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ABBREVIATIONS AND NOMENCLATURE 

ADCIRC-SWAN – a numerical simulation model which estimates both surge and wave behavior 

associated with a tropical storm. 

CBA – Cost-benefit analysis, a decision-making framework in which strategies are selected 

principally based on economic measures of cost effectiveness or net present value.  

CLARA – the Coastal Louisiana Risk Assessment Model used in Louisiana’s Coastal Master 

Plan 

COMPOUND FLOODING – flooding driven by combined surge, wave, rainfall, and riverine 

dynamics.  

CORRECTIVE JUSTICE – the idea that individuals who are unjustly harmed are entitled to 

restitution from those who benefit from said harm. 

DEEP UNCERTAINTY – uncertainty which cannot be modelled probabilistically due to lack of 

knowledge or disagreement. 

(DEONTOLOGICAL) EGALITARIANISM – The belief that every individual should receive 

equal consideration in governmental processes irrespective of status quo resources 

allocations. 

DIRECT ECONOMIC DAMAGE – a measure of flood risk representing the dollar value of 

expected flood damage over time.  

DISTRIBUTIVE JUSTICE – The idea of justice as it relates to the distribution of resources and 

the perception of resource distributions as fair or just. 

EJPM-OS – the extended joint probability framework with optimal sampling, a probabilistic 

modeling framework for compound flooding. 

HEC-HMS – a simulation model of the hydrologic processes of a watershed. 

HEC-RAS – a numerical simulation model which estimates the flow of water over time through 

river channels and floodplains. 

JPM-OS – the joint probability method with optimal sampling, a probabilistic modeling 

framework for surge- and wave-driven flooding.  

K-MEANS CLUSTERING – an unsupervised machine learning method which groups together 

similar observations. 
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MORO-MS – Multi-scenario multi-objective robust optimization, a framework for generating 

strategies in decision-making under deep uncertainty which treats each objective in each 

modelled plausible future as a separate objective in a multiobjective context. 

NONSTRUCTURAL PROTECTION – flood protection measures which do not affect the 

distribution of flood depths. 

OPTIMAL SAMPLING DISCRETIZATION – a proposed method which produces a discrete 

approximation of a continuous random variable or a coarser discrete approximation of a 

discrete random variable so as to minimize the square error induced by approximation. 

PRIORITARIANISM – The belief that resources should be preferentially allocated to those 

individuals and groups with the fewest resources or greatest social vulnerability in order 

to produce more equal outcomes. 

PROCEDURAL JUSTICE – the idea of justice as it relates to governmental processes and the 

perception that those processes are fair or just. 

REAL OPTIONS ANALYSIS – a framework for making decisions under uncertainty which 

prices in the value of flexibility and adaptivity, loosely informed by methods used in the 

analysis of financial options. 

RESIDENCE LOSS EQUIVALENTS – a measure of flood risk representing the aggregate 

expected proportional damage to a home over time, such that 1 residence loss equivalent 

implies an expected damage equal to the replacement cost of the home. 

STRUCTURAL PROTECTION – flood protection measures which affect the distribution of 

flood depths. 

SWaMPS – the Surge and Wave Model for Protection Systems, a spatially narrower, simplified 

implementation of CLARA for single-polder systems (i.e., systems which can be treated 

as a stylized bowl with a single representative flood depth for a given storm event) based 

on the Larose to Golden Meadow Ring Levee system. 

SYNTHETIC STORM – a discrete realization of an idealized continuous parameterization of 

tropical storm attributes; an idealized tropical storm characterized by a fixed set of 

parameters. 
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ABSTRACT 

Much work has been done to advance the state of risk-informed decision-making to protect 

against coastal flooding. The state of the art as practiced in the state of Louisiana, the Coastal 

Louisiana Risk Assessment Model (CLARA) characterizes flood risk driven by surge and waves 

from tropical storms as a random process and estimates the distribution of flood depths and 

resulting economic damage. This dissertation identifies three key limitations of coastal flood risk 

assessment as applied to the state of Louisiana, proposes methods to address them, and 

demonstrates each method in a case study. The first limitation identified is that the CLARA model 

addresses surge- and wave-driven flood hazard but does not account for rainfall-driven and riverine 

hazard. To address this limitation, chapter 2 presents an extension of the methods used in CLARA 

developed as part of the Louisiana Watershed Initiative which permits characterization of 

compound hazard consisting of surge, rainfall, and riverine hazard from tropical cyclones. The 

second limitation identified is that due to its computational cost CLARA is used in Louisiana’s 

2023 Coastal Master Plan to evaluate pre-specified and static flood risk mitigation projects over a 

small set of possible future landscapes; it would be preferable to use an optimization-driven 

approach to generate efficient and adaptive combinations of projects which balance performance 

across a diverse set of possible future landscapes. To address this limitation, chapter 3 presents an 

analysis applying a spatially narrower but computationally inexpensive model based on CLARA 

called the SWaMPS model to a case study to determine the extent to which optimization-based 

adaptive mitigation strategies which respond to observed climate change trajectories can 

outperform similar static strategies. The third and final limitation identified is that while the most 

recent iteration of the CLARA model can support algorithmic optimization of cost-effectiveness 

of building-level mitigation strategies such as retrofits to increase the first floor elevation of single-

family residences, the principal metric historically used in flood risk mitigation is reduction in 

economic damage measured in dollars, the optimization of which on the level of individual 

buildings would implicitly prioritize expensive structures and therefore may neglect impoverished 

neighborhoods. Chapter 4 addresses this limitation with a proposed alternative efficiency metric 

which treats individual homes as equally valuable, the optimization of which results in greater 

investment in impoverished neighborhoods without explicitly targeting final expected damage 

distributions or individual groups.  
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1. INTRODUCTION 

Tropical cyclone-induced flooding presents a hazard to coastal regions across the globe. 

The Congressional Budget Office estimates an annual damage associated with tropical cyclones 

of $54 billion annually in the United States alone [1]. Various interventions are available to 

mitigate the damages associated with hurricane-induced flooding including the construction of 

levees (physical barriers to prevent floodwaters from entering a system) and elevation-in-place of 

individual structures (raising the structure on an elevated pier foundation such that it will not be 

impacted by a given level of flooding). As the occurrence of tropical cyclones and therefore 

flooding induced by tropical cyclones is inherently stochastic, effective mitigation of the 

associated damages requires effective characterization of coastal flood risk and identification of 

efficient, risk-informed and socially acceptable designs for coastal protection projects.  

Historically, coastal protection projects such as levee construction have used a standards-

based design process [2], [3]. A standard design load is identified, such as the 100-year surge event 

i.e., the magnitude of surge which will be exceeded with a 1% annual probability under stationary 

environmental conditions. A levee is then designed to ensure that overtopping remains below some 

threshold when subject to the standard design load. This approach has the benefit of being tractable 

and straightforward but is ultimately arbitrary as a standard for environmental decision-making. 

Beyond the 100-year surge event, protection afforded by a levee is characterized both by its effect 

on the expected annual damage caused by tropical cyclones and by its performance at a range of 

return periods. In order then to design protection projects which minimize damage in expectation 

or target multiple return periods to reflect diverse risk attitudes among decision-makers and 

stakeholders, we require models which characterize flood risk as a random process driving a 

probability distribution of flood depths and corresponding damages.  

This dissertation poses three major questions which arise throughout the process of 

modelling coastal flood risk in support of policy decision-making. It then identifies limitations in 

how these questions are addressed in the current state of practice and proposes and evaluates 

methods which can help address those limitations. The questions are: 1) How do we characterize 

coastal flood hazard? 2) How do we identify high-performing strategies for mitigating the 

consequences of that hazard given specified performance metrics? 3) What performance metrics 

should we consider when evaluating mitigation strategies? In addressing these questions 
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sequentially, this dissertation is intended to provide novel contributions throughout the process of 

modelling coastal flood risk in support of policy decision-making.  

The current state of practice of coastal flood risk modeling as practiced in the state of 

Louisiana is the Coastal Louisiana Risk Assessment model (CLARA). Using a wide range of 

inputs, CLARA identifies a probability distribution of flood depths for each of 126,174 grid cells 

along the coast and utilizes a comprehensive structure inventory with known depth-damage 

relationships to characterize the expected damage at a range of return periods [4]–[6]. Louisiana’s 

Comprehensive Master Plan for a Sustainable Coast uses the CLARA model to compare the 

performance of competing standards-based structural and non-structural project designs. In this 

context a structural project denotes the creation or improvement of a protection structure such as 

a levee or floodwall, and a nonstructural project denotes a subsidy or cost-sharing program for 

individual privately owned structures to be floodproofed (up to several feet), elevated in place, or 

purchased outright. 

While CLARA is effective in producing coastwide risk estimates with and without projects 

in place, it has several notable limitations corresponding to questions posed above. Firstly, in areas 

outside of structural protection systems it considers only surge- and wave-driven flood hazard and 

not flood hazard driven by rainfall or riverine dynamics. This is not an issue within a certain 

distance of the coast as the influence of rainfall is strictly dominated by that of surge and waves, 

but consideration of rainfall and riverine dynamics is critical to characterizing flood risk further 

inland. Secondly, CLARA’s estimation of flood depths within structural protection systems is too 

slow to permit optimization of system designs. Instead, of protection measures evaluated by 

CLARA typically consist of pre-prescribed standards-based designs which are compared on a cost 

effectiveness basis, and non-structural protection designs are evaluated similarly conditionally 

upon selected protection projects. The CLARA model does not permit for the identification of 

cost-effective combinations of structural and nonstructural protection under a range of uncertain 

climate futures. Thirdly, the 2023 revision of CLARA is (for the first time) technically capable of 

identifying maximally cost-effective allocations of nonstructural protection resources among 

individual buildings across the coast (conditioned upon a fixed set of structural projects). However, 

such a project design has not been implemented. This is in large part because it has the potential 

to worsen historical social inequities, as minimizing economic damage as measured in dollars 

implicitly prioritizes more expensive structures. Such concerns warrant investigation into 
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alternative decision metrics. The projects described in this dissertation are meant to respectively 

address these three limitations. 

Chapter 2 of this dissertation presents a novel statistical framework for characterizing 

compound coastal flood hazard, defined as flood hazard driven by combined surge, rainfall-driven, 

and riverine dynamics, which extends the probabilistic framework underlying the CLARA model. 

Chapter 3 of this dissertation presents an analysis using the SWaMPS model, a scaled down 

computationally efficient model based on CLARA, and a multiobjective evolutionary algorithm 

to investigate the tradeoffs between optimized flood risk mitigation interventions targeting 

different severities of climate future, and the extent to which these tradeoffs are mitigated by an 

explicitly adaptive decision process inspired by real options analysis. Chapter 4 of this dissertation 

investigates the extent to which targeting individual household-level interventions to maximize 

damage reduction as measured in dollars may neglect disadvantaged neighborhoods, and the extent 

to which this effect may be mitigated by using a more egalitarian measure of risk. Taken together, 

these three projects represent a set of advances not only in one sub-problem of coastal flood risk 

modeling for policy decision support, but rather reflect a holistic set of advances throughout the 

modeling process. 
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2. APPLIED JOINT PROBABILISTIC MODELING OF COMPOUND 

COASTAL FLOOD HAZARD: AN EXTENSION OF THE JOINT 

PROBABILITY METHOD WITH OPTIMAL SAMPLING 

Compound coastal flooding, i.e., flooding driven by interacting pluvial, riverine, and 

coastal dynamics, poses a significant hazard which in some areas is much greater than can be 

attributed to inland or coastal dynamics separately [7]–[10]. Characterizing this hazard requires 

two major model components: a physically driven simulation model (or metamodel thereof) which 

estimates flood depths resulting from a given storm event, and a statistical model which estimates 

the probability distribution of the number and characteristics of storm events in a given year. A 

number of physically driven simulation models exist for estimating compound coastal flood hazard, 

though their development and improvement remain an active area of research [11]. As illustrated 

below, a meaningful research gap exists in the statistical modeling of compound coastal flood 

hazard, particularly in discretizing hazard distributions to a set of events which can be tractably 

simulated by computationally expensive simulation models. This article describes a framework for 

the statistical modeling of compound coastal flood hazard developed for the Louisiana Watershed 

Initiative entitled the extended joint probability method with optimal sampling (EPJM-OS) and its 

initial implementation in a preliminary pilot analysis for the Amite River Basin in coastal 

Louisiana. 

2.1 Methodological Context 

Statistical models of compound flooding from tropical cyclones consist of three major 

components. The first component, the recurrence rate, estimates the rate at which tropical cyclones 

occur; this is needed to convert statistical estimates of flood hazard made on a per-storm basis to 

an annualized basis for intuitive use in policy decision-making.  The second component describes 

the continuous joint distribution of tropical cyclone features which drive hazard when tropical 

cyclones occur. The third component samples events to simulate from the joint distribution and 

assigns probability masses or relative likelihoods (i.e., represents the continuous joint distribution 

as a discrete approximation) to each event for the purpose of producing a cumulative distribution 

function for the simulations’ outcome variables of interest (e.g., peak surge elevations, inundation 

depths).  
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The occurrence of tropical cyclones is typically modelled as a Poisson process with a rate 

parameter 𝜆 estimated with a capture zone or kernel function weighting approach [12], [13]. The 

capture zone approach simply counts and averages the number of storms passing through a 

specified area per year. The kernel function weighting approach applies a smoothing kernel to the 

travel paths or “tracks” of historical storms and integrates the resulting kernel frequency density 

over a length of idealized coastline or region of interest.  

The continuous joint distribution of tropical cyclone features is typically captured using 

copulas, physically driven Monte Carlo ensembles, or joint probability methods. Copulas are 

common in the literature and easy to use, as they require only specified marginal distributions and 

simplified dependence structures between hazard drivers such as peak surge and total rainfall [14]–

[16]. In practice can only produce dependency structures which match one or at most two 

dependency measures of the true joint distribution [17], e.g. the meta-Gaussian copula which 

captures rank correlation only. Physically driven Monte Carlo ensembles are less common and are 

generated by randomly seeding tropical cyclone vortices and evolving them with deterministic 

meteorological simulations [18]. This approach carries advantages for the physical realism of 

individual cyclones but may or may not reflect the true joint variance structure of storm features. 

Additionally, this approach requires a large ensemble size to fully characterize the variance of 

possible tropical cyclones, which may be prohibitive when using computationally expensive 

simulation models to evaluate resulting flood depths. Joint probability methods are uncommon in 

compound flood hazard analysis and more commonly used for purely coastal i.e., surge- and wave-

driven, flood hazard characterization. Joint probability methods leverage empirically derived 

statistical relationships and conditional independence structures permitting analysts to flexibly 

express the joint distribution of tropical cyclone features as a series of conditional distributions or 

Bayesian factorization [5], [19], [20]. Most applications of these methods specifically model 

specifically model the characteristics of storms at a representative point in time such as the time 

of landfall in order to keep the dimensionality of the probabilistic models at a reasonable size. 

While realistically two tropical cyclones can have similar attributes at a single point in time (e.g., 

landfall) and diverge in their characteristics later, parametric approaches such as copulas and joint 

probability methods idealize tropical storm behavior as being uniquely determined by their 

characteristics at the representative point in time. 
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Continuous joint distributions of tropical cyclone features are typically discretized in one of 

three ways: naïve Monte Carlo sampling [21], structured samples [5], and optimization-driven 

subsampling of larger Monte Carlo or structured samples [4], [19]. The idealized discrete storm 

events in the resulting distribution are referred to as synthetic storms. Naïve Monte Carlo sampling 

directly samples from the continuous joint distribution but requires a large sample size. A 

structured sample can more efficiently span tropical cyclone parameter space but relies on a 

heuristic integration scheme to assign probability masses and may also require a large sample size. 

Optimization-driven subsampling is often used in coastal flood risk analysis to reduce the set of 

synthetic storms derived from either method to a size for which flood depths can be more tractably 

simulated [22], [23], but requires initial simulation of the original set [4] or the use of Bayesian 

quadrature which assumes both a closed form representation of the continuous hazard distribution 

and unrealistic assumptions about the variance structure of conditional flood depth exceedance 

probabilities [22]. 

2.2 Simulation Methods 

While statistical modeling i.e., the parameterization of a set of storm events with 

corresponding probability masses and a rate of occurrence to represent the distribution of tropical 

cyclones which may occur and their characteristics, physically driven simulation is necessary to 

characterize the flood depths which arise from those characteristics.  External collaborators on the 

preliminary pilot analysis of the Louisiana Watershed Initiative for the Amite River Basin used 

HEC-HMS to model upstream hydrologic behavior [24]. HEC-HMS models the complete 

hydrologic process of a watershed including infiltration, routing, evapotranspiration, and soil 

moisture accounting.  A lumped model was used, modeling each sub-basin as a single unit. 

External collaborators used the ADCIRC-SWAN model developed for the 2023 Louisiana Coastal 

Master Plan  to model downstream forcing from surge and waves [25]. ADCIRC numerically 

solves circulation and transport problems on an unstructured grid and is used to model storm surge 

behavior under meteorological forcing while the SWAN component computes random wind-

generated waves in coastal and inland waters. External collaborators simulated flood depths in the 

study domain driven by upstream hydrological forcing and downstream surge and wave forcing 

using a two-dimensional HEC-RAS model [26] with unsteady flow routing calculated over an 

irregular mesh via the shallow water equations with the Eulerian-Lagrangian method. HEC-RAS 
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with unsteady flow routing numerically solves a simplified form of the Navier-Stokes equations 

in order to estimate the flow of water over time through river channels and floodplains. 

2.3 Project Context for Statistical Methods 

The methods used to model the continuous joint distribution of tropical cyclone features and 

the rate of occurrence of tropical cyclones for the Louisiana Watershed Initiative’s preliminary 

pilot analysis of the Amite River Basin (as described below in section 2.2.1) were decided from 

the outset of the planning phase by external collaborators, but discretization required novel 

methods development. External collaborators responsible for HEC-RAS modeling reported that 

no more than 200 storm events could be simulated due to limited local computing resources as 

well as the high physical resolution of the available HEC-RAS model. This prohibited the use of 

naïve Monte Carlo sampling as well as any optimization-driven subsampling approach involving 

initial simulation of a large sample. Structured sampling and Bayesian Quadrature were prohibited 

by a lack of a closed-form expression for rainfall behavior as described below in section 2.2.1. 

This left no established method in the coastal flood risk analysis literature appropriate to meet the 

project’s needs and prompted an urgent research question: How to select a small number of storm 

events for hydrodynamic simulation which accurately capture the joint distribution of surge and 

hydrologic behavior? While the broader outcome of the preliminary pilot analysis represents a step 

towards eventual statewide characterization of compound flood hazard to inform policy decision-

making for flood risk mitigation, my principal contribution and the focus of this article is the 

proposal and implementation of a discretization approach which addresses this research question 

in a way which is approximately optimal in the sense of minimizing an intuitive and commonly 

used loss function. 

2.4 Statistical Methods 

The methods presented here are an extension of the joint probability method with optimal 

sampling (JPM-OS), which was developed for purely coastal i.e., surge- and wave-driven hazard. 

As the name suggests, JPM-OS uses a joint probability method to model the continuous 

distribution of tropical cyclone hazard and an optimization-driven subsampling scheme for 

discretization [27]. The joint probability method is extended to incorporate compound hazard with 
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the introduction of a stochastic rainfall field generator [28] which characterizes the spatiotemporal 

distribution of rainfall for a given synthetic storm via Monte Carlo sampling. This requires a novel 

approach to discretization, as the number of events required for convergence with naïve Monte 

Carlo sampling is in many cases too large to simulate with hydrodynamic models such as HEC-

RAS, and the lack of a closed-form conditional distribution function prevents us from using 

Bayesian quadrature. The extended methodology presented here therefore incorporates a 

clustering-based optimal sampling approach which subsamples from a large probability-weighted 

set of events based on the boundary conditions of each event or based on a reduced-fidelity, high-

speed simulation of each event, so as to minimize the integrated square error induced in 

subsampling.  

 The “extended JPM-OS” (EJPM-OS) implementation described here was developed 

during a preliminary pilot study for the Louisiana Watershed Initiative and applied in an illustrative 

case study to the Amite River Basin. This preliminary pilot analysis was performed in the interest 

of methods development, and a revised pilot analysis with revised methods applied to the Amite 

River Basin is ongoing as of March 2023. The methods of the revised pilot analysis will later be 

adapted for coastwide implementation. Due to ongoing methodological development and varying 

operational constraints arising within the Louisiana Watershed Initiative, there are notable 

differences, particularly in optimal sampling implementation, between the methods of the 

preliminary pilot analysis, the ongoing revised pilot analysis, and the planned coastwide analysis. 

The remainder of this section first describes the methods used in the preliminary pilot analysis, 

followed by a discussion of how the clustering-based optimal subsampling approach can be applied 

in a more general context both within and outside of the EJPM-OS framework, under varying 

operational constraints relating to the availability and runtimes of hydrologic and hydrodynamic 

models. 

2.4.1 Continuous Model of Hazard Drivers 

It was decided at the outset of the project that the statistical model of joint flood hazard 

would extend the JPM-OS method as implemented in the CLARA model used in Louisiana’s 2023 

Coastal Master Plan [4]. This version of CLARA used a one-dimensional capture zone (i.e., line-

crossing) approach for recurrence analysis. CLARA uses a joint probability method to characterize 

the continuous joint distribution of five tropical storm parameters at landfall: landfall location, 
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central pressure, radius of maximum windspeed, heading angle, and forward velocity. The joint 

density function is expressed below. 

Λ(𝑐𝑝, 𝑟, 𝑣𝑓 , 𝜃𝑙 , 𝑥) =  Λ1 ⋅ Λ2 ⋅ Λ3 ⋅ Λ4 ⋅ Λ5 

Λ1 = 𝑓(𝑐𝑝|𝑥) =
𝛿

𝛿𝑐𝑝
{exp {− 𝑒𝑥𝑝 [−

𝑐𝑝 − (𝑎0(𝑥) + 𝑎1(𝑥)𝑡)

𝑎2(𝑥)
]}} 

Λ2 = 𝑓(𝑟|𝑐𝑝) =
1

𝜎(𝑐𝑝)√2 𝜋
𝑒

(ln 𝑟− 𝑟̅(𝑐𝑝))
2

2𝜎2(𝑐𝑝)  

Λ3 = 𝑓(𝑣𝑓|𝜃𝑙) =
1

𝜎√2 𝜋
𝑒

(𝑣𝑓 − 𝑣𝑓̅̅̅̅ (𝜃𝑙))
2

2𝜎2  

Λ4 = 𝑓(𝜃𝑙|𝑥) =
1

𝜎(𝑥)√2 𝜋
𝑒

(𝜃𝑙− 𝜃𝑙
̅̅ ̅(𝑥))

2

2𝜎2(𝑥)  

Λ5 = 𝑓(𝑥) =  Φ(𝑥) 

This joint distribution was identified empirically by Resio et. al. [27] leveraging observed 

conditional independence relationships.  

The distribution of rainfall, conditional on the five tropical cyclone parameters used in 

CLARA, was modelled using the stochastic rainfall generator for tropical cyclone produced by 

Villarini et al. [28]. This generator estimates the expected rainfall associated with a synthetic storm 

and samples from a parameterized model of the residual variance. In doing so it captures and 

samples from the aleatory uncertainty in rainfall associated with each synthetic storm. 

Discrepancies in water mass balance in hydrological model calibration revealed bias in the Stage 

IV precipitation data which had been used to calibrate the generator, taken from the National 

Centers for Environmental Prediction. This resulted in five equiprobable bias correction factors 

being applied to rainfall fields produced by the generator. Additionally, it was found by the 

hydrological modeling team that the distribution of antecedent conditions (e.g., soil moisture and 

riverine base flows) could be reasonably represented using three equiprobable cases. 

2.4.2 Optimal Sampling Discretization as Implemented 

The CLARA model discretizes the distribution of the 5 storm parameters around a 

structured sample of 645 probability-weighted synthetic tropical cyclones [29]. In the 2023 Coastal 

Master Plan, this structured sample was used to characterize the hazard distribution under existing 
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conditions and an optimization-driven subsampling approach was used to generate a reduced 

synthetic storm set for characterizing coastal hazard over multiple parameterized climate 

trajectories with various flood risk mitigation interventions [4]. In the preliminary pilot analysis of 

the Amite River Basin, it was decided due to computational constraints to use the CLARA 

subsampling approach for coastal hazard to reduce the set of 645 synthetic storms to a set of 50 

storms. Stochastic rainfall fields were then generated for each of these 50 events, under each of 

the three antecedent conditions cases, with each of the five bias correction factors, for a total of 

37,500 events. 

Flood depths for discrete events were simulated via HEC-RAS. Upstream boundary 

conditions were modelled using HEC-HMS and downstream boundary conditions (i.e., storm 

surge and waves) were modelled using ADCIRC + SWAN. ADCIRC + SWAN did not pose a 

computational bottleneck both because only one simulation was necessary per synthetic storm 

(downstream hydrodynamic forcing was modelled as independent of antecedent conditions and 

rainfall) and because results were already available as intermediate data products from the 2023 

Coastal Master Plan. Similarly, as HEC-HMS models hydrological systems as idealized networks 

with dynamics governed by empirically derived heuristics rather than with spatially explicit 

physical modeling, it was considered feasible to characterize hydrological dynamics for all 37,500 

events. However, the HEC-RAS model available was computationally expensive, and with 

available computational resources only 200 HEC-RAS simulations were feasible. This raised the 

question of how to subsample 200 events from the probability-weighted set of 37,500 events while 

introducing as little error as possible into our representation of the distribution of compound flood 

hazard drivers. 

Optimal Sampling Discretization for Compound Coastal Flood Risk 

The goal of optimal sampling discretization for compound coastal flood risk is to 

approximate a continuous random variable as a discrete random variable or to approximate a 

discrete random variable with many possible outcomes as a discrete random variable with fewer 

possible outcomes. There are two loss functions commonly used to scalarize error in the 

approximation of continuous functions: mean square error and mean absolute error. The choice of 

which loss function to use depends on the desired attributes of the approximation with respect to 

its sensitivity to outliers; as a first order approximation, the mean minimizes mean square error 
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whereas the median minimizes mean absolute error. Machine learning practitioners often select 

mean absolute error because it is less sensitive to outliers [30]. Conversely, in approximating the 

distribution of compound coastal flood hazard drivers, sensitivity to outliers in the tails of the 

hazard distribution is desirable. Therefore, optimal sampling discretization minimizes the 

integrated square error of approximation (equivalent to the mean square error as the normalization 

constant integrates to 1) expressed as a loss function in Equation 1.  

𝐿𝑋(𝑋′) = ∫ ||𝑋(𝜔) − 𝑋′(𝜔)||
Ω

2

𝑑𝑝(𝜔) (1) 

Here 𝑋 is the original (multivariate) random variable, 𝑋′ is the discretized random variable 

used to approximate 𝑋, and 𝐿𝑋(𝑋′) is the loss function or error induced by approximating 𝑋 as  

𝑋′ . The right-hand side of the equation invokes the measure-theoretic definition of a random 

variable. A random variable is defined as a function 𝑋: Ω → ℝ  where Ω  is a sample space 

consisting of possible events. Our multivariate random variables are vectors of univariate random 

variables 𝑋 = (𝑋1, 𝑋2, … ), 𝑋′ = (𝑋1
′ , 𝑋2

′ , … ). The loss function or approximation error can be 

interpreted as the squared Euclidean distance between the true representation of an event 𝜔 ∈ Ω,

𝑋(𝜔) ∈ ℝ𝑛, and its approximated representation after discretization 𝑋′(𝜔) ∈ ℝ𝑛, integrated over 

the space of events Ω with probability measure 𝑝. 

In the case that 𝑋 is a continuous original random variable, it can be approximated with 

one constructed from an arbitrarily large random sample, resulting in Equation 2. Note that in the 

case that 𝑋is already discrete Equation 2 holds with equality. 

𝐿𝑋(𝑋′) ≈ ∑ ||𝑋(𝜔) − 

Ω

𝑋′(𝜔)||2𝑝(𝜔) (2) 

The objective of optimal sampling discretization is to select 𝑋′ so as to minimize the 

approximated loss function. This is achieved by performing weighted k-means clustering of 𝑋(𝜔) 

and setting 𝑋′(𝜔) equal to the centroid of the cluster containing 𝑋(𝜔). This follows from equation 

2. Equation 3 expresses Equation 2 in terms of outcomes 𝑥 = 𝑋(𝜔) and set 𝑋′(𝜔) =  𝜇𝑖 where 𝑖 

is selected such that 𝑋(𝜔) ∈ 𝑆𝑖  where 𝑆𝑖  is the cluster containing 𝑋(𝜔) . It shows that the 

(approximated) value of our loss function from equation 2 is exactly equal to the within-cluster 

variance which is minimized by observation-weighted k-means clustering as we see in equation 3. 

𝐿𝑋(𝑋′) ≈ ∑ ∑||𝑥 − 𝜇𝑖||
2

𝑝(𝑥)

𝑥∈𝑆𝑖

𝑘

𝑖=1

(3) 
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Note that 𝑘 is the number of clusters or discrete values of 𝑋′, which is set a-priori based on 

computational constraints. While k-means clustering algorithms guarantee convergence only to 

locally optimal clusterings [31], repeated optimization with randomly initialized centroids ensures 

results which are close to globally optimal. 

Weaknesses of Optimal Sampling on Boundary Conditions 

The most significant weakness of the proposed optimal sampling discretization as 

implemented in the preliminary pilot study of the Amite River is that optimal sampling on 

boundary condition features i.e., surge and discharge information, is not necessarily the same as 

optimal sampling on peak water surface elevation which is ultimately the hazard of interest. This 

issue is described in more detail and greater generality below in section 2.2.3 subheading “What 

to Sample on”. Put briefly, HEC-RAS is a deterministic simulation, so a discretization of the 

hazard distribution which induces no error in the distribution of boundary conditions would 

similarly induce no error in the distribution peak water surface elevations. While a discretization 

which induces no error is of course impossible both for fundamental reasons and because the 

features of surge and discharge behavior used for discretization are of much lower-dimension than 

the full spatially explicit time series used as boundary conditions, this leads us to believe that a 

discretization which performs well in minimizing error in the distribution of boundary conditions 

will similarly perform well in minimizing the error in peak water surface elevation. An additional 

limitation of this method in practice is that there is no observation at the exact centroid of each 

cluster, so the observation nearest each cluster centroid is used instead. 

Pre-Processing and Implementation 

Pre-processing HEC-HMS output for optimal sampling discretization begins with 

extracting peak discharge, runup time, and drawdown time from each of the four major inlets to 

the HEC-RAS domain as shown in Figure 1, lag time between time of peak surge and peak 

discharge, as well as peak average surge depth, runup time, and drawdown time among 

representative points within the study domain. Discharge runup times are calculated by treating 

the discharge from the time at which discharge first exceeds its mean value over the hydrograph 

up to the time of peak discharge as the left half of a Gaussian density function and calculating the 
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corresponding standard deviation. More specifically, runup time 𝜎𝑙 is calculated as shown below, 

as a function of discharge 𝑄(𝑡), average discharge of the hydrograph 𝑄̅, time 𝑡, and time of peak 

discharge 𝑡𝑝𝑒𝑎𝑘. 

𝜎𝑙 =

√∫ 𝑡2𝑄(𝑡)𝑑𝑡
𝑄<̅̅̅̅̅𝑄(𝑡),𝑡<𝑡𝑝𝑒𝑎𝑘

√∫ 𝑄(𝑡)𝑑𝑡
𝑄<̅̅̅̅̅𝑄(𝑡),𝑡<𝑡𝑝𝑒𝑎𝑘

 

 

Drawdown times were similarly calculated from the time of peak discharge up to the point 

at which discharge receded below its mean value over the hydrograph. Surge runup and drawdown 

times were calculated in the same way using a surge hydrograph with values averaged over a 

random sample of locations within the study domain.  A log transformation was applied to peak, 

runup, and drawdown of discharge and surge due to pronounced skewness, although this is not 

recommended in future analyses as it reduced the relative weight of extreme events in clustering. 

All features were then standardized to have mean zero and standard deviation equal to 1. Events 

were heuristically observation-weighted according to the CLARA-derived probability mass of 

their corresponding synthetic storms by use of repeated observations, permitting us to treat the set 

of events as a random sample of equiprobable events. More specifically, each event indexed by 𝑖 

was repeated in the dataset 𝑛𝑖 times as shown below, where 𝑝𝑖 is the probability of the event and 

𝑝𝑚𝑖𝑛 is the smallest probability of any event. 

𝑛𝑖 = round(
𝑝𝑖

𝑝𝑚𝑖𝑛
) 

Following extraction and standardization, principal component analysis was applied to the 

resulting dataset. The original intention of using principal component analysis was to permit small 

components to be dropped from analysis in case clustering runtimes or memory requirements were 

overly large, but this proved unnecessary. It was however helpful in holistically visualizing the 

performance of the sampling approach.    

From this point the dataset was clustered and discretized such that the observation nearest 

the centroid of each cluster was assigned the summed probability mass of observations in the 

respective cluster. Several synthetic storms were unrepresented in the resulting discretization. In 

the preliminary pilot analysis this led to an adjustment referred to as an “orphan storm correction” 

which replaced certain cluster centroids with nearby events from unrepresented synthetic storms 
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so as to minimize additional error induced by the adjustment. This assured that each synthetic 

storm in the ADCIRC+SWAN ensemble was represented at least once in the subset of events run 

through HEC-RAS. However, the use of this orphan storm correction is not recommended for 

future applications. 

 

 

Figure 1: An illustration of the HEC-RAS model domain and its four major inlets [32]. 

2.4.3 Alternative Implementations of Optimal Sampling Discretization 

Many aspects of the EJPM-OS implementation used in the preliminary pilot analysis of the 

Amite River Basin were the result of operational constraints which may or may not exist in other 

applications. In the interest of supporting future implementations of EJPM-OS and future uses of 

optimal sampling discretization in other frameworks, the section below describes below various 

ways in which optimal sampling discretization can be refined and used in other contexts. 
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Sample Sizes 

 Decisions about sample sizes in the preliminary pilot analysis of the Amite River Basin 

were largely driven by computational constraints. The preliminary pilot analysis used an optimal 

subsample size of 200 events because that was the number of HEC-RAS simulations that external 

partners could run with available resources. Computational constraints similarly governed the 

number of stochastic rainfall fields used. In project contexts where computational constraints are 

less binding, it is preferred to set these values with some empirical justification. 

 Computational constraints were substantially relaxed entering the (ongoing) revised pilot 

analysis for the Amite River Basin. Analysis was performed to identify 1) the number of stochastic 

rainfall fields needed for each synthetic storm in order to approximate the full variability of 

hydrologic responses at the level of individual storms, and 2) the number of clusters needed in 

optimal sampling discretization to would approximate the full variability of hydrologic response 

if sampling were performed at the level of individual storms. To accomplish this, external 

collaborators generated 1500 stochastic rainfall fields for each of three historical hurricanes—

Hurricane Matthew, Hurricane Rita, and Hurricane Isaac—and distributed the rainfall fields for 

each historical hurricane equally among three antecedent conditions cases representing the 25th, 

50th, and 75th percentile of soil moisture levels. For each historical hurricane, I evaluated the rate 

at which random and optimal subsamples converged to the empirical distribution of the full 

sample. Results are shown in section 2.3.3. 

One-Stage vs two-stage sampling 

The optimal sampling discretization approach as implemented in the preliminary pilot 

study was effectively a two-stage sampling approach. Reducing CLARA’s 645 storm set down to 

50 based only on surge-wave hazard acted as the first stage, and optimal sampling discretization 

for compound hazard was used as a second stage. Where possible, it is recommended to use a 

single-stage sampling approach; if applied in the EJPM-OS implementation of the preliminary 

pilot, that would mean skipping the first sampling stage entirely and generating rainfall fields for 

all 645 storms prior to optimal sampling. In cases where single-stage sampling is infeasible e.g., if 

a single-stage sampling design would be prohibitively computationally expensive to run through 

HEC-HMS, a two-stage sampling approach is possible where both stages utilize optimal sampling 
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discretization for compound hazard. If applied to the EJPM-OS implementation in the preliminary 

pilot, that would mean a first stage of generating and sampling on a small number of rainfall fields 

for each of the 645 synthetic storms in the full storm set, followed by a second stage of sampling 

with a large number of rainfall fields for each synthetic storm selected in the previous stage.  

Feature-Weighting in Pre-Processing 

The outcome of optimal sampling discretization is sensitive to the choice of features to 

cluster on and the relative weights applied to them in pre-processing. The pre-processing step 

implemented for optimal sampling discretization in the preliminary pilot analysis did not explicitly 

consider the relative weights of the features used for clustering. 16 features were used: peak 

discharge and rates of runup and drawdown for four locations, time between peak discharge and 

peak surge depth, and runup and drawdown rates of surge depth. Because all features were 

standardized to have standard deviation equal to 1, and the scalar variance of a multivariate random 

variable is the sum of the variances of its component variables, the variance attributable to 

discharge behavior was four times greater than the variance attributable to surge and carried 

proportionally greater weight in clustering. It is likely that this is partially responsible for the 

absence of several synthetic storms in the optimal sampling discretization prior to orphan storm 

correction in the preliminary pilot analysis. Analysists can directly assign a weight 𝑤𝑖  to each 

feature 𝑥𝑖 used in clustering by multiplying each feature 𝑥𝑖 by √𝑤𝑖 after standardizing.  

What to Sample on 

As mentioned in section 2.2.2, subheading “Weaknesses of Optimal Sampling on 

Boundary Conditions”, the most significant weakness of optimal sampling discretization as 

implemented in the preliminary pilot study is that optimal sampling on boundary condition features 

i.e., surge and discharge information is not necessarily the same as optimal sampling on peak water 

surface elevation, which is ultimately the hazard of interest. More generally, there is a multivariate 

random variable 𝑋(𝜔) representing inputs and/or forcings of the hazard outcome of interest 𝑌(𝜔) 

associated with the random event 𝜔 , where in this application 𝑋(𝜔)  is upstream hydrologic 

forcing and downstream surge forcing, and 𝑌(𝜔) is the spatially varying peak water surface 

elevation. There is a function 𝑓 such that 𝑓(𝑋(𝜔)) = 𝑌(𝜔), in this case a HEC-RAS model, which 
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is computationally expensive to evaluate, hence our approximation 𝑋(𝜔) ≈ 𝑋′(𝜔) where 𝑋′(𝜔) 

is the discretized approximation of 𝑋(𝜔) via optimal sampling. Optimal sampling discretization 

minimizes the integrated square difference between 𝑋 and 𝑋′, but in an ideal world it would be 

preferable to minimize the integrated square difference between 𝑌 and 𝑌′ = 𝑓(𝑋′). Because 𝑓 is 

a deterministic function (here specifically HEC-RAS is a deterministic simulation), a discretization 

which induced no error at all such that 𝑋′ = 𝑋 would similarly induce no error in approximating 

peak water surface elevations such that 𝑓(𝑋′) = 𝑌. This provides reason to believe heuristically 

that minimizing error in approximating 𝑋 should perform well in approximating 𝑌, but due to 

nonlinearity in 𝑓 this does not guarantee that error is minimized in approximating 𝑌. To guarantee 

that error is minimized in approximating 𝑌 would require direct evaluation of 𝑓(𝑋). 

Generally speaking, if it is possible to evaluate 𝑓(𝑋) then there’s no need for optimal 

sampling in the first place, but applications may arise in which optimal sampling discretization on 

𝑋 is not the best approach. As with the optimal subsampling approach used in CLARA, there may 

be cases, particularly involving decision-making for flood risk mitigation, that it is feasible to 

evaluate 𝑓(𝑋) directly under existing climatological and landscape conditions, but not under the 

full set of possible future conditions and possible flood risk interventions under consideration. In 

this case, it may be preferable to directly evaluate 𝑌 =  𝑓(𝑋) under existing conditions, perform 

optimal sampling discretization directly on 𝑌  to arrive at 𝑌′  such that the integrated square 

difference between 𝑌 and 𝑌′ is minimized, and use 𝑌′ to characterize hazard under the full set of 

future conditions and flood risk interventions. This is most appropriate under slowly changing 

landscape conditions, and may suffer in performance under large structural changes that drastically 

affect the landscape’s hydrodynamics There may also be cases where a metamodel or coarser-

resolution hydrodynamic model 𝑓 is available, which can inexpensively estimate 𝑌̂ = 𝑓(𝑋) such 

that 𝑌̂ ≈ 𝑌 with sufficient fidelity to be useful in sampling but insufficient fidelity to be used 

directly for hazard estimation. In this case, analysts may wish to perform optimal sampling 

discretization to identify 𝑌̂′ ≈ 𝑌̂, and then simulate the selected events with the more expensive 

full-fidelity hydrodynamic model 𝑓 such that the final hazard estimate is 𝑌′ = 𝑓 (𝑓−1(𝑌̂′)). This 

latter approach is particularly salient in cases where 𝑓 is a hydrodynamic model incorporating rain-

on-grid and does not rely on hydrologic model output for upstream boundary conditions, as 

sampling directly on rainfall, which is mechanically further removed from final water surface 
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elevations than is hydrologic discharge, may perform worse than sampling on hydrologic 

discharge.  

2.5 Results 

The preliminary pilot analysis of the Amite River Basin conducted for the Louisiana 

Watershed Initiative was, as said above, a preliminary analysis for the sake of methods 

development. Several methodological details of the preliminary pilot, some described above and 

others relating to the rainfall generator and hydrodynamic modeling, were later deemed to warrant 

iterative improvement prior to the publication of authoritative flood hazard estimates in the revised 

pilot analysis. At the time of writing, the revised pilot analysis is not yet complete, and its 

methodological improvements are out of scope for this document. For these reasons, nothing 

resembling a flood map will be shown here. In lieu of flood hazard estimates, presented below are 

indicators of the performance of optimal sampling discretization in approximating the previous 

distribution of hydrological and surge behavior, as well as the impact of optimal sampling 

discretization on the distribution of surge hazard. Also shown below are results of the analysis 

described in section 2.2.3 subheading “Sample Sizes”, which investigates the relationship between 

sample size and performance of random and optimal sampling of stochastic rainfall fields at the 

level of individual tropical cyclones. 

2.5.1 Fidelity of Optimal Sampling Discretization to the Original Distribution in the 

Preliminary Pilot Analysis of the Amite River Basin 

The implementation of optimal sampling discretization applied in the preliminary pilot 

analysis of compound flood hazard in the Amite River Basin involved several implementation 

details which warrant refinement in future analyses, including the relative under-weighting of 

surge behavior and the use of a log transformation which reduced the effective weight of extreme 

events. In spite of this, the optimal sampling discretization performed surprisingly well in 

approximating a distribution characterized by 37,500 events (50 synthetic storms, 50 rainfall fields, 

five bias correction factors, and three antecedent conditions cases) in 16 dimensions (peak surge, 

surge runup and drawdown, lag time between peak surge and peak discharge, and peak discharge 

and discharge runup and drawdown for four inlets). Figure 1 shows the cumulative distribution 

functions of the first principal component of the sample and of peak discharge at the largest inlet 
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to the HEC-RAS domain. The optimal subsample matches the distribution of the first principal 

component of the original sample almost exactly. The optimal subsample appears to underestimate 

peak discharge for extreme events. This is expected to improve in future analyses when the log 

transformation is no longer applied in pre-processing.  

 

 

Figure 2: Cumulative distribution functions of first principal component value and peak discharge 

at the largest inflow to the HEC-RAS domain along the Amite River, characterized by the original 

sample and the optimal subsample [32]. 
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2.5.2 Agreement in Coastal Hazard Between Optimal Sampling Discretization and 

Original Distribution  

Optimal sampling discretization will typically result in clusters containing storm events 

generated from more than one synthetic storm. This results in changes to the total probability 

masses assigned to each synthetic storm in the optimally sampled distribution compared to the 

original distribution. To investigate the magnitude of this effect, comparisons were made between 

the hazard distribution estimated by the EJPM-OS statistical model with surge-only hazard 

simulated by ADCIRC + SWAN and the hazard distribution estimated by the original CLARA 

model with the same set of synthetic tropical storms and the same ADCIRC + SWAN simulations. 

The results are shown in Figure 3. They show broad agreement between the methods at the 10- 

and 100-year return periods, although the EJPM-OS-derived probability masses does 

underestimate the 50-year flood depth by about a foot in a section of the model domain. It is likely 

that this performance would improve with a greater relative weight placed on surge features in 

optimal sampling discretization and would also improve with a one-stage sampling design with a 

more diverse set of synthetic tropical cyclones. 
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Figure 3: Difference between surge-only flood hazard estimated by EJPM-OS as implemented in 

the preliminary pilot analysis and previous CLARA methods, expressed in feet at the 10-, 50-, and 

100-year return periods. Only pixels with a difference of 6 inches or greater are shaded [32]. 

 

2.5.3 Sample Sizes and Performance 

As described above in sample 2.2.2 subheading “Sample Sizes”, at the outset of the revised 

pilot analysis there was a need to characterize the rate at which empirical distribution of a random 

sample of stochastic rainfall fields of a given hurricane converges to the true distribution, which 

can be reasonably approximated with a very large sample. There was a similar to know the rate at 

which the optimal sample discretization of the empirical distribution of a large sample converges 
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to the empirical distribution of said large sample. To help us accomplish this, external partners 

generated 1500 stochastic rainfall fields for each of three historical hurricanes—Hurricane 

Matthew, Hurricane Rita, and Hurricane Isaac—and distributed the rainfall fields for each 

historical hurricane equally among three probability-weighted antecedent conditions cases 

representing the 25th, 50th, and 75th percentile of soil moisture levels. These were then run through 

HEC-HMS. In order to examine the sensitivity of the convergence rates of interest to the 

dimensionality of data extracted from HEC-HMS simulations, all analysis was performed on four 

sets of extracted data. One contained only peak discharge information from virtual gages at the 

four major inlets to the HEC-RAS domain. One contained peak discharge information from an 

additional six upstream virtual gage locations for a total of 10 virtual gage locations. The remaining 

two used the same sets of gage locations, but also contained discharge runup rate, discharge 

drawdown rate, and time of peak discharge, with peak discharge—deemed by external partners to 

be the most salient feature—scaled (after standardization) by a factor of √3 so as to account for as 

much variance as runup, drawdown, and peak time combined. For the sake of brevity, only results 

using peak discharge from four gage locations and results including runup, drawdown, and peak 

time from ten gage locations are shown. The convergence rates of the intermediate datasets are 

consistent with those shown. 

It was straightforward to calculate and express the convergence rates of optimal sampling, 

as the total within-cluster sum of squares of a clustering divided by the total sum of squares reflects 

the portion of variance captured by the clustering on the interval [0, 1]. Figures 3 and 4 show the 

captured variance as a function of number of clusters for the extraction of peak discharge at four 

gage locations and the extraction of peak discharge, runup, drawdown, and peak time of 10 gage 

locations respectively. Non-monotonicity in these plots is due to random initialization of the k-

means clustering algorithm. The figures show the best clusterings out of 100 randomly initialized 

executions of the k-means clustering algorithm in line with the use of random restarts in practical 

applications of the method. It is clear from these figures that as the dimensionality of data to be 

clustered increases the number of clusters necessary to reach a given level of performance 

increases. Tens of clusters are easily enough to capture 90% of the variance of the distribution of 

peak discharges among four gage locations, but hundreds are required to capture a similar portion 

of variance when including temporal dynamics among ten gage locations. This performance must 

be weighed carefully against computing budgets on the basis of expert judgement. It bears noting 
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here that this performance is measured at the level of individual storms. An optimal sampling 

discretization carried out over a set of diverse synthetic tropical storms with a fixed number of 

clusters per synthetic storm will necessarily yield equal or greater performance when compared to 

an optimal sampling discretization with the same number of clusters per synthetic storm which 

only permits clustering at the level of individual synthetic storms, as the latter represents a 

constrained special case of the former. For this reason, the performance shown below represents a 

lower bound on the performance of optimal sampling discretization as applied in EJPM-OS rather 

than a direct measure. The difference between the performance of optimal sampling discretization 

at the level of individual storms versus over a diverse set of synthetic storms will be investigated 

in future work. 

 

 

Figure 4: Variance captured in optimal sampling as a function of number of clusters for three 

historical hurricanes, using peak discharge from four model domain inlet gage locations. 
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Figure 5: Variance captured in optimal sampling as a function of number of clusters for three 

historical hurricanes, using peak discharge, runup rate, drawdown rate, and time of peak surge 

from ten modelled gage locations, with peak discharge scaled by √3 after standardization. 

 

 In order to quantify the convergence of random sampling in terms that are directly 

analogous to the results shown for optimal sampling, this analysis used a heuristic measure which 

expresses the portion of variance of extracted HMS data which is captured by a random sample. 

This heuristic treats each random sample as the final set of centroids of a k-means clustering 

algorithm, assign each observation in the full dataset to the “cluster” of each element of the random 

sample, and calculate the portion of variance captured in line with what is shown above for optimal 

sampling. Results shown are the average performance over 100 replicates for each sample size. 

Because in EJPM-OS rainfall fields are typically generated randomly and assigned in equal 

number across antecedent conditions cases even where antecedent conditions cases are probability-

weighted, random samples were selected without replacement equiprobably from the three 

antecedent conditions cases. The pseudo-clustering performance shown reflects the variance 

captured relative to the probability-weighted empirical distribution. Figures 5 and 6 show the 

performance of random sampling over peak discharge at four inlet gage locations and over peak 

discharge, runup rate, drawdown rate, and time of peak discharge at ten gage locations with peak 

discharge scaled by √3 after standardization. Consistent with our results for optimal sampling, the 

performance of random sampling degrades substantially as more gage locations as well as temporal 

dynamics are considered. These results also show greater heterogeneity in the performance of 

random sampling between historical hurricanes, indicating that these results are less consistently 

generalizable. Additionally, it is unclear whether the large amount of variance captured for very 
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large sample sizes actually indicates convergence to the true distribution, or whether it is simply a 

result of approaching the sample size of the full dataset containing 1500 randomly generated 

rainfall fields. Again, great care must be taken to balance the benefits of larger numbers of rainfall 

fields against computational constraints. These results may be utilized for future EJPM-OS 

implementations to inform decisions between one-stage and two-stage optimal sampling designs 

and, in the case of two-stage sampling designs, how to balance the number of synthetic storms to 

select in the first stage against the number of stochastic rainfall fields to generate per selected storm 

in the second stage. 

 

 

Figure 6: Variance captured in random sampling as a function of sample size for three historical 

hurricanes, using peak discharge from four model domain inlet gage locations. 

 

 

Figure 7: Variance captured in random sampling as a function of sample size for three historical 

hurricanes, using peak discharge, runup rate, drawdown rate, and time of peak surge from ten gage 

locations, with peak discharge scaled by √3 after standardization. 
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2.6 Conclusions 

The extended joint probability method with optimal sampling (EJPM-OS) represents a 

novel approach for statistical modeling of compound coastal flood hazard. Preliminary 

implementation has shown good performance over several measures. Methodological changes for 

ongoing efforts of the Louisiana Watershed initiative will continue to iterate on and improve upon 

this approach. Future research will seek to further refine these methods, better quantify the 

performance of the method, and study how said performance varies as a function of various 

implementation decisions.  

The optimal sampling discretization procedure used in EJPM-OS is highly generalizable 

to statistical characterization of natural hazards where the outcome of interest of a random event 

is calculated with a computationally expensive model, and for which boundary conditions or 

lower-fidelity estimates (via coarser model structure or metamodeling) can be produced more 

efficiently. It can be applied directly in cases where the distribution of events is represented as an 

empirical distribution or random sample, and it can be applied to a large Monte Carlo sample of 

an arbitrary joint distribution without requiring any assumptions about the variance structure of 

the hazard. The optimality guarantee associated with this approach, that of minimizing integrated 

square error in discretization, is highly appropriate from the perspective of viewing natural hazards 

through the lens of multivariate random processes. 
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3. REAL OPTIONS ANALYSIS OF ADAPTIVE PLANNING IN 

STRUCTURAL AND NONSTRUCTURAL FLOOD RISK MITIGATION 

Coastal flooding associated with tropical cyclones presents a severe and worsening hazard 

[1]. A variety of interventions are available to combat this hazard, which can be roughly 

categorized as structural and nonstructural protection. Structural protection is defined as the set of 

interventions which influence the probability distribution of flood depths in a given location (e.g., 

levee construction). Nonstructural protection is defined as the set of interventions which influence 

the damage associated with a given flood depth e.g. elevation-in-place retrofits to individual 

buildings [6]. Structural and nonstructural protection therefore interact nonlinearly and require a 

certain minimum model complexity to account for both, which makes generation of efficient 

solutions a challenging problem in its own right. The problems of generating and comparing 

strategies combining structural and nonstructural are made more complicated by “deep” 

uncertainty. Deep uncertainties are those which cannot be confidently ascribed probability 

distributions due lack of knowledge or disagreement between stakeholders e.g. the severity and 

timing of specific impacts of climate change [33]. Failure to account for deep uncertainties in 

decision making leaves decision makers vulnerable to regret. A flood risk mitigation strategy 

designed for a moderate climate future is subject to regret in the form of wasted investment in a 

mild climate future and regret in the form of failure to prevent flood damages in a severe climate 

future. However, explicitly adaptive and flexible strategies have the potential to reduce regret in 

decision-making under deep uncertainty in a variety of management contexts [34]–[36]. A solution 

which performs well under a wide range of deeply uncertain conditions is considered “robust. This 

chapter utilizes an optimization-driven framework for decision-making under deep uncertainty 

which uses multi-objective optimization to generate robust solutions which balance system 

performance over multiple climate futures. It leverages framework to characterize the extent to 

which adaptive flood risk management strategies combining structural and nonstructural 

protection measures are less vulnerable to regret than non-adaptive strategies. The intention of this 

work is to draw actionable conclusions to inform applied flood risk modeling efforts for applied 

policy decision-making in how they generate and compare efficient flood risk mitigation strategies 

under uncertainty. 
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A wide range of flood risk models are available in the literature, but most have limited 

applicability to investigating adaptive combinations of structural and nonstructural protection. 

Such models are typically either too computationally burdensome for optimization or too 

simplified to be useful in an applied setting. They often assume a single elevation for a levee or 

ring levee system, ignore levee fragility and wave overtopping, assume a single value for flood 

depths or damage when flooding occurs, fail to explicitly model surge and wave behavior as a 

function of sea level rise, or assume stationarity in economic and climate conditions [37]–[46]. In 

the case of Louisiana’s 2017 Coastal Master Plan, the Coastal Louisiana Risk Assessment 

(CLARA) Model was sufficiently detailed to characterize the impacts of structural and 

nonstructural protection but was too computationally burdensome for an optimization-driven 

experimental design. Instead, a relatively small set of structural protection projects were evaluated 

separately, with nonstructural projects evaluated conditionally upon selected structural projects 

[47]. In order to better explore the interactions between structural and nonstructural protection in 

an adaptive planning context, this analysis utilizes the recently developed Surge and Wave Model 

for Protection Systems (SWaMPS)—a faster, lower resolution, and spatially limited version of 

CLARA [48] that is configured to represent the Larose to Golden Meadow Hurricane Protection 

Project, a ring levee structural protection system in Lafourche Parish, Louisiana. 

Generation, evaluation, and comparison of flood risk mitigation strategies under conditions 

of deep uncertainty is challenging because the rank-ordering of mitigation strategy performance 

varies between deeply uncertain future conditions and because analyst knowledge of those future 

conditions is non-probabilistic. One common approach to decision-making under deep uncertainty 

is Robust Decision-Making (RDM), which stress-tests strategies under a wide range of future 

conditions in order to determine which are robust [33]. The choice of how to measure robustness, 

however, is not trivial. A satisficing robustness metric would measure the fraction of modelled 

futures in which strategy performance exceeds a given threshold, a regret-based metric would 

measure the maximum or average regret over modelled futures, and a statistically based metric 

would use some descriptive statistic of strategy performance over modelled futures such as a 

coefficient of variation [49]. All such parameterized robustness metrics however carry the notable 

weakness that they make implicit probabilistic assumptions about deeply uncertain future 

conditions. To conclude that a strategy which performs adequately in 99% of modelled deep0ly 

uncertain futures is more robust than one which performs adequately in 1% of modelled futures is 
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epistemically unsound, as without probabilistic information it is not guaranteed that the modelled 

futures in the former 99% have a greater summed probability of occurrence than those in in the 

latter 1%. For this reason the RDM framework uses robustness analysis largely for the purpose of 

qualitatively understanding a strategy’s potential shortcomings and augmenting it, or otherwise 

characterizing regions of uncertain parameter space in which strategies succeed or fail and 

evaluating them probabilistically in a post-hoc fashion [33].  Other approaches such as Adaptation 

Pathways, rather than simply stress testing a prespecified strategy or set of strategies, simulates 

deeply uncertain futures in order to identify branching pathways of successive interventions which 

maintain pre-specified minimum performance levels under divergent future conditions [50], [51]. 

Despite the efficacy of RDM in exploring the performance of policy actions under diverse deeply 

uncertain future conditions and the efficacy of Adaptation Pathways in generating robust and 

adaptive strategies, both frameworks applied directly require a structured, human-in-the-loop 

decision processes which are effective in exploring combinatorial strategies but likely struggle 

when seeking to optimize continuous decision variables such as the height of a levee or the amount 

of resources to devote to nonstructural protection. 

In cases where optimization-driven decision processes are required, such as in cases where 

there is a need to optimize where cost-effectiveness or the net present value of policy decisions 

with continuous decision levers, other frameworks are available. Of particular note is Real Options 

Analysis, which structures adaptive strategies as decision trees similarly to Adaptation Pathways, 

optimizing average net present value of decisions over multiple decision points simultaneously 

[34], [35], [52]. This is particularly suited to the present decision context in which the generation 

and comparison of robust and adaptive combinations of structural and nonstructural flood risk 

mitigation is desired. In simultaneously optimizing short-term and long-term actions, Real Options 

Analysis compares the near-term benefits of immediate action which carry potential regret with 

the flexibility of delaying action and acting adaptively when more information is available which 

carries the opportunity cost associated with delayed action. It should be noted that while Real 

Options Analysis invokes the notion of and derives inspiration from the analysis of options in the 

sense of the financial derivate contracts, the “real” part of Real Options Analysis as applied to 

decision-making under deep uncertainty refers to the fact that the “options” analyzed are not in 

fact financial derivatives but rather optionality associated with a choice to delay action such as the 

construction of a reservoir in the case of water resource management or a levee in the case of flood 
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risk management. For this reason the analysis structure differs from that of financial options 

analysis and involves optimization of arbitrary system models via metaheuristic optimization 

routines such as genetic algorithms and does not typically involve e.g. the Black-Scholes equation 

[34], [35], [52]. Real Options Analysis does however carry the same weakness as univariate 

robustness measures described above in that it relies on probabilistic assumptions; even where lip 

service is paid to the non-probabilistic nature of deeply uncertain futures, the optimization of an 

average net present value of decisions amounts to an expected net present value with an implicit 

assumption of equiprobably futures. This approach applied directly, or any straightforward 

mathematical programming approach which optimizes the average of objective values over 

modelled futures is problematic. A strategy which dominates another even in a multiobjective 

sense when averaged over possible futures does not necessarily do so from the perspective of 

diverse groups of decision-makers or stakeholders who may hold differing subjective beliefs about 

the relative likelihood of possible futures and does not necessarily do so in expectation under a 

reasonable probabilistic model which might be formed if more information were available. This 

research therefore seeks an approach by which to generate and compare adaptive strategies which 

directly considers the value of flexibility and adaptivity as does Real Options Analysis, but which 

does not impose epistemically unsupported rank-orderings as does typical Real Options Analysis 

or the use of scalarized robustness metrics.  

To arrive at an implementation of Real Options Analysis that is fully appropriate in any rank-

ordering of strategies under deep uncertainty requires integration with another optimization-driven 

approach for decision-making under deep uncertainty. One such method is Many-Objective 

Robust Decision-Making (MORDM). MORDM involves selecting a baseline future, optimizing 

strategy performance in that baseline future in a multi-objective sense, and stress-testing the 

resulting Pareto frontier across a range of deeply uncertain futures as in RDM [53]. Applied as 

originally proposed, this framework does not lend itself well to adaptive strategies as the initial 

optimization is over a single modeled future. An extension of this approach referred to as multi-

scenario MORDM repeats the optimization phase over several parameterized futures which are 

discovered in an initial MORDM analysis, but this approach is similarly inappropriate here as each 

optimization is performed on a single parameterized future [54]. A competing framework for 

optimization-driven generation of robust policy decisions is Robust Optimization (RO). Robust 

optimization typically optimizes the average value of objectives over a set of parameterized futures 
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while either setting constraints on a scalarized robustness measure or simultaneously optimizing 

average objective values and a scalarized robustness measure in a multiobjective sense [55], [56]. 

As discussed above, the use of scalarized robustness measures may lead to epistemically 

unfounded rank-orderings of solution robustness and is therefore problematic. However, recent 

work by Shavazipour et al. has proposed an alternative approach for the generation of robust 

solutions which does not make epistemically problematic comparisons between solutions under 

deep uncertainty, entitled Multi-Scenario Multi-Objective Robust Optimization (MORO-MS). 

This approach, by simply treating each objective of interest in each modelled future state of the 

world as a distinct objective, avoids epistemically problematic rank orderings by only considering 

a solution to be dominated in the case where it is dominated in every modelled future. It has been 

applied in a didactic case study of the shallow lake problem  [57] and in a case study of forest 

landscape management [58]. No study has yet applied the principles of MORO-MS to an adaptive 

planning context or to flood risk mitigation. The application of Multi-Scenario Multi-Objective 

Robust Optimization to maximize the net present value of adaptive strategies over every modelled 

future in a multiobjective sense represents a natural extension of Real Options Analysis in that the 

resulting Pareto frontier trivially contains solutions which maximize net present value of solutions 

in every future as well as the solution which maximizes average net present value. To our 

knowledge, this is the first implementation of a method which uses an optimization-driven 

approach to generate adaptive strategies across a range of deeply uncertain future conditions while 

handling comparisons between strategies under deep uncertainty with full epistemic rigor. 

3.1 Methods: Initial Experiment 

This analysis uses the SWaMPS model and the NSGA-II multiobjective evolutionary 

algorithm [59] to identify adaptive flood risk mitigation strategies consisting of structural and 

nonstructural mitigation which simultaneously minimize the combined net present value of 

mitigation costs and expected damage across three sets of sea level rise futures—low, medium, 

and high—within each of which individual trajectories are treated as equiprobable. Expected 

damage is calculated over an 80-year period, and each set of sea level rise futures contains five 

distinct trajectories. This optimization is performed in an adaptive context and in a static context. 

The adaptive context considers two decision stages – one in 2015 at the start of the planning period 

and one in 2055 halfway through the planning period. At the time of the second decision stage in 
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the adaptive context, decision-makers have observed the degree of sea level rise which has 

occurred thus far and take it into account in their decision-making. This is represented in the 

optimization problem by three distinct sets of protection measures to take at the second decision 

stage: one which is applied in the “low” set of sea level rise futures, one which is applied in the 

“medium” set of futures, and one which is applied in the “high” set of futures. The static 

optimization context also simultaneously optimizes performance over the low, medium, and high 

set of future conditions, but makes the same decision in the second stage irrespective of observed 

sea level rise conditions. This allows us to characterize the extent to which the adaptive decision-

making of the adaptive context can better balance performance over the sets of climate futures than 

the one-off decision-making of the static context. 

 Table 1 shows an XLRM chart [60] describing the overall problem structure. Our sea level 

rise trajectories are generated by Brick V0.3 over multiple Representative Concentration Pathways 

and calibration ensemble members [61]. These trajectories are selected by first generating sea level 

rise trajectories for each member of Brick V0.3’s calibration ensemble for each of three available 

representative concentration pathway, adjusting them to reflect zero sea level rise off the coast of 

Louisiana at the start year for this study of 2015. The sea level rise trajectories are then ordered by 

their total sea level rise from 2015 to 2055 and select trajectories with evenly spaced indices 

spanning the entire set. For the sake of computational tractability, 15 trajectories are selected, such 

that each set of futures contains five. It is important to note that, as shown in Figure 8, due to 

nonlinearity in sea level rise trajectories (resulting from e.g., sudden ice sheet collapse), the lowest 

“high” trajectory has a 2095 sea level substantially lower than the highest “medium” trajectory 

and the lowest “medium” trajectory has a 2095 sea level substantially lower than the highest “low” 

trajectory. This captures a more realistic degree of uncertainty following observation than similar 

previous work using Real Options Analysis, wherein a less extreme near-term observation is 

assumed to always lead to a less extreme long-term climate trajectory [34], [36], [62]. While 

changes in storm frequency and intensity as well as uncertain population growth, economic growth, 

and discount rates are also salient uncertainties in an applied context, the initial experiment 

excludes frequency and intensity changes from our uncertainty ensemble because they are more 

difficult to observe directly with a high degree of confidence, and population change, economic 

growth, and discount rates are excluded in order to focus narrowly on a straightforwardly orderable 

continuum of hazard intensities.
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Table 1: XLRM Chart of present study – adaptive context 

eXogenous uncertainties: 

- Sea level rise trajectory, binned into 3 

sets: high, medium, low 

Levers: 

(Each lever listed has one value for an upgrade 

in 2015, and one in each of three sets of sea 

level rise trajectories in 2055) 

- Binary indicator for levee upgrade  

- Continuous investment intensity for 

levee upgrade 

- Nonstructural elevation standard 

(NAVD88 feet) 

Relations: 

- SWaMPS  

- Mixed-lever NSGAII 

Measures: 

- Sum of net present value of mitigation 

and expected damages, evaluated 

separately over high, medium, and low 

sea level rise trajectories. 
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Figure 8: Sea level rise trajectories – high in red, medium in black, and low in blue. 
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 The use of system performance across three sets of climate futures as objectives and a 

single second-stage system upgrade within each climate future is meant to be a tractable 

approximation of a more complex but intractable experimental design. Ideally, the number of sea 

level rise trajectories would be substantially larger. Due to the limited number of sea level rise 

trajectories used, the experiment as implemented groups sea level rise trajectories into three groups 

based on the ordering of sea level rise at the year 2055; if it were tractable to run many more sea 

level rise trajectories these would instead be grouped into bins based on sea level rise at 2055 with 

widths corresponding to the variance in statistical estimators of near-term mean sea level trends 

based on on-line observations. Each of these bins would have a set of decision variables 

corresponding to a second-stage system upgrade. This preferred experimental design would have 

one objective for each sea level rise trajectory. This more complex design, however, would be 

computationally intractable. The model currently takes approximately thirty seconds to generate a 

net present value of costs for a single strategy for a single sea level rise trajectory and as a result 

requires require three days to optimize over 15 sea level rise trajectories with 30,000 function 

evaluations when running in parallel on 50 cores available at the time the experiment was 

conducted. This limits the number of sea level rise trajectories, which limits the number of sea 

level rise bins which can be considered and assigned distinct decision levers as any given bin with 

a corresponding set of decision levers must reflect a realistic degree of uncertainty in future sea 

level rise following the second decision stage. Net present values of costs are averaged over sea 

level rise trajectory bins rather than treated as individual objectives for similar reasons; research 

has shown that the convergence of multi-objective optimization via multi-objective evolutionary 

algorithms slows as the number of objectives increases [63]. While this does mean that sea level 

rise trajectories within the low, medium, and high bins are treated as equiprobable, this reflects a 

decision to model deep uncertainty in sea level rise with a deeply uncertain ordinal hyperparameter, 

wherein the deeply uncertain state of the world characterized by a given value of that 

hyperparameter is itself described probabilistically; while this simplification reduces the realism 

of the experiment, it does not therefore reflect a failure to treat deeply uncertain system parameters 

non-probabilistically. Additionally, it would be preferred to permit second-stage protection 

decision to be made at an arbitrary time governed by an additional decision lever for each set of 

sea level rise trajectories, leading the structure of the “option” present in the experimental design 

to more closely resemble American options with respect to the financial derivative contracts. This 
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however would add dimensionality to the lever space and therefore slow convergence substantially, 

necessitating that the implemented experimental design limit second-stage mitigation decisions to 

a fixed time and more closely resemble European options with respect to the financial derivative 

contracts. The temporal resolution used in modelling reflects another simplification made for 

computational tractability: expected annual damages due to flooding are estimated via the 

SWaMPS model at years 0, 20, 40, 60, and 80 with discontinuities in expected damages over time 

at the midpoints between modelled years i.e.  at years 10, 30, 50, and 70, with an additional 

discontinuity at year 40 where expected annual damage is calculated before and after the second-

stage mitigation decision. Discounting is applied at 10-year intervals rather than annually or 

continuously to simplify the modelling codebase. 

Optimization is handled via mixed-lever NSGAII implementation from the PyMoo 

package for Python [64]. While the SWaMPS model natively parameterizes structural mitigation 

as an increase in crest elevation to each of 12 levee reaches, permitting each reach crest height to 

vary independently in each upgrade stage would result in an unreasonably high-dimensional search 

space for optimization and would be unlikely to converge to the Pareto frontier in a reasonable 

number of function evaluations. Investment in structural protection upgrades is expressed as a 

dimensionless scalar, the parameterization of which is described below. Levee upgrades at each 

decision stage are controlled by a continuous, dimensionless levee height upgrade intensity and a 

Boolean indicator for whether an upgrade occurs at that decision stage. Using a continuous levee 

height upgrade without a Boolean indicator was considered, permitting a continuous levee height 

upgrade of zero to indicate the lack of an upgrade. However, extremely small levee height upgrades 

would have a proportionally small impact on flood damages but would still incur large overhead 

costs. The use of a Boolean indicator for levee upgrades was therefore deemed necessary to ensure 

that within the optimization, solutions with substantial levee upgrades would be discoverable from 

solutions without levee upgrades and vice versa. This was not considered necessary for 

nonstructural mitigation, as nonstructural mitigation does not have the same magnitude of 

overhead cost. Additional nonstructural mitigation applied at the second decision stage would 

carry additional marginal costs, as structures which had previously received improvements and 

had not been bought out would have to be upgraded again. This does not, however, represent the 

same degree of discontinuity in cost as is present in upgrades to structural protection The SWaMPS 

model natively supports modeling of nonstructural mitigation through a nonstructural protection 
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standard elevation measured in NAVD88 feet. Applicable buildings lying below this standard by 

zero to three feet are offered exterior floodproofing treatments. Applicable buildings lying below 

the standard by three to twelve feet are offered elevation-in-place retrofits. Those lying more than 

twelve feet below the standard are offered voluntary buyouts. The SWaMPS implementation of 

nonstructural protection follows that of the Coastal Louisiana Risk Assessment Model (CLARA) 

utilized in Louisiana’s 2017 Coastal Master Plan [65]. The effectiveness of nonstructural 

mitigation in SWaMPS is modulated by a user-determined participation rate parameter. 

Participation rate in nonstructural mitigation is assumed to be 100% for the purposes of this study 

to best highlight the impacts of nonstructural mitigation and the interaction thereof with structural 

protection. 

As described above, it was desirable to parameterize levee height upgrades with a single 

continuous scalar value rather than with a separate value controlling the upgrade magnitude for 

each reach. Otherwise, optimization would be unlikely to converge on an approximate Pareto 

frontier within a reasonable number of function evaluations. For this reason, the PyMoo 

implementation of NSGAII was used to compute a Pareto frontier of expected annual damage 

versus structural upgrade cost with one meter of sea level rise, while permitting the increase in 

levee crest height of each reach to vary continuously. The population size was left at the default 

value of 100. The resulting solution set along this approximate Pareto frontier was then sorted by 

cost. The least costly levee upgrade was given the index 0, and the most costly levee upgrade was 

given the index 99. In our static and adaptive optimization contexts described above, the 

dimensionless value of structural upgrade intensity is used to index the structural configurations 

along this Pareto frontier, with non-integer values resulting in a linear interpolation between two 

contiguous configurations. This initial optimization can be expressed: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 < 𝑓𝐸𝐴𝐷(𝒙, 𝒄, 𝑛), 𝑓𝑐𝑜𝑠𝑡(𝒙, 𝑛) >, 𝒙 = < 𝑥1, 𝑥2, … , 𝑥12 > 

𝑠. 𝑡.  

𝑥𝑖 ∈ [0,3.5] 𝑖 ∈ {1, … ,12} 

Here 𝑥𝑖 refer to continuous levee height upgrade magnitude in meters for each of 12 levee reaches, 

𝑓𝐸𝐴𝐷 refers to the expected annual damage with one meter of sea level rise given the specified 

levee height upgrade without any nonstructural investment, and 𝑓𝑐𝑜𝑠𝑡 refers to the cost of said levee 

height upgrade. Both 𝑓𝐸𝐴𝐷 and 𝑓𝑐𝑜𝑠𝑡 are calculated with the SWaMPS model, the complexity of 

which (due to the complexity of overtopping processes, rainfall and pumping, and aggregation of 
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flood depths calculated at the level of individual storms) precludes presentation of closed-form 

parameterizations here. The structure of the SWaMPS model is described in greater detail in 

Appendix A below, as well as in its original publication by Johnson et al. [48]. All stochastic 

components of the SWaMPS model are reduced to a deterministic sample path problem with 25 

Monte Carlo iterates from a fixed initial random seed. Here 𝒄 refers to climatological parameters, 

in this case set to reflect no change in intensity and frequency of tropical cyclones compared to the 

historic record and one meter of sea level rise compared values observed in the year 2015. Here 𝑛 

refers to a fixed nonstructural mitigation standard reflecting no nonstructural mitigation, equal to 

the −13  feed NAVD88 below which no structures exist in the system. Multi-objective 

optimization is caried out via a mixed-lever implementation of the NSGA-II genetic algorithm in 

the PyMoo package for Python [64]. Bounds on levee height upgrades are imposed for physical 

realism and implemented as “bounds” as described in PyMoo documentation, with initial 

population sampling and mutation implemented in PyMoo so as to respect bounds. As described 

above, the resulting Pareto frontier is used to construct a transformation 𝑴(⋅) which converts a 

dimensionless scalar parameter governing structural upgrade magnitude to a twelve-dimensional 

real vector of levee upgrade heights in meters. Using a single continuous index along the resulting 

Pareto frontier to parameterize structural investment intensity, the optimization problem posed by 

the adaptive experiment can be expressed: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 < 𝑓1(𝒙), 𝑓2(𝒙), 𝑓3(𝒙) >, 𝒙 =  (𝑥𝑠𝑏,0, 𝑥𝑠𝑚,0, 𝑥𝑛𝑠,0, … , 𝑥𝑠𝑏,3, 𝑥𝑠𝑚,3, 𝑥𝑛𝑠,3)  

𝑠. 𝑡. 

𝑥𝑠𝑏,𝑖 ∈ {0,1} ∀ 𝑖 ∈ {0,1,2,3}  

𝑥𝑠𝑚,𝑖 ∈ [0,99] ∀ 𝑖 ∈ {0,1,2,3} 

𝑥𝑛𝑠,𝑖 ∈ [−13, 15], ∀ 𝑖 ∈ {0,1,2,3} 

𝑥𝑠𝑚,𝑖 ≥ 𝑥𝑠𝑖,0 ∀ 𝑖 ∈ {1,2,3} 

𝑥𝑛𝑠,𝑖 ≥ 𝑥𝑛𝑠,0 − 0.5 ∀ 𝑖 ∈ {1,2,3} 

Here 𝑓1, 𝑓2, and 𝑓3 refer to the average net present value of strategy costs under low, medium, and 

high sea level rise futures respectively, as expressed below: 
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𝑓𝑠(𝒙) =
1

|𝐾(𝑠)|
∑ ((∑ 𝑓𝑒𝑎𝑑(𝑴(𝑥𝑠𝑖,0), 𝒄𝑘,𝑡, 𝑥𝑛𝑠,0) ∗ (

1

1 − 𝛿
)

𝑡

∗ 𝜏 

𝑡∈𝑇1𝑘∈𝐾(𝑠)

+  ∑ 𝑓𝑒𝑎𝑑(𝑴(𝑥𝑠𝑖,𝑠), 𝒄𝑘,𝑡, 𝑥𝑛𝑠,𝑠) ∗ 𝜏 ∗ (
1

1 − 𝛿
)

𝑡

 

𝑡∈𝑇2

) + 𝑓𝑐𝑜𝑠𝑡(𝑴(𝑥𝑠𝑖,0), 𝑥𝑛𝑠,0)

+ 𝑓𝑐𝑜𝑠𝑡(𝑴(𝑥𝑠𝑖,𝑠), 𝑥𝑛𝑠,𝑠) (
1

1 − 𝛿
)

𝑡∗

)   

Here, 𝑘 is used as an index over the set of sea level rise trajectories 𝐾(𝑠) associated with a given 

set of sea level rise trajectories (low, medium, or high). 𝑇1 is the set of years into the planning 

horizon at five year intervals prior to the second decision period, in this case {0, 10, 20, 30} while 

𝑇2 is the set of years into the planning horizon at five year intervals following the second decision 

period, in this case {40, 50, 60, 70}, and 𝜏 is equal to 10, the time resolution at which discounted 

expected annual damage is calculated. The parameter 𝑡∗ refers to number of years into the planning 

horizon at which the second decision stage occurs, in this case 40. Discounted expected annual 

damages at each time 𝑡, which are then multiplied by the time resolution 𝑡 is meant to approximate 

the total damages over the time period [𝑡, 𝑡 + 𝜏]. Discounted expected annual damage values 

𝑓𝑒𝑎𝑑(𝑥𝑠𝑖,0, 𝒄𝑘,𝑡, 𝑥𝑛𝑠,0) ∗ (
1

1−𝛿
)

𝑡

 and 𝑓𝑒𝑎𝑑(𝑥𝑠𝑖,𝑠, 𝒄𝑘,𝑡, 𝑥𝑛𝑠,𝑠) ∗ (
1

1−𝛿
)

𝑡

 are calculated at ten-year 

intervals, but the expected annual damage itself characterized by 𝑓𝑒𝑎𝑑(𝑥𝑠𝑖,0, 𝒄𝑘,𝑡, 𝑥𝑛𝑠,0)  and 

𝑓𝑒𝑎𝑑(𝑥𝑠𝑖,𝑠, 𝒄𝑘,𝑡, 𝑥𝑛𝑠,𝑠)  is calculated at 20-year intervals such that e.g. 𝑓𝑒𝑎𝑑(𝑥𝑠𝑖,0, 𝒄𝑘,10, 𝑥𝑛𝑠,0) 

resolves to the modelled expected annual damage 𝑓𝑒𝑎𝑑(𝑥𝑠𝑖,0, 𝒄𝑘,20, 𝑥𝑛𝑠,0). As above, 𝒄𝒌,𝒕 refers to 

climatological parameters impacting flood risk, but is now indexed by sea level rise trajectory and 

year. The parameter 𝛿  refers to economic discount rate, in this case equal to 0.03. Decision 

variables 𝑥𝑠𝑏,𝑖 are binary decision variables indicating whether a structural upgrade will be made 

in a given decision period.  

Decision variables 𝑥𝑠𝑚,𝑖 parameterize levee crest heights following an upgrade (or crest 

height upgrade magnitude) as described above. Decision variables 𝑥𝑛𝑠,𝑖  reflect nonstructural 

elevation standards as described above. Decision variables with index 0 parameterize protection 

decisions made at the initial decision point, and decision variables index 1, 2, and 3 respectively 
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parameterize protection decisions made at the second decision point under low, medium, and high 

sea level rise trajectories respectively. The bounds on nonstructural protection given by the third 

constraint are as shown because the lowest building in the modelled system sits at -13 feet 

NAVD88, and a nonstructural elevation of 15 feet NAVD88 would buy out every building in the 

system. Optimization was carried out using mixed-lever NSGA-II as implemented in the PyMoo 

Python package; bounds listed for individual decision variables are implemented via initial 

population sampling and mutation operators designed to respect such bounds. Inequality 

constraints were implemented using the repair operator interface present in PyMoo to implement 

a repair operator which snaps infeasible solutions into the feasible space by setting parameters on 

the left-hand side of violated constraints to the value of the right-hand side. Decision variables 

parameterizing nonstructural standards at the second decision point are permitted to be lower than 

the decision variable parameterizing the nonstructural standard at the initial decision point by up 

to 0.5 feet, as shown in the final constraint. When occurs, the system model does not apply 

additional nonstructural protection in the second decision stage; this is intended to permit solutions 

which do not apply nonstructural protection in the second decision stage without having to 

introduce an additional binary decision variable, and to permit such solutions to persist in the 

solution population as the genetic algorithm converges.  

 The optimization problem posed by the static problem formulation can be posed similarly: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 < 𝑓1(𝒙), 𝑓2(𝒙), 𝑓3(𝒙) >, 𝒙 =  (𝑥𝑠𝑏,0, 𝑥𝑠𝑚,0, 𝑥𝑛𝑠,0, 𝑥𝑠𝑏,1, 𝑥𝑠𝑚,1, 𝑥𝑛𝑠,1)  

𝑠. 𝑡. 

𝑥𝑠𝑏,𝑖 ∈ {0,1} ∀ 𝑖 ∈ {0,1}  

𝑥𝑠𝑚,𝑖 ∈ [0,99] ∀ 𝑖 ∈ {0,1} 

𝑥𝑛𝑠,𝑖 ∈ [−13, 15], ∀ 𝑖 ∈ {0,1} 

𝑥𝑠𝑚,1 ≥ 𝑥𝑠𝑖,0  

𝑥𝑛𝑠,1 ≥ 𝑥𝑛𝑠,0 − 0.5  

 

 It is the same in almost all respects. The only difference here is that there is only one set of decision 

variables for the second decision point which is applied irrespective of sea level rise trajectory. 

The three objective functions have a corresponding alteration, in that while the objectives continue 

to correspond to net present values of costs in low, medium, and high sea level rise futures 
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respectively, they admit a single parameterization of mitigation at the second decision-stage rather 

than one for each set of sea level rise futures. 

𝑓𝑠(𝒙) =
1

|𝐾(𝑠)|
∑ ((∑ 𝑓𝑒𝑎𝑑(𝑴(𝑥𝑠𝑖,0), 𝒄𝑘,𝑡, 𝑥𝑛𝑠,0) ∗ (

1

1 − 𝛿
)

𝑡

∗ 𝜏 

𝑡∈𝑇1𝑘∈𝐾(𝑠)

+  ∑ 𝑓𝑒𝑎𝑑(𝑴(𝑥𝑠𝑖,1), 𝒄𝑘,𝑡, 𝑥𝑛𝑠,1) ∗ 𝜏 ∗ (
1

1 − 𝛿
)

𝑡

 

𝑡∈𝑇2

) + 𝑓𝑐𝑜𝑠𝑡(𝑴(𝑥𝑠𝑖,0), 𝑥𝑛𝑠,0)

+ 𝑓𝑐𝑜𝑠𝑡(𝑴(𝑥𝑠𝑖,1), 𝑥𝑛𝑠,1) (
1

1 − 𝛿
)

𝑡∗

)   

3.2 Results: Initial Experiment 

Optimization of both adaptive and static problem formulations converged approximately to 

their Pareto frontiers as shown in figures 9 and 10. The static context appears to converge slightly 

faster than the adaptive context due to its lower-dimensional lever space. Outside of cases where 

adaptive actions are governed by a parameterized decision rule such as in direct policy search [39], 

this reflects a fundamental limitation in optimization-driven generation of adaptive strategies. This 

bottleneck becomes more impactful as the dimensionality of the lever space of the adaptive 

strategy increases. 
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Figure 9: Dominated hypervolume of estimated Pareto frontier in the adaptive problem context 

versus number of function evaluations.
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Figure 10: Dominated hypervolume of estimated Pareto frontier in the static problem context 

versus number of function evaluations. 

 

Surprisingly, solutions found by the static problem context frequently outperform solutions 

found by the adaptive problem context as shown in Figures 11 and 12. Compared to the solutions 

found by the static context, adaptive solutions have a much narrower range of performance in the 

“high” set of sea level rise trajectories. Within this narrow performance range over high sea level 

rise trajectories, adaptive solutions exhibit a much wider range of performance in the adaptive 

context over the medium and low sea level rise trajectories.  
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Figure 11: Pareto frontiers of flood risk mitigation strategies found by static and adaptive 

optimization contexts. Static strategies are shown in blue, and adaptive strategies are shown in 

red. 

 

 

Figure 12: Two-dimensional projections of the Pareto frontiers of flood risk mitigation strategies 

found by static and adaptive optimization contexts. Static strategies are shown in blue, and 

adaptive strategies are shown in red.  
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The relatively poor performance in the adaptive optimization context relative to the static 

context is attributable to the lever structure of their respective solutions. The adaptive and static 

contexts both consistently produced strategies which invested in structural upgrades at the first 

decision point in 2015 and which did not invest in an additional structural upgrade at the second 

decision point in 2055, as shown in Figure 13. The few adaptive strategies which did invest in an 

additional structural upgrade in 2055 likely reflect a failure of the optimization to converge to the 

true Pareto frontier; the worst-performing solution in low sea level rise futures invests in a second 

structural upgrade in low futures, and the worst-performing solution in medium futures similarly 

invests in a second structural upgrade in medium futures. This is attributable to the substantial 

overhead costs associated with structural protection upgrades, which physically correspond to the 

need to partially break down and reconstruct the existing levee system. The magnitude of structural 

upgrades is similar between strategies discovered by the adaptive and static optimization contexts, 

as shown in Figure 14. This figure does show however that the adaptive decision context results 

have slightly greater intensity of structural upgrade at the first decision point than the static context. 

The most notable difference in solution behavior between the strategies produced by the adaptive 

and static optimization contexts is the nonstructural elevation standard as shown in Figure 15. This 

figure shows that the static context invests in nonstructural mitigation exclusively at the first 

decision point so as to avoid the excess expenditure of retrofitting the same building twice. The 

adaptive context invests less aggressively in nonstructural mitigation at the first decision point and 

tunes its investment at the second point based on observed sea level rise. While this does not lead 

to better performance compared to the strategies generated in the static context, it does appear to 

show that the most effective adaptive flood risk mitigation strategies make structural investments 

in the same way as non-adaptive strategies, and that the most effective adaptive behaviors in flood 

risk mitigation use nonstructural mitigation to respond to difficult-to-predict changes in flood 

hazard.  



 

 

59 

 

Figure 13: Frequency of structural upgrade at each decision point for adaptive and static 

optimization contexts. High, medium, and low values for the year 2055 are the conditional 

decisions made in the adaptive context in high, medium, and low sets of sea level rise trajectories 

respectively. Vertical black lines show standard deviations among solution sets. 

 

 

Figure 14: Average magnitude of structural upgrade the initial decision point for adaptive and 

static optimization contexts. Small vertical black lines show standard deviations among solution 

sets. Note that these values are a dimensionless index along a pre-computed structural upgrade 

path and do not directly reflect levee crest heights or levels of expenditure. 
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Figure 15: Average nonstructural standard elevation at each decision point for adaptive and static 

optimization contexts. High, medium, and low values for the year 2055 are the conditional 

decisions made in the adaptive context in high, medium, and low sets of sea level rise trajectories 

respectively. Nonstructural standard elevations permitted by the model range from -13.0 to 15.0 

feet above sea level (NAVD88).  

3.3 Discussion: Initial Experiment 

The relatively poor performance of adaptive solutions in this experiment is best understood 

by looking back at its initial motivation. Static decision-making which does not explicitly support 

adaptivity is vulnerable to regret; a strategy which minimizes the net present value of protection 

and damages in low sea level rise futures will carry additional costs high sea level rise futures in 

the form of excess damage, and a strategy which minimizes the net present value of protection 

costs and damages in high sea level rise futures incurs additional costs in the form of unnecessary 

protection. Adaptivity is introduced into the decision context in order to mitigate these costs. As 

seen in Figures 11 and 12, this is successful in some respect—the performance of adaptive 

strategies in high sea level rise trajectories was more stable than that of non-adaptive strategies 

due to the tendency of adaptive strategies to tune nonstructural investment to the higher level of 

flood hazard in those trajectories. However, while static decision-making has associated costs 

associated with regret, adaptive decision-making carries its own costs in the form of overhead 

associated with repeated protection investments. As discussed above, repeated structural 

investment has considerable overhead associated with construction costs, and repeated 
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nonstructural investment has smaller but non-trivial overhead cost associated with repeated 

retrofits of the same buildings. As shown, given that modelled flood risk mitigation levers consist 

of structural and nonstructural upgrades in line with Louisiana’s 2017 Coastal Master Plan, the 

cost of failing to adaptively protect against flood hazard changes driven by sea level rise alone is 

smaller than or similar to the additional overhead costs associated with adaptive planning.  

In light of these findings, it is likely that more variability in deeply uncertain climate futures 

would lead to greater regret associated with static flood risk mitigation strategies and therefore a 

greater relative performance of adaptive mitigation strategies. In considering sea level rise only, 

the initial experiment underestimates plausible changes in flood hazard driven by climate change. 

Louisiana’s 2023 Coastal Master Plan considers changes in the mean intensity of tropical cyclones 

in addition to sea level rise [66]. For this reason, an additional secondary experiment was 

implemented to evaluate whether the additional variability in climate induced flood hazard 

attributable to changes in tropical cyclone intensity as well as sea level rise leads to superior 

performance of the adaptive optimization context compared to the static context.  

3.4 Methods: Secondary Experiment 

Our secondary experiment incorporates changes in mean intensity of tropical cyclones in 

addition to sea level rise in order to characterize the value of adaptive decision-making in planning 

structural and nonstructural protection measures in plausible climate futures. The 2023 Master 

Plan uses a 50-year increase in mean intensity of tropical cyclones of 10% in its high-hazard future 

scenario based on a review by Knutson et al. [67] which finds increases in mean intensity ranging 

from 0 to 10% associated with a 2 degree Celsius increase in mean global surface temperature. As 

in the 2023 Master Plan, increases in tropical cyclone frequency are not considered because 

Knutson et al. [67] do not find evidence thereof. A longer planning horizon is used for this 

experiment, and the 2021 IPCC report [68] suggests a change in mean global surface temperature 

of up to 5 degrees Celsius by the year 2100 compared to the period from 1995 to 2014. Because 

Knutson et al. have not aggregated a similar set of projections of tropical cyclone intensification 

for greater increases in mean global surface temperature, and because more detailed accounting of 

future changes in flood hazard due to climate change is outside the scope of the research 

documented here, the secondary experiment uses a range of tropical cyclone intensification rates 



 

 

62 

of 0 to 25%, arriving at the latter by scaling up the results of [67] to the upper bounds of mean 

global surface temperature forecast by [68].  

 In order to avoid complicating the one-dimensional structure of climate hazard intensity 

modelled in our initial experiment, our secondary experiment varies tropical cyclone intensity as 

a function of sea level. Tropical cyclone intensification is assumed to scale linearly with sea level 

rise, such that the greatest value for sea level rise is associated with a mean intensity change of 

25%, 0 sea level rise is associated with a 0% change in mean intensity. Note that the detailed 

formulations of the adaptive and static problem contexts presented above continue to hold; the 

vector 𝒄𝑘,𝑡 of climatological parameters at time 𝑡 under trajectory 𝑘 now reflects changes in sea 

level rise and mean storm intensity with a constant value for storm frequency, rather than changing 

sea level rise with constant mean storm intensity and frequency as it did in the initial experiment. 

3.5 Results: Secondary Experiment 

 While the solution sets for our secondary experiment incorporating tropical cyclone 

intensification in addition to sea level converged in both the adaptive and static optimization 

contexts, it is notable that the adaptive context took substantially more function evaluations to 

converge than in the initial experiment (Figures 16 and 17). This is attributable to a more thorough 

exploration of adaptive combinations of decision levers; as flood damage increases under more 

extreme climate futures, the overhead cost of repeated structural upgrades becomes less prohibitive, 

leading to a deeper and correspondingly more computationally expensive exploration of solutions 

with repeated structural upgrades. 
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Figure 16: Dominated hypervolume of estimated Pareto frontier in the adaptive problem context 

versus number of function evaluations (secondary experiment).
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Figure 17: Dominated hypervolume of estimated Pareto frontier in the static problem context 

versus number of function evaluations (secondary experiment). 

 

The performance of adaptive solutions in the secondary experiment are more in line with 

initial expectations than those of the initial experiment. As shown in Figures 18-21, most static 

strategies are dominated by adaptive strategies. The static strategies which remain non-dominated 

are those that perform best in high severity climate futures. This is unsurprising; strategies which 

directly target performance in high severity climate futures are expected to perform better in those 

futures than strategies which reward delaying investment for adaptive decision-making later. 

These figures also show that high-performing adaptive strategies only out-perform dominated 

static strategies by several million dollars of Net Present Value in any set of climate futures, which 

is a small margin considering that it is aggregated over 80 years.   
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Figure 18: Pareto frontiers of flood risk mitigation strategies found by static and adaptive 

optimization contexts in the secondary experiment. Static strategies are shown in blue, and 

adaptive strategies are shown in red. 
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Figure 19: Subset Pareto frontiers of flood risk mitigation strategies found by static and adaptive 

optimization contexts nearest to the ideal point in the secondary experiment. Static strategies are 

shown in blue, and adaptive strategies are shown in red. 
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Figure 20: Two-dimensional projections of the Pareto frontiers of flood risk mitigation strategies 

found by static and adaptive optimization contexts in the secondary experiment. Static strategies 

are shown in blue, and adaptive strategies are shown in red. 

 

 

Figure 21: Two-dimensional projections of the Pareto frontiers of flood risk mitigation strategies 

found by static and adaptive optimization contexts in the secondary experiment, displaying 

solutions nearest the ideal point. Static strategies are shown in blue, and adaptive strategies are 

shown in red.
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 While the adaptive strategies identified in the first experiment largely use nonstructural 

mitigation to react adaptively to different climate futures, the strategies found in the second 

experiment use both structural and nonstructural mitigation adaptively (Figures 22-25).  

 

Figure 22: Frequency of structural upgrade at each decision point for adaptive and static 

optimization contexts in the secondary experiment. High, medium, and low values for the year 

2055 are the conditional decisions made in the adaptive context in high, medium, and low sets of 

sea level rise trajectories respectively. Vertical black lines show standard deviations among 

solution sets. 

 

 

Figure 23: Average magnitude of structural upgrade the decision points with non-trivial structural 

upgrade frequency for adaptive and static optimization contexts in the secondary experiment. 

Small vertical black lines show standard deviations among solution sets. Note that these values are 

a dimensionless index along a pre-computed structural upgrade path and do not directly reflect 

levee crest heights or levels of expenditure. 



 

 

69 

 

Figure 24: Average nonstructural standard elevation at each decision point for adaptive and static 

optimization contexts in the secondary experiment. High, medium, and low values for the year 

2055 are the conditional decisions made in the adaptive context in high, medium, and low sets of 

sea level rise trajectories respectively. Nonstructural standard elevations permitted by the model 

range from -13.0 to 15.0 feet above sea level (NAVD88). 

3.6 Discussion: Secondary Experiment 

 In this case study using the SWaMPS model, adaptive optimization-driven flood risk 

management strategies failed to substantively outperform non-adaptive strategies across deeply 

uncertain trajectories for sea level rise while other hazard drivers such as average intensity of 

tropical cyclones are held constant. When plausible ranges of increasing average intensity of 

tropical cyclones are considered, adaptive strategies began to outperform non-adaptive strategies, 

but not by a large margin. These counterintuitive results are driven by the overhead costs associated 

with repeated application of the protection measures considered in this study. The overhead cost 

of levee upgrades and the additional cost of retrofitting an individual building for the second time 

is close to or at times greater than the performance gains of adaptivity.  

These experiments have also shown that when the range of climate futures considered is 

relatively narrow (which in this study occurs when considering only sea level rise and exclude 

other forms of climate-driven changes to flood hazard but in principle may generalize to projects 

with short planning horizons) adaptive strategies invest in structural protection similarly to non-

adaptive strategies and use nonstructural mitigation to respond to extreme climate futures. As the 
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range of severity in considered climate futures increases, the regret associated with failing to 

protect against severe climate futures begins to outweigh the overhead associated with repeated 

structural protection investments, and adaptive strategies begin to apply structural protection 

adaptively in addition to nonstructural protection.    

Taken together, these results show that adaptivity is unlikely to yield substantial 

performance improvements in decision-making for tropical flood risk mitigation when it is treated 

as a drop-in improvement. For adaptive strategies to outperform static ones, the set of available 

protection measures considered when generating mitigation strategies must include low overhead 

and low lock-in options that are incorporated into the decision context with adaptivity in mind. 

The overhead costs and lock-in associated with structural and nonstructural protection measures, 

designed to perform well in static planning context, substantially hinder their effectiveness in 

adaptive planning contexts.  

From a methodological perspective, this study  has shown that the Multi-Scenario Multi-

Objective Robust Optimization framework proposed by Shavazipour et al. [57], [58] is highly 

effective in permitting analysts to generate and compare robust and efficient strategies in the 

context of decision-making under deep uncertainty, and enables straightforward and intuitive 

evaluation of tradeoffs between performance in alternate possible futures. While this comes at a 

significant computational cost, use and this framework may meaningfully improve the 

performance and interpretability of solution tradeoffs in future applications of decision-making 

under deep uncertainty in circumstances where it is computationally tractable to integrate and 

where optimization-driven strategy generation is desired. 
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4. EFFICIENT FLOOD RISK MITIGATION AND INTERSECTIONAL 

EQUITY IMPLICATIONS: A CASE STUDY IN NEW ORLEANS 

To effectively mitigate climate related risks, decision-makers and analysts must first decide 

what metrics to consider as they rank and prioritize protection projects. Cost-benefit analysis (CBA) 

remains the predominant decision metric in applied mitigation efforts and governmental policy 

writ large [69]–[74]. Many institutions such as the Federal Emergency Management Agency and 

the U.S. Army Corps of Engineers are required to perform CBA for all flood risk mitigation 

projects and grants, although FEMA has recently relaxed their cost-effectiveness requirements for 

marginalized communities [75], [76]. Typical implementations of CBA treat the direct structure 

damages avoided over a project’s lifetime as a key benefit, which implicitly prioritizes projects 

that protect expensive structures. This has the potential to worsen existing social inequity [77], 

[78]. Substantial differences already exist between racial and income groups in air quality [79]–

[81], water quality [82]–[84], and flood risk [85]–[87]. This potential for harm is increasingly 

salient; the growing adoption of analyses which characterize flood risk at the level of individual 

structures [88]–[90] makes it possible to algorithmically design interventions at the level of 

individual homes which (inadvertently) selectively protect expensive structures, the effects of 

which may then be masked by data aggregation [91]–[93]. Practical efforts to reduce these 

outcome gaps are hindered by divergent perspectives on how to define and operationalize equity 

[94]–[98]. Action to mitigate these outcome gaps or otherwise prevent policy action from 

worsening them is required as a matter of standing federal policy; Federal agencies are required 

by executive order under the National Environmental Policy Act to consider environmental justice 

in mitigation measures [99].This research presents an alternative decision metric from those used 

in traditional const-benefit analysis which yields improved equity outcomes from the perspective 

of multiple competing definitions of equity. This decision metric is analytically straightforward 

and yields economic efficiency comparable to a cost-benefit maximizing approach. 

Equity, as defined by the Federal government, refers to the consistent and systematic 

treatment of all individuals in a fair, just, and impartial manner [100]. However, the tension 

between conflicting ideals of equity and equality complicates the design of policies which seek to 

lessen gaps in environmental risk outcomes. While a wider range of perspectives exist, this work 

focuses on the tension between deontological egalitarianism and prioritarianism as described by 
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Parfit [101]. Deontological in this context refers to the belief that the morality of an action comes 

from the action itself rather than the consequences of the action. As a consequence, deontological 

egalitarianism (hereafter referred to as egalitarianism) mandates that each individual is granted 

equal consideration and individual treatment irrespective of outcomes. Egalitarianism does not 

hold equality of outcome, equality in final distribution of resources, or the resolution of unequal 

status quo resource allocations, as normative aims, although they may be desirable for other 

reasons. This egalitarian ideal of equity is strongly tied to the notion of procedural justice, which 

is broadly similar in mandating that people are treated equally [102] but relates more to whether 

individuals perceive allocation process as fair and impartial than to the allocation mechanism itself 

[103]. In contrast, prioritarianism mandates that we prioritize the welfare of the least advantaged 

members of society in pursuit of more equal outcomes [101]. Prioritarianism is strongly related to 

the notion of distributive justice, which requires that resources are distributed are seen as fair or 

just[104]. Also relevant is the notion of corrective justice, which holds that if some party is harmed 

for the gain of another party, the former party is entitled to restitution from the latter.  

A natural prioritarian solution to unequal environmental risk outcomes would be to funnel 

risk mitigation resources directly to socially vulnerable groups, or alternatively to incorporate 

diminishing marginal utility and equity weights as recommended by some welfare economists 

[105]. However, this would violate the egalitarian ideal of equity which requires that individuals 

are given equal consideration irrespective of the status quo resource allocation. An egalitarian 

perspective may judge the elimination of outcome gaps as a valid instrumental good, but likely 

opposes explicit prioritization of disadvantaged groups as unfair and discriminatory. An egalitarian 

perspective might see explicit prioritization of disadvantaged groups as a justified measure of 

corrective justice under the premise that disadvantage experienced by those groups is the result of 

systemic violations of procedural justice and egalitarian equity. However, recent events in US 

politics suggest that many decision-makers in states threatened by coastal flooding would reject 

this premise[106]–[108]. A substantial body of research shows that ideological disagreement 

between prioritarians and those who seek corrective justice for systemic procedural injustices on 

one side and egalitarians who reject the premise that status quo disparities are driven by systemic 

injustice on the other side hinders the remediation of racial disparities along a wide range of issues 

[94]–[98]. In order to mitigate existing disparities in environmental risk outcomes or otherwise 

avoid worsening those disparities in a way that is politically feasible in the near term, it is therefore 
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necessary to develop risk mitigation strategies which do so without violating widely held notions 

of justice and equity. The research presented here seeks to do so, presupposing the normative 

assertion that the moral obligation of an analyst (in a professional capacity) in an applied context 

is not to privilege their preferred notions of equity and justice, but rather to seek solutions which 

are Pareto-improving when viewing valid notions of justice and equity from a multiobjective lens, 

and to ensure that decision-makers are fully informed of the implications of their decisions in 

relation to each such axis. 

The capacity of CBA to worsen existing socioeconomic disparities and therefore violate 

prioritarian notions of equity is evident from its core premises. To perform a cost-benefit analysis 

one first compares the sum total of a project's expected discounted economic (i.e., monetary) 

benefits to the sum total of the project’s discounted financial costs (and monetized disbenefits if 

applicable). One then measures the performance or cost-effectiveness of the project by the ratio of 

the benefits to the costs [72]. As benefits are expressed purely in economic terms, CBA places 

greater value on the protection of expensive assets than the protection of inexpensive assets. In 

light of well-studied geographical and racial disparities in wealth [109], it is clear that purely CBA-

driven evaluation of protection projects has the potential to neglect historically marginalized 

communities with lower average building costs (discussed next). 

The severity of economic and racial gaps in environmental risks is starkly highlighted in 

the flood risk faced by the city of New Orleans, Louisiana. Predominantly Black neighborhoods 

in New Orleans bore the brunt of lives lost during Hurricane Katrina in 2005 [87]. Laska and 

Morrow [110] argue that the severity of the outcome of Katrina was in part driven by inequality 

among racial and income groups. The speed and effectiveness of post-Katrina recovery efforts 

differed wildly between socio-economic and racial groups in ways that are only visible upon 

sufficiently granular analysis [111], [112]. There were substantial racial disparities in immediate 

post-Katrina relief investments even when controlling for socio-economic status [113]. The 

existing disparities in environmental risk across racial and economic groups and the possibility 

that CBA could worsen them raise two main questions addressed in this study: (1) How much can 

a CBA approach worsen these disparities?  (2) Can one remedy these disparities in a way that 

satisfies both egalitarian and prioritarian ideals? 

Few studies have compared the effectiveness of algorithmic cost-benefit maximizing flood 

risk interventions with equity-driven alternatives. Those which have either pertain to equity 
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between regions in the design of flood protection structures [77] or integrate a Gini coefficient or 

equity weighting of flood exposure in the design of urban drainage projects or ecological 

restoration [114]–[116]. Similar studies in the area of water resource management have also used 

a Gini coefficient or a coefficient of variation of benefits as an equity measure [117]–[119]. These 

studies consistently find that inclusion of equity criteria in decision-making changes the design of 

interventions and identify severities of trade-off between equity and efficiency depending on how 

equity is operationalized. To our knowledge however, no such study examines flood risk 

interventions which are made at the level of individual structures. Additionally, every such study 

examines an equity-oriented strategy which either because it explicitly prioritizes poorer residents 

or because it explicitly targets equal final resource distributions, violating egalitarian norm of 

granting equal procedural consideration to individuals irrespective of status quo or final resource 

allocation. This suggests a research gap; if CBA worsens socioeconomic disparities, then there is 

a pressing need for a method to design flood risk mitigation strategies at the level of individual 

structures that mitigates the potential harms of CBA and thereby improving distributive justice 

outcomes from a prioritarian perspective without violating egalitarian norms of procedural justice. 

Recently available methods for characterizing flood risk at the level of individual buildings 

have increased the scope of potential harm from traditional cost-benefit analysis. Building-level 

interventions have proven effective in mitigating flood risk [120]–[123], and the Coastal Louisiana 

Risk Assessment Model (CLARA) is able to characterize changes to the flood risk faced by 

individual buildings across coastal Louisiana under a range of protection projects including those 

at the level of individual buildings [89]. It is therefore possible to generate, evaluate, and optimize 

mitigation projects at the level of individual buildings, although to our knowledge this has not yet 

been applied in practice. A mitigation project which discriminates between individual buildings in 

risk mitigation naturally carries a far greater potential for inequity than one designed at the level 

of spatially broad and socioeconomically diverse areas. While to our knowledge no applied flood 

risk mitigation policies have been implemented to date which were designed using building-level 

optimizations, it is necessary to investigate the potential equity impacts of such policies.  

4.1 Methods 

Flood risk mitigation projects are frequently selected on the basis of which project most cost-

effectively minimizes direct economic damage (DED) in expectation. The Coastal Louisiana Risk 
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Assessment model used by Louisiana’s Coastal Master Plan estimates a discretized annual 

exceedance probability distribution for flooding at a given structure’s location for 22 return periods 

ranging from the 2-year flood (i.e., 1-in-2 chance of occurring or being exceeded in a given year) 

to the 2000-year flood. The damage suffered by a given structure as a fraction of its replacement 

cost is estimated by USACE methods as a piecewise linear function of flood depths. The 

replacement cost of an individual structure is estimated using structure-level attributes (e.g., square 

footage, number of stories) combined with valuation assumptions from the FEMA Hazus-MH 

model [124]. The expected discounted value of direct economic damage over time can therefore 

be expressed as shown below. 

𝔼[𝐷𝐸𝐷] = ∑ ∑ ∑ 𝑝𝑠,𝑡(𝑒)𝐷𝑠(𝑒)𝑟(𝑠)γ𝑡

𝑒𝑠𝑡

 

Here, 𝑡 denotes years elapsed, 𝑠 indexes structures, 𝑒 represents plausible flood elevations, 

𝑝𝑠,𝑡(𝑒) denotes the probability that structure 𝑠 in year 𝑡 will face flood elevation 𝑒, 𝐷𝑠(𝑒) denotes 

the damage suffered by structure 𝑠 and its contents as a fraction of their replacement cost resulting 

from flood elevation 𝑒, 𝑟(𝑠) denotes the replacement cost of structure 𝑠 and its contents, and 𝛾 

denotes the economic discounting rate.  

The use of direct economic damage as a characterization of risk carries a number of benefits 

– dimensionless cost/benefit ratios and net present values in units can be easily calculated and 

interpreted as the costs and benefits of a protection project are both expressed in units of dollars. 

Further, policies which minimize DED under a fixed budget appear to be socially optimal if we 

neglect distributional impacts or otherwise assume that post-hoc wealth transfers implicitly resolve 

problematic distributional impacts as is commonly assumed in resource economics [125]. The 

chief weakness of DED as a decision metric is clear from its formulation – if all residences are 

exposed to equal flood elevations and therefore suffer an equal amount of damage proportional to 

their replacement costs, a scenario which might reasonably be described as all residents having 

equal exposure to flood risk, a DED-minimizing strategy would preferentially protect more 

expensive residences. To address this weakness, I define a similar flood risk metric with a nearly 

identical formulation, but which explicitly does not consider the replacement value of a residence, 

which is referred to as Residence Loss Equivalents (RLE).  

𝔼[𝑅𝐿𝐸] = ∑ ∑ ∑ 𝑝𝑠,𝑡(𝑒)𝐷𝑠
∗(𝑒)γ𝑡

𝑒𝑠𝑡
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RLE here represents an attempt to capture similar information to DED without 

consideration for a residence’s replacement value. The use of 𝐷𝑠
∗  rather than 𝐷𝑠(𝑒)  denotes 

damage to the structure alone rather than the structure and its contents. In equalizing the weight 

applied to the total loss of a residence, this study effects a deontologically egalitarian metric which 

explicitly grants each household equal procedural consideration regardless of the financial value 

of the home. In addition to supporting decision processes compliant with egalitarian principles of 

equality and ultimately serving prioritarian aims to a greater extent than traditional CBA, RLE 

carries the distinct advantage that it can be calculated using a proper subset of the data and methods 

required to calculate RLE.  

To investigate the distributional and therefore prioritarian-relevant implications of our risk 

measures, I identify coastal protection projects for the city of New Orleans which simultaneously 

minimize DED and RLE assuming flood hazard consistent with Louisiana’s 2023 Comprehensive 

Master Plan for a Sustainable Coast [89]. These projects apply elevation-in-place retrofits to 

single-family residences within the New Orleans levee system under a fixed 100-million-dollar 

budget to minimize the weighted average of DED and RLE under varying relative weights. In the 

limiting case, the strategy which minimizes DED alone is referred to as the “cost” strategy, and 

that which minimizes RLE alone is referred to as the “housing” strategy. I first project changes to 

flood risk over a 50-year planning horizon resulting from elevation-in-place retrofits at one-foot 

intervals. Flood depth exceedances are modeled at decadal time slices according to the changing 

environmental conditions (e.g., sea level rise) of the Coastal Master Plan’s Lower landscape 

scenario. Risk is calculated at 5-year intervals with linearly interpolated flood depth exceedances, 

treated as constant within those 5-year intervals, and aggregated with a discount rate of zero. The 

cost of retrofits are assumed to scale linearly with the square footage of residences with a cost 

coefficient which depends on the final elevation of the retrofit in line with the 2023 Coastal Master 

Plan [126]. 

Optimal elevation strategies are derived by sorting individual structure retrofits by cost-

effectiveness in the relevant metric and iteratively removing redundant strategies, e.g., eliminating 

a 1-foot elevation-in-place of a given residence for which a 2-foot elevation-in-place is selected, 

until the fixed budget is fully expended without redundancy. Intermediate strategies are derived 

by scalarizing DED and RLE with arbitrary relative weights before calculating the cost-

effectiveness of the resulting composite metric. I estimate the distributional impacts of these 
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strategies under the assumption that the occupants of these residences have the same demographic 

features of the Census block group in which they reside as given by the 2019 American Community 

Survey [127]. This assumption reflects a meaningful limitation; a portion of the results below are 

shown aggregated by racial or economic group, and error associated with this simplified 

downscaling of demographic information leads to some amount of error in demographic estimates 

shown below. For both the readability of mapped figures and the privacy of individual households, 

all mapped figures are shown as neighborhood averages based on neighborhood definitions 

published by the city of New Orleans [128], shown in Figure 25. Neighborhood characteristics 

including the number of single-family residences, the average replacement cost of single-family 

residences, the proportion of the population which is White or Black, and the poverty rate are 

shown in Appendix B, in Table 2 and Table 3. 
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Figure 25: Map of New Orleans neighborhoods as provided by the city of New Orleans 

4.2 Risk Outcomes by Race and Income 

This study follows recent recommendations [129] to help mitigate inequitable CBA 

outcomes through the inclusion of alternative decision criteria. This study develops optimally cost-

effective flood risk mitigation strategies targeting individual single-family residences for 

elevation-in-place (i.e., raising the elevation above grade of the first inhabited floor), respectively 

minimizing expected direct economic damage (DED) as per traditional CBA, and an alternative 
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egalitarian metric, denoted residence loss equivalents (RLE), which treats each home as if it had 

an identical value or replacement cost. In all cases, this study adopts a 50-year planning horizon 

when evaluating expected risks. Results show that strategies minimizing the egalitarian RLE are 

preferable to those minimizing DED from a prioritarian perspective, reducing income-related 

disparities in mitigation resource allocation and reducing nominal outcome gaps between Black 

and White New Orleans residents as measured by RLE. This article refers hereon to the DED-

minimizing strategy as the “cost” strategy, and the RLE-minimizing strategy as the “housing” 

strategy. 

Our analysis shows that Black residents receive the vast majority of mitigation resources 

under both the cost and housing strategies because they currently experience the overwhelming 

and disproportionate bulk of flood risk in New Orleans (Fig. 25). Black residents make up 59% of 

the population, but residences occupied by Black residents bear 79% of direct economic damage 

and 88% of residence loss equivalents.  Black residents receive 81% and 90% of mitigation 

resources under the cost and housing strategy respectively. This is – perhaps – counterintuitive 

given the larger weight more expensive houses receive in the CBA framework and the current 

correlation between average house price and racial composition of a neighborhood. Our analysis 

reveals that the existing disparity in flood risks faced between Black and White residents in New 

Orleans is so overwhelming that Black neighborhoods bear the brunt of the flood risk burden 

within all considered strategies.  This figure does show, however, that the housing strategy 

mitigates a large portion of the residence loss equivalent damage faced by New Orleans residents 

overall, thereby reducing the nominal size of the racial disparity in risk to housing (RLE).  

Our analysis further reveals that the cost strategy principally benefits households with 

poverty-income ratio (i.e., the ratio of household income to the US poverty threshold) greater than 

2, whereas the housing strategy provides greater benefits to lower-income households (Fig. 25). 

Taken together, the racial and income distributions of flood risk and mitigation investment show 

that the question of whether to target replacement cost (via DED) or cost-blind measures of 

housing risk (via RLE) becomes a question of how to allocate resources between wealthier or 

poorer predominantly Black neighborhoods, which is made more complicated in light of well-

studied wealth disparities between Black and White populations more broadly [130]–[135]. 
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Figure 26: Total population, aggregate single-family residence flood risk estimates measured as 

direct economic damage and as residence loss equivalents, and total expenditure under no-action, 

cost, and housing strategies. Top row disaggregates measures by race and bottom row 

disaggregates measures by poverty-income ratio. Risk measures and spending are estimated at the 

individual building level and demographic estimates assume homogeneity within census block 

groups.
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4.3 Risk Outcomes by Neighborhood 

Assessed at the neighborhood level, predominantly Black neighborhoods visibly bear the 

brunt of flood risk in New Orleans (Fig. 26). Outside of the Lower 9th Ward, which receives 

substantial mitigation investment in both the cost and housing strategies, the cost strategy 

concentrates investment in the predominantly middle-class Black neighborhood of Read 

Boulevard East, whereas the housing strategy distributes investment across a series of poorer, 

predominantly Black neighborhoods (Fig. 26, 27). One such neighborhood, Read Boulevard West, 

carries an expected 0.35 residence loss equivalents per household under the status quo and receives 

approximately zero risk reduction along either metric from the cost strategy. Implementing the 

housing strategy reduces the residence loss equivalents per household by 40%, although its direct 

economic damage per household only decreases by roughly 2%. Conversely, Read Boulevard East 

sees a roughly 9% reduction in both direct economic damage and a reduction in residence loss 

equivalents per household under the cost strategy, and sees a negligible reduction in direct 

economic damage and 5% reduction in residence loss equivalents under the housing strategy. It is 

also worth noting that both predominantly White neighborhoods facing substantial flood risk as 

measured by direct economic damage, West End and Lakeshore, have 100% of their flood risk 

mitigated as measured by both metrics under both strategies. This indicates that the flood risk in 

these neighborhoods is concentrated in a small number of expensive structures that are inexpensive 

to mitigate. These neighborhoods are illustrative of the broader tendency for wealthier, 

predominantly White neighborhoods to face relatively little flood risk and for both mitigation 

strategies to target predominantly Black neighborhoods facing substantive flood risk. Among those 

neighborhoods, the cost strategy targets relatively more expensive homes in relatively higher-

earning communities and for the housing strategy to target less expensive homes in lower-income 

communities. The distributional equity of these competing allocations remains complicated: each 

strategy helps to mitigate a facet of the overwhelming risk burden facing Black New Orleans 

residents.  

The tendency of the cost strategy to protect a smaller number of more expensive homes than 

the housing strategy is observable within neighborhoods as well as between neighborhoods. In the 

Lower 9th Ward, implementing the cost strategy reduces direct economic damage by 41% and 

residence loss equivalents by 56%. In contrast, the housing strategy reduces direct economic 

damage by 32% and residence loss equivalents by 77% while spending fewer resources in the 
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neighborhood. This shows that even within the neighborhood, the cost strategy targets more 

expensive homes, and the housing strategy targets a greater number of less expensive homes. 
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Figure 27: Map showing salient neighborhood characteristics and flood risk measures across no action, cost, and housing strategies. A) 

shows the average replacement cost of single-family residences in each neighborhood. B) shows the proportional Black population of 

each neighborhood. C) shows the poverty rate. D), E), and F) show neighborhood average direct economic damage per household under 

no action, cost, and housing strategies respectively. G), H), and I) show neighborhood average residence loss equivalents respectively. 

Colored points on the map reflect the locations of individual single-family residences. Select neighborhoods are labelled in panel D).  
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Figure 27 continued 
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Figure 28: Map of average expenditure per household at the neighborhood level for cost 

and housing strategies. Panel A) shows cost strategy and panel B) shows housing strategy. 

 

Intermediate strategies between the cost and housing strategies (i.e., strategies that 

place some weight on both DED and RLE reduction) perform well according to both 

metrics (Fig. 28). As preference for the housing strategy increases, residence loss 

equivalent reduction increases at the cost of direct economic damage reduction. Placing a 

small but non-zero weight on direct economic damage compared to the housing strategy 

reduces direct economic damage by an additional 0.5 percentage points at a cost of 0.02 

percentage points of projected RLE. Placing a small weight on residence loss equivalents 

relative to the cost strategy reduces residence loss equivalents by an additional 4% at the 

cost of only a 0.04% decrease in direct economic damage reduction. As mentioned above, 

the question of how to balance protection of impoverished Black communities against 

protection of accrued wealth within Black communities is complicated considering broader 

racial wealth disparities. These results show that using deontologically egalitarian metrics 

in addition to traditional cost-benefit approaches can yield substantial benefits in the 

pursuit of prioritarian ideals of equity. 
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Figure 29: Pareto frontier between direct economic damage reduction and residence loss 

equivalents reduction for a fixed budget of 100 million US dollars. Segments in purple to 

the top-left reflect a high weight placed on residence loss equivalents reduction, as in the 

housing strategy, and segments in yellow towards the bottom-right reflect a high weight 

placed on direct economic damage reduction, as in the cost strategy.
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4.4 Discussion 

This case study illustrates how targeting aggregate economic efficiency in 

environmental risk mitigation projects can allocate few mitigation resources to 

impoverished areas that need them. This research proposes and demonstrates a potential 

remedy: targeting an alternative risk measure which deliberately places an equal weight on 

each residence irrespective of its economic value. This alternative measure satisfies 

deontological egalitarian notions of equity which other economically focused approaches 

may fall short of, and also improves distributional outcomes from a prioritarian perspective. 

While direct economic damage and residence loss equivalents are equally valid efficiency 

metrics, the use of residence loss equivalents to direct risk mitigation decisions can to some 

extent correct for historical underinvestment in risk mitigation to marginalized, less 

affluent communities without explicitly including socioeconomic demographics into the 

decision calculus. 

Despite its evident advantages from a prioritarian perspective in dedicating 

mitigation resources towards impoverished communities, the implications of targeting 

residence loss equivalents as a risk metric from a corrective justice perspective are more 

nuanced than initially expected. It had been hypothesized that targeting direct economic 

damage would invest a large portion of mitigation resources towards wealthy, 

predominantly White communities, and that targeting residence loss equivalents would 

direct those resources to impoverished communities with larger Black populations. Instead, 

this study has found that the burden of flood risk by any metric in New Orleans falls so 

overwhelmingly on largely middle class and poor neighborhoods, all predominantly Black, 

that efficient flood risk mitigation targeting either metric invests the majority of mitigation 

resources towards predominantly Black neighborhoods. As a result, the choice between 

targeting direct economic damage and residence loss equivalents amounts to a choice 

between protecting middle class and poor neighborhoods. This complicates matters from a 

corrective justice perspective, as while prioritarian notions of distributive justice suggest 

prioritizing poorer neighborhoods and therefore targeting residence loss equivalents 

exclusively, doing so may deprive residents of middle class Black neighborhoods of the 

mitigation resources needed to maintain existing adaptive capacity in the face of flood risk.  
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Fortunately, this study identified compromise strategies that balance economic and 

egalitarian measures of cost effectiveness and perform well in both metrics. Compared to 

the status quo of seeking purely economic efficiency, substantial gains in these egalitarian 

measures can be achieved with only modest sacrifices in economic efficiency. This is 

highly useful to analysts and decision-makers interested in balancing the needs of poor and 

middle class neighborhoods facing severe flood risk in New Orleans; an intermediate 

strategy can efficiently provide protection to both poor and middle class neighborhoods 

which would be largely neglected by a strategy targeting one metric to the exclusion of the 

other. As the data elements required to calculate such egalitarian and hybrid risk measures 

are a proper subset of those used to calculate economic damages as per traditional CBA, 

their use can be integrated into existing analytical workflows in an operationally 

straightforward manner. This provides a tractable and parsimonious approach to better 

incorporate equity considerations into environmental risk management decisions, where 

budgets and schedules are tight and concerns for social equity are of increasing political 

salience. Hopefully, the proposed approach can help policy makers to design risk 

management strategies that better balance economic efficiency and equity outcomes when 

considering a range of perspectives on equity and justice. 

  



 

89 

 

5. CONCLUSION AND FUTURE WORK 

 This dissertation has presented meaningful, incremental advances in three distinct 

areas of coastal flood risk analysis, reflecting three distinct high-level questions that must 

be addressed in the process of applied coastal flood risk analysis in support of policy 

decision-making. 1) How do we characterize coastal flood hazard? 2) How do we identify 

high-performing strategies for mitigating the consequences of that hazard given specified 

performance metrics? 3) What performance metrics should we consider when evaluating 

mitigation strategies? In helping to advance the state of practice in answering these 

questions, this work makes contributions not in a particular facet of the process of applied 

coastal flood risk analysis for policy decision support, but holistically throughout the 

modeling process. It is my intention moving forward, in line with my previous work on 

Louisiana’s 2023 Coastal Master Plan and the Louisiana Watershed Initiative, to 

collaborate with state and federal agencies as well as nonprofit and academic researchers 

to integrate all of these advances into a coherent applied modeling exercise to permit 

efficient, epistemically rigorous, and ethically sound coastal flood risk mitigation decision-

making in the state of Louisiana and elsewhere to help manage flood risk driven by surge, 

waves, rainfall, and riverine dynamics.  

 The work presented in this dissertation has a number of limitations that I intend to 

address with future work. The optimal sampling discretization approach described in 

Chapter 2, as stated therein, is optimal in the sense of minimizing square error over 

boundary conditions but not in the sense of minimizing square error over maximum surface 

water elevations. Future work will evaluate the extent to which these differ; a large number 

of HEC-RAS outputs will be generated corresponding to previously generated boundary 

conditions, either with a more efficient HEC-RAS model combined with improved 

computing resources or with a metamodel, and comparisons will be made between the 

hazard distribution estimated by applying optimal sampling discretization to boundary 

conditions, the hazard distribution estimated by applying optimal sampling discretization 

to water surface elevations, and the hazard distribution generated when using the full set 

of HEC-RAS model outputs without optimal sampling discretization. This will clarify the 

amount of error induced in final hazard distributions by optimal sampling discretization. 
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Varying the number of clusters used in these comparisons will characterize this error as a 

function of the number of clusters used and therefore as a function of the number of HEC-

RAS model runs which are computationally feasible when using optimal sampling 

discretization to accommodate tight computing budgets. Repeating these comparisons with 

random subsamples of available simulations will clarify the amount of error in final hazard 

curves as a function of the number of stochastic rainfall fields simulated. While these later 

questions were addressed in section 2.5.4 with respect to error in boundary condition 

distributions on a per-synthetic storm basis, performing similar experiments with respect 

to error in the final hazard distribution when sampling across rather than within synthetic 

storms would provide a more direct and actionable measure of modeling error and would 

better guide the allocation of computing resources in future modeling exercises.  

 The analysis presented in Chapter 3 was substantially constrained by computing 

resources. Future work with a more efficient implementation of the SWaMPS model or 

more computing resources will consider a wider range of sea level rise trajectories. Future 

work will also permit deeply uncertain climate parameters to vary independently, relaxing 

the restrictive assumption that climate trajectories can be straightforwardly rank-ordered 

by severity at a given time. Future work will also ensure that the modelled level of 

confidence in long-term climate expectations gained by near-term observations on the part 

of decision-makers (i.e., the granularity with which decision-makers can distinguish the 

severity of climate hazards which may follow the second decision stage) is informed by 

plausible mechanisms of observation and inference, rather than assumed as a matter of 

convenience. Future work will also permit the time at which the second decision stage is 

made to vary, governed by additional decision variables. Future work will treat the net 

present value of costs in each climate future as a distinct objective.  Most importantly, 

future work will utilize an expanded implementation of SWaMPS which integrates 

deliberately adaptive, low-overhead mitigation strategies, in order to generate and compare 

robust and adaptive strategies which meaningfully outperform static strategies.  

 Future work building on Chapter 4 will quantify the uncertainty associated with 

downscaling census block group level demographic characteristics to the residence level. 

More sophisticated downscaling techniques will be investigated. Future work will expand 

the spatial scope of analysis to determine whether similar experiments in other locations 
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show the same tradeoff between protecting poor and middle-class neighborhoods or 

whether the tradeoff in some locations is between wealthy and poor neighborhoods as 

previously hypothesized. Expanding the spatial scope of the work will also help to clarify 

whether the favorable performance of intermediate strategies targeting both direct 

economic damage and residence loss equivalents generalizes to other locations. Future 

work may also investigate additional alternative risk measures such as expected loss in 

subjective utility [78].  

 Integration of the methods presented in Chapters 2, 3, and 4 represent another 

direction for future work, as the limitations addressed in each individual chapter remain 

present in the others.  
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APPENDIX A: TECHNICAL APPENDIX FOR SWAMPS MODEL 

The following supplementary information was published alongside [48]. 

 

This Supplementary Information describes the design and methods used by the Surge and 

Waves Model for Protection Systems (SWaMPS), a process-based simulation model of 

storm surge-based flood risk on the interior of a levee/floodwall system. While SWaMPS 

could be configured to represent any real or proposed protection system subject to storm 

surge from tropical cyclones, our initial implementation is a representation of the Larose 

to Golden Meadow Hurricane Protection Project (LGM), located southwest of New 

Orleans, Louisiana.  

The model runs a Monte Carlo simulation of 120 synthetic tropical cyclones whose 

hydrographs (i.e., storm surge elevation over time), significant wave heights, and wave 

periods are predicted as a function on the storm’s parameters, location on the boundary of 

the protection system, and local mean sea level. The simulations include surge and wave 

overtopping, rainfall, pumping, and the potential for system failures in the form of 

catastrophic breaches. Each replicate calculates a resulting stillwater elevation (SWE) on 

the system interior. The annual exceedance probability (AEP) distribution function for 

flood elevations is calculated using joint probability methods to estimate the relative 

likelihood of each synthetic storm. The underlying mean arrival rate of storms is used to 

convert the cumulative distribution function for flooding, conditional upon a storm 

occurring, to the AEP curve. Direct economic damage is a function of a SWE, population, 

mitigation standard for nonstructural flood protection (e.g., elevating or floodproofing 

houses), and a rate of participation in the nonstructural practices. The resulting damage 

metrics include estimates of damage by return period (e.g., “100-year” damage 

exceedances) and the average annual losses (AAL) found by integrating over the damage 

AEP curve. 

In creating SWaMPS, we were inspired by the Coastal Louisiana Risk Assessment 

(CLARA) model. CLARA is a peer-reviewed risk model used to evaluate the risk reduction 

impacts of flood protection measures considered by the State of Louisiana’s 

Comprehensive Master Plan for a Sustainable Coast (hereafter, “Coastal Master Plan”). It 
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is described elsewhere in hundreds of pages of detail, so in this document, we provide a 

conceptual outline of the modeling framework while pointing to CLARA references for 

greater detail where methods are the same between models. We focus here on differences 

between the models and information about SWaMPS’ calibration and validation. For 

example, one of the major efficiencies of SWaMPS is its representation of the LGM system 

using 12 reach segments, whereas CLARA uses 318. 

 

Model Overview 

SWaMPS implements a risk framework consisting of the following elements. Each is 

explained in more detail in the subsequent sections. Following a description of the risk 

framework, we also outline the cost model. 

1) Hazard – the probability distribution of experiencing a tropical storm with specific 

characteristics, relating to the storm surge and waves experienced on the exterior 

boundary of the protection system  

2) Vulnerability – the probability distribution of stillwater elevations (SWE) in the 

polder, expressed as an annual exceedance probability 

3) Exposure – the collection of economic assets at risk of damage and their associated 

attributes, such as the topographic elevation at their location, asset type (e.g., single-

family residence, industrial facility), foundation height, and square footage 

4) Consequences – the direct economic damage caused by a given stillwater elevation, 

aggregated over the polder and expressed as a damage AEP curve or AAL, 

sometimes referred to as expected annual damage (EAD) 

Risk in our representation of the LGM system is derived from Monte Carlo simulation of 

120 synthetic storms. These correspond to the synthetic storms run through the CLARA 

model to estimate risk in future states of the world for Louisiana’s 2017 Coastal Master 

Plan.  

 

Surge and Wave Hazard. As noted in the main text, SWaMPS does not follow a 

standards-based design approach that requires calculation of a storm surge exceedance 

curve. However, in order to calculate the AEP curve for flooding on the system interior, 

we still need to know the relative likelihood of experiencing tropical cyclones with 
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characteristics like the 120 synthetic storms. We also need to predict the storm surge over 

time, significant wave height, and mean wave period for any synthetic storm. To allow for 

storms to be simulated in any future year, i.e., with any future assumptions about sea level 

rise, we developed a response surface to predict these characteristics as a function of storm 

parameters and mean local sea level. 

Relative Likelihood of Synthetic Storms. SWaMPS adopts the joint probability distribution 

functions (PDF) recommended by previous coastal Louisiana flood risk studies using the 

joint probability method with optimal sampling (JPM-OS) [136]–[138]. This involves 

using the characteristics of historic observed tropical cyclones at landfall (as extracted from 

the National Hurricane Center’s HURDAT2 dataset for storms from 1950 to present [139]) 

to fit a joint PDF over the storm parameters. Because the training storms do not vary by 

angle or forward velocity, this simplifies to fitting a joint distribution over the central 

pressure 𝑐𝑝, radius of maximum windspeed 𝑟, and landfall location in degrees longitude 𝑥:  

Λ(𝑐𝑝, 𝑟, 𝑥) = Λ1 ∙ Λ2 ∙ Λ3 

Λ1 = 𝑓(𝑐𝑝|𝑥) =
𝜕

𝜕𝑥
{exp {− 𝑒𝑥𝑝 − [

𝑐𝑝 − 𝑎0(𝑥)

𝑎1(𝑥)
]}} 

Λ2 = 𝑓(𝑟|𝑐𝑝) =
1

𝜎(cp)√2𝜋
𝑒

−
(𝑟̅(𝑐𝑝)−𝑟)

2

2𝜎2(𝑐𝑝)  

Λ3 = 𝑓(𝑥) = Φ(𝑥) 

Φ(𝑥) is the empirical frequency distribution of longitudinal landfall locations (rounded to 

1-degree bins). Using the HURDAT data, we construct Φ(𝑥) and then fit 𝑎0(𝑥), 𝑎1(𝑥), 

𝑟̅(𝑐𝑝) , and 𝜎2(𝑐𝑝)  using maximum likelihood. This follows CLARA methodology 

outlined in more detail in other reports [138], [140]. 

The space of storm parameters (central pressure, radius of maximum windspeed, and 

landfall location) is partitioned into boxes defined by an interval for each parameter. The 

bounds of the intervals defining each box are set such that each box is occupied by a single 

synthetic storm with parameters equal to the average of the interval bounds.  The joint PDF 

is then numerically integrated over each box to calculate a probability mass associated with 

each storm. The probability masses of each synthetic storm represent the relative 
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likelihoods of observing a storm with parameters contained within the box a synthetic 

storm inhabits. 

 

Response Surface Predictions. The 2017 Coastal Master Plan ran hydrodynamic 

simulations of 60 synthetic storms using a coupled ADCIRC+SWAN model in a total of 

ten states of the world leveraged in this work. They consist of the current conditions (2015) 

landscape, and all combinations of the years 2025, 2040, and 2065 under three scenarios 

with different sea level conditions. Conveniently, this experimental design provided 10 

distinct values for mean local sea level. Using the 10 sea levels and 600 synthetic storm 

simulations, we train a response surface for peak surge elevation, 𝑠𝑖, and significant wave 

height, 𝑤𝑖, at reach 𝑖, as a function of the storm parameters at landfall and mean local sea 

level:  

𝒔𝒊, 𝒘𝒊 = 𝜷𝟎 + 𝜷𝟏𝒄𝒑 + 𝜷𝟐𝒓 + 𝜷3𝒅𝒊𝒍
𝟑 + 𝜷4𝒅𝒊𝒍

𝟐 + 𝜷5𝒅𝒊𝒍 + 𝜷𝟔 𝒔𝒊𝒏 𝝋𝒊𝒍 + 𝜷7𝒙 + 𝜷𝟖𝒔𝒍𝒓 + 𝜺𝒊 

where 𝒄𝒑  is the central pressure, 𝒓 the radius of maximum windspeed, 𝒅𝒊𝒍  the distance 

between the centroid of reach 𝑖 and the storm’s landfall point 𝑙, 𝝋𝒊𝒍 the azimuthal angle 

between the landfall point 𝑙 and reach 𝑖, 𝒙 the location of landfall in degrees longitude, and 

𝒔𝒍𝒓 the mean local sea level in a given state of the world. 

This response surface is identical to that of CLARA, with the exception of adding 

the sea level rise term; CLARA fits a response surface independently for each state of the 

world using only the storm parameters and geospatial variables. Supplementary Figure 1 

demonstrates that incorporating sea level rise into the response surface and training on all 

ten landscapes simultaneously does not meaningfully alter the predictive accuracy of the 

response surface. It shows the root mean squared error of predictions of storm surge from 

the 600 synthetic storms available in the training corpus. Colors indicate whether the 

response surface is fit independently on each of the ten states of the world (orange), as in 

the CLARA method; fitting with all states of the world simultaneously (blue); or applying 

leave-one-out cross-validation to a fit with all states of the world simultaneously (beige). 

The figure reports RMSE as a transect plot at each of the 318 points along the system 

centerlines in CLARA’s representation of the LGM system. Performance is nearly identical, 

indicating that SWaMPS is justified in using the modified response surface to predict storm 

surge and waves; the leave-one-out cross-validation results suggest acceptable 
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performance for out-of-sample prediction, at least in states of the world with sea levels 

close to the range of scenarios modeled in the training set. 

The hydrograph (i.e., runup and drawdown of surge over time) and mean wave 

period are fit as a function of a synthetic storm’s peak surge elevation, using the 600 

ADCIRC+SWAN simulations as training data and methods following the U.S. Army 

Corps of Engineers’ Louisiana Coastal Protection and Restoration (LACPR) study [141]. 

SWaMPS uses a temporal resolution of 15 minutes and calculates surge for one day before 

peak surge and two days after. 

 

Vulnerability. Once the surge and wave characteristics of each synthetic storm have been 

predicted, SWaMPS runs a Monte Carlo simulation of overtopping and levee/floodwall 

failure. Testing indicated that 100 replications of each synthetic storm generated virtually 

identical estimates of stillwater elevation (SWE) exceedances and expected annual damage 

(EAD) as 200, 500, or 1000 replications, so this analysis utilizes 100 replicates to minimize 

the model runtime. In each replicate, the total volume of water entering the polder is then 

added to rainfall volumes, pumping volumes are subtracted, and the resulting volume of 

water is translated to a stillwater elevation (SWE) using a stage-storage curve (i.e., a 

function, derived from a digital elevation model, that relates a volume of water within an 

enclosed spatial region to the SWE that results). To arrive at an AEP distribution for interior 

SWE, we describe the following steps of the model in greater detail: (i) calculating 

overtopping volumes for a given storm; (ii) calculating the probability and consequences 

of system failure(s); and (iii) aggregating the frequency distributions of SWE from the 

Monte Carlo simulations of each storm to the AEP curve. 

 

Surge and Wave Overtopping. SWaMPS uses equations for surge and wave overtopping 

from the LACPR study that include coefficients defining stochastic variability in 

overtopping rates for a given surge elevation and significant wave height [141]. As 

described in the previous section, response surfaces to predict surge and wave 

characteristics were fit at each of CLARA’s 318 points along the boundary of the LGM 

system. To simplify the system representation in SWaMPS wherein each of the 12 reaches 
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is treated as homogeneous, we needed to identify what surge and wave values should be 

assigned as representative of all CLARA points on a given reach.  

Because overtopping dynamics are nonlinear, using a mean value for surge 

elevation, significant wave height, or wave period could introduce bias in the total 

overtopping volume from a storm. To calibrate a bias-correction factor 𝛽𝑖 for each reach, 

we proposed to assign reach 𝑖 a surge and wave characteristics for storm 𝑗 of the form 

𝝁𝒊𝒋 + 𝛽𝑖𝝈𝒊𝒋, where 𝝁𝒊𝒋 and 𝝈𝒊𝒋 are vectors containing the mean and standard deviation of 

the peak surge, significant wave height, and wave period values over the CLARA points 

located along reach 𝑖. We then minimized the sum of the squared error in overtopping 

volumes over all 600 training storms, as compared to the overtopping volumes calculated 

by CLARA. Where the CLARA overtopping volume for reach 𝑖 and storm 𝑗 is 𝑉𝑖𝑗̃ and the 

volume calculated by SWaMPS is 𝑉(. . ), we thus identified an optimal bias-correction 

factor: 

𝛽𝑖
∗ = argmin

𝛽𝑖

∑(𝑉(𝝁𝒊𝒋 + 𝛽𝑖𝝈𝒊𝒋) − 𝑉𝑖𝑗̃)
2

𝑗

 

Upon finding bias-correction factors for every reach, we found little variation between 

them, so for simplicity, the model ultimately adopts a bias-correction factor found by 

minimizing over all reaches and storms simultaneously: 

𝛽∗ = argmin
𝛽

∑ ∑(𝑉(𝝁𝒊𝒋 + 𝛽𝝈𝒊𝒋) − 𝑉𝑖𝑗̃)
2

𝑗𝑖

= 0.03181 

Figure 3 (explained in more detail below) indicates that SWaMPS does a good job of 

replicating statistical outcomes within a reasonable (i.e., policy-relevant) margin of error 

when compared to higher-fidelity models like CLARA. However, we caution that the 

model may not do as well at replicating inundation from individual observed storms, 

especially if they exhibit substantial variability in surge characteristics along reaches. For 

example, a CLARA-based analysis after Hurricane Ida in 2021 was consistent with an 

estimate that overtopping only occurred along 4% of the systems’ levees. To replicate this 

accurately using SWaMPS, the system configuration may need to be adapted to have a 

larger number of shorter reaches. 
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System Fragility. The probability of system failure is expressed as a function of the 

overtopping rate, with the functional relationship taken from CLARA’s IPET Low fragility 

curve [138]. However, SWaMPS departs from CLARA’s fragility calculations in two key 

ways: (i) because we assume overtopping rates to be homogeneous at all points along one 

of the twelve reaches, the reach is treated as a series of characteristic lengths of 305 m 

(1000 ft), each of which can fail independently of other lengths; and (ii) failures are allowed 

to occur at any time during surge runup (whereas CLARA assumes failures occur at the 

time of peak surge). For each characteristic length, SWaMPS draws a uniform random 

variate. It then calculates the failure probability for each length given the overtopping rate 

at each timestep, and the number of breaches at a given time is taken to be the number of 

uniform variates that are exceeded by the failure probability up to and including that time. 

Failures are assumed to be catastrophic, i.e., full-length for a characteristic length, and full-

depth. For breached regions, the free weir equations are used after setting the levee crest 

elevation to the elevation of the levee base. In each time period, the final overtopping 

volumes are calculated by calculating the length of the reach with and without breaches, 

then calculating overtopping assuming a constant rate over the 15-minute time step.  

The possibility of failures occurring before the time of peak surge makes a modest but 

noticeable difference, as shown in Supplementary Figure 2. Blue indicates the new fragility 

implementation, while orange represents the CLARA approach to fragility (as 

implemented in SWaMPS, so that the only difference is whether failures are constrained 

to occur only at peak surge). Each trace of the same color represents a different 

macroreplication of the case (i.e., initializing the model with a different random seed). 

Results are shown in the top pane for current conditions and for Year 50 of the High 

environmental scenario in the bottom. Differences are larger in the latter case, where the 

SWaMPS approach generally increases SWE exceedances by 0.1-0.3 m over a range of 

return periods.  

 

Annual Exceedance Probabilities. Once each storm in a given case has been simulated, 

SWaMPS generates the AEP curve by aggregating the results using a simplified version of 

the approach used by the CLARA model; full details are given in Fischbach, et al (2017) 

[138]. As described in the Hazard section, a joint PDF is estimated using HURDAT2 data. 
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The resulting probability masses associated with each synthetic storm are combined with 

the frequency distribution of SWE over the Monte Carlo replicates to form a cumulative 

distribution function (CDF), conditional upon a storm occurring. Storms are modeled as a 

Poisson process, and the observed frequency of historical tropical cyclones impacting 

coastal Louisiana is used to estimate the probability of observing 𝑛 ∈ {0, ℕ} storms in a 

given year. The law of total probability is then applied to convert the CDF of SWE for a 

single storm event to a CDF for the maximum annual SWE. SWaMPS follows this same 

approach but does not take CLARA’s extra step of bootstrapping the historical record and 

repeating the process to generate confidence bounds around the point estimates of SWE 

exceedances. 

Supplementary Figure 3 compares SWaMPS’ estimates of SWE exceedances to 

CLARA’s median estimates and 80% confidence bounds in current conditions and Year 

50 of the High scenario. In this figure, both models use the IPET Low fragility curve, and 

SWaMPS is constrained to allow failures only at the time of peak surge (in order to make 

as close a comparison as possible). The results show that the bias-correction of surge and 

wave characteristics results in a well-calibrated model of vulnerability within the polder. 

 

Exposure and Consequences. SWaMPS, like CLARA, models direct economic damage 

associated with storm-surge based flooding. In fact, the SWaMPS damage model consists 

of a lookup table of precomputed damage results from CLARA. Results were calculated at 

0.1-foot intervals for SWE and can be modified using a population multiplier and 

assumptions about mitigation measures such as elevating houses, floodproofing, and 

buying out high-risk properties. All assets but roads and agricultural crops are assumed to 

scale with the population multiplier, which takes a value of 1 in the current conditions 

(2015) case as its baseline. Mitigation measures are specified as a mitigation standard 

corresponding to the NAVD88 elevation to which policy makers desire protection. Not all 

types of assets are eligible for each measure, but for eligible assets, floodproofing is applied 

if it would take 3 feet or less of elevation above grade to raise the foundation to the 

mitigation standard; elevation-in-place is applied where the mitigation standard can be 

achieved by foundation heights 3-12 feet above grade; and buyouts occur if more than 12 
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feet of elevation would be required. Another system parameter specifies the assumed rate 

of participation in these measures. 

Within a given state of the world and time period, SWaMPS obtains the damage 

associated with the SWE exceedances for 22 return periods ranging from AEP values of 

0.2 to 0.0005 (i.e., 5-year to 2,000-year). Average annual losses are calculated by 

numerically integrating (i.e., taking a weighted average) the damage exceedance curve. 

The analysis presented in this paper assumes no additional mitigation measures are 

applied and that population remains at the current level. We made these choices to isolate 

the impact of climate change and to focus on the risk-informed levee/floodwall design 

framework. 

 

Costs. To calculate the present value of costs for structural protection and the additional 

risk mitigation measures outlined in the previous section, we replicated the cost models 

and unit cost assumptions used by the State of Louisiana in their 2017 Coastal Master Plan. 

These equations and assumptions are detailed in the plan’s Project Definitions appendix 

[142], but we used the actual costing spreadsheet templates for two proposed upgrades to 

the existing LGM protection system as a reference to ensure the accuracy of formulas and 

unit costs. Protection system costs include planning and design, mobilization, construction, 

and annual operations and maintenance over a user-specified planning horizon. The present 

value of this stream of costs depends on a user-specified discount rate.  

The model is initialized by a configuration file that allows for an existing system to 

be in place on the landscape. Costs are therefore implicitly defined as the cost of upgrading 

an already-present system from its existing reach elevations to an upgraded set of design 

elevations. In this analysis, we designed a new system by configuring the model to assume 

the “existing” system had design heights of zero meters above grade. 

We note that the cost model for our representation of the Larose to Golden Meadow 

system is built on a considerable amount of pre-existing knowledge and the design work 

that informed the existing system. Using SWaMPS to optimize design heights for a new 

system would still require substantial effort to assess factors like where floodwalls are 

preferable to levees, if pumping systems will be necessary, whether design costs will 



 

101 

 

include interior canals or other drainage structures, and recommended levee geometries as 

informed by soil boring samples.  

 

Software Implementation and Portability. SWaMPS was developed in Python 3 using 

information about the LGM Hurricane Protection Project, but the major components are 

designed as modular input files and functions that could be modified to represent another 

system or to generate additional metrics. The protection system is defined using a reach 

configuration file that provides geometry and other characteristics for each reach (e.g., 

length, crown height and width, front and backside slope, height and thickness of T-walls 

on top of the levee [wherever present], etc.). This also includes some construction 

information relevant to costing the project, such as overbuild to account for soil compaction 

and the width of inspection corridors on either side that must be cleared. Cost calculations 

then also depend on another input file defining unit costs for turf, fill, concrete and piles; 

maintenance assumptions; planning, engineering and design costs; contingency, etc. 

Another example of a modular components is the response surface mapping the tropical 

cyclone and environmental parameters to surge and wave characteristics. The LGM 

response surface was trained on ADCIRC+SWAN simulations supporting Louisiana’s 

2017 Coastal Master Plan which were conveniently available, but more budget- or 

computationally-constrained studies could reduce costs and complexity by using more 

simplistic models or by assuming that hazard is stationary over time (eliminating the need 

to run future sea level and land subsidence scenarios).  

The damage model was also programmed here as a lookup table from results using 

the CLARA damage module, but this too could be replaced with any source of decision-

relevant outcome metrics indicating system performance.  
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Supplementary Figure 1. Root mean squared error of response surface predictions of 

storm surge over all training storms. Colors indicate whether the response surface is fit 

independently on each of the ten states of the world (orange), fitting with all states of the 

world simultaneously (blue), or applying leave-one-out cross-validation to a fit with all 

states of the world simultaneously (beige).  
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Supplementary Figure 2. Stillwater elevation by AEP under current conditions and Year 

50 of the High environmental scenario, according to the fragility model used. Each trace 

of the same color represents a different macro replication of the case.  
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Supplementary Figure 3. Comparison of stillwater elevations by annual exceedance 

probability estimated by SWaMPS and CLARA, 2015 and 2065 (High scenario). Shades 

of blue indicate CLARA’s median estimate and 80% confidence bounds; orange indicates 

the SWaMPS estimates.  
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Table S1. Standard deviation of design heights (as a percentage of the mean design height) 

among all strategies with lower cost and lower residual risk than the existing protection 

system. 

 Future State of the World 

Reach Stationary 

Risk 

Low 

Scenario 

Medium 

Scenario 

High 

Scenario 

A East 10.2% 2.4% 2.6% 1.7% 

A West 3.7% 2.5% 3.5% 4.1% 

B North 1.1% 6.1% 2.4% 1.5% 

B South 1.8% 6.2% 3.0% 6.6% 

C North 4.0% 3.7% 2.5% 2.3% 

C South 1.7% 1.5% 2.8% 4.6% 

D North 1.7% 2.4% 2.6% 1.8% 

D South 9.3% 5.9% 2.5% 2.6% 

E North 1 6.5% 5.7% 1.9% 2.9% 

E North 2 3.9% 3.6% 4.5% 4.4% 

E South 1.4% 1.4% 2.4% 3.1% 

F 1.3% 2.6% 2.0% 2.2% 
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Table S2. Regression coefficients, statistical significance of covariates predicting risk-based design heights, and 𝒓𝟐 values for each reach. 

Reach 𝜷𝟎: 𝒊𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 𝜷𝟏: 𝓛 𝜷𝟐: 𝒊𝒏𝒕 𝜷𝟑: 𝜶 𝜷𝟒: 𝒔𝒍𝒓 𝜷𝟓: 𝓛 × 𝒊𝒏𝒕 𝜷𝟔: 𝓛 × 𝜶 𝜷𝟕: 𝓛 × 𝒔𝒍𝒓 𝒓𝟐 

A East   4.67E+0*** -5.03E-5***   2.00E-1   1.31E-1*   6.47E-2 -2.32E-6   1.79E-5***   2.01E-5*** 0.584 

A West   4.11E+0*** -4.18E-5***   8.45E-1*   1.26E-1*   3.97E-2 -1.76E-5   1.50E-5***   1.81E-5*** 0.521 

B North   4.18E+0*** -4.18E-5*** -2.02E-1 -9.23E-3   4.39E-1***   5.55E-6   2.06E-5***   1.07E-5*** 0.457 

B South   4.66E+0*** -5.25E-5***   5.01E-1   1.45E-1* -2.33E-1*** -8.03E-6   1.70E-5***   2.66E-5*** 0.512 

C North   3.24E+0*** -2.17E-5***   6.37E-2   6.70E-2   7.63E-1*** -1.72E-6   1.30E-5*** -1.37E-6 0.583 

C South   3.49E+0*** -2.90E-5***   6.70E-2   2.35E-1***   6.60E-1***   4.28E-6   8.87E-6**   4.76E-6* 0.457 

D North   4.12E+0*** -3.93E-5***   4.12E-1   2.56E-2   2.89E-1*** -7.91E-6   1.81E-5***   1.28E-5*** 0.628 

D South   4.75E+0*** -5.24E-5***   2.77E-1 -2.64E-2 -2.66E-1*** -1.91E-6   2.09E-5***   2.70E-5*** 0.544 

E North 1   4.39E+0*** -4.14E-5*** -5.03E-1 -3.76E-2   2.68E-1***   3.61E-6   2.05E-5***   1.32E-5*** 0.532 

E North 2   3.65E+0*** -3.39E-5*** -2.10E-1   8.46E-2   5.29E-1***   7.03E-6   1.48E-5***   7.96E-6*** 0.557 

E South   4.57E+0*** -4.94E-5***   1.26E-1 -2.25E-2 -1.31E-1**   4.44E-6   1.90E-5***   2.36E-5*** 0.592 

F   3.36E+0*** -2.73E-5***   1.36E-1   4.06E-2   7.45E-1*** -2.93E-6   1.55E-5***   1.94E-6 0.555 

* 𝐩 < 𝟎. 𝟎𝟓; ** 𝐩 < 𝟎. 𝟎𝟏; *** 𝐩 < 𝟎. 𝟎𝟎𝟏; average 𝒓𝟐 over all reaches = 0.543 

𝓛 = expected losses over 50 years; 𝒊𝒏𝒕 = change to future mean storm intensity; 𝜶 = change to future storm frequency; 𝒔𝒍𝒓 = local sea 

level rise over 50 years
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APPENDIX B: SUPPLEMENTAL TABLES AND FIGURES 

Table 2: Aggregate single-family residential structure and demographic information for New 

Orleans neighborhoods (2 of 2) 
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Table 3: Aggregate single-family residential structure and demographic information for New 

Orleans neighborhoods (2 of 2) 
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