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ABSTRACT 

Predictive modeling in healthcare involves the development of data-driven and computational 

models which can predict what will happen, be it for a single individual or for an entire system. 

The adoption of predictive models can guide various stakeholders’ decision making in the 

healthcare sector, and consequently improve individual outcomes and the cost-effectiveness of 

care. With the rapid development in healthcare of big data and the Internet of Things technologies, 

research in healthcare decision-making has grown in both importance and complexity. One of the 

complexities facing those who would build predictive models is heterogeneity of patient 

populations, clinical practices, and intervention outcomes, as well as from diverse health systems. 

There are many sub-domains in healthcare for which predictive modeling is useful such as disease 

risk modeling, clinical intelligence, pharmacovigilance, precision medicine, hospitalization 

process optimization, digital health, and preventive care. In my dissertation, I focus on predictive 

modeling for applications that fit into three broad and important domains of healthcare, namely 

clinical practice, public health, and healthcare system. In this dissertation, I present three papers 

that present a collection of predictive modeling studies to address the challenge of modeling 

heterogeneity in health care. The first paper presents a decision-tree model to address clinicians’ 

need to decide among various liver cirrhosis diagnosis strategies. The second paper presents a 

micro-simulation model to assess the impact on cardiovascular disease (CVD) to help decision 

makers at government agencies develop cost-effective food policies to prevent cardiovascular 

diseases, a public-health domain application. The third paper compares a set of data-driven 

prediction models, the best performing of which is paired together with interpretable machine 

learning to facilitate the coordination of optimization for hospital-discharged patients choosing 

skilled nursing facilities. This collection of studies addresses important modeling challenges in 

specific healthcare domains, and also broadly contribute to research in medical decision-making, 

public health policy and healthcare systems. 

 

  



11 

 INTRODUCTION 

Decision-making in healthcare is complex and the range of applications and sub-domains is diverse, 

such as clinical practice, population health, and healthcare delivery systems. It requires many 

considerations before arriving at a reasonable course of action in these areas to achieve better 

patient outcomes.1 Predictive modeling with mathematical and statistical methods (including 

machine learning methods) can utilize not only existing healthcare data, but can also be augmented 

by expert knowledge to improve decision-making processes with the duel goals of improving 

patient outcomes and reducing healthcare costs. As healthcare data continues to grow and new 

technologies emerge, predictive modeling becomes increasingly important as the capacity of 

human cognition to make optimal decisions across multiple criteria when faced with a wealth of 

input information is taxed to the limit. Predictive models can support human cognition and inform 

decision-making in a scalable way by managing growing data volumes and information 

complexity.2 

 

Various predictive modeling tools have been devised to assist with the decision-making process, 

such as identifying patients at high risk for various medical conditions  (cardiovascular diseases, 

liver cirrhosis, diabetes, etc.), predicting the probability of getting some disease in the future, 

predicting treatment outcomes, and improving the healthcare delivery process.3 Though predictive 

models are powerful quantitative tools, they will not replace the qualitative reasoning of healthcare 

professionals or take over their jobs, but rather estimate objective outcomes to assist their 

reasoning and decision-making.4–8  

 

Predictive models capture and quantify relationships among many factors and processes to predict 

some future events.9,10 Model-based and model-free are the two broad types of predictive modeling 

techniques: An example of a model-based approach is a predictive simulation model based on the 

domain knowledge of the underlying physical process. Another typical example is multivariate 

regression methods11,12 which uses a function (e.g., polynomials, logistic function, etc.) to describe 

the relationship between the independent and dependent variables. The coefficients of the 

independent variables capture their impact on the outcomes. Given such a model and a new data 

instance of the predictor variables, a prediction can be made as the average value of the function 
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at those predictor variable values. Alternatively, machine-learning techniques and network 

analytics13 are examples of model-free data mining tasks. Both types of predictive modeling 

techniques can be mixed in many complex applications.  

 

Although predictive modeling techniques are becoming increasingly influential in the healthcare 

sector, many challenges remain. The difficulties are due to the natural complexity of healthcare 

including the diversity of medical conditions and patient behaviors, the heterogeneity of treatments 

and outcomes, a diversity of healthcare systems that operate differently, and the subtle differences 

in study designs, analytical methods, and approaches for collecting, processing, and interpreting 

healthcare data. Additionally, many key stakeholders may have different interests, priorities, or 

perspectives when receiving or delivering care from different healthcare domains (i.e., clinical 

practice, public health, healthcare systems) such as patients, medical practitioners, hospital 

operators, healthcare insurers, predictive analytics modelers, and government agencies.10,14,15 For 

example, from the patient's perspective, the goal is often to be cured of a disease by receiving 

healthcare services at an affordable cost with personalized recommendations. On the other hand, 

medical practitioners may be incentivized to deliver care quickly to maximize patients seen or to 

use treatment from a list of appropriate options with the most considerable impact on their income. 

Hospital operators must effectively manage and optimize the available healthcare resources to 

ensure cost-effective hospital operations. Government agencies aim to achieve overall/population-

level social welfare with equity at reasonable costs. Thus, no universal framework exists to model, 

analyze, or compare the performances of various predictive modeling strategies.16   

 

Moreover, model transparency and conflicts are an additional layer of challenges to the 

stakeholders, and they must be adequately addressed before implementing predictive models in 

the real world. For example, medical practitioners often prefer an intuitive model resembling 

human perception and decision logic (e.g., a decision rule or tree).17 Pragmatically, it is essential 

for clinicians to understand, for example, why some patients are predicted as high risk after being 

discharged from the hospital while others are not and why specific interventions are being 

promoted in certain scenarios. Since medical practitioners are held accountable for treating patients 

using their professional knowledge, it is intolerable for practitioners to trust predictive models 

which may contain errors blindly.  

https://www-sciencedirect-com.ezproxy.lib.purdue.edu/topics/computer-science/healthcare-service
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Finally, many issues related to the data are challenging to predictive modeling in healthcare. First 

is data access. Due to restrictive government policies for protecting patient health data privacy, a 

secure data environment must be established, which may include protocols to link data from 

multiple sources and then de-identify it before analysis. The second is data availability. Patients 

are not required to report for follow-up or remain in the same part of the healthcare system, 

meaning many outcomes or metrics are not measured or recorded. Even when they are, many 

predictor variables, such as health behaviors, may be at best recorded for only a subset of patients. 

Lastly is data variety. Existing data often comes from multiple sources with diversified formats 

such as free text fields and images. Many questions about the data (e.g., What data to use? What 

if we do not have specific data?) must be addressed in developing predictive models for a particular 

application.15  

 

This dissertation aims to cover the challenges above by addressing an overarching question on 

how to develop appropriate predictive modeling tools for a specific healthcare problem in three 

important healthcare domains (i.e., clinical practice, public health, and healthcare systems). I use 

three studies in this dissertation to illustrate sound principles and practices in predictive modeling. 

 

In chapter 2, we develop a predictive model at the clinical practice level to address medical 

practitioners’ needs to assess various liver cirrhosis diagnostic strategies, including existing and 

proposed new strategies. The predictive model consists of a decision tree and a micro-simulation 

model to predict patients’ health outcomes and associated healthcare costs using each liver 

cirrhosis diagnostic strategy. The model captures the practical workflow of the Gastroenterology 

department. This study helps medical practitioners (i.e., gastroenterologists) to compare and 

identify the most cost-effective diagnostic strategy in daily clinical practice. 

 

In chapter 3, we use cardiovascular disease (CVD) and economic predictive modeling from the 

public health perspective to assist policymakers at government agencies in evaluating various food 

policies for preventing cardiovascular diseases cost-effectively. The predictive model uses a 

disease graph verified by cardiologists to capture individual patient’s CVD progression from a 

heterogeneous population, and logistic regression models to quantify the transition probabilities. 
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The model is validated against real-world data. Multiple health outcomes and healthcare costs are 

captured and analyzed to support policymakers’ decisions to improve public health. 

   

Chapter 4 focuses on the system consisting of a hospital and multiple skilled nursing facilities 

(SNF). I developed a readmission prediction tool to predict probabilities of post-acute older-adult 

patients being re-hospitalized at the time of discharge from a hospital to an SNF. This tool can be 

used to facilitate the study of the coordination of patient discharge assignment recommendations 

within the hospital-SNF system.  

 

Lastly, I will discuss my reflection on predictive modeling in healthcare and future research. 
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 ESSAY 1: COST EFFECTIVENESS OF DIFFERENT STRATEGIES 

FOR DETECTING CIRRHOSIS IN PATIENTS WITH NON-

ALCOHOLIC FATTY LIVER DISEASE BASED ON UNITED STATES 

HEALTH CARE SYSTEM 

Reprinted with permission from Elsevier from Clinical Gastroenterology and Hepatology 18.10 

(2020): 2305-2314, Cost effectiveness of different strategies for detecting cirrhosis in patients with 

nonalcoholic fatty liver disease based on United States health care system, © 2020 by the AGA 

Institute 

 

2.1 Introduction 

Nonalcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease, 

hepatocellular carcinoma (HCC), and liver transplantation.18 The extent of hepatic fibrosis is the 

strongest risk factor for long-term complications; patients with advanced fibrosis are at the highest 

risk of hepatic decompensation, HCC, and cardiovascular disease.19 Thus, accurate staging of 

fibrosis is necessary for proper management of patients with NAFLD, both for estimating 

prognosis and guiding therapy. While liver biopsy (LB) is the gold standard for staging liver 

fibrosis and diagnosing cirrhosis, it is invasive, costly, and has technical limitations, including 

sampling error and variation in histological interpretation,20 making it impractical as a routine 

screening or diagnostic tool.  

 

Several non-invasive tests (NITs) are available for staging liver fibrosis, including blood-based 

biomarkers (Fib-4),21 and modalities that assess liver stiffness such as vibration controlled transient 

elastography (VCTE)22 and magnetic resonance elastography (MRE).23 Most NITs are good at 

excluding advanced fibrosis (negative predictive value > 90%), but sensitivity is lower for 

detecting advanced fibrosis.24–26 Among the modalities assessing liver stiffness, VCTE is the most 

widely studied and validated method, yielding good intra- and inter-observer variability and low 

failure rates.22 Moreover, its wide availability and easy-to-operate feature make VCTE a potential 

point-of-care test. Most recently, 2D- and 3D-MRE have emerged as promising noninvasive tests 

for diagnosing advanced fibrosis in NAFLD patients. MRE and VCTE have high accuracy in 

identifying advanced fibrosis.26 The Fib-4 index is a simple and inexpensive blood-based panel 

that is useful for excluding advanced fibrosis.21 It has been extensively validated in patients with 
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NAFLD. Fib-4 cutoffs ≥ 3.25 or ≤ 1.30 have 80% and 90% positive and negative predictive values, 

respectively, for detecting or excluding advanced fibrosis among patients CLD, including 

NAFLD.25,27 Its major limitation is that a high proportion of values fall in the indeterminate range 

(1.30-3.25).25,27 

 

In clinical practice, a sequential combination of two NITs may improve the detection of patients 

with advanced fibrosis and reduce the number of patients with indeterminate results28,29; however, 

its cost-effectiveness has not been fully explored. Herein, we developed a decision model to 

quantify the accuracy and costs of various non-invasive strategies for diagnosing cirrhosis in 

NAFLD patients to understand better which strategies might be considered preferable in clinical 

practice.            

2.2 Methods 

2.2.1 Study population 

Our study population consists of a hypothetical cohort of middle-aged patients with NAFLD seen 

in three different settings: (a) in a specialty clinic setting where the prevalence of cirrhosis in 

NAFLD is estimated to be 2%,30 (b) in a general population-based setting where the prevalence of 

cirrhosis is estimated to be 0.27%31 and tertiary referral centers setting where cirrhosis prevalence 

is reported to be ≈ 4%.23,25,26  

2.2.2 Model structures 

We constructed a decision model to compare the accuracy and costs associated with liver biopsy 

and NITs alone and in a sequential combination for the diagnosis of cirrhosis. We considered Fib-

4 and liver stiffness measured by VCTE or MRE, and assumed that liver biopsy, as the reference 

standard, would have the highest sensitivity and specificity for cirrhosis. Test accuracy for each 

strategy was calculated as follows: (true positive (TP) + true negative (TN))/(total population). 

Note that we excluded TP and TN numbers from the confirmation test. To evaluate the ensuing 

clinical events for future costs and outcomes; we attached a microsimulation to each leaf node of 

the decision tree to emulate subsequent clinical events over a 5-year time horizon. Figures 2.1-3 
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summarize the decision tree of the nine diagnostic strategies and the transitions in the 

microsimulation of patients after receiving a diagnosis of cirrhosis. 

 

Figure 2.1. Model structure: Decision analytic tree using single tests. 

 

Figure 2.2. Model structure: Decision analytic tree using single tests using sequential tests. 



18 

 

Figure 2.3. Model structure: Microsimulation of patients’ assessment after receiving a diagnosis 

of cirrhosis. 

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, magnetic resonance 

elastography; C, cirrhosis; NC, no cirrhosis; CD, correctly diagnosed; MD, misdiagnosed; CR, correctly ruled out; 

UD, undiagnosed; HCC, hepatocellular carcinoma; EV, esophageal varices; EVL, endoscopic variceal ligation; OLT, 

orthotopic liver transplantation; NSBB, nonselective beta-blockers; LB, liver biopsy; EGD, 

esophagogastroduodenoscopy.    

 

In the decision-tree portion of the model, we considered each test individually and in clinically 

appropriate combinations where either stiffness-based method was added sequentially to Fib-4 or 

where LB was added sequentially to either a stiffness-based method or Fib-4. For all test strategies, 

a positive test may suggest cirrhosis and a negative test may exclude cirrhosis. Additionally, failure 

rates for VCTE (7.1%)22,32 and MRE (4%),33,34 and indeterminate results for Fib-4 (32%)22 were 

included. For combination strategies, a second test was added if the initial test was either positive 

or indeterminate for Fib-4, or uninterpretable for VCTE/MRE. The result of the second test 

determined the final diagnosis of cirrhosis. To better reflect the diagnostic practice, we applied the 
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confirmation test using LB in two cases: 1) indeterminate or failure results occur in Fib-4, MRE, 

and VCTE only tests, 2) failure results in combination strategies. Note that in calculating the final 

accuracy, we do not account for TP and TN results from the confirmation test. Finally, a do-nothing 

approach was included along with all test strategies.   

 

We assumed that all patients with cirrhosis diagnosis underwent periodic guideline-based 

screening for esophageal varices (EV) and HCC35,36 over a 5-year period. The disease state and 

mortality status were updated during the 5-year period. As a result, costs of the periodic screening 

for EVs and HCC were accumulated over the 5-year period, depending on the simulated disease 

state and mortality status. For those who tested positive, the costs include: (1) periodic EV 

screening [every 2 years if EV is small and at 3-year intervals if EVs are absent]36, (2) HCC 

screening every 6 months using serum α-fetoprotein and ultrasound,35 (3) primary prophylaxis of 

EV bleeding with both endoscopic band ligation (EBL) and nonselective beta-blockers (NSBB),36 

(4) outpatient clinic visit and (5) those derived from liver transplantation or HCC-related liver 

resection. For those who tested negative, the two screening costs as above were excluded. 

2.2.3 Model Parameters 

We performed a sensitivity analysis by varying the prevalence range from 0.27% to 4%. The 

prevalence of EV among cirrhotics was estimated to be 34.7%.37 We considered the annual 

incidence of EV and HCC to be 2.3% (unpublished data from Indiana University Medical Center) 

and 2.5%, respectively.38 The pooled 3-year HCC mortality rate is 49.2% among patients 

undergoing HCC surveillance vs 72.1% among those without periodic surveillance.35 We assumed 

a 16.3% 6-month risk of mortality due to variceal bleeding.39 We considered a prevalence of 11.5% 

of large or high-risk varices among compensated NAFLD cirrhotics40 and assumed that 34% of 

small or no varices would progress to large varices at 3 years.41 The pooled 2-year risk of upper 

gastrointestinal bleeding is 17%42 and 31%43 among patients with or without primary prophylaxis 

including both EBL and/or NSSB. Table 2.1, Figure 2.3 and Appendix A Tables A.1-A.3 

summarize some of the above-mentioned parameters used in the model. 
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Table 2.1. Model parameters, base-case values and ranges. 

Parameter Value Range Reference 

Prevalence of biopsy-confirmed cirrhosis    

  Population-based 0.27% - 31 

  Community-based 2%  30 

Prevalence of esophageal varices 34.7% - 37 

Prevalence of large or high-risk varices 11.5% - 40 

3-year rate of varices progression 34% - 41 

Annual incidence of esophageal varices 4.4% - - 

2-year risk of bleeding with primary prophylaxis 17% 14%-20% 42 

2-year risk of bleeding without primary prophylaxis 31% 18%-60% 43,44 

5-year mortality due to variceal bleeding  20% 20%-80% 36 

Annual incidence of hepatocellular carcinoma 2.5% - 38 

3-year mortality due to hepatocellular carcinoma  49.2% 46.4%-77.2% 35 

Liver biopsy *    45 

Sensitivity  93% 89%-100%  

Specificity  95% 92%-100%  

Fib-4 index   25 

Optimal high cutoff (>3.25)    

Sensitivity 38% 35%-41%  

Specificity 97% 95%-100%  

Optimal low cutoff (<1.30)    

Sensitivity 84% 74%-85%  

Specificity 69% 65%-71%  

Indeterminate results 32% 12%-46% 25 

Magnetic resonance elastography  

Optimal cutoff for cirrhosis (4.7) 

  46,47 

Sensitivity 80% 60%-97%  

Specificity 86% 84%-93%  

Failure rates 4% 4%-6% 33,34 

Vibration controlled transient elastography   22,32,46,47 

Optimal cutoff for cirrhosis (11.8)    

Sensitivity 80% 78%-95%  

Specificity 81% 85%-89%  

Failure rates 7.1% 3.5%-50% 22,32 

* Considering optimal liver tissue specimens (≥ 2.5 cm in length and ≥ 10 portal tracts) 

Specificity and sensitivity for cirrhosis were calculated using pooled data from published studies.  
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An institutional cost perspective was adopted, expressed in 2017 U.S. dollars. Direct costs for 

LB, MRE and VCTE were obtained from Medicare reimbursement data (Appendix A Table 

A.4). 

2.2.4 Analysis 

We simulated the costs for a particular strategy, which included the costs of (1) each diagnostic 

strategy, (2) HCC and EV screenings, (3) periodic clinic visits, (4) management of LB-related 

complications (i.e., bleeding) and (5) liver transplantation or HCC-related liver resection. We also 

simulated the diagnostic accuracy for a particular strategy. Diagnostic accuracy was defined as the 

percentage of correct diagnosis, which equals the sum of numbers of people who were correctly 

identified with or without cirrhosis (excluding the numbers after the confirmation test), divided by 

the total population. We next calculated the cost per correct diagnosis, which was used as a proxy 

in the ensuing cost-effectiveness analysis. We lastly calculated the incremental cost-effectiveness 

ratios (ICERs) and cost per death prevented (CPDP). ICERs were defined as the incremental cost 

for each additional correct diagnosis: the strategies were sorted by ascending order of cost, and the 

current least costly strategy was compared with the previous least costly strategy. The formula to 

calculate ICERs is shown in the supplemental material. If the accuracy of the current least costly 

strategy was lower than the previous one, then the current strategy was considered dominated. 

CPDP was calculated using the same logic, and we used mortality instead of diagnostic accuracy.  

 

We further plotted per-patient total cost and diagnostic accuracy, and per-patient total cost and 

mortality for each strategy. Any strategy, such that no other strategies would yield lower cost and 

higher accuracy (lower mortality) simultaneously, was considered to be a dominant strategy. In 

the presence of more than one dominant strategy, the dominant strategies formed an efficiency 

frontier; strategies below and to the right of the frontier were considered to be dominated.  

 

To assess the robustness of model results, we performed sensitivity analyses on cirrhosis 

prevalence (0%-12%). In addition, we performed one-way sensitivity analyses on test 

characteristics and costs with cirrhosis prevalence being fixed at 0.27%.  
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2.3 Results 

2.3.1 Base case. 

Low prevalence of cirrhosis (0.27%). Fib-4 alone correctly classifies the lowest percentage of 

persons (57%) and is the reference strategy for the change in percentage of persons correctly 

classified, while Fib-4+LB correctly classified 97.7%, the highest percentage (Table 2.2). Figure 

2.4 shows diagnostic accuracy by cost per person for each strategy. The solid line represents the 

efficiency frontier, which identifies strategies with the lowest cost and highest accuracy, and 

includes: Fib-4+VCTE (89.3%, $401), Fib-4+MRE (92.4%, $491) and Fib-4+LB (97.7%, $729). 

Relative to Fib-4+VCTE, which is the least costly strategy with 89.3% accuracy, ICERs for the 

frontier strategies range from $2,864 per additional correct diagnosis for Fib-4+MRE to $4,454 

for Fib-4+LB (Table 2.2). Figure 2.4 and Appendix A Table A.5 display mortality by cost per 

person for each strategy. Compared to do-nothing strategy, which yields highest mortality (46 

deaths) and lowest cost ($10), Fib-4+VCTE (41 deaths, $401), VCTE+LB (39 deaths, $613), 

VCTE (38 deaths, $901) and LB (36 deaths, $1663) show the best combination of cost versus 

mortality, respectively.  

 

Appendix A Tables A.6-A.14 depict detailed results on diagnostic accuracy for all strategies.   
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Table 2.2. Accuracy and cost-effectiveness of different diagnostic strategies. A microsimulation analysis based on 100,000 NAFLD 

patients considering a cirrhosis prevalence of 0.27%. 

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, Magnetic resonance elastography; HCC, hepatocellular carcinoma; 

ICER, incremental cost effectiveness ratio.  

Total mortality includes mortality cases from variceal bleeding, HCC and other than bleeding or HCC.   

Strategies are listed in order of increasing costs. 

* It represents difference between tests and the reference strategy (Fib-4).  

** No ICER value for do-nothing strategy, since there is no accuracy 

Strategy 

Number of 

correctly 

identified 

out of 270 

people with 

cirrhosis 

Number of 

correctly 

excluded 

out of 

99730 

people 

without 

cirrhosis 

Percentage 

of people 

correctly 

classified 

Change in 

percentage 

of people 

correctly 

classified* 

Cost per 

person ($) 

Cost per 

correct 

diagnosis 

($) 

Mortality 

(bleeding) 

Mortality 

(HCC) 

Total 

mortality 

cases 

ICER 

No test N/A  N/A  N/A  N/A  10 N/A  25 5 46 N/A** 

Fib-

4+VCTE 

116 89,145 89.3% 32.2% 401 450 21 5 42 Least 

costly 

Fib-4+MRE 120 92,272 92.4% 35.4% 491 531 22 5 42 2,864 

VCTE+LB 187 91,769 92.0% 34.9% 612 667 19 4 40 4,454 

Fib-4+LB 145 97,592 97.7% 40.7% 729 747 21 5 42 Dominated 

MRE+LB 193 95,071 95.3% 38.2% 888 932 19 4 40 Dominated 

VCTE 201 75,046 75.2% 18.2% 900 1,197 18 4 39 Dominated 

Fib-4 70 56,966 57.0% Reference 908 1,592 21 5 41 Dominated 

MRE 207 82,337 82.5% 25.5% 1,109 1,344 19 4 39 Dominated 

LB 251 94,744 95.0% 38.0% 1,663 1,751 17 4 37 Dominated 
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Figure 2.4. Incremental cost-effectiveness “Frontier” of 9 diagnostic strategies: Cost per person 

vs accuracy considering population-based prevalence (0.27%). 

 

Figure 2.5. Incremental cost-effectiveness “Frontier” of 9 diagnostic strategies: Cost per person 

vs mortality considering population-based prevalence (0.27%). 

The points on the line are the strategies on the frontier and considered dominating strategies, and points below the line 

are the less cost-effective strategies. 

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, magnetic resonance 

elastography.  
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Intermediate prevalence of cirrhosis (2%). Based on case results for intermediate prevalence of 

cirrhosis, both the cost per person for each strategy and the cost per correct diagnosis per person 

are higher for an intermediate prevalence of cirrhosis as compared with low cirrhosis prevalence. 

Fib-4 alone remains the least accurate strategy (56.5%). Base results for intermediate cirrhosis 

prevalence closely parallel results for low prevalence with the same three least costly strategies 

which are Fib-4+VCTE (88.5% accuracy, cost of $690), Fib-4+MRE (91.6%, $781), and Fib-

4+LB (97%, $1,060) (Table 2.3). VCTE+LB has the same cost than Fib-4+LB, but it yields lower 

diagnostic accuracy (Table 2.3 and Figure 2.5). Figure 2.3 shows 3 strategies on the efficiency 

frontier, including the three same frontier strategies for the low prevalence case, with ICERs 

ranging from $2,918 (Fib-4+MRE) to $5,156 (Fib-4+LB) per additional correct diagnosis (Table 

2.3). Results based on cost versus mortality analysis (Figure 2.7 and Appendix A Table A.15), 

show the same four strategies on the frontier (Fib-4+VCTE [307, $690], VCTE+LB [285, $1,060], 

VCTE [279, $1,347] and LB [270, $2,183]) than those results based on low cirrhosis prevalence.       
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Table 2.3. Accuracy and cost-effectiveness of different diagnostic strategies. A microsimulation analysis based on 100,000 NAFLD 

patients considering a cirrhosis prevalence of 2%. 

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, Magnetic resonance elastography; HCC, hepatocellular carcinoma; 

ICER, incremental cost effectiveness ratio.  

Total mortality includes mortality cases from variceal bleeding, HCC and other than bleeding or HCC.   

Strategies are listed in order of increasing costs. 

* It represents difference between tests and the reference strategy (Fib-4).  

** No ICER value for do-nothing strategy, since there is no accuracy 

Strategy 

Number of 

correctly 

identified 

out of 2000 

people with 

cirrhosis 

Number of 

correctly 

excluded 

out of 

98000 

people 

without 

cirrhosis 

Percentage 

of people 

correctly 

classified 

Change in 

percentage 

of people 

correctly 

classified* 

Cost per 

person ($) 

Cost per 

correct 

diagnosis 

($) 

Mortality 

(bleeding) 

Mortality 

(HCC) 

Total 

mortality 

cases 

ICER 

No test N/A  N/A  N/A  N/A  77 N/A  187 41 344 N/A** 

Fib-

4+VCTE 860 87,599 88.5% 32.0% 690 780 158 30 307 

Least 

costly 

Fib-4+MRE 888 90,671 91.6% 35.1% 781 853 159 30 307 2,918 

VCTE+LB 1,076 95,899 97.0% 40.5% 1,060 1,093 155 29 302 
5,156 

Fib-4+LB 1,382 90,177 91.6% 35.1% 1,060 1,158 142 23 285 Dominated 

MRE+LB 517 55,978 56.5% Reference 1,236 2,187 153 28 300 Dominated 

VCTE 1,428 93,421 94.8% 38.4% 1,329 1,401 142 24 285 Dominated 

Fib-4 1,486 73,744 75.2% 18.7% 1,347 1,791 138 22 279 Dominated 

MRE 1,536 80,909 82.4% 26.0% 1,557 1,889 139 22 280 Dominated 

LB 1,860 93,100 95.0% 38.5% 2,183 2,299 131 19 270 Dominated 
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Figure 2.6. Incremental cost-effectiveness “Frontier” of 9 diagnostic strategies: Cost per person 

vs accuracy considering population-based prevalence (2%). 

 

Figure 2.7. Incremental cost-effectiveness “Frontier” of 9 diagnostic strategies: Cost per person 

vs mortality considering population-based prevalence (2%). 

The points on the line are the strategies on the frontier and considered dominating strategies, and points below the line 

are the less cost-effective strategies. 

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, magnetic resonance 

elastography.  
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High prevalence of cirrhosis (4%). Baseline results for the high prevalence of cirrhosis closely 

parallel those from low and intermediate prevalence (Table 2.4, Figure 2.6). The same three 

strategies (Fib-4 followed by either VCTE, MRE or LB) comprise the 3 least costly strategies, 

with accuracies ranging from 87.5% for Fib-4+VCTE to 96.1% for Fib-4+LB. As expected, due 

to a higher proportion of cirrhosis, both costs per person and cost per correct diagnosis are higher 

than in the two previous prevalence scenarios, ranging respectively from $1,024 for Fib-4+VCTE 

to $1,441 for Fib-4+LB and from $1,170 for Fib-4+VCTE to $1,500 for Fib-4+LB. Fib-4 alone 

remains the least accurate strategy (55.9%). Similar to findings under conditions of intermediate 

prevalence, the same three frontier strategies appear on the efficiency frontier, with ICERs ranging 

from $2,921 to $5,956 per additional correctly diagnosed case. Cost versus mortality analysis also 

show the same four diagnostic strategies on the frontier, with Fib-4+VCTE displaying highest 

mortality (613) followed by VCTE+LB (568), VCTE (559) and LB (540) respectively (Figure 2.9 

and Appendix A Table A.16).   

.     
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Table 2.4. Accuracy and cost-effectiveness of different diagnostic strategies. A microsimulation analysis based on 100,000 NAFLD 

patients considering a cirrhosis prevalence of 2%. 

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, Magnetic resonance elastography; HCC, hepatocellular carcinoma; 

ICER, incremental cost effectiveness ratio.  

Total mortality includes mortality cases from variceal bleeding, HCC and other than bleeding or HCC.   

Strategies are listed in order of increasing costs. 

* It represents difference between tests and the reference strategy (Fib-4).  

** No ICER value for do-nothing strategy, since there is no accuracy

Strategy 

Number of 

correctly 

identified 

out of 4000 

people with 

cirrhosis 

Number of 

correctly 

excluded 

out of 

96000 

people 

without 

cirrhosis 

Percentage 

of people 

correctly 

classified 

Change in 

percentage 

of people 

correctly 

classified* 

Cost per 

person ($) 

Cost per 

correct 

diagnosis 

($) 

Mortality 

(bleeding) 

Mortality 

(HCC) 

Total 

mortality 

cases 

ICER 

No test N/A  N/A  N/A  N/A  157 N/A  373 81 686 N/A** 

Fib-

4+VCTE 1872 85659 87.5% 31.7% 1024 1170 316 60 

613 Least 

costly 

Fib-4+MRE 1863 88735 90.6% 34.7% 1114 1230 318 60 613 2,921 

VCTE+LB 
2152 93942 96.1% 40.2% 1441 1500 310 57 

603 5,956 

Fib-4+LB 3029 88073 91.1% 35.2% 1579 1733 283 47 568 Dominated 

MRE+LB 2224 53645 55.9% Reference 1616 2892 306 56 599 Dominated 

VCTE 3006 91366 94.4% 38.5% 1840 1950 284 47 569 Dominated 

Fib-4 3237 71975 75.2% 19.3% 1861 2474 276 44 559 Dominated 

MRE 3221 79109 82.3% 26.5% 2077 2523 277 44 559 Dominated 

LB 3720 91200 94.9% 39.1% 2777 2925 262 39 540 Dominated 
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Figure 2.8. Incremental cost-effectiveness “Frontier” of 9 diagnostic strategies: Cost per person 

vs accuracy considering population-based prevalence (4%). 

 

Figure 2.9. Incremental cost-effectiveness “Frontier” of 9 diagnostic strategies: Cost per person 

vs mortality considering population-based prevalence (4%). 
The points on the line are the strategies on the frontier and considered dominating strategies, and points below the line 

are the less cost-effective strategies. 

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, magnetic resonance 

elastography.  
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2.3.2 Sensitivity analyses. 

Prevalence of cirrhosis. When the prevalence of cirrhosis is extended to as high as 12%, cost per 

correct diagnosis increases for all strategies, as shown in Appendix A Figure A.2. The largest cost 

increases are observed for Fib-4, VCTE, and MRE, with respective increases of $4,276, $4,030, 

and $3,732 from the previously considered low prevalence (0.27%). Cost increases are the lowest 

for the two non-invasive combination test strategies of FIB-4+VCTE and FIB-4+MRE, with 

respective increases of $2,364 and $2,298 from the previously considered low prevalence scenario 

(0.27%).  

 

Test characteristics. Results of one-way sensitivity analyses on each test’s sensitivity and 

specificity are shown in Appendix A Figure A.3A-D. Within the ranges of test characteristics, the 

general pattern of cost per correct diagnosis are comparable: negligible effects of sensitivity on 

either individual or combination strategies, negligible effects of specificity for combination 

strategies, and a modest cost reduction for individual tests as specificity increases.  

 

Test costs. Results of 8 one-way sensitivity analyses on the cost of each test are shown in Appendix 

A Table A.17 and in Appendix A Figure A.4. Note that the baseline values were set at Medicare 

average price Appendix A Table A.4, i.e., $0, $1,411, $150.34 and $544.18 for Fib-4 LB, VCTE 

and MRE. For the one-way sensitivity analysis on each cost parameter, alternative cost values are 

based on the national average for facility fees among hospital-based clinics and the 90th percentile 

for charges submitted by hospital-based clinics; see Appendix A Table A.17.  

 

Considering sensitivity in the tradeoff of cost vs accuracy with respect to the cost parameters, 

Appendix A Table A.18 shows the percentage of times (9 in total) each strategy is on efficiency 

frontier.  Fib-4+VCTE, Fib-4+MRE, and Fib-4+LB are on efficiency frontier in 89% of the 

scenarios, respectively. In contrast, MRE+LB and VCTE+LB are on the frontier only when the 

costs of MRE and LB are high, and in 11% of the scenarios, respectively. The Tornado plot of cost 

per correct diagnosis shows Fib-4+VCTE to be the least costly strategy with a range of $397 to 

$590, whereas LB and MRE, each alone, are the two most costly strategies (Appendix A Figure 

A.4). 
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2.4 Discussion 

Since cirrhosis is the major determinant of long-term morbidity and mortality in patients with 

NAFLD, there is a critical need to detect cirrhosis before complications occur, which are associated 

with a high mortality and increased healthcare utilization. One strategy to alleviate the burden of 

liver disease is to identify at-risk asymptomatic individuals and offer them screening via non-

invasive diagnostic approaches. The sequential combination of two NITs or a NIT test plus liver 

biopsy may detect cirrhosis more accurately,28,29 however, whether these approaches are cost-

effective is unknown. We developed a decision model to compare accuracy and cost impact of 

different single or sequential tests for cirrhosis diagnosis in individuals with NAFLD. This study 

suggests that, among all diagnostic strategies, the use of Fib-4 followed by VCTE is likely the 

most cost-effective strategy for screening or detecting cirrhosis among patients with NAFLD either 

in the setting of general population, or specialty clinics and tertiary referral centers, respectively.  

Other diagnostic strategies such as Fib-4 followed by either MRE or LB, and VCTE followed by 

LB are likely cost-effective approaches but might have higher costs than Fib-4 followed by VCTE 

across all cirrhosis prevalence scenarios. 

 

There is a current knowledge gap regarding the cost-effectiveness of single versus sequential 

combined screening strategies for cirrhosis in NAFLD. Our findings support previous work 

suggesting that the use of sequential combination tests is more cost-effective than are single 

tests.28,29,48 Combination of tests yields higher accuracy than single tests resulting in higher 

proportion of patients correctly diagnosed with cirrhosis and subsequent reduction in costs from 

misdiagnosis. Recently, Majumdar et al. explored the clinical consequences of using the minimum 

acceptable diagnostic accuracy of NITs in diagnosing cirrhosis with equivalence to LB in terms of 

mortality.48 They found that sequential NITs performed better than single NITs at different 

predefined prevalence of cirrhosis.  

 

Among the 5 combination tests compared in the base case analysis, Fib-4+VCTE ranks first due 

to the best combination of cost per correct diagnosis and diagnostic accuracy. Fib-4+MRE ranks 

second, with higher percentage of people correctly classified (ranging from 90.6% to 92.4% vs. 

87.5%-89.3% with Fib-4+VCTE) but higher costs. The combinations of Fib-4 with LB or VCTE 

with LB ranked third and fourth, respectively, across all cirrhosis prevalence settings. Although 



 

33 

both combinations yield higher accuracy, they have higher costs per correct diagnosis as compared 

with either FIB-4+VCTE or Fib-4+MRE. Finally, the combination of MRE with LB ranked fifth 

among all combination tests.  

 

Overall, using MRE together with either LB or Fib-4 moderately increases overall costs and 

therefore reduces cost-effectiveness as compared to combinations that include VCTE plus Fib-4 

or LB. The results highlight the importance of diagnostic accuracy, with costs being more 

influential on strategies including MRE. This finding suggests that, due to its point-of-care 

availability and more affordable cost, a VCTE based strategy may be the most attractive approach 

when considering potential population-based screening program as well as in the setting of 

specialist clinics.   

 

If the goal is to avoid liver biopsy, Fib-4+VCTE is a very cost-effective strategy among NITs. This 

strategy could be particularly important in the community setting or in resource-limited areas 

where Fib-4+VCTE can be used to screen for cirrhosis among patients with NAFLD. Use of NITs 

by primary care providers may reduce unnecessary or late specialty referrals which are associated 

with either overuse of health care services or with suboptimal patient outcomes respectively. In 

the setting of higher prevalence of cirrhosis such as referral centers, either Fib-4 together with 

VCTE or MRE may be useful tools for detecting cirrhosis.             

 

This analysis evaluated the cost-effectiveness of a comprehensive list of screening strategies for 

cirrhosis diagnosis in the context of NAFLD with varying prevalence of cirrhosis.  Other strengths 

of this study include: (1) using liver biopsy as the reference standard for cirrhosis diagnosis and 

blood- and imaging-based tests, (2) simulated distribution of outcomes and its treatments 

considering real-world data, and (3) assessment of uncertainty including a wide range of cirrhosis 

prevalence, sensitivity and specificity values, as well as assuring the statistical confidence in 

comparative studies by running the microsimulation with a sufficiently large cohort multiple times 

for each strategy.    

 

This analysis has limitations as well, including: (1) results are based on the U.S. costs and may not 

generalize to other healthcare systems; (2) MRI costs were used as a proxy for MRE;  MRE is a 



 

34 

relatively new diagnostic imaging technology without a CPT code for insurance reimbursement 

currently, although it is being used often in the United States for routine clinical care; (3) since the 

sensitivity and specificity of non-invasive tests in the context of a primary care setting are not 

available, this information was extrapolated from studies conducted at tertiary referral centers; and 

(4) finally, our cost-effectiveness is not a traditional one, i.e., cost per life-year save or cost per 

quality adjusted life year. We used cost per correct diagnosis as a proxy for cost-effectiveness for 

several reasons. First, the time horizon for this analysis is short such that the risk of hard outcomes 

such as mortality due to hepatic and cardiovascular events is unlikely. Second, not well-described 

are the natural history of cirrhosis due to NAFLD and the effects of identifying and treating large 

esophageal varices and hepatocellular carcinoma in this setting.  

 

In conclusion, this study suggests that Fib-4 followed by either VCTE, MRE or LB are cost-

effective strategies for identifying cirrhosis in populations where the prevalence of cirrhosis varies 

between 0.27%-4%. Compared to the combination of FIB-4 and VCTE, the ICERs were higher 

for the combination of FIB-4 and MRE were lower than for the combination of FIB-4 and liver 

biopsy. If the goal is to avoid liver biopsy, the combination of Fib-4+VCTE with its lower costs 

and accessibility is likely the preferred strategy for the screening of cirrhosis in the setting of 

general or community-based populations.    
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 ESSAY 2: THE HEALTH AND ECONOMIC IMPACT OF USING A 

SUGAR SWEETENED BEVERAGE TAX TO FUND FRUIT AND 

VEGETABLE SUBSIDIES IN NEW YORK CITY: A MODELING 

STUDY 

Reproduced with permission from Springer Nature from Journal of Urban Health 100, 51–62 

(2023), The Health and Economic Impact of Using a Sugar Sweetened Beverage Tax to Fund Fruit 

and Vegetable Subsidies in New York City: A Modeling Study, © 2023 Springer Nature. 

3.1 Introduction 

Healthful diets are an important protective factor for cardiovascular disease (CVD).49,50 

Specifically, low fruit and vegetable (FV) intake and high sugar-sweetened beverage (SSB) 

consumption are independently associated with an increased risk of developing CVD.51–54 Yet, 

approximately half of US adults report consuming at least one SSB on a given day.55 More over, 

only one in three women and one in five men report eating the recommended amount of fruits and 

vegetables per day (5 +servings/day) nationally.56 

 

As CVD continues to place a heavy burden on society and the healthcare system in the USA, public 

health professionals and policymakers have increasingly looked to SSB taxes as a strategy for 

decreasing sugar intake and lowering the risk of CVD in the population. To date, 8 jurisdictions 

enacted SSB excise taxes across the USA—including in Albany (NY), Berkeley (CA), Boulder 

(CO), Oakland (CA), Philadelphia (PA), San Francisco (CA), Santa Fe (NM), Seattle (WA), and 

Cook County (IL).57 Evidence indicates that the taxes discouraged the purchase and consumption 

of SSBs.58–60 An SSB excise tax also generates new revenue that can be earmarked, or directed, 

towards programs to promote health. One such program that has been implemented in several 

cities with tax revenues is FV financial incentives for those shopping with Supplemental Nutrition 

Assistance Program (SNAP) benefits,61 which have been linked to an increase in FV purchases in 

farmers markets,62 mobile produce markets,63 and supermarkets64,65; and have the potential to 

increase FV intake that is protective against CVD.66 Pairing SSB taxes and FV subsidies may 

improve dietary behaviors from multiple dimensions and have a greater positive combined effect 

on health than singly policy action alone.67 
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In New York City (NYC), the high cost of living and the existence of areas that are and have 

been historically impacted by food apartheid (areas with limited access to fresh FVs) make fresh 

FVs less affordable and accessible.68,69 These and multiple other factors may contribute to the 

low observed prevalence of consumption of 5 servings of FVs amongst NYC adults of 10%; 

nationally, this percentage is 12%.68,70 In addition, SSB consumption in NYC remains high and 

has plateaued after several years of decline, with 24% of residents reporting drinking one or more  

SSB per day, and 84% reporting drinking an SSB in a  typical week.71 A potential implementation 

of an SSB tax and an FV subsidy program could result in substantial public health and economic 

benefits. 

 

In this study, we used a microsimulation model of CVD to assess the impact of implementing SSB 

taxes and FV subsidies on long-term CVD outcomes and healthcare costs in NYC. We simulated 

the potential implementation of each policy alone as well as funding FV subsidies with an SSB tax 

(a combined policy). We also assessed the cost-effectiveness of each policy in preventing CVD 

compared to the status quo. 

3.2 Methods 

3.2.1 Model Development 

We developed a microsimulation model of CVD for NYC adults based on the well-established 

CVD Policy Model.72–75 Model details and a model schematic are included in Appendix B. Briefly, 

the model simulates healthy individuals (i.e., no history of CVD) and their risk of CVD over time. 

Within each year of the simulation, individuals are at risk of experiencing coronary heart disease 

(CHD), stroke, both CHD and stroke, CVD-related death, and non-CVD-related death (Fig. 1). 

The annual probability of incident CHD, incident stroke, and non-CVD related death are estimated 

by functions accounting for age, body mass index (BMI), smoking status, systolic blood pressure, 

diabetes status, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and 

estimated glomerular filtration rate (a list of model parameters is presented in Appendix B Table 

B.1). Once a CHD or stroke event occurs, individuals are at risk of secondary or recurrent CVD 

events and CVD-related death (Appendix B Table B.2). We assumed each individual can 

experience at most two CVD-related events per year. As individuals progress through the model, 
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their CVD event history, survival, quality-adjusted life years (QALYs), direct healthcare costs, 

and program implementation costs are recorded at 10 years, 20 years, 40 years, and over their 

entire lifetime (death or 100 years of age). The model was programmed in R (version 3.6.1). The 

study was approved by the Institutional Review Board at the Icahn School of Medicine at Mount 

Sinai. 

3.2.2 Simulated Population 

We simulated a population representative of NYC adults by sampling 10,000 individuals and their 

characteristics from the NYC Health and Nutrition Examination Survey (NYC HANES, 2003–

2004 and 2013–2014). We matched NYC HANES participants on CVD risk factors to participants 

from the National Heart, Lung, and Blood Institute Pooled Cohorts for whom lifetime CVD risk 

factor trajectories were previously developed (Appendix B Table B.3).76–78 We assigned each 

individual daily intake of SSB and FV using data from the 2018 NYC Community Health 

Survey.79 We fit truncated normal distributions using race and sex stratified mean per-capita intake 

of FVs (number of cups) and SSBs (number of drinks) from daily dietary recall questions 

(Appendix B Table B4).
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3.2.3 Policy Scenarios 

We modeled three policy scenarios, including (1) an SSB tax; (2) an FV subsidy; and (3) a 

combined policy that uses the SSB tax revenue to fund FV subsidies. We compared each of the 

above policy scenarios to the status quo. We modeled the effect of the SSB tax and FV subsidy on 

consumption outcomes through price changes and their associated price elasticity based on 

Equation 3.1 below (Appendix B Table B.2). To model the relationship, we assumed that (1) the 

effects from an SSB tax and an FV subsidy were independent (i.e., an SSB tax only influences 

SSB consumption and FV subsidies would only impact FV consumption), (2) the time lag 

between policy implementation and changes in SSB and FV consumptions is less than a year, 

and (3) the policy effects remain constant as long as taxes and subsidies continue.80 

3.2.4 Change in SSB and F&V consumption 

𝐶𝑛𝑒𝑤 =  𝐶𝑜𝑙𝑑 (
𝑝𝑛𝑒𝑤

𝑝𝑜𝑙𝑑
)ε                 Equation 3.1 

where Cold and Cnew are SSB consumption and FV consumption before and after policy 

implementation, pold and pnew are SSB and FV prices before and after policy implementation, and 

Figure 3.1Model schematic. Notes: CHD, coronary heart disease; CVD, cardiovascular 

disease 
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ε is price elasticity, which reflects the percentage of consumption change with a 1-percent price 

change. We used the SSB price change percentage and mean FV prices to derive the purchase 

price percentage changes for FV subsidies (Appendix B Table B.5). We assumed tax revenues 

would be equally distributed to fund FV subsidies. 

3.2.5 The Effects of SSB and FV Consumption Changes on CVD and Diabetes Risk 

We estimated the relative risk (RR) of CHD and stroke incidence with SSB and FV consumption 

based on findings from recent meta-analyses (Appendix B Table B.6).81,82 We also included an 

RR for the effect of SSB and FV intake on the incidence of diabetes mellitus.50,82 We modeled 

the effects of changes in consumption on the risk of CHD, stroke, and diabetes as 𝑅𝑅 =

𝑅𝑅𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙
(𝐶𝑛𝑒𝑤−𝐶𝑜𝑙𝑑), where RRincremental is the medical costs plus policy and implementation 

costs. RR per one-unit reduction in SSB or FV consumption per day and is multiplied by the 

probability of an incident event without SSB or FV policies.  

3.2.6 Cost and Utility Model Parameters 

We estimated the implementation costs for SSB taxes to be 2% of the tax revenue collected and for FV 

subsidies to be 20% of the subsidies in the first year and 5% for the years afterward. Details about 

our estimation of the policy implementation costs are provided in Appendix B. We estimated the 

QALYs for different disease stages based on the published literature.83–85 The model includes 

disutility associated with acute CHD and stroke events that are applied for 30 days and subsequent 

chronic disutility that is applied each cycle afterward. The healthcare costs and disutility values are 

presented in Tables B.7-B.8 in Appendix B. The QALY and cost parameters were also used in the 

other studies with the microsimulation version of the CVD Policy Model.72,73 Healthcare costs were 

inflated to 2019 US dollars using the medical component of the US Consumer Price Index. 

3.2.7 Model Validation 

Our model was calibrated to match contemporary CHD, stroke, and mortality rates for the US from 

the Centers for Disease Control and Prevention (CDC), National Hospital Discharge Survey, 

National Inpatient Sample, National Vital Statistics System, and NHLBI Pooled Cohort Study, and 

cross-validated against the dynamic population version of the CVD Policy Model (Figure B.6-B.8 
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in Appendix B). We then compared the estimated CVD, non-CVD, and all-cause mortality rates 

from our model to those observed in the NYC metropolitan area derived from the CDC’s Wide-

ranging ONline Data for Epidemiologic Research (WONDER).86 

3.2.8 Statistical Analyses 

For the primary analysis, we compared the costs, QALYs, and cost-effectiveness of the status quo, 

SSB taxes only, FV subsidies only, and a combined policy over 10 years. Each policy was 

evaluated from the healthcare sector perspective (direct medical costs regardless of payer) and 

societal perspective (direct medical costs plus policy and implementation costs). Incremental cost-

effectiveness ratios (ICERs) for each policy were calculated as the mean difference in costs divided 

by the mean difference in QALYs. Future costs and QALYs were discounted annually at 3%.87 

We used a threshold of $50,000/QALY to determine if a strategy was cost-effective.88 We also 

used the incremental net monetary benefit (INMB) to determine the cost-effectiveness of a 

strategy. INMB represents the monetary value of a strategy at a given willingness-to-pay threshold 

and is calculated as: INMB = incremental QALYs * willingness-to- pay – incremental costs. For 

this analysis, when the monetized incremental health gains are greater than the incremental costs 

(i.e., INMB>$0), the strategy is cost-effective relative to the status quo. Further, the strategy 

with the highest INMB is the most cost-effective and, thus, the preferred strategy at the 

willingness-to-pay threshold. 

 

We conducted deterministic sensitivity analyses to assess the potential impact of time horizon, 

price elasticity, and policy implementation costs on cost-effectiveness results. We accounted for 

joint uncertainty of model parameters in the cost-effectiveness analysis by probabilistically 

sampling parameter values from prespecified distributions in 1000 model iterations (Appendix B 

Table B.5). Results are presented as the mean and 95% uncertainty intervals (UI; 2.5th to 97.5th 

percentile) of 1000 iterations. Our analysis adhered to the requirements from the Consolidated 

Health Economic Evaluation Reporting Standards (CHEERS) 2022 Checklist (Appendix B Table 

B.9). 
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3.3 Results 

Compared with the status quo over 10 years, our model projected that, per 10,000 adults in NYC, 

an SSB tax would prevent 26 (95%UI, 4 to 92) CVD events, FV subsidies 16 (95%UI, − 1 to 36) 

CVD events, and a combined policy 41 (95%UI, 15 to 73) CVD events (Table 3.1). Compared 

with the status quo, an SSB tax would increase total QALYs by 24 (95%UI, 4 to 51), FV subsidies 

by 15 (95%UI, 2 to 35), and the combined policy by 37 (95%UI, 9 to 72). 
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Table 3.1. Projected health and economic outcomes in 10 years under different policies 
  Status quo  SSB taxes  FV subsidies  SSB taxes + FV 

subsidies  

Healthcare Outcomes  

CHD events  592 (542 to 648)  574 (523 to 631)  584 (534 to 638)  566 (518 to 622)  

Stroke events  275 (241 to 313)  267 (232 to 304)  268 (233 to 304)  260 (225 to 296)  

CVD deaths  165 (133 to 202)  161 (128 to 196)  163 (129 to 199)  158 (125 to 193)  

QALYs   81,702   

(81,380 to 81,996)  

81,726   

(81,406 to 82,020)  

81,717   

(81,400 to 82,020)  

81,739   

(81,416 to 82,036)  

Costs (2019 USD, thousands)  

Total (Societal)  670,900   

(661,111 to 

680,489)  

666,869   

(657,206 to 

676,306)  

674,380   

(664,683 to 683,884)  

670,366   

(660,656 to 679,850)  

Healthcare   670,900   

(661,111 to 

680,489)  

670,153   

(660,544 to 

679,564)  

670,434   

(660,745 to 679,937)  

669,703   

(659,982 to 679,049)  

Prevented Healthcare Outcomes  

CHD events  -  18 (3 to 75)  9 (-2 to 20)  26 (9 to 46)  

Stroke events  -  8 (1 to 17)  7 (1 to 16)  15 (6 to 27)  

CVD deaths  -  4 (-2 to 151)  3 (-3 to 10)  8 (-3 to 20)  

QALYs gained  -  24 (4 to 51)  15 (2 to 35)  37 (9 to 72)  

Incremental Costs (2019 USD, thousands)  

Total (Societal)  -  -4,030   

(-4,580 to -3,640)  

3,480   

(3,130 to 3,770)  

-540   

(-1,150 to -20)  

Healthcare   -  -750   

(-1,390 to -260)  

-470   

(-820 to -180)  

-1,200   

( -1,900 to -620)  

Policy  -  -3,280   

(-3,530 to -3,040)  

3,950   

(3,870 to 4,020)  

660   

(400 to 910)  

     Implementation  -  70 (60 to 70)  250 (250 to 260)  320 (310 to 330)  

Incremental cost-effectiveness  

Healthcare sector 

perspective  

        

ICER ($/QALY)  -  Dominated*  Dominated*  Dominant**  

INMB ($, 

thousands)  

  1,933 (543 to 

3,813)  

1,210 (382 to 

2,467)  

3,065 (1,248 to 

5,290)  
Societal perspective          

ICER ($/QALY)  -  Dominant**  Dominated***  Dominant**  

INMB ($, 

thousands)  

  5,216 (3,986 to 

6,941)  

-2,736   

(-3,566 to -1,513)  

2,402   

(682 to 4,492)  
Notes: SSB=sugar sweetened beverage; FV=fruit and vegetable; CHD=coronary heart disease; CVD=cardiovascular disease; 

QALY=quality-adjusted life year; ICER=incremental cost-effectiveness ratio; INMB=Incremental net monetary benefit  
1 All numerical results are presented as mean estimate with (95% UIs)  
2 INMB represents the monetary value of an intervention at a given willingness-to-pay threshold. INMB is calculated as: INMB = 

incremental QALYs*willingness-to-pay – incremental costs. For this analysis, willingness-to-pay was set at $50,000 per QALY. 

When the monetized incremental health gains are greater than the incremental costs (i.e., INMB >$0), the strategy is cost-

effective relative to the status quo. Further, the strategy with the highest INMB is the most cost-effective and, thus, preferred 

strategy at the willingness-to-pay threshold.  
*Dominated (i.e., costs more and less effective) by combining SSB taxation with F&V subsidies  
**Dominant (i.e., cost less and more effective) vs. status quo   
***Dominated by SSB taxation alone and combining SSB taxation with F&V subsidies 
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Each policy was estimated to result in reduced health- care costs compared with the status quo, 

with the largest savings projected when funding FV subsidies with an SSB tax at $1,200,000 

(95%UI, $620,000 to $1,900,000). An SSB tax policy was revenue-generating compared with the 

status quo and was projected to save $3,280,000 (95%UI, $3,040,000 to $3,530,000) in policy 

costs over 10 years. However, FV subsidies would increase policy costs by $3,950,000 (95%UI, 

$3,870,000 to $4,020,000), and the combined policy would increase costs by $660,000 (95%UI 

$400,000 to $910,000). From the healthcare sector perspective, the INMBs for an SSB tax, FV 

subsidies, and a combined policy were $1,933,000, $1,210,000, and $3,065,000, respectively, 

which suggested that the combined policy was the most cost-effective compared to the status quo. 

From the societal perspective, the most cost-effective policy was the SSB tax. 

 

Figure 3.2 shows the projected health and economic outcomes under each of the three policies 

in 10, 20, and 40 years as well as lifetime. As the number of years increased, the numbers of 

CHD and stroke events, CHD and stroke deaths, and QALYs gained increased steadily for each 

policy scenario. SSB taxes and FV subsidies could avert similar numbers of stroke events and 

deaths across different years, while SSB taxes could avert more CHD events and deaths compared 

to FV subsidies. The combined policy could avert more CHD and stroke events and their related 

deaths compared to implementing either of the two policies alone. However, SSB taxes could save 

more total costs compared to the other two policies. 
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Figure 3.2. Projected long-term clinical and economic outcomes compared with the status quo 

(numbers of CHD and stroke events, QALYs, and healthcare costs per 10,000 adults in NYC 

over 10, 20, and 40 years and lifetime were reported). 

Notes:SSB, sugar sweetened beverage; FV, fruit and vegetable; CHD, coronary heart disease; CVD, cardiovascular 

disease; QALY, quality-adjusted life year 
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Figure 3.3-4 shows the scatter plots of incremental costs and QALYs with 1,000 simulation 

iterations under each of the three policies from different perspectives. From a healthcare sector 

perspective (Fig. 3.3), the combined policy was dominant (i.e., reduced costs and increased QALYs) 

compared to all the other policies and had a 100% probability of being the preferred strategy at a 

$50,000/QALY cost-effectiveness threshold. However, from a societal perspective when policy 

costs were included, the combined policy was not cost-effective compared to the SSB taxes policy 

(Fig. 3.4). More specifically, the combined policy would result in an ICER of $268,462/ QALY 

compared to the SSB taxes policy. With a cost-effectiveness threshold of $50,000/QALY, SSB 

taxes alone had a 100% probability of being the preferred strategy from a societal perspective. 

 

 

Figure 3.3 Incremental costs and quality-adjusted life years compared with the status quo: 

Healthcare sector perspective 
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Figure 3.4. Incremental costs and quality-adjusted life years compared with the status quo: 

Societal perspective 

Notes: The red dashed line is the $50k/ QALY cost-effectiveness threshold. SSB, sugar-sweetened beverage; FV, fruit 

and vegetable; QALY, quality-adjusted life year  

 

 

Our subgroup analyses showed that the policy could have a differential impact across population 

groups by sex and race (Appendix B Table B.11). For example, funding FV subsidies with an SSB 

tax could avert 39 (95%UI, 9 to 73) CHD events and 18 (95%UI, 4 to 36) stroke events per 

10,000 men compared to the status quo, while the averted cases for CHD and stroke were 16 

(95%UI, 0 to 36) and 13 (95%UI, 4 to 27), respectively, among women. The averted CVD cases 

by the other policies were also more pronounced among men compared to women. Our results 

also showed that Black adults were estimated to benefit more from the policies compared to White 

adults. For example, the combined policy could avert 34 (95%UI, 5 to 76) CHD events and 23 

(95%UI, 0 to 48) stroke events per 10,000 Black adults, while the averted cases for CHD and 

stroke were 27 (95%UI, 0 to 57) and 14 (95%UI, 0 to 31) per 10,000 White adults. In addition, the 

one-way sensitivity analysis on cost parameters shows that the cost-effectiveness of SSB taxes was 

more sensitive to  the price and price elasticity changes compared with that of the FV subsidies 

policy (Appendix B Figure B.5). 
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3.4 Discussion 

In this modeling study, SSB taxes, FV subsidies, or a combined policy where SSB taxes funded 

FV subsidies were projected to prevent a substantial number of incident CVD events and CVD 

deaths among adults in NYC. Our estimates equate roughly to 18,000, 11,000, and 29,000 CVD 

events being averted over 10 years in NYC if an SSB tax, FV subsidies, or the combined 

policy were implemented city-wide. The combined policy was estimated to also increase more 

QALYs compared to the other policies over time. However, the cost-effectiveness of the combined 

policy depended on the specific perspective: the combined policy was the most cost-effective from 

the healthcare sector perspective, while from the societal perspective that considers both direct 

medical costs and policy and implementation costs, the most cost-effective policy was SSB taxes. 

In addition, the simulated policies could be more effective and cost-effective among men 

compared to women, and among Black adults compared to White adults. This implies that the 

policy has the potential to reduce racial and gender health disparities. 

 

Several recent studies have assessed the cost-effectiveness of a potential national SSB tax policy 

or FV subsidy policy.89,90 To our knowledge, our study is the first cost-effectiveness analysis of 

using SSB taxes to fund FV subsidies in a large city. Our study is particularly policy relevant 

because both quantitative and qualitative research indicates that SSB taxes garner greater support 

among stakeholders when emphasis is placed on using the revenue for health-related programs in 

the taxed communities.91–93 Across the US cities that implemented SSB taxes, $135 million per 

year in revenue has been generated, with a substantial proportion spent directly on health-related 

programs.59 Empirical studies suggested that SSB taxes discourage the purchase and 

consumption of SSBs.94,95 Reducing SSB consumption through tax policy may have benefits 

beyond those captured in our analysis. For example, although evidence is still scarce, SSB 

consumption is associated with multimorbidity among adults,96 and SSB taxes are expected to 

reduce the burden of such multimorbidity. A recent modeling study estimated that SSB taxes could 

reduce the burden of CVD and diabetes mellitus and result in substantial long-term healthcare 

expenditure savings in the USA.90 Another modeling study projected that within one year an SSB 

tax policy could reduce mean BMI by 0.16 kg/m2 among youth and 0.08 kg/m2 among adults in 

the USA.97 Furthermore, our analysis may be an underestimate of the long-term cost savings and 

health benefits of SSB tax policy because we did not include heart failure as an outcome, which 
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may be preceded by CHD and is associated with high costs and a significant reduction in quality 

of life. Notably, the ultimate impact of an SSB tax and FV subsidies is policy and context-specific; 

their effects may be dependent on factors such as the tax rate, baseline SSB and FV consumption, 

population demographics, and more.59 This points toward the importance of evaluating the effects 

of a specific policy within its proposed location, using a model such as the one presented in this 

study. 

 

NYC is a promising site for implementation of an SSB tax and FV subsidies. NYC recently 

received $5.5 million to expand the programs that offer FV financial incentives to SNAP recipients, 

98 including Get the Good Stuff, which currently offers a one- to-one matching credit for eligible 

produce at six supermarket locations, and Health Bucks,99 which offers coupons to reduce the cost 

of fresh FVs at all farmers markets. NYC also started offering a discount on prepackaged bags of 

locally grown produce purchased from local community-based organizations and urban farmers. 

As for SSB taxes, although more than 50 countries have implemented SSB taxes,100 the USA has 

not implemented the policy nationwide because there has been opposition from the food and 

beverage industry against the policy,101 and there are legal barriers such as state preemption.102,103 

Despite these challenges, several cities in the US and the Navajo Nation have implemented SSB 

taxes. NYC, however, lacks the authority to pass such a tax outright. The current study provides 

support for NYC to seek approval from the state legislature to grant the city the authority to pass 

such an excise tax and make decisions with respect to revenue allocation to ensure that at least a 

portion of the revenue is dedicated to low-resource communities in NYC to support FV 

affordability. 

 

Funding FV subsidies with an SSB tax has the potential to reduce health disparities and address 

equity concerns associated with implementation of the tax. Low-resource communities and people 

of color experience higher rates of CVD and are disproportionately targeted through marketing 

by the SSB industry104. Concerns that an SSB tax would be regressive and weigh heavily on these 

communities are valid. However, young people and those with lower income have been shown to 

have a larger decrease in the purchase of SSBs as a result of a tax.94,95 In this way, the potential 

health benefits from an SSB tax can be progressive.59 To ensure that the greatest benefit goes to 

those currently bearing the greatest health burden from SSBs, the tax revenue should be dedicated 

to supporting the health of these low-resource communities and development and implementation 
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of such programs should be done by guidance by community members themselves. In this way, 

programs will not only reflect the local needs of the communities themselves, but also build 

capacity and ideally, lead to longer-term sustainability and community-driven approaches.57 

Impacts of the tax and subsidy program on equity should be evaluated regularly, findings publicly 

reported and as needed, adjustments made, as possible. As such, an SSB tax and FV subsidies can 

serve as a strong strategy for reducing the burden of CVD and promoting health equity. 

 

This study has several limitations. First, our analysis only focused on CVD-related health and 

economic outcomes, so the potential benefits of SSB taxes and FV subsidies could have been 

underestimated. For example, research has shown that reduced SSB consumption and increased 

FV consumption are associated with a reduced risk of cancer,105,106 which warrants further 

investigation into the effect of SSB taxes and FV subsidies in preventing cancer. Second, we 

assumed that CVD risk functions derived in national data would replicate the natural history of 

CVD among NYC adults. While it is difficult to test the validity of this assumption, our simulated 

mortality rates closely approximated those in NYC. Third, we did not model Latina/x/o or Asian 

Americans in the study due to poor representation and small sample sizes in the pooled cohort data 

and NYC HANES. Lastly, the nutrition policy environment is dynamic, and other local and federal 

legislation, as well as industry efforts, might be synergistic or antagonistic with SSB taxes or FV 

subsidies. However, we were not able to capture these potential complex interactions between the 

modeled policies and other nutrition policies in the current study. 

 

Despite these limitations, to our knowledge, our study is the first assessment of the potential 

health and economic impact of combining an SSB tax with FV subsidies in a large city. The 

projected substantial health gains and cost saving associated with the policy could help relevant 

stakeholders and policymakers justify the implementation of this innovative policy in NYC and 

potentially other cities around the world. 
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 ESSAY 3: 30-DAY HOSPITAL READMISSION PREDICTION AMONG 

OLDER ADULTS DISCHARGED TO SKILLED NURSING 

FACILITIES: AN INTERPRETABLE MACHINE LEARNING STUDY 

4.1 Introduction 

After an acute hospitalization for an illness or an injury, many older adults will require some kind 

of post-acute care, such as provided by a skilled nursing facility (SNF) to recover, improve 

functional status and manage chronic conditions. In the United States, approximately 20% of 

Medicare beneficiaries require SNF care after hospitalization, e.g., 1.7 million people received 

care from SNFs (2.4 million stays) in 2014 alone.107 Spending on post-acute care, including SNF 

(which accounts for $28 billion annually) is over $60 billion per year in Medicare108 and is 

growing faster than inpatient spending.109 A significant issue facing the post-acute care industry 

are rehospitalization rates or individuals returning to hospitals within 30 days of discharge—the 

costs associated with readmission burden the sustainability of the US healthcare system.  In 2011, 

hospital costs related to readmission exceeded $41 billion.110 Skilled nursing facilities (SNFs) have 

higher readmission rates than any other discharge location.111 One in four patients discharged to 

an SNF is readmitted within 30 days.112 Besides increasing costs, higher readmission rates are 

associated with higher patient mortality.113 Higher readmission rates can also indicate poor care 

quality as the level of care in the post-acute facilities may lead to infections and complications.114 

Additionally, poor quality care can also harm the post-acute care market as patients can always 

find another place for care. SNF characteristics have been found to correlate with lower hospital 

readmission rates, suggesting the possibility that rates can be lowered by discharging to SNFs that 

specialize in post-acute care.110,115 

 

Transitions between care settings have recently received much attention from researchers and 

policymakers.116–118 For example, the Hospital Readmission Reduction Program is a CMS 

initiative that aims to reduce the number of rehospitalizations for older adults by tying rates to 

payment.119,120 A significant component in the program's implementation is a model that 

establishes the expected number of readmissions within 30 days of discharge to assess which 

hospitals are having excess readmissions. From the hospital's perspective, there is a financial 
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incentive that is now coupled with the desire to provide patient-centered care. This increases the 

value of identifying which patients to be discharged are most at risk of readmission and what 

makes them at risk of readmission so that appropriate risk mitigating action can be taken.  

 

One approach to improving rehospitalization rates is to focus on identifying what factors underly 

avoidable rehospitalizations. However, characterizing this subgroup from patient-level data has 

proven to be a difficult task.121,122 In addition to patient-level characteristics another source of 

variability is the quality of post-acute care. Even among SNFs, care quality varies and several 

studies have found associations between facility-level characteristics and 30-day hospital 

readmission rates.110,123 Further adding to the complexity is that preliminary evidence on social 

and economic factors of the patient has also been found to impact the risk of rehospitalization. 

However, such information is not always available from traditional data sources.124 SNFs do play 

an important role in helping to stabilize patients discharged from hospitals thereby helping to avoid 

readmission, such that helping SNFs to target their residents who may need extra attention to 

stabilize their health could also be a viable strategy to reduce rehospitalization rates125. In this 

paper, we propose and compare several interpretable machine learning models built on data 

triangulated across patient, facility, and neighborhood socioeconomic factors to predict newly 

admitted SNF residents most likely to be readmitted to the hospital. Our objectives are to build 

both a highly predictive and interpretable model that will shed additional light on what factors 

most contribute to hospital readmission risk. 

4.2 Related Literature  

In this section, we review the studies that examine rehospitalization for SNF residents to highlight 

our contributions from three aspects: data used, methodology used to improve prediction 

performance and model interpretation.  

 

The current literature tends to center on either insurance claims data (i.e., Medicare claims) or the 

MDS, both of which are collected at a national level by CMS. One of the more comprehensive 

studies was done by Neuman et al. who focused on Medicare beneficiaries receiving post-acute 

care from SNFs. They combined the resident-level data from the MDS, MedPAR, Medicare 

Beneficiary Summary files with facility-level characteristics using OSCAR and Nursing Home 
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Compare.126 Chandra et al. focused on the SNF population but used resident-level data from the 

initial hospitalization (EHR and administrative datasets) for patients from a single hospital and 10 

SNFs within an integrated healthcare delivery system.127 Kimball et al. focused on Medicare 

enrollees who underwent total knee or hip arthroplasty, combining Medicare claims with SNF 

quality data from Nursing Home Compare.128 Xu et al. combined data from the Minnesota Nursing 

Home Report Card (a state-level data source similar to Nursing Home Compare), the MDS, and 

Medicaid claims, to study the association between clinical care quality of SNFs and 

rehospitalization among Minnesota’s 65+ Medicaid beneficiaries.110 From a data perspective, our 

study stands out among those using the Minimum Data Set (MDS) and Nursing Home Compare 

to study the SNF population by augmenting this data with neighborhood-level socioeconomic and 

demographic data based on SNF location as well as including all resident regardless of payor 

source.  

 

Concerning the modeling approach, most of the existing literature examines which resident and 

SNF characteristics are associated with hospital readmission using logistic regression, often 

focusing on certain sub-groups of residents.114,123,127–130 Xu et al. took the approach a step further, 

developing a generalized linear mixed model, which combines the benefits of logistic regression 

for modeling binary outcomes with random effects used, in this case, to capture the correlation of 

residents within the same SNFs.110 Neuman et al. used linear probability models, which have the 

simplicity of having coefficients on the original probability scale, but do not restrict the model’s 

predicted probability to be between 0 and 1.126 Kimball et al. examined the correlation between 

publicly reported indicators of SNF quality and time to 30- or 90-day hospital readmission using 

Cox-proportional hazard models.128 Cox models have the advantage of informing if variables 

impact how long the event takes to occur. Several authors have attempted machine learning 

methods to take advantage of these methods’ predictive performance at the cost of model 

interpretability. For example, Chandra et al. developed a gradient boosting machine (GBM) that 

achieved an AUC of 0.69 under 10-fold cross-validation, representing a 16% improvement over 

the Charlson Comorbidity Index method.127 In this work, we focus on improving prediction by 

using machine learning and investigating the influence of imbalanced data, comparing variable 

selection techniques, and comprehensively comparing various machine learning models with 

improved prediction outcomes, and choosing the threshold for determining readmission cases. 
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Lastly, we apply methods to make the black-box machine-learning models interpretable to 

combine the benefits of accurate prediction with understandable risk profiles.   

4.3 Material and methods 

 

Figure 4.1. Outline of Analysis Approach 

We first summarize our study framework (Figure 4.1). After data pre-processing, we apply three 

data balancing methods, a technique known to improve model predictiveness, resulting in three 

datasets. Then, we implement three feature selection methods on each of the three balanced 

datasets, resulting in nine datasets (3 balancing techniques by 3 feature selection techniques). Next, 

we train each of the four machine-learning models on the nine datasets. Finally, we evaluate the 

model performances and implement the model interpretation method on the best-performing 

classifier.  

4.3.1 Dataset description 

We combined three datasets in our research study: 1) Minimum Data Set (MDS) 3.0 (2014-2018) 

obtained from the Family and Social Services Administration of Indiana, US; 2) Publicly available 

SNF performance data (2015-2018) obtained from the Nursing Home Compare website published 

by the Centers for Medicare & Medicaid Services (CMS)131; 3) Socioeconomic Status and 

Demographic Characteristics of ZIP Code Tabulation Areas (ZCTA) data (2014-2017) obtained 

from publicly available National Neighborhood Data Archive (NaNDA).132  
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MDS 3.0 is a standardized core set of screening, clinical, and functional status elements of SNF 

residents. The data collection is federally mandated for all residents in SNFs that are Medicaid or 

Medicare certified. The data also includes administrative information, such as timing and location 

category of admission and discharge. Health and functioning information collected includes: 

cognitive patterns, e.g., the resident’s attention, orientation, and ability to register and recall 

information; behavior, e.g., behavioral symptoms that may cause distress or are potentially harmful 

to the resident, or maybe distressing or disruptive to facility residents, staff members or the 

environment; functional status, e.g., activities of daily living (ADLs), altered gait and balance, and 

decreased range of motion; bladder and bowel, e.g., use of bowel and bladder appliances, the use 

of and response to urinary toileting programs, urinary and bowel continence, bowel training 

programs, and bowel patterns; active diagnoses, e.g., diseases that have a relationship to the 

resident’s current functional, cognitive, mood or behavior status, medical treatments, nursing 

monitoring, or risk of death; health conditions, e.g., conditions that impact the resident’s functional 

status and quality of life. 

 

As MDS assessments are made of residents periodically, it is common for residents to have 

multiple records or data rows. To avoid double counting residents, we first extract each resident’s 

admission record to serve as the denominator of the sample and to provide the resident features for 

prediction. Next, we check the records for each resident for the nearest discharge information 

(closest in time). If the nearest discharge assessment shows that a resident is discharged to an acute 

hospital and the length of the SNF stay is less than or equal to 30 days, then we denote this record 

as a readmission case. Otherwise, if the SNF LOS > 0, the discharge location is not to an acute 

hospital, or if there is no discharge assessment we denote this record as a non-readmission case. 

The second data source, CMS’s Nursing Home Compare website, is publicly available and 

contains measures of individual SNF performance. Performance indicators collected for this study 

are 18 clinical quality measures, 7 real-valued variables of expected and observed staffing intensity 

across four nursing roles, an ordinal summary rating of performance on state health inspections 

that ranged from one to five stars, and 9 binary variables indicating the SNF’s ownership type. 

These data were merged into the MDS data at the SNF level.  
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The third data source, NaNDA, is also publicly available and contains measures of the physical 

and social environment linkable to other data by location information. From this data, we include 

33 numerical features of the neighborhood's socioeconomic status and demographic characteristics. 

These numerical features are operationalized as proportions describing the population’s income, 

education level, ethnicity, employment, and house ownership for a specific ZCTA. Data from the 

NaNDA were merged to SNFs in the MDS data at the zip 5 level. 

 

The MDS includes data on all SNF residents for Medicaid and Medicare-certified SNFs. The 

inclusion criteria for our study are residents 65 years or older, admitted to SNFs from an acute care 

hospital, with the hospital discharge occurring between 2015 and 2018. This time range matched 

up well with our other two datasets at the time of the data pull. After filtering we have included 

93,058 SNF residents across 368 Indiana SNFs. For features, we included 85 candidate features 

that should be available for prediction after the admission MDS assessment of the resident is 

completed.  

4.3.2 Data imputation 

We handle missing data in SNF resident features in two ways. First, we drop features with the 

proportions of missing greater or equal to 70 percent. Note that the label of a resident is always 

known.  Then, we use the multivariate imputation method133 to impute missing values for a given 

feature (Appendix C Table C.1 shows the missingness of the included features). This method 

works by building a regression model for each feature (y) with missing values as a function of 

other features (x), and uses the estimate y of for imputation.  

4.3.3 Imbalanced data handling 

The full dataset has a severe class imbalance or ratio of 7:1 in favor of the majority class. Class 

imbalance is known to degrade the performance of classifiers and various solutions have been 

proposed134,135. We tested several famous approaches that treat the imbalance problem from 

different angles to assess the impact of the balancing technique on the final performance of our 

classifier models. We used SMOTE,136 an oversampling technique, to create new synthetic 

samples based on the minority class. For this algorithm, the majority class is unaffected and the 
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synthetic new occurrences are different from minority cases that already exist (i.e. they are not 

simple duplicates of observed cases). The second algorithm, ENN is an under-sampling technique 

that clusters data based on the feature space and then deletes the majority-class cases with a 

different observed output value than their nearest neighbors.134,137 The third balancing algorithm, 

SMOTEENN,134 is a combination of both of the other two. The algorithm uses SMOTE to 

oversample minority cases and ENN to remove majority class samples from the dataset. We use 

Python “imblearn” package to implement all data balancing techniques, and we have a 1:1 ratio 

for the two classes after data balancing.  

4.3.4 Feature selection 

As the feature space was large, we implemented three feature selection methods to reduce 

overfitting, and compared them with using all features. The feature selection methods we adopted 

are 1) LASSO logistic regression,138 2) recursive feature elimination (RFE) using random forest 

with cross-validation, 3) hierarchical clustering of highly correlated features using Spearman rank-

order correlation. The LASSO is a penalized regression method that biases some coefficients 

among correlated features to zero, eliminating the corresponding features from the model and is 

analogous to specifying a Laplace prior for the coefficients in a Bayesian regression model.139 The 

RFE with cross-validation searches for a subset of features by starting with all features in the 

training dataset and removing features until the desired number remains. We adopted hierarchical 

clustering of highly correlated features since the first two feature selection methods eliminated a 

limited number of features (LASSO 1 and RFE 13). Several features in the data are collinear (e.g., 

various measures of facility size such as number of admissions, number of staff, and number of 

beds), such that permuting one feature will have little effect on the model’s performance as the 

model can get the same information from a correlated feature. Note that we do not present results 

from LASSO feature selection since the number of features after selection is almost identical to 

the number of all features, making the results trivially different from the benchmark case.  
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4.3.5 Machine learning classifiers and evaluation metric 

We utilized four machine learning classifiers to predict hospital readmission: logistic regression, 

random forest, XGBoost, and neural networks. All models were fit with the Python Sklearn or 

xgboost (in the case of XGBoost) package using default settings. 

 

Logistic regression (LR)140 is a commonly used model for binary classification tasks. It uses the 

sigmoid function to learn the linear relationships between the outcome variable and the 

independent variables. As a type of generalized linear model, features used in logistic regression 

have interpretable parameter estimates (e.g., odds ratios) that also permit statistical hypothesis 

testing. Additionally, LR permits the estimation of interaction effects between features (sometimes 

referred to as moderating effects).  We use the performance of LR as a benchmark for other 

approaches.  

 

Random forest (RF)141 builds decision trees out of a subset of samples and features from the 

original training dataset and classifies them based on the majority vote from each tree. The use of 

multiple trees helps to reduce classification errors and guard against the impact of noise in the data. 

RF also has internal measures of variable importance.  

 

XGBoost, or extreme gradient boosting of trees,142 iteratively trains an ensemble of shallow 

decision trees parallelly. In each iteration, it uses the error residuals from the previous model to fit 

the next model. The final prediction is a weighted sum of all tree predictions. XGBoost has similar 

measures of feature importance as RF. Compared to RF, XGBoost is more computationally 

expensive and requires more parameters to tune.  

 

Neural networks143 are designed to mimic the way the human brain processes information. They 

are comprised of input (independent variables) and output (dependent variable) nodes with 

connections between them called edges. Edges are learned by using connection weights, bias 

weights, and cross-entropy. Additionally, one or more hidden layers can be placed between the 

input and output layers in the neural network framework.  
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Table 4.1. Confusion matrix 

  Actual Values 

  Positive Negative 

Predicted  

Values 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

 

For each model, 70% of the data is randomly chosen as the training data while 30% of the data is 

held out as test data. Model performance is evaluated based on several metrics calculated from the 

model’s predictions on the test data. We report on many of the classic binary prediction metrics 

such as accuracy, precision, recall (sensitivity), specificity, F1-score, ROC curve AUC, and 

precision-recall curve which are all derived from the confusion matrix described in Table 4.1. 

More specifically, TP (true positive) is the number of cases that the model correctly predicts the 

positive class. TN (true negative) is the number of cases that the model correctly predicted the 

negative class. FP (false positive) is the number of cases that the model falsely predicts the positive 

class, and FN (false negative) is the number of cases that the model incorrectly predicts the 

negative class. 

 

Accuracy is the proportion of correct predictions. However, it is susceptible to overstating the 

benefits of a prediction model when the two classes are imbalanced. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                            Equation 4.1 

In readmission prediction, false positives will lead to unnecessary and excessive use of healthcare 

resources that are often scarce. Thus, making correct predictions for positive cases is more 

important, and precision fits this purpose by calculating the proportion of correctly forecast 

positive observations over all cases predicted positively (i.e., when the model predicted positive, 

how often was it correct).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                         Equation 4.2  
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Recall or sensitivity calculates the proportion of true positives across all actual true positives (i.e., 

when the model should have predicted a positive, how often did it predict a positive).  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                         Equation 4.3 

 

Specificity is a complementary measure of recall or sensitivity. It is the percentage of predicted 

negatives across all actual negatives (i.e., when the model should have predicted a negative, how 

often did it predict a negative).  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
                                                                         Equation 4.4 

 

An effective readmission prediction model should both identify positive cases when they occur 

and when the model predicts a positive case, it should be truly positive a high percentage of the 

time. Precision captures the first idea and recall or sensitivity captures the second. The F1-score 

accounts for both as it is the harmonic mean of the two measures and is calibrated to work well on 

imbalanced data. It has a maximum value of 1, meaning perfect precision and recall, and a 

minimum value of 0 when either precision or recall is zero. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2(𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                                       Equation 4.5 

 

Lastly, the receiver operator curve (ROC) area under the curve (AUC) measures the tradeoff 

between sensitivity and specificity across the range of possible probability cut-off values for 

predicting a positive or a negative case. AUC ranges from 0.5 to 1, with higher being better.  

4.3.6 Model interpretation method 

One of the drawbacks of more flexible machine learning approaches to prediction is the difficulty 

in interpreting why the model performs well or what variables in particular are contributing to 

correct predictions. SHAP (SHapley Additive exPlanations)144 is a method to explain individual 

predictions that takes a game theory approach to divide the contributions among the features for 
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an individual predicted value. The approach uses Shapley values,145 which are derived from 

contributions of players cooperating in a game with competition between groups of players.  

 

The calculation of Shapley value is performed for feature X of some instance i. With a given feature 

subset, the SHAP method will compute the differences between the predicted outcomes of instance 

𝑖 including and excluding the feature 𝑋. Such difference is the marginal contribution of the given 

feature 𝑋 to the current feature subset. Then this calculation is performed for all feature subsets 

(all possible feature combinations) including and excluding the feature 𝑋. The weighted mean of 

the differences is the Shapley value for instance 𝑖. If we have a data set with N features, then the 

SHAP method needs to train 2𝑁 models with the same parameter settings. Below we show the 

mathematical formulation for the Shapley value: 

𝑆ℎ𝑎𝑝𝑙𝑒𝑦𝑋(𝑖) = ∑
𝑃𝑠(𝑖)−𝑃𝑠−𝑋(𝑖)

|𝑠|×(𝐹
𝑠)𝑠={𝑠∨𝑋∈𝑠}                                                      Equation 4.6 

where s is a subset of the features including feature X, 𝑃𝑠(𝑖) is the predicted outcome from a model 

trained with the feature subset s for instance 𝑖, |s| denotes the size of a feature subset, and F is the 

total number of features.  

 

For our work, we applied the SHAP model to first generate SHAP values for all cases in our dataset 

and then illustrated the SHAP summary plot and SHAP dependence plot using a publicly available 

SHAP API [40] to gain a global understanding of our dataset. We implemented the SHAP method 

on the best-performing classifier (XGBoost), and the SHAP value is generated for each instance. 

4.4 Results 

4.4.1 Overall Performance 

In this section, we compare performance results across classifiers, sampling schemes, and feature 

selection methods. Note that we omitted the performances of RF classifiers since their 

performances were similar to XGBoost but being an average of 4% inferior to the XGBoost 

classifier across all performance metrics. Also, we did not present the results using LASSO feature 

selection which removed only 1 feature making results redundant to the baseline case. 
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Figure 4.2 compares the classifiers across the feature subsets when sample balancing was fixed to 

be SMOTEENN (the best performing of the sample balancing techniques). The figure shows that 

the XGBoost classifiers perform the best with AUC of 0.99 across all feature settings whereas the 

other two classifiers have a much greater decline in AUC when reducing the number of features 

in the model. LR classifiers perform the poorest among the candidate methods when using the 

same features. LR classifier was also the most affected by the reduced size of features as AUC 

goes from 0.92 to 0.79.  

 

 

Figure 4.2. ROC Curve Comparing Classifiers’ Performance with SMOTEENN (up-and-down 

sampling) 

Table 4.2 contains the overall performance measures of precision, recall, F1-score, and accuracy 

for the three classifiers with SMOTEEN balanced data and the prediction threshold value is set to 
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0.5, i.e., a prediction is labeled as readmission if the predicted probability is larger than or equal 

to 0.5 and vice versa. The precision, recall, F1-score and accuracy for LR classifiers decrease when 

the number of features decreases, while XGBoost and NN both have a slight increase in these 

metrics when 10 features were dropped using RFE. When using the correlation and clustering 

feature selection method, the recall, F1-score and accuracy for the XGBoost classifiers only drop 

by about 1%, which is more robust compared to the NN classifiers (performance metrics drop 

more than 10%). XGBoost performs the best with the smallest number of features (45) with 

precision of 98%, recall of 93.9%, F1-score of 95.9%, and accuracy of 96.4%.  

 

Note: The 152 features represent the full feature set, the 142 features are chosen by RFE and the 45 are selected by 

hierarchical clustering of highly correlated features. RF classifier model is omitted as its performance closely 

mirrored XGBoost but was about 4% worse across metrics. 

 

Next, we compare the XGBoost classifiers’ performances across the three data balancing/sampling 

schemes. Note that we choose the XGBoost classifiers with hierarchical clustering of highly 

correlated features to simplify the presentation of results as the pattern holds for the other 

classifiers and feature selection methods. Figure 4.3 shows that the XGBoost classifier performed 

the best with an AUC of 0.99 using the up-and-down sampling scheme (SMOTEENN). The 

upsampling scheme (SMOTE) has 0.04 lower AUC, and the downsampling scheme (ENN) has 

0.14 lower AUC than using SMOTEENN. Table 4.3 compares data balancing approaches using 

precision, recall, F1-Score, and accuracy. Across all metrics, the up-and-down sampling performs 

Model # of features Precision Recall F1-score Accuracy

SMOTEENN (up and down sampling)

152 81.5% 85.8% 83.6% 84.6%

142 81.4% 85.8% 83.5% 84.6%

45 66.8% 78.2% 72.1% 72.3%

XGBoost

152 97.9% 95.3% 96.6% 96.9%

142 98.0% 95.4% 96.7% 97.0%

45 98.0% 93.9% 95.9% 96.4%

152 87.7% 92.4% 90.0% 90.6%

142 88.1% 92.8% 90.4% 91.0%

45 73.2% 80.2% 76.5% 77.6%

Logistic 
Regression

Neural 
Network

Table 4.2. Performance Metrics for Classifiers with Threshold 
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the best (i.e., about 5% better on average than upsampling and about 20% better on average than 

downsampling). Thus, we would recommend using SMOTEENN since it has the best performance 

across all metrics, especially when we concern more about recall, and it is more efficient than 

SMOTE since it will need to generate fewer samples, and synthesizing new samples take more 

time. 

 

Figure 4.3. ROC Curves Comparing Classifiers' Performance under Three Sampling Schemes  
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Note: Pattern seen in this table holds across other classifiers and feature selection methods.  

 

Table 4.4 considers changes in the performance metric due to varying the choice of the threshold 

value for prediction. We focus on the XGBoost classifier with 45 features since they perform better 

than other classifiers using fewer features across all metrics. In Table 4.4, when the threshold value 

is set to 0.5, the XGBoost classifier using 45 features has precision of 98%, recall of 93.9%, F1-

score of 95.9%, and accuracy of 96.4%. When the threshold value is set to 0.44 to maximize the 

F1-score, we found improvement in F1-score and accuracy to be slight, while recall increases by 

0.4% and precision falls by 0.4%. As we cared more about recall since not detecting readmission 

cases will be more costly in healthcare resources, and even if we do not have a large increase in 

recall, the impact would be substantial when the entire population becomes large. Note that we 

also tested to maximize recall, but that approach resulted in a threshold close to 0, labeling all 

cases as readmitted while making wrong predictions for all non-readmitted cases. Thus, the 

superior approach was setting the threshold value to maximize the F1-score, which resulted in a 

higher recall for the classifiers with good TN.  

  

  

 

 

 

 
 

Note: Threshold value of 0.44 was chosen to maximize the F1-score. 

Model Precision Recall F1-score Accuracy

SMOTEENN (up and down sampling)

XGBoost 45
0.5 98.0% 93.9% 95.9% 96.4%

0.44 97.6% 94.3% 95.9% 96.4%

# of 
features

Threshold 
value

Model Data balancing Precision Recall F1-score Accuracy

XGBoost

45 98.0% 93.9% 95.9% 96.4%

46 96.0% 86.7% 91.1% 91.5%

45 78.8% 72.5% 75.5% 76.5%

# of 
features

SMOTEENN 
(up and down 

sampling)

SMOTE (up 
sampling)

ENN (down 
sampling)

Table 4.3. Performance Metrics for Classifiers with Three Data Balancing 

Methods (Threshold of 0.5) for Readmission Cases 

Table 4.4. Performance Metrics for Classifiers with Varying Thresholds 

Readmission Cases 
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4.4.2 Model Interpretation  

We use the SHAP method to interpret the results from our best-performing model, the XGBoost 

classifier, and focus on the version trained on the least number of features (45). Figure 4.4 is the 

SHAP value summary plot, with each row displaying the distribution of each feature's SHAP 

values. The color of a data point for an instance indicates the value (i.e., for continuous features 

higher values are redder, and lower values are bluer). For example, higher values of ADL tend to 

either have a large positive impact on the predicted probability (the red values on the far right of 

the ADL row) or small to moderate negative values. Looking at features all at once allows for a 

relatively quick diagnosis of which features are positively or negatively correlated with predicted 

readmission probability and which features may have more complex relationships, such as an 

interaction effect.  
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Figure 4.4. SHAP summary plot for XGBoost model with 45 features 
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We report and discuss our findings on what features contribute to lower readmission risk based on 

these SHAP values (Figure 4.4). For example, the resident’s average SHAP value was negative 

for individuals diagnosed with dementia (feature value of 1), and positive when the resident was 

not diagnosed with Dementia (feature value of 0). That is, in the SHAP interpretation for our 

prediction model, readmitted patients tend not to have dementia. We organize the following results 

from the SHAP values around three categories: resident, facility, and neighborhood features. 

Several resident-level features were found to be positively correlated with the prediction of 

readmission. These resident features include Diabetes Mellitus diagnosis, shortness of breath or 

trouble breathing when sitting at rest, and being male. Resident features that contributed to the 

lower prediction of readmission probability were diagnoses for coronary artery disease (CAD), 

fractures other than hip fracture, cerebrovascular accident (CVA), transient Ischemic attack (TIA) 

or stroke, urinary tract infection, Parkinson’s disease, deep venous thrombosis (DVT), pulmonary 

embolus (PE) or pulmonary Thrombo-Embolism (PTE), wound infection, traumatic brain injury, 

and quadriplegia. Tobacco use, being married and married but separated, and Hispanic ethnicity 

were also correlated with lower predicted readmission probabilities. The relationship between 

ADL need for assistance and predicted readmission probability follows a U-shape. Both High ADL 

scores and low ADL scores are related to higher predicted probabilities of readmission risk. This 

may be due to the correlation between ADL and other features.  

 

Facility features that were positively correlated with predicted readmission probability include a 

higher percentage of long-stay residents with a catheter inserted and left in their bladder, a facility 

owned by city/county government (small impact), and a facility owned by church-related entities 

(non-profit). Facility features correlated with lower predicted probabilities of readmission were 

having a higher proportion of residents under the age of 18 (small impact), having a higher 

percentage of long-stay residents who were physically restrained, having a higher percentage of 

long-stay residents who lose too much weight, and ownership structure being by the government 

(hospital district) or by a for-profit organization.     
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Neighborhood features that were positively correlated with predicted readmission probability were 

a higher proportion of individuals with high school diplomas and/or some college, a higher 

proportion of individuals age 16 or older who were in the labor force but unemployed, and a higher 

proportion of Hispanic residents. 

 

Figures 4.5-8 are used as examples to examine features for non-linear relationships with predicted 

readmission probability and interactions between features by using dependence plots. For each 

plot, the x-axis shows the feature value, the left y-axis shows the Shapley value of the same feature, 

and the color bar on the right side of the plot shows a second feature’s value. The dispersion of the 

data points occurs when multiple instances have the same feature value (but not Shapley value) 

for the feature on the x-axis.  We can understand such change as the deviation of predicted 

readmission risk from the mean of prediction risks using all possible combinations of features. The 

further a point deviates from the mean of predictions (which is 0), the more impact the features 

have on the prediction in that instance. Therefore, a positive correlation between the feature on the 

x-axis and the predicted readmission probability would be seen as a tendency to have positive 

SHAP values on the right side of 0 on the x-axis and negative SHAP values on the left side of the 

mean of the x-axis. Similarly, if red data points tend to have positive SHAP values and blue data 

points tend to have negative, then the feature on the right y-axis is positively correlated with the 

prediction of readmission. If the relationship between data point color and the SHAP values 

changes as the x-axis variable increases, this would indicate that there is an interaction effect 

between the two features and the predicted probability of readmission. Figure 4.5 shows that an 

SNF located in a neighborhood with a low unemployment rate (less than or equal to 0.2 after 

normalization) is associated with lower predicted readmission probabilities. As the 

neighborhood’s unemployment rate increases, the predicted probability of readmission increases 

in a non-linear pattern. The pattern is such that the increase of the predicted readmission probability 

grows quickly at first when the proportion of unemployment is low but rising, runs flat over middle 

values of unemployment, and grows slowly when the proportion of unemployment becomes high. 

Using the color coding of data points for gender, we find that for neighborhoods with a low 

proportion of unemployment, female residents are associated with even lower predicted 

readmission probabilities than males (an interaction effect). This pattern is similar to that seen in 

Figure 4.6 for the feature low percentage of low-risk long-stay residents who lose control of their 
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bowels or bladder. In addition, individuals from a minority race or ethnicity at facilities with a 

high value on this feature are predicted to have relatively higher predicted readmission risk. Figure 

4.7 shows a polynomial relationship between satisfied staffing of Certified Nursing Assistants 

(CNA) and predicted readmission risk. Low and high values of satisfied staffing of CNA indicate 

either unmet or excessive CNA staffing hours respectively, are associated with lower predicted 

readmission risk. It is possible that CNAs are mainly responsible for more basic needs care, which 

is less important to post-acute patients who need more medical care. 

 

Figure 4.5. Impact on readmission risk of SNF neighborhood unemployment rate and resident 

gender 
Note: Red points indicate that the resident is female and blue that the resident if male. 
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Figure 4.6. Impact on readmission risk of percentage of low-risk long-stay residents who lose 

control of their bowels or bladder 
Note: Red points indicate that the resident identified White as their race and blue points that the resident identified 

any other group as their race. 

 

Figure 4.7. Impact on readmission risk of staffing of Certified Nursing Assistants (CNA) 

Note: The color of the points indicates the normalized proportion of population received high school education 
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Figure 4.8. Impact on readmission risk of percentage of long-stay residents with a catheter 

inserted and left in their bladder 

Note: Cases are stratified by dementia diagnosis such that red indicates a diagnosis of dementia and blue indicates 

no diagnosis. 

 

4.5 Conclusion 

In this paper, we propose and compare several interpretable machine learning models built on data 

triangulated across patient, facility, and neighborhood socioeconomic factors to predict newly 

admitted SNF residents most likely to be readmitted to the hospital. We find that careful handling 

of data imbalance and feature selection improves machine learning model performance. More 

specifically, the XGBoost classifier using up-and-down sampling and feature selection with 

hierarchical clustering outperforms other models with AUC of 0.99. With the SHAP model 

interpretation method, we found that the neighborhood social-economic factors correlate with the 

readmission risk, such as the neighborhood's unemployment rate around the SNF. One application 

of this tool could be developing a recommendation list of nursing facilities for hospital discharge 

planners. It could serve as a risk-adjustment model in evaluating nursing facility success in 

minimizing re-admissions after considering the risk profile in their patient populations. 
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A limitation of this study is that our data does not comprehensively capture the patient’s health 

history before their admission to SNFs, especially during their most recent hospital stay. Existing 

literature shows that such variables could have statistical significance. We also normalized real-

valued features to range between 0 and 1, which makes interpreting results less convenient, but 

this could be addressed by reversing the normalized values. The data for the study comes from 

only one state which may limit the generalizability of the model or results. However, the data from 

this study exist at a national level and future work should focus on testing the current model on 

data occurring later within the same state and on data from other states. 

 

The developments in interpretable machine learning illustrated in this study highlight the approach 

to improving trust in machine learning-based prediction models in clinical practice. We 

significantly improved the predictive performance of the readmission risk model over the logistic 

regression model without losing all of the interpretability that has long been the advantage of 

parametric statistical methods. For future research, developing automated methods to identify 

meaningful relationships between risk factors and the readmission outcome that do not require 

manually building and reviewing plots should profoundly impact the uptake of interpretable 

machine learning models. From the problem context perspective, we will also investigate the 

interpretable machine learning tool to address the multiple interdependent outcomes for the SNF 

residents, including death, general hospital readmission, and discharge back to the community, all 

of which are relevant to the SNF. 
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 CONCLUSION 

Predictive modeling shows great promise in assisting with decision-making problems in healthcare, 

particularly with the rise of big data and computational technology. As more healthcare domain 

researchers and practitioners understand the power of predictive modeling and as healthcare data 

pipelines improve, developing predictive modeling tools to support decision-making in healthcare 

is a growing area of research. To achieve optimal results, we still need more tailored innovative 

methods to process and analyze complex data in health analytics applications.  

 

My dissertation focused on using predictive modeling techniques to address specific challenges 

and assist with complex decision-making problems in three healthcare domains: clinical practice, 

public health, and health systems. 

 

Paper 1 focuses on the domain of clinical practice. It introduces a novel predictive modeling 

method tailored to medical practitioners’ needs to identify the most cost-effective liver cirrhosis 

diagnostic strategy with limited data access. This model also captures the heterogeneity of the 

various diagnostic strategies’ outcomes. The advantage of such a predictive model is that it aims 

to support practitioners’ decision to select the most cost-effective diagnostic strategy in a timely 

and low-cost fashion. The development of such a model involves expert clinical knowledge. This 

model does not require individual patient data which avoids any delays related to data acquisition 

due to data privacy regulations. The model allows practitioners to identify a few cost-effective 

strategies quickly. This helps the practitioners narrow down their choices of strategies, and they 

can further design clinical trials for research on targeted strategies with less time and lower costs.   

 

Paper 2 presents an individual-based CVD simulation model to evaluate public health outcomes 

and healthcare costs using various food policies. The modeling of individual disease progression 

is transparent, easy to understand, and verified by cardiologists. The model captures individual 

heterogeneity, such that the probability of having CVD depends on multiple patient characteristics. 

Meanwhile, it can also quickly output various outcomes for a relatively large population. With the 

assistance of this predictive model, policymakers can get reasonably quick feedback on the likely 

consequences of different potential policies. This quantitative evidence will help them make a 
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more informed decision about which policy can improve public health with reasonable costs from 

a pool of candidate policies implemented within a complex population. Moreover, the CVD 

predictive model can also offer outcomes according to subpopulation groups (e.g., by income, race, 

etc.). This is particularly important if health policy aims to achieve health equity, or at least reduce 

health disparities, since policies implemented within a region usually influence multiple 

population subgroups differently (e.g., across socio-economic levels or race and ethnicity groups).  

 

Lastly, paper 3 took a different perspective within a specific healthcare system between a hospital 

and SNFs. Both hospitals and SNFs will suffer from high readmission rates because the 

readmission rate is an essential metric for quality of care. Low quality of care can make SNFs less 

competitive in attracting new admissions, particularly in markets where post-acute care supply 

outpaces demand. Additionally, the rise of value-based payments, or payment rates tied to quality 

metrics, increases the incentive of SNFs to reduce hospital readmissions to protect revenue. For 

example, hospitals and SNFs are penalized for high readmission by the Centers for Medicare & 

Medicaid Services with respect to Medicare payment rates. Thus, there is some incentive for 

hospitals and SNFs to coordinate to minimize patients’ readmission risks. As an initial step, paper 

3 introduces a readmission prediction tool using machine learning methods by augmenting 

multiple data sources, including patient demographic, health, and functioning data from the MDS, 

SNF characteristics from Nursing Home Compare and SNF neighborhood characteristics data. The 

advantage of the machine learning techniques is that they significantly improved prediction 

accuracy by relaxing the linear assumption of more traditional parametric statistical methods. 

Additionally, I illustrated how the ubiquitous black-box machine learning models could be better 

understood with a model interpretation method. This prediction tool can further contribute to the 

study of decision-making on patient discharge assignment recommendations within the hospital-

SNFs system. 

 

This dissertation explores predictive modeling in three healthcare domains: clinical practice, 

public health, and at the health system level. However, there are many research opportunities to 

improve predictive modeling to better address the needs of various stakeholders in an era in which 

technology in healthcare rapidly changes. I list some opportunities from the three healthcare 

domains mentioned. From the clinical practice perspective, many wearable health devices and 
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sensors have been deployed and such data accumulate in real-time. How to develop predictive 

models to augment such information with existing clinical practice to facilitate medical 

practitioners’ decision-making in personalized medical treatment is an exciting topic. From the 

public health perspective, predictive modeling needs to be updated promptly for properly 

evaluating new policies as populations change due to many factors, such as changing health 

behavior, diet, work-life style, and climate change. Thus, predictive models developed previously 

may not serve a later population at a later time. Manually re-calibrating and validating predictive 

models can be tedious and time-consuming. Methods to automate predictive models' calibration 

and validation processes are worth exploring. Lastly, in the healthcare systems domain, and 

particularly the system with both hospitals and SNFs, we can further answer the question “Which 

SNF should a hospital discharge case manager recommend for a post-acute patient who needs SNF 

care”. We can tackle the problem by developing a simulation model to study the coordination 

between a hospital and multiple SNFs on patient discharge assignment recommendations. 

 

In addition to the potential research opportunities, I will reflect on my journey in developing 

predictive modeling in healthcare based on my experience collaborating with multiple medical 

researchers in many prestigious medical institutions. The most important factor is communication. 

We (researchers developing predictive modeling tools) must communicate regularly with the 

stakeholders to understand the healthcare problem context and their needs. Often, there are bi-

directional knowledge gaps between the stakeholders and us. For example, we are more 

knowledgeable about predictive modeling techniques but less familiar with the healthcare problem 

context and the intricate details of the healthcare problems. Meanwhile, the stakeholders usually 

do not follow the most advanced predictive modeling techniques. Still, they need to understand 

the methods for solving their problems since the stakeholders (e.g., physicians) hold liabilities to 

their clients. This communication process often takes time and goes back and forth due to a better 

understanding of the problem context and the modeling techniques. Finally, we may agree on a 

different method for a better-framed problem. The key factors in communication include always 

clarifying the needs of the stakeholders (e.g., identifying the essential metrics to capture and what 

needs to be compared), knowing how the data was collected, conceptually explaining why using a 

particular model, and using intuitive visual presentations for the results. Do not go into the depths 

of technical details until there is any concern from the stakeholders.  
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One major challenge in developing predictive modeling for healthcare problems is data access. 

Healthcare problems are often complex, and a predictive outcome could be correlated with many 

factors in a healthcare problem. One major factor is patient characteristics data; sometimes, we 

need data from multiple care settings (e.g., different hospitals, skilled nursing facilities, etc.) and 

insurance companies. Due to privacy and law restrictions, we often cannot access such high-

resolution data to develop a very sophisticated model that closely captures a real-world system. 

However, we can still develop useful predictive models to meet the stakeholders’ needs. Predictive 

models offer a wide range of methods, and some do not require high-resolution individual patient-

level data. Instead, we can acquire low-resolution population-level data from the literature. This 

approach is suitable for answering questions on a higher level, for example, gaining a general 

understanding of liver diagnostic strategies across the national level and identifying a few 

strategies from a pool of them. This can be helpful for future research studies to narrow it down to 

a specific population using a limited number of more cost-effective strategies. On the other hand, 

this data access challenge may offer research opportunities in developing predictive modeling tools 

that adapt information security and using fewer healthcare data to build more accurate predictive 

modeling tools. 

 

Predictive modeling provides potential breakthroughs in healthcare and data analytics by 

addressing various needs across various healthcare domains. Robust and efficient predictive 

models can optimally leverage the digital health information generated every day or even every 

second to support different decision-making in a wide range of healthcare domains and to improve 

the patient outcomes and well-being of society. 
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APPENDIX A. SUPPLEMENTARY MATRIAL TO ESSAY 1 

Introduction 

Model structures and costs 

A Bernoulli distribution was used to simulate the occurrence of EVs.  A Bernoulli distribution is 

a probability distribution of a random variable taking on the value either 1 or 0, which corresponds 

to presence or absence, respectively, of some diagnosis. If a patient had EVs, then another 

Bernoulli distribution would be used to determine whether the EVs were small or large. If small 

varices were detected, the next EV screening would be two years later; whereas if large varices 

were found, patients would receive both beta-blockers and band ligation. The variceal bleeding in 

patients with varices and HCC development were determined every year with two other Bernoulli 

distributions.  

 

Because the 5-year incidence of clinical outcomes (especially extrahepatic outcomes such 

cardiovascular, renal, or other organ cancers) and their mortality rates are unknown for this 

population, we did not include the costs of these events. 

 

Fib-4 was calculated by summing costs of complete blood count and hepatic panel. Additionally, 

we included costs of liver biopsy-related complications. We did not consider costs associated with 

the treatment of HCC (except for liver transplantation or liver resection) or any liver-related 

decompensation. 

Determination of the simulation replication (batch of cohort) number 

As discussed in the Methods section, assessing outcomes of patients who receive a diagnosis of 

cirrhosis required consideration of uncertainties modeled with the Bernoulli distributions. The 

outcome results may be biased if only based on a small number of simulation replications (i.e., 

batches of the cohort). In other words, some individual strategy may perform better than others 

merely by chance. Hence, to obtain representative outcome results from the simulation, we 

determined the number of necessary simulation replications. The number of necessary replications 
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n was established when the absolute differences between the average per-patient total cost over 

the first n replications and the average per-patient total cost over the first n – 1 replications for all 

strategies tested were below our arbitrary threshold of  $5 U.S. dollars. With the above criterion, 

we decided to run the simulation with 2 replications. In particular, after 2 replications for each 

strategy, we observed clear separation in the average total cost among the strategies, and the 

comparative results did not change as the replication number further increased (Supplemental 

Figure A.1).  

Analysis 

ICERs were calculated by dividing the incremental change in total cost by incremental change in 

diagnostic accuracy or percentage of correct diagnosis (cost strategy B – cost strategy A) / 

(accuracy strategy B – accuracy strategy A). 

 

We conducted several replications of the microsimulation (i.e., joint samples from the Bernoulli 

distributions) to yield representative results for comparing the various diagnostic strategies, see 

supplemental material (introduction) and supplemental Figure A.1. 

Accuracy calculation breakdown 

We describe the calculation of the accuracy for single strategies and use MRE (Supplemental 

Table A.6) as an example. We had 40,000 failure cases after MRE. Then we did the confirmation 

test LB for the failure cases. The corresponding costs were added. Then accuracy was obtained by 

using 825,444 (TP+TN excluding confirmation results) divided by 1,000,000. The same logic 

applies to other single test strategies.  

 

For computing accuracy of combo strategies, we use Fib-4 + VCTE (Supplemental Table A.13) 

as an example. After the first Fib-4 test, we had positive and indeterminate cases, and we continued 

the second VCTE test. After VCTE, putting both positive and indeterminate cases altogether, we 

had in total 30,473 failure cases. In the model, we further applied the confirmation LB test for 

these people. The corresponding costs were added. When calculating the accuracy, we used 

892,615 (not including the confirmation results) divided by 1,000,000.  
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SUPPLEMENTAL TABLES  

 

 

 

 

 

Table A.1. Prevalence of varices in NAFLD with advanced fibrosis. 

Abbreviations: NAFLD, nonalcoholic fatty liver disease; GEV, gastroesophageal varices; EV, esophageal varices. 

CTP, Child-Turcotte-Pugh score. 

 

Varices Sample 

size 

Diagnosis 

method 

Variceal size Compensated 

disease (CTP-A) 

Prevalence in 

advanced fibrosis 

Prevalence 

in cirrhosis 

       

Nakamura S1 82 Liver 

biopsy 

34.7% EV 

Small (48%) 

Large (52%) 

72.2% 47.2% (GEV) 

34.7% (EV) 

N/A 

Mendes F2 77 

(subsample 

under 

GEV 

screening) 

Liver 

biopsy 

 

Small (59.6%) 

Large (40.4%)  

100% 71.4% (GEV) N/A 
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Table A.2. Studies reporting prevalence or annual incidence of HCC in NASH-related advanced 

fibrosis or cirrhosis. 

Study Sample 

Size 

Mode of 

diagnosis  

Prevalence Annual 

Incidence of 

HCC 

Prevalence of 

CTP B and C 

Follow-

up 

years 

Sanyal3 149 

NASH 

cirrhosis 

Liver biopsy 6.7% 0.2% 78/152 (51%) 10 

Bhala4 247 

NASH-

bridging 

fibrosis 

and 

cirrhosis 

Liver biopsy 2.4% 0.3% 0% 7.1 

Ascha5 195 

NASH 

cirrhosis 

Liver biopsy 

or 

cryptogenic 

fibrosis with 

metabolic 

syndrome 

12.8% 2.6% 100% had a 

CTP ≥ 7 (B or 

C) or MELD 

≥ 10 

3.2 

Berman6 156 CT 2.6% 6.1% at 5 years N/A 4.7 

Vilar-

Gomez7  

458 

NASH-

bridging 

fibrosis 

(149) and 

cirrhosis 

(299) 

Liver biopsy 1.3% 

(bridging 

fibrosis) 

13% 

(cirrhosis) 

Bridging 

fibrosis- 0.2% 

Cirrhosis- 

3.2% 

0% 5.5 

Abbreviations: HCC, hepatocellular carcinoma; NASH, nonalcoholic steatohepatitis; CTP, Child-

Turcotte-Pugh score.   
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Table A.3. Bleeding- and HCC-related mortality. 

Bleeding-related mortality - Overall population 

Pooled 6-monthly mortality8  16.3% 

HCC-related mortality – Patients underwent HCC surveillance 

Pooled 6-monthly mortality9, 10 33.7% 

HCC-related mortality – Overall population  

Pooled 5-year mortality9 72.1% 

Abbreviations: HCC, hepatocellular carcinoma. 
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Table A.4. Cost of tests and treatments based on Medicare average. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Costs based on lab parameters (CBC + liver panel test).  

Abbreviations: VCTE, vibration-controlled transient 

elastography; MRI, magnetic resonance imaging; EV, esophageal 

varices; EGD, esophagogastroduodenoscopy; AFP, alpha-

fetoprotein; US, ultrasound.    

Cost Value ($) 

Fib-4* 0 

Liver biopsy (ultrasound guided) 1411 

VCTE (Fibroscan) 150.34 

MRI 544.18 

US/AFP  159.61 

EV (EGD facility) 773.19 

EVL (EGD + banding)  1408.23 

Beta-blockers 33.46 per month 

Liver transplant 739100 

Tumor/liver resection 21657.5 
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Table A.5. Cost scenarios per procedure. 

 

 

 

 

. 

 

 

 

 

 

*Costs based on lab parameters (CBC + liver panel test).   

Abbreviations: VCTE, vibration-controlled transient elastography; MRI, 

magnetic resonance imaging; EV, esophageal varices; EGD, 

esophagogastroduodenoscopy; AFP, alpha-fetoprotein; US, ultrasound.   

 

Procedure Hospital based clinic 

(national average for 

facility fees) 

Hospital based clinic 

(90th percentile charges 

submitted) 

Fib-4* $16.76 $113 

Liver biopsy (US guided) $ 1,358.51 $ 5,657.20 

MRI $ 623.41 $ 4,804.19 

CT $ 558.21 $ 5,383.76 

VCTE (Fibroscan) $ 140.60 $    589.50 

US $ 257.33 $ 1,337.03 

EGD (diagnostic) $ 820.59 $ 4,288.80 

EGD with banding $ 1,474.16 $ 5,544.33 
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Table A.6. Accuracy and cost-effectiveness of different diagnostic strategies. A microsimulation analysis based on 100,000 NAFLD 

patients considering a cirrhosis prevalence of 4%. 

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, Magnetic resonance elastography; 

HCC, hepatocellular carcinoma; CC, non-EV and non-HCC caused compensated cirrhosis  

Strategies are listed in order of increasing costs. 

* It represents difference between tests and the reference strategy (Fib-4).  

Strategy 

Number of 

correctly 

identified 

out of 4000 

people with 

cirrhosis 

Number of 

correctly 

excluded 

out of 

96000 

people 

without 

cirrhosis 

Percentage 

of people 

correctly 

classified 

Change in 

percentage 

of people 

correctly 

classified* 

Cost per 

person 

($) 

Cost per 

correct 

diagnosis 

($) 

Mortality 

(bleeding) 

Mortality 

(HCC) 

Total 

mortality 

cases 

Change in 

total 

mortality 

No test N/A  N/A  N/A  N/A  158 N/A  373 81 686 Reference 

Fib-

4+VCTE 

1872 85659 87.5% 31.7% 1020 1170 316 60 613 -73 

Fib-4+MRE 1863 88735 90.6% 34.7% 1108 1230 318 60 613 -73 

Fib-4+LB 2152 93942 96.1% 40.2% 1433 1500 310 57 603 -83 

VCTE+LB 3029 88073 91.1% 35.2% 1568 1733 283 47 568 -118 

Fib-4 2224 53645 55.9% Reference 1608 2892 306 56 599 -87 

MRE+LB 3006 91366 94.4% 38.5% 1831 1950 284 47 569 -117 

VCTE 3237 71975 75.2% 19.3% 1849 2474 276 44 559 -127 

MRE 3221 79109 82.3% 26.5% 2066 2523 277 44 559 -127 

LB 3720 91200 94.9% 39.1% 2765 2925 262 39 540 -146 
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Table A.7. Frontier table. One-way sensitivity analyses on the cost of each test. 

  MRE VCTE LB Fib4 
Proportion of 

being on frontier 
Strategies Base Mid High Low High Low High Mid High 

Fib-4 + VCTE F* F F F - F F F F 89% 

Fib-4 + MRE F F - F F F F F F 89% 

VCTE + LB -** - F - - - - - - 11% 

Fib-4 + LB F F - F F F F F F 89% 

MRE + LB - - - - - - F - - 11% 

*“F” indicates that the corresponding strategy is on the frontier.  

**“-” indicates that a strategy is dominated.  

Note: All single test strategies are dominated, thus excluded from the above table.  
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Table A.8. Breakdown of test results in numbers for Fib-4 with cirrhosis prevalence 0.27%. 

 

 

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, magnetic resonance 

elastography; C, cirrhosis; NC, no cirrhosis; TP, true positive, equivalent to CD, correctly diagnosed; FP, false 

positive, equivalent to MD, misdiagnosed; TN, true negative, equivalent to CR, correctly ruled out; FN, false 

negative, equivalent to UD, undiagnosed. 

*Accuracy is calculated excluding confirmation LB test by TP+TN/number of people with test results from the test.  

# Accuracy is calculated excluding confirmation LB test by TP+TN/total number of people. This accuracy is used 

in our study.  

Test Test result 
Number of 

people 

Number of 

people 

True 

condition 

Result 

type 
Number of people 

Fib-4 

+  109,204 

680,000 

C TP 698 

NC FP 108,506 

-  570,796 
C FN 1,138 

NC TN 569,658 

Indetermined 

(LB+)  
16,760 

320,000 

C TP 804 

NC FP 15,957 

Indetermined 

(LB-) 
303,240 

C FN 60 

NC TN 303,179 

 TP FP TN FN TP+TN Accuracy 

Including conformation 

with LB 
1,501 124,463 872,837 1,199 874,338 87.4% 

Excluding 

conformation with 

LB 

698 108,506 569,658 1,138 570,355 

83.9% (/680,000)* 

57% (/1,000,000)# 



 

 

8
7
 

Table A.9. Breakdown of test resutls in numbers for MRE with cirrhosis prevalence 0.27%. 

 

 

 

 

 

 

 

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, magnetic resonance 

elastography; C, cirrhosis; NC, no cirrhosis; TP, true positive, equivalent to CD, correctly diagnosed; FP, false positive, 

equivalent to MD, misdiagnosed; TN, true negative, equivalent to CR, correctly ruled out; FN, false negative, 

equivalent to UD, undiagnosed. 

*Accuracy is calculated excluding confirmation LB test by TP+TN/number of people with test results from the test.  

# Accuracy is calculated excluding confirmation LB test by TP+TN/total number of people. This accuracy is used in 

our study. 

 

Test Test result 
Number of 

people 

Number of 

people 

True 

condition 

Result 

type 
Number of people 

MRE 

+  136,111  
960,000 

C TP 2074 

NC FP 134037 

-  823,889 
C FN 518 

NC TN 823371 

Failure 

(LB+)  
2,095  

40,000 

C TP 100 

NC FP 1995 

Failure 

(LB-) 
37,905 

C FN 8 

NC TN 37897 

 TP FP TN FN TP+TN Accuracy 

Including conformation 

with LB 
2,174 136,032 861,268 526 863,442 86.3% 

Excluding 

conformation with 

LB 

2,074 134,037 823,371 518 825,444 

86% (/960,000)* 

82.5% (/1,000,000)# 
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Table A.10. Breakdown of test resutls in numbers for VCTE with cirrhosis prevalence 0.27%. 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, magnetic resonance 

elastography; C, cirrhosis; NC, no cirrhosis; TP, true positive, equivalent to CD, correctly diagnosed; FP, false 

positive, equivalent to MD, misdiagnosed; TN, true negative, equivalent to CR, correctly ruled out; FN, false negative, 

equivalent to UD, undiagnosed. 

*Accuracy is calculated excluding confirmation LB test by TP+TN/number of people with test results from the test.  

# Accuracy is calculated excluding confirmation LB test by TP+TN/total number of people. This accuracy is used in 

our study.  

Test Test result 
Number of 

people 

Number of 

people 

True 

condition 

Result 

type 
Number of people 

VCTE 

+  178,040  
929,000 

C TP 2,007 

NC FP 176,033 

-  750,960  
C FN 502 

NC TN 750,458 

Failure 

(LB+)  
3,719  

71,000 

C TP 178 

NC FP 3,540 

Failure 

(LB-) 
67,281 

C FN 13 

NC TN 67,268 

 TP FP TN FN TP+TN Accuracy 

Including conformation 

with LB 
2,185 179,574 817,726 515 819,911 82% 

Excluding 

conformation with 

LB 

2,007 176,033 750,458 502 752,465 

81% (/929,000)* 

75.2% (/1,000,000)# 
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Table A.11. Breakdown of test resutls in numbers for LB with cirrhosis prevalence 0.27%. 

 

 

 

 

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, magnetic resonance 

elastography; C, cirrhosis; NC, no cirrhosis; TP, true positive, equivalent to CD, correctly diagnosed; FP, false 

positive, equivalent to MD, misdiagnosed; TN, true negative, equivalent to CR, correctly ruled out; FN, false 

negative, equivalent to UD, undiagnosed.  

Test Test result 
Number of 

people 

Number of 

people 

True 

condition 

Result 

type 
Number of people 

LB 

+  52,376  
1,000,000 

C TP 2,511 

NC FP 49,865 

-  947,624 
C FN 189 

NC TN 947,435 

 TP FP TN FN TP+TN Accuracy 

 2,511 49,865 947,435 189 949,946 95% 
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Table A.12. Breakdown of test resutls in numbers for Fib-4+MRE with cirrhosis prevalence 0.27%. 

1st test 1st test result 
Number 

of people 
2nd test 2nd test result 

Number 

of people 

True 

condition 
Result type Number of people 

Fib4 

+ 

 

109,204 

 

MRE 

+ 15,119 
C TP 536 

NC FP 14,583 

- 89,717 
C FN 134 

NC TN 89,583 

Failure (LB+) 243 
C TP 26 

NC FP 217 

Failure (LB-) 4,125 
C FN 2 

NC TN 4,123 

Indetermined 320,000 

+ 43,555 
C TP 664 

NC FP 42,892 

- 263,645 
C FN 166 

NC TN 263,479 

Failure (LB+) 670 
C TP 32 

NC FP 638 

Failure (LB-) 12,130 
C FN 2 

NC TN 12,127 

- 570,796 / / / 
C FN 1,138 

NC TN 569,658 

Summary Total failure Total non-failure   

Number of people 17,168 982,832   

 TP FP TN FN TP+TN Accuracy 

Including conformation with LB 1,257 58,330 938,970 940,227  94.0% 

Excluding conformation with LB 1,199 57,475 922,719 923,919 

 94% (/982,832)* 

 
92.4% 

(/1,000,000)# 

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, magnetic resonance 

elastography; C, cirrhosis; NC, no cirrhosis; TP, true positive, equivalent to CD, correctly diagnosed; FP, false positive, equivalent to 

MD, misdiagnosed; TN, true negative, equivalent to CR, correctly ruled out; FN, false negative, equivalent to UD, undiagnosed. 

*Accuracy is calculated excluding confirmation LB test by TP+TN/number of people with test results from the test.  

# Accuracy is calculated excluding confirmation LB test by TP+TN/total number of people. This accuracy is used in our study.  
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Table A.13. Breakdown of test resutls in numbers for Fib-4+VCTE with cirrhosis prevalence 0.27%.  

1st test 1st test result 
Number 

of people 
2nd test 2nd test result 

Number 

of people 

True 

condition 
Result type Number of people 

Fib4 

+ 

 

109,204 

 

VCTE 

+ 19671 
C TP 519 

NC FP 19,152 

- 81779 
C FN 130 

NC TN 81,650 

Failure (LB+) 431 
C TP 46 

NC FP 385 

Failure (LB-) 7322 
C FN 3 

NC TN 7,319 

Indetermined 320,000 

+ 56973 
C TP 642 

NC FP 56,331 

- 24030 
C FN 161 

NC TN 240,147 

Failure (LB+) 1190 
C TP 57 

NC FP 1,133 

Failure (LB-) 21530 
C FN 4 

NC TN 21,526 

- 570,796 / / / 
C FN 1,138 

NC TN 569,658 

Summary Total failure Total non-failure   

Number of people 30,473 969,527   

 TP FP TN FN TP+TN Accuracy 

Including conformation with LB 1,264 77,001 920,299 1,436 921,562 92.2% 

Excluding conformation with LB 1,161 75,483 891,454 1,428 892,615 

92.1% (/969,527)* 

89.3% 

(/1,000,000)# 



 

 

9
2
 

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, magnetic resonance 

elastography; C, cirrhosis; NC, no cirrhosis; TP, true positive, equivalent to CD, correctly diagnosed; FP, false positive, equivalent to 

MD, misdiagnosed; TN, true negative, equivalent to CR, correctly ruled out; FN, false negative, equivalent to UD, undiagnosed. 

*Accuracy is calculated excluding confirmation LB test by TP+TN/number of people with test results from the test.  

# Accuracy is calculated excluding confirmation LB test by TP+TN/total number of people. This accuracy is used in our study.  

1st test 1st test result 
Number 

of people 
2nd test 

2nd test 

result 

Number of 

people 

True 

condition 
Result type 

Number of 

people 

Fib4 

+  
109,204 

 

LB 

+ 6,074 C TP 649 

NC FP 5,425 

- 103,130 
C FN 49 

NC TN 103,081 

Indetermined 
320,000 

 

+ 16760 
C TP 804 

NC FP 15,957 

- 303240 
C FN 60 

NC TN 303,179 

- 570,796 / / / 
C FN 1,138 

NC TN 569,658 

 TP FP TN FN TP+TN Accuracy 

Including 

conformation with LB 
1,452 21,382 975,918 1,248 977,370 97.7% 
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Table A.14. Breakdown of test resutls in numbers for Fib-4+LB with cirrhosis prevalence 0.27%. 

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, magnetic resonance 

elastography; C, cirrhosis; NC, no cirrhosis; TP, true positive, equivalent to CD, correctly diagnosed; FP, false positive, equivalent to 

MD, misdiagnosed; TN, true negative, equivalent to CR, correctly ruled out; FN, false negative, equivalent to UD, undiagnosed. 

 

  

1st test 1st test result 

Number 

of 

people 

2nd test 
2nd test 

result 

Number of 

people 

True 

condition 

Result 

type 

Number of 

people 

MRE 

+  136,111 LB 

+ 8,630 C TP 1,928 

NC FP 6,702 

- 127,480 
C FN 145 

NC TN 127,335 

- 
 

823,889 / / / 
C FN 518 

NC TN 823,371 

Failure (LB+) 2,095 / / / 
C TP 100 

NC FP 1,995 

Failure (LB-) 37,905 / / / 
C FN 8 

NC TN 37,897 

Summary Total failure Total non-failure  

Number of people 40,000 960,000  

  TP FP TN FN TP+TN Accuracy 

Including conformation with LB 2,029 8,696 988,604 671 990,632 99.1% 

Excluding conformation with LB 1,928 6,702 950,706 664 952,635 
99.2% (/960,000)* 

95.3% (/1,000,000)# 
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Table A.15. Breakdown of test resutls in numbers for MRE+LB with cirrhosis prevalence 0.27%.  

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, magnetic resonance 

elastography; C, cirrhosis; NC, no cirrhosis; TP, true positive, equivalent to CD, correctly diagnosed; FP, false positive, equivalent to 

MD, misdiagnosed; TN, true negative, equivalent to CR, correctly ruled out; FN, false negative, equivalent to UD, undiagnosed. 

*Accuracy is calculated excluding confirmation LB test by TP+TN/number of people with test results from the test.  

# Accuracy is calculated excluding confirmation LB test by TP+TN/total number of people. This accuracy is used in our study. 

  

1st test 1st test result 

Number 

of 

people 

2nd test 
2nd test 

result 

Number of 

people 

True 

condition 

Result 

type 

Number of 

people 

VCTE 

+  178,040 LB 

+ 8,630 C TP 1,866 

NC FP 8,802 

- 127,480 
C FN 140 

NC TN 167,232 

- 750,960 / / / 
C FN 502 

NC TN 750,458 

Failure (LB+) 3,719 / / / 
C TP 178 

NC FP 3,540 

Failure (LB-) 67,281 / / / 
C FN 13 

NC TN 67,268 

Summary Total failure Total non-failure  

Number of people 71,000 929,000  

  TP FP TN FN TP+TN Accuracy 

Including conformation with LB 2,044 12,342 984,958 656 987,002 98.7% 

Excluding conformation with LB 1,866 8,802 917,690 642 919,556 
99% (/929,000)* 

92% (/1,000,000)# 
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Table A.16. Breakdown of test resutls in numbers for VCTE+LB with cirrhosis prevalence 0.27%.  

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, magnetic resonance 

elastography; C, cirrhosis; NC, no cirrhosis; TP, true positive, equivalent to CD, correctly diagnosed; FP, false positive, equivalent to 

MD, misdiagnosed; TN, true negative, equivalent to CR, correctly ruled out; FN, false negative, equivalent to UD, undiagnosed. 

*Accuracy is calculated excluding confirmation LB test by TP+TN/number of people with test results from the test.  

# Accuracy is calculated excluding confirmation LB test by TP+TN/total number of people. This accuracy is used in our study. 

  

1st test 1st test result 

Number 

of 

people 

2nd test 
2nd test 

result 

Number of 

people 

True 

condition 

Result 

type 

Number of 

people 

VCTE 

+  178,040 LB 

+ 8,630 C TP 1,866 

NC FP 8,802 

- 127,480 
C FN 140 

NC TN 167,232 

- 750,960 / / / 
C FN 502 

NC TN 750,458 

Failure (LB+) 3,719 / / / 
C TP 178 

NC FP 3,540 

Failure (LB-) 67,281 / / / 
C FN 13 

NC TN 67,268 

Summary Total failure Total non-failure  

Number of people 71,000 929,000  

  TP FP TN FN TP+TN Accuracy 

Including conformation with LB 2,044 12,342 984,958 656 987,002 98.7% 

Excluding conformation with LB 1,866 8,802 917,690 642 919,556 
99% (/929,000)* 

92% (/1,000,000)# 
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Table A.17. The incremental cost-effectiveness ratios for each combination strategy based on different cirrhosis prevalence 

settings.*  

 

Diagnostic 

strategy 

Cirrhosis prevalence 

-----------------0.27%----------------

--- 

-----------------2%-------------------- ------------------4%----------------- 

Diagnostic 

accuracy 

Cost per 

person 

($) 

ICERs Diagnostic 

accuracy 

Cost per 

person 

($) 

ICERs Diagnostic 

accuracy 

Cost 

per 

person 

($) 

ICERs 

Fib-4 + VCTE 89.3% 401 Least 

costly 

88.5% 687 Least 

costly 

87.5% 1020 Least 

costly 

Fib-4 + MRE 92.4% 491 2864 91.6% 778 2911 90.6% 1108 2879 

Fib-4 + LB 97.7% 729 4454 97.0% 1055 5114 96.1% 1433 5903 

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, magnetic resonance elastography; ICER, the 

incremental cost-effectiveness ratio. 

*Strategies not listed are dominated and, thus, excluded.  

†Fib-4+LB was dominated by the next strategy (VCTE+LB).  
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Table A.18. Cost per death prevented (CPDP) with cirrhosis prevalence 0.27%. 

  

Diagnostic 

strategy 

                Cirrhosis prevalence 

-----------------0.27%---------------- 

Mortality Cost 

per 

person 

($) 

CPDP 

No test 46 10 Least costly 

Fib-4+VCTE 42 401 93 

Fib-4+MRE 42 491 Dominated 

VCTE+LB 40 612 92 

Fib-4+LB 42 729 Dominated 

MRE+LB 40 888 Dominated 

VCTE 39 900 460 

Fib-4 41 908 Dominated 

MRE 39 1109 Dominated 

LB 37 1663 372 

Abbreviations: VCTE, vibration controlled transient 

elastography; LB, liver biopsy; MRE, magnetic resonance 

elastography; CPDP, the cost per death prevented. 

CPCD is obtained by (cost of A – cost of B)/(Mortality of 

B – Mortality of A), where A is the current least costly 

strategy, and B is the next least costly strategy. The test 

strategies are arranged in cost ascending order, and a test 

strategy is dominated if CPDP is negative.  
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Table A.19. Cost per death prevented (CPDP)  

  

Diagnostic 

strategy 

                Cirrhosis prevalence 

-----------------2%---------------- 

Mortality Cost 

per 

person 

($) 

CPDP 

No test 344 77 Least costly 

Fib-4+VCTE 307 687 16 

Fib-4+MRE 307 778 Dominated 

VCTE+LB 285 1055 13 

Fib-4+LB 302 1055 Dominated 

Fib-4 300 1231 Dominated 

MRE+LB 285 1325 Dominated 

VCTE 279 1341 48 

MRE 280 1553 Dominated 

LB 270 2177 93 

Abbreviations: VCTE, vibration controlled transient 

elastography; LB, liver biopsy; MRE, magnetic 

resonance elastography; CPDP, the cost per death 

prevented. 

CPCD is obtained by (cost of A – cost of B)/(Mortality 

of B – Mortality of A), where A is the current least costly 

strategy, and B is the next least costly strategy. The test 

strategies are arranged in cost ascending order, and a test 

strategy is dominated if CPDP is negative.  
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Table A.20. Cost per death prevented (CPDP) 

  

Diagnostic 

strategy 

                Cirrhosis prevalence 

-----------------4%---------------- 

Mortality Cost 

per 

person 

($) 

CPDP 

No test 686 158 Least costly 

Fib-4+VCTE 613 1020 12 

Fib-4+MRE 613 1108 Dominated 

Fib-4+LB 603 1433 41 

VCTE+LB 568 1568 4 

Fib-4 599 1608 Dominated 

MRE+LB 569 1831 Dominated 

VCTE 559 1849 31 

MRE 559 2066 Dominated 

LB 540 2765 48 

Abbreviations: VCTE, vibration controlled transient 

elastography; LB, liver biopsy; MRE, magnetic 

resonance elastography; CPDP, the cost per death 

prevented. 

CPCD is obtained by (cost of A – cost of B)/(Mortality 

of B – Mortality of A), where A is the current least 

costly strategy, and B is the next least costly strategy. 

The test strategies are arranged in cost ascending order, 

and a test strategy is dominated if CPDP is negative. 
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Figure A.1. Average total cost associated with increasing number of simulation replications .  

 

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, 

magnetic resonance elastography. 

Lines represent mean total cost for each strategy among all replications.  
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Figure A.2. Cost per correct diagnosis of cirrhosis vs. diagnostic accuracy for each diagnostic 

strategy. Extended analysis considering cirrhosis prevalence between 0.27 and 12%.   
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(A) Fib-4 index sensitivity and specificity 

 

 

 

 

 

 

 

 

(B) MRE sensitivity and specificity 

 

 

 

 

 

 

 

 

 

(C) VCTE sensitivity and specificity  

 

 

 

 

 

 

 

 

Figure A.3. Sensitivity analysis on baseline test characteristics. Analysis based on Medicare 

average. 
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(D) Liver biopsy sensitivity and specificity 

 

 

 

 

 

 

 

 

 

Figure A.3. continued 

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, 

magnetic resonance elastography. 

Note: The increase in sensitivity would leads to higher cost per diagnoses (i.e., when more people 

are correctly diagnosed with cirrhosis, more people will have to be involved in the downstream 

activity and as a result higher cost. On the contrary, the increase in the specificity would leads to 

increase in the number of people who will not need to participate in the downstream events with 

lower cost.   
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Figure A.4. Tornado plot for one-way sensitivty analysis on costs of Fib-4, MRE, VCTE and LB. 

Abbreviations: VCTE, vibration controlled transient elastography; LB, liver biopsy; MRE, 

magnetic resonance elastography.  
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APPENDIX B. SUPPLEMENTARY MATERIAL TO ESSAY 2 

Model Overview 

We developed a microsimulation model of CVD for NYC adults based on the well-established 

CVD Policy Model. As a microsimulation model, our model can calculate CVD risks at the 

individual level based on time-varying risk factors. Baseline individual risk factors were estimated 

based on the NYC Health and Nutrition Examination Surveys (HANES) database of adults age 

18+ years. The NYC HANES population was then matched to the Columbia University-National 

Heart Lung and Blood Institute Pooled Cohorts Dataset89 to determine the trajectories of individual 

risk factors. 

 

We used logistic functions to calculate the probabilities of developing CHD or stroke event in a 

certain year. The co-variates used to calculate CHD and stroke risks include age, race, body mass 

index (BMI), former smoker status, current smoker status, cigarettes per day, systolic blood 

pressure, diabetes status (fasting glucose ≥126 mg/dl [7.0 mmol/L] or taking anti-diabetes 

medications), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and 

estimated glomerular filtration rate. Detailed model equations and associated parameter values are 

presented in Table B.1. To achieve representativeness of the NYC population in our modeling 

study, 10,000 individuals were randomly sampled with replacement from the NYC HANES 

population using sampling weights. Descriptive statistics for the sample and simulated populations 

are presented in Table B.3. 

 

Our model includes the following health states: no CVD events (healthy), one or more CHD 

events (CHD), one or more stroke events, both CHD and stroke events, non-CVD related death, 

and CVD related death. The CHD heath state consists of the first CHD event of a year, and a 

recurrent CHD event of the same year. The stroke heath state consists of the first stroke event of 

a year, and a recurrent stroke event of the same year. When the simulation runs, all individuals 

start with the healthy state, and each individual experiences at most two CVD related events per 

year. At any given time, an individual can transition from the healthy state to a CVD state. An 

individual who has experienced any CVD event cannot return to the healthy state but has a risk 

of CVD-related death or a recurrent CHD or stroke event in the same cycle/year. Figure B.1 

provides a schematic of the model structure. The simulation can be configured for any duration 

of time period of interest (e.g., 10 years, lifetime) with a closed population design. 

 

For each policy scenario as well as status quo, the model generates predicted changes in the 

probability of each health outcome at the individual level. The model also tracks the health and 

economic impacts of each policy (e.g., SSB taxes, FV subsidies, and financing FV subsidies with 

an SSB tax. More specifically, each health state has an attributed quality of life utility (i.e., an 

overall assessment of well-being on a scale from 0 [death] to 1 [perfect health]) and cost. The 

model then estimates costs and QALYs based on each individual’s health history including CHD, 

stroke, and death events. 
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Model Inputs 

Probability of first-ever incident CVD and non-CVD related death  

The annual first-ever incident probability is the one-year probability of healthy individuals dying 

or experiencing a CHD or stroke event. We used logistic function to model the probabilities of 

first-ever incident CVD and non-CVD related death (equation 1) as: 

𝑃𝑘,𝑖 =  
exp(𝛼 + 𝜷𝑿)

1 + exp(𝛼 + 𝜷𝑿)
.  (1) 

In this equation, 𝑃𝑘,𝑖 denotes the annual probability of healthy individual 𝑖 experiencing first CVD 

event 𝑘. The parameter α represents the underlying rate for event k in the pooled cohort population. 

The term X is a vector of CVD risk factors including age, sex, race, BMI, smoking status (former, 

current, cigarettes per day), systolic blood pressure, low-density lipoprotein cholesterol (LDL-c), 

high-density lipoprotein cholesterol (HDL-c), diabetes, and estimated glomerular filtration rate. 

We also included interaction terms between age and each of the 5 factors, including current smoker, 

systolic blood pressure, diabetes, low-density lipoprotein cholesterol (LDL-c), and high-density 

lipoprotein cholesterol (HDL-c). Similarly, the first-ever incidence of stroke varies with all risk 

factors exposures above except BMI, former smoking status, and cigarettes per day. The associated 

interaction terms are between age and each of the four factors including race, current smoker, 

systolic blood pressure, and diabetes. Non-CVD related mortality rate varies with all risk factors 

exposures above from CHD incidence except LDL-c and HDL-c. We also incorporated BMI2, 

interaction terms that are between age and each of the three factors including race, BMI2 and 

diabetes. 

Probability of recurrent CVD events  

The transitions among the population living with CVD states include: recurrent CHD event within 

a year of a prior occurrence, recurrent CHD event after a year of a prior occurrence, first/second 

stroke event per year after stroke within 1 year, stroke after CHD, first/second CHD after stroke 

within 10 years, and CHD proceeding stroke after 10 years. We derived the estimates of the above 

transition probabilities from previous empirical studies based on community-dwelling patients 

living with chronic CVD or on hospital-based CVD case registries, stratified by age and gender 

(see Table B.8). 

 

Probability of survival to 30 days after an acute CVD event 

The model incorporates the 30-day case fatality rates in individuals experiencing CHD and stroke 

events, stratified by age and sex (Table B.2). The 30-day case fatality rate for CHD events differs 

between first-ever incident and recurrent CHD events. For stroke, we assumed the same 30-day 

case fatality rates for first-ever incident and recurrent events (see Table B.2). 

 

Probability of at home fatality after at least one CHD event 

We incorporated calibrated estimates stratified by age and gender (See Table B.2).    
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CVD background direct medical costs and utilities 

Health-related quality of life, CVD and background direct medical costs specifications can be 

found in a previous study.89 We derived our estimates from multiple data sources (see Table B.7 

for costs and Table B.8 for utilities). 
 

Policy costs for SSB taxes and F&V subsidy 

Multiple estimates for the cost of implementing an SSB tax exist, with most representing the cost 

as a function of tax revenue. For example, the Brookings Institution has gauged that the average 

sales tax has a government collection cost, and taxpayer compliance cost of 2% – 5%, while value-

added taxes have similar cost of 3- 5%.146 The Organization for Economic Cooperation and 

Development (OECD) evaluated the cost collection ratio for administrative costs (in the US) to be 

0.47%  –  0.66%.147 In the specific case of the SSB tax implementation in the city of Berkeley, the 

firm contracted to administer the SSB tax charged 2% of tax revenues. Thus, we included policy 

implementation costs in the model as 2% of the SSB tax revenue collected, in line with our 

literature review and with current empirical estimates for cost of administration for such a tax.  

 

The FV subsidy costs included the administrative costs, and the subsidy costs. To estimate the 

administrative costs, we considered sources from SNAP and Medicaid given similarities to the 

proposed intervention design and population of interest.89 We assumed 20% of the total subsidy 

costs to be the administrative costs in the first year, conservatively based on the administrative 

costs (i.e., the percentage of total benefits) for the SNAP program in the first year when the EBT 

system was introduced.148 This amount would include many other existing administrative costs of 

SNAP beyond the set-up of the EBT system. No data are available on the incremental 

administrative costs of the EBT system in SNAP after the first year.89 The Healthy Incentives 

Program (HIP) trial within SNAP found that most of the implementation costs were one-time 

costs.149 The HIP report estimated that the administrative implementation costs in the first year 

would be 6.2% of total subsidy costs in the first full year of implementation, and administrative 

implementation costs would likely decrease after the first year. Thus, we assumed 5% for 

administrative costs after the first year.  

 

The formula to calculate policy costs are as follows: 

SSB tax policy cost = - SSB intake (per serving) after intervention × Per serving SSB price changes 

after intervention. 

FV subsidy cost = FV intake (per serving) after intervention × Per serving FV price changes after 

intervention.   
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Figure B.1. Model Schematic  

 

 

 

Figure B.2. Logic Pathway of Linking SSB Taxes and F&V Subsidy to Changes in CHD and Stroke 

Incidence 

 

The logic pathway was described in the main text method section, Effects of Fruit, Vegetable and SSB 

Intake Changes on Cardiometabolic Risk. The dotted lines represent that diabetes was treated as a CVD 

risk factor to predict first-ever CVD cases. 
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20 years 

 

40 years 

Figure B.3a. ICER Plot Over 20 Years VS. 40 Years vs. Lifetime from Societal Perspective 



 

 

111 

 

 

 

 

 

 

 

 

 

Lifetime 

Figure B.3a. continued 
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20 years 

40 years 

Figure B.3b. ICER Plot Over 20 Years VS. 40 Years VS. Lifetime from Healthcare Perspective  
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Lifetime  

Figure B.3b. continued 
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Figure B.4a. Cost-Effectiveness Acceptance Curve Plot Over 10 Years from Healthcare Perspective 

 

 

Figure B.4b. Cost-Effectiveness Acceptance Curve Plot Over 10 Years from Societal Perspective 
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Figure B.4c. Cost-Effectiveness Acceptance Curve Plot Over Lifetime from Healthcare Perspective 

Figure B.4d. Cost-Effectiveness Acceptance Curve Plot Over Lifetime from Societal Perspective 

  



 

 

116 

 

 

 

 

 

Figure B.5. One-Way Sensitivity Analysis Tornado Diagram on Food Prices and Food Price Elasticities.   
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Figure B.5. continued.  

Vegetable price elasticity (0.36, 0.58, 0.82) – (low value, base value, high value) 

Vegetable price $ per serving (0.07, 0.32, 2.18) 

Fruit price elasticity (0.22, 0.7, 1.09) 

Fruit price $ per serving (0.15, .26, 1.3) 

SSB price elasticity (0.2, 0.79, 1.3) 

SSB price $ per serving (0.27, 0.33, 1.21) 

The tornado diagrams show the impact that independently changing the model parameters has on 

the costs and QALYs for each individual treatment vs. status quo. 

  



 

 

118 

Model Validation Results Against CVD Policy Model 

 

 

 

 

 

 

 

Figure B.6. CHD and Stroke Incidence Rate by Male 
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Figure B.7. CHD and Stroke Incidence Rate by Female  
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Figure B.8. CHD and Stroke Recurrence Rate by Male  
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Figure B.9. CHD and Stroke Recurrence Rate by Female   
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Figure B.10. CHD and Stroke Related Death Rate by Male   
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Figure B.11. CHD and Stroke Related Death Rate by Female  
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Figure B.12. Non-CVD Related Death and Total Death Rate by Female  
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Figure B.13. Non-CVD Related Death and Total Death Rate by Male
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Table B.1. Logistic Risk Functions used to Determine Parameter Coefficient for Probability of 

Incident Event 

𝑃(𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝐸𝑣𝑒𝑛𝑡) =  
exp(𝛼 +  𝛽𝑝1𝑃1 + 𝛽𝑃2𝑃2 + ⋯ + 𝛽𝑃𝑛𝑃𝑛)

1 + exp(𝛼 +  𝛽𝑝1𝑃1 + 𝛽𝑃2𝑃2 + ⋯ + 𝛽𝑃𝑛𝑃𝑛)
   

Source: Columbia University-National Heart Lung and Blood Institute Pooled Cohorts Dataset89  

 

Parameters Description Hazard Ratio Beta Values  

Parameters for Probability of Incident Coronary Heart Disease Event 

Age 

Years (Age – 55)  

(centered around 

55)  

1.107  0.1016 

Black Binary 0.885  -0.1219 

BMI kg/m2 1.006 (1.000, 1.012) 0.00597 

Former Smoker Binary 1.204 (1.134, 1.278) 0.1857 

Current Smoker Binary 1.683 (1.496, 1.893) 0.5205 

Cigarettes per day 
Among current 

smokers 
1.006 (1.001, 1.011) 0.006 

Systolic Blood 

Pressure (SBP) 
mmHg 1.013 (1.012, 1.014) 0.0129 

Diabetes Binary 1.916 (1.789, 2.052) 0.6503 

HDL-c mg/dL 0.985 (0.983, 0.988) -0.0149 

LDL-c mg/dL 1.005 (1.005, 1.006) 0.0054 

eGFR mL/min/1.732 0.993 (0.992, 0.995) -0.0068  

Age x Current 

Smoker 
- 0.987 (0.982, 0.991) -0.0135 

Age x SBP - 1.000 (1.000, 1.000) -0.0003 

Age x Diabetes - 0.990 (0.985, 0.995) -0.0103 

Age x HDL-c - 1.000 (1.000, 1.000) 0.0003 

Age x LDL-c - 1.000 -0.0002 

Parameters for Probability of Incident Stroke Event 

Age Years (Age – 55)  

(centered around 

55) 

1.146 (1.123, 1.170) 0.1366 

Black Binary 1.605 (1.430, 1.802) 0.4733 

Current Smoker Binary 1.868 (1.667, 2.094) 0.6251 

Systolic Blood 

Pressure (SBP) 

mmHg 1.020 (1.018, 1.022) 0.0199 

Diabetes Binary 1.950 (1.751, 2.171) 0.6677 

HDL-c mg/dL 0.995 (0.992, 0.998) -0.0047 

LDL-c mg/dL 1.002 (1.000, 1.003) 0.0017 

eGFR mL/min/1.732 0.996 (0.993, 0.998) -0.0042 

Age x Black -  0.977 (0.969, 0.986) -0.0228 
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Parameters Description Hazard Ratio Beta Values  

Age x Current 

Smoker 

- 0.990 (0.982, 0.999) -0.0096 

Age x SBP - 1.000 (0.999, 1.000) -0.0004 

Age x Diabetes - 0.984 (0.977, 0.991) -0.0161 

Parameters for Probability of Non-Cardiovascular Disease Mortality 

Age Years (Age – 55)  

(centered around 

55) 

1.104 (1.097, 1.111) 0.0992 

Black Binary 1.501 (1.404, 1.605) 0.4064 

BMI kg/m2 0.905 (0.886, 0.925) -0.0996 

BMI2 (kg/m2)2 1.001 (1.001, 1.002) 0.0014 

Former Smoker Binary 1.296 (1.228, 1.369) 0.2597 

Current Smoker Binary 1.985 (1.792, 2.200) 0.6859 

Cigarettes per day Among current 

smokers 

1.020 (1.016, 1.025) 0.0203 

Systolic Blood 

Pressure (SBP) 

mmHg 1.001 (1.000, 1.002) 0.0011 

Diabetes Binary 1.542 (1.441, 1.650) 0.433 

eGFR mL/min/1.732 0.993 (0.992, 0.995) -0.0066 

Age x Black - 0.985 (0.980, 0.989) -0.0153 

Age x BMI2 - 1.000 (1.000, 1.000) 0.00002 

Age x Diabetes - 0.989 (0.984, 0.994) -0.0114  

BMI – body mass index, UI – confidence interval, eGFR – Estimated Glomerular Filtration Rate, 

HDL-C – high-density  



 

 

128 

Table B.2. Probabilities for non-incident cardiovascular disease events. 

Parameter Base Case Value (%) Source(s)  

Following CHD event (annual probability) 

Recurrenta CHD event within 1 year of previous CHD event 

Men   

150–153 

40-44 years 3.53 

45-54 years 4.74 

55-64 years 6.49 

65-74 years 7.96 

75+ years 12.8 

Women   

40-44 years 2.26 

45-54 years 3.96 

55-64 years 4.98 

65-74 years 8.29 

75+ years 13.55 

Recurrent CHD event after 1 year of previous CHD event 

Men   

150–154 

40-44 years 1.22 

45-54 years 1.60 

55-64 years 2.23 

65-74 years 2.79 

75+ years 4.53 

Women   

40-44 years 0.96 

45-54 years 1.25 

55-64 years 1.63 

65-74 years 2.72 

75+ years 4.66 

Stroke after CHD 

Men   

155,156 

40-44 years 0.55 

45-54 years 0.55 

55-64 years 0.79 

65-74 years 0.83 

75+ years 0.92 

Women   

40-44 years 0.55 

45-54 years 0.55 

55-64 years 0.77 

65-74 years 0.87 

75+ years 0.89 

Following stroke event (annual probability) 
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Parameter Base Case Value (%) Source(s)  

Recurrent stroke event 3.6 157 

CHD after stroke within 10 years 2.5 158 

CHD after stroke after 10 years 2.2 159 

30-day case fatality rates 

Incident CHD 

Men   

153,160–163 

40-44 years 9.37 

45-54 years 14.6 

55-64 years 17.44 

65-74 years 20.77 

75-85 years 18.41 

85+ years 78.18 

Women   

40-44 years 7.08 

45-54 years 9.83 

55-64 years 13.16 

65-74 years 17.97 

75-85 years 14.97 

85+ years 81.39 

Recurrent CHD 

Men   

153,160–163 

40-44 years 2.24 

45-54 years 7.84 

55-64 years 9.89 

65-74 years 12.96 

75-85 years 14.6 

85+ years 27.16 

Women   

40-44 years 2.22 

45-54 years 5.44 

55-64 years 6.65 

65-74 years 11.48 

75-85 years 10.95 

85+ years 75.79 

Any stroke 

Men     

40-44 years 6.23 

164 

45-54 years 7.55 

55-64 years 8.95 

65-74 years 13.88 

75-85 years 21.2 

85+ years 37.5 
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Parameter Base Case Value (%) Source(s)  

Women   

40-44 years 13.7 

45-54 years 7.45 

55-64 years 10.65 

65-74 years 11.92 

75-85 years 23.02 

85+ years 46.5 

Other 

Maximum annual number of CVD 

events per cycle 
2 Assumption 

aRecurrent event occurs subsequent to primary CHD or stroke event 

CHD – coronary heart disease, CVD – cardiovascular disease  
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Table B.3. Population Characteristics of NYC HANES pooled population 

*UI: uncertainty interval, equivalent to confidence interval. 

  

Parameters 
NYCHANES 

(95% UI*) 

NYCHANES 

Matched with 

Pooled 

Cohort 

(95% UI) 

% of Sample 

mean  

within 

95%UI 

Sampled 

Population 

(95% UI) 

Male 
46.4% 

( 45.3% , 47.6% ) 

37.1% 

( 35.2% , 

38.9% ) 

100 
37.1% 

( 37% , 37.1% ) 

Age 
45.8 

( 44.7, 46.9) 

50 

( 47.5, 52.5) 
100 

50 

(50, 50) 

African 

American 

21.2% 

( 27% , 21.7% ) 

24.3% 

( 23.1% , 

25.5% ) 

99.9 

24.3% 

( 24.3% , 

24.3% ) 

BMI 
28 

( 27.3 , 28.7 ) 

26.5 

( 25.1, 27.8) 
100 

26.5 

( 26.5, 26.5) 

Current 

Smoker 

19.1% 

( 18.6% , 19.6% ) 

24.2% 

( 23% , 25%) 
99.4 

24.2% 

( 24.2% , 

24.2% ) 

Diastolic  

blood 

pressure 

73.7 

( 71.9 , 75.6 ) 

71.1 

( 67.6, 74.7) 
100 

71.1 

( 71.1 , 71.1 ) 

Systolic  

blood 

pressure 

120.1 

( 117.1 , 123.1 ) 

121 

( 115, 127.1) 
100 

121 

( 121 , 121) 

DM 
10.6% 

( 10.3% , 10.9% ) 

18% 

( 17%, 19%) 
97.8 

18% 

( 18% , 18.1% ) 

HDLC 
56.6 

( 55.2, 58) 

50.9 

( 48.3, 53.4) 
100 

50.9 

( 50.9, 50.9) 

LDLC 
109.8 

( 107, 112.5) 

111.7 

( 106.1, 117.3) 
100 

111.7 

( 111.7 , 111.7) 
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Table B.4. Fruit, Vegetable and SSB Consumption 

Consumption (servings per day) (Truncated Normal Distribution*) 

 

 

  

Gender Race 
Fruits Vegetables SSB 

Source 
Mean sd Mean sd Mean sd 

Male 

African 

American 
0.93 1.06 1.04 0.99 1.32 2.81 Analysis of  

Community  

Health 

Survey  

(CHS) 165 

Others 1.18 1.28 1.34 1.31 0.72 1.56 

Female 

African 

American 
1.01 1.10 1.25 1.23 0.99 1.78 

Others 1.25 1.09 1.49 1.53 0.38 0.94 
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Table B.5. Food prices and price elasticities by Fruit, Vegetable and SSB 

 

  

Parameter 
Distribution Mean (Sampled 

Range) 
Source 

Fruit price 

Gamma Distribution 

0.28 (0.15, 1.3) 166 

Vegetable Price 0.32 (0.07, 2.18) 

SSB Price 0.33 (0.27, 1.21) 167 

Fruit Price Elasticity 

Truncated Normal 

Distribution 

0.7 (0.22, 1.09) 147 

Vegetable Price 

Elasticity 

0.58 (0.36, 0.82) 

SSB Price Elasticity 0.79 (0.21, 1.29) 168 
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Table B.6. Reduced Risk due to Consumption Change by Fruit, Vegetable and SSB 

𝑅𝑅 =
𝑅𝑅

𝑠𝑒𝑟𝑣𝑖𝑛𝑔/𝑑𝑎𝑦

𝑁𝑒𝑤 𝐼𝑛𝑡𝑎𝑘𝑒−𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑛𝑡𝑎𝑘𝑒

 

  

Event Distribution Mean RR for per 

serving reduction / day 

(95% UI) 

Source 

Fruit 

CHD Log-normal 0.93 (0.89, 0.97) 169 

Stroke 0.82 (0.75, 0.91) 170 
DM 0.94 (0.89, 1.00) 

Vegetable 

CHD Log-normal 0.95 (0.92, 0.98) 169 

Stroke 0.94 (0.90, 0.99) 170 
DM 0.98 (0.89, 1.08) 

SSB 

CHD Log-normal 0.93 (0.89, 0.97) 169 

Stroke 0.82 (0.75, 0.91) 171 

DM 0.22 (0.08, 0.36) 169 
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Table B.7. Cost of Health State and Acute Event 

Cost (2019 USD) Value Source 

Background health cost 

Men  

172 

40-49 years 3,689 

50-59 years 4,849 

60-69 years 6,461 

70-79 years 9,609 

80-89 years 14,541 

90+ years 27,874 

Women  

40-49 years 5,183 

50-59 years 7,034 

60-69 years 10,120 

70-79 years 12,426 

80-89 years 18,528 

90+ years 32,515 

CHD first year 

Aged 40-69 13,273 172 
Aged 70+ 20,284 

CHD subsequent years 

Aged 40-89 2,711 172 
Aged 90+ 4,262 

Acute (30-day) CHD 

Men   

173,174 

40-49 years 8,317 

50-59 years 14,135 

60-69 years 20,454 

70-79 years 24,131 

80-89 years 25,174 

90+ years 26,258 

Women  

40-49 years 6,608 

50-59 years 8,874 

60-69 years 17,312 

70-79 years 22,112 

80-89 years 25,957 

90+ years 34,502 

CHD Mortality 

Men   

173,174 

40-49 years 64,209 

50-59 years 67,520 

60-69 years 73,412 

70-79 years 64,513 
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Cost (2019 USD) Value Source 

80-89 years 54,473 

90+ years 46,475 

Women  

40-49 years 64,614 

50-59 years 56,959 

60-69 years 69,176 

70-79 years 63,939 

80-89 years 54,640 

90+ years 46,274 

Stroke first year 

All ages 20,538 172 

Stroke subsequent years 

All ages 5,707 172 

Acute (30-day) stroke 

Men   

173,174 

40-49 years 26,171 

50-59 years 22,736 

60-69 years 21,228 

70-79 years 17,915 

80+ years 19,144 

Women  

40-49 years 25,278 

50-59 years 21,842 

60-69 years 20,336 

70-79 years 17,023 

80+ years 18,251 

Stroke Mortality 

Men   

173,174 

40-49 years 32,344 

50-59 years 30,070 

60-69 years 28,724 

70-79 years 25,763 

80+ years 26,861 

Women  

40-49 years 32,344 

50-59 years 29,272 

60-69 years 27,926 

70-79 years 24,965 

80+ years 26,063 

Inflation factor 

$US2010 to $US2019 1.2587 175 
CHD – coronary heart disease  
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Table B.8. Chronic and Acute Utilities 

Parameter Value Source 

CHD 

Age 40-44 0.9348 

176–178 

Age 45-54 0.9374 

Age 55-64 0.9376 

Age 65-74 0.9372 

Age 75-84 0.9364 

Age 85+ 0.9358 

Stroke 

All ages 0.8835 
176–178 

Acute (30-day) CHD 

Age 40-44 0.897 

176–178 

Age 45-54 0.8862 

Age 55-64 0.8669 

Age 65-74 0.8351 

Age 75-84 0.7946 

Age 85+ 0.6829 

Acute (30-day) stroke 

All ages 0.8662 
176–178 

CHD – coronary heart disease, CVD – cardiovascular disease events 
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Table B.9. Reporting Checklist for Economic Evaluation of Health Interventions. 

Based on the CHEERS 2022 Checklist, available from https://www.equator-network.org/wp-

content/uploads/2013/04/CHEERS-2022-checklist-1.pdf 

 

 Item Guidance for Reporting Reported in section 

Title    

Title #1 Identify the study as an economic 

evaluation and specify the 

interventions being compared. 

Title  

Abstract    

Abstract #2 Provide a structured summary that 

highlights context, key methods, 

results and alternative analyses. 

Abstract  

Introduction    

Background and 

objectives 

#3 Give the context of the study, the 

study question and its practical 

relevance for decision making in 

policy or practice. 

 Introduction  

Methods    

Health economic 

analysis plan 

#4 Indicate whether a health economic 

analysis plan was developed and 

where available. 

No 

Study population  #5 Describe characteristics of the study 

population (such as age range, 

demographics, socioeconomic, or 

clinical characteristics). 

Simulated Population 

in Methods 

Setting and location #6 Provide relevant contextual 

information that may influence 

findings 

Methods 

Comparators #7 Describe the interventions or 

strategies being compared and why 

chosen. 

Policy Scenarios in 

Methods 

Perspective #8 State the perspective(s) adopted by 

the study and why chosen 

Statistical Analysis in 

Methods 

Time horizon #9 State the time horizon for the study 

and why appropriate. 

Model Development in 

Methods 

Discount rate #10 Report the discount rate and reason 

chosen 

Statistical Analysis in 

Methods 

Selection of outcomes #11 Describe what outcomes were used 

as the measure(s) of benefit and 

harm(s). 

Cost and Utility Model 

Parameters in Methods 

Measurement of 

outcomes 

#12 Describe how outcomes used to 

capture benefit(s) and harm(s) were 

measured. 

Cost and Utility Model 

Parameters in Methods 

https://urldefense.proofpoint.com/v2/url?u=https-3A__nam02.safelinks.protection.outlook.com_-3Furl-3Dhttps-253A-252F-252Fwww.equator-2Dnetwork.org-252Fwp-2Dcontent-252Fuploads-252F2013-252F04-252FCHEERS-2D2022-2Dchecklist-2D1.pdf-26data-3D05-257C01-257Cbkb2132-2540cumc.columbia.edu-257C55977e88f8424ea3281608da98198a8b-257Cb0002a9b0017404d97dc3d3bab09be81-257C1-257C0-257C637989533037851392-257CUnknown-257CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0-253D-257C3000-257C-257C-257C-26sdata-3DkFuiQfKjvAty5gs80PIL1CK-252BMW82BWJ73fvchlP60U8-253D-26reserved-3D0&d=DwMGaQ&c=shNJtf5dKgNcPZ6Yh64b-ALLUrcfR-4CCQkZVKC8w3o&r=1bNUXpSbHfj8P9Pdq0-kYVcxPv3ZN7qV07Zfmfyw5MY&m=hiBYGBCOO3jDQ_UGnceTYHNlRnhrCrY7-jaEH1RSFMNnI7YkSEnjyhHdkpKxw095&s=FVlObnkteiLrS3pOAcXZqEdLl9yVIaZAta8XtR4Tq8M&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__nam02.safelinks.protection.outlook.com_-3Furl-3Dhttps-253A-252F-252Fwww.equator-2Dnetwork.org-252Fwp-2Dcontent-252Fuploads-252F2013-252F04-252FCHEERS-2D2022-2Dchecklist-2D1.pdf-26data-3D05-257C01-257Cbkb2132-2540cumc.columbia.edu-257C55977e88f8424ea3281608da98198a8b-257Cb0002a9b0017404d97dc3d3bab09be81-257C1-257C0-257C637989533037851392-257CUnknown-257CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0-253D-257C3000-257C-257C-257C-26sdata-3DkFuiQfKjvAty5gs80PIL1CK-252BMW82BWJ73fvchlP60U8-253D-26reserved-3D0&d=DwMGaQ&c=shNJtf5dKgNcPZ6Yh64b-ALLUrcfR-4CCQkZVKC8w3o&r=1bNUXpSbHfj8P9Pdq0-kYVcxPv3ZN7qV07Zfmfyw5MY&m=hiBYGBCOO3jDQ_UGnceTYHNlRnhrCrY7-jaEH1RSFMNnI7YkSEnjyhHdkpKxw095&s=FVlObnkteiLrS3pOAcXZqEdLl9yVIaZAta8XtR4Tq8M&e=
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Valuation of outcomes #13 Describe the population and 

methods used to measure and value 

outcomes. 

Cost and Utility Model 

Parameters in Methods 

Measurement and 

valuation of resources 

and costs  

#14 Describe how costs were valued.  Cost and Utility Model 

Parameters in Methods 

and Model Inputs in 

Appendix B 

Currency, price date, 

and conversion 

#15 Report the dates of the estimated 

resource quantities and unit costs, 

plus the currency and year of 

conversion 

Cost and Utility Model 

Parameters in Methods 

Rationale and 

description of model 

#16 If modelling is used, describe in 

detail and why used. Report if the 

model is publicly available and 

where it can be accessed. 

Model Development in 

Methods and Model 

Overview in Appendix 

B 

Analytics and 

Assumptions 

#17 Describe any methods for analyzing 

or statistically transforming data, 

any extrapolation methods, and 

approaches for validating any model 

used. 

Model Overview in 

Appendix B 

Characterizing 

heterogeneity 

#18 Describe any methods used for 

estimating how the results of the 

study 

vary for sub-groups. 

Simulated Population 

in Methods and Model 

Overview in Appendix 

B 

Characterizing 

distributional effects 

#19 Describe how impacts are 

distributed across different 

individuals or adjustments made to 

reflect priority populations. 

Table S11 in Appendix 

B 

Characterizing 

uncertainty 

#20 Describe methods to characterize 

any sources of uncertainty in the 

analysis. 

Statistical Analysis in 

Methods 

Approach to 

engagement with 

patients and others 

affected by the study 

#21 Describe any approaches to engage 

patients or service recipients, the 

general public, communities, or 

stakeholders (e.g., clinicians or 

payers) in the design of the study. 

No 

Results    

Study parameters #22 Report all analytic inputs (e.g., 

values, ranges, references) 

including 

uncertainty or distributional 

assumptions. 

Table S1-S8, S12 in 

Appendix B 

Summary of main 

results 

#23 Report the mean values for the main 

categories of costs and outcomes of 

interest and summarize them in the 

most appropriate overall measure.  

Results, Table 3.1 
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Effect of uncertainty #24 Describe how uncertainty about 

analytic judgments, inputs, or 

projections 

affect findings. Report the effect of 

choice of discount rate and time 

horizon, 

if applicable. 

Results, Figure 3.2-3 

Effect of engagement 

with patients and others 

affected by the study 

#25 Report on any difference 

patient/service recipient, general 

public, community, or stakeholder 

involvement made to the approach 

or findings of the study 

No 

Discussion    

Study findings, 

limitations, 

generalizability, and 

current knowledge 

#26 Report key findings, limitations, 

ethical or equity considerations not 

captured, and how these could 

impact patients, policy, or practice. 

Discussion 

Other    

Source of funding #27 Describe how the study was funded 

and any role of the funder in the 

identification, design, conduct, and 

reporting of the analysis. 

Funding 

Conflict of interest #28 Report authors conflicts of interest 

according to journal or International 

Committee of Medical Journal 

Editors requirements. 

Cover Letter 
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Table B.10. Health Outcomes and Cost-Effectiveness over Multiple Time Horizon 

 SSB Tax only 
F&V Subsidy 

only 

SSB tax to 

subsidize F&V 

Over 20 years 

Prevented Healthcare Outcomes 

CHD events 34 (10 to 63) 16 (0 to 33) 49 (20 to 82) 

Stroke events 17 (4 to 32) 15 (4 to 29) 32 (15 to 52) 

CVD deaths 8 (-2 to 21) 4 (-4 to 14) 14 (0 to 29) 

QALYs gained 64 (12 to 129) 39 (4 to 82) 101 (35 to 177) 

Incremental Costs (2019 USD, thousands) 

  Healthcare sector perspective -1,540 (-2,730 

to -610) 

-980 (-1,590 to -

470) 

-2,490 (-3,690 

to -1,430) 

  Societal perspective 
-6,930 (-7,870 

to -6,190) 

5,470 (4,880 to 

5,970) 

-1,430 (-2,500 

to 580) 

Incremental cost-effectiveness 

  Healthcare sector perspective    

    ICER Dominated* Dominated* Dominant** 

    INMB 4,613,291 

(1,474,329 to 

8,600,976) 

2,881,597 

(992,333 to 

5,468,697) 

7,403,528 

(3,534,993 to 

12,258,909) 

  Societal perspective    

    ICER Dominant** Dominated*** Dominant** 

    INMB 10,007,844 

(7,097,779 to 

13,839,082) 

-3,576,846 (-

5,433,216 to -

1,010,781) 

6,338,897 

(2,663,346 to 

10,974,245) 

Over 40 years 

Prevented Healthcare Outcomes 

CHD events 61 (20 to 107) 30 (8 to 56) 91 (44 to 143) 

Stroke events 35 (12 to 62) 32 (13 to 55) 66 (36 to 101) 

CVD deaths 19 (2 to 40) 10 (-3 to 25) 31(7 to 56) 

   QALYs gained 142 (44 to 267) 88 (23 to 171) 
227 (102 to 

369) 

Incremental Costs (2019 USD, thousands) 

  Healthcare sector perspective -2,730 (-4,550 

to -1,140) 

-1,790 (-2,740 to 

-960) 

-4,480 (-6,460 

to -2,640) 

  Societal perspective 

-10,140 (-

11,630 to -

8,910) 

7,120 (6,210 to 

7,920) 

-3,000 (-4,750 

to -1,590) 

Incremental cost-effectiveness 

  Healthcare sector perspective    

    ICER Dominated* Dominated* Dominant** 

    INMB 9,788,639 

(3,494,787 to 

17,204,221) 

6,213,658 

(2,707,155 to 

10,541,790) 

15,780,529 

(8,384,293 to 

24,183,271) 

  Societal perspective    
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 SSB Tax only 
F&V Subsidy 

only 

SSB tax to 

subsidize F&V 

    ICER Dominant** Dominated*** Dominant** 

    INMB 17,207,776 

(11,279,099 to 

24,352,009) 

-2,694,328 (-

6,179,486 to 

1,636,413) 

14,289,757 

(7,230,732 to 

22,452,060) 

Over lifetime 

Prevented Healthcare Outcomes 

CHD events 79 (28 to 139) 39 (11 to 71) 118 (60 to 187) 

Stroke events 49 (17 to 89) 46 (19 to 80) 94 (54 to 145) 

CVD deaths 41 (8 to 81) 25 (1 to 51) 67 (24 to 114) 

   QALYs gained 196 (67 to 351) 122 (44 to 224) 
315 (159 to 

495) 

Incremental Costs (2019 USD, thousands) 

  Healthcare sector perspective -3,230 (-5,480 

to -1,400) 

-2,160 (-3,330 to 

-1,150) 

-5,340 (-7,690 

to -3,210) 

  Societal perspective 

-11,220 (-

13,090 to -

9,790) 

7,440 (6,340 to 

8,420) 

-3,730 (-5,770 

to -2,060) 

Incremental cost-effectiveness 

  Healthcare sector perspective    

    ICER Dominated* Dominated* Dominant** 

    INMB 13,030,000 

(8,830,000 to 

18,950,000) 

8,260,000 

(5,530,000 to 

12,350,000) 

21,090,000 

(15,640,000 to 

27,960,000) 

  Societal perspective    

    ICER Dominant** Dominated*** Dominant** 

    INMB 21,020,000 

(16,440,000 to 

27,340,000) 

-1,340,000  

(-4,140,000 to 

2,780,000) 

19,480,000 

(13,720,000 to 

26,810,000) 

Notes: All numerical results are presented as mean estimate with (95% UIs) 

*Dominated (i.e., costs more and less effective) by combining SSB taxation with F&V subsidies 

**Dominant (i.e., costs less and more effective) vs. status quo  

***Dominated by SSB taxation alone and combining SSB taxation with F&V subsidies 
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Table B.11. Health Outcomes and Cost-Effectiveness by Subpopulation Over 10 Years 

Each subgroup population size is 10K. 

 SSB Tax only F&V Subsidy 

only  

SSB tax to subsidize 

F&V 

Male 

Prevented Healthcare Outcomes 

CHD events 28 (4 to 59) 11 (-4 to 29) 39 (9 to 73) 

Stroke events 11 (0 to 26) 8 (0 to 20) 18 (4 to 36) 

CVD deaths 8 (-4 to 27) 4 (-6 to 16) 11 (-4 to 34) 

   QALYs gained 16 (0 to 38) 8 (-3 to 25) 23 (2 to 48) 

Incremental Costs (2019 USD, thousands) 

  Healthcare sector 

perspective 

-1,140 (-2,220 to 

-320) 

-540 (-1,080 to 

-120) 

-1,680 (-2,800 to -

120) 

  Societal perspective 
-5,310 (-6,760 to 

-4,120) 

3,250 (2,580 to 

3,790) 

-2,060 (-3,570 to -

150) 

Incremental cost-effectiveness  

  Healthcare sector 

perspective 
   

    ICER Dominated* Dominated* Dominant** 

    INMB 2,938,327 

(537,267 to 

6,208,130) 

1,396,394 

(67,126 to 

3,489,340) 

4,247,183  

(1,287,951 to 

7,911,067) 

  Societal perspective    

    ICER Dominant** Dominated*** Dominant** 

    INMB 7,109,092 

(4,816,401 to 

10,312,578) 

-2,390,236  

(-3,700,959 to -

282,338) 

4,630,950  

(1,756,887 to 

8,193,287) 

Female 

Prevented Healthcare Outcomes 

CHD events 9 (-2 to 25) 7 (-5 to 20) 16 (0 to 36) 

Stroke events 6 (0 to 16) 8 (0 to 18) 13 (4 to 27) 

CVD deaths 2 (-4 to 10) 3 (-6 to 10) 5 (-6 to 16) 

   QALYs gained 8 (-2 to 24) 7 (-2 to 20) 14 (0 to 34) 

Incremental Costs (2019 USD, thousands) 

  Healthcare sector 

perspective 

-430 (-910 to -

80) 

-410 (-830 to -

80) 

-810 (-1,460 to -330) 

  Societal perspective 
-2,990 (-3,690 

to-2,430) 

3,660 (3,130 to 

4,120) 700 (-190 to 1,420) 

Incremental cost-effectiveness 

  Healthcare sector 

perspective 
   

    ICER Dominated* Dominated* Dominant** 

    INMB 1,116,815 

(115,749 to 

2,832,847) 

1,059,440 

(108,962 to 

2,600,640) 

2,106,028  

(515,048 to 

4,416,239) 
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 SSB Tax only F&V Subsidy 

only  

SSB tax to subsidize 

F&V 

  Societal perspective    

    ICER Dominant** Dominated*** $50,000 

    INMB 3,680,361 

(2,720,549 to 

5,337,711) 

-3,015,641  

(-4,004,996 to -

1,482,978) 

594,361  

(-969,168 to 

2,769,523) 

White 

Prevented Healthcare Outcomes 

CHD events 17 (0 to 42) 9 (-8 to 30) 27 (0 to 57) 

Stroke events 7 (0 to 19) 8 (0 to 19) 14 (0 to 31) 

CVD deaths 3 (-6 to 14) 2 (-5 to 14) 5 (-8 to 19) 

QALYs gained 8 (-3 to 24) 6 (-4 to 19) 13 (-2 to 31) 

Incremental Costs (2019 USD, thousands) 

  Healthcare sector 

perspective 

-670 (-1,450 to -

110) 

-480 (-1,060 to 

-50) 

-1,150 (-2,060 to -

390) 

  Societal perspective 
-3,550 (-4,500 to 

-2,620) 

3,540 (2,810 to 

4,100) 90 (-1,090 to 1,120) 

Incremental cost-effectiveness 

  Healthcare sector 

perspective 
   

    ICER Dominated* Dominated* Dominant** 

    INMB 1,707,336  

(-66,305 to 

4,465,762) 

1,246,979  

(-58,868 to 

3,472,100) 

2,868,731  

(241,152 to 

6,118,718) 

  Societal perspective    

    ICER Dominant** Dominated*** $7,000 

    INMB 4,486,826 

(2,728,935 to 

7,190,682) 

-2,772,658  

(-4,089,538 to -

471,930) 

1,628,341  

(-886,785 to 

4,826,790) 

Black 

Prevented Healthcare Outcomes 

CHD events 27 (-5 to 68) 7 (-14 to 29) 34 (-5 to 76) 

Stroke events 15 (0 to 42) 8 (0 to 24) 23 (0 to 48) 

CVD deaths 5 (-10 to 28) 2 (-10 to 18) 7 (-14 to 33) 

   QALYs gained 8 (-3 to 25) 3 (-5 to 13) 11 (-3 to 30) 

Incremental Costs (2019 USD, thousands) 

  Healthcare sector 

perspective 

-1,240 (-2,680 to 

-210) 

-440 (-1,190 to 

10) 

-1,660 (-3,240 to -

500) 

  Societal perspective -6,360 (-8,340 to 

-4,790) 

2,860 (1,950 to 

3,470) 

-3,470(-5,590 to -

1,780) 

Incremental cost-effectiveness 

  Healthcare sector 

perspective 
   

    ICER Dominated* Dominated* Dominant** 
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 SSB Tax only F&V Subsidy 

only  

SSB tax to subsidize 

F&V 

    INMB 3,146,493 

(39,537 to 

7,810,917) 

1,060,031  

(-452,790 to 

3,560,841) 

4,217,818  

(233,101 to 

9,301,852) 

  Societal perspective    

    ICER Dominant** Dominated*** Dominant** 

    INMB 8,264,522 

(5,249,535 to 

12,950,599) 

-2,244,195  

(-3,750,077 to 

351,336) 

6,031,350  

(2,119,966 to 

11,102,636) 

Latino 

Prevented Healthcare Outcomes 

CHD events 15 (-3 to 40) 9 (-10 to 33) 24 (-3 to 55) 

Stroke events 7 (0 to 21) 9 (0 to 24) 16 (0 to 34) 

CVD deaths 4 (-6 to 17) 3 (-7 to 17) 7 (-10 to 28) 

   QALYs gained 6 (-3 to 19) 5 (-3 to 17) 11 (-2 to 28) 

Incremental Costs (2019 USD, thousands) 

  Healthcare sector 

perspective 

-620 (-1,380 to -

60) 

-530 (-1,200 to 

-70) 

-1,130 (-2,100 to -

350) 

  Societal perspective -3,280 (-4,320 to 

-2,470) 

3,550 (2,700 to 

4,180) 280 (-970 to 1,320) 

Incremental cost-effectiveness 

  Healthcare sector 

perspective 
   

    ICER 
Dominated* Dominated* Dominant** 

    INMB 1,707,403  

(-50,143 to 

4,409,486) 

1,482,362  

(-156,075 to 

4,071,750) 

3,044,140  

(363,536 to 

6,603,204) 

  Societal perspective 
   

    ICER 
Dominant** Dominated*** $25,000 

    INMB 4,370,043 

(2,722,188 to 

7,000,592) 

-2,595,430  

(-4,192,981 to 

34,343) 

1,628,756  

(-1,019,437 to 

5,113,042) 

Notes: All numerical results are presented as mean estimate with (95% UIs) 

*Dominated (i.e., costs more and less effective) by combining SSB taxation with F&V subsidies 

**Dominant (i.e., costs less and more effective) vs. status quo  

***Dominated by SSB taxation alone and combining SSB taxation with F&V subsidies 
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Table B.12. Other Model Parameters 

Parameter Value 

Number of Cycles 
Until age 100 

or death 

Maximum number of CVD related event 2 per cycle 

Sampled Size 10,000 

Number of Iteration 1,000 

Discount Rate 3% 
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APPENDIX C. SUPPLEMENTARY MATERIAL TO ESSAY 3 

Table C.1. Missing percentages for each feature 

Data Source Feature Name*  Missing Percentage (%) 

MDS 3.0 

Gender 0.0 

Age 0.0 

Marital_Status 0.0 

Medicare_Stay 0.0 

Race 0.0 

ADL 0.0 

Cancer 0.0 

Anemia 0.0 

Artialfib: Atrial Fibrillation or Other 

Dysrhythmias 0.0 

CAD: Coronary Artery Disease 0.0 

DVT_PE: Deep Venous Thrombosis (DVT), 

Pulmonary Embolus (PE), or Pulmonary 

Thrombo-Embolism (PTE). 0.0 

HF: Heart Failure 0.0 

Hypertension 0.0 

Orthohypo: Orthostatic Hypotension. 0.0 

PVD_PAD: Peripheral Vascular Disease 

(PVD) or Peripheral Arterial Disease (PAD). 0.0 

Cirrhosis 0.0 

GERD_Ulcer: Gastroesophageal Reflux 

Disease (GERD) or Ulcer 0.0 

UC_CD_IBD: Ulcerative Colitis, Crohn's 

Disease, or Inflammatory Bowel Disease. 0.0 

BPH: Benign Prostatic Hyperplasia 0.0 

ESRD: Renal Insufficiency, Renal Failure, or 

End-Stage Renal Disease 0.0 

Neuroblad: Neurogenic Bladder. 0.0 

Obstrurop: Obstructive Uropathy. 0.0 

MDRO: Multidrug-Resistant Organism 0.0 

Pneumonia 0.0 
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Data Source Feature Name*  Missing Percentage (%) 

MDS 3.0 

Septicemia 0.0 

Tuberculosis 0.0 

UTI: Urinary Tract Infection 0.0 

Viralhepatitis: Viral Hepatitis 0.0 

Woundinf: Wound Infection (other than foot). 0.0 

DM: Diabetes Mellitus (DM) (e.g., diabetic 

retinopathy, nephropathy, and neuropathy). 0.0 

Hyponatremia 0.0 

Hyperkalemia 0.0 

Hyperlipidemia 0.0 

Thyroiddis: Thyroid Disorder (e.g., 

hypothyroidism, hyperthyroidism, and 

Hashimoto's thyroiditis). 0.0 

Arthritis 0.0 

Osteoporosis 0.0 

Hipfracture: any hip fracture that has a 

relationship to current status, treatments, 

monitoring (e.g., sub-capital fractures, and 

fractures of the trochanter and femoral neck). 0.0 

Otherfracture 0.0 

Alzheimer 0.0 

Aphasia 0.0 

Cerebralpalsy 0.0 

CVA_TIA: Cerebrovascular Accident 

(CVA), Transient Ischemic Attack (TIA), or 

Stroke. 0.0 

Dementia: non-Alzheimer’s, e.g. Lewy body 

dementia, vascular or multi-infarct dementia; 

mixed dementia; frontotemporal dementia 

such as Pick's disease; and dementia related 

to stroke, Parkinson's or Creutzfeldt-Jakob 

diseases) 0.0 

Hemiplegia: Hemiplegia or Hemiparesis. 0.0 

Paraplegia 0.0 

Quadriplegia 0.0 

MS: Multiple Sclerosis 0.0 
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Data Source Feature Name*  Missing Percentage (%) 

MDS 3.0 

Huntington 0.0 

Parkinson 0.0 

Tourette 0.0 

Seizure: Seizure Disorder or Epilepsy 0.0 

TBI: Traumatic Brain Injury 0.0 

Malnutrition 0.0 

Anxiety 0.0 

Depression 0.0 

Manicdepression 0.0 

Psychotic 0.0 

Schizophrenia 0.0 

PTSD: Post Traumatic Stress Disorder 0.0 

COPT_Asthma: Asthma, Chronic Obstructive 

Pulmonary Disease (COPD), or Chronic 

Lung Disease (e.g., chronic bronchitis and 

restrictive lung 

diseases such as asbestosis). 0.0 

Respiratoryfailure 0.0 

Cataracts_Glaucoma: Cataracts, Glaucoma, 

or Macular Degeneration 0.0 

Fracture_Hist6m: fracture related to a fall in 

the 6 months prior to admission/entry or 

reentry 0.0 

#Fall: # of  falls since admission/entry 0.0 

Sbreath_Exertion: Shortness of breath or 

trouble breathing with exertion (e.g., walking, 

bathing, transferring) 0.0 

Sbreath_Rest: Shortness of breath or trouble 

breathing when sitting at rest. 0.0 

Sbreath_Lying: Shortness of breath or trouble 

breathing when lying flat 0.0 

Tabacco 0.0 

BIMS_Score 0.0 

Mood_Score 0.0 

Urinary: Urinary continence 4.2 

Bowel: Bowel continence 4.3 
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Data Source Feature Name*  Missing Percentage (%) 

Nursing Home 

Compare 

Ownership 0.0 

City 0.0 

ZIP 0.0 

Bedcert: number of certified beds 0.0 

AIDHRD: Reported CNA Staffing Hours per 

Resident per Day 2.5 

VOCHRD: Reported LPN Staffing Hours per 

Resident per Day 2.5 

RNHRD: Reported RN Staffing Hours per 

Resident per Day 2.5 

EXP_AIDE: Expected CNA Staffing Hours 

per Resident per Day 0.7 

EXP_LPN: Expected LPN Staffing Hours per 

Resident per Day 0.7 

EXP_RN: Expected RN Staffing Hours per 

Resident per Day 0.7 

Cycle_1_total_score: Cycle 1 Total Health 

Score 0.6 

Plong_hrskulcer: Percentage of high risk 

long-stay residents with pressure ulcers 3.2 

Plong_pneuvaccine: Percentage of long-stay 

residents assessed and appropriately given the 

pneumococcal vaccine 2.8 

Plong_influenza: Percentage of long-stay 

residents assessed and appropriately given the 

seasonal influenza vaccine 3.0 

Plong_fall: Percentage of long-stay residents 

experiencing one or more falls with major 

injury 2.8 

Plong_depress: Percentage of long-stay 

residents who have depressive symptoms 2.9 

Plong_lweight: Percentage of long-stay 

residents who lose too much weight 2.8 

Plong_antipsychotic: Percentage of long-stay 

residents who received an antipsychotic 

medication 2.9 

Pong_pain: Percentage of long-stay residents 

who self-report moderate to severe pain 3.8 
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Data Source Feature Name*  Missing Percentage (%) 

Nursing Home 

Compare 

Plong_phyrestrain: Percentage of long-stay 

residents who were physically restrained 2.8 

Plong_incADL: Percentage of long-stay 

residents whose need for help with daily 

activities has increased 3.1 

Plong_uriifect: Percentage of long-stay 

residents with a urinary tract infection 2.8 

Plong_catheter: Percentage of long-stay 

residents with a catheter inserted and left in 

their bladder 2.9 

Plong_lrskctrlbb: Percentage of low risk 

long-stay residents who lose control of their 

bowels or bladder 4.4 

Pshort_pneuvaccine: Percentage of short-stay 

residents assessed and appropriately given the 

pneumococcal vaccine 0.2 

Pshort_antipsychotic: Percentage of short-

stay residents who newly received an 

antipsychotic medication 0.6 

Pshort_pain: Percentage of short-stay 

residents who self-report moderate to severe 

pain 0.7 

Pshort_influenza: Percentage of short-stay 

residents who were assessed and 

appropriately given the seasonal influenza 

vaccine 0.2 

Pshort_ulcer: Percentage of short-stay 

residents with pressure ulcers that are new or 

worsened 0.2 

National 

Neighborhood 

Data Archive 

Aland10: ZCTA land area, square miles 0.0 

Totpop13_17: Total population, ACS 2013-

2017 0.0 

Popden13_17: Persons per square mile, ACS 

2013-2017 0.0 

Phispanic13_17: Proportion of people of 

Hispanic origin, ACS 2013- 

2017 0.0 

Pnhwhite13_17: Proportion of people non-

Hispanic White, ACS 2013- 

2017 0.0 
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Data Source Feature Name*  Missing Percentage (%) 

National 

Neighborhood 

Data Archive 

Pnhblack13_17: Proportion of people non-

Hispanic Black, ACS 2013- 

2017 0.0 

Pfborn13_17: Proportion of people who are 

foreign born, ACS 2013- 

2017 0.0 

Ped1_13_17: Proportion with Less than High 

School Diploma, ACS 

2013-2017 0.0 

Ped2_13_17: Proportion with High School 

Diploma and/or Some 

College, ACS 2012-2013 0.0 

Ped3_13_17: Proportion with Bachelor's 

Degree or Higher, ACS 

2013-2017 0.0 

Pin1b_13_17: Proportion of families with 

Income less than 15K, ACS 

2013-2017 0.0 

Pin2b_13_17: Proportion of families with 

Income 15-30K, ACS 2013- 

2017 0.0 

Pin3b_13_17: Proportion of families with 

Income 30-50K, ACS 2013- 

2017 0.0 

Pin4b_13_17: Proportion of families with 

Income 50-100K, ACS 

2013-2017 0.0 

Pin5b_13_17: Proportion of families with 

Income greater than 100K, 

ACS 2013-2017 0.0 

Pincgt75k13_17: Proportion of families with 

Income greater than 75K, 

ACS 2013-2018 0.0 

Pnvmar13_17: Proportion of People 15+ 

Never Married, ACS 2013- 

2017 0.0 

P18yr_13_17: Proportion of population under 

18 yrs, ACS 2013-2017 0.0 

P18_2913_17: Proportion of population 18-

29 yrs, ACS 2013-2017 0.0 
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Data Source Feature Name*  Missing Percentage (%) 

 P30_3913_17: Proportion of population 30-

39 yrs, ACS 2013-2017 0.0 

 P40_4913_17: Proportion of population 40-

49 yrs, ACS 2013-2017 0.0 

 P50_6913_17: Proportion of population 50-

69 yrs, ACS 2013-2017 0.0 

 Pge7013_17: Proportion of population 70+ 

yrs, ACS 2013-2017 0.0 

 Punemp13_17: Proportion 16+ civ labor 

force unemployed, ACS 

2013-2017 0.0 

 Pprof13_17: Proportion emplyd civ 16+ 

mgmt/bus/sci/arts, ACS 

2013-2017 0.0 

 Ppov13_17: Proportion people w/ income 

past 12 months below 

poverty level, ACS 2013-2017 0.0 

 Ppubas13_17: Proportion of households with 

public assistance 

income, ACS 2013-2017 0.0 

 Pfhfam13_17: Proportion female-headed 

families w/ kids, ACS 2013- 

2017 0.0 

 Pownoc13_17: Proportion owner occupied 

hus, ACS 2013-2017 0.0 

 Disadvantage13_17: Mean of pnhblack 

pfhfam ppubas ppov punemp, ACS 

2013-2017 0.0 

 Disadvantage2_13_17: Mean of pfhfam 

ppubas ppov punemp, ACS 2013- 

2017 0.0 

 Affluence13_17: Mean of pincgt75k ped3 

pprof, ACS 2013-2017 0.0 

 Ethnicimmigrant13_17: Mean of phispanic 

pfborn, ACS 2013-2017 0.0 

*The features listed are before dummifying categorical variables. Also the missing percentages are 

calculated based on the filtered population from admission records and facilities recorded on the 

Nursing Home Compare dataset. 
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