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What a beautiful face
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NOMENCLATURE

adjacent Two network vertices that are connected by an edge are said to be adjacent.
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directed An edge that operates in only one direction. Also describes a network with

directed edges.
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graph The locus of ordered pairs (x, y) describing a relationship (a plot).
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ABSTRACT

An innovative network model of the gravity assist problem enables the quick discovery

and characterization of candidate trajectories from a small set of search criteria. The net-

work elements encapsulate information about individual gravity assist encounters and con-

nectivity. This organization of the astrodynamical information makes it possible to deploy

well-established search methods to find sequences of flyby encounters with reduced human

effort and in a fraction of the time previously required. The connectivity encoded in the

model considers energy feasibility and scheduling constraints. Therefore, paths found using

the network algorithms are feasible from both an energy and phasing perspective.

Current initial-guess methods only identify a sequence of planet names that may form a

tour. Broad searches over launch date and launch V∞ (sometimes requiring months of com-

putation time) are currently required to identify realistic paths from each possible sequence.

The network approach provides (in a shorter period of time) more detailed initial guesses

that include the approximate V∞ and date of each encounter. These initial guesses can di-

rectly generate a set of patched-conic trajectories or initialize existing grid-search tools. The

technique can accept fidelity improvements and may be extended for use on other mission

types.

A collection of potential gravity assist encounters serve as the network vertices. Keplerian

models for connecting the gravity assists in energy and time translate into network edges.

Network models of more sophisticated trajectory concepts such as resonant transfers and

V∞-leveraging extend the approach to include more complex paths.

General network traversal algorithms form the basis for gravity-assist trajectory searches.

Problem-specific network filtering reduces network size and search times. A detailed discus-

sion of algorithm complexity and problem size is also provided.

The new search technique successfully rediscovers known trajectories from historical grav-

ity assist missions. The network method also identifies preliminary gravity-assist trajectories

to the Trans-Neptunian Objects Haumea and Makemake.
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1. INTRODUCTION

In February 1974, Mariner 10 made a close pass of Venus to bend the spacecraft trajectory

in the direction of Mercury. This was the first time that a gravity assist from one planet was

used to reach a second planet. In the 50 years since this event, gravity assists have enabled

increasingly complex missions, including visits to every planet and tours of satellite systems.

To develop a multiple gravity-assist (MGA) mission, a trajectory designer must be able

to identify promising flyby sequences from myriad combinations of planetary encounters that

exist for brief periods of time. Once identified, candidate paths must be further evaluated

with higher-fidelity analysis. A candidate path is typically a “first guess” for an iterative

process. The present research identifies better first guesses with higher fidelity and in signif-

icantly shorter time than was previously possible. Moreover, the techniques developed will

be applicable to more complex problems for which current manual methods are impractical.

The present work is an innovative application of network analysis techniques that si-

multaneously addresses the energy and time components of the gravity-assist problem. We

will construct a network of possible flybys from energy matching methods analogous to the

Tisserand graph. We next augment the Tisserand information with possible encounter times

derived from ephemeris data. The result is a network of flybys that are connected in time.

Once the network is constructed, gravity-assist paths can be found with established network

algorithms.

The gravity-assist paths found in the discrete energy and time network can immediately

be used to construct continuous solutions in the patched-conic framework. Alternatively, the

network results can focus grid searches performed in other design tools.

1.1 Historical Context

The effect of planetary encounters on the orbits of comets and asteroids was understood

by many of the astronomers and mathematicians of the 18th and 19th centuries, includ-

ing d’Alembert, Laplace, Leverrier, and Tisserand [  1 ]. In the first half of the 20th century,

the utility of this gravitational perturbation for modifying a spacecraft trajectory became in-
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creasingly clear. Important contributions in this era include work by Hohmann, Kondratyuk,

Tsander, and von Pirquet [  1 ], [  2 ].

At the dawn of the Space Age, work by Lawden, Grocco, and Ehricke [ 3 ] set the stage

for the practical application of gravity assists [  2 ]. The first intentional use of a gravity assist

was the 1959 flyby of the Moon by the Soviet spacecraft Luna 3 enabling transmission of

photographs of the far side of the Moon. Mariner 10 was the first mission to perform a

gravity assist in order to reach another planet.

Minovitch [  4 ] and Flandro [  5 ]–[ 7 ] did pioneering work on the use of gravity assists to

enable fast transfers to the outer planets. Burgeoning ability to engineer gravity assists

and meet the associated navigation challenges enabled landmark exploration missions in the

1970s and 80s. Pioneer 11 and the Voyager missions included flybys of multiple planets. The

Voyager 2 Grand Tour is perhaps the archetypal multi-gravity-assist (MGA) mission.

The last several decades have seen missions with increasingly complex MGA trajectories.

The Galileo mission was redesigned to include a flyby of Venus and two flybys of Earth on the

way to Jupiter after the original direct transfer became impossible following the Challenger

accident. Cassini included two flybys of Venus and flybys of Earth and Jupiter on its trip to

Saturn. Both Galileo and Cassini followed up their interplanetary trajectories with satellite

tours. In the 21st century, the Rosetta, MESSENGER, Deep Impact, and Dawn missions

have included flybys of inner solar system planets to reach Mercury, comets, and asteroids.

1.2 Problem Definition

A gravity assist is the intentional use of a secondary celestial body’s gravitational field to

alter the orbit of a spacecraft about a primary body. A spacecraft performs a gravity assist

by passing close to a massive body without entering a closed orbit about that body. For this

reason, the event is also called a flyby or a swingby.

During the gravity assist, the energy of the spacecraft relative to the flyby body is un-

changed. However, the spacecraft energy relative to the primary can be altered significantly.

This energy change comes with little to no propellant cost. The propellant saving benefit
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has made the gravity assist an important and enabling technique for exploration of the solar

system.

The focus of this research is the fundamental question of multi-gravity-assist trajectory

design: what gravity assist trajectories are possible? The answer to the question requires

understanding whether a candidate gravity assist is capable of advancing the spacecraft to

the next planet and whether the planets are positioned to facilitate the transfer.

1.2.1 Pathfinding and Pathsolving

A popular paradigm for conceptualizing MGA trajectory design breaks the problem into

two parts: pathfinding and pathsolving. This distinction was coined by Longuski. Pathfind-

ing is the process of discovering a candidate sequence of gravity-assist bodies using orbital

energy. Pathsolving is the problem of finding continuous trajectories along a path using an

ephemeris model.

This division addresses the energy and time components of the problem separately. The

pathfinding problem answers the question of whether a gravity assist at one planet can

change the energy of the spacecraft orbit enough to reach another planet. The pathsolving

problem answers the question of whether a series of gravity assists can actually be scheduled

given the constantly changing alignment of the planets. The ephemerides in the pathsolving

problem provide the time histories of planet motion. Each gravity assist must occur at a

time when the planet phasing is correct.

Pathfinding involves discrete variables (e.g., planets, the number of encounters, and dis-

crete V∞ levels). Pathsolving involves continuous variables (e.g., time, position, and veloc-

ity). The problems are typically solved separately, either in two sequential steps or in an

alternating, iterative approach.

The present work does not fit perfectly into the pathfinding/pathsolving paradigm. The

goal of the preliminary exploration was to develop an automated and “exact” (or exhaustive)

solution to the discrete pathfinding problem to generate initial guesses for an existing grid-

based pathsolver (namely, STOUR [  8 ]). However, the work eventually incorporated the

scheduling question into the discrete path problem. So the initial guesses provided by the
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technique presented here include not just what paths are feasible, but also, when they are

possible. Finally, to assist in cataloging and selecting attractive initial guesses, the present

work transforms the initial-guess paths into continuous patched-conic trajectories. Thus,

this work addresses both the pathfinding and pathsolving parts of the trajectory problem.

But the division between the energy and time components of the problem is not as clear as

the sequential or iterative approaches used by other researchers.

1.3 Gravity-Assist Pathfinding Approaches

A preliminary question for designing a multiple gravity-assist mission is, what sequence of

planets shall we visit? Perhaps more fundamentally, what sequences are possible? A simple

enumeration of the possible sequences is generally impractical. The number of permutations

of b potential flyby bodies in a path of length l is bl. For example, suppose we wish to create

a trajectory to Neptune using the planets Venus, Earth, Mars, Jupiter, Saturn, and Uranus.

If we allow up to five gravity assists, we would need to evaluate 7,776 paths. If we allow

seven flybys, we would need to evaluate nearly 280,000 paths. Beyond the sheer number of

cases, many of these sequences would be impractical. For example, due to the anticipated

flight time, we can reasonably rule out any path that visits one of the inner planets after a

flyby of one of the outer planets.

Since satellite tours require many flybys, a similar brute force approach would generate

an astronomical number of possibilities. A 25-flyby tour that only considers four moons as

gravity-assist bodies could follow over 1× 1015 possible paths.

These solar system and satellite tour examples show that, for a variety of reasons, we

must be selective about the potential paths that receive a detailed evaluation. However,

the majority of MGA search methods presented in the literature focus on the continuous,

pathsolving problem. While providing sophisticated capabilities for evaluating potential tra-

jectories, these methods leave the solution of the pathfinding problem to experience, intuition,

stochastic methods, or brute force.

The Tisserand graph provides mission designers with a graphical technique for method-

ically selecting feasible paths. Strange and Longuski [  9 ] provide an introduction to the
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method and describe an early automation. Additional history and advancement is provided

in Appendix  A . The method is a great improvement over brute force, but its use must be

guided by experience and intuition and graphical pathfinding can become intractable for

long paths. An automated means of searching the Tisserand graph is clearly desireable.

1.3.1 Related Research in Automated Pathfinding

De la Torre Sangre et al. have concurrently developed a tree search of the Tisserand graph

called Tisserand PathFinder [  10 ]. The authors describe an automated Depth First Search

(DFS) of the Tisserand graph capable of discovering some Tisserand-graph paths found

manually by earlier researchers (including Strange and Longuski [  9 ] and Hughes et al. [ 11 ]).

The tree search finds energy-feasible paths but does not attempt to compute transfer times

or address the scheduling problem. The method does not generate patched-conic trajectories

along the paths. The limitation on flyby bending angle (Section  2.1.2 ) is observed but it is

not addressed with resonance modeling (Chapter  4 ).

In another concurrent study, Bellome et al. [ 12 ] address the phasing problem in the

context of a Tisserand graph search and produce trajectories to Jupiter and Saturn similar

to Galileo and Cassini. The authors use a different approach to process the Tisserand graph

information than the methods presented here. The technique appears to only consider a

single (V∞, pump angle) starting point on the Tisserand graph and does not generate an

exhaustive list of feasible trajectories.

1.4 Gravity-Assist Pathsolving Approaches

Many researchers have developed or employed search methods for multiple gravity-assist

trajectories. Most research has focused on the pathsolving problem. In the simplest analysis,

the transfer between planetary encounters is purely ballistic. However, most existing tools

also include more sophisticated transfer options such as resonant re-encounters, V-infinity

leveraging transfers (VILTs), low-thrust arcs, and a limited number of Deep Space Maneuvers

(DSMs). Some tools may also model escape from or insertion into orbit at the gravity-assist
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bodies. These pathsolvers may include global optimization methods or may simply provide

a global search capability which identifies all trajectories meeting the search conditions.

Among these pathsolvers, the method for deciding where and when to look for solutions

varies by researcher and tool. Categorical parameters like the sequence of planets to be

encountered (Venus-Earth-Earth-Jupiter, etc.) are either explicitly provided by a human

designer, created by permutation, or randomly generated. In some cases, rules-of-thumb

may guide the automatic generation of the search space. But, in general, these search

methods use some variation on a “guess-and-check” technique that will explore regions of

the search space where no solutions exist, unless directed by a knowledgeable designer.

1.4.1 Exhaustive Methods

The most popular approach for finding MGA trajectories is to perform an exhaustive eval-

uation of Lambert problems over a collection of potential planetary encounters (i.e., planet

and date combinations). In some cases, the desired path is completely defined beforehand.

The automated Satellite Tour design program (STOUR) [ 8 ], and the Explore pathsolving

tool [  13 ] follow this approach. Hughes [ 14 ] and Mudek et al. [ 15 ] conduct searches for trajec-

tories to the Ice Giants using STOUR with complete paths provided by manual Tisserand

graph analysis.

Alternatively, a pathsolver may automatically generate search paths by selecting from a

list of predefined options for each encounter or permuting a list of flyby bodies. The Star [  16 ]

and GREMLINS [ 17 ] search tools employ this method. The permutations on the path are

automatically created, but the sequence generation is purely mathematical and is not based

on energy or scheduling considerations. Experience-based rules may also guide or constrain

the path selection.

1.4.2 Stochastic Methods

A multiple gravity-assist trajectory search may also be treated as a hybrid optimal control

problem [  18 ], [  19 ]. This approach typically uses a set of nested loops to iteratively solve the

pathfinding and pathsolving components of the problem. For example, an outer loop might
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solve the discrete problem of where we can go next, sometimes called the accessible region.

Often, the discrete outer loop can be modeled as a tree, a special case of a graph in which

every pair of vertices is connected by exactly one path. For a given accessible region, an

inner loop solves the continuous problem of how we get to the destination. The outer loop

solves an integer programming problem. The inner loop solves a continuous optimization

problem within the parameters of the outer-loop solution.

Englander [  20 ] and Ellison [ 21 ], working in the Evolutionary Mission Trajectory Gen-

erator (EMTG), address both the pathfinding and pathsolving problems using this nested

technique. Englander performs the pathfinding with an outer-loop integer genetic algorithm

starting from a random initial population of candidate sequences [ 20 ]. An inner loop uses a

variety of evolutionary algorithms to do the pathsolving. The inner-loop solutions determine

the best performing paths for the outer-loop genetic algorithm. Ellison, provides improve-

ments to the techniques developed by Englander and also proposes a satellite tour search

architecture inspired by Lantukh [  13 ], [  21 ].

A significant amount of study has also been focused on metaheuristic searches or global

optimization algorithms which are frequently stochastic in nature. These techniques in-

clude Monotonic Basin Hopping [ 20 ], Genetic Algorithms [  22 ]–[ 24 ], Ant Colony Optimiza-

tion (ACO) [  25 ], or other biological algorithms [  19 ]. Izzo provides a comparison of some of

these stochastic approaches for benchmark missions [  26 ]. These methods are distinct from

the present research and a full survey is beyond the scope of this document. The reader is

referred to Ellison [ 21 ] and Lantukh [ 13 ] for excellent summaries of techniques and software

tools.

1.5 The Tisserand Network Approach

This research introduces a new capability to judiciously generate gravity-assist paths that

are likely to produce practical trajectories. Most existing gravity-assist trajectory design

methods focus on providing excellent or, in some cases, optimal solutions by following a

predesignated path or choosing among predefined options along the way. Their path selection
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methods use mathematics (array generation, permutation, etc.) to select design parameters

without insight from the astrodynamics that govern the possibilities.

In contrast, the Tisserand network approach developed in this dissertation provides a

method to systematically target paths where solutions are likely to exist based on orbital

energy and scheduling considerations. This method identifies many preliminary solutions

with no a priori knowledge of the possible paths. The technique automatically finds gravity-

assist paths using only the name of the target and constraints on the motion imposed by

astrodynamics. The network can find paths that use powered flybys, resonant re-encounters,

and V-infinity leveraging transfers.

The approach uses a discrete representation of the search space that focuses on the

pathfinding problem. Therefore, results are intended as initial guess trajectories that can fo-

cus continuous pathsolving tools on the most promising trajectories. However, the Tisserand

network also provides some basic pathsolving capability.

Other automated methods for generating path sequences [  10 ], [  12 ] may return results

that are energy-feasible but not time-feasible or may not exhaustively explore the available

options. For example, an automated pathfinder might only return the paths that can be

achieved starting from a single Earth departure condition. A Tisserand-graph-based search

might include results that are energy-feasible but cannot be executed during the desired

mission time frame. The Tisserand network contains both energy- and time-feasible solutions

and can be exhaustively searched within constraints provided by the mission designer.

1.5.1 Comparison of Gravity-Assist Trajectory Search Methods

The Tisserand network is a novel pathfinding aid and a network extension of the Tisserand

graph. This new network model of the gravity-assist problem, the search algorithms that

operate on it (to be described in Chapter  5 ), and related pathsolving and analysis capabilities

are combined in a newly-created, multiple-gravity-assist search tool named Wander. This

software package implements the concepts introduced throughout this dissertation. More

details on Wander are provided in Chapter  6 .
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Table 1.1. Multiple Gravity-Assist Tool Summary

PATHFINDERS PATHSOLVERS
Wander TPF1 MTME2 STOUR3 Explore Star GREMLINS4 EMTG5

Exhaustive
Pathfinding

X X

Energy-Feasible
Pathfinding

X X X

Time-Feasible
Pathfinding

X X

Lambert-based
Pathsolving

X X X X X X

Resonance X X X X X

Powered Flybys X X X X X X

VILT6 X X X X X X

Low Thrust X X X X

DSM7 X X X X X

Escape and
Insertion8

X X X

Reference [ 10 ] [  12 ] [ 8 ] [  13 ] [  16 ] [ 17 ] [ 20 ]

Pathfinding - The task of identifying the sequence of gravity-assist bodies to be visited
Pathsolving - The task of solving trajectories along a specific flyby sequence

1 Tisserand PathFinder
2 A Modified Tisserand Map Exploration method without a published name
3 Satellite Tour design program
4 GRidded Ephemeris Map of Lambert INterplanetary Solutions
5 Evolutionary Mission Trajectory Generator
6 V-Infinity Leveraging Transfer
7 Deep Space Maneuver
8 Calculation of the ∆V for departure and/or capture at a body

Table  1.1 revisits the difference in emphasis between pathfinding and pathsolving tools

described above. The table highlights some features of several multiple gravity-assist search

tools that have detailed descriptions in the literature. The tools are roughly organized into

groups that focus on pathfinding versus pathsolving. This distinction is apparent in the lack

of dedicated pathfinding features on the upper right portion of the table. It is worth noting

that the pathsolving tools will indeed arrive at feasible paths after detailed evaluation of the

search space using their respective grid search, tree search, or evolutionary approaches. This

result is categorically different from the pathfinding tools that identify paths without first

solving them.

30



Each tool approaches the MGA problem with unique techniques and strengths. Table

 1.1 represents the author’s best effort to condense the many capabilities of each tool into

a collection of comparable features. Even among common features, each tool exhibits a

nuanced approach to different types of problems. The reader is encouraged to review the

provided references for a full appreciation of the features and capabilities.

1.6 Other Related Research

While not focusing on multiple gravity-assist trajectory design, other researchers have em-

ployed similar discretization and graph-based techniques for spacecraft trajectory searches.

These researchers apply graph or tree searches to different dynamical models.

Tsirogiannis works in the Circular Restricted Three Body Problem (CR3BP) and uses

a graph with vertices that model various periodic orbits and edges that model impulsive

maneuvers between the orbits [ 27 ]. Trumbauer and Villac also build and search graphs for

impulsive maneuvers in the three body problem with an intended use for onboard maneuver

planning [ 28 ]. Das-Stuart et al. apply Dijkstra’s algorithm to trajectory searches in the

Earth-Moon system [  29 ]. The framework presented by these researchers uses a database of

natural motion orbit families in the Circular Restricted Three Body Problem (CR3BP) model

and also includes low thrust with both constant and variable specific impulse [  30 ]. Stuart

explores a framework for autonomously designing tours of multiple bodies using a network

of potential encounter sequences. This framework is applied to a network of impulsive

maneuvers in a Keplerian model for an orbital debris removal study and a network of low-

thrust trajectories in a CR3BP model for a Trojan asteroid tour study [  31 ], [ 32 ]. The

researchers examine both an exhaustive tree search and ACO to find tours in these problems.

1.7 New Work in This Dissertation

This dissertation describes a unique approach to finding multiple gravity-assist trajecto-

ries. While tree-like traversals of a Tisserand graph have been mentioned by some authors

[ 9 ], [  10 ], an explicit and methodical construction of a broadly searchable network from fun-

damental gravity-assist concepts (as in Chapter  3 ) has not been presented in the literature.

31



Previous authors describing Tisserand-graph searches understandably apply limits or simpli-

fications to bound the possible search branches. For example, automated searches proceed

to a maximum depth [  10 ] or track only best-case transfer times [  9 ] and manual searches rely

on rules of thumb [  11 ], [  15 ]. The present work strives to include all feasible variations in the

general case while giving the trajectory designer the tools to prune those variations based

on mission-specific constraints.

As mentioned above, the network methods described here include complex transfer mod-

els such as resonant re-encounters and V∞-leveraging transfers in a pathfinding application.

These capabilities have previously been confined to full-featured pathsolving tools. The

time-feasibility of potential paths has not previously been addressed in the pathfinding step.

The search results provide more detailed descriptions of the possible trajectories (V∞ and

encounter location) than can be provided with existing pathfinding methods.

The discrete and generalized approach to the VILT problem (Chapter  4 ) is unique. Other

researchers frequently use an iterative Lambert solving method to find the VILT return orbit

[ 17 ], [  33 ]–[ 35 ]. The difference in constraints on the return orbit leads to a different solution

method here.

The modification of the Depth-First Search (DFS) to employ gravity-assist, problem-

specific constraints (Chapter  5 ) is a new capability. The use of the line graph of a tree or

graph for weighting and searching has not appeared in context of gravity-assist searches. The

utility of the transitive closure for predicting fruitful searches has also not been discussed in

any similar application. The work in Chapter  4 is the first rigorous and versatile treatment

of resonance in Tisserand-graph-based searches.

Finally, instead of temporarily traversing a Tisserand graph to produce a list of possible

gravity-assist paths, the present work creates a product, a Tisserand network, that itself

might be studied to understand the structure of the design space.

1.8 Structure of the Dissertation

Having introduced the problem and discussed solution approaches in Chapter 1, the next

chapter reviews some foundational astrodynamics culminating in the Tisserand graph.
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Chapter  3 develops the Tisserand network, a network analog to the Tisserand graph.

The Tisserand network will be extended to include encounter date information, enabling it

to address the phasing problem left unanswered by previous Tisserand analyses.

Chapter  4 will describe how important mission events can be modeled so that they may

be included in network searches. Powered flybys, resonant transfers, and V∞-leveraging

transfers expand the types of trajectories that can be found with the network approach.

Chapter  5 describes the search algorithms that can be deployed on the network model.

Fundamental graph traversal methods form the basis for more complex algorithms that

uncover gravity assist paths through the network. The combinatorics of gravity-assist tra-

jectory searches result in search spaces that grow quickly. Chapter  5 discusses this problem

and multiple techniques for managing it.

Chapter  6 presents some search results and compares them to some actual historical

missions. A detailed discussion of a Voyager 2 trajectory search provides a verification

test for the network technique. Similar searches for Voyager 1, Galileo, and Cassini extend

confidence in the method and test the models of Chapter  4 .

Chapter  7 demonstrates the use of the Tisserand network in finding trajectories to Trans-

Neptunian Objects (TNOs). The solar system model used by the network can be readily

updated to include new bodies. In Chapter  7 , the Tisserand network discovers trajectories

to Haumea and Makemake. Chapter  8 suggests some future work and feature enhancements

and summarizes the contribution of this research.
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2. MATHEMATICAL BACKGROUND

This dissertation introduces a new multiple gravity-assist trajectory design device called a

Tisserand network that is an extension of the successful Tisserand graph technique. In this

chapter, we will lay the foundation for the Tisserand network by constructing the Tisserand

graph from basic astrodynamics. The Tisserand network applies concepts from graph theory

to the information in the Tisserand graph to create a searchable network of gravity-assist

transfers. The necessary graph theory concepts will be introduced in this chapter as well.

2.1 Gravity Assist Fundamentals

Let us explore some fundamental relationships related to gravity assist. These concepts

will be important for understanding the Tisserand graph and the advancements made in the

present research. Throughout this dissertation, we will discuss orbits of a spacecraft about

a massive primary body linked by gravity assists from less massive secondary bodies. For

simplicity, we will consistently use the Sun as the primary body and one of the planets as

the secondary body. The analysis and methods developed will be transferable to trajectories

in a satellite system where the planet is the primary and moons are the secondaries.

2.1.1 V-infinity and Pump Angle

Figure  2.1 shows the relationship between the heliocentric spacecraft velocity, Vsc, and the

heliocentric planet velocity, Vp, at a point beyond the gravitational influence of the planet.

This relationship is parameterized by the V∞ vector which represents the spacecraft velocity

relative to the planet and an angle α. The hyperbolic excess velocity, V∞, is the velocity of

the spacecraft in excess of that needed to escape the planet’s gravitational pull. The V∞

vector is the velocity of the spacecraft relative to the planet.

V∞ = Vsc −Vp . (2.1)

The V∞ direction differs from the planet velocity direction by the pump angle, α. In this

analysis, the pump angle is strictly defined to be between zero and 180 deg.
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Vsc

Vp
↵

Figure 2.1. The velocity triangle depicts the relationship between the space-
craft velocity, Vsc, and the planet velocity, Vp in the heliocentric frame. The
V∞ vector represents the velocity of the spacecraft relative to the planet at the
arrival or escape condition. The V∞ direction and planet velocity direction
differ by the pump angle, α.

Under some simplifying assumptions (circular-coplanar planet orbits), the V∞ and α,

uniquely identify the spacecraft heliocentric orbit through some basic equations of Keplerian

motion [  36 ]–[ 39 ]. Let us briefly review these equations to emphasize the importance of the

(V∞, α) parameterization.

From the velocity triangle, the spacecraft heliocentric velocity, Vsc, can be found by

application of the law of cosines:

Vsc =
√

V 2
p + V 2

∞ − 2VpV∞ cos (π− α) . (2.2)

We assume a zero-sphere-of-influence encounter so that the radius of the spacecraft from the

Sun is equal to the radius of the planet from the Sun. For a circular planet orbit, we can

compute the angular momentum, h, from

h = rscVsc cos α = rplanetVsc cos α , (2.3)

where, rsc is the radius of the spacecraft orbit which equals the radius of the planet orbit at

the flyby epoch. The eccentricity, e is given (for all conics) by

e =
√

1 + (2E h2)/µ2 , (2.4)

35



where µ is the gravitational parameter of the central body (the Sun in this case). In Equation

 2.1.1 , E is the specific mechanical energy, which can be obtained from the energy integral as

E = V 2
sc
2 −

µ

rsc
. (2.5)

E can also be used to find the semi-major axis, a:

a = − µ

2E
. (2.6)

Some additional orbit descriptors are worth noting. The period of the heliocentric orbit

will be important in developing the Tisserand network:

P = 2π
√

µ
a

3/2 . (2.7)

We also have the apoapsis and periapsis radii given by

ra = a(1 + e) , (2.8)

rp = a(1− e) . (2.9)

Finally, we can locate the encounter on the heliocentric orbit. The polar equation of a

conic section,

r = p

1 + e cos ν
, (2.10)

can be rearranged to give

cos ν = 1
e

(
p

r
− 1

)
, (2.11)

where ν is the true anomaly and p is the semi-latus rectum:

p = h2

µ
. (2.12)

Under the zero-sphere-of-influence assumption we treat the planet and spacecraft as if they

are collocated in the heliocentric frame at the encounter. We set r in Equation  2.11 equal to

the circular radius distance of the planet. Equation  2.11 can then be evaluated for the true

anomaly, ν, of spacecraft at the encounter. The sign ambiguity of the inverse cosine can be

resolved with knowledge of whether the spacecraft is approaching or departing periapsis.
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Figure 2.2. The V∞ and pump angle at the encounter are related to the size
and shape of the heliocentric orbit. Here, V∞ levels are shown as separate lines
and the pump angle varies from 0 to 180 deg on the bottom axis. The plots
above assume Venus as the flyby body.

Equations  2.2 through  2.11 show that, starting from V∞ and α, we can identify the size

and shape of the heliocentric orbit and the location of the encounter associated with the flyby

geometry in Figure  2.1 . Since we are assuming co-planar orbits, the inclination, longitude

of the ascending node, and argument of periapsis are undefined. Figure  2.2 visualizes this

parameterization showing semi-major axis, a, and eccentricity, e, as functions of V∞ and

pump angle. The different lines represent discrete levels of V∞ with a continuous variation

of pump angle.
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2.1.2 Bending Angle and Flyby Radius

We now must consider how the gravity assist affects the V∞ and pump angle. These

effects will form the basis for linking a series of gravity assists through the intermediate

heliocentric orbits.

�

�/2

a

ae

V+
1V�

1

Vp Vp↵+

Figure 2.3. The gravity assist rotates the V∞ vector by an angle δ. The
magnitude of the V∞ vector is unchanged under our simplifying assumptions.

In the planet-centered frame, the velocities along the inbound and outbound asymptotes

of the flyby hyperbola are V−
∞ and V+

∞, respectively. From conservation of energy, we know

that the velocity before and after the flyby have the same magnitude:

|V−
∞| = |V+

∞| = V∞ . (2.13)

For a point-mass planet, the gravitational acceleration on the approaching spacecraft is

balanced by an equivalent deceleration on departure. The benefit of the flyby is derived

from the change in direction of the V∞ vector. The amount of direction change is called the

bending angle, δ (Figure  2.3 ).
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Let δ be the central angle between the asymptotes of the gravity assist hyperbola. From

the geometry of the hyperbola we have

sin δ

2 = a

ae
= 1

e
. (2.14)

Rearranging gives

δ = 2 arcsin 1
e

. (2.15)

Equation  2.9 can be rewritten as

e = 1− rp

a
(2.16)

and we also know that

a = − µ

V 2
∞

. (2.17)

Collecting Equations  2.16 and  2.17 into Equation  2.15 gives

δ = 2 arcsin 1
1 + rpV 2

∞
µ

= 2 arcsin µ

µ + rpV 2
∞

. (2.18)

For a fixed value of V∞ at any given planet (µ fixed), the maximum possible bending angle

occurs when rp is minimized.

There are practical limitations of the minimum periapsis. Depending on the celestial

body, we may encounter a minimum permissible flyby radius due to the planet surface, the

atmosphere, or radiation limits. A lower limit on flyby radius creates an upper limit on the

amount of trajectory turning that can be achieved in a flyby. The minimum flyby radius

has important implications for reading the Tisserand graph and for designing the Tisserand

network. Note: In early analyses, it may be beneficial to allow trajectory searches to exceed

these physical limits in order to identify preliminary trajectories that can be later refined to

meet constraints.

2.2 The Patched Conic Method

A patched conic analysis of a spacecraft trajectory assumes that the complete trajectory

of a spacecraft in an n-body system can be approximated by a series of two-body (Keplerian)

orbits. In this simplified analysis, we consider only one gravity field at a time. This is a
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significant yet powerful assumption. Battin justifies the approximation in the context of

planetary encounters with the following reasoning. The time period during which the planet

dominates the spacecraft motion is small compared to the total mission duration. And,

during this short time, the distance between the planet and the spacecraft is much smaller

than the solar distance. So the Sun affects the motion of both bodies in the same way [  40 ].

Prado compares the patched-conic approach to the circular restricted three-body problem

(CR3BP) for flyby trajectories and finds that the two methods agree well in most cases [  41 ].

The techniques typically agree on predictions of the energy gained during the flyby as well

as the semi-major axis, eccentricity, and angular momentum before and after the encounter.

The study supports the use of patched conics for initial studies even in low energy cases

where subsequent analysis in a higher fidelity model is also recommended. Systems with a

high mass ratio between the secondary and primary body (like the Earth-Moon system) may

require more careful consideration [ 42 ].

As a spacecraft approaches a gravity-assist body, the gravitational influence of the sec-

ondary body (e.g. a planet) eventually dominates the gravitational influence of the primary

body (e.g. the Sun). The spacecraft is said to have entered the secondary body’s sphere of

influence (SOI). The SOI is determined by considering the ratios of perturbing acceleration

to primary acceleration in the three-body system. Tisserand showed that the surface where

these ratios are equal has the radius

rSOI =
(

mplanet

mSun

) 2
5

rplanet , (2.19)

where mplanet and mSun are the masses of the planet and the Sun, respectively, and rplanet is

the radial distance of the planet from the Sun [ 43 ].

The sphere of influence is a natural patch point in patched conic analysis. Frequently,

the elliptical orbit about the Sun is patched to the hyperbolic orbit about the planet at the

SOI. Among the planets, however, the great distances of rplanet in Equation  2.19 are dwarfed

by the mass ratios and the exponential. The SOI for the terrestrial planets are less than one

percent of the planetary orbit’s semi-major axis. Even among the giant planets, the SOI

is only a few percent of the semi-major axis with Jupiter having the highest ratio (about
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six percent)[ 43 ]. Therefore, we employ a further simplification and assume that the sphere

of influence of the planet has zero radius. Under this assumption the gravity assist occurs

instantaneously. The position and velocity of the planet are constant during the gravity

assist and the spacecraft and planet are co-located with respect to the Sun at the gravity-

assist epoch. The gravitational force of the planet effectively imparts an impulsive ∆V to

the spacecraft.

Patched conic analysis has been used for initial trajectory designs with great success

and has proven to provide a good representation of the true motion. Each of the ballistic,

high-thrust tools discussed in section  1.4.1 use the zero-SOI, patched-conic assumption for

gravity assist searches. The deviation from reality cannot be ignored and transitioning from

a patched-conic solution to a full ephemeris model can sometimes be non-trivial [  44 ]. But the

simplification allows trajectories to be analyzed in a fraction of the time that a full n-body,

ephemeris-based analysis would require. As we will see, many thousands of Keplerian orbits

are modeled in a matter of seconds in the present research.

2.3 The Tisserand Graph

Let us now consider how we might determine whether a gravity assist at one planet can

be used to direct a spacecraft to another planet. A gravity assist conserves the energy of the

spacecraft-planet system while increasing or decreasing the energy relative to the Sun. The

Tisserand graph is a useful tool for understanding how this change in heliocentric energy

can be used to connect multiple gravity assists.

2.3.1 Tisserand’s Criterion

Tisserand’s parameter is an approximation of the CR3BP Jacobi constant expressed in

orbital elements:

CT = 1
a

+ 2
√√√√a(1− e2)

r3
p

cos i , (2.20)
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where rp is the orbital radius of the planet perturbing the motion [  40 ], [ 45 ]. Like the Jacobi

constant, the Tisserand parameter is an energy-like constraint on the possible motion in a

three-body system.

An encounter with a massive body can significantly change the orbital elements of a

spacecraft or comet orbiting the Sun. So much so that it may be difficult to determine if

the orbit before and after the encounter belong to the same body. François Félix Tisserand

derived the constant in Equation  2.20 while studying the affect of Jupiter on comet orbits

[ 40 ], [  43 ], [  46 ], [  47 ]. Consider two sets of orbital elements (a1, e1, i1) and (a2, e2, i2) from

comet observations made at two different times. If the two sets of elements approximately

satisfy Tisserand’s criterion:

1
a1

+ 2
√√√√a1(1− e2

1)
r3

p

cos i1 = 1
a2

+ 2
√√√√a2(1− e2

2)
r3

p

cos i2 , (2.21)

then they are assumed to belong to the same comet—before and after an encounter with a

massive body.

The application of Tisserand’s criterion is not restricted to comets. It also places a con-

straint on the possible spacecraft motion achievable after a gravity assist and has historically

been used to confirm flyby calculations in patched-conic analyses [  48 ]. Tisserand’s param-

eter describes the possible orbits that might result from a flyby. Let us now consider the

inverse problem. Given a heliocentric orbit (a, e, i), what flyby might it have resulted from?

Could it have resulted from a flyby of different planets? If so, then we have more than one

gravity assist related to the same heliocentric orbit. This line of thought is the basis for the

Tisserand graph, a graphical method for associating heliocentric orbits with planetary flyby

parameters.

2.3.2 A Graphical Analog to Tisserand’s Parameter

The Tisserand graph is a proven tool for identifying energy-feasible, gravity-assist paths.

The approach builds a multiple gravity assist trajectory by linking a series of gravity assists

that match in heliocentric energy. Importantly, the Tisserand graph does not consider orbit
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phasing and the paths identified with this technique might not be practical or might only

occur in the very distant future.
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Figure 2.4. The V∞ and pump angle at the encounter are related to the
energy and periapsis of the heliocentric orbit. Here, V∞ levels are shown as
separate lines and the pump angle varies from 0 to 180 deg on the bottom
axis. The plots above assume Venus as the flyby body.

To identify candidate gravity assists, we graphically present heliocentric orbit parameters

(such as those derived from V∞ and α in section  2.1.1 ) as a set of constant flyby V∞ contours.

Intersections of the V∞ contours locate flybys with common heliocentric orbits. These orbits

can be strung together to create a tour. The same principle can be applied to a series of

satellite flybys around one of the planets. This type of analysis was first presented in the

literature by Labunsky et al. [ 49 ]. The term “Tisserand graph” was coined by Longuski [ 9 ]

to describe such a display after the related concept, Tisserand’s criterion [ 9 ], [  40 ], [  43 ].
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Consider again the flyby (V∞, α) parameterization of the heliocentric orbits. Figure  2.2 

showed the affect of V∞ and pump angle on the size and shape of the orbit in terms of

semi-major axis and eccentricity. Figure  2.4 gives an equally valid representation of the size

and shape of the orbits as a function of these parameters. In this case, we see the trends

in specific mechanical energy, E , (an analog of orbit size) and periapsis radius, rp, (which

combines the effects of size and shape).

2× 10−1 3× 10−1 4× 10−1 6× 10−1

Periapsis, rp [AU]

−1000

−800

−600

−400

−200

E
n

er
gy

,
E

[k
m

2
/s

2
]

V∞ = 2

V∞ = 4

V∞ = 6

V∞ = 8

V∞ = 10

V∞ = 12

Figure 2.5. The Venus V∞ contours combine the size and shape relationships
into a single view. The pump angle varies from 0 deg at the upper-right to
180 deg at the lower-left.

Now let us combine these relationships into a single plot. Figure  2.5 shows contours of

V∞ at Venus in the E −rp plane. At the upper-right points on each contour, the pump angle

is zero. The pump angle decreases as we move down the contour until it reaches 180 deg at

the lower-left.
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Figure 2.6. A sample Tisserand graph including Venus, Earth, Mars, Jupiter,
and Saturn. The contours for each planet represent the locus of heliocentric
orbit parameters for flybys at a given V∞. Intersections of the contours identify
pairs of flybys for two planets connected by the same heliocentric orbit.

Intuitively, when α is zero, the spacecraft velocity is aligned with the planet velocity.

This corresponds to the highest energy orbit that can result from a flyby at the given V∞.

Conversely, when α is 180 deg, the spacecraft velocity is anti-parallel to the planet velocity,

yielding the lowest energy orbit achievable from this flyby.

Finally, if we co-plot the V∞ contours from Figure  2.5 for flybys at multiple planets,

we have a Tisserand graph. Figure  2.6 shows a simple Tisserand graph. We refer to the

intersection of two V∞ contours as a node. Each node defines a single heliocentric orbit

(given by the particular E and rp in the plot space). Most importantly, this heliocentric
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orbit is related to a flyby of the two planets (given by the V∞ contour values and the pump

angle at each planet).

We identify each node by the planets and V∞ contours of the intersection. For example,

at the intersection of the Venus 7 km s−1 contour with the Earth 10 km s−1 we have the

V7E10 node. The pump angle is given by the distance along each contour where the node is

found. The connections at the nodes are the basis for the graphical pathfinding method. A

sequence of nodes through the Tisserand graph describes a series of flybys and the connecting

heliocentric orbits. Appendix  A includes a detailed example of how a gravity assist path may

be read from the Tisserand graph.

Since the Tisserand analysis only identifies encounters that are viable from an energy

perspective, a series of Lambert problems solved over a discrete range of times is typically

required to provide information on launch opportunities [  8 ], [  17 ], [  50 ].

Notwithstanding the success of the Tisserand graph, the graphical technique requires

training, experience, and intuition to yield viable paths. If the number or order of flyby

bodies is allowed to vary, a considerable amount of time can be required to simply enumerate

the permutations. As described above, the phasing problem is typically solved separately in

a subsequent step. The present work addresses these shortcomings.

2.4 Graph Theory

The present research establishes a framework for the analysis of gravity assist pathfind-

ing borrowed from the field of graph theory—a branch of mathematics concerned with the

connections between objects [ 51 ]–[ 54 ]. Graph theory has been applied to many classical

problems in combinatorics, such as the Königsberg bridge problem, the traveling salesman

problem, the vehicle routing problem, and the knapsack problem. Since the time that Eu-

ler solved the Königsberg bridge problem, graph theory has developed into a major field of

discrete mathematics with its own powerful theories and algorithms.
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2.4.1 Network Nomenclature

The graph theory field has its own expansive vocabulary and many terms have different

meanings in other contexts. The reader is encouraged to consult the nomenclature section

for clarity. Some fundamental concepts from graph theory have the same names as unrelated

concepts in astrodynamics. To avoid confusion, we use the term network to refer to a series

of connected objects (as in graph theory) and reserve the term graph (as in the graph of a

function) for the already established Tisserand graph (as shown in Figure  2.6 ). Also, the

term node, commonly used in graph theory for the objects that are connected in a graph,

has already been used in the Tisserand-graph literature to refer to the intersection of V∞

contours on the Tisserand graph. Therefore, we will use vertex to refer to the connected

points in a network.

We will refer to the link between two vertices as an edge. Two vertices connected by

an edge are said to be adjacent. Edges are sometimes also called lines in the graph-theory

literature. This usage gives rise to the name line graph. A line graph is a type of inversion

of a network that will be important in the development in Chapter  3 . Since the term line

graph is unambiguous we will use both line and graph in this context. Edges may or may

not have an explicit direction. If the edges have a direction, then the network is said to be

directed. In the literature, such a network is also called a di-graph. A pair of vertices may

be connected by more that one edge. In this case, two or more edges connecting the same

vertices are parallel. A network with parallel edges is sometimes called a multi-graph. An

undirected graph in which a path exists between every pair of vertices is said to be connected.

A connected network containing no cycles is called a tree.

We will use the symbol V to represent the number of vertices in a network and E to

represent the number of edges. Context should prevent confusion with the symbols V∞

(spacecraft velocity relative to the gravity assist planet) and E (eccentric anomaly). The

number of edges in a directed network may be as high as V (V − 1). When parallel edges

are permitted, there is no limit to the number of edges. Networks with a low number of

edges relative to vertices are called sparse and those with a high number of edges are called

dense. Sedgewick gives E ≈ V log V as a rough threshold for sparse networks [  54 ]. The
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computational complexity of network algorithm is typically a function of V and E. So

the density of a network can adversely affect the speed of execution. The networks in this

research will typically be dense (many edges per vertex) but we will examine some filtering

techniques that will reduce the density considerably.

A walk or path through a network is any alternating series of adjacent vertices and edges.

A simple path is a path that does not revisit any vertex. The term path is also used in the

Tisserand-graph literature to refer to a sequence of gravity assists at two or more planets

(typically identified by the initial letter of each planet name). When path is used in the

context of the Tisserand network we intend its meaning from graph theory (a sequence

of vertices). However, the concept being described will be very similar to the Tisserand

graph path (as in pathfinding and pathsolving). A small, but important, difference is that

a Tisserand network path will include more information than just the names of the gravity

assist bodies. When there is the possibility of confusion we will use the term route to refer

to the more detailed gravity-assist sequence produced by the Tisserand network. The paths

discussed in this dissertation will be simple paths. An example of a non-simple path in the

Tisserand network might be a cycler orbit.

Edges may carry one or more numerical weights characterizing the connection between

the two vertices. For example, the weight of an edge might be assigned to be the travel time

between its two vertices. In this way, a path through the network will immediately reveal

not just the waypoints along the path but the total travel time.

2.4.2 Summary of Fundamentals

This chapter develops the Tisserand graph from the basic dynamics of the gravity assist.

The V∞ and pump angle, α, describe the spacecraft flyby velocity vector and provide enough

information to determine the related orbit about the primary body. We use discrete V∞ levels

and continuous pump angle values to construct a graphical representation of the energy-

feasible transfers between bodies in the Tisserand graph. In Chapter  3 , the graph theory

concepts just introduced will be used to construct a network extension to the Tisserand

graph.
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3. NETWORK MODEL FOR THE GRAVITY-ASSIST
PROBLEM

In this chapter we develop a network analog of the Tisserand graph. The network model

exposes the connectivity inherent in the Tisserand graph to well-established search algo-

rithms. This effort improves the effectiveness of the energy-based technique and establishes

a foundation for further expansion. We will build on this foundation to add encounter

time information to the network, enabling the energy and phasing problems to be solved

simultaneously.

The network will be developed for gravity-assist trajectories between the planets. How-

ever, the technique can be applied with similar assumptions in the planetary satellite systems.

3.1 Solution Approach

A guiding principle in developing the Tisserand network and its associated models is a

separation between the astrodynamics and graph theory algorithms. A common theme will

be to pre-compute parameters describing the potential transfers. Many descriptive charac-

teristics of the potential transfer arcs (V∞, time of flight, etc.) can be rapidly computed from

the information in the Tisserand graph without the need for iterative solution techniques.

These parameters are typically integrated into the network itself (usually as a weighting for

the network edges).

This integration allows multiple searches to be executed on a single, pre-configured net-

work. But, more importantly, search speed is improved because the search algorithm does not

need to perform astrodynamics calculations as it traverses the network. The network is not

modified once the search begins. Software objects that model gravity-assist transfers do not

need to be created or destroyed during the traversal. These qualities contribute to reduced

computational overhead. Additionally, we will see in Chapter  5 that the pre-calculation of

potential encounter dates provides an effective filter for simplifying the network prior to

performing a search.

The search speed improvement comes with an additional cost in constructing and weight-

ing the network. Accordingly, simple and approximate mathematics are emphasized and we
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seek low to medium fidelity solutions. Some of the auxiliary models (V-infinity leveraging

transfers, resonant flybys) to be discussed in Chapter  4 do involve some iterative solutions.

The pre-calculation of the astrodynamics problems was suggested by the great deal of

information available in the Tisserand graph, but it is not a requirement for applying the

network method. Indeed, an argument can be made that, depending on the search criteria,

a good portion of the preliminary calculations performed to weight edges are for trajectory

arcs that are eventually filtered out. A “lazy evaluation” strategy, in which expressions are

formulated but not evaluated until they are needed, can mitigate the problem of unnecessary

computation. Other researchers implementing this technique may consider the best place to

perform these, or other, problem-specific calculations in light of their research goals.

The research presented here will generally attempt to cast a wide net when developing

search results. For example, we may allow more spacecraft revolutions in resonance pairs

than are typically considered. Depending on the V∞ discretization chosen, we may want to

allow fairly large tolerances in encounter dates.

We adopt this posture to give the network the opportunity to discover paths that may

not be intuitive or expected. Rough approximations of trajectories can be refined later in

higher fidelity tools. The cost of this approach is paid in additional search time. We will

see, in Section  3.7 , that some search results may need to be discarded if they are assessed to

be impractical. Tolerances may easily be tightened if the extended time does not produce

quality trajectory candidates.

3.1.1 Differences with Other Approaches

Some fundamental differences between the Tisserand network approach and other path-

solving techniques such as Williams [  8 ], Hughes [  14 ], Landau et al. [ 16 ], and Mudek [ 17 ]

could be a source of confusion. These key differences are highlighted below.

Frequently, a multiple gravity assist (MGA) trajectory will be found by searching over

a grid of V∞ and encounter dates, solving a series of Lambert problems between the grid

points. An iterative procedure, such as C3 matching [  8 ] will adjust the encounters until the

epochs and V∞ agree. There is no C3 matching of gravity assists in the Tisserand network.
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By definition, V −
∞ = V +

∞ since these are defined by the Tisserand network vertices (Tisserand

graph nodes). The trade off is a time gap between arrival and departure at each gravity-assist

body.

Many other trajectory search methods perform the astrodynamics calculations during

the search iterations. Researchers employing this approach include Lantukh [  13 ], Vasile et

al. [ 19 ], Ellison [  21 ], Stuart et al. [ 32 ], and Wu and Russell [ 35 ]. An example of this technique

might perform a discrete outer loop search over trajectory options, and also perform a series

of astrodynamical calculations in an inner loop to identify the next reachable encounter.

The Lambert problem is not fundamental to the Tisserand network approach. In the

Tisserand network method, time appears in the problem through Kepler’s equation (  3.1 ,

 3.7 ) in such form that the mean anomaly, M , can be computed directly and not iteratively.

Paths through the Tisserand network are found without any Lambert solving. Once paths

are identified, a Lambert solver can be used to create patched-conic trajectories from the

discontinuous network solutions. But in this case, there is not an outer-loop iteration over a

series of Lambert problems to achieve a target trajectory as is typical of gravity assist grid

searches.

3.1.2 Solution Sequence

Figure 3.1. The process of finding gravity-assist trajectories with the Tis-
serand network includes four major steps. The first step constructs the network
from simplified dynamical models.

In broad terms, the identification of gravity assist trajectories using the Tisserand network

approach will include the four sequential steps shown in Figure  3.1 . First, the Tisserand

network is constructed and fully populated with the required astrodynamics knowledge.

Next, we conduct a search using a network or graph-based traversal algorithm. The search
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yields paths through the discrete network which are sufficient to initialize some existing

grid search tools. However, as a third step, we can also directly construct patched-conic

trajectories from the information in the search output. Finally, we evaluate the patched-

conic trajectories to select candidates for higher fidelity analysis.

The pre-computing of the astrodynamical properties and the network searchability facil-

itate the automation of this process. In contrast, the previous state of the art for Tisserand-

based trajectory searching required manual consultation of the Tisserand graph followed by

repeated application of grid-search tools guided by intuition and experience.

Each of the tasks in Figure  3.1 will be presented in this chapter. Sections  3.2 through  3.4 

develop the Tisserand network and how it is constructed from possible gravity assists. Section

 3.5 introduces the basic search algorithm, but the entirety of Chapter  5 is also dedicated

to this topic. Section  3.6 describes how patched-conic trajectories may be constructed from

the search results. Finally, Section  3.7 introduces some methods for evaluating the patched

conics to find the most promising trajectories.

The first task—building the Tisserand network—is the major focus of this chapter and a

key contribution of the current work. To construct the network we will need to answer some

fundamental questions:

• What trajectory elements will we use as our vertices?

• In what ways are these elements connected?

• How can we weight the connections to help answer trajectory design questions?

These questions will be answered in Sections  3.2 and  3.3 . First, let us review the assumptions

underlying the Tisserand graph.

3.1.3 Assumptions and Limitations

The following simplifying assumptions accompany the original form of the Tisserand

graph and will be carried forward for the network approach:

• Ballistic trajectories

52



• Point-mass gravity

• Circular, coplanar planetary orbits

• Heliocentric orbits

• Patched, two-body dynamics

• Zero sphere of influence

• Practical constraints on minimum flyby radius

We will find that this level of fidelity is appropriate for pathfinding and preliminary trajectory

generation. These assumptions are common among most, if not all, of the similar ballistic

searches discussed in Section  1.4.1 . The simple models will help, rather than hinder, the

identification of many potential trajectories. Fidelity can be increased after preliminary

paths are discovered.

While the network construction using the Tisserand graph assumes purely ballistic trans-

fers, the evaluation of the search results will allow for powered flybys. Low-thrust transfers

are not currently modeled. The network models will be extended to include two classes of

impulsive maneuvers in Chapter  4 . However, the lack of a formal Deep Space Maneuver

(DSM) model may limit the quality of initial guesses that can be created for some mission

architectures. Chapter  8 suggests a pathway to include a general DSM model.

The general architecture is extendable to satellite tour studies, but the assumptions

may be more limiting. In planetary systems we might expect more elliptical orbits and

transfers that require inclination changes. The perturbing effects of the nearby satellites and

non-spherical gravity of the primary body may challenge the patched-conic and point-mass

assumptions. These limitations do not necessarily prohibit the use of the Tisserand graph

for generating initial guesses. Chapter  8 discusses a possible extension to address inclination

changes.

3.2 Constructing a Network of Energy-Feasible Transfers

The series of connected contours and nodes that make up the Tisserand graph (Figure

 2.6 ) immediately calls to mind a road map. Each node in the Tisserand graph identifies a
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heliocentric orbit that is common to two encounters. To construct a network, we might be

tempted to create vertices from the nodes and connect them with edges representing the

contours. This procedure mimics the way we read a Tisserand graph and is the method

employed by Strange and Longuski [  9 ] and de la Torre Sangre et al. [ 10 ]. However, while

each node represents a single heliocentric orbit, that orbit may contain up to eight transfer

arcs. The elegance of the graph obscures the individual connecting transfers and makes it

difficult to directly automate traversal. We will reorganize the information in the Tisserand

graph to expose the individual transfers.

−t1−t2

t1
t2

Figure 3.2. A particular heliocentric orbit (black) is unique to each node
in the Tisserand graph. A circular or elliptical heliocentric spacecraft orbit
intersects the orbits of the two planets in the node (red and blue) at four
points. The points are labeled by the times relative to periapsis passage in the
spacecraft orbit.
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3.2.1 Choosing Vertices and Edges for the Network

Let us first consider the possible transfer arcs between two planets in circular coplanar

orbits. For this discussion, we can ignore the positions of the planets at any particular time

and consider only the geometry of their orbits. According to the assumptions above, each

Tisserand-graph node represents a Keplerian, heliocentric orbit. The V∞ and α at each

planet are explicitly defined by the V∞ contours that are intersecting at the given node.

Let us consider the general case of a closed heliocentric spacecraft orbit. As seen in

Figure  3.2 , an elliptical transfer orbit intersects the two circular, planetary orbits at four

locations (two locations on each planetary orbit). A transfer arc on this heliocentric orbit

can start at any of the four intersection points and end at either of the two points at the

other planet’s orbit. This produces eight possible arcs. Figure  3.3 shows this geometry for

the four cases starting at the inner planet. There are also four cases starting at the outer

planet that are not shown.

We label the intersection of the transfer orbit and the planetary orbit as “inbound”

or “outbound” depending on whether a spacecraft on the transfer arc is approaching or

departing from periapsis. In other words, an inbound encounter has a heliocentric true

anomaly between π and 2π; an outbound encounter has a true anomaly between 0 and π.

The eight possible transfer arcs connect the inbound or outbound encounter of one planet

with the inbound or outbound encounter of the other planet.

Table 3.1. The Eight Possible Transfers at Each Tisserand Node

No. From
Body

From
Location

To
Body

To
Location

Up/
Down

Transfer
Angle

1 planet 1 Outbound planet 2 Inbound Up 2π− ν2 − ν1
2 planet 1 Outbound planet 2 Outbound Up ν2 − ν1
3 planet 1 Inbound planet 2 Inbound Up 2π− ν2 + ν1
4 planet 1 Inbound planet 2 Outbound Up ν2 + ν1
5 planet 2 Outbound planet 1 Inbound Down 2π− ν2 − ν1
6 planet 2 Outbound planet 1 Outbound Down 2π− ν2 + ν1
7 planet 2 Inbound planet 1 Inbound Down ν2 − ν1
8 planet 2 Inbound planet 1 Outbound Down ν2 + ν1
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Figure 3.3. An example of the four possible upward transfer arcs between
planets in circular, coplanar orbits. This transfer orbit is defined by the inter-
section of the Earth-10 and Mars-7 contours and crosses each planetary orbit
at two points (denoted I for inbound and O for outbound). The two points on
one orbit connect to the two points on the other orbit to create four unique
arcs in the transfer orbit. These figures represent half of the possible transfers
at the Earth-10/Mars-7 Tisserand graph node. Four additional arcs can be
constructed for downward transfers (starting on the outer planet). The trans-
fer time depends on the arc and the direction of travel.

We will also occasionally benefit from categorizing the transfers as “upward” when the

departure planet is closer to the Sun than the arrival planet and “downward” when the

opposite is true. The transfers are enumerated in Table  3.1 (where planet 2 is further from

the Sun than planet 1). In Table  3.1 the νi are the true anomalies on the spacecraft orbit at
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the intersections in Figure  3.2 . If the heliocentric transfer orbit is parabolic or hyperbolic,

then there are only four transfer arcs.

The shape of the transfer orbit (and therefore the location of the intersection points) is

determined by the departure velocity in the heliocentric frame. However, in anticipation of

applying the Tisserand graph, we will identify the transfer orbits by the associated V∞ of

the flyby at each planet. To link consecutive flybys, we must take care that the location of

the flyby is consistent. For example, an arc that ends at an inbound encounter must connect

to an arc that begins at an inbound encounter.

Figure 3.4. A single Tisserand graph node represents up to eight transfer
arcs between the two planets at the V∞ contour crossing. This situation can
be modeled as the network above. A vertex is created for each planet, V∞,
and encounter location. The eight edges connecting the vertices represent the
eight possible transfers between the four points on the heliocentric orbit.

Let us choose the various flyby encounters (the intersections in Figure  3.2 ) as the vertices

of our network. Each Tisserand graph node becomes four vertices: an outbound and inbound

encounter at both planets in the node. We identify each vertex by the planet, the V∞, and

the inbound or outbound location of the encounter. For example, an inbound flyby of Venus

at a V∞ of 7 km s−1 is denoted V7-I.

The vertices are connected by the eight possible transfer arcs on the common heliocen-

tric orbit (four of which are shown in Figure  3.3 ). The up/down and inbound/outbound

classifications uniquely identify the various transfer arcs. Each arc has different properties,

so we must use a distinct network edge for every arc. Each Tisserand graph node can now
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be expressed as a system of four interconnected vertices as shown in Figure  3.4 . The four

vertices represent the possible gravity assists at the node and the eight edges represent the

eight different transfer arcs between the four vertices. To create a network representing the

entire Tisserand graph, we simply repeat this network expansion at each node. We call the

result a Tisserand network.

Of course, before expanding the Tisserand graph nodes into network components, we

must first find them all. This is a non-trivial task but it can be performed with an iterative

root-finding algorithm for every pair of contours in the Tisserand graph. For any two V∞

contours (from two different planets) in Figure  2.6 , we seek the point where the energy and

periapsis are the same. At this contour intersection, the V∞ and pump angle on the two

contours will be different. But the combination of the V∞ and pump angle with each planet’s

parameters will generate the same heliocentric orbit (as shown in Figure  3.2 ).

Let’s visualize the network by creating a grid of the vertices with increasing V∞ as we

move from bottom to top and increasing distance from the Sun as we move from left to

right. This is a categorical arrangement; the scale of “x” and “y” axes are not important.

This visualization is shown in Figure  3.5 . For illustration purposes, the downward edges are

colored red and the upward edges are colored blue.

Each arrow in Figure  3.5 represents a unique heliocentric transfer between two planets.

We can identify a path through the network (and through the solar system) by starting at

any of the connected vertices and following the arrows to other vertices.

3.3 Weighting the Network Edges

The Tisserand network shown in Figure  3.5 is useful for performing searches that simply

identify paths through the connected vertices. However, additional steps must be taken to

determine the travel time for a given path.

To answer questions about the mission timing, we will assign a weight to each edge equal

to the time of flight of the associated transfer arc. The time of flight depends on both the

inbound/outbound endpoints and the up/down direction of travel. In graph theory terms,
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Figure 3.5. A visualization of the Tisserand network mirroring the Tisserand
graph in Figure  2.6 . The vertices represent flybys of a given planet at a
particular V∞ and location in the planetary orbit. The edges indicate flybys
that can be connected and are analogous to the nodes of the Tisserand graph.
There are several network edges for each Tisserand graph node. The red edges
indicate a downward transfer. The blue edges indicate an upward transfer. In
this example, downward edges from Saturn are removed..
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our edges are “directed”. The weight of the edge from A to B is different than the weight

from B to A.

Table 3.2. Time of Flight for Possible Arcs

Upward Downward Time of Flight

I-I O-O P + t1 − t2
O-I O-I P − t1 − t2
I-O I-O t1 + t2
O-O I-I t2 − t1

3.3.1 Time of Flight for Simple Transfers

The circular-coplanar assumption assists in finding the time of flight on each possible

arc. For simple transfers, the flight time is computed from the limited number of equations

presented by Strange and Longuski[  9 ] and reproduced in Table  3.2 . These equations are

derived in Appendix  B . Note that some of the arcs listed in Table  3.2 do not exist for

parabolic or hyperbolic transfers.

For circular or elliptical orbits, the time relative to periapsis passage can be computed

through an application of Kepler’s equation:

M = E − e sin E , (3.1)

so that t is given by

t = M

n
= P

2π
(E − e sin E) . (3.2)

Also, from the geometry of the eccentric anomaly, we have

r = a(1− e cos E) , (3.3)

which, when solved for E, gives

E = ± arccos
(1

e
− r

ae

)
. (3.4)
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From the circular planet orbit assumption, we know that the intersections of the heliocentric

orbit with the planet orbit in Figure  3.2 occurs at a radius distance, rplanet. So we have

Eencounter = ± arccos
(1

e
− rplanet

ae

)
, (3.5)

which can be used in Equation  3.2 to find ±t1 at rplanet-1 and ±t2 at rplanet-2. Referring to

Figure  3.2 , we are interested in both values of the inverse cosine which correspond to the

inbound and outbound encounters.

Alternatively, we might first compute the true anomaly, ν, at rplanet in the spacecraft

orbit and then use

sin E = sin ν
√

1− e2

1 + e cos ν
cos E = e + cos ν

1 + e cos ν
, (3.6)

to compute E with an atan2 function.

To summarize, the (V∞, α) at a given Tisserand graph node determines the heliocentric

orbit (a, e). Knowing that the encounters occur at the radial distance of the planet, we

may compute the eccentric anomaly (Equation  3.5 ) and then the possible encounter times

(relative to periapsis) using Equation  3.2 . These encounter times can be used to compute

the time of flight of the eight arcs represented by the Tisserand graph node from Table  3.2 .

Note that because we have the positions and we are solving for time, we do not need to solve

the transcendental Kepler equation iteratively.

A similar procedure may be performed for hyperbolic orbits. Kepler’s equation is written

as:

M = e sinh H −H , (3.7)

and the mean motion for the hyperbolic orbit is defined by

n =
√

µ

−a3 , (3.8)

so that t is given by

t =
√
−a3

µ
(e sinh H −H) . (3.9)
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We compute the hyperbolic anomaly from

sinh H = sin ν
√

e2 − 1
1 + e cos ν

cosh H = e + cos ν

1 + e cos ν
, (3.10)

where the true anomaly, ν, is found by rearranging

r = p

1 + e cos ν
, (3.11)

to give

ν = ± arccos
(

p

er
− 1

e

)
, (3.12)

and where p is the semi-parameter:

p = a(1− e2) . (3.13)

Alternatively, we may employ

r = a(1− e cosh H) , (3.14)

to solve for H at the intersection of the spacecraft and planet orbits. As before, the param-

eters above are all determined by the (V∞, α) at the Tisserand graph node and the radius

distance of the encounter (assumed to be the constant radius of the planet orbit). The times

of flight may be computed from t in Equation  3.9 and Table  3.2 .

3.3.2 Resonant Transfers

As discussed in Chapter  2 , the minimum allowable flyby radius creates a maximum

possible bending angle, δ. When linking flybys with a Tisserand graph, this constraint limits

the V∞ contours that are reachable from the current Tisserand node. In order to proceed

along a given contour to another node, a repeat flyby is required to complete the trajectory

turning.

When repeated gravity assists of a given planet are required, the time of flight calculations

are more complicated. In this case, we must include integer multiples of the period of the

post-flyby orbit until the spacecraft and planet re-encounter. The spacecraft has a resonant
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orbit with the planet when the periods of the spacecraft and planet have a small integer

ratio.

Resonant flybys create a significant complication for the network approach. Chapter  4 

explores the methods developed to determine the desirable resonances, calculate the ren-

dezvous times, and add this information to the Tisserand network. Presently, let us just

consider how to detect when a resonance is required and how we must alter the network

described above.
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Figure 3.6. The maximum bending angle, δmax, defines the maximum dis-
tance that can be traversed along a V∞ contour in the Tisserand graph for a
single gravity assist. Here, the Earth-10/Mars-16 node can be reached from
the Earth-10/Mars-13 node but not from the Venus-7/Earth-10 node..

Figure  3.6 presents a highly simplified Tisserand graph including only four V∞ contours.

In the traditional Tisserand graph, the minimum flyby radius constraint is shown by reference
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dots that represent the maximum distance one can travel along a contour before requiring

a second pass of the planet in question. These dots are shown on the Earth 10 km s−1 V∞

contour along with the pump angle values at those locations in the figure. For this contour,

we have determined that the maximum change in α that can be achieved in one Earth

gravity assist is 43.9◦. This is the spacing between the dots on the Earth contour (shown

for reference only). Suppose we want to reach the Mars 16 km s−1 V∞ contour via the Earth

contour (at the E10M16 node). If the Earth contour is first encountered from the Mars 13

km s−1 V∞ contour (E10M13), the pump angle needs to be decreased from 56.7◦ to 30.9◦.

This δ of 25.8◦ can be achieved in a single Earth flyby. Conversely, if the Earth contour is

first encountered from the Venus 7 km s−1 V∞ contour (V7E10), the pump angle needs to be

decreased from 96.3◦ to 30.9◦. This 65.4 deg change would require two Earth flybys.

-IE10

-IV7 

-IM13 

-IM16 

Figure 3.7. A schematic highlighting the resonance problem in the Tisserand
network. Edge weights computed from Table  3.2 will not account for additional
time required in the resonant orbit. In this example, the sum of the edge
weights of the sequence (M13-E10-M16) corresponds to the total time of flight.
The sum of the edge weights of the sequence (V7-E10-M16) does not..

Now consider the simplified Tisserand network in Figure  3.7 . Suppose we wish to assign

the time of flight as the weight of each edge. In this way, we can compute the total time of

flight for a path through the network as the sum of the weights of the edges on that path. The

network vertices contain enough information so that Table  3.2 can be used to calculate the

weights for a single flyby. However, the sum of these weights does not correspond to the total
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mission time of flight in the event that a resonance is required. In our example, sometimes

the E10-M16 edge needs to include a resonance time (V7-E10-M16), and sometimes it does

not (M13-E10-M16).

This nuance is easily resolved by a human reading a Tisserand graph using the reference

dots. However, there is no equivalent way to measure distance along the V∞ contour in the

Tisserand network. An automated search algorithm would need to retain some history of the

path that had already been traversed in order to determine the weight that must be added

on the next step along the way.

Figure 3.8. The network edges become the vertices of the new line graph.
Line graph vertices that are adjacent to the same network vertex are connected
by an edge in the line graph. The line graph vertices record the connectedness
of the network. .

3.3.3 The Line Graph

One solution to the maximum bending angle problem is to embed some history into the

network itself. Doing so eliminates the need to write custom algorithms that modify the

weight of the next step based on the previous step. We embed history in the network by

constructing the line graph of our network. In graph theory, a line graph is constructed from

a network by setting the edges (or “lines”) from the original network as the vertices of a new
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graph. The edges of the line graph are then the sets of original edges that were adjacent to

common vertices in the network. The procedure is demonstrated in Figure  3.8 . Since there

are already more edges than vertices in our network, the dimensionality of the line graph

can grow large quickly.

Figure 3.9. The line graph of the small portion of the Tisserand network (a
single Tisserand graph node) from Figure  3.8 is visualized above. The red and
blue vertices correspond to the red and blue edges in Figure  3.8 . Each line
graph vertex records how two vertices in the source network are connected.
Each edge of the line graph records a relationship between three vertices in
the source network. .

The line graph of the full Tisserand network is difficult to visualize. The grid format

devised for the earlier representations such as Figure  3.5 no longer has a geometrical meaning.

Figure  3.9 represents the line graph of the portion of the network corresponding to a single

Tisserand graph node shown in Figure  3.8 . For our purposes, the key feature of the line

graph is that the vertices record partial paths through the original network. We also note

66



the increase in the number of network elements. In Figure  3.9 , the single Tisserand graph

node Venus-7/Mars-7 now corresponds to eight line graph vertices and 16 line graph edges.

Suppose we have a sequence of connected vertices in our network E4-I : V7-I : M7-I.

When converted to a line graph, this sequence becomes (E4-I, V7-I) : (V7-I, M7-I). We now

have two vertices with information about three flybys. In Tisserand graph terms, we now

know the distance to be traveled along the Venus-7 contour (namely, from E4 to M7). After

constructing the line graph, we must weight the new edges before we can perform searches.

However, we now have the information we need to determine whether the time of flight

between the two line-graph vertices should include additional full revolutions of the transfer

orbit and a second flyby of the middle planet. After completing the weighting procedure, we

can use traditional search algorithms to search for paths in the line graph.

3.4 Adding Phasing the Network

The network described above may be automatically searched to identify all paths between

any two nodes of the Tisserand graph [ 55 ]. The results of such a search would be the names of

the planets in the gravity-assist sequence and the V∞ of each flyby. Such a search automates

the manual pathfinding traditionally done on the Tisserand graph [  11 ], [  14 ], [ 15 ], [ 17 ]. For

very broad searches, the pathfinding step alone can require days of human labor performing

the graph tracing to enumerate the energy-feasible gravity assist sequences as described in

Appendix  A .

We have also examined how some of the assumptions used to match the flybys to helio-

centric orbits in the Tisserand graph are also sufficient to estimate the time of flight on the

resulting transfer arcs. We still lack the capability to predict when the energy-feasible trans-

fers in the Tisserand graph will align with solar system geometry to create an energy-and-time

feasible transfer. The ability to identify when the connections in the network actually occur

in time is a new and powerful feature that we will now explore. This modification will vastly

expand the utility of the Tisserand graph approach and enable the simultaneous solution of

the pathfinding and pathsolving problems.
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3.4.1 Cataloging Opportunities

An opportunity to perform a gravity assist transfer exists only when the planets involved

are properly aligned. The two-body assumptions used to develop the Tisserand graph provide

us with the time of flight and transfer angle for any of the heliocentric transfers included

in the network. Our assumptions also allow a simple solution to the phasing of the planets

that enables the transfer.

Vickery and Horsewood investigated the possible windows for Jupiter flybys to enable

missions to the outer planets [  56 ]. Their work complements the Tisserand graph development

by identifying time-feasible transfers. They develop a relationship between the Earth-Jupiter

alignment date and the required Earth launch date that can be generalized for our problem.

Figure 3.10. The basic geometry of the phasing problem. The alignment
date may be used to reference phasing opportunities..

Inspired by the development in Vickery and Horsewood, we will now create a method for

generating properly-phased transfer geometries using the date that the planets are aligned,

Dalign, as a key. Here, alignment means that the planets are in conjunction as observed from

the Sun.
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Referring to Figure  3.10 , let Θ be the transfer angle between two planets at which flybys

are to be performed. Also, let nd and na be the mean motions of the departure and arrival

planets, respectively. For the spacecraft to intercept the arrival planet, the phase angle, Φ,

at departure must be the transfer angle, less the angle that will be swept out by the arrival

planet during the spacecraft time of flight, t:

Φdepart = Θ− nat . (3.15)

The time required to close the launch phase angle (between the planets) depends on the

difference in mean motions:

talign = Φ/(nd − na) . (3.16)

The date that the two planets are aligned is then:

Dalign = Ddepart + talign (3.17)

Dalign = Ddepart + Φdepart/(nd − na) . (3.18)

Rearranging gives

Ddepart = Dalign − Φdepart/(nd − na) . (3.19)

Substituting the phase angle from (  3.15 ), the departure date, Ddepart, is given by:

Ddepart = Dalign −
Θ− nat

(nd − na) . (3.20)

The arrival date is found by simply adding the time of flight to the launch date:

Darrive = Ddepart + t . (3.21)

In ( 3.20 ), the mean motions are given by our two-body assumptions. Importantly, the

transfer angle and time of flight are each functions of the V∞ and the pump angle, α for a

given gravity assist:

Θ = Θ(V∞, α)

t = t(V∞, α) . (3.22)
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Coincidentally, V∞ and pump angle are the independent variables that define the Tis-

serand contours. So the transfer angle and time of flight may be readily determined for each

edge of the network. The transfer angle can be computed according to Table  3.1 and the

time of flight is given by Table  3.2 .

Figure 3.11. The alignment dates of Venus, Earth, Mars, and Jupiter for the
calendar years 2023-2026 are visualized in the diagram. The colored dots show
the location of each planet during an alignment. If two planets are aligned,
the inner planet’s color is overlaid on the outer planet, and vice-versa. Each
alignment condition acts as the center for a family of transfers with different
transfer angles.

For any particular Tisserand network edge, the only unknown in Equations  3.20 and  3.21 

is the alignment date, Dalign. By consulting or creating a catalog of alignment dates (for each
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combination of planets in the network), the departure and arrival date(s) can be calculated

for the possible transfers in the Tisserand graph. Additional consideration is required for

transfers that require repeat flybys (Chapter  4 ).

A simple method for developing this alignment catalog is to step through a solar system

ephemeris and compare the true longitude of each pair of planets. On a historical note,

Flandro discovered the Grand Tour using a similar procedure [ 7 ]. The ephemeris may be of

higher fidelity than the two-body trajectories used elsewhere in this analysis without causing

any complication. Figure  3.11 gives an example of the results of such a procedure. The

alignments for Venus, Earth, Mars, and Jupiter over the calendar years 2023 through 2026 are

displayed in the figure. The set of planets and dates are kept small for illustration purposes.

The radial lines in Figure  3.11 identify dates when a pair of planets are aligned. The

contrasting color of the dot on a planet’s orbit identifies which other planet is in alignment.

3.4.2 Adding Opportunities to the Network

The catalog of alignment dates developed above can be used to compute departure and

arrival dates for each edge in the network. A single alignment date will generate many pairs of

departure and arrival dates (one pair for each of the multiple transfer arcs at each Tisserand

node). Figure  3.12 shows an example of the multiple transfers that can be generated from

a single alignment date. The colored arcs represent upward transfers from Venus to Earth

for a selection of Tisserand graph nodes. Each transfer arc in Figure  3.12 corresponds to a

different combination of V∞ levels at Venus and Earth. Only the Venus outbound to Earth

inbound encounter points are shown. Similar figures could be drawn for both the upward

and downward transfers at each encounter point combination, and each pair of planets (each

node on the Tisserand graph).

Figure  3.12 considers only one alignment date. Some pairs of planets may be aligned

multiple times during the time frame of interest. Each alignment date will generate a similar

family of departure and arrival dates.

Figure  3.13 shows a polar view of a subset of the Tisserand network including only Earth,

Jupiter, and Saturn for the period 2030 to 2040. The figure also only includes transfers that
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Figure 3.12. A single alignment date generates many discrete transfers. The
figure displays a few of the possible transfers near the August 14, 2023 align-
ment of Venus and Earth. The different transfer arcs correspond to different
V∞ levels at each planet. The figure includes only upward outbound to inbound
transfers from Venus to Earth. The variations on the inbound/outbound en-
counters constitute even more potential transfers.

require less than 5 years of flight time. Even with these limitations, multiple transfers

between each pair of planets are visible. These are created from multiple V∞ combinations

(similar to Figure  3.12 ) at multiple alignment dates.

The edges in the Tisserand network visualized in Figure  3.5 represent the existence of

an energy-feasible transfer between the associated vertices. We have just seen that these

transfers will repeat at intervals centered around the alignment dates of the two planets.

To include these multiple opportunities in the network, we duplicate the edges for each

opportunity. In graph theory terms, we create parallel edges. Each parallel edge can be

encoded with the proper departure and arrival date so that the correct encounter dates can

be constructed after paths are discovered by the search.
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Figure 3.13. A small subset of the 2-planet transfers in the Tisserand net-
work. The figure visualizes the Earth-Jupiter and Jupiter-Saturn network
edges with time of flight less than 5 years in the years 2030 to 2040.

Figure  3.14 provides a visualization of the Tisserand network from Figure  3.5 with the

parallel edges added for the specific date opportunities between 2030 and 2040. The increase

in the number of edges is considerable. Chapter  5 will discuss the effect of edge count

on search algorithm performance. However, the addition of the parallel edges allows the

Tisserand network to find paths that are both energy-feasible and phasing-feasible.

In the present work, we do not consider the additional edges that might be added if

we were to allow the spacecraft to complete some number of complete heliocentric orbits

before the encounter with the next planet (except for resonant cases). In theory, the transfer

angle in the analysis starting with Equation  3.15 could be re-defined as Θ′ = 2kπ + Θ. This

adjustment would increase the number of edges in the network and potentially increase the

number of search solutions. In effect, this change would allow a heliocentric loiter between
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Figure 3.14. A visualization of the Tisserand network mirroring Figures  2.6 

and  3.5 for alignment dates between 2030 and 2040. In this image, the color
of the edge represents the source planet..

flybys which could provide some scheduling benefit. Presumably, this feature would only be

applied in the inner solar system where the heliocentric periods are shorter.
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The reader should note the arcs in Figure  3.13 represent only point-to-point transfers

between two planets. If we wish to find a gravity assists path that includes multiple flybys,

we must find a sequence of two-planet legs such that the arrival date of the first leg matches

the departure date for the second leg, and so on. Clearly, in Figure  3.13 many legs do not

connect. We also require that the V∞ of the arrival match the V∞ of departure on the next

leg. The V∞ connections are shown in Figure  3.14 . Our discrete method implicitly requires

that the V∞ match exactly.

3.4.3 Identifying Viable Connections

In order to find paths through the network, we next determine the three-vertex sequences

that are feasible. For the sequence A-B-C to be viable, the arrival date for leg A-B must be

just prior to the departure date for leg B-C. For example, in Figure  3.13 there appear to be

some trajectories that arrive at Jupiter in the early 2040s that might connect to trajectories

that depart for Saturn in the same time period. Ideally the arrival and departure at vertex

B would be identical. But since we are using a discrete set of V∞ values in the construction

of the network, this is unlikely to be the case.

For a viable connection, we require:

V−
∞,B = V+

∞,B

IO−
B = IO+

B

t−
B − t+

B ≤ ε . (3.23)

The first two requirements are satisfied by the way we construct the Tisserand network. We

can satisfy the third requirement with a filter. These requirements serve a similar function

to accessible regions in other trajectory search frameworks. For simplicity, we neglect cases

near the extreme ends of the V∞ contours where the turning capability would be sufficient

to increase the pump angle past 180 deg or decrease it past 0 deg. These cases would allow a

reversal in sign of the heliocentric flight path angle and would permit a change from inbound

to outbound or outbound to inbound.
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Figure 3.15. A schematic of several line graph edges with date filtering. Each
three-vertex set represents an edge in the line graph. The gray connections
have been filtered out of the network because the arrival and departure date
at the J8-O network vertex exceeds a tolerance.

To identify paths that can be further refined in higher fidelity models, we accept arrival

and departure dates that are within a certain tolerance. Sequences of edges that exceed this

tolerance can be removed from the network. Returning to Figure  3.13 , we might remove any

Earth-Jupiter edges that arrive at Jupiter before 2040 or after 2042.

Since this analysis is concerned with the connections between edges, it will need to be

performed in the line graph of the network. Figure  3.15 is a schematic of the date filtering on

some potential Tisserand network edges in Figure  3.13 . These network edges are equivalent

to vertices in the line graph. In this example, there are several line-graph vertices (shown

as arrows) representing E6-O—J8-O and J8-0—S8-0. The discrete nature of the Tisserand

network guarantees that the gravity assist at Jupiter matches identically in V∞ (8 km s−1)

and encounter location (outbound). However, we must apply a filter to remove any line graph

edges where the arrival and departure dates at Jupiter are so far apart that the connection is

impractical. In the schematic, only one edge (in green) is preserved in the filtered Tisserand

network.
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The end product of this procedure is a network model of the possible gravity-assist

sequences that are roughly feasible in both orbital energy and phasing conditions. The

network can now be searched for multi-gravity-assist paths.

3.5 Searching the Network

Figure 3.16. The process of finding gravity-assist trajectories with the Tis-
serand network includes four major steps. The second step applies network
search algorithms to find gravity-assist paths.

Figure  3.16 provides an updated look at the Tisserand network trajectory search process.

Now that we have constructed the network, we can search for possible paths. The network

described in the previous sections may be organized in a data structure that records the

vertices and weighted edges so that search algorithms may be deployed. Chapter  5 explores

some search methods in detail. The graph theory and combinatorial optimization literature

includes several well-established search algorithms that are suitable for different goals.

The gravity-assist paths in the present work come from an “all-paths” search. The goal

of such a search is to identify all paths through the network that leave at the source vertex

and end at the target vertex. For this research, the source will always be an Earth vertex,

but this is not a requirement of the technique.

Trajectory searches using graph methods sometimes employ a “shortest-path” search [  29 ].

This technique will find the path between the source and target vertices that uses the fewest

vertices. In a weighted network, the shortest-path search will find the path with the lowest

total weight. A shortest-path method such as Dijkstra’s algorithm is generally much faster

than an all-paths search. With clever algorithm design, one is not required to first find all

paths in order tell which is shortest.
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If properly configured, a shortest-path search in the Tisserand network will return a

path with the lowest cumulative time of flight over the edges making up the path. However,

because the Tisserand network paths are discontinuous, the total edge weight is not a reliable

predictor of the actual total mission duration for a similar patched-conic trajectory. A k-

shortest paths search might be more useful for time-of-flight comparisons of the possible

routes in relative terms only. However, for the present research we will rely on all-paths

techniques.

The target vertex for the all-paths searches discussed here will always be at a planet other

than the source vertex. This is not a requirement of the Tisserand network method. The

Tisserand network could be used to find round-trip paths or cycler trajectories. However,

the searches presented in this research will mainly be concerned with one-way trips to the

outer solar system.

Algorithm 1: Outer Loop Network Search
Data: TN : a Tisserand network

destination: a destination body
Algorithm NetworkSearch(TN, destination):

paths← [ ]
foreach v1 at Earth do

foreach v2 at destination do
newpaths← AllPaths(TN , v1, v2) B Find paths between these vertices
paths.insert(newpaths)

end
end

end

The AllPaths algorithm presented in Chapter  5 finds paths between pairs of vertices. The

vertices in the Tisserand network have specific departure and arrival V∞ levels. To perform

broad searches we will consider multiple V∞ levels for both departure and arrival. To achieve

this we nest the two-point, all-paths search in loops that iterate on the desired departure

and arrival options as demonstrated in Algorithm  1 . The AllPaths search algorithm at

the center of Algorithm  1 is self-contained so the outer loops are good targets for parallel

computation.

78



The search will benefit from limiting the endpoints in the outer loops. The transitive

closure of the network identifies which pairs of vertices are connected by at least one path.

This topic will be examined in more detail in Chapter  5 but clearly, we need only search

between endpoints where we know some path exists. If practical limitations on the launch and

capture V∞ are known, then these vertices can also be removed from the possible endpoints.

3.6 Examining Search Results

Figure 3.17. The process of finding gravity-assist trajectories with the Tis-
serand network includes four major steps. The third step creates patched-conic
trajectories from the search results.

Figure  3.17 recalls our progress through the Tisserand network trajectory search process.

Having identified some paths through the network with a search algorithm, we now explore

the results.

The all-paths search described by Algorithm  1 will identify all sequences of network

vertices between the departure and destination planets that can be connected through in-

termediate edges and vertices. Depending on the network data structure implementation,

each discovered path may simply be a list of data structure addresses. These addresses can

be mapped to the Tisserand network vertices and edges they represent to create a list of

vertices for each path.

For demonstration purposes, suppose we have built a network including Earth, Jupiter,

Saturn, and Uranus and executed a search for paths from Earth to Uranus. A grid repre-

sentation of the Tisserand network and the search results are shown in Figure  3.18 . Table

 3.3 summarizes the paths discovered.

A network route is a list of network vertices found by the search, for example [E11-O,

J12-O, S9-O, U12-O]. This list defines the planet, the V∞, and the location in the heliocentric

79



E8-I

E8-O

E9-I

E9-O

E10-I

E10-O

E11-I

E11-O

E12-I

E12-O

J8-I

J8-O

J9-I

J9-O

J10-I

J10-O

J11-I

J11-O

J12-I

J12-O

S8-I

S8-O

S9-I

S9-O

S10-I

S10-O

S11-I

S11-O

S12-I

S12-O

U8-I

U8-O

U9-I

U9-O

U10-I

U10-O

U11-I

U11-O

U12-I

U12-O

Figure 3.18. The routes found by an all-paths search for Uranus are high-
lighted in a grid representation of a Tisserand network. Colored edges are used
in the solution paths. Gray edges are not part of a successful path. This vi-
sualization is provided to illustrate the many network connections throughout
the search space and is not intended for tracing solutions. For color viewing or
inspection of the vertex labels, the reader is referred to the electronic version
of this document.

orbit of each encounter. Table  3.3 lists some randomly selected example routes for each path.

There may be multiple variants of each route corresponding to different dates for one or more

encounters. These are listed as date variants in Table  3.3 .

The particular edges that were used to connect the vertices are also included in each

route discovered by the search. These edges identify the departure and arrival dates of each

leg (E11-O to J12-O, J12-O to S9-O, etc.). The information contained in this sequence of

flybys and dates is sufficient to plot each two-body trajectory leg. Figure  3.19 shows a polar
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Table 3.3. Example Uranus Search Summary

Path Network Routes Date Variants Route Examples

JSU 156 346 E11-I, J10-O, S9-O, U12-O
E12-I, J11-O, S8-O, U11-O
E11-O, J12-O, S9-O, U10-O
E12-O, J12-O, S9-O, U11-O
E12-I, J11-O, S9-O, U11-O

JU 205 429 E11-I, J10-O, U12-O
E10-I, J9-O, U12-O
E12-I, J12-O, U9-O
E10-O, J10-I, U11-O
E11-O, J8-I, U10-O

SU 66 381 E12-O, S9-O, U9-O
E12-I, S9-O, U11-O
E12-O, S9-O, U9-O
E12-I, S11-O, U11-O
E12-O, S11-O, U12-O

U 2 44 E12-I, U8-O
E12-O, U8-O

Total 429 1200

view of the trajectories in the search results. In this visualization, each trajectory segment

is a three-dimensional Lambert solution between the SPICE [  57 ] ephemeris positions of the

two planets on the network departure and arrival dates. The routes have been grouped into

the families (or paths) JSU, JU, SU, and U (direct) based on the sequence of planets visited.

Like the Tisserand graph, the Tisserand network includes discrete values of V∞ for the

flyby of each planet. Excluding, for the moment, powered flybys, the exit V∞ at each vertex

matches the entrance V∞ identically. Furthermore, as discussed in Section  3.2.1 , there are

discrete times of flight available at each node of the Tisserand graph. A consequence of this

discrete architecture is that the flight segment between two vertices in the network will not

necessarily align in time with the subsequent segment. For a three-planet sequence, the V∞

in and out of the middle planet will match, but the encounter date typically will not. This
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Earth orbit

Jupiter orbit

Uranus orbit

Saturn orbit

JU

JSU

SU

U

Figure 3.19. A polar view of the demonstration all-paths search for Uranus
paths shows many potential solutions. Results can be grouped into traditional
path categories (JU, JSU, SU, and U) based on the sequence of planets vis-
ited. Each path includes discontinuities arising from the discrete dates and
V∞ levels. Each trajectory segment is a three-dimensional Lambert solution
between two planet locations taken from a SPICE ephemeris on the dates from
the Tisserand network.

condition is readily visible in Figure  3.20 and will be discussed in more detail in Section

 3.6.2 .

Therefore, a path through the Tisserand network might be considered a “broken conic”

solution rather than a patched conic. Depending on the tolerance for date mismatches

chosen while filtering the network, the broken-conic solutions may be close enough to a

closed trajectory to serve as an initial guess for higher fidelity pathsolver. But even in the

case of large encounter date mismatches, the network solutions provide a sketch of a family

of patched conic solutions.
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Earth orbit

Jupiter orbit

Saturn orbit

Uranus orbit

Leg 1: Earth-Jupiter

Leg 2: Jupiter-Saturn

Leg 3: Saturn-Uranus

Figure 3.20. The vertices in a Tisserand network path identify transfer
arcs between two planets that may not share an endpoint with the adjacent
transfers.

3.6.1 Review of the Contribution Thus Far

At this point, the output of the search exceeds the original intent of the research. That

goal was to provide automated, initial guesses for a patched-conic trajectory solver such as

STOUR.

A manual analysis of the Tisserand graph can solve the pathfinding problem. For our

demonstration search, this technique would have produced a path like J-S-U (Jupiter, Saturn,

Uranus). With additional commitment, a more detailed path such as J12-S9-U12 could be

found manually. This path could then be used to configure a patched-conic solver over a grid

of launch and encounter dates determined independently through intuition or experience.

The Tisserand network results additionally supply the approximate dates of the encoun-

ters and their locations in the heliocentric orbit. These details can further constrain the
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breadth of searches in grid solvers to areas where we have higher confidence in the existence

of trajectories. The results presented above are suitable first guesses for established grid

search tools. However, we can take further steps to create patched-conic trajectories within

the Tisserand network framework.

3.6.2 Patching the Broken Conics

The discontinuities in network paths complicate efforts to characterize and evaluate paths

against one another. Consider how we might compute the total time of flight for the network

path shown in Figure  3.20 . One possibility might be to sum the durations of the individual

legs (Earth to Jupiter, Jupiter to Saturn, Saturn to Uranus). This sum provides an ap-

proximate lower limit on the total time of flight. Another method could be to compute the

time between the Earth departure date and the Uranus arrival date. These methods would

result in different times of flight, and neither fully characterizes the variety of flight times

for trajectories that can be derived from the basic path.

This ambiguity limits the conclusions that may be drawn from optimal search methods

that rely on the cumulative weight of the path (e.g., Dijkstra’s algorithm). Section  5.1.5 

includes more discussion on this problem and a possible resolution is provided as part of the

future work in Chapter  8 .

Let us now consider some means of constructing patched-conic trajectories from the

broken trajectories identified by the network search. This additional step will permit a more

meaningful comparison between the paths identified by the network search. Recall that

Figure  3.20 shows the disconnected transfer arcs that make up a single network solution

from Earth to Uranus.

The routes returned by the network search are a series of transfers that match identically

in V∞. In general, however, the ending date of one leg will not match the starting date of

the next leg. In Figure  3.20 , the sample network path shows gravity assists linking Earth to

Jupiter, Jupiter to Saturn, and Saturn to Uranus. At each encounter V −
∞ = V +

∞ . However,

the figure clearly shows that the departure and arrival at each planet would occur on different

dates.

84



Figure 3.21. At each encounter in a Tisserand network path, the arrival and
departure V∞ vectors are identical but they encounter the planet at different
times (left and right). When the trajectories are patched with a common
encounter time (center), the V∞ vectors are no longer necessarily equal.

Each discontinuous gravity-assist path from the network search (Figure  3.19 ) approx-

imates a set of closed patched-conic solutions. Consider a single discontinuous path dis-

covered by the network search (Figure  3.20 ). For the intermediate planets, there will be

two encounter dates: one arriving from the earlier leg and one departing on the subsequent

leg. We can construct the patched-conic trajectories by forcing the encounter to occur on a

common date. Figure  3.21 displays this problem schematically. For simplicity, let’s assume

that we select the midpoint of the two dates at each encounter. The V∞ of the encounter

is no longer the value at the associated Tisserand network vertex. This action resolves a

difference in time of the encounter but creates a difference in V∞ at the encounter.

We may now require a propulsive ∆V to account for the difference in V∞. The positions

of the planets at each encounter in the path may be determined from an ephemeris such as

the SPICE library using the selected dates. The known positions and encounter times define

a Lambert problem between each gravity assist that can be solved with a choice of algorithms

[ 58 ]. For the patched-conic problem, the velocities at the endpoints of the Lambert solution

provide the departure V +
∞ and arrival V −

∞ for the gravity assists at the endpoints of each

trajectory segment. So starting from a series of arbitrary encounter dates near the Tisserand

network solution, we can compute the V−
∞ and V+

∞ at each encounter.

In the general case, the magnitude of the inbound and outbound V∞ are no longer equal.

The Lambert-solved V−
∞ and V+

∞ correspond to different hyperbolic orbits about the planet
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that must be patched together by a propulsive maneuver. The most efficient location for

this maneuver is at the periapsis of the flyby hyperbola.

The following iterative procedure patches the inbound and outbound hyperbolas by find-

ing a common periapsis radius and computing the required velocity change [  24 ], [  59 ].

The semi-major axes of the inbound and outbound hyperbolas are found by rearranging

the vis-via equation and evaluating at r = r∞:

ain = −µplanet

V 2
∞,in

(3.24)

aout = −µplanet

V 2
∞,out

, (3.25)

where µplanet is the gravitational parameter of the flyby body. We require that the periapsis

radii of the inbound and outbound hyperbolas be equal:

rp = ain(1− ein) = aout(1− eout) , (3.26)

where the eccentricities, ein and eout, that result in a matching periapsis distance are un-

known.

The bending angle between the V∞ vectors is found from their dot product:

cos δ = V−
∞ ·V+

∞
|V−

∞||V+
∞|

. (3.27)

The total bending angle is also the sum of the a half angles from the inbound and outbound

hyperbolas:

δ = δin

2 + δout

2 (3.28)

δ = arcsin
( 1

ein

)
+ arcsin

( 1
eout

)
. (3.29)

To construct an iterative solution, we first isolate ein in Equation  3.26 

ein = aout

ain
(eout − 1) + 1 . (3.30)

By substituting ein into Equation  3.29 and rearranging, we arrive at

f =
(

aout

ain
(eout − 1)

)
sin

(
δ − arcsin

( 1
eout

))
− 1 = 0 , (3.31)
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which is a function of the single independent variable, eout. All other parameters are de-

termined by the V∞ derived from the Lambert solutions for the arriving and departing

heliocentric legs. Equation  3.31 can be solved with a root-finder and the resulting common

periapsis radius is then found using Equation  3.26 . Finally, the required ∆V is the difference

in velocity at periapsis on the two hyperbolas:

∆V =
∣∣∣∣∣
√

V 2
∞,in + 2µplanet

rp
−
√

V 2
∞,out + 2µplanet

rp

∣∣∣∣∣ . (3.32)

A less-precise, but non-iterative method of computing the required ∆V from the inbound

and outbound V∞ vectors may be suitable for some applications and is included in Appendix

 B .

Earth orbit

Jupiter orbit

Saturn orbit

Uranus orbit

Leg 1: Earth-Jupiter

Leg 2: Jupiter-Saturn

Leg 3: Saturn-Uranus

JSU - Patched

Figure 3.22. The black line indicates a patched-conic trajectory derived from
a Tisserand network path. The midpoints of the split encounter dates from
Figure  3.20 are chosen as the common encounter date at each planet. Forcing
the common encounter date creates a V∞ mismatch at the gravity assist.
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The creation of the patched-conic trajectories from the Tisserand network search results

can be summarized as follows. The pair of dates at each encounter in the Tisserand network

path are replaced with a single encounter date. This sets up a series of n − 1 Lambert

problems for the n-planet path. The Lambert problem solutions provide the pre- and post-

encounter V∞. Equations  3.24 through  3.32 use the V∞ vectors to compute the ∆V required

to close the V∞ gap. Figure  3.22 shows a patched conic resulting from this procedure. In

this case, the midpoint of the encounter dates from Figure  3.20 were chosen as the patch

points.

For many choices of encounter dates, the propulsive ∆V may be impractically large.

Some methods for finding the encounter dates such that the patched trajectories are nearly

ballistic are explored in the following sections.

Choosing the Encounter Dates

To directly compare Tisserand network paths, we would like to choose a set of encounter

dates so that the resulting patched conic fully characterizes a particular Tisserand network

solution. Unfortunately, the V−
∞ and V+

∞, and therefore the ∆V vary considerably depending

on the selected encounter date. Referring to Figure  3.21 , there is no single encounter date that

is more representative of the scheduling options at any gravity assist. Similarly, the patched

conic found in Figure  3.22 is not the only one that could be generated from the network path.

We must choose a family of patched-conic trajectories that are representative—or derived

from—each network solution.

A possible method for constructing this family is to simply choose m evenly-spaced dates

within the gap between the split dates from the network path. With m encounter dates for

each gravity assist, we can construct a full-factored set of patched-conic trajectories. This

procedure will produce mn trajectories, where n is the number of flybys. However, this

approach creates a large number of trajectories, many of which differ by only one encounter

date at one of the gravity assists. Each patched trajectory requires n− 1 Lambert solutions

resulting in a total of (n−1)mn Lambert problems. To efficiently compute a set of trajectories
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that represent the network solution, we might construct a method that avoids repeating

already-solved Lambert problems.

Figure 3.23. The gray lines are random patched-conic trajectories derived
from a single Tisserand network route. A random encounter date is chosen
between each of the split encounter dates from Figure  3.20 and the gravity
assist is required to occur on this date. Twenty variations on the encounter
dates are shown in this example. The black line is the common result of
optimizing each variation to minimize ∆V .

However, a simpler method that efficiently covers the full region bracketed by the Tis-

serand network path is to create just m patched-conic trajectories where the m encounter

dates for each gravity assist are chosen randomly from within the Tisserand network en-

counter window. This Monte Carlo approach requires the solution of just (n− 1)m Lambert

problems.

For a given alignment date, the variation in arrival and departure date at a particular

planet is determined by the discrete V∞ levels chosen for the Tisserand graph on which the

network is based. Therefore, we may want to expand the allowable encounter dates beyond
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the window strictly defined by the Tisserand network path so that similar trajectories are

also included. Figure  3.23 displays an example set of 20 patched-conic trajectories created

using this method. Here we have selected the intermediate gravity-assist dates from strictly

within the Tisserand network date windows. But, we have allowed the launch and arrival

dates to vary by 30 days and one year, respectively.

Figure 3.24. The network solutions serve as guidelines for closed patched-
conic trajectories. Each trajectory segment is a three-dimensional Lambert
solution between two planet locations randomly selected within windows in-
formed by the Tisserand network routes. Compare with Figure  3.19 .

The procedure just discussed creates n patched-conic trajectories in the neighborhood of

each Tisserand network route. In Figure  3.24 , each route from Figure  3.19 has been used to

generate 20 random trajectories.

The Monte Carlo approach for generating patched-conic trajectories from the Tisserand

network solutions is quick but the randomized dates can result in extremely large and imprac-

tical Delta-Vs. While these cases are easily filtered-out, an alternative method for generating
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patched-conic trajectories would be a targeted grid search and C3-matching procedure sim-

ilar to those used in STOUR [  8 ] or GREMLINS [  17 ]. The grid search can be confined to

small time and V∞ windows based on the Tisserand network solution. The implementation

of this idea is left for future researchers.

3.6.3 Optimizing Solutions

The randomly chosen encounter dates in the previous section will result in some en-

counters with high propulsive ∆V . The following procedure can be used to minimize the

propulsive ∆V .

For a path with n planets, we select a vector containing the n encounter dates. We solve

the Lambert problem in each leg of the path and compute the propulsive ∆V at each gravity

assist according to Equation  3.32 . The total mission ∆V is the sum of the propulsive ∆V

at each encounter.

Now let us allow each encounter date to vary within bounds informed by the network

search and recompute the total mission ∆V . We can repeat this process until the ∆V

is minimized. The process above can be formalized as an optimization problem. Let us

represent the encounter dates (including the launch and arrival) as a vector, x, of n Julian

dates. Then we have the minimization problem:

minimize
x ∈ Rn

J = Σn−2
i=1 ∆Vprop (3.33a)

subject to xi < xi+1, (3.33b)

|xi −∆xmax| ≤ 0, (3.33c)

∆V ≤ ∆Vmax, (3.33d)

C3 ≤ C3,max (3.33e)

where ∆Vprop is computed from Equation  3.32 . The bounds on how widely the encounter

date may vary (Equation  3.33c ) and the constraint on ∆V (Equation  3.33d ) are optional. If

the launch date, x0, is allowed to vary then we may also wish to impose a limit on allowable

launch energy ( 3.33e ). The launch energy can be recast as a launch ∆V if a specific Earth
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parking orbit is assumed. The objective function may be expanded to include a capture

∆V if needed. The bound in Equation  3.33b is simply protection against a gravity assist

occurring before its predecessor. Each iteration will require the solution of n − 1 Lambert

problems.

Returning to Figure  3.23 , the thick black line is the result of solving the ∆V minimization

problem for each of the 20 Monte Carlo variations in gray. In this example, each Monte Carlo

trajectory optimized to the same trajectory. This result suggests a hybrid optimization

problem may be successful at producing nearly ballistic solutions. The Tisserand network

search identifies discrete locations in the problem space where solutions are likely to exist.

The continuous optimization problem in Problem  3.33 then identifies the optimal trajectories

in each discrete configuration. The continuous optimization problem may be initialized with

a few randomized patched-conic trajectories to prevent against finding only locally optimal

trajectories. Alternatively, Monotonic Basin Hopping could be applied in problem  3.33 using

a single initial patched-conic trajectory.

3.7 Evaluating Solutions

Figure 3.25. The process of finding gravity-assist trajectories with the Tis-
serand network includes four major steps. The final step reduces the set of
patched-conic trajectories to the most interesting candidates.

Figure  3.25 shows the completion of the Tisserand network trajectory search process.

Each Tisserand network route may be used to generate many patched-conic trajectories.

Here we will briefly review some methods for selecting the most interesting trajectories for

detailed study.

For a real mission with multiple trajectory attributes to be optimized, the Monte Carlo

trajectories can be evaluated to establish a Pareto frontier. Lacking a specific mission goal
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Figure 3.26. Each point represents a patched-conic trajectory derived from
one of the Tisserand network search solutions. Points are colored by the
Launch V∞. The raw Monte Carlo results include some cases with unrea-
sonably high V∞ and ∆V .

for this demonstration, we will review the Monte Carlo trajectories graphically to illustrate

the breadth of trajectories resulting from the search.

A scatter plot with color mapping is a useful tool for isolating interesting solutions. Each

patched-conic trajectory has more decision attributes than we can simultaneously observe.

This plotting method allows us to compare three attributes at a time. The best graphical

representation will depend on the specific question to be answered. Here we will review a

few arrangements that are generally helpful.

We begin by plotting the total mission time of flight vs the required mission ∆V . Figure

 3.26 shows this type of plot for the example Uranus search. Each point in the plot represents

an individual patched-conic trajectory derived from one of the solution routes from the
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Figure 3.27. Each point represents a patched-conic trajectory derived from
one of the Tisserand network search solutions. Points are colored by the
Launch V∞.

Tisserand network search. In this example, 20 patched-conic trajectories were created for

each solution in Figures  3.18 and  3.19 . Here, we have also colored the points according to the

launch V∞ (the departure V∞ at Earth). Since the Monte Carlo technique chooses encounter

dates without regard for the V∞ before and after the encounter, we can expect some cases

with a large ∆V required to patch the randomized conic segments. Indeed, in Figure  3.26 we

find some cases requiring very large launch V∞ and total mission ∆V that are unreasonably

high for current spacecraft capabilities.

Some pre-processing of the Monte Carlo trajectories can filter out the impractical results.

Without any particular mission architecture in mind, we might be generous with our filtering

and retain trajectories with relatively large propulsion requirements, In Figure  3.27 we have

filtered out any trajectories with launch V∞ greater than 12 km s−1 or total mission ∆V
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Figure 3.28. Each point represents the launch V∞ and launch epoch of a
patched-conic trajectory derived from one of the Tisserand network search
solutions. Points are colored by the total mission ∆V .

greater than 4 km s−1. With the trajectories organized in this way, we can begin to identify

attractive options. For example, we might be interested in the ballistic or nearly-ballistic

trajectories at the leftmost edge. Additionally, we might seek shorter mission timelines, these

trajectories will be closer to the bottom of the plot. Finally, lower launch ∆V requirements

will be attractive. So, we will likely want to pursue more detailed analysis of points in the

lower-left corner of the plot with colors on the “cool” end of the spectrum. The numerical

ranges to consider will depend on actual mission goals and spacecraft capabilities.

Figure  3.28 presents different aspects of the same trajectories. Here the points locate

the launch V∞ and launch epoch of each trajectory. These trajectories are presented for

illustration purposes so the launch dates are given as relative values. The colors in Figure

 3.28 represent the total mission ∆V . When comparing trajectories in Figure  3.28 we likely
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Figure 3.29. Each point represents a patched-conic trajectory derived from
one of the Tisserand network search solutions. Points are colored by the
gravity-assist path used.

would again prefer low launch V∞ and low ∆V . This view, however, provides some additional

insight into the timing and periodicity of the available mission options.

We also benefit by sorting the trajectories categorically by gravity-assist path as shown in

Figure  3.29 . In this case we immediately see that the vertical column of ballistic trajectories

with low ∆V and short time of flight belong to the direct Uranus path. By definition, these

trajectories have a ∆V of exactly zero. Revisiting Figures  3.27 and  3.28 , we observe that

these direct Uranus trajectories require a high launch V∞ relative to the other paths.

Let’s now examine the effect of the ∆V -minimization scheme in Problem  3.33 . Let us first

apply the minimization logic to each of the Monte Carlo patched-conic trajectories created

from each Tisserand network search solution. Figure  3.30 reproduces Figure  3.27 , this time

comparing each of the random patched-conic trajectories (in blue) against its optimized
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Figure 3.30. Each point represents a patched-conic trajectory derived from
one of the Tisserand network search solutions. The blue points represent un-
optimized, trajectories with encounter dates randomly selected within bounds
provided by the Tisserand network. The red points are result from a ∆V -
minimization procedure performed on each of the blue trajectories.

counterpart (in red). As seen in Figure  3.23 , many of the Monte Carlo initial trajectories

optimize to the same solution.

We observe in Figure  3.30 that the minimization scheme was fairly successful are reducing

each randomized trajectory to a nearly-ballistic solution. Figure  3.31 displays the ∆V of

each trajectory against the launch epoch. Here we see that the system was able to find

nearly-ballistic patched-conic trajectories in each launch window.
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Figure 3.31. Each point represents a patched-conic trajectory derived from
one of the Tisserand network search solutions. The blue points represent un-
optimized, trajectories with encounter dates randomly selected within bounds
provided by the Tisserand network. The red points are result from a ∆V -
minimization procedure performed on each of the blue trajectories.

3.8 Tisserand Network Summary

This chapter has introduced a new method for discovering multi-gravity-assist trajec-

tories. The Tisserand network technique addresses both the pathfinding and pathsolving

aspects of the traditional MGA search. The network organizes the problem of finding gravity-

assist trajectories in a manner that can be fully automated.

A Tisserand network is constructed using a few parameters: the bodies available for

gravity assist, and boundaries on the time frame of interest. The two-body dynamics of the

gravitational system and the scheduling information are then encapsulated in the vertices

and edges of the network using the principles described in Sections  3.2 through  3.4 . Once
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the network is built, the name of the target planet is all that is needed to perform the search

and generate the many trajectory solutions presented in the previous section.

A network search will discover paths through the network. Because of the discrete V∞

values, search paths will connect precisely in energy but only approximately in time. A

Monte Carlo approach to selecting common encounter times in the vicinity of the network

results is just one method of creating patched-conic trajectories from the broken-conic search

output.

The random nature of the Monte Carlo approach will generate some patched-conic tra-

jectories that are impractical. These trajectories can be easily filtered out of the collection.

If desired, the random patched-conic trajectories can be improved with a simple optimization

procedure to find the most beneficial encounter dates.
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4. NETWORK MODELS FOR MISSION TECHNIQUES

To deploy the Tisserand network for preliminary design of space missions we must also

develop some network-ready models of important mission techniques. The common assump-

tions and/or inputs to the design of these methods need to be re-evaluated in light of the

network design.

4.1 Powered Flybys

A powered flyby is a gravity assist with additional acceleration provided by thrust from

the spacecraft. In keeping with our other assumptions, we will treat such a maneuver as

impulsive.

We model the powered flyby as a discontinuity in V∞. On the Tisserand graph a powered

flyby would appear to be a vertical jump from one V∞ contour to another contour of the

same planet. A mission designer using the Tisserand graph for pathfinding might trace along

one contour and allow a step up or down to an adjacent contour if it facilitates a transfer to

another Tisserand node along the desired path.

In the Tisserand network we may simply add edges connecting the vertices of a single

planet. For example, we might include an edge connecting the V6-O vertex and the V7-0

vertex. This would imply that the vehicle is capable of providing a 1 km s−1 boost during

the gravity assist. The mission designer can add edges between any vertices that are within

the vehicle ∆V capability.

Powered flybys will be weighted with a time of flight of zero. These edges will not directly

contribute to the mission duration. The subsequent edges that the powered flyby permits

will, of course, have an effect on the flight time. The ∆V of the powered flyby can be tracked

as an additional edge weight. This allows the calculation of a total mission ∆V by summing

the ∆V weights of the edges on a candidate path.

After making all such permissible connections and weight assignments, a network search

can proceed normally. A powered flyby edge will be handled by the network algorithms

in the same was as the Tisserand graph node edges. The difference between the types of
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transfers is encapsulated in the time of flight and ∆V weights. In Chapter  5 we will show

that the ∆V weight can be used to actively prune excessively costly paths during the search.

4.2 Resonant Flybys

We wish to provide a means for the Tisserand network to discover trajectories that

include resonant flybys. A gravity assist path with a resonance will include multiple con-

secutive passes of a single planet. The Venus-Earth-Earth Gravity Assist (VEEGA) used

on the Galileo mission is an example. Including resonance greatly expands the potential

combinations of gravity assists that might be employed to achieve trajectory goals.

A spacecraft has a resonant orbit with a planet when the orbit periods can be expressed

as an integer ratio, n : m. Here, n is the number of revolutions completed by the planet and

m is the number of revolutions completed by the spacecraft between consecutive encounters.

For example, a 3:2 resonance means the planet completes three revolutions in the time it

take the spacecraft to complete two. The Galileo mission included a 2:1 VEEGA in which

the spacecraft performed two gravity assists at Earth separated by two years. The present

work only considers full revolution (or even-nπ) resonant transfers.

From the definition of the resonance, the time to complete each set of integer revolutions

is equivalent:

nPp = mPsc . (4.1)

We can also express this relationship as

n

m
= Psc

Pp
. (4.2)

4.2.1 The Resonance Problem

As discussed in Chapter  2 , practical limits on the minimum flyby radius translate to

maximum limits on the velocity turning, δ, that can be achieved with a gravity assist. The

trajectory turning can be thought of as the angular difference between the pump angle of

the inbound V−
∞ vector and that of the outbound V+

∞ vector as shown in Figure  4.1 . With
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regard to the Tisserand graph, this limit on turn angle translates to a maximum distance

that we can traverse along a V∞ contour to move from one node to the next.

V+
1

V+

Vp
↵

V�
1

V�

�

Figure 4.1. The bending angle, δ measures the angular difference between
the inbound and outbound V∞ vectors. The angle is determined by the radius
of the flyby. .

The development in this section can most easily be illustrated with a concrete example.

Suppose we would like to advance from a heliocentric orbit defined at the V7E10 node of the

Tisserand graph (a = 1.0 AU, e = 0.33) to an orbit defined at the E10J7 node (a = 3.3 AU, e

= 0.70). Figure  4.2 provides an example using a minimal Tisserand graph for this particular

problem. Similar problems need to be solved at a number of places while constructing the

Tisserand network. As seen in Figure  4.2 , the required δ to transform the heliocentric orbit

is 66.7 deg (96.3− 29.6). However, the maximum turning possible is only 43.9 deg.

To extend the distance along the Tisserand graph V∞ contour, or to extend the vertices

reachable in the Tisserand network, we can perform an additional (or several more) gravity

assists at the current planet. Since the gravity assist does not alter the V∞ magnitude, this

second flyby will occur at the same V∞ as the first but with a different pump angle.

The bending angle limit is also the impetus for creating the line graph of the Tisserand

network (see Chapter  3 ). During the weighting procedure, the line graph can tell us whether

a situation like the one shown in Figure  4.2 exists. If so, the time required to complete the

resonance will need to be included in the time of flight.

If required, an additional gravity assist also introduces a phasing problem. The spacecraft

must re-encounter the planet at sometime in the future. Since the heliocentric spacecraft

orbit has a different period than the planet orbit, we must wait for an integer number of

both periods.
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Figure 4.2. This simplified Tisserand graph shows how the maximum bending
angle, δmax, limits the reachable nodes. The heliocentric orbit at the V7E10
node cannot be transformed into the orbit at the E10J7 node by a single Earth
gravity assist. The black dots along the Earth contour serve as α reference
markers with a spacing equal to δmax. The maximum change from the V7E10
pump angle is shown as the red dot. .

4.2.2 A Network Solution for Resonance

To include resonant gravity assists in the Tisserand network, we need a method to com-

pute the time of flight for the resonant sequence. In Chapter  2 we outlined the relationship

between the pump angle, α, and the period of the heliocentric orbit, P , in Equations  2.2 

through  2.7 . We can summarize that relationship in Figure  4.3 . Along a given V∞ contour

there is a unique heliocentric orbit period for each possible pump angle.

In Tisserand graph terms, we will need to take multiple steps along a single V∞ contour

(see Figure  4.2 ). The size of the steps we take is determined by the bending angle, δ, which

itself is a function of the periapsis radius of the gravity assist hyperbola. We may choose any

step size (up to δmax). However, the period of the resulting heliocentric orbit is determined
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Figure 4.3. The period of the heliocentric orbit and the pump angle form a
monotonic relationship. The period of the spacecraft orbit can be expressed
in time units (left axis) or in multiples of the flyby body orbit period (right
axis). .

by our choice. A careless selection of δ will result in an orbit period with a large integer ratio

to the planet period. In other words, we will need to complete a large number of revolutions

before we arrive back at the original encounter location to find that the planet has also

returned. For our purposes, we may assume that the multiple encounters occur at the same

inertial location.

Resonance and Pump Angle

We seek an algorithm that will generate the pump angles that will result in convenient

resonances. Because we are casting a wide net, we will want several options to choose from.

We don’t know, at the network building stage, which resonances will yield convenient times

for subsequent gravity assists at different planets during the network searching stage.
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We first generate a set of resonances to consider. Let us start by defining a maximum

number of spacecraft revolutions that we are willing to allow, mmax, and a maximum time

of flight for the resonance to resolve, tmax. The maximum number of planet revolutions is

given by

nmax =
⌈

tmax

Pp

⌉
, (4.3)

where Pp is the orbital period of the planet and the ceiling operation, d e, rounds up to the

next integer.

So, let us create two arrays of integers:

ni = 1, 2, . . . , nmax (4.4)

mj = 1, 2, . . . , mmax . (4.5)

These may be collected into pairs

Rk = (ni, mj) for i = 1, . . . , nmax, for j = 1, . . . , mmax , (4.6)

where k = n×m. The set of pairs, R, will have some equivalent ratios. For example, (1, 1)

and (2, 2) or (1, 2) and (2, 4). The set R can be reduced to a unique set of ratios:

R = Rp(0)\GCD(Rp) : Rp(1)\GCD(Rp) for p = 1, . . . , k , (4.7)

where the backslash operator \ means integer division and GCD(Rp) is the greatest com-

mon denominator of the elements of Rp. The result of these operations is a set of unique

resonances, R = [1 : 2, 1 : 3, 2 : 3, . . . ], that satisfy the maximum time of flight constraint,

tmax and the maximum number of spacecraft revolutions, mmax.

Next we must translate each n : m resonance pair in R into a pump angle. Since the planet

period is consistent for all resonances, we can most easily express the time to complete the

resonance as n planet periods. From Equation  4.1 or  4.2 , we have:

Psc = n

m
Pp . (4.8)

So that we may compute a spacecraft period, Psc, for each n : m resonance pair in R.
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From here we can relate Psc to α by reversing Equations  2.2 through  2.7 or through a

graphical or numerical analysis of Figure  4.3 (which must be repeated on similar curves for

each V∞ and planet). Kepler’s third law relates the period of the spacecraft orbit to the

semi-major axis:

Psc = 2π
√

µ
a

3/2
sc , (4.9)

which can be solved for semi-major axis to give

asc = µ
1/3
(

Psc

2π

)2/3

, (4.10)

where µ is the gravitational parameter of the central (primary) body. The vis-viva equation

gives the velocity of the spacecraft in the heliocentric orbit at the location of the planet:

V 2
sc = µ

(
2

rplanet
− 1

asc

)
. (4.11)

The spacecraft velocity is related to the V∞ and pump angle through the Law of Cosines:

V 2
sc = V 2

p + V 2
∞ + 2VpV∞ cos α , (4.12)

which can be solved for the pump angle to give:

cos α =
V 2

sc − V 2
p − V 2

∞

2VpV∞
. (4.13)

The sequence of Equations  4.8 ,  4.10 ,  4.11 , and  4.13 provides a flyby pump angle for each

resonance pair in R.

Table 4.1. Resonance to Pump Angle Mapping (Earth 10 km s−1)

Resonance Spacecraft
Period (years)

Pump
Angle (deg)

1:1 1.0 99.7
3:2 1.5 79.3
2:1 2.0 67.5
5:2 2.5 59.1
3:1 3.0 52.7
4:1 4.0 43.1
5:1 5.0 35.7
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The procedure described above provides a mapping between our candidate resonances

and the pump angles that yield them. To demonstrate, suppose we allow no more that two

resonant revolutions (mmax = 2) at Earth with V∞ = 10 km s−1 and we also require that any

single resonant transfer take no more than 5 years (tmax = 5). Under these requirements,

the procedure outlined in Equations  4.3 through  4.8 yields the resonance options in Table

 4.1 . The pump angles that generate these resonances are highlighted in Figure  4.4 . Two

of the resonances (2 : 1 and 5 : 2) are far enough along the contour such that the second

gravity assist (at the completion of the resonance) will be sufficient to complete the desired

trajectory turning.
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Figure 4.4. This simplified Tisserand graph shows some possible resonance
options between the V7E10 and E10J7. The 2 : 1 and 5 : 2 resonances can be
reached from the V7E10 node on the first gravity assist. From these resonances
the E10J7 node can then be reached with the second gravity assist..
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The resonance integers are kept simple in the example above for demonstration purposes.

We may wish to increase the mmax and tmax when building our network. This will create

more resonance options, which in turn yield more possible transfer times. We don’t know,

ahead of time, which transfer times might ultimately be convenient for the phasing problem.

We should also keep in mind that longer times of flight and multiple solar orbits will weaken

the validity of the two-body dynamics assumption.

Resonance Network Implementation

We now consider how to include the analysis above in the Tisserand network. The

resonance options for each V∞ contour (such as those shown in Table  4.1 ) can be computed

with only the information used to construct the Tisserand graph and the mmax and tmax

parameters. Therefore, these calculations can be performed as the Tisserand network is

constructed.

The next step is to assemble the various sequences of resonant flybys that might be used

to complete the connection from one Tisserand graph node to the next. Our first intuition

might be to choose a resonance that is sufficient to reach the goal node in one intermediate

step. However, we must keep our options open at this step since we do not yet know the

time of flight that will be best for solving the phasing problem.

So, let us assemble the possible resonant sequences from Table  4.1 and let us now limit

the cumulative time of flight on the resonance sequence to 8 years. Keep in mind, this

process must be repeated at all V∞ contours. The result for the Earth 10 km s−1 contour

is shown in Table  4.2 . The Resonance Time column in Table  4.2 includes only the time

completing the intermediate orbits and not the entry or exit transfers. The intermediate

orbits are full revolutions. So the resonance duration can easily be computed by summing

the planet revolutions in the resonance sequence and multiplying by the planet period.

The entry transfer (i.e., Venus to Earth) and exit transfer (i.e., Earth to Jupiter) are

partial arcs on the corresponding heliocentric orbits. These times depend on the inbound-
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Table 4.2. Feasible Resonance Sequences (Earth 10 km s−1)

Resonance
Sequence

Pump Angles (deg) Resonance
Time (years)

3:2 96.3, 79.3, 35.4 3
3:2, 2:1 96.3, 79.3, 67.5, 23.6 5

3:2, 2:1, 3:1 96.3, 79.3, 67.5, 52.7, 8.8 8
3:2, 5:2 96.3, 79.3, 59.1, 15.2 8
3:2, 3:1 96.3, 79.3, 52.7, 8.8 6
3:2, 4:1 96.3, 79.3, 43.1, 0.3 7
3:2, 5:1 96.3, 79.3, 35.7, 0.3 8

2:1 96.3, 67.5, 23.6 2
2:1, 5:2 96.3, 67.5, 59.1, 15.2 7
2:1, 3:1 96.3, 67.5, 52.7, 8.8 5
2:1, 4:1 96.3, 67.5, 43.1, 0.3 6
2:1, 5:1 96.3, 67.5, 35.7, 0.3 7

5:2 96.3, 59.1, 15.2 5
5:2, 3:1 96.3, 59.1, 52.7, 8.8 8

3:1 96.3, 52.7, 8.8 3
3:1, 4:1 96.3, 52.7, 43.1, 0.3 7
3:1, 5:1 96.3, 52.7, 35.7, 0.3 8

outbound encounter points according to Table  3.2 . The total time for a transfer from planet

A to B to C (e.g., Venus to Earth to Jupiter) is then:

tAC = tAB + tBres + tBC , (4.14)

where tAB and tBC are given by Table  3.2 and tBres is given by the procedure in this section

(culminating in a table like Table  4.2 ).

The final step is to weight the network edges. As discussed in Chapter  3 , we weight our

network edges with the time of flight of the transfer. In general, the resonance sequences will

have different durations (as seen in Table  4.2 ). Equation  4.14 must be evaluated at every

row of Table  4.2 and this process must be repeated for each V∞ and gravity-assist body.

For each three-vertex sequence (A-B-C) we will have many potential flight times cor-

responding to the resonances we have chosen to consider. Therefore, we will need to add

parallel edges to the network and weight them accordingly. Parallel edges connect the same
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vertices of a network but differ in some other property. In our application, the parallel edges

will be weighted with different times.

For the broadest capability, we can choose to add an additional edge for every possible

resonance sequence. Alternatively, we might choose to add a parallel edge only for those

resonance sequences with unique durations.

4.3 V-Infinity Leveraging Transfers

A V-infinity leveraging transfer or, VILT, (sometimes, simply V∞-leveraging) uses a small

propulsive maneuver to alter the encounter V∞ of a subsequent gravity assist [  33 ], [  60 ]–[ 62 ] .

As shown in Chapter  2 , the trajectory bending angle, δ, is a function of the V∞ of the gravity

assist (Equation  2.18 ). The effect of the propulsive ∆V will be magnified by the gravity assist

∆V though the change in V∞. A maneuver that increases eccentricity will increase V∞; a

maneuver that decreases eccentricity will decrease V∞. The term V∞-leveraging was coined

by Longuski to describe the magnifying affect of the V∞ change on the subsequent gravity

assist [ 8 ]. When applied after an Earth launch in order to obtain a direct gravity assist from

Earth, this technique is also called a Delta-V Earth Gravity Assist or ∆V -EGA. The VILT

is a generalization of the ∆V -EGA technique.

V-infinity leveraging has been applied on deep space missions such as NEAR and Cassini

[ 63 ]–[ 66 ] to reduce total post-launch ∆V . Here, we will develop a network-ready model of

the VILT problem so that our Tisserand network can consider this technique as a possible

transfer option.

4.3.1 V-Infinity Leveraging Fundamentals

Some important concepts and nomenclature from the early work on VILTs [  33 ], [  61 ] will

be reviewed below to lay the foundation for a network model. In this work, we only consider

coplanar VILTs in which the leveraging maneuver ∆V is tangent to the orbit and occurs at

apoapsis or periapsis. We also only consider same-body transfers in which the gravity assists

before and after the maneuver occur at the same planet.
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A V-infinity leveraging transfer can be categorized as interior or exterior based on

whether the leveraging maneuver occurs inside or outside of the planet orbit. In an ex-

terior VILT, the maneuver occurs at apoapsis of the spacecraft heliocentric orbit and in an

interior VILT the maneuver occurs at periapsis. The spacecraft orbit prior to the leveraging

maneuver is called the nominal orbit. The orbit after the maneuver is called the return

orbit. Figure  4.5 is a schematic of an exterior VILT.

Figure 4.5. The schematic of an outbound-to-inbound V-Infinity Leveraging
Transfer shows the nominal orbit and the return orbit affected by the leveraging
maneuver. The V∞ at the re-encounter with the planet is modified by the
leveraging maneuver. .

Since we are considering same-body transfers, we will have a synchronization problem

similar to the resonance problem in Section  4.2 . The spacecraft must cross the planet orbit

at a time when the planet is also there. We will not require that the transfer take place

in a single revolution of either body. Therefore, we will need to account for the resulting

resonance. We will use the notation N : M(Lm) where N is the number of planet revolutions,
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M is the number of spacecraft revolutions, and Lm is the spacecraft revolution on which the

maneuver is performed [  34 ]. This convention is used here to mirror the n : m notation used

for resonances. The reader should note that Sims et al. [ 33 ] and other authors use the

notation K : L(M) for the same concept.

The initial and return encounters can occur at an inbound or outbound location. This

means that there are four combinations of transfers (II, IO, OI, OO) for any set of nominal

and return orbits. This is true for both the exterior and interior VILTs.

A typical approach to designing a VILT is to select the nominal orbit, N : M(Lm)

configuration, and departure and arrival locations, and then iterate on the size of the ∆V

until the time for the spacecraft and planet to travel to the re-encounter point are equal (as

in Sims et al. [ 33 ]). However, the approach may vary depending on the discrete/continuous

or fixed/free variables in each implementation. Mudek [  17 ], Strange [  34 ], Wu and Russell

[ 35 ], and Campagnola and Russell [  67 ] provide solutions for a variety of design scenarios.

4.3.2 VILT Network Implementation

The V-infinity leveraging transfer will be treated similarly to other transfers in the net-

work. We model the transfer as an edge connecting two Tisserand network vertices. The

weight of the edge will be the time to complete the transfer. So we seek a method to measure

the time required for an arbitrary VILT.

Some key features of the Tisserand network prevent us from using the existing solution

methods. Most fundamentally, we have an additional constraint that the departure and

arrival V∞ be among the discrete values in our network. Traditional methods need only

require that the flight time of the planet and spacecraft are equal. Additionally, we are

interested in solving the problem for a variety of N : M(Lm) sequences. Changing the

N : M(Lm) of a VILT will affect the flight time and our searches will benefit from a variety

of potential flight time options. Finally, we will need to solve many versions of this problem

by considering all of the inbound/outbound combinations for multiple planets and V∞ levels.

An additional complication relative to early work on VILTs [  33 ] is that the location of

the initial departure is not fixed. The early ∆V -EGA literature assumes that the leveraging
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maneuver follows an Earth launch. The departure V∞ is tangent to the Earth orbit at

apoapsis (interior) or periapsis (exterior) of the transfer orbit and the leveraging maneuver

occurs at the opposite apsis.

(a) VILT on second edge. (b) VILT on first edge.

Figure 4.6. Weighting a sequence containing a VILT is only possible when
the VILT occurs on the second edge. Figure  4.6a highlights a three-vertex
sequence where the first encounter of the VILT is determined by the initial
vertex. Figure  4.6b highlights a sequence where the first encounter of the VILT
cannot be determined because of ambiguity in the prior vertex.

In our version of the problem, the departure conditions are partially determined by the

arrival condition from the previous gravity assist in the path. In general, the V∞ will be non-

tangent. The true anomaly of the initial encounter is determined by the V∞, the inbound or

outbound approach from the previous gravity assist, and the amount of trajectory turning,

δ, according to Equation  2.11 . The re-encounter must occur at one of the discrete network

V∞ levels but it may occur at the inbound or outbound encounter location.

To address these complications we return to the line graph of the Tisserand network.

Recall that an edge of the line graph gives us information about a three gravity-assist se-

quence in the network. Consider the specific example shown in Figure  4.6 . Here we see two

schematics of three-vertex sequences (line graph edges) highlighted in yellow.
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In Figure  4.6a , the VILT occurs on the second edge of the sequence (V6-V8). The pre-

flyby pump angle for the VILT is determined by the first edge of the sequence (E4-V6). Since

the three-vertex sequence (E4-V6-V8) is found in the line graph, we have enough information

to compute the duration of the VILT. We could weight edge (E4-V6) with the time of flight

from Table  3.2 and weight edge (V6-V8) with the duration of the VILT.

In contrast, consider Figure  4.6b where the VILT occurs on the first edge of the sequence

(V6-V8). In this case, the line graph sequence (V6-V8-M10) tells us nothing about the pre-

flyby pump angle at V6 (the beginning of the VILT). The time on the VILT nominal orbit is

affected by the true anomaly of the initial encounter. The initial true anomaly depends on

the bending angle, δ, and the pre-flyby pump angle, α−. But α− depends on the previous

gravity assist, in this case, E4 or E8. Since this line graph sequence (V6-V8-M10) does not

provide this information, we cannot compute the VILT duration for weighting purposes.

Figure 4.7. Creating a parallel edge connecting the vertices surrounding a
VILT avoids the ambiguity in flight time calculation. The intermediate vertex
is recorded as a waypoint so that the complete path can be reconstructed from
the edge sequence. .
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We resolve this problem as follows. Instead of adding an edge between the two vertices

at the VILT planet (which can only sometimes be weighted), we add an edge between the

endpoints of the three-vertex sequence. Figure  4.7 provides an example. We assign the total

time of the normal transfer and the VILT to the new edge (E4-V8). We also record the

vertex V6 as a waypoint associated with this new edge. Additionally, we may add an edge

connecting E8 and V8 by way of a VILT at V6 (as shown in Figure  4.6b ). The new VILT

edges (E4-V8) and (E8-V8) will have different total flight times as their weights.

Discrete V-Infinity Leveraging Transfers

Let us consider a VILT between two discrete V∞ levels at the same planet. We start by

choosing two V∞ levels, V∞,1 and V∞,2, from among the discreet Tisserand graph contours

for any one planet. Let V∞,1 be the V∞ at the departure of the VILT and let V∞,2 be the V∞

at the re-encounter (after the leveraging maneuver). Similarly, let α1 and α2 be the pump

angles at the departure and re-encounter, respectively.

We will need to compare the times that the planet and spacecraft take to travel between

the encounter points (including any complete revolutions). The planet travel time is given

by:

tplanet =
(

N + θplanet

2π

)
Pplanet , (4.15)

where Pplanet is the planet orbit period and θ is the simple transfer angle between the en-

counters. The cumulative angle swept out by the planet during the entire VILT duration

can be found using the spacecraft flight time, tsc, to be discussed below. That sweep angle

is

Θ = ntsc = 2π

Pplanet
tsc , (4.16)

and

θplanet = Θ (mod 2π) . (4.17)
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We can compute the time required for the spacecraft to complete the full transfer by

summing the time from the departure to the leveraging maneuver, tpre, with the time from

the maneuver to the re-encounter point, tpost:

tsc = tpre + tpost . (4.18)

We must include any complete revolutions that occur before the maneuver. The pre-

maneuver time is given by

tpre = (Lm − 1)Pnominal + tout , (4.19)

where Pnominal is the period of the nominal orbit and tout is the time spent on the initial arc

between the departure point and the maneuver apsis. If the maneuver occurs on the first

spacecraft orbit (M = 1) then tout is the total time before the maneuver, tpre. Similarly, the

post-maneuver time must include any complete revolutions on the return orbit:

tpost = (M − Lm)Preturn + tin , (4.20)

where Preturn is the period of the return orbit and tin is the time spent on the final arc between

the maneuver apsis and the re-encounter point. The partial arc flight times, tout and tin, are

computed from:

tout = tan − t1

tin = t2 − tar (4.21)

where t1 is the departure time, t2 is the arrival time, and tan and tar are the times of the

apsis passage on the nominal and return orbits, respectively.

As discussed in Chapter  2 , the size and shape of the heliocentric orbit is fixed by the V∞

and pump angle at the encounter. So V∞,1 and α1 determine Pnominal as well as the possible

intersection points with the circular planet orbit according to Equation  2.11 . If we select the

inbound or outbound location for the departure, then the true anomaly of the departure,

ν1, is also fixed. Now, the times t1 and tan may be found using Kepler’s equation  3.1 on the

nominal orbit.
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We need a way to define the return orbit. We are not free to simply choose a return

orbit that synchronizes with the planet. We must re-encounter the planet orbit at V∞,2. We

can use the Tisserand graph relationships from Chapter  2 and the common apsis distance

to link the two orbits. We must choose a V∞,2 and α2 that provide a heliocentric orbit with

the same apsis radius as V∞,1 and α1.

Figure 4.8. The figure gives an example of how Tisserand graph relationships
can be used to connect discrete V∞ levels through a VILT. A 6 km s−1 departure
from Venus with a pump angle of 48 deg yields a heliocentric apoapsis of 1.25
AU. The return orbit must have the same apoapsis. To return to Venus at
8 km s−1 the pump angle must be approximately 65 deg. The difference in
apoapsis velocity between the two orbits is the required ∆V ..

Figure  4.8 shows a specific example. Suppose we have chosen V∞,1 = 6 km s−1 and

V∞,2 = 8 km s−1 for an exterior VILT. If, in addition, α1 = 48 deg, then the apoapsis is 1.25

AU. This apoapsis corresponds to a return pump angle of α2 = 65 deg.
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Therefore, α1 is determined once the amount of turning, δ, at the VILT departure is

chosen. And once α1 is determined, α2 can be found for our discrete V∞,2. The return orbit

is now defined by α2 and V∞,2, giving Preturn. With a choice of inbound or outbound location

on the re-encounter, the true anomaly, ν2, is given by Equation  2.11 . The times t2 and tar

may be found using Kepler’s equation  3.1 on the return orbit. The transfer angle of the

spacecraft is simply:

θsc = ν2 − ν1 . (4.22)

This procedure supplies all the information needed to complete the calculation of the

spacecraft travel time during the VILT (Equations  4.18 through  4.21 ). Additionally, the

required ∆V may be computed from the difference in velocity at the apsis in the nominal

and return orbits. If we consider the planet, the V∞ levels, the inbound/outbound locations,

and the N : M(Lm) as parameters, then α1 is a free variable that can be tuned to modify

ν2 at the re-encounter orbit crossing and the spacecraft time of flight. In some cases, the

tuning will be able to adjust these parameters so that the spacecraft and planet are in the

same place at the same time at the end of the prospective VILT.

VILT Optimization and Scanning

Now we can formulate an optimization problem to find VILTs that re-encounter the

planet. Previous researchers have minimized the difference in time traveled by the spacecraft

and the planet—leaving the V∞ of the re-encounter as a free variable. Because of our discrete

V∞ requirements, we minimize the difference in transfer angle during the execution of the

candidate VILT. Recall, our goal is to find a set of candidate VILTs within our Tisserand

network and use the durations of those VILTs to weight new edges between our network

vertices.

Our parameters are the planets, the V∞ levels, the inbound/outbound locations, and the

N : M(Lm) sequence. The planets and V∞ levels are given by the contours of the Tisserand

graph. The inbound/outbound locations are limited to II, IO, OI, and OO. We can create a

scanning algorithm to identify viable VILTs for each permutation of the parameters. At the

heart of the algorithm is a minimization procedure.
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We first generate a list of candidate N : M(Lm) sequences. The N and M values can be

generated using the resonance procedure in Equations  4.4 through  4.7 . The Lm values vary

from 1 to M for each N : M(Lm) pair.

For each parameter permutation, we wish to minimize the difference between the locations

of the spacecraft and the planet when the spacecraft crosses the planet orbit on the return

leg. More formally, we attempt to solve the optimization problem:

minimize
α

θmiss = |θsc − θplanet| (4.23a)

subject to |α− α0| ≤ δ, (4.23b)

|tsc − tplanet| ≤ ε, (4.23c)

∆V ≤ ∆Vmax (4.23d)

The ∆V constraint avoids impractical spacecraft performance solutions. Impractical

flight durations are controlled by the revolution and flight time limits in the N : M(Lm)

selection process. The constraint on time helps to ensure that spacecraft and planet are not

in the same location on different revolutions. The constraint on α recognizes the maximum

bending angle relative to the arrival α0 associated with the Tisserand graph node (or the

previous vertex in the Tisserand network). The bounded, constrained optimization problem

can be solved with an appropriate solution method such as SLSQP [  68 ].

We arrive at a nested optimization problem where the error in the return condition will

be minimized for each N : M(Lm), for each inbound/outbound scenario, for each V∞, for

each planet in the network. The scanning logic is provided in Algorithm  2 .

Figure  4.9 visualizes two solutions of the VILT algorithm at Venus between 6 km s−1

and 8 km s−1. The two solutions used different N : M(Lm) sequences (2 : 2(1) and 3 : 2(2)).

Both solutions assume outbound to inbound endpoints and are preceded by an Earth 4

km s−1 gravity assist. For each transfer option, the large open circle symbol identifies the

desired location of the planet at the end of the VILT and the small filled circle represents the

actual location. The optimization procedure iterates on the departure pump angle to mod-

ify the apoapsis until the planet and spacecraft re-encounter at the desired V∞. Alternate

119



Algorithm 2: VILT Scanning Algorithm
Data: network: A Tisserand network

ε: a tolerance on miss distance
Result: A nested data structure containing the viable VILTs
Algorithm VILTscan(network, ε):

V ILTS ←[ ]
foreach planet pi in network do

D ←[ ]
foreach V −

∞ at pi do
C ← [ ]
foreach V +

∞ at pi 6= V −
∞ do

B ← [ ]
foreach io in [II, IO, OI, OO] do

A← [ ]
foreach N : M(Lm) do

err ← MinimizeError(pi, V −
∞ , V +

∞ , io, N : M(Lm))
if err ≤ ε then

A.insert(N : M(Lm)) B retain this N : M(Lm)
end

end
B.insert(A)

end
C.insert(B)

end
D.insert(C)

end
V ILTS.insert(D)

end
end
Function MinimizeError(pi, V −

∞ , V +
∞ , io, N : M(Lm)):

Data: pi: the planet
V∞: pre- and post-V∞ contours
io: endpoints
N : M(Lm): resonance sequence

Result: The minimized position error at re-encounter
Apply optimization solver (SLSQP or similar) to Problem  4.23 

err ← Optimizer
return err
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solutions for the Venus 6 to 8 km s−1 VILT exist for different N : M(Lm) sequences, dif-

ferent inbound/outbound endpoints, and different preceding gravity assists. These multiple

solutions correspond to the nested loops in Algorithm  2 .

Figure 4.9. Solutions for a 6 km s−1 to 8 km s−1 VILT at Venus are shown
above. The figure displays the nominal and return orbits for two N : M(Lm)
sequences with OI endpoints. Motion is counter-clockwise. The large and
small circles in the lower right corner of the return orbits show the locations of
the planet and spacecraft at the re-encounter. The solution algorithm ensures
that the departure and arrival V∞ are the precise discrete values from the
Tisserand network. .

Table  4.3 lists sample output from Algorithm  2 . The table includes a subset of the

potential VILTs connecting the Earth-4 vertices to some Venus vertices with a 6 km s−1

Venus gravity assist as a waypoint. This solution set limits the planet revolutions to three,

the spacecraft revolutions to two, and the leveraging maneuver ∆V to no more than 600

m s−1.
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Table 4.3. Example VILT Scan Results

Source Waypoint Target Endpoints (N ,M ,Lm) TOF (d) ∆V (m/s) θmiss (deg)
E4 V6 V7 II (1, 1, 1) 438 113 1e-06

(2, 2, 1) 668 183 2e-07
(2, 2, 2) 668 186 6e-09
(3, 2, 1) 887 113 3e-06
(3, 2, 2) 888 113 4e-07

IO (1, 1, 1) 329 410 2e-08
(2, 2, 1) 561 445 2e-07
(2, 2, 2) 564 463 4e-06
(3, 2, 1) 721 179 8e-09
(3, 2, 2) 721 181 8e-08

OI (1, 1, 1) 434 114 1e-07
(2, 2, 1) 625 187 3e-07
(2, 2, 2) 624 190 2e-07
(3, 2, 1) 885 113 2e-06
(3, 2, 2) 884 113 2e-06

OO (1, 2, 1) 444 472 2e-05
(1, 2, 2) 444 506 5e-08
(3, 2, 1) 680 182 3e-07
(3, 2, 2) 680 184 8e-08

V8 II (1, 1, 1) 432 243 2e-06
(2, 2, 1) 663 387 3e-07
(2, 2, 2) 663 398 5e-07
(3, 2, 2) 882 243 2e-05

IO (3, 2, 1) 724 375 4e-06
(3, 2, 2) 726 385 7e-08

OI (1, 1, 1) 429 243 9e-07
(2, 2, 1) 621 394 9e-07
(2, 2, 2) 619 406 1e-07
(3, 2, 2) 878 244 4e-07

OO (3, 2, 1) 685 381 1e-07
(3, 2, 2) 685 391 1e-06

V9 II (1, 1, 1) 427 389 3e-05
(3, 2, 2) 877 390 1e-06

IO (3, 2, 1) 728 586 2e-06
OI (1, 1, 1) 425 389 3e-05

(3, 2, 2) 874 390 2e-06
OO (3, 2, 1) 690 594 5e-07
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Each of the first five rows of Table  4.3 represent a parallel edge that can be added to the

network between the vertices E4-I and V7-I. The next five rows are new edges connecting

E4-I and V7-0, and so on. In general, the time of flight (TOF) and ∆V weights will vary

on each new edge. The full set of results from Algorithm  2 would be much larger. In the

extreme case, the Source, Waypoint, and Target columns would include each V∞ contour in

the Tisserand graph.

4.4 Network Model Summary

This chapter develops three models of common gravity-assist mission components for

inclusion in the network architecture. In all cases, the output of the model identifies which

Tisserand network vertices can be connected and how they must be weighted. The powered

flyby fits naturally into the network approach. The main feature of the network powered-

flyby model is the requirement for discrete increases in V∞. The other two models are

significantly more complicated.

A resonance model allows the Tisserand network to consider gravity-assist paths that

require multiple consecutive flybys of the same planet. The key component of this model is

an algorithm that identifies which pump angles will create resonances with manageable flight

times. A method for sequencing multiple resonances creates several possible transfer times

that may be used as parallel network edges. A variety of flight times increases the options

available to the network for solving the scheduling problem. The resonance model can be

extended to include half-revolution or odd-π transfers to add additional search capability.

Similarly, a VILT model adds many additional possible connections between gravity

assists. The VILT targeting procedure is unique because of the need to return to the planet

at a discrete V∞. The line graph plays a key role in determining how a VILT can be integrated

into the network vertex and edge structure. The VILT model presented in this chapter may

be extended to different-body VILTs using similar techniques. This model may also provide

a starting point for a general deep-space maneuver model.
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5. NETWORK SEARCHES

A key benefit of the network model is the ability to apply standard search algorithms to

identify gravity assist paths. The search algorithm chosen depends on the goal of the analysis.

In this research, we are mainly concerned with generating candidate initial-guess tra-

jectories with little a priori knowledge of which gravity-assist bodies to visit or when flyby

opportunities might occur. For example, we may wish to discover all Tisserand network

paths that exist between Earth and a target planet in a given time frame. This type of

search is sometimes called an All-Paths Search (APS). In contrast, many network problems

are interested in finding the “shortest path”. The APS is a more computationally expensive

search than a shortest-path search.

Once we have generated all the possible paths through the network using an all-paths

search, we can generate families of patched-conic trajectories seeded from those search results

(Section  3.6 ). We can apply filtering at various steps in the process to discard search results

or patched-conic trajectories that are not competitive for our mission goals.

This chapter takes a closer look at some network search algorithms for finding gravity-

assist trajectories using the Tisserand network. Factors that affect the search time of these

algorithms are also introduced and several methods to improve search performance are dis-

cussed.

5.1 Search Algorithms

A search for all paths through a network can be implemented with a Depth-First Search

(DFS)[ 54 ]. In its most basic form, the DFS technique is a way to traverse a network and

ensure that all vertices have been visited. The algorithm discovers a spanning tree as it

proceeds through the network. With some modification, we can also compile a list of all the

possible paths between a source vertex and a target vertex.
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5.1.1 Depth-First Search

Let us first examine the depth-first search since it is foundational to the other methods

to be discussed. Two important characteristics of the DFS are that it visits all vertices in

a network and that it visits each vertex only once. The first characteristic means that we

may use it to exhaustively search for paths, the second means that we will need to make

modifications in order to find more than one path.

Algorithm 3: Basic Recursive Depth First Search
Data: A: an adjacency structure

vertex: a starting vertex
visited: a list of visited vertices

DFS(A, vertex, visited) B Begin by calling DFS at vertex

Function DFS(A, vertex, visited):
visited.insert(vertex)
adj ← GetAdjacent(A, vertex)
foreach adji in adj do

if adji in visited then
return B Already visited this vertex

else
DFS(A, adji, visited) B Call DFS again

end
end

end
Function GetAdjacent(A, vertex):

Data: A: an adjacency structure
vertex: a vertex

Result: A list of vertices adjacent to the input vertex
return adj

The procedure, shown in Algorithm  3 , begins at a selected starting vertex and methodi-

cally visits each adjacent vertex. If an unvisited vertex is found, then the DFS immediately

proceeds down to the next level (hence depth-first) by starting a new DFS with the unvisited

vertex. This process continues until no further steps can be taken down the branch. At that

point, the algorithm steps back up a level and continues with the next adjacent vertex. The

algorithm lends itself to recursive implementations. Each vertex is marked as visited when
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it serves as the source of the DFS. Vertices cannot be revisited in the basic DFS traversal.

This prevents cycles or endless loops.

Figure  5.1 illustrates the DFS sequence in the context of the Tisserand network. We

consider a small demonstration network consisting of a few V∞ levels at Venus, Earth, Mars,

and Jupiter in Figure  5.1a . Here, we suppose that, for some combination of flyby radii and

date constraints, only the edges shown in black remain in the network. For simplicity, we

only include the outbound encounter points.

Let us trace the DFS algorithm through Figure  5.1a to see how each vertex is visited. The

green arrows represent the progress of the algorithm with solid lines representing forward

(or downward) advancement and dashed lines representing the backtracking that occurs at

the end of a branch. Figure  5.1b shows the tree that the DFS discovers as it traverses the

network.

The traversal begins at vertex E7-O. The vertex has two adjacent vertices (V7-O and

M7-O). Which adjacent vertex is visited first depends on how the network is represented

in memory. In this example, the DFS proceeds to visit V7-O where it marks the vertex

as visited and begins a new search (we denote this recursion as DFS-V7). At V7-O, DFS-

V7 discovers two more adjacent vertices (M10-O and E10-O). The algorithm visits each of

these vertices in sequence. Neither M10-O nor E10-O have outbound edges to any adjacent

vertices. So DFS-V7 marks those vertices as visited but does not make any more recursive

calls. DFS-V7 has now completed visiting all neighbors of V7-O and it returns control to

the original DFS. This completes the first branch of the tree in Figure  5.1b .

The main DFS algorithm (at E7-O) now proceeds to the next adjacent vertex (M7-O),

marks it as visited, and starts a new recursion (DFS-M7). The DFS-M7 search finds two

adjacent vertices (E10-O and J7-O). Importantly, since E10-O is marked as visited, the DFS-

M7 search does not revisit E10-O and moves on to start another recursion at J7-O (DFS-J7).

The DFS-J7 recursion finds only one outbound, adjacent vertex (M10-O) which has already

been visited. Control is handed back to DFS-M7 and then the main DFS at E7. All vertices

adjacent to E7-O have now been visited so the algorithm exits. The second branch of the

tree in Figure  5.1b is now complete and the DFS has visited every connected vertex in the

network exactly once.
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(a) The network being searched with DFS.
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(b) The DFS Search Tree.

Figure 5.1. The depth-first search traverses the Tisserand network by recur-
sively visiting each unvisited, adjacent vertex. Black arrows represent edges
in the network. Green arrows show the sequence visited by the algorithm.
The DFS descends as far as possible through the adjacent vertices until there
are no unvisited vertices on the current branch. At that point the algorithm
returns to the previous level and continues the procedure.
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The depth-first search algorithm requires some model of the network to perform the

traversal. Typically, this is provided by an adjacency list structure or an adjacency matrix.

An adjacency list is simply a list of all the vertices that are adjacent to a given vertex.

The adjacency list structure includes an adjacency list for each vertex. Alternatively, an

adjacency matrix is formed with rows and columns corresponding to each vertex. Element

(i, j) is set to one if Vi is adjacent to Vj and set to zero if not.

The DFS can be implemented recursively as shown in Algorithm  3 . The auxiliary function

GetAdjacent returns all vertices that are immediately adjacent to the input vertex using

the adjacency lists or matrix, A. The algorithm also requires a single vertex to use as the

starting point. The DFS has a time complexity of O(V + E) if adjacency lists are used and

O(V 2) if an adjacency matrix is used [ 54 ].

5.1.2 All-Paths Search

Algorithm  3 simply traverses the adjacent vertices in the network until all vertices have

been visited. To adapt the DFS into an all-paths search, we must supply a target vertex in

addition to the starting vertex. We also keep track of the history of vertices as we proceed.

When we visit each vertex, we check to see if it is the target vertex. If so, then the steps

taken to reach the vertex are recorded and the procedure continues. Importantly, as we

exit the search centered at any vertex, we must remove it from the list of visited vertices so

that it can be rediscovered along another path. Pseudocode for the AllPaths algorithm is

provided in Algorithm  4 .

Figure  5.2 shows how Figure  5.1 is adapted to perform an all-paths search. Figure  5.2a 

shows the same underlying network used in Figure  5.1a . Here we assume we are looking

for paths from E7-O to M10-O. Figure  5.2b shows two paths (green and blue) found by the

search.

We will trace the APS algorithm through Figure  5.2a to note the differences with the

DFS search. We again start at vertex E7-O. The APS visits V7-O where it marks the vertex

as visited and appends it to the current path. After checking that V7-O is not the target,

the APS begins a new search. From V7-O, the APS visits vertex M10-O. This time the APS
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(a) The network being searched with APS.

E7-O

V7-O

M7-O

M10-O M10-OE10-O

J7-O

1

2
3

4

6

7

5

(b) The APS results.

Figure 5.2. The all-paths search traverses the Tisserand network by re-
cursively visiting each adjacent vertex. Black arrows represent edges in the
network. Green and blue arrows show the sequences visited by the algorithm
yielding two distinct paths. The APS follows a DFS procedure but keeps a
running list of vertices visited prior to the current vertex.

identifies M10-O as the target. M10-O is appended to the current path and that path (E7-O,

V7-O, M10-O) is appended to the list of successful paths.
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The new vertex M10-O is now removed from the current path and marked as unvisited.

The APS proceeds to E10-O which, as before, is a dead end. The search backtracks to the

original point (E7-O) removing E10-O and V7-O from the current path and marking them

unvisited as well.

The search has now returned to its original state at E7-O with an empty current path

and begins a new search at the remaining adjacent vertex (M7-O). Vertex M7-O is marked

visited and added to the current path. The APS identifies E10-O as an unvisited, adjacent

vertex. This is a key difference from the previous example where E10-O remained in the

visited list (see Figure  5.1a ). Vertex E10-O has now been visited twice. However, since

E10-O is a dead end, the search returns to M7-O and unmarks E10-O again.

The APS next proceeds from M7-O to J7-O, adding it to the current path and labeling

it visited. From J7-O the search proceeds to M10-O which is again identified as the target

vertex. The current path (E7-O, M7-O, J7-O, M10-O) is added to the list of all paths. From

here the search retreats through J7-0 and M7-O to E7-O, removing those vertices from the

current path and marking them unvisited. Since there are no further adjacent vertices, the

search is complete. The two search branches identifying the two successful paths are shown

in green and blue in Figure  5.2b .

The act of marking the vertices as unvisited has two important consequences. First, it

allows a vertex to be revisited later along a different path. Second, it increases the number

of recursions. The time complexity can now be as bad as O(V !). This worst case applies

to a “complete” graph (one in which all vertices are connected to all others). In contrast,

the original DFS algorithm has a time complexity of O(V + E) or O(V 2) depending on the

implementation.

The All-Paths Search provided in Algorithm  4 includes an optional maximum path length,

Dmax. This limit can protect against excessively long paths by preventing recursions past a

maximum depth.

The APS starts and ends with specific vertices from the Tisserand network. The network

vertices define not just a starting or ending body, but also the V∞ and encounter location

(E4-0, E6-I, etc.). Therefore, we will need to repeat the search for each vertex combination
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of interest. Algorithm  1 from Chapter  3 provides the outer loop iteration to ensure that the

search finds all paths between the two bodies.

Algorithm 4: Depth First Search for All Simple Paths
Data: A: An adjacency structure, vertex: a starting vertex

visited: a list of visited vertices, target: a target vertex
currentpath: current running path, allpaths: a list of successful paths
d: the current depth Dmax: the maximum allowable depth

Result: All simple paths between the starting vertex and the target
visited← [ ]; currentpath← [ ]; allpaths← [ ]; d← 0
AllPaths(A, vertex, visited, target, currentpath, allpaths, d, Dmax)

Function AllPaths(A, vertex, visited, target, currentpath, allpaths, d, Dmax):
adj ← GetAdjacent(A, vertex)
foreach adji in adj do

if adji in visited then
return B Already visited this vertex

end
d = d + 1
visited.insert(adji)
currentpath.insert(adji)
if adji = target then

paths.insert(currentpath) B Target found
visited.remove(adji) B Enable revisit
currentpath.remove(adji)
d = d− 1
return

else
if d ≤ Dmax then

AllPaths(A, vertex, visited, target, currentpath, allpaths, d, Dmax)
else

return
end

end
visited.remove(adji)
currentpath.remove(adji)

end
return allpaths
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5.1.3 Bounded All-Paths Search

For our pathfinding problem, we sometimes know that there are practical limitations that

make some paths infeasible. For example, there could be engineering or science constraints on

the allowed time to arrive at the target planet. We can improve our search performance if we

abort the current trial path in the depth-first search once we realize that we have exceeded

this limit. This technique is generically called branch-and-bound. The BoundedAllPaths

search in Algorithm  5 is a problem-specific variant of the DFS-based all-paths search that

exploits this insight.

The BoundedAllPaths algorithm parallels the APS method but adds a set of auxiliary

variables that accumulate the value of key weighting parameters as each edge is added to the

path. Before proceeding to the recursive step, the cumulative weights of the next step are

projected and compared against limits. If the resulting cumulative weights are within the

allowable limits then the recursion proceeds and the weights are updated. If not, then the

branch that would have started at the next vertex is effectively pruned from the search tree,

providing an execution time savings. Pseudocode for this evaluation is included in Algorithm

 6 .

An example may help explain the usefulness of the modification to the basic search.

Important values that accumulate over the course of a mission are the total time of flight

and the total ∆V expended. Suppose we have a constraint of 15 years on the total mission

duration related to the lifetime of some spacecraft component. While performing an APS,

the BoundedAllPaths algorithm will use the flight times (assigned as weights of the network

edges) to accumulate the total time of flight for each potential journey. Let us further suppose

that after two recursion steps, the current mission duration is 10 years. When evaluating

the adjacent edges, the BoundedAllPaths algorithm will now proceed only along edges with

a time of flight less than five years.
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Algorithm 5: Weight-limited Depth First Search
Data: A: An adjacency structure, vertex: a starting vertex

visited: a list of visited vertices, target: a target vertex
currentpath: current running path, allpaths: a list of successful paths
d: the current depth, Dmax: the maximum allowable depth
W : weighted parameters to be tracked, L: weight limits

Result: All simple paths between the starting vertex and the target
visited← [ ]; currentpath← [ ]; allpaths← [ ]; d← 0
BoundedAllPaths(A, vertex, visited, target, currentpath, allpaths, d, Dmax)

Function BoundedAllPaths(A, vertex, visited, target, currentpath, allpaths, d, Dmax):
adj ← GetAdjacent(A, vertex)
foreach adji in adj do

if adji in visited then
return B Already visited this vertex

end
d = d + 1
visited.insert(adji)
currentpath.insert(adji)
if adji = target then

paths.insert(currentpath) B Target found
visited.remove(adji)
currentpath.remove(adji)
d = d− 1
return

else
We, proceed← CheckLimits(vertex, adji, W, L, Dmax)
if proceed = True then

W ← We

BoundedAllPaths(A, vertex, visited, target, currentpath, allpaths, d,
Dmax)

else
return

end
end
visited.remove(adji)
currentpath.remove(adji)
W ← W −We

end
return allpaths
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Algorithm 6: Weight-limited Evaluator for Depth First Search
Function CheckLimits(vertex, adji, W, L, Dmax):

Data: vertex: a vertex
adji: an adjacent vertex
W : weights to be monitored
L: weights limits
Dmax: the maximum allowable depth

Result: A boolean telling whether to proceed to adji

proceed← True
if d > Dmax then

proceed← False
end
foreach wi in W do

wi ← wi+ EdgeWeight(vertex, adji) B Accumulate weight
if wi > Li then

proceed← False B Cumulative weight exceeded
end

end
return W, proceed

Function EdgeWeight(u, v):
Data: u, v: two vertices
Result: The weight of the edge (u, v)

return weight

Complete paths that violate a limit could, of course, be filtered out after the search

when the total weight of the path is known. Some Tisserand graph nodes represent very

high energy heliocentric orbits with long flight times, especially when inbound arrivals are

considered. So evaluating the cumulative weights “as we go” speeds up the search by avoiding

proceeding too far down an infeasible path.
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5.1.4 Trace Search

Suppose we wish to search the network for all paths that follow a certain pattern. For

example, we might wish to identify all paths in a given Tisserand network that use the

sequence Earth-Venus-Jupiter-Saturn. The trace search in Algorithm  7 was developed for

this specific problem.

A trace can be implemented with a depth-first search and a queue: a first-in-first-out data

structure. At each recursion level we consult the queue for the next planet that we desire

to see in the path. The adjacent vertices are checked to see if the vertex planet matches

the planet at the front of the queue. The DFS proceeds only if the vertex is at the desired

planet. The planet in the front of the queue is removed when the algorithm descends to the

next level and the search continues with the following planet.

A use case for the trace is to look for expected paths that were not discovered in the

all-paths search. If we perform a trace in an unfiltered network and the expected path is

found, then we must have filtered out an edge or vertex required to construct the path. If

the path is not found by the trace search then we know filtering is not to blame. In this

case, it is possible that the discretization may be too coarse to find the expected path.
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Algorithm 7: Trace Search
Data: A: An adjacency structure, vertex: a starting vertex

visited: a list of visited vertices, pattern: a target pattern
currentpath: current running path, paths: a list of successful paths

Result: All simple paths between the starting vertex and the target that follow the
desired pattern

visited← [ ]; currentpath← [ ]; paths← [ ]; deque← pattern
Trace(A, vertex, visited, pattern, paths)

Function Trace(A, vertex, visited, pattern, paths):
adj ← GetAdjacent(A, vertex)
next← deque.pop B Get planet off the deque
foreach adji in adj do

if adji in visited then
return B Already visited this vertex

end
visited.insert(adji)
currentpath.insert(adji)
if deque is empty then

paths.insert(currentpath) B Pattern complete
visited.remove(adji)
currentpath.remove(adji)
deque.push(next) B Push planet back on deque
return

else
if adji = next then

Trace(A, vertex, visited, pattern, paths) B Call Trace again
else

return
end

end
visited.remove(adji)
currentpath.remove(adji)
deque.push(next)

end
return paths, deque
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5.1.5 Other Notable Algorithms

The other fundamental vertex visiting algorithm is the breadth-first search (BFS). In the

BFS, all the vertices at the current level are visited before proceeding down to the next level.

Both DFS and BFS are examples of a more general priority-first search. In these searches,

a priority rule determines the next vertex to be considered. In the DFS, the most recently

discovered vertices have priority. In the BFS, the oldest known vertices have priority [ 54 ].

The BFS is essentially a graph traversal algorithm like the DFS. A breadth-first search

naturally finds the shortest path between two vertices in an unweighted network. Here, the

shortest path is the path with the fewest edges. The BFS first visits all vertices that are

one edge away from the starting point. It then visits all vertices that are two edges away.

Accordingly, the first time BFS encounters the target vertex, it has found the shortest path.

Dijkstra’s algorithm [ 69 ] is a priority-first search for finding the shortest path in weighted

graphs (networks). In this search, priority is given to the neighboring vertex with the smallest

weight (i.e., travel time). The shortest path to that neighbor is then set to the lesser of its

current best and the cumulative distance along the current path. Using this method, the

shortest path can be found through the network without needing to visit all vertices to

determine the cumulative weight.

While not explored in depth here, other researchers have applied Dijkstra’s algorithm

to the general trajectory search problem [ 29 ], [  32 ]. The algorithm is an attractive choice

for trajectory designers who frequently wish to find paths that minimize the flight time or

∆V —parameters that accumulate along the trajectory. Early phases of the present research

employed Dijkstra’s algorithm for shortest-path searches [ 55 ].

However, because of the discrete nature of the network (discussed in Section  3.6 ), the

total time of flight of a raw network path is ambiguous. Furthermore, unless powered flybys

are explicitly included in the network (Section  4.1 ), the cumulative ∆V of any raw network

path is zero. For these key parameters, the cumulative weights along any path through the

network do not reliably predict the true cost of the trajectory (in either a patched-conic or

ephemeris model). We must first construct a family of closed, patched-conic trajectories—

based on each network path—to assess the cumulative weights.
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For this reason, Dijkstra’s algorithm has been replaced in this research with a two-

step process. The first step uses an all-paths search to identify the possible network paths

(within constraints). The second step constructs patched-conic trajectories from those net-

work paths. These trajectories can be more accurately evaluated and compared. Chapter  8 

includes recommended future work that may improve the utility of Dijkstra’s algorithm for

Tisserand network searches.

5.2 Limiting the Search

The complexity of the search algorithms will typically be a function of the number of

vertices and edges in the network. In general, there are more edges than vertices in the

networks for the gravity-assist problem. Algorithm  1 will add a VEVt multiplier to the time

complexity of the core AllPaths algorithm. Here VE is the number of network vertices for

Earth and Vt is the number of network vertices for the target planet.

In the Tisserand network, the number of vertices is determined by the number of planets

considered and the density of the V∞ contours in the associated Tisserand graph. More

planets and more V∞ levels will lead to more Tisserand graph nodes (V∞ contour intersec-

tions). The Tisserand network then contains up to four vertices per Tisserand graph node

as demonstrated in Section  3.2.1 . There are roughly eight network edges for each Tisserand

graph node (fewer for hyperbolic heliocentric orbits).

Figure  5.3 demonstrates the growth of the Tisserand network. The figure shows the

number of vertices and edges in a reference Tisserand network as the discretization of the

V∞ levels is changed. The figure is for trend evaluation only, the values on the y-axes

will vary depending on the particular planets, V∞ contours, and dates used in the network

construction. The reference network used in Figure  5.3 includes all of the solar system

planets except for Mercury. The V∞ contours span 3 km s−1 to 16 km s−1 and are discretized

at various step sizes as shown along the bottom axis.

The top plot in Figure  5.3 shows the increase in the number of vertices in the network as

the spacing between the V∞ levels is decreased. This is directly related to the increase in the

number of contour intersections (Tisserand graph nodes) as the number of contours increases.
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Figure 5.3. The size of the network increases as more V∞ contours and more
alignment dates are included. The number of vertices (top) and the number
of edges (bottom) both increase as the spacing between discrete contours is
decreased. The number of possible transfer dates only affects the edge count.
The bottom plot includes the trend in edge count as the length of time allowed
for planetary alignments is increased.

The network vertices are related to the energy problem in the traditional Tisserand graph

and are not sensitive to the time frame for which the network is constructed. For this reason,

the total size of the Tisserand network is dominated by the number of edges.

Using the same reference Tisserand network, the length of time over which planet align-

ments were searched was increased from one year to five years to ten years. See Section

 3.4.1 for the method of finding planetary alignments. The number of edges will grow quickly

when multiple alignment dates are considered. The inner planets, with shorter periods, will

align frequently during a given time period. For each alignment epoch between two planets,
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the number of edges between the vertices associated with those planets will double. The

increasing trend in edge count as the encounter opportunities increase is readily observed in

the three lines in the bottom plot of Figure  5.3 .

Figure 5.4. The size of the line graph increases as more V∞ contours and
more alignment dates are considered. The lower plot uses a log scale. The
line graph size increases by orders of magnitude as the spacing between V∞
contours is reduced and as the length of time allowed for planetary alignments
is increased.

Finally, the transformation from the simple Tisserand network to the line graph of the

network creates a vertex for each edge and an edge for each set of adjacent vertices in the

original graph. This will magnify the growth trends just discussed. Figure  5.4 demonstrates

this effect.

The upper plot of Figure  5.4 presents the trend in the total number of vertices in the line

graph of the reference Tisserand network. This plot displays the same trend as the bottom
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plot of Figure  5.3 because the line graph vertices are the edges of the original network. The

bottom plot displays the trend in number of line graph edges over the same variation in V∞

contour spacing and allowed alignment time (note the log scale on the lower plot). Figure  5.4 

shows that the number of line graph elements can increase by several orders of magnitude

(into the millions) for some choices of network design.

The DFS algorithms has a time complexity of O(V + E) or O(V 2) depending on the

implementation. However, the complexity of the AllPaths algorithm can be as bad as

O(V !). This worst-case complexity assumes a complete graph; one in which every vertex

is connected to every other vertex. The networks we construct will be much more sparse

than a complete graph. However, we can expect performance to be slow for well-connected

networks. The lower plot in Figure  5.4 shows the potential for a large number of edges (a

rough indication of how well the vertices are connected).

With the caveat on completeness, O(V !) algorithms are “inefficient” in computational

terms and can be expected to scale poorly. The quick growth in the edge count, E, for

reasonable search problems can lead to long computation times. Our searches will be per-

formed in the line graph, which shows the potential for a large number of edges. We should

therefore examine ways to reduce the edge count to improve performance.

5.2.1 Network Design Choices

We may improve search performance by eliminating vertices and edges where possible.

The analysis in the previous section has shown that reducing the number of V∞ contours and

the time period over which alignments are assessed will reduce the number of elements in the

network. Careful consideration of some parameter choices prior to building the Tisserand

network can moderate the size.

There is no requirement that each planet use the same array of V∞ contours. Removing

unnecessary vertices will have a large effect on network size by eliminating all edges that

connect those vertices. For some mission concepts, we may wish to avoid high V∞ contours

at Earth because the departure C3 is unreasonable. For other concepts, we may wish to keep

these higher V∞ Earth vertices for use in VILTs.
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We have seen that shorter alignment time frames reduce network size by limiting the

number of parallel edges between vertices (representing different transfer windows). The

resonance and VILT models in Chapter  4 also introduce parallel edges. Limiting the vertices

where resonant transfers are considered (as well as limiting the number of the possible

resonances) will reduce the number of parallel edges between vertices. Similarly, constraining

the bodies and V∞ levels where V-infinity Leveraging Transfers (VILTs) are permitted will

reduce parallel edges.

Finally, for one-way missions, we will likely want to avoid adding edges that originate

from the destination planet. Requiring that the destination only have edges directed to the

planet will prevent a situation where the destination planet is found and then departed and

then found again at a different vertex. If we remove the edges originating at the destination,

then once the destination is reached, there is no where else to go. Figure  5.5 displays the

preliminary Tisserand network used for the demonstration in Chapter  3 . The network does

not include edges from any Uranus vertex (rightmost column) to any other planet.

5.2.2 Pre-Search Filtering

There is an additional opportunity to reduce the size of the network after it is built but

before we begin searching. The most important of these filters is one that removes line graph

edges with excessive encounter date disagreements. This procedure was described in Section

 3.4.3 . The filtering principle is to compare the arrival date of one network edge with the

departure date of an adjacent edge. If the encounter dates are not within some tolerance,

then the entire sequence can be removed. This type of comparison can be readily performed

in the line graph. An iteration over each edge of the line graph is required. The tolerance

can be a raw number or some function of the gravity-assist parameters in the line graph

edge, for example: a fraction of the time of flight or a fraction of the period of the encounter

body.

Experimentation with various tolerance levels has shown that even very loose tolerances

on encounter time are effective at filtering out roughly 99-percent of the line graph edges.
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Figure 5.5. This unfiltered Tisserand network includes many parallel edges
corresponding to the multiple dates on which a transfer is possible. Edges
are colored by the departure planet. Departing edges from Uranus are not
included during construction. This figure is provided to illustrate the network
connections and is not intended for tracing solutions. For color viewing or
inspection of the vertex labels, the reader is referred to the electronic version
of this document.

This is perhaps not surprising. Referring back to Figure  3.13 , we see that most of the

two-planet trajectory legs are not connectable.

Figure  5.6 provides a more rigorous examination of the encounter-time filtering. The

1-year family of reference networks used in Figures  5.3 and  5.4 was filtered to remove edges

with encounter-date discrepancies greater than 10-percent of the planet’s orbital period. This

filter still retains very large time discrepancies for the outer planets. Figure  5.6 compares the

number of line graph edges before and after the filter application. The procedure is effective
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Figure 5.6. Encounter-date filtering can mitigate the growth in network size
as more V∞ contours are included. Here, a loose constraint of 10-percent
orbit period consistently reduces the number of edges by roughly two orders
of magnitude for the 1-year family of networks in Figures  5.3 and  5.4 . The
upper plot uses a normal scale and the lower plot uses a log scale.

at reducing the number of edges by roughly two orders of magnitude across the range of V∞

spacing. This result is in line with the anecdotal experience showing a 99-percent reduction

in edges.

We can also iterate through the line graph to find any edges with a non-permissible time

of flight. For example, some individual legs may require flight times that exceed the total

allowable mission time of flight. High-energy heliocentric orbits that encounter one of the

outer planets on an inbound approach frequently have a very large semi-major axis and flight

times measured in centuries. Such edges should be removed to prevent needless consideration
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during the search algorithm execution. This logic can also be used to remove intermediate

hyperbolic, heliocentric orbits that have an infinite time of flight.

Regardless of which resonances were included as edges in the Tisserand network (Chapter

 4 ), we may wish to additionally limit the number of consecutive flybys that can occur at

any planet. Edges requiring an excessive number of repeat visits can be filtered from the

network.

Similarly, using the line graph, we can remove consecutive powered flybys of the same

planet. In the Tisserand network, a powered flyby is modeled as an instantaneous jump

between vertices with different V∞ levels at the same planet. Two consecutive powered flyby

vertices are equivalent to one powered flyby with the total change in V∞.

In most cases, it is necessary to first build a Tisserand network including all of the

potential edges and then construct the line graph of that network. The tests needed to

determine if an edge should be removed frequently need the multi-transfer information only

available from the line graph.

Figure  5.7 shows the result of applying these filters to the demonstration Tisserand

network in Figure  5.5 . The number of edges has been reduced considerably.

5.2.3 Search Parameters

We may also improve search performance by controlling the parameters of the search.

Most obviously, we can influence the execution time of Algorithm  1 by limiting the number of

starting and ending vertices in the nested loops. For example, we should limit the departure

vertices to those that are compatible with the launch C3. Capture conditions on the arrival

planet may similarly limit the target vertices considered.

Mission timing requirements can also reduce the breadth of the search. The departure

date, Ddepart, is encoded with each network edge for encounter date comparisons. Some

departure dates may be acceptable for an Earth gravity assist but may be too early or too

late to use as an Earth launch date. We can enforce a launch window to mask some vertices

from consideration as the starting point of the all-paths search.
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Figure 5.7. The Tisserand network in Figure  5.5 has been filtered to remove
non-connecting edges, multiple flybys, and unacceptably long flight times.
This figure is provided to illustrate the network connections and is not in-
tended for tracing solutions. For color viewing or inspection of the vertex
labels, the reader is referred to the electronic version of this document.

All-paths search implementations commonly allow a limit on the number of vertices to

include in a path. This is, effectively, a limit on the allowable depth of a depth-first search.

For the Tisserand network, this parameter limits the total number of gravity assists that are

allowed in the path. A reasonable maximum number of flybys will speed the search and also

provide protection against paths with very long flight times.
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Figure 5.8. The Tisserand network in Figure  5.7 has been filtered to include
only edges between vertices that appeared in a search through an undated Tis-
serand network. This figure is provided to illustrate the network connections
and is not intended for tracing solutions. For color viewing or inspection of the
vertex labels, the reader is referred to the electronic version of this document.

5.2.4 Pre-Searching with an Energy Network

Another technique that can simplify the network prior to searching is to perform a pre-

liminary search of an undated Tisserand network (such as the network in Figure  3.5 ). We

first retain an energy-only version of the Tisserand network (prior to adding the many paral-

lel edges for the scheduling problem). This version of the network will necessarily have many

fewer edges. An all-paths search through this network will yield all paths that are feasible

from an energy perspective. This is typically the end goal of a traditional Tisserand graph

search.
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Since any useful path must satisfy both the energy and scheduling requirements, we can

use the energy-only, all-paths search to filter any energy-infeasible vertices and edges in the

full Tisserand network. Any vertex that does not appear in a path from the energy-only

search is not useful and can be removed from the full network. The energy-only Tisserand

network may only consist of a few hundred components and can be searched quickly. Ex-

perience with these searches has shown that the speed improvement is frequently worth the

cost of performing two searches. However, in many cases, the overhead cost of the energy

search is not justified when we also apply the transitive closure technique (Section  5.2.5 ) to

the main search.

Figure  5.8 shows the Tisserand network from Figure  5.7 after this additional energy filter

has been applied. An Earth to Uranus search was performed in an energy-only network.

The results of that search identify a set of energy-feasible routes through the network. We

obtain Figure  5.8 by removing any edges whose adjacent vertices did not appear in one of the

routes from the energy-only search. Visually, the energy-only network appears very similar

to Figure  5.7 . However, close comparison will show that several additional edges have been

removed (most noticeably between Jupiter and Saturn).

5.2.5 Transitive Closure

A directed network’s transitive closure identifies all vertices that can be reached from

each vertex in the network. The transitive closure may be computed with a DFS-based

algorithm with O(V (V + E)) time complexity for sparse networks or O(V 3) complexity for

dense networks. For sparse networks, we simply perform a DFS (O(V + E)) at each of the

V vertices. For dense networks, Warshall’s algorithm is also easy to implement [  54 ].

Let us first make an auxiliary network by copying all the vertices from our Tisserand

network and leaving out all the edges. We then perform a DFS in the original Tisserand

network. If we find that some path exists from vertex, u to vertex v, then we add an edge

directly from u to v in the auxiliary network. This auxiliary network is the transitive closure

of the original network.

148



E8-I

E8-O

E9-I

E9-O

E10-I

E10-O

E11-I

E11-O

E12-I

E12-O

J8-I

J8-O

J9-I

J9-O

J10-I

J10-O

J11-I

J11-O

J12-I

J12-O

S8-I

S8-O

S9-I

S9-O

S10-I

S10-O

S11-I

S11-O

S12-I

S12-O

U8-I

U8-O

U9-I

U9-O

U10-I

U10-O

U11-I

U11-O

U12-I

U12-O

Figure 5.9. The transitive closure of a network directly connects any two
vertices that can be connected by a path through the original network. The
transitive closure of the filtered sample network from Figure  5.7 is shown here.
The edges between Earth and Uranus are highlighted. These are the only
endpoints that need to be used in Algorithm  1 .

We need only compute the transitive closure once for any given network. Once computed,

we have a tool that can tell us, for any starting vertex, which other vertices are reachable.

This information may be used to limit the end points, v1 and v2, in Algorithm  1 . There

is no benefit in searching between endpoints that we know are not connected through the

intermediate vertices in the network.

Figure  5.9 shows the transitive closure of the sample Tisserand network from Chapter

 3 . The gray and green lines directly connect vertices that can be connected by at least one

path in the base Tisserand network. Figure  5.9 is provided for illustration only. The actual
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endpoints used in our searches will be the corresponding line graph vertices which do not

lend themselves to an intuitive visualization.

The green lines in Figure  5.9 highlight the connections between Earth and Uranus. By

using the highlighted vertices in Algorithm  1 , we are guaranteed to search between all the

endpoints where paths from Earth to Uranus exists and only those endpoints where paths

exist. We still must perform the AllPaths search to find the actual paths. The transitive

closure only tells us that some path exists.

Figure 5.10. The transitive closure improves the efficiency of the search.
Here, the transitive closure reduces the number of endpoints to be searched
for the 1-year family of networks in Figures  5.3 and  5.4 . The upper plot shows
the reduction in endpoints. The bottom plot shows the resulting reduction in
relative execution time. The least dense network (marked with a diamond)
requires an execution time of one. The middle plot shows that both methods
return the same number of solutions.
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Figure  5.10 shows the trend in the number of endpoints searched in Algorithm  1 for the

1-year family of reference networks. Similar trends are observed for the other families. The

top plot shows the number of starting and ending vertices used as endpoints in the APS

for both a full-factored permutation and the transitive closure. Both techniques yield the

same number of solution paths (middle plot) but the full-factored method examines more

branches and requires more time.

The full-factored approach includes all combinations of Earth vertices and target vertices

in the demonstration network. The transitive closure method uses only those Earth and

target vertices that are connected in the transitive closure of the network. The transitive

closure method consistently examines orders of magnitude fewer endpoints.

The bottom plot in Figure  5.10 shows the resulting improvement in execution time. Here,

the quickest and least dense network (marked with a diamond in the figure) is searched in

one unit of time. As the network becomes more dense, the figure shows the execution time

growing more slowly for the transitive closure method. For the full-factored method, the

most dense network requires about 1000 times the execution time of the least dense network.

For the transitive closure method, the most dense network only requires about 100 times the

execution time of the least dense network.

If we directly compare the two endpoint generation methods, we find that, for the sparsest

network, the full-factored method requires about ten times the execution time of the tran-

sitive closure method. But for the most dense network, the full-factored approach requires

about 100 times the execution time.

While not examined in this work, an additional savings can be expected by using a

transitive closure test as an internal bound in the APS. Specifically, we might check the

transitive closure for a connection between the next prospective vertex and the set of vertices

associated with the target planet. If no connection exists then we can avoid proceeding down

that branch.
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5.3 Network Search Summary

The depth-first search serves as a basis for the network searching algorithms presented in

this chapter. The AllPaths algorithm is a standard routine used to find all possible paths

between two vertices. Two additional DFS-based algorithms BoundedAllPaths and Trace

were developed to answer specific needs in this research.

The AllPaths and derivative algorithms, while popular, are not efficient and can be

expected to scale poorly. Moreover, the networks for multiple gravity assist searching can

grow in size exponentially. The large numbers of edges that can result from reasonably

designed searches motivate the use of some network simplifications. These techniques are

effective in decreasing search time without compromising results.
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6. VALIDATING THE METHOD ON HISTORICAL MISSIONS

We choose some historical gravity-assist missions to test whether the network technique can

discover trajectories that are known to exist. Each mission adds a new design technique and

tests a different model. We will compare the network search results to approximations of

the actual mission trajectories.

6.1 Wander Software

The algorithms and models described in the previous chapters are implemented in a new

design tool named Wander. Because the Tisserand network includes the Tisserand graph

and other astrodynamical information, Wander can produce search results with a very

simple set of inputs. The information needed to build the Tisserand network includes the

possible gravity-assist planets and their V∞ levels, the date range for planetary alignments,

and a tolerance on encounter time accuracy. With the Tisserand network defined, the only

remaining input for a gravity-assist trajectory search is the target planet.

Table 6.1. Wander Required Search Parameters

Parameter Definition Example

Bodies Available gravity-assist bodies Venus, Earth, Jupiter
V∞ range V∞ spacing for each body 4:1:8 km s−1

Start Date Earliest date for planetary alignment Jan. 1, 2023
End Date Latest date for planetary alignment Dec. 31, 2043
Date Tolerance Allowable mismatch in encounter 5% time of flight

10% gravity assist body period
5◦ misalignment

Table  6.1 summarizes the parameters that define the Tisserand network. Once a network

is built it can be stored and recalled for later use. In the simplest case, a mission designer

can find thousands of patched-conic trajectory options by providing only two inputs: a

destination planet and a Tisserand network in which to search. The Tisserand network can

be treated as a model of the search space containing all the necessary two-body dynamical

information.
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Several optional parameters can be provided to control the performance of the search

algorithm. These options are summarized in Table  6.2 .

Table 6.2. Wander Optional Search Parameters

Parameter Definition Example

Max Flyby Count Maximum total gravity assists 6
Max Repeat Visits Maximum consecutive flybys of same planet 2
Max Time of Flight Maximum time to target planet 15 y
Max ∆V Maximum total mission ∆V 4 km s−1

Encounter Windows Acceptable date ranges for planet encounters 2030 - 2035
Launch Window Close Latest date for departure ∆V Dec. 31, 2030

Importantly, and in contrast to other search tools, the path to be considered does not

need to be defined. Only the endpoints (i.e. Earth and the target planet) are required. The

network approach is designed to automatically consider all possible intermediate sequences.

Wander also manages the search results. The nested search results described by Algo-

rithm  1 need to be unpacked and translated from a list of abstract data-structure addresses

into gravity-assist paths that can be interpreted by a mission designer. The post-processing

collects the sequences of vertices and edges, and organizes them into paths (sequences of

planets visited), routes (Tisserand network vertex sequences), and date variants (routes that

repeat at different dates). These objects can then be summarized, plotted, and compared.

Wander uses the open-source, graph package graph-tool for the low-level graph manage-

ment such as organizing the vertices and edges of the Tisserand network [  70 ]. The grid-like

visualizations in this work (such as Figure  3.5 ) are also created with the assistance of this

package. All astrodynamical calculations described in this work are directly included in the

Wander code base with one notable exception. The Lambert problem is solved with Izzo’s

algorithm [ 58 ] which is imported from the open-source astrodynamics library pykep [ 71 ].

We now demonstrate the effectiveness of the Tisserand network technique by performing

some trajectory searches with Wander. We will attempt to find the paths used by Voyager

1, Voyager 2, Galileo, and Cassini. We include here a detailed discussion of the Voyager 2

search. For the other missions we simply provide search inputs and summary results. The

detailed discussion of these missions in included in Appendix  C .
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6.2 Voyager 1 Search

The Voyager 1 mission included flybys of Jupiter and Saturn [  72 ], [  73 ]. The mission pro-

vides a fairly simple gravity assist example with known parameters. A complete accounting

of actual V∞ values is typically not available in the public documentation. Therefore, the V∞

listed in Table  6.3 are approximations derived from Lambert solutions using the positions of

the planets in the JPL SPICE ephemerides at the encounter dates. We will not attempt to

model any trajectory correction maneuvers that occurred on the actual mission.

6.2.1 Voyager 1 Actual Trajectory

Voyager 1 launched September 5, 1977 on a Titan IIIE-Centaur. The departure ∆V for

the Earth to Jupiter leg was provided by the Centaur upper stage and Star 37E solid booster

[ 72 ]. For comparison with the Tisserand network results, Table  6.3 provides a patched-conic

reconstruction of the Voyager 1 encounters based on the published flyby dates.

Table 6.3. Voyager 1 Encounters

Encounter Planet V∞ (km s−1) Date

Launch Earth 10.3 Sep. 5, 1977
1 Jupiter 10.9 Mar. 5, 1979
2 Saturn 15.3 Nov. 12, 1980

6.2.2 Voyager 1 Search Parameters

Table  6.4 summarizes the key inputs used to construct a network for the Voyager 1

problem and search for trajectories. The V∞ notation 7:1:12 km s−1 means the Tisserand

network includes V∞ levels from 7 up to and including 12 km s−1 in 1 km s−1 increments.

The dates in Table  6.4 give boundaries on the alignment dates of the planets (described in

Chapter  3 ). The actual departure or arrival dates may fall outside this window.

155



Table 6.4. Voyager 1 Search Parameters

Parameter Value

Earth V∞ 7:1:12 km s−1

Jupiter V∞ 7:1:12 km s−1

Saturn V∞ 9:1:16 km s−1

Alignment Start Date Jan. 1, 1977
Alignment End Date Dec. 31, 1980
Max Flyby Count 2
Max Repeat Visits 0
Max Time of Flight 4 y
Date Tolerance 10% time of flight

6.2.3 Voyager 1 Results

Table  6.5 summarizes the results of the Voyager 1 search. The Path column lists the

sequence of planets encountered on the gravity assist trajectory. Recall from Chapter  3 , a

route differentiates the particular vertices in the Tisserand network that are passed through

along a path (e.g. E10-O, J7-O, S9-O). A date variant identifies a duplicate of a route with

some difference in the encounter dates. The Network Routes and Date Variants columns list

the number of these occurrences for each path.

The Launch V∞, Total ∆V , Launch Window and Arrival Window columns summarize

the extremes of the randomized patched-conic trajectories. The total ∆V is the cumulative

propulsive ∆V required to complete gravity-assist turning at any of the encounters after

Earth departure. The date columns give the range of departure or arrival dates in month/year

format.

Table 6.5. Voyager 1 Search Results Summary

Path Network
Routes

Date
Variants

Launch
V∞

(km s−1)

Total
∆V

(km s−1)

Launch
Window
(mm/yy)

Arrival
Window
(mm/yy)

JS 178 341 4 - 15 0 - 5 06/77 - 12/79 09/79 - 12/83
S 10 40 11 - 15 — 08/76 - 12/79 09/78 - 04/84
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Because of the discrete composition of the network and the tolerance in encounter dates,

the search results include gaps in time and energy and only represent outlines of closed tra-

jectories. Multiple methods for constructing patched-conic trajectories from these outlines

were discussed in Section  3.6 . In this case, we select 20 random encounter date sequences

within the date ranges identified by each Tisserand network solution using the procedures

outlined in Section  3.6.2 . Figure  6.1 shows the patched conic trajectories along the JS path.

The launch V∞ and propulsive ∆V (if any) required for each of the patched-conic trajecto-

ries can be computed from the Lambert solutions as described in Chapter  3 . Trajectories

requiring more than 15 km s−1 launch V∞ or more than 5 km s−1 propulsive ∆V have been

excluded from the summary in Table  6.5 .

Figure 6.1. The Tisserand network solutions provide the outline for a collec-
tion of patched conic trajectories shown here. Only the Earth-Jupiter-Saturn
sequences are shown. A patched conic approximation of the true Voyager 1
trajectory is highlighted.
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6.3 Voyager 2 Search

The Voyager 2 Grand Tour is the archetypal multi-gravity assist mission. Launched

August 20, 1977, the mission provides a good test case for the Tisserand network requiring

four linked flybys. We search for a trajectory leaving Earth in late 1977 and arriving at

Neptune in 1989. The trajectory should include gravity assists at Jupiter, Saturn, and

Uranus. This path is given the name JSUN.

6.3.1 Voyager 2 Actual Trajectory

For reference, we generate a patched-conic version of the Voyager 2 trajectory from the

published flyby dates and a SPICE ephemeris. The encounters are tabulated in Table  6.6 .

This patched-conic reference trajectory will be compared against the search results.

Table 6.6. Voyager 2 Encounters

Encounter Planet V∞ (km s−1) Date

Launch Earth 10.2 Aug. 20, 1977
1 Jupiter 7.8 Jul. 9, 1979
2 Saturn 10.7 Aug. 25, 1981
3 Uranus 14.8 Jan. 24, 1986
4 Neptune 16.7 Aug. 25, 1989

6.3.2 Voyager 2 Search Parameters

Table  6.7 summarizes the key inputs used to construct a network for the Voyager 2

search. The dates provided give boundaries on the alignment dates of the planets (described

in Chapter  3 ). The actual departure or arrival dates may fall outside this window.

The V∞ sequences in Table  6.7 generate the Tisserand graph shown in Figures  6.2 and

 6.3 . The contours for the outer solar system are compressed in Figure  6.2 so Figure  6.3 

focuses on the Tisserand graph in the outer solar system. This difference in scales is an

example of the difficulties with manual pathfinding in the Tisserand graph. These graphs

are the basis for the Tisserand network in Figure  6.4 .
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Table 6.7. Voyager 2 Search Parameters

Parameter Value

Earth V∞ 9:1:12 km s−1

Jupiter V∞ 7:1:10 km s−1

Saturn V∞ 8:1:11 km s−1

Uranus V∞ 12:1:15 km s−1

Neptune V∞ 14:1:17 km s−1

Alignment Start Date Jan. 1, 1972
Alignment End Date Dec. 31, 1993
Max Flyby Count 6
Max Repeat Visits 0
Max Time of Flight 17 y
Date Tolerance 10% gravity assist body period

Figure 6.2. The Tisserand graph displays the discrete V∞ levels that will be
considered in the Voyager 2 search.
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Figure 6.3. The Tisserand graph displays the discrete V∞ levels that will
be considered in the Voyager 2 search. This view focuses on the outer solar
system. The Earth contours are visible on the lower left.
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6.3.3 Voyager 2 Results

Table  6.8 summarizes the results of the Voyager 2 search. The search discovered paths

JSUN, JSN, JUN, JN, SUN, and SN. Within each path are multiple routes. For example,

the connected vertices (E10-I, J7-I, S8-O, U12-O, N14-O) and (E12-O, J10-O, S10-O, U14-

O, N15-O) are both JSUN paths but they represent different routes through the network

vertices. Overall the search found about 500 distinct routes. Including date variations on

those routes, the total number of network paths exceeded 1,200.

Table 6.8. Voyager 2 Search Results Summary

Path Network
Routes

Date
Variants

Launch
V∞

(km s−1)

Total
∆V

(km s−1)

Launch
Window
(mm/yy)

Arrival
Window
(mm/yy)

JSUN 312 690 5 - 15 0 - 5 01/72 - 12/79 09/87 - 07/99
JSN 72 163 6 - 15 0 - 5 02/72 - 12/79 02/90 - 08/93
JUN 96 206 10 - 15 0 - 5 04/72 - 01/81 04/91 - 06/96
JN 24 53 10 - 15 0 - 5 05/72 - 01/81 08/88 - 06/91
SUN 22 120 11 - 15 0 - 5 09/77 - 02/85 11/87 - 07/99
SN 6 34 11 - 15 0 - 5 09/78 - 02/85 06/91 - 03/94

The grid view of the Tisserand network (Figure  6.4a ) visualizes the energy connections

between flybys of each planet. This view, however, does not clearly show differences in timing

between the arrival and departure from any given planet.

Figure  6.5 displays the Tisserand network in a polar view of the two-point orbital arcs

for the entire search space. Figure  6.6 shows this same view for the initial Earth-Jupiter-

Saturn sequence. The concentric circles outline the orbits of Earth, Jupiter, and Saturn,

respectively. Empty markers on these orbits identify a departure from that planet and

filled markers identify an arrival. This view shows, more clearly, the timing problem to

be solved. However, the orbit view does not reveal information about the V∞ levels of

neighboring encounters. The arrival at Jupiter needs to coincide with the departure for

Saturn. The network is filtered to remove arrival/departure time mismatches outside of

the desired tolerance. The search algorithm will find arrivals and departures in the filtered

network that match in V∞.
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(b) Network solutions highlighted.

Figure 6.4. The grid view of the Tisserand network assists in visualizing the
energy connections that will be searched to find a possible Voyager 2 path.
Multiple lines connecting two vertices indicate more than one date on which
the connection exists. This broad visualization is not intended for tracing
solutions. For color viewing or inspection of the vertex labels, the reader is
referred to the electronic version of this document.

162



Figure 6.5. The polar view of the Tisserand network assists in visualizing the
time connections that will be searched to find a possible path. The concen-
tric circles represent the planet orbits with Neptune being outermost. Empty
markers on the orbits represent a departure and filled markers represent an
arrival. Date ticks represent January 1st of each year.
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Figure 6.6. The polar view of the Tisserand network assists in visualizing the
time connections that will be searched to find a possible path. The concentric
circles represent the planet orbits with Saturn being outermost. Empty mark-
ers on the orbits represent a departure and filled markers represent an arrival.
Date ticks represent January 1st of each year.
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Figure  6.7 shows a polar view of the Tisserand network search solutions. The network

solutions are grouped into similar paths and colored accordingly. Most of the paths result in

similar arrival times. The large tolerance in encounter date (10% of the gravity assist body

period) accounts for the inclusion of several Uranus-Neptune legs with much later arrivals.

The solution routes are also highlighted in the grid view of the Tisserand network in Figure

 6.4b .

Figure 6.7. The search found six paths (JSUN, JSN, JUN, JN, SUN, and
SN) that contain 500 routes. The actual Voyager 2 trajectory is shown in the
thick gray line.

The discrete search results include gaps in time and only represent outlines of closed

trajectories. Here, we again select 20 random encounter date sequences within the date

ranges identified by each Tisserand network solution to close the gaps (see Section  3.6.2 ).

Figure  6.8 shows the resulting patched conic trajectories. The figure shows roughly 3500
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patched-conic JSUN trajectories. Because of the random encounter date selection, some

trajectories require extremely large and impractical propulsive ∆V in addition to the gravity

assist.

Figure 6.8. The Tisserand network solutions provide the outline for a collec-
tion of patched conic trajectories shown here. A patched conic approximation
of the true Voyager 2 trajectory is highlighted.
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We can evaluate the patched conic trajectories relative to one another by comparing key

characteristics. Since we are comparing the results to Voyager 2, which used a JSUN path,

we will only consider the JSUN path for further study. Figure  6.9 plots the time of flight

against the total mission ∆V for each of the patched conic trajectories generated from the

Tisserand network search results. The color of each point corresponds to the launch V∞.

For clarity, trajectories that required more than 15 km s−1 launch V∞ or more than 5 km s−1

delta-V were filtered from the solution set. The approximated Voyager 2 trajectory appears

as the diamond. In Figure  6.9 attractive trajectories will fall in the lower-left corner and will

be colored on the cool end of the spectrum.
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Figure 6.9. The time of flight is plotted against the mission ∆V for each of
the patched conic variations on the network solution. The shade of the points
corresponds to the total mission launch V∞. Trajectories requiring more than
15 km s−1 launch V∞ or more than 5 km s−1 ∆V are not shown. The actual
Voyager 2 trajectory is shown as the diamond.
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Figure  6.10 plots the launch V∞ against the launch date for each trajectory. The color

of each point corresponds to the total mission ∆V . The figure shows a series of V-shaped

profiles for various launch opportunities. Each opportunity shows a sharp increase in launch

V∞ as the launch date varies from the optimal.
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Figure 6.10. The Launch V∞ is plotted against the Launch Date for each
of the patched conic variations on the network solution. The shade of the
points corresponds to the total mission ∆V . Trajectories requiring more than
15 km s−1 launch V∞ or more than 5 km s−1 ∆V are not shown. The actual
Voyager 2 trajectory is shown as the diamond.

Figure  6.11 shows the trends in launch V∞ and ∆V for different arrival dates at Neptune.

The figure shows that the group of trajectories that arrive around 1990 provide the earliest

arrival and also dominate in both launch V∞ and ∆V .
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Figure 6.11. The Launch V∞ is plotted against the Arrival Date for each
of the patched conic variations on the network solution. The shade of the
points corresponds to the total mission ∆V . Trajectories requiring more than
15 km s−1 launch V∞ or more than 5 km s−1 ∆V are not shown. The actual
Voyager 2 trajectory is shown as the diamond.

Absent other mission constraints, a trajectory designer would likely choose a trajectory

with a low launch V∞, a low mission ∆V , and a short time of flight. We see that the actual

Voyager 2 mission performs well in these criteria relative to the field of possible trajectories.

6.4 Galileo Search

The Galileo mission to Jupiter provides an opportunity to evaluate the Tisserand network

in a trajectory search with a resonant transfer. Galileo performed two Earth flybys separated

by exactly two years as part of the Venus Earth Earth Gravity Assist (VEEGA) sequence.
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The Galileo mission included an atmospheric entry probe and a tour of the Jovian satellites.

Here we will examine only the gravity assist journey from Earth to Jupiter and will neglect

several trajectory shaping maneuvers.

6.4.1 Galileo Actual Trajectory

Galileo launched aboard Space Shuttle Atlantis on October 18, 1989. The original mission

design included a direct trajectory to Jupiter made possible by a Shuttle-Centaur upper stage.

The Shuttle-Centaur was a version of the Centaur upper stage designed to be carried to orbit

in the Space Shuttle payload bay. In response to the Challenger disaster, the Shuttle-Centaur

program was cancelled over safety concerns with the Centaur’s liquid-hydrogen fuel. The

Galileo mission was redesigned with a less-capable, solid-fueled inertial upper stage. The

decrease in launch C3 capability was the impetus for the VEEGA trajectory [  74 ].

Partial information on the Galileo encounters can be found in D’Amario et al. [ 75 ] and is

tabulated in Table  6.9 . The V pc
∞ values are based on a patched-conic gravity-assist sequence

reconstructed from the published encounter dates. The patched-conic values agree well with

the published data.

Table 6.9. Galileo Encounters

Encounter Planet V∞ (km s−1) V pc
∞ (km s−1) Date

Launch Earth 3.1 3.9 Oct. 18, 1989
1 Venus 6.2 6.1 Feb. 10, 1990
2 Earth 8.9 8.8 Dec. 8, 1990
3 Earth 8.9 8.9 Dec. 8, 1992
4 Jupiter — 5.6 Dec. 7, 1995

6.4.2 Galileo Search Parameters

Table  6.10 summarizes the inputs used to build the Galileo search network. The Max

Repeat Visits parameter is set to 2 to allow the repeat flybys of Earth in the VEEGA. To make

the results more presentable, we add some additional constraints that the Venus encounters

must occur in the years 1989 through 1991 and the Earth launch and encounters must occur
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in the years 1988 through 1994. If we were looking for a new mission, we might not add

these constraints. But for this reconstruction, these constraints will limit the solutions to

those more closely resembling the Galileo mission.

Table 6.10. Galileo Search Parameters

Parameter Value

Venus V∞ 4:1:8 km s−1

Earth V∞ 3:1:10 km s−1

Jupiter V∞ 5:1:8 km s−1

Start Date Jan. 1, 1988
End Date Dec. 31, 1996
Max Flyby Count 6
Max Repeat Visits 2
Max Time of Flight 9 y
Date Tolerance 5% time of flight
Venus Encounter Window 1989 - 1991
Earth Encounter Window 1988 - 1994

6.4.3 Galileo Results

Table  6.11 summarizes the results of the Galileo search. The Path column lists the

sequence of planets encountered on the gravity assist trajectory.

Table 6.11. Galileo Search Results Summary

Path Network
Routes

Date
Variants

Launch
V∞

(km s−1)

Total
∆V

(km s−1)

Launch
Window
(mm/yy)

Arrival
Window
(mm/yy)

VEEJ 56 121 3 - 15 2 - 10 12/88 - 02/90 02/95 - 06/96
J 16 85 9 - 15 0 - 0 06/88 - 01/94 04/90 - 11/97

As with the other missions, we select 20 random encounter date sequences within the

date ranges identified by each Tisserand network solution. Figure  6.12 shows the patched

conic trajectories along the VEEJ and J paths. The launch V∞ and propulsive ∆V (if

any) required for each of the patched-conic trajectories can be computed from the Lambert
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solutions as described in Chapter  3 . Trajectories requiring more than 15 km s−1 launch V∞

or more than 10 km s−1 propulsive ∆V have been excluded from the results.

Figure 6.12. The Tisserand network solutions provide the outline for a col-
lection of randomized patched conic trajectories shown here in a polar view
of three-dimensional trajectories. The spacecraft trajectories are constructed
from Lambert solutions between 3-D ephemerides. A patched conic approxi-
mation of the true Galileo trajectory is highlighted.
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6.5 Cassini Search

The Cassini mission to Saturn provides a comparison case with a V-Infinity Leveraging

Transfer (VILT). We will only attempt to find the trajectory to Saturn and will not recreate

the tour of Saturn’s satellites.

6.5.1 Cassini Actual Trajectory

Cassini/Huygens was launched on October 15, 1997 on a Titan IVB-Centaur with two

solid rocket motor upgrades. The Centaur upper stage provided the ∆V for the departure

to Venus [  76 ]. Partial information on the Cassini encounters is available in Goodson et al.

[ 65 ]. Those values are tabulated in Table  6.12 . The V pc
∞ values are based on a patched

conic reconstruction of the gravity assist sequence using the published encounter dates. The

patched-conic values agree well with the published data.

Table 6.12. Cassini Encounters

Encounter Planet V∞ (km s−1) V pc
∞ (km s−1) Date

Launch Earth 4.1 4.0 Oct. 15, 1997
1 Venus 6.0 5.9 Apr. 26, 1998
2 Venus 9.4 9.4 Jun. 24, 1999
3 Earth 16.0 16.0 Aug. 18, 1999
4 Jupiter — 10.6 Dec. 30, 2000
5 Saturn — 5.3 Jul. 1, 2004

6.5.2 Cassini Search Parameters

Table  6.13 summarizes the inputs used to build the Cassini search network. The network

is configured to scan for Venus VILT opportunities starting with a V∞ of 6 km s−1. The Max

Repeat Visits parameter is set to 2.
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Table 6.13. Cassini Search Parameters

Parameter Value

Venus V∞ 5, 6, 9, 10, 11 km s−1

Earth V∞ 4.5, 5, 14, 15, 16, 17 km s−1

Jupiter V∞ 9:1:11 km s−1

Saturn V∞ 5:1:7 km s−1

Start Date Jan. 1, 1997
End Date Dec. 31, 2010
Max Flyby Count 6
Max Repeat Visits 2
Max Time of Flight 9 y
Date Tolerance 20% time of flight
VILT at Venus 6 km s−1

6.5.3 Cassini Results

Table  6.14 summarizes the results of the Cassini search. The Path column lists the

sequence of planets encountered on the gravity assist trajectory.

Table 6.14. Cassini Search Results Summary

Path Network
Routes

Date
Variants

Launch
V∞

(km s−1)

Total
∆V

(km s−1)

Launch
Window
(mm/yy)

Arrival
Window
(mm/yy)

VVES 5 27 3 - 12 3 - 10 11/97 - 12/05 11/02 - 10/17
VVEJS 6 6 4 - 11 — 10/97 - 12/97 07/02 - 03/06
JS 42 42 10 - 15 0 - 5 02/98 - 10/00 11/01 - 10/10
VES 46 186 14 - 15 0 - 10 12/96 - 04/06 10/02 - 11/17
VEJS 44 72 14 - 15 0 - 10 12/96 - 05/98 06/02 - 04/06
S 18 234 10 - 15 0 - 0 03/97 - 02/10 08/00 - 04/18

As with the other missions, we select 20 random encounter date sequences within the

date ranges identified by each Tisserand network solution. Figure  6.13 shows the patched

conic trajectories along the various paths. Patched-conic trajectories requiring more than

15 km s−1 launch V∞ or more than 10 km s−1 propulsive ∆V have been excluded from the

results.

174



The Tisserand network was able to find routes similar to the actual VVEJS Cassini path

(for example, E5-I, V6-O, V10-I, E16-O, J11-O, S5-O). However, in cases with consecutive

flybys of the same planet (such as the Venus VILT in the Cassini design), the ∆V results for

the randomized patched-conic trajectories have proven to be sensitive to the actual randomly

drawn dates. The particular random draws in the example tabulated here resulted in ∆V

above the 10 km s−1 limit. In these cases, a more sophisticated method for generating the

patched-conic trajectories may be required. This improvement is included in the future work.

Figure 6.13. The Tisserand network solutions provide the outline for a col-
lection of randomized patched conic trajectories shown here in a polar view
of three-dimensional trajectories. The spacecraft trajectories are constructed
from Lambert solutions between 3-D ephemerides. A patched conic approxi-
mation of the true Cassini trajectory is highlighted.
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6.6 Historical Mission Search Summary

The searches in this chapter demonstrated the utility of the Tisserand network in finding

paths to the outer solar system. The resonance and VILT models of Chapter  4 were used in

the Galileo and Cassini searches, respectively. The networks were provided with the gravity-

assist bodies, the time frames to consider, and the desired target planets. The searches

produced families of patched-conic trajectories that bracket the actual historical missions.
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7. PRELIMINARY TRAJECTORIES TO TRANS-NEPTUNIAN
OBJECTS USING THE NETWORK METHOD

As an additional demonstration of the Tisserand-network technique we now attempt a search

for trajectories to two dwarf planets: Haumea and Makemake. Both planets are among the

largest Trans-Neptunian Objects (TNOs) and are of scientific interest, having only been

discovered in the past twenty years.

TNO missions are an active area of research and we will not attempt a detailed evaluation

of trajectory options with respect to science objectives and other mission constraints [  77 ]–

[ 80 ]. Here, we will simply attempt to find some preliminary trajectory candidates using the

newly developed method.

To help guide our search, we note the launch energies of the five missions capable of

escaping the solar system in Table  7.1 [ 78 ].

Table 7.1. High C3 Missions

Mission C3 (km2/s2) V∞ (km s−1)

Pioneer 10 95 9.7
Pioneer 11 87 9.3
Voyager 1 105 10.2
Voyager 2 102 10.1
New Horizons 158 12.6

With this history in mind we will include Earth V∞ contours between 4 km s−1 and 14

km s−1 (C3 = 196 km2/s2). The larger C3 values are within expected capabilities of the

Space Launch System with various upper stages [  81 ].

In the Tisserand network configuration, we make no distinction between a launch or a

gravity assist with respect to the Earth departure V∞. So an Earth V∞ of 14 km s−1 could

be a high energy launch or an Earth flyby (for example, part of a VEEGA). Because V∞

translates directly to the network vertices, in the discussion below we will present results in

terms of launch V∞ rather than the more common C3.

We limit the search to missions launching by the end of 2040 with a maximum flight

time of 25 years. Figure  7.1 shows the positions of the solar system over the period 2020 to
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2050. The locations of Neptune and Pluto are not suitable for gravity assists to either of the

dwarf planets in our search. To reduce the network edges, we exclude Neptune, Pluto, and

Mercury from consideration.

Figure 7.1. The alignment of the solar system from 2020 to 2050. Neptune
and Pluto are not well positioned for use in a gravity assist to Haumea or
Makemake.

We also note here that the Tisserand graph and Tisserand network assume circular-

coplanar orbits. Many TNOs are more inclined relative to the ecliptic plane than the planets.

Haumea and Makemake have inclinations of 28 and 29 deg, respectively. The orbits also

deviate from the circular assumption. Haumea and Makemake have eccentricities of 0.20

and 0.16, respectively.
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As discussed in Chapter  3 , patched-conic trajectories are generated from the Tisserand

network search results by solving the Lambert problem in a full ephemeris. Therefore, the

penultimate gravity assist encounter will include an implicit inclination change.

However, we stress again the preliminary design quality of the assumptions in Section

 3.1.3 (patched conics, circular-coplanar orbits, etc.). The intent of these investigations is

to generate initial guesses of gravity-assist energies and time frames that are likely to yield

results worth examining in higher fidelity tools. These assumptions remain appropriate for

this preliminary work. In fact, the approximate arrival epochs resulting from these searches

agree with those found in Zangari et al. [ 78 ] using a purpose-built TNO search tool (also

based on patched solutions to Lambert’s problem).

7.1 Haumea Search

Haumea is a Kuiper-Belt dwarf planet roughly the size of Pluto. It has a mean orbital

radius of approximately 43 AU and a period of 284 years [ 82 ]. Haumea is among the fastest

rotating known objects in the solar system, completing a rotation once every four hours.

The high spin rate gives the planet an ellipsoidal shape. Haumea is orbited by two small

satellites and may also have a ring. These characteristics make Haumea an interesting target

for exploration despite its great distance [  78 ], [  80 ].

7.1.1 Haumea Search Parameters

Table  7.2 summarizes the key inputs used to construct a network for the Haumea search.

The dates in Table  7.2 give boundaries on the alignment dates of the planets (described in

Chapter  3 ). The actual departure or arrival dates may fall outside this window.

7.1.2 Haumea Search Results

The Tisserand network search found five paths to Haumea arriving in the 2030s to 2060s.

These paths include 26 different routes. Recall from Chapter  3 that the discrete routes are

discontinuous. To evaluate the paths, we generate twenty random but continuous patched-
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Table 7.2. Haumea Search Parameters

Parameter Value

Venus V∞ 6:3:14 km s−1

Earth V∞ 4:3:14 km s−1

Mars V∞ 6:3:14 km s−1

Jupiter V∞ 6:2:18 km s−1

Saturn V∞ 8:3:18 km s−1

Uranus V∞ 8:3:18 km s−1

Haumea V∞ 6:3:16 km s−1

Alignment Start Date Jan. 1, 2025
Alignment End Date Dec. 31, 2065
Max Flyby Count 8
Venus Max Repeat Visits 2
Earth Max Repeat Visits 2
Other Max Repeat Visits 1
Max Time of Flight 25 y
Date Tolerance 10% time of flight

conic trajectories along each route. Figure  7.2 provides a polar view of these patched-conic

trajectories.

Table  7.3 summarizes the results of the Haumea search. The Path column lists the

sequence of planets encountered on the gravity assist trajectory. We use a lower-case h to

symbolize the encounter with Haumea. Recall from Chapter  3 , a route differentiates the

particular vertices in the Tisserand network passed through along the path (E13-O, J16-O,

h15-O). A date variant identifies a duplicate of a route with some difference in the encounter

dates. The Network Routes and Date Variants columns list the number of these occurrences

for each path.

The Launch V∞, Total ∆V , Launch Window and Arrival Window columns summarize

the extremes of the randomized patched-conic trajectories. The total ∆V is the cumulative

propulsive ∆V required to complete gravity-assist turning at any of the encounters after

Earth departure. The date columns give the range of departure or arrival dates in month/year

format.

The Tisserand network identified two paths that use gravity assists in the inner solar

system (VEEJh, VMEEJh). However, both of these paths require excessively high ∆V to
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Figure 7.2. The Tisserand network found five paths to Haumea in the search
period. These paths include 26 different routes. Twenty patched-conic trajec-
tories were generated for each route. These patched conics are visualized in
the figure. The orbits of Jupiter, Saturn, Uranus, Neptune, and Haumea are
also displayed.

close the patched-conic trajectories. In this analysis, the only source of mid-mission ∆V is

powered flyby ∆V required to complete the turning at an encounter. Stochastic trajectory

correction maneuvers are not modeled.

For the remaining discussion, trajectories requiring more than 15 km s−1 launch V∞ or

more than 5 km s−1 ∆V have been filtered out of the results. This removes all of the options

using the inner solar system for gravity assist. Figure  7.3 displays Haumea arrival date

versus the launch date for the remaining patched-conic trajectories. The simplest path (Jh,

Earth-Jupiter-Haumea) provides the most opportunities. The other paths use either Saturn

as the only gravity assist or a Jupiter-Saturn gravity assist sequence.
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Table 7.3. Haumea Search Results Summary

Path Network
Routes

Date
Variants

Launch
V∞

(km s−1)

Total
∆V

(km s−1)

Launch
Window
(mm/yy)

Arrival
Window
(mm/yy)

Jh 18 29 10 - 46 0 - 5 08/25 - 08/44 07/39 - 11/63
VEEJh 1 1 9 - 31 5 - 12+ 11/33 - 11/33 09/51 - 09/51
SJh 2 4 11 - 41 1 - 4 11/33 - 01/35 05/64 - 05/64
Sh 4 4 11 - 43 0 - 3 08/34 - 11/36 12/50 - 12/52
VMEEJh 1 1 12 - 19 12+ 07/26 - 07/26 08/51 - 08/51

In the absence of specific mission goals, we may assume that trajectory options with low

launch energy requirements, low mission ∆V expenditures, and short flight times are most

desirable. However, these qualities tend to work against each other; minimizing any two will

typically increase the third. Figure  7.4 presents the launch V∞ versus the ∆V for the Jupiter

and Saturn paths. The lowest ∆V paths are almost exclusively Jupiter-Haumea (Jh) paths.

However, several Saturn-Haumea paths require a moderate ∆V of 1 to 3 km s−1.

Figure  7.5 shows the time of flight versus the ∆V for each patched-conic trajectory. The

lower left region is again the most desirable. The Jupiter-Haumea path appears in three

distinct bands. There are low ∆V options in each band, including the band with lowest time

of flight.

Figure  7.6 focuses on the time of flight versus the ∆V like figure  7.5 . However, this time

we consider only the Jh trajectories and color the points according to the launch V∞. As

we might expect, the trajectories with the shortest time of flight (around 15 years) benefit

from higher launch energies. The highest launch energy yet achieved (New Horizons) would

fall near the middle of the Launch V∞ scale in Figure  7.6 . This is roughly the launch energy

that many of the fastest Haumea trajectories require.

The Voyager missions would fall on the lower end of the Launch V∞ spectrum in Figure

 7.6 . There are many trajectories in the middle band (around 18 to 20 year flight times) that

require 10 to 11 km s−1 launch V∞. The upper band includes some lower launch V∞ and

lower ∆V requirements, but the flight time is longer (22 to 25 years).
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Figure 7.3. The arrival date is plotted against the launch date for each of
the patched conic variations on the network solution. Trajectories requiring
more than 15 km s−1 launch V∞ or more than 5 km s−1 ∆V are not shown.
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Figure 7.4. The launch V∞ is plotted against the cumulative ∆V for each
of the patched conic variations on the network solution. The Jupiter-Haumea
path requires the lowest launch cost and lowest mission ∆V . Trajectories
requiring more than 15 km s−1 launch V∞ or more than 5 km s−1 ∆V are not
shown.
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Figure 7.5. The time of flight is plotted against the cumulative ∆V for
each of the patched conic variations on the network solution. Jupiter-Haumea
trajectories are available with low ∆V . Trajectories requiring more than 15
km s−1 launch V∞ or more than 5 km s−1 ∆V are not shown.

185



Figure 7.6. The time of flight is plotted against the cumulative ∆V for the
Jupiter-Haumea path only. The points are colored according to launch V∞.
The fastest and least ∆V costly trajectories in the lower left require large
launch energy. Trajectories requiring more than 15 km s−1 launch V∞ or more
than 5 km s−1 ∆V are not shown.

186



7.2 Makemake Search

Makemake is a classical Kuiper Belt Object (KBO). The planet is slightly smaller than

Pluto and was first observed in 2005. With a semi-major axis of approximately 45 AU,

Makemake has an orbital period of 305 years [ 82 ]. The Hubble Space Telescope observed a

likely satellite, nicknamed MK2, in 2016.

7.2.1 Makemake Search Parameters

Table  7.4 summarizes the key inputs used to construct a network for the Makemake

search.

Table 7.4. Makemake Search Parameters

Parameter Value

Venus V∞ 6:3:14 km s−1

Earth V∞ 4:3:14 km s−1

Mars V∞ 6:3:14 km s−1

Jupiter V∞ 6:2:18 km s−1

Saturn V∞ 8:3:18 km s−1

Uranus V∞ 8:3:18 km s−1

Makemake V∞ 6:3:16 km s−1

Alignment Start Date Jan. 1, 2025
Alignment End Date Dec. 31, 2065
Max Flyby Count 8
Venus Max Repeat Visits 2
Earth Max Repeat Visits 2
Other Max Repeat Visits 1
Max Time of Flight 25 y
Date Tolerance 10% time of flight

The dates provided give boundaries on the alignment dates of the planets (described in

Chapter  3 ). The actual departure or arrival dates may fall outside this window.

7.2.2 Makemake Search Results

The Tisserand network search found nine paths to Makemake arriving in the 2040s to

2070s. These paths include 41 different routes. Recall from Chapter  3 that the discrete routes
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are discontinuous. To evaluate the paths, we generate 20 random but continuous patched-

conic trajectories along each route. Figure  7.7 provides a polar view of these patched-conic

trajectories.

Figure 7.7. The search found nine paths to Makemake in the search period.
These paths include 41 different routes. Twenty patched-conic trajectories
were generated for each route. These patched conics are visualized in the
figure. The orbits of Jupiter, Saturn, Uranus, Neptune, and Makemake are
also displayed.

Table  7.5 summarizes the results of the Makemake search. The Path column lists the

sequence of planets encountered on the gravity assist trajectory. We use a lower-case m to

symbolize the encounter with Makemake (reserving M for Mars). Recall from Chapter  3 ,

a route differentiates the particular vertices in the Tisserand network passed through along

the path (E13-O, J18-O, m12-O). A date variant identifies a duplicate of a route with some

difference in the encounter dates. The Network Routes and Date Variants columns list the
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number of these occurrences for each path. The Launch V∞, Total ∆V , Launch Window

and Arrival Window columns summarize the extremes of the randomized patched-conic

trajectories.

Table 7.5. Makemake Search Results Summary

Path Network
Routes

Date
Variants

Launch
V∞

(km s−1)

Total
∆V

(km s−1)

Launch
Window
(mm/yy)

Arrival
Window
(mm/yy)

VEEJm 2 2 4 - 23 4 - 12+ 07/27 - 01/28 07/51 - 07/51
JUm 8 8 9 - 44 2 - 9 12/38 - 04/42 02/70 - 02/70
JSm 12 12 10 - 35 3 - 7 01/28 - 10/37 01/51 - 06/54
Jm 10 25 10 - 27 0 - 12 03/26 - 06/44 12/42 - 09/63
VEEJSm 2 2 9 - 30 8 - 12+ 06/27 - 11/33 01/51 - 06/54
SJm 2 2 11 - 47 1 - 4 09/35 - 11/35 05/64 - 05/64
Sm 2 2 12 - 28 2 - 4 09/34 - 10/34 09/49 - 09/49
Um 2 4 12 - 32 1 - 3 09/46 - 11/47 02/70 - 02/70
VMEEJm 1 1 12 - 16 5 - 12+ 07/26 - 07/26 07/51 - 07/51

The search identified some paths that use gravity assists in the inner solar system

(VEEJm, VEEJSm, VMEEJm). However, all of these paths require excessively high ∆V to

close the patched-conic trajectories. In this analysis, the only source of mid-mission ∆V is

powered flyby ∆V required to complete the turning at an encounter. Trajectory correction

maneuvers are not modeled.

For the remaining discussion, trajectories requiring more than 15 km s−1 launch V∞ or

more than 5 km s−1 ∆V have been filtered out of the results. This removes all of the options

using the inner solar system for gravity assist. Figure  7.8 displays Makemake arrival date

versus the launch date for the remaining patched-conic trajectories. The simplest path (Jm,

Earth-Jupiter-Makemake) provides the most opportunities.

Lacking specific mission goals, we may assume that trajectory options with low launch

energy requirements, low mission ∆V expenditures, and short flight times are most desirable.

Figure  7.9 presents the launch V∞ versus the ∆V for the various paths discovered by the

search. The lower left region of low launch V∞ and low mission ∆V appears to be dominated

by the Jupiter-Makemake path (Jm).
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Figure 7.8. The arrival date is plotted against the launch date for each of
the patched conic variations on the network solution. Trajectories requiring
more than 15 km s−1 launch V∞ or more than 5 km s−1 ∆V are not shown.

Figure  7.10 shows the time of flight versus the ∆V for each patched-conic trajectory.

The lower left region is again the most desirable. There appear to be many low ∆V options

following the Jupiter-Makemake path, including some with low time of flight. However, we

cannot assume that the patched-conic Jm trajectories in the lower left of Figure  7.10 are the

same trajectories in the lower left of  7.9 .

Figure  7.11 focuses on the time of flight versus the ∆V considering only the Jm trajecto-

ries. The points are colored according to the launch V∞. As we might expect, the trajectories

with the shortest time of flight (around 16 years) have launch energies on the upper end of

the spectrum. We note that the highest launch energy yet achieved (New Horizons) would

fall near the middle of the Launch V∞ scale in Figure  7.11 .
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Figure 7.9. The launch V∞ is plotted against the cumulative ∆V for each of
the patched conic variations on the network solution. The Jupiter-Makemake
path dominates the lower left region which represents lower launch cost and
lower mission ∆V . Trajectories requiring more than 15 km s−1 launch V∞ or
more than 5 km s−1 ∆V are not shown.

The lower end of the Launch V∞ spectrum in Figure  7.11 represents Voyager class launch

energy. There are many trajectories in the middle band (around 20 year flight time) that

are within mission experience. The upper band includes lower launch V∞ and lower ∆V

requirements, but the flight time is extended to about 25 years.
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Figure 7.10. The time of flight is plotted against the cumulative ∆V for each
of the patched conic variations on the network solution. Jupiter-Makemake
trajectories are available with low ∆V . Trajectories requiring more than 15
km s−1 launch V∞ or more than 5 km s−1 ∆V are not shown.
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Figure 7.11. The time of flight is plotted against the cumulative ∆V for
the Jupiter-Makemake path only. The points are colored according to launch
V∞. The fastest and least ∆V costly trajectories in the lower left require large
launch energy. Trajectories requiring more than 15 km s−1 launch V∞ or more
than 5 km s−1 ∆V are not shown.
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7.3 Trans-Neptunian Object Search Summary

The Tisserand network can be extended to include any solar system object with an

available ephemeris. The example searches in this chapter identified preliminary paths to

Haumea and Makemake using the same techniques applied to the planets in the previous

chapters. The searches found multiple opportunities for missions in the near future with

moderate ∆V requirements and launch energy requirements within flight experience and

nascent launch vehicle capabilities.
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8. CONCLUSION

This dissertation has presented a new method for performing gravity-assist trajectory searches.

The Tisserand network captures the necessary astrodynamical information within its vertices

and edges. Fundamental graph traversal techniques were tailored into search algorithms for

the gravity-assist trajectory problem. The multiple gravity assist trajectory problem has

a tendency to grow in size rapidly as more options are considered. The efficiency of the

search algorithms was discussed and methods to manage problem growth and search time

were presented. These algorithms were then demonstrated on networks designed for specific

missions (both new and old).

8.1 Future Work

The present research has generated some related opportunities for exploration. Unfortu-

nately, time does not permit a detailed examination of every interesting side topic. A few

open areas of study are introduced below.

One of the original motivations for this research was the problem of finding gravity

assist trajectories for tours of the giant planet satellites. Such tours require dozens of moon

flybys to achieve the desired trajectory turning. Manual inspection of a Tisserand graph is

impractical for more than a few gravity assists. This problem calls for an automated means

of identifying energy-feasible sequences.

Therefore, the search for satellite tours with the Tisserand network method may be a

fruitful area of research. To extend the basic method described in this work to a planetary

satellite system we need the gravitational parameters of the satellites, the mean radii of each

satellite orbit, and an appropriate limit on flyby radius for each satellite. The system central

body must be changed from the Sun to the planet of interest. This is effectively only a change

in gravitational parameter. Future researchers should, of course, evaluate the assumptions

and limitations in Chapter  3 in light of the system of interest and analysis goals.

The Tisserand network provides a graph theory framework for gravity assist design prob-

lems. The present work has been focused on search techniques within this framework. How-

ever, there may be additional information to be gained about the nature of the design space
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from analysis of the network itself. For example, studies of the connectivity and clustering

of the network may yield new insights about the importance of certain bodies or synodic

periods for the trajectory availability.

Additional analysis and experimentation with the broken conics resulting from the Tis-

serand network search might show that these results can provide a reasonable estimate of the

flight times for the associated patched-conic trajectories. For example, the sum of the flight

times from each leg of the Tisserand network solution might predict (or bound) the flight

time of the optimized patched-conic trajectory using the procedure outlined in Equation

 3.33 . If such a relationship could be established, then we might be justified in performing

network searches with Dijkstra’s algorithm to find the fastest path to a planet. A shortest-

path search is much more computationally efficient than the all-paths search examined in

this work. A k-shortest paths search might also provide a group of k network paths which

is likely to contain the fastest patched-conic trajectory.

8.1.1 Feature Enhancements

The resonant model discussed in Chapter  4 only includes 2nπ transfers. This model

requires that sequential encounters of the same planet occur at the same inertial location

after the completion of a whole number of orbits of both the planet and the spacecraft.

Adding a non-resonant (nπ) repeat flyby model would increase the pathfinding potential of

the Tisserand network [  34 ], [  35 ].

The VILT model in Chapter  4 assumes that the leveraging maneuver is tangent to the

spacecraft orbit and occurs at apoapsis or periapsis of the heliocentric orbit. The model

also assumes that any leveraging maneuver occurs between successive gravity assists from a

single planet. Removing these assumptions could provide additional search capability. For

example, the techniques used to scan for VILT opportunities could be expanded for the case

where the arrival body is different than the departure body.

It may also be possible to expand the existing VILT model to apply to general Deep Space

Maneuvers (DSMs). A DSM is a maneuver that occurs during the heliocentric orbit (not in

the vicinity of the planet). Coupled with an extension to different-body transfers, a more
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general DSM model could loosen constraints on the maneuver location. The key output of

any such model is the time of flight between the two flybys for weighting the network edges.

Some simplifying assumptions will be required to limit the possible scenarios.

The Monte Carlo method for generating patched-conic trajectories is fast and provides

a reasonable characterization of each network path. The optimization technique can refine

the random patched-conic trajectories into a smaller set of more interesting trajectories.

However, the optimization procedure becomes slower as more gravity assist encounters are

added. Optimizing many randomized patched-conic trajectories with several gravity assists

can become computationally expensive. Moreover, preliminary experimentation with this

method has shown that many of the randomized trajectories will optimize to the same

result. Reducing the number of Monte Carlo cases per network path would reduce execution

time but might miss important features of some paths. A study to find the best number of

Monte Carlo cases could further refine the final results to highlight nearly-ballistic trajectories

without an undue increase in execution time.

As an alternative to the Monte Carlo patched-conic trajectory generation, a future im-

provement might be to integrate a more structured grid search for gravity assists that do not

require significant propulsive ∆V . The grid search can be localized to a small search space

based on the network search results.

The Tisserand network could be extended to include transfers with inclination changes.

This update might be desirable to provide better preliminary trajectories for satellite tours,

missions to Trans-Neptunian Objects, or other missions intended to deviate significantly

from the ecliptic plane.

The Tisserand graph was developed from the basic relationships between the gravity-

assist pump angle and the heliocentric orbit in Section  2.1 . Strange [ 34 ] includes a similar

discussion of the relationships between the gravity-assist pump and crank angles and the

resulting spacecraft orbits. These relationships might be employed to add an inclination

component to the Tisserand network approach. Campagnola and Russell [  67 ] also provide

some discussion of a three dimensional Tisserand-Poincaré graph that includes inclination.
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8.1.2 Performance Improvements

The bounded all paths and trace searches presented in Chapter  5 have so far only been

implemented in Python. Considerable speed improvements can be expected by translating

these algorithms to a compiled language.

The transitive closure modification to the bounded search suggested in Chapter  5 would

improve search speed regardless of the language implementation. This improvement would

use the transitive closure to verify the viability of a prospective branch before proceeding.

Future researchers might explore areas where search speed can be improved through the

use of parallel computing. Algorithm  1 has been parallelized, but in many basic searches

the multiprocessing overhead outweighs the performance benefit. For dense networks, the

weighting procedure can become costly. This process repeats a common task on each edge

in the network and would be a good target for multiprocessing.

8.2 Summary of the Contribution

The Tisserand network developed in this research provides a new approach to gravity-

assist trajectory design that solves the pathfinding and pathsolving problems simultaneously.

The method is configurable to allow trajectory searches for any solar system destination with

minimal inputs.

New network-oriented models for resonance and V-infinity leveraging transfers expand

the types of trajectories that can be found with the Tisserand network analysis. The models

also provide opportunities for further expansion of the network technique.

The new method automatically performs the task of finding energy-feasible gravity-assist

paths in a fraction of the time required by manual Tisserand graph analysis. The phasing

information included in the network leads to search results that are feasible with respect

to both energy and scheduling constraints. The search results are suitable for preliminary

comparisons and can focus higher fidelity analyses on promising candidates. The Tisserand

network enables a mission designer to find more preliminary trajectories of better quality

and in less time than was previously possible.
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A. THE TISSERAND GRAPH

This appendix includes some background material on the use and application of the Tisserand

graph. Figure  A.1 is a sample Tisserand graph including the planets Venus, Earth, Mars,

and Jupiter.

Figure A.1. A sample Tisserand graph including Venus, Earth, Mars, and
Jupiter. The contours for each planet represent the locus of heliocentric orbit
parameters for flybys at a given V∞. Intersections of the contours identify
pairs of flybys for two planets connected by the same heliocentric orbit. The
inset shows the relationship between the V∞ vector and the planet velocity,
spacecraft heliocentric velocity, and pump angle (Vp, Vsc, and α, respectively).

A.1 Demonstration

Here we review how to graphically construct a flyby sequence in the Tisserand graph.

Figure  A.2 is a close-up view of Figure  A.1 with a sample path highlighted. In both figures,
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the lower-right contour in each color represents a flyby of the given planet at a V∞ of 1 km/s.

The contours increase up and to the left at 3 km/s intervals. The pump angle, α, is the angle

between the flyby V∞ vector and the planet’s heliocentric velocity vector. A single contour

traces out the heliocentric orbit parameters that result from a flyby at the given V∞ as the

pump angle varies from 0 to π. We will use the nomenclature “Earth-4” or “E4” to refer to

the Earth contour where V∞ is 4 km/s. We will refer to intersections by their component

contours. So “V7E4” is the intersection of the Venus 7 km/s contour and the Earth 4 km/s

contour.

Figure A.2. A small section of a Tisserand graph highlights a potential path
from Earth to Jupiter. Starting at the V7E4 node and proceeding along the V∞
contours through V7M7, V16M7, and V16J7 indicates that a path VMMVVJ
exists (from an energy perspective).
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To start tracing out the sample trajectory, we assume an Earth departure V∞ of 4 km/s

(represented by the dashed line in Figure  A.2 ). We can visually scan the dashed line for an

intersection with another contour. In this case, the V7E4 intersection is highlighted. This

intersection represents a heliocentric orbit that leaves Earth at 4 km/s and encounters Venus

at 7 km/s.

By following the Venus-7 contour upward we consider the family of Venus flybys with a

V∞ of 7 km/s but with decreasing pump angles. Eventually, we find an intersection (V7M7)

with the Mars-7 contour. Here the pump angle at Venus is sufficient to intersect the Mars

orbit. In particular, this intersection represents a heliocentric orbit that departs Venus at 7

km/s and encounters Mars at 7 km/s.

Tracing the Mars-7 contour to the left we eventually find the intersection with the Venus-

16 contour. However, before reaching that intersection we notice the black dot on the Mars-7

contour. This dot represents the maximum turning angle (or distance along the contour)

that can be achieved with a single flyby of Mars (due to a practical limit on the periapsis

of the flyby hyperbola). In other words, the transfer from Mars-7 to Venus-16 requires two

Mars flybys.

From the V16M7 intersection, we trace the Venus-16 contour upward until we encounter

the V16J7 intersection. Here we note again that two Venus flybys are required to boost the

heliocentric energy sufficiently high enough to reach the Jupiter-7 contour. This final leg

indicates that a series of two flybys of Venus at 16 km/s will result in a heliocentric orbit

that reaches Jupiter with a Jupiter-centric V∞ of 7 km/s. To summarize, we have identified

a “path” from Earth to Jupiter that we label VMMVVJ. By convention, the initial E for the

Earth departure is implied. We know the planet and the planet-centric V∞ of each encounter

on the path.

A.2 History, Applications, and Advancements

The following is a partial list of authors who have employed and extended the Tisserand

graph for mission planning.
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A.2.1 Early Development

An early study by Strange and Longuski develops the Tisserand graph for ballistic tra-

jectories from fundamental gravity-assist principles [  9 ]. The authors also present a search

algorithm focused on finding minimum time-of-flight paths from the possible paths in the

Tisserand graph. Miller and Weeks explore the connection between the Tisserand criterion

and the Jacobi integral and describe the use of the Tisserand criterion to match gravity-assist

trajectories [ 45 ]. Okutsu and Longuski discovered a Mars free-return abort trajectory that

meets mission constraints by adding a flyby of Venus [  83 ].

A.2.2 Application of the Tisserand Graph to Satellite Tours

Heaton et al. design a tour for the proposed Europa Orbiter using the Tisserand graph

[ 84 ]. Heaton and Longuski investigate the feasibility of tours of the Uranian satellites with

the help of the Tisserand graph [  85 ]. Campagnola and Kawakatsu use the Tisserand graph

to design a tour of the Jovian system [  86 ].

A.2.3 Extension of Tisserand Analysis Methods for Aero-Gravity-Assist

Johnson and Longuski apply the Tisserand graph to aero-gravity-assist trajectories [ 87 ],

[ 88 ]. In this application, the V∞ at approach and departure are no longer identical. However,

the aero-gravity-assist extends the amount of trajectory turning that can be achieved from

a single flyby.

A.2.4 Extension of Tisserand Analysis Methods for Low-Thrust

Chen et al. [ 89 ] extend the Tisserand analysis technique to low-thrust trajectories. In

this analysis, the constant V∞ contours are replaced by numerically integrated trajectories

assuming representative low-thrust control laws. The addition of thrust violates a basic

assumption of the Tisserand criterion derivation. Maiwald develops a correction to the

Tisserand criterion for low-thrust applications and an optimization method for combined

low-thrust gravity-assist missions [  90 ], [  91 ].
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A.2.5 Extension to Other Dynamical Models

The Tisserand graph was developed for circular, coplanar orbits about the central body—

in other words, for analytical solutions in the patched two-body problem. Campagnola

and Russell extend the Tisserand graph by adding numerical solutions to V∞-leveraging

maneuvers and create the Tisserand-leveraging graph [ 67 ]. Campagnola and Russell also

extend the method to allow patched trajectories in the Circular Restricted 3-body Problem

[ 92 ], [  93 ]. The adapted tool is called the Tisserand-Poincaré graph. Yárnoz et al. [ 94 ] and

Pugliatti [ 95 ] make a further extension by including the perturbing effect of a second primary

body to form the Extended Tisserand-Poincaré graph.

A.2.6 Pathfinding for Gas Giant Catalogs

Hughes et al. [ 11 ], Mudek et al. [ 15 ], and Mudek [  17 ] assemble catalogs of gravity-assist

trajectories to Uranus and Neptune over the next several decades. These studies use the

Tisserand graph as a preliminary step to identify candidate flyby paths. The candidate

paths are then evaluated for feasibility by solving each path for specific launch dates and

launch V∞.

A.2.7 Cycler and Asteroid Applications

Jones et al. [ 96 ] use the Tisserand graph to construct triple cyclers of Venus, Earth, and

Mars. Hernandez et al. [ 97 ] employ the Tisserand graph to identify potential triple cyclers

in the Jovian moons. Chen et al. [ 98 ] use a Tisserand graph to study the accessibility of

main belt asteroids using gravity assists from Earth and Mars.
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B. DERIVATIONS

This appendix includes some mathematical derivations that are important for implementing

the Tisserand network.

B.1 Time of Flight for Transfer Arcs

This section derives the time equations given in Strange and Longuski [  9 ] and reproduced

in Table  3.2 and below for convenience. Consider the geometry in Figure  B.1 

−t1−t2

t1
t2

tp

Figure B.1. An example of the four intersection points

Let us measure the times of the encounters relative to the time of periapsis passage on

the transfer orbit, tp = 0. Therefore, t1 is the time required to reach the outbound crossing

of the inner planet orbit and t2 is the time required to reach the outbound crossing of the

outer planet orbit. Similarly, −t2 and −t1 are the times required to reach periapsis from
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the inbound crossings of the outer and inner planet orbits, respectively. There are eight

combinations of up/down and inbound/outbound encounters. The eight different transfer

arcs are visualized in Figures  B.2 and  B.3 .

Figure B.2. An example of the four possible upward transfer arcs between
planets in circular, coplanar orbits. This transfer orbit is defined by the inter-
section of the Earth-10 and Mars-7 contours and crosses each planetary orbit
at two points (denoted I for inbound and O for outbound). The two points on
one orbit connect to the two points on the other orbit to create four unique
arcs in the transfer orbit. The transfer time depends on the arc and the direc-
tion of travel.

The time of flight for each arc is calculated in the following sections. Table  B.1 summa-

rizes the results.
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Figure B.3. An example of the four possible downward transfer arcs between
planets in circular, coplanar orbits. This transfer orbit is defined by the inter-
section of the Earth-10 and Mars-7 contours and crosses each planetary orbit
at two points (denoted I for inbound and O for outbound). The two points on
one orbit connect to the two points on the other orbit to create four unique
arcs in the transfer orbit. The transfer time depends on the arc and the direc-
tion of travel.

B.1.1 Upward, Outbound to Outbound

The transfer from t1 to t2 is simply

tflight = t2 − t1 . (B.1)
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Table B.1. Time of Flight for Possible Arcs

Upward Downward Time of Flight

I-I O-O P + t1 − t2
O-I O-I P − t1 − t2
I-O I-O t1 + t2
O-O I-I t2 − t1

B.1.2 Upward, Inbound to Outbound

The transfer from −t1 through periapsis to t2 is

tflight = |−t1|+ t2

tflight = t1 + t2 . (B.2)

B.1.3 Upward, Outbound to Inbound

To find the time from t1 to −t2 we start with the full orbital period and subtract the

time from periapsis to planet 1, t1, and the time from planet 2 to periapsis, |−t2| = t2:

tflight = P − t1 − |−t2|

tflight = P − t1 − t2 . (B.3)

B.1.4 Upward, Inbound to Inbound

To find the time from −t1 through periapsis to −t2 we subtract the (downward) travel

time from −t2 to −t1 from the full orbital period:

tflight = P − (−t1 − (−t2))

tflight = P + t1 − t2 . (B.4)
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B.1.5 Downward, Inbound to Inbound

The transfer from −t2 to −t1 is simply

tflight = −t1 − (−t2)

tflight = t2 − t1 . (B.5)

B.1.6 Downward, Inbound to Outbound

The transfer from −t2 through periapsis to t1 is

tflight = |−t2|+ t1

tflight = t1 + t2 . (B.6)

B.1.7 Downward, Outbound to Inbound

To find the time from t2 to −t1 we start with the full orbital period and subtract the

time from periapsis to planet 2, t2, and the time from planet 1 to periapsis, |−t1| = t1:

tflight = P − |−t1| − t2

tflight = P − t1 − t2 . (B.7)

B.1.8 Downward, Outbound to Outbound

To find the time from t2 through periapsis to t1 we subtract the (upward) travel time

from t1 to t2 from the full orbital period:

tflight = P − (t2 − t1)

tflight = P + t1 − t2 . (B.8)
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B.2 Delta-V Estimate for Linked Lambert Problem Solutions

When creating patched-conic trajectories from a set of linked interplanetary Lambert

problem arcs, the magnitude of the inbound and outbound V∞ at the intermediate gravity-

assist bodies are, in general, not equal. A propulsive ∆V will be required make up any change

in V∞ magnitude and any change in direction in excess of the “free” rotation provided by

gravity assist.

Figure B.4. A schematic of a flyby including a propulsive change in V∞.
The maximum bending angle provided through gravity assist is less than the
desired bending. V−

∞ may be rotated as far as V−′
∞ . To complete the bending

and any magnitude change a propulsive ∆V is required. The magnitude of
the ∆V is found from the red triangle.

The angle between the V∞ vectors is found from their dot product:

cos δ = V−
∞ ·V+

∞
|V−

∞||V+
∞|

. (B.9)

The maximum bending angle achievable through gravity assist alone is found from Equation

 2.18 to be

δga = 2 arcsin µ

µ + rmin (V −
∞)2 , (B.10)
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where rmin is the minimum allowable flyby radius for the planet. If δga ≥ δ then the trajectory

bending can be accomplished via gravity assist and only the difference in magnitude needs

to be made up propulsively, so

∆Vprop = |V +
∞ − V −

∞ | . (B.11)

If δga < δ then there is some residual angle, δr that must be made up propulsively:

δr = δ − δga . (B.12)

The situation is shown schematically in Figure  B.4 . The gravity assist is capable of rotating

V−
∞ to V−′

∞ . The magnitude of the required propulsive ∆V can be found from the Law of

Cosines on the red triangle in Figure  B.4 :

∆Vprop =
√

(V −
∞)2 + (V +

∞)2 − 2V −
∞V +

∞ cos (δr) . (B.13)
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C. DETAILED HISTORICAL MISSION SEARCHES

This appendix includes a more detailed look at some of the historical mission searches sum-

marized in Chapter  6 . The Voyager 1, Galileo, and Cassini missions are discussed in more

detail. The full analysis of Voyager 2 is included in Chapter  6 .

C.1 Voyager 1 Search

The Voyager 1 mission included flybys of Jupiter and Saturn [  72 ], [ 73 ]. The mission

provides a fairly simple gravity assist example with known parameters. We will not attempt

to model any trajectory correction maneuvers that occurred on the actual mission.

C.1.1 Voyager 1 Search Parameters

Table  C.1 summarizes the key inputs used to construct a network for the Voyager 1

problem and search for trajectories. The V∞ notation 7:1:12 km s−1 means the Tisserand

network includes V∞ levels from 7 up to and including 12 km s−1 in 1 km s−1 increments. The

Table C.1. Voyager 1 Search Parameters

Parameter Value

Earth V∞ 7:1:12 km s−1

Jupiter V∞ 7:1:12 km s−1

Saturn V∞ 9:1:16 km s−1

Alignment Start Date Jan. 1, 1977
Alignment End Date Dec. 31, 1980
Max Flyby Count 2
Max Repeat Visits 0
Max Time of Flight 4 y
Date Tolerance 10% time of flight

dates provided give boundaries on the alignment dates of the planets (described in Chapter

 3 ). The actual departure or arrival dates may fall outside this window.
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C.1.2 Voyager 1 Actual Trajectory

Voyager 1 launched September 5, 1977 on a Titan IIIE-Centaur. The departure ∆V for

the Earth to Jupiter leg was provided by the Centaur upper stage and Star 37E solid booster

[ 72 ]. For comparison with the Tisserand network results, Table  C.2 provides a patched-conic

reconstruction of the Voyager 1 encounters based on the published flyby dates.

Table C.2. Voyager 1 Encounters

Encounter Planet V∞ (km s−1) Date

Launch Earth 10.3 Sep. 5, 1977
1 Jupiter 10.9 Mar. 5, 1979
2 Saturn 15.3 Nov. 12, 1980

C.1.3 Voyager 1 Results

Figure  C.1 shows the Tisserand graph created for the Voyager 1 problem. This Tisserand

graph is the basis for the Tisserand network in Figure  C.2a . The Earth departures at V∞ of

7, 8, and 9 (km s−1) do not intersect the contours of the other planets in the Tisserand graph.

This fact is mirrored by the isolated E7, E8 and E9 vertices in the Tisserand network. The

grid view of the Tisserand network makes explicit the energy connections between flybys of

each planet. This view, however, does not clearly show differences in timing between the

arrival and departure from any given planet.

Figure  C.3 displays the Tisserand network in a polar view of the two-point orbital arcs.

The concentric circles outline the orbits of Earth, Jupiter, and Saturn, respectively. Empty

markers on these orbits identify a departure from that planet and filled markers identify

an arrival. This view shows, more clearly, the timing problem to be solved. The arrival at

Jupiter needs to coincide with the departure for Saturn. The network is filtered to remove

arrival/departure time mismatches outside of the desired tolerance. The search algorithm

will find arrivals and departures in the filtered network that match in V∞.
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Figure C.1. The Tisserand graph displays the discrete V∞ levels that will be
considered in the Voyager 1 search.
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(b) Network solutions highlighted.

Figure C.2. The grid view of the Tisserand network assists in visualizing the
energy connections that will be searched to find a possible Voyager 1 path.
Multiple lines connecting two vertices indicate more than one date on which
the connection exists.
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Figure C.3. The polar view of the Tisserand network assists in visualizing
the time connections that will be searched to find a possible path. The circular
orbits represent the orbits of Earth, Jupiter, and Saturn, respectively. Empty
markers on the orbits represent a departure and filled markers represent an
arrival. Date ticks represent January 1st of each year.
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Table  C.3 summarizes the results of the Voyager 1 search. The Path column lists the

sequence of planets encountered on the gravity assist trajectory. Recall from Chapter  3 , a

route differentiates the particular vertices in the Tisserand network that are passed through

along a path (e.g. E10-O, J7-O, S9-O). A date variant identifies a duplicate of a route with

some difference in the encounter dates. The Network Routes and Date Variants columns list

the number of these occurrences for each path.

The Launch V∞, Total ∆V , Launch Window and Arrival Window columns summarize

the extremes of the randomized patched-conic trajectories. The total ∆V is the cumulative

propulsive ∆V required to complete gravity-assist turning at any of the encounters after

Earth departure. The date columns give the range of departure or arrival dates in month/year

format.

Table C.3. Voyager 1 Search Results Summary

Path Network
Routes

Date
Variants

Launch
V∞

(km s−1)

Total
∆V

(km s−1)

Launch
Window
(mm/yy)

Arrival
Window
(mm/yy)

JS 178 341 4 - 15 0 - 5 06/77 - 12/79 09/79 - 12/83
S 10 40 11 - 15 — 08/76 - 12/79 09/78 - 04/84

Figure  C.4 shows the Tisserand network search solutions. This includes Earth-Jupiter-

Saturn (JS) paths and direct Earth-Saturn (S) paths. Within each path are multiple routes.

For example, the connected vertices E10-I,J7-O,S9-O and E10-O,J7-O,S10-O are both JS

paths but they represent different routes through the network vertices. The various routes

are visible in Figure  C.2b which shows the search results in the Tisserand network grid view.

Because of the discrete composition of the network and the tolerance in encounter dates,

the search results include gaps in time and only represent outlines of closed trajectories.

Section  3.6 discusses several methods of filling in these outlines. Here, we select 20 ran-

dom encounter date sequences within the date ranges identified by each Tisserand network

solution. Figure  C.5 shows the resulting patched conic trajectories.
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Figure C.4. The search found two paths (JS and S) that contain 161 routes.
The actual Voyager 1 trajectory is shown in the thick gray line.
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Figure C.5. The Tisserand network solutions provide the outline for a collec-
tion of patched conic trajectories shown here. A patched conic approximation
of the true Voyager 1 trajectory is highlighted.
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We can evaluate the patched conic trajectories relative to one another by comparing key

characteristics. Figure  C.6 plots the time of flight against the total mission ∆V for each

of the patched conic trajectories generated from the Tisserand network search results. The

color of each point corresponds to the launch V∞. For clarity, trajectories that required more

than 15 km s−1 launch V∞ or more than 5 km s−1 ∆V were filtered from the solution set.

The approximated Voyager 1 trajectory appears as the diamond. In Figure  C.6 attractive

trajectories will fall in the lower-left corner and will be on the cool end of the spectrum.
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Figure C.6. The time of flight is plotted against the mission ∆V for each of
the patched conic variations on the network solution. The shade of the points
corresponds to the total mission launch V∞. Trajectories requiring more than
15 km s−1 launch V∞ or more than 5 km s−1 ∆V are not shown. The actual
Voyager 1 trajectory is shown as the diamond.

Another practical parameter to consider is the launch date. Figure  C.7 plots the launch

V∞ against the launch date for each trajectory. The color of each point corresponds to the
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total mission ∆V . The data show that selecting the right launch date has a pronounced

effect on the required launch V∞.
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Figure C.7. The Launch V∞ is plotted against the Launch Date for each
of the patched conic variations on the network solution. The shade of the
points corresponds to the total mission delta-V. Trajectories requiring more
than 15 km s−1 launch V∞ or more than 5 km s−1 ∆V are not shown. The
actual Voyager 1 trajectory is shown as the diamond.

Absent other mission constraints, a trajectory designer would likely choose a trajectory

with a low launch V∞, a low mission ∆V , and a short time of flight. We see that the actual

Voyager 1 mission performs well in these criteria relative to the field of possible trajectories.
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C.2 Galileo Search

The Galileo mission to Jupiter provides an opportunity to evaluate the Tisserand network

in a trajectory search with a resonant transfer. Galileo performed two Earth flybys separated

by exactly two years as part of the Venus Earth Earth Gravity Assist (VEEGA) sequence.

The Galileo mission included an atmospheric entry probe and a tour of the Jovian satellites.

Here we will examine only the gravity assist journey from Earth to Jupiter and will neglect

several trajectory shaping maneuvers.

C.2.1 Galileo Search Parameters

Table  C.4 summarizes the inputs used to build the Galileo search network. The Max

Repeat Visits parameter is set to 2 to allow the repeat flybys of Earth in the VEEGA.

To make the results more presentable, we add some additional constraints that the Venus

encounters must occur in the years 1989 through 1991 and the Earth launch and encounters

must occur in the years 1988 through 1994. If we were looking for a new mission, we

might not add these constraints. But for this reconstruction, these constraints will limit the

solutions to those more closely resembling the Galileo mission.

Table C.4. Galileo Search Parameters

Parameter Value

Venus V∞ 4:1:8 km s−1

Earth V∞ 3:1:10 km s−1

Jupiter V∞ 5:1:8 km s−1

Start Date Jan. 1, 1988
End Date Dec. 31, 1996
Max Flyby Count 6
Max Repeat Visits 2
Max Time of Flight 9 y
Date Tolerance 5% time of flight
Venus Encounter Window 1989 - 1991
Earth Encounter Window 1988 - 1994
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C.2.2 Galileo Actual Trajectory

Galileo launched aboard Space Shuttle Atlantis on October 18, 1989. The original mission

design included a direct trajectory to Jupiter made possible by a Shuttle-Centaur upper stage.

The Shuttle-Centaur was a version of the Centaur upper stage designed to be carried to orbit

in the Space Shuttle payload bay. In response to the Challenger disaster, the Shuttle-Centaur

program was cancelled over safety concerns with the Centaur’s liquid-hydrogen fuel. The

Galileo mission was redesigned with a less-capable, solid-fueled inertial upper stage. The

decrease in launch C3 capability was the impetus for the VEEGA trajectory [  74 ].

Partial information on the Galileo encounters can be found in D’Amario et al. [ 75 ] and is

tabulated in Table  C.5 . The V pc
∞ values are based on a patched-conic gravity-assist sequence

reconstructed from the published encounter dates. The patched-conic values agree well with

the published data.

Table C.5. Galileo Encounters

Encounter Planet V∞ (km s−1) V pc
∞ (km s−1) Date

Launch Earth 3.1 3.9 Oct. 18, 1989
1 Venus 6.2 6.1 Feb. 10, 1990
2 Earth 8.9 8.8 Dec. 8, 1990
3 Earth 8.9 8.9 Dec. 8, 1992
4 Jupiter — 5.6 Dec. 7, 1995

C.2.3 Galileo Results

Figure  C.8 shows the Tisserand graph created for the Galileo problem. The contours

for the outer solar system are typically compressed and we can see this effect for Jupiter in

Figure  C.8 . This difference in scales is an example of the difficulties with manual pathfinding

in the Tisserand graph. We can make an immediate observation that an Earth V∞ of roughly

9 km s−1 will be required to reach Jupiter (see inset). The contours in Figure  C.8 are the

basis for the Tisserand network in Figure  C.9 .

231



Figure C.8. The Tisserand graph displays the discrete V∞ levels that will be
considered in the Galileo search.

The grid view of the Tisserand network (Figure  C.9 ) visualizes the energy connections

between flybys of each planet. This view, however, does not clearly show differences in timing

between the arrival and departure from any given planet.

Figure  C.10 displays the Tisserand network in a polar view of the two-point orbital arcs.

The concentric circles outline the orbits of Earth and Jupiter. Figure  C.11 shows a similar

view focusing on Earth and Venus. Empty markers on these orbits identify a departure from

that planet and filled markers identify an arrival. This view shows, more clearly, the timing

problem to be solved. The network is filtered to remove arrival/departure time mismatches

outside of the desired tolerance. The search algorithm will find arrivals and departures in

the filtered network that match in V∞.
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Figure C.9. The grid view of the Tisserand network assists in visualizing
the energy connections that will be searched to find a possible Galileo path.
Multiple lines connecting two vertices indicate more than one date on which
the connection exists.
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Figure C.10. The polar view of the Tisserand network assists in visualizing
the time connections that will be searched to find a possible Galileo path. The
outer circle represents Jupiter’s orbit. Empty markers on the orbits represent a
departure and filled markers represent an arrival. Date ticks represent January
1st of each year.
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Figure C.11. The polar view of the Tisserand network assists in visualizing
the time connections that will be searched to find a possible path. The con-
centric circles represent the orbits of Venus and Earth. Empty markers on the
orbits represent a departure and filled markers represent an arrival. Date ticks
represent January 1st of each year. In this search, there are many possible
transfers between Earth and Venus over the course of a few years.

235



Table  C.6 summarizes the results of the Galileo search. The Path column lists the

sequence of planets encountered on the gravity-assist trajectory.

Table C.6. Galileo Search Results Summary

Path Network
Routes

Date
Variants

Launch
V∞

(km s−1)

Total
∆V

(km s−1)

Launch
Window
(mm/yy)

Arrival
Window
(mm/yy)

VEEJ 56 121 3 - 15 2 - 10 12/88 - 02/90 02/95 - 06/96
J 16 85 9 - 15 0 - 0 06/88 - 01/94 04/90 - 11/97

Figure  C.12 shows the Tisserand network search solutions. The search discovered two

paths: VEEJ and J. Within each path are multiple routes. Overall the search found about

70 distinct routes. Including date variations on those routes, the total number of network

paths was 206. The various routes are visible in Figure  C.9b which shows the search results

in the Tisserand network grid view.

As with the other missions, we select 20 random encounter date sequences within the

date ranges identified by each Tisserand network solution. Figure  C.13 shows the patched

conic trajectories along the VEEJ and J paths. The launch V∞ and propulsive ∆V (if

any) required for each of the patched-conic can be computed from the Lambert solutions as

described in Chapter  3 . Patched-conic trajectories requiring more than 15 km s−1 launch V∞

or more than 10 km s−1 propulsive ∆V have been excluded from the summary in Table  C.6 .

The Tisserand network was successful at finding Galileo-like paths (VEEJ) including some

patched-conic trajectories with similar launch and arrival dates as seen in Figure  C.13 .
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Figure C.12. The search found two paths (VEEJ and J) that contain 72
routes with approximately 200 date variants. The discontinuous network
routes are plotted for the VEEJ and J paths. The actual Galileo trajectory is
shown in the thick gray line.
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Figure C.13. The Tisserand network solutions provide the outline for a
collection of randomized patched conic trajectories shown here in a polar view
of three-dimensional trajectories. The spacecraft trajectories are constructed
from Lambert solutions on a 3-D ephemeris. A patched conic approximation
of the true Galileo trajectory is highlighted.
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C.3 Cassini Search

The Cassini mission to Saturn provides a comparison case with a V-Infinity Leveraging

Transfer (VILT). We will only attempt to find the trajectory to Saturn and will not recreate

the tour of Saturn’s satellites.

C.3.1 Cassini Search Parameters

Table  C.7 summarizes the inputs used to build the Cassini search network. The network

is configured to scan for Venus VILT opportunities starting with an V∞ of 6 km s−1.

Table C.7. Cassini Search Parameters

Parameter Value

Venus V∞ 5, 6, 9, 10, 11 km s−1

Earth V∞ 4.5, 5, 14, 15, 16, 17 km s−1

Jupiter V∞ 9:1:11 km s−1

Saturn V∞ 5:1:7 km s−1

Start Date Jan. 1, 1997
End Date Dec. 31, 2010
Max Flyby Count 6
Max Repeat Visits 2
Max Time of Flight 9 y
Date Tolerance 20% time of flight
VILT at Venus 6 km s−1

C.3.2 Cassini Actual Trajectory

Cassini/Huygens was launched on October 15, 1997 on a Titan IVB-Centaur with two

solid rocket motor upgrades. The Centaur upper stage provided the ∆V for the departure

to Venus [  76 ]. Partial information on the Cassini encounters is available in Goodson et al.

[ 65 ]. Those values are tabulated in Table  C.8 . The V pc
∞ values are based on a patched

conic reconstruction of the gravity assist sequence using the published encounter dates. The

patched-conic values agree well with the published data.
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Table C.8. Cassini Encounters

Encounter Planet V∞ (km s−1) V pc
∞ (km s−1) Date

Launch Earth 4.1 4.0 Oct. 15, 1997
1 Venus 6.0 5.9 Apr. 26, 1998
2 Venus 9.4 9.4 Jun. 24, 1999
3 Earth 16.0 16.0 Aug. 18, 1999
4 Jupiter — 10.6 Dec. 30, 2000
5 Saturn — 5.3 Jul. 1, 2004

C.3.3 Cassini Results
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Figure C.14. The Tisserand graph displays the discrete V∞ levels that will
be considered in the Cassini search.

Figures  C.14 and  C.15 show the Tisserand graph created for the Cassini problem. The

contours for the outer solar system are compressed in Figure  C.14 so Figure  C.15 focuses on

the Tisserand graph in the outer solar system. This difference in scales is an example of the
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Figure C.15. The Tisserand graph displays the discrete V∞ levels that will be
considered in the Cassini search. This view focuses on the outer solar system.

difficulties with manual pathfinding in the Tisserand graph. These graphs are the basis for

the Tisserand network in Figure  C.16 .

The grid view of the Tisserand network (Figure  C.16a ) visualizes the energy connections

between flybys of each planet. This view, however, does not clearly show differences in timing

between the arrival and departure from any given planet.

Figure  C.17 displays the Tisserand network in a polar view of the two-point orbital arcs.

The concentric circles outline the orbits of Jupiter, and Saturn, respectively. Figure  C.18 

provides a similar view of the inner solar system. Empty markers on these orbits identify

a departure from that planet and filled markers identify an arrival. The network is filtered

to remove arrival/departure time mismatches outside of the desired tolerance. The search

algorithm will find arrivals and departures in the filtered network that match in V∞.
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(a) Search Network. (b) Network solutions highlighted.

Figure C.16. The grid view of the Tisserand network assists in visualizing
the energy connections that will be searched to find a possible Cassini path.
Multiple lines connecting two vertices indicate more than one date on which
the connection exists.
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Figure C.17. The polar view of the Tisserand network assists in visualizing
the time connections that will be searched to find a possible path. The outer
circle represents Saturn’s orbit. Empty markers on the orbits represent a
departure and filled markers represent an arrival. Date ticks represent January
1st of each year.
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Figure C.18. The polar view of the Tisserand network assists in visualizing
the time connections that will be searched to find a possible path. The con-
centric circles represent the orbits of Venus and Earth. Empty markers on the
orbits represent a departure and filled markers represent an arrival. Date ticks
represent January 1st of each year. In this search, there are many possible
transfers between Earth and Venus over the course of a few years.
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Table  C.9 summarizes the results of the Cassini search. The Path column lists the

sequence of planets encountered on the gravity assist trajectory.

Table C.9. Cassini Search Results Summary

Path Network
Routes

Date
Variants

Launch
V∞

(km s−1)

Total
∆V

(km s−1)

Launch
Window
(mm/yy)

Arrival
Window
(mm/yy)

VVES 5 27 3 - 12 3 - 10 11/97 - 12/05 11/02 - 10/17
VVEJS 6 6 4 - 11 — 10/97 - 12/97 07/02 - 03/06
JS 42 42 10 - 15 0 - 5 02/98 - 10/00 11/01 - 10/10
VES 46 186 14 - 15 0 - 10 12/96 - 04/06 10/02 - 11/17
VEJS 44 72 14 - 15 0 - 10 12/96 - 05/98 06/02 - 04/06
S 18 234 10 - 15 0 - 0 03/97 - 02/10 08/00 - 04/18

As with the other missions, we select 20 random encounter date sequences within the date

ranges identified by each Tisserand network solution. Figure  C.20 shows the patched conic

trajectories along the various paths. The launch V∞ and propulsive ∆V (if any) required

for each of the patched-conic can be computed from the Lambert solutions as described in

Chapter  3 . Patched-conic trajectories requiring more than 15 km s−1 launch V∞ or more

than 10 km s−1 propulsive ∆V have been excluded from the summary in Table  C.9 .

Figure  C.19 shows the Tisserand network search solutions. The search discovered six

paths. These include the VVEJS path used by Cassini, in addition to VVES, JS, VES,

VEJS, and S. Within each path are multiple routes. Overall the search found about 160

distinct routes. Including date variations on those routes, the total number of network paths

was 567. The various routes are visible in Figure  C.16b , which shows the search results in

the Tisserand network grid view. The V6 to V10 VILT is not shown in this view.

The Tisserand network was able to find routes similar to the actual VVEJS Cassini path

(for example, E5-I, V6-O, V10-I, E16-O, J11-O, S5-O). However, in cases with consecutive

flybys of the same planet (such as the Venus VILT in the Cassini design), the ∆V results for

the randomized patched-conic trajectories have proven to be sensitive to the actual randomly

drawn dates. The particular random draws in the example tabulated here resulted in ∆V
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above the 10 km s−1 limit. In these cases, a more sophisticated method for generating the

patched-conic trajectories may be required. This improvement is included in the future work.

Figure C.19. The search found six paths (VVES, VVEJS, JS, VES, VEJS,
and S) that contain 160 routes with approximately 570 date variants. The
actual Cassini trajectory is shown in the thick gray line.

Because of the discrete composition of the network and the tolerance in encounter dates,

the search results include gaps in time and only represent outlines of closed trajectories.

These outlines can be filled in by several means as discussed in Section  3.6 . Here, we select

20 random encounter date sequences within the date ranges identified by each Tisserand

network solution. Figure  C.20 shows the resulting patched conic trajectories.
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Figure C.20. The Tisserand network solutions provide the outline for a
collection of randomized patched conic trajectories shown here in a polar view
of three-dimensional trajectories. The spacecraft trajectories are constructed
from Lambert solutions on a 3-D ephemeris. Some of the random encounter
dates result in out-of-plane trajectories. A patched conic approximation of the
true Cassini trajectory is highlighted.
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