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ABSTRACT 

With the explosion of AI in recent years, there has been an exponential rise in the demand 

for computing resources. Although Moore’s law has so far kept up with conventional 

computational demands in the past, it has become evident that the efficiency and area gains with 

transistor scaling are no longer exponential, but rather incremental. The standard Von Neumann 

architecture imposes a limit on efficiency and latency as data is shuttled repeatedly between the 

compute and memory units. On the other hand, AI workloads rely heavily on matrix-vector-

multiplication which get exponentially expensive with vector widths. In-memory and near-

memory computing have come up as promising alternatives that addresses both these issues 

elegantly while reducing energy requirements. 

 

A variety of NN models rely on fast and repetitive evaluation of exponential transcendental 

functions. In many cases, this is done by range reduction technique and math tables. For optimal 

energy efficiency and throughput, it is best if these tables reside as close as possible to the circuit 

where it is consumed. We propose a mixed-signal macro with dual functionality: ability to do 

matrix vector multiplication as well evaluate exp(x) for 32-bit IEEE 754 floating point number. 

The said macro consists of 64x64 array of special 8T cells that stores the math tables without 

hindering normal SRAM functionality. The charge based MVM engine uses two ADCs with 

reconfigurable precision, allowing faster throughput for sparse inputs. As the outputs of these 

operations are separate, it allows for high flexibility to use the macro in any neural-network 

hardware that needs either or both the functions.  

 

Spiking Neural Networks (SNN) can perform sequential learning tasks efficiently by using 

the inherent recurrence of membrane potential (Vmem) accumulation over several timesteps. 

However, the data movement of Vmem creates additional memory accesses, which becomes a 

bottleneck operation. Additionally, SNN input spikes are highly sparse in nature, which can be 

exploited for efficient hardware implementation. We propose an SNN accelerator based on in-

memory processing that addresses these. The said accelerator consists of 9 compute macros and 3 

neuron macros, which can be programmed to work either serially (9 compute, 1 neuron) or in 3 

parallel sets (3 compute, 1 neuron) to support different layer sizes. Peripheral logic computes the 
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membrane potential and stores it in the same compute macro, thus avoiding unnecessary data 

movement. The neuron macro keeps track of final membrane potential and generates output spikes. 

This accelerator was designed to run at 200Mhz at 1.2v in TSMC 65nm node. 
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 INTRODUCTION 

With the ever-increasing demand for more compute performance for less cost, Moore’s law 

has kept up its promise for several decades. However, in recent years, we have seen that scaling 

the transistor further does not yield the same exponential improvements we have come to expect 

over the past decades. As compute circuits grow faster and faster, it has become increasingly 

difficult to keep it well-fed with data. This fact becomes especially significant as more bandwidth 

is given to memory, we hit a point of diminishing returns, where improvement in memory latency 

falls behind the growing energy and area requirements [1]. The standard Von-Neumann 

architecture thus presents itself as a limit to speed and efficiency. To add to the list of challenges, 

scaling in advanced technology nodes is not symmetric for memory and digital logic. As a result, 

the percentage of area dedicated to on-chip SRAM have steadily trended upwards [2]. With the 

explosion of Artificial Intelligence in everything, researchers are shifting their focus towards better 

ways to process Neural Network workloads. In sharp contrast to conventional sequential 

computing, NN workloads rely heavily on matrix-vector-multiplication which get exponentially 

expensive with layer size and depth. In-memory and near-memory computing have come up as 

promising alternatives that address both these issues elegantly while reducing energy requirements.  

 

Prior research done in this domain has yielded varying levels of success in maximizing 

throughput and efficiency from conventional memory cell architectures [3]-[7]. Our focus is on 

using or re-using the SRAM array to do computation while minimizing data movement. Although 

the operation of SRAM in conventional context is digital in nature, it is worthwhile to note that 

analog or mixed-signal computation is also possible and generally achieves better throughput at 

the cost of accuracy. In a digital context, turning on multiple read-wordlines have the effect of 

NOR/AND operation on the read-bitlines. Similarly, in an analog setting, by turning on multiple 

read-wordlines, we achieve multiplication and accumulate effect in the read-bitline voltage. This 

gives us a great advantage in terms of parallel operations. To that effect we explore two 

implementations of compute-in-memory architecture. 
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Our first work involves embedding ROM data on pre-existing SRAM cells in an MVM engine. 

This enables us to evaluate exponential functions that form the basis of many transcendental 

functions. Evaluation of transcendental functions are frequently required in certain workloads such 

as LSTMs. A single macro that enables us to do both MVM operations as well as evaluating 

transcendental functions not only minimizes latency, but also maximizes energy efficiency. Our 

second work is a continuation of [17] and is focused on accelerating SNNs. We demonstrate how 

a modular approach to architecture provides great flexibility in implementation. We also back up 

our claims by presenting real-world silicon data of the said SNN accelerator. 
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 CIM MACRO WITH DUAL FUNCTION - MVM ENGINE AND FAST 

EVALUATE EXPONENTIAL FUNCTION 

2.1 Introduction 

A variety of NN models rely on fast and repetitive evaluation of exponential transcendental 

functions. For example, calculation of hidden state in LSTMs [15] uses tanh function and 

calculation of membrane potential in LIF-SNN uses exponential function. Due to the nature of 

transcendental functions, it is often not practical to evaluate those function by the Maclaurin series 

expansion. In such cases, fast and accurate evaluation is done by means of range reduction 

technique and math tables [13]. For optimal energy efficiency and throughput, it is best if these 

tables reside as close as possible to the circuit where it is consumed, which is likely the neural 

network hardware itself. For that, these math tables must either exist as on-chip ROM or can be 

brought from main memory to on-chip cache. Fabricating these tables as on-chip ROM 

necessitates the use of additional silicon area, which is costly. On the other hand, swapping-in 

these tables from main memory incurs heavy latency and energy penalties, which defeats the 

purpose of fast evaluation. 

 

The author of [19] describes a modification to the standard layout of the 8T cell such that it 

can store ROM data. This modification neither hinders the normal SRAM functionality, nor does 

it need require additional silicon area for the cell. The SRAM array remains virtually identical, 

except for addition of one extra vertical metal wire. Most of the peripheral control circuits, such 

as decoder, sense amplifiers, wordline and bitline drivers are re-used from the original circuit. This 

way, we end up extracting more functionality from the original hardware with minimal 

modifications to the design. 

 

To that effect, we propose a mixed-signal macro with dual functionality: ability to do matrix 

vector multiplication as well evaluate exp(x) for 32-bit IEEE 754 floating point number. The said 

macro consists of 64x64 array of previously mentioned special 8T. The charge based MVM engine 

uses two ADCs with reconfigurable precision of 2/3/4/5/6-bits, allowing faster throughput for 

sparse inputs. As the outputs of these operations are separate, it allows high flexibility to use the 

macro in any neural-network hardware that needs either or both the functions. It is also worthy to 
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note that the silicon area consumed by the entire macro is no greater than the MVM engine [20] it 

is based on. 

2.2 Embedding ROM data in SRAM 

The modern SoC today packs several billions of transistors in a tiny area. Typically, the most 

transistor-dense parts of an SoC are SRAMs, which cover over half of the total silicon area. But 

scaling in advanced technology nodes is not symmetric for memory and digital logic, that is, digital 

logic scales more than memory devices. As a result, the percentage of area dedicated to on-chip 

SRAM have steadily trended upwards [2]. This motivates us to extract as much functionality as 

possible out of SRAM arrays. ROM arrays have traditionally been unpopular with designers as 

large ROM tables take up significant area. They also require peripheral circuitry that in turn take 

up considerable area as well. Typically, ROM data is not stored on expensive on-chip RAM but is 

stored in slow and inexpensive off-chip devices. It makes sense to bring the whole or parts of the 

ROM data to on-chip RAM as and when needed. However, in certain cases, this may not be 

feasible. Eg, Evaluation of transcendental functions in certain math libraries use large math tables. 

These tables may be too large to bring to on-chip cache. Even if parts of the table are brought to 

cache, the next evaluation may need to access some other line in the table, which may not be 

present in the cache. Another pathological scenario may arise when the cache replacement 

algorithm repeatedly pushes the math table out of the cache. Thus, each time the function needs to 

be evaluated, the processor is forced to wait hundreds of cycles for the table to be available, which 

defeats the purpose of using tables in the first place.  

 

The authors in [19] explore ways in which ROM data may be stored in conventional SRAM 

arrays without hindering SRAM functionality or increasing area taken up by the array itself. In 

most cases, the parts of the peripheral circuit, such as decoder, sense amplifiers, wordline and 

bitline drivers may be shared between the SRAM and ROM modes of operation, thus extracting 

more functionality. These ROM-embedded SRAM (R-SRAM) can now store math table entries, 

which enables us to avoid fetching data from off-chip devices and saves us the associated latency 

and energy penalty. Let us discuss in brief the circuit level aspects of R-SRAM in the context of a 

conventional 8T cell. 
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The schematic of a typical 8T cell is shown in figure 2.1(a). Note that the SL terminal is 

connected to GND. When this cell stores a 1 (Q=1) and RWL is asserted, both the read transistors 

turn on and drain the pre-charged RBL. Let us consider a variation of this cell in figure 2.1(b), 

where the SL is connected to VDD instead of GND. Now, when this cell stores a 1 (Q=1) and 

RWL is asserted, both the read transistors turn on and but there is no current flow. In this case, the 

RBL retains its pre-charged state.  

 

After observing the behavior of cells in figure 2.1, let us create a new terminal RCON. For 

all the cells we want to store ROM value of 1, we connect SL to RCON and for other cells where 

we want to store a ROM value of 0, we connect SL to GND. Note that when RCON is connected 

to GND, the SL of all cells are connected to GND and the entire array behave like a conventional 

(a) (b) 

Figure 2.2: (a) Cell storing ROM data ‘0’ (b) Cell storing 

ROM data ‘1’ 

(a) (b) 

Figure 2.1   (a) Schematic of a typical 8-T SRAM cell (b) 8-T SRAM cell with SL 

connected to VDD 
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SRAM array. However, when RCON is connected to VDD, and all cells in that row store 1, certain 

RBLs are prevented from being discharged. This is the ROM mode of operation.  

 

Also note that we must first write 1’s to all cells in the row of which we want to fetch the 

ROM data. As this destroys the data previously present in that row, we must first copy the SRAM 

data to a temporary buffer and restore it after the ROM fetch is done. The whole operation is done 

in 4 cycles. 

1. Cycle 1: 

a. Set RCON=0. 

b. Assert RWL to bring SRAM data to RBLs. 

c. Copy SRAM data to buffer. 

2. Cycle 2: 

a. Set all WBL=1 and WBLB=0. 

b. Assert WWL to write 1’s to all cells in row. 

3. Cycle 3: 

a. Set RCON=1. 

b. Assert RWL to bring ROM data to RBLs. 

c. Read ROM data from RBLs. 

4. Cycle 4: 

a. Assert WWL to write data from buffer to WBL/WBLB.  

                   
 
 
  
  
 

 
 
 
  
  
 

 
 
 
 
  
  
 

 
 
 
 
  
  
 

     

     

                  

   

      

   

    

                                                

Figure 2.3: Layout of 2x2 array of 8-T cells storing ‘0’ and ‘1’. Encircled 

section demonstrates how vias connect SL to RCON or GND 
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Let us discuss the layout aspects of this special 8T array. In a conventional 8T cell, the read 

and the write ports are isolated, which aids in tolerance to process variations and noise. The thin 

cell layout of an 8T cell is shown in figure. Due to the limited cell height, we observe that there is 

no space to accommodate a horizontal RCON wire. However, since 8T cells are wide, there is 

adequate space to accommodate a vertical RCON wire without expanding the dimensions of the 

cell. After we draw this wire, we selectively connect the SL terminal of each 8T cell to either 

RCON or to GND. Note that cells in two adjacent rows share the same connection of SL due to 

layout constraints. Hence, we can store 1 ROM bit per 2 SRAM cells. Our final ROM capacity is 

half of the SRAM array size. 

2.3 Table based approximate evaluation of exponential function 

Several neural networks such as RNNs and SNNs make use of transcendental functions as a 

decay factor for past inputs. The basic function in most of the applications involve the computation 

on exp(x). One way to evaluate exp(x) is by using the Maclaurin series expansion. However, when 

x is not a small number, it is easy to see that we need to evaluate several terms from the series to 

maintain reasonable accuracy. Additionally, as x grows larger, calculating each term in the series 

also gets progressively more expensive. Thus, due to the nature of transcendental functions, it is 

not feasible to use Maclaurin series in practice. Look-up-table based methods using range 

reduction prove more practical in this regard. Intel’s math library uses three key steps to evaluate 

exp(x): reduction, approximation, and reconstruction. Let us illustrate this with an example: 

 

1. Range reduction: We can express x as, 

𝑥 =
𝑁 ⋅ ln(2)

2𝐾
+ 𝑟 

For some integer parameter K, which we will discuss later. We choose N such that 

𝑁 = ⌊
𝑥⋅2𝐾

ln(2)
⌋. This guarantees us that 𝑥 never exceeds ln(2) 2𝐾⁄  . We can rewrite the 

expression as, 
 

𝑒𝑥 = 2𝑁 2𝐾⁄ ⋅ 𝑒𝑟 
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2. Approximation: Now that we have a reduced range for 𝑟, it is straightforward to 

calculate 𝑒𝑟 by use of Chebychev’s approximation or Remez’s algorithm. 

3. Reconstruction: After we have 𝑒𝑟, we need to multiply it by 2𝑁 2𝐾⁄  to reconstruct 

our final result. If we take an integer M to be ⌊𝑁 2𝐾⁄ ⌋, we can rewrite the equation 

as, 

𝑒𝑥 = 2𝑁 2𝐾⁄ ⋅ 𝑒𝑟 =  2𝑀 ⋅ 2𝑑 2𝐾⁄ ⋅ 𝑒𝑟 

Where 𝑑 = 0, 1, 2, … , 2𝐾−1 . All combinations of 2𝑑 2𝐾⁄  can be pre-computed and 

stored as look-up table entries. The number of entries needed is 2𝐾. Calculation of 

2𝑀 can be done as bitshift operation in binary systems.   

 

By examining the above method, we make the following observations. Exploiting these will 

help in a more efficient circuit implementation. 

 

1. For reconstruction, three terms need to be multiplied to get the result, which again 

needs to be converted to 32-bit FP representation. Multipliers are expensive, both 

in terms of area and power. 

2. As K grows, the range of 𝑟 reduces. Subsequently, the range of 𝑒𝑟 also reduces and 

gets closer and closer to 1. 

3. As K grows, the number of entries required for 2𝑑 2𝐾⁄  grow exponentially. 

 

Most neural networks are tolerant to minor variation in its parameters. The observations 

made above together pose an interesting opportunity to trade accuracy with speed. If we choose 

an optimal K such that the range of 𝑒𝑟 is sufficiently small, we can replace 𝑒𝑟 by a constant (say 

1), trading accuracy for reduced circuit complexity. Since the reconstructed result is a function of 

𝑒𝑟, we choose 𝑒𝑟𝑜𝑝𝑡 such that our maximum error is minimized. For this, 𝑒𝑟𝑜𝑝𝑡 needs to be the 

average over the range of 𝑒𝑟. Thus, 

 

𝑒𝑟𝑜𝑝𝑡 =
𝑒𝑟𝑚𝑖𝑛 + 𝑒𝑟𝑚𝑎𝑥

2
=  

1 + 𝑒𝑟𝑚𝑎𝑥

2
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This simplifies our implementation greatly due to the following reasons. 

 

1. Replacing 𝑒𝑟  by a constant (say 𝑒𝑟𝑜𝑝𝑡 ) means we no longer need to dedicate 

hardware for calculating 𝑒𝑟 by using polynomial approximations. 

2. For reconstruction, the two remaining terms are: 2𝑀  and 2𝑑 2𝐾⁄ . Each term only 

affects the exponent and mantissa in the 32-bit FP representation respectively. Thus, 

both exponent and mantissa computations can be done independently without the 

need for a multiplier. 

3. Instead of tabulating entries for 2𝑑 2𝐾⁄ , we now tabulate entries for 2𝑑 2𝐾⁄ ⋅ 𝑒𝑟𝑜𝑝𝑡. 

We can go one step further directly tabulate the equivalent mantissa in the table. 

This incurs no additional circuit complexity. 

 

Now that we have explained the algorithm and modifications to it, let us compute the 

parameters we need to populate the e-ROM entries. Our macro uses a 64x64 array of 8T cells. We 

have previously discussed that two adjacent rows in 8T array must store the same ROM bit for 

layout related concerns. Hence, we effectively have 32 rows of 64 bits each for ROM entries. The 

mantissa in a 32-bit FP number is 23-bits long. Let us consider three options:  

 

1. We can fit at most two whole mantissa entries in one 64-bit row. The maximum 

quantization error due to binary conversion in 23-bit mantissa is 𝑄23−𝑏𝑖𝑡 = 2−23. This 

gives us a total of 2 × 32 = 64  entries for our look-up table. The appropriate K 

parameter for this case is 6. The max range of 𝑟 for 𝐾 = 6 is given by, 

 

(𝑟𝑚𝑎𝑥)𝐾=6 = ln(2) 26⁄ ≃ 0.0108304 … 
 

 

Subsequently, the max value 𝑒𝑟 can take is given by, 

(𝑒𝑟𝑚𝑎𝑥)𝐾=6 = 𝑒0.005415… ≃ 1.0108892 … 

 

We also calculate 𝑒𝑟𝑜𝑝𝑡 as, 

(𝑒𝑟𝑜𝑝𝑡)𝐾=6 =  
1 + (𝑒𝑟𝑚𝑎𝑥)𝐾=6

2
 ≃ 1.0054446 … 
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For our approximation, the maximum error is given by, 

 

𝑒𝑟𝑟𝑜𝑟 (%) = 100 × {
𝑒𝑥 − 𝑒𝑎𝑝𝑝𝑟𝑜𝑥

𝑥

𝑒𝑥
} % 

= 100 × {
(2𝑀 ⋅ 2𝑑𝑚𝑎𝑥 2𝐾⁄ ⋅ 𝑒𝑟𝑚𝑎𝑥) −  (2𝑀 ⋅ (2𝑑𝑚𝑎𝑥 2𝐾⁄ − 𝑄23−𝑏𝑖𝑡) ⋅ (𝑒𝑟𝑜𝑝𝑡)𝐾=6)

(2𝑀 ⋅ 2𝑑𝑚𝑎𝑥 2𝐾⁄ ⋅ 𝑒𝑟𝑚𝑎𝑥)
} % 

= 100 × {1 −
(2𝑑𝑚𝑎𝑥 2𝐾⁄ −  𝑄23−𝑏𝑖𝑡) ⋅ (𝑒𝑟𝑜𝑝𝑡)𝐾=6

2𝑑𝑚𝑎𝑥 2𝐾⁄ ⋅ 𝑒𝑟𝑚𝑎𝑥
} % 

≈ 100 × {1 −
(263 64⁄ − 1.19 × 10−7) ⋅ 1.0054446

263 64⁄ × 1.0108892
} % 

≈ 0.5386% 

 

Although this is still a fair compromise, we see that 23-bit precision in mantissa is an overkill 

if error due to approximating 𝑒𝑟 term is large. We are also losing 64 − 46 = 18 bits in each row 

as overhead. 

 

2. Since 23-bit for mantissa precision is not beneficial, let us try 16-bit precision in mantissa. 

We can immediately see that we can fit 4 mantissa entries in one row without any 

overhead bits. This arrangement gives a us 128 entries for the look-up table and a 

maximum quantization error of 𝑄16−𝑏𝑖𝑡 = 2−16 due to binary conversion in mantissa. 

The appropriate value of parameter K in this case is 7. Going through the same error 

calculation as above, 

 

𝑒𝑟𝑟𝑜𝑟(%) = 100 × {1 −
(2𝑑𝑚𝑎𝑥 2𝐾⁄ −  𝑄16−𝑏𝑖𝑡) ⋅ (𝑒𝑟𝑜𝑝𝑡)𝐾=7

2𝑑𝑚𝑎𝑥 2𝐾⁄ ⋅ 𝑒𝑟𝑚𝑎𝑥
} % 

≈ 100 × {1 −
(2127 128⁄ − 1.52 × 10−5) ⋅ 1.0027149

2127 128⁄ × 1.0054299
} % 

≈ 0.2708% 
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3. The next higher K parameter is 8. For this case, the number of entries needed for the 

look-up table is 256, which allows only 8 bits for each entry of the mantissa. Here, 

mantissa incurs a maximum quantization error of 𝑄8−𝑏𝑖𝑡 = 2−8 due to binary conversion. 

The maximum error in our approximation is given by, 

 

𝑒𝑟𝑟𝑜𝑟(%) = 100 × {1 −
(2𝑑𝑚𝑎𝑥 2𝐾⁄ −  𝑄8−𝑏𝑖𝑡) ⋅ (𝑒𝑟𝑜𝑝𝑡)𝐾=8

2𝑑𝑚𝑎𝑥 2𝐾⁄ ⋅ 𝑒𝑟𝑚𝑎𝑥
} % 

≈ 100 × {1 −
(2255 256⁄ − 3.90 × 10−3) ⋅ 1.0013556

2255 256⁄ × 1.0027113
} % 

≈ 0.3305% 

 

We proceed with 𝐾 = 7 since it gives us the best combination of accuracy and precision. 

2.4 Mixed-signal Matrix Vector Multiplication Engine (MVME) 

The MVM engine in this work is taken from [20]. The multiplication is done in bit-serial 

fashion as shown in figure 2.4. External circuit is required for shift-and-add function. This is done 

to give flexibility for input word-width.  

 

 

Figure 2.4: (a) Bit-serial MVM operation (b) Multiple rows turn on to 

drain single read-bitline 

(a) 

(b) 
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The engine comprises of a 64x64 array of 8T cells, 4 analog muxes and 2 ADCs. The 

multiplication is done in analog domain by turning on multiple read word lines simultaneously. 

The amount of discharge produced by each SRAM cell (storing a 1) is proportional to the RWL 

pulse height. In order to maintain sufficient dynamic range in the bitline voltage for higher ADC 

precision modes, the RWL pulse height voltage (VRWL) needs to be adjusted for each precision. 

Hence this voltage is provided external to the macro. 

 

The bitlines are connected to 4 analog muxes. Depending on the selected precision, the 

analog muxes route the bitline voltages to the inputs of the ADC. Each ADC has reconfigurable 

precision of 2/3/4/5/6-bits. When operating in 2/3/5-bit precision, each ADC can sample and 

convert two inputs simultaneously, thus doubling throughput. In this case, the 4 muxes select one 

bitline each and connect it to the ADCs. It takes 64/4=16 ADC cycles to complete one MVM 

operation for these precision modes. When operating in 4/6-bit precision, two muxes are turned 

off and the other two select one bitline each and connect it to the ADCs. It takes 64/2=32 ADC 

cycles to complete one MVM operation in these precision modes. 

2.5 Macro with dual function 

 

        

          

           

           

  
 
 
  
  

 
 
  
  

 
 
 
  
  
 
  

  
  

  
  
 
  
  

 

         

  
 
 
  
  

  
 

  
  
  

  
 
  

                    

          

                           

            

    

Figure 2.5: Block diagram of macro 
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The proposed macro is designed in TSMC 65nm CMOS technology. It is able to do either 

exp(x) calculation or MVM operation at any one time. Clock gating is employed throughout the 

entire macro to ensure idle parts of the macro do not contribute to dynamic power. When operating 

in either mode, the macro raises a flag signaling busy state. To interrupt the any ongoing operation, 

the reset signal can be asserted at any time, which will immediately kill the operation and restore 

the macro to idle state. The footprint or the physical area taken by the entire macro is similar to 

the original MVM engine in [20]. 

 

The maximum frequency for MVM operation is 100Mhz. The throughput of the MVM 

engine is dependent on the precision of the ADC. For 2/3-bit operations, the access latency is 3 

clock cycles and for 4/5/6-bit operations, it is 4 clock cycles. Since each ADC can sample two 

columns for 2/3-bit operations, the maximum throughput is achieved when the input sparsity is 

less than 12.5% (at most 8 RWLs on at a time) and 3-bit precision is used.  

 

The exp(x) engine is designed for a maximum clock frequency of 250Mhz at 1.2v in TSMC 

65nm technology. The supply voltage as well as the clock frequency can be lowered to reduce 

power consumption. The argument for exponential calculation (x) as well as the result are in 32-

bit IEEE 754 format. There are two modes to run the exp(x) engine: normal and fast. For normal 

mode, the calculated result is available after 4 clock cycles from the output bus of the macro. The 

contents of the SRAM array are not disturbed in this mode. However, in situations where the 

contents of the SRAM are no longer needed, the engine can write to the array without needing to 

first save a back-up. In this ‘fast mode’, the calculated result is available after only 2 clock cycles. 

This mode is particularly useful if we are using the macro solely for exp(x) calculation. Timing 

diagram for both modes are shown in figure 2.6. Figure 2.7 plots the simulation results for energy 

vs throughput for exp(x) computation in the macro. 
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Mode Voltage 

(Volts) 

Latency 

(ns) 

N
o

rm
al

 

0.9 22 

1.0 20 

1.1 18 

1.2 16 

F
as

t 

0.9 11 

1.0 10 

1.1 9 

1.2 8 

 

Table 2.1 : Latency of exp(x) 

operation at different voltages  

Figure 2.6 : (a) Timing diagram for normal mode of operation (b) Timing 

diagram for fast mode of operation 

(a) 

(b) 

              

                      

                             

                   

                          

    

    

    

    

    

    

    

    

    

 

 

  

  

  

  

  

  

  

  

  

  
  
  
  

  
 
  
  

  
  
  
  
 
  

Figure 2.7: Energy and E-D product at different voltages  
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2.6 Simulating an LSTM workload 

One popular NN workload that requires frequent evaluation of transcendental function is 

LSTM networks. To overcome the vanishing gradient problem in LSTM, we need a function with 

a property such that its second derivative can sustain for a long range before going to zero. Tanh 

is one such function that is commonly used in this case. 

 

tanh(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
=

𝑒2𝑥 − 1

𝑒2𝑥 + 1
 

 

The evaluation of tanh(x) requires the evaluation of 𝑒2𝑥  followed by a few algebraic 

computations. Let us assume that the hardware accelerator implementing this LSTM has dedicated 

logic to do this algebraic computation in one cycle. Thus, using the exp(x) engine, we get the result 

for tan(x) in only five cycles (three cycles if we use fast-mode). With this assumption, let us use 

the PUMA simulator [9] to run an LSTM workload in two cases. In the first case, we use our dual-

purpose macro for evaluating exp(x) as well as for MVM operations. In the second case, we fetch 

the ROM table from DRAM and use an ALU to do the exp(x) evaluation. Note that in the second 

case, there is an energy and latency penalty due to accessing off-chip memory. 

 

 

 

Technology TSMC 65nm CMOS 

Macro Area 0.04 mm2 

Supply Voltage 0.9-1.2v (expx) / 1.2v (MVM) 

Max. Frequency 250Mhz (expx) / 100Mhz (MVM) 

SRAM size and type 64x64 8T cells 

ADC precision 2/3/4/5/6-bit 

MVM throughput (GOPS) 3.2 – 8.53 @ 100Mhz 

 

Table 2.2: Macro summary 
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Using PUMA simulator [9], we can estimate the benefits of using the exp(x) engine in the 

dual function macro. Our implementation architecture assumes 1 tile containing 1 core. The core 

is further divided into 8 MVMUs and a common register file of 1kB. Each MVMU consists of 8 

dual-function macros. The size of the inputs and hidden state of the LSTM workload in 

consideration is 64 and 64 respectively and the bit-width of each element is 8-bits.  

 

 

2.7 Conclusion 

It is evident from the above simulation experiments that replacing an MVM engine with our 

proposed dual-purpose macro improves overall performance and efficiency. This comes at little to 

no additional cost to silicon area or power. In most neural network applications, where the accuracy 

of transcendental functions is not of paramount importance, this macro can be a drop-in 

replacement for bitwise-serial matrix vector multiplication engines, while providing the capability 

to fast evaluate those functions. 

 

 
Clock cycles  Energy (uJ) 

Math table in DRAM 4138 4.72 

Dual-function macro 3320 3.99 

Improvement % 19.8% 15.6% 

 

Table 2.3: Comparing LSTM workload. 
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 COMPUTE-IN-MEMORY BASED RECONFIGUREABLE SPIKING 

NEURAL NETWORK ACCELERATOR 

3.1 Introduction 

Spiking Neural Networks (SNNs) have gained increasing attention in recent years due to 

their ability to model the behavior of biological neurons in a more realistic way compared to 

traditional Artificial Neural Networks (ANNs). Unlike ANNs, SNNs process information using 

event-driven spikes which is more akin to how the biological neuron works. Where conventional 

NNs use multiply-and-accumulate operation, SNN only needs addition, which is a great deal 

simpler and efficient, both in terms of algorithms and hardware. Subsequently, the event-driven 

approach to inputs presents a unique opportunity to extract even more efficiency when there is 

adequate sparsity in incoming spikes [14]. The membrane potential in an SNN is crucial for the 

defining the present state of the neuron, computation of output spikes and the transmission of 

information between neurons. This makes SNNs more suitable for sequential learning tasks as 

compared to recurrent neural networks such as LSTMs. In LSTMs, memory effect is achieved by 

the hidden state, which needs to be fed back as input to the network [15]. In SNNs, the inherent 

membrane potential acts as the memory element, keeping track of all previous inputs, thereby 

avoiding the need for feedback paths.  

 

Due to the nature of SNNs, the network needs to access and update memory elements storing 

the membrane potential (Vmem) and weights (Wmem) at each timestep. This poses a performance 

bottleneck as conventional memory architectures are orders of magnitude slower than compute 

units [16]. The repeated shuffling of data from memory to compute and then back to memory 

incurs significant energy consumption as well. Authors of [17] discusses custom compute-in-

memory macro that addresses many of these concerns. The macro supports a maximum input fan-

in of 128 and a total of 12 output channels. In this work, we explore modifications to the design 

that enable certain features such as chaining several macros together to handle a larger fan-in. We 

build reconfigurability in bit-precision of weights as well as show how we can distribute larger 

fan-in between several macros for parallel computation. In addition, we introduce zero-skipping 

FSM, which exploits the inherent sparsity in input spikes to reduce latency and improve energy 

efficiency. 
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3.2 Architecture and Organization 

The accelerator consists primarily of two core logical blocks: compute and neuron. We shall 

refer to them as compute_macro and neuron_macro. The compute_macro is the heart of the 

accelerator and is responsible for all SNN instruction processing. However, in a multi-macro 

implementation, neuron_macro is employed to accumulate the partial outputs from several 

compute_macro and generate the final output. 

 

 

Figure 3.1: (a) Conventional approach for SNN implementation incurs data transfer 

bottleneck. (b) Proposed approach using fused compute and memory eliminates repeated 

data movements. 

(b) (a) 

Figure 3.2: Organization of weights and membrane potentials in the 

SRAM in compute_macro along with other components 
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3.2.1 Compute macro 

The compute_macro comprises an SRAM array, a triple-row decoder, and column 

peripheral circuits, which work together to process custom SNN instructions discussed later. The 

triple-row decoder has the capability to turn on two read wordlines (RWLs) and one write wordline 

(WWL) independently. When two RWLs are turned on simultaneously, the RBL gives the bitwise 

NOR/OR while the RBLB gives the bitwise NAND/AND of the data from the enabled rows. The 

SRAM array consists of two subarrays of 10T cells: the WMEM subarray and the VMEM subarray. 

The WMEM subarray has 128 rows, each corresponding to an input neuron. Each row is 48-bits and 

depending on weight precision (discussed later) can store between 6-12 weights. The VMEM 

subarray has 32 rows to store partial Vmems, each of which can store between 3-6 partial Vmems. 

The partial Vmems are distributed between two rows in a staggered odd/even fashion as shown in 

fig to correctly utilize the column peripheral circuits. The two subarrays are connected by a row 

of switches in the read bitlines (RBLs), which allow for reconfigurable weight precision as 

discussed below. 

3.2.2 Reconfigurable Weight Precision 

Each row in the VMEM or WMEM subarray is 48-bit wide. With 8-bit weight and 15-bit 

Vmem, we only get 6 output channels. To gain flexibility in the number of output channels, we 

can lower the weight precision. With 4-bit or 6-bit weights, we can get 12 or 8 output channels 

respectively. Reconfigurability in weight precision is primarily achieved by inserting switches in 

the read-bitlines between the VMEM and the WMEM subarray in the compute_macro. The RBL 

switches can be reprogrammed to support the selected precision. For example, in the case of 6-bit 

weight and 11-bit Vmem in odd cycle, the RBL switches connect the RBLs in the first 6 columns 

and disconnect the RBLs in next 6 columns and so on. The polarity of the switches is flipped in 

the even cycle. For 4-bit or 8-bit weights, sets of 4 or 8 switches connect/disconnect the columns 

respectively. The muxes in the column peripheral circuit are also reconfigured appropriately to 

support the selected weight precision. 
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3.2.4 Column Peripheral Circuit 

The compute_macro includes column peripheral circuits that connect to sets of bitlines 

(RBL, RBLB, WBL, and WBLB). The sensing inverters (SINV) sense and latch the data on 

RBL/RBLB, which is then used by the bitwise logic full adder (BLFA) to generate SUM and COUT 

signals. SUM is written into the enabled WWL destination row using the conditional write-driver 

(CWD), while COUT is forwarded to the next column for accumulate operation, forming a ripple-

carry adder. The modular design of the adder allows for reconfigurability during odd/even cycles 

using BLFAs from each column peripheral. To account for the staggered data mapping, each 

column peripheral can be reconfigured in carry forward (CF), carry skip (CS), LSB, and MSB 

modes using Carry-MUXes (CMUX). For example, in the case of 6-bit weight precision, during 

odd cycle, columns 0-11 form one adder, columns 12-23 form the next adder, and so on. During 

even cycle, columns 6-17 form one adder, columns 18-29 form the next adder, and so on. 

Additionally, the sixth bit of Vmem aligns with the MSB of the weight (Wsign) and needs to be 

kept ‘0’ to correctly read Wsign, which is accomplished by the CS block forwarding Wsign to the 

next six column peripherals for performing the full 11-bit accumulate operation. This arrangement 

of column peripherals is similarly followed for 4/6/8-bit weight precision modes. 

  

Figure 3.3: Supporting reconfigurable precision by decoupling RBLs 

in WMEM and VMEM subarray by incorporating switches. 

            

4-bit                                    6-bit 
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Due to the nature of the ripple carry adder so formed, the combinational logic depth of the 

circuit grows linearly with number of columns. In order to relax the timing constraints, we need to 

add pipeline stages as shown. These flip-flops serve the purpose of splitting up the circuit into read, 

compute and store stages as in a conventional microprocessor architecture. Once the pipeline gets 

filled, the SRAM is accessed by three addresses simultaneously (two RWLs for reading the 

operands and one WWL for writing back the result). 

3.2.5 In-Memory Instructions 

The compute_macro supports four SNN instructions: AccW2V, AccV2V, SpikeCheck and 

ResetV. Let us go over the operation of these instructions. 

 

1. AccW2V: Accumulate weight to Vmem 

This instruction is used to read the weight corresponding to the input spike and add it to the Vmem. 

To achieve this, one RWL corresponding to the input in the WMEM subarray and one RWL and one 

WWL from the VMEM subarray is turned on simultaneously. The column peripherals generate the 

final sum that eventually gets written to the VMEM subarray. 

 

Figure 3.4: (a) Block diagram of column 

peripheral circuit (b) Carry mux between each 

column’s peripheral circuit 

(b) 

(a) 
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2. AccV2V: Accumulate Vmem to Vmem 

This instruction is similar to AccW2V but acts on two rows in the VMEM subarray. It is used to add 

a predefined parameter (say, a leak factor or residual membrane potential) to the Vmem. 

 

3. SpikeCheck: Compare Vmem to threshold 

This instruction is used to compare Vmem to a predefined threshold value. To achieve this, two 

RWLs from the VMEM subarray (one corresponding to the Vmem and one corresponding to the 

threshold) are turned on simultaneously. The adders in the column peripheral circuit checks if the 

sum is greater than zero. The spike buffer is updated if the membrane potential exceeds the 

threshold. 

 

4. ResetV: Reset membrane potential 

Following SpikeCheck instruction, depending on which spike buffers are populated, ResetV is 

used to write a predefined reset value to the membrane potential. This is achieved by turning on 

one RWL and one WWL from the VMEM subarray. The column peripheral circuits are effectively 

bypassed in this instruction. 

3.3 Zero Skipping 

Energy efficiency in SNNs arise from the inherent sparsity that is present in the input spikes 

which enables us to skip computation cycles for substantial number of timesteps. The sparsity of 

input spikes is seen as zeros in our input scratchpad (IF spad). In order to implement zero-skipping, 

we must only forward entries that are ‘1’. However, checking all entries one by one consumes 

clock cycles, leaving the accelerator starved. A better approach is to implement a leading-one 

detector as illustrated in fig. One 16-bit row is fetched from the IF spad and is subjected to a series 

of bitwise operations. The resultant vector after passing through an encoder gives us the number 

of indexes to skip to get the next ‘1’ for the CIM queue. This process is repeated till the vector is 

zero, ensuring fastest possible processing for all input spikes. 
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Figure 3.5 Illustration of zero-skipping using leading-one detector. 

            
 
 
  

 
  
  
  
  

                         

Figure 3.6: Multi-macro implementation for greater input fan-in. 
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3.4 Neuron Macro 

A single compute_macro can be compared dendrites in a biological neuron. Just as dendrites 

collect the input stimulation and forwards them to the cell body, compute_macro collects the input 

spikes and generates a partial Vmem, which it eventually forwards to the neuron_macro. One 

compute_macro has 128 weight rows, which correspond to 128 input fan-in. To increase the input 

fan-in, several compute_macro can be chained together, where each forwards its partial Vmem to 

the next compute_macro. At the end of the chain, one neuron_macro collects and accumulates the 

partial Vmems into final Vmems and generates the output spike.  

 

To efficiently manage and distribute the input spikes among the chain of compute_macros, 

we implement logic for each macro that accomplishes the following: flattening input spikes before 

staging them in the scratchpad, implement zero-skipping and finally queuing of input spikes. 

 

 

3.5 Implementing the SNN accelerator and results 

As detailed in the previous sections, the modular approach to the macros allows for great 

flexibility in implementation. Our accelerator is configured with nine compute_macros and three 

neuron_macros. This allows us to either have three chains of three compute_macros or a single 

chain of nine compute_macros. In either case, one neuron_macro forms the last link in the chain, 

Figure 3.7: (a) Config A: Three compute and one neuron for 

parallel implementation (b) Config B: Nine compute and one 

neuron for maximum available fan-in. 

(b) (a) 
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which is responsible for generating the output. The test chip also incorporates input spike buffers 

for each compute_macro that keeps it well fed with inputs. The output spike generated by the 

neuron_macro is written to an output buffer as well as to the output bus. 

 

 

 

Technology TSMC 65nm CMOS 

Full-chip 

dimension 
2mm x 1.52mm 

Supply Voltage 0.8-1.2v 

Max Frequency 200Mhz 

Weight 

precision 
4/6/8-bit 

Output 

Channels 

18-36 (Config A); 6-12 (Config 

B) 

Max fan-in 384 (Config A); 1152 (Config B) 

 

Freq @ 

VDD_CORE 

Idle Power 

(mW) 

Leakage 

Power (mW) 

200Mhz @ 1.2v 34.8 0.0732 

100Mhz @ 1.0v 11.9 0.0391 

 

Table 3.2: Chip idle power and leakage power 

(a) (b) 

Figure 3.8: (a) Die Micrograph; C=compute_macro, 

N=neuron_macro (b) SNN Accelerator test PCB stacked 

on top of Opal Kelly XEM 7310 FPGA board 

Table 3.1: Chip summary 

SNN Chip 
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3.6 Conclusion 

SNNs are a class of networks that closely mimic how biological neurons function. The 

simplicity in computation (addition instead of MAC) leads to great energy efficiency. 

Incorporating fused Vmem and Wmem allows us to avoid majority of the data movement, further 

lowering energy costs. We presented an SNN accelerator based on the design of IMPULSE macro. 

The accelerator uses modified compute_macro to support reconfigurable weight precision and 

number of output channels. Chaining multiple compute_macro allows for a larger fan-in. The 

neuron_macro forms the end of the chain that generates the final output spike. 
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SUMMARY 

In this thesis, we have established that the functionality of SRAM cells can be extended 

beyond merely storage of data. In our first work, by employing ROM embedded SRAM cells, we 

were able store math tables in a pre-existing array. This allowed us to evaluate transcendental 

functions which form the basis for many neural network applications. The same SRAM array was 

also used as a bit-serial matrix-vector-multiplication engine, which is another dominant operation 

in neural network workloads. By combining the two circuits in the same macro, we have shown 

that it benefits certain classes of workloads. Our analysis with PUMA simulator running an LSTM 

workload resulted in a speed-up of 1.25x. This came at negligible cost to silicon area as the 

footprint of the dual-function macro is similar to the footprint of the standalone MVM engine.  

Additionally, this lowered our energy penalty of fetching data from DRAM.  

 

Our second work deals with accelerating and harnessing energy efficiency of SNNs. SNNs 

by design mimic the biological neuron through the use of spikes as a method of communication. 

This binary nature of SNNs makes implementation of neural networks simpler. Repeated shuffling 

of data between compute and memory structures in accelerators poses a limitation on the maximum 

throughput and efficiency. From our discussions, it is established that compute-in-memory 

architectures are a promising alternative to conventional computing as it resolves this memory wall 

bottleneck. By leveraging the high bandwidth of data movement within SRAMs, we not only gain 

massive parallelism in dominant operations but also reap the benefits of resulting lower energy 

consumption. The proposed architecture scales up the modular compute-in-memory enabled 

IMPULSE macro and as well as implements some key modifications. By incorporating switches 

in the bitlines, we were able to make weight precision reconfigurable. Also, implementing zero-

skip FSM allowed us to extract efficiency out of the inherent sparsity in inputs. We achieved 

encouraging results from post-silicon test of the accelerator.  
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