
TAMING IRREGULAR CONTROL-FLOW WITH TARGETED
COMPILER TRANSFORMATIONS

by

Charitha Saumya Gusthinna Waduge

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

August 2023

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Milind Kulkarni, Chair

School of Electrical and Computer Engineering

Dr. Samuel P. Midkiff

School of Electrical and Computer Engineering

Dr. Timothy Rogers

School of Electrical and Computer Engineering

Dr. Xiaokang Qiu

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

2

To my parents, for their unconditional love, support, and encouragement.

3

ACKNOWLEDGMENTS

Deciding to pursue a PhD in the United States was one of the toughest decisions I had

to make in my life. I knew that being away from my family and friends back home would

be an unbearable challenge. Looking back, I think I made the best decision of my life. The

experiences I had and the great people I have met along the way have shaped me into a

better person. I would like to thank all those people who have helped me in this journey.

First, I would like to thank my brilliant advisor, Dr. Milind Kulkarni for his excellent

mentorship and guidance. I greatly admire his kindness, humility and ability to motivate

and inspire his students. I am fortunate to have him as my advisor. I would like to thank

Dr. Timothy Rogers for providing me access to GPU hardware in his lab which greatly helped

me to advance my research on GPU code optimizations. I express my sincere gratitude to

Dr. Samuel Midkiff, Dr. Timothy Rogers and, Dr. Xiaokang Qiu for serving in my PhD

advisory committee. Their valuable insights and feedback have been crucial in shaping my

research.

My labmate and friend, Kirshanthan Sundarajah has been an excellent collaborator in my

research. I like to extend my thanks to him for our lengthy and fruitful research discussions

and his various contributions in fine-tuning up my dissertation research. I would like to

thank my external collaborators Dr. Pavlos Petoumenos and Dr. Rodrigo Rocha for their

help and feedback on my research about CPU code size optimizations. It would not be

complete without extending my gratitude to all my PLCL (Parallelism, Languages, and

Compilers Lab) labmates. All the fun discussions and exciting outings gave me the much-

needed distractions from research to relax myself.

I extend my sincere gratitude to my parents, my in-laws and my sister for their constant

love, support and encouragement. Finally, I express my heartfelt gratitude to my loving wife

Rangana. She has been a friend, loving critic and a great source of motivation. Without her

love and support I could not have finished this journey.

4

TABLE OF CONTENTS

LIST OF TABLES . 10

LIST OF FIGURES . 11

ABSTRACT . 13

1 INTRODUCTION . 14

2 DARM: CONTROL-FLOW MELDING FOR SIMT THREAD DIVERGENCE RE-

DUCTION . 18

2.1 Introduction . 18

2.2 Background . 20

2.2.1 GPGPU Architecture and Programming Models 20

2.2.2 LLVM SSA form and GPU Divergence Analysis 21

2.3 Overview of DARM . 23

2.4 Detailed Design . 25

2.4.1 Preliminaries and Definitions . 25

2.4.2 Detecting Meldable Divergent Regions 25

2.4.3 Computing Melding Profitability . 26

2.4.4 DARM Code Generation . 32

2.4.5 Unpredication . 35

2.4.6 Pre- and Post-Processing Steps . 35

2.4.7 Putting All Together . 36

5

2.5 Implementation . 38

2.6 Evaluation of DARM . 40

2.6.1 Evaluation Setup and Benchmarks 40

2.6.2 Performance . 44

2.6.3 ALU Utilization . 46

2.6.4 Melding of Memory Instructions . 46

2.6.5 Melding Profitability Threshold . 48

2.6.6 Compile Time . 49

2.6.7 Types of Melding . 49

2.7 Discussion . 50

2.7.1 General Applicability of DARM . 50

2.7.2 Melding Non-isomorphic CFG Regions 51

2.7.3 Precision of Divergence Analysis . 51

2.7.4 Shared Memory, Cost Model and Sequence Alignment 51

2.8 Related Work . 51

2.8.1 Techniques for Reducing Control-Flow Divergence 51

2.8.2 Other Related Work . 56

2.9 Conclusion . 57

3 CFM-CS: CONTROL-FLOW MELDING FOR CODE SIZE REDUCTION 58

3.1 Motivation . 58

6

3.2 Extending Control-Flow Melding for Code Size Reduction 61

3.2.1 Identifying Regions for Melding . 62

3.2.2 CFM-CS Code Generation . 63

3.2.3 Region Replication . 63

3.3 Evaluation . 65

3.3.1 Evaluation Setup . 65

3.3.2 Code Size Reduction . 65

3.3.3 Code Size Reduction on Individual Functions 69

3.3.4 Compile-Time and Runtime Overhead 70

3.4 Related Work . 71

3.5 Conclusion . 72

4 CFM-SE: ACCELERATING SYMBOLIC EXECUTION BY TARGETED CONTROL-

FLOW TRANSFORMATIONS . 73

4.1 Introduction . 73

4.2 Background . 76

4.2.1 Dynamic Symbolic Execution and State Merging 76

4.2.2 Divergence Analysis . 76

4.2.3 DARM . 77

4.3 Motivating Example . 77

4.4 Detailed Design . 79

7

4.4.1 CFM-SE Transformation . 80

4.4.2 Properties of CFM-SE Transformation: 86

4.4.3 False Positive Detection . 87

4.4.4 Symbolic Variable Analysis . 89

4.5 Evaluation . 91

4.5.1 Implementation . 91

4.5.2 Experimental Setup . 92

4.5.3 DSE Performance (RQ1) . 93

4.5.4 Bounded Verification (RQ2) . 98

4.5.5 Coverage (RQ3) . 100

4.6 Limitations of CFM-SE . 103

4.6.1 Constraint Complexity . 103

4.6.2 Test Generation . 104

4.6.3 General Applicability . 105

4.7 Related Work . 106

4.7.1 Dynamic Techniques . 106

4.7.2 Compiler Techniques . 106

4.8 Conclusion . 107

5 CONCLUSION . 108

REFERENCES . 110

8

VITA . 125

9

LIST OF TABLES

2.1 Comparison of techniques for divergence reduction 19

2.2 Average Compile Time (s) . 49

2.3 Different Types of Melding . 50

3.1 Code size reduction achieved by cfm-cs on MiBench benchmarks 66

3.2 Code size reduction achieved by cfm-cs on SPEC 2006 benchmarks 67

3.3 Code size reduction achieved by cfm-cs on SPEC 2017 benchmarks 68

4.1 Description of the benchmarks used for RQ1 and RQ2 93

4.2 KLEE symbolic execution statistics collected for the approaches K, C, SM and,
C-SM. Table shows the execution time, number of queries, average query size
and, number of explored paths for the different benchmarks and inputs sizes.
OOT = out of time (1 hour limit) . 95

4.3 Query cache hits per explored path for benchmarks where C explores more than
a single path. 97

4.4 Time spent and number of solver calls issued by KLEE for benchmarks instru-
mented with verification conditions. Table shows the statistics for different tech-
niques and input sizes considered. OOT = out of time (1 hour time limit) . . . 98

10

LIST OF FIGURES

1.1 Techniques proposed for mitigating the impact of irregular control-flow on
program Performance, Efficiency, and Testability 15

2.1 Bitonic sort kernel . 23

2.2 Examples showing the 3 cases considered by darm to detect meldable subgraphs 27

2.3 (a) Instruction alignment result for two basic blocks A and B, (b) Code gen-
erated by darm for aligned instructions a©, b© and c© in Figure 2.3a , (c)
Unpredication applied to the unaligned instructions of basic block B in fig-
ure 2.3a . 31

2.4 darm pre-processing example . 35

2.5 darm melding algorithm applied to bitonic sort (Figure 2.1) (a) Original
control-flow graph, (b) Region simplification, (c) darm subgraph melding,
(d) Unpredication, (e) Final optimized control-flow graph 36

2.6 LLVM-IR before and after applying darm transformation to our running ex-
ample (a) meldable divergent region (b) instruction alignment (b) LLVM-IR
generated after subgraph melding and unpredication 38

2.7 Modifications made to compilation flow . 39

2.8 Control-flow patterns in synthetic benchmarks. Square: basic block and Cir-
cle: if-then region (shown on right) . 40

2.9 Micro Benchmark Performance. GM is geomean of darm’s speedup over
baseline. 43

2.10 Real-world Benchmark Performance. + marks block size with best baseline
runtime. GM is geo-mean of darm’s speedup on all benchmarks; GM-Best is
darm’s speedup on + configurations. 44

2.11 ALU Utilization. 46

2.12 Normalized Memory Instruction Counters. 47

2.13 Variation of melding profitability thresholds. 48

3.1 Code snippet extracted from file z20.c in MiBench typeset benchmark . . . 59

3.2 cfm-cs overview. (a) Given an if-then-else statement, (b) we identify isomor-
phic control-flow in the two regions, and (c) we align and merge the corre-
sponding blocks. 61

3.3 Region replication example . 64

11

3.4 Reduction in number of instructions on 17.6k real world-functions from Ang-
haBench suite. Functions are sorted by the amount of reduction achieved by
cfm-cs. 69

4.1 to_upper function and its branchless implementation (to_upper_branchless)
with driver code for symbolic execution and verification of final result using
asserts. 78

4.2 cfm-se transformation example . 80

4.3 Symbolic execution driver loop used for detecting false positive bugs intro-
duced by cfm-se. 88

4.4 Symbolic variable analysis example. Function main contains two calls to func-
tion foo with symbolic arguments. Depending on the call site of foo different
instructions inside foo must be marked symbolic. 89

4.5 Source line coverage vs time for libosip benchmark 101

4.6 Source line coverage vs time for libtasn1 benchmark 102

4.7 Source line coverage vs time for chcon benchmark 103

12

ABSTRACT

Irregular control-flow structures like deeply nested conditional branches are common in

real-world software applications. Improving the performance and efficiency of such programs

is often challenging because it is difficult to analyze and optimize programs with irregular

control flow. We observe that real-world programs contain similar or identical computations

within different code paths of the conditional branches. Compilers can merge similar code

to improve performance or code size. However, existing compiler optimizations like code

hoisting/sinking, and tail merging do not fully exploit this opportunity. We propose a new

technique called Control-Flow Melding (CFM) that can merge similar code sequences at the

control-flow region level. We evaluate CFM in two applications. First, we show that CFM

reduces the control divergence in GPU programs and improves the performance. Second,

we apply CFM to CPU programs and show its effectiveness in reducing code size without

sacrificing performance. In the next part of this dissertation, we investigate how CFM can be

extended to improve dynamic test generation techniques like Dynamic Symbolic Execution

(DSE). DSE suffers from path explosion problem when many conditional branches are present

in the program. We propose a non-semantics-preserving branch elimination transformation

called CFM-SE that reduces the number of symbolic branches in a program. We also provide

a framework for detecting and reasoning about false positive bugs that might be added to

the program by non-semantics-preserving transformations like CFM-SE. Furthermore, we

evaluate CFM-SE on real-world applications and show its effectiveness in improving DSE

performance and code coverage.

13

1. INTRODUCTION

Control-flow irregularity and its impact on performance and efficiency of programs is a well-

studied problem in programming languages and compilers research community [1]–[3]. In

programs with regular control-flow the program execution path and memory access patterns

exercised by the program are predictable. In other words, in regular programs program

behavior does not change much when the input data changes. Classical examples of such

programs are matrix multiplications and tensor contractions. Therefore, reasoning about

the behavior of regular programs and optimizing them is less cumbersome compared to

irregular programs. In contrast, the run-time characteristics of irregular programs is highly

dependent on the input data or properties of the execution environment (such as the thread

identifier in GPU programs). This makes it challenging to analyze, optimize and verify

irregular programs. Irregular control-flow realize in programs with deeply nested conditional

branches (i.e. if-then, if-then-else, switch-case nested inside each other). In this work,

we focus on how to improve the performance, efficiency, and testability of programs with

irregular control-flow.

The performance of GPU programs is sensitive to the control-flow structure of the pro-

gram. GPU programs with data dependent control-flow (i.e. divergent branches) are often

impacted by control-flow divergence [4]. GPU programming model allows Single-Program-

Multiple-Data (SPMD) programming style where the programmer has to write a single

program that can be executed by thousands of threads in parallel. This hides away the

complexity of the hardware from the programmer. Behind the scenes, the GPU hardware

executes groups the threads into warps or wavefronts, and each thread group execute the

instructions of the program in lock-step. This is called Single-Instruction-Multiple-Data

(SIMD) execution model. SIMD execution model is crucial for achieving high efficiency of

GPU execution. However, divergent branches can cause performance bottlenecks in hard-

ware that employs SIMD-style execution. This is because, the GPU hardware has to serialize

the execution of the threads in a warp if different threads want to take different control-flow

paths at divergent branches. If the GPU program contains many input-dependent or thread-

ID dependent divergent branches (i.e. irregular control-flow), this serialization can result in

14

a significant performance degradation. Many architectural modifications [5]–[8] have been

proposed to reduce the impact of control-flow divergence in GPUs. Even though highly

effective, architectural modifications are often expensive and not always feasible. Software

only techniques [9]–[12] have been investigates as well to reduce the impact of control-flow

divergence by using various program transformations. One of the key compiler technique for

reducing control-flow divergence it to merge (or fuse) similar code within divergent branches.

Techniques like branch fusion [11] and tail merging [13] are based on this idea. However,

these techniques are merging instructions at the basic block level and, they are not general

enough to merge complex control-flow regions.

Performance
DARM : Regularizing Control-flow for Performance (Chapter 2)

Efficiency
CFM-CS : Merging Control-flow Regions for Code Size Benefits (Chapter 3)

Testability
CFM-SE : Targeted Branch Elimination for Accelerated Testing (Chapter 4)

Figure 1.1. Techniques proposed for mitigating the impact of irregular
control-flow on program Performance, Efficiency, and Testability

In resource constrained environments like embedded systems, size of the executable

program becomes a critical optimization goal. In modern compilers like LLVM [14] and

GCC [15], there are dedicated optimizations and optimization levels (such as -Oz) to re-

duce the size of the executable program. Well-known code size reduction optimizations

include dead code elimination [16], common subexpression elimination [17], and procedural

abstraction [13], [18]. Programs with irregular control-flow also presents us an important

opportunity for code size reduction. In programs with many conditional branches, the diver-

gent code paths of each branch often times contains similar or identical code. These similar

code sequences can be merged to reduce the size of the program. Optimizations like code

hoisting/sinking and tail merging [13] uses this observation to reduce code size. Despite

15

these advancements, there are still many missed opportunities in real-world applications to

reduce the size of the executable program. In particular, existing compiler techniques only

exploit code similarity in very restricted scenarios. Code sinking only works when a set of

basic blocks have identical code at the end and, they have a common successor. Similarly,

code hoisting only works when a set of basic blocks have identical code at the beginning and,

they have a common predecessor. Generalized tail merging is capable of merging structurally

similar control-flow regions, but the matching basic blocks must contain identical or nearly

identical code. There is a need for a general compiler transformation that can exploit both

control-flow region level instruction level code similarity to reduce the size of programs.

Irregular control-flow structures pose a significant challenge in testing and verification

of programs. The number of feasible program paths in a program grows exponentially with

the number of input-dependent conditional branches present in a program. Path enumer-

ation based test generation techniques like Dynamic Symbolic Execution [19] and Concolic

Execution [20] are not scalable for programs with many conditional branches. This is the

well-known the Path Explosion Problem in dynamic test generation [21]–[23]. Existing solu-

tions proposed for path explosion problem include guiding symbolic execution towards the

most interesting program paths by using heuristics [24], [25], merging similar program states

to reduce the number of explored paths [26], producing summaries of program behavior to

avoid exploring similar paths [27], [28], or isolating code regions from its surrounding en-

vironment to reduce the state explosion [29]. Another important but less-studied class of

techniques is applying program transformations in a targeted fashion to reduce the overheads

of symbolic execution [30]–[32]. In fact, Collingbourne et al. [33] have shown that applying

compiler transformations to remove conditional branches can significantly reduce the path

exploration overheads in symbolic execution. Control-flow irregularity presents us an oppor-

tunity to apply such compiler transformations to improve the testability of those programs.

However, existing compiler transformations are designed to improve the performance and

therefore, they are ill-suited for improving the testability.

In this dissertation, we make the following contributions to address the above shortcom-

ings of existing compiler techniques:

16

• We developed darm, a compiler technique for reducing control-flow divergence in

GPU programs. darm is based on the observation the divergent code paths in GPU

programs often contain similar code sequences. darm detects this code similarities

using statically analyzing the program and, decides whether it is profitable to merge

these divergent code paths. If proven profitable according to a cost model, darm

applies a novel transformation called Control-flow Melding to merge instructions that

are otherwise executed divergently. darm is capable of exploiting both basic block

level and control-flow regions level code similarity and, therefore more general than

existing compiler techniques. We implement darm in LLVM and show that it can

improve the performance of several important GPU benchmarks on AMD GPUs.

• We developed cfm-cs, an application of control-flow melding to reduce code size in

CPU programs. cfm-cs implementation is more general than darm and, it can merge

more complex control-flow regions that are present in real-world CPU programs. Our

evaluation of cfm-cs shows that it can be useful in reducing code size in numerous

large real-world benchmarks with minimal runtime and compile-time overheads.

• We developed cfm-se, a targeted non-semantics-preserving control-flow transforma-

tion designed to improve the scalability of dynamic symbolic execution (DSE) of a

given program. First cfm-se uses static analysis to identify expensive symbolic con-

ditional branches for DSE to explore. Then, cfm-se inserts a minimal number of dead

instructions to the basic blocks of these branches to make them have identical com-

putation sequences. Finally, cfm-se uses control-flow melding to merge these basic

blocks into a single basic block without inserting any additional branches. By branch

elimination, cfm-se statically merges program states and drastically reduce the num-

ber of solver queries required by DSE. We also built a framework for detecting any

false positive crashes that might be introduced by cfm-se due to its non-semantics-

preserving nature. Our evaluation shows that cfm-se can reduce the number of solver

queries significantly, accelerate the bounded verification of programs and, improve the

coverage on real-world programs compared naive DSE and dynamic state merging.

17

2. DARM: CONTROL-FLOW MELDING FOR SIMT THREAD

DIVERGENCE REDUCTION

2.1 Introduction

General Purpose Graphics Processing Units (GPGPU) are capable of executing thou-

sands of threads in parallel, efficiently. Advancements in the programming models and com-

pilers for GPUs have made it much easier to write data-parallel applications. Unfortunately,

exploiting data parallelism does not immediately translate to better performance. One key

reason for the lack of performance portability is that GPGPUs are not capable of executing

all the threads independently. Instead threads are grouped together into units called warps,

and threads in a warp execute instructions in lockstep. This is commonly referred to as the

Single Instruction Multiple Thread (SIMT) execution model.

The SIMT model suffers performance degradation when threads exhibit irregularity and

can no longer execute in lockstep. Irregularity comes in two forms, irregularity in memory

accesses patterns (i.e. memory divergence) and irregularity in the control-flow of the program

(i.e. control-flow divergence). Memory divergence occurs when GPGPU threads needs to

access memory at non-uniform locations, which results in un-coalesced memory accesses.

Un-coalesced memory accesses are bad for GPU performance because memory bandwidth

can not be fully utilized to do useful work.

Control-flow divergence occurs when threads in a warp diverge at branch instructions.

At the diverging branch, lockstep execution can not be maintained because threads in a

warp may want to execute different basic bocks (i.e. diverge). Instead, when executing

instructions along a diverged path, GPGPUs mask out the threads that do not want to

take that path. The threads reconverge at the Immediate Post-DOMinator (IPDOM) of

a divergent branch—the instruction that all threads from both branches want to execute.

This style of IPDOM-based reconvergence is implemented in hardware in most GPGPU

architectures to maintain SIMT execution. Even though IPDOM-based reconvergence can

handle arbitrary control-flow, it imposes a significant performance penalty if a program has

a lot of divergent branches. In the IPDOM reconvergence model, instructions executed on

divergent branches necessarily cannot utilize the full width of a SIMD unit. If the code has

18

a lot of nested divergent branches or divergent branches inside loops, this style of execution

causes significant under-utilization of SIMD resources.

For some GPGPU applications divergent branches are unavoidable, and there have been

many techniques proposed to address this issue both in hardware and software. Proposals

such as Dynamic warp formation [34], Thread block compaction [6] and Dual-path execu-

tion [5] focus on mitigating the problem at the hardware level by changing how threads are

scheduled for execution and making sure that threads following the same path are grouped

together. Unfortunately, such approaches are not useful on commodity GPGPUs.

Table 2.1. Comparison of techniques for divergence reduction
Control-flow and Instruction

Pattern
Technique

Tail
Merging

Branch
Fusion darm

Diamond control-flow with
identical instruction sequences 3 3 3

Diamond control-flow with
distinct instruction sequences 7 3 3

Complex control-flow 7 7 3

There have also been efforts to reduce divergence through compiler approaches that

leverage the observation that different control-flow paths often contain similar instruction

(sub)sequences. Tail merging [13] identifies branches that have identical sequences of code

and introduces early jumps to merged basic blocks, with the effect of reducing divergence.

Branch fusion generalizes tail merging to work with instruction sequences that may not

be identical [11]. However, branch fusion cannot analyze complex control-flow and hence

it is restricted to simple if-then-else branches where each path has a single basic block

(i.e. diamond-shaped control-flow).

In this work, we propose a more general, software-only approach of exploiting similarity

in divergent paths, called control-flow melding. Control-flow melding is a general control-

flow transformation which can meld similar control-flow subgraphs inside a if-then-else region

(not just individual basic blocks). By working hierarchically, recursively melding divergent

control-flow at the level of subgraphs of the CFG, control-flow melding can handle substan-

tially more general control structures than prior work. We describe darm, a realization of

19

control-flow melding for general GPGPU programs. Table 2.1 compares the capabilities of

darm with branch fusion and tail merging.

darm works in several steps. First, it detects divergent if-then-else regions and splits

the divergent regions into Single Entry Single Exit (SESE) control-flow subgraphs. Next it

uses a hierarchical sequence alignment technique to meld profitable control-flow subgraphs,

repeatedly finding subgraphs whose control-flow structures and constituent instructions can

be aligned. Once a fixpoint is reached, darm uses this hierarchical alignment to generate

code for the region with reduced control-flow divergence.

The main contributions of this work are,

• Divergence-Aware-Region-Melder (darm), a realization of control-flow melding that

identifies profitable melding opportunities in divergent if-then-else regions of the control-

flow using a hierarchical sequence alignment approach and then melds these regions to

reduce control-flow divergence.

• An implementation of darm in LLVM [14] that can be applied to GPGPU programs

written in HIP [35] or CUDA [36]. Our implementation of darm is publicly available

as an archival repository

1
 and up-to-date version is available in GitHub

2
 .

• An evaluation of darm on a set of synthetic GPU programs and a set of real-world

GPU applications showing its effectiveness

2.2 Background

2.2.1 GPGPU Architecture and Programming Models

Modern GPGPUs are designed to have much higher instruction throughput and memory

bandwidth compared to CPUs while still being within a reasonable cost and power consump-

tion budget. The specific design of GPGPUs makes them well-suited for highly data parallel

applications like scientific simulations, computer graphics and machine learning. GPGPUs

have multiple processing core clusters called streaming multiprocessors (NVIDIA) or com-

pute units (AMD). Each of these clusters contain multiple parallel lanes (i.e. SIMT cores), a
1

 ↑ https://doi.org/10.5281/zenodo.5784768
2

 ↑ https://github.com/charitha22/cgo22ae-darm-code

20

vector register file, L1 cache and a chunk of shared memory. The unit of execution is called

a warp (or wavefront). A warp is a collection of threads executed in lock-step on a SIMT

core. Shared memory is shared among the warps executing on a core cluster. All the core

clusters can access unified L2 cache and global memory. Global memory is accessed via a

high bandwidth interconnection network. A branch unit takes care of control-flow diver-

gence by maintaining a SIMT stack to enforce IPDOM based reconvergence, as discussed in

Chapter 2.1 . A single core cluster is capable of executing thousands of threads in parallel.

Whenever a warp hits a long latency memory instruction the warp scheduler schedules a

different warp on that SIMT core. This allows GPGPUs to hide the latency of expensive

memory reads and writes.

GPGPU programming abstractions like CUDA [36] or HIP [35] gives the illusion of

data parallelism with independent threads. Programmer only has to worry about what

a single thread supposed to do and specify that using the programming model. This is

also referred to as Single-Program-Multiple-Data (SPMD) programming model [37] because

multiple instances of the same program are executed by many threads independently with

each thread operating on different data elements. These threads are organized in a hierarchy

of up to 3 dimensional blocks and grids. This makes it easier to map computations over 1,

2 or 3-dimensional spaces into different threads. Programming model also provides shared

memory synchronization primitives to communicate between threads in a thread block and

warp level primitives [38] to communicate between threads in a warp. During real execution

on the GPGPU hardware, a group of program instances (i.e. threads) are mapped to a

warp and executed in lock-step. Therefore, threads taking vastly different control-flow paths

during real execution–due to control-flow divergence–is highly detrimental to the performance

because of the SIMT execution limitations.

2.2.2 LLVM SSA form and GPU Divergence Analysis

LLVM [14] is a general framework for building compilers, optimizations and code gen-

erators. Most of the widely adopted GPGPU compilers [39], [40] are built on top of the

LLVM infrastructure. LLVM uses a target-independent intermediate representation, LLVM-

21

IR, that enables implementing portable compiler optimizations. LLVM-IR uses static single

assignment form [41] which requires that every program variable is assigned once and is

defined before being used. SSA form uses φ nodes to resolve data-flow when branches are

present, selecting which definition should be chosen at a confluence of different paths.

In GPGPU compilers, a key step in identifying divergent control-flow regions is perform-

ing compiler analyses to identify divergent variables (or branches) [11], [42]. A branch is

divergent if the branching condition evaluates to a non-uniform value for different threads

in a warp. If the branching condition is divergent, threads in a warp will have to take dif-

ferent control-flow paths at this point. Impact of control-flow divergence has extensively

studied in different contexts [43]–[46]. Reducing control-flow divergence requires finding the

source of divergence in a program. Structured CFGs make it easier to produce a precise

divergence analysis. Sabne et al. has provided a new formalization for structured CFGs and

showed the importance of structured CFGs in thread divergence [47]. LLVM’s divergence

analysis tags a branch as divergent, if the branching condition is either data-dependent or

sync-dependent on a divergent variable (such as thread ID) [42], [48]. If some variable x is

data-dependent on a divergent variable y, then x also becomes divergent. This is called data-

dependent divergence. On the other hand, sync-dependancy characterizes the control-flow

aspect of divergence. For example, consider a phi node at a confluence point of if and then

control-flow paths and assume that the branching condition is dependent on thread ID. Now

the phi node also becomes divergent even if does not have a direct data dependence with a

divergent variable. This is because the resolved value of the phi node during execution de-

pends on which control-flow path is taken to reach it (if or then path). In this case the phi

node is sync-dependent on the thread ID. LLVM’s divergence analysis keeps track of these

data-dependent and sync-dependent divergent variables and provide an interface to query

if a given variable is divergent or not. Coutinho et al. constructed a divergence analysis

to statically identify variables with same value for every thread executed on a SIMT core

and used this analysis to drive Branch Fusion [11]. Divergence analysis is often conservative

meaning that it will often classify a variable as divergent even though it is not in practice.

To reduce the number of false positive in divergence analysis, authors proposed a method

to split the live ranges of certain loop variables. Reducing the live range in those variables

22

enable the analysis to correctly classify them as being non-divergent avoiding the number

of false positives. Recently, Rosemann et al. has presented a more general and precise di-

vergence analysis for reducible CFGs based on abstract interpretation for uniformity [49].

This version of divergence analysis is adapted in more recent versions of LLVM due to its

generality and speed. Having access to precise divergence analysis aids the compiler to cor-

rectly identify divergent branches in the CFG and apply control-flow optimizations such as

tail merging and branch fusion to reduce control-flow divergence.

2.3 Overview of DARM

1 __global__ static void bitonicSort(int ∗values) {
2 // copy data from global memory to shared memory
3 __syncthreads();
4 for (unsigned int k = 2; k <= NUM; k ∗= 2) {
5 for (unsigned int j = k / 2; j > 0; j /= 2) {
6 unsigned int ixj = tid ^ j;
7 if (ixj > tid) {
8 if ((tid & k) == 0) {
9 if (shared[ixj] < shared[tid])

10 swap(shared[tid], shared[ixj]);
11 }
12 else {
13 if (shared[ixj] > shared[tid])
14 swap(shared[tid], shared[ixj]);
15 }
16 }
17 __syncthreads();
18 }
19 } // write data back to global memory
20 }

Figure 2.1. Bitonic sort kernel

We use Bitonic Sort kernel as a running example to explain how darm can be used

to reduce control-flow divergence in programs with complex control-flow. Bitonic Sort is a

kernel used in many parallel sorting algorithms such as bitonic merge sort and Cederman’s

quicksort [50], [51]. Figure 2.1 shows a CUDA implementation of bitonic sort. This kernel

is our running example for describing darm’s control-flow melding algorithm.

23

In this kernel, the branch condition at line 8 depends on the thread ID. Therefore, it

is divergent. Threads arriving at this branch may want to take the true or false paths

depending on the outcome of the branch condition resulting in control-flow divergence. Since

the divergent branch is located inside a loop, the execution of the two sides of the branch

needs to be serialized many times, resulting in high control-flow divergence. However the code

inside the if (line 9-10) and else (line 13-14) sections of the divergent branch are similar

in two ways. First, both code sections have the same control-flow structure (i.e. if-then

branch). Second, instructions along the two paths are also similar. Both conditions compare

two elements in the shared array and perform a swap operation. Therefore the contents

of the if and else sections can be melded to reduce control-flow divergence. Both code

sections consists of shared memory loads and store operations. In the unmelded version of

the code these shared memory operations will have to be serialized due to thread-divergence.

However, if the two sections are melded threads can issue the memory instructions in the

same cycle resulting in improved performance.

Existing compiler optimizations such as tail merging and branch fusion cannot be applied

to this case. Tail merging is applicable only if two basic blocks have a common destination

and have identical instruction sequences at their tails. However in bitonic sort, the if and

else sections of the divergent branch have multiple basic blocks, and the compiler cannot

apply tail merging. Similarly branch fusion requires diamond shaped control-flow and does

not work if the if and else sections of the branch contain complex control-flow structures.

darm solves this problem in two phases. In the analysis phase (Section 2.4.3), darm ana-

lyzes the control-flow region dominated by a divergent branch to find isomorphic sub-regions

that are in the true and false paths of the divergent branch. These isomorphic sub-region

pairs are aligned based on their melding profitability using a sequence alignment strategy.

Melding profitability is a compile-time approximation of the percentage of thread cycles that

can be saved by melding two control-flow regions. Next, darm choses profitable sub-region

pairs in the alignment (using a threshold) and computes an instruction alignment for corre-

sponding basic blocks in the two regions. In the code generation phase (Section 2.4.4), darm

uses this instruction alignment to meld corresponding basic blocks in the sub-region pair.

This melding is applied iteratively until no further profitable melding can be performed.

24

darm’s melding transformation is done in SSA form, therefore the resulting CFG can be

optimized further using other compiler optimizations (Sections 2.4.5 and 2.4.6).

2.4 Detailed Design

In this section we describe the algorithm used by darm to meld similar control-flow

subgraphs. First we define the following terms used in our algorithm description.

2.4.1 Preliminaries and Definitions

Definition 2.4.1. Simple Region : A simple region is a subgraph of a program’s CFG

that is connected to the remaining CFG with only two edges, an entry edge and an exit edge.

Definition 2.4.2. Region : A region of the CFG is characterized by two basic blocks,

its entry and exit. All the basic blocks inside a region are dominated by its entry and post-

dominated by its exit. Region with entry E and exit X is denoted by the tuple (E, X). LLVM

regions are defined similarly [52], [53].

Definition 2.4.3. Single Entry Single Exit Subgraph : Single entry single exit (SESE)

subgraph is either a simple region or a single basic block with a single predecessor and a

successor.

Note that a region with entry E and exit X can be transformed into a simple region by

introducing a new entry and exit blocks Enew, Xnew. All successors of E are moved to Enew

and Enew is made the single successor of E. Similarly, all predecessors of X are moved to

Xnew and a single exit edge is added from Xnew to X.

Definition 2.4.4. Simplified Region : A region with all its subregions transformed into

simple regions is called a simplified region.

We now turn to the steps the darm compiler pass takes to reduce control divergent code.

2.4.2 Detecting Meldable Divergent Regions

First darm needs to detect divergent branches in the CFG. We use LLVM’s built-in

divergence analysis to decide if a branch is divergent or not (Section 2.2). The smallest

25

CFG region enclosing a divergent branch is called the divergent region corresponding to this

branch. Melding transformation is applied only to divergent regions of the CFG. The next

step is to decide if a divergent region contains control-flow subgraphs (definition 2.4.3) that

can be safely melded.

Definition 2.4.5. Meldable Divergent Region: A simplified region R with entry E and

exit X is said to be meldable and divergent if the following conditions are met,

1. The entry block of R has a divergent branch

2. Let BT and BF be the successor blocks of E. BT does not post-dominate BF and BF

does not post-dominate BT

According to definition 2.4.5 , a meldable divergent region has a divergent branch at its entry

(condition 1). This makes sure that our melding transformation is only applied to divergent

regions, and non-divergent parts of the control-flow are left untouched. Condition 2 ensures

that paths BT → X (i.e. true path) and BF → X (i.e. false path) consists of at least one

SESE subgraph and these subgraphs from the two paths can potentially be melded to reduce

control-flow divergence. Consider our running example in Figure 2.1 . When this kernel is

compiled with ROCm HIPCC GPU compiler [35] with -O3 optimization level into LLVM-

IR, we get the CFG shown in Figure 2.5a . Note that the compiler aggressively unrolls

both the loops (lines 4 and 5) in the kernel, and the resulting CFG consists of multiple

repeated segments of the inner loop’s body (lines 6-17). In Figure 2.5a , only one unrolled

instantiation of the loop body is shown. As explained in Section 2.3 , this kernel contains

a divergent branch, which is at the end of basic block %B. Also %B’s two successors %C

and %D do not post-dominate each other. Therefore the region (%B, %G) is a meldable

divergent region.

2.4.3 Computing Melding Profitability

Definition 2.4.5 only allows us to detect regions that may contain meldable control-flow

subgraphs. It does not tell us whether it is legal to meld them or melding them will improve

26

performance. First we need to define what conditions needs to be satisfied for two SESE

subgraphs to be meldable.

Definition 2.4.6. Meldable SESE Subgraphs: SESE subgraphs S1 and S2 where S1

belongs to the true path and S2 belongs to the false path are meldable if any one of the

following conditions are satisfied,

1. Both S1 and S2 have more than one basic block and they are structurally similar

i.e. isomorphic.

2. S1 is a simple region and S2 consists of a single basic block or vice versa.

3. Both S1 and S2 consists of single basic block.

%A %B %A_B

%A

%C
T F

%E

%D

%C
T F

%E

%D

%P
T F

%Q

%R

%C_P
T F

%E_Q

%D_R

 SG-L

SG-M

SG-L SG-M
SG-N

SG-L SG-M
SG-N

%R1

T F

%A

%R2

%C

T F

%E

%D

%R1_C

T F

%A_E

%R2_D

1 3

2
SG-MSG-L’ SG-N

Figure 2.2. Examples showing the 3 cases considered by darm to detect
meldable subgraphs

Definition 2.4.6 ensures that any two SESE subgraphs that meets any one of these conditions

can be melded without introducing additional divergence to the control-flow. Note that we

do not consider subgraphs that contain warp-level intrinsics[38] for melding because melding

27

such subgraphs can cause deadlock. Figure 2.2 shows three examples where each of the above

conditions are applicable. Assume in each example subgraphs L and M are in a divergent

region (E, X) and only one of the subgraphs are executed from any program path from E to

X. (i.e. any thread in warp that executes E must either go through L or M but not both).

Region-Region Melding : In case 1©, two SESE subgraphs L and M are isomorphic,

therefore they can be melded to have the same control-flow structure (subgraph N in Fig-

ure 2.2 - 1©). In the melded subgraph N , basic blocks %C_P and %D_R are guaranteed

to post-dominate E and threads can reconverge at these points resulting in reduction in

control-flow divergence. Also the structural similarity in case 1© ensures that we do not

introduce any additional branches into the melded subgraph.

Basic block-Region Melding : In case 2©, basic block %A (in subgraph L) can

potentially be melded with any basic block in CFG M . Assume that basic blocks %A and

%E have the most melding profitability (melding profitability described later). First we

replicate the control-flow structure of M to create a new CFG L′. Then we place %A in

L′ such that %A and %E are in similar positions in the the two CFGs L′ and M . We also

ensure the correctness of the program by concretizing the branch conditions in L′ to always

execute %A and create φ nodes at dominance frontiers of %A to make sure values defined

inside %A are reached to their users [41]. In this example branch at end of basic block %R1

will always take the edge %R1−%A (bold arrow in subgraph L′) and φ nodes will be added

to %R2. Now subgraphs L′ and M are isomorphic and therefore can be melded similar to

case 1©. We refer to this process as Region Replication. Main benefit of region replication is

that it allows us to meld %A with any profitable basic block in subgraph M and resultant

subgraph N has less divergence because threads can reconverge at basic blocks %R1_C and

%R2_D in melded subgraph N .

Basic block-Basic block Melding : Case 3© is the simplest form where two SESE

basic blocks are melded.

A meldable divergent region can potentially have multiple SESE subgraphs in its true

and false paths. Therefore we need a strategy to figure out which subgraph pairs to meld.

We formulate this as a sequence alignment problem as follows. First, we obtain a ordered

sequence of subgraphs in true path and false of the divergent region. Subgraphs are ordered

28

using the post-dominance relation of their entry and exit blocks. For example, if entry node

of subgraph S2 post-dominates exit node of subgraph S1, then S2 comes after S1 in the

order and denoted as S1 ≺ S2. A subgraph alignment is defined as follows,

Definition 2.4.7. Subgraph Alignment: Assume a divergent region (E, X) has ordered

SESE subgraphs {ST
1 , ST

2 , . . . , ST
m} in its true path and ordered subgraphs {SF

1 , SF
2 , . . . , SF

n }

in the false path. A subgraph alignment is an ordered sequence of tuples,

A = {(ST
i0, SF

j0), (ST
i1, SF

j1), . . . , (ST
ik, SF

jk)}

where,

1. if (ST
p , SF

q) ∈ A then ST
p and SF

q are meldable subgraphs

2. if (ST
p1, SF

q1) ≺ (ST
p2, SF

q2) then ST
p1 ≺ ST

p2 and ST
q1 ≺ ST

q2

According to definition 2.4.7 , only meldable subgraphs are allowed in a alignment tuple and

if the aligned subgraphs are melded, the resultant control-flow graph does not break the

original dominance and post-dominance relations of the subgraphs.

Given a suitable alignment scoring function F and gap penalty function W , we can

find an optimal subgraph alignment using a sequence alignment method such as Smith-

Waterman [54] algorithm. The scoring function F measures the profitability of melding two

meldable subgraphs S1 and S2. Prior techniques have employed instruction frequency to

approximate the profit of merging two functions [55], [56]. We use a similar method to define

subgraph melding profitability. First we define the melding profitability of two basic blocks

b1 and b2 as follows,

MPB(b1, b2) =
∑

i∈Q min(freq(i, b1), freq(i, b2))× wi

lat(b1) + lat(b2)

Here Q is set of all possible instruction types available in the instruction set (i.e. LLVM-IR

opcodes). lat(b) is the static latency of basic block which can be calculated by summing

the latencies of all instructions in b. wi is the latency of instruction type i. The idea here

is to approximate the percentage of instruction cycles that can be saved by melding the

instructions in b1 and b2 assuming a best-case scenario (i.e. all common instructions in b1

29

and b2 are melded regardless of their order). For example, two basic blocks with identical

opcode frequency profile will have a profitability value 0.5.

Because meldable subgraphs are isomorphic, there is a one-to-one mapping between basic

blocks (i.e. corresponding basic blocks). For example, in Figure 2.2 case 1© the basic block

mapping for CFGs L and M are {(%C, %P), (%E, %Q), (%D, %R)}. Assume the mapping

of basic blocks in S1 and S2 is denoted by O. Subgraph melding profitability MPS of

subgraphs S1 and S2 is defined in terms of melding profitabilities of their corresponding

basic blocks.

MPS(S1, S2) =
∑

(b1,b2)∈O MPB(b1, b2)× (lat(b1) + lat(b2))∑
(b1,b2)∈O lat(b1) + lat(b2)

Similar to MPB, MPS measures the percentage of instruction cycles saved by melding

two SESE subgraphs. This metric is an over-approximation, however it provides a fast way

of measure the melding profitability of two subgraphs that works well in practice. We use

MPS as the scoring function for subgraph alignment.

Instruction Alignment: Notice that our subgraph melding profitability metric (i.e. MPS)

prioritizes subgraph pairs that have many similar instructions in their corresponding ba-

sic blocks. Therefore when melding two corresponding basic blocks we must ensure that

maximum number of similar instructions are melded together. This requires computing

an alignment of two instruction sequences such that if they are melded using this align-

ment, the number of instruction cycles saved will be maximal. We use the approach used

in Branch Fusion [11] to compute an optimal alignment for two instructions sequences. In

this approach compatible instructions are aligned together and instructions with higher la-

tency are prioritized to be aligned over lower latency instructions. Compatibility of two

instructions for melding depends on a number of conditions like having the same opcode and

types of the operands being compatible. We used the criteria described by Rocha et al. [56]

to determine this compatibility. This instruction alignment model uses a gap penalty for

unaligned instructions because extra branches needs to be generated to conditionally exe-

cute these unaligned instructions. Our melding algorithm does not depend on the sequence

alignment algorithm used for instruction alignment computation. We use Smith-Waterman

30

algorithm [54] to compute the instruction alignment because prior work [11] has shown its

effectiveness. Figure 2.3a shows the instruction alignment computed for two basic blocks A

and B. Aligned instructions are shown in green and instructions aligned with a gap are in

red.

%sel7 = select i1 %cmp, i32 %12, i32 %9
%14 = and i32 %sel7, %7

%sel3 = select i1 %cmp, i32 %3, i32 %5
%7 = sub nsw i32 %2, %sel3

%sel1 = select i1 %cmp, i32 %0, i32 %4
%sel2 = select i1 %cmp, i32 %1, i32 %5
%6 = add nsw i32 %sel1, %sel2

%add = add nsw i32 %0, %1

%sub = sub nsw i32 %2, %3

%div = sdiv i32 %2, 5

%shr = ashr i32 %3, 2

%shl = shl i32 %add, 2

%add1 = add nsw i32 %4, %5

%sub2 = sub nsw i32 %2, %5

%or = or i32 %sub2, %4

%xor = xor i32 %4, %5

%div3 = sdiv i32 %or, 4

%mul = mul nsw i32 %4, %5

%and = and i32 %shl, %sub

%mul4 = mul nsw i32 %xor, %sub2

%and5 = and i32 %xor, %sub2

A B

a

b

c

a

b

c

(a)

%sel7 = select i1 %cmp, i32 %12, i32 %9
%14 = and i32 %sel7, %7

%sel3 = select i1 %cmp, i32 %3, i32 %5
%7 = sub nsw i32 %2, %sel3

%sel1 = select i1 %cmp, i32 %0, i32 %4
%sel2 = select i1 %cmp, i32 %1, i32 %5
%6 = add nsw i32 %sel1, %sel2

%add = add nsw i32 %0, %1

%sub = sub nsw i32 %2, %3

%div = sdiv i32 %2, 5

%shr = ashr i32 %3, 2

%shl = shl i32 %add, 2

%add1 = add nsw i32 %4, %5

%sub2 = sub nsw i32 %2, %5

%or = or i32 %sub2, %4

%xor = xor i32 %4, %5

%div3 = sdiv i32 %or, 4

%mul = mul nsw i32 %4, %5

%and = and i32 %shl, %sub

%mul4 = mul nsw i32 %xor, %sub2

%and5 = and i32 %xor, %sub2

A B

a

b

c

a

b

c

(b)

%M.tail:
 %10 = phi i32 [%8, %M.split], [undef, %M]
 %11 = phi i32 [%9, %M.split], [undef, %M]
 // instructions

%M:
// instructions
br i1 %cmp, label %M.tail, label %M.split

%M.split:
 %8 = or i32 %7, %4
 %9 = xor i32 %4, %5
 br label %M.tail

T F

(c)

Figure 2.3. (a) Instruction alignment result for two basic blocks A and B, (b)
Code generated by darm for aligned instructions a©, b© and c© in Figure 2.3a ,
(c) Unpredication applied to the unaligned instructions of basic block B in
figure 2.3a

31

Algorithm 1: darm Algorithm
Input: SPMD function F
Output: Melded SPMD function Fout

do
changed ← false
for BB in F do

R, C ← GetRegionFor(BB)
if IsMeldableDivergent(R) then

SimplifyRegion(R)
A ← ComputeSubgraphAlignment(R)
for (ST , SF , profit) in A do

if profit ≥ threshold then
Meld(ST , SF , C)
changed ← true

end
end

end
if changed then

SimplifyFunction(F)
RecomputeControlFlowAnalyses(F)
break

end
end

while changed;

2.4.4 DARM Code Generation

darm’s control-flow melding procedure is shown in algorithm 1 . This algorithm takes in

a SPMD function F and iterates over all basic blocks in F to check if the basic block is an

entry to a meldable divergent region (R) according to the conditions in Definition 2.4.5 . We

use Simplify to convert all subregions inside R in to simple regions.

We compute the optimal subgraph alignment for the two sequences of subgraphs in

the true and false paths of R. We meld each subgraph pair in the alignment if the melding

profitability is greater than some threshold. Subgraph melding changes the control-flow of F .

Therefore we first simplify the control-flow (using LLVM’s simplifycfg) and then recompute

the control-flow analyses (e.g. dominator, post-dominator and region tree) required for the

32

melding pass. We apply the melding procedure on F again until no profitable melds can be

performed.

Algorithm 2: SESE Subgraph melding Algorithm
Input: SESE subgraphs ST ,SF , Condition C
Output: Melded SESE subgraph Sout

List blockPairs ← Linearize(ST , SF)
List A ← empty
for (BT , BF) in blockPairs do

List instrPairs ← ComputeInstrAlignment(BT , BF)
A.append(instrPairs)

end
PreProcess(ST , SF)
Map operandMap ← empty
for P in A do

Imelded ← Clone(P)
Update(operandMap, Imelded, P)

end
for P in A do

SetOperands(P , operandMap, C)
end
RunUnpredication()
RunPostOptimizations()

Algorithm 2 shows the procedure for melding two subgraphs ST and SF . C is the branch-

ing condition of the meldable divergent region containing ST and SF . First the two subgraphs

are linearized in pre-order to form a list of corresponding basic block pairs. Processing the

basic blocks in pre-order ensures that dominating definitions are melded before their uses.

For each basic block pair in this list we compute an optimal alignment of instructions. Each

pair in the alignment falls into two categories, I-I and I-G. I-I is a proper alignment with two

instructions and I-G is an instruction aligned with a gap. Our alignment makes sure that

in a match the two instructions are always meldable into one instruction (e.g. a load is not

allowed to align with a store). First we traverse the alignment pair list and clone the aligned

instructions. For I-I pairs, we clone a single instruction because they can be melded. Dur-

ing cloning, we also update the operandMap, which maintains a mapping between aligned

and melded LLVM values. We perform a second pass over the instruction alignment to set

the operands of cloned instructions (SetOperands). Assume we are processing an I-I pair

33

with instructions IT , IF and cloned instruction is Imelded. For each operand of Imelded, the

corresponding operands from IT and IF are looked up in operandMap because an operand

might be an already melded instruction. If the resultant two operands from IT and IF are

the same, we just use that value as the operand. If they are different, we generate a select

instruction to pick the correct operand conditioned by C. For an I-G pair, operands are

first looked up in operandMap and the result is copied to Imelded. Consider the instruction

alignment in figure 2.3a . Figure 2.3b shows the generated code for aligned instruction pairs

a©, b© and c©. In case a©, two select instructions are needed because both operands maps to

different values (%0, %4 and %1, %5). In case b©, the first operand is the same (%2) for both

instructions, therefore only one select is needed. In case c©, both first and second operands

are different for the two instructions. However the second operands map to same melded

instruction %7, so only one select is needed. Note that %cmp is the branching condition for

the divergent region, and we use that for selecting the operands.

Melding Branch Instructions of Exit Blocks: Setting operands for branch instructions

in subgraph exit blocks is slightly different than that for other instructions. Let BE
T ,BE

F be

the exit blocks of ST and SF . Successors BE
T ,BE

F can contain φ nodes. Therefore we need to

ensure that successors of BE
T and BE

F can distinguish values produced in true path or false

path. To solve this we move the branch conditions of BE
T and BE

F in to newly created blocks

B
′
T and B

′
F . Now we can conditionally branch to B

′
T and B

′
F depending on C. For example,

in Figure 2.5c basic blocks %M and %N are created when when melding the exit branches

of %X1 and %X2 in figure 2.5b . Any φ node in %G (figure 2.5c) can distinguish the values

produced in true or false path using %M and %N .

Melding φ Nodes : In LLVM SSA form φ nodes are always placed at the beginning of a

basic block. Even if the instruction alignment result contains two aligned φ nodes we can

not meld them into a single φ node because select instructions can not be inserted before

them. Therefore we copy all φ nodes into the melded basic block and set the operands for

them using the operandMap. This can introduce redundant φ nodes which we remove during

post-processing.

34

2.4.5 Unpredication

In our code generation process, unaligned instructions are inserted to the same melded

basic block regardless of whether they are from true or false paths (i.e. fully predicated).

This can introduce overhead due to several reasons. If the branching conditions C is biased

towards the true or false path, it can result in redundant instruction execution. Also full

predication of unaligned store instructions require adding extra loads to makes sure correct

value is written back to the memory. Unpredication splits the melded basic blocks at gap

boundaries and moves the unaligned instructions into new blocks. Figure 2.3c shows unpred-

ication applied to the unaligned instructions of basic block B in Figure 2.3a . The original

basic block is split to two parts (%M and %M.tail) and unaligned instructions (%8 and %9)

are moved to a new basic block, %M.split. φ nodes ((%10 and %11)) are added to %M.tail

to ensure unaligned instructions dominate their uses. %8 and %9 are never executed in the

true path, therefore φ nodes’ incoming values from block %M are undefined (LLVM undef).

Note that in region replication (Section 2.4.3) we apply unpredication only to the melded

basic blocks. Store instructions outside the melded blocks are fully predicated by inserting

extra loads.

2.4.6 Pre- and Post-Processing Steps

�%�����������������������������
�����
���D� �«�
������

67 6)

�(�����������������������������
�����
���[� �PXO��D����
������

�&
��

�$
��

�%�����������������������������
�����
���D� �«�
������

67
6)

�(�����������������������������
�����
���[� �PXO��P�����

�&
��

�$
��

�3�
���P� �SKL��>XQGHI���$@��>�D���%@
�����
��

�$� �%�

Figure 2.4. darm pre-processing example

35

In SSA form, any definition must dominate all its users. However darm’s subgraph

melding can break this property. Consider the two meldable subgraphs ST , SF in figure 2.4

A©. Definition %a dominates its use %x before the melding. However if ST and SF are

melded naively then %a will no longer dominate %x. To fix this we add a new basic block

%P with a φ node %m. All uses of %a are replaced with %m (Figure 2.4 B©). Notice that

value %m is never meant to be used in the true path execution. Therefore it is undefined

in true path (undef). We apply this preprocessing step before the melding (PreProcess in

Algorithm 2).

Subgraph melding can introduce branches with identical successors, φ nodes with identi-

cal operands and redundant φ nodes. RunPostOptimizations in Algorithm 2 removes these

redundancies.

2.4.7 Putting All Together

%A
T F

%D
T F

%C
T F

%B
T F

%G
T F

%E %F

%A
T F

%D
T F

%C
T F

%B
T F

%G
T F

%E %F

%X1 %X2

%A
T F

%C_D
T F

%G
T F

%E_F

%X1_X2

%B

%M %N

%A
T F

%G
T F

%E_F

%X1_X2

%B

%M

%C_D
T F

%C_D.T.2
T F

%C_D.T.1
T F

%P.S.1

%N

%P.S.2

(a)

%A
T F

%D
T F

%C
T F

%B
T F

%G
T F

%E %F

%A
T F

%D
T F

%C
T F

%B
T F

%G
T F

%E %F

%X1 %X2

%A
T F

%C_D
T F

%G
T F

%E_F

%X1_X2

%B

%M %N

%A
T F

%G
T F

%E_F

%X1_X2

%B

%M

%C_D
T F

%C_D.T.2
T F

%C_D.T.1
T F

%P.S.1

%N

%P.S.2

(b)

%A
T F

%D
T F

%C
T F

%B
T F

%G
T F

%E %F

%A
T F

%D
T F

%C
T F

%B
T F

%G
T F

%E %F

%X1 %X2

%A
T F

%C_D
T F

%G
T F

%E_F

%X1_X2

%B

%M %N

%A
T F

%G
T F

%E_F

%X1_X2

%B

%M

%C_D
T F

%C_D.T.2
T F

%C_D.T.1
T F

%P.S.1

%N

%P.S.2

(c)

%A
T F

%G
T F

%E_F

%X1_X2

%B

%M %N

%C_D
T F

%C_D.T.2
T F

%C_D.T.1
T F

%P.S.1

%P.S.2

%C_D’

(d)

%A
T F

%M.1
T F

%M.3
T F

%M.2

(e)

Figure 2.5. darm melding algorithm applied to bitonic sort (Figure 2.1)
(a) Original control-flow graph, (b) Region simplification, (c) darm subgraph
melding, (d) Unpredication, (e) Final optimized control-flow graph

Figure 2.5 shows how each stage of the pipeline of subgraph-melding transforms the CFG

of bitonicSort kernel. The original CFG is shown in Figure 2.5a . Region (%B, %G) is a

36

meldable divergent region. Figure 2.5b shows the CFG after region simplification. Subgraphs

(%C, %X1) and (%D, %X2) are profitable to meld according to our analysis. Figure 2.5c

shows the CFG after subgraph-melding. The result after applying unpredication is shown

in Figure 2.5d . Notice that the unpredication splits the basic block %C_D (in Figure 2.5c)

into 5 basic blocks (zoomed in blue-dashed blocks in Figure 2.5d). Basic blocks %P.S.1 and

%P.S.2 are the unaligned groups of instructions and they are executed conditionally. Fig-

ure 2.5e shows the final optimized CFG after applying post optimizations. Note that ROCm

HIPCC compiler applied if-conversion aggressively. Therefore the effect of unpredication

step is nullified in this case.

Figure 2.5 only shows how darm transformation changes the CFG of our running exam-

ple. It does not show the change of instructions inside these basic blocks. We use Figure 2.6 to

explain the generation of melded instructions for the running example. Figure 2.6a shows the

LLVM-IR of the meldable divergent region ((%B, %G) in Figure 2.5b) in our running exam-

ple. During darm code generation, basic blocks in subgraphs (%C, %X1) and (%D, %X2)

are linearized to compute the instruction alignment. Computed instruction alignment is

shown in Figure 2.6b . Notice that [%C, %D], [%E, %F], [%X1, %X2] are the corresponding

basic block pairs. In this example all instructions perfectly align with each other except

for the compare instructions in basic blocks %C and %D (shown in red in Figure 2.6b).

Figure 2.6c shows the LLVM-IR after applying subgraph melding and unpredication (similar

to Figure 2.5d). Note that instructions %34 and %31 (compare instructions) are unaligned.

Therefore unpredication step introduced basic blocks %P.S.1 and %P.S.2 to execute them

conditionally based on the divergent condition %16. Extra φ instructions %phi.1 and %phi.2

are inserted to ensure def-use chains are not broken during the unpredication step. Out of the

all aligned instructions only the branch instructions at the end of basic blocks %C and %D

require select instructions during instruction-melding. For example the store instructions

in basic blocks %E, %F use matching operands, therefore can be melded without adding

selects. On the other hand, conditional branch instructions uses values %34 and %31 and

select instruction %37 is inserted (Figure 2.6c) to pick the branching condition conditionally.

Note that the values %34 and $31 will flow to their users via the φ nodes %phi.1 and %phi.2

respectively. Therefore the select instruction (i.e. %37) uses these φ nodes as its operands.

37

%B :

.....

br %16, label %C, label %D

 %C :

 %31 = icmp slt %28, %29
 br %31, label %E, label %X1

 %D :

 %34 = icmp sgt %28, %29

 br %34, label %F, label %X2

 %E :
 store %28, %9
 store %29, %27
 br label %X1

 %F :
 store %28, %9
 store %29, %27
 br label %X2

 %X1 :
 br label %G

%X2 :

br label %G

%G :

(a)

 %31 = icmp slt %28, %29

 %34 = icmp sgt %28, %29

br %31, label %E, label %X1 br %34, label %F, label %X2

store %28, %9 store %28, %9

 store %29, %27 store %29, %27

br label %X1 br label %X2

br label %G br label %G

C D

E F

X1 X2

(b)

%B :

 br label %C_D

%P.S.1 :
 %34 = icmp sgt %28, %29

 br label %C_D.T.1

%N :
 br label %G

 %C_D :
 br %16, label %C_D.T1, label %P.S.1

T F

 %X1_X2 :
 br %16, label %M, label %N

T F

 %G :

T F

%P.S.2 :
 %31 = icmp slt %28, %29

 br label %C_D.T.2

%E_F :
 store %28, %9

 store %29, %27
 br label %X1_X2

%M :
 br label %G

 %C_D.T.1 :

 %phi.1 = phi [undef, %C_D], [%34, %P.S.1]

 br %16, label %P.S.2, label %C_D.T.2

T F

%C_D.T.2 :

 %phi.2 = phi [%31, %P.S.2], [undef, %C_D.T.1]

 %37 = select %16, %phi.2, %phi.1
 br %37, label %E_F, label %X1_X2

T F

(c)

Figure 2.6. LLVM-IR before and after applying darm transformation to our
running example (a) meldable divergent region (b) instruction alignment (b)
LLVM-IR generated after subgraph melding and unpredication

2.5 Implementation

We implemented the darm algorithm described in Section 2.4 as an LLVM-IR analysis

and transformation pass on top of the ROCM HIPCC

3
 GPU compiler [40]. Both the analysis

and transformation are function passes that operate on GPGPU functions. The analysis pass
3

 ↑ LLVM version 12.0.0, ROCm version 4.2.0

38

first detects meldable divergent regions using LLVM’s divergence analysis. Then it finds all

the profitable subgraph pairs that can be melded. We use a default melding profitability

threshold of 0.2 (algorithm 1). We also provide a sensitivity analysis on this threshold in Sec-

tion 2.6.5 . For the instruction alignment computation, Smith-Waterman [54] algorithm was

used. As described in Chapter 2.4 instructions are prioritized during the alignment based

on their latency. Determining the static latency of an instruction at IR-level is a difficult

problem [57]. We use modified version of LLVM cost model [58] to obtain instruction laten-

cies for melding profitability and instruction alignment computations. The transformation

uses the output of analysis to perform darm’s code generation procedure (Section 2.4.4).

The transformation pass also performs the unpredication, pre- and post-processing steps

described in Sections 2.4.5 and 2.4.6 . LLVM pass is implemented in ∼ 2500 lines of C++

code. In order to produce the program binary with our pass, we had to include our pass in

the ROCM HIPCC compilation pipeline.

clang
HIP

kernel
(.cpp)

GPU binary
(.hipfb)

device
object (.o) clang + clang

offload bundler

clang
HIP

kernel
(.cpp)

GPU binary
(.hipfb)

clang + clang
offload bundler DARM LLVM

llc

device
object (.o) LLVM-IR

(.ll)
LLVM-IR

(.ll)

Figure 2.7. Modifications made to compilation flow

Most GPGPU compilers (e.g. CUDA nvcc, ROCm HIPCC) use separate compilation for

GPU device and CPU host codes. In separate compilation, the GPU device code and CPU

host code are compiled separately. Final executable contains the device binary embedded in

the host binary. Figure 2.7 shows the default host code compilation pipeline and modifica-

tions (shown in red) we did on the pipeline to add our pass. In the default pipeline, device

code is first compiled into an object file using clang. This object file is then converted to

a special GPU binary format (hipfb) using clang-offload-bundler and embedded with

the host binary. In modified compilation pipeline, we did the following changes. First we

added a switch in LLVM-IR optimizer (i.e. opt) to enable our pass. We modified the original

pipeline by adding commands to compile host code to LLVM-IR. We run our pass on top of

39

the host LLVM-IR and transform it. Finally, we use LLVM’s static compiler (llc) [59] to

compile the IR into a device object file. Our pass runs only on device functions and avoids

any modifications to host code. The rest of the compilation flow is as same as the one with-

out any modification. These include the host code compilation commands and commands

used for linking. We developed a pyhton script to automate the generation of these modified

compilation commands. This script takes in the original set of compilation commands used

to compile the HIP program (obtained using -### flag in clang) and emits a modified set of

commands with changes described above.

2.6 Evaluation of DARM

2.6.1 Evaluation Setup and Benchmarks

We evaluate the performance of darm on a machine with a AMD Radeon Pro Vega 20

GPU. This GPU has 16 GBs of global memory, 64 kB of shared memory (i.e. Local Data

Share (LDS)) and 1700 MHz of max clock frequency. The machine consists of AMD Ryzen

Threadripper 3990X 64-Core Processor with 2900 MHz max clock frequency.

A1

A2 A3

A4

B1

B2

B4

B3

B5

C1

C2

C4

C3

C7

C6

C5

(SB1) (SB2) (SB3)

D1

D2

D3

D5

(SB4)

D4

D6

D7

X1

X2

X3

(if-then
Region)

Figure 2.8. Control-flow patterns in synthetic benchmarks. Square: basic
block and Circle: if-then region (shown on right)

We use two different sets of benchmarks. First, to assess the generality of darm, we

create several synthetic programs that exhibit control divergence of varying complexity.

While many real-world programs are hand-optimized to eliminate divergence, these syn-

thetic programs both qualitatively demonstrate the generality of darm over prior automated

40

divergence-control techniques, and show that darm can automate the control flow melding

that would otherwise have to be done by hand.

Synthetic Benchmarks

Each synthetic kernel consists of two nested loops. The inner loop contains a divergent

region with different control-flow structures (SB1, SB2, SB3 and SB4 in Figure 2.8). Every

divergent path computes on different pieces of data from shared memory. SB1 has simple

diamond-shaped control-flow with basic blocks A2 and A3 performing identical computa-

tions. In SB2 and SB3; circled regions are if-then sections. Then blocks in region pairs

B2-B3 (in SB2), C2-C3 and C6-C5 (in SB3) consist of identical computations. In three-way

divergent kernel SB4, basic blocks D2, D4, and D5 are performing identical computations.

Basic blocks/regions with identical computations have high melding profitability. Synthetic

benchmarks SB1-R, SB2-R, SB3-R and SB4-R have same control-flow structure as SB1-SB4

but contain non-identical computations in the basic blocks. All synthetic benchmarks copy

the input variables into shared memory, perform the computation, and write back again to

global memory. We used randomly generated arrays of size 220 for each input variable.

Prior control-flow melding techniques (tail merging [13] and branch fusion [11]) cannot

meld the full set of synthetic benchmarks. Tail merging can combine the divergent if-then-

else blocks in SB1 and SB4 but cannot fully merge divergent regions. It cannot merge the -R

variants due to the different instructions in the divergent paths. Branch fusion subsumes tail

merging, and can fully merge if-then-else blocks in SB1, SB4 and their -R variants. However,

it cannot be applied to the more complex control flow of SB2 and SB3, or their -R variants.

In SB4, iterative application of branch fusion can meld blocks D4,D5 and D2. However, its

-R variant can not be fully melded by branch fusion due to non-identical computations being

un-predicated (cf Section 2.4.5). In contrast, darm melds it by using region replication (cf

Section 2.4.3).

Real-world Benchmarks

Second, to show darm’s effectiveness on real-world programs, we consider 7 benchmarks

written in HIP [35]. These benchmarks were taken from well-known highly hand-optimized

GPU benchmark suites or optimized reference implementations of papers. We selected these

benchmarks because they contain divergent if-then-else regions that present melding op-

41

portunities for DARM. We do not consider benchmarks that do not present any melding

opportunities for darm because they are not modified by darm in any way.

Bitonic Sort (BIT) Our running example is bitonic sort [50]. In this kernel, each

thread block takes in a bucket and performs parallel sort. We used an input of 226 elements

and varied the bucket (i.e. block) size. Branch fusion cannot handle the control-flow in BIT.

Partition and Concurrent Merge (PCM) PCM is a parallel sorting algorithm based

on Batcher’s odd-even merge sort [60]. PCM performs odd-even merging of buckets of sorted

elements at every position of the array leading to loops with nested data-dependent branches.

We used an array of 228 elements with different number of buckets. PCM’s control-flow is

too complex for Branch fusion to merge.

Mergesort (MS) A parallel bottom-up merge sort implementation. The kernel has

data-dependent control-flow divergence in the merging step. We used an input array with

220 elements. Merge sort has simple diamond control flow, so can be handled by branch

fusion.

LU-Decomposition (LUD) LUD implementation from the Rodinia benchmark suite [61].

We focus our evaluation on the lud_perimeter kernel in this benchmark. lud_perimeter con-

tains multiple divergent branches that depend on thread ID and block size. We use a ran-

domly generated matrix of size 16384 × 16384 as the input. Branch fusion can successfully

merge divergent control-flow in LUD when the loop is unrolled.

N-Queens (NQU) N-Queens solver uses backtracking to find all different ways of plac-

ing N queens on a NxN chessboard without attacking each other. We have used the kernel

from the GPGPU-sim benchmark suite [62] with N is 15.

Speckle Reducing Anisotropic Diffusion (SRAD) SRAD is diffusion based noise

removal method for imaging applications from Rodinia benchmark suite [61]. We have used

an image of size 4096× 4906 as input.

DCT Quantization (DCT) An in-place quantization of a discrete cosine transforma-

tion (DCT) plane [63]. The quantization process is different for positive and negative values

resulting in data-dependent divergence. We use a randomly generated DCT plane of size

215 × 215 as input. Branch fusion can handle the control flow of DCT.

42

Baseline and Branch Fusion: Our baseline implementations of these kernels have been

hand-optimized (except, obviously, for optimizations that manually remove control diver-

gence by applying darm-like transformations). This optimization includes using shared

memory when needed to improve performance. The baseline implementations were com-

piled with -O3. Branch fusion [11] was implemented in the Ocelot [64] open-source CUDA

compiler that is no longer maintained and does not support AMD GPUs. We implemented

branch fusion by modifying darm to apply melding for diamond-shaped control-flow (if-

then-else). We use this for comparison against branch fusion. Branch fusion cannot fully

handle the control-flow of BIT, PCM, and NQU. Loop unrolling enables successful branch

fusion in LUD.

SB
1-3

2
SB
1-6

4

SB
1-1

28

SB
1-2

56

SB
1R-

32

SB
1R-

64

SB
1R-

128

SB
1R-

256
SB
2-3

2
SB
2-6

4

SB
2-1

28

SB
2-2

56

SB
2R-

32

SB
2R-

64

SB
2R-

128

SB
2R-

256
SB
3-3

2
SB
3-6

4

SB
3-1

28

SB
3-2

56

SB
3R-

32

SB
3R-

64

SB
3R-

128

SB
3R-

256
SB
4-3

2
SB
4-6

4

SB
4-1

28

SB
4-2

56

SB
4R-

32

SB
4R-

64

SB
4R-

128

SB
4R-

256GM
0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

1.36

DARM BF

Figure 2.9. Micro Benchmark Performance. GM is geomean of darm’s
speedup over baseline.

Block Size: Each of these kernels has a tunable block size—essentially, a tile size that

controls the granularity of work in the inner loops. Because the correct block size can be

dependent on many parameters (though for a given input and GPU configuration, one is

likely the best), our evaluation treats block size as exogenous to the evaluation, and hence

considers behavior at different block sizes for each kernel. In other words, our evaluation

asks: if a programmer has a kernel with a given block size, what will happen if darm is

applied?

Note that of these kernels, only LUD exhibit divergence that depends on block size.

This means that all the other benchmarks will experience divergence regardless of block size.

43

LUD’s divergence, on the other hand, is block size dependent. For some block sizes, the

kernel will be divergent, while for others, it will be convergent.

2.6.2 Performance

Figure 2.9 shows the speedups for the synthetic benchmarks with different block sizes.

darm can successfully meld all 4 control-flow patterns we consider in the synthetic bench-

marks and gives a superior performance than the baseline and branch fusion (geo-mean

speedups of 1.36× for darm and 1.10× for branch fusion over the baseline). The perfor-

mance for random (-R) variants are slightly lower for each of the patterns. This is because

-R variants contain random instruction sequences and instructions do not align perfectly,

causing darm to insert select instructions and branches to unpredicate unaligned instruc-

tion groups. Speedups observed for SB3 and SB3-R are better than SB1, SB2 and their

-R variants because darm melds multiple subgraph pairs in the SB3 control-flow pattern

(Figure 2.8) and control-flow divergence is reduced more in this case. We observe the high-

est performance improvement for SB4 and SB4-R because darm melds basic blocks D2,

D4, and D5 (Figure 2.8) using region replication. SB4 and its -R variant have 3-way diver-

gence because of the if-else-if-else branch. Applying region replication along with subsequent

simplification passes greatly reduces this original three-way divergence.

BIT
32

BIT
64

BIT
128

BIT
256

PCM
32

PCM
64

PCM
128

PCM
256 MS

32
MS
64

MS
128

MS
256

LUD
16

LUD
32

LUD
64

LUD
128

NQ
U6
4
NQ
U9
6

NQ
U1
28

NQ
U2
56

SRA
D1
6x1

6

SRA
D3
2x3

2

DC
T4x

4

DC
T8x

8

DC
T16

x16 GM
GM

-Be
st

0.0

0.5

1.0

1.5

Sp
ee

du
p

+ +
+ + +

+ +
1.15 1.16

DARM BF

Figure 2.10. Real-world Benchmark Performance. + marks block size with
best baseline runtime. GM is geo-mean of darm’s speedup on all benchmarks;
GM-Best is darm’s speedup on + configurations.

44

Figure 2.10 shows the speedups for real benchmarks darm always improves the perfor-

mance (1.15× geo-mean speedup over all benchmarks and 1.16× geo-mean speedup over the

best baseline variants) except for SRAD (see below). The highest relative improvement in

performance can be seen in BIT and PCM for all block sizes. This is because both these

benchmarks are divergent regardless of the block size and they have complex control-flow

regions with shared memory instructions. darm successfully melds these regions and reduces

divergence significantly. Branch fusion improves performance in PCM by melding if-then-

else blocks. In LUD, the divergence is block size dependent, and the kernel is divergent

only at block sizes 16, 32 and 64, where we see a visible performance improvement intro-

duced by darm. NQU contains a time-consuming loop with divergent if-then-elseif-then

section. darm applies region replication to remove divergence, achieving superior perfor-

mance. SRAD kernel has both block size-dependent and data-dependent divergent regions

(say RB and RD respectively). Both RB and RD consists of if-then-else–if-then-else chains.

RB contains no shared memory instructions and melding does not improve performance (for

both darm and branch fusion). However RD contains a 3-way divergent branch with shared

memory instructions and the divergence is biased i.e. execution only takes 2 of the 3 ways.

In this case branch fusion has better performance at block size 16, because blocks that get

melded happen to be on the divergent paths. However darm has more melding options than

branch fusion, and it melds all 3 paths adding extra overhead. At block size 32, the extra

overhead introduced by melding RB becomes significant and both darm and branch fusion

exhibit a performance drop. Performance drop for darm can be avoided by prioritizing the

melding order (i.e. apply melding to divergent regions with most profitable subgraphs first).

However, prioritizing melding order is not considered in this work.

In most cases (except SRAD), the block size for best performing baseline is also the one

that gives the best absolute performance for darm. Interestingly, for 4/7 benchmarks (BIT,

PCM, MS, and DCT), not only does this best baseline block size produce the best absolute

darm performance, it also produces the best speedup relative to the baseline: the block size

that makes the baseline perform the best, actually exposes more optimization opportunities

to darm.

45

We use rocprof [65] to collect ALU utilization and memory instruction counters to reason

about performance. We focus on the block sizes for each benchmark where darm has highest

improvement over the baseline.

2.6.3 ALU Utilization

BIT PCM MS LUD NQU SRAD DCT
0

20

40

60

80

100

AL
U

Ut
iliz

at
io

n
(%

)

O3 DARM BF

Figure 2.11. ALU Utilization.

darm’s melding transformation enables the ALU instructions in divergent paths to be

issued in the same cycle. This effectively improves the SIMD resource utilization. Figure 2.11

shows the ALU utilization (%). As expected darm improves the ALU utilization significantly

for most benchmarks. In BIT, divergent paths does not have common comparison operators

(> and < comparisons in lines 9 and 13 in Figure 2.1). Even though darm unpredicates

these instructions, later optimization passes decide to fully-predicate them resulting in lower

ALU utilization.

2.6.4 Melding of Memory Instructions

Figure 2.12 shows the normalized number of global and shared memory (i.e. local data

share) instructions issued after applying darm. In LUD, there are many common shared

memory instructions in divergent paths. However these instructions do not have different

memory alignments, therefore cannot be melded into a single instruction. Unpredicated

46

shared memory instructions are predicted by other optimization passes in LLVM resulting

in higher instruction count. Melding reduces the global memory instruction count in LUD.

DCT does not have any memory instructions in the divergent region and does not use shared

memory. In BIT and PCM, the melded regions contain a lot of shared memory instructions.

Therefore the reduction in shared memory instructions is significant and correlate with the

performance gain. We find that melding shared memory instructions is more beneficial than

melding ALU instructions because shared memory instructions have higher latency than

most ALU instructions, though lower latency than global memory instructions. Therefore

there is 2× improvement in cycles spent if two divergent shared memory instructions are

issued in the same cycle.

BIT PCM MS LUD NQU SRAD DCT
0.0

0.5

1.0

1.5

No
rm

al
ize

d
Co

un
te

rs

Vector Mem RD+RW (DARM)
Vector Mem RD+RW (BF)
Shared Mem (DARM)
Shared Mem (BF)

Figure 2.12. Normalized Memory Instruction Counters.

Counterintuitively, melding may be less effective for global memory instructions, despite

their longer latency. If both accessed values are not in the GPU cache, then memory con-

troller can often fulfill the requests in the same cycle regardless of whether they were issued

in same cycle or not. In that case darm does not change the performance of the program.

This is visible in LUD, where the number of shared memory instructions has gone up and

global memory instructions have gone down, but we do not observe a sizable improvement in

performance. The reason for this coalescing of memory accesses is fairly subtle, and deserves

unpacking. Modern GPUs feature Independent Thread Scheduling (ITS) [7], [66], where di-

vergent threads from the same warp can be scheduled independently when execution stalls.

47

Hence, when one group of threads suffers a miss, the GPU can schedule other threads from

the same warp. These threads will then reach their corresponding access, which will be coa-

lesced by the memory controller. So the total latency experienced by both groups of threads

is one miss, identical to if darm melded the accesses statically. Older GPUs that did not

feature ITS would likely still see a benefit from darm.

2.6.5 Melding Profitability Threshold

BIT PCM MS LUD NQU SRAD DCT
0.0

0.5

1.0

1.5

Sp
ee

du
p

0.1 0.2 0.3 0.4 0.5

Figure 2.13. Variation of melding profitability thresholds.

Figure 2.13 shows the performance of darm for different melding profitability thresh-

olds on the real-world benchmarks considering darm’s best performing block sizes. For all

benchmarks, we observe that darm’s speedup reduces as we increase the threshold due to

lost opportunities.When we reduce the threshold, increment in the improvement of the per-

formance of darm becomes insignificant (after 0.2). But we cannot reduce it to zero because

every possible pair would be melded and the subsequent CFG simplification passes would

unpredicate them. This may drive the pass pipeline into an infinite loop and makes darm

non-convergent.

48

2.6.6 Compile Time

Table 2.2 shows the device code compilation times for the baseline and darm. We omit

the time for compiling host code and linking because it is constant for both the baseline and

darm. Since we perform the analysis and the instruction alignment – the most costly parts

– at the basic block level rather than performing at a higher level (i.e. function or region

level), we incur negligible compilation overhead. Compilation time overhead introduced by

darm is a small fraction of total compilation time (including host code) for all cases.

Table 2.2. Average Compile Time (s)
Benchmark O3 DARM Normalized
BIT 0.4804 0.5018 1.0444
PCM 0.5690 0.5942 1.0443
MS 0.8037 0.8064 1.0035
LUD 0.5993 0.6294 1.0502
NQU 0.4687 0.4738 1.0109
SRAD 0.4999 0.5121 1.0244
DCT 0.4398 0.4439 1.0093

darm’s compile time depends on the size of basic blocks that get melded and the structure

of the program since it determines different types of melding opportunities. A slight overhead

in compilation time of LUD is caused by sequence alignment overhead on large basic blocks

(created by loop unrolling). PCM and BIT have divergent regions inside an unrolled loop,

therefore darm’s meldable subgraph detection incurs overhead.

2.6.7 Types of Melding

Table 2.3 provides breakdown of types of melding performed by darm on all the bench-

marks for the best performing block size. Only BIT and PCM has opportunities for Region-

Region melding, and only PCM, NQU, and SRAD have opportunities for Basic block-Region

melding. Presence of Basic block-Region melding opportunity results in region replication.

49

Table 2.3. Different Types of Melding
Benchmark Block Size BB-BB BB-Region Region-Region
BIT 64 0 0 21
PCM 32 16 1 1
MS 32 1 0 0
LUD 16 3 0 0
NQU 64 0 2 0
SRAD 16x16 3 6 0
DCT 16x16 1 0 0

2.7 Discussion

2.7.1 General Applicability of DARM

Most of the GPGPU benchmarks are heavily hand optimized by expert developers and

this often include darm like transformations to remove control-flow divergence [11]. We eval-

uate darm on limited set of real-world benchmarks mainly because of this reason. However

we also emphasize that doing darm-like transformations by hand is time-consuming and

error-prone. For example, it took us several hours to manually apply control-flow melding

to LUD kernel. Therefore, offloading this to the compiler can save a lot of developer effort.

The benefits of darm is not limited to reducing control-flow divergence in GPGPU

programs. darm can be used to reduce control-flow divergence in any hardware backends

and programming models that support Single-Program-Multiple-Data (SPMD) paradigm

(e.g. Intel/AMD processors with ISPC [37]). darm can be used to reduce branches in a

program. This property can be exploited to accelerate software testing techniques such as

symbolic execution [30]. darm factor out common code segments within if-the-else regions

of a program. Therefore, it can be used as an intra-function code size reduction optimization

as well. Aforementioned applications of darm suggest that it is useful as a general compiler

optimization technique. We explore some of these applications in our future work.

50

2.7.2 Melding Non-isomorphic CFG Regions

As shown in Section 2.4.3 , darm does not meld non-isomorphic SESE regions when

both regions contain more than one basic block. This precludes melding opportunities for

basic blocks in non-isomorphic SESE regions. Solving this problem requires generalizing

Region Replication to expand any given smaller subgraph to match a larger subgraph. Even

though this may not be possible for all cases, performing this restructuring may unleash new

opportunities to enhance performance and we leave this to future work.

2.7.3 Precision of Divergence Analysis

Applying darm to meld a truly non-divergent branch may add new overhead to the pro-

gram. Hence using a precise divergence analysis is important for the enhancement of perfor-

mance. If a sophisticated divergence analysis is available, based on its results (e.g. probability

of divergence), we can decide whether running our pass will or will not be beneficial.

2.7.4 Shared Memory, Cost Model and Sequence Alignment

In Section 2.6 , we have shown that when shared memory is used to improve the baseline,

it does not steal the opportunity from darm to meld, because melding shared memory

instructions also results in better performance than the improved baseline. Exploiting this

opportunity requires maximizing the alignment of shared memory instructions which can be

achieved by using a refined instruction cost model.

2.8 Related Work

2.8.1 Techniques for Reducing Control-Flow Divergence

As discussed in the previous sections, control-flow divergence can be a serious bottleneck

in GPGPUs or in any hardware platform that facilitates a SPMD-style programming model.

There have been many attempts to reduce the performance degradation caused by control-

flow divergence both using compiler transformations and architectural enhancements in the

underlying hardware.

51

Software Techniques: Tail Merging [13] is classic compiler optimization technique used

primarily for code compaction. Tail merging works by moving the common suffix/tail (i.e. in-

structions at the end of the block) of a set of basic blocks into their common successor. Com-

mon instructions do not have to be identical in terms of operands because select instructions

can be inserted to make them look identical. Tail-merging reduces the number of instructions

in the program, hence makes the code size smaller. Tail merging also helps with control-flow

divergence because it reduces the number of instructions executed on divergent paths. Note

that tail merging works only when the tail-merged basic blocks have identical operation se-

quences at their tails i.e. the tail can be moved to the common successor up until any further

matching instructions are not available in all the predecessors. As described in Chapter 2.1 ,

Coutinho et al. introduced branch fusion which is a generalization of tail merging applicable

only for CFGs with a diamond shaped control-flow [11]. Branch fusion uses biological se-

quence alignment algorithms [54], [67] to find common instructions in the if and then paths

of the diamond shaped control-flow. Aligned instructions are moved to new converged basic

blocks so that diverged threads can reconverge early. Unaligned instructions are executed

conditionally using the original divergent branching condition. Even though this technique

is more general than Tail Merging, it is constrained to diamond shaped control-flow and can

not be used when more complicated control-flow structures are present.

IPDOM-based reconvergence guarantees the earliest reconvergence only for structured

CFGs. However certain programming languages constructs (such as goto statements) and

compiler optimizations can result in unstructured control-flow. Untructured control-flow

is quite common in GPGPU applications [68]. When unstructured control-flow is present

certain basic blocks can get executed multiple times for different threads resulting in reduced

SIMT resource utilization. Anantpur and Govindarajan proposed a technique to structure

the unstructured CFGs by inserting guard blocks and guard variables [9]. The execution of a

given basic block is guarded by a guard variable. The value of guard variable is determined

at the end of basic block based on which successor basic block must be executed next.

Applying this technique converts the unstructured CFG into a series of if-then chains without

exponentially increasing the code size. Authors shows the utility of this method by applying

52

it for control-flow divergence reduction, loop collapsing, branch interleaving and SIMT stack

depth reduction.

Fukuhara and Takimoto proposed Speculative Sparse Code Motion (SSCM) to reduce di-

vergence in GPGPU programs [69]. SSCM is an aggressive version of Sparse Code Motion [70]

that hoists redundant expressions out of branches to reduce the impact of divergence. SSCM

does not alter the CFG of a program. Han et al. proposed Branch Distribution which factors

out identical computations inside if-the-else regions (i.e. diamond control-flow) and move

them out to reduce control-flow divergence.

Collaborative Context Collection (CCC) is a software-only technique that enables im-

proved warp execution efficiency by collecting divergent tasks in a warp and differing their

execution until all the lanes can be occupied by similar tasks [12]. CCC is applicable for ker-

nels with repetitive divergent tasks with independent iterations (e.g. graph algorithms like

BFS). Key idea in CCC is capturing just enough information of a divergent thread’s context

into a context stack, so any other thread can continue its progress at a later time. Context

is generally a subset of thread-private registers. If the collected tasks are not enough to oc-

cupy all the SIMT lanes execution moves to the next iteration. If there are enough tasks in

the collection all lanes execute the divergent task. CCC enables full utilization of SIMT re-

sources with minimal overhead. Another related technique to CCC is Iteration Delaying [10].

Iteration delaying can be applied when there is a divergent branch inside a loop. Instead

of executing both paths of the divergent branch only a chosen path is executed in a given

iteration. If a thread does not take the chosen path, its iteration is delayed. Two strategies

are considered for the path choice, a majority vote strategy and a round-robin strategy.

Round-robin strategy shows the best average case performance because it avoids thread

starvation problem in majority-vote strategy. One of the drawbacks of iteration delaying is

it can increase memory divergence. It should be noted that CCC is more advanced than

iteration delaying because in CCC each thread’s progress can be transferred to a different

thread. Therefore, CCC has much more flexibility in scheduling the computation.

Recently, Damani et al. introduced Speculative Reconvergence which identifies class of di-

vergence problems that can benefit from reconverging speculatively rather than reconverging

at the IPDOM [71]. GPU programs often contains common code that can not be executed

53

in convergent manner because under IPDOM-based reconvergence model threads are not

allowed to reconverge before the common code section. Examples include divergent if-then

branches inside loops, inner loops with divergent trip counts, and common functions calls

inside if-then-else branches. Speculative reconvergece allows the user to specify potential

alternative reconvergence points (e.g. expensive divergent basic blocks or function calls) for

improved SIMT efficiency. Then compiler algorithm inserts necessary synchronization op-

erations and soft barriers to ensure the correct and convergent execution of the common

code. Speculative reconvergence uses the ISA modifications introduced with Independent

Thread Scheduling in NVIDIA Volta architecture to implement this technique. Note that in

pre-Volta GPUs all the threads in a warp have common thread state information (program

counter and call stack). But in Volta architecture each thread is given private thread state

information enabling more fine-grained thread scheduling [66].

Common Subexpression Convergence (CSC) [72] is a similar technique to branch fusion

that move common sub-expressions out of divergent code paths to reduce divergence. CSC

introduces 3 code transformations hoist, sink and spit to move common sub-expressions out

of divergent paths. Hoist moves the expression before the divergent branch, sink moves

common sub-expressions after the earliest reconvergece point of the divergent branch. Split

transformation splits divergent paths to facilitate moving common sub-expressions that can

not be moved by using sink or hoist alone. CSC uses dynamic programming to find common

sub-expressions in divergent paths similar to branch fusion. Complex nested control-flow is

handled by using branch flattening that converts control dependances into data dependances

(i.e. if-conversion).

Hardware Techniques: The control-flow divergence problem is tightly related to the de-

sign of GPGPU microarchitecture, specifically how the SPMD-style programming model is

supported in hardware using the machinery described in section 2.2.1 . Therefore, a lot of

attempts have been made to tackle the control-flow divergence problem at a hardware level.

Contemporary GPGPUs uses IPDOM-based reconvergence model described in Chap-

ter 2.1 to handle divergent control-flow. This is implemented using a hardware based stack

called the SIMT stack. Each warp has its own SIMT stack that keeps track of what control-

54

flow path is active at a given cycle. This is also known as the Single-Path Execution (SPE)

because only a single path is schedulable at a time. This restriction severely limits the SIMT

resource utilization (i.e. SIMD lanes the GPU) in single-path stack model. In the literature

the terms SIMT efficiency or warp execution efficiency is used interchangeably to denote the

percentage of SIMT resources used by a particular execution model. Next we look at some

micro-architectural enhancements proposed to avoid the limitations of SPE model.

Typically a GPGPU has thousands of schedulable warps in flight when executing a kernel.

Some of these warps can diverge due to divergent control-flow. Dynamic Warp Formation

(DWF) [34] forms new warps by combining threads from diverged warps such that in the

newly formed warp all the SIMD lanes are occupied by the threads. DWF details the

necessary register file enhancements and changes required in the warp scheduling strategy

to make this technique useful. Fung et al. showed that DWF can exhibit pathological warp

scheduling behaviors casing a situation called starvation eddy. In an starvation eddy, certain

threads can fall behind in scheduling resulting in much lower SIMD efficiency and increased

memory stalls. Authors proposed Thread Black Compaction (TBC) to avoid these limitations

of DWF. Key idea in TBC is to exploit the control-flow locality of threads within a thread

block during warp scheduling. TBC employs a block-wide reconvergence stack instead of

the per-warp reconvergence stack in order to achieve this. Threads are compacted into

new warps at diverging branches and restored to their original warp groupings when the

compacted threads reach their reconvergence point. Block-wide reconvergece stack makes

warp schedulers job easier and avoids the starvation eddy situation in DWF. TBC also

extends the IPDOM based reconvergence stack to include likely reconvergence points which

allows diverged threads to reconverge early.

Dynamic Warp Subdivision (DWS) [73] attempts to avoid the limitations of single-path

stack by allowing execution of divergent paths to interleave. This improves the instruction

level parallelism. DWS achieves this by creating independently schedulable units called warp

splits. The progress of warp splits are tracked using a warp split table and the decision to

split the warp or not at a divergent branch is taken based on heuristics. One drawback

of DWS is that individual warp splits does not keep track of their earliest reconvergence

point therefore fails to reconverge at the earliest opportunity. This can reduce the SIMD

55

resource utilization. Rhu et al. proposed Dual-Path Execution (DPE) model to alleviate the

drawbacks of DWS [5]. Dual-path execution model extends SPE by allowing it to keep track

of two control-flow paths concurrently. DPE adds minor overhead to the microarchitecture

and retains the benefits of both SPE and DWS. ElTantawy [7] proposed Multi-Path IPDOM

which extends the DPE model to concurrently schedule any number of divergent control-

flow paths while still ensuring IPDOM-based reconvergence. Multi-path IPDOM replaces

the traditional SIMT stack with two tables, warp split table to record all warp splits in

flight and reconvergence table to record the reconvergence points of all warp splits. Further-

more, Multi-path IPDOM can opportunistically reconverge when unstructured control-flow

is present in the CFG which not possible with the previous techniques. Rogers et al. showed

the impact of warp size in the performance of real-world GPU applications. Certain di-

vergent GPU applications can benefit from smaller warp size because smaller warps allows

divergent control-flow paths to execute concurrently. However, convergent GPU applications

can suffer performance penalties with smaller warps because smaller warps destroy the hor-

izontal locality benefits of larger warps. To achieve best of both worlds, authors propose

Variable Warp Sizing (VWS). VWS uses a novel warp ganging microarchitecture that is ca-

pable of shrinking the warp size depending on the application characteristics. VWS enables

divergent applications to execute multiple concurrent control-flow paths together with im-

proved SIMT efficiency while forcing convergent applications to use wider warps to achieve

the performance and energy efficiency of traditional GPU architectures.

Most of the architectural techniques described in this Section may not be feasible to be

implemented on commodity GPGPUs because of the power and area overhead introduce

by them. However, the microarchitecture design choices explored in these techniques have

inspired many modern GPGPU designs.

2.8.2 Other Related Work

In this section, we discuss related techniques that are used in applications other than

control-flow divergence reduction, but have certain commonalities with our approach. The

general strategy of identifying and transforming similar code sequences is well-studied idea in

56

code compaction (i.e. code-size reduction). Tail Merging is a standard, but restrictive, com-

piler optimization used to reduce the code size by merging identical sequences of instructions.

Chen et al. used generalized tail merging to compact matching Single-Entry-Multiple-Exit

regions [13]. LLVM’s MergeFunction pass efficiently identify and merge identical functions to

reduce code size [74]. Recently, Rocha et al. has presented Function Merging with Sequence

Alignment (FMSA), which uses biological sequence alignment algorithms to compute similar

instruction sequence between functions and, merge them to reduce code size [55]. Sequence

alignment is an expensive computation. Therefore, FMSA relies on ranking heuristics to

find functions that are sufficiently similar. Later this work was extended to support function

merging in static single assignment (SSA) form [56]. Primary objective of these techniques

is to reduce code size. Repurposing them to reduce control-flow divergence would require

significant work because the effect on the structure CFG must be taken into consideration.

2.9 Conclusion

Divergent control-flow in GPGPU programs can cause significant performance degrada-

tion because thread execution needs to be serialized if threads in a warp exercise differ-

ent control-flow paths. We presented darm, a new compiler analysis and transformation

framework for GPGPU programs implemented on LLVM, that can detect and meld similar

control-flow regions in divergent paths to reduce divergence in control-flow. darm general-

izes and subsumes prior efforts at reducing divergence such as tail merging and branch fusion.

We showed that darm improves performance by improving ALU utilization and promoting

coalesced shared memory accesses across several real-world benchmarks.

57

3. CFM-CS: CONTROL-FLOW MELDING FOR CODE SIZE

REDUCTION

3.1 Motivation

Resource constrained environments such as embedded systems and mobile devices have

limited memory and storage space, and thus, code size reduction becomes a critical compiler

optimization for such systems [75]–[77]. Modern software systems are getting complex and

large with various features and functionalities introduced regularly. Therefore, managing

code size of such systems is a challenging but important task [78], [79].

Modern compilers have a variety of code size reduction techniques to reduce the code

size of the generated executable [14], [80]. Classical compiler optimizations such as dead-

code elimination [81], common sub-expression elimination [17], redundancy elimination [82],

and constant propagation [83] focus on eliminating various redundant code patterns in the

source program in order to reduce its size. Another popular approach for code size reduction

is to detect identical or similar code sequences and merge them to remove the duplicates.

Various function merging techniques have been proposed that are capable of merging identical

functions [74], [84] or functions with similar instruction sequences [56], [85]. Most general

versions of function merging rely on sequence alignment techniques to identify similar code

sequences [55].

Despite the availability of various techniques that exploit code similarity to reduce code

size, there are still many opportunities that are not being exploited by existing techniques.

In this work, we identify one such opportunity, reducing code size by merging similar code

within conditional branches (i.e. if-the-else constructs) in a program. Modern compilers

like gcc [15] and LLVM [14] already contains optimizations that merge code sequences within

conditional branches. Transformations like code sinking, code hoisting [13], and tail merging

can merge identical instruction sequences contained in if-then-else branches by moving

them to a common successor or predecessor blocks. One major limitation of these techniques

is that they cannot fully exploit the code similarity within if-then-else branches because

they only merge identical code sequences. If the code sequences within if and else branches

are nearly identical with some differing instructions, these techniques cannot merge them.

58

More recently, Coutinho et al. [11] proposed branch fusion that can merge non-identical

code sequences within diamond-shaped conditional branches. Branch fusion uses sequence

alignment [54] techniques to identify similar instruction sequences within if and else paths

of the branch and move them to common blocks. Unlike code sinking, code hoisting, and

tail merging, branch fusion does not require the code sequences within if and else basic

blocks to be identical. One common limitation of all these techniques is that they are only

applicable at basic block level and cannot merge similar code at control-flow region level.

For example, branch fusion is only applicable when the if and else paths of a conditional

branch contain single basic blocks (i.e. diamond-shaped control-flow) [11]. Code sinking

is applicable when all the predecessors of a block ends with unconditional branches and

common code at the end of these predecessors can be sinked to the block [86].

1 #define DeleteNode(x) \
2 { xx_hold = (x); \
3 while(Up(xx_hold) != xx_hold) \
4 DeleteLink(Up(xx_hold)); \
5 while(Down(xx_hold) != xx_hold) \
6 DeleteLink(Down(xx_hold)); \
7 Dispose(xx_hold); \
8 }
9 //

10 if(prnt_flush)
11 {
12 Parent(prnt, Up(dest_index));
13 if(kill) DeleteNode(dest_index);
14 debug0(DGF, DD, " calling FlushGalley");
15 FlushGalley(prnt);
16 }
17 else if(kill) DeleteNode(dest_index)
18

Figure 3.1. Code snippet extracted from file z20.c in MiBench typeset benchmark

Region level code similarity is quite common in real-world programs. Code snippet shown

in Figure 3.1 is an example of such missed opportunity. This code is extracted from function

ParenFlush (source file z20.c) in MiBench typeset benchmark [87]. This function contains

59

an if-then-else branch with if-then branch inside the if and else paths (highlighted

lines 13 and 17 in Figure 3.1). Both if-then statements inside the branch calls DeleteNode

function with the same argument. DeleteNode function is a macro function (lines 1-8 in

Figure 3.1) containing multiple while loops and several other macro function calls. Macro

expansion causes the top-level if-then-else branch to contain large isomorphic control-flow

regions with nearly identical instruction sequences within corresponding basic blocks of the

two matching regions. Traditional techniques can not exploit this opportunity due to their

inability to merge control-flow at region level and the fact that the code sequences within

if and else paths are not identical.

Recently, Saumya et al. proposed Control-flow Melding (darm) [88]. darm is a com-

piler technique that merges control-flow regions within divergent if-then-else branches in

GPU programs to reduce control-flow divergence. Even though darm is capable of merging

control-flow at region level it has several limitations that prevent it from being used for

general purpose code size reduction. First, darm only works on branch paths that contain

simple control-flow regions, e.g. nested if-then, if-then-else or natural loops, that are

isomorphic. Second, darm is designed to optimize GPU programs and thus, it is not directly

applicable to CPU programs. For example, darm uses GPU latency cost to find the best

possible alignment of instructions within matching isomorphic control-flow regions.

In this work, we propose cfm-cs, an extension of darm that can exploit both control-flow

structure similarity and instruction sequence similarity to reduce code size in real-world CPU

programs. Unlike darm, cfm-cs can handle complex control-flow regions within if-then-

else branches and uses LLVM’s built-in code size cost model [58] to decide the profitability

of its applications. Since the LLVM’s built-in cost model allows us to reason about the

profitability of the transformation at compile time, we can only apply cfm-cs when it is

profitable. In fact, out implementation of cfm-cs can reduce the LLVM-IR size of the

ParenFlush function shown in Figure 3.1 by 28.8% (from code size cost of 236 to 168). We

make the following contributions in this work:

• We propose cfm-cs, a novel code size reduction technique based on darm that can

merge control-flow at region level to reduce code size in CPU programs.

60

• An implementation of cfm-cs in LLVM that is publicly available

1
 .

• An evaluation of cfm-cs in 3 CPU benchmark suites showing its effectiveness in

reducing code size in a variety of applications.

3.2 Extending Control-Flow Melding for Code Size Reduction

L

E

S

R

T

U
X

E

R

X

E

R

X

a b c

T F

L

S

T

U

P Q
W

Figure 3.2. cfm-cs overview. (a) Given an if-then-else statement, (b) we
identify isomorphic control-flow in the two regions, and (c) we align and merge
the corresponding blocks.

Control-flow Melding [88] (darm) is a code optimization technique used for reducing

control-flow divergence in GPU programs. darm reduces divergence by merging similar

control-flow regions contained within divergent branches of the CFG. Previous compiler-

based divergence reduction techniques such as Tail Merging and Branch Fusion are unable

to merge control-flow beyond basic block boundaries. Therefore, they have limited appli-

cability in real-world programs. darm was proposed to fill this gap and enable merging

control-flow at region level. darm works by merging structurally similar (i.e. isomorphic)

single-entry single-exit (SESE) regions within if-then-else branches. Even though the gen-
1

 ↑ https://github.com/charitha22/hybf-cc23-artifact/

61

https://github.com/charitha22/hybf-cc23-artifact/

eral idea of merging similar control-flow regions is applicable to real-world programs, darm’s

implementation is fairly restrictive as it only supports merging simple nested if/if-else state-

ments and loops inside if-then-else branches.

In this work, we extend and adapt darm to reduce code size in CPU programs. In

the following sections we describe the main steps in Control-flow Melding for Code Size

Reduction (cfm-cs). Figure 3.2 shows the main stages of cfm-cs.

3.2.1 Identifying Regions for Melding

The first step of cfm-cs is identifying on which locations to apply the transformation.

Similar to darm, cfm-cs is also applicable to if-then-else constructs that contains isomorphic

control-flow regions. To formally describe the conditions that a valid location must satisfy,

consider the CFG in Figure 3.2 a©. This CFG contains a basic block E with a conditional

branch at its end. Basic blocks L and R be the two successors of E. Let X be the immediate

post-dominator of E. E dominates all basic blocks contained within the SESE region E-X.

E is considered to be a valid location for our transformation if there exist no paths in the

CFG from E to X that goes through both L and R. This ensures that either L or R is

executed at a time but not both, enabling us to at least merge the common computations

within L and R. If there exists a path from L to R at least one predecessor of R must

be dominated by L because all program paths from E to X must go through either L or

R. We use this property to check non-existence of paths from L-R or R-L. In addition,

basic blocks contained within E-X must not contain switch-case instructions for cfm-cs to

be applicable. This is only a limitation of our current implementation, and if switch-case

instructions can be converted to branches cfm-cs can still be applied.

The next step of cfm-cs is to collect all the subregions contained with the parent region

of E-X. We employ LLVM’s region tree (i.e. region hierarchy graph) [53] data structure to do

this. We collect subregions along the left path (from L to X) and right path (from R to X).

Each subregion is selected such that subregion entry is dominated by L or R and subregion

exit post-dominates L or R. For example, the CFG in Figure 3.2 a© has the subregion L-S

on left path and subregions R-T ,T -U on the right path. Any isomorphic SESE subregion

62

pair consisting of one subregion from left and right paths can be merged to potentially reduce

code size. We use a heuristic-based approach based on instruction frequencies and their size

cost to determine what isomorphic subregion pairs to merge. Isomorphic SESE subregions

with more similar instructions are more profitable to be merged together. We formulate this

as a sequence alignment problem and solve it using the Smith-Waterman algorithm [54]. For

example, in Figure 3.2 b© isomorphic subregions L-S and T -U are aligned together and their

corresponding basic blocks (shown connected with light blue bars) can be merged.

3.2.2 CFM-CS Code Generation

We compute an instruction alignment similar to DARM [88] or HyFM [85], to generate

the final merged regions. Instruction alignment is computed for each corresponding basic

block pair in aligned subregions. In Figure 3.2 b© portions of basic blocks with perfectly

aligned instructions are shown in green and unaligned portions are shown in red. We use in-

struction alignment to generate the final merged code (shown in Figure 3.2 c©). The aligned

instructions are replaced with merged instructions that use select instructions to pick their

operands, while the unaligned instructions are moved to new basic blocks and executed con-

ditionally. For example, matched basic blocks P and Q have both aligned and unaligned

portions and the final merged CFG for these blocks are shown zoomed-in on Figure 3.2 c©.

Note that the orange colored blocks are not necessarily basic blocks but control-flow sub-

graphs. We use the branching condition at block E as the distinguishing predicate for the

select operations as well as for conditionally executing unaligned instructions.

3.2.3 Region Replication

cfm-cs is only capable of merging isomorphic regions, however there is one exception.

When one path contains only a single basic block and the other path contains region(s),

cfm-cs can still be applied by using Region Replication. The idea here is to replicate a

region and place the single basic block in a convenient location to enable profitable merging.

Region replication was first proposed in darm [88] to merge basic blocks in if-else-if chains to

reduce control-flow divergence. Their implementation did not support more complex control-

63

flow patterns because the primary focus was to reduce divergence in some select control-flow

patterns seen in GPU kernels. We build on top of darm and provide a more general region

replication approach that is applicable to code size reduction in CPU programs. We use

example CFGs shown in Figure 3.3 to explain how region replication works.

L

E

R

U

X

T
F

D

E

R

U

X

F

D

M

O

L

N

a b

T

Figure 3.3. Region replication example

The input CFG (block L in Figure 3.3 a©) contains a single basic block on the left path

and a subregion in the right path. Assume that the computations done in blocks L and D are

similar and merging them is profitable. First we replicate the right subregion R-U and create

a new subregion M -O (Figure 3.3 b©). And then we place L on a corresponding position to

D. This creates two isomorphic regions and we can apply cfm-cs region merging approach

2
 .

We also make sure values produced in L will reach their external users by inserting φ nodes

at L’s new dominance frontiers (in this case L has two dominance frontiers N and O). We

concretize the path conditions on region M -O to make sure L is always executed (concretized

path M → L→ O is shown in red) and also make sure phi-nodes in block X pick the correct

incoming values based on the chosen path.
2

 ↑ Alternatively, blocks L and D in Figure 3.3 a© can be merged directly and direct jumps from E → D and
D → X can be inserted to ensure correct control. cfm-cs does not use this approach because applying it
recursively can make the CFG more complex/unstructured and unamenable to other optimizations including
cfm-cs

64

3.3 Evaluation

In this section, we evaluate our implementation of cfm-cs on several CPU benchmark

suites to measure its effectiveness in reducing code size.

3.3.1 Evaluation Setup

We implemented cfm-cs as a LLVM transformation pass

3
 . We use LLVM’s built-in

target-specific code size cost model to estimate the benefit of cfm-cs transformation at

compile-time. cfm-cs can be implemented on any static single assignment (SSA) [89] based

intermediate representation and does not depend on any LLVM-IR specific feature to the

best of our knowledge. For the baseline, we use -Oz optimization level in clang because the

optimization pipeline in -Oz is designed for code size reduction. cfm-cs is applied on top

of -Oz optimization level to mesure the improvement over the baseline. We place cfm-cs

after the classic redundancy elimination and code motion passes in the pass pipeline, as

they can be negatively affected by branch fusion. We evaluate cfm-cs with -Oz baseline

on four different benchmark suites: AnghaBench [90], MiBench [91], SPEC 200, and SPEC

2017 [92]. These benchmarks cover a variety of applications including compilers, interpreters,

typesetting, 3D rendering, and cryptography. We perform all experiments on a server with

two octa-core Intel Xeon E5-2650 processors and 64 GiB of RAM, running Ubuntu 18.04.3

LTS. For timing measurements, we repeat all experiments 10 times to minimize the effect of

measurement noise.

3.3.2 Code Size Reduction

We use llvm-size [93] to measure the size of the text section of the generated binaries.

Table 3.1 shows the code size reduction achieved by cfm-cs on MiBench benchmarks. We

show the absolute reduction of size in bytes, percentage reduction and the number of prof-

itable applications of cfm-cs on each benchmark. The average absolute size reduction for

MiBench is 333.8 bytes. typeset benchmark shows the largest absolute reduction of 2160
3

 ↑ LLVM-14.0

65

bytes. This benchmark has 40 profitable applications of cfm-cs, which is the second highest

among all the benchmarks in MiBench. It contains multiple conditional branches with both

straight line code complex control-flow regions where cfm-cs can be applied.

Table 3.1. Code size reduction achieved by cfm-cs on MiBench benchmarks

Benchmark Reduction
(Bytes)

Reduction
(%)

Number
of Fusions

blowfish 624 3.9 2
ghostscript 1232 0.1 64
gsm 0 0.0 1
ispell 32 0.1 4
jpeg_c 152 0.1 16
jpeg_d 264 0.2 21
patricia 8 0.2 2
pgp 128 0.1 12
rsynth 48 0.1 4
susan 0 0.0 0
tiff2bw 88 0.0 8
tiff2dither 88 0.0 8
tiff2median 88 0.0 8
tiff2rgba 88 0.0 8
typeset 2160 0.4 40

Our motivating example (ParentFlush function) in Section 3.1 is also from this bench-

mark. Application of cfm-cs on ParentFlush function reduces its LLVM-IR size by 28.8%.

Other most profitable applications of cfm-cs on this benchmark are in FilterFlush (13.79

% reduction), TransferEnd (13.9 % reduction), and Meld (3.17% reduction) functions. None

of the benchmarks in MiBench have code size increases which shows that the LLVM cost

model is suffciently accurate to estimate the benefit of cfm-cs transformation. However,

the percentage reduction in code size is not very high. The highest percentage reduction

was observed for blowfish benchmark (3.9%). In fact, none of the other benchmarks have

more than 1% reduction in code size. This is mainly because the number of opportunities for

cfm-cs is low relative to the size of the benchmark. Also, the reported percentage reduction

is for the final binary of the benchmark which includes large number of functions without

any opportunities for cfm-cs. We observe that absolute size reduction is higher when there

66

are more opportunities for cfm-cs. This can be observed in typeset and ghostscript

benchmarks where the absolute reduction is 2160 and 1232 bytes respectively and cfm-cs

is applied 40 and 64 times respectively.

Table 3.2. Code size reduction achieved by cfm-cs on SPEC 2006 benchmarks

Benchmark Reduction
(Bytes)

Reduction
(%)

Number
of Fusions

400.perlbench 304 0.0 4866
401.bzip2 64 0.1 4
403.gcc 1712 0.1 115
433.milc 80 0.1 6
445.gobmk 296 0.0 65
447.dealII 1080 0.0 57
450.soplex 704 0.2 74
453.povray 96 0.0 45
456.hmmer 64 0.0 14
458.sjeng 200 0.2 31
462.libquantum 72 0.2 10
464.h264ref 2296 0.5 93
471.omnetpp -24 -0.0 4
473.astar -80 -0.2 5
482.sphinx3 152 0.1 8
483.xalancbmk 324 0.0 60

Tables 3.2 and 3.3 show the results for SPEC 2006 and SPEC 2017 benchmarks re-

spectively. The general observation is quite similar to MiBench benchmarks. In SPEC 2006

benchmarks, the largest absolute size reduction was observed in 602.gcc_s benchmark (6760

bytes). cfm-cs is applied 482 times in this benchmark. There are 3 benchmarks where the

size reduction is more than 1 KB (403.gcc, dealII, and h264ref). Largest absolute re-

duction is in h264ref benchmark (2296 bytes) and cfm-cs applies to 93 locations in this

benchmark. However, similar to MiBench, the percentage reduction is not very high. Most

benchmarks in SPEC suites contains very larges number of functions and there are many

functions that cfm-cs does not apply to. Therefore, the percentage reduction of the fi-

nal binary size is not low. In SEPC 2006 the highest percentage reduction was observed

in 464.h264ref benchmark (0.5%). In SPEC 2017, the largest absolute size reduction is

observed in 526.blender_r benchmark (8672 bytes) where cfm-cs is applied 570 times.

67

There are 3 benchmarks where the size reduction is more than 1 KB (526.blender_r,

600.perlbench_s, and 602.gcc_s). The percentage size reduction is less than 1% in all

benchmarks, with 631.deepsjeng_s having the highest percentage reduction (0.8%).

Table 3.3. Code size reduction achieved by cfm-cs on SPEC 2017 benchmarks

Benchmark Reduction
(Bytes)

Reduction
(%)

Number
of Fusions

511.povray_r 64 0.0 48
526.blender_r 8672 0.1 570
600.perlbench_s 1592 0.1 146
602.gcc_s 6760 0.1 482
605.mcf_s 112 1 0.6
620.omnetpp_s 72 0.0 18
625.x264_s 984 0.2 33
631.deepsjeng_s 592 0.8 25
638.imagick_s -200 -0.0 118
641.leela_s 72 0.1 10
644.nab_s 216 0.1 10
657.xz_s -32 -0.0 3

In SPEC 2006 and SPEC 2017 benchmarks, there are several cases where cfm-cs causes

an increase in the binary size. In SPEC 2006 benchmarks, 471.omnetpp and 473.astar

benchmarks have a negative size reduction (increase of 24 and 80 bytes respectively). And

in SPEC 2017 benchmarks, 638.imagick_s and 657.xz_s benchmarks have a negative size

reduction (increase of 200 and 32 bytes respectively). This is caused by the inaccuracy of the

compile-time probability analysis. Reasoning about the binary codes size at LLVM-IR level

is not entirely accurate. For example, in LLVM-IR level code size cost of φ instructions is

zero because they can be converted to simple copies or completely eliminated in the backend

code generation phase (register allocation). However, this estimate is not entirely accurate

because some cases φ instructions can get translated into more expensive operations in later

passes. The code size increase was observed in benchmarks where cfm-cs applies to smaller

number of locations and the size of the merged regions are small (i.e. small conditional

branches with limited amount of similar code). In such cases, cfm-cs ends up adding more

overhead (φ instructions) than the size reduction achieved by merging the code. And the

68

overhead is not accurately captured by the compile-time probability analysis. In summary,

we can say that cfm-cs is capable of reducing binary size of large benchmarks. Even though

the percentage reduction is not very high, the size reduction achieved by cfm-cs can still be

significant given that the compile-time and runtime overhead introduced by cfm-cs is not

very significant. In resource constrained environments, such as embedded systems, cfm-cs

can still be a useful optimization.

3.3.3 Code Size Reduction on Individual Functions

0
25

00
50

00
75

00
10

00
0

12
50

0
15

00
0

17
50

0

Functions

40

20

0

20

40

60

Re
du

ct
io

n
(%

)

Figure 3.4. Reduction in number of instructions on 17.6k real world-functions
from AnghaBench suite. Functions are sorted by the amount of reduction
achieved by cfm-cs.

To investigate the effectiveness on real world functions, we applied cfm-se to 17.6k func-

tions from AnghaBench [90] suite. AnghaBench suite consists of one million independently

compilable functions extracted from popular GitHub repositories containing C source files.

69

We measured the reduction of LLVM-IR instructions in each function. The results are shown

in Figure 3.4 . In this figure, the functions are sorted by the amount of reduction achieved

by cfm-cs (left side least reduction in instructions to right side most reduction in instruc-

tions). cfm-cs can reduce the number of instructions in substantial portion of the functions

considered obtaining more than 60% reduction in some cases.

There are cases where the number of instructions is increased by cfm-cs. These regres-

sions are caused by the φ instructions inserted by cfm-cs during the merging process. In

LLVM cost model φ instructions have zero code size cost and therefore profitability anal-

ysis does not control the number of φ instructions inserted by cfm-cs. If the number of

instructions merged by cfm-cs is low relative to the number of φ instructions and select

instructions inserted, then the number of instructions can increase. This can be observed

in functions with many small if-the-else branches with limited amount of similar code.

Even though φ instructions are considered cheap in terms of code size they can get translated

into more expensive operations later in the compilation pipeline. Some of binary code size

increases described in Section 3.3.2 are also caused by the limited accuracy of the compile-

time probability analysis. This issue can be mitigated by setting a threshold on the amount

of code size reduction that must be achieved by cfm-cs before it is applied to a function.

In our implementation, we do not use such threshold and cfm-cs is applied whenever there

is a positive code size reduction.

3.3.4 Compile-Time and Runtime Overhead

We also measured the compile-time and runtime overhead of cfm-cs for the all the

benchmark suites. Average compile time overhead across all benchmarks is 5.5%. The high-

est compile time overhead was observed for the blowfish benchmark where compile time

increased by 29%. blowfish benchmark contains an if-then-else branch with each diverg-

ing basic block containing 403 LLVM-IR instructions. Therefore, cfm-cs spends significant

time in the instruction alignment computation which has quadratic complexity in the num-

ber of instructions in the basic block [54]. blowfish also has good reductions in code size as

well, therefore the compile time overhead invested in cfm-cs is not wasted in this case. We

70

also note that our implementation of cfm-cs is not optimized for compile time. Compile

time can be improved by using better sequence alignment algorithms and by using more ef-

ficient data structures in the implementation. For example, rather than using an alignment

algorithm with quadratic complexity, we can use a less accurate but faster algorithm for the

instruction alignment computation. For measuring the runtime overhead we considered 30

benchmarks from MiBench, SPEC 2006 and SPEC 2017 that are modified by cfm-cs trans-

formation. We observed an average runtime improvement of 2.3% across all benchmarks.

However, this average is heavily influenced by the tiff2bw benchmark where the runtime

improvement was more than 50%. Several other benchmarks also showed improvements in

runtime performance (blowfish_e, ghostscript, tiff2median) even though they were not

significant.

3.4 Related Work

Compiler based code size reduction is an important optimization that enables fitting

larger applications into resource constrained environments like mobile phones or embedded

systems [75], [77], [79]. Well known code size reduction techniques include replacing a frag-

ment of code with a smaller semantically equivalent code sequence [94], combining redundant

code within function or across functions [17], [95], eliminating redundant code [16].

Production compilers like GCC and LLVM [74], [96] provide an optimization for merging

identical functions at the IR level. Type mismatches are allowed but only if the types

can be losslessly casted to same format. Von Koch et al. [84] extended this to merging

nearly identical functions. This approach can only merge functions with same signature

and identical control-flow graphs. In addition, matching basic blocks must have the same

number of instructions and paired instructions within corresponding blocks must have same

data types.

Rocha et al. [55], [56] proposed an approach for merging arbitrary pair of functions.

The use sequence alignment techniques to find out common instruction subsequences within

two functions. Common sequences gets merged together while unaligned sections of the

two functions are conditionally executed using a function identifier. Due to the sequence

71

alignment computations, this approach has high compile time overhead. HyFM [85], [97]

attempts to accelerate arbitrary function merging by restricting the alignment computation

to basic block level and using a simple linear alignment strategy. HyFM is much faster than

its predecessor.

Chen et al. proposed Generalized Tail Merging for code size reduction [98]. This extends

the tail merging to work on isomorphic SEME regions. This approach is conceptually similar

to cfm-cs, but it requires matching basic blocks to contain nearly identical instruction

sequences. This restricts the applicability of generalized tail merging to a subset of cases

that cfm-cs can handle.

3.5 Conclusion

Existing techniques that exploit code similarity in conditional branches to reduce code

size only applicable in limited scenarios. These techniques work only when the code sequences

contained in the divergent paths of a branch are identical. If the instruction sequences are

not identical but have high similarity, they fail to capitalize on the full opportunity. Also

existing techniques does not fully exploit the structural similarity of the control-flow graph

to reduce code size. In this work, we propose cfm-cs, an extension of control-flow melding

designed for code size reduction in CPU programs. cfm-cs uses a hierarchical sequence

alignment approach to exploit both structural and instruction similarity to reduce code size.

cfm-cs approach is more general and can handle wide variety of cases for code size reduction

in conditional branches and more general than existing techniques like code hoisting/sinking

and tail merging. Our evaluation of cfm-cs shows that it is applicable in variety of well-know

CPU benchmarks and achieves decent code size reduction without significant performance

or compile-time overhead.

72

4. CFM-SE: ACCELERATING SYMBOLIC EXECUTION BY

TARGETED CONTROL-FLOW TRANSFORMATIONS

4.1 Introduction

Computer software govern almost every aspect of human life. Therefore, ensuring soft-

ware performs its task according to the given specification has paramount importance. Veri-

fication and testing of computer software play a vital role in ensuring their correct operation.

Dynamic Symbolic Execution (DSE) is popular dynamic analysis technique used for software

testing and verification [99], [100]. DSE executes a program using symbolic variables instead

of concrete values as input. With some variables declared as symbolic, DSE can explore all

feasible paths in a program. A program path is feasible if there exists at least one input

that will exercise that path. For each explored path DSE computes a path condition which

is essentially the conjunction of branching conditions that are true along the path. When

DSE reach a branch where the branching condition is symbolic, it continues the execution

on both directions of the branch (true and false) if they are feasible. This path condition

can be solved using an SMT solver [101], [102] to find a concrete input which exercises that

path. Because DSE explore all feasible paths in a program, it can be used to find bugs or

prove the program works correctly for all possible inputs.

Unfortunately, DSE suffers from the path explosion problem, wherein the number of

paths grows exponentially with the number of symbolic branches in the program [20], [103].

Complex control-flow (i.e. code with a lot of branches) is the main contributing factor for

path explosion. For example, consider a program with a symbolic branch inside a loop.

For each loop iteration there are two potential paths through the program that DSE needs

to explore. If the loop has N iterations number of paths amounts to 2N . Out of the

many techniques [19], [27]–[29], [104], [105] proposed for mitigating path explosion problem

dynamic state merging [26] is considered one of the foundational techniques. In dynamic

symbolic execution engines like KLEE [100], each explored path is associated with a state

which maintains the values of all symbolic variables, memory, stack and registers at that

point in the program. Often times multiple paths in a program share the same state or

very similar states. State merging exploits this observation by merging sufficiently similar

73

states together to reduce the number of paths that need to be explored. State merging uses

both dynamic and static program information to figure out which states are profitable to

merge. Even though state merging can reduce the number of paths that need to be explored

significantly, it still requires calling the SMT solver at symbolic branches. At conditional

branches where both the true and false are feasible, calling the SMT solver to check the path

feasibility is an unnecessary overhead in cases where the two forked states get merged.

Prior work suggests that static program transformations can also be used to improve the

performance of dynamic test generation [30], [106]. In this context of DSE, both semantics-

preserving [107] and non-semantics-preserving program transformations [108] have been pro-

posed to improve its performance. The root cause of path explosion is the symbolic branches

in a program. If the number of symbolic branches can be reduced, the number of paths that

need to be explored will also be reduced. For example, Collingbourne et al. [33] used aggres-

sive phi-node folding [109] to reduce the number of symbolic branches in image processing

applications and showed that it can greatly improve the performance of DSE on programs

operating on images. Well-known compiler optimizations like code hoisting/sinking or tail

merging can be used to reduce the number of symbolic branches in a program. Tail merg-

ing can completely eliminate if-then-else branches if the then and else paths contain

identical operation sequences. This is done by merging instruction with identical opcodes

with the help of select instructions. This approach can merge diamond shaped control-

flow patterns (i.e. if-then-else branches) into a single basic block. LLVM [14] optimizer

contains control-flow graph simplification pass (-simplifycfg) that can eliminate branches

by hoisting or sinking instructions out of if-then-else or if-then statements when the

compiler can prove it is safe to do so. In KLEE, the -simplifycfg pass is enabled by default

to perform these branch elimination optimizations.

Branch elimination optimizations in modern compilers are designed to improve the per-

formance of the generated code on various hardware platforms. These optimizations are

unaware of performance implications of these transformations on DSE. For example LLVM

simplifycfg pass uses target specific cost models to determine if it is profitable hoist/sink

common instructions out of if-then-else or speculatively execute then block of an if-

then statement [14]. Often times these transformations does not apply to program locations

74

that can improve the performance of DSE, or they might be applied to locations that can

degrade or have no impact on DSE performance (e.g. concrete branches). Therefore, a prin-

cipled approach is needed to identify and apply branch elimination optimizations that can

improve the performance of DSE.

Recent developments in compilers like DARM [88] and HyBF [110] have shown how

to exploit code similarity within conditional branches to improve performance and code

size of generated code [88], [110]. These approaches work by moving common instruction

subsequences out of conditional branches and into a separate basic block. Even though

this generalizes hoisting/sinking optimizations, they increase the number of branches in the

program and select instructions in the generated code if applied to conditional branches with

non-identical instruction sequences. This can hurt the performance of DSE because it can

increase the number of symbolic branches and increase the complexity of the path constraints

due to the additional select instructions inserted.

In this paper, we propose cfm-se, a targeted control-flow transformation that is designed

to remove expensive symbolic branches from a program to improve the performance of DSE.

First, cfm-se uses static analysis to identify symbolic branches that are expensive to explore

in DSE. Then it uses DARM [88] framework to identify code similarity within conditional

branches. Next cfm-se inserts minimal additional dead instructions to if and then blocks

(possibly empty if-then statements) to make them look identical in terms of operation

sequences. Finally, cfm-se merges the identical instruction sequence within the if and

then blocks into a single basic block to eliminate the expensive symbolic branch.

darm transformation is not semantics-preserving because unconditional execution of

certain instructions (e.g. load/stores) is not safe. This can introduce new bugs to the program

that were not present in the untransformed program. However, darm is failure-preserving. A

failure preserving transformation ensures that any bug present in the untransformed program

is also present in the transformed program. darm is failure-preserving because the additional

instructions inserted into the program does not alter the original computation or program

memory state. Any crashing input resulted after a failure-preserving transformation can be

checked against the original program to verify whether the crash is a true-positive or not.

75

We use this property to develop a framework to detect false-positive bugs introduced by

failure-preserving transformations like darm that is not semantic-preserving.

The main contributions of this paper are as follows:

• We propose cfm-se, a targeted non-semantics-preserving and failure preserving control-

flow transformation that is designed to remove expensive symbolic branches from a

program to improve the performance of DSE.

• An implementation of cfm-se in LLVM.

• A framework for detecting false positives caused by non-semantics-preserving transfor-

mations like cfm-se in the context of DSE.

• Evaluation of cfm-se, showing its ability to improve the performance of DSE on a

variety of benchmarks.

4.2 Background

4.2.1 Dynamic Symbolic Execution and State Merging

Dynamic Symbolic Execution (DSE) is a dynamic program analysis technique that can

enumerate all feasible execution paths of a program. DSE executes a program using symbolic

inputs and uses an SMT solver [101], [102] to reason about feasibility of the execution

path at branch points in the program. DSE suffers from path explosion problem where

the number of feasible execution paths can grow exponentially with the number of branch

points in the program. State merging [26] mitigate the path explosion problem by merging

sufficiently similar program paths during DSE. Even though highly effective at reducing the

path explosion, state merging still need to call the SMT solver at every branch point of the

program.

4.2.2 Divergence Analysis

Divergence analysis is used for identifying divergent variables in a program. Identifying

divergent instructions is crucial for some GPU-specific compiler optimizations. For example,

76

branch fusion [11] and DARM [88] uses divergence analysis to identifying which control-

flow regions to merge to reduce control-flow divergence. In GPU compilers, a branch is

marked as divergent if the branch outcome can be different for threads in a thread group

(i.e. warp). Some program variables such as thread IDs or global memory reads are by

definition divergent. Such variables are called divergence sources. LLVM divergence analy-

sis is an intra-procedural data-flow analysis. Every instruction in a function is marked as

divergent if it is data-dependent or sync-dependent on a divergence source or another diver-

gent instruction. Here, sync-dependance captures the control-flow aspect of divergence. In

a branch such as if (a) {b = 1;} else {b = 2;}, variable b is assigned concrete values

in both true and false paths but, b’s users can be divergent if the branching condition a

is divergent. This is because the value of b can be different based on the outcome of the

divergent branch.

4.2.3 DARM

DARM [88], [110] (i.e. Control-flow Melding) is a compiler optimization that exploits

code similarity at control-flow region level to improve code size and performance. DARM

employs a hierarchical sequence alignment technique to identify isomorphic control-flow re-

gions that contains similar instruction sequences within them. If two isomorphic regions

are similar enough (according to a cost model [58]), DARM merges them into a single re-

gion. By changing the alignment models in DARM can be applied to different applications

such improving performance in GPU applications or reducing code size in CPU applications.

DARM provides a flexible way to exploit code similarity at control-flow region level and, it

is more general than traditional compiler optimizations such as code sinking/hoisting, tail

merging [13] or branch fusion [11] that exploits code similarity only at the basic block level.

4.3 Motivating Example

Our motivating example is to_upper function that coverts all elements of a char array to

upper case and, it is shown in Figure 4.1 . This figure also shows the driver in main method

to symbolically execute to_upper function with a char array of size SIZE as input. After

77

the execution of to_upper, the driver also asserts that the output array contains no lower

case characters. In this case, scalability of this example is limited, since symbolic execution

engine has to fork the execution at every iteration on the branching condition inside the

loop (line 3) which is symbolic. In fact, when this program is run with KLEE

1
 using default

settings, it explores 1024 program paths and invokes the SMT solver 21 times for input size

10. If constraint caching is disabled, number of SMT solver invocations increases to 90.

1 void to_upper(char *text) {
2 for (int i = 0; i < SIZE; i++) {
3 if ((text[i] >= 'a') & (text[i] <= 'z'))
4 text[i] = text[i] - 'a' + 'A';
5 }
6 }
7 void to_upper_branchless(char *text) {
8 for (int i = 0; i < SIZE; i++) {
9 unsigned is_lower

10 = (text[i] >= 'a') & (text[i] <= 'z');
11 unsigned diff = is_lower == 0 ? 0 : 'a' - 'A';
12 text[i] = text[i] - diff;
13 }
14 }
15 int main() {
16 char text[SIZE];
17 klee_make_symbolic(&text, sizeof(text), "text");
18 to_upper(text);
19 for (int i = 0; i < SIZE; i++){
20 klee_assert(
21 !((text[i] >= 'a') & (text[i] <= 'z')));}
22 return 0;
23 }

Figure 4.1. to_upper function and its branchless implementation
(to_upper_branchless) with driver code for symbolic execution and verifi-
cation of final result using asserts.

The conditional branch inside the loop can be removed by converting the control-flow

into data-flow. The transformed function to_upper_branchless is also shown in Figure 4.1 .

Idea here is to compute how each character value must be shifted to convert it to upper

case. If the character is lower case then the shift value is ’a’ - ’A’ otherwise it is zero.

We compute this value (i.e. diff) conditioned (line 11) on the character being lower case
1

 ↑ KLEE-2.3+LLVM-14.0

78

(i.e. is_lower) (line 9,10). And then we apply the shift to the character value (line 12). Note

that the conditional assignment to diff is translated into a select instruction in LLVM-IR.

KLEE converts select instructions into ite expressions therefore executing the loop does

not require SMT solver invocations. If we run the transformed version in KLEE, it explores

only one program path and invokes the SMT solver only 11 times (20 with constraint caching

disabled). This example shows the utility of converting control-flow into data-flow in the

context of DSE. Loops with symbolic conditionals are a common source of scalability issues

in DSE. Targeted compiler transformations can be used to remove such bottlenecks.

Converting control-flow into data-flow is not safe when computations with side-effects

are present inside the branch. In to_upper function, store to text[i] is an operation with

side-effect because it modifies the input array. Therefore, compiler cannot hoist the store

outside the conditional branch. In transformed code, store is executed unconditionally but,

the stored value is the same as the original value if the character is not lower case. Even

though this transformation is safe in this example, reasoning about its safety at compile time

is not always trivial. But we argue that such branch eliminating transformations are useful

in managing the scalability issues of DSE. Applying such transformations to the program

can change the semantics of the program but might lead to better scalability of DSE. This

can help in identifying bugs faster and increase coverage of DSE within limited amount of

time.

In the next sections, we describe a compiler transformation called darm that converts

control-flow into data-flow to eliminate branches in a program to improve the scalability of

DSE. darm is non-semantics-preserving and may introduce new bugs in the program that

were not present in the original program. Next we describe a system that allows us to filter

out the false positives and verify if the bug discovered after darm transformation is indeed

a real bug in the original program.

4.4 Detailed Design

In this section, we describe the algorithm used by cfm-se to statically merge paths in

a program in order to accelerate DSE of the target program. We describe the dead code

79

insertion phase used for making the computation sequences within if-then-else statements

identical, and the code generation phase used for eliminating branches that are expensive

for DSE to explore. We describe the technique used by cfm-se to identify symbolic values

in the program using data-flow analysis. Finally, we describe a framework for filtering out

false positive bugs that may be introduced by cfm-se in to the target program.

4.4.1 CFM-SE Transformation

1 // ...
2 if ((text[i] >= 'a')
3 & (text[i] <= 'z')) {
4 t1 = text[i] - 'a';
5 t2 = t1 + 'A';
6 t3 = text[i];
7 text[i] = t2;}
8 else {}

(a)

1 // ...
2 if ((text[i] >= 'a')
3 & (text[i] <= 'z')) {
4 t1 = text[i];
5 t2 = t1 - 'a';
6 t3 = t2 + 'A';
7 t4 = text[i];
8 text[i] = t3;}
9 else {

10 t5 = text[i];
11 t6 = t5 - 0;
12 t7 = t6 + 0;
13 t8 = text[i];
14 text[i] = t8;}

(b)
1 // ...
2 unsigned is_lower =
3 (text[i] >= 'a') & (text[i] <= 'z');
4 t1_t5 = text[i];
5 s1 = is_lower == 0 ? 0 : 'a'; // select
6 t2_t6 = t1_t5 - s1;
7 s2 = is_lower == 0 ? 0 : 'A'; // select
8 t3_t7 = t2_t6 + s2;
9 t4_t8 = text[i];

10 s3 =
11 is_lower == 0 ? t4_t8 : t3_t7; // select
12 text[i] = s3;

(c)

Figure 4.2. cfm-se transformation example

80

cfm-se transformation is based on Control-flow Melding (CFM) [88]. As we discussed in

Section 4.2 , CFM is a compiler optimization that improves performance of GPU programs

by statically merging divergent program paths. Goal of CFM is to identify if-then-else

branches with similar basic blocks (or isomorphic control-flow regions) and merge the com-

mon instructions within those blocks into convergent blocks. If the operation sequence

inside both sides of the branch is identical, then the branch can be eliminated. However,

this scenario is rare in real-world programs. If non-identical operations are found by the

instruction alignment step, CFM moves the non-identical portions of the operations into

new basic blocks and allowing them to execute conditionally. This process can increase the

number of branches in the program. Therefore, CFM alone is not sufficient to be used as an

optimization for improving DSE performance.

Key idea of cfm-se is to insert dead instructions into the two sides of the conditional

branch to make the operations sequences identical. Dead instruction is needed when the

instruction alignment contains unaligned instructions. For the following definitions consider

a program with an if-then-else branch with two basic blocks Bt and Bf (i.e. diamond

shaped control-flow).

Definition 4.4.1. Instruction Alignment: Let It = {it1, . . . , itn} and If = {if1 , . . . , ifm} be

the ordered sequence of instructions in Bt and Bf respectively. An instruction alignment is

an ordered sequence of item pairs A = {(a1, b1), . . . , (ak, bk)} such that ai ∈ It∪∅, bi ∈ If ∪∅,

k = max(n, m) and, (ai, bi) 6= (∅, ∅) for all i ∈ [1, k]. If ai 6= ∅ and bi 6= ∅, then ai and bi are

compatible for merging (i.e. ai and bi can be merged into a single instruction). Instructions

are compatible if their operations and date types match.

Definition 4.4.2. Unaligned Instruction: Let (ai, bi) ∈ A be an item pair in an instruc-

tion alignment A such that at least one of ai and bi is ∅. Let i′ be the valid instruction out

of ai and bi. Then, i′ is called an unaligned instruction.

Definition 4.4.3. Complete Alignment: An instruction alignment A′ is called complete

if it does not contain any unaligned instructions.

If the instruction alignment for Bt and Bf is complete, we can fully merge Bt and Bf

into a single basic block eliminating the conditional branch. The first step of cfm-se is to

81

transform the alignment A into a complete alignment A′ such that A′ becomes a complete

alignment. Assume that i′ is an unaligned instruction such that i′ ∈ It. We insert a dead

instruction i′′ into Bf such that in the new alignment A′, i′′ is aligned with i′.

Definition 4.4.4. Dead Instruction: Assume that Bt contains an unaligned instruction.

A dead instruction i′′ is an instruction inserted into Bf or Bf such that i′′ and i′ are com-

patible and forms an item pair in the new alignment A′.

Inserting dead instructions is necessary to make the instruction alignment complete that

allows us to eliminate the conditional branch. But, inserting dead instructions can change

the semantics of the program and can introduce new bugs. However, cfm-se transformation

ensures the following conditions to minimize the number of new bugs introduced by the

transformation.

1. Dead instruction i′′ is not used by any non-dead instruction in the program.

2. Operation of i′ (or i′′) can only be a side-effect free ALU operation or a memory

read/write operation.

3. A dead memory operation is allowed to read from any memory location, but it is not

allowed to change existing values in the memory.

Condition 1© ensures that any of the original instructions in the program does not use

any values produced by a dead instruction. Value flow in the original program is still pre-

served after inserting a dead instruction. Condition 2© states that dead code insertion is

not supported for all types of instructions (i.e. all opcodes). For example, if the unaligned

instruction is a function call we cannot insert a dead function call because the function call

can have side-effects. In cfm-se we only insert dead instructions for ALU operations and

memory read/write operations. Supported ALU operations include arithmetic operations,

logical operations, comparison operations, bitwise operations, and conversion (i.e. casting

operations) [111]. Condition 3© allows us to unconditionally execute load/store operations.

Select Minimization: In code generation process of CFM, extra select operation are in-

serted if the operands of the two merged instructions do not match. This process can increase

82

the number of instructions in the program and extra select operation can make the data flow

more complex. In DSE, select operations essentially translate to ite expressions. More

select instructions means more interpretation overhead and more complex constraints for

the solver. Therefore, it is important to minimize the number of select instructions gener-

ated in the cfm-se transformation. Select operations can be minimized if the both sides of

the conditional branch have similar def-use chains. More precisely, let it = op(o1
t , o2

t) and

if = op(o1
f , o2

f) be two aligned binary instructions in instruction alignment A. Merging it and

if does not require additional select operations if o1
t = o1

f and o2
t = o2

f or (o1
t , o1

f) and (o2
t , o2

f)

are also aligned instructions in the A.

Setting Operands for Dead ALU Instructions: There is some flexibility in setting

operands for dead ALU instructions. On one hand, we can set all the operands of the dead

instruction to some safe constant value (e.g. 0) depending on the semantics of the instruction

in order to ensure safe execution of the dead instruction. On the other hand, we can try to

preserve the def-use chains and minimize select operations. In cfm-se, we do a mix of both

approaches. We try to preserve the def-use chains and minimize select operations as long as

the dead instruction can not result in any new bugs (such as overflow, underflow, division

by zero or undefined behavior). The operand setting process is explained with an example

at the end of this section.

Challenges in Merging Memory Operations: DSE engines such as KLEE experiences

significant performance overhead if the program contains memory accesses to symbolic ad-

dresses [107]. Merging memory operations can result in symbolic memory accesses even if

the two aligned memory operations access concrete addresses individually. For example,

consider two load aligned load instructions it = load(a) and if = load(b) with a symbolic

branching condition c and a 6= b. If we merge them into a single load the resulting load will

be i = load(select(c, a, b)). Even if a and b are concrete addresses, the resulting load will be

symbolic because the address is a function of the branching condition.

Setting Operands for Dead Load/Store Instructions: To avoid creating more symbolic

memory accesses, We follow the following criteria in aligning memory operations.

83

1. If the two aligned memory operations access the same address, we merge them into

a single memory operation. If the addresses are same the merged instruction can not

have a symbolic address.

2. If two aligned memory operations access concrete memory locations but, they are not

the same, we convert them to unaligned memory operations. This essentially linearize

the two memory operations but avoids creating symbolic memory addresses.

3. If at least one of the two aligned memory operations access a symbolic address, we

don’t apply cfm-se to the branch.

Note that in case 2©, linearizing guarded load/store instructions is not safe and can lead

to new program bugs. This is because guarding condition might be protecting the memory

operation against out-of-bounds access. Therefore, cfm-se transformation can result in new

out-of-bounds memory access bugs. We describe an automated way to filter out such false

positive bugs in Section 4.4.3 . If the memory location is valid, then cfm-se transformation

does not change the semantics of the program. This is because, the loaded value from a dead

load is never used by any other instruction. For a dead store, the stored value is the same as

the existing value in that memory location. This can be achieved by inserting a load from

the same memory location before the dead store.

Algorithmic description of cfm-se transformation is shown in Algorithm 3 . This algo-

rithm shows how cfm-se transforms a given function F inside a module (consisting of many

functions). The first step is converting all branches in F into a canonical form. In this step

we convert if-then branches with a single basic block into diamond shaped if-then-else

branches. This is step is important because control-flow melding implementation (i.e. darm)

requires this form. Next, we iterate through all the conditional branches in F collect all the

branches that cfm-se might be applicable. We filter out cases where the successor blocks of

the branch contains symbolic addresses (Section 4.4.1) or contains program locations that

cfm-se is not allowed to merge (Section 4.4.3). Next, for each collected branch location we

insert dead instructions to make the instruction sequences identical inside its left and right

successors. We use darm’s instruction alignment mechanism to figure out the type of dead

instruction that must be inserted and their location (Section 4.4.1). Then, the two successor

84

blocks of the branch are merged using control-flow melding. Note that merging changes the

control-flow graph and introduce redundant unconditional jumps. These branches can reduce

the number of opportunities for recursive applications of cfm-se. Therefore, we remove the

redundant jumps as the final step of the procedure. This while procedure is applied to each

function of the module repeatedly until no more merging is possible.

Algorithm 3: cfm-se Algorithm
Input: Function F , Location constraints LC
Output: Boolean changed indicating if F was modified or not
List branchL ← ∅
changed← false
ConvertIfThenBranches(F)
for each block B in F do

if B does not end with a conditional branch then
continue

end
BI ← getTerminator(B)
SuccL, SuccR← getSuccessors(BI)
if SuccL, SuccR has diamond-shaped control-flow then

if SuccL or SuccR contains symbolic addresses then
continue

end
if SuccL or SuccR does not satisfy location constraints LC then

continue
end
branchL.append(BI)

end
for each branch instruction BI in branchL do

SuccL, SuccR← getSuccessors(BI)
InsertDeadCode(SuccL, SuccR)
if merge(SuccL, SuccR) then

changed← true
end

end
if changed then

RemoveRedundantJumps(F)
end
return changed

end

85

Example: Now we explain how cfm-se transformation works in action using our running

example (Figure 4.1). Figure 4.2 shows how to_upper function is transformed on each

stage. Figure 4.2a shows to_upper function with empty else section inserted. This is extra

canonicalization step of cfm-se that converts if-then to if-then-else form which allows

it to merge if-then branches. Also, instructions are shown on separate lines (Lines 4-7) for

better readability. Figure 4.2b shows the code after dead code insertion. Here else path is

empty therefore all the instructions are unaligned. else path contains the dead instructions

inserted. For example, load operation in line 4 is repeated in line 10 after the dead code

insertion. cfm-se also tries to preserve def-use chains and minimize select operations needed

for merging. For example, instruction t7 at line 12 uses instruction t6 at line 11. This is

similar to instruction t3 using t2 as its first operand. t7 uses 0 as its second operand to

avoid any overflow/underflow bugs. This example also demonstrates how store instructions

are handled during dead code insertion. On if path there is a store (Line 8) of value t3

to text[i]. On else path the same store is performed (Line 14) but the stored value

is text[i] (i.e. t8). This requires loading text[i] before the store (Line 13). This also

inserts a redundant load to the if path (Line 7) to make the alignment complete. Figure 4.2c

shows the code after the merging step. Extra select operations (shown as C ternary operator)

are inserted to select operands if input operands do not match. In this example, it is safe

to execute all the memory operations unconditionally and therefore the transformation is

semantics-preserving. Transformed program is much faster to execute in KLEE compared

to the original (Section 4.3).

4.4.2 Properties of CFM-SE Transformation:

Consider a single application of cfm-se to a branch in program P . Assume program P d

is obtained after inserting dead instructions and P ′ is the final result of the transformation.

Then the following properties hold:

1. Any dead instruction added to P d is not used by original instructions in P d.

2. Any dead store operation inserted into P d does not mutate the memory space because

the stored value is the same as the existing value in the memory.

86

3. Values of the dead instructions can not flow outside the merged branch because they

will be filtered out by the φ-nodes at the end of the branch.

4. Transformation P d → P ′ does not violate any program semantics because DARM [88]

is a semantics-preserving transformation. Therefore, any failure that exists in P d must

exist in P ′.

Property 1©, 2© ensures that dead code insertion does not alter the original computation

of the program in any way. Therefore, if the original program has some bug, then program

after inserting dead code will also have the same bug. These properties along with property

4© ensures the failure preservability of cfm-se transformation. Property 3© ensures that if

a bug is introduced in P → P d transformation, then it will be realized within the merged

region. This property allows us to undo the transformation and filter out false positive bugs

introduced by cfm-se. We describe the design of our false positive detection framework

next.

4.4.3 False Positive Detection

As described in Section 4.4.2 , assume the program we are testing using DSE is P . Let

P ′ be the program after cfm-se transformation. Let αcrash be a program input that causes

a crash in P ′. If executing the same input on P does not cause a crash, then we have a

false positive bug. As discussed in Section 4.4.1 , cfm-se can introduce new bugs in the

program, therefore detecting false positives is important. False positive bugs inserted by

cfm-se transformation must be realized within the region of the code where the transfor-

mation is applied. Dead instructions inserted by cfm-se are not used by any of the original

instructions. Therefore, their values can not flow outside the merged branch. In other words

a false positive bug added by cfm-se must materialize at an instruction produced by the

transformation. An example would be a memory out of bounds access caused by uncondi-

tional execution of memory instructions. This bug will realize at the program location of

this memory access. We can find this program location and avoid applying cfm-se to that

location and re-execute the program symbolically. This will avoid that specific false positive

bug from occurring again.

87

CFM-SE

DSE Engine
(KLEE)

False Positive
Detector

Interesting
Inputs

Input
Program

(P)

Location
Constraints

Real
Crash

False
Positive

Crashing
Input (𝜶crash)

Transformed
Program (P’)

Seed
Inputs

Figure 4.3. Symbolic execution driver loop used for detecting false positive
bugs introduced by cfm-se.

The false positive detection and re-execution driver is shown in Figure 4.3 . Driver start

by symbolically executing the cfm-se transformed program P ′ in KLEE. If a crashing input

(αcrash) is detected during symbolic execution, execution is stopped and the driver checks

if αcrash is valid crash. This can be done by re-executing untransformed P with αcrash. If

it is a real crash αcrash is collected as an interesting input. Otherwise, driver obtain the

program location where the crash occurred and update location constraints for the cfm-se

transformation (i.e. cfm-se it not applied to that location). Program P is recompiled with

updated location information and driver loop continues. Restarting the whole DSE process

can be expensive specifically if the false positive bug is found deep inside the program. Now

the KLEE needs explore all previously explored paths again with recompiled program losing

all the progress we made in the previous DSE exploration. To avoid the overhead of re-

exploring the whole program from scratch, we use the inputs collected during the previous

DSE run as seeds for the new DSE run.

88

4.4.4 Symbolic Variable Analysis

1 int foo(int x, int y) {
2 if (x > y) return x;
3 if (y > 0) return y;
4 return x + y;
5 }
6 int main() {
7 int a;
8 klee_make_symbolic(&a, sizeof(a), "a");
9 ...

10 int p = foo(a, 10);
11 ...
12 int q = foo(-5, a);
13 ...
14 }

Figure 4.4. Symbolic variable analysis example. Function main contains two
calls to function foo with symbolic arguments. Depending on the call site of
foo different instructions inside foo must be marked symbolic.

In DSE, the outcome of a conditional branch can depend on a symbolic variable. Such

branches are called symbolic branches. If both outcomes of a symbolic branch (true and

false) are feasible the DSE has to fork the execution and explore both outcomes of the

branch. To minimize the number of paths explored by DSE, we need to apply the cfm-

se transformation only at symbolic branches that are expensive for DSE to explore. This

requires identifying symbolic branches in the program at compile time. Our symbolic variable

analysis is based on LLVM’s divergence analysis [42]. Divergence analysis identifies variables

that are data or control-dependent on divergent sources such as thread identifier in GPU

programs. Divergence analysis is intra-procedural. It does not consider symbolic value flow

across function boundaries resulting in significant loss of precision for our use case. Next

we describe how we address this limitation to design an inter-procedural symbolic variable

analysis.

First step of symbolic variable analysis is identifying symbolic sources. Symbolic sources

simply refer to variables that are explicitly marked as symbolic by the user. Symbolic

source can be a variable that is explicitly marked as symbolic by the user. For example, in

89

KLEE [100] a variable can be marked as symbolic using the klee_make_symbolic function.

Any user arguments to the program are also considered symbolic sources (i.e. the arguments

to the main function). Due to the complexity of reasoning about aliasing between different

memory accesses from different functions, we also conservatively mark all memory loads of

a function as symbolic as well. We observe that without this simplifying assumption, most

functions deep down in the call graph are never marked to have any symbolic instructions.

This approach is similar to LLVM divergence analysis [42] where any memory access from

the global memory is assumed to be divergent.

Similar to divergence analysis, if we use an intra-procedural data flow analysis after

marking symbolic sources, it will only mark a subset of true symbolic instructions in the

program. This is because the symbolic property of a variable is not propagated to callees

from a call site with symbolic arguments. Consider the example program in Figure 4.4 . An

intra-procedural symbolic variable analysis will identify the a variable in the main function

as a symbolic source first and the mark call sites at lines 10 and 12 as symbolic due data

dependance on a. However, none of the instructions in the foo function will be marked

as symbolic because function foo does not have any explicit symbolic sources and symbolic

variables are not propagated to callees at their call sites. We address this limitation by

updating the symbolic sources of the callees at each call site and re-processing the callee

if there is a change in the symbolic sources. The algorithm for inter-procedural symbolic

variable analysis is shown in Algorithm 4 .

First we mark the symbolic sources for all the functions in the program and insert each

function into a work list. Then we process each function in the work list and propagate

the symbolic property to other instructions within the function based on data or sync-

dependances (similar to divergence analysis). Once the function is processed we check each

call site in the function. If the call site is marked as symbolic, that means at least one

argument of the function is symbolic. If that argument is not already marked symbolic we

proceed to mark it as symbolic and insert that function into the work list for re-processing.

This analysis is inter-procedural but context-insensitive. Context-sensitive analysis is not

required because we are only interested in applying the cfm-se transformation at symbolic

branches at compile time. In the example program (Figure 4.4), processing main function

90

initially will mark call sites at lines 10 and 12 as symbolic. Then re-processing of function foo

will mark all operations in the function as symbolic (lines 2, 4 because of input argument x

and line 3 because of argument y). For function with variable number of arguments (variadic

functions) [112] we mark all accesses to the variable arguments as symbolic if at least one of

them is found to be symbolic at a call site.

Algorithm 4: Symbolic Variable Analysis Algorithm
Input: Program P
Output: Symbolic variable analysis result R
Set WL ← ∅
Map R ← ∅
for each function F in P do

R← updateSymbolicSources(F , R)
WL.insert(F)

end
while WL 6= ∅ do

F ← WL.removeOneEelement()
propagateSymbolic(F , R)
for each call site C in F do

if C is not marked as symbolic then
continue

end
CF ← callee of C
R← updateSymbolicSources(CF , R)
if CF is not in WL then

WL.insert(CF)
end

end
end
return R

4.5 Evaluation

4.5.1 Implementation

We implemented the cfm-se as an LLVM-IR

2
 transformation pass. We extended the

DARM [88] framework to implement the cfm-se analysis and transformations described in

section 4.4 . Unlike DARM, our implementation only targets single basic block if-then con-
2

 ↑ LLVM-14.0.0

91

structs or diamond shaped if-then-else constructs. Since cfm-se completely eliminates

the branch, recursive application of cfm-se can merge complex if-then-else-if chains as

well. Merging transformation also keeps track of the original source line number informa-

tion of the merged instructions. For example, if two instructions i1 and i2 with source line

numbers l1 and l2 are merged, the merged instruction im will be attached additional debug

information that contains the source line numbers l1 and l2. This helps us to keep compute

the line coverage of the transformed program. We refer to this as merged line coverage. For

the symbolic execution we used KLEE

3
 DSE engine. cfm-se pass is run as a pre-processing

step before the symbolic execution begins in KLEE.

4.5.2 Experimental Setup

For all the experiments we used an X86 machine with 256 GB of memory and AMD

Ryzen 64-Core Processor running Ubuntu 18.04.6 LTS. To evaluate the utility of cfm-se

transformation we designed out experiments to answer the following research questions:

• DSE Performance (RQ1): How effective is cfm-se’s branch elimination trans-

formation in reducing the number of solver calls and mitigating the path explosion

problem?

• Bounded Verification (RQ2): Can cfm-se make bounded verification faster?

• Coverage (RQ3): Can a program transformed with cfm-se achieve higher line cov-

erage within a given time budget?

For RQ1 and RQ2, we use a benchmark suite of 11 programs consisting of well-known

graph algorithms, sorting algorithms and our motivating example (i.e. toupper) from Sec-

tion 4.3 . The functionality of each benchmark and the nature of their inputs are described

in Table 4.1 . We selected these benchmarks because they are smaller enough so that KLEE

can enumerate all feasible execution paths for sufficiently smaller input sizes within a reason-
3

 ↑ KLEE-2.3

92

able amount of time (i.e. within hours). This allows us to evaluate how effectively different

techniques can mitigate the path explosion problem compared to vanilla KLEE.

Table 4.1. Description of the benchmarks used for RQ1 and RQ2
Benchmark Description

toupper converts all lowercase letters to uppercase in a fixed length char array
bitonic sort use bitonic mergesort to sort an integer array [50]
connected
components

computes the number of connected components in a graph represented
in adjacency matrix form using Shiloach-Vishkin algorithm [113]

prim finds a minimum spanning tree for weighted undirected graph
kruskal finds a minimum spanning forest for a edge-weighted undirected graph
merge sort recursive top-down merge sort for sorting an integer array
transitive
closure

computes the reachability from vertex i to vertex j for all vertex pairs
(i, j) in a directed graph

dilation applies morphological dilation to a binary image over a 3 × 3 neigh-
borhood [114]

detect edges applies the Sobel-Feldman operator [115] to an input image to for
edge detection

floyd
warshall

finds the shortest paths between all pairs of vertices in a weighted
directed graph [116]

erosion applies morphological erosion to a binary image over a 3 × 3 neigh-
borhood [114]

4.5.3 DSE Performance (RQ1)

For RQ1, we execute the 11 programs with symbolic inputs of different sizes. For the

comparison we consider the following approaches:

• Vanilla KLEE (K): KLEE with default optimization settings.

• KLEE with State Merging (SM) : KLEE with state merging enabled using its

built-in state merging mechanism [100]. For this, we manually instrumented the bench-

marks to surround each symbolic if-then and if-then-else regions with klee_open_merge

and klee_close_merge calls. This enables dynamic state merging of all states forked

after the klee_open_merge call at a klee_close_merge call.

93

• KLEE with CFM-SE (C): KLEE with cfm-se transformation enabled.

• KLEE with CFM-SE and State Merging (C-SM): KLEE with cfm-se trans-

formation and state merging enabled.

Because cfm-se (C) is a compile time technique, its applicability is limited compared to

dynamic state merging (SM). There for some programs, it is more beneficial to apply both

techniques (C-SM). C-SM has the benefits of both cfm-se and state merging i.e. it can

eliminate branches at compile time and merge states at runtime. We use STP solver stp

as the solver backend in KLEE. For each KLEE execution we use a time budget of 1 hour

(–max-time=3600s) and memory budget of 50 GBs (–max-memory=51200). We also used

the option –only-output-states-covering-new that makes KLEE only output the states

that cover new code paths. For each run, we used klee-stats klee_stats tool to collect

time KLEE takes to explore all possible program paths (or timeout), number of solver calls,

average solver query size, and number of explored program paths. To reduce the noise in

time measurements, we repeated each experiment 5 times and report the median.

Run Time : Table 4.2 shows the results of the experiments. For all the benchmarks,

application of cfm-se does not result in any crashes i.e. applying cfm-se is safe for these

benchmarks. Out of the 33 benchmark and input size configurations, approach K times

out in 19 cases, SM times out in 4 cases. Both C and C-SM times out in only 3 cases.

The 3 cases where C and C-SM time out occurs in kruskal and merge sort. In both

these benchmarks, there are no opportunities for cfm-se to eliminate branches i.e. both

benchmarks contain either branches with symbolic array addresses. So the performance of

C is similar to K. However, manual application of state merging (SM) still merges states

in these two benchmarks yielding mixed results. For kruskal SM finishes the exploration

faster than K for inputs sizes 3 and 4. However, for merge sort merging states with symbolic

addresses makes things worse resulting in ≈ 5 times slow down for input size 5. In kruskal,

even though diverging program paths contain memory accesses with symbolic addresses, the

memory accesses are always to the same array element. Therefore, KLEE does not require

additional solver calls for resolving the memory accesses.

94

Table 4.2. KLEE symbolic execution statistics collected for the approaches
K, C, SM and, C-SM. Table shows the execution time, number of queries,
average query size and, number of explored paths for the different benchmarks
and inputs sizes. OOT = out of time (1 hour limit)

Benchmark Input
Size

Time(s) Number of Queries Average Query Size Explored Paths
K C SM C-SM K C SM C-SM K C SM C-SM K C SM C-SM

toupper
10 0.19 0.00 0.11 0.00 11 0 11 0 11 0 11 0 1,024 1 11 1
50 OOT 0.00 0.59 0.00 26 0 51 0 11 0 11 0 10,974,670 1 51 1
100 OOT 0.00 1.22 0.00 26 0 101 0 11 0 11 0 10,199,525 1 101 1

bitonic sort
4 0.55 0.00 0.11 0.00 37 0 7 0 103 0 145 0 28 1 7 1
8 OOT 0.00 1.56 0.00 106,764 0 25 0 415 0 1,233 0 66,409 1 25 1
16 OOT 0.00 28.58 0.00 94,373 0 81 0 403 0 9,336 0 119,136 1 81 1

connected
components

3 0.09 0.05 0.14 0.07 10 12 44 12 4 151 145 151 512 3 29 3
4 81.45 0.11 9.92 0.10 17 20 118 20 4 434 8,964 434 65,536 4 71 4
5 OOT 0.28 OOT 0.23 26 30 122 30 4 955 1,510,179 955 16,348,259 5 96 5

prim
4 16.13 0.07 1.14 0.07 386 28 69 28 217 118 899 118 53,392 1 37 1
5 OOT 0.16 6.06 0.16 7,513 45 121 45 320 228 2,597 228 4,238,759 1 69 1
6 OOT 1.59 26.55 1.60 9,539 66 187 66 290 370 6,039 370 3,567,833 1 111 1

kruskal
3 15.83 12.33 10.48 12.74 668 667 444 444 360 360 356 356 144 144 120 120
4 877.25 728.09 473.26 547.12 20,919 20,897 8,581 8,577 574 574 596 597 5,808 5,808 2,832 2,832
5 OOT OOT OOT OOT 49,050 53,409 2,390 2,436 648 654 625 630 18,903 20,364 797 809

merge sort
5 1.67 1.86 8.10 8.12 120 120 568 568 146 146 1,118 1,117 120 120 119 119
10 OOT OOT OOT OOT 113,712 103,186 92,071 90,878 385 382 2,647 2,636 115,481 106,063 24,284 23,571
15 OOT OOT OOT OOT 46,620 45,603 123,616 122,377 365 362 1,081 1,102 1,828,398 1,616,690 50,503 49,652

transitive
closure

3 3.08 0.00 0.34 0.00 772 0 27 0 164 0 913 0 49 1 24 1
4 394.77 0.00 1.43 0.00 75,154 0 64 0 309 0 4242 0 2,041 1 60 1
5 OOT 0.00 4.44 0.00 141,506 0 125 0 389 0 13608 0 121,728 1 120 1

dilation
4 0.44 0.25 0.36 0.31 42 28 28 24 40 14 59 15 81 16 9 5
5 6.24 0.55 0.77 0.54 240 52 57 43 130 15 129 15 11,502 512 19 10
6 OOT 33.44 1.51 0.87 1,008 84 98 68 161 15 221 16 3,671,111 65,536 33 17

detect edges
3 OOT 0.01 5.18 0.00 26 2 12 2 323 8 561 8 23 2 19 2
4 OOT 0.01 21.04 0.01 20 2 39 2 293 8 2,820 8 17 2 50 2
5 OOT 0.01 47.82 0.01 20 2 84 2 293 8 6,657 8 17 2 99 2

floyd
warshall

3 OOT 0.00 0.50 0.00 1,976 0 27 0 329 0 789 0 1,619 1 23 1
4 OOT 0.00 2.75 0.00 79,222 0 64 0 507 0 3,915 0 60,274 1 58 1
5 OOT 0.00 13.59 0.00 84,458 0 125 0 518 0 13,178 0 65,547 1 117 1

erosion
4 1.78 0.2 0.44 0.25 130 28 32 24 255 15 172 15 59 16 9 5
5 148.57 0.46 1.04 0.43 7,347 52 61 43 598 15 401 16 3,516 512 19 10
6 OOT 34.15 2.31 0.68 87,840 84 100 68 864 15 885 16 95,697 65,536 33 17

In fact the number of solver calls reduces for kruskal when SM is applied compared to

K (444 vs 668 for input size 3). However, for merge sort, the symbolic memory accesses are

to different array elements and KLEE requires additional solver calls to resolve the memory

accesses. In this case solver calls increases significantly for SM compared to K (568 vs 120

for input size 5). For both these benchmarks, behavior of C-SM is similar to SM because

cfm-se does not apply to them. Overall, C is always faster than K for all the benchmarks

and input sizes. Erosion and dilation are the only other benchmarks where SM outper-

forms C (for the largest input size). These two programs contains loops that are guarded

by symbolic conditions. cfm-se cannot eliminate branches containing control-flow regions

(i.e. loops). However, state merging does not have this restriction and can still merge states

95

in these loops. Combining cfm-se and state merging (C-SM) yields the best performance

for these two benchmarks because it can eliminate branches to remove the solver overhead

and merge states in locations where cfm-se cannot eliminate branches.

Solver Calls : cfm-se transformation is highly effective in reducing the number of solver

calls for all the cases where it is applicable. Out of the 9 benchmarks that cfm-se trans-

formation is applicable, it reduces the number of solver calls in all of them. In toupper,

bitonic sort, transitive closure, and floyd warshall, cfm-se completely eliminates all sym-

bolic branches resulting in zero solver calls during symbolic execution. Essentially, the

cfm-se-transformed program computes a single disjunctive path constraint representing all

possible execution paths. Even though this is better for the performance, eliminating all

symbolic branches can result in more expensive solver calls if this path constraint is used

in a later symbolic branch. We investigate the impact of aggressive branch elimination in

Section 4.5.4 and ways to mitigate its drawbacks in Section 4.6 . Table 4.2 also shows the

number of program paths explored by each technique. This metric is also quite similar to

the number of solver calls. C end up exploring only a single program path in 5 of the bench-

marks. Essentially, in these benchmarks C computes a single conjunctive path condition

that represent any valid input to the program.

Solver Query Size : Average query size in Table 4.4 measures the average number of

constructs per query issued to the solver. This is highly sensitive counter example caching

mechanism used in KLEE [100]. If the constraints encountered during different program

paths are similar number cache hits increase and therefore number of newly created queries

goes down. If cache hits are low, then average query size increases because now more different

queries are going to the solver. According to our evaluation state merging negatively impact

the caching mechanism in KLEE. Average query size is much higher for SM for most of the

benchmarks. This is because merging states from different loop iterations create complex

irregular constraints that are not repeated. In fact average query size is significantly higher

for SM in 8 out of the 11 benchmarks considered. On the other hand, static merging of

program paths reduces the average query size. This is because cfm-se reduces the number

96

of solver calls significantly and, also helps to maintain the repeatability of constraints. We

observe that C achieves more cache hits per program path explored compared to SM on

several benchmarks.

Table 4.3. Query cache hits per explored path for benchmarks where C
explores more than a single path.

Benchmark Input Size Query Cache Hits / Explored Paths
C SM C-SM

connected
components 5 10.8 1.75 10.8

prim 6 110 1.98 110
merge sort 15 2.67×10−2 3.70 3.73
dilation 6 1.95 ×10−3 1.21×10−1 2.12
detect
edges 5 1 1.17 1

erosion 6 1.95×10−3 3.03×10−2 2.12

Regularity in Generated Constraints : To further investigate the impact of cfm-se on

the regularity of generated constraints, we measure the number of cache hits per program

path explored for each technique. Table 4.3 shows the results of this experiment. We only

considered benchmarks where after applying cfm-se, DSE still requires solver calls during

the exploration (i.e. number of paths explored is greater than 1). If the path constraints

are repeated on different program paths, then we can expect more cache hits per program

path. Because dynamic state merging can merge any two random states, it can generate

more complex irregular constraints as the path condition. This results in reduced cache hits

per program path. This is evident in 4 out of the 6 benchmarks considered (i.e. connected

components, prim, dilation and erosion). In detect edges applying cfm-se merges all paths

inside program loops and therefore, DSE explores a fixed number of paths regardless of the

input size. In that case, SM has slightly higher cache hits per program path compared to

C (or C-SM). For merge sort cache hits per program path increases with state merging

because of the drastic increase in array queries and most of these queries hitting the cache.

This study shows that cfm-se can merge program states statically while maintaining the

97

regularity of generated constraints enabling better query caching. In contrast, dynamic state

merging can merge any two random states and therefore, it can generate complex irregular

constraints that are may not be repeated.

4.5.4 Bounded Verification (RQ2)

Table 4.4. Time spent and number of solver calls issued by KLEE for bench-
marks instrumented with verification conditions. Table shows the statistics for
different techniques and input sizes considered. OOT = out of time (1 hour
time limit)

Benchmark Input
Size

Time(s) Queries
K C SM C-SM K C SM C-SM

toupper
10 0.45 0.13 0.24 0.13 21 11 21 11
50 OOT 0.63 1.24 0.66 26 51 101 51
100 OOT 1.27 2.55 1.28 26 101 201 101

bitonic
sort

4 1.37 0.45 0.55 0.45 121 4 10 4
8 OOT 104.94 104.68 100.88 150,247 8 32 8
16 OOT OOT OOT OOT 98,285 3 83 3

dilation
4 0.59 0.31 0.44 0.42 58 48 44 44
5 27.06 1.22 0.97 0.77 270 92 82 77
6 OOT 264.85 1.87 1.3 1,322 144 134 120

erosion
4 2.35 0.29 0.55 0.38 181 64 48 44
5 245.74 1.48 1.4 0.72 13,455 142 86 77
6 OOT 286.65 3.27 1.19 94,175 228 136 120

In RQ1, we only focused on the functional correctness of the benchmarks (i.e. benchmark

does not crash all possible inputs) and how effective each technique is on mitigating the path

explosion problem. In some benchmarks, aggressive branch elimination merge all possible

execution paths into a single program path and corresponding path condition is not used

in any of the program branch. This can be observed in 4 benchmarks (i.e. toupper, bitonic

sort, transitive closure, and floyd warshall) where C has 0 solver calls and end up exploring

only a single program path. In RQ2, we inserted assertions at the end of the program to

verify if the output satisfy certain conditions that are known to be true after the program

execution.

98

Constructing correctness assertions for all the benchmark programs is non-trivial and

checking the assertions is computationally expensive in some cases (i.e. graph algorithms).

Therefore, for RQ2 we consider a subset of the benchmarks with the listed assertions.

• toupper: check if the output string contains only upper case characters.

• bitonic sort: check if the output array is sorted in ascending order.

• erosion: check if each pixel value in the output binary image is less than or equal to

the corresponding pixel value in the input image.

• dilation: check if each pixel value in the output binary image is greater than or equal

to the corresponding pixel value in the input image.

We modified the programs to check the above conditions using klee_assert statements

and measured the time and number of queries taken for the different approached considered

in RQ1. Table 4.4 shows the results of the experiments. In general results suggest the C is

very effective in reducing the number of solver calls and improving the DSE performance. In

toupper, C and C-SM are the best performing approaches having close to 2× reduction in

both runtime and number of solver calls compared to SM. In bitonic sort, the performance

of C and SM have comparable performance even though SM has significantly more solver

calls (8 vs 32). This benchmark contains memory reads/write with loop carried dependances

(i.e. current iteration uses the values written to memory by the previous iteration). Branch

elimination on such loops makes the path constraints more complex because the conditional

assignments are converted complex ite containing different values in memory. Even though

the number of solver calls are reduced by C, the solver calls are more expensive because of the

complex path constraints. SM also merge the constraints but state merging is sensitive to

the path exploration strategy in use i.e. it does not necessarily merge states forked within the

same iteration of a loop. Because of this reason SM end up exploring more paths with less

complex constraints compared to C. For input size 16 in bitonic sort all the approaches time

out. For dilation and erosion, the best approach is C-SM because these two benchmarks

has opportunities for both branch elimination and state merging (Section 4.5.3). SM works

better than C for both the benchmarks because of its ability to merge states from arbitrary

99

control-flow paths whereas C is limited to merging condition branches containing straight-

line code. As evident by the results, C-SM is significantly better than SM in terms of

runtime and number of solver calls. This shows the utility of transformations like cfm-se

in improving the performance of DSE.

4.5.5 Coverage (RQ3)

Branch elimination allows KLEE to avoid the solver overhead and reach unexplored pro-

gram locations faster. Essentially, this helps KLEE to achieve more coverage in less time.

To assess how well cfm-se transformation helps KLEE in achieving this goal, we consider

3 real-world subjects: GNU oSIP-4.0.0 (i.e. libosip) [117], GNU libtasn1-2.11 [118], and

chcon utility from coreutils-6.11 [119]. libosip is a library for Voice Over IP (VoIP) ap-

plications. It implements the Session Initiation Protocol (SIP) and provides a programming

interface for building SIP applications. libtasn1 is a library for encoding data objects in a

machine-neutral fashion according to the Abstract Syntax Notation (ASN.1) specification.

chcon utility in coreutils is used to change the SELinux security of a file [120]. We use these

benchmarks because they contain large complex codebases that can be compiled into LLVM-

IR and, they have been used in similar KLEE-based studies related to DSE [100], [121]. For

libosip and libtasn1, we use the benchmark setup used in Chopper [121]. This includes

manually written test driver programs that initialize the library interfaces and invoke the

library functions with symbolic inputs. In libosip, test driver mainly focuses on testing the

osip_message_parse function with symbolic message of size 10 bytes. In libtasn1, driver

tests the asn1_der_decoding function with a fixed sized (i.e. 32 bytes) symbolic input. For

chcon, we followed the setup described in KLEE coreutils experiment [122].

For each benchmark considered, we run both KLEE and KLEE with cfm-se using the

driver program described in Section 4.4.3 . We use the default KLEE options described

in Chopper and coreutils experiments. For libosip and libtasn1, we use 3 hour time

limits and for chcon we use 1 hour time limit. Each benchmark is compiled with -g flag to

generate debug information (i.e. source line information) for the LLVM-IR. Figure 4.5 shows

the source line coverage plotted against time for libosip benchmark. Line coverage is the

100

percentage of distinct source lines that have been explored so far out of the total distinct

source lines covered by all the LLVM-IR instructions in the compiled program. In this

benchmark the maximum line coverage that can be achieved is around 36%. This is because

the test driver only focus on testing certain interfaces of the library and some functions are

not invoked at all. Interestingly, cfm-se can reach the maximum line within in less than 500

seconds while KLEE takes close to 1 hours to reach the same coverage. In KLEE, coverage

improves slowly within approximately 1000 seconds to 3000 seconds.

0 500 1000 1500 2000 2500 3000 3500
Time (s)

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

Co
ve

ra
ge

 (%
)

KLEE
CFM-SE

Figure 4.5. Source line coverage vs time for libosip benchmark

This is caused by symbolic execution getting stuck inside loops that have conditional

branches or function calls with conditional branches. These loops do not have early exits

so KLEE can not explore other paths outside the loop without finishing the whole loop

execution. We found several loops in libosip that have this property. Aggressively branch

elimination of branches inside these loops allows KLEE to finish the execution of the loops

faster and explore more paths outside them. In this benchmark we did not find any false

positive bugs that are introduced by cfm-se. In other words, for the lines covered in

101

the benchmark cfm-se transformation is safe. The fact that cfm-se can achieve more

coverage faster also means that the path queries generated by cfm-se is not significantly

more expensive than the path queries generated by KLEE.

0 5 10 15 20
Time (s)

33.0

33.5

34.0

34.5

35.0

Co
ve

ra
ge

 (%
)

KLEE
CFM-SE

Figure 4.6. Source line coverage vs time for libtasn1 benchmark

Figure 4.6 shows the source line coverage for libtasn1 benchmark. In this benchmark,

both KLEE and cfm-se crash due to a malloc call with symbolic size. KLEE reach this

location faster than cfm-se (14 seconds vs 25 seconds). cfm-se encounters 3 false positive

bugs before reaching the malloc call. When a false positive is encountered, driver program

relaunch KLEE with additional location constraints on cfm-se transformation so that the

transformation does not apply to the false positive location again. In this case all the false

positive bugs are caused by out of bound memory accesses. These are caused by cfm-se

eliminating the branches that are guarding against out of bound memory accesses. The

reduction in coverage for cfm-se in Figure 4.6 is caused by the fresh re-execution of the

program.

102

chcon benchmark also exhibits similar behavior as libosip benchmark (Figure 4.7).

cfm-se does not introduce any spurious bugs in this benchmark and achieves more coverage

faster than KLEE. Maximum source line coverage achieved in this benchmark is approxi-

mately 64%. darm achieves this coverage in around 2200 seconds while KLEE takes around

3400 seconds to reach the same coverage.

0 500 1000 1500 2000 2500 3000 3500
Time (s)

25

30

35

40

45

50

55

60

65

Co
ve

ra
ge

 (%
)

KLEE
CFM-SE

Figure 4.7. Source line coverage vs time for chcon benchmark

4.6 Limitations of CFM-SE

4.6.1 Constraint Complexity

There are several limitations that restrict the applicability and generality of cfm-se.

Unlike darm (Chapter 2) and cfm-cs (Chapter 3), cfm-se does not use a cost model

to reason about the profitability of the branch elimination. cfm-se uses simple heuristics

based on the symbolic variable analysis to decide whether to apply the branch elimination

or not. For example, if the branch contains memory accesses with symbolic addresses, cfm-

103

se does not apply the branch elimination. cfm-se does not reason about how complex the

constraints can become if they are used in a future solver query. This requires estimating the

complexity of queries that could be generated by a given sequence of instructions. Statically

estimating the query cost has been explored by previous work related to state merging [26].

However, estimating the query cost of compile-time transformation is not well-explored. We

believe this is an interesting problem that can be explored in future work. The benefits of

cfm-se is sensitive to the structure of dependances in program loops. If all different paths

that are possible in a loop does not matter for branches outside the loop, statically merging

the branches inside the loop is highly beneficial. This kind of program behavior can be

expected when the program loops does not contain loop carried dependances. We observe

superior performance for benchmarks such as toupper, dilation and, erosion because

of this reason (Section 4.5.4). In these benchmarks, constraints generated by cfm-sedoes

not grow on each iteration of the loop, and therefore the solver queries are not expensive.

However, if the program loops contain loop carried dependances, the constraints generated

by cfm-se can grow on each iteration of the loop. This is evident in bitonicsort benchmark

(Section 4.5.4). In this benchmark, cfm-se’s performance is comparable to state merging

even though cfm-se reduces the number of solver calls significantly. In other words, due

to the loop carried dependances, the constraints generated by cfm-se keeps getting more

complex when the input size increases. This limits the scalability of cfm-se for certain

programs. However, DSE is not intended to be used for large input sizes where none of the

techniques are scalable. This observation gives us good insights on designing a cost model

for static evaluation of query cost.

4.6.2 Test Generation

Program transformed using cfm-se has less program paths compared its untransformed

version. With cfm-se DSE will explore less program paths and generate less test cases.

Also, cfm-se might not generate test cases that cover specific program paths in the original

program, due to static path merging. Therefore, if the goal is to achieve maximum possible

coverage for a given program, cfm-se might not be the best choice because it can not

104

generate test cases that cover all the paths in the original program. This limitation is

common for any approach that tries to merge program states including state merging [26].

However, achieving maximizing possible coverage for larger programs is not a realistic goal

due to path explosion. Static path merging capability of cfm-se can make DSE reach new

program locations faster and achieve more coverage within a limited time budget. This is a

useful property for testing real-world programs.

4.6.3 General Applicability

We have developed cfm-se to be used with KLEE-based dynamic symbolic execution.

KLEE is designed to detect specific types of program bugs such as assertion violations, out of

bound memory access, and memory leaks, out of bound vector accesses, executing unexpected

instructions (e.g. abort), writing to read-only memory, division by zero etc. To trigger these

bugs the test generation tool needs to find an input that reaches the program location where

the bug is present. KLEE is an efficient tool to solve the reachability problem and generate

an input if the program location is reachable. Given that cfm-se transformation does not

change the program semantics (i.e. all false positive bugs are filtered out), it can improve

KLEE’s ability to reach these bug triggering program locations faster. This is because cfm-

se is failure preserving, and it reduces the number of program paths that KLEE needs to

explore to reach the bug triggering program location. However, we do not provide any

guarantees that cfm-se will help in detecting other types of bugs that are not related to the

reachability problem. For example, cfm-se might not be useful for detecting bugs related to

concurrency and synchronization of parallel programs. Also, cfm-se might not be useful for

other test generation tools like fuzzing [123]. In coverage based greybox fuzzing, preserving

program branches is important to provide the necessary feedback about the coverage into

the fuzzing loop. For example, if a program crash requires a specific branch to be taken at an

earlier program location, the fuzzing tool needs to generate an input that takes that branch.

If the branch is eliminated by cfm-se, the fuzzing tool might not be able to generate an

input that takes that branch because fuzzer can not provide the necessary feedback about

branch decision.

105

4.7 Related Work

4.7.1 Dynamic Techniques

Many attempts have been made to mitigate the path explosion problem by guiding

DSE only on interesting program paths [19]. Function and loop summarization produces

summaries of frequently executed code sections and reuse that to avoid path explosion [27],

[28]. Path equivalence and subsumption based techniques works by avoiding redundant

program paths that do not reveal new information [104], [105]. Under-constrained symbolic

execution applies symbolic execution to functions or code regions by isolating them from

the surrounding application[29]. Any constraints that are applied to tested function by

external (i.e. global) sources are considered under-constrained. State merging [26] attempts

to combine different program paths explored during symbolic execution together to avoid

path explosion.

4.7.2 Compiler Techniques

Instead of improving the heuristics for guiding symbolic execution, application of tar-

geted program transformations to improve the performance of symbolic execution is also a

well-studied in the literature. Testability transformations is a type of program transforma-

tion that improves the ability of a given test generation method to generate tests for the

original untransformed program. Prior work have shown that such transformations can im-

prove the performance for test generation techniques [32] Collingbourne et al. used branch

predication to convert symbolic branches into ite expressions, thereby reducing the number

of explored program path exponentially [33]. Wagner et al. proposed -OVERIFY, a new

compiler optimization switch (i.e. a collection of optimizations) that enables fast verification

of programs [31]. Wagner used DSE as a case study to show that selective application of

compiler optimizations like constant folding, loop unswitching, if-conversion can drastically

reduce the time spent in verification. Cadar et al. argued that compiler optimizations must

be first-class ingredient in a practical DSE platform [30]. Perry et al. proposed a semantics

preserving program transformation to accelerate DSE on programs with array accesses [107].

106

Inserting dead code to improve test generation techniques have also been explored in compiler

testing [124].

4.8 Conclusion

Dynamic Symbolic Execution (DSE) is a dynamic program analysis technique that exe-

cutes a program with symbolic inputs. DSE can enumerate all feasible execution paths in a

program and generate tests for each path explored. However, DSE suffers from path explo-

sion problem where the number of program paths can grow exponentially with the number

of branch points in the program. Many dynamic and compiler-based techniques have been

proposed to mitigate the impacts of path explosion in DSE. In this work, we propose a novel

non-semantics preserving compiler transformation called cfm-se to improve the scalability

of DSE. cfm-se inserts additional code to divergent code paths at symbolic branches to

make the computation sequences within the branch identical and, merge the divergent paths

together to remove the symbolic branch. cfm-se is not semantics-preserving therefore, it

can introduce new bugs to the program. We provide a framework for detecting such false

positive bugs that could be introduced by transformations like cfm-se. Our evaluation of

cfm-se shows that it can reduce the number of solver queries significantly and, improve

the runtime of DSE on several important benchmarks. We also show that cfm-se can help

achieve more code coverage faster in real-world applications.

107

5. CONCLUSION

In programs with irregular control-flow structures (such as conditional branches), the runtime

behavior of the program depends on various factors like the input data and the execution

environment (i.e. hardware). Optimizing such programs for performance, efficiency, and

testability is a challenging task because of several reasons. First, predicting the runtime

behavior of the program is difficult because of the complex interdependencies between the

input data, program execution paths, and the execution environment. Second, the complex

control-flow structures resulted by the presence of deeply nested branches can make the

program less performant and hard to optimize for efficiency metrics like code size. Third,

the complex control-flow structures can make the program hard to test using dynamic test

generation techniques due to the large number of possible execution paths. To optimize

programs with irregular control-flow, we need to find some form of regularity in its structure.

In this dissertation, we explore how code similarity can be exploited to make programs with

irregular control-flow more performant, efficient, and testable. First, we proposeControl-

flow Melding (i.e. darm), a compiler transformation that can merge structurally similar

control-flow regions containing similar computations in GPU programs to reduce control-

flow divergence. Control-flow melding is capable of exploiting both structural similarity and

instruction similarity to optimize programs and, it is more general than existing methods. We

show that darm is effective in reducing control-divergence and improving the performance of

several important GPU applications on ADM GPUs. Next, we extend control-flow melding

for code size reduction in CPU programs. We develop a new technique called cfm-cs,

that detects control-flow regions with similar instruction sequences and, merges them to

reduce code size. We evaluate cfm-cs in several well-known CPU benchmark suites and

show that it can reduce code size without significant performance or compile-time overhead.

Finally, we propose cfm-se, a non-semantics preserving compiler transformation targeted

at improving the scalability of dynamic symbolic execution (DSE). The key idea of cfm-se

is that static merging of program paths can greatly improve the scalability of DSE. cfm-se

statically determines which branches of a program can be expensive during DSE and, merge

the divergent paths of the branch to remove the expensive branch. We also provide a false

108

positive detection framework to detect any spurious bugs that might be introduced by cfm-

se due to its non-semantics preserving nature. We evaluate cfm-se on several important

benchmarks and show that can significantly reduce the number of solver queries in DSE,

improve the runtime of DSE, and increase the code coverage on large programs within a

limited time budget.

109

REFERENCES

[1] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular pro-
grams on gpus,” in 2012 IEEE International Symposium on Workload Characteri-
zation (IISWC), IEEE, 2012, pp. 141–151.

[2] H. Vo, “Hardware support for irregular control flow in vector processor,” May, vol. 7,
p. 10, 2012.

[3] S. Moll and S. Hack, “Partial control-flow linearization,” in Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
ser. PLDI 2018, Philadelphia, PA, USA: Association for Computing Machinery, 2018,
pp. 543–556, isbn: 9781450356985. doi: 10.1145/3192366.3192413 . [Online]. Avail-
able: https://doi.org/10.1145/3192366.3192413 .

[4] Z. Cui, Y. Liang, K. Rupnow, and D. Chen, “An accurate gpu performance model
for effective control flow divergence optimization,” in 2012 IEEE 26th International
Parallel and Distributed Processing Symposium, IEEE, 2012, pp. 83–94.

[5] M. Rhu and M. Erez, “The dual-path execution model for efficient gpu control flow,”
in 2013 IEEE 19th International Symposium on High Performance Computer Archi-
tecture (HPCA), 2013, pp. 591–602. doi: 10.1109/HPCA.2013.6522352 .

[6] W. W. L. Fung and T. M. Aamodt, “Thread block compaction for efficient simt control
flow,” in 2011 IEEE 17th International Symposium on High Performance Computer
Architecture, 2011, pp. 25–36. doi: 10.1109/HPCA.2011.5749714 .

[7] A. ElTantawy, J. W. Ma, M. O’Connor, and T. M. Aamodt, “A scalable multi-path
microarchitecture for efficient gpu control flow,” in 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA), 2014, pp. 248–
259. doi: 10.1109/HPCA.2014.6835936 .

[8] T. G. Rogers, D. R. Johnson, M. O’Connor, and S. W. Keckler, “A variable warp
size architecture,” in Proceedings of the 42nd Annual International Symposium on
Computer Architecture, ser. ISCA ’15, Portland, Oregon: Association for Computing
Machinery, 2015, pp. 489–501, isbn: 9781450334020. doi: 10.1145/2749469.2750410 .
[Online]. Available: https://doi.org/10.1145/2749469.2750410 .

110

https://doi.org/10.1145/3192366.3192413
https://doi.org/10.1145/3192366.3192413
https://doi.org/10.1109/HPCA.2013.6522352
https://doi.org/10.1109/HPCA.2011.5749714
https://doi.org/10.1109/HPCA.2014.6835936
https://doi.org/10.1145/2749469.2750410
https://doi.org/10.1145/2749469.2750410

[9] J. Anantpur and G. R., “Taming control divergence in gpus through control flow
linearization,” in Compiler Construction, A. Cohen, Ed., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 133–153, isbn: 978-3-642-54807-9.

[10] T. D. Han and T. S. Abdelrahman, “Reducing branch divergence in gpu programs,”
in Proceedings of the Fourth Workshop on General Purpose Processing on Graphics
Processing Units, ser. GPGPU-4, Newport Beach, California, USA: Association for
Computing Machinery, 2011, isbn: 9781450305693. doi: 10.1145/1964179.1964184 .
[Online]. Available: https://doi.org/10.1145/1964179.1964184 .

[11] B. Coutinho, D. Sampaio, F. M. Q. Pereira, and W. Meira Jr., “Divergence analysis
and optimizations,” in 2011 International Conference on Parallel Architectures and
Compilation Techniques, 2011, pp. 320–329. doi: 10.1109/PACT.2011.63 .

[12] F. Khorasani, R. Gupta, and L. N. Bhuyan, “Efficient warp execution in presence of
divergence with collaborative context collection,” in Proceedings of the 48th Interna-
tional Symposium on Microarchitecture, ser. MICRO-48, Waikiki, Hawaii: Association
for Computing Machinery, 2015, pp. 204–215, isbn: 9781450340342. doi: 10.1145/
2830772.2830796 . [Online]. Available: https://doi.org/10.1145/2830772.2830796 .

[13] W.-K. Chen, B. Li, and R. Gupta, “Code compaction of matching single-entry multiple-
exit regions,” in Proceedings of the 10th International Conference on Static Analy-
sis, ser. SAS’03, San Diego, CA, USA: Springer-Verlag, 2003, pp. 401–417, isbn:
3540403256.

[14] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program anal-
ysis transformation,” in International Symposium on Code Generation and Optimiza-
tion, 2004. CGO 2004., 2004, pp. 75–86. doi: 10.1109/CGO.2004.1281665 .

[15] Free Software Foundation, GCC, the GNU compiler collection, http://gcc.gnu.org,
2018.

[16] J. Knoop, O. Rüthing, and B. Steffen, “Partial dead code elimination,” in Proceedings
of the ACM SIGPLAN 1994 Conference on Programming Language Design and Im-
plementation, ser. PLDI ’94, Orlando, Florida, USA: ACM, 1994, pp. 147–158. doi:

 10.1145/773473.178256 .

[17] J. Cocke, “Global common subexpression elimination,” in Proceedings of a Symposium
on Compiler Optimization, New York, NY, USA: ACM, 1970, pp. 20–24. doi: 10.1145/
800028.808480 .

111

https://doi.org/10.1145/1964179.1964184
https://doi.org/10.1145/1964179.1964184
https://doi.org/10.1109/PACT.2011.63
https://doi.org/10.1145/2830772.2830796
https://doi.org/10.1145/2830772.2830796
https://doi.org/10.1145/2830772.2830796
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/773473.178256
https://doi.org/10.1145/800028.808480
https://doi.org/10.1145/800028.808480

[18] A. Dreweke, M. Worlein, I. Fischer, D. Schell, T. Meinl, and M. Philippsen, “Graph-
based procedural abstraction,” in International Symposium on Code Generation and
Optimization (CGO’07), Mar. 2007, pp. 259–270. doi: 10.1109/CGO.2007.14 .

[19] R. Baldoni, E. Coppa, D. C. Delia, C. Demetrescu, and I. Finocchi, “A survey of
symbolic execution techniques,” ACM Comput. Surv., vol. 51, no. 3, May 2018, issn:
0360-0300. doi: 10 .1145/3182657 . [Online]. Available: https ://doi .org/10 .1145/
3182657 .

[20] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine for c,” in Pro-
ceedings of the 10th European Software Engineering Conference Held Jointly with 13th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ser. ESEC/FSE-13, Lisbon, Portugal: Association for Computing Machinery, 2005,
pp. 263–272, isbn: 1595930140. doi: 10.1145/1081706.1081750 . [Online]. Available:

 https://doi.org/10.1145/1081706.1081750 .

[21] P. Boonstoppel, C. Cadar, and D. Engler, “Rwset: Attacking path explosion in constraint-
based test generation,” in Tools and Algorithms for the Construction and Analysis of
Systems: 14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings 14, Springer, 2008, pp. 351–366.

[22] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Progress on the state explosion
problem in model checking,” in Informatics, vol. 10, 2001, pp. 176–194.

[23] A. Valmari, “The state explosion problem,” Lectures on Petri Nets I: Basic Models:
Advances in Petri Nets, pp. 429–528, 2005.

[24] Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution to less traveled paths,”
ACM SigPlan Notices, vol. 48, no. 10, pp. 19–32, 2013.

[25] K.-K. Ma, K. Yit Phang, J. S. Foster, and M. Hicks, “Directed symbolic execution,”
in Static Analysis: 18th International Symposium, SAS 2011, Venice, Italy, September
14-16, 2011. Proceedings 18, Springer, 2011, pp. 95–111.

[26] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state merging in sym-
bolic execution,” in Proceedings of the 33rd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, ser. PLDI ’12, Beijing, China: As-
sociation for Computing Machinery, 2012, pp. 193–204, isbn: 9781450312059. doi:

 10.1145/2254064.2254088 . [Online]. Available: https://doi.org/10.1145/2254064.
2254088 .

112

https://doi.org/10.1109/CGO.2007.14
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/2254064.2254088
https://doi.org/10.1145/2254064.2254088
https://doi.org/10.1145/2254064.2254088

[27] X. Xie, B. Chen, Y. Liu, W. Le, and X. Li, “Proteus: Computing disjunctive loop
summary via path dependency analysis,” ser. FSE 2016, Seattle, WA, USA: Associa-
tion for Computing Machinery, 2016, pp. 61–72, isbn: 9781450342186. doi: 10.1145/
2950290.2950340 . [Online]. Available: https://doi.org/10.1145/2950290.2950340 .

[28] S. Anand, P. Godefroid, and N. Tillmann, “Demand-driven compositional symbolic
execution,” in Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
ser. TACAS’08/ETAPS’08, Budapest, Hungary: Springer-Verlag, 2008, pp. 367–381,
isbn: 3540787992.

[29] D. A. Ramos and D. Engler, “Under-constrained symbolic execution: Correctness
checking for real code,” in Proceedings of the 24th USENIX Conference on Security
Symposium, ser. SEC’15, Washington, D.C.: USENIX Association, 2015, pp. 49–64,
isbn: 9781931971232.

[30] C. Cadar, “Targeted program transformations for symbolic execution,” in Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ser. ES-
EC/FSE 2015, Bergamo, Italy: Association for Computing Machinery, 2015, pp. 906–
909, isbn: 9781450336758. doi: 10.1145/2786805.2803205 . [Online]. Available: https:
//doi.org/10.1145/2786805.2803205 .

[31] J. Wagner, V. Kuznetsov, and G. Candea, “-OVERIFY: Optimizing programs for
fast Verification,” in 14th Workshop on Hot Topics in Operating Systems (HotOS
XIV), Santa Ana Pueblo, NM: USENIX Association, May 2013. [Online]. Available:

 https://www.usenix.org/conference/hotos13/session/wagner .

[32] M. Harman, L. Hu, R. Hierons, et al., “Testability transformation,” vol. 30, no. 1,
pp. 3–16, Jan. 2004, issn: 0098-5589. doi: 10 .1109/TSE.2004 .1265732 . [Online].
Available: https://doi.org/10.1109/TSE.2004.1265732 .

[33] P. Collingbourne, C. Cadar, and P. H. Kelly, “Symbolic crosschecking of floating-point
and simd code,” in Proceedings of the Sixth Conference on Computer Systems, ser. Eu-
roSys ’11, Salzburg, Austria: Association for Computing Machinery, 2011, pp. 315–
328, isbn: 9781450306348. doi: 10.1145/1966445.1966475 . [Online]. Available: https:
//doi.org/10.1145/1966445.1966475 .

[34] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic warp formation and
scheduling for efficient gpu control flow,” in 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2007), 2007, pp. 407–420. doi: 10.1109/
MICRO.2007.30 .

113

https://doi.org/10.1145/2950290.2950340
https://doi.org/10.1145/2950290.2950340
https://doi.org/10.1145/2950290.2950340
https://doi.org/10.1145/2786805.2803205
https://doi.org/10.1145/2786805.2803205
https://doi.org/10.1145/2786805.2803205
https://www.usenix.org/conference/hotos13/session/wagner
https://doi.org/10.1109/TSE.2004.1265732
https://doi.org/10.1109/TSE.2004.1265732
https://doi.org/10.1145/1966445.1966475
https://doi.org/10.1145/1966445.1966475
https://doi.org/10.1145/1966445.1966475
https://doi.org/10.1109/MICRO.2007.30
https://doi.org/10.1109/MICRO.2007.30

[35] HIP Programming Guide v4.1, [Accessed 17-Dec-2021]. [Online]. Available: https :
//rocmdocs.amd.com/en/latest/ .

[36] CUDA C++ Programming Guide, [Accessed 17-Dec-2021]. [Online]. Available: https:
//docs.nvidia.com/cuda/cuda-c-programming-guide/index.html .

[37] M. Pharr and W. R. Mark, “Ispc: A spmd compiler for high-performance cpu pro-
gramming,” in 2012 Innovative Parallel Computing (InPar), 2012, pp. 1–13. doi:

 10.1109/InPar.2012.6339601 .

[38] Using cuda warp-level primitives, [Accessed 17-Dec-2021]. [Online]. Available: https:
//developer.nvidia.com/blog/using-cuda-warp-level-primitives/ .

[39] NVCC :: CUDA Toolkit Documentation, [Accessed 17-Dec-2021]. [Online]. Available:
 https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html .

[40] ROCm Compiler SDK, [Accessed 17-Dec-2021]. [Online]. Available: https://rocmdocs.
amd.com/en/latest/ROCm_Compiler_SDK/ROCm-Compiler-SDK.html .

[41] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Efficiently
computing static single assignment form and the control dependence graph,” ACM
Trans. Program. Lang. Syst., vol. 13, no. 4, pp. 451–490, Oct. 1991, issn: 0164-0925.
doi: 10.1145/115372.115320 . [Online]. Available: https://doi.org/10.1145/115372.
115320 .

[42] R. Karrenberg and S. Hack, “Improving performance of opencl on cpus,” in Compiler
Construction, M. O’Boyle, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 1–20, isbn: 978-3-642-28652-0.

[43] T. Schaub, S. Moll, R. Karrenberg, and S. Hack, “The impact of the simd width
on control-flow and memory divergence,” ACM Trans. Archit. Code Optim., vol. 11,
no. 4, Jan. 2015, issn: 1544-3566. doi: 10.1145/2687355 . [Online]. Available: https:
//doi.org/10.1145/2687355 .

[44] R. Karrenberg and S. Hack, “Whole Function Vectorization,” in International Sympo-
sium on Code Generation and Optimization, ser. CGO, 2011. doi: 10.1109/CGO.2011.
5764682 . [Online]. Available: http://www.cdl.uni-saarland.de/papers/karrenberg_
wfv.pdf .

114

https://rocmdocs.amd.com/en/latest/
https://rocmdocs.amd.com/en/latest/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.1109/InPar.2012.6339601
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://rocmdocs.amd.com/en/latest/ROCm_Compiler_SDK/ROCm-Compiler-SDK.html
https://rocmdocs.amd.com/en/latest/ROCm_Compiler_SDK/ROCm-Compiler-SDK.html
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/2687355
https://doi.org/10.1145/2687355
https://doi.org/10.1145/2687355
https://doi.org/10.1109/CGO.2011.5764682
https://doi.org/10.1109/CGO.2011.5764682
http://www.cdl.uni-saarland.de/papers/karrenberg_wfv.pdf
http://www.cdl.uni-saarland.de/papers/karrenberg_wfv.pdf

[45] S. Moll and S. Hack, “Partial Control-flow Linearization,” in Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
ser. PLDI 2018, Philadelphia, PA, USA: ACM, 2018, pp. 543–556, isbn: 978-1-4503-
5698-5. doi: 10.1145/3192366.3192413 . [Online]. Available: http://doi.acm.org/10.
1145/3192366.3192413 .

[46] T. Lloyd, K. Ali, and J. N. Amaral, “Gpucheck: Detecting cuda thread divergence
with static analysis,” Deparment of Computer Science, University of Alberta, Tech.
Rep., 2019. doi: https://doi.org/10.7939/R3W669R4S . [Online]. Available: https:
//era.library.ualberta.ca/items/7ab2b28d-b111-448f-8273-2ff219132908 .

[47] A. Sabne, P. Sakdhnagool, and R. Eigenmann, “Formalizing structured control flow
graphs,” in Languages and Compilers for Parallel Computing, C. Ding, J. Criswell,
and P. Wu, Eds., Cham: Springer International Publishing, 2017, pp. 153–168, isbn:
978-3-319-52709-3.

[48] D. Sampaio, R. M. d. Souza, C. Collange, and F. M. Q. Pereira, “Divergence analysis,”
vol. 35, no. 4, Jan. 2014, issn: 0164-0925. doi: 10.1145/2523815 . [Online]. Available:

 https://doi.org/10.1145/2523815 .

[49] J. Rosemann, S. Moll, and S. Hack, “An abstract interpretation for spmd divergence
on reducible control flow graphs,” Proc. ACM Program. Lang., vol. 5, no. POPL, Jan.
2021. doi: 10.1145/3434312 . [Online]. Available: https://doi.org/10.1145/3434312 .

[50] K. E. Batcher, “Sorting networks and their applications,” in Proceedings of the April
30–May 2, 1968, spring joint computer conference (AFIPS ’68 (Spring)), 1968, pp. 307–
314. doi: 10.1145/1468075.1468121 .

[51] D. Cederman and P. Tsigas, “Gpu-quicksort: A practical quicksort algorithm for
graphics processors,” ACM J. Exp. Algorithmics, vol. 14, Jan. 2010, issn: 1084-6654.
doi: 10.1145/1498698.1564500 . [Online]. Available: https://doi.org/10.1145/1498698.
1564500 .

[52] llvm::RegionBase Class Template Reference, [Accessed 17-Dec-2021]. [Online]. Avail-
able: https://llvm.org/doxygen/classllvm_1_1RegionBase.html .

[53] R. Johnson, D. Pearson, and K. Pingali, “The program structure tree: Computing
control regions in linear time,” SIGPLAN Not., vol. 29, no. 6, pp. 171–185, Jun.
1994, issn: 0362-1340. doi: 10.1145/773473.178258 . [Online]. Available: https://doi.
org/10.1145/773473.178258 .

115

https://doi.org/10.1145/3192366.3192413
http://doi.acm.org/10.1145/3192366.3192413
http://doi.acm.org/10.1145/3192366.3192413
https://doi.org/https://doi.org/10.7939/R3W669R4S
https://era.library.ualberta.ca/items/7ab2b28d-b111-448f-8273-2ff219132908
https://era.library.ualberta.ca/items/7ab2b28d-b111-448f-8273-2ff219132908
https://doi.org/10.1145/2523815
https://doi.org/10.1145/2523815
https://doi.org/10.1145/3434312
https://doi.org/10.1145/3434312
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/1498698.1564500
https://doi.org/10.1145/1498698.1564500
https://doi.org/10.1145/1498698.1564500
https://llvm.org/doxygen/classllvm_1_1RegionBase.html
https://doi.org/10.1145/773473.178258
https://doi.org/10.1145/773473.178258
https://doi.org/10.1145/773473.178258

[54] T. Smith and M. Waterman, “Identification of common molecular subsequences,”
Journal of Molecular Biology, vol. 147, no. 1, pp. 195–197, 1981, issn: 0022-2836.
doi: https ://doi .org/10.1016/0022-2836(81)90087-5 . [Online]. Available: https :
//www.sciencedirect.com/science/article/pii/0022283681900875 .

[55] R. C. O. Rocha, P. Petoumenos, Z. Wang, M. Cole, and H. Leather, “Function merg-
ing by sequence alignment,” in 2019 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), 2019, pp. 149–163. doi: 10.1109/CGO.2019.
8661174 .

[56] R. C. O. Rocha, P. Petoumenos, Z. Wang, M. Cole, and H. Leather, “Effective function
merging in the ssa form,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI 2020, London, UK:
Association for Computing Machinery, 2020, pp. 854–868, isbn: 9781450376136. doi:

 10.1145/3385412.3386030 . [Online]. Available: https://doi.org/10.1145/3385412.
3386030 .

[57] llvm-mca - LLVM Machine Code Analyzer, [Accessed 07-March-2022]. [Online]. Avail-
able: https://www.llvm.org/docs/CommandGuide/llvm-mca.html .

[58] CostModel.cpp File Reference, [Accessed 17-Dec-2021]. [Online]. Available: https://
llvm.org/doxygen/CostModel_8cpp.html .

[59] llc - LLVM static compiler, [Accessed 17-Dec-2021]. [Online]. Available: https://llvm.
org/docs/CommandGuide/llc.html .

[60] E. Herruzo, G. Ruiz, J. I. Benavides, and O. Plata, “A new parallel sorting algorithm
based on odd-even mergesort,” in 15th EUROMICRO International Conference on
Parallel, Distributed and Network-Based Processing (PDP’07), 2007, pp. 18–22. doi:

 10.1109/PDP.2007.10 .

[61] S. Che, M. Boyer, J. Meng, et al., “Rodinia: A benchmark suite for heterogeneous
computing,” in 2009 IEEE International Symposium on Workload Characterization
(IISWC), 2009, pp. 44–54. doi: 10.1109/IISWC.2009.5306797 .

[62] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt, “Analyzing
cuda workloads using a detailed gpu simulator,” in 2009 IEEE International Sym-
posium on Performance Analysis of Systems and Software, 2009, pp. 163–174. doi:

 10.1109/ISPASS.2009.4919648 .

116

https://doi.org/https://doi.org/10.1016/0022-2836(81)90087-5
https://www.sciencedirect.com/science/article/pii/0022283681900875
https://www.sciencedirect.com/science/article/pii/0022283681900875
https://doi.org/10.1109/CGO.2019.8661174
https://doi.org/10.1109/CGO.2019.8661174
https://doi.org/10.1145/3385412.3386030
https://doi.org/10.1145/3385412.3386030
https://doi.org/10.1145/3385412.3386030
https://www.llvm.org/docs/CommandGuide/llvm-mca.html
https://llvm.org/doxygen/CostModel_8cpp.html
https://llvm.org/doxygen/CostModel_8cpp.html
https://llvm.org/docs/CommandGuide/llc.html
https://llvm.org/docs/CommandGuide/llc.html
https://doi.org/10.1109/PDP.2007.10
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/ISPASS.2009.4919648

[63] CUDA Samples, [Accessed 17-Dec-2021]. [Online]. Available: https ://docs .nvidia .
com/cuda/cuda-samples/ .

[64] A. Kerr, G. Diamos, and S. Yalamanchili, “A characterization and analysis of ptx ker-
nels,” in 2009 IEEE International Symposium on Workload Characterization (IISWC),
2009, pp. 3–12. doi: 10.1109/IISWC.2009.5306801 .

[65] ROCm-Developer-Tools / rocprofiler, [Accessed 17-Dec-2021]. [Online]. Available: ht
tps://github.com/ROCm-Developer-Tools/rocprofiler .

[66] NVIDIA TESLA V100 GPU ARCHITECTURE, [Accessed 28-Feb-2022]. [Online].
Available: https://images.nvidia.com/content/volta-architecture/pdf/volta-architec
ture-whitepaper.pdf .

[67] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for
similarities in the amino acid sequence of two proteins,” Journal of Molecular Biology,
vol. 48, no. 3, pp. 443–453, 1970, issn: 0022-2836. doi: https://doi.org/10.1016/0022-
2836(70)90057-4 . [Online]. Available: https://www.sciencedirect.com/science/article/
pii/0022283670900574 .

[68] H. Wu, G. Diamos, J. Wang, S. Li, and S. Yalamanchili, “Characterization and trans-
formation of unstructured control flow in bulk synchronous gpu applications,” Int.
J. High Perform. Comput. Appl., vol. 26, no. 2, pp. 170–185, May 2012, issn: 1094-
3420. doi: 10.1177/1094342011434814 . [Online]. Available: https://doi.org/10.1177/
1094342011434814 .

[69] J. Fukuhara and M. Takimoto, “Branch divergence reduction based on code motion,”
Journal of Information Processing, vol. 28, pp. 302–309, 2020. doi: 10.2197/ipsjjip.
28.302 .

[70] O. Rüthing, J. Knoop, and B. Steffen, “Sparse code motion,” ser. POPL ’00, Boston,
MA, USA: Association for Computing Machinery, 2000, pp. 170–183, isbn: 1581131259.
doi: 10.1145/325694.325715 . [Online]. Available: https://doi.org/10.1145/325694.
325715 .

[71] S. Damani, D. R. Johnson, M. Stephenson, et al., “Speculative reconvergence for
improved simt efficiency,” in Proceedings of the 18th ACM/IEEE International Sym-
posium on Code Generation and Optimization, ser. CGO 2020, San Diego, CA, USA:
Association for Computing Machinery, 2020, pp. 121–132, isbn: 9781450370479. doi:

 10.1145/3368826.3377911 . [Online]. Available: https://doi.org/10.1145/3368826.
3377911 .

117

https://docs.nvidia.com/cuda/cuda-samples/
https://docs.nvidia.com/cuda/cuda-samples/
https://doi.org/10.1109/IISWC.2009.5306801
https://github.com/ROCm-Developer-Tools/rocprofiler
https://github.com/ROCm-Developer-Tools/rocprofiler
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://doi.org/https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/https://doi.org/10.1016/0022-2836(70)90057-4
https://www.sciencedirect.com/science/article/pii/0022283670900574
https://www.sciencedirect.com/science/article/pii/0022283670900574
https://doi.org/10.1177/1094342011434814
https://doi.org/10.1177/1094342011434814
https://doi.org/10.1177/1094342011434814
https://doi.org/10.2197/ipsjjip.28.302
https://doi.org/10.2197/ipsjjip.28.302
https://doi.org/10.1145/325694.325715
https://doi.org/10.1145/325694.325715
https://doi.org/10.1145/325694.325715
https://doi.org/10.1145/3368826.3377911
https://doi.org/10.1145/3368826.3377911
https://doi.org/10.1145/3368826.3377911

[72] S. Damani and V. Sarkar, “Common subexpression convergence: Aănew code opti-
mization for simt processors,” in Languages and Compilers for Parallel Computing, S.
Pande and V. Sarkar, Eds., Cham: Springer International Publishing, 2021, pp. 64–
73, isbn: 978-3-030-72789-5.

[73] J. Meng, D. Tarjan, and K. Skadron, “Dynamic warp subdivision for integrated branch
and memory divergence tolerance,” SIGARCH Comput. Archit. News, vol. 38, no. 3,
pp. 235–246, Jun. 2010, issn: 0163-5964. doi: 10.1145/1816038.1815992 . [Online].
Available: https://doi.org/10.1145/1816038.1815992 .

[74] MergeFunctions pass, how it works, [Accessed 4-Mar-2022]. [Online]. Available: https:
//www.llvm.org/docs/MergeFunctions.html .

[75] D. Rayside, E. Mamas, and E. Hons, “Compact java binaries for embedded systems,”
in Proceedings of the 1999 Conference of the Centre for Advanced Studies on Collab-
orative Research, ser. CASCON ’99, Mississauga, Ontario, Canada: IBM Press, 1999,
p. 9.

[76] S. Liao, S. Devadas, and K. Keutzer, “A text-compression-based method for code size
minimization in embedded systems,” ACM Trans. Des. Autom. Electron. Syst., vol. 4,
no. 1, pp. 12–38, Jan. 1999, issn: 1084-4309. doi: 10.1145/298865.298867 . [Online].
Available: https://doi.org/10.1145/298865.298867 .

[77] G. Liu, U. Farooq, C. Zhao, X. Liu, and N. Sun, “Linker code size optimization
for native mobile applications,” in Proceedings of the 32nd ACM SIGPLAN Interna-
tional Conference on Compiler Construction, ser. CC 2023, Montréal, QC, Canada:
Association for Computing Machinery, 2023, pp. 168–179, isbn: 9798400700880. doi:

 10.1145/3578360.3580256 . [Online]. Available: https://doi.org/10.1145/3578360.
3580256 .

[78] R. Lavaee, J. Criswell, and C. Ding, “Codestitcher: Inter-procedural basic block lay-
out optimization,” in Proceedings of the 28th International Conference on Compiler
Construction, ser. CC 2019, Washington, DC, USA: Association for Computing Ma-
chinery, 2019, pp. 65–75. doi: 10.1145/3302516.3307358 .

[79] M. Chabbi, J. Lin, and R. Barik, “An experience with code-size optimization for
production iOS mobile applications,” in IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), US: IEEE Press, 2021, pp. 1–12. doi:

 10.1109/CGO51591.2021.9370306 .

118

https://doi.org/10.1145/1816038.1815992
https://doi.org/10.1145/1816038.1815992
https://www.llvm.org/docs/MergeFunctions.html
https://www.llvm.org/docs/MergeFunctions.html
https://doi.org/10.1145/298865.298867
https://doi.org/10.1145/298865.298867
https://doi.org/10.1145/3578360.3580256
https://doi.org/10.1145/3578360.3580256
https://doi.org/10.1145/3578360.3580256
https://doi.org/10.1145/3302516.3307358
https://doi.org/10.1109/CGO51591.2021.9370306

[80] S. K. Debray, W. Evans, R. Muth, and B. De Sutter, “Compiler techniques for code
compaction,” ACM Trans. Program. Lang. Syst., vol. 22, no. 2, pp. 378–415, Mar.
2000, issn: 0164-0925. doi: 10.1145/349214.349233 . [Online]. Available: https://doi.
org/10.1145/349214.349233 .

[81] L. Torczon and K. Cooper, Engineering A Compiler, 2nd. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2007, isbn: 012088478X.

[82] P. Briggs and K. D. Cooper, “Effective partial redundancy elimination,” in Proceed-
ings of the ACM SIGPLAN 1994 Conference on Programming Language Design and
Implementation, ser. PLDI ’94, Orlando, Florida, USA: ACM, 1994, pp. 159–170.

[83] M. N. Wegman and F. K. Zadeck, “Constant propagation with conditional branches,”
ACM Trans. Program. Lang. Syst., vol. 13, no. 2, pp. 181–210, Apr. 1991, issn: 0164-
0925. doi: 10.1145/103135.103136 . [Online]. Available: https://doi.org/10.1145/
103135.103136 .

[84] T. J. Edler von Koch, B. Franke, P. Bhandarkar, and A. Dasgupta, “Exploiting func-
tion similarity for code size reduction,” in Proceedings of the 2014 SIGPLAN/SIGBED
Conference on Languages, Compilers and Tools for Embedded Systems, ser. LCTES
’14, New York, NY, USA: ACM, 2014, pp. 85–94. doi: 10.1145/2666357.2597811 .

[85] R. C. O. Rocha, P. Petoumenos, Z. Wang, M. Cole, K. Hazelwood, and H. Leather,
“Hyfm: Function merging for free,” in Proceedings of the 22nd ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for Embedded Systems,
ser. LCTES 2021, Virtual, Canada: Association for Computing Machinery, 2021,
pp. 110–121, isbn: 9781450384728. doi: 10.1145/3461648.3463852 .

[86] SimplifyCFG.cpp, [Accessed 12-Apr-2023]. [Online]. Available: https : / / llvm . org /
doxygen/SimplifyCFG_8cpp_source.html .

[87] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown, “MiBench: A free, commercially representative embedded benchmark suite,”
in Proceedings of the Fourth Annual IEEE International Workshop on Workload Char-
acterization. WWC-4 (Cat. No.01EX538), Dec. 2001, pp. 3–14.

119

https://doi.org/10.1145/349214.349233
https://doi.org/10.1145/349214.349233
https://doi.org/10.1145/349214.349233
https://doi.org/10.1145/103135.103136
https://doi.org/10.1145/103135.103136
https://doi.org/10.1145/103135.103136
https://doi.org/10.1145/2666357.2597811
https://doi.org/10.1145/3461648.3463852
https://llvm.org/doxygen/SimplifyCFG_8cpp_source.html
https://llvm.org/doxygen/SimplifyCFG_8cpp_source.html

[88] C. Saumya, K. Sundararajah, and M. Kulkarni, “Darm: Control-flow melding for
simt thread divergence reduction,” in Proceedings of the 20th IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, ser. CGO ’22, Virtual
Event, Republic of Korea: IEEE Press, 2022, pp. 28–40, isbn: 9781665405843. doi:

 10.1109/CGO53902.2022.9741285 . [Online]. Available: https://doi .org/10.1109/
CGO53902.2022.9741285 .

[89] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “An efficient
method of computing static single assignment form,” in Proceedings of the 16th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ser. POPL
’89, Austin, Texas, USA: ACM, 1989, pp. 25–35.

[90] A. F. da Silva, B. C. Kind, J. W. de Souza Magalhães, J. N. Rocha, B. C. Fer-
reira Guimarães, and F. M. Quinão Pereira, “Anghabench: A suite with one million
compilable C benchmarks for code-size reduction,” in 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), 2021, pp. 378–390. doi:

 10.1109/CGO51591.2021.9370322 .

[91] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown, “MiBench: A free, commercially representative embedded benchmark suite,”
in Proceedings of the Fourth Annual IEEE International Workshop on Workload Char-
acterization. WWC-4 (Cat. No.01EX538), Dec. 2001, pp. 3–14.

[92] SPEC, Standard Performance Evaluation Corp Benchmarks, http://www.spec.org,
2014.

[93] llvm-size - print size information, [Accessed 13-April-2023]. [Online]. Available: https:
//llvm.org/docs/CommandGuide/llvm-size.html#:~:text=llvm%2Dsize%20is%
20a%20tool,prints%20size%20information%20for%20a. .

[94] A. S. Tanenbaum, H. van Staveren, and J. W. Stevenson, “Using peephole optimiza-
tion on intermediate code,” ACM Trans. Program. Lang. Syst., vol. 4, no. 1, pp. 21–
36, Jan. 1982. doi: 10.1145/357153.357155 .

[95] G. Lóki, Á. Kiss, J. Jász, and Á. Beszédes, “Code factoring in GCC,” in Proceedings
of the 2004 GCC Developers’ Summit, 2004, pp. 79–84.

[96] M. Lika, “Optimizing large applications,” arXiv preprint arXiv:1403.6997, 2014.

120

https://doi.org/10.1109/CGO53902.2022.9741285
https://doi.org/10.1109/CGO53902.2022.9741285
https://doi.org/10.1109/CGO53902.2022.9741285
https://doi.org/10.1109/CGO51591.2021.9370322
https://llvm.org/docs/CommandGuide/llvm-size.html#:~:text=llvm%2Dsize%20is%20a%20tool,prints%20size%20information%20for%20a.
https://llvm.org/docs/CommandGuide/llvm-size.html#:~:text=llvm%2Dsize%20is%20a%20tool,prints%20size%20information%20for%20a.
https://llvm.org/docs/CommandGuide/llvm-size.html#:~:text=llvm%2Dsize%20is%20a%20tool,prints%20size%20information%20for%20a.
https://doi.org/10.1145/357153.357155

[97] S. Stirling, R. Rodrigo C. O., K. Hazelwood, H. Leather, M. OBoyle, and P. Petoumenos,
“F3m: Fast focused function merging,” in 2022 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), 2022, pp. 242–253. doi: 10 . 1109/
CGO53902.2022.9741269 .

[98] W.-K. Chen, B. Li, and R. Gupta, “Code compaction of matching single-entry multiple-
exit regions,” in Proceedings of the 10th International Conference on Static Analy-
sis, ser. SAS’03, San Diego, CA, USA: Springer-Verlag, 2003, pp. 401–417, isbn:
3540403256.

[99] S. Khurshid, C. S. Psreanu, and W. Visser, “Generalized symbolic execution for model
checking and testing,” in Proceedings of the 9th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, ser. TACAS’03, Warsaw,
Poland: Springer-Verlag, 2003, pp. 553–568, isbn: 3540008985.

[100] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs,” in Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, ser. OSDI’08, San
Diego, California: USENIX Association, 2008, pp. 209–224.

[101] R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich, “The opensmt solver,” in
Tools and Algorithms for the Construction and Analysis of Systems, J. Esparza and
R. Majumdar, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 150–
153, isbn: 978-3-642-12002-2.

[102] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools and Algorithms
for the Construction and Analysis of Systems, C. R. Ramakrishnan and J. Rehof,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 337–340, isbn: 978-3-
540-78800-3.

[103] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated random testing,” in
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, ser. PLDI ’05, Chicago, IL, USA: Association for Comput-
ing Machinery, 2005, pp. 213–223, isbn: 1595930566. doi: 10.1145/1065010.1065036 .
[Online]. Available: https://doi.org/10.1145/1065010.1065036 .

[104] Q. Yi, Z. Yang, S. Guo, C. Wang, J. Liu, and C. Zhao, “Postconditioned symbolic exe-
cution,” in 2015 IEEE 8th International Conference on Software Testing, Verification
and Validation (ICST), 2015, pp. 1–10. doi: 10.1109/ICST.2015.7102601 .

121

https://doi.org/10.1109/CGO53902.2022.9741269
https://doi.org/10.1109/CGO53902.2022.9741269
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1109/ICST.2015.7102601

[105] D. Qi, H. D. T. Nguyen, and A. Roychoudhury, “Path exploration based on symbolic
output,” vol. 22, no. 4, Oct. 2013, issn: 1049-331X. doi: 10.1145/2522920.2522925 .
[Online]. Available: https://doi.org/10.1145/2522920.2522925 .

[106] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: Fuzzing by program transforma-
tion,” in 2018 IEEE Symposium on Security and Privacy (SP), 2018, pp. 697–710.
doi: 10.1109/SP.2018.00056 .

[107] D. M. Perry, A. Mattavelli, X. Zhang, and C. Cadar, “Accelerating array constraints
in symbolic execution,” ser. ISSTA 2017, Santa Barbara, CA, USA: Association for
Computing Machinery, 2017, pp. 68–78, isbn: 9781450350761. doi: 10.1145/3092703.
3092728 . [Online]. Available: https://doi.org/10.1145/3092703.3092728 .

[108] H. Converse, O. Olivo, and S. Khurshid, “Non-semantics-preserving transformations
for higher-coverage test generation using symbolic execution,” in 2017 IEEE Inter-
national Conference on Software Testing, Verification and Validation (ICST), 2017,
pp. 241–252. doi: 10.1109/ICST.2017.29 .

[109] W. Chuang, B. Calder, and J. Ferrante, “Phi-predication for light-weight if-conversion,”
in International Symposium on Code Generation and Optimization, 2003. CGO 2003.,
2003, pp. 179–190. doi: 10.1109/CGO.2003.1191544 .

[110] R. C. O. Rocha, C. Saumya, K. Sundararajah, P. Petoumenos, M. Kulkarni, and
M. F. P. OBoyle, “Hybf: A hybrid branch fusion strategy for code size reduction,”
in Proceedings of the 32nd ACM SIGPLAN International Conference on Compiler
Construction, ser. CC 2023, Montréal, QC, Canada: Association for Computing Ma-
chinery, 2023, pp. 156–167, isbn: 9798400700880. doi: 10 .1145/3578360 .3580267 .
[Online]. Available: https://doi.org/10.1145/3578360.3580267 .

[111] LLVM Compiler Infrastructure, Llvm language reference manual, https://llvm.org/
docs/LangRef.html , [Accessed 23-Feb-2023], 2003.

[112] Free Software Foundation, Variadic Functions (The GNU C Library) — gnu.org,
 https://www.gnu.org/software/libc/manual/html_node/Variadic-Functions.html ,
[Accessed 23-Feb-2023], 2018.

[113] Y. Shiloach and U. Vishkin, “An o(logn) parallel connectivity algorithm,” Journal of
Algorithms, vol. 3, no. 1, pp. 57–67, 1982, issn: 0196-6774. doi: https://doi.org/10.
1016/0196-6774(82)90008-6 . [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0196677482900086 .

122

https://doi.org/10.1145/2522920.2522925
https://doi.org/10.1145/2522920.2522925
https://doi.org/10.1109/SP.2018.00056
https://doi.org/10.1145/3092703.3092728
https://doi.org/10.1145/3092703.3092728
https://doi.org/10.1145/3092703.3092728
https://doi.org/10.1109/ICST.2017.29
https://doi.org/10.1109/CGO.2003.1191544
https://doi.org/10.1145/3578360.3580267
https://doi.org/10.1145/3578360.3580267
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://www.gnu.org/software/libc/manual/html_node/Variadic-Functions.html
https://doi.org/https://doi.org/10.1016/0196-6774(82)90008-6
https://doi.org/https://doi.org/10.1016/0196-6774(82)90008-6
https://www.sciencedirect.com/science/article/pii/0196677482900086
https://www.sciencedirect.com/science/article/pii/0196677482900086

[114] D. Phillips, Image Processing in C. New Delhi, India: BPB Publications, 2008, isbn:
9788170295150.

[115] I. Sobel, “An isotropic 3x3 image gradient operator,” Presentation at Stanford A.I.
Project 1968, Feb. 2014.

[116] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
Third Edition, 3rd. The MIT Press, 2009, isbn: 0262033844.

[117] The GNU oSIP library, [Accessed 18-Apr-2023]. [Online]. Available: https://www.
gnu.org/software/osip/ .

[118] GNU Libtasn1, [Accessed 18-Apr-2023]. [Online]. Available: https://www.gnu.org/
software/libtasn1/ .

[119] Coreutils - GNU core utilities, [Accessed 18-Apr-2023]. [Online]. Available: https :
//www.gnu.org/software/coreutils/ .

[120] chcon(1) - Linux man page, [Accessed 18-Apr-2023]. [Online]. Available: https : //
linux.die.net/man/1/chcon .

[121] D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar, “Chopped symbolic execu-
tion,” in Proceedings of the 40th International Conference on Software Engineering,
ser. ICSE ’18, Gothenburg, Sweden: Association for Computing Machinery, 2018,
pp. 350–360, isbn: 9781450356381. doi: 10.1145/3180155.3180251 . [Online]. Avail-
able: https://doi.org/10.1145/3180155.3180251 .

[122] OSDI’08 Coreutils Experiments, [Accessed 18-Apr-2023]. [Online]. Available: https:
//klee.github.io/docs/coreutils-experiments/ .

[123] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed greybox
fuzzing,” ser. CCS ’17, Dallas, Texas, USA: Association for Computing Machinery,
2017, pp. 2329–2344, isbn: 9781450349468. doi: 10.1145/3133956.3134020 . [Online].
Available: https://doi.org/10.1145/3133956.3134020 .

123

https://www.gnu.org/software/osip/
https://www.gnu.org/software/osip/
https://www.gnu.org/software/libtasn1/
https://www.gnu.org/software/libtasn1/
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/coreutils/
https://linux.die.net/man/1/chcon
https://linux.die.net/man/1/chcon
https://doi.org/10.1145/3180155.3180251
https://doi.org/10.1145/3180155.3180251
https://klee.github.io/docs/coreutils-experiments/
https://klee.github.io/docs/coreutils-experiments/
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3133956.3134020

[124] A. F. Donaldson, P. Thomson, V. Teliman, S. Milizia, A. P. Maselco, and A. Karpiski,
“Test-case reduction and deduplication almost for free with transformation-based
compiler testing,” in Proceedings of the 42nd ACM SIGPLAN International Confer-
ence on Programming Language Design and Implementation, ser. PLDI 2021, Vir-
tual, Canada: Association for Computing Machinery, 2021, pp. 1017–1032, isbn:
9781450383912. doi: 10 . 1145/3453483 . 3454092 . [Online]. Available: https : //doi .
org/10.1145/3453483.3454092 .

124

https://doi.org/10.1145/3453483.3454092
https://doi.org/10.1145/3453483.3454092
https://doi.org/10.1145/3453483.3454092

VITA

Charitha Saumya Gusthinna Waduge is a PhD candidate in the School of Electrical and

Computer Engineering at Purdue University. He is advised by Prof. Milind Kulkarni.

He received his B.S. in Electronic and Telecommunication from University of Moratuwa, Sri

Lanka in 2015 and his M.S. in Electrical and Computer Engineering from Purdue University,

West Lafayette, Indiana in 2020. He worked as a Software Engineer in Paraqum Technoligies,

Sri Lanka from 2015 to 2016. He started his PhD in Electrical and Computer Engineering

at Purdue University in August 2016. He was a software engineering intern at Bigstream

Solutions in the summer of 2019. He was a research intern at Adobe Research in the summer

of 2020. His current research is focused on developing targeted compiler transformations to

improve performance and reliability of programs with irregular control-flow. He is passionate

about developing compiler techniques to make software more performant, reliable and secure.

125

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	DARM: Control-Flow Melding for SIMT Thread Divergence Reduction
	Introduction
	Background
	GPGPU Architecture and Programming Models
	LLVM SSA form and GPU Divergence Analysis

	Overview of DARM
	Detailed Design
	Preliminaries and Definitions
	Detecting Meldable Divergent Regions
	Computing Melding Profitability
	DARM Code Generation
	Unpredication
	Pre- and Post-Processing Steps
	Putting All Together

	Implementation
	Evaluation of DARM
	Evaluation Setup and Benchmarks
	Performance
	ALU Utilization
	Melding of Memory Instructions
	Melding Profitability Threshold
	Compile Time
	Types of Melding

	Discussion
	General Applicability of DARM
	Melding Non-isomorphic CFG Regions
	Precision of Divergence Analysis
	Shared Memory, Cost Model and Sequence Alignment

	Related Work
	Techniques for Reducing Control-Flow Divergence
	Other Related Work

	Conclusion

	CFM-CS: Control-flow Melding for Code Size Reduction
	Motivation
	Extending Control-Flow Melding for Code Size Reduction
	Identifying Regions for Melding
	CFM-CS Code Generation
	Region Replication

	Evaluation
	Evaluation Setup
	Code Size Reduction
	Code Size Reduction on Individual Functions
	Compile-Time and Runtime Overhead

	Related Work
	Conclusion

	CFM-SE: Accelerating Symbolic Execution by Targeted Control-flow Transformations
	Introduction
	Background
	Dynamic Symbolic Execution and State Merging
	Divergence Analysis
	DARM

	Motivating Example
	Detailed Design
	CFM-SE Transformation
	Properties of CFM-SE Transformation:
	False Positive Detection
	Symbolic Variable Analysis

	Evaluation
	Implementation
	Experimental Setup
	DSE Performance (RQ1)
	Bounded Verification (RQ2)
	Coverage (RQ3)

	Limitations of CFM-SE
	Constraint Complexity
	Test Generation
	General Applicability

	Related Work
	Dynamic Techniques
	Compiler Techniques

	Conclusion

	Conclusion
	REFERENCES
	VITA

