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ABSTRACT

Dark matter makes up a vast majority of the matter in the universe, however, the

composition of dark matter is unknown. One approach to uncover the composition of

dark matter is via the direct detection of dark matter. This thesis focuses on the use of

computational techniques to enhance or enable the direct detection of dark matter by the

XENON experiment and the Windchime project.

First, a software veto for radon chain backgrounds using measurements of the convective

motion in XENON1T is detailed and demonstrated. It is shown that this can reduce the

radon chain background in the XENON1T and XENONnT detectors, and with potential for

improved performance in larger detectors with reduced convection. The design and operation

of a 88Y-Be photo-neutron source is then discussed. It is shown that in the calibration data

collected there is a significant population of neutron events that can be used to calibrate

the detector response. Following that is a discussion of the methods to conduct analysis

and make sensitivity projections for the Windchime project. A semi-analytical method for

sensitivity projections that does not require a full simulation of the sensor array is shown, and

both Bayesian and frequentist approaches to track-finding in sensor arrays are demonstrated.

The latter includes an estimate of the look-elsewhere effect in such a dark matter search.

This leads to an exploration of the use of Gaussian random fields for the estimation of the

look-elsewhere effect, wherein it is shown that Gaussian random fields can be sampled quickly

to compute the look-elsewhere effect corrections.
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1. INTRODUCTION

“The only way of discovering the limits of the possible is to venture a little way past them

into the impossible.” - Arthur C. Clarke [  1 ]

Dark matter is one of the greatest scientific mysteries of our time. Most of the mass in

the universe is dark matter–and yet, the nature of dark matter is unknown [  2 ]. The primary

scientific goal of this thesis is to shed light on the nature of dark matter via direct detection

experiments. Thus far, there has not been an unambiguous detection of a dark matter signal

in direct detection experiments [ 3 ]. The work presented in this thesis therefore aims to push

the boundaries of dark matter searches–to cover a wider range of models, and to increase

the sensitivity of dark matter searches to lower cross sections. This is done with a focus on

computational techniques, and will be expanded upon in detail in the following chapters.

In this introductory chapter, I briefly cover relevant background information regarding

dark matter and the direct detection experiments that form the basis of this work. Following

this, in  chapter 2  , I discuss my work regarding the use of algorithms to reduce radioactive

backgrounds in liquid noble element detectors such as XENON1T. In  chapter 3  , I discuss

the design and operation of a 88Y/Be photo-neutron calibration source for XENONnT.

In  chapter 4 , I discuss data analysis and sensitivity projection methods developed for the

Windchime project. In  chapter 5  , I discuss the use of Gaussian random fields to model the

look-elsewhere effect efficiently. Finally,  chapter 6 presents a conclusion to this thesis.

1.1 Dark matter

1.1.1 Evidence for Dark Matter

Dark matter accounts for 84.4% of the total matter density in the universe, and is

a generally accepted in modern cosmology with many independent pieces of supporting

evidence [ 2 ,  4 – 6 ]. This includes signatures from the early universe such as Big Bang

nucleosynthesis, the cosmic microwave background, and evidence from later times, such

as structure formation, galaxy cluster mergers, and galaxy rotation curves. These pieces of
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evidence are independent and range from the largest scales to the universe to the scale of

small galaxies. In this section, I will briefly overview some of the evidence for dark matter.

Big Bang Nucleosynthesis

In the early universe, protons and neutrons were in thermal equilibrium; however, at

approximately 1 s, the temperature of the universe dropped enough that neutrons and protons

can no longer freely convert between each other. At this time, the neutron-proton ratio would

be approximately n/p ≈ 1/6 [ 2 ]. Shortly thereafter, the temperature of the universe drops

low enough that nuclei can form without being immediately dissociated by photons. Because

neutrons are allowed to beta decay, by this time, the proton-neutron ratio is n/p ≈ 1/7.

Almost all of the neutrons end up as part of 4He nuclei because it is the most stable light

element; thus, the primordial mass fraction of 4He can be estimated by simply dividing the

number of neutrons times two by the total number of nucleons [  2 ]:

Yp = 2(n/p)
1 + n/p

≈ 0.25 (1.1)

This process and hence the abundance of light elements in the universe is sensitive to the

baryon density in the early universe [ 2 ,  7 ]. Thus, while the existence of dark matter cannot

directly be inferred from Big Bang nucleosynthesis, it is possible to determine the baryon

density in the universe based on measurements of the light element abundances, such as the
4He primordial mass fraction. When combined with other measurements of cosmological

parameters, such as from the cosmic microwave background, such constraints of the baryon

density serve as both independent verification of the models, and as evidence that there is

not enough baryonic matter to account for the matter density in the universe. It can be seen

in  Figure 1.1  that the baryon density inferred from Big Bang nucleosynthesis is in agreement

with that from the cosmic microwave background, which is introduced next.
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Figure 1.1. Abundances of 4He (purple), D (blue), 3He (red), and 7Li (green)
as a fraction of 1H abundance. The 95% CL range of the model prediction is
shown in coloured bands, and the observed abundances are indicated by yellow
boxes. The baryon density as measured via the cosmic microwave background
(CMB) is indicated by the cyan vertical band, whereas the BBN measurement
using D and 4He is indicated by the purple hatched vertical band. Reproduced
from [  2 ].
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The Cosmic Microwave Background

The cosmic microwave background is a key piece of evidence for dark matter. When the

universe was approximately 300,000 years old, the universe cooled enough for free electrons

to be captured by atomic nuclei to form neutral atoms, in a process called recombination

[ 8 ]. This caused the previously opaque universe to become transparent to light; thus, the

cosmic background radiation from that recombination era is still visible today. This radiation,

however, is now red-shifted to the microwave range, with a 2.7 K black-body spectrum [ 4 ].

While the cosmic microwave background radiation appears to be a nearly perfect black-body

spectrum, there are small fluctuations on the order of ∆T/T ∼ 10−5 caused by matter density

fluctuations in the early universe at the time of recombination [  2 ,  8 ]. Specifically, there

are peaks in the power spectrum of the cosmic microwave background radiation caused by

acoustic oscillations in the early universe. The amplitude and position of these peaks are

sensitive to cosmological parameters, including the total matter density and the baryon

density of the universe [ 8 ]. A measurement of these fluctuations in the cosmic microwave

background radiation by the Planck Collaboration [  9 ] can be seen in  Figure 1.2  .

The best fit in  Figure 1.2  uses the ΛCDM model, otherwise known as the standard model

of cosmology. It corresponds to a universe dominated by dark energy (Λ), cold dark matter

(CDM), and baryonic matter [ 2 ,  4 ]. The dark energy, dark matter, and baryonic matter

densities corresponding to  Figure 1.2 are ΩΛ ≈ 0.68, Ωχ ≈ 0.26, and Ωb ≈ 0.05, indicating

that ≈ 84% of the matter in the universe is dark matter.
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Figure 1.2. The power spectrum of the cosmic microwave background as
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Large Scale Structure of the Universe

Density fluctuations in the early universe also impact the formation of structure and hence

the distribution of matter in the universe [  2 ]. Thus, we can compare observations of the matter

distribution in the universe with models of structure formation based on ΛCDM to determine

the cosmological parameters. This has been done by the Dark Energy Survey [  10 ], leading

to the following measurement of the cosmological matter density: Ωm ≈ 0.27, agreeing with

measurements by Planck with overlapping 95% confidence intervals. When combined with

the constraints on baryonic matter density from Big Bang nucleosynthesis, this demonstrates

that there is significantly more matter in the universe than there is baryonic matter.

The same acoustic oscillations that leave imprints in the cosmic microwave background

radiation can also be observed in the matter power spectrum and the two-point correlation

of galaxies. This is because the power spectrum and two-point correlation function forms a

Fourier transform pair, a fact that serendipitously will be discussed again in a completely

different context in  chapter 5 . The principal effect of acoustic oscillations is to create an

acoustic peak in the correlation function at a specific distance scale, known as the sound

horizon. This sound horizon is predicted by ΛCDM to be rs ≈ 150 Mpc; thus, measurements of

this sound horizon can serve as both a cosmological distance ladder and a test of ΛCDM. This

was measured by the Sloan Digital Sky Survey, and was found to agree with ΛCDM predictions

made using cosmological parameters inferred from the cosmic microwave background [  6 ].

The Bullet Cluster

At smaller scales than we have discussed thus far, cluster 1E0657-558, otherwise known

as the Bullet Cluster, provides another key piece of evidence for the existence of dark matter.

The Bullet Cluster, shown in  Figure 1.3 , is made up of two colliding galaxy clusters.
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Figure 1.3. The bullet cluster in visible light (true colour galaxies), and
X-ray (pink), with a gravitational lensing map (blue) indicating the matter
distribution. Reproduced from [  11 ]. X-ray data from [ 12 ], optical and lensing
data from [  13 ].
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As the clusters collided, the galaxies themselves largely did not interact due to the

large distances between galaxies. The X-ray emitting plasma (shown in pink in  Figure 1.3 ),

however, behaves like a fluid, displaying a bow shock on the right side and being slowed

down by interactions compared to the galaxies. In these galaxy clusters, the baryonic mass

is dominated by X-ray emitting plasma as opposed to galaxies [ 13 ]; as such, without the

existence of dark matter, one would expect the X-ray emission to line up with the matter

distribution obtained via gravitational lensing shown in blue in  Figure 1.3 . However, we can

see that this is not the case, indicating that the matter distribution is dominated by mass

that we cannot yet detect–dark matter.

Galaxy Rotation Curves

Galaxy rotation curves are another key piece of evidence for the existence of dark matter.

In a spiral galaxy, most of the luminous matter is concentrated in the centre. The orbital

speed of matter around a central mass can be derived within the framework of classical

mechanics as such:

v2

r
= G

M(r)
r2

v =
√

G
M(r)

r

(1.2)

where M(r) is the amount of mass contained within radius r. Thus, where the central mass

dominates and M(r) ≈ constant, we would expect the velocity of stars orbiting in the disc to

decrease with increasing distance from the centre as v ∝ r−1/2 [ 14 ]. Observations of spiral

galaxies, including our own, however, show a much flatter rotation curve [ 15 ,  16 ]. An example

of this can be seen in  Figure 1.4  , where that the rotation curve of M33 is best fit by a model

with a dominant dark matter halo. Such rotation curves have been observed in large surveys

of galaxies [  14 ,  17 ,  18 ], and is consistent with the existence of dark matter.
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Figure 1.4. The rotation curve of M33. The best-fit mass model is indicated
by the continuous red line, with individual components indicated by red dashed
and dash-dotted lines. Parameters representing the stellar disc contribution and
the shape of the dark matter distribution are used to fit the data. Reproduced
from [  19 ], with added labels for clarity.
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It should be noted that galaxy rotation curves can also be fit using theories of modified

gravity such as Modified Newtonian Dynamics using a relation between the Newtonian

acceleration and the observed acceleration, known as a Radial Acceleration Relation. However,

these models have not been shown to accommodate different galaxies with a simultaneous

fit [  20 ], or other pieces of evidence for dark matter highlighted in this section [ 2 ,  21 ].

1.1.2 Models of Dark Matter

The two dark matter candidates most relevant in this thesis are Weakly Interacting

Massive Particles (WIMPs) and ultra-heavy dark matter. These two models are the primary

focus of the XENON Experiment (see  section 1.2 ) and the Windchime Project (see  section 1.3 ),

respectively.

Weakly Interacting Massive Particles

Freeze-out refers to the process where constituents of the universe decouples from the

thermal bath representing the rest of the universe as the matter density drops. This happens

as the rate of processes that change the particle species, such as annihilation (χχ̄ → γγ),

drops below the Hubble rate, which parameterises the expansion of the universe [  2 ,  14 ].

Freeze-out is discussed in  subsection 1.1.1 in the context of light elements and CMB photons,

and can similarly be considered as a formation mechanism for dark matter.

With this freeze-out mechanism, the relation between dark matter density and cross

section is given by [ 14 ,  22 ]:

Ωχ ∼ 10−25 cm3/s
〈σv〉

(1.3)

where Ωχ is the dark matter density, σ is the average dark matter annihilation cross section,

and v is the dark matter velocity. The χ subscript is used to denote the WIMP. The numerator

in this relation does depend on mass logarithmically, and thus the order-of-magnitude estimate

holds from mχ ∼ 1 GeV to mχ ∼ 1 TeV[ 14 ,  22 ]. For typical velocities of 0.1c, we can obtain a

cross section of σ ∼ 10−35 cm2 which is around the electroweak symmetry breaking scale [  22 ].

This remarkable coincidence is known as the WIMP miracle, and has led WIMPs being one

of the most favoured dark matter candidates.
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Ultra-heavy Dark Matter

The goal of Windchime is to search for dark matter with masses of around the Planck

mass (mχ ≈ 1019 GeV). The reason for the focus on the Planck mass is a confluence of

theoretical motivations and experimental considerations. The mass range around the Planck

mass is a natural region of parameter space to search for dark matter, as new physics is

expected at that mass scale. More concretely, there are many theoretical models that predict

dark matter particles in this mass range [  23 – 26 ]. An overview of these can be found in [  25 ].

Experimentally, the Planck mass is approximately an upper mass limit for dark matter

that can be probed by direct detection experiments, and coincidentally also approximately the

lower limit for gravitational detection of dark matter [ 23 ]. The former is due to the fact that

given the known dark matter density [ 2 ], the flux of dark matter particles is approximately

(mP l/mχ) yr−1 m−2; thus, the flux of dark matter that is far heavier than the Planck mass

would be too low for metre-scale direct detection experiments. The latter is due the fact that

the gravitational attraction from a Planck mass dark matter particle is enough to rise above

the thermal noise floor of large accelerometer arrays under certain circumstances [ 23 ].

1.1.3 Direct Detection of Dark Matter

In direct detection experiments, we attempt to detect galactic dark matter passing through

our lab. Because galactic dark matter has to be gravitationally bound with an escape velocity

of vesc = 528+24
−25 km/s, it is non-relativistic[  2 ]. Because of this, the recoil energy between

WIMP and detector nuclei tends to be in the tens-of-keV scale or smaller [ 2 ]. This highlights

the importance of reducing systematic uncertainties near detector thresholds for WIMP

experiments, such as the calibration discussed in  chapter 3 .

In direct detection experiments, there can exist events originating from processes unrelated

to dark matter, such as cosmic rays or radiation. These events, termed backgrounds, mean

that it is often not possible to attribute individual events to dark matter. There are thus two

primary signatures of dark matter in direct detection experiments: an event excess above

background, and an annual modulation signal. This annual modulation is due to the Earth’s

motion in the solar system going with the motion of the Sun in the Milky Way for part of
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the year, and against for other parts of the year. This motion increases or decreases the

flux of Dark Matter particles, respectively. However, due to the fact that the Earth’s orbital

velocity in the solar system is much lower than the Sun’s orbital velocity in the Milky Way,

the amplitude of the annual modulation is only about 5% [ 2 ]. Thus, in both XENON and

Windchime, we opt to focus on looking for an event excess above background. To maximise

the sensitivity of such an experiment, it is important to minimise the background, as a signal

must rise above the statistical fluctuations in the background expectation to result in a

statistically significant detection.

1.2 The XENON Experiment

The XENON1T experiment, located in Laboratori Nazionali del Gran Sasso (LNGS)

underground laboratory in Italy, uses a dual-phase time-projection chamber (TPC) to search

for dark matter. Liquid xenon is used as the active target [  27 ]. Some of the strongest

limits on the interaction cross section of dark matter and normal matter have come from

WIMP searches with liquid xenon TPCs [  28 – 30 ]. In addition, XENON1T, XENONnT, and

other liquid xenon TPCs are sensitive to various other physics channels, such as searches for

neutrinoless double-beta decay (0νββ) [ 31 – 33 ], measurements of double electron capture in
124Xe [ 34 ], solar axions, non-standard neutrino interactions, and bosonic dark matter [  35 ,  36 ].

The siting of XENON1T underground in LNGS provides a 3600 m water-equivalent

overburden [ 27 ,  37 ], greatly reducing backgrounds from cosmic-ray muons. The XENON1T

TPC is housed in a double-walled vacuum cryostat, which is surrounded by a 740 m3 water

Cherenkov muon veto. This allows for active detection and veto of muons and muon-induced

backgrounds, further reducing the cosmogenic background rate. A schematic of the XENON1T

TPC is shown in Fig  1.5 .

28



particle

e-e-
e-S1

GXe

LXe

S2 Eextraction

Edrift

time

drift time 
(depth)

Figure 1.5. Schematic of the XENON1T TPC. When a particle enters the
TPC and scatters, there is a scintillation signal produced, in addition to free
electrons. The electrons are drifted up with an electric field and extracted
into the xenon gas, where they are accelerated and produce a second signal
when those electrons scatter off gaseous xenon atoms. Image credit: Lutz
Althüser [ 38 ].
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In XENON1T, there are two photomultiplier tube (PMT) arrays on the top and bottom.

Electric fields are produced in the TPC using five electrodes. The extraction field is produced

using the anode, near the top of the TPC in the gaseous xenon, and the gate, just below the

liquid level, whereas the drift field is produced using the gate and the cathode, near the bottom

of the TPC. In addition, there are two screening electrodes between the aforementioned three

electrodes and the top and bottom PMT arrays to minimise the field near the PMTs [  27 ]. The

TPC diameter is 96 cm and the distance between the cathode and gate is 97 cm, resulting in

a total active target mass of 2.0 tonnes. More details regarding the design of the XENON1T

experiment can be found in [  27 ].

The XENONnT experiment is an in-place upgrade of XENON1T. The TPC diameter and

the separation between is increased to 1.3 m, and the distance between the cathode and gate

is increased to 1.5 m, resulting in an increased active target mass of 5.9 tonnes. The muon

veto itself is unchanged from XENON1T. However, there is now a neutron veto surrounding

the main cryostat containing the TPC, which is optically separated from the muon veto. The

neutron veto aims to reduce the radiogenic neutron background by detecting neutrons which

scatter in the TPC volume and are then captured in the neutron veto [  39 ]. More details

regarding the design of the XENONnT experiment can be found in [  39 ].

Xenon is a scintillator [ 40 ]; as such, when a particle enters the detector and scatters on a

xenon atom, photons would be emitted, and we will observe a prompt scintillation signal,

referred to as the S1 signal. In addition, some electrons would be freed [ 40 ]. If these electrons

do not quickly re-combine with the atoms they were freed from before being carried away

by Brownian motion or the drift field, they can be drifted up by the drift field. Once the

electrons are above the gate electrode, the stronger extraction field extracts the electrons into

the gaseous xenon and accelerates them. The accelerated electrons then generate proportional

scintillation in gaseous xenon atoms, allowing the ionisation signal, known as the S2, to

be detected by the PMTs [  27 ]. There is three-dimensional position reconstruction for each

event, with x/y positions being inferred using the PMT light patterns, while z positions are

determined by the time between S1 and S2 signals. The position reconstruction allows for

greater background rejection by excluding events near the surface of the detector, which are

more likely to be due to radioactive backgrounds, from analysis. The ratio between S1 and
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S2s can be used to discriminate between electronic recoil (ER) events, referring to interactions

where more kinetic energy is deposited into electrons such as charged particles, gamma rays,

and nuclear recoil (NR) events, referring to events where more kinetic energy is deposited

into the nucleus typically by neutral particles, such as neutrons and WIMPs.

1.3 The Windchime Project

The Windchime project aims to use mechanical quantum-limited accelerometers to detect

dark matter via the gravitational coupling alone [  23 ,  41 ]. While the gravitational force is

extremely weak, it has been shown theoretically that this might be possible with a large

array of sensors [  23 ]. The goal of this experiment is to detect heavy dark matter around

the Planck mass using a large array of mechanical sensors [  41 ]. For reference, the Planck

mass is 22 µg–approximately 1/10th the mass of a fruit fly [ 42 ]. At this mass, detection of

momentum transferred due to gravitational interactions between dark matter particles and

the test mass of sensors is still extremely challenging, but not necessarily impossible! In such

an experiment, dark matter couples via a long-range force, such as gravity, producing tracks

in a sensor array, and the signal on an individual sensor would look like an extremely fast

impulse. A schematic of such an array with a dark matter track is shown in  Figure 1.6  .

Figure 1.6. Plot of an example array, with sensors represented by coloured
circles. The strength of an acceleration signal is indicated by the sensor colour.
An example track going through the array is shown in green.
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In a track through an array with sensor separation δL, one would expect the closest

approach between the track and sensors in the array that are along the track to be the

∼ δL [ 23 ]. In the lab frame, the expected speed distribution of dark matter is expected to

peak at ≈ 300 km/s [ 43 ]. For a δL ≈ 1 cm array, this would indicate that the typical time

spanned by an impulse is ∼ 1 cm/(300 km/s) ≈ 30 ns.

The reason for needing a sensor array is two-fold. First, due to how weak the gravitational

coupling is, it is expected that any signal would be extremely hard to detect. With a large

array of N3 sensors, a track would pass by ∼ N sensors. If the noise is largely uncorrelated,

as is the case for thermal or quantum noise, this would confer a ∼
√

N improvement in the

signal-to-noise ratio (SNR). Second, on an individual sensor, background processes such as

cosmic rays or radioactive decays of atoms in a sensor test mass could mimic the fast impulses

that we hope to detect. These backgrounds, however, are expected to be uncorrelated

between sensors, thus searching for a track would provide effective rejection of many such

backgrounds [ 23 ].
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2. OFFLINE TAGGING OF RADON-INDUCED

BACKGROUNDS IN LIQUID NOBLE ELEMENT DETECTORS

This work is under internal review by the XENON Collaboration, and is intended to be

published shortly after the submission of this thesis.

2.1 Introduction

Liquid xenon time projection chambers (TPCs) such as XENON1T [  27 ], XENONnT [ 39 ],

and LZ [ 44 ] are constructed with the primary goal of searching for dark matter in the

form of weakly-interacting massive particles (WIMPs) [ 27 ,  29 ]. These TPCs as well as the

dedicated EXO TPC also search for neutrinoless double-beta decay (0νββ) [ 31 – 33 ]. Other

physics channels include measurements of double electron capture in 124Xe [ 34 ], solar axions,

non-standard neutrino interactions, and bosonic dark matter [ 35 ,  36 ].

Achieving low levels of radioactive backgrounds is critical to the aforementioned physics

channels. In xenon-based dark matter experiments, 222Rn contamination is a major source of

backgrounds in the ER channel, and is also important to the nuclear-recoil (NR) channel

due to imperfect ER/NR discrimination [ 27 ,  39 ,  44 – 46 ]. This is because 222Rn is produced

from the emanation of 226Ra which is present at low levels in almost all materials [  47 ]. In

addition, 222Rn is miscible with xenon, and the half-life of t1/2 ≈ 3.8 days [ 48 ] allows it to mix

throughout the detector. The isotope in the 222Rn decay chain that decays to produce the

relevant low-energy background is 214Pb, see  Figure 2.1  . Because of this, substantial efforts

address this background in hardware [ 47 ,  49 – 53 ]. The work described in this chapter aims

to compliment such hardware-based methods to further reduce radon-induced backgrounds

using offline analysis.

Efforts to tag 214Pb events in XENON1T based on other events in the same decay

chain require a measurement of the convection velocity field. This in contrast to solid-state

detectors, such as DAMIC [ 54 ], where decays from the same decay chain are expected to be

spatially coincident even when events are separated by tens of days [ 55 ]. The measurement of

convection in XENON1T and properties of the velocity field are detailed in  section 2.2 . The
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algorithm to track isotopes along the measured velocity field and thus veto 214Pb events is

detailed in  section 2.3  . Results, including demonstrations of the technique on XENON1T data,

projections to XENONnT and future liquid xenon detectors, and application to cosmogenic
137Xe which is a background for the search for neutrinoless double-beta decay (0νββ), are

discussed in  section 2.4 . Finally, the conclusion is presented in  section 2.5 .

2.1.1 The 222Rn Decay Chain

The decay chain of 222Rn is shown in  Figure 2.1 . 214Pb is responsible for the low-energy

ER background. This is because the beta spectrum of 214Pb extends to low energies and is flat

to the percent-level below 50 keV [ 35 ]. Alpha decays, on the other hand, are mono-energetic

and have a different S1/S2 ratio from ER or NR events [  56 ,  57 ], and hence are easy to select.
214Bi decay does not represent an important background because it is quickly followed by

214Po, an isotope that undergoes alpha decay with a half-life of 164 µs [ 58 ]. Because this is

much shorter than the drift time in XENON1T and XENONnT, the 214Bi and 214Po events

are combined into a single event with two S1s, and two or more S2s. This is a unique event

topology that is easy to select. Such events are termed BiPo events in this chapter.

2.2 Convection in the XENON1T Detector

2.2.1 Creating the Convection Field

Convection has been observed in earlier dual phase liquid xenon TPCs, such as

XENON100 and LUX [ 62 ,  63 ]. While the exact boundary conditions driving the convection

are not known, the convective flow is likely driven by the thermal flux into the TPC, possibly

from both recirculation flows and from the cryostat. The relevant temperature gradient might

be either horizontal or vertical.
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Figure 2.1. Decay chain of 222Rn, part of the uranium series. Only branches
with branching fraction above 99.5% are shown. Data retrieved using the
NNDC ENSDF, with the following Nuclear Data Sheets citations: [  48 ,  58 – 61 ].
The isotope that decays to produce the background events being tagged in this
work, 214Pb, is coloured red, whereas the isotopes with decays that are used
for the tagging of 214Pb are coloured blue.
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To measure the convective flow in the XENON1T detector, 222Rn and 218Po events are

used. These events are selected using Gaussian Mixture clustering as implemented in scikit-

learn [ 64 ] using the position-corrected S1, position-corrected S2, S2 width, radial coordinate,

and z-coordinate of each event [  65 ]. BiPo events, which will be used later, are selected by

choosing events that have two interactions, corresponding to the 214Bi and 214Po decays.

These interactions are required to be less than 5 cm apart in each of the x, y, and z directions,

and the α-event is further required to have appropriate position-corrected S1 and S2 values.

After event selection, 222Rn and 218Po events have to be paired to construct velocity

vectors corresponding to the convective flow. However, the rate of 222Rn decays exceeds

10 µBq/kg [ 66 ], corresponding to approximately two 222Rn events every 3 min in a 1 tonne

fiducial mass. As the half-life of 218Po is ∼ 3 min, the pairing of 222Rn and 218Po events cannot

be done in a naive manner where every 218Po event is considered to be the daughter of the

preceding 222Rn event. Instead, for each pair of 222Rn and 218Po events, the time difference

(∆t) and displacement (∆x) are plotted on a histogram, see  Figure 2.2  . An excess of pairs

where ∆x < 20 cm and 0 s < ∆t < 40 s becomes apparent. This is where correctly-paired

events are expected. In addition, the distribution of 222Rn and 218Po events that are not

correctly paired is independent of ∆t, and can be determined using pairs where ∆t < 0. One

can then compute the purity of each histogram bin as fpure = 1 − Nbg/Nbin, where Nbg is the

number of incorrect pairs in a bin at the given ∆t estimated using negative-time bins, and

Nbin is the total number pairs in a bin. With this, it is already possible to obtain a sample of

pairs that can be used to measure the convection velocity simply by selecting all histogram

bins with purities above a given threshold.

All permutations of 222Rn and 218Po pairs are used; hence one can improve on this method

by iteratively selecting the bin with highest fpure, and then removing all pairs which contain

one of these 222Rn or 218Po events. The average purity of 222Rn-218Po pairs as a function of

the total number of pairs selected is shown in  Figure 2.3  for both the naive and the iterative

methods. It can be seen that the iterative method indeed provides a modest improvement.
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Figure 2.2. 2D histogram of the time difference (∆t) and displacement
(∆x) of all permutations of 222Rn and 218Po pairs. The excess of pairs where
∆x < 20 cm and 0 s < ∆t < 40 s, is from correctly-paired events. At negative
times, the pairs are unphysical and can be used to profile the distribution of
incorrect pairs.
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Figure 2.3. Plot of purity, fpure versus number of pairs for the iterative
method, and for a naive method where one simply selects the histogram bins
from  Figure 2.2 .
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Vectors are constructed from selected pairs of events by computing the velocity from the

∆x and ∆t values of the pair. The velocity field obtained using the iterative method is shown

in  Figure 2.4  . It can be seen that this velocity field is still noisy, and contains outliers that

likely correspond to incorrectly-paired events.

It is notable that there appears to be a single large convection cell. While one might

expect a toroidal convection flow due to cylindrical symmetry of the TPC, the observed

asymmetric convection flow is expected for convection cells in a cylinder with an aspect

ratio of close to 1 [  67 ]. We have attempted to simulate this convection flow, but have been

unsuccessful due to lack of knowledge of the boundary conditions driving this flow, and

resultant inability to validate these simulations.

2.2.2 Filtering of the Velocity Field

The convection field shown in  Figure 2.4  is then filtered and put on a grid. The purpose of

this is to reduce noise and to speed up computation, as finding the nearest velocity vector to a

given position is much faster with data on a regular grid. First, every vector of purity fpure is

oversampled 25 × fpure times, rounded to the nearest integer. The x-y position reconstruction

uncertainty of α events is estimated to be σx = 0.3 cm, σy = 0.3 cm, based on the spread

observed in surface events [ 68 ], and the z-position uncertainty is estimated to be σz = 0.17 cm

from the displacement of the two decays in BiPo events. During oversampling, each vector

is perturbed randomly based on the position reconstruction uncertainty. The oversampled

population of vectors are then put onto a grid with a grid spacing of 1/3 cm, by computing

the geometric median [  69 ] of the nearest 175 vectors at every grid point. The geometric

median has been shown to be particularly robust for noisy datasets [  70 ]. The result of this

procedure is shown in  Figure 2.5 .
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Figure 2.4. Slice of velocity field with 107804 vectors showing the convection
cell. The x′ coordinate is perpendicular to the angular momentum vector. A
1 cm/s velocity vector is shown in the top right for scale.
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Figure 2.5. Slice of the velocity field after it was filtered and put on a grid.
The x′ coordinate is defined as in  Figure 2.4  . For clarity, only every 6th vector
is displayed. A 1 cm/s velocity vector is shown in the top right for scale.
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2.2.3 Root-mean-square Convection Speed

The convection vectors obtained in  subsection 2.2.1  allow a measurement of the bulk

convection properties. To avoid biases due to uneven event densities, the detector is divided

into 11 bins in r2 ∈ [0, 47.92]cm2, 10 bins in azimuth φ ∈ [−π, π], and 9 bins in z ∈

[−96.9, 0]cm. Every vector is then assigned to a bin, and given a weight wi equal to the

reciprocal of the number of vectors in that bin. This procedure allows for the computation of

a volume-averaged root-mean-square speed:

vrms =

√√√√∑N
i=1 v2

i wi∑N
i=1 wi

(2.1)

The uncertainty on each velocity vector can be estimated using the position reconstruction

uncertainty as σi =
√

2σ2
x+σ2

y+σ2
z

∆t2
i

. The total uncertainty is then given by

σrms =

√√√√∑N
i=1 v2

i σ2
i wi∑N

i=1 wi

. (2.2)

The root-mean-square speed is thus found to be 0.30 ± 0.01 cm/s. This is significantly

slower than what was observed in XENON100 and LUX [  62 ,  63 ]; however, it is significantly

higher than EXO-200 and LZ where convection is sub-dominant to the mobility of charged

ions [  71 ,  72 ].

The heat flux into a TPC is likely proportional to the surface area, which is the square of

linear dimension; when distributed over the entire target mass, which is related to the cube

of linear dimension, one expects convection speed to vary linearly with linear dimension. The

convection speeds for different liquid xenon TPCs is shown in  Figure 2.6 , plotted against

the cube-root of the target mass, which is a proxy for linear dimension. It can be seen that

convection speed decreases linearly with larger detectors, with the exception of EXO-200 [  71 ].

EXO-200 is a single-phase liquid xenon TPC with a unique cooling solution where the liquid

xenon vessel is immersed in a cryostat filled with a thermal-transfer fluid [ 73 ], and hence the

heat flux into the TPC is much lower than in the other liquid xenon experiments which use

vacuum-isolated cryostats.
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Figure 2.6. Convection speed versus (target mass)1/3 for XENON100 [  62 ],
LUX [  63 ], and XENON1T (this work), with a linear fit shown in red. It can be
seen that convection speed decreases linearly. The target masses corresponding
to EXO-200 and LZ are shown by the black dotted lines, as convection was
not observed in EXO-200 [  71 ], and was found to be subdominant to the drift
of charged ions in LZ [  72 ]. The target mass of XENONnT is indicated in grey
as convection in XENONnT has not yet been analysed in detail.
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2.3 214Pb Veto Algorithm

2.3.1 Generation of Noise Fields

Uncertainty in the velocity field needs to be properly accounted for. Noise fields can

be added to the velocity field to account for this uncertainty. However, the noise must be

divergence-free to avoid introducing sources and sinks. Generation of the noise field starts

with smoothed Gaussian noise with a σ = 0.8 cm kernel. After this, the curl is taken to ensure

the noise is divergence free. 16 noise fields are generated, and then permuted by mirroring

and rotating the fields, resulting in a total of 256 noise fields.

TPC surfaces must also be handled smoothly, and the velocity component perpendicular

to the surfaces must approach zero at the surfaces. This is ensured by smoothly scaling the

perpendicular component of the field to zero, starting 3 cm away from surfaces. This method

of using the curl to generate divergence-free noise and handling boundaries is described in [  74 ].

A section of the resultant noise field can be seen in  Figure 2.7 .

2.3.2 Point Cloud Propagation

A veto volume within which one looks for predecessor or daughter events is constructed

using a point cloud. The predecessor and daughter events for 214Pb are 218Po and BiPo

events (see  Figure 2.1 ). A point cloud is first constructed around a 214Pb candidate event

and then propagated using the convection and noise velocity fields, with every point in the

point cloud exposed to a different randomly-assigned noise field to account for uncertainty in

the velocity field (see  subsection 2.3.1  ). As one only needs to consider 214Pb candidate events

within the energy region of interest to a given analysis, propagating a point cloud from every
218Po and BiPo event is more computationally intensive than from the smaller number of

low-energy 214Pb events. Point clouds from each 214Pb candidate event are thus propagated

in the forward and backward directions to look for BiPo and 218Po events, respectively. These

search directions are termed the BiPo and 218Po channels for the rest of this chapter. An

illustration of a point cloud propagated along the velocity field can be seen in  Figure 2.8 .
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Figure 2.7. Zoomed-in sample of the noise field. The edge of the detector is
shown in red. It can be seen that the boundaries are handled smoothly, and
that the field has no sinks that can trap propagating points.
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Figure 2.8. Plot of a point cloud and the associated log-likelihood at each point.
For illustration, the likelihood threshold is relaxed to 8 show the convection
flow. There are 192 points in the initial point cloud, and the timestep size is
0.05 s
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There are four main steps involved in the generation and propagation of this point cloud:

1. A 214Pb candidate event is identified.

2. A point cloud is generated around the event, representing the position reconstruction

uncertainty. The radial position uncertainty is σR = 5.2 cm − (1.61 cm) log10(S2/PE) +

(0.019 cm)
√

S2/PE [ 68 ], whereas the z-position uncertainty is estimated to be σz =

0.17 cm from the displacement of the two decays in BiPo events.

3. Every 600 timesteps (30 s), a probability density function is built out of the point

cloud produced in the past 600 timesteps. This is done using kernel density estimation

(KDE) in 4-dimensions. To this end, a top-hat kernel of radius 3 cm, and 0.3 sec in the

time-axis is used. Points that fall below a threshold of log-likelihood (ξ) are culled to

speed up computation. This log likelihood threshold is a free parameter.

4. DBScan clustering [  75 ] is used to remove outlier points.

5. The algorithm repeats from step 3, until all points have been removed.

A time-slice of a point cloud at every 594th (600-6, to avoid edge-effects from KDE)

timestep is shown in  Figure 2.9  , with a log-likelihood constraint of 9.1, same as that used in

the final analysis in the BiPo channel.
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Figure 2.9. Plot of point cloud with associated likelihoods at 6 different
timesteps (0 s, 29.65 s, 89.05 s, 118.75 s, and 148.45 s). Red points are culled by
the log-likelihood limit and not propagated further to speed up computation.
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2.3.3 Optimisation of Veto Volume

As the algorithm looks forward in time for BiPo events, and backwards in time for 218Po

events, there are two free parameters representing the log-likelihood thresholds (ξBiP o, ξP o)

that have to be optimised. To this end, electronic recoil data from science run 0 of XENON1T

between 30 keV and 70 keV is used [  35 ].

To find the optimal values for these two parameters, the software radon veto is run on

the entire dataset twice. For one of the two runs, the velocity field and time directions

are reversed, so that due to causality, the 214Pb candidate cannot be related to the 218Po

or BiPo events. This creates a sample of events that are vetoed purely due to coincidence,

allowing for the probability of vetoing an event purely due to coincidence (pcoinc) to be profiled.

For the forward-direction run where one searches for BiPo and 218Po events in the correct

directions, the fraction of events that is 214Pb (pPb) is determined from a spectral fit from the

XENON1T low-energy electronic recoil analysis [  35 ]. A likelihood function is then used to fit

the probability of vetoing a 214Pb event (ptrue) and the probability of vetoing an event purely

due to coincidence (pcoinc). ptrue and pcoinc can also be interpreted as the 214Pb background

reduction and the exposure loss, respectively. The likelihood function for a vetoed event is:

`i,veto (ptrue, pcoinc) =pPb(Ei)ptrue+

(1 − pPb(Ei))pcoinc

(2.3)

where `i,veto (ptrue, pcoinc) is the likelihood for the ith event to be vetoed, Ei is the energy of the

event, and pPb(Ei) is the fraction of events resulting from the decay of 214Pb, as determined

from the XENON1T low-energy electronic recoil analysis spectral fit.

The likelihood function for a candidate event that is not vetoed for the forward-direction

runs is:

`j,nveto (ptrue, pcoinc) =1 − pPb(Ej)ptrue−

(1 − pPb(Ej))pcoinc

(2.4)
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where `j,nveto (ptrue, pcoinc) is the likelihood for the jth event not vetoed.

For the reversed runs, the likelihoods are the same, except that pPb is set to zero, because

the candidate event cannot be related to any 218Po or BiPo events found. The likelihood

function that is used to fit the probabilities ptrue and pcoinc is then the sum of the log-likelihoods

from each individual candidate event. This is done separately for the 218Po and BiPo channels,

to produce four probabilities: the probability of vetoing an event due to coincidence via the

BiPo channel (pcoinc,BiPo), the probability of vetoing an event due to coincidence via the 218Po

channel (pcoinc,Po), the probability of vetoing a 214Pb event via the BiPo channel (ptrue,BiPo),

and the probability of vetoing a 214Pb event via the 218Po channel (ptrue,Po).

If a signal is much smaller than the background, the significance of a counting experiment

scales as signal/
√

background [ 76 ]. One can thus compute a normalised sensitivity for a dark

matter search:

Z = signal√
background (2.5)

where

signal =p̂coinc,BiPo × p̂coinc,Po,

background =1 − (1 − α)×

[1 − p̂coinc,BiPo × p̂coinc,Po]

− α [1 − (p̂coinc,BiPo × p̂coinc,Po)]

p̂coinc,BiPo =1 − pcoinc,BiPo(ξBiP o)

p̂coinc,Po =1 − pcoinc,Po(ξP o)

ξP o and ξBiP o refer to the likelihood threshold parameters being optimised for the 218Po

and BiPo channels, respectively, and α refers to the fraction of the background that can

be attributed to 214Pb. This is energy dependent in principle, but is approximated to be a

constant α = 0.8 for the purposes of this optimisation, as given by the average between 0 keV

and 30 keV.

Finally, this process can be repeated for multiple values of the threshold parameters that

govern the veto volume size in the 218Po and BiPo channels. The result of this can be seen
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in  Figure 2.10 . It can be seen that the sensitivity improvement is modest in XENON1T.

However, as this is an analysis technique, it can still be a cost-effective addition to hardware

radon-mitigation efforts, such as the cryogenic distillation system in XENONnT [  50 ]. In

addition, as will be shown later in sections  2.4.3 and  2.4.4 , much higher performance is

possible in systems with lower background radon levels and which have slower convective

flows.
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Figure 2.10. Plot of the improvement in sensitivity of XENON1T for a NR
dark matter signal at various values of the BiPo and 218Po point cloud threshold
parameters. The colour plot in the background shows the linearly interpolated
sensitivity between data points, and the actual data points are indicated with
green circles. 1 on the colour scale corresponds to the same sensitivity as what
one would achieve without the software radon veto.
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2.4 Results and discussion

2.4.1 Demonstration of software radon veto

The low-energy ER search dataset from XENON1T [ 35 ] is used to demonstrate how

this software radon veto would work in practice. For this section, the same data used

in  subsection 2.3.3 is used, but with the energy range [0 keV, 70 keV] instead. Similarly

to  subsection 2.3.3  , both 218Po and BiPo channels are used to tag events as 214Pb. The

thresholds used are ξP o = 9.7 and ξBiP o = 9.0.

Following this, the likelihoods shown in  Equation 2.3  and  Equation 2.4  are used to fit

ptrue and pcoinc. This is shown in  Figure 2.11  . The fit corresponds to an exposure loss of

1.8 ± 0.2%, and a 6.2+0.4
−0.9% reduction in the 214Pb background.
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Figure 2.11. Likelihood fit using events from the low-energy ER search dataset
and the likelihoods discussed in  subsection 2.3.3  . In this plot, the best fit values
of the 214Pb background reduction (ptrue) and the exposure loss (pcoinc) are
marked in red, and the error ellipses are shown in blue.
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The expected background spectrum is then computed by multiplying the components of

the background fit from [ 35 ] that are not from 214Pb with 1 − pcoinc, multiplying the 214Pb

background with 1 − ptrue and summing the two. This is shown in  Figure 2.12 . It can be

seen that the red line is a good fit for the data.
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Figure 2.12. Spectrum of events remaining after the software radon veto
with 1-sigma Poisson confidence intervals (black), compared with the expected
background spectrum based on the signal-free spectral fit from [  35 ] and the
inferred values of ptrue and pcoinc (red). The peaks at 42 keV and 64 are due to
83mKr and 124Xe decay, respectively [  35 ].

In XENON1T, an ER excess was observed with 285 events between 1 keV and 7 keV [ 35 ],

a 3.3σ Poisson fluctuation over the expectation of 232 events. In the unvetoed data and
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scaled background fit, there are 275 events in the same energy range and an expectation of

220, corresponding to a 3.6σ excess according to Poisson statistics, demonstrating a small

improvement as expected from  subsection 2.3.3  . This also affirms that the excess is not

related to the 214Pb background, in agreement with the lack of an excess observed in the

XENONnT low-energy electronic recoil search [  36 ].

We can demonstrate that this software radon veto indeed selects 214Pb events by looking

at the energy spectrum of vetoed events. To this end, a portion of the fiducialised data

from the search for neutrinoless double-beta decays in XENON1T is used [  31 ]. This data

corresponds to 22.05 days of exposure with a fiducial mass of 741 ± 9 kg. A spectral fit

between 270 keV and 2000 keV includes both spectral features due to 214Bi excited states at

295 keV and 352 keV, and the beta decay Q-value of 1018 keV [ 60 ], but avoids low-energy

features in the spectrum from 83mKr and 131mXe. The selected data with a spectral fit is

shown in  Figure 2.13 .

The software radon veto is run on the dataset shown in  Figure 2.13  with thresholds

of ξP o = 9.7 and ξBiP o = 9.4 in order to obtain a relatively clean sample of 214Pb decays.

Following that, the same procedure used above for the low-energy ER search is used to fit

ptrue and pcoinc; however, here events that are tagged as 214Pb are examined instead. Thus,

the components of the spectral fit that are not from 214Pb are multiplied with pcoinc, and the
214Pb component is multiplied by ptrue.

This result is shown in  Figure 2.14 . It can be seen that the tagged population is indeed

dominated by the decay of 214Pb, and it is also possible to identify relevant spectral features

at 295 keV and 352 keV, as well as the Q-value of 1018 keV [ 60 ]. In particular, the 214Pb decay

endpoint can be clearly identified in the tagged population in  Figure 2.14 , but not in the full

dataset shown in  Figure 2.13 .
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Figure 2.13. Spectrum of events in the XENON1T double beta decay
dataset [  31 ] corresponding to 22.01 days of exposure. Data points with 5 keV
bins is shown in black. A spectral fit is shown in solid lines, with the summed
fit in red. The grey shaded region indicates data that is not used for fitting.
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Figure 2.14. The spectrum of events in the population of events tagged as
214Pb. It can be seen both from the fit and from the shape of the spectrum
that the 214Pb fraction is greatly enhanced in the vetoed sample. The grey
shaded region indicates data that is not used for fitting.
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2.4.2 Example of a recovered decay chain

A reconstructed example of the portion of the decay chain that is used for the software

radon veto is shown in this section. (compare  Figure 2.1 ) The software radon veto is used to

find the 218Po and BiPo events from the 214Pb event. Tagging a 214Pb event only requires

matching either a 218Po or BiPo event, however, in the chosen example, both 218Po and BiPo

events were found. The 222Rn event related to the 218Po was then found via the matching

procedure shown in  subsection 2.2.1  . The four identified events can be seen in  Figure 2.15  , laid

over the same velocity field shown in  subsection 2.2.2 , with waveforms shown in  Figure 2.16 .

It can be seen that the events propagate along the velocity field. All the waveforms have

a single large S1 and a single large S2, except for the BiPo event. The BiPo event is made

up of two decays, thus has at least two S1s and S2s. In this case, there are more than two

S2s because the beta decay of 214Bi has only a 19.2% chance of decaying directly to the

ground state; more typically decaying to short-lived excited states and emitting one or more

gamma rays in addition to the beta particle [  60 ]. The large S1s and S2s, corresponding

to the relevant events, are also followed by single and few-electron signals largely due to

photoionisation within the time window shown [ 77 ]. These waveforms match our expectations

for the respective event types.
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Figure 2.15. The positions of a 222Rn event (red), a 218Po event (green), a
214Pb event (blue), and a BiPo event (purple) are shown here, overlaid on top
of the velocity field in the detector. The top view is shown above, and a side
view is shown below. The blue dotted line on the top and side views are used
to show the slices taken to create the side and top views, respectively.
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(blue), and BiPo (purple) events. Insets show the S1 waveforms with units
identical to the main plots.
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2.4.3 Projection of performance in XENONnT

To project the performance of this technique to XENONnT, a model of how the software

radon veto performs under various conditions must be constructed. For each channel, the

probability of incorrectly vetoing an event that is not 214Pb is simply given by the size of the

point cloud used to construct the veto volume, multiplied by the rate of 218Po or BiPo events.

When propagating particles along a 3-dimensional flow, chaotic mixing is expected to occur.

This makes the point cloud size diverge exponentially with time [  78 ]. As such, the growth

of the point cloud volume can be modelled with a Lyapunov exponent – the characteristic

exponential divergence of two close trajectories [  79 ]. The probability of incorrectly vetoing an

event that is not 214Pb as a function of the time the point cloud is propagated for is given by:

pcoinc(t) = A · C
∫ t

0
evλτ dτ

= A · C
evλt − 1

vλ

(2.6)

where A is the activity of 218Po or BiPo events, depending on the channel being modelled, v

is the convection speed, t is the time the point cloud is being propagated, and C and λ are

fitting constants.

The probability of correctly vetoing an event that is 214Pb, on the other hand, can be

modelled with the exponential decay of the radioactive species, multiplied by the probability of

there being a correctly reconstructed 218Po alpha or BiPo event in the detector, pbranch. As the

efficiency of detecting alphas is high, the probability for the 218Po channel is approximated as

pbranch, Po = 1. The probability for the BiPo channel has to account for the effect of plate-out

onto surfaces in the detector [  80 ] and less efficient selections, and as such is taken to be the

ratio of the BiPo rate as measured using fully-reconstructed BiPo events in the XENON1T

detector and the rate of 214Pb events from the search of dark matter in the electronic recoil

channel [ 35 ] as pbranch, BiPo = 0.25. As this includes selection efficiencies and plate-out, this

number might change between detectors, but is kept constant here to estimate the XENONnT

performance. The probability of correctly vetoing an event that is 214Pb is thus given by:

60



ptrue(t) = pbranchλdecay

∫ t

0
e−λdecayτ dτ

= pbranch
(
1 − e−λdecayt

) (2.7)

where λdecay is the decay constant of the radioactive species relevant to the specific channel,

pbranch is the multiplicative factor stemming from selection efficiencies and plate out as detailed

above, and t is the time the point cloud is being propagated. Equations ( 2.6 ) and ( 2.7 ) can

then be combined to produce

pcoinc = A · C

vλ

(1 − ptrue

pbranch

)− vλ
λdecay

− 1
 . (2.8)

With  Equation 2.8  , there are only two free parameters, C and λ. These two free parameters

can be fit by running the software radon veto with different veto volumes on the 218Po and

BiPo channels. The result is shown in  Figure 2.17 .

The veto volume is parameterised by threshold parameters that attempt to find veto

volumes with the highest probability content instead of using a simple time cut-off for

how long to propagate the point cloud; that is, outlying points in a point cloud might be

propagated for shorter amounts of time than points that are central to the point cloud. The

extrapolation to XENONnT considers a constant integration time for each point cloud and is

thus approximate. However, as can be seen in  Figure 2.17 , it fits XENON1T data quite well

when fit simultaneously on both the 218Po and BiPo channels.
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Figure 2.17. The exposure loss versus the 214Pb background reduction from
the 218Po (left) and BiPo (right) channels. The left and right plots correspond
to a simultaneous fit on both datasets; the reason why the curve looks different
in the two plots is due to the different half lives, and the different probability
of there being a correctly reconstructed 218Po alpha or BiPo event (pbranch).
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To project the performance of the software radon veto in XENONnT, the fit parameters

from above are kept the same, but the activities are scaled down. The 218Po activity in

XENONnT is measured to be 1.691 ± 0.006stat ± 0.072sys µBq/kg, and the 214Pb activity

is measured to be 1.31 ± 0.17stat µBq/kg in XENONnT [  81 ]. The ratio between 218Po and

fully-reconstructed BiPo activities is kept the same from XENON1T. It should be noted that

this is the XENONnT Science Run 0 radon level, and could be further lowered in future

science runs depending on the mode of operation of the radon removal system [  50 ]. Due to

the lower 214Pb background, the fraction of the background attributed to 214Pb is estimated

to be α = 0.5 here. The projected performance for various convection speeds, optimised for

normalised sensitivity as defined in  Equation 2.5  , is shown in  Table 2.1  . XENONnT is a

larger detector than XENON1T; hence, due to considerations discussed in  subsection 2.2.1  

should be expected to have much lower convection speeds. However, we consider higher

convection velocity conditions as well due to the introduction of liquid xenon recirculation,

which may affect the convective flow in the TPC. As can be seen, due to the reduced radon

level in XENONnT, the background reduction is improved greatly over XENON1T in all of

the considered convection speed scenarios.

Table 2.1. Table showing the estimated optimal improvement in sensitivity
(Zoptim − 1), at various scenarios of convection speed (vconvection) in XENONnT,
together with the reduction in 214Pb background (1 − bP b) and the exposure
loss (1 − s) at the stated optimal sensitivity improvement.

vconvection (cm/s) Zoptim − 1 1 − bP b 1 − s
0.8 3.5% 25% 4.3%
0.4 5.9% 41% 7.6%
0.2 8.8% 59% 12%
0.1 11% 75% 17%

2.4.4 Projection of performance in diffusion-limited regime

As shown in  subsection 2.2.3  , for large dual-phase TPCs, such as LZ [  72 ] and DAR-

WIN/XLZD [ 37 ,  45 ], there might be insufficient heat flux to induce convection. In such a

situation, the movement of daughter nuclides after a radioactive decay becomes dominated
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by ion-drift [  71 ]. It is noted in [  71 ] that the measured diffusion constant is significantly

larger than what one might expect from true diffusion of ions in liquid xenon, and that the

measured diffusion likely represents the effect of small-scale fluid flow. It is thus unclear

if a true diffusion-limited regime can be achieved in any planned noble-liquid TPCs. In

this section, the performance of software tagging of radon-chain backgrounds under both

scenarios is discussed. For simplicity, and because of the unknown effects of plate-out and

BiPo reconstruction in future detectors, only the 218Po channel is considered here, resulting

in a conservative estimate of the algorithm’s performance.

A simple analytic model can be used to estimate the performance of software tagging in

the true diffusion-limited regime. The probability density function of the displacement of a

particle diffusing in one dimension is given by the 1D diffusion equation [  82 ]

∂ρx

∂t
= D

∂2ρx

∂x2 . (2.9)

Using the 1D diffusion equation leads to no loss of generality because the distribution of

displacement of a diffusing point is independent in different orthogonal axes.

The solution to  Equation 2.9 with an initial Dirac delta function, δ(x), corresponding to

the known position of the original particle, is a normal distribution with µ = 0 and σ2 = 2Dt;

in 3D, this corresponds to a spherical normal distribution with σx = σy = σz =
√

2Dt. It

can be noted here that these are also the Green’s function of the 1D and 3D heat equations,

respectively, as the isotropic diffusion equation is the heat equation [  83 ].

However, the veto volume cannot be directly determined from this normal distribution.

This is because this distribution does not take into account the position reconstruction

uncertainty. This has to be introduced twice, for both the candidate event that is being

tagged, and for the alphas. The position reconstruction uncertainty will depend on the

performance of future detectors. However, as the sum of normally-distributed random

variables simply involves summing the variances, the expected performance can be expressed

in terms of the position reconstruction uncertainties.
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The veto volume V (t), after time t, can then be given by the volume of an ellipsoid, where

the semi-major axes are given by a multiple n of the standard deviation:

V (t) ≈ 4
3πn3

(
σ2

posrec,r + 2Dt
)√

σ2
posrec,z + 2Dt (2.10)

This multiple n is a free parameter that determines the size of the veto volume, and hence

controls the trade-off between background removal and exposure loss. A larger n corresponds

to a bigger veto volume, which would remove more background but also result in a greater

loss of exposure.

The true diffusion constant can be estimated using Einstein’s relation [  84 ] and the mobility

of 0.219 ± 0.004 cm2/(kV s) as measured by EXO-200 [ 71 ]:

D = µkbT

q

= kb0.219 cm2/(kV s)170 K
qe

≈ 3.2 × 10−6 cm2/s

(2.11)

With the diffusion constant shown in  Equation 2.11  , the daughter of a 218Po decay would

diffuse approximately
√

3 × 2 × D × (5 × 27.06 min) ≈ 0.4 cm in 5 half-lives. An activity of

1.7 µBq/kg as achieved in XENONnT SR0 [  81 ], and a liquid xenon density of ∼ 3 g/cm3 [ 40 ]

corresponds to an activity per unit volume of 4.6×10−9 Bq/cm3, or 0.4 decays per 103cm3 per

day. This implies that as long as the position reconstruction uncertainty remains significantly

below 10 cm, decays would be essentially spatially isolated without fluid flows, and hence one

can reject radon-chain backgrounds with a tagging efficiency of near-unity.

The diffusion constant measured in EXO-200 was over 3 orders of magnitude larger. A

more complex treatment is thus required. This can be done by first integrating the veto

volume shown in  Equation 2.10 as a function of time. The integrated veto volume and the
218Po activity can then be used to compute the false-positive rate of tagging (pcoinc) as a
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function of time and n, the multiple of the standard deviation that scales the veto volume.

This is shown in  Equation 2.12 and  Equation 2.13 ,

Vad(t) =4πn3

3D
(2Dt + σ2

posrec,z)3/2×

(6Dt + 5σ2
posrec,r − 2σ2

posrec,z)

Vint(τ) =Vad(τ) − Vad(0)

(2.12)

pcoinc(τ) = Vint(τ)Avol (2.13)

where Vad(t) is the antiderivative of V (t), Vint(τ) ≡
∫ τ

0 V (t)dt, and Avol corresponds to the

activity per unit volume. The true probability of matching 218Po and 214Pb is simply given

by n and τ :

ptrue(τ) = χ2
3

(
n2
) (

1 − e−λdecayτ
)

(2.14)

where χ2
3 refers to the χ2-distribution with 3 degrees of freedom.

One can then use Equations ( 2.13 ) and ( 2.14 ), and the value of D = 0.61 ± 0.04 mm2/s

measured in EXO-200 [  71 ], to plot performance of a software radon veto for different values of

the standard deviation multiple n where the small-scale fluid motion is the same as EXO-200.

The optimised performance is then defined by the best performance that can achieved by

any n at a given value of background reduction. These projections using σposrec,z = 0.17 cm

and σposrec,r = 1.5 cm, which is approximately the performance of the position reconstruction

algorithms in XENON1T at S2 ≈ 500 PE, are shown in  Figure 2.18 .
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Figure 2.18. Exposure loss versus 214Pb background reduction, assuming
motion can be modelled by diffusion with D = 0.61 mm2/s. The solid curves
correspond to different values of standard deviation multiple n, which controls
the size of the veto volume, and the optimised performance curve is obtained
computing the curves for a large number of possible values of standard deviation
multiple n and then finding the lowest pcoinc at a given ptrue.
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It can be seen that even in this regime, where the apparent diffusive motion is much larger

than one expects for ions in liquid xenon, 75% of the radon-chain background can be removed

with a 20% exposure reduction, even when only considering the 218Po channel. It should be

noted that this estimate is based on a simplified model that does not take into account ion

drift; though ion drift is deterministic, as not all radon daughters are charged [  71 ], there may

be some effect on the performance. In addition, this model assumes that small-scale fluid

motion cannot be characterised and must be modelled diffusively. If this fluid motion is stable

and a velocity field can be measured, higher performance can be achieved by propagating a

point cloud through the velocity field, as described in  section 2.3  .

2.4.5 Application to 137Xe

The decay of cosmogenic 137Xe is expected to be a major background in the search for

0νββ decay in 136Xe in XENONnT [ 31 ], LZ [  85 ], and next-generation liquid xenon TPCs [  37 ].
137Xe is largely produced due to the capture of muon-induced neutrons by 136Xe [ 31 ,  85 ], and

subsequently undergoes beta-decay to 137Cs, as shown in  Figure 2.19 .

136Xe
137∗Xe

prompt

137Xe
229.1 ± 0.8 s

137Cs
30.08 ±
0.09 yr

n−capture

γ

β

Figure 2.19. Neutron capture of 136Xe and subsequent decay of 137Xe. Data
regarding the decay of 137Xe and 137Cs retrieved using the NNDC ENSDF,
with original data from Nuclear Data Sheets [  86 ]. The isotope the decays to
produce the relevant background, 137Xe, is coloured red, whereas the excited
state which produces the gamma events that are used for the tagging of the
137Xe background are coloured blue.
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A similar methodology to  subsection 2.4.3 can be used to estimate the performance of

a 137Xe veto; however, this estimate is more speculative. This is because the performance

of such a veto would rely on the reconstruction of neutron-capture gammas and a detailed

analysis to search of these neutron-capture events has not been done in this study. These

neutron-captures gammas represent the progenitor events. Point clouds generated at the

position of 137Xe decay candidates are thus used to look for these neutron-capture events,

which should appear as ER events that are coincident with muon veto triggers.

The relationship between ptrue and pcoinc can be derived from  Equation 2.8  . However, the

initial point cloud has to be much bigger, because the uncertainty on the true location of

the neutron capture is not dominated by position reconstruction uncertainties, but by the

mean-free-path of gammas. In the absence of a detailed analysis, the minimum attenuation

between 10−2 MeV and 104 MeV is conservatively applied. This is 0.036 cm2/g according to

the XCOM database [  87 ], corresponding to a maximum mean-free-path of 9.8 cm. Thus, to

account for this, the fit parameter C in  Equation 2.8 which should scale with the initial point

cloud size, is divided by the position reconstruction uncertainty volume, and multiplied by

the volume of a sphere with a radius of 9.8 cm in liquid xenon. Further, the half-life of 137Xe,

which is 229.1 ± 0.8 s [ 86 ], is applied.

The activity rate A is also different in this scenario. In XENONnT, the rate in the muon

veto is observed to be ≈ 0.035 Hz. As the neutron capture time in liquid xenon is ∼ 100 µs [ 88 ],

a 1 ms window after each muon trigger to search for neutron captures can be considered,

leading to a livetime fraction of 3.5 × 10−5 within which neutron captures would be searched

for. The emitted gammas are expected to be of energies ∼ 1 MeV [ 88 ] where 136Xe decay is

the dominant background. Thus, the background rate can be approximated using the fraction

found above, multiplied by the rate of 136Xe decays in natural xenon, ≈ 4.2 µBq/kg [ 31 ,

 89 ], resulting in A = 1.5 × 10−4 µBq/kg. Using these values, the performance for different

convection velocities is shown in  Figure 2.20 .
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Figure 2.20. Projected exposure loss versus 137Xe background reduction when
tagging 137Xe backgrounds for different scenarios of convection velocity.
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It can be seen that for all of the velocity scenarios, almost all of the cosmogenic 137Xe

background can be rejected. In particular, for convection velocities around or below 0.2 cm/s,

the reduction of the cosmogenic 137Xe background approaches unity for a 10% reduction

in exposure. However, it should be noted that the selection efficiency of neutron-capture

gammas has not been measured, and will proportionally reduce ptrue.

2.5 Conclusions

In this chapter, the design and performance of an algorithm for tagging radon-chain

backgrounds in liquid noble element TPCs were presented. The presented algorithm per-

forms tagging of the 214Pb background, which is part of the 222Rn decay chain. This was

demonstrated on XENON1T datasets used for the low-energy ER search [  35 ] and the search

for neutrinoless double beta decay [ 31 ]. It was shown that for the low-energy ER search, an

exposure loss of 1.8±0.2% and a 6.2+0.4
−0.9% reduction in the 214Pb background can be expected.

The neutrinoless double beta decay data set is used to produce a high-purity sample of 214Pb

decay events, displaying relevant features in the spectrum such as the peak at 352 keV and

falling off at the Q-value of approximately 1 MeV.

While the demonstrated background reduction is small, the cost of such a software-

based background-reduction technique can be minimal, making deployment cost-effective. In

addition, much higher performance can be expected in larger detectors with lower intrinsic

radon levels. In XENONnT due to the lower radon level, performance is expected to

be significantly higher than in XENON1T, with an optimal 214Pb background reduction

of between 25% and 75%, depending on the convection speed in the detector, with a

corresponding exposure loss of between 3.5% and 11%. In future detectors where there is no

significant convective motion, it was estimated that a 75% reduction in 214Pb background

should be possible with a 20% exposure loss if there is small-scale fluid flow as measured in

EXO-200 [ 71 ]. If the motion is dominated by diffusion, near-perfect tagging of radon chain

backgrounds can be expected.

The fact that the performance of a software veto for 214Pb backgrounds improves with

larger detectors and lower intrinsic radon levels makes it complementary to hardware-based
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approaches such as the cryogenic distillation system used by XENONnT [  50 ] or the charcoal

trap used by LZ [  53 ]. This is because as detector size increases, such hardware-based

approaches require increasing mass flow rates to retain the same performance, whereas

algorithmic approaches do not suffer from this scaling. In addition, software-based approaches

perform better if the radon level is already low due to radiopurity controls or hardware-based

radon removal methods; in the limiting case where there is on average much less than one
218Po in the TPC at any given time, there can simply be a veto on all data within a few

half-lives of a 218Po alpha decay to remove almost all of the 214Pb background.
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3. CALIBRATION OF LOW-ENERGY NUCLEAR RECOILS IN

XENONNT USING A 88Y/BE PHOTO-NEUTRON SOURCE

3.1 Introduction

Searches for dark matter using liquid xenon TPCs are approaching exposures where one

can observe coherent elastic neutrino-nuclear scattering (CEνNS), which mimic dark matter

interactions. This ’neutrino fog’ would present as a background for WIMP searches [ 90 ], and

the neutrino fog due to 8B solar neutrinos is expected to be visible in XENONnT [  39 ], whereas

atmospheric neutrinos are expected to be visible in an even bigger issue in a next-generation

liquid xenon experiment with exposures of ∼ 103 tonne × year [ 37 ]. As neutrino and WIMP

recoils are indistinguishable in direct detection experiments, searching for dark matter becomes

much more challenging as one approaches the neutrino fog, requiring directional detectors or

multiple target elements [ 91 ]. This does, however, present an opportunity to probe neutrino

physics using dark matter detectors.
8B solar neutrinos produce the neutrino signal that is dominant in the NR channel in

XENONnT [  39 ]. These neutrinos are produced due to positron emission of 8B. 8B forms from

the proton capture of 7Be, itself a product of the fusion of 3He and 4He [ 92 ]. A measurement

of 8B CEνNS events was attempted in XENON1T, however the resultant measurement

was consistent with null (no-neutrinos) hypothesis. Due to the much larger exposure in

XENONnT, a measurement of 8B CEνNS events is expected to be possible. Even if the

exposure is large enough to enable a measurement, however, the large uncertainty in the

light yield (Ly) and charge yield (Qy) of liquid xenon would reduce the sensitivity to new

physics such as non-standard neutrino interactions [ 93 ]. In this chapter, I outline work that

aims to reduce the uncertainty in Ly and Qy by calibrating the XENONnT TPC using a
88Y/Be photo-neutron source that produces 152 keV neutrons. In addition to enhancing the

neutrino physics potential of XENONnT, this work also helps reduce systematic uncertainties

for WIMP dark matter searches at low masses. This can be seen from fact that the 8B solar

neutrino recoil spectrum is similar to that of a 6 GeV WIMP in liquid xenon [  93 ].
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3.1.1 Coherent Elastic Neutrino-nucleus Scattering

CEνNS refers to the coherent scattering of a neutrino off an atomic nucleus, as opposed

to scattering with individual nucleons. This results in a coherence enhancement as the

scattering amplitudes add constructively. The cross section thus scales approximately as

the square of the number of neutrons in an atom [  94 ]. This results in a cross-section that is

enhanced by almost two orders of magnitude in heavy elements such as xenon compared to

incoherent scattering where the cross section would simply scale linearly with target number.

As such, much smaller xenon Dark Matter detectors can double as neutrino detectors despite

having ton-scale targets, in contrast with dedicated experiments such as Borexino which

has a 278 tonne target [  95 ]. This effect was first proposed in the 1970s [  96 ], however the

first detection only occurred recently in 2017 [  97 ]. This is due to the fact that the coherent

scattering cross section depends on the form factor [  94 ], which drops off rapidly as momentum

transfer exceeds 30 MeV for heavy nuclei such as xenon [ 98 ]. To detect coherent scattering

of neutrinos, then, a detector has to be able to detect events with recoil energies on the order

of keVs. As with WIMP detection, a low detector threshold is required for the observation of

CEνNS events; in addition, the threshold needs to be well-characterised so as to enable an

accurate measurement of neutrino rates. The detection of solar 8B neutrinos is particularly

sensitive to the threshold of the xenon detector because the recoil spectrum rolls off close

to the energy threshold of detectors such as XENON1T [  29 ,  99 ]. This makes calibration

even more crucial, as any mismodelling of the detector near the threshold would have a large

impact on a measurement of the neutrino rate.

In addition, the 152 keV neutron recoil spectrum has a similar endpoint as the spectrum

from 8B solar neutrinos. This can be seen by noting the reduced mass of the neutron-xenon-

nucleus system is approximately 131mN/(1 + 131) ≈ mN . Because of this, the maximum
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recoil momentum transfer can be estimated to be approximately twice the momentum of an

incoming neutron, and the maximum recoil energy is thus:

Emax = (2pN)2

2mXe

≈ 2p2
N

131mN

≈ 4 × 152 keVmN

131mN

≈ 4.6 keV

(3.1)

This is comparable to the ≈ 4 keV endpoint of the 8B solar neutrino recoil spectrum

in xenon-based detectors [ 99 ]. Thus, a 88Y/Be photo-neutron is uniquely suitable for the

calibration of a liquid xenon TPC for the detection of 8B solar neutrinos. A comparison of

the recoil spectrum from 6 GeV WIMPs, 8B solar neutrinos, and 88Y/Be photo-neutrons is

shown in Figure  3.1 .

3.2 Simulation-driven Optimisation of the 88Y/Be Photo-neutron Source

The 88Y/Be photo-neutron source calibration uses the 1.84 MeV γ-emission from 88Y

produce nearly-mono-energetic 152 keV neutrons via photo-disintegration of 9Be [ 101 ,  102 ].

This calibration is very challenging as the recoil spectrum is very close to the threshold of

XENONnT, and there is a high gamma rate due to the photo-disintegration cross section of

around 0.65 mb. The neutron rate is approximately ∼ (0.65 mb)×(1 cm)×(1.2×1023 cm−3) ≈

10−4 times that of the gamma rate for a centimetre-scale source, where 1.2 × 1023 cm−3 is the

atomic number density of 9Be. This poses a problem for liquid xenon TPCs, both because

these detectors are relatively slow due to the drift time of electrons in liquid xenon making

pileup an issue with high rates [ 103 ], and because discrimination between gammas and nuclear

recoils (NRs) is imperfect [  28 ,  29 ]. The solution is thus to use a high-Z material to construct a

gamma shield. Due to scattering kinematics, neutrons scattering off of such a heavy nucleus,

such as tungsten or lead, loses very little energy, whereas the high density of electrons would

make for an effective gamma shield.
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Figure 3.1. The recoil spectrum from 6 GeV WIMPs [  100 ] (orange), 8B solar
neutrinos [  99 ] (blue), and 152 keV neutrons from the 88Y/Be neutron source
(green). The neutron spectrum is scaled to be comparable on the same y-axis.
The WIMP spectrum corresponds to the spectrum from WIMPs scattering via
spin-independent interactions with a cross section of 5×10−45 cm2. The neutron
recoil spectrum is produced using GEANT4 simulations, corresponding to the
50 mm curve in  Figure 3.4 , and will be described in more detail in  section 3.2  .
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As XENONnT inherits many sub-systems from the XENON1T detector, the physical

size of the shield is restricted by the existing I-Belt system, described in [  27 ], to a 16 cm3

cube. This I-Belt system uses a timing belt to lower a calibration source into place when

needed, and allows for the calibration source to be lifted out of the water tank remotely via

the SCADA system [  27 ], and was constructed at Purdue before my involvement in the group.

The XENONnT cryostat and I-Belt assembly can be seen in  Figure 3.2 . As the cryostat and

calibration systems are in the water-filled neutron veto, a stainless steel box that displaces

water between the cryostat and the calibration source was manufactured and installed for

this calibration to reduce scattering of the neutrons from the calibration source. With the

water displacement box installed, there is ≈ 1 cm of water remaining between the front of

the tungsten shield and the box to ensure mechanical clearance of the tungsten shield when

passing in front of the TPC.

Figure 3.2. Render of the XENONnT cryostat and external calibration
systems. The relevant I-Belt assembly is visible as a grey block suspended by
the I-Belt (blue). In yellow is a stainless steel box that displaces water between
the calibration source and the cryostat. Image credit: Jacques Pienaar

Because of the aforementioned constraints on the physical size, the calibration system

needs to be designed to make optimal use of the compact space. First, the shield is constructed

out of tungsten alloy, instead of lead which was used in [ 101 ]. Second, beryllium metal is
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used as opposed to beryllium oxide to make the source assembly more compact. Finally,

the geometry of the source assembly containing the gamma source and the beryllium is

optimised by simulating the calibration using the GEANT4 toolkit [  104 ] while varying the

geometry parametrically to find the optimal shape. This is done using the XENON1T MC

framework [  105 ], updated with XENONnT geometry. A top-down view of the GEANT4

geometry to be optimised is shown in  Figure 3.3 .

Due to the ≈ 104 ratio between gamma rays and neutrons, simulating the 88Y/Be directly

in GEANT4 is extremely computationally intensive. Instead, separate simulations are done to

characterise the rate of events in the XENONnT TPC due to gamma rays and neutrons. The

gamma rate is characterised using a GEANT4 simulation where the active element, indicated

in orange in  Figure 3.3 , generates 1.84 MeV γ-emission. To characterise the neutron rate, on

the other hand, the beryllium, indicated in red in  Figure 3.3  , is used as a monoenergetic

152 keV neutron source. It should be noted that this assumes that the 9Be(γ, n) reaction

is isotropic, which is not true in general but is indeed observed to be the case for gamma

energies of ≈ 1.8 MeV [ 106 ].

I then converted the GEANT4 output, which is a list of individual scatters, into detected

events in the TPC using the nSort framework developed by the XENON collaboration. The

nSort framework first computes the energy deposited in the active liquid xenon volume into

photons and electrons, and then into S1 and S2 signals, taking into account the light and

charge yields and detector efficiencies [  105 ]. S1s and S2s that are close in time and position

are then clustered, as they will not be distinguishable in the TPC [ 107 ].

The figure-of-merit used for geometry optimisation is the ratio of the nuclear recoil

single-scatter (NRSS) event rate under 5 keV within a fiducial volume to the total rate of

events in the TPC. The fiducial volume contains ≈ 4 tonnes of liquid xenon, and is defined

by the following superellipse:

∣∣∣∣z + 739
629

∣∣∣∣3 +
∣∣∣∣∣x2 + y2

6302

∣∣∣∣∣
3

< 1 (3.2)
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Figure 3.3. Calibration source and detector geometry indicated in GEANT4
model. The black lines indicate the position of the calibration system relative
to the TPC and cryostat as indicated, and the thickness of the cryostat hulls
(5 mm) is indicated by the width of the lines. The cryostat flange has to be
cleared by the calibration source as it is lowered down into position, and can
be seen near the top of the cryostat in  Figure 3.2  . Green indicates the stainless
steel displacement box. Blue represents tungsten, yellow indicates air holes that
exist due to the manufacturing process of the tungsten shield, red represents
beryllium, purple indicates the acrylic disc that the gamma source is made of,
and the small orange point indicates the gamma point source. The geometric
parameters being optimised are the diameter (d) and thickness (t) of the cavity
in the tungsten block that houses the beryllium target and 88Y source.
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This ratio is chosen because the absolute NRSS rate can be increased by simply using a

hotter gamma source; instead, the total rate of the TPC is limited by the XENONnT data

acquisition system [ 108 ], and hence the proportion of events that are NRSS would determine

the final rate of useful calibration events in the TPC. In addition, no lower energy threshold is

used for this optimisation, because I found that varying the geometry of the source assembly

did not affect the spectral shape significantly. This can be seen from  Figure 3.4 .
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Figure 3.4. Spectrum of nuclear recoil single scatter events from GEANT4
simulation for various values of thickness. It can be seen that the spectrum for
different thicknesses agree within statistical uncertainty.

To compute this figure of merit from the simulated events, the ratio between the neutron

and gamma activities pγ,n is needed. This is computed using a separate Monte Carlo

simulation in Python, where 105 rays are simulated from a small cylindrical active source,

and the probability of a 9Be(γ, n) interaction for each ray is computed based on the length
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of the ray in the beryllium target. The random direction of the gamma rays is generated

by sampling from a unit 3D Gaussian distribution, then normalising the vector to 1; this

works because the unit Gaussian distribution is symmetric. The total expected number of

interactions is then computed by simply adding all the probabilities, and from that, the

average probability of a 9Be(γ, n) interaction can be computed by dividing the total expected

number of interactions by 105. This is done for each geometric configuration considered,

as this ratio varies based on the size of the beryllium targets. The geometry of one such

simulation is shown in  Figure 3.5 .
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Figure 3.5. Geometry of the Monte Carlo simulation used to compute the
ratio of the neutron to gamma activities. The individual rays are indicated by
black lines, and the start and end point of each ray in the beryllium target
is indicated by the blue and orange points respectively. The positions of the
cylindrical beryllium targets are indicated by red lines.
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Naively, the figure of merit is then simply the rate of NRSS events divided by the total

event rate in the TPC. However, this does not account for that fact that the gamma flux is

higher closer to the active element of the 88Y source due to the inverse-square law, making
9Be(γ, n) interactions more likely to be close to the source. To address this, instead of

computing the rate from neutron primaries simply by counting the number of events in

the TPC, a weight based on the inverse-square law is applied to each event. This assumes

beryllium is transparent to gamma radiation, which is a good approximation as the radiation

length is 35 cm [ 2 ], much larger than the geometries being considered. The active element of

the 88Y source is also approximated as a point source here, which is a good approximation as

we were modelling this design based on a disc source with an active element of 5 mm diameter

and 3 mm height, much smaller than the beryllium assembly. The weight is computed as

follows:

wi = N
r2

i

(3.3)

where ri is the distance from the source to the location in the beryllium at which the event

originated, and N is a normalisation constant. It is defined based on the average 1
r2 value for

a set of uniformly distributed points in the beryllium target, and is hence simply a function

of the beryllium target geometry:

N =
〈

1
r2

j

〉−1

(3.4)

The weighted total number of events thus:

NNRSS =
N∑
i

wi (3.5)

The uncertainty on the weighted total number of events is computed using the standard error

of a weighted sum, using the Gaussian approximation:

σNRSS =

√√√√ N∑
i

w2
i σ2

i

≈

√√√√ N∑
i

w2
i

(3.6)
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The reason  Equation 3.6  works is because each weight represents a single event, thus

under the Gaussian approximation, σi = 1. The figure-of-merit can then be computed by

dividing the weighted total number of NRSS events and the total number of events by the

effective exposure, computed using the number of simulated neutrons (Sn) and gammas (Sγ)

in GEANT4 and the ratio between the neutron and gamma activities. This is given by:

FOM = pγ,nNNRSS/Sn

pγ,nNn/Sn + Nγ/Sγ

(3.7)

The figure of merit shown in  Equation 3.7 can then be used to determine the performance

of the 88Y/Be photo-neutron source. Because of the computational expense of GEANT4

simulations, a full 2D optimisation is not explored; instead, the thickness of the source

assembly is optimised while setting d = 40 mm first. Following that, the diameter is optimised

while setting t = 50 mm. This is shown in  Figure 3.6 .

It can be seen that the figure of merit is maximised at a thickness of t = 60 mm and

d = 25.4 mm. There are no data points with diameter below 25.4 mm or 1 inch, because

that is the diameter of the disc source. The final geometry is chosen to be t = 50 mm and

d = 25.4 mm. This is because the performance only changes minimally between t = 50 mm

and t = 60 mm; as additional material needs to be removed in the tungsten to accommodate

machining tolerances and a capsule to contain the source assembly, a slightly smaller than

optimal design was chosen to be conservative in terms of material removal in the tungsten

shield. A final GEANT4 simulation was performed with the final geometry. The figure of

merit is FOM = (6.3±0.1)×10−4, higher than all other considered designs shown in  Figure 3.6  .

After this optimisation process, a stainless steel capsule of approximately 2 mm thickness

on all sides, and with a screw-on cap of approximately 3 mm was machined to contain the

t = 50 mm by d = 25.4 mm neutron source. The source assembly including the stainless steel

capsule has dimensions of t = 55.5 mm by d = 29.4 mm.
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Figure 3.6. Figure of merit for the 88Y/Be photo-neutron source. The
thickness of the source assembly is varied at constant 40 mm diameter to
produce the plot of the figure of merit versus thickness (left), and the diameter
is varied at constant 50 mm thickness to produce the plot of the figure of merit
versus diameter (right).
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3.3 XENONnT Calibration Using the 88Y/Be Photo-neutron Source

XENONnT calibration data using the 88Y/Be source was acquired in late 2022. In

addition to using the 88Y/Be source in the configuration described in  section 3.2  , another

configuration where the beryllium elements are removed and swapped out for PVC. This
88Y/PVC data is used to measure the background in the TPC coming from the 88Y gamma

source in the absence of neutrons produced by the beryllium target. In total, 183.78 hours

of data was taken in the 88Y/Be configuration, and 142.21 hours of data was taken in the
88Y/PVC configuration. Data-analysis is still ongoing, but a preliminary view of the data is

shown in  Figure 3.7 .

In addition to the increased rate in the 88Y/Be data compared to the 88Y/PVC data,

a difference in the corrected S2 spectra can be clearly seen. This clearly demonstrates the

presence of neutron events in the acquired data. The remaining analysis work will be carried

out by collaborators in the XENON collaboration, and will focus on measuring the light and

charge yields of the XENONnT detector at these low energies.

3.4 Conclusion

The 88Y/Be photo-neutron source was designed and constructed for the calibration of the

XENONnT detector. The source was designed to maximise ratio of neutron events to overall

rate in the PC as much as possible given the physical constraints of the I-Belt system. This

source was then used to take calibration data for the XENONnT detector. Compared with a

run where the neutron-generating beryllium targets are removed, it can be clearly observed

that there is an excess in the TPC caused by neutron events. The goal of this calibration

is to measure the NR light and charge yields of the XENONnT detector, and the results of

this calibration are still being analysed. I expect this measurement to strongly constrain our

detector response to nuclear recoils below 5 keV and hence to help enable a measurement of
8B solar neutrinos via CEνNS. In addition, such a calibration of the detector response close

to the threshold will also aid in the search for WIMP dark matter.
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Figure 3.7. Preliminary view of the 88Y/Be and 88Y/PVC data shown in
corrected S1 (cS1) versus corrected S2 (cS2) space. The 88Y/Be data is shown
in orange, and the 88Y/PVC data is shown in blue. It can be seen clearly that
there is an excess of events in the 88Y/Be data corresponding to the neutrons
from this calibration. In the histogram on the right, the 88Y/PVC data is
normalised to account for the reduced data-taking time and 8 days of decay of
the 88Y source.
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4. METHODS FOR DATA ANALYSIS AND SENSITIVITY

PROJECTIONS FOR THE WINDCHIME PROJECT

4.1 Introduction

An accelerometer array that has sensitivity to the gravitational interactions of ultra-heavy

dark matter might comprise up to ∼ 109 sensors [  23 ]. This corresponds to an array that

is 1 order of magnitude larger than the CMS Phase-1 pixel detector [  109 ], and hence will

likely necessitate a hardware trigger system to reduce the data rate. Some options for such

a trigger system include template matching on individual sensors, where data is read out

when a there is a coincident signal between multiple co-linear sensors. While this is a major

technical challenge, detailed discussion of such a trigger is not the focus of this thesis.

One key issue of such a large sensor array is that sensitivity projections for the Windchime

project are computationally challenging, and direct simulation of the sensitivity to dark

matter tracks is not possible without dedicated hardware infrastructure. In addition, unlike in

typical tracking detectors, such as ATLAS [ 110 ] and CMS [ 111 ] where tracks are reconstructed

using sensor hits, our tracks are likely to lie below the noise floor for individual sensors, and

the signal from multiple sensors would have to be combined to obtain statistically significant

impulses. As we are interested in long-range forces, including sensors that do not exactly

intersect the track would also boost the statistical significance. This complicates sensitivity

projections for future experiments that have to be made before the existence of such dedicated

hardware infrastructure, because the sensitivity of an array is higher than the sensitivity of a

single sensor with increased dark matter flux. As such, in  section 4.2  , I will discuss some

computationally tractable methods for sensitivity projections of such large sensor arrays. That

dark matter tracks are likely to lie below the noise floor for individual sensors is also a key

issue for the analysis of data from such a sensor array, necessitating statistical track-finding

methods that can combine the signal from multiple sensors.

Given the above considerations, data from a Windchime array can be analysed either using

template matching or Bayesian inference. In the context of rare-event searches, estimating the
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false alarm rate for a given detection threshold is crucial. While estimating the look-elsewhere

effect correction needed to determine the false alarm rate can be computationally challenging,

it is conceptually simple when a frequentist method such as template matching is used. Thus,

frequentist approaches are often used when dealing with rare events, such as by LIGO [  112 ]

and SNEWS 2.0 [  113 ]. The look-elsewhere effect will be considered separately in  chapter 5  ,

where it will be shown that for many statistical problems, computation of the look-elsewhere

effect correction can be simplified using the formalism of random fields.

Even though the look-elsewhere effect has frequentist conceptual roots, it is indeed possible

to estimate the look-elsewhere effect correction using Bayesian methods by considering the

frequentist properties of Bayesian estimators [  114 ], and this will also be explored to produce

an independent estimate of the threshold needed for a reasonable false alarm rate. Bayesian

methods are also conceptually easier to understand for parameter inference. As such, we

believe that frequentist and Bayesian methods are complementary for Windchime, and these

strategies will be explored in  section 4.3 and  section 4.4 , respectively.

4.1.1 The Natural Parameter Space for Ultra-heavy Dark Matter Searches

Template matching, or matched filtering, is a natural and well-established way to find

signals in time-series data, and is used successfully in experiments such LIGO [  112 ,  115 ]

and CDMSlite [  116 ]. However, for the Windchime project, template matching in individual

sensors is not optimal. There can be improved noise rejection from considering specific

track-like correlations in the whole array. One simple approach could be the use of an X-ray

transform, an integral transform closely related to the radon transform with applications in

X-ray tomography [  117 ]. This integral transform considers the space of all lines on a manifold,

in our case simply the volume given by the sensor array. This still presents some issues,

however. One major issue is that the speed distribution of dark matter is expected to peak

at approximately 300 km/s [ 43 ]. This means our tracks would be relatively slow–∼ 10−6 s

long for a metre-scale experiment. This is much longer than the required integration time

for sensors to be capable of detecting ultra-heavy dark matter gravitationally, which is

∼ 10−8 s [ 23 ]. This means that a simple X-ray transform for each set of data-points at a
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given time would not be sufficient, for tracks would span numerous time bins. The signal

strength for a given track also varies even among sensors that are co-linear, as the signal

strength varies depending on closest approach of a track to the sensor; an X-ray transform

that weighs all data points along a line equally would thus be suboptimal.

Instead, we can consider template matching in the space of all tracks. This space can be

parameterised by considering a sphere that bounds the sensor array. Every track can then be

parameterised by considering the position and time of two points of a track that intersects

this sphere. The parameter space is thus 6-dimensional, with one time dimension and two

spatial dimensions for each of the two points. The spatial dimensions can be concretely

parameterised using spherical coordinates.

4.2 Fast Sensitivity Projections for the Windchime Project

To reduce the computational burden of estimating the sensitivity of a large sensor array

to ultra-heavy dark matter, we can use a semi-analytical method where the signal from a

single sensor is expressed as a function of impact parameter, and the individual signals are

summed up in code. The procedure is as follows:

1. A sensor array is generated based on configuration parameters. In this work, all sensors

are assumed to be pointing in the same direction, though in the future we would like

to evaluate the impact of various sensor orientations.

2. Ntracks are tracks are sampled from the standard halo model velocity distribution [ 100 ].

These tracks are assumed to be isotropically distributed, and are parameterised based

on where the tracks enter and exit a spherical surface as described in  subsection 4.1.1 .

The assumption of an isotropic distribution is an approximation that does not take

into account the modulation of the dark matter velocity distribution and flux due to

the relative motion of the lab frame and the galactic frame.

3. For a given track, the vector describing the closest approach to every sensor is computed.

The length of this vector is the impact parameter of the track, given a sensor. The
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signal strength for each sensor can then be computed analytically. This is described in

detail in  subsection 4.2.1 .

4. The signal strength is divided by the noise, as calculated based on sensor parameters,

and summed in quadrature.

5. Steps 3-4 are repeated for each track. Based on this and a chosen SNR threshold, the

detection probability of a track is computed.

6. Using the detection probability and the dark matter flux based on the standard halo

model, the sensitivity of the array can be computed.

In this work, the generated sensor arrays are all cubic. However, this fast sensitivity

projection method can also be used to evaluate sensor geometry optimisation, and this is

something we are interested in exploring in the future.

4.2.1 Analytic Calculation of Signal-to-noise Ratio for a Single Sensor

  

DM track v⃗

sensor

b⃗r⃗

Figure 4.1. Schematic of a dark matter particle passing by a sensor, with the
vector convention to be used in the rest of the note. ~b refers to the vector that
denotes the minimum distance between the sensor and the track, the length
of which is the impact parameter. ~v refers to the velocity vector of the dark
matter particle.

The vector notation to be used in the rest of this section is shown in Fig.  4.1 . While the

impact parameter is typically not the same as distance of closest approach, in our case, we
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expect tracks to be linear due to how weak interactions are expected to be and how heavy the

particles we are considering are ∼ MPlanck ≈ 20 µg. Each sensor is considered to be sensitive

to forces in only one direction, denoted by the unit vector n̂, as opposed to being 3-axis

accelerometers. The detected acceleration as a function of time is then given by:

a(t) = Gmχ

(b2 + v2t2)3/2

(
bb̂ + vtv̂

)
· n̂ (4.1)

where mχ is the mass of the dark matter particle, G is the gravitational constant, and b̂ and

v̂ are unit vectors in the directions of ~b and ~v, respectively. If template matching is used, and

we assume that the signal template is modelled perfectly, then the template is simply given

by the same function as the signal, a(t). In such a situation, the matched signal is given by

S =
∫ ∞

−∞
a(t)2dt, (4.2)

because the product of the template f(t) = a(t) and the signal a(t) is a(t)2.

This assumes the template is normalised to have the same units as the signal. However,

as the same template will be used to derive the noise, the normalisation of the template does

not affect the SNR. The noise from template matching is given by:

N2 = Var
[∫ ∞

−∞
a(t)w(t)dt

]
(4.3)

where w(t) refers to the noise time series. The mean of noise can be measured and subtracted

in data analysis, thus the variance is the relevant parameter.
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The complete expression for the integrated signal can be found by substituting the

expression for a(t), given in  Equation 4.1  , into  Equation 4.2 . The result is:

S = G2m2
χ

∫ ∞

−∞

b2
(
b̂ · n̂

)2
+ v2t2 (v̂ · n̂)2 + 2bvt

(
b̂ · n̂

)
(v̂ · n̂)

(b2 + v2t2)3 dt

= G2m2
χ

3π
(
b̂ · n̂

)2

8b3v
+ π (v̂ · n̂)2

8b3v
+ 0



=
G2m2

χπ
(

3
(
b̂ · n̂

)2
+ (v̂ · n̂)2

)
8b3v

.

(4.4)

As the noise term is stochastic, the treatment is more complex. For simplicity, we model

the noise as a stationary Gaussian process or white noise. Let the sampling timestep be ∆t,

and the noise be Gaussian at each sample where the noise integrated over one timestep ∆t has

standard deviation σnoise. Note that with this definition, σnoise has units of acceleration×time.

We now denote the integral of the noise time series w(t) over time τ as Wτ :

Wτ =
∫ τ

0
w(t)dt. (4.5)

As defined above, W∆t ∼ N (0, σ2
noise). Due to stationarity, W2∆t = W∆t + W ′

∆t ∼

N (0, 2σ2
noise). As such, Wτ ∼ N

(
0, τ

∆t
σ2

noise

)
. It can be seen that this is a Wiener process [  118 ].

The noise variance from template matching, as defined in  Equation 4.3  , can thus be derived

as such:

N2 = Var
[∫ ∞

−∞
a(t)w(t)dt

]

= Var
 lim

δt→0

∞∑
i=−∞

a(iδt)Wδt


= lim

δt→0

∞∑
i=−∞

a(iδt)2 δt

∆t
σ2

noise

=
∫ ∞

−∞
a(t)2 σ2

noise
∆t

dt

= σ2
noise
∆t

S.

(4.6)
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We can also express this in terms of the power spectral density (PSD) of noise, in

units of [accel]2
[frequency] . The Wiener-Kinchin theorem states that the spectral density Saa(ω) =

〈ânoise(ω)ânoise(ω)〉, can be given by taking the Fourier transform of the autocorrelation

function raa(τ) = 〈anoise(t)anoise(t − τ)〉 [ 119 ]. The auto-correlation of white noise is simply

a delta function because the Dirac delta function forms a Fourier transform pair with the

constant 1 [ 119 ]; as such, for a discrete measurement, Saa = raa[0]. The value of the

autocorrelation function at the origin is given by the noise variance, raa[0] = σ′2
noise, where

σ′
noise = σnoise

∆t
is the standard deviation of measured samples in units of acceleration. Thus, in

the units of the discrete Fourier transform, Saa = σ′2
noise. As DFT units are per 1

∆t
, in real

units we get Saa = ∆tσ′2
noise = σ2

noise
∆t

.

S

N
=

√
S∆t

σnoise

=
√

S

Saa

(4.7)

When used together,  Equation 4.4  and  Equation 4.7  can be used to directly compute the

signal-to-noise ratio for a given dark matter track and sensor. This can be extended to a

sensor array by summing the signal-to-noise ratios of each sensor in quadrature. The above

derivation does not account for tracks that intersect the test mass of a sensor. In the absence

of a detailed derivation of the signal from a dark matter track that intersects a sensor, we

conservatively consider a smaller sensor test mass where the density remains the same, but

the radius is reduced such that it no longer intersects the dark matter track. This reduces the

force on the sensor and decreases the SNR; equivalently, in units of acceleration, the signal is

unchanged but the noise increases.

4.2.2 Noise models

There are 3 primary sources of noise that we model in this section: thermal noise,

quantum noise, and superconducting quantum interference device (SQUID) measurement

noise. Thermal noise and quantum noise refer to noise due to thermal fluctuations and the

Heisenberg uncertainty principle respectively. SQUID measurement noise, on the other hand,
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is motivated by the concept of magnetically-levitated superconducting sensors, where the

position of a test mass is measured using a SQUID, such as [  120 ].

Thermal Noise

In [  23 ], Daniel Carney et al. note that the uncertainty from thermal noise for impulse

sensing is given by

∆I2
thermal = αthermaltint (4.8)

for a constant αthermal, which depends on the way thermal noise couples with the sensor. tint

refers to the integration or measurement time. This αthermal is related with the σnoise defined

in  subsection 4.2.1 as such:

αthermal = m2
s

σ2
noise
∆t

(4.9)

where ms is the test mass of the sensor. Defining the parameter β = αthermal/m2
s = σ2

noise/∆t,

the SNR of a single sensor is simply given by

S

N
=
√

S

β
. (4.10)

The parameter β can thus be recognised as the spectral density of thermal noise. For a

sensor that is mechanically coupled to the environment, the thermal noise is given by

βmech = 4kBTγ

ms

(4.11)

where kB is Boltzmann’s constant, T is the temperature, and γ = ωm/Qm is the mechanical

damping rate given by the mechanical resonance frequency divided by the quality factor. For

a sensor that is free-falling and is hence not mechanically coupled to the environment, the

thermal noise is instead given by

βgas = PAd

√
makBT

m2
s

. (4.12)
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Here, P is the pressure of the ambient gas, Ad is the cross-sectional area of the sensor, and

ma is the mass of the gas atoms or molecules.

Quantum Noise

As quantum noise is not necessarily white noise, instead of using the template matching

formalism derived in  subsection 4.2.1 , we simply consider the signal as a sharp impulse fully

contained within a measurement period τ , and consider the amount of integrated impulse from

noise sources over the measurement period. Without any quantum noise reduction techniques

such as back-action evasion (for example, see [  121 ]), for a free particle, the uncertainty of a

position measurement is given by

δx2 ≤ ~τ

ms

, (4.13)

where τ is the measurement time [  122 ]. We term the sensitivity limit due to this quantum

noise the standard quantum limit (SQL). If one considers a force or impulse measurement

made by subtracting subsequent position measurements, the force uncertainty would be given

by

F 2
SQL = 4ms~

τ 3 , (4.14)

and as impulse is I = Fτ , the impulse uncertainty would be given by

I2
SQL = 4ms~

τ
. (4.15)

For a sensor where the test mass is bound as opposed to free-falling, the ISQL derived above

is only approximate. This remains a good approximation, however, as long as 1/τ � ωm;

when this condition is not satisfied, the ground state momentum fluctuations of the oscillator

(∼ ~mωm) [ 23 ,  123 ] are no longer negligible.

While thermal and quantum noise are technically independent, they have different

dependence on the measurement time, τ . We can consider the total noise in our system, and

optimise τ to give the lowest possible impulse uncertainty. In addition, for studies of the

sensitivity of sensor arrays where quantum noise reduction techniques such as back-action

evasion are applied, quantum noise reduction can be introduced by simply scaling the quantum
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noise by a parameter ξ. This is a naive treatment, as it does not account for changes in the

noise spectrum that are introduced by many such techniques. We use this parameterisation

primarily to benchmark the amount of quantum noise reduction required for the science

targets of future Windchime experiments, in the absence of a detailed experimental design

that can be used to derive more physically-motivated noise models. The impulse uncertainty

of a sensor is thus:

∆I2
quantum = 4m~

τξ2 + αthermalτ. (4.16)

The αthermal term is defined equivalently to  Equation 4.8 .

The optimal measurement time, τ , can then be computed by finding the minima of  Equa-

tion 4.16 . This yields τoptimal:

τoptimal = 2
ξ

√
~ms

αthermal
(4.17)

The optimal impulse sensitivity can then be found by substituting  Equation 4.17 into  Equa-

tion 4.16 , giving

∆I2
optimal = 4

ξ

√
~msαthermal. (4.18)

As  Equation 4.18  is derived under the approximation that the signal is fully contained

within the measurement time τ ,  Equation 4.17  and  Equation 4.18  only apply when τ is

smaller than the characteristic time of our signal. To remedy this, we can use a piecewise

function that uses τoptimal only when it is smaller than 2b/v, where v is the velocity of a given

dark matter track and b is the impact parameter. Integrating  Equation 4.1  from t = −b/v to

t = b/v shows that this characteristic time captures 1/
√

2 of the signal. We thus obtain the

following expression for the combined quantum and thermal noise:

∆I2 =


4
ξ

√
~msαthermal τoptimal > 2b

v

2ms~v
bξ2 + αthermal

2b
v

τoptimal ≤ 2b
v

(4.19)
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We can compare the  Equation 4.19 with a detailed frequency-domain optomechanical

noise model, using the noise model from [  23 ] based on an interferometric readout with a pair

of optical cavities, with the force noise PSD:

N(ω) = 1
|G|2|χc|2|χm|2

+ NBM + ~2|G|2|χc|2 (4.20)

In  Equation 4.20 , the first term is due to shot noise, the second term is due to thermal noise,

and the last term is due to quantum back-action. The optomechanical coupling strength is

given by

G =
√

2Pinωc

~κl2
c

, (4.21)

where Pin is the laser power, ωc is the optical cavity resonance frequency, κ = ωc/Qc is the

optical cavity energy loss rate given by the cavity resonance frequency divided by its quality

factor, and lc is the cavity length. The cavity susceptibility is given by

|χc(ω)|2 = κ

ω2 + κ2/4 , (4.22)

and the mechanical susceptibility is given by

|χm(ω)|2 = 1
m2

s ((ω2 − ω2
m)2 + γ2ω2) (4.23)

where ωm is the mechanical resonance frequency of the sensor being read out, and γ = ωm/Qm

is the mechanical damping rate. We can also introduce quantum noise reduction by simply

scaling the shot noise and quantum backaction terms by ξ2.

The thermal noise term is as defined by  Equation 4.8  , with NBM = α. We can now compare

the SNR of an impulse computed with  Equation 4.19 , with a numerically integrated SNR with

the frequency-domain noise model as given by  Equation 4.20  . The SNR using the approximate

model,  Equation 4.19  , is simply given by SNRapprox = ∆p/∆I, with ∆p = 2Gmplanckms

bv

(
b̂ · n̂

)
being the total transferred momentum in the direction of sensor sensitivity indicated by unit
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vector n̂. The SNR from the frequency-domain noise model, on the other hand, is obtained

by computing the integral ∫ ∞

0

|F̂ (ω)|2
N(ω) dω (4.24)

where F̂ (ω) is the Fourier transform of the measured force, F (t). This is the Fourier transform

of the acceleration signal,  Equation 4.1  , multiplied by the sensor mass ms:

|F̂ (ω)|2 = (Gmχms)2 2ω2

πv4

K1

(
b

v
ω

)2 (
b̂ · n̂

)2
+ K0

(
b

v
ω

)2

(v̂ · n̂)2

 (4.25)

where Kn is the modified Bessel functions of the second kind of order n [ 83 ]. For the

comparison between the simplified model and the frequency model, we can consider tracks

that are perpendicular to the ~b vector, such that b̂ · n̂ = 1. The parameters used for the

comparison can be found in  Table 4.1  .

Table 4.1. Parameters used for the comparison between the frequency-domain
noise model and the simplified noise model. Only mechanical quality factor
Qm, sensor mass ms, sensor density, pressure P , dark matter velocity v, dark
matter mass mχ, and impact parameter b are used in the simplified model.
The cross-sectional area of the sensor test mass, Ad, is computed using the
sensor mass ms and density, assuming a spherical test mass. The density is
based on silicon nitride [  124 ].

Parameter Value
Mechanical quality factor Qm 108

Mechanical resonance frequency ωm 10−4 Hz
Optical quality factor Qc 108

Optical resonance frequency ωc 2π1.94 × 1014 Hz
Cavity length lc 1.5 cm
Sensor mass ms 1 g
Sensor density 3.17 × 103 kg/m3

Pressure P 10−10 Pa
Dark matter velocity v 220 km/s
Dark matter mass mχ MPlanck
Impact parameter b 5 mm
Temperature T 10 mK

A plot of frequency-domain optomechanical noise model and the frequency-domain signal

are shown in  Figure 4.2  . It should be noted that because the x-axis is logarithmic, while the
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spectral density of the signal is flat, almost all of the signal is concentrated in the highest few

orders of magnitudes of frequency before the cut-off near 108 Hz. For a flat spectral density

as shown, for example, it is evident that the 106 Hz ∼ 107 Hz range contributes 10× more

than in the 105 Hz ∼ 106 Hz range when the signal is integrated in frequency. It can also be

seen that while  Equation 4.24 can be computed numerically as-is, this is challenging, as there

are spectral features that span many orders of magnitude. Thus, a substitution can be made

so that the integral can be computed in log-space. We let eu = ω, giving us eudu = dω, and

numerically compute the following integral instead:

∫ ∞

−∞

|F̂ (eu)|2
N(eu) eudu. (4.26)

As the SNR depends on the laser power, for every value of ξ, the laser power is optimised.

This is done simply by computing the SNR as a function of laser power and finding the

maxima, as shown in  Figure 4.3 . The comparison between the simplified and frequency-

domain noise models is shown below in  Figure 4.4  . It can be seen that the two models agree

well; as such, the simplified model can be used to estimate the performance of a large array of

sensors with optomechanical readout. In addition, it should be noted that  Figure 4.4 shows

that this approximate model is not conservative, and predicts a slightly better sensitivity

than obtained from numerical integration.

Classical Position-sensing Noise

Calculations in this subsection are based on personal communication and internal Wind-

chime notes by Gerard Higgins. For sensors where impulses are inferred from position

measurement, if the position-sensing noise is modelled to be frequency-independent, the

position sensing uncertainty is given by

∆x2 = Sxx

τ
(4.27)

where Sxx is the position-sensing PSD.
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Figure 4.2. Noise power spectra as a function of angular frequency with
thermal noise and the signal model from a Planck mass particle passing by our
sensor. The parameters used are given by  Table 4.1  , and the optical power
used is 10−10 W. The dimensions for noise PSD and signal spectral density are
different, thus the scale for noise PSD y-axis is on the left, whereas the scale
for the signal spectral density is on the right in red.
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Figure 4.3. SNR of a dark matter track passing by a single sensor. The
parameters of the noise and signal models are given by  Table 4.1  , and 30 dB of
quantum noise reduction is used to generate this plot.

If τ is much greater than the mechanical period of the sensor, the position and momentum

amplitudes are related as such due to conservation of energy:

1
2msω

2
mx2

max = p2
max

2ms

(4.28)
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Figure 4.4. Comparison of SNR predicted with the simplified model, and the
frequency-domain model with numerical integration. It can be seen that the
two models agree with only a small discrepancy.

As the PSD is proportional to the square of the amplitude, the momentum-sensing PSD

can be expressed in terms of position-sensing PSD as such:

Spp = m2
sω

2
mSxx, (4.29)

and thus the uncertainty of an impulse measurement is

∆I2
classical = Spp

τ
= m2

sω
2
m

Sxx

τ
. (4.30)
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The optimal τ , given both thermal and classical measurement noise, can be derived using

the same approach earlier used for quantum noise, giving

τoptimal =
√

m2
sω

2
mSxx

αthermal
(4.31)

and

∆I2 =

 2msωm

√
Sxxαthermal τoptimal > 20π

ωm

m2
sω

3
m

Sxx

2π
+ αthermal

2π
ωm

τoptimal ≤ 20π
ωm

(4.32)

The minimum allowed value for τ is 20π
ωm

because the above derivation assumes τ � 2π
ωm

.

4.2.3 Sensitivity of a Sensor Array

Given the above signal and noise models, we can make projections of the sensitivity

of various configurations of sensor arrays. Instead of Newtonian gravity, we consider is an

arbitrary long-range attractive interaction, as the gravitational interaction is extremely weak

and is the eventual goal of Windchime, not the near-term goal. Considering an arbitrary

long-range force allows for the sensitivity to be re-cast into the relevant parameter space for

specific dark matter models that involve long-range attractive forces with ranges longer than

the metre-scale, corresponding to mediator masses below 100 neV/c2 [ 26 ]. In addition, to make

the coupling as generic as possible, we consider a coupling to atomic nuclei or neutral atoms,

as opposed to mass, as the relevant charge for some models might be material-dependent,

such as B − L charge [  26 ,  125 ]. Limits are thus made based on the following parameterisation

of the long-range force:

F = α~cNnuclei

r2 (4.33)

where α is the dimensionless coupling constant we use to parameterise the sensitivity of a

sensor array. This parameterisation is only valid for interactions with ranges that are much

greater than the spacing between sensors in our sensor array. The value of α corresponding

to the gravitational interaction is then given by

αG = Gmχmnuclei

~c
. (4.34)

103



It can be seen from the form of  Equation 4.34 that the α defined here is analogous to the

fine structure constant for the electromagnetic interaction; however, mnuclei is used instead

of the nucleon mass because the scaling between nucleon and nuclear cross sections can

be model-dependent in this high cross section regime [ 126 ]. It should be noted that due

to mnuclei appearing in  Equation 4.34 , αG is material dependent. In addition, it depends

on mχ, and hence the gravitational coupling strength does not correspond to a constant

mass-independent coupling strength. The sensitivity is determined based on the procedure

listed at the beginning of this section. The probability of getting a detection over an SNR

threshold of 10 is computed for every combination of α and mχ, and the sensitivity curves are

defined by the regions of parameter space that are more than 90% likely to produce at least

one dark matter track with a positive detection. We can demonstrate the sensitivity-estimate

procedure detailed in this work by estimating the sensitivity of three sensor arrays, with

parameters as shown in  Table 4.2  . These configurations represent guesses for the performance

and scale of different generations of the Windchime experiment, and are meant to demonstrate

this sensitivity estimation procedure; they should not be viewed as a roadmap for Windchime.

The SNR threshold is chosen based on estimates of the look-elsewhere effect from  section 4.4  

and  chapter 5 .

A plot of the sensitivity curves is shown in  Figure 4.5 . The XENON1T limit is based on

the limit from [ 127 ]. The conversion to the parameterisation given by  Equation 4.33  is derived

by Zhen Liu and computed by Shengchao Li, who are part of the Windchime collaboration.

This is done by first considering the cross section for Coulomb scattering for an electron and

a millicharged particle. In natural units, this is [  128 ]:

dσ

dEr

= πα2ε2 2E2
χme + E2

r me − Er

(
m2

χ + me(2Eχ + me)
)

E2
r (E2

χ − m2
χ)m2

e

, (4.35)

where the charge is given by ε. Note that this differential cross section diverges when integrated,

as expected for a long-range force; in experiments, this divergence is not an issue due to a
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Table 4.2. Parameters for different sensor array configurations. These con-
figurations should not be viewed as a roadmap for Windchime, and represent
plausible configurations used to demonstrate the limit-setting procedure. The
noise PSD for configuration 1 is based on estimates of the achievable noise for
magnetically levitated particles read out via a SQUID from the supplemental
materials of [  120 ], though the paper notes that lower noise levels might be
achievable still as the sensor mass considered here is considerably higher. The
quantum noise reduction value for configuration 3 is based on the optomechan-
ical sensing backaction evasion scheme described in [ 121 ], where it is noted
that the scheme is likely limited to 30 dB given losses in currently-achievable
fabrication techniques; configuration 2 was chosen to have 15 dB of quantum
noise reduction as an intermediate step.

Parameter Configuration 1 Configuration 2 Configuration 3
Mechanical quality factor Qm 109 3 × 109 3 × 109

Resonance frequency ωm 100 Hz 100 Hz 10 Hz
Sensor mass ms 1 g 1 g 1 g
Sensor density 1.13 × 104 kg/m3 1.13 × 104 kg/m3 1.13 × 104 kg/m3

Pressure P 10−14 Pa 10−14 Pa 10−14 Pa
Temperature T 15 mK 15 mK 15 mK
Noise model Classical Quantum Quantum
Quantum noise reduction ξ - 15 dB 30 dB
Classical noise PSD Sxx 10−15 m/

√
Hz - -

Sensor count 3 × 1 × 1 3 × 1 × 1 10 × 10 × 10
Sensor array size 0.6 m 0.6 m 1.2 m
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threshold on the recoil energy Er. As dark matter is non-relativistic, Eχ ≈ mχ + 1
2mχv2

χ. For

a long range force that couples to the B − L charge, we instead have

dσ

dEr

= πα2
B−L(A − Z)2 2E2

χmn + E2
r mn − Er

(
m2

χ + mn(2Eχ + mn)
)

E2
r (E2

χ − m2
χ)m2

n

, (4.36)

where mn is the neutron mass, A is the mass number, Z is the atomic number, and αB−L =
gB−LgB−LQχ

4π
. This differential cross section is then integrated from a recoil energy of 10 keV

(the XENON1T NR threshold [ 29 ]) to the maximum energy allowed by energy conservation

(see [  128 ]), to find σB−L(αB−L). In deriving the absolute cross section, we also multiplied the

differential cross section with the XENON1T efficiency as a function of recoil energy. We then

define σ′
B−L(αB−L) = σB−L(αB−L)/A2 to make the defined cross section comparable to the

XENON1T limit which reports per-nucleus cross sections with A2 scaling. This can be used to

compute the value of αB−L corresponding to the XENON1T limits. Finally, the corresponding

conversion between αB−L and α as defined in  Equation 4.33 is α = 4π(A − Z)αB−L, assuming

Qχ = mχ

mn
. Making charge proportional to mass as such renders the conversation factor

independent of mass mχ. This assumes that dark matter is a composite particle.

It should also be noted that these limits do not extend indefinitely to higher interaction

strengths and lower masses. These limits are bounded both by the assumptions in the limit

setting procedure and by the requirement that dark matter that is detected by a terrestrial

experiment must make it through the atmosphere, and the overburden for underground

experiments, without losing too much momentum. The assumption that dark matter tracks

are linear implies that dark matter interacting with sensor test masses must not lose too

much momentum; a line indicating where this becomes relevant to the configuration 2 limit

is shown in  Figure 4.6 . This line is computed by finding the value of α where more than 1%

of the momentum of a dark matter particle of a given mass can be deposited into a test mass.

The overburden of terrestrial experiments might impose further bounds on the projected

limits, and will be the subject of future work.
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Figure 4.5. Dark matter sensitivity of 3 different sensor array configurations, as
detailed in  Table 4.2 . The sensitivities computed here represent 90% confidence
level exclusion limits in the signal-free scenario, where there is no dark matter
close to the parameter spaces excluded by the exclusion limits. The Planck
mass is indicated by the black dashed line, and the line corresponding to αG

for Pb, which is the material corresponding to the density used in  Table 4.2  , is
indicated by the grey dotted line. The XENON1T limit is based on the limit
from [ 127 ], with conversion to the parameterisation given by  Equation 4.33  

courtesy of Zhen Liu and Shengchao Li. This conversion assumes a long-range
force coupling to the B − L charge.
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Figure 4.6. Dark matter sensitivity of configuration 2 as detailed in  Table 4.2  .
The sensitivity here represents the 90% confidence level exclusion limit in the
signal-free scenario, where there is no dark matter close to the parameter spaces
excluded by the exclusion limits. The Planck mass is indicated by the black
dashed line, and the line corresponding to αG for Pb, which is the material
corresponding to the density used in  Table 4.2  , is indicated by the grey dotted
line. The dotted purple line indicates the line where the assumption that dark
matter tracks are always linear is no longer accurate. Note that the axes on
this plot differ from  Figure 4.5 , and that the dotted purple line is not visible
without the bounds of that plot.

108



4.2.4 Further Work

In [  23 ], it is noted that a sensor array that would be sensitive to the gravitational

attraction of Planck-mass dark matter might require up to ∼ 109 sensors. The methodology

demonstrated above still takes approximately ∼ 1 hour of CPU time for the 103 sensor array

in configuration 3. While the use of high-performance computing systems could allow for this

limit to be scaled up by a few orders of magnitude, it is clear that this remains a challenge.

To achieve this, in future work, I intend to pursue methods to project the sensitivity of a

large array by splitting a large array into smaller sub-arrays, and only considering the signal

from sub-arrays that the track would intersect. This relies on the fact that the relevant signal

is highly concentrated towards sensors that are close to the track, owing to the rapid decay

of the inverse-square law.

The above work also relies on the assumption of an isotropic distribution of dark matter

tracks. This is an approximation that does not take into account the modulation of the

dark matter velocity distribution and flux due to the relative motion of the lab frame and

the galactic frame; further work will aim to address this shortcoming by implementing the

relevant coordinate transforms to compute the diurnal and annual dark matter modulation [  2 ,

 43 ].

Finally, as noted previously, the overburden of dark matter with long range interactions

has not yet been computed, and will be the subject of future work to make these limits more

rigorous.

4.3 Frequentist Track-finding Using Template Matching

In this section, we demonstrate track-finding using template matching in a 43 sensor array

using simulated data. This sensor array with a dark matter track passing through is shown

below in  Figure 4.7 .

The dark matter mass used is 2×10−8 kg ≈ mplanck, and the noise PSD is 6×10−21 g/
√

Hz.

The power spectral density is chosen to be able to demonstrate a positive detection and is not

a projection of detector capabilities. The velocity of the chosen track is 280 km/s, close to

the peak of the velocity distribution according to the standard halo model [  43 ]. A sampling
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Figure 4.7. Plot of a 4 × 4 × 4 sensor array, with sensors represented by
coloured circles. The strength of an acceleration signal is indicated by the
sensor colour. An example track going through the array is shown in green.
The length of one side of the sensor array is 0.6 m.
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time of 100 ns is used. The simulated data for this track is shown in  Figure 4.8  , where we

can see that the signal is not visible above the noise floor. This demonstrates the necessity of

template matching to extend the reach of our sensors.
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Figure 4.8. Top: the mean squared acceleration with noise. Bottom: the
mean squared acceleration without noise. It can be seen that if one simply
considers the mean squared signal, the signal is not visible above the noise
floor.

Tracks are parameterised as described in  subsection 4.1.1  , with the following 6 parameters:

velocity (v), entry time, the spherical coordinates of the entry point (cos(θ0), φ0), and the

spherical coordinates of the exit point (cos(θ1), φ1). The cosine of the θ angles is used

as evenly-spaced bins in cos(θ) represent equal-sized areas on a sphere. For every set of

parameters, a template is constructed by considering the positions of the dark matter particle
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as a function of time, r(t). For the ith timestep and the jth sensor, the template is then given

by the following:

fij = rij

r3
ij

(4.37)

This template is multiplied by the data from each sensor at every timestep to obtain the

signal strength. The SNR can be computed by dividing the signal strength by the square-root

of the noise variance. This is easily computed for white Gaussian noise, as this assumes that

noise is uncorrelated between sensors; the total variance given a template is thus simply the

variance of each individual data point multiplied by the template values. A full 6-dimensional

SNR map of the parameter space produced by template matching unfortunately cannot be

printed on a page or displayed on a computer screen; as such, 2D slices of the SNR map are

shown in  Figure 4.9 .
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Figure 4.9. 2D slices of the significance map obtained from template matching.
It can be seen that even though the signal is buried below the noise, as shown
in Fig.  4.8 , a clear peak around the truth parameter values of the track is
clearly visible. These 2D slices are taken by setting all other parameters to the
truth values.
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We can see that despite the signal being below the noise floor when the data is considered

naively, as in  Figure 4.8  , there is indeed a signal above the noise floor when a technique

that accounts for the correlation between data points across sensors and timesteps, such as

template matching, is used. In addition, we can see that this method successfully recovers

the parameters describing this track as well.

4.3.1 Further work

The template matching approach above assumes white noise. For noise which is not

constant in frequency, a template would need to be convolved with the reciprocal of the

autocorrelation function of the noise; in frequency domain, this can also be understood as

dividing the Fourier transformed template by the noise PSD to weigh a search for signals

in favour of frequencies where the noise is low [  129 ]. This is not yet implemented, and will

need to be implemented in the future for a search for dark matter using a sensor array. Due

to the 6-dimensional parameter space and the high sampling rates required, this search is

also extremely computationally intensive. To remedy this, I hope to implement an optimiser

to compute the highest SNR for each time bin, similar to a profile likelihood [ 2 ], using

computationally efficient optimisation methods such as Bayesian optimisation [  130 ]. Bayesian

optimisation, in particular, can be used in conjunction with maps of the covariance function,

as described in  chapter 5  , to make optimisation even more efficient by removing the need to

train covariance function hyperparameters.

4.4 Bayesian Track-finding

In this section, I describe the use of Bayesian inference for track-finding. The same track

and sensor array configuration described in  section 4.3  are used in this section as well. I

use the nested sampling with slice sampling [  131 ] as implemented in ultranest [ 132 ] to

compute the posterior distribution of the parameters, and to evaluate the model evidence

and determine the significance of a signal.

Nested sampling works iteratively using a collection of ‘live points’ in the parameter

space. The live point with the lowest likelihood is killed each iteration, and becomes a
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‘dead point’; dead points are then replaced by a new point that is sampled from the prior

distribution within the contour defined by the likelihood of the most recent dead point, until

pre-determined halting criteria are met [  133 ]. This produces a population of weighted points

that represent the posterior distribution together with an estimate of the Bayesian evidence.

The reason nested sampling is used for this is that the sampling of complex multi-modal

distributions is a key strength of the nested sampling family of methods [  131 ]; as we can see

from  section 4.3 , this is the case for Windchime significance maps.

Bayesian inference involves computing the posterior distribution using a prior distribution

and a likelihood function:

P (~θ| ~X) = P ( ~X|~θ)P (~θ)
P ( ~X)

(4.38)

where ~X refers to the data and ~θ refers to the parameters. P ( ~X|~θ) ≡ L ~X(~θ) is the likelihood

function, and P (~θ) ≡ π(~θ) is the prior. P ( ~X) =
∫

L ~X(~θ)π(θ)d~(θ) is the marginal likelihood,

or the Bayesian evidence. We can see that we need any algorithm performing Bayesian

parameter inference and model comparison to do two things. First, we would like to sample

the likelihood function densely in the region with higher probability, and sparsely elsewhere.

This is because we are only interested in regions where the likelihood is non-negligible. This

doubles as a fitting routine, finding the best-fit region in the parameter space. Secondly, we

are interested in the Bayesian evidence, so that our signal model can be compared to a null

(signal-free) model.

4.4.1 Likelihood function

For each data sample and set of coordinates, the likelihood is constructed under the

assumption that each sensor and each data sample represents a random variable that is

uncorrelated with all other variables. In this case, the likelihood of the ith data sample from

the jth sensor in the kth axis is:

pijk ∝ e
− 1

2σ2
ijk

(aijk−µijk(~θ))2

, (4.39)
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where aijk is the measured acceleration value, σijk is the standard deviation of the noise

distribution, and µijk(~θ) is a function describing the expected acceleration measured in the

ith data sample from the jth sensor in the kth axis. In this case we consider sensors that are

sensitive along all three axes, but the last index can be neglected for sensors that only have

one axis of sensitivity. µijk(~θ) is produced analogously to the template used in  section 4.3 ,

 Equation 4.37 , as such:

µijk(~θ) = Gmχ~rij

r3
ij

· n̂k (4.40)

where n̂k is the unit vector corresponding to the kth axis of a sensor.

The dataset log-likelihood is thus given by

Λ(~θ) =
∑
i,j,k

− 1
2σ2

ijk
(aijk − µijk(~θ))2 + log(N ), (4.41)

where N is the normalisation that can be neglected for the purposes of model comparison

with a Bayes factor.

4.4.2 Prior distribution

Uniform priors are used in all parameters aside from the signal strength parameter.

ultranest requires priors to be specified by transforming the parameter space to a unit cube,

where a uniform prior can be represented by a simple linear map, and the inverse cumulative

distribution can be used to encode specific priors [  131 ]. On the other hand, as the signal

strength is effectively unbounded, the following equation is used to transform the parameter

space m ∈ [0, ∞) to ζ ∈ [0, 1]:

ζ = tanh
(

mχ

Cmc

)
(4.42)

where C is a numerical constant, and mc is a characteristic mass relevant to the detector,

given by mc = σd2

GN1/6 . This is because we expect the average force to scale as N1/6, where

N is the number of sensors, and as 1
d2 , where d is the average sensor spacing [  23 ]. The use

of such a transformation allows coverage of the entire parameter space with regularisation

towards lower signal strengths, and in the limit of large amounts of data, can make the
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inference procedure asymptotically correct from a frequentist perspective as well, due to the

Bernstein-von Mises theorem [ 134 ], for parameter values that are not close to parameter

space boundaries. The prior on the variable mχ, using the numerical constant C = 10, is

shown in  Figure 4.10 .
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Figure 4.10. Prior distribution of mχ, produced by sampling 5 × 106 uniform
random numbers in the interval [0, 1], and transforming them via the inverse
of  Equation 4.42 .

It can be seen that the prior is flat in the region of parameter space close to the region

close to the threshold of sensitivity, ∼ MPlanck. This ensures that the statistical significance

of a result is not biased in the near the sensitivity threshold, where accurate estimation of

the significance of a signal is the most crucial.
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4.4.3 Posterior Distribution from Bayesian Inference

A corner plot of the posteriors is shown below in  Figure 4.11 . We can see that the

parameters are all recovered successfully, and there is a clear peak near the parameter truth

values as expected. The Bayes factor is 47800. As a Bayes factor is an odds ratio, this can be

interpreted in terms of σ [ 136 ], corresponding to 4.25σ. The local frequentist p-value can be

computed using the likelihood ratio, and is found to be 9 × 1016, corresponding to SNR = 8.0,

or a local significance of 8.0σ. This does not take the look-elsewhere effect into account and

overstates the significance; estimating the global significance is the focus of the next section.

4.4.4 Estimation of Trial Factor

The method used to estimate the trial factor from a Bayesian posterior is based on [ 114 ].

In that paper, it can be seen that in the simple case of a single Gaussian peak in the posterior

dominating the trial factor, the trial factor is given by the ratio of the volume of the prior

distribution to the volume posterior distribution in all parameters other than the signal

strength parameter. This is because the size of the parameter space allowed for the signal

strength parameter has no influence on frequentist false positive rates, aside from determining

whether limits are one-tailed or two-tailed.

To estimate the trial factor, we start with the likelihood ratio test statistic:

qL(~θ) = 2 log
p( ~X|~θ, M)

p( ~X|M0)

 ≡ 2 log(Λ(~θ)) (4.43)

where M is the signal model, and M0 is the null model. If we approximate the posterior

as Gaussian, the Bayes factor can be represented in terms of the likelihood ratio! In the

following derivation, maximised variables are indicated with a hat, such as Λ̂ for the maximised

likelihood ratio, ~̂θ for the parameters corresponding to that maximised likelihood ratio, and

q̂L for the corresponding test statistic.

The Bayes factor is defined as

B =
∫

d~θp( ~X|~θ, M)p(~θ|M)∫
d~θ0p( ~X|~θ0, M0)p(~θ0|M0)

. (4.44)
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Figure 4.11. A corner plot showing that the truth value can be recovered
with a full 6-dimensional search. The 1, 2, 3 and 4σ contours are shown. In
2D histograms as shown here, these correspond to 39%, 86%, 99% and 99.97%,
because the probability content of σ-levels depend on dimensionality [ 2 ]. Made
with corner [ 135 ].
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This can be simplified when the signal-free model is a point hypothesis with parameters as

such:

B =
∫

d~θp( ~X|~θ, M)p(~θ|M)
p( ~X|M0)

(4.45)

We can separate the signal strength parameter and the other parameters as ~θ = (~φ, s). Under

the assumption that the prior is flat, we can obtain:

B =
∫

ds
∫

d~φp( ~X|~φ, s, M) 1
Vprior

p( ~X|M0)
(4.46)

If we then assume that posterior distributions are Gaussian, and that the signal strength

posterior is uncorrelated to other posteriors, we get the following:

B = Λ̂
Vprior,sVprior,φ

∫
ds
∫

d~φe− 1
2 (~φ−~̂φ)T Σ−1(~φ−~̂φ)e− 1

2

(
s−ŝ
σs

)2

= Λ̂
Vprior,sVprior,φ

√
(2π)k|Σ|

√
(2π)σ2

s

= Λ̂Vposterior,sVposterior,φ

Vprior,sVprior,φ

(4.47)

This works because in taking the ratio of the evidence for the two models, the normalising

constants cancel out. Assuming that the signal strength is uncorrelated is reasonable because

one would typically not expect the shape parameters of a signal to depend strongly on the

signal strength, though in practice this would need to be verified by Monte-Carlo simulations.

In  Equation 4.47  , the trial factor is given by Vprior,φ

Vposterior,φ
[ 114 ]. The relation between the Bayes

factor and maximum likelihood ratio is then given by

log(B) = log(Λ̂) + log

(
Vposterior,s

Vprior,s

)
+ log

(
Vposterior,φ

Vprior,φ

)
, (4.48)

whereas the trial factor is given by

log(Ntrials) = −log

(
Vposterior,φ

Vprior,φ

)
= − log(B) + log

(
Vposterior,s

Vprior,s

)
+ log(Λ̂). (4.49)
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We have thus shown that under the above assumptions, the trial factor can be obtained if

we know the Bayes factor, the maximum likelihood ratio, and the prior to posterior volume

ratio of the signal parameter. This is simplified by the fact that the prior volume of the

signal parameter is simply 1 in our case, due to the transformation described in the previous

sections. Vposterior,s, on the other hand, is simply given by the standard deviation of the signal

strength parameter.

From this derivation, we can see that while Bayesian model comparison using the Bayes

factor does automatically account for the look elsewhere effect due to the considered parameter

space, it is not a panacea; Bayesian methods do not distinguish between amplitude parameters

and other parameters. There is a good reason for this distinction in frequentist methods,

however, as for rare event searches we are concerned with the false-positive rate due to

backgrounds and noise. The false positive rate should not depend on the size of the signal

strength parameter space.

It should be noted that this is only valid when the posterior is dominated by a single mode.

However, it is likely that in the regime we are working in, the posterior would be locally

dominated by a single mode if there were to be a real signal, as we need a false-positive rate

on the order of 1 event/year or lower, making this approximation reasonable. The derivation

also assumes a flat prior. While not strictly true in our case, the prior is locally flat in the

region near the sensitivity threshold of the detector; as such, this holds in the region we

are interested in. The trial factor estimate might be biased for signals that are far above

our sensitivity threshold, but as the look elsewhere effect is unimportant far away from the

sensitivity threshold, this should not matter.

Using the above derivation, we can obtain a trial factor of Ntrials = 4.5 × 107. The global

significance can be derived as such:

pglobal ≈ plocalNtrials (4.50)

This gives a final global significance of 5.5σ for the above track. It should be noted that

this is for a search time of 8 us. Assuming the trial factor scales linearly with time as one

would intuitively expect, the trial factor is 2.4 × 1020 yr−1. This implies that to get a global
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significance of 3σ for a 1 year exposure time, a signal with SNR = 10 is needed; stated another

way, for a rare event search with 64 sensors and a 1 year exposure time, the SNR threshold

needs to be at least 10. The trial factor derived using this method is an estimate, as the

resultant posterior distribution exhibits non-Gaussian behaviour (see  Figure 4.11 ).

4.4.5 Further work

Computational cost is a key issue for this approach as well. One key issue is that at

low values of the signal strength parameter ζ, the likelihood is effectively independent of

parameters other than signal strength. This causes difficulties with both nested sampling

and Markov chain Monte Carlo, and is analogous to the difficulties encountered in sampling

hierarchical models, typified by Neal’s funnel [  137 ,  138 ]. A typical approach to solve this is

to consider a transformation of the parameter space that eliminates or reduces this funnel

structure, and will be explored in future work. Another approach could also be to partition

the parameter space into portions that individually are not as challenging to sample.

In addition, a likelihood function for noise that is not constant in frequency has to be

developed. This can use the Whittle likelihood, an approximate likelihood for coloured noise

that is also the basis for the matched filtering method mentioned in  section 4.3  [ 139 ]. Finally,

the estimation of the trial factor can be extended to larger arrays by considering the scaling

of the resolution of a sensor array with array size, and will be helpful to extend the trial

factor estimate given here to larger sensor arrays.

4.5 Likelihood Ratio for Ultralight Dark Matter Searches

4.5.1 The Signal from Ultralight Dark Matter

In addition to ultra-heavy dark matter, a large array of accelerometers will also be sensitive

to coherent signals, such as various types of ultralight dark matter [  125 ]. One model of

ultralight dark matter that we are focusing on is B − L dark matter, which is dark matter

that couples to the baryon number minus the lepton number, or the B − L charge. For

dark matter with masses lighter than ∼ 0.1 eV, the dark matter signal can be expected to

be a coherent sinusoidal signal due to the high particle density, with the frequency given by
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the dark matter mass [ 125 ]. This is because dark matter has a typical velocity of ∼ 10−3c

(see  chapter 1  ), hence the energy corresponding to the rest mass is much higher than the

kinetic energy. For a neutral object, the number of protons and electrons is the same, hence

the B − L charge is given by the neutron number of a sensor test mass. The force signal on a

sensor is thus given by [ 125 ]:

F ≈ gB−L(A − Z)F0 sin(ωφt + φ0) (4.51)

where gB−L is the dimensionless B − L coupling, A is the mass number, Z is the atomic

number, ωφ ≈ mc2

~ is the frequency of the signal, and F0 =
√

2e2ρχ

ε0 ≈ 6 × 10−16 N is the force

on a single neutron if the coupling is gB−L = 1 [ 140 ]. It should be noted that this equation,

as given in [  125 ], is approximate as it does not account for the polarisation of the signal.

This force is applied on every object, however, and hence only the differential acceleration

can be detected. This differential acceleration is due to the fact that the neutron content

is material dependent. The acceleration from B − L dark matter is can be found by

dividing  Equation 4.51 by the sensor mass:

a ≈ gB−L
A − Z

ms

F0 sin(ωφt + φ0)

≈ gB−L
A − Z

mnA
F0 sin(ωφt + φ0)

= gB−L
A − Z

A
a0 sin(ωφt + φ0)

(4.52)

where a0 = F0
mn

is the acceleration on a single neutron if the coupling is gB−L = 1. The

differential acceleration between materials 1 and 2 is therefore

adiff ≈ gB−L∆ sin(ωφt + φ0) (4.53)

where ∆ =
(

Z1
A1

− Z2
A2

)
is the difference between the neutron-to-nucleon numbers between two

materials. For typical materials, ∆ . 0.1. This differential acceleration can be detected either

by comparing the acceleration from test masses with different materials, or by detecting the
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differential acceleration between a test mass and the readout system, such as a pickup loop

or an interferometer.

4.5.2 Derivation of the Likelihood Function

Let {Xn : n ∈ T} be a set of N measurements representing a real wide-sense stationary

Gaussian time series with zero mean and autocorrelation function K(j) where j is the difference

between the indices of two measurements. The time between subsequent measurements is

τ . This can be done with no loss of generality, as the mean of any wide-sense stationary

Gaussian process can be subtracted to satisfy this condition. The discrete Fourier transform

of this time series is

X̃k = 1√
Nτ

N−1∑
n=0

Xie
− i2π

N
kn. (4.54)

As the expectation of each Xn is zero, the expectation of X̃k is zero. The real and imaginary

components are independently distributed Gaussian random variables <
(
X̃k

)
∼ N (0, σ2

k)

and =
(
X̃k

)
∼ N (0, σ2

k), except for k = 0, and k = N/2 if N is even [ 139 ]. This is the Whittle

approximation, and is asymptotically correct as N increases, as long as the autocorrelation

function satisfies ∑∞
j=−∞ |K(j)||j|1/2 < ∞ and E(X4

n) < ∞ [ 141 ]. A formal derivation can be

found in pg. 348 of [  142 ]. The independence and equal variance of the real and imaginary

components is required because otherwise the system would not be invariant to a shift in

phase [  139 ].

For an ultralight dark matter search, we are not interested in the edges of frequency space

where k = 0 and k = N/2, thus they will be neglected for the following derivation. As the

real and imaginary components of X̃k are independent, the random variable |X̃k|2 is given by(
<
(
X̃k

)2
+ =

(
X̃k

)2
)

. As |X̃k|2 is the sum of 2 independent identically distributed Gaussian

random variables, if it is normalised by the variance, σ2
k, it is described by a χ2 distribution

with 2 degrees of freedom: |X̃k|2
σ2

k
∼ χ2

2. In the limit of N → ∞, σ2
k ≈ S(ωk), the PSD of the

stationary process. The null (signal-free) likelihood at a single frequency is thus given by

L0,k = χ2
2

(
|X̃k|2

S(ωk)

)
. (4.55)
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Negative frequencies are not included, because the absolute value of the Fourier transform is

the same.

If there is a sinusoidal signal present at frequency ωκ, the expectation of X̃κ will instead be

given by a phasor describing the sinusoidal signal, Aeiθ. As the phase of a dark matter signal

is unknown, a signal likelihood should not involve θ; as such, likelihood in complex space

would not do. In this scenario, <
(
X̃κ

)
∼ N (<(Aeiθ), σ2

κ) and =
(
X̃κ

)
∼ N (=(Aeiθ), σ2

κ).

As such, E(|X̃κ|2) = <(Aeiθ)2 + =(Aeiθ)2 = A2. As |X̃κ|2 is now given by the sum of two

independent Gaussian random variables, it is described by a non-central χ2 distribution:
|X̃κ|2

σ2
κ

∼ fnc(2, A2

σ2
κ
) where fnc(ν, λ) refers to a non-central χ2 distribution with ν degrees

of freedom and non-centrality parameter λ [ 143 ]. The signal model likelihood of a single

frequency is thus given by

Lk(A) = fnc

(
|X̃k|2

S(ωk) ; 2,
A2

σ2
k

)
(4.56)

where A is the fit parameter for the amplitude of a signal.

The likelihood ratio test statistic is:

Λk(A) = −2 log
(

L0,k

Lk(A)

)
. (4.57)

As  Equation 4.55 is a special case of  Equation 4.56 , Wilks’ theorem can apply to this

likelihood ratio test. However, as the null model lies on the boundary of the parameter

space, the asymptotic distribution of the likelihood ratio is given by 1
2χ2

1(Λ) + δ(Λ), instead

of χ2
1(Λ) [ 144 ].

4.5.3 Further Work

The signal likelihood  Equation 4.56  does not account for the stochastic nature of the

dark matter signal, or the broadening of the dark matter signal due to the standard halo

model [  145 ]. As such, for searches of dark matter longer than one coherence time, a likelihood

that accounts for these effects would be needed, and will be the subject of future work.
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4.6 Conclusion

The Windchime project aims to use mechanical accelerometers to detect ultra-heavy

dark matter via gravitational couplings, with a secondary goal of searching for ultralight

dark matter. In this chapter, I have discussed methods to compute sensitivity projections

for the Windchime project, frequentist and Bayesian approaches for track-finding below the

single-sensor noise floor, and the construction of a likelihood ratio for the search of ultralight

dark matter. The work detailed in this chapter represents foundational work for the data

analysis and science goals of the Windchime project. I hope this work, combined with work

on instrumentation and ultralight dark matter sensitivity projections analysis by the rest of

the collaboration, will enable either a discovery of dark matter or a ruling out of the relevant

parameter space in the future.
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5. FAST ESTIMATION OF THE LOOK-ELSEWHERE EFFECT

USING GAUSSIAN RANDOM FIELDS

This work is a paper manuscript that is intended to be published shortly after the submission

of this thesis.

5.1 Introduction

In hypothesis testing problems with composite hypotheses, the correct frequentist p-value

might not be the same as the p-value one would compute for fixed values of the composite

hypothesis parameters [  2 ]. This is referred to as the look-elsewhere effect. The correct p-value

given composite hypotheses is often termed the global p-value, whereas the p-value computed

with fixed parameters is termed the local p-value. The look-elsewhere effect correction is often

parameterised by a trial factor, which is the ratio between the local and global p-values [ 146 ].

A simple approach to finding the trial factor would be to run a large number of null-hypothesis

Monte-Carlo simulations, often using simplified or “toy" models. These simplified simulations

are known as toy MCs. An example of this approach can be found in [ 35 ].

However, in the case of complex and high-dimensional problems, the use of toy MCs

can be computationally too expensive. In addition, data-analysis and inference of modern

experiments can be extremely computationally-intensive, requiring dedicated computational

infrastructure. This makes estimation of trial factors for the purposes of sensitivity projections

for future experiments difficult. Thus, the use of Gaussian random fields to directly generate

null significance maps and estimate the trial factor can be very useful.

Gaussian random fields are random functions over a domain, where the values of every

finite collection of points on the domain are described by a multivariate Gaussian distribution.

Such fields can be viewed as a higher-dimensional generalization of Gaussian processes,

commonly used in Gaussian process regression [ 147 ]. Gaussian random fields are used for the

estimation of the look-elsewhere effect in neuroimaging [  148 ], and for the modelling of the

matter distribution in the universe [ 149 ]. There has been existing work regarding the use of

Gaussian random fields for the estimation of the look-elsewhere effect in physics [ 150 ,  151 ].
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The use of Gaussian random fields for estimation of look-elsewhere effect corrections relies on

computations of the excursion probability, which is the probability for samples of a Gaussian

random field to exceed a given significance level. In this chapter, we detail techniques to use

Gaussian random fields for the estimation of look-elsewhere effect corrections, with a focus

on problems with underlying Gaussian random variables.

A discussion of the classes of problems that can be modelled by Gaussian random fields,

an overview of the spectral method for efficient sampling of Gaussian random fields, and

an analytic approximation for the excursion probability can be found in  section 5.2  . A

demonstration of these methods using a 2-dimensional template-matching problem with a

Gaussian kernel can be found in  section 5.3  , and a demonstration using a 1-dimensional

template-matching problem with a non-Gaussian kernel can be found in  section 5.4  . Finally,

in  section 5.5 , these methods are used to estimate the trial factor when searching for dark

matter tracks using an accelerometer array.

5.2 Statistical underpinnings of method

This section is split into 3 parts. First, an explanation for why Gaussian random fields

correctly model the significance maps of a large set of problems is given in  subsection 5.2.1 .

Second, a discussion regarding how to sample Gaussian random fields efficiently is given in

 subsection 5.2.2  . Finally,  subsection 5.2.3  contains a description of a fitting procedure that can

be used to extend this method to extremely small p-values using an analytic approximation

of the excursion probability of a Gaussian random field.

5.2.1 Why Gaussian Random Fields Can Model a Large Set of Problems

Let us consider a statistical problem where one searches for a fluctuation over finely-spaced

set of Gaussian random variables distributed in a parameter space. One example of this

could be a template matching search for a transient over a regular grid of CCD pixels with

Gaussian noise. A diagram of this is shown in Fig.  5.1 .
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Figure 5.1. Diagram depicting a template matching search for an excess over
a grid of random variables. The grid of random variables is indicated by the
blue points, and the template used to search for an excess is shown in the
coloured wire-frame distribution.
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While a 2D grid with a simple template that is symmetric and does not vary with position

is depicted in Fig.  5.1 , this is for ease of illustration, and these assumptions are not made

in the following argument except where noted. We can see that at each possible template

position, the resultant signal strength recovered is a weighted sum of Gaussian random

variables, where the weights correspond to the template amplitude at a given random variable.

The significance map formed using such a template thus corresponds to the formal definition

of a random field [ 152 ] where each point is Gaussian-distributed, and every collection of

points represent a multivariate Gaussian distribution.

In addition, given independent underlying random variables, the covariance between two

points can be computed from the template directly. Consider two points in the parameter

space, (x0, x1). At each point, the random variable in the case of a signal-free dataset is

given by:

Yi =
∑

j

αi,jXj (5.1)

where Xj are the underlying finely spaced Gaussian random variables such as CCD pixels,

and αi,j refers to the template value at each underlying random variable for template i.

E(Xj) = 0 is taken without loss of generality as the mean value can be subtracted. As such,

the covariance would be given by:

K(x0, x1) = cov
∑

j

α0,jXj,
∑

k

α1,kXk


= E

∑
j

α0,jXj

(∑
k

α1,kXk

) (5.2)

This can be taken further if the underlying Gaussian random variables are independent,

as then E(XiXj) = 0 for i 6= j. The covariance can then be computed as such:

K(x0, x1) = E

∑
j

α0,jXj

(∑
k

α1,kXk

)
= E

∑
j

α0,jα1,jX
2
j


=
∑

j

α0,jα1,jσ
2
j

(5.3)
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We can thus see that in the case of template matching with underlying Gaussian random

variables, the significance map is modelled by a Gaussian random field and the covariance

function can be directly calculated based on the template and measured properties of the

underlying random variables. In addition, Gaussian random fields can also be used to model

significance maps with underlying Gaussian random variables generated with likelihood

ratio tests. This is because the log likelihood-ratio is simply the sum of squared residuals

normalised by the standard deviation, as shown in  Equation 5.4  .

Λ = log
(

L̂
L′

)

=
∑

i

− (Xi − µi)2

2σ
−
∑

i

− (Xi)2

2σ

=
∑

i

2µiXi − µ2
i

2σ

(5.4)

In addition to the above, other problems that do not use underlying Gaussian random vari-

ables can still be represented approximately by Gaussian random fields in some circumstances.

Where a likelihood ratio test is used the distribution of the test statistic asymptotically

approaches a χ2 distribution due to Wilks’ theorem when the relevant conditions, detailed in

[ 144 ], are satisfied. In such a situation, a signal-free significance map over a parameter space

would represent a χ2 random field [  150 ]. While this differs from a Gaussian random field,

because a χ2 random variable can be defined by the square of a Gaussian random variable,

where the degrees of freedom of the relevant χ2 random field is k = 1, such a χ2 random

field can be sampled simply by sampling a Gaussian random field with the correct covariance

and squaring it, and the excursion probability of such a random field is simply double the

one-sided excursion probability described in  subsection 5.2.3  . The fact that a χ2 random field

can be represented using Gaussian random field is also noted by Ananiev and Read in [ 151 ].

It should also be noted that due to Lindeberg and Lyapunov’s central limit theorems, if

the underlying random variables are independent and sufficiently finely distributed to give a

large sample size, this argument holds for non-Gaussian underlying random variables such as

Poisson noise as long as Lindeberg’s condition or Lyapunov’s condition are satisfied [  153 ].

While a detailed discussion of these conditions is beyond the scope of this paper, verifying the
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Gaussianity of a given significance map numerically or constraining it using the Berry-Esseen

theorem [ 154 ] might be sufficient for practical purposes.

5.2.2 Efficient Spectral Sampling of Stationary Gaussian Random Fields

While for sufficiently complex problems Gaussian random fields might be easier to sample

than toy MC-based methods, this might still be too computationally intensive. For example,

if we consider template-matching search in a flat 2-dimensional parameter space with 102 bins

per dimension, there would be 104 points that need to be correlated with each other, resulting

in a correlation matrix with 108 entries. We can see that with higher dimensional problems,

populating such a covariance matrix which is needed for naive sampling of Gaussian random

fields quickly becomes intractable.

A review of efficient methods for the sampling of Gaussian random fields by Liu et al. can

be found in [ 155 ]. In sections  5.3 and  5.5 , the spectral method as described in [ 155 ] is used

to efficiently sample from Gaussian random fields. This method of generating samples from

a Gaussian random field requires the field to be weakly stationary, such that a covariance

function can be described by a function of the displacement between two points, such that:

K(x0, x1) ≡ Ks(x0 − x1) (5.5)

Ks(d) is simply the autocorrelation function multiplied by the variance. For a field with unity

variance, which is typical for a significance map that is scaled to represent the signal-to-noise

ratio (SNR), then, Ks(d) is the autocorrelation function. This case is considered without

loss of generality, as one can scale any stationary Gaussian random field to have a variance of

unity. The Fourier transform of the autocorrelation function of a weakly stationary process

is the power spectral density (PSD) due to the Wiener-Khinchin theorem [ 119 ,  156 ].

The spectral method for sampling Gaussian random fields makes use of this Fourier

transform pair. Samples of a Gaussian random field can be generated in frequency domain

by multiplying the Fourier transform of white noise by the square root of the PSD, then

performing an inverse Fourier transform to return the sample to the relevant parameter space.
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We can thus sample stationary Gaussian random fields in high-dimensional parameter spaces

without having to populate extremely large covariance matrices.

5.2.3 Analytic Approximation of Excursion Probability

Even when sampling Gaussian random fields with the spectral method, in high-dimensional

parameter spaces, sampling can still be prohibitively expensive due to the curse of dimen-

sionality. In this scenario, the look-elsewhere effect correction can be extended to lower

p-values using an analytic approximation of the excursion probability. For a random field

{f(t) : t ∈ M}, the excursion probability over a level u is defined as:

pexcur = P
{

sup
t∈M

f(t) ≥ u

}
(5.6)

It can be seen that the excursion probability represents the probability that any point on a

random field exceeds u. The excursion probability for a smooth Gaussian random field on a

locally convex space is given by [  152 ]:

pexcur =C0Φ
(

u

σ

)
+ uNe−u2/2σ2

N∑
j=1

Cju
−j+

O
(
e−αu2/2σ2) (5.7)

where Φ(u) is the Gaussian tail distribution, N = dim(M), σ is the standard deviation of

the Gaussian random field, and α > 1 is a constant describing the exponential suppression of

the error term. We can see that  Equation 5.7  contains a number of constants (Ci). While

these constants can be computed directly for some cases, this is often non-trivial [  152 ].

Instead,  Equation 5.7  can be used to fit the excursion probability directly using a set of

samples of signal-free significance maps. This, combined with the spectral method of sampling

Gaussian random fields shown in  subsection 5.2.2  , greatly reduces the computational cost of

computing look-elsewhere effect correction. It should be noted that  Equation 5.7 is based on

approximating the excursion probability using the Euler characteristic of an excursion set,

thus for particularly computationally challenging problems methods from [  150 ] for estimating
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the Euler characteristic can further reduce the number of samples needed to derive the

look-elsewhere effect correction.

5.3 Demonstration with a 2D Toy Problem

The ideas introduced in  section 5.2  can be first demonstrated using a search in a 2D

parameter space. Here, we will model a 2D template matching search using a 2D Gaussian

random field. 2D Gaussian random fields can be used to model the look-elsewhere correction

for various experiments, such as searches for dark matter using pixel detectors [ 54 ,  157 ] and

searches for astronomical transients [  158 ,  159 ].

The expected signal shape and hence the template matching kernel are modelled using a

Gaussian kernel. In such a situation, the normalised covariance function or the correlation

function, is also a Gaussian kernel with double the covariance matrix and
√

2 the linear

dimensions, as shown in  Figure 5.2 .

This can be seen by expanding  Equation 5.3 in the case of a position independent kernel

as such:

K(x0, x1) =
∑

j

α(x0, ~xj)α(x1, ~xj)σ2
j (5.8)

where α(x0, ~xj) is the template weight for a sample at xj, and a template at x0. For the

case of a stationary field, σj is the same for all j, so we simply call this σ. Then, taking

the template function to be a Gaussian with covariance Σ, we can apply the continuum

approximation if each data samples takes up a volume of Vs to derive the following:

K(x0, x1) =σ2∑
j

α(x0, ~xj)α(x1, ~xj)

≈σ2

Vs

∫
α(x0, ~x)α(x1, ~x)d~x

=σ2

Vs

∫
e(x0−~x)T Σ−1(x0−~x)e(x1−~x)T Σ−1(x1−~x)d~x

(5.9)
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Figure 5.2. 2D toy problem template matching kernel and covariance function.
The FWMN ellipse corresponding to the covariance function is

√
2 bigger than
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We can see that this is linearly proportional to the convolution of two Gaussian distribu-

tions. It is a well known result that the convolution of Gaussian distributions is Gaussian,

with a covariance matrix that is the sum of the covariance matrix of the individual Gaussian

random variables; this is because the sum of two Gaussian random variables is Gaussian

[ 156 ]. Thus, if the templates in a search are Gaussian, the resulting Gaussian field from the

template search has the covariance function shown in  Equation 5.10 .

K(x0, x1) = Ks(x0 − x1) ∝ e(x0−x1)T Σ′−1(x0−x1) (5.10)

where Σ′ = 2Σ. One can then compute the normalisation analytically using the convolution

integral above. In our case, it is acceptable to simply discard the normalisation as the goal is

to produce a null significance map for the purpose of calibrating the look-elsewhere effect,

and such significance maps are typically normalised to have unity variance. A single sample

from the Gaussian random field described by  Equation 5.10 is shown in  Figure 5.3 . The

parameter space is divided into 60 bins in each dimension when generating this sample.

We can now compare samples generated using a traditional toy MC and Gaussian field

samples. This is shown in  Figure 5.4 . The Gaussian random fields are sampled both using

the spectral method described in  subsection 5.2.2 and the naive method, where a large

covariance matrix describing the covariance between every pair of points is directly sampled

as a multivariate Gaussian.

As expected, the excursion probability obtained from toy MC samples agree with those

obtained by sampling Gaussian random fields. This demonstrates how Gaussian random

fields can be sampled to produce large numbers of null significance map samples without a full

toy MC. Finally, we can test the use of  Equation 5.7  to fit the excursion probability. As the

error term in  Equation 5.7  is exponentially suppressed at small excursion probabilities, the

fit only uses data points from after u2 = 10, where the excursion probability is approximately

0.1; this is shown in  Figure 5.5 .
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Figure 5.3. Example of a single null random sample. The FWHM of the
covariance function is overlaid as a black dashed ellipse for comparison.
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Figure 5.4. The fraction of 105 null random samples showing false positives
as a function of the significance threshold in units of σ2. We can see that the
different methods to generate random fields work produce global p-values that
are in agreement.
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Figure 5.5. The fraction of null random samples showing false positives as a
function of the significance threshold in units of σ2. A fit using  Equation 5.7  is
shown here, and we can see that a fit with only 103 samples agrees well with
the exceedance probability derived from 105 toy MC samples.
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Even though only 103 samples are used to fit the excursion probability, the fit matches

the excursion probability expected from the toy MC samples. This demonstrates that fitting

a limited set of samples using  Equation 5.7  does indeed allow one to estimate the look-

elsewhere effect correction with greatly reduced computational expense. These results are

summarised in  Table 5.1  , where it can be seen that the various methods all agree within

expected uncertainties.

Table 5.1. Global p-values at 4σ and 5σ local significance for the 2D toy
problem. It can be seen that the p-values are consistent within stated binomial
errors, and the best fit value produced using a 1% sample size reproduces the
simulated values well.

Method p4σ p5σ

Toy MC
(
6.27+0.25

−0.24

)
× 10−3

(
8.0+3.4

−2.4

)
× 10−5

Gaussian random field
(
6.17+0.25

−0.24

)
× 10−3

(
6.0+3.0

−2.0

)
× 10−5

Gaussian random field, spectral method
(
5.98+0.25

−0.24

)
× 10−3

(
5.0+2.8

−1.8

)
× 10−5

Best fit 6.36 × 10−3 8.8 × 10−5

5.4 Demonstration with a 1D Template Matching Problem

We showed in  section 5.3  that in the case of a Gaussian search kernel and uniformly

distributed underlying random variables, the covariance function can be easily computed.

Indeed, while the derivation focused on Gaussian kernels, the result should hold in general for

kernels that are closed under convolution, such as kernels that represent stable distributions

[ 160 ].

In many cases, however, the covariance function might be easier to compute numerically.

To demonstrate such an example, in this section we consider a 1-dimensional search with

a non-Gaussian kernel, for an excess in time-series data due to a particle interacting via a

long-range force passing by an accelerometer. This toy problem is inspired by the Windchime

project [  41 ], where the direct detection of dark matter particles with masses of around the

Planck mass will be attempted. While technically challenging, it has been suggested that this

might be possible with large accelerometer arrays [  23 ]. In the case of a dark matter particle

passing by an accelerometer, the force as a function of time is given by  Equation 5.11 , where
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G is the gravitational constant, mχ is the mass of a dark matter particle, ms is the test mass

of the sensor, b is the impact parameter of a dark matter track, and v is the velocity of the

dark matter track [  23 ].

F (t) = Gmχmsb

(b2 + v2t2)3/2 (5.11)

For template matching purposes, a normalised template with the same shape as  Equation 5.11 

can be used. This is shown in equation  Equation 5.12 .

f(t) = vb2

2 (b2 + v2t2)3/2 (5.12)

In this demonstration, values of b = 3 mm and v = 3 × 105 m/s are used, and the sampling

rate is 109 Hz. With this information, we can generate the template for template matching,

and then compute the covariance function using  Equation 5.3 . As this system is also described

by a stationary random field, this is done by simply computing the autocorrelation of the

template. These are shown together with MC data samples in  Figure 5.6  . As in  section 5.3  ,

the global p-values at 4σ and 5σ local significance are computed using 105 signal-free samples

each using a toy MC, direct sampling of the Gaussian random field using the covariance

function, sampling of the Gaussian random field in frequency space, and a best-fit with 103

samples using  Equation 5.7 . The best-fit only uses data points after u2 = 10, where the

excursion probability is approximately 0.1. These results are shown in  Table 5.2  .

Table 5.2. Global p-values at 4σ and 5σ local significance for the 1D template
matching problem. It can be seen that the p-values are consistent within
stated binomial errors, and the best fit value produced using a 1% sample size
reproduces the simulated values well.

Method p4σ p5σ

Toy MC
(
5.82+0.25

−0.24

)
× 10−3

(
3.0+2.3

−1.3

)
× 10−5

Gaussian random field
(
6.13+0.25

−0.24

)
× 10−3

(
10+4

−3

)
× 10−5

Gaussian random field, spectral method
(
6.29+0.25

−0.25

)
× 10−3

(
10+4

−3

)
× 10−5

Best fit 5.42 × 10−3 4.9 × 10−5

As we expect, the different values agree to the computed uncertainty, demonstrating how

the methods outlined in this paper can be used to estimate the look-elsewhere effect. While
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Figure 5.6. Top left: The template function of the 1D toy problem. Top
right: The correlation function derived as the autocorrelation of the template.
Bottom left: One random sample containing a true signal, with the signal truth
expectation shown in dashed orange. Bottom right: Two significance maps
generated using the toy MC procedure. The blue line contains a true signal,
whereas the black dashed line does not.
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the example here uses a template that is relevant to the Windchime project, this procedure

can be used in general to calibrate the look-elsewhere effect correction for problems involving

template matching or matched filtering of time-series data, including sonar [ 161 ] and fast

radio burst detection [  162 ]. It should be noted that for cases involving multiple templates,

correlations between templates would need to be computed as well to avoid underestimation

of the significance of a signal.

5.5 Application to Windchime

These methods can now be applied to estimate the look-elsewhere effect correction needed

for a dark matter direct detection experiment based on the Windchime concept [  41 ]. In this

section, we consider the detection of dark matter interacting via a long range force using a

0.6 m array of 43 accelerometers, with a sampling rate of 107 Hz.

The force on a single sensor is given in  Equation 5.11  . However, for a particle passing

through a sensor array, the impact parameter b would be different for each sensor, and

additionally, the time of closest approach differs between sensors. Thus, instead of using the

template for a single sensor, a template for the entire array is considered. As each template

represents a track, we have to consider the parameterisation of a track through the sensor

array. This is accomplished using a bounding sphere that is larger than the accelerometer

array, so that each track through the array intersects the bounding sphere twice and hence

can be parameterised by two points on the bounding sphere. Any given template can then

be parameterised by 6 parameters: velocity (v), entry time, the spherical coordinates of the

entry point (cos(θ0), φ0), and the spherical coordinates of the exit point (cos(θ1), φ1). The

cosine of the θ angles is used as evenly-spaced bins in cos(θ) represent equal-sized areas on a

sphere. Here, we consider a bounding sphere with a diameter of 1 m, so that it encloses the

entire array.
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For each set of the 6 parameters, a template is generated by considering the force on

each sensor over a series of timesteps. At every timestep, the distance between the particle

and every sensor is calculated, and the template for each sensor is computed using the

inverse-square law. The equation for the template at the ith timestep and the jth sensor is

thus simply:

fij = rij

r3
ij

(5.13)

After the computation of the entire template over a set of timesteps and all sensors, the

template is divided by its sum to normalise it to unity. Finally, the covariance between

two sets of parameters can be computed by summing across all sensors and timesteps

using  Equation 5.3  . This allows for the covariance function to be mapped out between one

template and all surrounding templates. Some 2D slices of the covariance function is shown

in  Figure 5.7  .

It can be seen from  Figure 5.7  that the Gaussian random field representing this problem is

not stationary. This is because in the case of a stationary field, the covariance function only

depends on the displacement between points, as described in  Equation 5.5  . This implies that

K(x, x − d) = K(x − d, x) = K(x, x + d). Thus, for a stationary process, Ks(d) = Ks(−d)

and the covariance function should be symmetric. Unfortunately, this means that Wiener-

Khinchin theorem does not apply, and spectral sampling of this covariance is not possible.

To get an estimate the look-elsewhere correction, we can approximate the covariance function

using a symmetric functional form. Here, we use a Gaussian kernel to approximate the

covariance function. Similar 2D slices of the approximate covariance function is shown in

 Figure 5.8 . A random sample from the Gaussian random field represented by  Figure 5.8 ,

sampled using the spectral method, is shown in  Figure 5.9  . The excursion probability can

then be fit to samples such as  Figure 5.9  . The excursion probability estimated with 2000

such samples is shown in  Figure 5.10 .
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Figure 5.9. 2D slice of one null sample, generated using the covariance
function shown in Fig.  5.8 .
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We can now compute the trial factor using the fit in  Figure 5.10 . First, we need to

compute the SNR threshold needed for a search with confidence level 1 − α over time t. Here,

we use α = 0.0027, corresponding to a significance level of 3σ. The SNR threshold is then

found by solving  Equation 5.14 for u:

Ψ(u)V ′

V

T ′

T
− α = 0 (5.14)

where Ψ(u) is the fitted excursion probability function, V ′

V
corresponds to the fraction of

parameter space covered by the sampled Gaussian field, and T ′

T
corresponds to the search

time covered by the random field divided by the desired search time. This procedure tells us

we need an SNR threshold of 8 for a 1 s search time and 10 for a 1 yr search time. The trial

factor, Ntrials, is then simply given by:

Ntrials = α

Φ(u) (5.15)

This results in estimated trial factors of ∼ 1012 for a 1 s search, and ∼ 1020 for a 1 yr search.

We can see that due to the high dimensional search space, there is an extremely high trial

factor. Thus, thresholds much higher than the 5σ level customary in particle physics [ 2 ,  163 ,

 164 ] are needed for a rare event search with an accelerometer array.

5.6 Summary and Conclusions

In this paper, we describe and demonstrate the use of Gaussian random fields in the

estimation of the look-elsewhere effect. The presented methods can be used to greatly

reduce the computational requirements for the estimation of the look-elsewhere effect. This is

particularly useful for high-dimensional and otherwise computationally complex problems, and

can also be helpful for sensitivity projections of future experiments where the computational

infrastructure needed for the data-analysis of such an experiment does not yet exist.

Gaussian random fields can be used to model a large set of statistical problems commonly

encountered in physics. Because the Gaussian distribution is stable, for a problem involving

underlying Gaussian random variables, template matching or matched filtering would result
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in significance maps that can be described by Gaussian random fields. This is also true if

likelihood ratio tests are used instead of template matching. An example of such a system

where the underlying random variables are random could be a pixel array with Gaussian noise

[ 157 ]. In cases where the underlying random variables might be non-Gaussian, the resulting

null significance maps might still be asymptotically Gaussian or χ2, due to either central

limit theorems in the case of template matching and matched filtering, or to Wilk’s theorem

in the case of likelihood ratio tests. For problems that can be modelled using Gaussian

random fields, it is often possible to directly compute the covariance function, such as from

the templates used for template matching.

When it has been ascertained that a given significance map can be modelled by a Gaussian

random field, two techniques that can be used to reduce the computational cost of estimating

the look-elsewhere effect correction for local significance are introduced in this paper. First,

various methods exist for the efficient sampling of Gaussian random fields, such as the spectral

method where samples are generated in frequency space. A review of such methods can be

found in [  155 ]. This can allow for Gaussian random fields to be sampled more efficiently than

the directly sampling from a large covariance matrix. Second, an analytic approximation of

excursion probability, from [  152 ], can be used to fit a small set of null significance map samples.

These methods can be combined to further reduce the computational cost of estimating the

look-elsewhere effect correction at low p-values.

The above techniques are then demonstrated on 2D and 1D toy problems. The 2D toy

problem represents searches in a 2D parameter space, such as searches for dark matter using

pixel detectors [  54 ,  157 ] and searches for astronomical transients [  158 ,  159 ]. A Gaussian

kernel is used for the template, thus allowing for direct analytic computation of the covariance

function. The 1D toy problem represents searches in a 1D parameter space, such as searches

for dark matter using accelerometers [  41 ], sonar [ 161 ], and fast radio burst detection [ 162 ].

Using 105 samples generated with each method, we show that the look-elsewhere effect

corrections derived using toy MC significance maps agree with those sampled from Gaussian

random fields, both when the Gaussian random field covariance functions are directly sampled

and when the Gaussian random fields are sampled using the spectral method. Finally, a

much smaller sample of 103 null significance maps is used to fit the excursion probability.
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This analytic fit also agrees with the other approaches, allowing for a greater reduction in

computational cost.

Finally, these techniques are applied to a 43 accelerometer array based on the Windchime

concept. Tracks through such an array are parameterised by 6 parameters: velocity (v), entry

time, the spherical coordinates of the entry point (cos(θ0), φ0), and the spherical coordinates

of the exit point (cos(θ1), φ1). The Gaussian random field representing null significance maps

from this problem is not stationary, hence the spectral method for sampling this array cannot

be directly used. Thus, a Gaussian kernel is used to approximate the covariance function.

The spectral method is then used to generate 2000 null significance map samples, which are

used to fit the excursion probability. We find that when we require a global significance of

3σ the estimated trial factor for such an accelerometer array is 1012 for a 1 s search, and 1020

for a 1 yr search.
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6. CONCLUSION

“Writing is hard work.” - Isaac Asimov [  165 ]

Over the course of my PhD, as a member of the XENON and Windchime collaborations,

I have worked on improving and broadening the search for dark matter, with a focus on

computational techniques and algorithms. This has culminated in my work, as detailed

in the chapters of this thesis, on the reduction of radon chain backgrounds in XENON,

the calibration of XENONnT using a 88Y photo-neutron source, analysis and sensitivity

projections for the Windchime project, and the use of Gaussian random fields to estimate

corrections to statistical significance due to the look-elsewhere effect.

To reduce radon chain backgrounds in XENON, I have designed an algorithm to veto

these backgrounds, and demonstrated the use of this algorithm using XENON1T data.

The algorithm performs tagging of the 214Pb background, which is part of the 222Rn decay

chain. This was done by first constructing the convection velocity field in the detector. The

constructed velocity field was then used to propagate velocity fields out from candidate
214Pb events to search for events corresponding to the decays preceding and succeeding the

decay of 214Pb from the same decay chain–the candidate event could then be vetoed if there

was a match. It was shown that this works and produces a modest background reduction

in XENON1T, with the potential for significantly higher performance in XENONnT and

future detectors. Variations of this method can also be used to veto the cosmogenic 137Xe

background, which is important for the search for the search for neutrinoless double-beta

decay in xenon detectors.

I have also designed and constructed a 88Y/Be photo-neutron source for the calibration

of the XENONnT detector. The source was designed to maximise ratio of neutron events to

overall rate in the PC as much as possible given the physical constraints of the I-Belt system,

and has been shown to work, producing a population of neutron events in the expected

energy range. This will be used in the calibration of the XENONnT detector. I expect this

measurement to strongly constrain our detector response to nuclear recoils below 5 keV and
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hence to help enable a measurement of 8B solar neutrinos via CEνNS. In addition, such

a calibration of the detector response close to the threshold will also aid in the search for

WIMP dark matter.

As a founding member of Windchime, I then laid down foundational work for the

Windchime project to enable sensitivity projections and searches for dark matter. This

includes methods to compute sensitivity projections for the Windchime project, frequentist

and Bayesian approaches for track-finding below the single-sensor noise floor, and the

construction of a likelihood ratio for the search of ultralight dark matter. I show that the

methods developed do work on simulated data and various sensor array configurations, and

can be used as a basis for a future dark matter search programme.

Finally, in the course of developing methods for the Windchime project, I also worked on

the use of Gaussian random fields to estimate corrections to statistical significance due to

the look-elsewhere effect. This can be used to greatly reduce the computational requirements

for the estimation of the look-elsewhere effect, and will be used to determine the appropriate

thresholds for dark matter searches with Windchime that can maintain appropriately low

false alarm rates.

I believe my work, as detailed in this thesis, represents a step forward in the search for

dark matter. I am excited to see the impact my work has on the of the field in the future,

and to continue pushing the boundaries of our understanding of the universe!
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