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NOMENCLATURE 
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ABSTRACT 

This work aims to study the mode localization behavior of the mistuned rotor, which is the 

root cause of the unexpected premature fatigue failure. The unsteady loading, flow separations, tip 

leakage flows, vortex shedding, and acoustic instabilities induce nonlinear blade vibrations and 

responses. An accurate finite element model can help predict the maximum dynamic response and 

shed light on the dynamics of the mistuned system, which can lay out guidelines for design and 

manufacturing processes. Cyclic symmetry structures are generally simplified as Finite Element 

(FE) models of single sectors for analysis purposes to reduce computational costs. However, 

inherent blade mistuning breaks the cyclic symmetry, and often the full blisk must be modeled, 

which has millions of degrees of freedom (DOF), making it computationally too expensive. These 

simulations are often coupled with Monte Carlo simulations (MCS) and Latin hypercube for the 

probabilistic analysis of random mistuning, which requires a large sample set, further increasing 

the computational costs.  

Previous research and aeromechanical analysis used lumped mass and beam frame 

assembly models, which were very robust but had a low order of accuracy. This paved the way for 

developing FE-based Reduced Order Models (ROM). These high-fidelity complex models can 

capture the simplified nonlinearities in reduced-order models. The CMM (Component Mode 

Mistuning) and FMM (Fundamental Mode Mistuning) models were studied on the embedded stage 

of the Purdue 3-Stage axial compressor to understand the accuracy and usability of these methods 

for regions of interest.  

A brief comparison between the ROM models is made in this study. Although the FMM 

model is a simple, accurate model for determining the impact of mistuning on forced response 

when we have an isolated family of blade modes, the accuracy decreases considerably in cases 

with strong modal participation from other families. The more complex CMM model is required 

to study mistuned responses in veering regions, regions with high modal density, and instances of 

disk-dominated modes. The FMM model estimates the amplification well for mistuning cases with 

low deviations and high nodal diameters. The CMM model captures the intricate details of the 

response well and converges rapidly with the increasing number of tuned system modes. The 

modal participation in the veering regions was also captured reasonably well by CMM. The forced 

response for cases with small standard deviation was predicted well by both the reduced order 
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models. The effect of the arrangement of the deviations was also explored, which showed 

significant amplification reduction. 

This study will guide the future to predict forced response incorporating frequency 

mistuning and aerodynamic coupling, which would be validated with the experimental data.  
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 INTRODUCTION 

1.1 Motivation 

An important design factor in turbomachinery is optimizing the rotor mass for higher 

aerodynamic performance. The Integrally Bladed Rotors (IBRs) extensively used in aviation 

applications have evident performance, cost, and mass reduction benefits. However, the significant 

challenges in their mechanical design are the impacts of mistuning, which are amplified by the 

structure’s low dampening level, higher disk flexibility, and blade/disk interaction. High Cycle 

Fatigue (HCF) is responsible for up to 55% of Class A jet accidents that cost over $1 million or 

result in the loss of the aircraft, as well as 30% of the expenditures related to jet engine 

maintenance. Most failures are caused by pre-existing flaws or end-of-life fatigue. According to 

Beauseroy and Lengellé [1], the failure modes are often caused by crack propagation driven mainly 

by vibrations. This makes it essential to understand the dynamic behavior of a blisk since the 

reliability of turbomachinery depends on the capacity to recognize and anticipate these risky 

resonance circumstances in the design phase. 

In turbomachinery, the interactions of the inertial, aerodynamic, and elastic forces cause 

aeromechanical phenomena such as flutter and forced response, as shown in the Collars triangle 

in Figure 1.1. In an IBR, the inertial force is a function of mass, the stiffness of the blisk introduces 

the elastic force, and the external unsteady blade interactions such as wakes, potential fields, and 

blade motion constitute the aerodynamic forces. 
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Figure 1.1 Collars Triangle reproduced – reproduced from Collar [2] 

 

These forces are mathematically represented by a second order non-homogeneous differential 

equation known as the Equation of Motion (EOM) that satisfies Newton’s Second law.  

 

 [𝑀𝑠𝑡𝑟𝑢𝑐]𝑋̈ + [𝐶𝑠𝑡𝑟𝑢𝑐]𝑋̇ + [𝐾𝑠𝑡𝑟𝑢𝑐]𝑋 = [𝐹𝑒𝑥𝑐] + [𝐹𝑐𝑜𝑢𝑝𝑙𝑒𝑑(𝑥(𝑡),𝑥̇(𝑡))] (1.1) 

 [𝑀𝑠𝑡𝑟𝑢𝑐]𝑋̈ + ([𝐶𝑠𝑡𝑟𝑢𝑐] + [𝐶𝑎𝑒𝑟𝑜])𝑋̇ + ([𝐾𝑠𝑡𝑟𝑢𝑐] + [𝐾𝑎𝑒𝑟𝑜])𝑋 = [𝐹𝑒𝑥𝑐] (1.2) 

 

Mstruc, Cstruc, and Kstruc are the structure’s mass, damping coefficient, and stiffness, respectively. 

The aerodynamic coupled force can be represented in terms of aerodynamic damping (Caero) and 

aerodynamic stiffness (Kaero) using Equation (1.2), rearranged from Equation (4.2). The externally 

applied forcing function (Fexc) is generally expressed as a periodic time function.  

The unavoidable non-uniformities known as mistuning introduced into the system due to 

variations in geometric and material properties, manufacturing tolerances, and non-uniform wear 

can cause premature failure. Mistuning can significantly change the vibratory response of a tuned 

system. This makes it a primary factor of failures due to the normal mode localization 

phenomenon, in which vibration energy is restricted to a few blades leading to higher stresses. The 

mistuned system behaves like a simple “tuned absorber” in which a part of the system (absorber) 

may be under resonance while the other parts remain stationary. The mechanical or aerodynamic 

coupling between different blades can further complicate the vibratory behavior of the system. In 

the worst situation, a higher-frequency vibration with a modest amplitude could result in failure 
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owing to HCF. These factors have made modeling and understanding the influence of mistuning 

on turbomachinery forced response essential. Forced response and flutter, the major types of 

aeromechanics problems in axial compressors, are caused by external excitation and self-excited 

oscillation. Synchronous vibration, the major portion of this study, is the forced response of the 

blades subjected to periodic excitation due to the unsteady aerodynamic loading at the fundamental 

frequency and its integer multiples. Analysis of resonant frequencies and the forced response 

prediction of mistuned blades can be used to explore the dynamic behavior, fatigue life, and 

damage detection with response-based identification methods. Simplified FE models of single 

sectors are not appropriate for analysis because mistuning destroys the cyclic symmetry of bladed-

disk systems; instead, a full-bladed disk model is typically required. Millions of degrees of 

freedom (DOFs) are often used in a full FE model of a bladed disk, making parametric analysis 

unaffordable even with high-performance computing.  

 

 𝑥 = {[𝑀𝑠𝑡𝑟𝑢𝑐]𝜔
2 + ([𝐶𝑠𝑡𝑟𝑢𝑐] + [𝐶𝑎𝑒𝑟𝑜])𝜔 + ([𝐾𝑠𝑡𝑟𝑢𝑐] + [𝐾𝑎𝑒𝑟𝑜])}

−1[𝐹𝑒𝑥𝑐] (1.3) 

 

The vibration amplitude can be computed in the frequency domain by solving the inverse in 

Equation (1.13), rearranged from Equation (1.2). The inverse must be solved for all the degrees of 

freedom of the system, which makes ROMs a feasible choice to reduce the size of the matrices 

and thus reduce the computational cost. The GUIde consortium was established to research these 

reduced order models, understand the dynamic behavior and solve these issues of excessive 

vibration and high cycle fatigue. 

1.2 GUIde Consortium 

“GUIde” is an acronym for Government Agencies, Universities, and Industry working 

toward decreased time and cost inculcated in engine development in turbomachinery blade 

response. This consortium aims to expedite the research and enhance the technology transfer to 

industry. 

Researchers at Purdue University study the forced response and blade row interactions in 

the Purdue 3-stage compressor, which models the scaled-up rear stages of a high-speed compressor 

by matching the Mach number and Reynolds number at a design speed of 5000 rpm. The scaled-
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up geometry allows precise instrumentation throughout the compressor, and the various stator 

configurations enable extensive research with different engine order excitation. PAX100 

configuration studied in this facility is an open geometry, making it an excellent machine for 

analyzing multi-stage compressor mistuned forced response and validating the predictive tools as 

a part of GUIde Consortium.  

 

1.3 Structural dynamics 

Cyclic Symmetry 

A structure consisting of a series of substructures identical in form and connectivity is 

considered periodic or tuned. The rotationally periodic structural properties and geometry leads to 

circulant matrices, as shown in Figure 1.2. In a circulant matrix, each row is a circular shift of the 

previous row such that the last element of the previous row becomes the first element. The 

mathematical representation of a circulant matrix for a structure with N sectors equivalent to the 

number of blades is shown in Equation (1.4). 

 

 

Figure 1.2 Cyclic symmetric structure 

 

 

𝐶 = 𝑐𝑖𝑟𝑐[𝑐1, 𝑐2 … , 𝑐𝑁] =

[
 
 
 
 
 

𝑐1 𝑐2 𝑐3 … 𝑐𝑁−2 𝑐𝑁−1 𝑐𝑁

𝑐𝑁 𝑐1 𝑐2 … 𝑐𝑁−3 𝑐𝑁−2 𝑐𝑁−1

𝑐𝑁−1 𝑐𝑁 𝑐1 … 𝑐𝑁−4 𝑐𝑁−3 𝑐𝑁−2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝑐3 𝑐4 𝑐5 … 𝑐𝑁 𝑐1 𝑐2

𝑐2 𝑐3 𝑐4 … 𝑐𝑁−1 𝑐𝑁 𝑐1 ]
 
 
 
 
 

 (1.4) 

 

If the matrix is symmetric and circulant, the matrix reduces further depending on N, as shown in 

Equation (1.5). 
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𝐶 = {

𝑐𝑖𝑟𝑐 [𝑐1, 𝑐2 …𝑐𝑁+2
2

,
…𝑐3, 𝑐2]         𝑖𝑓 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑐𝑖𝑟𝑐 [𝑐1, 𝑐2 …𝑐𝑁+1
2

,
…𝑐3, 𝑐2]        𝑖𝑓 𝑁 𝑖𝑠 𝑜𝑑𝑑

 (1.5) 

 

This property of cyclic structures can be utilized to reduce the computational cost by considering 

one sector instead of the full model.  

 

Single Degree of Freedom (SDOF) system 

The behavior of a physical system described by the EOM in Equation (1.6) is solved in the 

frequency domain for a single DOF model, as shown in Figure 1.3, to express motion as a function 

of time. Vibrational characteristics of a structure are generally computed by assuming the 

displacement (X) to be harmonic without the damping and excitation term using Equation (1.9), 

which solves the undamped system in a vacuum. This assumption transforms the problem into a 

straightforward eigenvalue problem to compute the vibrational characteristics of a structure. 

 

 

Figure 1.3 Single DoF system 

 

 𝑀𝑋̈ + 𝐶𝑋̇ +  𝐾𝑋 = 𝐹(𝑡) (1.6) 

 𝑋 = 𝑥𝑒𝑗𝜔𝑡 (1.7) 

 (−𝜔2𝑀 + 𝑗𝜔𝐶 + 𝐾)𝑥 = 𝐹(𝑡) 
(1.8) 

 (−𝜔2𝑀 + 𝐾)𝑥 = 0 
(1.9) 

 

M is the structure’s mass, C is the damping coefficient, K is the structure’s stiffness, x is the 

displacement, ω is the frequency, and F(t) is the excitation force. An undamped system’s EOM 

does not contain the imaginary part associated with system loss and yields only real frequencies 
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and mode shapes. Structures with damping result in a complex eigen solution that can be 

interpreted into mode shape magnitudes and phase angles using physical quantities [3]. To model 

a multi-DOF system of equations for a complex structure like a blisk, the equations of the network 

of masses coupled by stiffness and damping coefficients are assembled and solved using a matrix 

formulation. 

The changing geometry often introduces geometric nonlinearities in the system as it 

deflects under static or dynamic loads. The analysis of complex structures with geometric 

nonlinearities like IBR’s solving linear systems is insufficient to compute the vibrational 

characteristics as they change the stiffness matrix significantly. These systems must consider 

nonlinearities induced due to large deflection, pressure load, stress stiffening, and spin softening. 

The centrifugal effects induced in the rotating machinery can change the direction of the 

centrifugal load and weaken the structure. A preceding static structural analysis is used to include 

the pre-stress effects in the modal analysis. 

 

Stress stiffening and spin softening effects 

A structure experiences stiffening or weakening in a stressed state which is an essential 

parameter for thin structures or where bending is high compared to in-plane displacements. This 

pre-stress is computed in a preceding static structural analysis which uses an additional stiffness 

matrix to account for this stiffening effect using equations (1.10) and (1.11)(4.2). The stress 

stiffness matrix is computed in at least two interactions depending on the effect of additional 

stiffness on the stresses using shape functions [G] and true stresses [τ] integrated into the volume 

domain. The final stiffness matrix, including the stress stiffening effects, may have negative terms 

in cases with high compressive stresses. Insufficient rigid body constraints also lead to such 

matrices. 

 
[𝑠] = ∫[𝐺]𝑇[𝜏][𝐺]𝑑(𝑣𝑜𝑙) (1.10) 

 [𝐾] =  [𝐾𝑠𝑡𝑎𝑡𝑖𝑐] + [𝑠] 
(1.11) 

 

Hui-Ying et al. [4] studied these effects for a rotating blade geometry and concluded that 

the increased radial centrifugal force and spin softening increased the blade vibration frequency 

on the order of 33 % for a 1200 rad/s rotational speed difference while the mode shape was not 
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significantly affected. The spin stiffening effect was prominent at high speeds, which reduced the 

frequencies. Houxin et al. [5] found a receptive interval of the vibration referred to as a “sensitive 

rotation speed region” where the stiffening effects were significant and can substantially change 

the frequencies and modal damping ratios for the shrouded interface. By default, a stress-free 

system is assumed in Ansys Mechanical, which can be overwritten by turning on the pre-stress 

effects. This study has considered these stiffening effects. Some of the previous research has 

included the Coriolis effect, which can deflect the moving mass in a rotating system. These forces 

can change the frequencies and behavior depending on the structure and rotational speed. Xuanen 

et al. [6] studied the effect of Coriolis force on the mistuned system. They observed that it increased 

the force response’s magnification factor by around 0.65% at a rotational speed of 3000 rpm. In 

comparison, it decreased the factor by 6.28 % for the mistuned system at 12000 rpm. The Coriolis 

forces effects are generally insignificant in the low-speed range of 3000 to 6000 rpm, as shown in 

Figure 1.4, and therefore excluded from the current investigation. 

 

 

Figure 1.4 Response Magnification factor varying with speed from Xuanen et al. [6] 

1.3.1 Modal Analysis 

Modal analysis is used to determine a system’s vibration characteristics, like natural 

frequencies and mode shapes, which can then be combined with a pre-stressed structural analysis 

to conduct a transient dynamic analysis and harmonic response analysis. The eigenvalue problem 
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is solved for the system to study these characteristics. Cyclic symmetric structures have distinct 

vibrational modes, which can be classified into nodal diameter modes (ND), nodal circle modes 

(NC), and hybrid modes (ND-NC). Nodes are locations with zero displacements, and the diameters 

with zero displacements are known as nodal diameters. The circular mode shapes similar to Figure 

1.5 (a) are classified as nodal circle modes. In contrast, the modes that are sinusoidal 

circumferentially with the nodes forming diametrical lines on the structure are categorized as the 

nodal diameter modes, as shown in Figure 1.5(b). Figure 1.5(c) shows the hybrid modes, a 

combination of nodal diameter and nodal circle modes. 

 

Figure 1.5 Disk mode shapes 

 

In an IBR, blade or disk-dominated frequencies can be used to categorize the vibration, 

with blade modes further subdivided into families like first bending, first torsion, and so forth [7]. 

The disk modes are classified according to nodal diameters (ND) and nodal circles (NC). First 

Bending, First Torsion, and First Chordwise bending modes are illustrated in Figure 1.6 (a), (b), 

and (c), respectively. 
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Figure 1.6 Blade mode shapes 

 

In contrast to disk-dominated frequencies, which depend on the number of nodal diameters, 

blade-dominated frequencies are independent of this factor. The coupled system has various nodal 

diameters for each blade-dominated mode family. The torsion mode is usually excited due to the 

unsteady moment, unlike the bending mode, which is excited by force. Therefore the bending and 

torsion modes are often independent, as shown in Figure 1.7(a) and (b), respectively [8]. 

 

 

Figure 1.7 Mass-spring model of an airfoil section - reproduced from Leng [8] 

 

The equations (1.12) and (1.13) are the EOM for the bending and torsion modes, respectively.  

 

 𝑀𝑥̈ + 𝐶𝑏𝑥̇ + 𝐾𝑏𝑥 = 𝐹(𝑡) 
(1.12) 

 𝐼𝛼̈ + 𝐶𝑡𝛼̇ + 𝐾𝑡𝛼 = 𝑀(𝑡) 
(1.13) 
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The variable x is deflection, F(t) is the unsteady lift, and Cb and Kb are the structural 

damping and stiffness for bending mode. Similarly, α is angular deflection, M(t) is the unsteady 

moment, and Ct and  Kt are the torsion mode’s structural damping and stiffness. The harmonic 

blade vibration amplitudes with frequency ω for respective modes are calculated using equations 

(1.14) and (1.15). 

 
𝑥̅ =

−𝐹

𝑚𝜔2 − 𝑖𝜔𝐶𝑏 − 𝐾𝑏
 (1.14) 

 
𝛼̅ =

−𝑀

𝐼𝜔2 − 𝑖𝜔𝐶𝑡 − 𝐾𝑡
 (1.15) 

 

The cyclic symmetric structures have eigenvalues in pairs classified as degenerate solutions. 

The eigenvalues of nodal diameter 0 and nodal diameter N/2 for the systems with an even number 

of sectors have all the blades vibrating in the same phase and do not appear in pairs and are 

therefore referred to as non-degenerate solutions. The eigenvectors associated with the double 

eigenvalues are orthonormal to each other and appear as stationary orthogonal modes. A rotational 

excitation shown in Figure 1.8 can be constructed by a linear combination of these eigenvectors, 

known as a traveling wave, as the vectors are linearly independent [9]. The traveling wave could 

be a forward or backward traveling wave depending on the direction of propagation with respect 

to the rotor rotation.  

 

 

Figure 1.8 (a) Forward traveling wave and (b) Backward traveling wave. 
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The modal analysis method in Ansys Mechanical solves the EOM equations for each DOF 

to compute the eigenvalues and eigenvectors of the system. Ansys mechanical supports Block 

Lanczos, Supernode, Subspace, PCG Lanczos, unsymmetric, damped, and QR damped methods 

to solve for the system’s eigenvalues. Block Lanczos is very robust in finding modes of large 

models, but this method cannot support FLUID elements in APDL. Ansys Parametric Design 

Language (APDL) is a structured scripting language that can interact with the Ansys Mechanical 

solver. When the interactions are too complicated or unsupported in the standard GUI, APDL is 

widely used to adjust simulation settings. APDL drives a finite element analysis program called 

Mechanical APDL (MAPDL). The PCG Lanczos, which is very similar to Block Lanczos, is only 

efficient in finding the first few modes. 

 

Block Lanczos Algorithm 

The Block Lanczos method implemented in Ansys Mechanical is an extension of the 

Lanczos algorithm. It iterates a block of vectors instead of only one vector to find eigenvalues of 

any given symmetric matrix. The concept of determining the sequence of estimates of the 

eigenvalues of a matrix from the block tridiagonal matrix was first proposed by Paige [10] and 

later developed by various researchers. This algorithm generates a banded tridiagonal matrix Ts by 

computing the orthonormal basis of the Krylov Space (Qi). An example of the Block Lanczos 

algorithm using an initial arbitrary block Q1 [11] on a symmetric matrix S is described in 

Equation(4.2). 

 

 𝐴𝑖 = 𝑄𝑖
𝑇(𝑆𝑄𝑖) (1.16) 

 𝑃𝑖 = 𝑆𝑄𝑖 − 𝑄𝑖𝐴𝑖 (1.17) 

 𝑄𝑖𝐵𝑖+1 = 𝑃𝑖   where, i=1,2,…,N 
(1.18) 

 

𝑇𝑠 = 𝑄𝑇𝑆𝑄 =

[
 
 
 
 
 
𝐴1 𝐵2

𝑇 0 0 0

𝐵2 𝐴2 𝐵3
𝑇 0 0

0 𝐵3 𝐴3 ⋱ 0

0 0 ⋱ ⋱ 𝐵𝑁
𝑇

0 0 0 𝐵𝑁 𝐴𝑁]
 
 
 
 
 

 (1.19) 

The generated sequence of blocks of Qi for each iteration is used with the P matrix to check 

for convergence. The eigenvalues of block tridiagonal matrix Ts are computed and then used to 
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compute the corresponding eigenvectors. The eigenvectors are mutually orthonormal, simplifying 

the characteristic Equation to Equation (1.20) where λi are the eigenvalues. Ansys does not 

consider plasticity and only supports linear modal analysis. Any element specified as a nonlinear 

element is implemented as a linear element. Linear, isotropic, orthotropic, and temperature-

dependent material properties can be applied to the model.  

 

 det (𝑇𝑠 − 𝜆𝑖𝐼)=0 
(1.20) 

 

1.4 Forced Response 

Vibration characteristics in a blisk 

In turbomachinery, flow-induced vibration is classified into synchronous or non-

synchronous vibration. Figure 1.9 shows the classification of Flow-Induced Vibration in 

Turbomachinery. 

 

Figure 1.9 Flow-induced vibration -reproduced from Razvan [12] 

The flow field distortions caused by upstream and downstream vane rows, struts, and inlet 

distortion give rise to forcing functions, making them a strong function of non-uniform potential 
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fields. The number of wakes produced by an upstream blade row, the potential field generated by 

blade rows downstream, and the total number of blade rows in adjacent compressor stages are 

utilized to determine the engine order [12]. This study focuses on the synchronous vibrations 

corresponding to specific engine orders (EOs), which are the machine’s integral multiples of 

rotational frequency, mathematically represented using Equation (1.21) 

 

 
𝑓 = 𝐸𝑂 ∗ 

Ω

60
 (1.21) 

 

Li [13] focused their research on the forced response of an embedded rotor blade row. They 

studied the primary forcing functions to predict the forced response of Rotor 2 in the Purdue 3-

Stage axial compressor focusing on nodal diameter 11, which corresponds to the forcing function 

on 33 rotor blades by the adjacent stators with 44 vanes, Figure 1.10.  

 

 

Figure 1.10 Primary forcing functions from Li [13] 

 

She found that for a mistuned system, the amplification factor is a strong function of 

loading and observed a reduction in average response for chordwise bending mode in structures 

with weak structural coupling. Her research included the aerodynamic coupling effects, which did 

not heavily excite the modes. Therefore, the Fundamental Mode Mistuning model was 

recommended as a tool for studying mistuning for the modes excited by engine orders in this setup. 
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The loading-dependent aerodynamic coupling effects are neglected in this study to evaluate the 

reduced order models with different excitations excluding these dynamic changes.  

Figure 1.11 shows frequencies with the corresponding ND. The frequencies fluctuate for 

the lower nodal diameters due to disk participation in the mode shape. Due to low disk participation, 

the blade modes with similar frequencies at various NDs appear horizontal. The “veering zones” 

marked in red are the areas where the system’s frequencies at the same nodal diameter are 

relatively closely spaced. Operating in these areas can be risky because it could result in energy 

exchanges between the modes. The regions where the frequencies cross are known as “crossing 

regions.” 

 

 

Figure 1.11 Nodal diameter vs. Frequency (Hz) 

 

Factors like the low damping level, disk flexibility, and coupling between the blades and 

the disk amplify mistuning effects. Florence [9] found that multi-stage structures may have a more 

prominent amplification factor than single-stage ones. As a result, the ability to characterize and 

understand the influence of the structure’s dynamic behavior due to mistuning is essential to 

predict fatigue life. An accurate reduced-order model can reduce the computation cost to study 

such multi-stage effects. 
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Dynamic analysis tools 

The Campbell and the ZigZag diagrams are standard tools designers use for dynamic 

structural analysis. The Campbell diagram, Figure 1.12, shows potential resonances where the 

engine order excitation coincides with the natural frequency of a mode. The resonant crossings are 

the intersection points of engine order lines and modal frequency. The natural frequency for most 

vibrational modes will increase as a function of speed due to centrifugal stiffening. 

 

 

 

Figure 1.12 Campbell Diagram 

 

However, previous research on turbines showed that the forced response was significant 

only for a few resonant points amongst a vast set of possible resonance points. The Zig-Zag 

diagram or Interference diagram shows the nodal diameters that can be excited by the excitation 

order. The forward traveling forcing wave, represented with a positive slope, travels in the same 

direction with respect to rotor rotation. In contrast, the backward traveling wave, represented with 

a negative slope in Figure 1.13, travels in the opposite direction. Each line represents a different 

EO in the diagram. 
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Figure 1.13 Zig-Zag Diagram 

 

According to the Nyquist-Shannon sampling theorem, the maximum number of nodal 

diameters equals half the number of sectors in the structure. The harmonic indices, or nodal 

diameters, are between 0 and N/2 for an even number of sectors and (N-1)/2 for an odd number of 

sectors.  

At resonance, the frequency of the excitation force is equal to the natural frequency, and 

the harmonic index of the mode corresponds to the harmonic of excitation. The periodic excitation 

must be of the exact wavenumber to excite a periodic mode structure. For a tuned system, resonant 

frequencies and responses are identical for all the blades, with a single peak in the frequency 

response at this frequency. However, mistuning can significantly change the resonant frequencies 

and forced response of each blade of the blisk. 

1.4.1 Frequency splitting 

The separation of the natural frequencies is one prominent consequence of mistuning, 

where the separation is directly proportional to the extent of mistuning. Ewins [14] found that the 

modes can be observed separately if the frequency separation is more than a factor of critical 

system damping. This trend causes multiple peaks in the frequency response, as shown in Figure 

1.14, where the frequency splits by about 1% for blades mistuned to a 1% variation. 
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Figure 1.14 Frequency splitting from Ewins [14] 

 

His research showed that this mistuning could raise blade stress by up to 20% for the 

deviations incurred due to manufacturing tolerances and wear over the engine’s lifetime. Therefore 

it can be considered that all production engines experience this increase in blade stress. His studies 

also showed that when the same set of blades with similar deviations is rearranged, it can subdue 

the increase in stresses, which has encouraged research in the field of intentional mistuning to 

prevent premature failure. 

1.4.2 Mode Localization 

The propagating waves from the source reflect at the discontinuous boundaries of mistuned 

substructures and lead to the confinement of energy in that substructure, also referred to as 

localization. Mode localization causes the magnitude of vibration in a particular area of the 

structure to be higher than the overall magnitude of vibration. These vibrations are adverse in blisk 

configurations, which have much lower internal structural damping than blade-disk assemblies.  
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The periodic substructures use coupling coordinates to interact and have an equal number 

of pairs of characteristic waves as the number of coupling coordinates that exhibit frequency-

dependent behavior [15]. Previous studies in this area concluded that mode localization increases 

when interblade coupling reduces. These behaviors can be classified into three types: frequency 

passbands, frequency stopbands, and frequency complex bands. The frequency passbands are 

undamped standing waves in contrast to stopbands and complex bands, which are attenuated 

standing waves and attenuated propagating waves, respectively. The strength of the substructure 

coupling affects the bandwidth of the passbands, which comprise natural frequencies equal to the 

number of substructures. The uncoupled substructure has a single frequency making the modal 

density a function of substructure coupling and the number of substructures. In cyclic symmetric 

structures, mode shapes are identical and sinusoidal in the circumferential direction in all 

substructures with the same interblade phase difference, and therefore, FEM is computationally 

inexpensive in tuned systems. 

Pierre [16] investigated the effects of blade mistuning and concluded that the aeroelastic 

modes of a turbine grouped in N-mode groups, with each corresponding to a different blade mode, 

are highly sensitive to small random mistuning because of the weak aerodynamic coupling. While 

structural damping was not considered in his research, he discovered that a small deviation of 0.1% 

can result in excessive localization, which confines energy to a small number of turbine blades. 

Deterministic mistuning patterns have been optimized over the years to help predict the dynamic 

response, including the mistuning caused due to wear, thereby estimating the fatigue life and 

stresses. 

Kaneko [17] used a spring-mass model to perform frequency response analysis 

incorporating Monte Carlo simulations to find the worst mistuning pattern and found that the 

acceleration rate changes the mistuning effect. The mistuning impact was diminished for larger 

acceleration speeds across the resonance zone. The larger the amplitude of the blade, the more 

significant the response reduction caused by an increase in acceleration rate. The reduction in 

vibration response was inversely related to the degree of damping. The most significant reduction 

in response occurred for ND-type vibrations or blisk response. Kaneko also concluded that the 

asymmetric vane spacing effectively reduces the resonant response for a mistuned-bladed disk. 

Past research showed that the frequency corresponding to the maximum amplitude increases as the 

acceleration increases and that mistuning could have the beneficial effect of suppressing the flutter 
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by decreasing the work done on the fluid. Kaza et al. [18] studied similar effects by developing a 

mistuned bladed blisk. They found that mistuning has a fair chance of reducing the flutter response 

or speeding up the circumferential propagation of the flutter, and thus it was difficult to conclude 

that mistuning had only beneficial or detrimental effects on a particular system. 

1.4.3 Intentional mistuning and Damage assessment 

The beneficial effects of mistuning led to exploring the concept of intentional mistuning. 

Judge et al. [19] used a lumped parameter model to evaluate intentional mistuning and discovered 

that it could significantly lower the maximum response of a bladed disk due to random mistuning. 

They used the Monte Carlo method to randomly mistune the originally internationally mistuned 

system designs (h1, h2, h3, and h4 in Figure 1.15). The system’s sensitivity to random mistuning 

was reduced, with the magnification being relatively constant. 

 

Figure 1.15 Magnification Factor corresponding to EO1 of intentionally mistuned designs from 

Judge et al. [19]. 

 

Mignolet et al. [20]studied the effects of the coupling strength of the blades and damping 

on the maximum forced response of the harmonic intentionally mistuned pattern. They concluded 



 

 

35 

that the responses localized by damping are highly sensitive to wavelength fluctuations. 

Understanding such dynamic behaviors of a mistuned system could help determine the system’s 

life. An efficient crack detection method would assist the system’s engine health monitoring and 

damage assessment. Laihao et al. [21] proposed a dynamic model to study nonlinear vibrations 

and developed a system that can characterize the cracks on the rotor blades and serve as a 

monitoring device.  

Rehman et al. [22] used the Modal assurance criterion (MAC) technique to study different 

cracks and their damage index on a turbo fan blade to study the damage detection when the 

turbomachine is in operation. The modulus of elasticity of the elements in the FEM model was 

changed at the location of the crack to study the frequency variations. A high damage index was 

observed for the crack near the blade tip and at three-quarters of the length of the blade. 

1.5 Harmonic Analysis 

Harmonic analysis is used to compute the response in a structural member produced by a 

cyclic load. Harmonic analysis in Ansys Mechanical computes the steady state response of a linear 

system and can only take time-varying sinusoidal loads with the same frequency as described in 

Figure 1.16. It does not consider any nonlinear or transient effect while solving the EOM. The 

transient dynamic analysis allows the harmonic loads to be expressed as time history functions 

which can be used to capture the transient effects. Ansys supports various types of damping, which 

must be specified to prevent infinite responses at the resonant frequencies. Structural damping 

integrates the hysteretic behavior of the structure as a coefficient of the stiffness matrix.  

 

 

Figure 1.16 Harmonic analysis system from Ansys Structural Analysis Guide [23]. 
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Ansys Mechanical supports full, frequency sweep, and mode superposition methods for 

harmonic analysis. Mode-superposition method is faster and computationally less expensive than 

the full and frequency sweep method as it combines the mode shapes (eigenvectors) computed in 

the preceding modal analysis step to compute the response. A mode-dependent damping ratio can 

specify different damping ratios for other vibration modes. This method computes the response 

using Discrete Fourier Transform (DFT) to calculate eigenvectors with the mode superposition 

method. The detailed mathematical formulation of mode superposition is provided in Appendix A.  

1.6 Reduced order modeling 

1.6.1 Lumped parameter model and beam frame assembly model 

A lumped parameter model, a cyclic chain of spring-mass oscillators, is often used to model 

a basic bladed disk model. Lumped parameter model oscillators usually have one or two degrees 

of freedom, one being the motion of the blade and the other related to the disk’s motion per sector. 

Figure 1.17 (a) shows a simple reduced order two DOF lumped parameter model with blades and 

disk modeled as lumped masses coupled with interblade coupling stiffness kc [24]. Modeling the 

system as a lumped mass system is computationally cheaper and can capture some fundamental 

dynamics, but they only give comparable results to the first three fundamental modes. These 

models are, therefore, widely used in the preliminary stages of design owing to their simple 

structure. 

In a beam frame assembly model, the blades are modeled as beam frame structures, as 

shown in Figure 1.17 (b), assembled using a spring-dashpot system to model the rotor. This model 

has a superior capability of predicting mistuning by using lumped mass at physical coordinates. A 

simulated annealing algorithm incorporating a structural identification approach is used for every 

frame arrangement. Although these approaches are simple, they are less accurate than FE models 

for predicting dynamic responses. 
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Figure 1.17 (a) Lumped mass parameter model (b) Beam frame assembly model from Yuan et al. 

[24] 

 

1.6.2 FE-based reduced order models 

The central concept for reduction approaches is to swap out the degrees of freedom (DOF) 

for a collection of global variables that indicate the amplitudes of potential displacement modes. 

Gladwell [25] used a lumped mass system and assumed the interface between the substructures to 

be rigid. The lower natural frequencies of each substructure were computed and coupled with 

Rayleigh-Ritz analysis to represent the complete system. This approach requires the branches or 

substructures to be chosen appropriately for adequate accuracy. 

 

General formulation of reduced order modeling 

A transformation matrix transforms the structure’s nodal displacement vector to reduced 

coordinates. These matrices are generally expressed using Equation (1.22), where X is the physical 

DOF, and x is the reduced DOF. Transformation or reduction matrices (T) are built with different 

modes to relate the system’s physical DOF to the reduced space DOF. Each reduction technique 

has a different parameter or set of modes constituting the transformation matrix.  

 𝑋 = 𝑇𝑥 
(1.22) 

 𝑀𝑋̈ + 𝐶𝑋̇ + 𝐾𝑋 = 𝐹𝑒𝑥𝑐 (1.23) 
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The tilde superscript matrices in Equation (1.25) represent a reduced space after projecting onto 

the subspace T. 

 

 𝑇𝑇𝑀𝑇𝑥̈ + 𝑇𝑇𝐶𝑇𝑥̇ + 𝑇𝑇𝐾𝑇𝑥 = 𝑇𝑇𝐹𝑒𝑥𝑐 
(1.24) 

 𝑀̃𝑥̈ + 𝐶̃𝑥̇ + 𝐾̃𝑥 = 𝐹𝑒𝑥𝑐̃ (1.25) 

 

The EOM in reduced space is generally represented as follows, 

 [𝜇]𝑥̈ + [𝑐]𝑥̇ + [𝑘]𝑥 = [𝛾𝑒𝑥𝑐] (1.26) 

 

Guyan Reduction / static condensation 

The Guyan reduction method ignores the inertial equilibrium terms to reduce the number 

of degrees of freedom of the system to reduce the dimensions of the system. The degrees of 

freedom to be retained are classified as master DOF, while the degrees of freedom to be omitted 

are classified as slave DOF. The unloaded DOFs (Slave DOF (xs)) are expressed in terms of the 

loaded DOFs (Master DOF (xm)) as described in the equations (1.27), (1.28), (1.29), and (1.30). 

This reduction method has a low order of accuracy as it does not include the inertial term and only 

accounts for the static behavior of the system. This method does not have a general formulation 

and needs to be optimized for each mode of vibration by manually selecting the master DOF to 

get results with acceptable accuracy. 

 

 𝐾𝑥 = 𝑓 
(1.27) 

 
[
𝐾𝑚𝑚 𝐾𝑚𝑠

𝐾𝑠𝑚 𝐾𝑠𝑠
] [

𝑥𝑚

𝑥𝑠
] = [

𝑓𝑚
0

] (1.28) 

 𝐾𝑠𝑚𝑥𝑚 + 𝐾𝑠𝑠𝑥𝑠 = 0 
(1.29) 

 𝑥𝑠 = −𝐾𝑠𝑠
−1𝐾𝑠𝑚𝑥𝑚 

(1.30) 

 𝑆 = −𝐾𝑠𝑠
−1𝐾𝑠𝑚 

(1.31) 

 

Equation (1.31) gives the static condensation matrix (S) with “static modes” in their columns that 

indicate the static response of master nodes when slave nodes are given a unit displacement. The 

Linear Guyan transformation matrix is expressed in Equation (1.32). 
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[
𝑥𝑚

𝑥𝑠
] = [

𝐼
−𝐾𝑠𝑠

−1𝐾𝑠𝑚
] [𝑥𝑚] (1.32) 

 [
𝑥𝑚

𝑥𝑠
] = [𝑇𝐺][𝑥𝑚] (1.33) 

 𝐾𝐺 = 𝑇𝐺
𝑇𝐾𝑇𝐺 (1.34) 

 𝑀𝐺 = 𝑇𝐺
𝑇𝑀𝑇𝐺 (1.35) 

These reduced matrices 𝐾𝐺  and 𝑀𝐺  are used to compute the vibration amplitude of the system 

using the EoM.  

 

Craig Bampton Formulation (Fixed Interface Formulation): 

The interior and interface degrees of freedom are separated in the substructure EOM, which 

would reduce the system to a combination of static and dynamic modes. In contrast to the Guyan 

basis in this formulation, the interface nodes are the master DOF of each substructure, while the 

interior nodes are the slave DOF. The static response of the system is computed by performing 

static condensation and giving unit displacement to the interface DOF while all the other DOFs 

are fixed [26]. The static modes (ψ: attachment modes) computed with static condensation do not 

contain the dynamic characteristics (ϕ) as they ignore the inertial terms. The dynamic 

characteristics must be computed by fixing the interface DOFs using Equation (1.38) and included 

in the formulation. 

 

 
[
𝑥𝑖

𝑥𝑏
] = [

−𝐾𝑖𝑖,𝑗
−1𝐾𝑖𝑏,𝑗

𝐼
] [𝑥𝑏] (1.36) 

 
𝜐𝑗 = [

𝜓𝑗

𝐼
] = [

−𝐾𝑖𝑖,𝑗
−1𝐾𝑖𝑏,𝑗

𝐼
] (1.37) 

 (𝐾𝑖𝑖,𝑗 − 𝜔𝑟
2𝑀𝑖𝑖,𝑗){𝜙𝑖,𝑗}𝑟 = 0 (1.38) 

 
𝜙𝑗 = [

𝜙𝑖,𝑗

0
] (1.39) 

The equations (1.37) and (1.39)are combined to get the CB (fixed interface formulation) reduction 

matrix in Equation (1.40) 

 

 
𝑇𝑗

𝐶𝐵 = [
𝜙𝑖,𝑗 𝜓𝑗

0 𝐼
] (1.40) 
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Equation (1.41) shows the transformation of physical DOF to Criag-Bampton DOF where qi,j 

represents the modal coordinate vector associated with the fixed-interface modes.  

 

 [
𝑥𝑖,𝑗

𝑥𝑏,𝑗
] = 𝑇𝑗

𝐶𝐵 [
𝑞𝑖,𝑗

𝑥𝑏,𝑗
] (1.41) 

 𝐾𝐶𝐵 = 𝑇𝑗
𝐶𝐵𝑇

𝐾𝑇𝑗
𝐶𝐵 (1.42) 

 𝑀𝐶𝐵 =  𝑇𝑗
𝐶𝐵𝑇

𝑀𝑇𝑗
𝐶𝐵 (1.43) 

 
𝐾𝐶𝐵 = [

Ω 0
0 𝐾̃

]  and  𝑀𝐶𝐵 = [
I 𝑀𝑖𝑏̃

𝑀𝑏𝑖
̃ 𝑀𝑏𝑏̃

] 

 
(1.44) 

Craig-Chang Formulation (Free Interface Formulation) 

The Criag-chang formulation also reduces the system by taking dynamic and attachment 

modes instead of static modes. The attachment modes have different transformation formulations 

for a constrained and unconstrained system. Unlike the static modes, the attachment modes are 

computed with the inverse of the stiffness matrix, the flexibility matrix [27]. When the component 

is unconstrained, the inverse does not exist; therefore, the rigid body modes are taken to make the 

matrix non-singular. The attachment modes are computed by applying unit force on the system's 

interface, while the dynamic modes are computed with an unconstrained interface. The 

transformation matrices for constrained and unconstrained cases are described in equations (1.45) 

and (1.46). 

 
𝑇𝑗

𝐶𝐶 = [
𝜙𝑖,𝑗 𝜓𝑏,𝑗

𝜙𝑏,𝑗 𝜓𝑖,𝑗
] (1.45) 

 

 

𝑇𝑗
𝐶𝐶 = [

𝜙𝑖,𝑗 𝜓𝑏,𝑏 𝜓𝑖,𝑟

𝜙𝑏,𝑗 𝜓𝑖,𝑏 𝜓𝑏,𝑟

𝜙𝑟,𝑗 𝜓𝑟,𝑏 𝜓𝑟,𝑟

] (1.46) 

 

The subscript b stands for boundary DOF, i stands for interior DOF, r stands for rigid body 

DOF, ϕ is the dynamic modes, and ψ is the attachment modes. These transformation matrices 

reduce the order of the system in the same way as the Criag-Bampton method. 
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1.7 Mistuning 

Structural mistuning is generally included in the system by including mass and stiffness 

matrix variations. The mistuned mode shapes are the linear combination of the tuned bladed mode 

shapes. The eigenvalue problem incorporating mistuning is transformed as Equation (1.48). 

 

 [𝐾 + 𝛿𝐾] − 𝜔2[𝑀 + 𝛿𝑀] = 0 
(1.47) 

 [𝐾 + 𝛿𝐾]𝜙̃ = [𝑀 + 𝛿𝑀]𝜙̃Λ̃ (1.48) 

 

The symbol, 𝜙̃ is the linear combination of tuned blisk mode shape and Λ̃ are the eigenvalues, 

while 𝛿𝑀 and 𝛿𝐾 are the deviations of mass and stiffness from the tuned system, respectively. 

This research focuses on the Component Mode Mistuning and Fundamental Mode Mistuning 

models and compares them in the blade-dominated, disk-dominated, and veering regions. 

 

Component Mode Mistuning 

CMM combines component mode synthesis and system modes-based approaches by 

substructuring the blisk into a tuned blisk and mistuned cantilever blade blades, as shown in Figure 

1.18. It was first proposed by Lim et al. [28] and then implemented into Ansys Mechanical as a 

commercial tool with an extension of projecting mistuning into a reduced-order model proposed 

by Bladh et al. [29]. CMM is implemented with Craig Bampton’s approach of a fixed interface to 

represent the blade motion.  
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Figure 1.18 Substructuring of a mistuned bladed disk from Bladh et al. [29] 

 

This model assumes small displacements at the blade interface and includes mistuning as 

a function of stiffness or frequency in modal space. The displacement compatibility constraint 

satisfied at the blade interface yields a synthesized representation in Equation (1.50) for the 

mistuned system. 

 

 (−𝜔2𝑚 + (1 + 𝑗𝜈)𝑘)𝑥 = 𝐹 
(1.49) 

 
(−𝜔2[𝜇]𝑠𝑦𝑛 + (1 + 𝑗𝜈)[𝑘]𝑠𝑦𝑛) [

𝑋Φ

𝑋𝜓
] = [𝛾𝑒𝑥𝑐] = [𝜙𝜓]𝑇𝐹 

 

(1.50) 

 

The synthesized mass and stiffness matrices are characterized in terms of normal and 

attachment modes of the tuned system with damping (jν). The tuned system modes are the normal 

modes (ϕ), while attachment modes (ψ) are computed using a sequential unit force excitation to 

each interface DOF. The modes of the mistuned system are computed using a fixed interface 

approach, simplifying the constraint modes as an identity matrix without any normal modes. 

 

 [𝜇]𝑠𝑦𝑛 = [𝜇]𝑡𝑢𝑛𝑒𝑑  + [𝜇]𝛿 (1.51) 

 
[𝜇]𝑠𝑦𝑛 =  [

𝐼 𝜙𝑇𝑀𝜓

𝜓𝑇𝑀𝜙 𝜓𝑇𝑀𝜓
] + [

𝜙𝑏
𝑇𝛿𝑀𝜙𝑏 𝜙𝑇

𝑏
𝛿𝑀𝜓𝑏

𝜓𝑏
𝑇𝛿𝑀𝜙𝑏 𝜓𝑏

𝑇𝛿𝑀𝜓𝑏

] (1.52) 
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 [𝑘]𝑠𝑦𝑛 = [𝑘]𝑡𝑢𝑛𝑒𝑑  + [𝑘]𝛿  (1.53) 

 
[𝑘]𝑠𝑦𝑛 = [

Λ 𝜙𝑇𝐾𝜓

𝜓𝑇𝐾𝜙 𝜓𝑏

] + [
𝜙𝑏

𝑇𝛿𝐾𝜙𝑏 𝜙𝑇
𝑏
𝛿𝐾𝜓𝑏

𝜓𝑏
𝑇𝛿𝐾𝜙𝑏 𝜓𝑏

𝑇𝛿𝐾𝜓𝑏

] (1.54) 

 

The general formulation of synthesized matrices is given in equations (1.52) and (1.54). 

Mass and stiffness matrices of a tunes system are represented by M and K, respectively. The 

deviations of mass and stiffness matrices are represented by δM and δK.  The subscript b represents 

the blade DOF while the eigenvalues of the tuned system and the structural damping are 

represented by Λ and ν, respectively. The CMM method was developed, assuming the blade 

mistuning is small compared to the tuned system. This assumption enables the mistuned modes to 

be expressed as a subset of tuned normal modes, which are closely spaced, and therefore the modes 

out of the frequency range, along with static modes, can be neglected. The synthesized Equation 

further simplifies as equations (1.55), (4.2), and (1.57). 

 

 [𝜇]𝑠𝑦𝑛 = [𝐼 + 𝜙𝑏
𝑇𝛿𝑀𝜙𝑏]  (1.55) 

 [𝑘]𝑠𝑦𝑛 = [Λ + 𝜙𝑏
𝑇𝛿𝐾𝜙𝑏] (1.56) 

 𝑥 = [𝑋Φ] 
(1.57) 

 

The displacements at the blade-disk boundary cannot be captured with only cantilevered 

blade normal modes. Therefore, a supplementary mode set (ψB) of cantilevered blade interior DOF 

is included in the formulation whose order corresponds to the number of boundary DOFs. The 

projection of mass and stiffness of the blade to the boundary modes with modal participation 

factors (q) and retained tuned cantilevered blade normal and boundary modes (U) are substituted 

together in equations (1.58) and (1.59) to obtain the complete synthesized matrices for mass and 

stiffness mistuning. 

 

 [𝜇]𝑠𝑦𝑛 = 𝐼 + 𝑞𝑚𝑇(𝐼 ⊗ 𝑈𝑚𝑇)𝛿𝑀(𝐼 ⊗ 𝑈𝑚)𝑞𝑚 
(1.58) 

 [𝑘]𝑠𝑦𝑛 = 𝛬𝑠 + 𝑞𝑘𝑇(𝐼 ⊗ 𝑈𝑘𝑇)𝛿𝐾(𝐼 ⊗ 𝑈𝑘)𝑞𝑘 (1.59) 

 
𝑈𝑚 = [𝜙𝑏

𝑚 ψ𝑏
𝑚

0 𝐼
]  𝑓𝑜𝑟 𝑚𝑎𝑠𝑠 𝑚𝑖𝑠𝑡𝑢𝑛𝑖𝑛𝑔 (1.60) 



 

 

44 

 
𝑈𝑘 = [𝜙𝑏

𝑘 ψ𝑏
𝑘

0 𝐼
]  𝑓𝑜𝑟 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑚𝑖𝑠𝑡𝑢𝑛𝑖𝑛𝑔 (1.61) 

 

The mode participation factors (qm and qk) have one mode which dominates in each 

column, with the blade motion being dominated by a tuned mode that transforms the equations 

into a basic form which is solved to compute the eigenvalues. 

 

 
[𝜇]𝑠𝑦𝑛 = 𝐼 + ∑ 𝑞𝑚𝑇𝑑𝑖𝑎𝑔(𝜇𝛿)𝑞𝑚

𝑁

𝑛=1

 (1.62) 

 
[𝑘]𝑠𝑦𝑛 = 𝛬𝑠 + ∑ 𝑞𝑘𝑇𝑑𝑖𝑎𝑔(𝑘𝛿)𝑞𝑘

𝑁

𝑛=1

 

 

(1.63) 

 

Finally, equations (4.2) and (1.63) are substituted in Equation (1.50) to compute the 

eigenvalues and response. The CMM model incorporated in Ansys Mechanical supports both 

stiffness and frequency mistuning but does not support geometric and mass mistuning. One of the 

main disadvantages of this method is that it does not include geometric mistuning with cyclic 

symmetry ROM which is an essential type of mistuning when non-uniform wear is considered. 

Mass and geometric mistuning can be investigated using Ansys CMS substructuring reduction. 

Misutning of the full blisk model can be achieved by perturbing the mass and stiffness matrices 

by differing amounts. Stiffness-type mistuning is incorporated by changing Young’s modulus of 

each blade, and frequency mistuning is introduced in the system with a factor to modify each 

natural frequency, modifying the frequencies in the Craig Bampton reduced stiffness matrix.  

 

 𝐸𝑛 = [1 + 𝛿𝑛]𝐸 
(1.64) 

 
𝛿𝑓𝑛 = [

𝜔𝑖,𝑚𝑖𝑠𝑡𝑢𝑛𝑒𝑑
𝑛

𝜔𝑖,𝑡𝑢𝑛𝑒𝑑
𝑛 ] − 1 (1.65) 

The APDL command “CYCFREQ, MIST” defines the mistuning for the blade elements in the 

FEM model. 
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Fundamental mode mistuning (FMM) 

This model was developed by Feiner [30], targeting the isolated family of blade modes. 

This model does not depend on the geometric or physical aspects that affect the blade frequency. 

This model uses modal damping ratio, engine order excitation, and tuned system frequencies to 

compute the forced response without any finite element data like mode shapes and stiffness 

matrices.  

The subset of the nominal modes method is adopted in FMM, which computes the mistuned 

modes as a weighted sum of selected tuned system modes to reduce the order of the system and 

transform the structure in terms of sector matrices. This method supports geometric, density, and 

stiffness types of mistuning by normalizing the equations of motion with the tuned system mass 

matrix. This method assumes that the mistuned frequencies are closely spaced as SNM considers 

the same family of modes for reducing the matrices. Therefore, the frequencies are approximated 

as the average tuned system frequency with deviations and solved using Equation (1.66). 

 

 [(Λ + δ𝐾) − 𝜔𝑖
2(𝐼 + δ𝑀)]𝜙𝑖 = 0 (1.66) 

 

The symbol Λ is the modal stiffness matrix, I is the modal mass matrix, and ΔK and ΔM are the 

deviations corresponding to mistuning. The eigenvector (the mistuned mode - Φi) corresponds to 

the mistuned frequency ωi. A vector weighting factor (β) combines the tuned system modes (ϕi) to 

compute the mistuned system modes.  

 

 [(Λ + Δ𝐾) − 𝜔𝑖
2(𝐼 + Δ𝑀)]𝜙𝑖

𝑜𝛽𝑖 = 0 (1.67) 

 

The deviation matrices of mass and stiffness are combined into a matrix (Aj) which 

approximates this matrix into a single mistuning matrix using Equation (1.69) owing to the SNM 

assumption of this formulation. 

 

 (Λ + 𝐴𝑗)𝛽𝑖 = 𝜔𝑖
2𝛽𝑖 (1.68) 

 𝐴 = 𝐴𝑗 = (Δ𝐾) − 𝜔𝑖
2(Δ𝑀) = (Δ𝐾) − 𝜔𝑎𝑣𝑔

2 (Δ𝑀) (1.69) 
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The frequencies of a family of modes are assumed to be closely spaced, which is used to 

approximate ωi as the average of tuned system frequencies of a mode family. FMM uses the 

isolated blade frequency deviations to express terms in a matrix [A] using the sector modes related 

to cantilevered blade modes. The resulting [A] matrix in Equation (1.71) is a function of DFT and 

the fractional change in blade frequencies (Δω) whose eigenvalues are computed to find mistuned 

frequencies (ωj) and mistuned mode shapes (βj).  

 

 

𝐴𝑛 = 2𝜔𝑎𝑣𝑔
2 [

1

𝑁
 ∑ 𝑒

2𝜋
𝑁

𝑖𝑛𝑝∆𝜔𝑛

𝑁−1

𝑛=0

] = 2𝜔𝑎𝑣𝑔
2 Ω (1.70) 

 (Λ + 2𝜔𝑎𝑣𝑔
2 Ω)𝛽𝑗 = 𝜔𝑗

2𝛽𝑗   (1.71) 

 

This FMM reduced order model was evaluated for a simplified test rotor with variations of 

0.2,0.8, and 0.008 standard deviations, resulting in a maximum deviation of 1.6% compared to the 

completely mistuned Ansys model. This model’s simple formulation and low computational cost 

can be taken advantage of by understanding its limitations. 

1.8 Research Objectives 

This research aims to study the CMM and FMM reduced order models and understand the 

limitations of these reduced order models when applied to Purdue 3-stage rotor blisk. The CMM 

model is incorporated in Ansys Commercial, while the FMM model is an in-house code by Leng 

[31]. Rotor 2 of the PAX100 configuration was chosen as the geometry for this study since it has 

been thoroughly investigated for the forced response as part of the GUIde Consortium. Full blisk 

models are computationally expensive and are not a viable choice in the early design stages. It 

would be highly beneficial to take advantage of the FMM method, which has a computational cost 

similar to a mass-spring model to predict the response. Therefore this study will guide future 

modeling of different setups knowing the limitations and accuracy of each model, leading to a 

reduction in the computational cost to evaluate a mistuned system. This research focuses on 

determining model fidelity in the regions of high disk participation and veering. Including 

aerodynamic effects will allow for future validation of the experimental data. 
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This objective is accomplished by simulating the reduced order models for various 

mistuning values and comparing the results to the mistuned full blisk model, which acts as a 

benchmark. A grid convergence investigation was first carried out for the FEM models to confirm 

the accuracy of the spatial discretization. Next, the modal frequencies and forced response of these 

mistuned reduced order models are computed and compared with full mistuned blisk for five 

mistuning cases of 0.1%, 0.5%, ping test values, 5%, and random deviation. This study focused 

on the 1B and 1T blade modes. The accuracy of reduced models depends on the number of the 

retained blade and tuned system modes. The average error is computed for these models as a 

function of modes retained to recognize the minimum requirement for a family of modes. To 

compare amplification, these models are simulated with similar excitation forces at engine orders 

3, 5, and 11. The deviations used in the 5% standard deviation case are arranged in ascending order 

and compared to the original case to investigate a case of intentional mistuning.  
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 COMPUTATIONAL METHODOLOGY 

Two computational models, one of the full blisk and the other of sector geometry, were 

developed to study the vibration characteristics of Rotor 2. The models were mistuned by 

introducing deviations in Young’s modulus, translating into equivalent deviations in the stiffness 

for a linear isotopic system. This chapter describes the setup of the computational model and the 

mistuning test cases with various standard deviations. Gridpro was used to mesh, and Ansys 

Mechanical with APDL command sequence was used to solve these cases. Matlab was used to 

further compile and post-process the data.  

To study the sole effects of mistuning, forced response in this study is uncoupled with the 

fluid interaction. Therefore, this study does not include the stiffness and damping matrices 

modifications due to unsteady fluid interactions. The effect of these interactions can be 

incorporated into these models in the preceding steps using the mapped pressure results from 

transient CFD to generate a loading vector for harmonic analysis instead of a constant load 

excitation used in this study.  

2.1 Purdue 3-stage Axial Compressor Facility 

Three axial stages follow an inlet guide vane (IGV) in the Purdue 3-Stage axial compressor, 

a scaled model of the backstages of a modern high-pressure compressor. The flow path of the 

compressor is illustrated in Figure 2.1. With a corrected design speed of 5000 rpm, the compressor 

matches the Reynolds numbers and Mach values that are characteristic of the rear stages found in 

engines. The IGV and rotor blade profiles are double circular arc (DCA) configurations, while the 

stator blade profiles are the NACA 65-series airfoil design. A 1400-horsepower three-phase 

alternating current motor powers the compressor with an encoder on the shaft and feedback control 

to maintain the speed within 0.1% of the target speed. In this facility, different configurations of 

Stator 1, as summarized in Table 2.1, can be used to study the engine order influence on the 

resonant response of Rotor 2. The baseline configuration of this compressor consists of IGV (Inlet 

guide vane), Stator 1 (S1), Stator 2 (S2) with 44 vanes, Stator 3 (S3) with 50 vanes and Rotor (R1), 

Rotor 2 (R2) and Rotor 3 (R3) with 36, 33 and 30 vanes, respectively. 
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Figure 2.1 Purdue 3-stage axial compressor flow path 

 

The experiments can be designed to study steady-state and transient aerodynamics near the 

mechanical resonant conditions of R2. The full vane passage characteristics are captured through 

a circumferential traverse of the stator vanes, which are individually indexable. Matthews [31] 

studied the unsteady aerodynamics at resonant conditions for three engine order crossing speeds. 

Concurrently, Aye-Addo [32] studied the forced response for the Baseline and Non-Uniform Vane 

spacing configurations as a part of GUIde 5. Detailed documentation of the Purdue 3-stage axial 

compressor setup, data acquisition systems, and data processing techniques can be found in the 

referenced thesis.  

 

Table 2.1 PAX100 compressor Configurations 

Configuration IGV R1 S1 R2 S2 R3 S3 

Baseline 44 36 44 33 44 30 50 

Reduced Vane 

count 

44 36 38 33 44 30 50 

Non-uniform 

vane spacing 

(NUVS) 

44 36 38 (18 and 20 

vane sectors) 

33 44 30 50 
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The Nodal diameters that are excited by these configurations are summarized in Table 2.2 

Table 2.2 Excitation Orders on Rotor 2 in different configurations 

Case Configuration S1 R2 S2 Nodal Diameter 

Excitations 

1 Baseline 44 33 44 11 

2 Reduced Vane count 38 33 44 5,11 

3 Non-uniform vane 

spacing (NUVS) 

38 (18 and 

20 vane 

sectors) 

33 44 3,7,11 

2.2 FEM models 

A single sector with cyclic boundary conditions is computationally more efficient for tuned 

systems as it can be expanded into a full model. Premeshed cyclic symmetry defines the 

independent cyclic DoFs and dependent cyclic DoFs, ensuring that the mesh matches between high 

and low sides with similar transformations, as shown in Figure 2.2. The matched faces 

corresponding to the periodic rotational boundaries must have the same topology and geometry 

with equal surface area. Blade elements and Interface nodes are defined using named selections in 

the CMM model as interior blade DoF and interface DoF to mistune the system. Defining the blade 

interface is extremely important for the reduced models as these models compute the blade modes 

excluding other bodies to compute the frequencies of the mistuned system. 
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Figure 2.2 Single Sector FEM model  

 

This study includes features like fillets and chamfers in the model, which are usually 

excluded in previous studies to simplify the models. An initial mesh was generated on a sector 

model using Ansys. The geometry was split into three parts (blade, hub, and root) to achieve a 

sweepable blade and root, which can be meshed with higher-quality hexahedral elements. The 

fillet could not use a hex-dominant meshing and, therefore, was meshed as tetrahedral elements. 

Ansys does not support the multizone meshing feature with the match control in the cyclic 

symmetry constraint, thereby restraining the meshing, resulting in a lower-quality mesh. The splits 

created additional bonded contacts between the bodies, introducing errors in the results. Meshes 

made in Ansys Mechanical and GridPro in the hub and fillet region are illustrated in Figure 2.3. 

A FEM model of the full blisk was developed in Ansys to compare the results and 

understand the mesh dependency of these structural results. The full blisk was meshed using two 

approaches to compare. Meshing the full blisk as an entire body and expanding the sector mesh in 

Ansys with bonded contacts were attempted to generate a full blisk FEM model. Comparing results 

between the full blisk and sector FEM models showed a large discrepancy between the tuned 

frequencies. The full blisk mesh model was comparatively better for overall frequencies than the 

Blade Interior  oF

Blade Interface  oF

 isk Interior  oF

Independent Cyclic disk Interface  oF

 ependent Cyclic disk Interface  oF

Blade Surface Elements
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expanded mesh, which was only conformal in the blade-dominated regions. These errors further 

propagated into the harmonic analysis to the extent that they could not be used for comparison. 

 

 

Figure 2.3 GridPro mesh in the hub and fillet region.  

 

Further refinement of the grid was not feasible due to the size of the full blisk DOF problem. 

These issues necessitated a Gridpro structured mesh. Gridpro was used to create a structured mesh 

for the cyclic model with 10.90909 degrees periodicity. 
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Figure 2.4 Effects of inherent mistuning on forced response due to the mesh. 

 

Gridpro was initially used to create a topology and mesh the full blisk model. Gridpro 

optimized the grid to the CAD geometry at each node introducing an inherent mistuning. This 

inherent mistuning affected the response to the extent that taking this geometry as a benchmark 

for validation would not be an accurate comparison of these models. The effects of this inherent 

mistuning introduced by the mesh are illustrated in Figure 2.4. Multiple peaks indicate that the 

mode of this blade is excited with several modes, which implies mistuning. Considering these 

effects, the full blisk FEM model was generated for a single sector and then expanded by merging 

the nodes on the periodic surfaces to create a tuned system, as shown in Figure 2.5.  
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Figure 2.5 Full Blisk FEM model 

 

Young’s modulus of each blade was changed to mistune the FE models by defining new 

proportional material properties for each blade. For simplistic comparison, the FEM models are 

excited by a unit harmonic pressure forcing function loaded at each blade’s pressure surface. A 

traveling wave force is considered for the blade DOF only, allowing for a more compact 

formulation. The probe location to monitor and compare forced response was chosen as a point 

near the trailing edge tip, as described in Figure 2.6.  

 

Figure 2.6 Forcing and response probe location of the FE models 
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The rotor model is fastened at the disk’s outermost surfaces, roughly approximating the 

boundary conditions imposed by adjacent stages. The response amplitude is directly proportional 

to the magnitude of force, but the amplification factor used for comparison between the FMM and 

CMM models is independent of this factor. The specific nodal diameter with respect to engine 

order is simulated by including an associated phase angle to the respective force on each blade of 

the blisk. The interblade phase angle is computed for each nodal diameter as follows, 

 

 
𝐼𝐵𝑃𝐴 = 

2 𝜋 𝑁𝐷

𝑁𝑏𝑙𝑎𝑑𝑒𝑠
 (2.1) 

2.3 Mistuning cases 

The cantilevered blades are mistuned proportionally with isotropic blade variations. 

Variation in Young’s modulus matrix includes stiffness variations in the blades using the relation 

in Equation (2.2). The delta is computed using the system’s ratio of mistuned and natural 

frequencies to include frequency mistuning. 

 

 𝐸 = 𝐸𝑜 (1 +  𝛿) 
(2.2) 

 
 𝛿 =  

𝜔2 − 𝜔𝑛
2

𝜔𝑛
2

, 𝑓𝑜𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑚𝑖𝑠𝑡𝑢𝑛𝑖𝑛𝑔 (2.3) 

 

Mistuning patterns with standard deviations of 0.1%, 0.5%, 0.45% SD (Ping test results), 5% SD, 

an arranged 5% SD case, and random mistuning cases are used to study FMM and CMM models 

are described in Figure 2.7 and Figure 2.8. The reduced order models have higher accuracy for 

low levels of mistuning in general; therefore, high variations are also included in this study to 

understand the errors.  
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Figure 2.7 Mistuning pattern for a case study with small proportional mistuning 

 

Figure 2.8 Mistuning pattern for a case study with proportional mistuning. 

 

Ansys APDL command sequence 

Ansys Mechanical does not directly implement the CMM model of mistuning as a method. 

APDL command sequence is used to implement it into the Mechanical module. The static 

structural analysis with cyclic symmetry must have cyclic symmetry with the mode superposition 

option turned on using the “CYOPT, MSUP, ON” command to set up the analysis for harmonic 

analysis in the later stages. APDL command sequence was also used to include the variations in 
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the stiffness matrix and selection of blade modes, along with exporting the modal participation 

factors and the results. 
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 SIMULATION AND RESULTS 

3.1 Grid Convergence Study 

A grid convergence study must be used to assess the models to verify the FEM models of 

the tuned system. A coarse mesh is computationally less expensive but typically results in a higher 

numerical error, while a fine mesh can provide us with a numerical solution that is more accurate, 

but it is more computationally expensive, has longer run times, and requires more memory. The 

number of equations to be solved for the current problem is of order three; therefore, doubling the 

number of elements will increase the size of the matrices by three times. A balance between 

computational cost and quality is carefully examined and chosen to get an optimal mesh refinement. 

Higher accuracy with optimal mesh can be achieved with local mesh refinement around complex 

geometry. Table 3.1 describes the element count and associated number of equations (DOFs) used 

in the grid convergence study. 

 

Table 3.1 Mesh elements and number of equations for grid convergence study 

 Single Sector 

Model 

Number of 

Equations 

(Sector Model) 

Full blisk 

Model 

Number of 

Equations (Full blisk 

Model) 

Coarse mesh 21300 74715 702900 2465595 

Medium mesh 58832 199011 1941456 6567363 

Fine mesh 151986 496746 5015538 16392618 

 

The most straightforward comparison that can be made for structural analysis is to compare 

the frequencies. The natural frequencies of the first four modes as a function of the number of 

elements are plotted in Figure 3.1(a). The maximum difference between the medium and fine mesh 

for the first 200 frequencies was around 0.8%, as illustrated in Figure 3.1(b). Note that this grid 

convergence study was conducted for the tuned system case with the same boundary conditions 

and at 100% speed. Some leniency is given for the structural analysis, which is relatively less mesh 

dependent than CFD models. A convergence criterion of less than 1% was chosen, considering the 

computational cost of the full blisk model.  
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(a) 

 
(b) 

Figure 3.1(a) Natural frequency of first four tuned system modes as a function of mesh size (b) 

Percent error between Medium and Fine meshes of the first 200 modes 

 

The Grid Convergence Index (GCI) method developed by Celik et al. [33] is widely used 

to estimate the grid discretization error in CFD grids. This method uses the Richardson 

extrapolation to compute a higher-order solution. This method was adapted to structural analysis 
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to conduct a detailed grid convergence analysis of these FE models. The grid refinement decreases 

the discretization error, and the solution asymptotically approaches the Richardsons Extrapolation 

higher-order approximation. GCI (Grid Convergence Index) estimates the error for each grid with 

respect to Richardsons extrapolation, where the grid sizes with N elements are defined using 

Equation (3.1) for a volume (V). The grid refinement factor (r) greater than 1.3 was chosen as 

recommended, as shown in Table 3.2. The grid spacing is normalized by hfine. 

 

 
ℎ = [

∑ 𝛥𝑉𝑖
𝑁
𝑖=1

𝑁
]

1/3

= [
𝑉

𝑁
]
1/3

 (3.1) 

 
𝑟 =

ℎ𝑐𝑜𝑎𝑟𝑠𝑒

ℎ𝑓𝑖𝑛𝑒
 (3.2) 

 

Table 3.2 Spacing and Grid refinement factor of the FE models. 

 Coarse mesh Medium mesh Fine mesh 

Normalized grid size (hnorm) 0.51945 0.7288 1 

Grid Refinement Factor 1.4031 1.3721 

 

The Richardson extrapolated and GCI values of ϕ are computed using equations (3.3) and (3.4), 

respectively.  

 

 
𝜙𝑒𝑥𝑡

21 =
𝑟21𝜙1 − 𝜙2

𝑟21 − 1
 (3.3) 

 

 

𝐺𝐶𝐼21 =
1.25 (|

𝜙1 − 𝜙2

𝜙1
|)

𝑟21
𝑝 − 1

 (3.4) 

 

GCI21 measures the percent error between solutions using fine and medium meshes, while 

GCI32 measures the percent error between solutions using medium and coarse meshes. The GCI 

values and the frequency error relative to the extrapolated values of the first 50 modes for each 

grid refinement are plotted in Figure 3.2 and Figure 3.3.  
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Figure 3.2 GCI for the first 50 modes 

 

 

Figure 3.3 Frequency error percent relative to the extrapolated frequency for different levels of 

grid refinement. 

 

It is crucial to verify the mode shapes and frequencies to quantify the convergence 

adequately. Modal Assurance Criterion (MAC) is often used with natural frequency convergence 

criterion as an additional assurance factor for validation. 
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Modal Assurance Criterion (MAC) 

The modal assurance criterion is often used to relate the mode shapes and provides a 

correlation between vibration shapes with lower sensitivity to minor differences. The normalized 

scalar product of the two sets of vectors {ϕA} and {ϕB}, as described in Equation (3.5), is used to 

calculate the MAC value [31]. The MAC matrix with computed elements is constructed from the 

resulting scalars, which can take a value between 0 and 1. Zero represents no consistent correlation 

between the mode shapes, and one represents a consistent correlation.  

 

 
𝑀𝐴𝐶 (𝑖, 𝑗) =  [

|{𝜑𝐴
𝑇}𝑖{𝜑𝐵}𝑗|

2

({𝜑𝐴
𝑇}𝑖{𝜑𝐴}𝑖)({𝜑𝐵

𝑇}𝑗{𝜑𝐵}𝑗)
] (3.5) 

 

The modal assurance criterion can only represent consistency without any information 

about validity or orthogonality. If similar errors exist in both solutions, MAC will still have good 

consistency; therefore, this method cannot identify incomplete vectors and local discrepancies. 

The cases where there are sufficient degrees of freedom to distinguish independent modes without 

any unmeasured forces on the system and noise in the system, the MAC can be used as an indicator 

of validity [32]. Ansys Mechanical computes the MAC and matches the nodal solutions from two 

results files using the “RSTMAC” AP L command. The MAC values are computed by mapping 

the solution from one grid to the other by specifying node tolerances. MAC was applied to compare 

the coarse, medium, and fine mesh modal shapes on the first 24 modes. The computed MAC values 

are plotted in Figure 3.4. While the medium and fine mesh has a good correlation between them, 

the medium and coarse mesh has a good correlation for the lower modes but loses accuracy for 

higher modes. The worst case in the medium and fine mesh was mode 16 with a MAC value of 

0.8. Further mesh refinement could drive the MAC matrix to unity, but the expanded full blisk 

model would be computationally too expensive for comparison. 
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Figure 3.4 MAC Matrices ((a) Coarse and Medium mesh, (b) Medium and fine mesh)
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As the full blisk FEM model is an expanded cyclic symmetry FEM model, the GCI’s and 

MAC grid convergence analysis give similar values as that of the cyclic symmetry model in the 

tuned case. The relative difference between the cyclic symmetry tuned system and the full blisk 

tuned system for the different grids is shown in Figure 3.5. A relative error of 10E-4 magnitude 

did not affect the GCI and MAC values for the fullblisk system compared to the cyclic symmetry 

system for these grids. 

 

 

Figure 3.5 Relative Frequency Error for different grids. 

 

The overall comparison of MAC values, GCI, and error percent in the frequencies showed 

that the medium mesh was optimal. Refining the mesh 2.6 times between fine and medium mesh 

increased the accuracy by only 0.4%, which is very small compared to the exponential increase in 

the computational cost. 

3.2 Comparative Studies 

The tuned system modes corresponding to the nodal diameter are shown in Figure 3.6. The 

veering regions corresponding to nodal diameters 3 and 5 are primarily excited in Purdue 3-stage 
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compressor and were chosen along with the first bending and torsion mode corresponding to ND 

11 to study these reduced-order models. 

 

Figure 3.6 Tuned system modes. 

 

3.2.1 CMM Method - Effect of Tuned system modes (TSM) and Cantilever blade modes 

(CBM)  

CMM formulation uses a combination of TSM and CBM modes to compute the harmonic 

response of the system. Therefore it is essential to understand the influence of the number of modes. 

Retaining isolated family modes and retaining all the computed modes were compared with the 

full blisk frequencies. Retaining the isolated family modes is a computationally efficient choice in 

cases where mistuning is very small and frequencies of the mistuned system are very closely 

spaced, making the forced response a strong function of the family of modes. 

An optimal mistuning of 0.5% standard deviation is chosen to study the influence of the 

retained blade modes and tuned system modes. To ensure that the effects of these parameters are 

evident and distinguishable, a comparatively higher standard deviation is chosen than in past 

studies. This decision was also made as this deviation is close to ping test deviation values, which 

would be used for validation in the future. The frequencies for a system with small deviations are 

closely spaced; therefore, the changes would be minimal to understand the effects. A structural 
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damping coefficient of 0.001 is considered in this study to compute the response, which is an 

average found using NSMS data in previous studies. 

 

Tuned system modes (TSM) 

The Ansys CMM method retains all the tuned system modes computed in the initial modal 

analysis with cyclic symmetry. The retained modes are selected by targeting a frequency range 

and specifying the number of modes to be computed. The frequency errors with different TSM, 

including ten cantilever blade modes, were computed for the first 200 modes. Overall, isolating 

the mode families gave better results than retaining all the solutions when fewer modes were 

targeted to be retained, which can potentially reduce the computational cost. Interestingly, 

retaining a higher number of modes does not give good results when the number of modes retained 

is less than 300. The errors introduced by retaining the lower frequency family are compensated 

by including the higher frequencies of the following family, as illustrated in Figure 3.7. The 

relative error and percent error of the frequencies are calculated using equations (3.6) and (3.7). 

 𝑒𝑟𝑟𝑜𝑟 =  𝑓𝑓𝑢𝑙𝑙 𝑏𝑙𝑖𝑠𝑘 − 𝑓𝐶𝑀𝑀 
(3.6) 

 
𝑒𝑟𝑟𝑜𝑟 % = (

𝑓𝑓𝑢𝑙𝑙 𝑏𝑙𝑖𝑠𝑘 − 𝑓𝐶𝑀𝑀

𝑓𝑓𝑢𝑙𝑙 𝑏𝑙𝑖𝑠𝑘
 ) ∗ 100 (3.7) 

 

Figure 3.7 Effect of the number of tuned system modes retained (10 CBM).  
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Cantilevered blade modes (CBM) 

Ansys computes the cantilevered blade modes using the specified blade elements and 

interface surface in the CMM method. The number of modes retained can notably impact the 

frequencies and response. The error is higher for frequencies not retained in the blade modes. 

Figure 3.8 depicts the relative frequency error and percent error calculated for ND 11, retaining 

the bending mode for the 1 CBM case. 

 
(a) 

 
(b) 

Figure 3.8 (a) Relative frequency error (b) Relative frequency error percent (ND 11) Note: 

Modal frequency is mapped to the left ordinate and the errors are mapped to the right ordinate.  
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Since the blades are mistuned in the system, significant errors exist in the blade-dominated 

frequencies and areas with low disk participation. Retaining only one cantilever blade mode can 

give comparable results for the sweep range of the same mode. This property can be used to 

optimize the number of retained modes with information about the target mode. The amplification 

factor for each blade is calculated using Equation (3.8) to compare the responses for each case. 

 

 
𝐴𝑚𝑎𝑥,𝑏𝑙𝑎𝑑𝑒 =

max (𝑥𝑚𝑖𝑠𝑡𝑢𝑛𝑒𝑑,𝑏𝑙𝑎𝑑𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

max (𝑥𝑡𝑢𝑛𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ )
 (3.8) 

 

  
(a) (b) 

Figure 3.9 (a) Blade amplification factor for the first bending mode (b) Blade amplification 

factor for the first torsion mode (Retaining Bending Mode)(ND 11) 

 

The retained bending mode gives good results for the bending mode, as shown in Figure 

3.9 (a). Despite a tiny error of 0.25% in the frequency, retaining a different mode can significantly 

underestimate or overestimate the response, as illustrated in Figure 3.9 (b). In the second case, the 

bending mode of CBM is retained for the torsion mode sweep range to understand the influence 

of CBM.  
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A similar analysis is done for the first torsion mode at ND 5, which lies in the veering 

region and has a possible energy exchange between modes when the system is mistuned. As 

expected, the CMM model predicts the frequency within 0.3% error which is slightly higher than 

the blade-dominated mode in the preceding case. The error decreases monotonically with increased 

retained CBM, as illustrated in Figure 3.10. A similar trend of CBM affecting the forced response 

of the blade when a different blade mode is retained is shown in Figure 3.11. This trend indicates 

that for the CMM model, the TSM is insufficient to estimate the response and must include the 

participating CBM modes as minimum input to compute a comparable response.  

 
(a) 

 
(b) 

Figure 3.10 (a) Relative frequency error (b) Relative frequency error percent (ND 5). 
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Figure 3.11 Effect of CBM on the forced response for the first torsion mode (ND 5) 

 

The cases with high variations or nonproportional mistuning can have modal participation 

from numerous modes from a different family of modes. To ensure we capture this probable 

participation, at least one additional mode family must be included on either side of the modes 

considered. The cases of 400 TSM and 10 CBM are chosen to ensure that the complex behavior is 

captured and results are comparable for high mistuning cases, which can have several modes 

participating in the response.  

3.2.2 Small Mistuning Cases 

Standard Deviation 0.1% (Nodal Diameter 11)  

The cases with small mistuning can be adequately modeled with fewer modes, as the 

frequencies and response would be close to a tuned system. The response and amplification factor 

of the system with 0.1% standard deviation relative to the tuned system response of the full blisk 

of first torsion mode excited at ND 11 corresponding to EO 44 are shown in Figure 3.12 (a) and 
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(b). The response of each blade is normalized with the maximum tuned response to find the 

amplification factor through the sweep, using Equation (3.9). 

 
𝐴𝑠𝑤𝑒𝑒𝑝,𝑏𝑙𝑎𝑑𝑒 =

𝑥𝑚𝑖𝑠𝑡𝑢𝑛𝑒𝑑,𝑏𝑙𝑎𝑑𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

max (𝑥𝑡𝑢𝑛𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ )
 (3.9) 

 

 

 
(a) 

 
(b) 

Figure 3.12 (a) Forced Response and (b) Amplification factor of Rotor 2 with 0.1% standard 

deviation mistuning (Full blisk - First Torsion Mode). 
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The mistuned frequencies, in this case, are closely spaced, and no significant frequency 

split is observed. The amplification factors calculated for each blade using CMM and FMM models 

are illustrated in Figure 3.13 (a). Despite being a very low-order model, the responses estimated 

by FMM have a reasonable correlation with the full blisk response. A minimal discrepancy of 

about 0.4% between CMM and full FEM results exists. Note that the CMM results closely match 

the full FEM results and appear as overlapped lines in the plot at the represented scale. 

 

 
(a) 

 
(b) 
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Figure 3.13 (a) Blade Amplification Factor and (b) Maximum response envelope (First 

Torsion Mode) 

 

The maximum forced response envelope is the maximum response of the whole system 

corresponding to each frequency in the sweep range. The maximum mistuned forced response 

envelope normalized with the tuned response of each model using Equation (3.10) is plotted in 

Figure 3.13 (b).  

 

 
𝐴𝑠𝑤𝑒𝑒𝑝 =

max (⋃max (𝑥𝑚𝑖𝑠𝑡𝑢𝑛𝑒𝑑,𝑏𝑙𝑎𝑑𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ))

max (𝑥𝑡𝑢𝑛𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ )
 (3.10) 

 

While FMM underestimated the peak amplification factor by about 0.089, CMM estimated 

it well. Overall, FMM estimates the individual blade responses pretty well for this case. The modal 

participation factor, commonly referred to as mode multiplier, measures a mode’s contribution to 

a structure’s reaction to force or displacement excitation in a particular direction and is plotted for 

the full blisk in Figure 3.14. The sum of the absolute values of these factors normalizes the modal 

participation factors. The normalized modal factors identify the dominant modes at a particular 

frequency. The mistuned modes, in this case, are prominently only excited by the modes in the 

same family. The cases where the response is the superposition of the same family of modes are 

excellent for the FMM model that considers the isolated mode family to calculate the responses.  
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Figure 3.14 Modal participation factors (First Torsion Mode) 

 

Similar results for the first bending mode are shown in Figure 3.15, Figure 3.16, and Figure 3.17.
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(a) (b) 

Figure 3.15 (a) Forced Response and (b) Amplification factor of 0.1% SD (Full blisk - First Bending Mode). 

  
(a) (b) 

Figure 3.16(a) Blade Amplification Factor and (b) Maximum response envelope (First Bending Mode) 
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Figure 3.17 Modal participation factors (First Bending Mode (ND 11)) 

 

A similar modal participation factor and correlation trend are present for ND 3 and 5 with 

small mistuning. The sweep region corresponding to the torsion mode at ND 3 and ND 5 lies in 

the region of veering and consists of closely spaced modes with disk participation. An evident 

response is not observed at some resonant frequencies in this region, indicating that the 

corresponding frequency is majorly disk dominant. Therefore, the monitoring probe on the blade 

could not capture such displacements. Since only deviations in the properties of blades are 

considered in these reduced order models, disk dominant frequencies experience negligible effects 

of mistuning.  

FMM formulation cannot simultaneously predict responses at all frequencies like CMM 

and full blisk model in the veering region due to its structure. Therefore, each frequency in this 

region is isolated, taking the corresponding mode family. This formulation would not consider the 

effects of modes from other families that might sometimes participate in the response. The 

mistuned frequencies predicted by the reduced-order models are shown in Figure 3.18. FMM and 

CMM accurately estimate the mistuned frequencies for this case, especially for the bending mode. 

The maximum error in the frequency prediction was less than 0.5 percent. Note that the FMM, 

CMM, and full blisk results appear to overlap due to the scale of the plot. 
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Figure 3.18 Mistuned frequency (0.1% SD). 

 

The veering regions corresponding to ND 5 and ND 3 are studied in detail with a higher 

standard deviation in mistuning values to explore the limitations of these models when there is 

substantial modal participation from other modes. 

 

Standard Deviation 0.5% - Nodal Diameter 11  

The effects of mistuning are evident in this case, with a significant change in the frequency 

response band. Additional peaks correspond to mistuned blade frequencies in the response and 

amplification factor, as depicted in Figure 3.19. The frequency excited at ND 11 is blade dominated; 

therefore, there is a significant increase in the frequency band.
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(a) 

 

(b) 

Figure 3.19 (a) Forced Response and (b) Amplification factor of Rotor 2 with 0.5% standard 

deviation mistuning (Full blisk - First Bending Mode). 
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(a) 

 
(b) 

Figure 3.20 (a) Blade Amplification Factor and (b) Maximum response envelope (First 

Bending Mode) 
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Figure 3.20 depicts the forced response results for the first bending mode. Note that the 

differences in the plots look severe due to the scale of the plots. FMM captured the overall shape 

and peak amplitude within 2 percent, while CMM captured it within 0.05 percent. The peak 

amplification factor was estimated well by both of the reduced order models. The modal 

participation factors in Figure 3.21 show no significant participation from other families of modes, 

indicating that the bending mode can be estimated accurately for blade dominant nodal diameters 

using the FMM method. 

 

 

Figure 3.21 Modal participation factors (First Bending Mode (ND 11) – 0.5% standard 

deviation) 

 

The first torsion mode’s response, amplification, and modal participation factors are 

illustrated in Figure 3.22 and Figure 3.23.  
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(a) 

 
(b) 

Figure 3.22 (a) Forced Response and (b) Amplification factor with 0.5% SD mistuning (Full 

blisk - First Torsion Mode). 
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Figure 3.23 Modal participation factors (ND 11 – 0.5% standard deviation) 

 

As highlighted, participation from other families of modes is observed in this case. 

Although small compared to dominant modes, this participation can affect the response. In such 

cases, selecting modes for the FMM method is crucial, especially for lower modes with significant 

disk participation. Unlike the bending mode, which has majorly blade-dominated modes, the 

torsion mode contains fifty percent modes with disk participation which might require additional 

considerations for the FMM model. As described in Figure 3.24, two selection approaches are used 

to assess the FMM model. In the first approach, modes are selected, as highlighted in red. In the 

following case, the family of modes close to the blade frequency is selected, as highlighted in blue. 
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Figure 3.24 Tuned system mode selection approaches for Torsion Mode 

 

The mistuned frequencies predicted by the reduced-order models are shown in Figure 3.25. 

FMM and CMM give accurate estimations of the mistuned frequencies for this case, with the 

maximum error in the frequency prediction within 0.5 percent. Note that the modal participation 

factors and mistuned frequencies are not plotted for the subsequent cases. The comparison between 

models is made with the response envelope and amplification factors. A comparison of changes in 

the frequency band is made in the later chapter for each case to assess the mistuning effects on the 

resonant frequencies.  
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Figure 3.25 Mistuned frequency (0.5% SD). 

 

The amplification factor and forced response envelope for the first and second approaches 

are shown in Figure 3.26 and Figure 3.27. The first approach, which considers an isolated family 

of modes, predicts the peak amplification factor within 0.5 percent but does not capture the 

response shape well. The second approach overestimates the peak amplitude by 6.4 percent but 

better captures the response shape and individual blade amplification factors. These differences 

indicate modal participation of several modes for this mistuning case. The good estimation of peak 

amplitude using the FMM method also suggests that the isolated family modes are the dominant 

modes in the response. A detailed comparison of individual blade responses is done for this case 

and plotted in Figure 3.28 and Figure 3.29. Small participation of other modes can change the 

response envelope and peak amplification factor. 
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(a) (b) 

Figure 3.26 (a) Blade Amplification Factor and (b) Maximum response envelope (ND 11 - First approach) 

  
(a) (b) 

Figure 3.27 (a) Blade Amplification Factor and (b) Maximum response envelope (ND 11 - Second approach) 
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Figure 3.28 Blade Amplification Factor (First Approach) 
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Figure 3.29 Blade Amplification Factor (Second Approach) 
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Figure 3.30 briefly compares the amplification factors for ND 3, ND 5, and ND 11 crossings of 

the first bending mode. The effect of the excitation order on the dynamic behavior of the 

mistuned system shows that mode localization is not only a function of the mistuning pattern.  

 

Figure 3.31 compares the reduced-order models for these nodal diameters. FMM estimates 

the amplification factor well for the blade-dominant bending family. A slightly higher percent error 

is observed for the lower nodal diameter. This trend indicates that the FMM formulation is well 

suited for the higher frequency modes of the blade dominant mode family. The low-responding 

blades in ND 5 excitation case were the highest-responding blades in ND 11 case. The highest 

responding blades, 14, 32, and 11, for ND 3, ND 5, and ND 11 cases have an interesting trend of 

low deviation being sandwiched between high deviations. These types of deviation patterns have 

been predicted to be the worst case of mistuning in past research. The nodal diameters which are 

majorly excited in the system can be targeted to intentionally mistune the system by studying their 

behavior at these nodal diameters. 

 

 

Figure 3.30 Comparison of Fullblisk amplification factor at ND 3, ND 5, and ND 11 crossings 

(0.5% Deviation) 
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Figure 3.31 Amplification factors for ND 3, ND 5, and ND 11 crossings of 1st Bending mode 

(0.5% Deviation) 
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Veering Region ND 3 and ND 5 

The veering region corresponding to ND 3 has three resonant frequencies ranging from 

2000 to 3000 Hz. The energy exchange and several modal participation possibilities are 

significantly higher in the veering regions. The tuned response results showed that this range’s 

first two resonant crossings are disk dominant, which are not significantly impacted by mistuning. 

In most cases, the response at these frequencies is similar to a tuned system, corresponding to 

tuned system frequencies of 2340.5 and 2454.7 Hz, as illustrated in Figure 3.32 (a). Therefore, the 

blade-dominated tuned system frequency of 2639.4 Hz is used as input to the FMM method. Since 

this mode lies in the region with disk participation selecting the isolated mode family 

corresponding to the resonant frequency does not give a comparable result, as the isolated mode 

family frequencies range between 2000 Hz and 5900 Hz. The amplification factors and response 

envelope computed using the approach of selecting the modes nearest to the mistuned frequencies 

are shown in Figure 3.33. Note that only the blade-dominated frequency range is shown to discern 

the effects of mistuning, and the differences between CMM and full blisk results are not evident 

due to the scale of the plot.  
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(a) (b) 

Figure 3.32 (a) Forced Response and (b) Amplification factor 0.5% SD mistuning (Full blisk – ND 3). 

 
 

(a) (b) 

Figure 3.33 (a) Blade Amplification Factor and (b) Maximum response envelope (ND 3) 
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An error of 1.13 percent is observed for the CMM method, while a more significant error 

of 9.7 percent occurs in the peak response with the FMM method. The response envelope shape 

and trends are captured well by both CMM and FMM methods. The good estimation of the 

response envelope by FMM indicates that the included mode family dominates the response. In 

cases where the energy exchange between modes is minimal, FMM can be used to predict the 

response. The tuned system response can identify the disk-dominated and blade-dominated 

frequencies.  

 

 
(a) 

 
(b) 

Figure 3.34 (a) Forced Response and (b) Amplification factor 0.5% SD mistuning (Full blisk – 

ND 5). 

 

Figure 3.34 depicts the response and amplification factors corresponding to ND 5. 

Although the dominant frequencies are closely spaced, it is interesting that no significant observed 

frequency band increase exists. The frequency band at this nodal diameter shows minimal 
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interaction between modes, as shown in Figure 3.35. The two blade-dominant frequencies can be 

separated into individual sweeps, or a single sweep can be used in the current case for FMM 

formulation. Frequency sweeps from 2500 to 2650 Hz and 2600 to 3000 Hz, along with a single 

sweep, are used to study both peaks. Separating the sweep ranges gave a better estimation of the 

blade peak amplification than in a single sweep. This behavior shows that FMM is extremely 

sensitive to frequency selection as the interactions between modes increase, making this method 

unreliable in veering regions. The estimations could be entirely incorrect if one majorly 

participating frequency is not included in the input dataset. Note that the response is normalized 

by the tuned response of the first peak to compute the amplification factors for both responses.  

 

 

Figure 3.35 Modal participation factors (ND 5 – 0.5% standard deviation) 

 

CMM and FMM formulations estimate the forced response envelope well, with a slightly 

higher error with the FMM formulation. In cases where only one blade family dominated the 

selected frequency band, FMM and CMM models predict the response well. CMM estimates the 

responses for both sweeps within 1.5 percent. A 9.9 and 17.94 percent error is observed for the 

respective sweeps with the FMM formulation, as illustrated in Figure 3.36 and Figure 3.37.  
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(a) (b) 

Figure 3.36 (a) Blade Amplification Factor and (b) Maximum response envelope (Sweep: 2500-2650 Hz: ND 5). 

  
(a) (b) 

Figure 3.37 (a) Blade Amplification Factor and (b) Maximum response envelope (Sweep: 2600-3000 Hz: ND 5). 
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3.2.3 Frequency Mistuning  

In this case, blade frequencies from the ping test are used to mistune the FE models using 

equations (2.2) and (2.3). The deviations are computed using the ping test results, leading to 

different deviations for each mode family. Each frequency can be mistuned independently in the 

CMM formulation in such cases. In contrast, for the full blisk, each mode sweep range must be 

individually set up with changed Young’s modulus to mistune the system independently. In this 

case, the average deviation of the first three modes, which is about 1.5 percent with 0.45 percent 

SD, is taken to simplify the case. These models will be studied with independently mistuned 

frequencies, including aerodynamic coupling, to validate them in the future.  

Figure 3.38 shows the blade amplification factors for the first bending family at ND 5, ND 11, and 

ND 3. The blade amplification factors are estimated well by CMM, while FMM fails to give a 

reasonable estimate, especially for ND 5 and ND 3 cases. The modal participation factors show 

minor participation from the first torsion mode family, which is unaccounted for in the FMM 

formulation. The assumption of the isolated mode family has resulted in an incorrect estimation of 

the amplification, especially for ND 3 and ND 5 cases. The peak amplification actor for ND 11 

case was estimated within 0.5 percent by both formulations. Similar results are plotted for the first 

torsion mode and veering regions in  

 

 

 

 

 An error of 17 percent exists for the torsion mode, while much higher errors occur for the 

other cases, making FMM unsuitable for predicting forced response for cases with high modal 

interactions.  

FMM estimated the amplification factors reasonably well for the previous 0.5 percent SD 

case with 0.0014 average deviation, which shows that the participation is notably affected by the 

mistuning pattern, average deviation, and not just the standard deviation. The FMM model gives 

a good prediction when the mistuned cantilever blade modes are close to the tuned system modes. 

The reduced order models can be combined with Monte Carlo analysis to explore the worst case 

of probable mistuning patterns to predict the fatigue life for the worst case. Previous research 

showed that when multiple blade-dominated modes are closely spaced, using frequency mistuning 
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to include all the blade-dominant eigenvalue mistuning patterns can predict the response accurately. 

This approach of independent mistuning would be used to validate these models with the 

experimental data. 
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Figure 3.38 Amplification factors for ND 3, ND 5, and ND 11 crossings of 1st Bending mode 

(Ping test Frequencies (0.45% SD)). 
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Figure 3.39 Amplification factors for ND 3, ND 5, and ND 11 crossings between 2000 to 3000 

Hz (Ping test Frequencies (0.45% SD)) 
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 LARGE MISTUNING CASES 

This investigation classifies standard deviations above two percent as large mistuning 

cases. High deviations may occur with uneven wear or damage. Minimal modal interaction from 

different families occurred in the previous cases with small mistuning. Even minimal interaction 

changed the response significantly. The cases with large deviations can have extensive modal 

interactions, which will affect the response substantially. This chapter investigates these cases to 

determine if CMM can capture such complex behavior.  

Figure 4.1 (a) and (b) compare the forced response with 300 and 400 modes, respectively. 

Although the modal participation is small from the higher modes, a notable difference in the 

response is observed. The peaks at 2700 and 2550 Hz are not predicted with 300 modes. Modes 

300 to 400 lie in the frequency range of 6500 Hz to 8400 Hz, and it is noteworthy how these modes 

affect the response for a mistuned system. The models cannot accurately capture the system's 

response if insufficient tuned system modes are included. The solution converges rapidly as the 

number of retained tuned system modes increases. As in previous cases, the dominant cantilever 

blade modes are required to estimate the amplification factor reasonably. Retaining at least 400 to 

500 modes is recommended for large mistuning cases considering the effects of modal 

participation and CBM study.  

In the veering or high modal density regions, where other modes strongly contribute to the 

response of the blade, the FMM method is incapable of accurately predicting the response due to 

its assumptions, as illustrated in Figure 4.2 and Figure 4.3 FMM gave a reasonable estimate of the 

maximum amplification of the sweep for the ND 11 case but could not capture the complex details 

of the response for the cases, as illustrated in Figure 4.2. The amplification factor is maximum for 

the veering region 2 (ND 5), where two blade-dominant modes interact. 
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(a) 

 
(b) 

Figure 4.1 (a) Forced Response at ND 5 (Fullblisk - 300 Modes) (b) Forced Response at ND 5 

(Fullblisk - 400 Modes) 
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(a) 

 
(b) 

 
(c) 

Figure 4.2 (a) Maximum response envelope (ND 3) (b) Maximum response envelope (ND 5) 

(c) Maximum response envelope (ND 11) [Frequency Sweep 2000-3000 Hz]. 
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Figure 4.3 Amplification factors for ND 3, ND 5, and ND 11 crossings between 2000 to 3000 Hz 

(5% SD). 

 

The blade amplification factors for sweeps in the 2000 to 3000 Hz are shown in Figure 4.3. 

In this case, FMM does not predict the blade responses well, while CMM predicted the responses 

within a 1 percent error. The FMM model could not accurately predict responses for the bending 
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mode, as shown in Figure 4.4. FMM models the response moderately well for the high nodal 

diameter cases. This behavior indicates that our current FMM formulation cannot predict responses 

well for cases with high modal interactions and where mistuned blade modes are far from the tuned 

modes.  

 

Figure 4.4 Amplification factors of first bending mode for ND 3, ND 5, and ND 11 (5% SD). 
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(a) (b) 

Figure 4.5 (a) Localized mode shape (Mode 31) (b) Tuned System Mode (Mode 31) 

  

(a) (b) 

Figure 4.6 (a) Localized mode shape (Mode 72) (b) Tuned System Mode (Mode 72) 
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A comparison of the mistuned mode shape and tuned system mode shape is made in Figure 4.5, Figure 4.6, and Figure 4.7. An 

intense mode localization is observed for this case with a 5% standard deviation, while the mistuning barely affects a mode with 

significant disk participation. Note that the mode shapes are only included for the high mistuning case to show significant mode 

localization. Similar mode localization occurs for all cases but not to this extent. These results show the effect of mistuning on the blade-

dominated bending and torsion modes. 

The relative frequency differences in the mistuned frequencies with respect to tuned frequencies for each mistuned case are 

illustrated in Figure 4.8. Significant differences are seen in the blade modes, while minor changes are observed in the disk-dominant 

modes. The frequencies of the system barely changed for low mistuning cases, whose average mistuning was around 0.0001. The change 

in the blade frequency is directly proportional to deviation and average deviation. 

  

  
(a) (b) 

Figure 4.7 (a) Mistuned mode shape (Mode 39) (b) Tuned System Mode (Mode 39) 
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Figure 4.8 Mistuned frequencies comparison for various SD. 

 

The deviations used in the 5% SD case are rearranged in ascending order to see the effects 

of the mistuning pattern. The blade amplification factors for both cases are shown in Figure 4.9. 

The maximum amplification factor was reduced by 13.5 percent for the second case, with a 

maximum amplification factor of 1.086.  

 

Figure 4.9 Blade amplification factor (5% SD) 
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Figure 4.10 Maximum amplification factor of the mistuned system. 

 

The maximum amplification factor corresponding to cases taken in this study is shown in 

Figure 4.10. The amplification factor reduces after a level of SD, as observed in past studies. This 

approach can be combined with the Monte Carlo Analysis to find the worst case to estimate the 

fatigue life of the system. Intentionally mistuning the system can reduce the sensitivity of the 

system to random mistuning, which can be explored further in future studies.  

The maximum amplification error for each blade is computed, and the maximum of this 

dataset is computed to compare the error for different cases using Equation (4.2). The maximum 

amplification error for the complete sweep is calculated using Equation (4.2). Nodal diameter 11 

of the bending mode was chosen to compare these errors, as the FMM model has the best estimate 

for this case. 

 

 𝐴𝑒𝑟𝑟𝑜𝑟,𝑏𝑙𝑎𝑑𝑒 = max (max (𝐴𝑓𝑢𝑙𝑙𝑏𝑙𝑖𝑠𝑘,𝑏𝑙𝑎𝑑𝑒) − max (𝐴𝑅𝑂𝑀,𝑏𝑙𝑎𝑑𝑒)) 
(4.1) 

 

𝐴𝑒𝑟𝑟𝑜𝑟,𝑠𝑤𝑒𝑒𝑝 = max ( ⋃ 𝐴𝑓𝑢𝑙𝑙𝑏𝑙𝑖𝑠𝑘,𝑏𝑙𝑎𝑑𝑒

33

𝑏𝑙𝑎𝑑𝑒=1

) − max ( ⋃ 𝐴𝑅𝑂𝑀,𝑏𝑙𝑎𝑑𝑒

33

𝑏𝑙𝑎𝑑𝑒=1

) (4.2) 

 

The errors computed for maximum amplification for the reduced-order models are illustrated in 

Figure 4.11 and Figure 4.12. The maximum blade amplification error remains constant for most 

cases, within 0.15 for the CMM model. In contrast, the error increases as the deviation and average 
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deviation increase for the FMM model. Although the error is high for the blade amplification, 

FMM and CMM estimate the maximum amplification value well for the low mistuning cases. 

 

 

Figure 4.11 Maximum blade amplification factor error for FMM and CMM models at ND 11 

 

 

Figure 4.12 Maximum amplification factor error of the sweep for FMM and CMM models at ND 

11 



 

 

109 

 

Figure 4.13 Normalized response band 

 

In this investigation, the response band is defined as the frequency band in which the 

amplification factor is more than 0.2. The frequency band is normalized using the tuned frequency 

band for each case and shown in Figure 4.13. The frequency band is proportional to the standard 

deviation of the blade deviations and modal interactions. The frequency band is larger for the ND 

5 case for both mode families. The frequency response band is smaller for the ping test case 

indicating that it is not strongly dependent on the average amplitude of the deviation. 

The amplification factors corresponding to a case of random mistuning, including 

mistuning patterns, which are known to have the worst response from previous research, are shown 

in Figure 4.14. An amplification factor of 3.12 occurs for the ND 5 case, which is predicted 

accurately by the CMM model. FMM estimates the response within a 10 percent error for the ND 

11 case but fails to give a reasonable estimate for other cases. FMM underpredicts the maximum 

amplification factor by 50 percent for the ND 5 case. These cases show that CMM is robust for 

most cases and can accurately predict the response within a reasonable percent error.  

 

 
𝐴𝑤ℎ𝑖𝑡𝑒ℎ𝑒𝑎𝑑 =

1 + √𝑁

2
=  

1 + √33

2
=  3.3723 (4.3) 
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The maximum amplification factors computed for all cases in this investigation were 

within the Whitehead limit, the maximum factor by which the amplitude of vibration can increase 

due to mistuning [36]. The Whitehead limit for this study is computed using Equation (4.3). For 

all the cases investigated, CMM is a robust reduced-order model that can capture the response's 

complex features, while the FMM model works well for cases with low modal interactions. 

 

Figure 4.14 Amplification factors for ND 3, ND 5, and ND 11 crossings between 2000 to 3000 

Hz (Random Mistuning).  
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 SUMMARY AND CONCLUSIONS 

This investigation aims to understand the limits of the current reduced-order models and 

regions of the usability of these models. The current conclusions of the reduced-order models are 

based on comparing the simulation results with the benchmark full blisk model of Rotor 2 in the 

Purdue 3-Stage compressor. The model can be modified later to include the aerodynamic coupling, 

when the unsteady CFD results are available, to validate the model with the experimental data.  

5.1 Overview 

The forced response is not only a function of standard deviation but also a function of 

mistuning amplitude and pattern. The amplification factor is maximized when two blade-dominant 

modes interact due to excessive energy exchange and mode localization. A significant frequency 

shift is observed in the blade-dominated modes when only the blades are mistuned. While most 

disk-dominated modes and responses are unaffected by blade mistuning, the effects are slightly 

notable in cases of very high deviations. The frequency band is a strong function of the standard 

deviation of the blade deviations and modal interactions and is not strongly dependent on the 

average amplitude. 

The tuned system modes alone are insufficient to predict the forced response without 

retaining the dominant blade mode for both the reduced-order models. Retaining at least 400 

modes is recommended for CMM and the full blisk model to capture the complex responses and 

mode interactions. CMM converges rapidly with an increasing number of retained tuned system 

modes. In cases where the modal participation is low from other families, the mode selection can 

be optimized to further reduce the computational cost of the analysis. Overall isolating the mode 

family gave better results for cases with low mistuning when a lower number of modes are retained 

to save the computational cost. CMM estimated the forced response and frequencies within a 2 

percent error for all the cases in this study, making it very reliable in the veering regions. CMM 

can independently mistune each frequency simultaneously, unlike other models, which would be 

used to validate the model with the ping test results at various crossings. 

In the FMM formulation, the tuned modes only need to be calculated once, which has 

significant computational savings for mistuning studies. FMM is a powerful tool to investigate 
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responses in the preliminary design stages, as the only input required is the tuned system 

frequencies and mistuned cantilever blade modes. Incorporating Monte Carlo Simulation to predict 

the worst-case fatigue life with the FMM model is effortless owing to its simple structure. This 

model is well suited for high frequency and nodal diameter modes, with strain energy concentrated 

in the blades. Mode selection is crucial for FMM formulation and affects the response significantly. 

FMM accurately predicts response for blade-dominated mode families and can capture the 

complex shape of the response well for cases with low mistuning and negligible modal 

participation from other families.  

FMM best estimates the response for cases where mistuned blade modes are close to the 

tuned modes. When the two blade dominant modes do not interact significantly, the current FMM 

formulation gives a better estimate with separate sweeps of both the dominant modes. The results 

show a considerable lack of accuracy from the FMM reduced order model with the increase in 

mistuning level compared to the CMM model. Due to its isolated blade mode family assumptions, 

the FMM method cannot accurately predict the response in these cases. The current FMM 

formulation can estimate the amplification factor at ND 11 within a reasonable error, especially 

for the first bending mode. This investigation provides the necessary statistics to understand the 

reduced-order models and allows a more informed decision to use these models for different cases 

in the future. 

5.2 Recommendations for future work 

The reduced-order models should be validated with the experimental results to understand 

the accuracy of these models with aerodynamic coupling. The NSMS and strain gauge data 

acquired for GUIde 6 must be used to validate these models. Previous research has shown that the 

forced response is a strong function of interblade coupling, which could be investigated for 

different loading conditions and EO excitations after validation. The response at each EO must be 

estimated with the respective rotational speed at each crossing to include accurate stiffening effects 

at that speed.  

 Past research showed the reliability of FMM in cases where modes are not strongly excited, 

even in the regions with disk participation, which can be explored further. The cases investigated 

in this study did not have crossing regions which are potentially complex regions for the reduced 
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order models. It would be worth studying regions with higher complexity, including multistage 

effects. 

The reduced order models are extremely sensitive to the retained modes and selection of 

modes. Optimization of the selection of tuned system modes can be explored for both the reduced 

order models to reduce the computational cost further. In cases where the tuned system modes and 

blade modes are far apart, FMM can be further explored, including the frequency shift method. 

It would be interesting to study the forced response and reduced order modeling for high-

speed machines where Coriolis and spin softening effects are significant and change the 

frequencies by more than 5 percent. Investigating the cases with non-proportional mistuning, as 

occurs with wear or damage, would be valuable. Studying these models for shrouded blades, 

exhibiting better vibration suppression ability, would also be noteworthy. The forced response is 

generally computed with harmonic analysis, which ignores the nonlinear effects. The transient 

effects can be further studied with a transient analysis.  
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APPENDIX: HARMONIC ANALYSIS METHODS  

Full harmonic method 

This method does not involve any matrix reduction or mass approximations and uses the 

full system of matrices. Therefore, these matrices are not constrained to symmetric and can be 

unsymmetric. This method utilizes full matrices to compute all the displacements and stresses in a 

single pass, making it computationally expensive, especially with the sparse solver. When the 

system is bulky and well-conditioned, this method is efficient. The full harmonic analysis supports 

frequency-dependent elastic and damping properties but ignores any nonlinear elements defined 

in the model. 

 

Frequency sweep method 

This method uses full system matrices, but the Variational Technology method interpolates 

the system matrices and loads to the frequency range requested by computing it at the range's 

midpoint. This method provides a higher performance solution as it approximates the results across 

the range instead of using the full matrices to calculate results at the last range point. This method 

allows all types of loads like forces, pressure, temperature, and displacements and computes the 

displacements and stresses in a single pass. This method only supports sparse solvers in Ansys 

Mechanical, which can be computationally expensive for large problems and is less efficient for a 

small frequency range. This method allows us to change the material properties, geometry, and 

constants without changing the mesh connectivity before resolving a frequency sweep harmonic 

analysis.  

 

Mode-superposition harmonic analysis 

The number of modes included in the calculation can be chosen per the frequency sweep 

range. This method can incorporate modal damping and pre-stress effects from static analysis. The 

element loads are included in the harmonic analysis using the LVSCALE command, which is 

applied in the preceding modal analysis. As the mode shapes are used to compute the response, 

the solutions tend to be concentrated around the system's natural frequency, giving us a smoother 

and more accurate response curve. This method supports mode-dependent damping. The initial 

modal analysis calculates a modal force vector to compute the dynamic response. 
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 [𝑀]{𝑢̈} + [𝐶]{𝑢̇} + [𝐾]{𝑢} = {𝐹} 
(5.1) 

 {𝐹} = 𝐹𝑡𝑖𝑚𝑒 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑛𝑜𝑑𝑎𝑙 𝑙𝑜𝑎𝑑 + 𝐹𝑚𝑜𝑑𝑎𝑙 𝑙𝑜𝑎𝑑 
(5.2) 

 

The equations are normalized with respect to mass which changes the equation of motion 

to modal coordinates using Equation (5.5). The modal coordinates corresponding to ith mode shape 

(𝜙𝑖) is represented using 𝑦𝑖. 

 {𝜙𝑖}
𝑇
[𝑀]{𝜙𝑖} = 1 (5.3) 

 [𝑀]{𝜙𝑖}
2 = 1 

(5.4) 

 
{𝜙𝑖} =

1

√𝑀𝑖

 (5.5) 

 

This substitution simplifies the damping and stiffness matrix as equations (5.6) and (5.7). 

 {𝜙𝑖}
𝑇
[𝐶]{𝜙𝑖} = 2𝜉𝑖𝜔𝑖 (5.6) 

 {𝜙𝑖}
𝑇
[𝐾]{𝜙𝑖} = 𝜔𝑖

2 (5.7) 

 𝑦
𝑖
̈ + 2𝜉𝑖𝜔𝑖𝑦𝑖

̇ + 𝜔𝑖
2𝑦

𝑖
= 𝑓

𝑖
 

(5.8) 

 

The forced response with an excitation frequency of ωe amplitude is computed using Equation 

(5.9). 

 
𝑦𝑖 =

𝑓𝑖
(𝜔𝑖

2 − 𝜔𝑒
2) + 𝑖(2𝜉𝑖𝜔𝑖𝜔𝑒)

 (5.9) 

 

The displacement vectors are then calculated using each mode's modal contribution, computed 

using mode shape using Equation (4.2). 

 {𝐶𝑀𝑖} =  {𝜙𝑖}𝑦𝑖 (5.10) 

 
{𝑢} =  ∑{𝐶𝑀𝑖}

𝑛

𝑖=1

= ∑{𝜙𝑖}𝑦𝑖

𝑛

𝑖=1

 (5.11) 
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