Conference, 2020, pp. 154–164.

[118] CyNation, Equifax Data Breach, https://cynation.com/the-equifax-data-breach/ ,
2017.

141

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
https://github.com/vanhauser-thc/afl-dyninst
https://github.com/vanhauser-thc/afl-dyninst
https://abiondo.me/2018/09/21/improving-afl-qemu-mode/
https://cynation.com/the-equifax-data-breach/

[119] NVD, Apache Struts RCE vulnerability, https://nvd.nist.gov/vuln/detail/cve-2017-
9805 , 2017.

[120] JFrog, Log4shell vulnerability mounted using java deserialization, https://jfrog.com/
blog/log4shell-0-day-vulnerability-all-you-need-to-know/#appendix-b , 2022.

[121] F. Toffalini, M. Graziano, M. Conti, and J. Zhou, “Snakegx: A sneaky attack against
sgx enclaves,” in International Conference on Applied Cryptography and Network Se-
curity, 2021.

[122] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86),” in Proceedings of the 14th ACM Conference on Computer
and Communications Security, ser. CCS ’07, 2007.

[123] A. Belokrylov, Java—popular enterprise coding language, https://www.forbes.com/
sites/forbestechcouncil/2022/04/06/why-and-how-java-continues-to-be-one-of-the-
most-popular-enterprise-coding-languages , 2022.

[124] TIOBE, Popular programming languages for development, https://www.tiobe.com/
tiobe-index/ , 2022.

[125] C. Frohoff, ysoerial : A collection of known gadget chains found in java-based software,
 https://github.com/frohoff/ysoserial , 2022.

[126] I. Haken, Gadget Inspector: Static discovery of gadget chains, https://github.com/
JackOfMostTrades/gadgetinspector , 2021.

[127] S. Rasheed and J. Dietrich, “A hybrid analysis to detect java serialisation vulnerabil-
ities,” in Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’20, 2020.

[128] Apache, Apache commons collections library, https://commons.apache.org/index.
html , 2022.

[129] Oracle, Interface Serializable, https://docs.oracle.com/javase/7/docs/api/java/io/
Serializable.html , 2021.

[130] Oracle, Java Serialization using writeObject, https://docs.oracle.com/javase/7/docs/
api/java/io/ObjectOutputStream.html#writeObject() , 2022.

[131] Oracle, Java Deserialization using readObject, https://docs.oracle.com/javase/7/
docs/api/java/io/ObjectInputStream.html#readObject() , 2022.

142

https://nvd.nist.gov/vuln/detail/cve-2017-9805
https://nvd.nist.gov/vuln/detail/cve-2017-9805
https://jfrog.com/blog/log4shell-0-day-vulnerability-all-you-need-to-know/#appendix-b
https://jfrog.com/blog/log4shell-0-day-vulnerability-all-you-need-to-know/#appendix-b
https://www.forbes.com/sites/forbestechcouncil/2022/04/06/why-and-how-java-continues-to-be-one-of-the-most-popular-enterprise-coding-languages
https://www.forbes.com/sites/forbestechcouncil/2022/04/06/why-and-how-java-continues-to-be-one-of-the-most-popular-enterprise-coding-languages
https://www.forbes.com/sites/forbestechcouncil/2022/04/06/why-and-how-java-continues-to-be-one-of-the-most-popular-enterprise-coding-languages
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://github.com/frohoff/ysoserial
https://github.com/JackOfMostTrades/gadgetinspector
https://github.com/JackOfMostTrades/gadgetinspector
https://commons.apache.org/index.html
https://commons.apache.org/index.html
https://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html
https://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html
https://docs.oracle.com/javase/7/docs/api/java/io/ObjectOutputStream.html#writeObject()
https://docs.oracle.com/javase/7/docs/api/java/io/ObjectOutputStream.html#writeObject()
https://docs.oracle.com/javase/7/docs/api/java/io/ObjectInputStream.html#readObject()
https://docs.oracle.com/javase/7/docs/api/java/io/ObjectInputStream.html#readObject()

[132] Oracle, classpath in Java, https://docs.oracle.com/javase/tutorial/essential/environ
ment/paths.html , 2023.

[133] A. Munoz and C. Schneider, Serial killer: Silently pwning your java endpoints, https:
//paper.bobylive.com/Security/asd-f03-serial -killer-silently-pwning-your-java-
endpoints.pdf , 2016.

[134] K. Mathias and Jasinner, Apache Commons Collections GT chain, https://github.
com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCo
llections5.java , 2019.

[135] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan, “Soot:
A java bytecode optimization framework,” in CASCON First Decade High Impact
Papers, 2010, pp. 214–224.

[136] A. Gainer-Dewar, Djikstra-like path enumeration algorithm for directed graphs, https:
//jgrapht.org/javadoc/org.jgrapht.core/org/jgrapht/alg/shortestpath/AllDirected
Paths.html , 2022.

[137] J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented programs
using static class hierarchy analysis,” in European Conference on Object-Oriented
Programming, 1995.

[138] S. Oss, Soot, https://github.com/soot-oss/soot , 2022.

[139] CodeIntelligenceTesting, Jazzer — autofuzz mode, https://www.code-intelligence.
com/blog/autofuzz , 2022.

[140] K. Mathias and Jasinner, Apache Commons Collections GT chain, https://github.
com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCo
llections2.java , 2019.

[141] Jang, AspectJWeaver GT chain, https://github.com/frohoff/ysoserial/blob/master/
src/main/java/ysoserial/payloads/AspectJWeaver.java , 2021.

[142] A. Munoz and Schneider, Beanshell GT chain, https://github.com/frohoff/ysoserial/
blob/master/src/main/java/ysoserial/payloads/BeanShell1.java , 2018.

[143] Frohoff, Beanutils GT chain, https://github.com/frohoff /ysoserial/blob/master/
src/main/java/ysoserial/payloads/CommonsBeanutils1.java , 2018.

143

https://docs.oracle.com/javase/tutorial/essential/environment/paths.html
https://docs.oracle.com/javase/tutorial/essential/environment/paths.html
https://paper.bobylive.com/Security/asd-f03-serial-killer-silently-pwning-your-java-endpoints.pdf
https://paper.bobylive.com/Security/asd-f03-serial-killer-silently-pwning-your-java-endpoints.pdf
https://paper.bobylive.com/Security/asd-f03-serial-killer-silently-pwning-your-java-endpoints.pdf
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections5.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections5.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections5.java
https://jgrapht.org/javadoc/org.jgrapht.core/org/jgrapht/alg/shortestpath/AllDirectedPaths.html
https://jgrapht.org/javadoc/org.jgrapht.core/org/jgrapht/alg/shortestpath/AllDirectedPaths.html
https://jgrapht.org/javadoc/org.jgrapht.core/org/jgrapht/alg/shortestpath/AllDirectedPaths.html
https://github.com/soot-oss/soot
https://www.code-intelligence.com/blog/autofuzz
https://www.code-intelligence.com/blog/autofuzz
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections2.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections2.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections2.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/AspectJWeaver.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/AspectJWeaver.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/BeanShell1.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/BeanShell1.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsBeanutils1.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsBeanutils1.java

[144] Frohoff, Groovy GT chain, https://github.com/frohoff/ysoserial/blob/master/src/
main/java/ysoserial/payloads/Groovy1.java , 2018.

[145] Kullrich, Vaadin GT chain, https://github.com/frohoff/ysoserial/blob/master/src/
main/java/ysoserial/payloads/Vaadin1.java , 2018.

[146] “FUGIO: Automatic exploit generation for PHP object injection vulnerabilities,” in
31st USENIX Security Symposium (USENIX Security 22), Boston, MA: USENIX
Association, Aug. 2022. [Online]. Available: https://www.usenix .org/conference/
usenixsecurity22/presentation/park-sunnyeo .

[147] V. Kanvar and U. P. Khedker, “Heap abstractions for static analysis,” ACM Comput.
Surv., 2016.

[148] Baldeung, transient keyword in Java, https://www.baeldung.com/java-transient-
keyword , 2022.

[149] Apache, Pulsar—Distributed pub-sub messaging platform, https://github.com/apach
e/pulsar , 2022.

[150] Apache, Kafka—Distributed event streaming platform, https://github.com/apache/
kafka , 2022.

[151] AWS, What is Kafka? https://aws.amazon.com/msk/what-is-kafka , 2022.

[152] Confluent, Kafka connectors serialization, https://www.confluent.io/blog/kafka-
connect-deep-dive-converters-serialization-explained/ , 2022.

[153] Apache, Denylist for Java-based deserialization, https://github.com/apache/kafka/
blob/trunk/connect/runtime/src/main/java/org/apache/kafka/connect/util/
SafeObjectInputStream.java , 2022.

[154] Apache, Java deserialization in Apache Pulsar, https://pulsar.apache.org/docs/v2.
0.1-incubating/functions/api/#java-serde , 2022.

[155] Apache, Lack of serialization filtering in Apache Pulsar, https://github.com/apache/
pulsar/blob/master/pulsar-functions/api-java/src/main/java/org/apache/pulsar/
functions/api/utils/JavaSerDe.java , 2022.

[156] A. Bryan, Fetching JBoss MBean Method Hashes, http://dronesec.pw/blog/2014/
01/26/fetching-jboss-mbean-method-hashes/ , 2014.

144

https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/Groovy1.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/Groovy1.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/Vaadin1.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/Vaadin1.java
https://www.usenix.org/conference/usenixsecurity22/presentation/park-sunnyeo
https://www.usenix.org/conference/usenixsecurity22/presentation/park-sunnyeo
https://www.baeldung.com/java-transient-keyword
https://www.baeldung.com/java-transient-keyword
https://github.com/apache/pulsar
https://github.com/apache/pulsar
https://github.com/apache/kafka
https://github.com/apache/kafka
https://aws.amazon.com/msk/what-is-kafka
https://www.confluent.io/blog/kafka-connect-deep-dive-converters-serialization-explained/
https://www.confluent.io/blog/kafka-connect-deep-dive-converters-serialization-explained/
https://github.com/apache/kafka/blob/trunk/connect/runtime/src/main/java/org/apache/kafka/connect/util/SafeObjectInputStream.java
https://github.com/apache/kafka/blob/trunk/connect/runtime/src/main/java/org/apache/kafka/connect/util/SafeObjectInputStream.java
https://github.com/apache/kafka/blob/trunk/connect/runtime/src/main/java/org/apache/kafka/connect/util/SafeObjectInputStream.java
https://pulsar.apache.org/docs/v2.0.1-incubating/functions/api/#java-serde
https://pulsar.apache.org/docs/v2.0.1-incubating/functions/api/#java-serde
https://github.com/apache/pulsar/blob/master/pulsar-functions/api-java/src/main/java/org/apache/pulsar/functions/api/utils/JavaSerDe.java
https://github.com/apache/pulsar/blob/master/pulsar-functions/api-java/src/main/java/org/apache/pulsar/functions/api/utils/JavaSerDe.java
https://github.com/apache/pulsar/blob/master/pulsar-functions/api-java/src/main/java/org/apache/pulsar/functions/api/utils/JavaSerDe.java
http://dronesec.pw/blog/2014/01/26/fetching-jboss-mbean-method-hashes/
http://dronesec.pw/blog/2014/01/26/fetching-jboss-mbean-method-hashes/

[157] S. Breen, “What do weblogic, websphere, jboss, jenkins, opennms, and your applica-
tion have in common,” This Vulnerability, 2015.

[158] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed random testing for java,”
in Companion to the 22nd ACM SIGPLAN conference on Object-oriented program-
ming systems and applications companion, 2007, pp. 815–816.

[159] F. Gauthier and S. Bae, “Runtime prevention of deserialization attacks,” in Proceed-
ings of the ACM/IEEE 44th International Conference on Software Engineering: New
Ideas and Emerging Results, ser. ICSE-NIER ’22, 2022.

[160] J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin, “Evil pickles: Dos at-
tacks based on object-graph engineering,” in 31st European Conference on Object-
Oriented Programming (ECOOP 2017), Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2017.

[161] J. Dahse, N. Krein, and T. Holz, “Code reuse attacks in php: Automated pop chain
generation,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’14, 2014.

[162] M. Shcherbakov and M. Balliu, “Serialdetector: Principled and practical exploration
of object injection vulnerabilities for the web,” in Network and Distributed Systems
Security (NDSS) Symposium 202121-24 February 2021, 2021.

[163] P. Srivastava, Gramatron open-source repo, https://github.com/HexHive/Gramatro
n .

[164] P. Srivastava, FirmFuzz open-source repo, https://github.com/HexHive/FirmFuzz .
[165] P. Srivastava, SieveFuzz open-source repo, https://github.com/HexHive/SieveFuzz .

[166] Google, Rust in Android Ecosystem, https : // security . googleblog . com/2022/12/
memory-safe-languages-in-android-13.html .

145

https://github.com/HexHive/Gramatron
https://github.com/HexHive/Gramatron
https://github.com/HexHive/FirmFuzz
https://github.com/HexHive/SieveFuzz
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	GRAMATRON: EFFECTIVE GRAMMAR-AWARE FUZZING
	Introduction
	Background
	Context-Free Grammars
	Automaton Classes
	Grammar-Aware Mutation Operators

	Gramatron Overview
	Grammar Automatons
	Motivating Example
	Automaton Construction
	Automata-Based Mutation

	Implementation
	Fuzzing Workflow

	Evaluation
	Performance Microbenchmarks
	Faster Bug Discovery
	Bug Discovery Performance in the Wild

	Discussion and Future Work
	Threats to Validity
	Related Work
	Conclusion

	FIRMFUZZ: AUTOMATED IOT FIRMWAREINTROSPECTION AND ANALYSIS
	Introduction
	Firmware Preprocessing
	Information Gathering Phase
	Firmware Preparation
	Peripheral Mapping
	Helper Injection
	Network Configuration

	Firmware Fuzzing
	Syntactically Legal Input Generation
	Deterministic Bug Discovery
	Elimination of Fuzzing Side-Effects
	Payload Delivery

	Evaluation
	Firmware Images Tested
	Case Study
	TRENDnet TEW-673GRU Router

	Comparison with Existing Analysis Frameworks
	Firmadyne
	w3af
	Zed Attack Proxy

	Runtime Performance
	Vulnerability Detection Accuracy

	Discussion and Future Work
	Related Work
	Conclusion

	SIEVEFUZZ: TARGET-TAILORED PROGRAM STATE RESTRICTION
	Introduction
	Background
	Pitfalls of Distance Minimization
	Overcoming the Bottlenecks of Directedness
	Preemptive Termination
	Tripwiring

	Implementation: SieveFuzz
	Architectural Overview
	High-level Fuzzing Workflow
	Maintaining Fast On-demand Analysis
	Maintaining Fast SUT Execution
	Maintaining Exploration Diversity

	Evaluation
	RQ1: Tripwiring's Search Space Restriction
	RQ2: Targeted Defect Discovery
	RQ3: Target Location Feasibility for Tripwiring

	Discussion and Future Work
	Related Work
	Conclusion

	CRYSTALLIZER: DESERIALIZATION VULNERABILITYDISCOVERY FRAMEWORK
	Introduction
	Deserialization Attacks
	Serialization and Deserialization
	Payload Formalization
	Payload Example
	Challenges

	Crystallizer Design
	Static Analysis Module
	Sink Identification
	Probabilistic Concretization

	Implementation
	Evaluation
	RQ1: Library-based evaluation
	RQ2: Comparison against state-of-the-art tools
	RQ3: Comparative Performance Evaluation
	RQ4: Sink Identification Evaluation
	RQ5: Crystallizer in-the-wild

	Discussion and Future Work
	Related Work
	Conclusion

	SUMMARY
	REFERENCES

