
REVAMPING BINARY ANALYSIS WITH SAMPLING AND
PROBABILISTIC INFERENCE

by

Zhuo Zhang

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

August 2023

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Xiangyu Zhang, Chair

Department of Computer Science

Dr. Zeynel B. Celik

Department of Computer Science

Dr. Suresh Jagannathan

Department of Computer Science

Dr. Ninghui Li

Department of Computer Science

Approved by:

Dr. Kihong Park

2

To my grandfathers, Wen Wang and Xidao Zhang,

who, if they were here, would rejoice in witnessing my accomplishment.

3

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisor, Dr. Xi-

angyu Zhang, for his unwavering support throughout my Ph.D. journey. His enduring pa-

tience, constant motivation, and empathetic understanding over these five years have been

a guiding light, helping shape my path as an academic and researcher. Dr. Zhang did not

merely teach me; he introduced me to the art and science of research. He showed me the

complexities of academic pursuits, taught me how to approach intricate problems with a

critical and systematic mindset, and guided me on articulating my ideas with clarity and

conciseness. His enthusiasm for innovation and his trust in my abilities have broadened

my understanding of computer science and gifted me the freedom to push boundaries and

explore new territory. Yet, his guidance was not limited to academics alone. Dr. Zhang

also supported me personally, showing me how to make smart plans for the future, make

thoughtful decisions, face tough situations bravely, and always aim for self-improvement. I

could not have wished for a more exceptional advisor and mentor during my Ph.D. journey.

In addition, I am deeply thankful to my thesis committee members, Dr. Z. Berkay Celik,

Dr. Suresh Jagannathan, and Dr. Ninghui Li. Their constructive feedback and encouraging

words were essential in refining my dissertation. Their valuable advice on my future career

development has left a deep impression on me. The dissertation would not have reached its

current level of excellence without their contributions.

I also want to extend my thanks to Dr. Zhiqiang Lin from the Ohio State University. His

insightful thinking and words of encouragement empowered me to venture into new research

areas previously unknown to me. Dr. Lin’s assistance has been instrumental in fostering

my confidence to step out of my comfort zone and has motivated me to strive towards novel

breakthroughs. His invaluable support has played a crucial role in my academic advancement.

I would also like to express my heartfelt gratitude to my academic comrades, who have

greatly enriched my research. In particular, I want to acknowledge Guanhong Tao, my

roommate, for his guidance in expanding my understanding of machine learning security,

Dr. Guannan Wei for sharing his expertise in programming languages, Dr. Wei You for

his valuable lessons on fuzzing and dynamic testing, Le Yu for his wisdom on APT attack

4

provenance, Yapeng Ye for his guidance on network protocol security, Dr. Wen Xu for his

insight into blockchain and smart contract security, Xiangzhe Xu for helping me enhance my

knowledge on binary analysis using machine learning approaches, and Wuqi Zhang, for our

engaging and insightful discussions about DeFi development and security. Additionally, I

extend heartfelt thanks to Siyuan Cheng, Shiwei Feng, Guangyu Shen, and Kaiyuan Zhang.

Our countless nights spent together in Room 3133 of Lawson Computer Science Building have

not only fostered great camaraderie but have also led to a wealth of shared knowledge. These

individuals have significantly shaped my understanding of computer science, and without

their support and collaboration, my journey would have been immensely more challenging.

Furthermore, I wish to express my profound gratitude to my collaborators and friends

at Purdue University. My sincere thanks to Dr. Yousra Aafer, Shengwei An, Chanwoo Bae,

Zhiyuan Cheng, Xuan Chen, Lingyun He, Dr. Yonghwi Kwon, Dr. Wen-chuan Lee, Congyu

Liu, Dr. Hongyu Liu, Xuwei Liu, Dr. Yingqi Liu, Yunshu Mao, Dr. Shiqing Ma, Kenneth

Miller, Junyang Shao, Dr. Qingkai Shi, Yu Shi, Yi Sun, Zian Su, Fei Wang, Dr. Jianliang

Wu, Ruoyu Wu, Yaoxuan Wu, Danning Xie, Zikang Xiong, Qiuling Xu, Zhou Xuan, Lu

Yan, Yongwei Yuan, Dr. Juan Zhai, Brian Zhang, Mingwei Zheng, and Jinhao Zhu. Their

guidance, friendship, and collaborative spirit have enriched my life over the past five years

in West Lafayette.

This dissertation is dedicated to my beloved, Ruixue Zhang, who has been my unfalter-

ing pillar of support and belief throughout not only my Ph.D. journey but also the eight

wonderful years we have shared. Even with over seven thousand miles separating us, she has

been my rock, my motivation, my beacon in times of despair, and my humbling anchor when

pride flooded my judgment. Parallel to supporting me, Ruixue has achieved impressive mile-

stones of her own, notably earning her qualification from the Chinese Institute of Certified

Public Accountants over the last five years. Her pursuit of excellence inspires me to become

better every day. Her strength, self-motivation, bravery, and optimism have been instru-

mental in shaping my character. I hold dear the memories of our long FaceTime sessions,

where we worked on our own tasks but drew comfort from each other’s virtual presence. It

is hard to imagine how these past few years would have unfolded without her by my side.

5

As we continue our journey together, my hope is that we continue to stand by each other,

strengthening our bond as a family and jointly navigating the seas of life.

Finally, I wish to express my profound appreciation to my parents, Jianhong Wang and

Xuhui Zhang, and all other family members for their unwavering love and immeasurable

dedication. Their unconditional support has been my rock. They have always put my needs

first, cared for me more than they care for themselves, and have always been there when I

needed help. Even though I left my hometown in 2008 and fifteen years have since passed, in

their minds, I am still their child, and their desire to protect me remains unwavering. They

exhibit an exceptional level of thoughtfulness, always considering my situation. During our

phone calls, they worry about taking too much of my time, always concerned that I might

be too busy. They even avoid telling me when they are unwell, just so that I would not

worry. They have been a steady source of strength for me during the difficult two years of

the COVID-19 pandemic. Words fall short in expressing my appreciation for their lifelong

support. The regret for not having been by their side over the past fifteen years weighs

heavily on me. As I continue my journey, their love and sacrifices will continue to motivate

me to be the best I can be.

6

TABLE OF CONTENTS

LIST OF TABLES . 11

LIST OF FIGURES . 13

ABSTRACT . 16

1 INTRODUCTION . 17

1.1 The Thesis . 18

1.2 Problem Statement . 19

1.3 Overview . 21

1.3.1 Program Sampling: Analyzing Data Dependence in Binary Executables 23

1.3.2 Probabilistic Inference: Recovering Variables and Data Structures . . 24

1.3.3 Iterative Refinement: Effective and Efficient Binary-only Fuzzing . . 25

1.3.4 Expanding Viewpoints: Delving into DL-based Binary Analysis . . . 26

1.3.5 Discussion . 27

1.4 Contributions and Organization . 27

1.5 Publications . 30

2 PROGRAM SAMPLING: ANALYZING DATA DEPENDENCE IN BINARY EX-

ECUTABLES . 33

2.1 Introduction . 33

2.2 Motivation . 37

2.2.1 Limitations of Existing Techniques 37

2.2.2 Observations . 42

2.2.3 Our Technique . 42

2.3 Design . 45

2.4 Path Sampling . 45

2.4.1 Path Counting . 46

2.4.2 Path Sampling and Probability Analysis 49

2.4.3 Addressing Practical Challenges . 54

7

2.5 Abstract Interpretation . 56

2.6 Posterior Analysis . 62

2.7 Evaluation . 67

2.7.1 Coverage . 69

2.7.2 Program Dependence . 70

2.7.3 Applications . 77

2.8 Summary . 80

3 PROBABILISTIC INFERENCE: RECOVERING VARIABLES AND DATA STRUC-

TURES . 81

3.1 Introduction . 81

3.2 Motivation . 84

3.2.1 Our Technique . 89

3.3 Design Overview . 92

3.4 Deterministic Reasoning . 92

3.5 Probabilistic Reasoning . 99

3.5.1 Probabilistic Inference Rules . 100

3.5.2 Probabilistic Constraint Solving . 108

3.6 Evaluation . 110

3.6.1 Evaluation on Coreutils . 111

3.6.2 Evaluation on Howard Benchmark 114

3.6.3 Sensitivity Analysis . 116

3.6.4 Execution Time . 116

3.6.5 Scalability . 117

3.6.6 Impact of Aggressive Optimization 117

3.6.7 Impact of Different Compilers . 120

3.6.8 Contribution Breakdown of Different Components 121

3.7 Applications . 123

3.7.1 Improving IDA Decompilation . 123

3.7.2 Harden Stripped Binary . 124

8

3.8 Summary . 127

4 ITERATIVE REFINEMENT: EFFECTIVE AND EFFICIENT BINARY-ONLY

FUZZING . 128

4.1 Introduction . 128

4.2 Motivation . 132

4.2.1 Limitations of Existing Technique . 132

4.2.2 Our Technique . 136

4.3 System Design . 141

4.3.1 Probability Analyzer . 143

4.3.2 Incremental and Stochastic Rewriting 149

4.3.3 Crash Analyzer . 152

4.3.4 Optimizations . 153

4.4 Probabilistic Guarantees . 154

4.5 Practical Challenges . 156

4.6 Evaluation . 159

4.6.1 Evaluation on Google FTS . 160

4.6.2 Evaluation on Google FTS with Intential Data Inlining 166

4.6.3 Comparison with RetroWrite . 170

4.7 Case Studies . 171

4.7.1 Finding Zero-days in Closed-source Programs 171

4.7.2 Collect Other Runtime Feedback Than Coverage 172

4.8 Summary . 173

5 EXPANDING VIEWPOINTS: DELVING INTO DL-BASED BINARY ANALYSIS 174

5.1 Introduction . 174

5.2 Motivation . 179

5.3 Design Overview . 185

5.4 Syntax-aware Trigger Inversion . 186

5.4.1 Trigger Generation . 187

5.4.2 Why Not Per-instance Adversarial Attack 189

9

5.5 Semantic-preserving Trigger Injection . 190

5.5.1 Randomized Micro-execution . 192

5.5.2 Constraint Generation . 196

5.6 Evaluation . 201

5.6.1 Experiment Setup . 201

5.6.2 Attack Effectiveness . 203

5.6.3 Comparison with Baselines . 205

5.6.4 Functionality Preservation . 213

5.6.5 Why Backdoors Exist in These Models? 213

5.6.6 Runtime Overhead . 215

5.6.7 Transfer Attack . 217

5.7 Case Study . 218

5.8 Summary . 220

6 DISCUSSION . 221

6.1 Disassembly . 221

6.2 Network Protocol Reverse Engineering . 223

6.3 Android Security Policy Interpretation . 226

6.4 Malware Behavioural Analysis . 229

7 RELATED WORK . 232

7.1 Program Analysis. 232

7.2 Binary Analysis. 233

7.3 Probabilistic Program Analysis. 234

7.4 N-version Programming. 234

8 CONCLUSION . 236

REFERENCES . 238

10

LIST OF TABLES

2.1 Example of how VSA works on read_words . 41

2.2 Interpretation rules of BDA . 61

2.3 Example of BDA’s abstract interpretation . 62

2.4 Summary of SPECINT 2000 programs . 68

2.5 Summary of selected malware samples . 68

2.6 Evaluation on memory dependence analysis . 71

2.7 Evaluation on the effect of BDA’s posterior analysis and taint tracking 74

2.8 Evaluation on BDA’s runtime overhead . 74

2.9 Case study of inferring indirect control flow transfers by BDA 76

2.10 Case study of analyzing malware behaviors by BDA 77

3.1 Evaluation on overall variable recovery (Howard benchmark) 115

3.2 Comparison between Osprey and Howard . 116

3.3 Evaluation on prior probability impact for Osprey 116

3.4 Evaluation on runtime overhead of variable recovery techniques 117

3.5 Evaluation on optimization impact for Osprey 118

3.6 Evaluation on effects of BDA and probabilistic inference for Osprey 121

4.1 Summary of different binary-only fuzzing techniques 133

4.2 Evaluation on soundness of binary-only fuzzing techniques 159

4.3 Evaluation on bug detection capability of binary-only fuzzing techniques 162

4.4 Evaluation on effects of StochFuzz’s optimizations 164

4.5 Evaluation on runtime overhead of binary-only fuzzing techniques 165

4.6 Evaluation on fuzzing effectiveness (obfuscated benchmark) 167

4.7 Evaluation on incremental and stochastic rewriting 169

4.8 Evaluation on path coverage achieved by fuzzing (RetroWrite’s benchmark) . . . 171

4.9 Zero-day vulnerabilities disclosed by StochFuzz 171

4.10 Case study of solving mazes by StochFuzz (overall results) 172

4.11 Case study of solving mazes by StochFuzz (time-to-solve) 173

5.1 Example of Pelican’s randomized micro-execution 195

11

5.2 Summary of selected binary analysis models . 202

5.3 Evaluation on attack effectiveness of Pelican 204

5.4 Evaluation on attack success rates of untargeted attacks 210

5.5 Evaluation on runtime overhead of generated binaries 216

5.6 Evaluation on transfer attacks launched by Pelican 217

12

LIST OF FIGURES

1.1 Process of compilation and reverse engineering 19

1.2 Process of compilation and reverse engineering 23

2.1 Example to illustrate limitations of existing binary dependency techniques . . . 38

2.2 Examples to illustrate the insights of BDA . 43

2.3 CFG of example1 . 44

2.4 CFG of example3 . 44

2.5 Architecture of BDA . 45

2.6 Weighted CFG of example3 . 48

2.7 Example of weighted iCFG construction . 48

2.8 Weighted iCFG . 49

2.9 Example of how BDA handles loops . 55

2.10 Language of BDA . 57

2.11 Definitions of BDA . 59

2.12 Example of BDA’s posterior analysis . 67

2.13 Evaluation on code coverage achieved by BDA 69

2.14 Evaluation on path coverage achieved by BDA 70

2.15 Evaluation on sampling effect of BDA . 72

2.16 Example of BDA’s taint tracking . 75

2.17 Case study of malware analysis by BDA . 78

2.18 Examples of missing and mistyped dependence 79

3.1 Example to illustrate limitations of existing variable recovery techniques 85

3.2 Results of different variable recovery techniques for huft_build 86

3.3 Architecture of Osprey . 91

3.4 Definitions of Osprey . 93

3.5 Primitive analysis facts of Osprey . 93

3.6 Helper functions of Osprey . 94

3.7 Deterministic reasoning rules of Osprey . 95

3.8 Example of Osprey’s deterministic reasoning 98

13

3.9 Predicate definitions of Osprey . 101

3.10 Example to demonstrate the heap model of Osprey 102

3.11 Probabilistic inference for primitive and scalar variables in Osprey 103

3.12 Probabilistic inference for arrays in Osprey . 104

3.13 Probabilistic inference for heap folding in Osprey 105

3.14 Probabilistic inference for structures in Osprey 107

3.15 Example of Factor Graph . 108

3.16 Example of message passing in Factory Graph 109

3.17 Evaluation on overall variable recovery (recall) 111

3.18 Evaluation on overall variable recovery (precision) 111

3.19 Evaluation on complex variable recovery (recall) 112

3.20 Evaluation on complex variable recovery (precision) 112

3.21 Example of missing data structures by Osprey 113

3.22 Example of misidentified data structures by Osprey 113

3.23 Evaluation on tree difference for Coreutils . 114

3.24 Evaluation on variable recovery for Apache and Nginx 119

3.25 Evaluation on compiler impact for Osprey . 121

3.26 Case story of decompilation by Osprey . 123

3.27 Case story of decompilation by Osprey (results) 124

3.28 Case study of ASAN enhancement by Osprey 125

4.1 Example to illustrate limitations of existing binary-only fuzzing techniques . . . 131

4.2 Example to illustrate limitations of disassembly techniques 135

4.3 Example to illustrate limitations of RetroWrite 136

4.4 Example to illustrate insights of StochFuzz 137

4.5 Architecture of StochFuzz . 142

4.6 Example of Universal Control-flow Graph (UCFG) used by StochFuzz 144

4.7 Definitions of StochFuzz . 145

4.8 Predicates and probabilistic inference rules of Osprey 146

4.9 Example of factory graphs in StochFuzz . 151

4.10 Evaluation on fuzzing executions in 24 hours . 161

14

4.11 Evaluation on fuzzing executions in 24 hours (obfuscated benchmark) 168

4.12 Evaluation on the progress of incremental and stochastic rewriting 170

4.13 Evaluation on fuzzing executions in 24 hours (RetroWrite’s benchmark) 170

5.1 Example to illustrate the weakness of DL-based binary analysis models 179

5.2 Pipeline of StateFormer, a DL-based binary analysis model 181

5.3 Example of backdoor generated by NLP trigger inversion techniques 181

5.4 Example of backdoor generated by Pelican . 183

5.5 Architecture of Pelican . 185

5.6 Workflow of Pelican’s syntax-aware trigger inversion 186

5.7 Example of backdoor generated by per-instance adversarial attack 189

5.8 Workflow of Pelican’s semantic-preserving trigger injection 190

5.9 Language of Pelican . 192

5.10 Semantics of Pelican’s randomized micro-execution 194

5.11 Rules of Pelican’s constrain construction . 197

5.12 Example of Pelican’s constraint construction 200

5.13 Evaluation on the efficiency of backdoor trigger inversion 205

5.14 Evaluation on attack efficiency . 206

5.15 Evaluation on the runtime trigger coverage . 207

5.16 Evaluation on attack success rates of targeted attacks 212

5.17 Evaluation on the relation between ASR and the underlying training bias 214

5.18 Case study of black-box attack against DeepDi 219

15

ABSTRACT

Binary analysis, a cornerstone technique in cybersecurity, enables the examination of

binary executables, irrespective of source code availability. It plays a critical role in under-

standing program behaviors, detecting software bugs, and mitigating potential vulnerabili-

ties, specially in situations where the source code remains out of reach. However, aligning

the efficacy of binary analysis with that of source-level analysis remains a significant chal-

lenge, primarily due to the uncertainty caused by the loss of semantic information during

the compilation process.

This dissertation presents an innovative probabilistic approach, termed as probabilistic

binary analysis, designed to combat the intrinsic uncertainty in binary analysis. It builds on

the fundamental principles of program sampling and probabilistic inference, enhanced further

by an iterative refinement architecture. The dissertation suggests that a thorough and prac-

tical method of sampling program behaviors can yield a substantial quantity of hints which

could be instrumental in recovering lost information, despite the potential inclusion of some

inaccuracies. Consequently, a probabilistic inference technique is applied to systematically

incorporate and process the collected hints, suppressing the incorrect ones, thereby enabling

the interpretation of high-level semantics. Furthermore, an iterative refinement mechanism

is deployed to augment the efficiency of the probabilistic analysis in subsequent applica-

tions, facilitating the progressive enhancement of analysis outcomes through an automated

or human-guided feedback loop.

This work offers an in-depth understanding of the challenges and solutions related to

assessing low-level program representations and systematically handling the inherent uncer-

tainty in binary analysis. It aims to contribute to the field by advancing the development of

precise, reliable, and interpretable binary analysis solutions, thereby setting the groundwork

for future exploration in this domain.

16

1. INTRODUCTION

Program analysis holds fundamental significance in software security and engineering, facil-

itating the comprehension of program behaviors, the detection of bugs, and the resolution

of potential vulnerabilities, among other essential aspects. Typically, this approach involves

examining a program’s source code, which usually yields satisfactory results. Nevertheless,

in numerous cybersecurity scenarios, access to the source code may be impossible, or relying

solely on source code analysis may be inadequate. A few notable instances include:

• Securing Legacy Software: Modern computing infrastructures heavily rely on COTS

(Commercial Off-the-Shelf) software and legacy software. Much of this software is

outdated and potentially prone to security risks. Therefore, understanding the behav-

ior of such legacy software and addressing potential vulnerabilities is vital. However,

traditional source code analysis is impractical in these situations, as the software is

exclusively distributed in binary format, which is the compiler’s output after compiling

the source code.

• Malware Analysis: Malware comprises malicious software designed to disrupt, damage,

or gain unauthorized access to computer systems. Detecting and analyzing malware is

one of the most critical tasks in software security. Nonetheless, malware authors often

discard the source code and only distribute the binary executable of the malware to

evade detection, necessitating analysis of binary executables.

• Proof-of-Concept (PoC) Development: A proof-of-concept (PoC) demonstrates the

feasibility of a concept, primarily meaning the development of a functional exploit for

a vulnerability in the context of software security. PoC development is an essential step

in the vulnerability discovery process, as it enables verification of the vulnerability and

accelerates its resolution by developers. However, developing an exploit depends on

the analysis of low-level machine code and often occurs in situations where programs

exhibit undefined behavior (e.g., the vulnerability). In such cases, solely analyzing

high-level source code proves to be insufficient and unreliable, as compilers can produce

unpredictable machine code in response to undefined behaviors.

17

The crucial role of machine-code-level analysis in cybersecurity-related tasks has led to

the development of binary analysis. Such an analysis assesses raw binary executables, aiming

at offering performance akin to that of source-level analysis. Nevertheless, binary analysis

faces difficulties due to the loss of substantial important semantic information, such as symbol

names, data structures, type information, and more, after compilation.

Recovering such information from binary executables is inherently uncertain and can lead

to contradictory outcomes of deterministic reasoning. For example, many data structure

recovery techniques rely on specific instruction patterns to identify composite data types

like struct {...} in C. Unfortunately, these particular instructions might also be present

in optimized code snippets that do not access data structures at all. Existing techniques

lack a systematic approach for addressing such uncertainty.

In this dissertation, we tackle the intrinsic uncertainty in binary analysis via a novel

probabilistic analysis methodology, which is grounded on the principles of program sampling

and probabilistic inference. We note that numerous program behaviors can serve as valuable

hints to assist in recovering missing information. However, it is critical to recognize that

comprehensively obtaining all such behaviors is infeasible, considering the undecidability of

analyzing all non-trivial semantic properties of programs. Despite this challenge, it remain

practically feasible to sample these behaviors while tolerating the inclusion of erroneous

hints, which we refer to as program sampling. We further propose a probabilistic analysis

approach, underpinned by the well-established probabilistic inference technique, to systemat-

ically integrate and process the acuqired hints, allowing for effective reasoning about missing

high-level semantics even in the presence of uncertainty. Additionally, an iterative refinement

architecture is introduced to enhance the effectiveness of the proposed probabilistic analysis

when the downstream application is applicable.

1.1 The Thesis

Program sampling and probabilistic inference can adeptly seize and systematically model

the inherent uncertainty present in binary analysis, promoting the development of accurate,

robust, and explainable solutions.

18

Source Code Intermediate
Representation Assembly Code Machine Code

Information Lost:

Compilation

Reverse Engineering

Processes:

• Comments
• Macros
• Syntactic Sugar
• ….

• Variable Names
• Data Structures
• Type Information
• High-level Language

Constructs
• …

• Labels and Symbols
• Function Boundaries
• Instruction Boundaries
• …

Figure 1.1. The process of compilation and reverse engineering

1.2 Problem Statement

Considering the significance of binary analysis in the field of cybersecurity, it is crucial

to elevate the efficacy of binary analysis to a level on par with its source-level counterpart.

To this end, binary analysis employs a process inverse to compilation, aiming to reconstruct

a high-level representation of a program from a low-level one. This process is often referred

to as reverse engineering, as illustrated in Figure 1.1 . The upper part demonstrates the

activities of compilation and reverse engineering, while the lower part showcases the loss

of information at each step of compilation. Specifically, the compilation process proceeds

from left to right, transforming a high-level program representation (e.g., source code) into

a low-level representation (e.g., machine code) through stages of front-end parsing, code

generation, and assembly. Conversely, reverse engineering operates in the opposite direc-

tion, starting by extracting assembly code from machine code, then recovering intermediate

representation from the assembly code, and finally reconstructing source code from the inter-

mediate representation. Note that a substantial amount of information is progressively lost

when transitioning from high-level to low-level representations. This not only complicates

the analysis based on low-level representations but also introduces uncertainty into binary

analysis.

19

To facilitate understanding, we formally define the uncertainty in the context of binary

analysis as follows:

Uncertainty. In the context of binary analysis, uncertainty essentially refers to

the possibility of multiple legitimate high-level representations being reconstructed

from a single low-level program representation.

It is important to note that, even when the compilation settings are fixed and predetermined,

uncertainty in binary analysis persists, as it is intrinsic to reversing a lossy procedure. For

instance, a variable typed as char may be compiled into an identical machine code form as

a variable typed as unsigned int8. As a result, from the perspective of analyzing machine

code, it is uncertain which type the variable truly possesses.

In light of these factors, this dissertation seeks to address the following research challenges

in binary analysis.

Research Challenge 1. How can program behavior be adequately comprehended from a

low-level representation in a practical manner?

It is important to note that high-level representations are generally more informative than

low-level ones, featuring a more organized structure and richer semantic details (as observed

when comparing source code and machine code). Consequently, understanding program

behavior from a low-level representation proves more challenging than from a high-level one.

For instance, during the data-flow analysis of source code, variable type information often

helps reduce the search space of the analysis. However, this is not applicable in binary

analysis, where instructions operate solely on raw registers and memory locations without

any type information, resulting in an overwhelmingly large search space for the analysis.

Existing data-flow analyses for binaries either fail to produce satisfactory results or struggle

to scale to complex binaries. �

Research Challenge 2. How can the intrinsic uncertainty in binary analysis be systemat-

ically modeled and reasoned about?

The loss of information not only complicates the analysis of low-level representations

but also introduces inherent uncertainty into the reverse engineering process. That is to

say, even when program behavior can be effectively assessed from a low-level representa-

20

tion, there remains inevitably uncertaint concerning the information recovered during the

reconstruction of high-level representations. For example, in the process of recovering data

structures, identifying a data flow between two variables does not necessarily signify that

the two variables possess the same type, as possible compilation optimizations might com-

pile various variable types into identical machine code. Binary analysis is conducted in the

presence of such uncertainty, which is often overlooked by existing techniques. �

1.3 Overview

In order to address the challenges outlined earlier, we propose an innovative probabilistic

methodology for binary analysis, which is grounded in the following key insights:

• Program sampling provides a more practical approach for understanding programs in

low-level representations, as opposed to conservative analysis. Recall that, due to un-

certainty, multiple legitimate high-level representations can be derived from a specific

low-level representation through reverse engineering. A conservative analysis may pro-

duce numerous spurious results or fail to scale to complex binaries, since it seeks to

encompass all possible high-level representations. However, it is important to note that

a given program relation can be revealed by numerous whole-program paths, making

a sampling-based approach more practical. This approach samples and analyzes a set

of program paths, which is likely sufficient to unveil the program relation of interest.

For example, when considering the data dependency relation in a program with n

statements, the number of dependencies is O(n2), while the number of paths could

be O(2n), assuming all branching statements have only two branches. Consequently,

a dependence may be exposed by many paths. Sampling a set of paths is likely to

reveal all dependencies. We further demonstrate that, if such sampling adheres to

a well-designed distribution, the analysis results can be probabilistically guaranteed,

meaning the results are likely to be correct with high probability. The details of pro-

gram sampling are discussed in Chapter 2 .

• Probabilistic inference can naturally model and systematically reason about the intrin-

sic uncertainty. Following program sampling, a set of program relations are revealed

21

and represented as a collection of probabilistic hints. These various hints can be more

cohesively integrated using probabilistic inference. Specifically, one can consider each

revealed program relation as a piece of evidence, providing a certain degree of confi-

dence in one particular possible high-level representations of all. Although multiple

legitimate high-level representations exist due to uncertainty, aggregating all the evi-

dence will likely highlight the most probable one as the correct one. In Chapter 3 , we

discuss the details of probabilistic inference by solving a concrete problem, specifically,

recovering data structures.

Moreover, it is essential to highlight that certain distinct characteristics of cybersecurity

applications can potentially facilitate improving the effectiveness and efficacy of binary anal-

ysis. In particular, many cybersecurity applications are not a one-time process, but rather

entail iterative feedback loops, either automated or manual. For example, during malware

analysis, an analyst evaluates the results obtained from the underlying analysis, distinguishes

between correct and incorrect outcomes, and submits feedback to improve the analysis. The

generation of Proof-of-Concept (PoC) also encompasses a feedback-driven process, where the

generated PoC is automatically validated by assessing its capacity to exploit the targeted

vulnerability, and the feedback is employed to enhance the PoC generation procedure.

• The feedback can be seamlessly integrated into the probabilistic inference process as ad-

ditional hints. Probabilistic inference naturally enables the integration of new hints

into existing analysis results. In particular, when feedback becomes available, it can

be translated into fresh probabilistic hints and automatically analyzed by the under-

lying probabilistic inference procedure. We therefore suggest an iterative refinement

architecture, in which the analysis results are progressively refined through feedback.

This enhancement is exemplified in Chapter 4 , which focuses on binary-only fuzzing.

Figure 1.2 portrays the workflow of the proposed probabilistic binary analysis approach.

Specifically, given a machine code of interest, we initially employ program sampling to acquire

program behaviors. The probabilistic inference process subsequently leverages these program

behaviors to deduce the high-level representation of the program. In cases where downstream

22

Machine Code
Program
Sampling

(Chapter 2)

Program
Behaviors

Validation
(Chapter 4)

Probabilistic
Inference

(Chapter 3)

Analysis
Results

Feedback

If applicable

Figure 1.2. The process of compilation and reverse engineering

applications provide feedback, the analysis results can be further refined by incorporating

the feedback into the probabilistic inference process.

1.3.1 Program Sampling: Analyzing Data Dependence in Binary Executables

In Chapter 2 , we present program sampling, an innovative approach for performing binary

analysis. We showcase its potential by using it to examine data dependence in binary

executables, given that such analysis is an essential aspect of reverse engineering.

Binary program dependence analysis determines the dependence between two instruc-

tions. It is considerably more challenging than source-level dependence analysis, as symbol

information (e.g., types and variables) is lost during compilation, and source-level data struc-

tures, variables, and arguments are compiled into registers and memory accesses (through

registers), making them highly generic and difficult to analyze. Existing works either de-

pends on dynamic dependence analysis, necessitating the availability of high-quality inputs,

or conservative static analysis, which compromises scalability and inevitably generates sub-

stantial false positives. We note that dependence analysis with probabilistic guarantees may

strike an optimal balance between efficacy and practicality. Therefore, we propose a binary

level program dependence analysis technique with probabilistic guarantees, enabled by a

novel randomized abstract interpretation technique.

Our approach employs program sampling to explore the space of entire program paths in a

manner that ensures an equal distribution of probabilities across different paths, irrespective

23

of path length. Abstract interpretation is further performed on individual sample path,

which is different from conservative data-flow analysis that computes/merges the abstract

values from all possible paths at each step of interpretation. A context-sensitive and flow-

sensitive posterior dependence analysis is conducted to reduce the possible false negatives

caused by incomplete path sampling. Probabilistic guarantees can be provided depending

on the number of samples taken when certain assumptions are satisfied.

1.3.2 Probabilistic Inference: Recovering Variables and Data Structures

In Chapter 3 , we investigate the potential of probabilistic inference in binary analysis by

leveraging program behavior insights obtained from program sampling. We demonstrate the

effectiveness of this approach in addressing a critical challenge in binary program analysis,

namely, the recovery of variable and data structure information. The primary objective is

to identify variables, determine their types, and recognize complex array and data struc-

ture definitions. Such information is lost during the compilation process, as variables and

data structure fields are converted into plain registers and memory locations, devoid of any

structural or type information. Access to variables, including simple global scalar variables

and complex stack/heap data structure fields with extended reference paths (e.g., a.b.c.d), is

uniformly compiled into dereferences of registers. The recovery of this missing information

is crucial for ensuring software security.

Traditional techniques rely on a series of hardcoded reverse engineering rules, which

are effective under specific conditions (e.g., for binaries generated by particular compilers).

However, these techniques often lack general applicability due to the diversity of modern

compilers and the prevalence of aggressive optimizations that may disrupt the instruction

patterns upon which these rules depend. We note that numerous hints of different types

can be gathered to help the recovery of variables and structures; however, these hints have

not been fully exploited by existing methods, primarily due to challenges in filtering out

spurious hints and the absence of a systematic method for integrating them in the face of

uncertainty. To address these shortcomings, we extend our program sampling technique to

24

collect a comprehensive set of basic behavioral properties of the target binary, including

memory access patterns, data-flow characteristics, and points-to relationships.

We introduce random variables to represent the type and structure layout, which are

subsequently correlated through the hints gathered by the aforementioned program analysis

techniques. Considering the inherent uncertainty of these hints, probabilistic inference is

employed to resolve constraints and determine the posterior distribution of the random

variables.

1.3.3 Iterative Refinement: Effective and Efficient Binary-only Fuzzing

In Chapter 4 , we present an iterative refinement algorithm designed to augment the

proposed probabilistic analysis. This architecture is particularly suited for downstream ap-

plications that support feedback mechanisms. We illustrate its implementation in the context

of binary-only grey-box fuzzing.

Grey-box fuzzing, a prevalent security testing methodology, generates inputs for a target

program to identify vulnerabilities. Starting with seed inputs, a fuzzer iteratively executes

the program while modifying the inputs. Input mutation is typically guided by coverage

information, with popular strategies considering input mutations that improve coverage as

significant and subjecting them to further alterations. Consequently, existing fuzzing engines

depend on instrumentation to monitor code coverage. They typically employ compilers to

facilitate instrumentation prior to fuzzing when source code is accessible. However, in many

instances, only binary executables are available.

Several techniques have been devised to enable fuzzing without access to source code,

known as binary-only fuzzing. These methods typically involve either resource-intensive

dynamic binary rewriting or static rewriting based on restrictive assumptions that are fre-

quently unmet in practice, making binary-only fuzzing a critical and burgeoning field. We

observe that fuzzing is a highly iterative process wherein a program is executed repeatedly, af-

fording numerous opportunities for trial-and-error, providing significant amount of feedback,

and allowing rewriting to be incremental while improving accuracy over time. Consequently,

we propose an innovative incremental and stochastic rewriter that seamlessly integrates with

25

the fuzzing process. This rewriter employs probabilistic inference to model the uncertainty

inherent in addressing the challenges of static binary instrumentation. In essence, our ap-

proach does not necessitate sound results from binary analysis as a starting point. Instead, it

conducts initial rewriting based on uncertain findings. Through multiple fuzzing iterations,

our technique autonomously detects problematic areas, implements repairs, and ultimately

achieves effective and efficient binary-only fuzzing.

1.3.4 Expanding Viewpoints: Delving into DL-based Binary Analysis

In Chapter 5 , we emphasize the critical role of domain-specific insights and logical reason-

ing in binary analysis as we venture beyond our initial proposal, investigating the data-driven

realm of Deep Learning (DL)-aided binary analysis.

DL has driven remarkable progress in diverse fields such as Computer Vision (CV), Nat-

ural Language Processing (NLP), and Robotics. Recent integration of these techniques into

binary analysis has yielded promising performance, equating to our probabilistic methods.

However, the black-box nature of DL methods casts doubts about their robustness and ca-

pacity to generalize. Some studies have raised concerns about DL-based techniques’ capacity

to effectively process unseen or out-of-distribution (OOD) data, typically referred to as ad-

versarial examples. To investigate whether this potential limitation impacts binary analysis

models, we develope an innovative attack strategy against DL-based techniques. This ap-

proach uses a trigger inversion method to generate valid instruction sequences and a trigger

insertion mechanism to maintain the input binary’s semantic integrity. This strategy en-

sures that the resulting binary retains functional identity with the original while leading the

DL-based binary analysis model to erroneous classifications.

Our experimental investigations indicate that DL-based binary analysis techniques are

prone to adversarial attacks, underscoring limitations in their ability to generalize. This find-

ing showcases the importance of integrating domain-specific knowledge and logical reasoning

when addressing uncertainty in binary analysis, rather than solely relying on data-centric

approaches. It also reaffirms the potential of our proposed probabilistic analysis in binary

26

analysis tasks, suggesting the possible advantages of integrating DL methodologies with our

approach.

1.3.5 Discussion

Chapter 6 takes a broader look at the potential uses of our proposed probabilistic analysis

in various domains characterized by inherent uncertainties. In this chapter, we focus on how

probabilistic analysis can be adapted for an array of tasks that echo binary analysis in the key

aspect of deriving high-level abstractions from low-level data. Our observations highlight the

adaptability of our probabilistic analysis approach when confronted with uncertainty. We

delve into the following problems in detail:

• Disassembly: The challenge of reconstructing assembly code from machine code of

various architectures.

• Network Protocol Reverse Engineering: The process of reconstructing protocol speci-

fications from observed network traffic.

• Android Security Policy Interpretation: The demand for recovering security policies

and specifications from source code.

• Malware Behavioural Analysis: The task of identifying and understanding malicious

behaviors from binary executables.

1.4 Contributions and Organization

The primary contributions of this dissertation include the following:

• We introduce probabilistic binary analysis, an innovative probabilistic methodology

for examining binary executables. This approach is underpinned on the concepts of

program sampling and probabilistic inference, and can be seamlessly enhanced with

available feedback.

• We exhibit the potential of program sampling by utilizing it for binary program depen-

dence analysis. Our technique is facilitated by a novel whole program path sampling

27

algorithm for comprehensive path exploration, a per-path abstract interpretation ap-

proach that is crucial for avoiding spurious abstract values and dependencies, and a

posterior analysis to compensate for potential incompleteness in path sampling. We

also establish the probabilistic guarantees of our method under certain assumptions.

Our evaluation on SPECINT2000 binaries reveals that it scales to intricate binaries,

including gcc, while existing techniques struggle to yield results for numerous binaries.

In comparison to dynamic dependencies observed during the execution of these bina-

ries with standard inputs, our method misses only 0.19% of dependencies on average.

The dependencies reported by our approach are 75 times smaller than those identified

by an existing technique.

• We demonstrate how probabilistic inference can benefit programs with inherent uncer-

tainty. Specifically, we propose an innovative probabilistic variable and data structure

recovery technique capable of addressing the intrinsic uncertainty of the problem. We

develop a set of probabilistic inference rules adept at aggregating profound program

behavioral properties to attain precision and extensive coverage in recovery results.

We evaluate the performance of our proposed technique against several state-of-the-

art methods on two benchmark sets collected from the literature. Our results indi-

cate that our technique surpasses them by 20.41%-56.78% in terms of precision and

11.89%-50.62% in terms of recall. For complex variables (arrays and data structures),

our improvement ranges from 6.96%-89.05% (precision) and 46.45%-74.02% (recall).

• We exemplify the seamless integration of feedback into the probabilistic analysis pro-

cess. Moreover, we propose an innovative incremental and stochastic rewriting tech-

nique especially suited for binary-only fuzzing. This method capitalizes on fuzzing and

utilizes the numerous fuzzing runs to conduct trial-and-error until precise rewriting is

achieved. The technique is supported by a lightweight approach that determines the

likelihood of each address representing a data byte, which is formally defined as a prob-

abilistic inference problem. We assess our technique on two standard benchmarks and

several commercial binaries. In comparison with state-of-the-art binary-only fuzzers

and source-based fuzzers, our results show that our method outperforms binary-only

28

fuzzers in terms of soundness and efficiency while maintaining comparable performance

to source-based fuzzers. For instance, it is 7 times faster than dynamic-based tech-

niques and successfully handles all test programs, whereas other static binary rewriting

fuzzers fail on 12.5%-37.5% of the programs. Our fuzzer also identifies zero-days in

commercial binaries without any symbol information.

• We explore the critical roles that domain-specific knowledge and logical reasoning play

in binary analysis, with a particular emphasis on unearthing backdoor vulnerabilities

within deep learning (DL) models used in binary code analysis for security applica-

tions. We devise a trigger inversion technique capable of generating valid instructions

as backdoor triggers. Additionally, we develop a trigger injection method that ensures

the trigger becomes an integral part of the original code’s semantics, and the injected

(and patched) code maintains the same semantics as before. This approach features

a block-level randomized execution engine and a symbolic patching method. We eval-

uate our attack on five binary analysis tasks and 15 models. Our assessment reveals

that our attack achieves an 86.09% attack success rate (ASR) with only three trigger

instructions. We also conduct a case study of exploiting a closed-source commercial

tool in a black-box scenario. Our findings underscore the potential of our probabilis-

tic analysis in binary analysis tasks, suggesting potential benefits of integrating DL

methodologies with our approach.

• We investigate the potential of applying probabilistic analysis to other tasks that ex-

hibit similarities to binary analysis, specifically in terms of reconstructing high-level

abstractions from low-level inputs. We explore several problems, such as disassembly,

network protocol reverse engineering, Android security policy analysis, and malware

analysis, in detail. Our findings indicate that the probabilistic analysis approach can

be broadly adapted when confronted with uncertainty.

This dissertation is organized as follows: Chapter 2 presents BDA, a probabilistic binary

dependency analysis technique. Chapter 3 proposes Osprey, a variable and data structure

recovery technique for stripped binaries. Chapter 4 presents StochFuzz, an effective and

29

efficient binary-only fuzzing solution. Chapter 5 delves into the crucial importance of domain-

specific knowledge and logical reasoning in binary analysis. Chapter 6 discusses the potential

of applying probabilistic analysis to other tasks and domains. Chapter 7 reviews the related

works. Finally, Chapter 8 concludes the dissertation.

1.5 Publications

The core research findings of this dissertation are presented in the following publications:

• BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-Program

Path Sampling and Per-Path Abstract Interpretation.

Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, Xiangyu

Zhang.

Proceedings of the ACM on Programming Languages, Volume 3 (OOPSLA 2019).

Presented in Chapter 2 .

• Osprey: Recovery of Variable and Data Structure via Probabilistic Analysis for Stripped

Binary.

Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-chuan Lee, Yonghwi Kwon,

Yousra Aafer, Xiangyu Zhang.

Proceedings of the 42th IEEE Symposiums on Security and Privacy (S&P 2021).

Presented in Chapter 3 .

• StochFuzz: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental

and Stochastic Rewriting.

Zhuo Zhang, Wei You, Guanhong Tao, Yousra Aafer, Xuwei Liu, Xiangyu Zhang.

Proceedings of the 42th IEEE Symposiums on Security and Privacy (S&P 2021).

Presented in Chapter 4 .

• Pelican: Exploiting Backdoors of Naturally Trained Deep Learning Models In Binary

Code Analysis.

Zhuo Zhang, Guanhong Tao, Guangyu Shen, Shengwei An, Qiuling Xu, Yingqi Liu,

Yapeng Ye, Yaoxuan Wu, Xiangyu Zhang.

30

Proceedings of the 32nd USENIX Security Symposium (Security 2023).

Presented in Chapter 5 .

Additionally, the author has made significant contributions to the following publications

related to this dissertation:

• Probabilistic Disassembly.

Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang, Xiangyu Zhang, Zhiqiang Lin.

Proceedings of the 41st ACM/IEEE International Conference on Software Engineering

(ICSE 2019).

Related to Chapter 6 .

• PMP: Cost-Effective Forced Execution with Probabilistic Memory Pre-Planning.

Wei You, Zhuo Zhang, Yonghwi Kwon, Yousra Aafer, Fei Peng, Yu Shi, Carson

Makena Harmon, Xiangyu Zhang.

Proceedings of the 41th IEEE Symposiums on Security and Privacy (S&P 2020).

Related to Chapter 6 .

• NetPlier: Probabilistic Network Protocol Reverse Engineering from Message Traces.

Yapeng Ye, Zhuo Zhang, Fei Wang, Xiangyu Zhang, Dongyan Xu.

Proceedings of the 28th Network and Distributed System Security Symposium (NDSS

2021).

Related to Chapter 6 .

• Poirot: Probabilistically Recommending Protections for the Android Framework.

Zeinab El-Rewini, Zhuo Zhang, Yousra Aafer.

Proceedings of the 29th Conference on Computer and Communications Security (CCS

2022).

Related to Chapter 6 .

• D-ARM: Disassembling ARM Binaries by Lightweight Superset Instruction Interpre-

tation and Graph Modeling.

Yapeng Ye, Zhuo Zhang, Qingkai Shi, Yousra Aafer, Xiangyu Zhang.

31

Proceedings of the 44th IEEE Symposiums on Security and Privacy (S&P 2023).

Related to Chapter 6 .

32

2. PROGRAM SAMPLING: ANALYZING DATA

DEPENDENCE IN BINARY EXECUTABLES

Binary program dependence analysis determines dependence between instructions and hence

is important for many applications that have to deal with executables without any symbol

information. A key challenge is to identify if multiple memory read/write instructions access

the same memory location. The state-of-the-art solution is the value set analysis (VSA) that

uses abstract interpretation to determine the set of addresses that are possibly accessed by

memory instructions. However, VSA is conservative and hence leads to a large number of

bogus dependences and then substantial false positives in downstream analyses such as mal-

ware behavior analysis. Furthermore, existing public VSA implementations have difficulty

scaling to complex binaries. In this chapter, we propose a new binary dependence analysis

called BDA enabled by a randomized abstract interpretation technique. It features a novel

whole program path sampling algorithm that is not biased by path length, and a per-path

abstract interpretation avoiding precision loss caused by merging paths in traditional anal-

yses. It also provides probabilistic guarantees. Our evaluation on SPECINT2000 programs

shows that it can handle complex binaries such as gcc whereas VSA implementations from

the-state-of-art platforms have difficulty producing results for many SPEC binaries. In ad-

dition, the dependences reported by BDA are 75 and 6 times smaller than Alto, a scalable

binary dependence analysis tool, and VSA, respectively, with only 0.19% of true dependences

observed during dynamic execution missed (by BDA). Applying BDA to call graph gener-

ation and malware analysis shows that BDA substantially supersedes the commercial tool

IDA in recovering indirect call targets and outperforms a state-of-the-art malware analysis

tool Cuckoo by disclosing 3 times more hidden payloads.

2.1 Introduction

Binary analysis is a key technique for many applications such as legacy software mainte-

nance [1 , 2], reuse [3 , 4], hardening [5 , 6], debloating [7 , 8], commercial-off-the-shelf software

security testing [9 , 10], malware analysis [11 , 12], and reverse engineering (e.g., communi-

33

cation protocol reverse engineering) [13 , 14]. A key binary analysis is program dependence

analysis that determines if there is dependence between two instructions. Binary program

dependence analysis is much more challenging than source level dependence analysis as sym-

bol information (e.g., types and variables) is lost during compilation and source level data

structures, variables, and arguments are compiled down to registers and memory accesses

(through registers), which are very generic and difficult to analyze. The analysis is further

confounded by indirect control flow (e.g., call instructions with non-constant targets, often

induced by virtual methods in object oriented programs), as call targets are difficult to derive

statically without type information. The critical challenge in binary dependence analysis is

memory alias analysis that determines if memory access instructions may access a same

memory location.

Given the importance of binary analysis, there are a number of widely used binary anal-

ysis platforms such as IDA [15], CodeSurfer [16], BAP [17], and ANGR [18]. Some of them

leverage dynamic dependence analysis, which is highly effective when inputs are available.

However, inputs or input specifications are largely lacking in many security applications.

While symbolic execution and fuzzing may be used to generate inputs, they have difficulties

scaling to lengthy program paths and execution states for complex binaries with compli-

cated input constraints. Therefore, most of these platforms additionally adopt the Value

Set Analysis (VSA), a static analysis method, to address the memory alias problem (and

hence the dependence analysis problem). VSA was proposed by [19]. It computes the set

of possible values for the operands of each instruction. Aliases of two memory accesses can

be determined by checking if their value sets share common (address) values. VSA uses a

strided interval to denote a set of values. Each strided interval specifies the lower bound,

the upper bound, and the stride. While being compact, strided intervals feature conserva-

tiveness. In many cases, they may become simple value ranges (i.e., intervals with stride

1). As such, even though VSA is sound, it has a number of limitations while being used in

practice. Specifically, the possible addresses of many memory accesses often degenerate to

the entire memory space such that substantial bogus dependences are introduced; when the

set of possible address values of a memory write is inflated, the write becomes extremely

expensive as it has to update the value set for all the possible addresses. According to our

34

experiment (see Section 2.7.2), most publicly available implementations of VSA fail to run

on many SPECINT2000 programs [20]. In addition, they produce substantial false positives

in dependence analysis.

While soundness (i.e., never missing any true positive program dependence) is critical

for certain applications such as semantic preserving binary code transformation, for which

VSA aims, probabilistic guarantees (i.e., the analysis has a very low likelihood of missing

any true positive) are sufficient for many practical applications. For example, a critical and

fundamental application of VSA (and dependence analysis) is to derive indirect control flow

transfer targets such that precise call graphs can be constructed. The sound and conservative

VSA inevitably has a large number of bogus call edges, rendering the resulted call graph

not that useful. In contrast, an analysis that can disclose most true (indirect) call edges and

have a low chance of missing some may be more useful in practice. Malware behavior analy-

sis [21] aims to understand hidden payloads of malware samples by reporting the system calls

performed by the samples and the corresponding concrete arguments of these system calls

(e.g., file delete system call with directory argument “/home”). Missing a few dependences

(by chance) may not critically impact the generated behavior report whereas having a large

number of bogus dependences would lead to substantial false positives, significantly enlarging

the human inspection efforts. In other applications including functional component identifi-

cation (for binary debloating) [8], static analysis guided vulnerability detection/fuzzing [9],

and protocol reverse engineering [14], dependence analysis with probabilistic guarantees may

provide the appropriate trade-offs between effectiveness and practicality.

Therefore in this chapter, we propose a binary level program dependence analysis tech-

nique with probabilistic guarantees, enabled by a novel randomized abstract interpretation

technique. Specifically, our technique samples the space of whole program paths in a fash-

ion that the likelihood of different paths being taken are evenly distributed, not biased by

path length. Note that tossing a fair coin at each conditional statement yields a very biased

path distribution such that long paths can hardly be reached. Abstract interpretation is per-

formed on individual sample path, which is different from VSA that operates like a data-flow

analysis that computes/merges the abstract values from all possible paths at each step of in-

terpretation. To avoid using value ranges or strided intervals for external inputs, our abstract

35

interpretation samples input values from pre-defined distribution. Probabilistic guarantees

can be provided depending on the number of samples taken when certain assumptions are

satisfied. A context-sensitive and flow-sensitive posterior dependence analysis is performed

based on the abstract values computed by the large number of sample interpretations. The

analysis is able to reduce the possible false negatives caused by incomplete path sampling.

It also features strong updates such that false positives can be effectively suppressed.

Our contributions are summarized as follows.

• We propose a novel whole program path sampling algorithm for general path explo-

ration. We also identify the probabilistic guarantees of our sampling algorithm with

certain assumptions.

• We devise a per-path abstract interpretation technique that is critical for avoiding

bogus abstract values and dependences, and a posterior analysis to compensate the

possible incompleteness in path sampling.

• We address a number of practical challenges such as handling loops, recursions, indirect

jumps, and indirect calls.

• We propose a new binary program dependence analysis enabled by a novel randomized

abstract interpretation technique.

• We develop a prototype BDA [22] and evaluate it on SPECINT2000 binaries. Our

evaluation shows that it scales to complex binaries including gcc, whereas VSA im-

plementations from popular platforms such as BAP and ANGR fail to produce results

for many binaries. When compared to dynamic dependences observed during running

these binaries on standard inputs, BDA misses only 0.19% dependences on average.

The dependences reported by BDA are 6 times smaller than those by VSA (when it

produces results) and 75 times smaller than Alto (another binary dependence anal-

ysis tool that scales). We also evaluate BDA in two downstream analysis, one is to

identify indirect control flow transfer targets and the other is to study hidden malware

behaviors on 12 recent malware samples. In the former analysis, BDA is equally ef-

fective as a state-of-the-art commercial tool IDA in identifying indirect jump targets

36

and substantially outperforms in identifying indirect call targets (4 found by IDA on

average versus 767 found by BDA on average). In the malware analysis, BDA substan-

tially outperforms a commercial state-of-the-art malware analysis tool Cuckoo [23] by

reporting 3 times more hidden malicious behaviors.

2.2 Motivation

At the binary level, program dependences induced by registers can be easily inferred.

The challenge lies in identifying those induced by memory, due to the difficulty of (statically)

determining the locations accessed by memory operations. As such, a key challenge in binary

dependence analysis, and also in binary analysis in general, is to determine the points-

to relations for memory access instructions. In this section, we explain the limitations of

existing techniques, present our observations of program dependences (through memory),

and motivate the idea of BDA.

2.2.1 Limitations of Existing Techniques

We use 197.parser from the SPEC2000INT benchmark [20] as an example to illustrate

the limitations of existing techniques. 197.parser is a word processing program that analyzes

the syntactical structure of a given input sentence based on a pre-defined dictionary. Figure

 2.1 presents the simplified code of its dictionary initialization logic. In particular, it sets the

the number of words in the dictionary to a pre-defined value (line 12), reads words from the

dictionary file (line 13), and then outputs the longest word (line 14). During the process of

reading words, 197.parser maintains a dictionary tree (lines 24) and records the index of the

longest word (line 25).

The core of memory alias analysis (and also the downstream dependence analysis) is to

statically determine the possible runtime values (PRV) of the address operand of a memory

access instruction, which could be a register or a memory location. We call such operands

variables for easy description. While the problem is undecidable in general, a large collec-

tion of approximation algorithms have been proposed to provide various trade-offs between

37

1 # define MAX_LEN 56
2 # define WORD_CNT 1000
3
4 struct Trie{Word *word; Trie *child [26];};
5 struct Word{char val[MAX_LEN]; Trie *node ;};
6 struct Dict{long cap; Word words[WORD_CNT];};
7 Dict *dict;
8 Trie *trie;
9

10 void init_dict () {
11 long idx = 0; // index of the longest word
12 dict ->cap = WORD_CNT ;
13 read_words (dict ->words , &idx);
14 output_word (dict -> words [idx]. val);
15 }
16
17 void read_words (Word* words , long *idx) {
18 int i, j;
19 for (i = 0; i < WORD_CNT ; i++) {
20 words[i]. node = trie;
21 for (j = 0; j < MAX_LEN ; j++) {
22 words [i]. val[j] = read_char ();
23 /* Do the following things :
24 1. break_if_line_end (words [i]. val[j]);
25 2. update_trie (words [i], j);
26 3. update_longest_idx (idx , j);
27 */
28 }
29 words[i]. node ->word = &(words [i]);
30 }
31 }

Figure 2.1. Example to explain the limitations of existing techniques.

efficiency and precision. Among all these efforts, Alto [24] and VSA [19] are two prominent

existing efforts. The latter has been the standard for more than a decade.

Alto. Alto abstracts the PRV of a variable as an address descriptor 〈insn, OFFSET〉, where

insn is the instruction that computes a base value and OFFSET denotes a set of possible offsets

to the base value. For example, assume in line 13 in function init_dict() (Figure 2.1), the

address of dict->words is loaded to register rdi by two instructions. The first instruction

i loads the base dict and the second instruction j adds the offset of field words, which

is 8. The address descriptor of rdi after i and j is hence 〈i, {0x8}〉. Alto only models

38

PRV computation through register operations, not through memory reads and writes. For

an instruction i that loads a value from a memory location to a register, Alto resets the

PRV of the register to a new address descriptor 〈i, {0x0}〉, not being able to inherit the

address descriptor stored by the latest memory write to the location. As such, it has to

conservatively consider a memory read with a new descriptor can read from any address, and

have dependence with any memory write, causing substantial false positives. For example

in function init_dict(), Alto considers the read of dict->words at line 13 is dependent on

the write of dict->cap at line 12.

VSA. VSA computes PRV by abstract interpretation, modeling operations through both

registers and memory. It abstracts the PRV of a variable as a strided interval s [lb, ub],

where lb and ub specify the lower bound and upper bound of the interval and s is the stride

between values in the interval. Intuitively, the strided interval represents the set of integers

{lb, lb + s, lb + 2s, ..., ub}. Each strided interval may be associated with a memory region,

which could be heap (denoted as Ha where a is the allocation site), stack (denoted as Sf

where f is the corresponding function), or general for non-heap and non-stack values (denoted

as G). There is a special value >, which indicates all possible values. VSA computes strided

intervals following a set of rules. For example, the addition rule is defined as follows. Let

SI1 = s1 [lb1, ub1] and SI2 = s2 [lb2, ub2] be two strided intervals, and SI3 = SI1 +SI2. Then

we have the following equation (2.1), with gcd() the greatest common divisor. Observe that

the rule is conservative, meaning SI3 is a super-set of the all the possible sums of the values

in SI1 and SI2.

SI3 = gcd (s1, s2) [lb1 + lb2, ub1 + ub2] (2.1)

The major limitation of VSA is over-approximation. According to equation (2.1), ab-

stract interpretation may induce bogus PRV at each instruction, due to both the gcd() op-

eration and the simple approximation of lower and upper bounds. Since there are typically

a large number of interpretation steps in whole-program analysis, the bogus dependences

are aggregated and magnified, making end results not usable. For example, the write of

39

words[i].node->word at line 28 has false dependence with any following memory read

according to VSA.

Table 2.1 illustrates how VSA works on the read_words() function. Specifically, the

strided interval for register r12 at instruction b is 0x0 [0x8,0x8], denoting a constant 8, and

the strided interval for register r14 at instruction d is 0x40 [0x0, 0xfa00]. Intuitively, r12

corresponds to the dict->words variable passed from the init_dict function, and 0x8 is

the offset of the words field in the Dict structure. The strided interval of r14 represents

all the possible loop count i values at the binary level. Note that the stride is 40, which

is the size of Word. These two strided intervals are propagated to instruction g, where we

have the strided interval for r12+r14 (corresponding to &(words[i]) at the source level)

as 0x40 [0x8,0xfa08] according to the addition rule.

The computation of strided intervals is conservative, which may lead to substantial bogus

values in PRV. For example, consider the strided interval for r12+r14+r15 at instruction m.

The strided interval for r12+r14 is 0x40 [0x8,0xfa08] as mentioned earlier. The strided

interval for r15, which corresponds to the counter j of the inner loop, is 0x1 [0x0,0x38]. Ac-

cording to the addition rule, the resulted strided interval is 0x1 [0x8,0xfa40]. As we can see

that the resulted strided interval is an over-approximation, covering all possible addresses

in the memory region of dict->words, while only the addresses corresponding to dict-

>words[i].vals[j] should be included. As such, when instruction m writes a value read

from input, which is denoted as > due to the lack of input pre-condition, VSA essentially up-

dates the abstract value for all addresses in dict->words to >. Specifically, words[i]->node

holds a > value such that when the later instruction r writes a value to words[i].node-

>word, which writes to a field of the memory region denoted by words[i].node, VSA conser-

vatively writes the value to the entire address space. As a result, any following memory read

would have (bogus) dependence with r. Moreover, since VSA needs to update the strided

interval for all possible addresses, which could be 264 for the 64-bit system, the analysis be-

comes extremely time-consuming. According to our experience, such phenomenon happens

quite often in practice, substantially hindering the applicability of VSA. In Section 2.7.2 ,

our evaluation shows that the state-of-the-art public VSA implementations fail on many

SPEC2000 programs.

40

T
ab

le
2.

1.
H

ow
V

SA
wo

rk
s

on
th

e
re

ad
_w

or
ds

fu
nc

tio
n

So
ur

ce
Co

de
As

mC
od

e
Va

ri
ab

le
VS

A

a
.

su
b

rs
p,

0x
30

rs
p

;S
ta

ck
Po

in
te

r
S f

:0
x0

[-
0x

30
,-

0x
30

]
vo

id
re

ad
_w

or
ds

(W
or

d*
wo

rd
s,

lo
ng

*i
dx

)
{

b
.

mo
v

r1
2,

rd
i

r1
2

;w
or

ds
H

α
:0

x0
[0

x8
,0

x8
]

c
.

xo
r

r1
4,

r1
4

d
.

cm
p

r1
4,

0x
fa

00
r1

4
;i

*s
iz

eo
f(

Wo
rd

)
G

:0
x4

0
[0

x0
,0

xf
a0

0]
fo

r
(i

nt
i

=
0;

i
<

WO
RD

S_
CN

T;
i+

+)
{

e
.

jg
e

u.
N/

A
N/

A

f
.

mo
v

r1
3,

[0
x6

01
11

0]
r1

3
;t

ri
e

H
β

:0
x0

[0
x0

,0
x0

]

g
.

le
a

rb
x,

[r
12

+r
14

]
r1

2+
r1

4
;&

(w
or

ds
[i

])
H

α
:0

x4
0

[0
x8

,0
xf

a0
8]

wo
rd

s[
i]

.n
od

e
=

tr
ie

;

h
.

mo
v

[r
bx

+0
x3

8]
,

r1
3

rb
x+

0x
38

;&
(w

or
ds

[i
].

no
de

)
H

α
:0

x4
0

[0
x4

0,
0x

fa
40

]

i
.

xo
r

r1
5,

r1
5

j
.

cm
p

r1
5,

0x
38

r1
5

;j
G

:0
x1

[0
x0

,0
x3

8]
fo

r
(i

nt
j

=
0;

j
<

MA
X_

LE
N;

j+
+)

{

k
.

jg
e

p.
N/

A
N/

A

l
.

ca
ll

re
ad

_c
ha

r
N/

A
N/

A

m
.

mo
v

[r
12

+r
14

+r
15

],
ra

x
r1

2+
r1

4+
r1

5
;&

(w
or

ds
[i

].
va

l[
j]

)
H

α
:0

x1
[0

x8
,0

xf
a4

0]
wo

rd
s[

i]
.v

al
[j

]
=

re
ad

_c
ha

r(
);

ra
x

;r
ea

d_
ch

ar
()

>

n
.

in
c

r1
5

r1
5

;j
G

:0
x1

[0
x0

,0
x3

8]
}

//
In

ne
r

Lo
op

o
.

jm
p

j.
N/

A
N/

A

p
.

mo
v

ra
x,

[r
12

+r
14

+0
x3

8]

r1
2+

r1
4+

0x
38

;&
(w

or
ds

[i
].

no
de

)
H

α
:0

x4
0

[0
x4

0,
0x

fa
40

]

ra
x

;w
or

ds
[i

].
no

de
>

q
.

le
a

rb
x,

[r
12

+r
14

]
rb

x
;&

(w
or

ds
[i

])
H

α
:0

x4
0

[0
x8

,0
xf

a0
8]

wo
rd

s[
i]

.n
od

e-
>w

or
d

=
&(

wo
rd

s[
i]

);

r
.

mo
v

[r
ax

],
rb

x
ra

x
;w

or
ds

[i
].

no
de

->
wo

rd
>

s
.

ad
d

r1
4,

0x
40

r1
4

;i
*s

iz
eo

f(
Wo

rd
)

G
:0

x4
0

[0
x0

,0
xf

a0
0]

}
//

Ou
te

r
Lo

op
t

.
jm

p
d.

N/
A

N/
A

41

2.2.2 Observations

Different analyses entail different kinds of sensitivity. For example, the simplest type

inference could be path-insensitive, context-insensitive, and even flow-insensitive. As one

of the most complex analyses, dependence analysis is flow-sensitive, context-sensitive, and

path-sensitive. However, a key observation is that a dependence relation, which means de-

pendence through memory in our context, can be disclosed by many whole-program paths. In

other words, even though it is context- and path-sensitive, the level of sensitivity is lim-

ited. Intuitively, given a program with n statements, the number of dependences is O(n2),

whereas the number of paths could be O(2n), assuming all branching statements have only

two branches. Hence, a dependence may be exposed by many paths. Consider the code snip-

pet example1 in Figure 2.2 , whose control flow graph is shown in Figure 2.3 . There are four

possible paths, two of which can expose the dependence between lines 20 and 9 regarding

variable i. Similarly, two paths can expose the dependence between lines 20 and 9 regarding

j. Essentially, a dependence is likely exposed if one of its exhibition paths is taken. Program

dependences are also input sensitive, meaning that a dependence may or may not be present

along a same program path depending on input values. Consider example2 in Figure 2.2 .

Variables i and j denote input and are used as array indices. Note that the code has only one

path, and the dependence between lines 25 and 27 may or may not be exercised depending

on the values of i and j. According to [25], run time values of program variables likely fall

into a small range. In our example, assuming both variables have a uniform distribution

in range [0, c], the likelihood of the dependence being exercised is 1
c
. If the path is taken n

times with randomly sampled i and j values, the likelihood becomes 1−
(
1− 1

c

)n
, which is

close to 1 when n is large.

2.2.3 Our Technique

We propose a sampling based abstract interpretation technique for dependence analysis.

Specifically, following a novel algorithm, BDA samples inter-procedural program paths in

a way that the likelihood of different paths being sampled follows a uniform distribution,

without being biased by path length. In other words, BDA is able to sample as many unique

42

1 # define MAX_LEN 56
2 char val[MAX_LEN];
3 int i, j, *p, *q;
4
5
6 void example1 (
7 int arg0 , int arg1
8){
9 i = 0; j = 0;

10
11 if (arg0) {
12 p = &i; q = &j;
13 } else {
14 p = &j; q = &i;
15 }
16
17 if (arg1) *p = 1;
18 else *q = 1;
19
20 printf ("%d %d\n", i, j);
21 }

22 void example2 (char arg) {
23 scanf ("%d %d\n", &i, &j);
24
25 val[i] = arg;
26
27 printf ("%d\n", val[j]);
28 }
29
30 void example3 (int *arg) {
31 scanf ("%d %d\n", &i, &j);
32
33 val[i] = 0;
34
35 if (check1 (arg)) return ;
36 if (check2 (arg)) return ;
37 if (check3 (arg)) return ;
38 if (check4 (arg)) return ;
39 if (check5 (arg)) return ;
40
41 printf ("%d\n", val[j]);
42 }

Figure 2.2. Examples to illustrate our observations and our technique

paths as possible given a limited budget. For each sample path, abstract interpretation

is performed to compute the possible values for individual instructions. During abstract

interpretation, external inputs (e.g., user inputs) are randomly sampled from pre-defined

distributions; calling contexts are explicitly denoted as call strings; stack memory is denoted

as a stack frame with offset; heap memory is denoted by its allocation site; abstract values

are updated based on instruction semantics; memory reads/writes are modeled through an

abstract store; and path feasibility is partially modeled (details can be found in Section 2.5).

Note that the abstract interpretation in BDA is not based on strided intervals. Instead, it

is to-some-extent similar to concrete execution, computing a single abstract value at each

instruction instance. The values associated with a static instruction is the union of all

the values derived for individual instances of the instruction. In the mean time, it is still

quite different from concrete execution, which has extreme difficulty ensuring memory safety

when path feasibility is not fully modeled, or concrete external inputs are not available.

After aggregating the values derived from individual samples, BDA performs an additional

43

i = 0; j = 0;
if(arg0)

p = &i; q = &j; p = &j; q = &i;

if(arg1)

*p = 1; *q = 1;

printf("%d %d \n", i, j);

A

B C

D

E F

G

Figure 2.3. CFG of example1

i = 0;
j = 0;
if(arg0)

p = &i;
q = &j;

p = &j;
q = &i;

if(arg0)

*p = 1; *q = 1;

printf("%d %d \n", i, j);

A

B C

D

E F

G

 scanf("%d %d \n", &i, &j);
 val[i] = 0;
 if(check1(arg))

A

if(check2(arg))B return;C

return;E

return;G

return;I

return;K

if(check3(arg))D

if(check4(arg))F

if(check5(arg))H

printf("%d\n", val[j]);J

Figure 2.4. CFG of example3

posterior analysis to mitigate the possible incomplete path coverage during sampling. The

analysis merges values computed along different branches at each control flow joint point and

then cross-checks the address values of memory access instructions to detect dependences.

The value merge allows dependences that belong to un-sampled paths to be disclosed with

high likelihood.

Note that a naive sampling algorithm that tosses a fair coin at each conditional jump

instruction does not work. Consider example3 in Figure 2.2 with CFG in Figure 2.4 . With

naive sampling, the path A→C gets 1
2 chance to be taken, while the path A→B→D→F→H→J

has only 1
32 . With the sampling algorithm in BDA, the six paths in the code have an equal

chance to be taken. Assuming i and j have the range of [0, 99], BDA guarantees that the

dependence between lines 33 and 41 is covered with 99.74% when 60 sample paths are taken.

Coming back to our 197.parser example in Figure 2.1 , BDA is able to disclose all the true

positive dependences in the two functions without generating any false positives.

44

Binary Pre-processor 1 inc rcx
2 mov [rbp-0x10], rcx
3 lea rbx, [rbp-0x10]
4 mov rax, [rbx]
5

Assembly Code

Weighted iCFG
Input Distribution

Sampler

Path

input value
i 5
j 5
……

Input Valuation

Abstract
Interpreter

instr var value
1 rcx <G, 0>
2 [<S, -16>] <G, 0>

……

Abstract Values
Analyzer

Dependence

5/6 1/6

4/5 1/5

A 6

B 5 C 1

E 1D 4

A

B

D

INST 4 INST 2

Path Sampling Abstract Interpretation Posterior Analysis

inc …
mov …
lea …
mov …

..
.

..
.

?

Figure 2.5. Architecture of BDA

2.3 Design

The architecture of BDA is shown in Figure 2.5 . It consists of four components: including

pre-processor, sampler, abstract interpreter and analyzer. The pre-processor disassembles

the given binary to get its assembly code and generates its inter-procedural control flow

graph (iCFG) with call edges and return edges explicitly represented. Each basic block of

iCFG is weighted by the number of possible inter-procedural paths starting from the block.

The sampler samples path based on the weights of blocks and samples external input values

based on the pre-defined distributions.

Given a sampled path and input valuation, the abstract interpreter interprets the instruc-

tions along the path and computes the abstract values of operands at each instruction. The

abstract values for individual instructions are passed to the analyzer for posterior memory

dependence analysis. At last, BDA outputs a list of pairs of memory-dependent instruc-

tions as analysis results. In the next a few sections, we discuss the details of the individual

components.

2.4 Path Sampling

In the sampling step, BDA takes a binary executable and its inter-procedural control flow

graph (iCFG), generates a given number of whole-program path samples. Note that we use

an iterative method to handle iCFG in the presence of indirect calls, which will be discussed

45

in Section 2.4.3 . The sampling follows a uniform distribution of the space of unique paths.

As mentioned in Section 2.2 , a simple sampling algorithm that tosses a fair coin at each

predicate has strong bias towards short paths.

The basic idea of our sampling algorithm is as follows. For each branching instruction,

BDA computes the number of inter-procedural program paths starting from the branch.

Sampling bias for the instruction is hence computed from the path counts. Intuitively, a

branch leading to more paths has a higher probability to be taken. In order to realize the

idea, we address the following two prominent challenges: (1) how to compute the number

of inter-procedural paths (in the presence of function calls, loops, and even recursion); and

(2) how to sample a strongly-biased distribution as it often occurs that one branch of a

conditional statement has a very small number of paths (e.g., those exit upon an error

condition) while the other branch has a huge number of paths (e.g., beyond the maximum

integer that can be represented in 64 bits). We also study the probabilistic guarantee of our

sampling algorithm.

2.4.1 Path Counting

Our path counting algorithm is inspired by the seminal path encoding algorithm in [26].

In Ball-Larus (BL) path encoding, the number of paths starting from a node is the sum of the

numbers of paths of its children. It transforms a CFG to its acyclic version (e.g., by removing

back-edges) and then computes the path count for each node in a reverse topological order.

Figure 2.6 shows the path count for each node (called node weight from this point on) for

the code in Figure 2.4 . Each node is annotated with node id and its weight. Observe that

the leaf nodes have weight 1. Then node H is computed to have weight 2, F has weight 3,

and so on. The fractions along edges denote the sampling bias. For example, at node A, the

chance to take A→ B is 5
6 whereas A→ C is 1

6 . The probabilities of taking the 6 different

paths are all 1
6 . However, the BL path counting algorithm is intra-procedural and does not

consider loop iterations. Hence, we propose a new whole-program path counting algorithm.

To simplify our discussion, we assume the subject program is loop-free and recursion-free,

46

Algorithm 1 Path Counting
Input: iCFG . loop-free and recursion-free iCFG of the target binary

Output: W : . weight (i.e., path count) for each node, a K-bits integer
1: function PathCounting(iCFG)
2: for iaddr in reverse topological order of iCFG do
3: if iaddr is a return node then . for a return node, initialize its weight to 1
4: W [iaddr]← 1
5: else if iaddr is a call node then . function invocation intruction
6: callee← call target of iaddr
7: ret_addr ← the instruction right after iaddr
8: W [iaddr]←W [ret_addr]×W [callee] . K-digits multiplication, with complexity

O (K log K)
9: else . other instructions

10: W [iaddr]← 0
11: for succ in successors of iaddr do
12: W [iaddr]←W [iaddr] + W [succ]
13: end for
14: end if
15: end for
16: return W
17: end function

but has calls and returns. Moreover, each callee must return to its caller and there are no

indirect calls. In Section 2.4.3 , we will explain how to address these practical issues.

In order to handle inter-procedural path counting, we have to precisely determine the

weight (i.e., the number of paths) of an invocation instruction. The key observation is that

the weight of an invocation to a callee function foo() is the product of the number of inter-

procedural paths from the entry of foo() to the exit of foo(), including paths in the callees

of foo(), and the weight of the instruction right after the invocation instruction in the caller.

The former is called the callee paths and the latter is called the continuation paths.

The procedure is explained in details in Algorithm 1 . It takes the inter-procedural CFG

of the binary, and computes the weight for each node, which denotes the number of inter-

procedural paths from the node to the exit of its enclosing function. Since the input iCFG

does not have loops or recursion, we can perform topological sort on the graph. Intuitively,

one can consider that we first sort the call graph and then sort the nodes inside each function.

The loop in lines 2-15 traverses each node in the reverse topological order. If it is a return

instruction, its weight is set to 1 (line 4). If it is a call, the weight is computed as the

47

J 1

H 2

F 3

D 4

B 5

A 6

K 1

I 1

G 1

E 1

C 1

5/6 1/6

4/5

3/4

2/3

1/2

1/5

1/4

1/3

1/2

Figure 2.6. Weighted CFG for Fig. 2.4

1 void gee(int *a) {
2 if (input ()) *a=0;
3 else *a=2;
4 }
5
6 void foo(int *a) {
7 gee(a);
8 if (input ()) *a+=1;
9 }

10
11 int main () {
12 int a;
13 if (input ()) gee (&a);
14 else foo (&a);
15 }

Figure 2.7. Code example
with functions

product of the weight of the return address and the weight of the entry point of the callee

(i.e., the number of inter-procedural paths inside the callee). Since a method may have a

huge number of such paths, which we assume to be bounded by 2K , the complexity of such

product is O(K log(K)). In practice, we find using K = 600, 000 bits to represent weights

is enough. In lines 10-13, if the node is neither call nor return, its weight is the sum of the

children weights.

Example. Consider the example in Figure 2.7 , which has three functions main(), gee(),

foo(), with both main() and foo() calling gee(). The weighted iCFG is shown in Fig-

ure 2.8 . Following reverse topological order, gee() is processed first. As such, W [A] = 1

and W [D] = 2 as there are two paths inside gee(). Inside foo(), W [E] = 1 as it is a

return; W [G] = W [E] + W [F] = 2, and W [H] = W [D] ×W [G] = 4. Similarly, in main(),

W [N] = W [I] ×W [K] = 4, W [M] = W [D] ×W [L] = 2, and W [O] = W [N] + W [M] = 6,

meaning there are 6 whole-program paths. The bottom of Figure 2.8 shows the probability

of the red path being taken, which is exactly 1
6 , same for the others. �

Note that the computed path counts can be directly used in path sampling, even though

the weight of node only denotes the number of paths from the node to the end of its enclosing

48

D 2

C 1

A 1

B 1

call

ret

main() gee() foo()

O 6 N 4

M 2

I 4

H 4

G 2

F 1E 1

L 1

J 1 K 1

entry

exit

call call

ret

ret

1/3

2/3

1/2 1/2

1/2 1/2

ca
llb

ac
k

ca
llb

ac
k

ca
llb

ac
k

P(O→N→I→H→D→C→A→G→E→K→J)

= P(O→N) ∙ P(D→C) ∙ P(G→E) = 2/3 ∙ 1/2 ∙ 1/2 = 1/6

Figure 2.8. Weighted iCFG for Fig. 2.7

function (denoted as x), not the number of paths from the node to the end of the program

(denoted as y). The reason is that y equals to x times the number of continuation paths of the

enclosing function (denoted as z), multiplying the same z on both branches of a predicate

does not change sample bias. Consider the example in Figure 2.8 , nodes C and B have

weight 1 (i.e., x = 1) although there are 2 paths from either to the end of the program (i.e.,

y = 2). However, using either scheme yields the sampling bias at D (i.e., 1 against 1 versus

2 against 2).

2.4.2 Path Sampling and Probability Analysis

Given the pre-computed weights, our path sampling is to toss a biased coin at a pred-

icate. The predicate bias is locally computed from the weights of the predicate and its

children. Since there are substantial variations in weight values (e.g., 1 versus 21000), we

have to design a special procedure to simulate the biased distribution, which is presented in

Algorithm 2 . In the subsequent section, we will show how to achieve uniform distribution

for whole-program path sampling using this algorithm and demonstrate its correctness and

49

effectiveness. To simplify discussion, we only consider sampling a predicate of two branches,

whose weights are w0 and w1 with w0 > w1 without losing generality. The algorithm is to

simulate picking branch 0 with the (approximate) probability of w0
w0+w1

and branch 1 with
w1

w0+w1
. Sampling more branches can be easily extended. Due to the frequent invocation

of the sampling function (for each predicate), we develop an efficient algorithm with O(1)

expected complexity (not worst-time complexity). Observe that what we need is a ratio be-

tween weights, instead of precise weights. Inspired by the floating point representation, we

introduce an approximate representation of weights. Specifically, each weight is transformed

to two 64-bit values: sig and exp, analogous to the significant and exponent in floating point

representation, respectively. They satisfy the following, with w̃v an approximation of weight

value wv.

〈sig, exp〉 = sig × 2exp = w̃v (2.2)

To minimize representation error, sig and exp are derived as follows.

 exp = max (blog wvc , 63)− 63

sig = bwv/2expc
(2.3)

Taking 265−1 as an example, it is represented as 〈264−1, 1〉, which introduces an er-

ror of (264−1)×21

264−1 = 2.7e − 20. With the representation, Algorithm 2 describes the sampling

procedure. Specifically, if the exponent difference between w0 and w1 is smaller than 64,

in line 12, BDA randomly samples a value in [0, w̃0.sig × 2n + w̃1.sig] and then checks if it

is smaller than w̃1.sig. If so, branch 1 is selected; otherwise 0, denoting the probability of
w̃1.sig

w̃0.sig×2n+w̃1.sig . When the exponent difference is larger than 64, it first leverages a loop in

lines 5-9 that tosses a fair coin n times and selects 0 when any of the n coins is 0. If all

n tries yield 1, which has the probability of 1
2n , line 10 further samples with a probability

of w̃1.sig
w̃0.sig , to approximate the intended probability, as w1 is very small compared to w0 and

hence it is negligible when added to w0.

50

Algorithm 2 Branch Selection
Input: w0, w1: . weights with w0 ≥ w1 without losing generality

Output: 0/1: . the branch to choose
Local: w̃i: 〈sig, exp〉 . approximate representation of weight, consisting of significant bit and

exponent
1: function SelectBranch(w0, w1) . Random pick one ID based on weight
2: (w̃0, w̃1)← (approximate(w0), approximate(w1))
3: n← w̃0.exp− w̃1.exp
4: if n ≥ 64 then
5: for i in range(n) do
6: if random(2) = 0 then . random(n) returns k (0 ≤ k < n) with probability 1

n
7: return 0
8: end if
9: end for

10: return (random(w̃0.sig) < w̃1.sig) . w̃0.sig × 2 must be larger than w̃1.sig
11: else
12: return (random(w̃0.sig × 2n + w̃1.sig) < w̃1.sig)
13: end if
14: end function

Theorem 2.4.1. Using Algorithm 2 , the probability p̃ of any whole-program path being sam-

pled satisfies equation 2.4 , in which n is the total number of whole-program paths and L is

the length of the longest path.

(263

263 + 1)2L · 1
n
≤ p̃ ≤ (263 + 1

263)2L · 1
n

(2.4)

Proof. First, for any weight wv, we prove that w̃v follows 263

263+1 · wv≤ w̃v≤wv.

According to equation 2.3 , if wv < 264, w̃v = wv. Otherwise, sig≤wv/2exp < sig + 1, and

hence sig×2exp≤wv <(sig+1)×2exp. As sig≥263 when wv≥264, we have w̃v≤wv < 263+1
263 ·w̃v.

Thus, 263

263+1 · wv≤ w̃v≤wv. As a result, the following holds.

263

263 + 1 ·
w1

w1 + w0
≤ w̃1

w̃1 + w̃0
≤ 263 + 1

263 · w1

w1 + w0
(2.5)

51

Let p1 = w1
w1+w0

be the accurate probability of choosing branch 1, the lighter-weight branch.

p0 = w0
w1+w0

choosing the other. Thus, we can derive the following 2.6 from inequality 2.5 .

263

263 + 1 · pl ≤
w̃1

w̃1 + w̃0
≤ 263 + 1

263 · pl (2.6)

Next, we derive the bounds of p̃1, the probability of Algorithm 2 choosing branch 1.

There are two cases.

(a) If n < 64, we directly have p̃l = w̃1/(w̃1 + w̃0). According to inequality 2.6 , we have

the following.

263

263 + 1 · pl ≤ p̃l ≤
263 + 1

263 · pl (2.7)

(b) If n ≥ 64, p̃1 = w̃1.sig
w̃0.sig×2n . Note that w̃1

w̃0+w̃1
= w̃1.sig

w̃0.sig×2n+w̃1.sig . Thus, we have p̃1 ≥
w̃1

(w̃1+w̃0) . Combining with inequality 2.6 , we can have p̃1 ≥ 263

263+1 · pl. On the other hand,

p̃1 = w̃1
w̃0+w̃1

· w̃0.sig×2n+w̃1.sig
w̃0.sig×2n . Because w̃1.sig < 264 ≤ 2 · w̃0.sig, we can have w̃0.sig×2n+w̃1.sig

w̃0.sig×2n <

w̃0.sig×2n+w̃0.sig×2
w̃0.sig×2n = 2n−1+1

2n−1 . As n≥ 64 here, we can have p̃1 = w̃1
w̃0+w̃1

· w̃0.sig×2n+w̃1.sig
w̃0.sig×2n < w̃1

w̃0+w̃1
·

263+1
263 . Combining with inequality 2.6 , we can have p̃1 <(263+1

263)2 · pl. Thus,

263

263 + 1 · p1 ≤ p̃1 ≤ (263 + 1
263)2 · p1 (2.8)

From inequality 2.7 and 2.8 , the following is true.

(263

263 + 1)2 · p1 ≤ p̃1 ≤ (263 + 1
263)2 · p1 (2.9)

Similarly, we can prove the bound for p̃0.

Note that any sampled path could contain at most L conditional predicates. Thus, the

probability p̃ of any whole-program path being sampled satisfies equation 2.4 .

By applying Taylor’s Theorem to inequality (2.4), we can derive inequality (2.10).

In practice, the length L of the longest path of any binary executable (without loops or

52

recursion) satisfies L � (263 + 1), the approximation is hence very tight around 1
n
. For

example, 176.gcc’s longest path is nearly 40000, such that 1−(8e−15)
n

≤ p̃≤ 1+(8e−15)
n

.

(1− 2L

263 + 1) · 1
n
≤ p̃ ≤ (1 + 2L

263 + 1) · 1
n

(2.10)

We should note that a simple random number generator would not work because of the

limitation of floating point representation. Considering selecting a branch with possibility

1e−1000 represented via 1 : 1e+1000, it would be transformed to 2e−308 (the minimal rep-

resentable positive value in float64), suggesting over 2e+692 times undesirable amplification

of the likelihood. This would lead to heavily biased sampling. [27] proposed a heavy-weight

algorithm to accurately sample from strongly-biased distribution, whose average-case time

complexity is O(log(p + q)) when sampling from p : q. In contrast, Algorithm 2 samples in

O(1) with negligible precision loss, and hence is more desirable in our context where the

sampling function is frequently invoked.

Probabilistic Guarantee for Disclosing Dependence. As mentioned in Section 2.2 ,

a (memory) dependence may be disclosed by many paths. Assume m out of total n paths

disclose a dependence, and let k = m
n

. Following our path sampling algorithm, in a path

sample, the probability pd of observing a given dependency d satisfies inequality (2.11).

(
263

263 + 1

)2L

· k ≤ pd = p̃ ·m ≤
(

263 + 1
263

)2L

· k (2.11)

For N samples, the probability Pd of disclosing dependency d at least once has a lower bound

mentioned in inequality (2.12).

Pd = 1− (1− pd)N ≥ 1−
1−

(
263

263 + 1

)2L

· k

N

≈ 1− (1− k)N (2.12)

Inequality (2.12) offers a strong guarantee for finding dependency in practice. Taking

176.gcc as an example, if L=40000, k =0.0005 and N =10000, we would have Pd≥99.32%,

which means that the chance of missing the dependence is only 0.68%.

53

2.4.3 Addressing Practical Challenges

Handling Loops. Our discussion so far assumes loop-free and recursion-free programs.

BDA distinguishes two kinds of loops and handles them differently. The first kind is loops

whose iteration numbers are not external input related. We call it constant loops. The other

kind is input related, called input-dependent loops.

For an input-dependent loop, it is intractable to determine how many times it iter-

ates. A standard solution is to compute a fix-point, which often entails substantial over-

approximation. Hence, our design is to bound the number of iterations. A naive solution

is to give a fixed bound for all input-dependent loops. However, this could cause non-

trivial path explosion in the presence of nesting loops. Hence, we bound the total number

of iterations across all the nesting loops within a function. Such a design also allows easy

computation of weight values. Assume the bound for each function is t = 3, Figure 2.9 a

illustrates the idea. For each function F , BDA clones the function t times, denotes as F0,

. . . , Ft−1. For each back-edge in Fi, we reconnect it to the corresponding loop head in Fi+1.

For example, back-edge a in Figure 2.9 becomes a1, a2 and a3 connecting different versions

of F . Note that in the transformed graph at most t = 3 back-edges could be taken (e.g., a

3 times and b 0 times; a 2 times and b 1 time; and so on).

For constant loops, which are commonly used in initialization, BDA allows them to iterate

as many times as them are supposed to. As such, the constant loop predicates are not part

of the path samples generated in this phase. We will show in the next section that our

abstract interpreter directly handles such loops without referring to path sample. Recursion

is handled in a way similar to input-dependent loops. Details are elided.

Handling Multi-Exits. So far we assume every function in iCFG returns to its caller.

In practice, many functions may just exit without returning, posing challenges for path

counting. Our solution is to count the paths that must exit without return and those that

must return separately. We use the sample graph on the top of Figure 2.9 b to illustrate the

basic idea. In the graph, main() (on the left) calls foo() (on the right), which may exit

without return. The essence of our solution is to count the two sub-graphs below separately

and sum them up. Specifically, the sub-graph in the middle corresponds to the must-return

54

call

ret

a

b

F

call

ret

F0

a1 a2 a3

b1 b2 b3

ret ret ret

F1 F2 F3

1 1 1 1

1

entry

exit A

callback
call

ret exit B

2

1

1

1

1

1

entry

exit A

callback
call

ret exit B

entry

exit A

callback
call

ret exit B

(a) Handling input dependent loops (b) Handling multi-exits
main() foo()

Figure 2.9. Example to show how graph transformation works for loop

behavior, whereas the sub-graph on the bottom corresponds to the exit behavior. The

number inside each node denotes its weight. As such, there are 2 + 1 = 3 whole-program

paths.

Handling Indirect Calls. We use an iterative method to handle indirect calls. Specifically,

after initial path sampling, BDA abstract-interprets the samples. If new call targets are

identified during abstract interpretation, the iCFG is updated, weights are re-computed,

and another round of sampling is performed. The sampling algorithm terminates when no

new indirect-calls are found within a time budget. For example, 7836 indirect calls are

identified for 254.gap (by BDA) within 5.67 hours, as shown Table 2.9 .

Edge Coverage. If we strictly follow the unbiased whole-program path sampling algorithm,

some statements may not be covered. Consider a predicate with two branches, one has weight

1 and the other has weight 21000. The statement in the short branch may not be covered at

all. To address the problem, BDA collects a set of additional samples (usually much smaller

than the path samples) to cover control flow edges that have not been covered.

Sampling External Inputs. External input values are sampled from pre-defined value

ranges in a uniform fashion. One can consider this input sampling procedure produces an

55

external input valuation that assigns each instance of an external input read instruction with

a random value.

Probabilistic Guarantees in Practice. With the additional machinery to handle prac-

tical challenges, Theorem 2.4.1 and bound (2.12) only hold when the following assumption

is satisfied: the graph transformations to handle loops and recursion must not change k,

the probability a dependence is disclosed by a whole-program path. Furthermore, k may be

difficult to derive in practice due to the undecidable nature of the problem. However, our

experiment in Section 2.7 illustrates that the algorithm is effective in practice and the results

are consistent with our theoretical analysis.

2.5 Abstract Interpretation

We explain the abstract interpretation semantics in this section. Given a predefined

sample path, represented by a sequence of addresses, and an external input valuation that

associates each instruction instance that reads external input with a value sampled from

some pre-defined distributions, the abstract interpreter follows the path to compute abstract

values for each instruction instance. It models both register and memory reads and writes,

e.g., supporting writing an abstract value to an abstract address. If the branch outcome of a

loop predicate is not dependent on any external input (e.g., loop predicate with a constant

loop bound), BDA does not resort to the path sample, but rather follows the branch based

on the abstract value of the predicate. It explicitly represents and updates an abstract call

stack, in order to precisely represent stack memory addresses. In addition, the interpretation

of arithmetic operations (e.g., additions and subtractions) is precise, without causing any

precision loss as that in computing strided intervals in VSA.

Abstract interpretation is essential for BDA. In contrast, an alternative design of using

concrete execution to expose dependence is less desirable. Note that in concrete execution,

without knowing input specification, the sampled inputs may not satisfy format constraints,

leading to early termination. Additionally, concrete execution may have stack/heap reuse,

leading to substantial false dependences in the whole-program posterior-analysis, which is

necessary and will be explained in Section 2.6 .

56

〈Program 〉 P ::= S

〈Statement 〉 S ::= S1;S2 | r := e | r := R(ra) | W(ra, rv) | r := malloc() | r :=
input() | call(a) | ret | goto(a) | if r then goto(a)

〈Expression 〉 e ::= r | v | r1 op r2 | r op v

〈Operator 〉 op ::= + | - | * | / | ...

〈Register 〉 r ::= {sp, r1, r2, ...}

〈AbstractValue 〉 v ::= 〈m, c〉

〈MemoryRegion 〉 m ::= G | Hc
a | Sc

a

〈Const 〉 c ::= {0,1,2,...}

〈Address 〉 a ::= {0,1,2,...}

Figure 2.10. Language

Language. To facilitate discussion, we introduce a low-level language to model binary

executables. The language is designed to illustrate our key ideas, and hence omits many

features (of x86). The implementation of BDA supports these complex features present

in real-world binary executables (even though they may not be modeled by our language).

The syntax of the language is shown in Figure 2.10 . R(ra) and W(ra, rv) model memory

read and write operations, respectively, where register ra holds the address and register rv

holds the value to write. Heap allocation functions (e.g., calloc and mmap) are modeled as

malloc. The allocated size is irrelevant in our analysis and hence elided. External input

functions (e.g., fread and scanf) are modeled by input. Other general function calls and

returns are modeled by call and ret. The address of the target function of call is a. We

assume parameter passing across functions is done explicitly through register and memory

read/write instructions. We model the stack pointer register sp to facilitate computing stack

related abstract values. In addition, control flow statements (in high-level languages), such

as conditional and loop statements, are modeled using goto and guarded goto.

57

Abstract values are represented as 〈m, c〉, where m stands for a memory region and c

stands for the offset relative to the base of the region. The memory space is partitioned to

three disjoint regions: global, stack and heap. The global region, denoted as G, stands for the

locations holding initialized and uninitialized global data, such as the .data, .rodata and

.bss segments of an ELF file. A stack region, denoted as Sc
a, models a stack frame that holds

local variable values for the c-th invocation instance of the function at address a. A heap

region, denoted as Hc
a, models a memory region allocated in the c-th invocation instance of

the allocation instruction at program counter (pc) address a. A non-address constant value

can be expressed as having m = G. Note that in our interpretation, an instruction may be

encountered multiple times in a sample path and we distinguish these different instances.

In contrast, VSA does not; instead it merges the abstract values for all possible instances,

which is an important source of inaccuracy.

Definitions. Figure 2.11 introduces a number of definitions that are used in the seman-

tic rules. We use pc to denote the program counter that indicates the address of current

instruction, IS to denote the size of each instruction, IC to represent the current instance

of an instruction, and LP to indicate whether the current instruction is a loop predicate.

MS denotes the abstract value store that maps an abstract memory address value to the

abstract value stored at that address, and RS denotes the register store that maps a regis-

ter to its abstract value. MT and RT represent the taint stores for memory and registers,

respectively. The taint tag of an abstract value indicates if the value has been directly/-

transitively computed from some (randomly sampled) external input. In other words, there

is data flow from some external inputs to the abstract value. A sample path is denoted

by PA, which is a list of addresses ordered by their appearance in the path. A sampled

external input valuation RV assigns a sampled value to each instance of an external input

instruction. Both PA and RV are generated by the previous sampling phase and provided

as inputs to the abstract interpretation process. We use CS to explicitly model call stack.

It is a list of four-element tuples, denoting respectively the invocation site, its instance, the

return address, and a copy of the abstract value of the sp register which is supposed to be

58

pc ∈ ProgramCounter ::= Address
IS ∈ InstructionSize ::= Address→ Const
IC ∈ InvocationCount ::= Address→ Const
LP ∈ LoopPredicate ::= Address→ Bool
MS ∈ MemStore ::= AbstractValue→ AbstractValue
RS ∈ RegStore ::= Register→ AbstractValue
MT ∈ MemTaint ::= AbstractValue→ Bool
RT ∈ RegTaint ::= Register→ Bool
PA ∈ PATH ::= [Address]
RV ∈ RandomInputValuation ::= (Address× Const)→ Const
CS ∈ CallStack ::= [Address× Integer× Address× AbstractValue]
MOS ∈ MemOpSeq ::= [Address× AbstractValue]

CalcValue(op, v1, v2) ::=
if v1.m ≡ G then

v3 ← 〈v2.m, v1.c op v2.c〉;
t← false;

else if v2.m ≡ G then
v3 ← 〈v1.m, v1.c op v2.c〉;
t← false;

else
v3 ← 〈G, RV [〈pc, IC [pc]〉]〉;
t← true;

end if
return 〈v3, t〉;

NormalizeVal(v) ::=
if v.m ≡ S∗∗ then

CS
′ ← CS;

while v.c > 0 and ¬CS
′
.empty() do

〈−,−,−, vt〉 ← CS
′
.pop();

v.m← vt.m;
v.c← v.c + vt.c;

end while
end if
return v;

Figure 2.11. Definitions

updated upon function invocation. The outcome of abstract interpretation MOS contains

the abstract values for each memory access instruction encountered.

Semantics Rules. The semantic rules are presented in Table 2.2 . Upon interpreting an

instruction, the instance count IC is incremented by one. Rule Read describes the seman-

tics of memory read. It invokes an auxiliary procedure NormalizeVal() to normalize the

abstract (address) value in register ra, denoted as RS[ra]. As shown in Figure 2.11 , if the

value is a global or heap value, it is returned directly. Otherwise, it is checked to identify

the enclosing stack frame of the address. Note that it is common for an instruction to access

59

a stack location beyond the current stack frame (e.g., access an argument passed from the

caller function). The procedure traverses the stack frames from the top to the bottom till it

finds a frame on which the offset becomes negative. After normalization, the abstract value

stored in the normalized address is copied to the target register r. The taint bit of r is the

union of the taint bits of the normalized address and the address register ra. At the end,

the pc is updated to the next instruction. Rule Write describes the semantics of memory

write. Similar to memory read, it normalizes the address value and then updates the memory

value store MS and the memory taint store MT . Rule Malloc creates a new abstract value

denoting the allocation site with 0 offset. Note that BDA does not model memory safety and

hence the size of allocation is irrelevant. Intuitively, one can consider each allocated heap

region has infinite size. This can be achieved during abstract interpretation but not during

concrete execution. Rule Input loads the abstract value of destination register r from the

pre-generated external input sample valuation RV , which is constructed by drawing value

samples from predefined distributions during the preceding sampling phase. In addition, the

taint bit is set true to indicate that the value is related to external input. Rule Goto sets

the program counter to the target address a.

In Rule If-Goto, if the taint bit of r is not set and the current instruction is a loop

predicate, that is, r is not directly/transitively computed from external input, the loop

branch outcome is certain and independent from the sampled value. Hence, pc is set to at,

which is either the branch target a specified by the statement when r is true, or the fall-

through address. Otherwise, it is loaded from the pre-computed path sample PA. Observe

that BDA respects path feasibility when loop predicate outcome is not derived from any

external input, e.g.,constant loops (in the initialization phase). Taint analysis allows us to

identify such predicates. In Rule Call, pc is first copied to pc′, then it is updated by loading

from the sample path PA. BDA may determine to skip a function call if it is part of a

recursion. If the call is not skipped, indicated by pc being equal to the specified target a,

the invocation site pc′, its instance count, the return address (i.e., the instruction after the

invocation), and the current abstract value of sp are pushed to the call stack CS. Then, the

abstract value of sp is reset, indicating a new stack frame. Rule Ret pops the call stack to

acquire the return address and restores the value of sp. Rules Expr1 and Expr2 update

60

Table 2.2. Interpretation rules
Rule Statement Actions

Read r:=R(ra)
IC [pc]++; v:=NormalizeVal (RS [ra]);
RS [r]:=MS [v]; RT [r]:=MT [v]∨RT [ra];
MOS.enqueue (〈pc, v〉); pc := pc+IS [pc];

Write W(ra, rv)
IC [pc]++; v:=NormalizeVal (RS [ra]);
MS [v]:=RS [rv]; MT [v]:=RT [rv]∨RT [ra];
MOS.enqueue (〈pc, v〉); pc := pc+IS [pc];

Malloc r:=malloc() IC [pc]++; RS [r]:=
〈

H
IC[pc]
pc , 0x0

〉
; pc := pc+IS [pc];

Input r:=input() IC [pc]++; RS [r]:=RV [〈pc, IC [pc]〉]; RT [r]:=true;
pc := pc+IS [pc];

Goto goto(a) IC [pc]++; pc := a;

If-Goto if r then goto(a) IC [pc]++; at := (RS [r] 6≡〈G, 0〉 ? a : pc+IS [pc]);
pc := ¬RT (r) ∧ LP (pc) ? at : PA.pop();

Call call(a)
IC (pc)++; pc′ := pc; pc := PA.pop(); if (pc == a) {
CS.push(pc′, IC[pc′], pc′ + IS[pc′], RS[sp]);
RS [sp]:=

〈
SIC[pc]

pc , 0x0
〉

; };

Ret ret IC [pc]++; 〈−,−, pc, RS [sp]〉:=CS.pop();

Expr1 rt:=r1 op r2
IC [pc]++; 〈RS [rt] , t〉:=CalcValue (op, RS [r1] , RS [r2]);
RT [rt]:=RT [r1]∨RT [r2]∨t; pc := pc+IS [pc];

Expr2 rt:=r op v
IC [pc]++; 〈RS [rt] , t〉:=CalcValue (op, RS [r] , v);
RT [rt]:=RT [r]∨t; pc := pc+IS [pc];

the resulting register rt with the value calculated by the CalcValue() procedure and record

the corresponding taint tags. As shown in Figure 2.11 , CalcValue() computes the result of

operation op on operands v1 and v2. If one of the operands belongs to the global region, then

the resulting memory region is inherited from the other operand and the resulting offset is

derived by performing the operation on the offset fields of the two operands. Otherwise (e.g.,

both operands denote values in some heap region, which may occur as path feasibility may

not be respected by BDA), we use a random value as the result, since we could not obtain a

precise result for operations on two non-global abstract values. In this case, the result taint

tag is set to true.

Example. Consider the example in Table 2.3 . The source code, the source level trace, the

trace in our language, and the interpretation actions are shown in the columns from left to

61

Table 2.3. Abstract interpretation example (PA=a→e→g→k)
SourceCode Trace BDA Trace Actions

2
a. r1 := malloc() RS [r1] = 〈H1

a, 0〉
b. sp := sp− 〈G, 4〉 RS [sp] = 〈S1

a , -4〉
c. W(sp, r1) MS [〈S1

a , -4〉] = 〈H1
a, 0〉

3 d. call(e) RS [sp] = 〈S1
e , 0〉

CS [〈S1
a , -4〉]

7
e. r3 := input() RS [r3] = 〈G, 502〉
f. if r3 then goto(p)

8

g. r2 := R(sp) RS [r2] = 〈H1
a, 0〉

h. sp := sp− 〈G, 4〉 RS [sp] = 〈S1
e , -4〉

i. W(sp, r2) MS [〈S1
e , -4〉] = 〈H1

a, 0〉

j. call(k) RS [sp] = 〈S1
k , 0〉;

CS [〈S1
a , -4〉, 〈S1

e , -4〉]
11 k. r4 := R(sp) RS [r4] = 〈H1

a, 0〉

12
l. r5 := 〈G, 0〉 RS [r5] = 〈G, 0〉
m. r6 := r5 ≥ 〈G, 2〉 RS [r6] = 〈G, 0〉
n. if r6 then goto(x)

1 . int main() {
2 . char *s = malloc(2);
3 . foo(s);
4 . }
5 .
6 . void foo(char *s) {
7 . if(input()) return;
8 . gee(s);
9 . }
10.
11. void gee(char *s) {
12. for(int i=0; i<2; i++)
13. s[i] = input();
14. }

...

right. Observe that instructions a− c correspond to the invocation at line 2 that writes the

returned value from malloc() to stack. In d (i.e., invocation to foo() in line 3), the current

sp value 〈S1
a , -4〉 is pushed to CS; sp is updated to denote the stack frame of foo(); and

the target instruction e is loaded from the sample path PA (in the caption of Table 2.3). In

f (i.e., the conditional in line 7), since r3 is from external input, the target g is loaded from

PA. In g (i.e., passing s in line 8), when sp (i.e., the address of local variables) is read, its

value 〈S1
e , 0〉 is first normalized to 〈S1

a , -4〉, which is used to access MS to acquire the value

of 〈H1
a, 0〉. In n (i.e, the loop predicate in line 12), r6 is not input related, the interpreter

evaluates the predicate and takes the true branch. �

2.6 Posterior Analysis

After the abstract interpretation of all sampled paths, the posterior analysis is per-

formed to complete dependence analysis, via aggregating the abstract values collected from

individual path samples in a flow-sensitive, context-sensitive, and path-insensitive fashion.

62

Algorithm 3 Posterior Dependence Analysis
Input: MOSes: {MemOpSeq} . set of memory operation sequences

iCFG: Node× Edge . inter-procedural control flow graph
Output: DIP : {Address× Address} . set of dependent instruction pairs

Local: GI2M : Address→ {AbstractValue} . map an instruction to abstract addresses
accessed by it

GDEP : Address→ {Address} . map an instruction to its depending instructions
GKILL: Address→ {Address} . map an instruction to reaching definitions killed by

it
M2I: AbstractValue→ {Address} . map an abstract address to its definitions
WL: [CallString× Address] . work list of program points with calling context
PS: (CallString× Address)→ (AbstractValue→ {Address}) . abstract state

1: function PosteriorDependenceAnalysis(MOSes, iCFG)
2: for MOS in MOSes do
3: 〈I2M, DEP, KILL〉 ← PerSampleAnalysis (MOS)
4: GI2M ← map_merge (GI2M, I2M)
5: GDEP ← map_merge (GDEP, DEP)
6: GKILL← map_merge (GKILL, KILL)
7: end for
8: WL.enqueue (〈nil, entry (iCFG)〉)
9: while ¬WL.empty () do

10: 〈cs, iaddr〉 ←WL.dequeue ()
11: if is_call (iaddr) then . update calling context upon a call instruction
12: cs.push (iaddr)
13: succs← call_target (iCFG, iaddr)
14: else
15: if is_ret (iaddr) then
16: iaddr ← cs.pop ()
17: end if
18: succs← get_succ (iCFG, iaddr) . get the following instruction
19: end if
20: M2I ← PS [〈cs, iaddr〉] . the set of reaching definitions at iaddr
21: if is_memory_write (iaddr) then
22: M2I ← HandleMemoryWrite (iaddr, M2I, GI2M, GKILL)
23: else if is_memory_read (iaddr) then
24: DIP ← HandleMemoryRead (iaddr, DIP, M2I, GI2M, GDEP)
25: end if
26: for succ in succs do
27: if ¬map_contains (PS [〈cs, succ〉] , M2I) then
28: PS [〈cs, succ〉]← map_merge (PS [〈cs, succ〉] , M2I)
29: WL.enqueue (〈cs, succ〉) . additional analysis round is needed when changes detected
30: end if
31: end for
32: end while
33: return DIP
34: end function

63

Algorithm 4 Handle Memory Write
Input: iaddr: Address . the current instruction

M2I: AbstractValue→ {Address} . map an abstract address to its definitions
GI2M : Address→ {AbstractValue} . map an instruction to the abstract addresses

accessed by it
GKILL: Address→ {Address} . map an instruction to reaching definitions killed by

it
Output: M2I

′ : AbstractValue→ {Address} . a new map between abstract address to
definitions

1: function HandleMemoryWrite(iaddr, M2I, GI2M , GKILL)
2: M2I

′ ←M2I
3: for maddr in GI2M [iaddr] do
4: if capacity (GI2M [iaddr]) ≡ 1 then . strong update
5: M2I

′ [maddr]← {iaddr}
6: else
7: M2I

′ [maddr]←M2I
′ [maddr] ∪ {iaddr}

8: if capacity (GKILL [iaddr]) ≡ 1 then . strong kill
9: M2I

′ [maddr]←M2I
′ [maddr] \GKILL [iaddr]

10: end if
11: end if
12: end for
13: return M2I

′

14: end function

Specifically, it computes abstract states for each program point, which is an instruction anno-

tated with a calling context. The abstract states represent the set of live abstract addresses

at the given program point and their definition instructions (an intuitive correspondence at

the source level is that the set of live variables at a program point and the statements that

define them). Dependences are detected between a read instruction and all the definitions

to the address being read. It is context-sensitive as it considers instructions under different

contexts as different program points. It is path-insensitive as it merges the abstract val-

ues collected along different branches at control flow joint point (e.g., the instruction where

the two branches of a conditional statement meet). This allows addressing incompleteness

in path sampling. However, our analysis is much more accurate than a flow-sensitive and

path-insensitive data-flow analysis as it does not compute any new abstract values (e.g., by

transfer functions in standard data flow analysis), but rather just aggregates the collected

abstract values. This avoids the substantial precision loss caused by the conservativeness

of transfer functions. Intuitively, abstract values collected in individual sample paths are

64

Algorithm 5 Per-sample Analysis
Input: MOS: MemOpSeq . memory operation sequence

Output: I2M : Address→ {AbstractValue} . map an instruction to abstract addresses
accessed by it

DEP : Address→ {Address} . map an instruction to the instructions it depends on
KILL: Address→ {Address} . map an instruction to reaching definitions it kills

Local: DEF : AbstractValue → Address . map an abstract address to its latest definition
1: function PerSampleAnalysis(MOS)
2: while ¬MOS.empty () do
3: 〈iaddr, maddr〉 ←MOS.dequeue () . acquire an instruction instance and the accessed address
4: I2M [iaddr]← I2M [iaddr] ∪ {maddr}
5: if is_memory_write (iaddr) then
6: KILL [iaddr]← KILL [iaddr] ∪ {DEF [maddr]} . previous definition of maddr is killed by

iaddr
7: DEF [maddr]← iaddr . iaddr is the new definition of maddr
8: else if is_memory_read (iaddr) then
9: DEP [iaddr]← DEP [iaddr] ∪ {DEF [maddr]} . detect a new dependence

10: end if
11: end while
12: return 〈I2M, DEP, KILL〉
13: end function

propagated through all paths (by the merge operation) to disclose any missing dependences

due to incomplete path sampling. To further mitigate the precision loss caused by the merge

operation, our analysis also features strong updates [28] and strong kills that preclude bogus

abstract states.

Detailed Design. The details of the analysis are shown in Algorithm 3 . It takes as input

the set of memory operation sequences (MOSes), each sequence generated by interpreting a

path sample, and the inter-procedural control flow graph (iCFG) that maps an instruction

to its successor(s), and produces the instruction pairs with (memory) dependence relations

(DIP). The process consists of two stages. In the first stage (lines 2-7), a per-sample

analysis (Algorithm 5) is performed on each memory operation sequence to derive three

pieces of information: the set of abstract addresses accessed by each instruction I2M , the set

of definitions (i.e., writes) each instruction depends on DEP , and the set of definitions killed

by each write instruction KILL. These results are merged to their global correspondences

(lines 4-6). In the second stage (lines 8-32), a work list (WL) is used to traverse iCFG to

compute abstract states PS for each program point. Lines 11-19 determine the successors of

65

Algorithm 6 Handle Memory Read
Input: iaddr: Address . the current instruction

DIP : Address× Address . dependences
M2I: AbstractValue→ {Address} . map an address to its definitions
GI2M : Address→ {AbstractValue} . map an instruction to its accessed addresses
GDEP : Address→ {Address} . map an instruction to its dependences in samples

Output: DIP
′ : Address× Address . updated dependences

1: function HandleMemoryRead(iaddr, DIP , M2I, GI2M , GDEP)
2: if capacity (GDEP [iaddr]) ≡ 1 then . string dependence
3: for def in GDEP [iaddr] do
4: DIP

′ ← DIP
′ ∪ {〈iaddr, def〉}

5: end for
6: else
7: for maddr in GI2M [iaddr] do
8: for def in M2I [maddr] do
9: DIP

′ ← DIP
′ ∪ {〈iaddr, def〉}

10: end for
11: end for
12: end if
13: return DIP

′

14: end function

the current program point and maintain the calling context cs. If iaddr is a memory write

(lines 21-22), the set of live addresses and their definitions M2I are updated by the procedure

HandleMemoryWrite() (Algorithm 4). Specifically, Algorithm 4 checks if iaddr defines

the same abstract address in all sample paths (line 4 in Algorithm 4). If so, strong update

is performed by resetting the definition of maddr to iaddr; otherwise, iaddr is added to the

definition set of maddr (line 7). If iaddr always kills the same definition in all samples (line

8), the definition is removed from the result set (line 9). Return to Algorithm 3 . In lines

23-24, if iaddr is a memory read, dependences are derived from M2I, the abstract state at

iaddr, through the procedure HandleMemoryRead() (Algorithm 6 , which is Similar to

Algorithm 4) Lines 26-31 proceed to the succeeding program points. Particularly, a control

flow successor is added to the work-list if its abstract state has undertaken any change (lines

27-29). Our analysis terminates when a fixed point is reached. At the end, we want to

mention that full context-sensitivity is very expensive. Hence BDA supports configurable

call depth. In our experiment, we use depth 2.

66

1 char bar(char *p) {
2 *p = 0;
3 if (input ()) {
4 *p = 1;
5 foo (*p);
6 }
7 if (input ()) return *p;
8 else return ~(*p);
9 }

Figure 2.12. Posterior analysis example

Example. Consider the example in Figure 2.12 . For simplicity, we use source code to

explain our ideas. Assume BDA collects 2 path samples: 2→3→4→ 5→ 6→ 8 and path

2→ 3→ 7. As such, abstract interpretation exposes dependences from line 7 to 4, from

line 5 to 4, and from line 8 to 2, but missing that from line 8 to 4 due to incomplete path

coverage. By merging the abstract values from the two branches of the predicate in line

3, the posterior analysis discloses the missing dependence. Additionally, as function bar()

might be invoked several times, pointer p at line 4 might have multiple abstract values. As

such, at line 4 traditional analysis like VSA cannot kill the definition from line 2, whereas

BDA can, by its strong kill. This prevents the bogus dependence from line 5 to 2. �

2.7 Evaluation

BDA is implemented in Rust, leveraging Radare2 [29] that provides basic disassem-

bling functionalities. For input distribution, we used a fixed normal distribution N (µ =

0, σ2 =327682), without assuming prior knowledge

1
 . To assess BDA’s effectiveness and effi-

ciency, we compare it with Alto and VSA (from state-of-the-art binary analysis platforms) on

SPECINT2000, a standard benchmark widely used by binary analysis techniques including

the aforementioned two. We also apply BDA in two downstream analyses, one is to identify

indirect control flow transfer targets, a critical challenge in constructing call graphs, and the

other is to identify hidden malicious behaviors of a set of 12 recent malware samples provided
1

 ↑ We have tried different parameters. The impact is not significant.

67

Table 2.4. SPECINT2000 programs
Program Size # Insn # Block # Func

164.gzip 143,760 7,650 707 61
175.vpr 435,888 32,218 2,845 255
176.gcc 4,709,664 378,261 36,931 1,899
181.mcf 62,968 2,977 213 24

186.crafty 517,952 42,084 4,433 104
197.parser 367,384 24,584 2,911 297

252.eon 3,423,984 40,119 7,963 615
253.perlbmk 1,904,632 133,755 12,933 717

254.gap 1,702,848 91,608 9,020 458
255.vortex 1,793,360 109,739 16,970 624
256.bzip2 108,872 6,859 577 63
300.twolf 753,544 57,460 4,280 167

Table 2.5. Malware samples
Malware Size Report Date

1a0b96488c4be390ce2072735ffb0e49 1,806,356 2018-03-10
3fb857173602653861b4d0547a49b395 163,099 2018-07-17
49c178976c50cf77db3f6234efce5eeb 116,385 2018-03-12
5e890cb3f6cba8168d078fdede090996 18,112 2018-03-14
6dc1f557eac7093ee9e5807385dbcb05 88,520 2018-07-09
72afccb455faa4bc1e5f16ee67c6f915 729,816 2017-05-17

74124dae8fdbb903bece57d5be31246b 21,804 2018-10-09
912bca5947944fdcd09e9620d7aa8c4a 124,366 2018-10-09
a664df72a34b863fc0a6e04c96866d4c 200,976 2018-07-17
c38d08b904d5e1c7c798e840f1d8f1ee 178,781 2017-02-24
c63cef04d931d8171d0c40b7521855e9 88,436 2018-03-14
dc4db38f6d3c1e751dcf06bea072ba9c 124,154 2018-07-17

by VirtualTotal [30]. In the former experiment, we compare BDA with IDA, an industry

standard platform. In the latter, we compare with Cuckoo [23], a state-of-the-art malware

analysis platform. All experiments were conducted on a server equipped with 32-cores CPU

(Intel® XeonTM E5-2690 @ 2.90GHz) and 128G main memory. Tables 2.4 and 2.5 present

the basic information of the SPECINT2000 binaries and the malware samples.

68

164.gzip

175.vpr

176.gcc

181.mcf

186.crafty

197.parser

252.eon

253.perlbmk

254.gap

255.vortex

256.bzip2

300.twolf

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
Naive
BDA

0% 25% 50% 75% 100%

(a) Instruction coverage (b) Block coverage (c) Function coverage

Figure 2.13. Code coverage

2.7.1 Coverage

Code coverage. In this experiment, we study the code coverage of our unbiased whole-

program path sampling algorithm and compare it with a naive algorithm that tosses a fair

coin at each predicate. Specifically, we collect 10,000 path samples for each algorithm and

report the code coverage. Figures 2.13 a, 2.13 b and 2.13 c present the code coverage of our

algorithm (in dark gray bars) and the naive algorithm (in the light gray bars) at the in-

struction level, basic block level and the function level, respectively. Overall, our algorithm

can achieve almost 100% coverage for all programs. On average, it covers 554% more in-

structions, 529% more basic blocks, and 258% more functions than the naive algorithm.

For programs with complex path structures, our algorithm has much better coverage. Take

197.parser as an example. It contains lots of error-handling code that detours from the main

processing logic at the beginning of the program. The naive algorithm tends to get stuck

in these error handling paths. In contrast, our sampling algorithm appropriately prioritizes

the main processing logic that contains many more deep paths.

Path coverage. Next, we study the path coverage. Since there are usually an extremely

large number of whole-program paths (even not considering loops and recursion), it is not

that useful to report whole-program path coverage. Hence, we report intra-procedure path

69

Ra
tio

 o
f F

un
ct

io
ns

0

0.2

0.4

0.6

0.8

1

0.9-1.0
0.8-0.9
0.7-0.8
0.6-0.7
0.5-0.6
0.4-0.5
0.3-0.4
0.2-0.3
0.1-0.2
0.0-0.1

Ra
tio

 o
f F

un
ct

io
ns

0

0.2

0.4

0.6

0.8

1

164.gzip
175.vp

r

176.gcc

181.mcf

186.crafty

197.parse
r

252.eon

253.perlbmk

254.gap

255.vo
rte

x

256.bzip
2

300.tw
olf

Average

0.9-1.0
0.8-0.9
0.7-0.8
0.6-0.7
0.5-0.6
0.4-0.5
0.3-0.4
0.2-0.3
0.1-0.2
0.0-0.1

Figure 2.14. Path coverage.

coverage, in which the paths we consider are the BL paths defined in [26]. Specifically, these

are intra-procedural paths starting at function entry or some loop heads and ending at func-

tion exit or a back-edge. The results are shown in Figure 2.14 , which shows the percentage of

functions for which BDA has achieved various levels of coverage. As we can see, 93% of the

functions have a full or close-to-full path coverage. Those functions whose path coverage is

less than 50% have an extremely large number of unique paths (e.g., function get_method()

in 164.gzip has 4514809836 BL paths). As we will show in the next experiment, according

to the observation discussed in Section 2.2 that a dependence tends to be covered by many

paths. Incomplete path coverage does not cause prominent problems for us. In addition, the

posterior analysis substantially mitigates the issue as well.

2.7.2 Program Dependence

In this experiment, we perform dependence analysis on SPECINT2000 programs. We

also compare with Alto and VSA. For Alto, we port its original implementation [31] on DEC

Alpha to x86. There are three popular binary analysis platforms that support VSA, includ-

ing CodeSurfer [16], ANGR [18], and BAP [17]. Among them, CodeSufer is not publicly

available and ANGR’s VSA does not handle complex binaries as SPECINT2000 programs

(after confirming with the authors). We hence choose BAP’s VSA for comparison (called

70

T
ab

le
2.

6.
M

em
or

y
D

ep
en

de
nc

e

Pr
og

ra
m

#
R

ef
er

A
lto

B
D

A
R

ed
uc

e
#

Fo
un

d
#

M
iss

#
Ex

tr
a

#
M

isT
yp

ed
#

Fo
un

d
#

M
iss

#
Ex

tr
a

#
M

isT
yp

ed

16
4.

gz
ip

3,
58

0
2,

22
9,

74
9

0
(0

.0
0%

)
2,

22
6,

16
9

30
2,

10
0

(1
3.

55
%

)
29

,3
70

8
(0

.2
2%

)
25

,7
98

3,
50

2
(1

1.
92

%
)

74
92

%

17
5.

vp
r

13
,0

42
36

,8
40

,0
12

0
(0

.0
0%

)
36

,8
26

,9
70

26
,6

92
,1

77
(7

2.
45

%
)

55
9,

46
0

10
(0

.0
8%

)
54

6,
42

8
34

6,
21

7
(6

1.
88

%
)

64
85

%

18
1.

m
cf

2,
05

0
58

8,
07

6
0

(0
.0

0%
)

58
6,

02
6

32
4,

62
1

(5
5.

20
%

)
3,

34
7

0
(0

.0
0%

)
1,

29
7

43
3

(1
2.

94
%

)
17

47
0%

18
6.

cr
af

ty
30

,7
77

44
,1

39
,5

56
0

(0
.0

0%
)

44
,1

08
,7

79
4,

92
6,

26
7

(1
1.

16
%

)
1,

07
7,

34
6

45
(0

.1
5%

)
1,

04
6,

61
4

78
,7

85
(7

.3
1%

)
39

97
%

19
7.

pa
rs

er
15

,1
96

32
,9

05
,4

03
0

(0
.0

0%
)

32
,8

90
,2

07
29

,3
55

,3
88

(8
9.

21
%

)
65

9,
86

7
2

(0
.0

1%
)

64
4,

67
3

53
5,

29
1

(8
1.

12
%

)
48

87
%

25
2.

eo
n

4,
40

1
99

4,
65

5
0

(0
.0

0%
)

99
0,

26
4

97
4,

92
5

(9
8.

02
%

)
28

,8
55

0
(0

.0
0%

)
24

,4
54

22
,5

38
(7

8.
11

%
)

33
47

%

25
3.

pe
rlb

m
k

57
,5

07
10

2,
06

8,
47

7
0

(0
.0

0%
)

10
0,

34
9,

48
5

94
,6

03
,0

19
(9

2.
69

%
)

5,
38

9,
97

3
13

0
(0

.2
3%

)
5,

36
3,

37
3

4,
46

1,
09

4
(8

2.
77

%
)

17
94

%

25
4.

ga
p

7,
93

5
10

,6
11

,6
36

0
(0

.0
0%

)
10

,6
03

,7
01

9,
98

1,
36

8
(9

4.
06

%
)

20
5,

20
0

41
(0

.5
2%

)
19

7,
30

6
15

2,
47

0
(7

4.
30

%
)

50
71

%

25
5.

vo
rt

ex
29

,9
71

26
5,

98
1,

81
7

0
(0

.0
0%

)
26

5,
95

1,
84

6
23

8,
47

9,
88

1
(8

9.
66

%
)

2,
15

9,
44

4
98

(0
.3

3%
)

2,
12

9,
47

3
1,

38
5,

95
3

(6
4.

10
%

)
12

21
7%

25
6.

bz
ip

2
4,

30
6

2,
46

6,
87

6
0

(0
.0

0%
)

2,
46

2,
57

0
70

8,
16

3
(2

8.
71

%
)

13
,9

17
10

(0
.2

3%
)

9,
62

1
1,

50
9

(1
0.

84
%

)
17

62
6%

30
0.

tw
ol

f
16

,7
10

44
,7

35
,2

57
0

(0
.0

0%
)

44
,7

18
,4

40
33

,7
41

,1
98

(7
5.

42
%

)
2,

28
5,

09
0

56
(0

.3
4%

)
2,

26
8,

43
6

1,
67

8,
38

3
(7

3.
45

%
)

18
58

%

A
vg

.
16

,8
61

49
,4

14
,6

83
0

(0
.0

0%
)

49
,2

46
,7

69
40

,0
08

,1
01

(6
5.

47
%

)
1,

12
8,

35
2

36
(0

.1
9%

)
1,

11
4,

31
6

78
7,

83
4

(5
0.

80
%

)
74

77
%

17
6.

gc
c∗

43
5,

69
2

N
/A

N
/A

N
/A

N
/A

69
2M

49
8

(0
.1

1%
)

69
2M

79
.4

3%
N

/A

B
A

P
-V

SA
 2

on
18

1.
m

cf
#

Fo
un

d:
23

,0
68

#
M

is
s:

0
(0

.0
0%

)
#

E
xt

ra
:

21
,0

18
#

M
is

T
yp

ed
:

12
,5

33
(5

4.
33

%
)

R
ed

uc
e:

58
9%

71

M
is

s
Ra

te
 (%

)

0

0.6

1.2

1.8

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
164.gzip 175.vpr 176.gcc 181.mcf 186.crafty 197.parser
252.eon 253.perlbmk 254.gap 255.vortex 256.bzip2 300.twolf

Figure 2.15. Effect of sampling

BAP-VSA). Note that it is intractable to acquire the ground truth of program dependencies,

even with source code (due to various reasons such as aliasing and loops). Therefore, we use

two methods to evaluate the quality of detected dependencies. First, we run the programs

with the inputs provided by SPEC and use the observed dependencies as reference. Any

dependence detected by reference executions but not by the analysis tools is called a missing

dependence (or a false negative). Any dependence detected by the tools but not observed

during reference executions is called an extra dependence. Note that the provided inputs

achieve 81% code coverage for the SPECINT2000 benchmarks. In addition, we implemented

a static type checker to validate if the source and the destination of a (detected) dependence

have the same type. The checker is implemented as an LLVM pass, which propagates sym-

bol information to individual instructions, registers and memory locations. As such, we can

obtain the type of each binary operation and its operands. Note that such information is

much richer than the debugging information generated during compilation. Any dependence

whose source and destination have different types is considered a mis-typed dependence,

which is most likely to be a bogus dependence. For fair comparison, we set a fixed timeout

of 12 hours for each program.

Result Summary. Table 2.6 shows the result summary. Column 2 denotes the number of

dependencies observed in the reference execution, columns 3-6 and 7-10 report the number

72

of reported dependencies, the missing ones, the extra ones and the mis-typed ones for Alto

and BDA, respectively. Column 11 shows the reduction of the reported dependencies by

BDA from Alto (e.g., the reduction of 181.mcf from Alto is (588076-3347)/3347=17470%).

N/A in the table means that the tool times out and hence its analysis result is not available.

Note that BAP-VSA only handles 181.mcf, we list the result separately on the bottom. We

have doubled the execution time for other programs but the analysis still cannot terminate.

Further inspection shows that when the value set of an address operand is substantially

inflated, which happens a lot in practice, each write through the address operand incurs

very expensive updates for a very large number of abstract locations.

Observe that although Alto does not have any missing dependence, the number of re-

ported dependence is very large (due to its conservativeness) and 65.47% of which are mis-

typed. Such substantial bogus dependences hinder its use in practice. In comparison, the

dependences reported by BDA are 75 times smaller, at the prices of a negligible missing rate

(0.19%). Note that although in some cases the mis-typed rate of BDA is only slightly lower

than that of Alto (e.g., 197.parser), the absolute number of mis-typed dependences is much

smaller. We argue the results by our tool are more useful in practice. We should note that

the analysis of 176.gcc is very expensive due to its complexity. As such, Alto could not finish

in time. Compared to VSA, BDA reports 589% fewer dependences with a much smaller

number of mistyped dependences (433 versus 12533).

We also study the reasons of missing dependences and mis-typed dependences. We find

that missing dependences are mainly due to loop paths difficult to cover statically. Consider

the code snippet from 164.gzip in Figure 2.18a , BDA misses the dependence from line 6 to

line 4 regarding the suffix of dst copied from msg. The reason is that BDA only iterates loop

(lines 5-6) for a small number of times, which allows it to detect the dependence from line

6 to line 3 regarding the prefix of dst, but not the suffix. Mis-type dependences are mainly

due to the fact that BDA does not model path feasibility when predicates are dependent

on external inputs. As such, bogus dependences are introduced along infeasible paths. We

want to point out that the same limitation applies to all analyses that do not fully model

path feasibility (e.g., data-flow analysis). Consider the code snippet in Figure 2.18b from

73

Table 2.7. Effect of posterior analysis and taint tracking.

Program original BDA3 w/o analysis w/o taint-tracking

All(K) Miss MisTyped All(K) Miss MisTyped All(K) Miss MisTyped

164.gzip 29 0.22% 11.92% 24 4.53% 2.28% 31 0.37% 23.49%
175.vpr 559 0.08% 61.88% 79 5.44% 43.86% 583 0.11% 67.13%
176.gcc 692(M) 0.11% 79.43% 14(M) 7.26% 35.52% 723(M) 0.10% 84.86%
181.mcf 3 0.00% 12.94% 2 1.17% 10.22% 4 0.10% 28.17%

186.crafty 1,077 0.15% 7.31% 124 1.88% 1.13% 1,114 0.14% 13.42%
197.parser 659 0.01% 81.12% 98 8.94% 62.96% 670 0.01% 84.34%

252.eon 28 0.00% 78.11% 10 1.52% 58.58% 28 0.00% 79.95%
253.perlbmk 5,389 0.23% 82.77% 636 5.35% 67.98% 5,524 0.25% 89.36%

254.gap 205 0.52% 74.30% 70 2.08% 36.73% 217 0.49% 81.17%
255.vortex 2,159 0.33% 64.10% 356 4.73% 58.36% 2,227 0.33% 67.30%
256.bzip2 13 0.23% 10.84% 10 2.90% 6.19% 15 0.46% 23.53%
300.twolf 2,252 0.34% 73.45% 294 6.21% 67.01% 2,375 0.35% 79.21%

Avg. 58,697 0.18% 53.18% 1,308 4.57% 37.56% 61,324 0.22% 60.16%

Table 2.8. Runtime overhead.
Program Time

3
 (h) Memory

Total Pre Processing Abstract Interpretation Posterior Analysis (GB)

164.gzip 1.59 0.15 1.13 0.31 3.8
175.vpr 6.80 0.54 2.75 3.51 21.4
176.gcc 10.06 1.63 7.54 0.89 103.3
181.mcf 0.83 0.06 0.71 0.06 1.6

186.crafty 7.39 0.36 2.47 4.56 15.6
197.parser 5.62 0.29 2.17 3.16 12.5

252.eon 5.98 0.84 3.51 1.63 5.7
253.perlbmk 11.35 0.68 4.24 6.43 73.5

254.gap 5.67 0.21 2.61 2.85 4.0
255.vortex 11.75 0.63 4.13 6.99 58.1
256.bzip2 2.32 0.18 1.27 0.87 4.2
301.twolf 11.68 0.57 3.99 7.12 47.9

Avg. 6.75 0.51 3.03 3.21 29.3

164.gzip. Along some infeasible paths, pointers err_cnt and err_msg are not allocated and

hence have the NULL value, which leads to bogus dependence from line 6 to line 3.

Necessity of Posterior Analysis and Taint Tracking. We study the necessity of pos-

terior analysis and taint tracking. Table 2.7 shows the effect of the posterior analysis by

comparing the number of missing dependences when using the posterior analysis and when
2BAP-VSA took 10.9 hours and 8.3GB memory for 181.mcf. It timed out for the rest (exceeding 12 hours).

74

1 typedef struct node {int val; struct node *next} node_t ;
2
3 node_t list_a [10000] , list_b [10000];
4
5 int foo () { // list_a and list_b are independent
6 for (int i = 0, j = 1; i < 10000; i++, j++){
7 list_a [i]. next = &(list_a [j % 10000]) ;
8 list_b [i]. next = &(list_b [j % 10000]) ;}
9 list_a [input ()]. next ->val = 0;

10 return list_b [input ()]. next ->val;
11 }

Figure 2.16. Taint tracking example (simplified from 181.mcf)

simply aggregating the dependences collected in individual samples (0.18% versus 4.57%).

We also report the total dependences. Observe that the posterior analysis produces much

more dependences in total. Due to the lack of ground-truth, it is difficult to infer how

many are true dependences. However, the comparison of mis-typed dependences (53.18%

versus 37.56%) demonstrates the posterior analysis substantially reduces the false negative

rate while only incurring a relatively modest growth of false positives (compared to the ex-

plosion incurred in Alto and VSA). Table 2.7 shows the effects of taint tracking as well.

Observe that the comparisons of missing and mis-typed dependences (0.18% versus 0.22%

and 53.18% versus 60.16%, respectively) indicate the necessity of taint tracking. The root

cause of additional bogus dependences is that without taint tracking, constant loops are not

properly interpreted (i.e., only the first a few unrolled iterations are interpreted). Consider

a simplified code snippet from 181.mcf in Figure 2.16 . The for-loop at line 4 is a constant

loop, in which two independent node lists list_a and list_b are initialized. Without taint

tracking, BDA cannot recognize it as a constant loop and hence only interprets the first a

few iterations. As a result, the next field of the remaining list_a and list_b entries are

not initialized and all have a null value. Consequently, BDA considers there is a dependence

between lines 9 and 10, which is false. Since 181.mcf has many such lists and many constant

initialization loops, bogus dependences are introduced between a large number of accesses

through uninitialized pointers.

75

Table 2.9. Inferring indirect jump/call targets

Program # Indirect Jump Edges # Indirect Call Edges

IDA Dynamic BDA IDA Dynamic BDA

164.gzip 0 0 0 0 3 3
175.vpr 49 0 49 0 1 1
176.gcc 3,628 324 3,628 25 214 853
181.mcf 0 0 0 0 1 1

186.crafty 159 38 159 0 1 1
197.parser 0 0 0 0 1 1

252.eon 17 0 17 0 183 215
253.perlbmk 1,454 229 1,454 24 243 261

254.gap 63 5 63 2 1,438 7,836
255.vortex 247 56 247 0 24 27
256.bzip2 0 0 0 0 1 1
301.twolf 17 0 17 0 1 1

Avg. 470 54 470 4 176 767

Effect of Sampling We also study the effects of having different number of samples. Fig-

ure 2.15 shows the effect of sampling. Observe that the missing rate decreases as the number

of samples increases. When the number of samples reaches 10k, the missing rate is reduced

to less than 0.5% for all programs and 0 for some (e.g., mcf, eon and parser). Note that the

experimental results are consistent with our probabilistic analysis in Section 2.4.2 .

Analysis Overhead. Table 2.8 presents the time and memory consumption of BDA in

analyzing each SPEC2000 program. On average, BDA takes 6.75 hours to analyze a program,

with 7%, 45% and 48% spending on the pre-processing, abstract interpretation and posterior

analysis, respectively. The sampling stage takes relatively small amount of time even with the

cost of dealing with large weight values. The time consumption for abstract interpretation

is the sum of individual samples. The memory consumption of BDA ranges from 1.6GB

to 103.3GB (29.3GB on average), depending on the complexity of the target programs. As

a comparison, Alto has similar memory consumption as BDA (21.9GB vs. 22.6GB) and

is 27.7% slower (8.3h vs. 6.5h) on SPECINT2000 excluding 176.gcc. We argue that since

dependence graph generation is a one-time effort, the entailed overhead is reasonable.

76

Table 2.10. Malware behavior analysis

Malware # Library Calls

Cuckoo BDA

1a0b96488c4be390ce2072735ffb0e49 50 164
3fb857173602653861b4d0547a49b395 20 112
49c178976c50cf77db3f6234efce5eeb 23 48
5e890cb3f6cba8168d078fdede090996 28 138
6dc1f557eac7093ee9e5807385dbcb05 20 75
72afccb455faa4bc1e5f16ee67c6f915 6 81

74124dae8fdbb903bece57d5be31246b 36 203
912bca5947944fdcd09e9620d7aa8c4a 20 68
a664df72a34b863fc0a6e04c96866d4c 23 99
c38d08b904d5e1c7c798e840f1d8f1ee 34 151
c63cef04d931d8171d0c40b7521855e9 20 81
dc4db38f6d3c1e751dcf06bea072ba9c 20 77

Avg. 25 108

2.7.3 Applications

We evaluate BDA in two downstream analysis, one is to identify indirect control flow

transfer targets (conducted on the SPEC programs), the other is to disclose hidden malware

behaviors (conducted on 12 recent malware samples).

Inferring Indirect Control Transfer Targets. With program dependences, we can infer

the potential targets of an indirect jump/call instruction by backward slicing from its target

register. Table 2.9 shows the results. For comparison, we also present the analysis result of

IDA and the indirect targets observed when running with inputs provided in SPEC. Observe

that BDA performs as good as IDA in inferring indirect jump targets and substantially

outperforms IDA in inferring indirect call targets (4 found by IDA on average versus 767

found by BDA). We should note that indirect jump targets are easier to infer than indirect

call targets, as indirect jumps are always intra-procedural and have fixed patterns when they

are generated by mainstream compilers. IDA leverages such patterns whereas we leverage

dependences. None of the observed call targets is missed by BDA. In addition, the set

of indirect call targets reported by BDA is comparable to those reported in [32], a very

77

1 int main () {
2 while (! cnc_server_connected ()) sleep (5);
3 initialization ();
4
5 }
6 void initialization () {
7 char *dirs [10] , cmd [256];
8 memcpy (dirs , rodata_41176 , 0x50);
9 for (int i = 0; i < 10; i++) {

10 sprintf (cmd , "cd %s && "
11 "for a in ‘ls -a %s‘; do >$a; done;",
12 rodata_4112A0 [i], rodata_4112A0 [i]);
13 system (cmd);
14 }
15 }

(a) simplified code

a lea rdi , [rbp + local_60]
b mov esi , rodata_411760 ; list of bin dirs:

"/dev/ netslink /", "/var/", ... , "/usr/"
c mov edx , 0x50
d call memcpy
e ...
f lea rdi , [rbp + local_1F0]
g lea rsi , rodata_4112A0 ; format string :

"cd %s && for a in ‘ls -a %s‘; do >$a; done;"
h mov rdx , [rbp + rax * 8 + local_60]
i mov rcx , rdx
j call sprintf
k ...
l lea rdi , [rbp + local_1F0]
m call system

(b) slicing with the dependence information

Figure 2.17. Malware case study

expensive concrete execution engine that forcefully executes along a large number of paths.

The results demonstrate the practical use of BDA.

Exposing Malware Behaviors. Program dependence can be used to study malware

behaviors. In the literature of malware analysis [21], the behavior of a malware sample is

largely defined by the system calls performed by the sample, together with parameter values.

With dependencies, we can perform (static) constant propagation through dependence edges

to identify the parameter values of critical library functions. We also compare BDA with

78

1 char* encode_msg (char *msg , int n) {
2 char *dst = malloc ((n + PREFIX_LEN);
3 strcpy (dst , PREFIX_STR);
4 strcat (dst , msg);
5 for (int i = 1; i < n + PREFIX_LEN ; i++)
6 dst[i] = dst[i] ^ dst[i -1];
7 return dst;
8 }

(a) missing dependence

1 void error (char* err_msg , int * err_cnt) {
2 if (! err_cnt)
3 * err_cnt += 1; // Written type: int
4 // Potentially write to address NULL
5 if (! err_msg)
6 puts(err_msg); // Read type: char
7 // Potentially read from address NULL
8 }

(b) mis-typed dependence

Figure 2.18. Code snippet on missing and mistyped dependence

Cuckoo, a state-of-the-art malware analysis tool. Cuckoo reports behavior on the system

call level, while BDA reports on the library call level. To be comparable, we map library

calls to system calls. Table 2.10 shows the results. Observe that BDA reports 3 times more

hidden malicious behaviors.

Case study. We take the malware sample a664df72a34b863fc0a6e04c96866d4c as a case

to study how our dependence analysis can help detect hidden malicious behaviors. It is

a bot malware that waits for commands from a remote server. Figure 2.17a shows the

simplified code of its initialization logic. In particular, it tries to connect to a remote server

every 5 seconds until success (line 2), then executes the binary files stored in some pre-

defined directories (e.g., /dev/netslink) to setup the running environment (lines 9-14).

The behavior of running the binary files will not be triggered by the sandbox execution in

Cuckoo, since the remote server is down. Hence, Cuckoo fails to detect such behavior. In

contrast, we perform static constant propagation through dependences to extract critical

library calls with concrete parameters. Figure 2.17b presents the static slice of system()

79

call (line 13), whose parameter depends on the invocation of the sprintf library function,

which fills the format string buffer indicated by rbp + local_1F0. It further depends on

the format string stored in the global memory rodata_4112A0, which has the value "cd %s

&& for a in ‘ls -a %s‘; do >$a; done;". Hence, we detect the behavior of running the

binary files under pre-defined directories without executing the malware.

2.8 Summary

We propose a practical program dependence analysis for binary executables. It features

a novel unbiased whole-program path sampling algorithm and per-path abstract interpreta-

tion. Under certain assumptions, our technique has probabilistic guarantee in disclosing a

dependence relation. Our experiments show that our technique has substantially improved

the state-of-the-art, such as value set analysis. It also improves performance of downstream

applications in indirect call target identification and malware behavior analysis.

80

3. PROBABILISTIC INFERENCE: RECOVERING

VARIABLES AND DATA STRUCTURES

Recovering variables and data structure information from stripped binary is a prominent

challenge in binary program analysis. While various state-of-the-art techniques are effective

in specific settings, such effectiveness may not generalize. This is mainly because the problem

is inherently uncertain due to the information loss in compilation. Most existing techniques

are deterministic and lack a systematic way of handling such uncertainty. We propose a novel

probabilistic technique for variable and structure recovery. Random variables are introduced

to denote the likelihood of an abstract memory location having various types and structural

properties such as being a field of some data structure. These random variables are connected

through probabilistic constraints derived through program analysis. Solving these constraints

produces the posterior probabilities of the random variables, which essentially denote the

recovery results. Our experiments show that our technique substantially outperforms a

number of state-of-the-art systems, including IDA, Ghidra, Angr, and Howard. Our case

studies demonstrate the recovered information improves binary code hardening and binary

decompilation.

3.1 Introduction

A prominent challenge in binary program analysis is to recognize variables, derive their

types, and identify complex array and data structure definitions. Such information is lost

during compilation, that is, variables and data structure fields are translated to plain reg-

isters and memory locations without any structural or type information. Variable accesses,

including those for both simple global scalar variables and complex stack/heap data structure

fields with a long reference path (e.g., a.b.c.d), are often uniformly compiled to derefer-

ences of some registers that hold a computed address. Recovering the missing variable and

structure information is of importance for software security. Such information can be used to

guide vulnerability detection [33], legacy code hardening (e.g., adding bound checks) [34 – 37],

executable code patching (i.e., applying an existing security patch to an executable) [38], and

81

decompilation (to understand hidden program behaviors) [15 , 39 , 40]. It is also a key step

in any non-trivial binary rewriting, such as binary debloating to reduce attack surface [41].

Most binary analysis platforms have the functionalities of variable recovery and some

support of structure recovery, i.e., array, struct, and class recovery. Many of them, including

the most widely used IDA platform [15], hard-code a set of reverse engineering rules that are

effective in certain scenarios (e.g., for binaries generated by some compilers). However, they

are usually not general enough because modern compilers are diverse and feature aggressive

optimizations, which may violate many instruction patterns that these rules rely on. A

number of systems, including Ghidra [39], Angr [42], and TIE [43], make use of static program

analysis, such as data-flow analysis and abstract interpretation, to identify variables and

infer types. However, their underlying static analysis is often not sufficiently accurate. For

example, many rely on Value Set Analysis (VSA) [19] to derive the points-to relations at the

binary level. However, VSA is known to produce a lot of bogus information, reporting many

memory accesses potentially aliased with almost the entire address space. Some techniques

such as REWARDS [33] and Howard [44] rely on dynamic analysis to achieve better accuracy.

They need high quality inputs to reach good coverage. Such inputs may not be feasible in

security applications. In addition, as compilation is lossy, variable and structure recovery

is inevitably uncertain. Such uncertainty often yields contradicting results. For instance,

many techniques rely on specific instruction patterns of loading base address to recognize a

data structure. However, such patterns may appear in code snippets that do not access data

structure at all (just by chance). Existing techniques lack a systematic way of dealing with

such uncertainty.

We observe that there are a large number of hints of various kinds that can be collected

to guide variable and structure recovery, many of them have not been fully leveraged by

existing techniques, due to both the difficulty of precluding bogus hints and the lack of a

systematic way of integrating them in the presence of uncertainty. For example, some of

such hints include: two objects of the same class often go through similar data-flow; two

objects of the same class may have direct data-flow between their corresponding fields (due

to object copying). However, leveraging such hints requires identifying precise data-flow,

which is difficult, and aggregating them when there is uncertainty.

82

In this chapter, we propose a probabilistic variable and data structure recovery tech-

nique. It extends a recent binary abstract interpretation infrastructure BDA that has better

scalability and accuracy, to collect a large set of basic behavioral properties of the subject

binary, such as its memory access patterns, data-flow, and points-to relations. For each

(abstract) memory location, i.e., a potential variable/data-structure-field, a set of random

variables are introduced to denote its possible primitive types (e.g., int, long, and pointer)

and its structural properties (e.g., being a field of some data structure or an element of some

array). These random variables are correlated through the hints collected by program anal-

ysis. For example, two memory locations may be two elements of a same array if they are

accessed by the same instruction. This hint can be encoded as a probabilistic constraint

involving the random variables for the two memory locations. Note that although such hints

are uncertain, the introduction of random variables and probabilistic constraints naturally

models the uncertainty. Intuitively, a random variable may be involved in multiple hints

and hence its probability is constrained by all those hints. All these probabilistic constraints

are resolved together to derive the posterior distribution. We develop a customized itera-

tive probabilistic constraint solving algorithm. It features the capabilities of handling a large

number of random variables, constraints, and the need of updating the constraints on-the-fly

(e.g., when disclosing a new array). It also features optimizations that leverage the domain

specific modular characteristics of programs.

Our contributions are summarized as follows.

• We propose a novel probabilistic variable and data structure recovery technique that

is capable of handling the inherent uncertainty of the problem.

• We develop a set of probabilistic inference rules that are capable of aggregating in-

depth program behavioral properties to achieve precision and good coverage in recovery

results.

• We develop an iterative and optimized probabilistic constraint solving technique that

handles the challenges for probabilistic inference in program analysis context.

83

• We develop a prototype Osprey (recOvery of variable and data Structure by PRoba-

bilistic analysis for strippEd binarY) [45]. We compare its performance with a number

of state-of-the-art techniques, including Ghidra, IDA, Angr, and Howard, on two sets of

benchmarks collected from the literature [43 , 44]. Our results show that Osprey out-

performs them by 20.41%-56.78% in terms of precision and 11.89%-50.62% in terms of

recall. For complex variables (arrays and data structures), our improvement is 6.96%-

89.05% (precision) and 46.45%-74.02% (recall). We also conduct two case studies:

using our recovered information to (1) improve decompilation of IDA and (2) harden

stripped binaries.

3.2 Motivation

In this section, we use an example to illustrate the limitations of existing techniques and

motivate our technique. Figure 3.1a presents the source code of a function huft_build in gzip

(lines 8-15). It is substantially simplified for the illustration purpose. We also introduce a

crafted main() function (lines 5-7) which uses a predicate over a random number to represent

that the likelihood of reaching the function through random test input generation is low (line

6). Figure 3.1b presents the corresponding assemble code, and Figure 3.1c shows part of the

memory layout of the variables. In the source code, lines 1-4 define a structure elem_t

consisting of two fields x and y; inside the function, line 9 declares p as a pointer to elem_t,

and v as a stack-inlined elem_t; the conditional at line 10 has two branches, with the true

branch setting p to the address of v and the false branch allocating a piece of heap memory

to p (line 13), and storing v to the allocated space (line 14); and finally, line 16 outputs p->x

and p->y.

After compilation, global variables are denoted by constant addresses and local variables

are translated to offsets on stack frames. For example, the definitions of v.x and v.y at

line 9 are translated to memory writes to stack offsets rsp+0x8 and rsp+0x10 (instructions

[01]-[02] in Figure 3.1b , respectively. The assignment to p at line 11 is translated to a write

to offset rsp+0x0 at instruction [5] in Figure 3.1b . This is due to the stack memory layout

shown on the left of Figure 3.1c . Observe that from the assembly code the types of these stack

84

line 09

line 14

line 11

line 13

p

v.x

v.y

p->x

p->y

Data-flow hint

Point-to hint

Stack of huft_build Heap

rsp +0x00

+0x08

+0x10

line 16

01. typedef struct {
02. long x;
03. long y;
04. } elem_t;
05. int main() {
06. if (!rand(1000)) huft_build(…);
07. }
08. void huft_build(…) {
09. elem_t *p, v = {.x=0, .y=1};
10. if (…)
11. p = &v;
12. else {
13. p = malloc(sizeof(elem_t));
14. *p = v;
15. }
16. output(p->x, p->y);
17. }

<huft_build>:
[01] mov [rsp+0x8], 0
[02] mov [rsp+0x10], 1
[03] ...
[04] lea rbx, [rsp+0x8]
[05] mov [rsp], rbx
[06] ...
[07] mov rdi, 0x10
[08] call malloc
[09] mov [rsp], rax
[10] movdqa xmm0, [rsp+0x8]
[11] movups [rax], xmm0
[12] ...
[13] mov rcx, [rsp]
[14] mov rdi, [rcx]
[15] mov rsi, [rcx+0x8]

[14]

[15] [15]

[14]
[10]

13

2

[11]

Unified access
Point hint

3

(a) Source code of huft_build.

line 09

line 14

line 11

line 13

p

v.x

v.y

p->x

p->y

Data-flow hint

Point-to hint

Stack of huft_build Heap

rsp +0x00

+0x08

+0x10

line 16

01. typedef struct {
02. long x;
03. long y;
04. } elem_t;
05. int main() {
06. if (!rand(1000)) huft_build(…);
07. }
08. void huft_build(…) {
09. elem_t *p, v = {.x=0, .y=1};
10. if (…)
11. p = &v;
12. else {
13. p = malloc(sizeof(elem_t));
14. *p = v;
15. }
16. output(p->x, p->y);
17. }

<huft_build>:
[01] mov [rsp+0x8], 0
[02] mov [rsp+0x10], 1
[03] ...
[04] lea rbx, [rsp+0x8]
[05] mov [rsp], rbx
[06] ...
[07] mov rdi, 0x10
[08] call malloc
[09] mov [rsp], rax
[10] movdqa xmm0, [rsp+0x8]
[11] movups [rax], xmm0
[12] ...
[13] mov rcx, [rsp]
[14] mov rdi, [rcx]
[15] mov rsi, [rcx+0x8]

[14]

[15] [15]

[14]
[10]

13

2

[11]

Unified access
Point hint

3

(b) Assembly of huft_build.

line 09

line 14

line 11

line 13

p

v.x

v.y

p->x

p->y

Data-flow hint

Point-to hint

Stack of huft_build Heap

rsp +0x00

+0x08

+0x10

line 16

01. typedef struct {
02. long x;
03. long y;
04. } elem_t;
05. int main() {
06. if (!rand(1000)) huft_build(…);
07. }
08. void huft_build(…) {
09. elem_t *p, v = {.x=0, .y=1};
10. if (…)
11. p = &v;
12. else {
13. p = malloc(sizeof(elem_t));
14. *p = v;
15. }
16. output(p->x, p->y);
17. }

<huft_build>:
[01] mov [rsp+0x8], 0
[02] mov [rsp+0x10], 1
[03] ...
[04] lea rbx, [rsp+0x8]
[05] mov [rsp], rbx
[06] ...
[07] mov rdi, 0x10
[08] call malloc
[09] mov [rsp], rax
[10] movdqa xmm0, [rsp+0x8]
[11] movups [rax], xmm0
[12] ...
[13] mov rcx, [rsp]
[14] mov rdi, [rcx]
[15] mov rsi, [rcx+0x8]

[14]

[15] [15]

[14]
[10]

13

2

[11]

Unified access
Point hint

3

(c) Memory layout of huft_build’s variables.

Figure 3.1. Motivation example.

offsets are unknown. It is also unclear rsp+0x8 and rsp+0x10 belong to a data structure

while rsp denotes an 8-byte scalar variable. It is almost impossible to know that the heap

variable stored in register rax at instruction [09] is of the same type as the data structure

denoted by rsp+0x8 and rsp+0x10. This example only represents some simple situations.

In practice, there are much more difficult challenges such as nesting structures, array of

structures, and arrays inside structures. In the following, we discuss how the-state-of-the-art

techniques and our technique perform on this example. Note that the ideal recovery result

is to identify p as a pointer to elem_t while v is an instance of the same structure on stack,

as shown in the “ground truth” column in Figure 3.2 .

IDA [15] is one of the most widely-used commercial decompilation toolkits. It has the

functionality of recovering variables and their types. Its recovery algorithm, which is called

85

struct_0 *local_0;
Union_0 *local_0;

typedef struct {
long x;
long y;

} elem_t;

+ Such result requires full VSA supported. * Such results require function <huft_build> executed.

Ground Truth

union_0 *local_0;
int64 local_8;
int64 local_10;

typedef union {
struct {

int64 s_1;
int64 s_2;

} u_0;
int128 u_1;

} union_0;

TIE+ and REWARDS*

elem_t *p;
elem_t v;

int128 *local_0;
union_0 local_8;

IDA Pro

typedef union {
int64 u_0[2];
int128 u_1;

} union_0;

struct_0 *local_0;
int64 local_8;
int64 local_10;

void *local_0;
int64 local_8;
int64 local_10;

angr

typedef struct {
int64 s_1;
int64 s_2;

} struct_1;
typedef union {

struct_1 u_0;
int128 u_1;

} union_0;

0.3

0.7

0.1
0.9

OSPREY

struct_0 *local_0;
int64 local_8;
int64 local_10;

Ghidra

typedef struct {
int32 s_0[4];

} struct_0;

typedef struct {
int64 s_1;
int64 s_2;

} struct_0;

Howard*

typedef struct {
int64 s_1;
int64 s_2;

} struct_0;

int64 local_8;
int64 local_10;

struct_0 local_8;

Figure 3.2. Results of different techniques for huft_build

semi-naive algorithm in [46], is based on a local (intra-procedural) static analysis. It identifies

absolute addresses, rsp-based offsets, and rbp-based offsets as variables or data structure

fields. For example, it recognizes rsp+0x8 (at instruction [01]) as a variable/field. In

order to distinguish data structure fields from scalar variables, IDA developers hard-coded

a number of code pattern matching rules. For example, they consider field accesses are

performed by first loading the base address of the data structure to a register, and then

adding the field offset to the register. As such, they consider all the accessed addresses that

share the same base belong to a data structure. Another sample rule is that an instruction

pair like the movdqa instruction at [10] and the movups instruction at [11] denotes a 128-bit

packed floating-point value movement. Unfortunately, modern compilers aggressively utilize

these instruction patterns to optimize code generation. In our case, the two instructions are

not related to floating-point value copy but rather general data movement. As shown in

Figure 3.2 , IDA misidentifies elem_t as a union (denoted as union_0) of a 64-bit value array

86

of size two, and a monolithic field of 128-bit. The data structure is recognized through the

lea instruction at [04], which loads the base address rsp+0x8. However, since rsp+0x8 and

rsp+0x10 are accessed in two manners, one accessing individual addresses as instructions

[01] and [02], and the other accessing the region as a whole like instructions [10] and [11],

IDA determines that it is a union. Also observe that IDA fails to recognize that variable

local_0 (i.e., the local variable at stack offset 0 corresponding to p in the source code) is

a pointer to the data structure. In our experiment over 101 programs (Section 3.6), IDA

achieves 66.88% precision and 76.29% recall.

Ghidra [39] is a state-of-the-art decompiler developed by NSA. Its algorithm is similar to

IDA’s. The improvement is that Ghidra leverages a register-based data-flow analysis [47] to

analyze potential base addresses that are beyond rsp and rbp registers. In our example, it

identifies rax at instruction [09] denotes the base address of the allocated heap structure at

[08] as the return value of malloc at [08] is implicitly stored in rax. This allows Ghidra to

identify local_0 (i.e., rsp) as a pointer to the heap data structure as shown in the “Ghidra”

column in Figure 3.2 . However, the data-flow analysis is limited. It does not reason about

data flow through memory. Observe that the base address in rax is stored to [rsp] at

instruction [09] and then loaded to rcx at [13]. Ghidra cannot recognize rcx at [13]

denotes the same base address as rax at [09]. As a result, it cannot recognize local_0

is pointing to the same data structure of the two stack offsets rsp+0x8 and rsp+0x10.

Instead, it identifies local_0 a 32-bit value heap array of size 4 and the two stack offsets as

separate scalar variables. Inspection of Ghidra’s source code indicates that Ghidra developers

do not consider stack offsets as reliable base addresses (potentially due to that compiler

optimizations may lead to arbitrary stack addressing) such that it does not even group the

two stack offsets to a structure. This demonstrates that the intrinsic uncertainty in variable

recovery leads to inevitably ad-hoc solutions. In our experiment, Ghidra achieves 69.77%

precision and 76.73% recall.

TIE [43] is a static type inference technique for binary programs. It leverages a heavy-weight

abstract interpretation technique called Value Set Analysis (VSA) [19] to reason about data-

flow through memory. VSA over-approximates the set of values that may be held in registers

87

and memory locations such that a memory read may read the value(s) written by a memory

write as long as their address registers’ value sets have overlap, meaning that the read and the

write may reference the same address. Facilitated by VSA, TIE is able to determine that the

access of [rsp] at instruction [13] may receive its value from the write at instruction [09]

that represents the allocated heap region. As such, the accesses in instructions [14] and

[15] allow TIE to determine that the heap structure consists of two int64 fields, as shown

in Figure 3.2 . However, VSA is conservative and hence leads to a large amount of bogus

data-flow. As such, existing public VSA implementations do not scale to large programs,

including gzip. Besides, the inherent uncertainty in variable recovery and type inference

often leads to contradicting results. TIE cannot rule out the bogus results and resorts to

a conservative solution of retaining all of them. Assume the underlying VSA scaled to

gzip and hence TIE could produce results for our sample function huft_build. TIE would

observe that instructions [14] and [15] access two int64 fields inside the heap structure.

Meanwhile, it would observe that instruction [10] directly accesses a 128 bits value in the

same structure. It would consider the structure may contain just a monolithic field. To cope

with the contradiction, TIE simply declares a union to aggregate the results, as shown in

Figure 3.2 . Note that since TIE is not available, in order to produce the presented results,

we strictly followed their algorithm in the paper. Finally, as commented by some of the TIE

authors in [40], TIE does not support recursive types, although they are widely used (e.g., in

linked lists and binary trees). For example, “struct s {int a; struct s *next}” would

be recovered as “struct s {int a; void *next}” at best.

REWARDS [33] is a binary variable recovery and type inference technique based on dy-

namic analysis. Through dynamic tainting, it precisely tracks data-flow through registers

and memory such that base-addresses and field accesses can be recognized with high accu-

racy. However, its effectiveness hinges on the availability of high quality inputs, which may

not be true in many security applications. Theoretical, one could use fuzzing [10 , 48 – 51]

or symbolic execution [52 – 56] to generate such inputs. However, most these techniques are

driven by a more-or-less random path exploration algorithm whose goal is to achieve new

code coverage. In our example, we use a random function (line 6) to denote the small likeli-

88

hood of function huft_build() being covered by path exploration. If functions, code blocks,

and program paths are not covered, the related data-flow and hence the corresponding vari-

able/field accesses cannot be recovered by REWARDS. Similar to TIE, REWARDS cannot

deal with uncertainty. In Figure 3.2 , if we assume the function has all its paths covered,

REWARDS would generate the same undesirable result as TIE.

Howard [44] is also dynamic analysis based. It improves REWARDS using heuristics to

resolve conflicting results. For example, it favors data structures with fields over monolithic

scalar variables. Thus, the 128-bit floating-point value copy at instruction [10] is ignored by

Howard in light of the field accesses at instructions [14] and [15], leading to the correctly

recovered type for the heap structure. However, Howard employs a number of heuristics

to tolerate the various code patterns induced by compiler optimizations. For example, it

does not consider rsp+0x8 as a valid base address. As such, Howard mis-classifies offsets

rsp+0x8 and rsp+0x10 as two separate variables local_8 and local_10 as in Figure 3.2 .

This illustrates the difficulty of devising generally applicable deterministic heuristics due to

the complex behaviors of modern compilers. A heuristic rule being general in one case may

become too strict in another case.

Angr [42] is a state-of-the-art open-sourced binary analysis infrastructure, which is widely

used in academia and industry. Its variable recovery does not rely on either static or dy-

namic analysis. Instead, it leverages its built-in concolic execution engine which combines

symbolic execution [57] and forced execution [32 , 58] to recover variables and their data-flow.

Despite the more precise basic information (e.g., data-flow), Angr’s variable recovery and

type inference are not as aggressive as a few other techniques, especially in the presence of

conflicting results. Hence, in Figure 3.2 , the current implementation of Angr cannot rec-

ognize the structure on the heap or on the stack. In our experiment (Section 3.6), Angr

achieves 33.04% precision and 59.27% recall.

3.2.1 Our Technique

Observations. From the above discussion, we observe that compilation and code generation

is a lossy procedure, whose reverse function is inherently uncertain. It is hence very difficult

89

to define generally applicable rules to recover variables. In addition, the underlying analysis

plays a critical role. These analysis have different trade-offs in accuracy, scalability, and the

demand of high quality inputs.

Insights. The first insight is that while existing techniques mostly focus on memory

access patterns (i.e., base addresses and offset values) to identify structures,

there are many other program behaviors that can serve as hints to recover data

structures. For example, they include the following. The first is called data-flow hint. In

Figure 3.1c , there is direct data-flow from v to *p, denoted by the brown arrow 1©, due to

the copy at instructions [10] and [11]. It implies that the two memory regions may be of

the same complex type. The second kind of hints originates from points-to relations, called

points-to hint. As blue arrows 2© in Figure 3.1c indicate, variable p may point to both v and

*p, suggesting that they are of the same type. The third kind of hint is called unified access

point. The green arrows 3© mean that instruction [14] accesses both v.x and p->x, while

instruction [15] accesses both v.y and p->y. Instructions [14] and [15] are likely unified

access points to fields of the same data structure.

The second insight is that the various kinds of hints in variable/structure re-

covery can be integrated in a more organic manner using probabilistic infer-

ence [59] . Instead of making a deterministic call of the type of a memory region, depending

on the number of hints collected, we compute the probabilities for the memory region having

various possible types. This requires developing a set of probabilistic inference rules specific

to variable recovery. In our example, the float-point instructions at instructions [10] and

[11] cause a conflict, which is suppressed by the large number of other hints (e.g., 1©, 2©,

and 3© in Figure 3.1c) in probabilistic analysis.

To realize the above two insights, a critical challenge is to precisely identify data-flow

and points-to relations. The recent advance made by BDA makes this feasible.

Our Technique. For each memory location, we introduce multiple random variables to de-

note the probabilities of possible types of the memory location. We construct the set of pos-

sible types and compute the probabilities for these random variables as follows. Specifically,

Osprey extends BDA to compute valuable program properties (introduction to BDA and

90

F
Facts

Binary
BDA Deterministic

Reasoning

Prob. Constraint
Construction

R

Abstract
Relations/Hints

Prob. Constraint
Solving

C
Constraints/

RulesS
Data

Structures

1 2

34

Figure 3.3. System design

our extension can be found in Sections 3.3 and 3.4), including memory access patterns,

data-flow through register and memory, points-to, heap usage, and so on. These program

properties are regarded as basic facts, each of which has a prior probability representing its

implication of typing and structural properties. For example in Figure 3.1c , the points-to

hint 2© that p may point to both v and *p indicates a large prior probability that v and

*p are of the same type. After collecting all the hints with their probabilities, Osprey

performs probabilistic inference to propagate and aggregate these hints, and derive the pos-

terior marginal probabilities that indicate the probable variables, types, and data structure

declarations. For instance, in Figure 3.2 , the likelihood of v (or local_8) being a stack based

structure is much higher than that of two separated int64s (0.7 v/s 0.3). The likelihood

of p (or local_0) being a pointer to a structure is much higher than being a pointer to a

union (0.9 v/s 0.1). This aligns perfectly with the ideal result. Our experiments show that

if we only report the most probable ones, our technique can achieve 90.18% precision and

88.62% recall, and 89.05% precision and 74.02% recall for complex variables (e.g., struct),

substantially outperforming other existing techniques.

91

3.3 Design Overview

Figure 3.3 shows the workflow of Osprey. Given a stripped binary, BDA is first used

to collect basic analysis facts of the binary (e.g., data-flow and points-to). These basic facts

are then first processed by a deterministic reasoning step 2©. For example, access/data-flow

patterns can be extracted and compared to form hints. The resulted abstract relation-

s/hints then go through the probabilistic constraint construction step 3©, where predicates

describing structural and type properties of individual memory chunks are introduced (e.g.,

whether a memory chunk denotes a field starting at some memory address), each denoted

by a random variable. Here a memory chunk is a smallest memory unit accessed by some

instruction. A set of inference rules are introduced to describe the correlations across these

random variables. As such, a random variable is constrained in multiple ways (by various

hints). In step 4©, these constraints/rules are transformed to a probabilistic graph model.

A customized inference algorithm (developed from scratch) is then used to resolve these

probabilistic constraints to produce the posterior probabilities. Different from most existing

probabilistic inference algorithms, our algorithm is iterative to deal with on-the-fly changes

of the constraints, which are inevitable due to the nature of our problem. For example,

finding a new likely array leads to introduction of new predicates denoting its properties

and requires re-inference. Our algorithm is also optimized as most existing inference engines

cannot deal with the large number of random variables in our context. Our optimization

leverages the modular characteristics commonly seen in programs and program analysis. Fi-

nally, the most probable type and structural predicates are reported and further processed

to generate the final variable, type, and structure declarations.

3.4 Deterministic Reasoning

Before probabilistic inference, our technique performs deterministic reasoning, through

which analysis facts are collected and processed to derive a set of relations and hints. Such

information provides the needed abstraction so that the later probabilistic inference, which

is sensitive to problem scale, does not have to be performed on the low-level facts.

92

f ∈ 〈Function〉 ::= Int64
i ∈ 〈Instruction〉 ::= Int64
s ∈ 〈Size〉 ::= Uint64
a ∈ 〈MemAddress: MA〉 ::= 〈r, o〉

o ∈ 〈Offset〉 ::= Int64
k ∈ 〈Constant〉 ::= Int64
r ∈ 〈MemRegion: MR〉 ::= G|Hi|Sf

v ∈ 〈MemChunk: MC〉 ::= 〈a, s〉

Figure 3.4. Definitions

Primitive Analysis Facts

F01 Access(i, v, k) : Memory chunk v was accessed by instruction i for k > 0 times during

sampling.

F02 BaseAddr(i, v, a) : Instruction i has accessed memory chunk v with base address a during

sampling.

F03 MemCopy(vs, vd) : The value loaded from vs was stored to vd directly, or indirectly via

register copying in the middle during sampling.

F04 PointsTo(v, a) : Memory chunk v stored an address a during sampling.

F05 MallocedSize(i, s) : The malloc function call at instruction i requested s bytes.

F06 MayArrray(a, k, s) : There may be an array with k elements, each s bytes, starting

from address a.

Figure 3.5. Primitive analysis facts

Definitions. As shown in Figure 3.4 , we use f to denote a function, which is essentially a 64-

bit integer denoting the function’s entry point, o to denote an offset, i to denote an instruction,

which is essentially a 64-bit integer representing the starting address of the instruction, and

s to denote a size.

The memory space is partitioned to three distinct regions: global, stack, and heap. The

global region, denoted as G, stands for the space holding all the initialized and uninitialized

global data. A stack frame or a heap-allocated block constitutes a region as well.

Here, we assume that a binary is correctly disassembled and function entries are properly

identified such that the correctness of memory partition can be guaranteed. Although these

are very challenging tasks, addressing them is beyond the scope of our discussion. There are

existing techniques [38 , 60 – 64] that particularly focus on these problems. A stack region for

93

Helper Functions

H01 SameRegion(a1, a2) : Bool ::= a1.r = a2.r

e.g., SameRegion(〈S, 0〉 , 〈S, 8〉) : true

H02 Offset(a1, a2) : Size ∪ {∞} ::= SameRegion(a1, a2) ? a1.o− a2.o :∞

e.g., Offset(〈S, 8〉 , 〈S, 0〉) = 8

H03 AdjacentChunk(v1, v2)∗ : Bool ::= Offset(v2.a, v1.a) = v1.s

e.g., AdjacentChunk(〈〈S, 0〉 , 8〉 , 〈〈S, 8〉 , 1〉) = true

H04 OverlappingChunk(v1, v2)∗ : Bool ::= Offset(v2.a, v1.a) < v1.s

e.g., OverlappingChunk(〈〈S, 0〉 , 8〉 , 〈〈S, 4〉 , 1〉) = true

H05 AddrDiffereceGCD(a1, a2, ..., an)+ : Size ::= gcd({Offset(ak+1, ak) | 0≤k <n})

e.g., AddrDifferenceGCD(〈S, 0〉 , 〈S, 8〉 , 〈S, 32〉) = 8

SizeDifferenceGCD(s1, s2, ..., sn)+ : Size ::= gcd({sk+1 − sk | 0≤k <n})

e.g., SizeDifferenceGCD(12, 20, 36, 72) = 8

H06 MallocedSizes(i) : P(Size) ::= {sk ∈ Size | MallocedSize(i, sk)} in ascendant order

H07 AccessedAddrsInRegion(i, r) : P(MC) ::= {v.a ∈ MA | (v.a.r = r) ∧Access(i, v)}

∗Assuming Offset(v2.a, v1.a) ≥ 0 without losing generality
+Assuming ∀k ∈ [0, n), Offset(ak+1, ak) ≥ 0 and sk+1 − s ≥ 0 without losing generality.

Figure 3.6. Helper functions

a function f , denoted as Sf , models the stack frame that holds local variables/structures for

f . A heap region allocated at an instruction i is denoted as Hi. A memory region r could

be any of the three kinds. A memory address a is represented as 〈r, o〉, in which r stands

for the region a belongs to and o for a’s offset relative to the base of the region. A memory

chunk, which is a term we inherit from VSA [19], denotes a variable-like smallest memory

unit that is ever visited by some instruction. It is represented as 〈a, s〉 where a models the

starting address of the unit and s its size. It may correspond to a scalar variable, a data

structure field, or an array element of some primitive type.

Consider the assemble code at instruction [11], “movups [rax], xmm0”, in Figure 3.1b .

As register rax acquires its value a = 〈r = H08, o = 0〉 from instruction [08], the movups

instruction accesses a 16-byte variable-like memory chunk v = 〈a = 〈H08, 0〉 , s = 16〉.

Primitive Analysis Facts Collected by BDA. As the first step, we extend BDA to

collect a set of basic facts. Recall that BDA is a per-path abstract interpretation technique

94

Deterministic Inference Rules

R01 Accessed(i, v) :- Access(i, v, k̂)

R02 Accessed(v) :- Accessed(̂i, v)

R03 AccessSingleChunk(i, r) :- |AccessedAddrsInRegion(i, r)| = 1

R04 AccessMultiChunks(i, r) :- |AccessAddrsInRegion(i, r)| > 1

R05 HiAddrAccessed(i, r, ah) :- ah = max(AccessAddrsInRegion(i, r))

R06 LoAddrAccessed(i, r, al) :- al = min(AccessedAddrsInRegion(i, r))

R07 MostFreqAddrAccessed(i, r, af , k) :- k = max({kt|Access(i, v, kt)}) ∧Access(i, v, k) ∧ v.a = af

R08 ConstantAllocSize(i, s) :- (|MallocedSizes(i)| = 1) ∧ (s ∈ MallocedSizes(i))

R09 AllocUnit(i, s) :- (|MallocedSizes(i)| > 1) ∧

(SizeDifferenceGCD(MallocedSizes(i)) = s)

R10 DataFlowHint(as, ad, s) :- as =vs.a ∧ ad = vd.a ∧ (Offset(v′
s.a, as) = Offset(v′

d.a, ad) = s) ∧

SameRegion(as,v′
s.a) ∧ SameRegion(ad,v′

d.a) ∧MemCopy(vs, vd) ∧MemCopy(v′
s, v′

d)

R11 UnifiedAccessPntHint(as, ad, s) :- as =vs.a ∧ ad = vd.a ∧ (Offset(v′
s.a, as) = Offset(v′

d.a, ad) = s) ∧

SameRegion(as,v′
s.a) ∧ SameRegion(ad,v′

d.a) ∧Accessed(i1, vs) ∧Accessed(i1, vd) ∧

Accessed(i2, v′
s) ∧Accessed(i2, v′

d)

R12 PointsToHint(as, ad, s) :- as =vs.a ∧ ad = vd.a ∧ (Offset(v′
s.a, as) = Offset(v′

d.a, ad) = s) ∧

SameRegion(as,v′
s.a) ∧ SameRegion(ad,v′

d.a) ∧ BaseAddr(−, v′
s, as) ∧ BaseAddr(−, v′

d, ad) ∧

PointsTo(vx, as) ∧ PointsTo(vx, ad)

Figure 3.7. Deterministic reasoning rules

driven by path sampling. It uses precise symbolic values (i.e., without approximation) and

interprets individual paths separately. One can consider that BDA is analogous to executing

the subject binary on an abstract domain. It does not need to merges values across paths

like other abstract interpretation techniques (e.g., VSA), so the abstract domain is precise

instead of approximate. We collect six types of facts such as memory access behaviors

and points-to relations, as presented in Figure 3.5 . Specifically, Access(i, v, k) [F01] states

that instruction i accessed a memory chunk v for k times during the sample runs. By

precisely tracking data-flow through both registers and memory, BDA can determine the

base address of all offsetting operations. In particular, it looks for data-flow paths that

starts by loading an address to a register, which is further copied to other registers or memory

chunks, incremented by constant offsets, and eventually dereferenced. BaseAddr(i, v, a) [F02]

95

denotes that i accessed a memory chunk v whose base address is a. MemCopy(vs, vd) [F03]

states that chunk vs was copied to vd. It is abstracted from a data-flow path from a memory

read to a memory write, with possible register copies in the middle. PointsTo(v, a) [F04]

states that an address value a was ever stored to v. Intuitively, one can consider v a pointer

pointing to a. MallocedSize(i, s) [F05] records that a memory allocation function invocation i

ever requested size s. MayArray(a, k, s)[F06] denotes that a may start an array of k elements,

each with size s. Similar to Ghidra and IDA, these array-related hints are collected via

heuristics, e.g., by looking at the arguments of calloc library call. We will show later that

we have more advanced inference rules for arrays. MayArray only denotes the direct hints.

Consider the motivation example in Figure 3.1b and assume the function huft_build

was sampled 10 times. Thus, instruction [01] was executed 10 times. As rsp stores the

base address of region Shuft_build, we have Access(01, 〈〈Shuft_build, 8〉 , 8〉 , 10) for the first

instruction. At instruction [08], malloc is called to request 16 bytes of memory, rep-

resented by MallocedSize(08, 16). After that, malloc returns the base address of heap

region H08 and stores it to rax. Instruction [09] further stores this address to [rsp].

Hence we get PointsTo(〈〈Shuft_build, 0〉, 8〉, 〈H08, 0〉). Instructions [10] and [11] copy value

from rsp+0x8 to rax, generating MemCopy(〈〈Shuft_build, 8〉, 16〉, 〈〈H08, 0〉, 16〉). Instruction

[15] accesses rcx+0x8 where rcx is the base register holding the value of 〈H08, 0〉, we have

BaseAddr(15, 〈〈H08, 8〉 , 8〉 , 〈H08, 0〉).

Helper Functions. In Figure 3.6 , we define a number of helper functions that are derived

from the six kinds of basic analysis facts. These helper functions essentially derive aggre-

gated information across a set of primitive analysis facts. They will be used in the inference

rules discussed later. Specifically, SameRegion(a1, a2) [H01] determines whether two mem-

ory addresses belong to the same memory region. Note that in Figure 3.6 , the explanation

and example for each helper function are to its right. Offset(a1, a2)[H02] returns the offset

between two memory addresses, which equals to the difference between their offset values if

the two addresses belong to the same region, ∞ otherwise. AdjacentChunk(v1, v2) [H03] de-

termines if two memory chunks are next to each other. AddrDifferenceGCD (a1, ..., an) [H05]

returns the greatest common divisor (GCD) of the differences of a list of sorted addresses.

SizeDifferenceGCD (s1, ..., sn) [H05] returns the GCD of the differences between a list of

96

sorted sizes. MallocedSizes(i) [H06] returns the list of requested sizes from a malloc-site i.

AccessedAddrsInRegion(i, r) [H07] returns all the addresses accessed by i in region r.

Deterministic Inference Rules. The goal of deterministic inference is to derive additional

relations that were not explicit. In Figure 3.7 , we present the inference rules in the following

format.

T :− P1 ∧ P2 ∧ · · · ∧ Pn

T is the target relation and Pi is a predicate. It means that the satisfaction of predicates

P1, P2, . . . , Pn leads to the introduction of T . Observe that no probabilities are involved.

Specifically, Accessed(i, v) [R01] denotes if instruction i has accessed memory chunk v

and Accessed(v) [R02] denotes if v has been accessed. They are derived from the primitive

fact Access(...) [F01]. The next two relations model the access pattern of instruction i in

memory region r. AccessSingleChunk(i, r) [R03] denotes that instruction i is always access-

ing only one memory chunk in region r. A typical example is an instruction writing to a

constant address, e.g., instruction “mov [0xdeadbeef],0”. AccessMultiChunks(i, r) [R04], in

contrast, denotes i accessed multiple chunks in r, such as an instruction in some for-loop

that accesses individual elements in a memory buffer. HiAddrAccessed(i, r, ah)[R05] dictates

that ah is the highest address in r accessed by i. LoAddrAccessed(i, r, al)[R06] is the inverse.

MostFreqAddrAccessed(i, r, af , k) [R07] denotes af is the most frequently accessed address in

r by i.

The next two rules describe the allocation patterns. ConstantAllocSize(i, s) [R08] denotes

that i has only requested one size s. AllocUnit(i, s) [R09] determines if i allocated memory

of different sizes and the differences are all multiples of s.

The next three rules describe the three kinds of hints (Section 3.2). DataFlowHint(as, ad,

s) [R10] suggests the presence of structure if there are copies from two addresses separated

by an offset (e.g., two fields from a structure) to two other respective addresses separated

by the same offset. Formally, it renders true if given two addresses as and ad, there are

two other addresses (denoted by v′s.a and v′d.a) that have the same offset from as and ad,

respectively, such that there are memory copies from as to ad and v′s.a to v′d.a. Here as and

ad denote two instances of the same structure. UnifiedAccessPntHint(as, ad, s) [R11] suggests

97

01. typedef struct {
02. int n;
03. char *buf;
04. } str_t;
05.
06. void my_print(str_t *s) {
07. size_t n = s->n;
08. char *buf = s->buf;
09. write(1, buf, n);
10. }

11. str_t *my_strcpy(str_t *src) {
12. str_t *dst = malloc(sizeof(str_t));
13. int n = dst->n = src->n;
14. dst->buf = malloc(sizeof(char) * n);
15. for (int i = 0; i < n, i++)
16. dst->buf[i] = src->buf[i];
17. my_print(src);
18. my_print(dst);
19. return dst;
20. }

(a) Source code

*src(<ℋs , 0>):

ROUND 1 {.n = <𝒢, 1>, .buf = <ℋb, 0>}
ROUND 2 {.n = <𝒢, 2>, .buf = <ℋb, 0>}
ROUND 3 {.n = <𝒢, 3>, .buf = <ℋb, 0>}

01. typedef struct {
02. int n;
03. char *buf;
04. } str_t;
05.
06. void my_print(str_t *s) {
07. size_t n = s->n;
08. char *buf = s->buf;
09. write(stdout, buf, n);
10. }

11. str_t *my_strcpy(str_t *src) {
12. str_t *dst = malloc(sizeof(str_t));
13. int n = dst->n = src->n;
14. dst->buf = malloc(sizeof(char) * n);
15. for (int i = 0; i < n, i++)
16. dst->buf[i] = src->buf[i];
17. my_print(src);
18. my_print(dst);
19. return dst;
20. }

<<ℋs, 0>, 8>

<<ℋs, 8>, 8>

<<ℋb, 8>, 8>

<<ℋb, 16>, 8>

<<ℋb, 0>, 8>

k=3

i=13 Access

i=16 Access

k=3

k=2

k=1

<<ℋ12, 0>, 8>

<<ℋ12, 8>, 8>

<<ℋ14, 8>, 8>

<<ℋ14, 16>, 8>

<<ℋ14, 0>, 8>

MemCopy

MemCopy

MemCopy

i=07 Access

i=08 Access

Access

MemCopy

PointsTo

𝓗14 (dst->buf)

𝓗12 (dst)

𝓗b (src->buf)

𝓗s (src)

𝑛

𝑏𝑢𝑓

𝑏𝑢𝑓[0]

𝑏𝑢𝑓[1]

𝑏𝑢𝑓[2]

(b) Memory regions (boxes), chunks (entries in box), and relations (arrows)

Figure 3.8. Example for deterministic reasoning

the presence of structure if two addresses (i.e., denoting the same field from two instances of

the same structure) are accessed by a same instruction i1 and their offsets are also accessed

by another same instruction i2. Formally, it renders true given two addresses as and ad,

there are two other addresses (denoted by v′s.a and v′d.a) that have the same offset from as

and ad, respectively, such that as and ad are accessed by an instruction i1 and v′s.a and v′d.a

accessed by another instruction i2. PointsToHint(as, ad, s) [R12] determines as and ad may

denote two instances of the same structure if as and ad are two base addresses for two other

addresses that have the same s offset from the base, and both as and ad are stored to the

same pointer variable.

In Figure 3.8 , we use a customized string copy function to demonstrate the deterministic

reasoning procedure, with the source code in Figure 3.8a . Lines 1-4 define a struct str_t

that consists of an int field n and a char * field buf, indicating the string’s length and

memory location, respectively. Lines 6-10 define a my_print() function that prints a str_t

98

structure to stdout. Function my_strcpy() copies src to a heap-allocated dst (lines 12-16),

and then prints the two strings (lines 17-18). Note that we use source code to illustrate for

easy understanding, while Osprey works on stripped binaries.

Assume BDA samples my_strcpy() 3 times, and src->n equals to 1, 2, and 3, in the

respective sample runs. Assume sizeof (char)=8. Figure 3.8b illustrates the regions (denoted

by the colored boxes), the memory chunks in regions from all three runs (denoted by the

entries inside the colored boxes), and the derived relations (denoted by the arrows). For

example, the arrow at the lower-right corner indicates a relation Access(13, 〈〈Hs, 0〉 , 8〉 , 3).

Observe that all the accessed fields of src locate in regionHs, the lower green box, and all the

accessed elements in src->buf locate in region Hb, the upper green box. At line 12, function

malloc’s parameter is always 16, leading to relation ConstantAllocSize(12, 16). Expression

src->n at line 13 only accesses a memory chunk 〈Hs, 0〉, leading to AccessSingleChunk(13,Hs).

In contrast, from the accessed addresses src->buf[i] at line 16, we have AccessMultiChunks

(16,Hb), HiAddrAccessed(16,Hb, 〈Hb, 16〉), and LoAddrAccessed(16,Hb, 〈Hb, 0〉), and Most-

FreqAddAccessed(16, Hb, 〈Hb, 0〉, 3) denoting the most frequent accessed address is 〈Hb, 0〉,

i.e., src->buf[0] (accessed three times in the three sample runs).

Consider the my_print() function, where line 7 accesses both 〈Hs, 0〉 and 〈H12, 0〉, with

H12 the heap region allocated at 12, and line 8 accesses both 〈Hs, 8〉 and 〈H12, 8〉 that

have the same offset, indicating UnifiedAccessPntHint(〈Hs, 0〉, 〈H12, 0〉, 8). Intuitively, the

corresponding fields of two structures dst and src are accessed by the same instructions,

which implies the presence of structure. Inside function my_strcpy(), we acquire a data-

flow hint due to the copies from src to dst. Specifically, we have DataFlowHint(〈Hb, 0〉,

〈H14, 0〉, 16). From the invocation interface between my_strcpy() and my_print(), we have

PointsToHint(〈Hs, 0〉, 〈H12, 0〉, 16) because both the base addresses of src and dst have

been stored to the same function parameter of my_print(). �

3.5 Probabilistic Reasoning

As discussed in Section 3.2 , variable and structure recovery is a process with inherent

uncertainty such that the collected hints may have contradictions due to: (1) the behavior

99

patterns defining hints may happen by chance, instead of reflecting the internal structure;

(2) BDA’s per-path interpretation may not respect path feasibility such that infeasible be-

haviors may be included in the deterministic reasoning step. For example, violations of

path feasibility may lead to out-of-bound buffer accesses and then bogus data-flow hints.

We resort to probabilistic inference to resolve such contradictions. Intuitively, the effects of

incorrect hints will be suppressed by the correct ones which are dominant. In particular,

for each memory chunk v, we introduce a number of random variables to describe the type

and structural properties of v. The random variables of multiple memory chunks are hence

connected through the relations derived from the previous deterministic reasoning step and

represented as a set of probabilistic inference rules. Each rule can be considered a proba-

bility function. They are transformed to a probabilistic graph model [65] and an inference

algorithm is used to compute the posterior marginal probabilities. The most probable results

are reported. Different from many existing probabilistic inference applications, where the

set of inference rules are static, we have dynamic inference rules, meaning that rules will be

updated, removed, and added on the fly based on the inference results. We hence develop

an iterative and optimized inference algorithm (Section 3.5.2).

3.5.1 Probabilistic Inference Rules

Predicates and Random Variables. Figure 3.9 presents the set of predicates we in-

troduce. They denote the typing and structural properties. Random variables are intro-

duced to denote their instantiations on individual instructions and memory chunks, each

describing the likelihood of the predicate being true. For instance, The random variable for

Scalar(〈〈G, 0x8043abf0〉 , 8〉) denotes the likelihood that the 8-byte global memory chunk

starting at 0x8043abf0 is a scalar variable. In the remainder of the chapter, we will use the

two terms predicate and random variable interchangeably. Specifically, PrimitiveVar(v)[P01]

asserts that memory chunk v denotes a primitive variable, which is a variable without further

inner structure. It could be a scalar variable, a structure field, or a primitive array element.

Similarly, PrimitiveAccess(i, v)[P02] asserts that instruction i exclusively accesses a primitive

variable v. The meanings of UnfoldableHeap and FoldableHeap will be explained in the later

100

P01 PrimitiveVar(v) : v is of primitive type, e.g., char, int, and void *

P02 PrimitiveAccess(i, v) : Instruction i accessed a primitive variable v

P03 UnfoldableHeap(i, s) : The size of the unfoldable part of heap structure allocated

at i is s

P04 FoldableHeap(i, s) : The unit size of the foldable part of heap structure allocated

at i is s

P05 HomoSegment(a1, a2, s) : The two s-byte segments starting at a1 and a2, respectively,

are homomorphic

P06 ArrayStart(a) : Address a is the starting address of an array

P07 Scalar(v) : Variable v is a scalar

P08 Array(a1, a2, s) : Memory from a1 to a2 belongs to an array whose element

size is s-byte

P09 FieldOf (v, a) : Variable v is a field of a structure with starting address a

P10 Pointer(v, a) : Variable v is a pointer pointing to a structure denoted by a

P11 IntVar(v) / LongVar(v) / ... : Variable v is of the int / long /... type

Figure 3.9. Predicate definitions

discussion of heap structure recovery. HomoSegment(a1, a2, s) [P05] asserts that the memory

region a1 ∼ (a1 + s) and a2 ∼ (a2 + s) are homomorphic, hence likely two instances of the

same structure. They are likely homomorphic when their access patterns and data-flow are

similar. ArrayStart(a) [P06] represents a is the starting address of an array.

While the above predicates are auxiliary, the remaining ones (underlined in Figure 3.9)

denote our final outcomes. Variables, structures and types can be directly derived from the

inferred values of these predicates. In particular, Scalar(v)[P07] indicates v is a scalar variable

(not an array or a structure). Array(a1, a2, s)[P08] represents that the memory region from

a1 to a2 form an array of size s. FieldOf (v, a) [P09] asserts that v is a field of a structure

starting at a. Pointer(v, a) [P10] asserts v is a pointer to a structure starting at a. The last

few predicates assert the primitive types of variables. Note that they allow us to express the

most commonly seen structural properties, including nesting structures, array of structures,

and structure with array field(s). We have other predicates for unions. They are elided for

discussion simplicity.

101

01. typedef struct { long x; long y; } A;
02. typedef struct { long x; long z[]; } B;
03.
04. void heap_example(size_t n, size_t m) {
05. A *p1 = malloc(sizeof(A));
06. A *p2 = malloc(sizeof(A) * n);
07. B *p3 = malloc(sizeof(B) + sizeof(long [m]));
08. ...

(a) Source code.

ℋ05

...p2[0].x

p1->x p1->y

p2[0].x p2[1].x p2[1].y

p3->x p3->z[0] p3->z[1] p3->z[2] ...

Unfoldable

Foldable Foldable

Foldable Foldable Foldable
ℋ06

ℋ07

Unfoldable

(b) Memory layout of code in Figure 3.10a .

Figure 3.10. Example to demonstrate our heap model

Example. Consider an example in Figure 3.10 , with the source code in Figure 3.10a . Three

types of structures are allocated on the heap. Line 5 allocates a singleton structure (*p1); line

6 allocates an array of the same structure (*p2); and line 7 allocates a structure (*p3) with

an array. Note that the size of *p3 is not fixed. These structures can be easily represented

by our predicates. Particularly, the structure of *p1 is represented as FieldOf (&(p1->x),

p1), FieldOf (&(p1->y), p1), Long(&(p1->x)), and Long(&(p1->y)) (note that the syntax of

these predicates is simplified for illustration); *p2 is represented as Array(p2, p2+16*n, 16),

FieldOf (&(p2->x), p2) and so on (similar to *p1); *p3 is represented as FieldOf (&(p3->x),

p3), Array(&(p3->z), &(p3->z)+16*m, 16), Long(&(p3->x)), and Long(&(p3->z)). �

Figures 3.11 , 3.12 , 3.13 , and 3.14 presents the probabilistic inference rules. These rules

read as follows: the first column is the rule id for easy reference; the second column is the

condition that needs to be satisfied in order to introduce the inference rule in the third

column. Each inference rule is a first-order logic formula annotated with prior probability.

102

ID Condition Probabilistic Constraint

CA01 Access(i, v, k)
p(k)↑
−−−−→ PrimitiveVar(v)

CA02 AdjacentChunk(v1, v2) ∧Accessed(v1) ∧Accessed(v2), PrimitiveVar(v1) p↑←→ PrimitiveVar(v2)

CA03 OverlappingChunk(v1, v2) ∧Accessed(v1) ∧Accessed(v2), PrimitiveVar(v1) p↓←→ PrimitiveVar(v2)

CA04 Accessed(i, v), PrimitiveVar(v) p↑−−→ PrimitiveAccess(i, v)

CA05 Accessed(i, v′), PrimitiveAccess(i, v) p↑−−→ PrimitiveVar(v′)

CA06 AccessSingleChunk(i, v.a.r) ∧Access(i, v, k) PrimitiveAccess(i, v)
p(k)↑
−−−−→ Scalar(v)

CA07 AdjacentChunk(v1, v2) ∧Access(i1, v1, k1) ∧ Scalar(v1)
p(k1,k2)↑
←−−−−−→ Scalar(v2)

Access(i2, v2, k2) ∧AccessSingleChunk(i1, v1.a.r) ∧

AccessSingleChunk(i2, v2.a.r)

CA08 Scalar(v)
p(k)↓
←−−→ FieldOf(v, a)

Figure 3.11. Probabilistic inference for primitive and scalar variables

Each predicate instantiation is associated with a random variable whose posterior probability

will be computed by inference. For example, rule CA01 means that v has p(k) probability of

being a primitive variable if an instruction i has accessed it k times (over all the sample runs).

Note that the probability is a function of k. The up-arrow denotes that if Access(i,v,k) is

likely, then PrimitiveVar(v) is likely. A down-arrow denotes the opposite.

Primitive Variable and Scalar Variable Recovery. Rules CA01-CA05 (In Figure 3.11)

are to identify primitive variables. Rule CA02 means that a variable is likely primitive if its

adjacent one is likely primitive; CA03 means that if two variables have overlapping address,

one likely being primitive renders the other one unlikely (note the down-arrow); CA04 and

CA05 state that if a variable v is primitive, the instruction that accesses it is a primitive

access such that another variable v′ accessed by it is primitive too. Rules CA06-CA08 are for

scalar variable recovery. A primitive variable may not be a scalar variable as it could be a

field or an array element. CA06 says v is scalar if it is primitive and there is an instruction i

that exclusively accesses it. Intuitively, if i accesses (non-scalar) array elements or structure

fields, it likely accesses multiple memory chunks. CA07 says a scalar’s neighbor may be a

scalar too, depending on their access frequencies (e.g., when the frequencies are similar).

CA08 says a scalar variable cannot be a field.

103

ID Condition Probabilistic Constraint

CB01 MayArray(a, k, s) p↑−−→

Array(a, a + s× k, s) ∧ArrayStart(a)

CB02 AccessMultiChunks(i, r) ∧ PrimitiveAccess(i, v1)∧PrimitiveAccess(i, v2) p↑−−→

LoAddrAccessed(i, r, v1.a) ∧ Array(v1.a, v2.a+v2.s, v1.s)

HiAddrAccessed(i, r, v2.a)

CB03 (a1l ≤ a2l ≤ a1h ≤ a2h) ∧ Array(a1l, a1h, s1) p↑←→ Array(a2l, a2h, s2)

(s1 = s2 = s) ∧ (s | a2l − a1l)

Array(a1l, a1h, s1) ∧Array(a2l, a2h, s2) p↑−−→

Array(a1l, a2h, s)

CB04 (a1l ≤ a2l ≤ a1h ≤ a2h) ∧ Array(a1l, a1h, s1) p↓←→ Array(a2l, a2h, s2)

((s1 6= s2) ∨ ((s1 = s2 = s) ∧ (s - a2l − a1l)))

Array(a1l, a1h, s1) p↑−−→ Array(a1l, a2l, s1)

Array(a2l, a2h, s2) p↑−−→ Array(a1h, a2h, s2)

CB05 a1 ≤ v.a ≤ a2 Scalar(v) p↓←→ Array(a1, a2, s)

Array(a1, a2, s) ∧ Scalar(v) p↑−−→ Array(a1, v.a, s)

Array(a1, a2, s) ∧ Scalar(v) p↑−−→ Array(v.a+v.s, a2, s)

CB06 a2 − a1 < s Array(a1, a2, s) = false

CB07 BaseAddr(i, v, a) ∧AccessMultiChunks(i, v.a.r) PrimitiveAccess(i, v) p↑−−→ ArrayStart(a)

CB08 MostFreqAddrAccessed(i, r, v, k) ∧ PrimitiveAccess(i, v)
p(k)↑
−−−−→ ArrayStart(v.a)

AccessMultiChunks(i, r)

CB09 Accessed(i,v1)∧Accessed(i,v2) ∧ ArrayStart(v1.a) p↓−−→ ArrayStart(v2.a)

SameRegion(v1.a,v2.a)∧(v1.a<v2.a)

Figure 3.12. Probabilistic inference for arrays

Array Recovery. Rules CB01-CB09 (In Figure 3.12) are for array recovery. A common

observation is that, the vast majority of arrays are visited in loops. If multiple elements on

a continuous region are accessed by an instruction, intuitively, it’s likely that this is access

to an array. In particular, rules CB01-CB02 receive the basic array hints from the previous

analysis steps; CB03-CB06 aggregate hints to enhance confidence and/or derive new arrays;

and CB07-CB09 derive array heads. Intuitively, CB01 states that there is likely an array if

our deterministic reasoning says so (e.g., by observing calloc). CB02 says if addresses are

accessed by the same instruction, there is likely an array and the lowest and highest addresses

accessed by the instruction form the lower and upper bounds of an array, respectively. CB03

104

ID Condition Probabilistic Constraint

CC01 ConstantAllocSize(i, s) p↑−−→ UnfoldableHeap(i, s) ∧ FoldableHeap(i, 0)

CC02 AllocUnit(i, s) p↑−−→ MutitleHeap(i, s)

CC03 v.a.r = Hi PrimitiveVar(v) p↑−−→ UnfoldableHeap(i, v.a.o + v.s)

CC04 s1 6= s2 UnfoldableHeap(i, s1) p↓←→ UnfoldableHeap(i, s2)

CC05 s1 ≤ s2 UnfoldableHeap(i, s1) p↑−−→ UnfoldableHeap(i, s2)

CC06 (a1.r = a2.r = Hi) ∧ Array(a1, a2, s1) p↑−−→ FoldableHeap(i, s2)

(s1 = s2)

CC07 Accessed(v) ∧ PrimitiveVar(v) ∧UnfoldableHeap(i, sh) ∧ FoldableHeap(i, st) p↑−−→

(v.a.r = Hi) ∧ PrimitiveVar(〈〈v.a.r, (v.a.o− sh)%st + sh〉 , v.s〉)

(v.a.o ≥ sh + st)

UnfoldableHeap(i, sh) ∧ FoldableHeap(i, st) p↓−−→ PrimitiveVar(v)

Figure 3.13. Probabilistic inference for heap folding

says that when two arrays overlap, have the same element size s and the distance of the

two arrays is divisible by s, the two arrays can enhance each other’s confidence (the first

formula) and they can be merged to a larger array (the second formula). CB04 says that

when two arrays overlap, but they are not homomorphic (e.g. having different element sizes

or misalign), one likely being true array renders the other unlikely (the first formula) and the

non-overlapping parts can still be considered possible arrays (the second and third formulas).

CB05 says that a scalar appearing within the range of an array breaks it to two smaller arrays.

Heap Folding. Rules CC01-CC07 (In Figure 3.13) are auxiliary rules for analysing heap

structures. While BDA can achieve alias analysis accuracy similar to dynamic analysis

(with better coverage), it leads to sparse heap behaviors. For example, assume a large heap

array of structures is allocated. Different paths may access different heap array elements (at

distinct addresses), each disclosing part of the behavior of the structure. Since our goal is

to recover the complete structural properties, we need to aggregate these sparse behaviors.

We observe any heap region allocated can be partitioned into two consecutive parts:

unfoldable and foldable, while such a region may be a singleton structure with fixed size,

an array of structures of a fixed size, or a singleton structure with varying size. The three

105

allocations at lines 5-7 in Figure 3.10a denote such different cases. The unfoldable part

includes all the fields whose accesses always occur at the same addresses, whereas the foldable

part includes the fields whose accesses may occur at different (sparse) addresses. We propose

to fold the behaviors of all the instances in the foldable part to the first instance, which

will hence possess all the structural properties of all the instances. For example, as shown

in Figure 3.10b , the heap region of H05 has only unfoldable fields as p1->x and p1->y

always have the addresses of 〈H05, 0〉 and 〈H05, 16〉, respectively. In contrast, all fields in the

region H06 are foldable as the p2[∗].x’s have various addresses. We hence want to fold the

behaviors of p2[1], p2[2], and so on to p2[0]. The region H07 has an unfoldable field followed

by a foldable field which is an array of varying size. Observe that foldable fields can only

occur after unfoldable fields in a region. In Figure 3.9 , we introduce UnfoldableHeap(i, s) to

denote the first s bytes of the heap region allocated at i are unfoldable and FoldableHeap(i, s)

to denote the region allocated at i has a foldable part with an element size of s. For example,

we have FoldableHeap(7, 16) for region H7 in Figure 3.10b .

CC01 states that if i only allocates a constant size region, the entire region is unfoldable.

CC02 says that if through deterministic analysis, we know that the allocation size of i is

a multiple of s, the foldable part has an element size of s. CC03 says that if a primitive

field v is found inside a heap region, all the part up to v is unfoldable. This is because

unfoldable fields must precede foldable fields. CC04 states that a heap region cannot have

different unfoldable parts. However, the presence of a smaller unfoldable part can enhance

the confidence of a larger unfoldable part (CC05). CC06 says that an array found inside a

heap region must belong to the foldable part. Rule CC07 is the folding rule. The first formula

says that a primitive field v found inside a later structure instance inside the foldable region

indicates the presence of a primitive field at the corresponding offset inside the first instance.

For example in H06, the identification of y field in p2[1] indicates the presence of y field in

p2[0], although p2[0]->y is never seen during sample runs. The second formula eliminates

the primitive field v after it is folded.

Structure Recovery. Like existing work, we leverage the instruction patterns of load-

ing base address to recognize a data structure. However, we model its uncertainty using

106

ID Condition Probabilistic Constraint

CD01 DataFlowHint(a1, a2, s)
p(s)↑
−−−−→ HomoSegment(a1, a2, s)

CD02 PointsToHint(a1, a2, s)
p(s)↑
−−−−→ HomoSegment(a1, a2, s)

CD03 UnifiedAccessPntHint(a1, a2, s)
p(s)↑
−−−−→ HomoSegment(a1, a2, s)

CD04 (0 < a2 − a1 < s1) HomoSegment(a1, a1′ , s1) p↑←→ HomoSegment(a2, a2′ , s2)

HomoSegment(a1, a1′ , s1) ∧HomoSegment(a2, a2′ , s2) p↑−−→

HomoSegment(a1, a1′ , a2 − al + s2)

CD05 (0 < v1.a− a1 = v2.a− a2 < s) ∧ PrimitiveVar(v1) ∧ PrimitiveVar(v2) p↓←→ HomoSegment(a1, a2, s)

(v1.s 6= v2.s)

CD06 BaseAddr(v1, i, v2.a) ∧ PrimitiveVar(v1) ∧ PrimitiveVar(v2) p↑−−→ FieldOf(v1, v2.a)

Accessed(v1) ∧Accessed(v2)

CD07 v.a.r = Hi PrimitiveVar(v) p↑−−→ FieldOf(v, 〈Hi, 0〉)

CD08 (n ≤ s) ∧ (v1.a = a1 + n) ∧ FieldOf(v1, a1) ∧HomoSegment(a1, a2, s) p↑−−→ FieldOf(v2, a2)

(v2.a = a2 + n)

CD10 a1 6= a2 FieldOf(v, a1) p↓←→ FieldOf(v, a2)

CD11 PointsTo(v1, v2.a) ∧ PrimitiveVar(v1) ∧ PrimitiveVar(v2) p↑−−→ Pointer(v1, v2.a)

Accessed(v1) ∧Accessed(v2)

Figure 3.14. Probabilistic inference for structures

probabilities. In addition, we consider the data flow among different variables of the same

type. Specifically, rules CD01-CD10 are for structure recovery, including global/stack/heap

structures. Intuitively, we first identify memory segments (i.e., part of a structure) that

are homomorphic, meaning that they have highly similar access patterns, data flow, and

points-to relations. These segments are then intersected, unioned, or separated to form the

final structures. Individual fields can be then identified from their access pattern within the

structure. Specifically, rules CD01-CD03 (In Figure 3.14) receive deterministic hints. CD04

states that if a pair of homomorphic segments overlap with another pair of homomorphic

segments, they enhance each other’s confidence (the first formula) and may form a pair of

new homomohpic segments that are the union of the original two pairs (the second formula).

Intuitively, it corresponds to that the sub-parts of a same complex structure are being ex-

posed differently (e.g., through different data flow), and we leverage the overlap of these

parts to join them. CD05 says that if the corresponding primitive fields in a pair of homo-

107

x1 x2 fCA04

0 0 p
0 1 p
1 0 1− p
1 1 p

(a) Probability function for CA04

!" !# !$

%&'() %&'(*

1 2 3 4

(b) Factor graph for CA04 and CA05

Figure 3.15. Factor graph example

morhpic segments have different access patterns (4-byte access versus 8-byte access), either

the primitive field predicates are likely false or the homomorphic predicate. Rules CD06 and

CD07 identify fields of structure from the deterministic reasoning results (e.g., BaseAddr) and

if the accesses are primitive. CD08 transfers field information across a pair of homomorphic

segments. Rule CD09 asserts a field cannot have two different base addresses. CD09 deter-

mines a pointer variable v1 if a valid address v2.a is stored to v1 and v2 has been accessed as

a primitive variable.

Osprey also has a set of typing rules that associate primitive types (e.g., int, long, and

string) to variables, based on their data-flow to program points that disclose types such as

invocations to string library functions. These rules are similar to existing works [33 , 43 , 44]

and hence elided.

3.5.2 Probabilistic Constraint Solving

Each of the probabilistic constraints in Figures 3.11 , 3.12 , 3.13 ,and 3.14 (the formulas

in the last column) essentially denotes a probability function over the random variables

involved. The functions can be further transformed to a probabilistic graph model called

factor graph [65], which is a bi-partite graph with two kinds of nodes, function node denoting

a probability function, and variable node denoting a random variable. Edges are introduced

108

1 : mx1→fCA04
(x1) = 1

2 : mfCA04→x2(x2 = 0) =

∑
x1

fCA04(x1, 0) ∗mx1→fCA04
(x1)∑

x1,x2
fCA04(x1, x2) ∗mx1→fCA04

(x1)

= 0.8 + 0.2
0.8 + 0.8 + 0.2 + 0.8 ∗ 1 = 1

2.6

mfCA04→x2(x2 = 1) =

∑
x1

fCA04(x1, 1) ∗mx1→fCA04
(x1)∑

x1,x2
fCA04(x1, x2) ∗mx1→fCA04

(x1)

= 0.8 + 0.8
0.8 + 0.8 + 0.2 + 0.8 ∗ 1 = 1.6

2.6
3 : mx2→fCA05

(x2) =mfCA04→x2(x2)

4 : mfCA05→x3(x3 = 1) =

∑
x2

fCA05(x2, 1) ∗mx2→fCA05
(x2)∑

x2,x3

fCA05(x2, x3) ∗mx2→fCA05
(x2)

= 0.65

Figure 3.16. Definition and computation of each message shown in Figure 3.15

between a function node and all the variable nodes related to the function. The whole factor

graph denotes the joint distribution of all the random variables.

Example. Boolean variables x1, x2, and x3 denote PrimitiveVar(v), PrimitiveAccess(i, v), and

PrimitiveVar(v′), respectively. Rules CA04 is transformed to x1
p↑−→ x2, which denotes the

probability function in Figure 3.15a . The probability function for CA05 is similar. The two

form a factor graph in Figure 3.15b , which could be solved by belief propagation algorithms

with passing messages on it. For example, assume the prior probabilities of CA04 and CA05

are both 0.8, and we want to compute the marginal probability p(x3 = 1), that is, the

probability of v being of primitive type. As the factor graph is a tree, we can call x3 the root

node. Then message passing starts from the leaf node x1. After messages reach the root

finally, the marginal probability of x3 can be computed. The definition and computation of

each message is shown in Figure 3.16 . �

Given a set of observations (e.g., x1 = 1) from the deterministic reasoning step, and the

prior probabilities (p values), posterior marginal probabilities are computed by propagating

and updating probabilities along the edges. Some of the rules, such as CB02, generate new

109

predicate nodes during inference. After each round of inference (i.e., probabilities converge

after continuous updates), it checks all the (new) predicate nodes to coalesce those denoting

the same meaning to one node. The node inherits all the edges of all the other nodes that

are coalesced. Then another round of inference starts. Note that while some probabilistic

inference applications are stochastic, our application (variable recovery and typing) has the

uncertainty originating from loss of debugging information. In other words, there is deter-

ministic ground truth (or, the ground-truth variables and their types are deterministic). In

this context, the number of hints that we can aggregate plays a more important role than the

prior probabilities. Graph models provide a systematic way of aggregating these hints, while

respecting the inherent structural properties (e.g., control-flow and data-flow constraints).

We hence adopt simple prior probabilities, p ↑= 0.8, p ↓= 0.2, and p(k) is computed from

the ratio between k and the total number of sampled paths in BDA. In fact, there are a

number of existing work [59 , 66 – 68] leveraging probabilistic inference for similar applications

with (mostly) deterministic ground truth (e.g., specification inference for explicit informa-

tion flow). They use preset prior probabilities and their results are not sensitive to prior

probability configurations. We follow a similar setting.

3.6 Evaluation

To assess the effectiveness of Osprey, we perform two sets of experiments, using the

benchmarks from TIE [43] and Howard [44]. The first set is performed on Coreutils [69],

a standard benchmark widely used in binary analysis projects [17 , 42 – 44 , 60], consisting

of 101 programs. We compare Osprey with other state-of-the-art binary analysis tools,

including Ghidra (version 9.2), Angr (version 8.20) and IDA Pro (version 7.2). We cannot

compare with TIE as the system is not available. And we confirmed with the BAP [17]

team that BAP does not have TIE as part of it. Another set is performed on the benchmark

provided by the Howard project [44], consisting of 5 programs. The purpose is to have a

side-by-side comparison with Howard. Since we are not able to acquire the Howard system,

the only way to compare is to use their published results and hence the same set of pro-

grams. All experiments were conducted on a server equipped with 32-cores CPU (Intel®

110

30.00%

100.00%

O
ve

ra
ll

Va
ria

bl
e

R
ec

ov
er

y
(R

ec
al

l)

Programs

OSPREY Ghidra IDA Pro 7.2 Angr

88.62%

76.29%

59.27%

76.73%

0.00%

50.00%

100.00%

O
ve

ra
ll

Va
ria

bl
e

R
ec

ov
er

y
(P

re
ci

si
on

)

Programs

OSPREY Ghidra IDA Pro 7.2 Angr

90.18%

66.88%

33.40%

69.77%

Figure 3.17. Recall for all variables (primitive and complex)

30.00%

100.00%

O
ve

ra
ll

Va
ria

bl
e

R
ec

ov
er

y
(R

ec
al

l)

Programs

OSPREY Ghidra IDA Pro 7.2 Angr

88.62%

76.29%

59.27%

76.73%

30.00%

100.00%

O
ve

ra
ll

Va
ria

bl
e

R
ec

ov
er

y
(P

re
ci

si
on

)

Programs

OSPREY Ghidra IDA Pro 7.2 Angr

90.18%

66.88%

33.40%

69.77%

Figure 3.18. Precision for all variables (primitive and complex)

XeonTM E5-2690 @ 2.90GHz) and 128G main memory. To follow a similar setup in TIE

and Howard, we use GCC 4.4 to compile the programs into two versions: a version with

debugging information used as the ground truth and a stripped version used for evaluation.

Our assumption of proper disassembly is guaranteed because GCC does not interleave code

and data on Linux [70].

3.6.1 Evaluation on Coreutils

Similar to the standard in the literature [43 , 44], we inspect the recovered types (including

structure types) of individual variables. If it is a pointer type, we inspect the structure that

is being pointed to. For example, if a (Socket *) variable is recovered as (void*), we

consider it incorrect. We say it is correct only if the variable is recovered as a pointer

pointing to a structure homomorphic to Socket. The overall recall and precision are shown

111

20.00%

100.00%

C
om

pl
ex

 V
ar

ia
bl

e
R

ec
ov

er
y

(R
ec

al
l)

Programs

OSPREY Ghidra IDA Pro 7.2

74.02%

22.50%
27.57%

30.00%

100.00%

C
om

pl
ex

 V
ar

ia
bl

e
R

ec
ov

er
y

(P
re

ci
si

on
)

Programs

OSPREY Ghidra IDA Pro 7.2

89.05%
82.09%

43.81%

Figure 3.19. Recall for complex variables

20.00%

100.00%

C
om

pl
ex

 V
ar

ia
bl

e
R

ec
ov

er
y

(R
ec

al
l)

Programs

OSPREY Ghidra IDA Pro 7.2

74.02%

22.50%
27.57%

30.00%

100.00%

C
om

pl
ex

 V
ar

ia
bl

e
R

ec
ov

er
y

(P
re

ci
si

on
)

Programs

OSPREY Ghidra IDA Pro 7.2

89.05%
82.09%

43.81%

Figure 3.20. Precision for complex variables

in Figure 3.17 and Figure 3.18 , respectively. As we can see, Osprey achieves more than

88% recall, and more than 90% precision, outperforming the best of other tools (i.e., Ghidra

with around 77% recall and 70% precision). Figures 3.19 and 3.20 present the recall and

precision of complex types recovery. Complex types include structures, unions, arrays and

pointers to structures, unions and arrays. Note that Angr could not recover complex data

types, hence we do not list its results on the figures. Observe that the recall of Osprey is

around 74%, more than 2 times higher than Ghidra and IDA Pro. The precision of Osprey

also outperforms Ghidra and IDA Pro. One may mention that IDA Pro has a comparable

precision rate with Osprey. The reason is that IDA Pro performs a very conservative type

analysis to ensure high precision, leading to a low recall (less than 23%).

Cases Where Ghidra and IDA Pro Do Better. There are few cases where Ghidra and

IDA Pro achieve better performance. Further inspection reveals that those are very simple

112

unsigned long sha256(char *msg) {
struct SHA256 ctx; char *c = msg;
...
while (c) {

ctx.S0 =
calculate0(ctx.S0, ctx.S1, c);

ctx.S1 =
calculate0(ctx.S0, ctx.S1, c);

c = get_next_chunk(c);
}
return fini(ctx.S0, ctx.S1);

}

Figure 3.21. Missing data structures

struct my_chunk {
char buf[0x80];
struct my_chunk *next;

}

struct my_chunk *xmalloc() {
struct my_chunk *cur = HEAD;
while (cur->next & 1)

cur = (cur->next ^ 1);
cur->next ^= 1;
return p;

}

Figure 3.22. Misidentified
data structures

programs without complex structures (e.g., struct or in-stack array), where no conflict

will occur during deterministic reasoning. Hence, approaches like Ghidra and IDA Pro can

handle them well. OSPREY also works well, but may misidentify very few variables due to

the infeasible paths produced by BDA.

Missing Data Structures. We find that missing data structures are mainly due to stack-

nested structs that are never used outside their stack frames. Consider the code snippet

from sha256sum in Figure 3.21 , where a stack-nested structure SHA256 ctx is allocated

on stack and used exclusively within the function. As such, Osprey cannot gather any

valuable hints about ctx. That is also the major reason that Osprey has relatively large

tree difference for those hashing binaries (e.g., sha256sum) in Figure 3.23 in Appendix.

Misidentified Data Structures. In our benchmarks, custom heap allocators are a major

source of misidentified data structures by Osprey. Consider a simplified xmalloc from

grep in Figure 3.22 . Its basic allocation unit is called my_chunk, consisting of a buffer buf

and a pointer next. Different from common pointers, my_chuck.next uses its last bit to

indicate whether this chunk is in use (in normal case, the last bit is always zero due to

memory alignment). Thus, at line 5, xmalloc finds the first chunk whose in-use bit is not

set, sets the bit, and returns the chunk. As a result, my_struct.next can point to a struct

113

0.00%

50.00%

100.00%

Tr
ee

 E
di

t D
is

ta
nc

e
fo

r
St

ru
ct

ur
al

 D
at

a

Programs

OSPREY Ghidra IDA Pro 7.2

29.32%

64.04%
73.31%

Figure 3.23. Tree difference for CoreUtils

my_struct or char my_struct.buf[1] (both are common cases). These confusing PointsTo

hints misled Osprey to falsely recover unions. Other reasons include insufficient hints.

To better quantify our results on complex variables, we construct a syntax tree for each

complex type (with fields being the child nodes). Nesting structures and unions are precisely

modeled, and any inner nesting structure or union type without outer references are ignored.

Cycles are removed using a leaf node with a special type tag. We then compare the edit

distance of the recovered trees and the ground-truth trees. We compute tree difference that

is defined as the ratio of the tree edit distance (i.e., the minimum number of tree edits that

transform a tree into another) and the whole tree size. The smaller the tree difference, the

better the recovery result. Figure 3.23 in Appendix shows the results. Overall, Osprey has

the minimal tree difference, which is 2.50 and 2.18 times smaller than Ghidra and IDA Pro.

3.6.2 Evaluation on Howard Benchmark

The results for the Howard benchmark are shown in Table 3.1 . Osprey substantially out-

performs Ghidra, IDA Pro and Angr, especially for complex variables, in all metrics (recall,

precision and tree difference) For all variables, the precision improvement over Ghidra, IDA

Pro, and Angr is 30.64%, 41.11%, and 67.77%, respectively, and the recall improvement is

24.98%, 36.78%, and 50.49%, respectively. For complex variables, the precision improvement

over Ghidra and IDA Pro is 42.64% and 27.09%, respectively, and the recall improvement is

53.78% and 65.36%, respectively. Our tree differences are 6.31 and 3.20 times smaller than

114

Table 3.1. Analysis results of Howard benchmark

Metric Program Osprey Ghidra IDA Pro Angr

Reca. Prec. Reca. Prec. Reca. Prec. Reca. Prec.
O

ve
ra

ll
Va

ri
ab

le wget 85.32 86.14 66.83 62.94 62.82 60.02 39.94 26.96
lighttpd 97.67 97.67 52.65 52.15 46.18 41.37 44.35 22.90

grep 82.10 84.07 67.63 69.34 67.09 63.97 46.64 30.53
gzip 100.0 100.0 84.78 79.10 78.26 75.00 59.78 37.42

fortune 100.0 100.0 68.29 51.16 26.83 22.00 21.95 11.25
Avg. 93.02 93.58 68.04 62.94 56.24 52.47 42.53 25.81

C
om

pl
ex

Va
ri

ab
le wget 73.26 83.14 29.21 47.20 20.29 76.39 00.00 N/A

lighttpd 100.0 95.44 05.51 27.08 06.78 50.00 00.00 N/A
grep 57.39 84.52 10.43 35.29 11.30 41.67 00.00 N/A
gzip 100.0 100.0 66.67 73.68 57.14 81.25 00.00 N/A

fortune 100.0 100.0 50.00 66.67 00.83 33.33 00.00 N/A
Avg. 86.13 92.62 32.35 49.98 20.77 65.53 00.00 N/A

Tr
ee

D
iff

er
en

ce

wget 28.92 70.99 62.84 100.0
lighttpd 00.00 80.18 64.87 100.0

grep 30.09 78.41 60.93 100.0
gzip 00.00 42.50 00.00 100.0

fortune 00.00 100.0 00.00 100.0
Avg. 11.80 74.42 37.73 100.0

Ghidra and IDA Pro. Compared to Coreutil programs, these programs are more complex,

providing more hints to Osprey. Especially in the complex variable recovery for lighttpd,

Osprey has 100% recall and 95% precision, while Ghidra has 5.5% recall and 27% precision,

IDA Pro 6.8% and 50%. Manual inspection discloses that lighthttp has a large number of

structures on heap, providing ample hints for Osprey.

We also perform side-by-side comparison with Howard. Since Howard is not available

(after communicating with its authors), we use the data reported in the paper. We use

the same setup and report results in the same metrics. Table 3.2 presents the coverage of

functions (columns 2∼3) and variables (column 4∼5), and the accuracy of type discovery

for stack variables measured in the number of variables (columns 6∼7) and in the number

of bytes (columns 8∼9). Osprey outperforms, especially for coverage. We cannot com-

115

Table 3.2. Comparison between Osprey and Howard

Program
Cov of Funcs

(%)
Cov of Vars

(%)
Accuracy

(% of vars)
Accuracy

(% of bytes)

Osprey Howard Osprey Howard Osprey Howard Osprey Howard

wget 100% 51% 100% 56% 87.28% 77.03% 71.58% 63.12%
lighttpd 100% 55% 100% 62% 97.89% 86.15% 95.30% 82.10%

grep 100% 50% 100% 56% 100.00% 86.15% 100.00% 87.10%
gzip 100% 70% 100% 81% 86.17% 75.07% 79.13% 78.04%

fortune 100% 71% 100% 77% 100.00% 83.04% 100.00% 82.10%
Avg. 100% 59% 100% 66% 94.27% 81.49% 89.20% 78.50%

Table 3.3. Average F1 scores for Osprey with different prior probabilities
p ↑= 0.7 p ↑= 0.8 p ↑= 0.9

p ↓= 0.1 0.915 0.929 0.923
p ↓= 0.2 0.931 0.933 0.923
p ↓= 0.3 0.919 0.930 0.924

pare with their heap results as Howard measured the accuracy for individual dynamic heap

objects.

3.6.3 Sensitivity Analysis

We analyze the sensitivity of Osprey’s accuracy on the prior probabilities p ↑ and p ↓.

Table 3.3 shows the average F1 scores [71] for the programs in the Howard benchmark set,

with p ↑ varying from 0.7 to 0.9 and p ↓ from 0.1 to 0.3. We elide other metrics as they reveal

similar trendings. Note that the F1 scores vary within a limited range, less than 2%, with

different prior probabilities. It supports that Osprey is robust against the prior probability

changes.

3.6.4 Execution Time

In Table 3.4 , we measure the execution time of different tools on the two benchmark

sets. In general, Osprey is 18.57, 88.04, and 50.79 times slower than Ghidra, IDA Pro, and

Angr, respectively. We argue that reverse engineering is often a one-time effort and Osprey

provides a different trade-off between cost and accuracy. It is also worth noting that Ghidra

116

Table 3.4. Execution time of different tools. The numbers in the brackets
denote how many times Osprey is slower than the corresponding tool.
Program Osprey Ghidra IDA Angr

H
ow

ar
d

wget 3604.80s 94.74s (37.05×) 18.98s (188.88×) 41.47s (85.92×)
lighttpd 2013.12s 63.89s (30.51×) 16.80s (118.83×) 31.60s (62.70×)

grep 832.52s 66.75s (11.47×) 32.62s (24.52×) 33.88s (23.57×)
gzip 483.65s 52.84s (8.15×) 11.84s (39.84×) 18.57s (25.04×)

fortune 422.92s 37.48s (10.28×) 6.30s (66.13×) 7.11s (58.45×)
CoreUtils 528.24s 35.35s (13.94×) 5.80s (90.08×) 10.55s (49.07×)

Avg. 1314.21s 58.51s (18.57×) 15.39s (88.04×) 23.87s (50.79×)

is the second slowest one due to its register-based data-flow analysis, and IDA Pro is the

fastest one as its variable recovery mainly relies on hard-coded code pattern matching rules.

3.6.5 Scalability

To assess the scalability of Osprey, we evaluate Osprey on Apache and Nginx, two

well-known applications with significantly larger code base than the benchmarks we used.

The results are shown in Figure 3.24 . On both programs, Osprey produces the highest F1

Score for overall and complex variable recovery, and the lowest tree difference. Although

Osprey takes around an hour and a half, we argue that it is a reasonable overhead for

binary analysis and reverse engineering.

3.6.6 Impact of Aggressive Optimization

To understand the impact of aggressive optimizations, we evaluate Osprey on the two

benchmark sets compiled with -O3, the most aggressive builtin optimization flag of GCC.

The results are shown in Table 3.5 . We calculate the F1 score [71] for each tool, and

summarize CoreUtils’ results. Table 3.5a presents the overall F1 scores including both scalar

and complex variables. The average F1 scores (with -O3) for Osprey, Ghidra, IDA Pro, and

Angr are 0.70, 0.48, 0.27, and 0.16, respectively; and the degradation from the default opti-

mization (-O0) are 23.84%, 27.18%, 45.47%, and 42.64%, respectively. Although recovering

117

Table 3.5. Impact of aggressive optimizations with -O3. Def., O3, Degra.,
and # CVars denote the analysis results for binaries compiled under the
default optimization (-O0), under -O3, degradation from -O0, and the number
of complex variables in memory, respectively.

(a) F1 scores for overall variable recovery

Program Osprey Ghidra IDA Angr

Def. O3 Degra. Def. O3 Degra. Def. O3 Degra. Def. O3 Degra.

H
ow

ar
ds

wget 0.86 0.66 23.11% 0.65 0.51 20.89% 0.48 0.20 58.65% 0.32 0.21 34.52%
lighttpd 0.98 0.65 33.42% 0.52 0.29 44.59% 0.43 0.15 64.07% 0.30 0.09 71.72%

grep 0.83 0.74 11.21% 0.68 0.60 11.74% 0.54 0.20 63.03% 0.37 0.16 55.72%
gzip 1.00 0.74 26.44% 0.82 0.37 55.20% 0.67 0.24 64.30% 0.46 0.16 64.46%

fortune 1.00 0.82 17.86% 0.58 0.63 -7.16% 0.24 0.33 -38.36% 0.15 0.20 -34.44%

CoreUtils 0.89 0.62 31.01% 0.74 0.49 37.78% 0.71 0.27 61.12% 0.43 0.16 63.84%

Avg. 0.93 0.70 23.84% 0.67 0.48 27.18% 0.51 0.23 45.47% 0.34 0.16 42.64%

(b) F1 scores for complex variable recovery

Program Osprey Ghidra IDA # CVars

Def. O3 Def. O3 Def. O3 Def. O3

H
ow

ar
ds

wget 0.78 0.55 0.36 0.45 0.32 0.14 239 127
lighttpd 0.98 0.44 0.09 0.38 0.12 0.33 318 43

grep 0.68 0.50 0.16 0.35 0.18 0.20 120 38
gzip 1.00 0.55 0.70 0.35 0.67 0.33 45 41

fortune 1.00 0.76 0.57 0.71 0.13 0.52 16 13

CoreUtils 0.80 0.62 0.38 0.43 0.39 0.35 23 11

Avg. 0.87 0.57 0.38 0.45 0.30 0.31 127 45

(c) Tree difference

Program Osprey Ghidra IDA

Def. O3 Degra. Def. O3 Degra. Def. O3 Degra.

H
ow

ar
ds

wget 28.92 57.24 49.47% 70.99 72.88 02.48% 62.84 75.14 16.37%
lighttpd 00.00 21.42 100.0% 80.18 55.10 -45.53% 64.87 62.81 -03.28%

grep 30.09 26.96 -11.63% 78.41 72.62 -07.97% 60.93 89.68 32.06%
gzip 00.00 41.67 100.0% 42.50 62.50 32.00% 00.00 50.00 100.0%

fortune 00.00 08.00 100.0% 100.0 50.00 -100.0% 00.00 50.00 100.0%

CoreUtils 29.32 63.26 53.65% 73.31 78.69 06.83% 64.04 78.61 18.54%

Avg. 14.72 36.42 65.25% 74.23 65.28 -18.70% 42.11 67.71 43.95%

118

60.0

38.2 40.6
24.9

43.8

5.2 1.9 0.0

77.3
86.5 86.6

100.06011

100

159

104

Osprey Ghidra IDA Pro Angr

Overall Variables (%) Complex Variables (%) Tree Difference (%) Execution Time (s)

(a) Apache

60.6

34.9 39.3
27.4

53.4

11.7 10.9
0.0

76.9
87.1 90.7

100.04341

109

77
93

Osprey Ghidra IDA Pro Angr

Overall Variables (%) Complex Variables (%) Tree Difference (%) Execution Time (s)

(b) Nginx

Figure 3.24. Analysis results for Apache and Nginx

accurate types from aggressively optimized code is very challenging, Osprey substantially

outperforms other state-of-the-art techniques. Besides, Osprey is the most robust tool

among all the evaluated ones. Manual inspection discloses that some aggressive optimiza-

tions disrupt Osprey’s hints (e.g., loop unrolling [72] and partial function inlining [73]),

resulting in the degraded accuracy. For example, loop unrolling can generate multiple copies

of a single memory access instruction such that we lose the hint that detects an array by

observing consecutive memory locations being accessed by the same instruction.

Table 3.5b shows the F1 scores for complex variable recovery. Observe that Osprey still

achieves substantially better F1 of 0.57 (compared to 0.45 for Ghidra and 0.31 for IDA Pro).

One may notice that Ghidra and IDA Pro get better results with the -O3 flag. Although it

seems counter-intuitive, further inspection shows that it is not because they are having better

performance but rather the number of complex variables in memory becomes smaller. Recall

119

that we consider a structure being pointed to by a pointer in memory a complex variable.

With -O3, these pointers are largely allocated to registers. We do not collect results for these

cases as Howard does not consider variables in registers. While Ghidra and IDA Pro tend

to have trouble with complex variables in memory, the number of such cases are reduced.

We additionally count the number of complex variables, shown in Table 3.5b . The results

show that the number of complex variables decreases a lot from the default setting (127 v/s

45), supporting our hypothesis.

Table 3.5c presents the tree difference. Although Osprey has the smallest tree difference

of 36.42 (compared to 65.28 for Ghidra and 67.71 for IDA Pro), the aggressive optimizations

have larger impact on Osprey. This is however reasonable because Osprey’s structure

recovery mainly depends on hints from program behaviors which can be greatly changed by

optimizations, while Ghidra and IDA Pro mainly depend on predefined function prototypes

of external library calls which are rarely influenced by optimizations. Ghidra’s register-based

data-flow analysis also benefits from optimizations. We foresee that a set of rules particularly

designed for optimized programs can be developed for Osprey. We will leave that to our

future work.

Finally, we want to point out that fortune is an outlier which always achieves better results

under aggressive optimizations. This is because fortune is a very simple program (randomly

outputting predefined sentences [74]) and O3 optimizations put most of its variables in

registers, reducing aliasing and greatly benefiting the register-based data-flow analysis.

3.6.7 Impact of Different Compilers

To study the robustness over different compilers, we additionally examine Osprey on

benchmarks compiled by Clang [75], another mainstream compiler. We use Clang 6.0 to

compile the two benchmark sets with the default and -O3 optimization flags, and summarize

the results in Figure 3.25 . The results show that Osprey has good robustness with different

compilers under the default compilation setting (less than 6% difference for each program).

Although there is a larger difference between GCC and Clang under the -O3 setting, we

speculate that it is because the -O3 optimizations of GCC and Clang behave differently

120

0.86

0.98

0.83

1.00

1.00

0.89

0.92

0.94

0.87

0.94

0.94

0.89

wget

lighttpd

grep

gzip

fortune

CoreUtils

GCC Clang

(a) Default optimization

0.66

0.65

0.74

0.74

0.82

0.62

0.83

0.79

0.76

0.73

0.94

0.63

wget

lighttpd

grep

gzip

fortune

CoreUtils

GCC Clang

(b) O3 optimization

Figure 3.25. Osprey’s F1 scores for overall variable recovery on the two
benchmark sets compiled by GCC and Clang. The results of CoreUtils are
averaged over all programs.

Table 3.6. Effects of BDA and probabilistic inference. Original, w/o BDA ,
and w/o Prob. stand for the original Osprey, Osprey with a dynamic-
execution component instead of BDA , and Osprey with deterministic infer-
ence instead of probabilistic inference, respectively. Cov. denotes the fraction
of functions that the dynamic approach exercised.

Program Original w/o BDA w/o Prob.

Recall Precision Recall Precision Coverage Recall Precall

wget 85.32 86.14 29.46 86.31 51% 45.43 47.21
lighttpd 97.67 97.67 73.75 97.16 55% 40.24 40.74

grep 82.10 84.07 44.48 89.78 50% 44.76 46.04
gzip 100.0 100.0 43.48 100.0 74% 64.37 64.37

fortune 100.0 100.0 75.61 100.0 76% 78.57 78.57

Avg. 93.02 93.58 53.36 94.65 61% 54.67 55.39

(e.g., they have different thresholds for loop unrolling). The results of complex variable

recovery and tree difference reveal similar trends and are hence elided.

3.6.8 Contribution Breakdown of Different Components

To better understand the effect of different components, including BDA and probabilistic

inference, we further evaluate Osprey with two variations. Specifically, to study the con-

121

tributions of BDA, in the first variation, we replace the BDA component with a dynamic-

execution component built upon Pintools [76]. Following the same setup as Howard, we use

the provided test suite and also KLEE to increase code coverage. To study the effect of

probabilistic inference, in the second variation, we turn the probabilistic inference to deter-

ministic inference. The deterministic inference rules are largely derived from the probabilistic

rules but have the probabilities removed. As such, when multiple contradictory inference

results are encountered (e.g., conflicting types for a variable), which are inevitable due to

the inherent uncertainty, the algorithm randomly picks one to proceed.

The results are shown in Table 3.6 . We report the precision and recall of the first

variation for overall variables in the fourth and fifth columns. We also report the dynamic

code coverage in the sixth column. Due to page limits, we elide other metrics as they are

less interesting. Compared with the original Osprey, the dynamic-execution-based Osprey

has slightly higher precision but lower recall. As dynamic execution strictly follows feasible

paths, there are fewer conflicts, benefiting the precision. However, the conflicts introduced

by BDA’s incapabilities of determining infeasible paths are decentralized and cumulatively

resolved by the large number of hints, making the improvement limited. On the other hand,

the dynamic-execution-based Osprey cannot get hints from the non-executed functions,

leading to the low recall. Hence, we argue that BDA is essential to Osprey.

The results of the second variation are shown in the last two columns of Table 3.6 . Note

that the deterministic version of Osprey has nearly 40% decrease in terms of both recall

and precision. Such results indicate the probabilistic parts of Osprey are critical. We also

study the reason behind the degradation. On one hand, due to the infeasible paths, BDA

may generate many invalid accesses. When these accesses conflict with the valid ones, the

deterministic algorithm may choose the wrong one. On the other hand, many inference rules

/ hints have inherent uncertainty. For example, rule CB02 says when an instruction accesses

multiple addresses in the same region, likely, there is an array in that region. Note that

it is likely but not certain, as the situation could also be that a pointer points to multiple

individual objects. Deterministic approaches are by their nature not suitable for handling

such inherent uncertainty.

122

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18
19

20

21
22
23
24
25
26
27
28
29

int network_rxxx(server *srv)
{
server *v1; // rbx
int result; // rax
size_t v3; // rbp
server_socket *v4; // r12
fdnode *v5; // rax
fdevents *v6; // rdi

v1 = srv;
result = fdevent_sxxx(srv->ev);
if (result != -1)
{
v3 = 0LL;
if (!srv->sockets_disabled)
{
while (v1->srv_sockets.

used > v3)
{
v4 = v1->srv_sockets.

ptr[v3++];
v5 = fdevent_gxxx(

v1->ev,
v4->fd,
network_sxxx, v4

);
v6 = v1->ev;
v4->fdn = v5;
fdevent_fxxx(v6, v5, 1);

}
}
result = 0LL;

}
return result;

}

(a) Ground truth

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

18
19

20

21
22
23
24
25
26
27
28
29

__int32 __fastcall sub_D840(__int64 a1)
{

_QWORD *v1; // rbx
__int32 result; // rax
unsigned __int64 v3; // rbp
__int64 v4; // r12
__int64 v5; // rax
__int64 v6; // rdi

v1 = (_QWORD *)a1;
result = sub_12B7A(*(_QWORD *)(a1 + 24));
if ((_DWORD)result != -1)
{

v3 = 0LL;
if (!*(_DWORD *)(a1 + 100))
{

while (v1[2] > v3)

{
v4 = *(_QWORD *)(*v1 + 8 * v3++);

v5 = sub_21860(
v1[3],
*(unsigned int *)(v4 + 112),
sub_18F30, v4

);
v6 = v1[3];
*(_QWORD *)(v4 + 120) = v5;
sub_219C0(v6, v5, 1);

}
}
result = 0;

}
return result;

}

(b) Vanilla IDA Pro 7.2

__int32 __fastcall sub_D840(struct_C264 *a1)
{
struct_C264 *v1; // rbx
__int32 result; // rax
unsigned __int64 v3; // rbp
struct_CF4A *v4; // r12
struct_12A42 *v5; // rax
struct_12A0E *v6; // rdi

v1 = a1;
result = sub_12B7A(a1->ptr_field_28);
if (result != -1)
{
v3 = 0LL;
if (!a1->dat_field_74)
{
while (v1->dat_field_10 > v3)

{
v4 = v1->ptr_ptr_field_0[v3++];

v5 = sub_21860(
v1->ptr_field_28,
v4->dat_field_10,
sub_18F30, v4

);
v6 = v1->ptr_field_28;
v4->ptr_field_18 = v5;
sub_219C0(v6, v5, 1);

}
}
result = 0;

}
return result;

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18
19

20

21
22
23
24
25
26
27
28
29

(c) IDA Pro 7.2 w/ Osprey

Figure 3.26. Decompiled results for lighttpd’s function network_register_fdevents

3.7 Applications

3.7.1 Improving IDA Decompilation

Decompilation transforms low level binary code to human-readable high-level program.

The readability of decompiled code hinges on the recovery of variables and data structures.

To investigate how Osprey improves decompilation in IDA, we implement an IDA plugin

to feed the decompiler of IDA with the recovered information provided by Osprey. In

Figure 3.26 and 3.27 , we show a case study on the decompilation of lighttpd’s function

network_register_fdevents. The ground truth, the decompilation results of the vanilla

IDA, and of the enhanced IDA are presented in the three columns, respectively. IDA can

precisely recover some primitive variables (e.g., result at line 4 and v3 at line 5), but fails to

recover the complex data structures (e.g., v4 at line 6, which is a pointer to a server_socket

123

struct server {
struct server_socket_array {

struct server_socket {
sockaddr addr;
int fd;
unsigned short is_ssl;
unsigned short sidx;
fdnode *fdn;
buffer *srv_token;

} **ptr;
size_t size;
size_t used;

} srv_sockets;

fdevents *ev;
...
int sockets_disabled;
...

}

(a) Ground truth

struct struct_C264 {

struct struct_CF4A {
sockaddr dat_field_0;
__int32 dat_field_10;
unsigned __int16 field_14;
unsigned __int16 field_16;
struct_12A42 *ptr_field_18;
struct_1B1A9 *ptr_field_20;

} **ptr_ptr_field_0;
unsigned __int64 dat_field_8;
unsigned __int64 dat_field_10;

struct_12A0E *ptr_filed_28;
...
__int32 dat_field_74;
...

}

(b) By Osprey

Figure 3.27. Reconstructed Symbols

structure). Osprey can successfully recover the server_socket structure. In fact as shown

in Figure 3.27a and 3.27a , Osprey can precisely recover the multiple layers of structure

nesting and all the pointer fields. Note that server_socket_array is an inner structure

type without any outer reference. The recovery of the structure can substantially improve

the readability of the decompiled code. See lines 19-20 in Figure 3.26a . Without the recovered

information, we can only learn there are a memory access with complex addressing. With

the recovered field and array accesses, we have much more semantic information.

3.7.2 Harden Stripped Binary

Exposing potential memory bugs is very important for vulnerability detection. Address

sanitizer (ASAN) [77], a tripwire-based memory checker, can be used to increase the likeli-

hood of triggering a crash when a memory corruption occurs. The principle of ASAN is to

insert redzones at the border of variables. Program crashes whenever an out-of-bound access

touches the redzone. The effectiveness of ASAN is determined by the accuracy of identifying

124

01. typedef struct node {
02. long data[0x20];
03. struct node *next;
04. } node_t;
05.
06. void gee() {
07. node_t *p =

malloc(sizeof(node_t));
08. for (int i=0; i<=0x20, i++)
09. p->data[i] = 0;
10. }

(a) Simplified example of CVE-2019-12802, which has
an out-of-boundary memory access for array data in-
side structure node_t.

lsbmsb

Bits used by standard libasan.so.4.

Bits used by OSPREY enhancement.

(b) Address sanitizer maps 8 bytes of the application
memory into 1 byte of the shadow memory named
shadow byte. However, only 5 bits of each shadow
byte are used in standard libasan.so.4.

[A] xor rcx, rcx
[B] cmp ecx, 0x20
[C] jg <ret_gee>
[C1] lea rdi, [rax+rcx*8]
[C2] shr rdi, 3
[C3] mov dil, [rdi+SHADOW_BASE]
[C3a] mov rsi, rdi
[C3b] and sil, 0x30
[C3c] cmp sil, 0x30
[C3d] jz <asan_report_error>
[C3e] and dil, 0x8F
[C4] test dil, dil
[C5] jnz <asan_report_error>
[D] mov [rax+rcx*8], 0
[E] inc ecx
[F] jmp B

(c) Assemble code for line 8 and line 9
in Figure 3.28a . Lines A, B, C, D, E,
F are the original assemble code, lines
C1, C2, C3, C4, C5 are instrumented by
RetroWrite, and lines C3a, C3b, C3c,
C3d, C3e are instrumented by our en-
hancement. Only our instrumentation
can report CVE-2019-12802.

Figure 3.28. Field-level binary ASAN instrumentation for CVE-2019-12802.

the variable borders, which is very challenge if source code or debugging information is not

available. The state-of-the-art binary-level ASAN solution (RetroWrite [78]) conducts very

coarse-grained border identification. Specifically, for an allocated heap region, redzones are

only inserted before and after the region, not between the variables/fields within the region.

This may degrade the effectiveness of ASAN. Take CVE-2019-12802 [79] as an example. It is

an out-of-bound vulnerability whose simplified code is shown in Figure 3.28a . The vulnera-

bility occurs at line 9, in which there is an out-of-bound memory access for array data inside

the node_t structure. RetroWrite does not insert redzone code within the node_t structure,

hence cannot detect the vulnerability.

125

We strengthen RetroWrite to take in our reconstructed symbol information such that

corruptions internal to a structure can be detected. Specifically, we aim to prevent scalar

variables from being accessed by any array instruction. To avoid false warnings and offer

a strong (probabilistic) guarantee, we carefully define scalar variables and array instruc-

tion. We define v as a scalar variable, if P (Scalar(v)) > 0.99 ∧ ¬(∃(a1, a2), s.t. (a1 ≤

v.a ≤ a2) ∧ (P (Array(a1, a2)) > 0.01)) Similarly, we define i as an array instruction, if ∀v :

Accessed(i, v),∃(a1, a2), stAccessMultiChunks(i, v.a.r)∧(a1 ≤ v.a ≤ a2)∧(P (Array(a1, a2))) >

0.99). We leverage RetroWrite to instrument the target binary. For any memory access by

an array instruction, besides the basic ASAN checks provided by RetroWrite, we additionally

check it is accessing a scalar variable.

Figures 3.28c and 3.28b present the details of our implementation. Lines [A][B][C][D][E][F]

in Figure 3.28c are the original assembly code for line 8-9 in Figure 3.28a , where rcx in line

[B] stores the value of i and rax+rcx*8 in line [D] stores the address of p->data[i]. Lines

[C1][C2][C3][C4][C5] are instrumented by RetroWrite. They first get the target address

of instruction [D] (line [C1]), read its shadow value (dil) from the corresponding shadow

memory (lines [C2][C3]), and validate the shadow value (lines [C4][C5]). RetroWrite’s

ASAN is based on the standard libasan.so.4. Hence it directly invokes asan_report_error

to report errors. An interesting observation is that, even though libasan.so.4 uses one byte

to store shadow value, only 5 bits of the byte are used, as shown by the shadow value lay-

out in Figure 3.28b . This allows us to store more meta information using the remaining

3 bits. In our case, we use one bit to record whether the memory stores a scalar vari-

able. After that, we instrument more validation instructions for array instructions. Lines

[C3a][C3b][C3c][C3d][C3e] are added by Osprey, for array instruction [D]. The in-

strumentation validates whether the accessed memory stored a scalar variable. As such,

the mentioned CVE can be successfully detected. The instrumented code does not cause

any false warnings when executed on normal test cases. Note that although probabilistic

guarantees may not be strong enough for production systems, they make perfect sense for

vulnerability detection, in which rare false warnings are acceptable.

126

3.8 Summary

We develop a novel probabilistic variable and data structure recovery technique for

stripped binaries. It features using random variables to denote the likelihood of recovery

results such that a large number of various kinds of hints can be organically integrated with

the inherent uncertainty considered. A customized and optimized probabilistic constraint

solving technique is developed to resolve these constraints. Our experiments show that

our technique substantially outperforms the state-of-the-art and improves two downstream

analysis.

127

4. ITERATIVE REFINEMENT: EFFECTIVE AND EFFICIENT

BINARY-ONLY FUZZING

Fuzzing stripped binaries poses many hard challenges as fuzzers require instrumenting bi-

naries to collect runtime feedback for guiding input mutation. However, due to the lack of

symbol information, correct instrumentation is difficult on stripped binaries. Existing tech-

niques either rely on hardware and expensive dynamic binary translation engines such as

QEMU, or make impractical assumptions such as binaries do not have inlined data. We ob-

serve that fuzzing is a highly repetitive procedure providing a large number of trial-and-error

opportunities. As such, we propose a novel incremental and stochastic rewriting technique

StochFuzz that piggy-backs on the fuzzing procedure. It generates many different versions

of rewritten binaries whose validity can be approved/disapproved by numerous fuzzing runs.

Probabilistic analysis is used to aggregate evidence collected through the sample runs and

improve rewriting. The process eventually converges on a correctly rewritten binary. We

evaluate StochFuzz on two sets of real-world programs and compare with five other base-

lines. The results show that StochFuzz outperforms state-of-the-art binary-only fuzzers

(e.g., e9patch, ddisasm, and RetroWrite) in terms of soundness and cost-effectiveness and

achieves performance comparable to source-based fuzzers. StochFuzz is publicly avail-

able [80].

4.1 Introduction

Grey-box fuzzing [10 , 50 , 81 , 82] is a widely used security testing technique that generates

inputs for a target program to expose vulnerabilities. Starting from some seed inputs, a fuzzer

repetitively executes the program while mutating the inputs. The mutation is usually guided

by coverage information. For instance, a popular strategy is that input mutations leading to

coverage improvement are considered important and subject to further mutations. As such,

existing fuzzing engines rely on instrumentation to track code coverage. Typically, they

leverage compilers to conduct instrumentation before fuzzing when source code is available.

However in many cases, only binary executables are available. Various techniques have been

128

developed to support fuzzing applications without source code. We call them binary-only

fuzzing techniques.

Existing binary-only solutions fall into three categories: (1) leveraging hardware support,

(2) leveraging on-the-fly dynamic binary rewriting, and (3) relying on offline static binary

rewriting. The first category makes use of advanced hardware support such as Intel PT [83]

to collect runtime traces that can be post-processed to acquire coverage information. Such

traces record individual executed basic blocks, which are generated at a very high rate, and

hence require substantial efforts to process. In addition, it is difficult to collect runtime

information other than control-flow traces. The second kind uses dynamic rewriting engines

such as QEMU [84] and PIN [85], which instrument a subject binary during its execution.

They trap execution of each new basic block and rewrite it on the fly. The rewritten basic

block is then executed. The method is sound but expensive due to the heavyweight machinery

(4-5 times slower than source based fuzzing according to our experiment in Section 4.6).

The third kind instruments the binary just once before the whole fuzzing process. However,

sound static binary rewriting is an undecidable problem [86] due to the lack of symbol

information. It entails addressing a number of hard challenges such as separating code and

data, especially inlined data [70 , 87], and identifying indirect jump and call targets [46 , 64].

Existing solutions are either based on heuristics and hence unsound [64 , 88], or based on

restricted assumptions such as no inlined data is allowed [89] and relocation information must

be available [78]. However, these assumptions are often not satisfied in practice. According

to our experiment in Section 4.6 , a number of state-of-the-art solutions, such as e9patch [89]

and ddisasm [64] fail on real-world binaries.

We observe that fuzzing is a highly repetitive process in which a program is executed

for many times. As such, it provides a large number of chances for trial-and-error, allow-

ing rewriting to be incremental and progress with increasing accuracy over time. We hence

propose a novel incremental and stochastic rewriter that piggy-backs on the fuzzing proce-

dure. It uses probabilities to model the uncertainty in solving the aforementioned challenges

such as separating data and code. In other words, it does not require the binary analy-

sis to acquire sound results to begin with. Instead, it performs initial rewriting based on

the uncertain results. The rewritten binary is very likely problematic. However, through a

129

number of fuzzing runs, the technique automatically identifies the problematic places and

repairs them. The process is stochastic. It does not use a uniform rewritten binary. In-

stead, it may rewrite the binary differently for each fuzzing run by drawing samples from

the computed probabilities. It randomly determines if bytes at some addresses ought to be

rewritten based on the likelihood that the addresses denote an instruction. As such, the

problematic rewritings are distributed and diluted among many versions, allowing easy fault

localization / repair and ensuring fuzzing progress. Note that if a binary contains too many

rewriting problems, the fuzzer may not even make reasonable progress, significantly slowing

down the convergence to precise rewriting. In contrast, during stochastic rewriting, while

some versions fail at a particular place, many other versions can get through the place (e.g.,

as they do not rewrite the place), which in turn provides strong hints to fix the problem. The

probabilities are updated continuously across fuzzing runs as our technique sees more code

coverage and fixes more rewriting problems, affecting the randomly rewritten versions. At

the end, the uncertainty is excluded when enough samples have been seen, and the process

converges on a stable and precisely rewritten binary.

Our contributions are summarized as follows.

• We propose a novel incremental and stochastic rewriting technique that is particularly

suitable for binary-only fuzzing. It piggy-backs on fuzzing and leverages the numerous

fuzzing runs to perform trial-and-error until achieving precise rewriting.

• The technique is facilitated by a lightweight approach that determines the likelihood

of each address denoting a data byte. We formally define the challenge as a probabilis-

tic inference problem. However, standard inference algorithms are too heavyweight

and not sufficiently scalable in our context, which requires recomputing probabilities

and drawing samples during fuzzing. We hence develop a lightweight approximate

algorithm.

• We develop a number of additional primitives to support the process, which include

techniques to automatically locate and repair rewriting problems.

130

.CODE0:
0 : mov rbx, 13
7 : mov [rax], rbx
10: lea r8, [rip+8]
17: mov edx, [r8]
20: add rdx, r8
23: jmp rdx

.DATA:
25: .int 4

.CODE1:
29: mov r9, [rax]
32: add r8, r9
35: jmp r8

.CODE2:
38: mov rax, 60
45: syscall

Inst Var Val Note

0 : mov rbx, 13 rbx 13 .CODE2-.DATA

7 : mov [rax], rbx [rax] 13 .CODE2-.DATA

10: lea r8, [rip+8] r8 25 .DATA

17: mov edx, [r8] rdx 4 .CODE1-.DATA

20: add rdx, r8 rdx 29 .CODE1

23: jmp rdx jmp .CODE1 -

29: mov r9, [rax] r9 13 .CODE2-.DATA

32: add r8, r9 r8 38 .CODE2

35: jmp r8 jmp .CODE2 -

38: mov rax, 60 rax 60 -

45: syscall - - -

Figure 4.1. Motivation example

• We develop a prototype StochFuzz [90] and evaluate it on the Google Fuzzer Test

Suite [91], the benchmarks from RetroWrite [78], and a few commercial binaries.

We compare it with state-of-the-art binary-only fuzzers e9patch [89], ptfuzzer [92],

ddisam [64], afl-qemu [93] and RetroWrite [78] and also with source based fuzzers afl-

gcc [50] and afl-clang-fast [94]. Our results show that StochFuzz outperforms these

binary-only fuzzers in terms of soundness and efficiency, and has comparable perfor-

mance to source based fuzzers. For example, it is 7 times faster than afl-qemu, and

successfully handles all the test programs while other static binary rewriting fuzzers

fail on 12.5−37.5% of the programs. Our fuzzer also identifies zero-days in commercial

binaries without any symbol information. We have conducted a case study in which

we port a very recent source based fuzzing technique IJON [95] that tracks state feed-

back in addition to coverage feedback, to support binary-only fuzzing. It demonstrates

the applicability of StochFuzz. Our system and benchmark corpora are publicly

available [80].

131

4.2 Motivation

In this section, we use an example to illustrate the limitations of existing binary-only

fuzzing techniques and motivate ours. Figure 4.1 presents a piece of assembly code for

illustration purpose (its functionality is irrelevant). The right side of the figure depicts

its execution trace - where the executed instructions, destination registers, and evaluation

results are listed in the first three columns, respectively. The last column presents the related

section(s) if the evaluated result is address relevant. For example, the value 25 generated

by the instruction at address 10 denotes an address in the .DATA section while the value 29

generated by the instruction at address 20 denotes an address in .CODE1.

As shown, the snippet consists of three code sections (i.e., .CODE0, .CODE1, and .CODE2)

and an interleaved data section .DATA. The first two instructions (at addresses 0 and 7) in

.CODE0 load a constant 13 to rbx, and then store it in a memory location denoted by [rax].

The constant 13 denotes the offset between the .CODE2 section and the .DATA section, i.e.,

38-25=13, and will be used later in addressing. The three instructions at addresses 10, 17,

and 20 calculate the address of label .CODE1. Specifically, r8 is first set to the address of

.DATA via a PC-related lea instruction. At address 17, an integer 4 representing the offset

between labels .CODE1 and .DATA is loaded from the memory address denoted by [r8] (i.e.,

address 25) to edx, which consequently updates rdx. Next, r8 is added to rdx. The resulting

rdx denotes the address of .CODE1. The subsequent instruction at 23 triggers an indirect

jump to label .CODE1. The next two instructions at addresses 29 and 32 determine the target

of the indirect jump at address 35 (i.e., .CODE2) by loading the offset 13 from [rax] and

adding it to the address of .DATA stored in r8. A syscall is invoked subsequently once the

indirect jump is triggered. Observe that the code snippet has inlined data, indirect jumps,

and complex address computation, which pose substantial challenges to existing binary-only

fuzzers.

4.2.1 Limitations of Existing Technique

Recall that fuzzers need to collect runtime feedback such as code coverage to guide input

mutation. For binary-only fuzzers, such feedback can be captured by a technique in one of

132

Table 4.1. Summary of different binary-only fuzzing instrumentation tech-
niques, along with compiler instrumentation (afl-gcc and afl-clang-fast)

Tool
Prerequisite Support

Soundness Efficiency
A1 A2 A3 A4 S1 S2

afl-gcc Require Source Code Sound A
afl-clang-fast Require Source Code Sound A+

ptfuzzer [92] - - - - Y N Sound C

afl-qemu - - - - Y Y Sound D

afl-dyninst [88] - - 3 - Y Y Unsound A
e9patch [89] - - 3 3 Y Y Sound B

RetroWrite [78] 3 3 3 3 N Y Unsound A
ddisasm [64] - - - - Y Y Unsound A

StochFuzz - - - 3 Y Y Sound A
- - - - Y Y Prob sound A

the following three categories: (1) hardware-assisted tracing, (2) dynamic binary instrumen-

tation, and (3) static binary rewriting. In Table 4.1 , we summarize the characteristics of

existing techniques. Column 1 lists these techniques, with the first two being source-based

AFL fuzzers using gcc and clang compilers, ptfuzzer using hardware-assisted tracing, afl-qemu

using dynamic instrumentation, and the others including ours using static binary rewriting.

Columns 2-5 are the assumptions made by these tools, where 3 denotes that a specific pre-

condition is required. A1 denotes that the binary has symbol and relocation information, A2

denotes that the binary is Position Independent, A3 denotes that all instruction boundaries

are correctly identified by upstream disassembler, and A4 denotes that the binary does not

contain any inlined data. Columns 6 and 7 show whether C++ programs and other runtime

feedback beyond coverage are supported, respectively. S1 denotes that the tool supports

binaries compiled from C++ programs, and S2 denotes that the tool supports collecting

other runtime information than coverage. Column 8 denotes the soundness guarantee which

means if the technique guarantees to rewrite the binary properly and collect the right feed-

back, and column 9 denotes fuzzing efficiency with A+ the best. Note that the soundness of

StochFuzz can be guaranteed when there is no inlined data, and probabilisticly guaranteed

otherwise.

133

Hardware-assisted Tracing. Modern processors offer a mechanism that captures software

execution information using dedicated hardware [83]. PTFuzzer [92] leverages this feature

to collect code coverage for binary-only fuzzing. For instance, after executing the code

in Figure 4.1 , two control transfers are recorded, i.e., from 23 to 29 and from 35 to 38.

Based on the information, PTfuzzer subsequently recovers the execution path and hence the

coverage. Other hardware-assisted fuzzers operate similarly [96 , 97]. The performance of

these approaches is limited by the costly trace post-processing (4× slower than afl-clang-fast

according to our experiments). Additionally, hardware-assisted fuzzing cannot capture other

runtime feedback than coverage [82 , 95].

Dynamic Instrumentation. Dynamic instrumentation translates and instruments the

binary during execution [84 , 85]. Although it is an attractive solution due to its sound

instrumentation, the on-the-fly translation/instrumentation incurs relatively higher runtime

overhead compared to other approaches. Afl-qemu, to the best of our knowledge, is among

the best-performing binary-only fuzzers based on dynamic instrumentation. It still incurs

significant overhead (5× slower than afl-clang-fast according to our experiments). Other

approaches in this category, including afl-pin [98] and afl-dynamorio [99], induce even higher

overhead.

Static Binary Rewriting. Static rewriting utilizes binary analysis to disassemble and

rewrite the binary before execution. Unfortunately, it is still a hard challenge to rewrite

stripped binary with soundness guarantee. Existing solutions often make unsound assump-

tions about the target binary which may lead to runtime failures.

Afl-dyninst [88], a trampoline-based approach built upon traditional disassembly tech-

niques, assumes the upstream disassemblers can correctly identify all the instructions. How-

ever, such assumption may not hold in practice due to code and data interleavings [78 , 89].

Figure 4.2 demonstrates how the code example in Figure 4.1 breaks its assumption, where

the red box shows corrupted code, and the yellow box shows missing code. The left of Fig-

ure 4.2 shows that a linear disassembly, which decodes all bytes consecutively, is confused

by address 25, the inlined data byte. Recursive disassembly, on the other hand, avoids this

134

FN
Linear Disassembly Recursive Disassembly

0 : mov rbx, 13
7 : mov [rax], rbx
10: lea r8, [rip+8]
17: mov edx, [r8]
20: add rdx, r8
23: jmp rdx

DATA:
25: .int 4

CODE1:
29: mov r9, [rax]
32: add r8, r9
35: jmp r8

CODE2:
38: mov rax, 60
45: syscall

FP

0 : mov rbx, 13
7 : mov [rax], rbx
10: lea r8, [rip+8]
17: mov edx, [r8]
20: add rdx, r8
23: jmp rdx

DATA:
25: .int 4

CODE1:
29: mov r9, [rax]
32: add r8, r9
35: jmp r8

CODE2:
38: mov rax, 60
45: syscall

?

Figure 4.2. Limitations of disassembly methods

problem by disassembling instructions following control flow. But it fails to resolve the target

of the indirect jump at address 23, missing the code from address 29 to 45.

E9patch [89] makes the same assumption as afl-dyninst, and additionally assumes there is

no inlined data. With these assumptions, e9patch specially engineers jumps that can safely

overlap with other instructions. As such, it can insert trampolines without sacrificing the

correctness of rewriting. In addition, it uses a sophisticated virtual address space layout

for the instrumented binary, which on the other hand might make it susceptible to a large

number of cache misses and additional overhead in process forking[100].

RetroWrite [78] is a reassembly technique for Position Independent Code (PIC). It con-

verts address related immediate values in the binary to symbols (called symbolization) such

that they can be easily relocated after instrumentation. For example in Figure 4.3 , the

“lea r8, [rip+8]" instruction at address 10 is translated as “lea r8, [L25]", because

RetroWrite recognizes that rip+8 denotes a reference in the code space and needs to be

symbolized. As such, it could be properly relocated after instrumentation. However, sound

static symbolization is provably undecidable [86] in general. RetroWrite consequently makes

strong assumptions such as the requirement of relocation information and the exclusion of

C++ exception handlers. However, even if these requirements were satisfied, the sound-

ness of RetroWrite still could not be guaranteed due to the need of sound memory access

135

0 : mov rbx, 13
7 : mov [rax], rbx
10: lea r8, [rip+8]
17: mov edx, [r8]
20: add rdx, r8
23: jmp rdx

DATA:
25: .int 4

CODE1:
29: mov r9, [rax]
32: add r8, r9
35: jmp r8

CODE2:
38: mov rax, 60
45: syscall

0 : [afl trampoline]
10: mov rbx, 13
17: mov [rax], rbx
20: lea r8, [L25] # r8=35(.L25)
27: mov edx, [r8] # rdx=.L29-.L25
30: add rdx, r8 # rdx=.L29
33: jmp rdx # correct(.L29)

L25:
35: .int .L29-.L25

L29:
39: [afl trampoline]
49: mov r9, [rax] # r9=13
52: add r8, r9 # r8=45
55: jmp r8
58: mov rax, 60
65: syscall

Reassemble &
Instrument

Figure 4.3. Reassembly in RetroWrite. It crashes as the constant 13 in red
circle is not properly symbolized.

reasoning. In the right side of Figure 4.3 , recognizing that the constant 13 in the first in-

struction “mov rbx, 13" is an address offset (and needs symbolization) is challenging, due

to the long sequence of complex memory operations between this instruction and the final

address de-reference at 55, which ultimately discloses constant 13 is an address offset. In

the example, RetroWrite misclassifies 13 as a regular value. As a result, it is not symbolized.

Ideally, it should be symbolized to .L38-.L25, which would be concretized to 58-35=23 after

instrumentation. As a result, RetroWrite crashes on the binary. A recent study [64] shares

the same concern.

Ddisasm [64] is a state-of-the-art reassembly technique. Rather than making assumptions

about target programs, it relies on a large set of reassembly heuristics such as instruction

patterns. These heuristics, although comprehensive, have inherent uncertainty and may fail

in many cases.

4.2.2 Our Technique

Our technique is inspired by two important insights. First insight: while grey-box fuzzers

continuously mutate inputs across test runs, they may as well be enhanced to mutate the

program on-the-fly. As such, disassembly and static rewriting (which are difficult due to the

136

0
:

mo
v
rb
x,
 1
3

7
:
 m
ov

[r
ax
],
 r
bx

10
:
 l
ea

r8
,
[r
ip
+8
]

17
:
 m
ov

ed
x,
 [
r8
]

20
:
 a
dd

rd
x,
 r
8

23
:
 j
mp

rd
x

25
:
 .
in
t
4

29
:
 m
ov

r9
,
[r
ax
]

32
:
 a
dd

r8
,
r9

35
:
 j
mp

r8
38
:
 m
ov

ra
x,
 6
0

45
:
 s
ys
ca
ll

en
tr
yp
oi
nt

0
:

jm
p
90

7
:
 h
lt

10
:
 h
lt

17
:
 h
lt

20
:
 h
lt

23
:
 h
lt

25
:
 .
in
t
4

29
:
 h
lt

32
:
 h
lt

35
:
 h
lt

38
:
 h
lt

45
:
 h
lt

90
 :
 [
af
l
tr
am
po
li
ne
]

10
0:

mo
v
rb
x,
 1
3

10
7:
 m
ov

[r
ax
],
 r
bx

11
0:
 l
ea

r8
,
[r
ip
-9
2]

11
7:
 m
ov

ed
x,
 [
r8
]

12
0:
 a
dd

rd
x,
 r
8

12
3:
 j
mp

rd
x

0
:

jm
p
90

7
:
 h
lt

10
:
 h
lt

17
:
 h
lt

20
:
 h
lt

23
:
 h
lt

25
:
 .
in
t
4

29
:
 j
mp

12
5

32
:
 h
lt

35
:
 h
lt

38
:
 h
lt

45
:
 h
lt

90
 :
 [
af
l
tr
am
po
li
ne
]

10
0:

mo
v
rb
x,
 1
3

10
7:
 m
ov

[r
ax
],
 r
bx

11
0:
 l
ea

r8
,
[r
ip
-9
2]

11
7:
 m
ov

ed
x,
 [
r8
]

12
0:
 a
dd

rd
x,
 r
8

12
3:
 j
mp

rd
x

12
5:
 [
af
l
tr
am
po
li
ne
]

13
5:
 m
ov

r9
,
[r
ax
]

13
8:
 a
dd

r8
,
r9

14
1:
 j
mp

r8

90
 :
 [
af
l
tr
am
po
li
ne
]

10
0:

mo
v
rb
x,
 1
3

10
7:
 m
ov

[r
ax
],
 r
bx

11
0:
 l
ea

r8
,
[r
ip
-9
2]

11
7:
 m
ov

ed
x,
 [
r8
]

12
0:
 a
dd

rd
x,
 r
8

12
3:
 j
mp

rd
x

12
5:
 [
af
l
tr
am
po
li
ne
]

13
5:
 m
ov

r9
,
[r
ax
]

13
8:
 a
dd

r8
,
r9

14
1:
 j
mp

r8
14
4:
 [
af
l
tr
am
po
li
ne
]

15
4:
 m
ov

ra
x,
 6
0

16
1:

sy
sc
al
l

0
:

jm
p
90

7
:
 h
lt

10
:
 h
lt

17
:
 h
lt

20
:
 h
lt

23
:
 h
lt

25
:
 .
in
t
4

29
:
 m
ov

r9
,
[r
ax
]

32
:
 a
dd

r8
,
r9

35
:
 j
mp

r8
38
:
 h
lt

45
:
 s
ys
ca
ll

Pr
ob

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
1

0.
1

0.
05

0.
01

0.
07

0.
02

90
 :
 [
af
l
tr
am
po
li
ne
]

10
0:

mo
v
rb
x,
 1
3

10
7:
 m
ov

[r
ax
],
 r
bx

11
0:
 l
ea

r8
,
[r
ip
-9
2]

11
7:
 m
ov

ed
x,
 [
r8
]

12
0:
 a
dd

rd
x,
 r
8

12
3:
 j
mp

rd
xPr

ob
0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
1

0.
1

0.
05

0.
01

0.
07

0.
02

0
:

jm
p
90

7
:
 h
lt

10
:
 h
lt

17
:
 h
lt

20
:
 h
lt

23
:
 h
lt

25
:
 h
lt

29
:
 m
ov

r9
,
[r
ax
]

32
:
 a
dd

r8
,
r9

35
:
 j
mp

r8
38
:
 h
lt

45
:
 s
ys
ca
ll

90
 :
 [
af
l
tr
am
po
li
ne
]

10
0:

mo
v
rb
x,
 1
3

10
7:
 m
ov

[r
ax
],
 r
bx

11
0:
 l
ea

r8
,
[r
ip
-9
2]

11
7:
 m
ov

ed
x,
 [
r8
]

12
0:
 a
dd

rd
x,
 r
8

12
3:
 j
mp

rd
x

Pr
ob

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
1

0.
1

0.
05

0.
01

0.
07

0.
02

0
:

jm
p
90

7
:
 h
lt

10
:
 h
lt

17
:
 h
lt

20
:
 h
lt

23
:
 h
lt

25
:
 .
in
t
4

29
:
 m
ov

r9
,
[r
ax
]

32
:
 a
dd

r8
,
r9

35
:
 j
mp

r8
38
:
 m
ov

ra
x,
 6
0

45
:
 s
ys
ca
ll

90
 :
 [
af
l
tr
am
po
li
ne
]

10
0:

mo
v
rb
x,
 1
3

10
7:
 m
ov

[r
ax
],
 r
bx

11
0:
 l
ea

r8
,
[r
ip
-9
2]

11
7:
 m
ov

ed
x,
 [
r8
]

12
0:
 a
dd

rd
x,
 r
8

12
3:
 j
mp

rd
x

Pr
ob

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
1

0.
1

0.
05

0.
01

0.
07

0.
02

0
:

jm
p
90

7
:
 h
lt

10
:
 h
lt

17
:
 h
lt

20
:
 h
lt

23
:
 h
lt

25
:
 h
lt

29
:
 m
ov

r9
,
[r
ax
]

32
:
 a
dd

r8
,
r9

35
:
 j
mp

r8
38
:
 m
ov

ra
x,
 6
0

45
:
 s
ys
ca
ll

90
 :
 [
af
l
tr
am
po
li
ne
]

10
0:

mo
v
rb
x,
 1
3

10
7:
 m
ov

[r
ax
],
 r
bx

11
0:
 l
ea

r8
,
[r
ip
-9
2]

11
7:
 m
ov

ed
x,
 [
r8
]

12
0:
 a
dd

rd
x,
 r
8

12
3:
 j
mp

rd
x

In
iti

al
Pa

tc
hi

ng
In

cr
em

en
ta

l
R

ew
rit

in
g

In
cr

em
en

ta
l

R
ew

rit
in

g

Pr
ob

ab
ili

ty
 A

na
ly

si
s

&
 In

iti
al

 P
at

ch
in

g

U
ni

nt
en

tio
na

l
cr

as
h

at

ad
dr

es
s

12
3

B
in

ar
y

C
le

an
in

g

N
o

cr
as

h

B
in

ar
y

M
ut

at
io

n

B
in

ar
y

M
ut

at
io

n

In
te

nt
io

na
l c

ra
sh

 a
t a

dd
re

ss
 3

8

U
ni

nt
en

tio
na

l
cr

as
h

at

ad
dr

es
s

12
3

Lo
ca

tin
g

R
ew

rit
in

g
Er

ro
r

Pr
ob

ab
ili

ty
 R

ec
al

cu
la

tio
n

&
In

cr
em

en
ta

l R
ew

rit
in

g

In
te

nt
io

na
l c

ra
sh

 a
t a

dd
re

ss
 2

9

0
:

jm
p
90

7
:
 h
lt

10
:
 h
lt

17
:
 h
lt

20
:
 h
lt

23
:
 h
lt

25
:
 .
in
t
4

29
:
 h
lt

32
:
 h
lt

35
:
 j
mp

r8
38
:
 j
mp

12
5

45
:
 h
lt

Pr
ob

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

1.
0

0.
07

0.
02

0.
01

0.
0

0.
0

90
 :
 [
af
l
tr
am
po
li
ne
]

10
0:

mo
v
rb
x,
 1
3

10
7:
 m
ov

[r
ax
],
 r
bx

11
0:
 l
ea

r8
,
[r
ip
-9
2]

11
7:
 m
ov

ed
x,
 [
r8
]

12
0:
 a
dd

rd
x,
 r
8

12
3:
 j
mp

rd
x

12
5:
 [
af
l
tr
am
po
li
ne
]

13
5:
 m
ov

ra
x,
 6
0

14
2:
 s
ys
ca
ll

0
:

jm
p
90

7
:
 h
lt

10
:
 h
lt

17
:
 h
lt

20
:
 h
lt

23
:
 h
lt

25
:
 .
in
t
4

29
:
 j
mp

14
4

32
:
 h
lt

35
:
 h
lt

38
:
 j
mp

12
5

45
:
 h
lt

Pr
ob

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

1.
0

0.
0

0.
0

0.
0

0.
0

0.
0

90
 :
 [
af
l
tr
am
po
li
ne
]

10
0:

mo
v
rb
x,
 1
3

10
7:
 m
ov

[r
ax
],
 r
bx

11
0:
 l
ea

r8
,
[r
ip
-9
2]

11
7:
 m
ov

ed
x,
 [
r8
]

12
0:
 a
dd

rd
x,
 r
8

12
3:
 j
mp

rd
x

12
5:
 [
af
l
tr
am
po
li
ne
]

13
5:
 m
ov

ra
x,
 6
0

14
2:
 s
ys
ca
ll

14
4:
 [
af
l
tr
am
po
li
ne
]

15
4:
 m
ov

r9
,
[r
ax
]

15
7:
 a
dd

r8
,
r9

16
0:
 j
mp

r8

C
as

e A
C

as
e

B

In
te

nt
io

na
l c

ra
sh

 a
t a

dd
re

ss
 3

8

In
te

nt
io

na
l c

ra
sh

 a
t a

dd
re

ss
 2

9

0
:

jm
p
90

7
:
 h
lt

10
:
 h
lt

17
:
 h
lt

20
:
 h
lt

23
:
 h
lt

25
:
 .
in
t
4

29
:
 j
mp

12
5

32
:
 h
lt

35
:
 h
lt

38
:
 j
mp

14
4

45
:
 h
lt

0
:

hl
t

7
:
 h
lt

10
:
 h
lt

17
:
 h
lt

20
:
 h
lt

23
:
 h
lt

25
:
 .
in
t
4

29
:
 h
lt

32
:
 h
lt

35
:
 h
lt

38
:
 h
lt

45
:
 h
lt

In
te

nt
io

na
l

cr
as

h
at

ad

dr
es

s
0

In
cr

em
en

ta
l

R
ew

rit
in

g

Pr
ob

0.
03

0.
01

0.
0

0.
0

0.
0

0.
0

0.
1

0.
1

0.
05

0.
01

0.
07

0.
02

0
:

hl
t

7
:
 h
lt

10
:
 h
lt

17
:
 h
lt

20
:
 h
lt

23
:
 j
mp

rd
x

25
:
 h
lt

29
:
 m
ov

r9
,
[r
ax
]

32
:
 h
lt

35
:
 j
mp

r8
38
:
 m
ov

ra
x,
 6
0

45
:
 h
lt

In
te

nt
io

na
l

cr
as

h
at

ad

dr
es

s
0

Pr
ob

ab
ili

ty
R

ec
al

cu
la

tio
n

&
 In

cr
em

en
ta

l
R

ew
rit

in
g

Pr
ob

ab
ili

ty
 R

ec
al

cu
la

tio
n

&
In

cr
em

en
ta

l R
ew

rit
in

g

1
2

3
4

1
2

3
4 7

6
5

F
ig

ur
e

4.
4.

H
ow

St
oc

hF
uz

z
ha

nd
le

s
th

e
m

ot
iv

at
io

n
ex

am
pl

e

137

lack of symbol information and difficulties in resolving indirect jumps/calls offline) can be

incrementally performed over time.

Example. We use case A in the first row of Figure 4.4 to demonstrate how our technique

leverages the first insight. The workflow consists of four steps, an initial patching step prior

to fuzzing (step 1) and three incremental rewriting steps during fuzzing (steps 2 , 3 ,

and 4).

In the snippet to the left of 1 , the code sections are filled with a special one-byte hlt

instruction , which will cause a segfault upon execution. A segfault by a hlt instruction

indicates that the system has just discovered a code region that has not been properly

disassembled or rewritten such that incremental rewriting should be performed. We will

explain later how we separate code and data in the first place (as only code is replaced with

hlt in the snippet). The separation of the two does not have to be precise initially and

our stochastic rewriting (discussed later) can gradually improve precision over the numerous

fuzzing runs. For instance, the execution of initial patched code is terminated by the hlt

at address 0, indicating a new code region. For easy description, we call such segfaults

intentional crashes.

The next step (incrementally) rewrites all the addresses that can be reached along direct

control flow from the address where the intentional crash happens. Specifically, StochFuzz

places the rewritten code in a new address space, called the shadow space; it further redirects

all the direct jumps and calls to their new targets in the shadow space by patching immediate

offsets; and since data sections are retained in their original space, any PC-dependent data

references need to be properly patched too. At last, StochFuzz inserts a jump instruction

at the crash address to direct the control flow to the shadow space. In the code snippet in

between 1 and 2 , given the crash address 0, StochFuzz disassembles the instructions

from addresses 0 to 23 (highlighted in green shade). These instructions are then rewritten in

the shadow space starting from address 90. Specifically, an afl trampoline is inserted at the

beginning to collect coverage information, and the original “lea r8, [rip+8]” instruction

(at address 10) is rewritten to “lea r8, [rip-92]” (at address 110) to ensure the data

reference occurs at the original address. StochFuzz inserts a “jmp 90” instruction at 0 to

138

transfer the control flow. Then, the fuzzer continues fuzzing with the new binary and the

incremental rewriting is invoked again if other intentional crashes occur (e.g., steps 2 and

3). �

A prominent challenge is to separate code and data in executables, especially when in-

lined data are present. Due to the lack of symbol information, it is in general an undecidable

problem [86]. Heuristics or learning based solutions [64 , 101] are inevitably unsound. Data

may be recognized as instructions and replaced with hlt. As a result, the program may

execute with corrupted data which may or may not manifest themselves as crashes. Cor-

rupted states may lead to bogus coverage and problematic test results. On the other hand,

instructions may be recognized as data and hence not replaced with hlt. Consequently,

these instructions are invisible to our system and not instrumented.

The following second insight allows us to address the aforementioned problem. Second

insight: fuzzing is a highly repetitive process that provides a large number of opportunities

for trial-and-error. That is, we can try different data and code separations, which lead

to different instrumented executables, in different fuzzing runs. Over time, an increasing

number of samples can be collected, allowing us to achieve the precise separation and correct

rewriting. There are two challenges that we need to overcome in order to leverage the insight.

First, we need to distinguish exceptions caused by rewriting errors (introduced by our trial-

and-error) and by latent bugs in the subject program. We call both unintentional crashes (to

distinguish from intentional crashes by hlt). We also need to pinpoint and repair rewriting

errors, i.e., data bytes misclassified as code (and undesirably replaced with hlt), and vice

versa. We call it the self-correction requirement. Second, an executable cannot contain

too many rewriting errors. Otherwise, the fuzzing runs of the executable can hardly make

progress (as it continues to crash on these errors one after another). Note that we rely on

the fuzzer’s progress to collect more and more samples to correct our rewritings. We call it

the progress requirement.

We therefore propose a novel stochastic rewriting technique that piggy-backs on the

fuzzing procedure. At first, the technique performs probabilistic inference to compute the

likelihood of individual bytes in the original address space belonging to data (or code). Such

probabilities are computed based on various hints, such as register definition-use relations

139

that often indicate instructions and consecutive printable bytes that often suggest data.

Details of the probabilistic inference can be found in Section 4.3.1 . Since these hints are

inherently uncertain (e.g., printable bytes may not be data), we use probabilities to model

such uncertainty. Based on the computed probabilities, StochFuzz randomly generates a

rewritten version for each fuzzing run. In a random version, the bytes replaced with hlt are

determined by sampling based on their computed probabilities. For instance, a byte with a

high probability of being code is more likely replaced with hlt. When a segfault is observed,

StochFuzz determines if it is caused by a rewriting error, by running the failure inducing

input on a binary with all the uncertain rewritings removed and observing if the crash dis-

appears. If so, delta debugging [102], a binary-search like debugging technique, is used to

determine the root cause rewriting. Over time, the corrected rewritings, together with the

new coverage achieved during fuzzing, provide accumulating hints to improve probabilistic

inference and hence rewriting. Note that the proposed solution satisfies the two aforemen-

tioned requirements: the rewriting errors are distributed in many random versions such that

the fuzzer can make progress in at least some of them; and they can be automatically located

and repaired.

Example Continued. We use case B (the lower box) in Figure 4.4 to illustrate stochastic

rewriting. At the beginning (the snippet to the left of 1 in case B), StochFuzz computes

the initial probabilities (of being data bytes) as shown to the left of the individual addresses.

For example, a definition-use relation between addresses 0 and 7 caused by rbx decreases

their probability of being data. Assume in a random binary version the addresses with color

shades are replaced by hlt, with the yellow ones being the correct replacements as they

denote instructions and the red one erroneous since a data byte is replaced with a hlt. The

binary is executed and then an intentional crash is encountered at address 0. In the snippet

to the right of 1 , besides the incremental rewriting mentioned in case A, StochFuzz also

performs probability recalculation which updates the probabilities based on the new hints

from the execution. Intuitively, as address 0 is code, all addresses (in green shade) reachable

from the instruction along control flow must be code. We say that they are “certainly code”

and their probabilities are set to 0. The probabilities of remaining addresses are updated

140

and new random binaries are generated. In practice, many of the misclassified bytes such

as 25 are proactively fixed by these new hints and updated probabilities, without causing

any crashes or even being executed. This illustrates the importance of the aforementioned

progress requirement.

However to make our discussion interesting, we assume 25 (i.e., the data byte) and 38

are still replaced in the new version (i.e., the snippet to the right of 1). During execution,

since the data at 25 is corrupted, a wrong target address value is computed for rdx in the

jump instruction at 123, causing a segfault. The diagnosis and self-correction procedure

is hence invoked (steps 2 - 5). Specifically, the binary cleaning step 2 removes all the

rewritings at uncertain addresses (in yellow or red shades) and re-executes the program (to

the right of 2). The crash at address 123 disappears, indicating the crash must be induced

by a rewriting error. StochFuzz uses delta debugging and generates two binaries, one with

only 25 replaced (i.e., the snippet to the left of 4) and the other with 38 replaced (i.e., the

snippet to the left of 5). The former crashes at the same address 123 whereas the latter

crashes at 38 (and hence an intentional crash). As such, StochFuzz determines that the

rewriting of address 25 is wrong and fixes it by marking it as “certainly data” (i.e., with

probability 1.0) in the version to the right of 5 . This new hint leads to probability updates

of other addresses (e.g., 29 and 32). The procedure continues and eventually all addresses

have certain classification (i.e., all in green shade) and the program is properly rewritten. �

4.3 System Design

The architecture of StochFuzz is shown in Figure 4.5 . It consists of five components:

the probability analyzer, the incremental and stochastic rewriter, the program dispatcher, the

execution engine, and the crash analyzer. The probability analyzer computes a probability

for each address in the given binary to indicate the likelihood of the address denoting a

data byte. The rewriter rewrites the binary in different forms by sampling based on the

computed probabilities. The program dispatcher selects a rewritten version to execute,

either randomly for a normal execution request or strategically for root cause diagnosis. The

execution engine, a variant of AFL [50], executes a given binary and monitors for crashes.

141

stripped
binary

p
binary w/

analysis result

Program
Dispatcher

Incremental
& Stochastic

Rewriter

Execution
Engine (AFL)

Probability
Analyzer

STOCHFUZZ

random
rewritten binary

crash

Crash Analyzer

execution request

hint

analysis request

rewritten
binaries

an
al

ys
is

 re
qu

es
t

Figure 4.5. Architecture

The crash analyzer triggers incremental rewriting when it determines a crash is intentional;

otherwise, it analyzes the root cause and automatically repairs it if the cause is a rewriting

error.

StochFuzz has three typical workflows. Case one is the most common. It is similar

to the standard AFL. Specifically, the execution engine sends a request to the program

dispatcher for a binary. The dispatcher randomly selects a rewritten binary (from its pool),

which is then executed by the engine. The binary subsequently exits normally without any

crash.

In case two, the execution is terminated by an intentional crash (i.e., a hlt instruction).

The crash is reported to the crash analyzer, which identifies the new code coverage indi-

cated by the crash and analyzes the newly discovered code to collect additional hints for

distinguishing data and code. The hints are passed on to the probability analyzer, which

recomputes the probabilities and invokes the incremental rewriter to generate new binaries.

In case three, the execution is terminated by an unintentional crash (i.e., a crash not

caused by hlt). To verify whether the crash is triggered by some rewriting error, the crash

analyzer notifies the program dispatcher to send a binary that has all uncertain rewritings

removed for execution. If the previous crash persists, it must be caused by a latent bug in

142

the original program. Otherwise, the crash is caused by rewriting error. The crash analyzer

further performs delta-debugging to locate the root cause and repairs it. The repair is passed

on as a hint to the probability analyzer and triggers probabilities updates and generation of

new binaries. In the remainder of this section, we discuss details of the components.

4.3.1 Probability Analyzer

This component computes the probabilities of each address denoting data or code. Ini-

tially (before fuzzing starts), it computes the probabilities based on the results of a simple

disassembler that we only use to disassemble at each address in the binary. During fuzzing,

with new observations (e.g., indirect call and jump targets) and exposed rewriting errors, it

continuously updates probabilities until convergence. It models the challenge as a probabilis-

tic inference problem [65]. Specifically, random variables are introduced to denote individual

addresses’ likelihood of being data or code. Prior probabilities, which are usually predefined

constants as in the literature [59 , 66 – 68], are associated with a subset of random variables in-

volved in observable features (e.g., definition-use relations that suggest likely code). Random

variables are correlated due to program semantics. The correlations are modeled as proba-

bilistic inference rules. Prior probabilities are propagated and aggregated through these rules

until convergence using probabilistic inference algorithms, yielding posterior probabilities. In

the following, we explain how we define the problem and introduce our lightweight solution.

Definitions and Analysis Facts. As shown in the top of Figure 4.7 , we use a to denote an

address, c a constant, and r a register. The bottom part of Figure 4.7 presents the analysis

facts directly collected from the binary. These facts are deterministic (not probabilistic).

Inst(a, c) denotes that the c bytes starting from address a can be encoded as a valid in-

struction. ExplicitSucc(a1, a2) denotes the instruction at address a2 is an explicit successor

of the instruction at address a1 along control flow. RegWrite(a, r) denotes the instruction

at a writes to register r. RegRead denotes the read operation. Str(a, c) denotes the c bytes

starting from address a constitute a printable null-terminated string.

Initially, StochFuzz disassembles at each address and collects the analysis facts. It

collects more facts than those in Figure 4.7 . They are elided due to space limitations.

143

Inst(0, 3)

Inst(3, 4)

Inst(7, 2)

Inst(9, 3)

Inst(12, 2)

Inst(17, 1)

Inst(1, 2)
Inst(2, 1)

Inst(4, 3)
Inst(5, 1)
Inst(6, 5)

Inst(8, 3)

Inst(10, 2)
Inst(11, 3)

Inst(13, 1)
Inst(14, 1)
Inst(15, 3)

Inst(16, 2)

0 : 48 | [3] xor rcx, rcx
1 : 31 | [2] xor ecx, ecx
2 : c9 | [1] leave
3 : 48 | [4] cmp rcx, 5
4 : 83 | [3] cmp ecx, 5
5 : f9 | [1] stc
6 : 05 | [5] add eax, 0xff480874
7 : 74 | [2] je 17
8 : 08 | [3] or [rax-1], cl
9 : 48 | [3] inc rcx
10: ff | [2] inc ecx
11: c1 | [3] shr ebx, 245
12: eb | [2] jmp 3
13: f5 | [1] cmc
14: 4f | [1] rex.WRXB (O)
15: 4b | [3] rex.WXB add r11b, al (K)
16: 00 | [2] add bl, al (\0)
17: c3 | [1] ret

Addr Byte | [Len] Decoded Instruction

Figure 4.6. Universal Control-flow Graph (UCFG) Example. On the left,
each address is disassembled (with the real instructions in green shade and the
real data in yellow). The corresponding UCFG is in the right.

Example. In the left of Figure 4.6 , StochFuzz disassembles starting from each (consecutive)

address of a binary, with the first column showing the addresses, the second column the byte

value at the address, the third column the instruction size, and the last column the instruc-

tion. For example, the first three bytes “48 31 c9" are disassembled to an xor instruction

and the four bytes starting from address 3 are disassembled to a cmp instruction. We high-

light the true instructions in green shade, and the true data, an “OK" string, in yellow shade,

for discussion convenience. Note that StochFuzz does not assume such separation a priori.

A simple sound binary analysis yields the following facts: Inst(7, 2) because the instruction

at 7 is “je 17" whose instruction size is 2, ExplicitSucc(7, 17) as the instruction at 7 jumps

to 17, RegWrite(9, rcx), RegRead(9, rcx), and Str(14, 3). �

Predicates. Next, we introduce a set of predicates that describe inference results. Different

from facts that are deterministic, predicates may be uncertain. A random variable is hence

associated with each uncertain predicate, denoting the likelihood of it being true. A subset

of the predicates we use are presented in the top of Figure 4.8 with those having overline

144

a ∈ 〈Address〉 ::= Integer c ∈ 〈Constant〉 ::= Integer
r ∈ 〈Register〉 ::= {rax, rbx, rcx, rdx, · · · }

Inst(a, c) : the c bytes starting from address a can be disassembled as an inst
ExplicitSucc(a1, a2)/ : the inst at a2 is an explicit successor of the one at a1

RegWrite(a, r)/RegRead(a, r) : the inst at a writes/reads data into/from reg r

Str(a, c) : the c bytes starting from addr a can be interpreted as a printable string

Figure 4.7. Definitions for variables and analysis facts

uncertain. ExplicitReach(a1, a2) denotes that address a1 can reach a2 along control flow.

In Figure 4.6 , the path 0 − 3 − 7 leads to ExplicitReach(0, 7). RegLive(a1, a2, r) denotes

that register r written by address a1 is live before the instruction at a2. As such, we have

RegLive(9, 12, rcx) in Figure 4.6 . IsInst(a) denotes the likelihood of address a being code.

IsData(a) is similar.

(Probabilistic) Inference Rules. In the bottom of Figure 4.8 , we present a subset of our

inference rules. Some of them are probabilistic (i.e., those involving uncertain predicates

and having probability on the implication operator). Here, 1.0, 0.0, pinst, pdata, and pprob

denote prior probabilities that are predefined constants. Rules 1 and 2 derive control

flow relations. Intuitively, an instruction can always reach its explicit successor (rule 1),

and if a1 can reach a2, it can reach the successors of a2 (rule 2). Rules 3 , 4 , and 5

are to derive definition-use relations. Specifically, rule 3 denotes that if an instruction

writes/defines a register, the register is live before the successor. Rule 4 denotes propaga-

tion of register liveness, that is, if a register is live before an instruction and the instruction

does not overwrite the register, it remains live after the instruction. Rule 5 states that

if there is a definition-use relation between a1 and a2, both addresses are likely code, with

a prior probability pinst. Rule 6 states that if an address is likely code, all the addresses

reachable from the instruction (at the address) have at least the same likelihood of being

code. Rule 7 states that all bytes in a printable null-terminated string are likely data. Rule

8 leverages the continuity property of data and states that if two data addresses are close

145

ExplicitReach(a1, a2) : a1 can explicitly reach a2 along control flow
RegLive(a1, a2, r) : register r written by address a1is live before address a2

IsInst(a)/IsData(a) : the content at address a is an inst/data byte

1 ExplicitSucc(a1, a2) −→ ExplicitReach(a1, a2)
2 ExplicitReach(a1, a2) ∧ExplicitSucc(a2, a3) −→ ExplicitReach(a1, a3)
3 RegWrite(a1, r) ∧ExplicitSucc(a1, a2) −→ RegLive(a1, a2, r)
4 RegLive(a1, a2, r) ∧ ¬RegWrite(a2, r) ∧ExplicitSucc(a2, a3) −→

RegLive(a1, a3, r)
5 RegLive(a1, a2, r) ∧RegRead(a2, r) pinst↑−−−→ IsInst(a1) ∧ IsInst(a2)
6 IsInst(a1) ∧ExplicitReach(a1, a2) 1.0−−→ IsInst(a2)
7 Str(a1, c) ∧ (a1 ≤ a2 < a1 + c) pdata↑−−−→ IsData(a2)
8 IsData(a1) ∧ IsData(a2) ∧ (a1 ≤ a3 ≤ a2 < a1 + D)

pprop↑
−−−→

IsData(a3)
9 IsInst(a) 0.0←→ IsData(a)

Figure 4.8. Predicates and (probabilistic) inference rules. The predicates
with overline are uncertain and rules with probability on top of −→ denote
probabilistic inference.

enough, the addresses in between are likely data too. Rule 9 states that an address cannot

be code and data at the same time.

Incremental Fact and Rule Updates. New information can be derived during fuzzing and al-

lows facts and rules to be updated. Specifically, new code coverage would allow deriving new

facts such ExplicitSucc(...) (e.g., newly discovered indirect control flow). When a rewriting

error that replaces a data byte a with hlt is located, the corresponding predicate IsData(a)

is set to a 1.0 prior probability, meaning “certainly data". IsInst(a) can be similarly updated.

These updates will be leveraged by probabilistic inference to update other random variables

and eventually affect stochastic rewriting.

Probabilistic Inference by One-step Sum-product. The essence of probabilistic infer-

ence is to derive posterior probabilities for random variables by propagating and aggregating

prior probabilities (or observations) following inference rules. A popular inference method

is belief propagation [103] which transforms the random variables (i.e., the uncertain predi-

146

cates) and probabilistic inference rules to a factor graph [65 , 104], which is bipartite graph

containing two kinds of nodes, a variable node for each random variable and a factor node

for each probabilistic inference rule. A factor can be considered a function over variables

such that edges are introduced between a factor node to the variables involved in the rule.

Prior probabilities are then propagated and aggregated through the factor graph by an al-

gorithm like sum-product [104], which is an iterative message-passing based algorithm. In

each iteration, each variable node receives messages about its distribution from the factors

connected to the variable, aggregates them through a product operation and forwards the

resulted distribution through outgoing messages to the connected factor nodes. Each factor

receives messages from its variables and performs a marginalization operation, or the sum

operation. The posterior probabilities of random variables can be derived by normalizing

the converged variable values.

However, belief propagation is known to be very expensive, especially when loops are

present [105]. Most existing applications handle graphs with at most hundreds of random

variables and factors [59 , 66 – 68]. However in our context, we have tens of thousands of

random variables and factors (proportional to the number of bytes in the binary). Resolving

the probabilities may take hours. We observe that the factor graph is constructed from

program that has a highly regular structure. The rounds of sum and product operations

in the factor graph can be simplified to non-loopy explicit operations along the program

structure. We hence propose a one-step sum-product algorithm that has linear complexity.

The algorithm constructs a universal control flow graph (UCFG) that captures the control

flow relations between the instructions disassembled at all addresses. Note that the binary’s

real control flow graph is just a sub-graph of the UCFG. Observations (i.e., deterministic facts

and predicates that suggest data or code) are explicitly propagated and aggregated along the

UCFG, instead of the factor graph. In the last step, a simplest factor graph is constructed

for each address to conduct a one-step normalization (from the observations propagated to

this address) to derive the posterior probability (of the address holding a data byte). The

factor graphs of different addresses are independent, precluding unnecessary interference.

147

Universal Control Flow Graph. In UCFG, a node is introduced for each address in the

binary regardless of code or data, denoting the one instruction disassembled from that

address. Edges are introduced between nodes if there is explicit control flow between

them. UCFG is formally defined as G = (V, E), where V = {a | ∃c s.t. Inst(a, c)} and

E = {(a1, a2) | ExplicitSucc(a1, a2)}. The right side of Figure 4.6 presents the UCFG for

the binary on the left. Note that only the shaded sub-graph is the traditional CFG. After

UCFG construction, StochFuzz identifies the strongly connected components (SCCs) in the

UCFG (i.e., nodes involved in loops). A node not in any loop is an SCC itself. For example

in Figure 4.6 , Inst(0, 3) itself is a SCC. Inst(3, 4), Inst(7, 2), Inst(9, 3), and Inst(12, 2) form

another SCC. �

One-step Sum-product. The overall inference procedure is described as follows. StochFuzz

first performs deterministic inference (following deterministic rules such as rules 1 - 4).

The resulted deterministic predicates such as the antecedents in rules 5 and 7 are called

observations, with the former a code observation (due to the definition-use relation) and

the latter a data observation. Prior probabilities pinst and pdata are associated with them,

respectively.

StochFuzz starts to propagate and aggregate these observations using UCFG. Specifi-

cally, it uses a product operation to aggregate all the observations in an SCC (i.e., multiplying

their prior probabilities), inspired by the sum-product algorithm that uses a product opera-

tion to aggregate information across factors. All the addresses within the SCC are assigned

the same aggregated value. Intuitively, we consider all the addresses in an SCC have the

same likelihood of being code because any observation within an SCC can be propagated

to any other nodes in the SCC (through loop). The lower the aggregated value, the more

likely the address being code. We say the belief is stronger. The aggregated observations are

further propagated across SCCs along control flow, until all addresses have been reached.

Data observations are separately propagated, mainly following rule 8 . Specifically,

StochFuzz scans through the entire address space in order, if any two data observations

are close to each other (less than distance D), the addresses in between are associated with

a value computed from the prior probabilities of the two bounding observations.

148

After propagation, each address a has two values denoting the aggregated code observa-

tion and the aggregated data observation, respectively. A simple factor graph is constructed

for a as shown in Figure 4.9 . The circled node a is the variable node, representing the likeli-

hood of a being data. It has two factor nodes Fcode and Fdata, denoting the aforementioned

two values. According to the sum-product algorithm [104], the posterior probability of a is

the normalized product of the two factors as shown in the bottom of the figure.

Algorithm 7 details the one-step sum-product inference procedure. Ocode and Odata denote

the aggregated code and data observation values for each address, respectively. Note that

a small value means strong belief. Line 3 performs the deterministic inference. Line 9

identifies SCCs and transforms UCFG to a DAG of SCCs. Step 1 in lines 13-20 propagates

code observations. Step 2 in lines 22-33 propagates data observations. The formula in line

28 is derived from a simple factor graph involving three variables (i.e., addresses i, iprev,

and j), and three factors (for Odata[iprev], Odata[i], and rule 7). Details are elided. Step 3

in lines 35-39 performs the one-step sum-product for each address. Lines 36 and 37 assign

observation value 0.5 if there is no belief propagated to the address. The formula in line 38

is derived from that in Figure 4.9 .

Comparison with Probabilistic Disassembly. In probabilistic disassembly [60], re-

searchers use probabilistic analysis to disassemble stripped binaries. It computes probabil-

ities for each address to denote the likelihood of the address belonging to an instruction.

However, its problem definition and probability computation are ad-hoc. Its algorithm is

iterative and takes tens of minutes to compute probabilities for a medium-sized binary. It

has a lot of false positives (around 8%), i.e., recognizing data bytes as instructions. These

make it unsuitable for our purpose. In contrast, we formulate the problem as probabilis-

tic inference and propose an algorithm with linear complexity. Piggy-backing on fuzzing,

StochFuzz can achieve precise disassembly and rewriting with probabilistic guarantees.

4.3.2 Incremental and Stochastic Rewriting

The rewriter is triggered initially and then repetitively when new code is discovered or

rewriting errors are fixed. It rewrites instructions in the shadow space (for better instrumen-

149

Algorithm 7 One-step Sum-product
Input: B binary indexed by address

Output: P [a]∈ [0, 1] probability of address a holding a data byte
Local: G=(V, E) V ={a | ∃c s.t. Inst(a, c)}

E ={(a1, a2) | ExplicitSucc(a1, a2)}
Ocode[a]∈ [0, 1] aggregated code observations on address a
Odata[a]∈ [0, 1] aggregated data observations on address a

1: function CalcProbability(B)
2: G = BuildUCFG(B)
3: Ocode, Odata = CollectObservations(B)
4: P = OneStepSumProduct(G, Ocode, Odata)
5: return P
6: end function
7:
8: function OneStepSumProduct(G, Ocode, Odata)
9: GDAG = TransfromIntoDAG(G) . Transform G into a Directed Acyclic Graph (DAG) via

collapsing each Strongly Connected Component (SCC) into a vertex
10: ODAG_code = CreateEmptyMapping() . DAG-related mapping, initialized as empty
11:
12: . Step 1: Aggregate code observation values
13: for each SCC x in topological order of GDAG do
14: o1 = product({ODAG_code[y] | SCC y is a predecessor of SCC x)
15: o2 = product({Ocode[i] | address i belongs to SCC x})
16: ODAG_code[x] = o1 × o2
17: for each address i in all addresses belonging to SCC x do
18: Ocode[i] = ODAG_code[x]
19: end for
20: end for
21: . Step 2: Aggregate data observation values
22: iprev =∞ . The last address whose Odata > 0
23: for each address i of B in increasing order do
24: if Odata[i] 6= ⊥ then
25: if 1 < i− iprev < D then
26: o1, o2 = Odata[i], Odata[iprev]
27: for each address j ∈ (iprev, i) do
28: Odata[j] = 1− pdata

2pdata+(1−o1)(1−o2)−2pdata(1−o1)(1−o2)
29: end for
30: end if
31: iprev = i
32: end if
33: end for
34: . Step 3: one-step sum-product for each address
35: for each address i of B in increasing order do
36: oneg = (Ocode[i] = ⊥ ? 0.5 : Ocode[i])
37: opos = (Odata[i] = ⊥ ? 0.5 : Odata[i])
38: P [i] = oneg · (1− opos) / (opos · (1− oneg) + oneg · (1− opos))
39: end for
40: return P
41: end function

150

Fcode Fdata a Fcode Fdata
0 1 - oneg opos
1 oneg 1 - opos

address a holding
a data byte

a

a

P (a = 1) = Fcode(1) · Fdata(1)
Fcode(1) · Fdata(1) + Fcode(0) · Fdata(0)

= oneg · (1− opos)
oneg · (1− opos) + opos · (1− oneg)

Figure 4.9. Factor Graph for Each Address

tation flexibility) and retains data in the original space. And the original code is replaced

with hlt. Its rewriting ensures a critical property: a rewritten instruction should evaluate

to the same value(s) as its original version. This ensures all data accesses (to the original

space) are not broken. For example, a rewritten read of rip must be patched with an offset

such that the read yields the corresponding value in the original space as the rewritten read

must be executed in the shadow space.

Specifically, it performs the following code transformations. It directly patches direct

jump instructions by an offset statically computed based on the offset between the shadow

and original address spaces and the instrumentations. The computation of such offset is

standard and elided [38]. It instruments all indirect jumps to perform a runtime address

lookup that translates the target to the shadow space. It may throw an intentional segfault

if it detects the target is not in the shadow space, meaning the corresponding code has not

been rewritten. Client analysis instrumentation such as coverage tracking code is inserted

in the shadow space.

Handling Call Instructions to Support Data Accesses through Return Addresses.

There are programs that access data using addresses computed from some return address

on the stack. As such, we need to ensure return addresses saved on the stack must be

those in the original space. Therefore, StochFuzz rewrites a call instruction to a push

151

instruction which pushes a patched return address (pointing to the original address) to the

stack, followed by a jmp instruction to the callee in the shadow space. We then instrument

ret instructions to conduct on-the-fly lookup just like in handling indirect jumps.

Our design allows keeping the control flow in the shadow space as much as possible,

which can improve instruction cache performance. An exception is callbacks from external

libraries, which cause control flow to the original space, even though it quickly jumps back

to the shadow space.

Generating Random Binary Versions. Besides the aforementioned transformations,

StochFuzz also performs the following stochastic rewriting to generate a pool of N dif-

ferent binaries (every time the rewriter is invoked). Specifically, for addresses whose their

probabilities of being data are smaller than a threshold pθ but not 0 (i.e., not “certainly

code" but “likely code"), they have a chance of 1−pθ to be replaced with hlt. In our setting,

we have N = 10 and pθ = 0.01.

4.3.3 Crash Analyzer

Recall that the crash analyzer needs to decide if a crash is due to a rewriting error.

If so, it needs to locate and repair the crash inducing rewriting error. Let S be a set of

uncertain addresses (that may be replaced with hlt), and R(S) the execution result of a

rewritten binary where all the addresses in S are replaced with hlt. Assume R(S1) yields

an unintentional crash. To determine whether the crash is caused by a rewriting error, the

analyzer compares the results of R(S1) and R(∅). If R(S1) = R(∅), the crash is caused by

a latent bug in the subject program, and vice versa.

Then, locating the crash inducing rewriting error can be formalized as finding a 1-minimal

subset S2 ⊆ S1, which satisfies R(S2) = R(S1) and ∀ ai ∈ S2 : R(S2 \ {ai}) 6= R(S1) [102].

Intuitively, all the addresses in S2 must be erroneously replaced with hlt. It can be proved

by contradiction. Assuming aj ∈ S2 is a code byte (and hence its rewriting is correct), not

replacing address aj (with hlt) should not influence the execution result, that is R(S2 \

{aj}) = R(S2). As R(S2) = R(S1), R(S2 \ {aj}) = R(S1), directly contradicting with the 1-

152

Algorithm 8 Register Liveness Analysis on UCFG

Input: B binary indexed by address
Output: D[i]⊆{r1, r2, ...} dead registers at address i

1: function AnalyzeDeadReg(B)
2: D = CreateEmptyMapping()
3: for each address i of B in decreasing order do
4: Succ = {j | ExplicitSucc(i, j)} . Succ = ∅ if i is an indirect jump/call
5: if ∃j ∈ Succ, s.t. j ≤ i then
6: dafter = {} . Assume there is no dead variable after executing address i
7: else
8: dafter =

⋂
j∈Succ D[j]

9: end if
10: D[i] = (dafter ∪ {rw | RegWrite(i, rw)}) \ {rr | RegRead(i, rr)}
11: end for
12: end function

minimal property. Delta debugging [102] is an efficient debugging technique that guarantees

to find 1-minimal errors. It operates in a way similar to binary search. Details are elided.

4.3.4 Optimizations

We develop three optimizations for StochFuzz, which are directly performed on rewrit-

ten binaries without lifting to IR.

Register Reuse. Instrumentation may need to use registers. To avoid breaking program

semantics, inside each instrumentation code block, registers need to be saved at the beginning

and restored at the end. These context savings become performance bottleneck. We perform

a register liveness analysis such that dead registers, which hold some value that will never

be used in the future, can be reused in instrumentation. The difference between our liveness

analysis and a traditional liveness analysis is that ours is performed on the UCFG.

Algorithm 8 presents the analysis. It takes a binary and outputs a mapping from an

address i to a set of registers which are dead at i. The algorithm traverses all addresses

in a descendent order (line 3). For each address i, the algorithm first collects the explicit

successors of i in UCFG (line 4). If there is at least one successor whose address is smaller

than i, which indicates the successor has not been analyzed (line 5), the algorithm conser-

153

vatively assumes all the registers are not dead after i (line 6). Otherwise, the registers that

are dead at all successors are marked as dead after i (line 8). At last, the dead registers at

i are computed from the dead registers after i and the i instruction itself (line 10). Specifi-

cally, the registers written by i become dead (as the original values in those registers are no

longer used beyond i); the ones read by i are marked live and removed from the dead set

as i needs their values. Upon instrumentation, StochFuzz reuses the dead registers at the

instrumentation point.

Removing Flag Register Savings. Saving and restoring flag registers has around 10×

more overhead compared with general purpose registers. We perform the same register

liveness analysis on flag registers and avoid saving/restoring the dead ones.

Removing Redundant Instrumentation. If a basic block has only one successor, its

successor is guaranteed to be covered once the block is covered [106]. We hence avoid

instrumenting these single successors.

4.4 Probabilistic Guarantees

In this section, we study the probabilistic guarantees of StochFuzz. We focus on

two aspects. The first is the likelihood of rewriting errors (i.e., data bytes are mistakenly

replaced with hlt) corrupting coverage information without triggering a crash. Note that if

it triggers a crash, StochFuzz can locate and repair the error. The second is the likelihood

of instruction bytes not being replaced with hlt so that we miss coverage information. Note

there is no crash in this case but rather some instructions are invisible to our system and

not rewritten. Our theoretical analysis shows that the former likelihood is 0.05% and the

latter is 0.01% (with a number of conservative assumptions). They are also validated by our

experiments.

Likelihood of Rewriting Error Not Causing Crash But Corrupting Coverage

Feedback. If the rewriting error does not change execution path, it does not corrupt

coverage feedback. In this case, we are not worried about the rewriting error even if it does

not cause a crash. In other words, we are only interested in knowing the likelihood of a

rewriting error changes program path but does not induce crash over all the fuzzing runs.

154

Note that as long as it causes crash in one fuzzing run, StochFuzz can catch and repair

it. This is the strength of having a stochastic solution. In our study, we use the following

definitions.

• M : the number of fuzzing executions

• pfp: the likelihood that a data byte is classified as code and subject to replacement

(with hlt), we call it a false positive (FP).

• ppatch = 1 − pθ: how likely a code byte (classified by StochFuzz) is selected for

replacement in a rewritten binary.

• pcrash: the likelihood that a mistakenly replaced data byte changes program path and

crashes in a single execution.

From the above definitions, the likelihood of a data byte is mistakenly patched is pfp ×

ppatch. The likelihood of a data byte being patched and triggering a crash (hence StochFuzz

observes and repairs it) is pfp × ppatch × pcrash.

The likelihood of the error escapes StochFuzz in M executions is hence the following.

(1− pfp × ppatch × pcrash)M

With a conservative setting of pfp = 0.015, the average initial FP rate according to our

experiment (Section 4.6.2 , ppatch = 0.99, pcrash = 0.0005 (a very conservative setting as in

practice it is over 90%), and M = 1, 000, 000, StochFuzz has 0.05% chance missing the

error. We want to point out that if pcrash is 0, meaning the error always changes path without

crashing, StochFuzz can never detect it. We haven’t seen such cases in practice. One way

to mitigate the issue is to use other instructions similar to hlt in patching.

Likelihood of Missing Coverage Due to Code Bytes Not Being Patched. Intuitively,

the likelihood is low for two reasons. First, coverage information is collected at the basic

block level. Missing coverage only happens when StochFuzz mis-classifies all the code

bytes in a basic block to data. Second, even if StochFuzz considers a code byte is likely

155

data, there is still a chance it is chosen for patching during stochastic rewriting. Over a large

number of fuzzing runs, StochFuzz can expose it through an intentional crash.

To simplify our discussion, we only consider the second reasoning. In other words, we

consider missing coverage at the byte level (not basic block level). We use the following

definitions in addition to the previous ones.

• pfn: the likelihood StochFuzz mis-classifies a code byte to data, called a false negative

(FN).

• pexe: the likelihood a code byte is covered in an execution.

The likelihood of a code byte being chosen for patching in a binary version is (1− pfn)×

ppatch. The likelihood of a code byte being patched and covered in an execution (and hence

StochFuzz detects it) is (1− pfn)× ppatch × pexe.

The likelihood that the rewriting error escapes from StochFuzz in M runs is hence the

following.

(1− (1− pfn)× ppatch × pexe)M

With a practical setting of pfn = 0.12 (the average initial FN rate of StochFuzz

according to our experiment), ppatch = 0.99, pexe = 1e−5 (a very conservative setting),

M = 1, 000, 000, StochFuzz has 0.01% chance missing the error. We want to point out

that if pexe is 0, meaning the code byte is never executed in any runs, StochFuzz can never

detect it. However, in such cases, the error has no effect on fuzzing and hence unimportant.

Also note that if we consider coverage at basic block level, the bound can be lower.

4.5 Practical Challenges

We have addressed a number of practical challenges such as supporting exception han-

dling in C++, reducing process set up cost, safeguarding non-crashing rewriting errors, and

handling occluded rewriting.

Supporting Exception Handling in C++. Exception handling in C++ poses additional

challenges for static rewriting [78]. Specifically, when handling exceptions, the program needs

to acquire the return addresses pushed by previous call instructions to unwind stack frames.

156

To support this, StochFuzz additionally intercepts calls to external library functions and

replace their return addresses (in the shadow space) with the corresponding addresses in

the original space. Note that this is different from our transformation of call instructions

to a push followed by a jump. As such, when execution returns from external libraries,

it goes to the original space instead of the shadow space, incurring additional control flow

transfers. To reduce the overhead, a white-list of widely-used library functions, for which

we do not need to intercept the calls, is used. We argue it is a one-time effort and can

be done even for closed-source programs, as the symbols of external library functions are

always exposed. To understand the worst-case performance of StochFuzz, we disable the

white-list optimization during evaluation.

Efficient Process Set Up. Setting up a process (e.g., linking and library initialization)

has a relatively high overhead. To avoid it, a fork server, which communicates with the

fuzzer through Linux pipe and forks the subject process once requested, is instrumented into

the subject program by AFL. In StochFuzz, the dispatcher is a component of AFL, which

sets up N fork servers prior to fuzzing and randomly selects one to communicate with when

requesting an execution instance. Additionally, for each rewritten binary, its original and

shadow spaces are both re-mmaped as shared memory with the incremental rewriter. As

such, during fuzzing, the incremental and stochastic rewriting does not trigger any process

set up cost.

Safeguarding Non-crashing Rewriting Errors. During fuzzing, AFL automatically

monitors an input stability metric which measures the consistency of observed traces [107].

That is, if the subject program always behaves the same for the same input data, the fuzzing

stability earns a score of 100%. A low score suggests low input consistency. This metric can

help StochFuzz detect rewriting error which does not trigger a crash but changes execution

trace. Specifically, once this metric becomes smaller than a given threshold, the rewriting

error localization procedure is triggered. As such, the soundness guarantee of StochFuzz

can be stronger than the one calculated in Section 4.4 in practice. In our evaluation, we turn

it off to measure worst-case performance.

157

Handling Occluded Rewriting. Another practical challenge is to handle the case in

which hlt is mistakenly placed inside a true instruction (e.g., replacing address 1 inside the

true mov instruction at 0 in Figure 4.6). As such, the address which triggers a crash may

not be the address of the inserted hlt. Although it is highly unlikely in practice, our crash

analyzer could not repair the error properly when it happens. To handle the problem, we

design a set of advanced rewriting rules, which guarantees control flow will be terminated at

a set of pre-selected addresses once an occluded instruction gets executed. As such, we can

infer there is an occluded rewriting error. Specifically, for a given address a with Inst(a, c),

we use the following rules to rewrite it:

1. Check whether a is occluded with any control flow transfer instruction (starting at an

earlier address). If so, avoid replacing it;

2. Replace all addresses between a and am where am = max({ai + ci | Inst(ai, ci) ∧ (ai <

a < ai + ci)}), meaning the maximum end address of an instruction occluded with a.

As such, any execution that encounters an instruction occluded with some injected hlt

must be terminated at an address in Sc = {ai | Inst(ai, ci) ∧ (ai < a < ai + ci)} ∪ [a, am].

Proof. Assume an execution goes through the patched addresses [a, am] and Inst(ac, cc) is

the first instruction corrupted by some of the patches. We hence have [ac, cc) ∩ [a, am] 6= ∅.

There are three cases.

• If ac < a and the corrupted instruction causes a crash, the address reported to our

crash analyzer is ac. Since [ac, cc) ∩ [a, am] 6= ∅ and ac < a, we have ac < a < ac + cc.

Hence, ac ∈ {ai | Inst(ai, ci) ∧ (ai < a < ai + ci)} ⊆ Sc;

• If ac < a and the corrupted instruction does not cause a crash, the next executed

instruction starts at ac + cc because rule 1 guarantees Inst(ac, cc) is not a control

flow transfer instruction. Similarly, as [ac, cc) ∩ [a, am] 6= ∅ and ac < a, we have

ac < a < ac + cc. According to the definition of am, ac + cc ≤ am. So the executed

instruction is a hlt patched at address ac + cc ∈ [a, am] ⊆ Sc.

158

Table 4.2. Soundness on Google FTS (7 means failure)
Program afl-qemu ptfuzzer e9patch ddisasm StochFuzz

boringssl 7 7 3

freetype2 7 7 3

guetzli 7 3

harfbuzz 7 3

lcms 7 3

libarchive 7 3

libxml2 7 7 3

openssl-1.0.1f 7 7 3

openssl-1.0.2d 7 3

openssl-1.1.0c 7 7 3

openthread 7 3

sqlite 7 3

wpantund 7 3

• If a ≤ ac ≤ am, it happens when ac is a jump/call target. As all addresses in [a, am]

are patched, it will directly crash by a hlt instruction. Hence, the crashed address is

ac itself where ac ∈ [a, am] ⊂ Sc.

Note that ac cannot be larger than am, according to [ac, cc) ∩ [a, am] 6= ∅. �

4.6 Evaluation

StochFuzz is implemented from scratch with over 10, 000 lines of C code, leverag-

ing Capstone [108] and Keystone [109] that provide basic disassembling and assembling

functionalities, respectively. Our evaluation takes more than 5000 CPU hours and is con-

ducted on three benchmark sets, including the Google Fuzzer Test Suite (Google FTS) [91],

a variant of Google FTS which is compiled with inlined data, and the fuzzing bench-

marks from RetroWrite [78]. We compare StochFuzz with the state-of-the-art binary-only

fuzzers, including ptfuzzer, afl-qemu, RetroWrite, e9patch, and ddisasm. In addition, we use

StochFuzz on 7 commercial binaries and find 2 zero-days. We port a recent work IJON [95]

on state-based fuzzing to support stripped binaries, demonstrating StochFuzz can collect

other feedback than coverage.

159

All the benchmarks are compiled by Clang 6.0 with their default compilation flags (“-O2 "

in most cases). For e9path, as it cannot recover CFG from a stripped binary, we instrument all

the control flow transfer instructions (e.g., jmp) to trace the execution paths. For ddisasm,

the version we use is 1.0.1, and the reassembly flags we use are “–no-cfi-directives" and

“–asm". The reassembly of ddisasm is performed on a server equipped with a 48-cores CPU

(Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz) and 188G main memory. All others are

conducted on a server equipped with a 12-cores CPU (Intel(R) Core(TM) i7-8700 CPU @

3.20GHz) and 16G main memory.

4.6.1 Evaluation on Google FTS

Google FTS is a standard benchmark widely used to evaluate fuzzing techniques [82 , 110 ,

 111], consisting of 24 complex real-world programs. We compare StochFuzz with ptfuzzer,

afl-qemu, e9patch, and ddisasm. We additionally compare with two compiler-based baselines

(afl-gcc and afl-clang-fast). However, we cannot compare with RetroWrite on Google FTS

as RetroWrite cannot instrument stripped binaries and it requires the binaries not written in

C++, while all the binaries are stripped in this experiment and 1/3 of them are C++ ones.

Soundness. Table 4.2 presents the overall soundness of binary-only fuzzing solutions. The

first column shows the programs. Columns 2-6 show whether afl-qemu, ptfuzzer, e9patch,

ddisasm, and StochFuzz successfully generate binaries that the fuzzer can execute, respec-

tively. Note that we only present the programs which at least one tool fails to instrument

(due to the space limitations). Specifically, afl-qemu fails on libxml2 due to a known imple-

mentation bug [112], ptfuzzer fails on 4 out of the 24 programs due to unsolved issues in their

implementation [113], e9patch fails on 4 programs as these programs contain hand-written

assembly code interleaved with data, ddisasm fails on 9 programs which crash on the seed

inputs after reassembly due to uncertainty in their heuristics

1
 , and StochFuzz succeeds on

all the 24 programs.

Fuzzing Efficiency. To assess the fuzzing efficiency achieved by StochFuzz, we run AFL

to fuzz the instrumented binaries for 24 hours. Figure 4.10 presents the total number of
1

 ↑ After being reported to the developers of ddisasm, 6 out of 9 test failures got fixed in the latest release (via
strengthening heuristics). Details can be found at https://github.com/GrammaTech/ddisasm/issues/20 .

160

https://github.com/GrammaTech/ddisasm/issues/20

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.13

1.99

1.16

0.89

1.00

1.19

1.01

1.39

1.21

1.34

1.83

1.75

0.17

0.08

0.11

0.08

0.16

0.09

0.05

0.20

0.18

0.24

0.11

0.22

0.14

0.34

0.41

0.33

0.35

0.01

0.11

0.13

0.00

0.37

0.30

1.10

0.20

0.00

0.00

0.00

0.07

0.15

0.11

0.11

0.05

0.29

0.29

0.36

0.35

0.00

0.39

0.00

0.00

0.60

0.87

0.84

0.72

0.92

0.66

0.00

1.10

1.33

1.23

0.89

0.96

1.01

0.94

1.31

1.24

1.19

1.48

0.91

ll
vm

-
li

bc
xx

ab
i

op
en

ss
l-

A
op

en
ss

l-
B

op
en

ss
l-

C
op

en
th

re
ad

pc
re

2
pr

oj
4

re
2

sq
li

te
vo

rb
is

w
of

f2
w

pa
nt

un
d

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

2.03

0.95

1.03

1.34

0.84

1.14

1.02

1.09

1.36

1.17

0.78

0.94

0.16

0.18

0.12

0.20

0.08

0.13

0.02

0.24

0.17

0.20

0.04

0.00

0.17

0.10

0.00

0.00

0.12

0.28

0.18

0.00

0.14

0.31

0.39

0.33

0.00

0.47

0.06

0.45

0.06

0.38

0.10

0.19

0.18

0.23

0.13

0.04

0.00

0.86

0.00

2.80

0.00

0.95

0.00

0.76

0.63

0.48

0.50

0.00

1.45

0.88

0.90

1.28

0.84

1.08

0.85

0.99

1.49

1.28

0.88

0.97

bo
ri

ng
ss

l
c-

ar
es

fr
ee

ty
pe

2
gu

et
zl

i
ha

rf
bu

zz
js

on
lc

m
s

li
ba

rc
hi

ve
li

bj
pe

g-
tu

rb
o

li
bp

ng
li

bs
sh

li
bx

m
l2

af
l-

gc
c

(1
24

.1
M

)
af

l-
cl

an
g-

fa
st

 (1
38

.1
M

)
af

l-
qe

m
u

(1
6.

0M
)

pt
fu

zz
er

 (2
4.

4M
)

e9
pa

tc
h

(2
3.

8M
)

dd
is

as
m

 (9
8.

7M
)

St
oc

hF
uz

z
(1

29
.3

M
)

F
ig

ur
e

4.
10

.
To

ta
ln

um
be

r
of

fu
zz

in
g

ex
ec

ut
io

ns
of

ea
ch

to
ol

in
24

ho
ur

s

161

Table 4.3. Mean and standard deviation of time-to-discovery (in minutes)
for bugs in Google FTS

Tool guetzli json llvm-libcxxabi

afl-gcc 513.25± 114.84 0.85± 0.63 0.08± 0.00
afl-clang-fast 539.56± 240.83 0.18± 0.17 0.08± 0.00
afl-qemu +∞ 2.64± 3.56 0.23± 0.05
ptfuzzer +∞ 49.08± 82.35 0.79± 0.25
e9patch +∞ 21.87± 36.21 0.35± 0.00
ddisasm 505.22± 93.45 N/A 0.08± 0.00
StochFuzz 363.37± 120.14 0.67± 1.02 0.08± 0.00

Tool pcre2 re2 woff2

afl-gcc 763.61± 40.44 2.21± 2.14 12.89± 0.44
afl-clang-fast 461.73± 219.89 3.08± 3.93 12.09± 4.91
afl-qemu +∞ +∞ 67.23± 26.94
ptfuzzer +∞ 42.92± 68.08 29.18± 0.19
e9patch +∞ +∞ 30.73± 0.28
ddisasm 913.90± 495.42 N/A 14.60± 0.25
StochFuzz 768.91± 264.82 2.32± 0.54 7.43± 0.27

fuzzing executions, where we take afl-gcc as a baseline and report the ratio of each tool

to afl-gcc. Larger numbers indicate better performance. The average numbers of fuzzing

executions over the 24 programs are presented in the legend (on the top) associated with

the tools. StochFuzz outperforms afl-gcc in 13 out of 24 programs. For the remaining

11 programs, StochFuzz also achieves comparable performance with afl-gcc. Afl-clang-

fast achieves the best performance among all the tools, as it does instrumentation at the IR

level. Compared with it, StochFuzz has 11.77% slowdown on average due to the additional

overhead of extra control flow transfers (from the original space to the shadow space) and

switching between binary versions. Ddisasm also achieves good performance. However, due

to its inherent soundness issues, it fails on 9 out of the 24 programs. Other tools have

relatively higher overhead.

Bug Finding. As Time-to-discovery (TTD) (of bugs) directly reflects fuzzing effectiveness,

and hence suggests instrumentation effectiveness and fuzzing throughput, we additionally

conduct an experiment to show the time needed to find the first bug for each tool. We run

162

each tool three times with a 24-hour timeout. Table 4.3 shows the average TTD (in minutes)

and the standard deviation. We only report the programs for which at least one tool can

report a bug within the time bound. The first column presents the tools. Columns 2-4 show

the TTDs for different programs. The symbol +∞ denotes the tool cannot discover any

bug within the time bound. N/A denotes the crash(es)

2
 discovered by the tool cannot be

reproduced by executing the non-instrumented binary. Due to their high overhead, afl-qemu,

ptfuzzer, and e9patch cannot discover bugs in multiple programs. Although ddisasm achieves

good performance in the programs that it can instrument, it generates invalid crashes for

some programs due to its soundness issues. StochFuzz has a similar TTD to afl-gcc. This

shows the soundness and effectiveness of StochFuzz.

We also collect the path coverage in 24 hours. The average coverage for afl-gcc, afl-clang-

fast, and StochFuzz is 2572, 2239, and 2493, respectively. As other tools do not work on

all the programs, their numbers are not comparable, and hence elided. We also omit the

details due to the page limitations.

Optimization Effectiveness. Table 4.4 presents the effects of optimizations. The second

column presents the number of executed blocks during fuzzing. Columns 3-4, 5-6, and 7-8

present the results for removing flag register savings (FLAG), general purpose register reuse

(GPR), and removing instrumentation for single successors, respectively. For each optimiza-

tion, we report both the number (of applying these optimizations) and the percentage. In

the last column, we present the slow-down when the optimizations are disabled. Overall,

FLAG is most effective, removing 99% of cases. Intuitively, the use of flag registers has very

strong locality. We then conduct a study on the evaluated binaries and find that almost all

flag registers are defined and used within the last three instructions of basic blocks, with the

most common instruction pattern being a cmp or test instruction followed by a conditional

jump. As such, they are mostly dead at the instrumentation points. GPR can be applied in

82.2% cases on average. The observation is that many basic blocks start with instructions

that write to at least one general purpose register. StochFuzz hence is able to reuse the

register in the instrumented code (Section 4.3.4). The average percentage of instrumentation
2

 ↑ The latest ddisasm can correctly reassemble all N/A programs.

163

Table 4.4. Effects of optimizations. #B denotes the number of basic blocks
instrumented by StochFuzz, #O denotes the number of blocks where an
optimization is applied at least once, %R denotes the percentage, and %S
denotes the slowdown when disabling the optimizations.

Program #B
FLAG GPR Single-Succ

%S
#O %R #O %R #O %R

boringssl 5,112 5,068 99.1 4,294 84.0 2,225 43.53 37.81
c-ares 98 96 98.0 83 84.7 48 48.98 -4.22
freetype2 13,590 13,508 99.4 11,422 84.0 6,126 45.08 1.86
guetzli 10,680 10,621 99.4 8,230 77.1 5,312 49.74 3.49
harfbuzz 10,365 10,208 98.5 8,679 83.7 4,256 41.06 28.39
json 2,308 2,296 99.5 1,886 81.7 1,125 48.74 30.48
lcms 4,256 4,181 98.2 3,341 78.5 1,712 40.23 -16.58
libarchive 7,134 7,046 98.8 5,862 82.2 2,540 35.60 33.25
libjpeg-turbo 2,953 2,927 99.1 2,609 88.4 1,362 46.12 35.48
libpng 2,815 2,797 99.4 2,173 77.2 1,153 40.96 18.07
libssh 4,441 4,393 98.9 3,578 80.6 1,816 40.89 30.43
libxml2 13,546 13,487 99.6 10,786 79.6 5,531 40.83 15.96
llvm-libcxxabi 4,257 4,244 99.7 3,314 77.8 2,171 51.00 28.77
openssl-1.0.1f 15,912 15,750 99.0 13,595 85.4 7,028 44.17 43.88
openssl-1.0.2d 2,347 2,285 97.4 2,036 86.7 961 40.95 64.24
openssl-1.1.0c 6,964 6,902 99.1 5,856 84.1 1,970 42.66 16.03
openthread 6,074 6,048 99.6 4,878 80.3 2,387 39.30 14.27
pcre2 6,889 6,798 98.7 5,863 85.1 3,292 47.79 45.86
proj4 1,983 1,915 96.6 1,443 72.8 984 49.62 3.58
re2 6,693 6,655 99.4 5,140 76.8 3,382 50.53 31.05
sqlite 24,264 24,128 99.4 20,541 84.7 11,314 46.63 38.87
vorbis 3,297 3,263 99.0 2,539 77.0 1,375 41.70 16.95
woff2 2,406 2,374 98.7 1,990 82.7 1,191 49.50 30.92
wpantund 27,549 27,146 98.5 22,765 82.6 11,587 42.06 2.10

Average 7,747 7,672 99.0 6,371 82.2 3,410 44.49 22.45

removal for blocks with a single successor is 44.49%, which is not that significant but still

helpful. The slowdown is 22.45% on average when we disable these optimizations. The opti-

mizations have negative effects on some programs such as lcms. Further inspection seems to

indicate that the optimizations cause some tricky complications in cache performance. It is

worth pointing out that compiler based fuzzers such as afl-gcc and afl-clang directly benefit

from built-in compiler optimizations, some of which have similar nature to ours. Dynamic

instrumentation engines such as QEMU and PIN have their own optimizations although they

typically reallocate all registers. Performing optimizations during unsound static rewriting

164

Table 4.5. Analysis and rewriting overhead

Program e9patch
ddisasm ddisasm StochFuzz

default (-j48) -j8 rewriting prob. anly.

boringssl - 67h 43m 20s 126.90s 9.77s 67.35s
c-ares 0.02s 0h 47m 22s 1.17s 0.05s 0.02s
freetype2 0.76s 28h 57m 28s 96.24s 21.39s 91.59s
guetzli 0.38s 8h 51m 19s 76.05s 5.47s 95.84s
harfbuzz 0.51s 8h 02m 28s 70.89s 5.33s 64.17s
json 0.10s 4h 44m 48s 12.93s 1.30s 8.33s
lcms 0.34s 10h 39m 50s 36.58s 3.56s 13.19s
libarchive 0.51s 11h 53m 49s 61.67s 4.09s 34.29
libjpeg-turbo 0.45s 30h 16m 04s 108.79s 10.49s 24.33s
libpng 0.13s 3h 29m 24s 10.87s 1.48s 3.54s
libssh 0.36s 54h 03m 58s 50.22s 2.74s 23.98s
libxml2 2.03s 23h 52m 25s 188.59s 19.86s 177.20s
llvm-libcxxabi 0.19s 4h 33m 28s 15.57s 1.90s 19.78s
openssl-1.0.1f - 83h 57m 03s 209.57s 22.95s 153.62s
openssl-1.0.2d - 25h 05m 28s 37.91s 2.55s 4.82s
openssl-1.1.0c - 117h 15m 42s 354.86s 31.57s 229.91s
openthread 0.70s 20h 24m 43s 57.96s 6.10s 13.33s
pcre2 0.33s 26h 35m 04s 481.04s 4.38s 24.38s
proj4 0.42s 10h 43m 34s 39.25s 4.69s 20.62s
re2 0.40s 17h 12m 33s 41.62s 4.60s 84.82s
sqlite 1.02s 16h 49m 43s 117.92s 14.38s 233.97s
vorbis 0.22s 16h 07m 57s 32.29s 2.26s 12.61s
woff2 0.49s 39h 09m 27s 123.50s 6.34s 21.11s
wpantund 1.58s 33h 08m 02s 176.65s 14.55s 579.94s

Average 0.55s 27h 41m 02s 105.38s 8.41s 83.41s

is very risky. In contrast, optimizations work well in our context as StochFuzz can fix

disassembly and rewriting errors automatically.

Analysis and Rewriting Overhead on Google FTS. Different from techniques lever-

aging hardware features or dynamic translation, techniques based on static rewriting incur

analysis and rewriting cost. We further study such overhead on the standard Google FTS

for e9patch, ddisasm, and StochFuzz. Table 4.5 shows the results (measured by total CPU

time). The second column shows the overhead of e9patch. The third and fourth columns

show the overhead of ddisasm using different reassembly flags, and the last two columns

show the overhead of StochFuzz which is broken down to rewriting and probability analy-

sis overhead. Note that ddisasm uses all 48 cores by default. However, after communicating

165

with the developers, we were notified that there are some parallelism issues with the default

setting. As such, running with -j8 (for using 8 cores) produces much better results. E9patch

does not distinguish code and data, as it assumes exclusion of such interleavings. Hence,

it has the lowest cost. Although the aggregated overheads of StochFuzz are not trivial,

they are amortized over the 24 hours period. Also observe that StochFuzz’s overhead is

comparable to ddisasm (-j8).

4.6.2 Evaluation on Google FTS with Intential Data Inlining

Programs built by popular compilers (e.g., GCC and Clang) with default settings may

not contain (substantial) code and data interleavings [70]. It is interesting to study the

performance of various tools when substantial interleavings are present. We hence modify

the compilation tool-chain of Google FTS to force .rodata sections to be interleaved with

.text sections. We extract the ground-truth of data byte locations from the debugging

information and then strip the binaries.

Table 4.6 presents the overall effectiveness results for the experiment on Google FTS

with intentional data inlining. The numbers of inlined data bytes are presented in the

second column (i.e., data bytes in between two code sections), and whether the binaries

instrumented by e9patch, ddisasm, and StochFuzz can be successfully fuzzed are presented

in the next three columns, respectively. E9patch fails on 22 out of the 24 programs, due to

its assumption of no inlined data. It succeeds on two programs because they do not contain

static data sections. Ddisasm fails on 21 programs due to three reasons. Specifically, 71

denotes a recompilation error that a byte value is larger than 256. It happens when ddisasm

mis-classifies a data byte as an offset of two labels. Hence, when instrumentation code is

inserted, the offset increases, making the data byte larger than 256. Symbol 72 denotes a

recompilation error that the target of a jump instruction is an integer (instead of a symbol).

It happens when ddisasm mis-classifies some data bytes as a jump instruction whose target

cannot be symbolized. Symbol 73 denotes that instrumentation code crashes on seed inputs

(due to some recompilation error). In contrast, StochFuzz successfully instruments and

fuzzes all the programs.

166

Table 4.6. Effectiveness on Google FTS w/ Intentional Data Inlining
Program # Inlined Data Bytes e9patch ddisasm StochFuzz

boringssl 263,539 7 73 3
c-ares 7 7 3
freetype2 91,960 7 72 3
guetzli 18,543 7 73 3
harfbuzz 63,061 7 73 3
json 0 3
lcms 22,576 7 72 3
libarchive 55,698 7 73 3
libjpeg-turbo 79,329 7 73 3
libpng 9,054 7 72 3
libssh 141,943 7 73 3
libxml2 128,007 7 73 3
llvm-libcxxabi 0 3
openssl-1.0.1f 169,787 7 73 3
openssl-1.0.2d 43,796 7 72 3
openssl-1.1.0c 369,397 7 72 3
openthread 32,691 7 73 3
pcre2 95,763 7 71 3
proj4 30,978 7 72 3
re2 35,336 7 72 3
sqlite 35,467 7 73 3
vorbis 59,986 7 72 3
woff2 494,994 7 72 3
wpantund 89,203 7 72 3

Fuzzing Efficiency. We run the tools for 24 hours on each program. Figure 4.11 presents

the number of fuzzing executions by our tool and its ratio over afl-gcc. We omit the results

for other tools as inlined data do not impact their efficiency in theory. The results show that

StochFuzz still has comparable performance as afl-gcc. Moreover, our tool’s efficiency has

a slight degradation compared to without intentional data inlining (124.7M v/s 129.3M),

due to the extra time needed to fix more rewriting errors.

Progress of Incremental and Stochastic Rewriting. We study how the numbers of

false positives (FPs) (i.e., a data byte is replaced with hlt) and false negatives (FNs) (i.e.,

a code byte is not replaced with hlt) change over the procedure. Here, we use debugging

information and the aggregated coverage information (over 24-hour fuzzing) to extract the

ground-truth. In other words, we do not consider data bytes that are not accessed in the 24

hours and code bytes that are not covered in the 24 hours. Note that they have no influence

167

1.
05
1.
00
1.
30
1.
68
0.
98
1.
05
0.
77
0.
79
0.
80
1.
11
1.
29
0.
98
1.
24
0.
97
1.
01
1.
02
1.
01
0.
97
1.
02
0.
98
1.
03
1.
40
1.
59
1.
21

bo
ri
ng
ss
l

c-
ar
es

fr
ee
ty
pe
2

gu
et
zl
i

ha
rf
bu
zz

js
on

lc
m
s

lib
ar
ch
iv
e

lib
jp
eg
-tu
rb
o

lib
pn
g

lib
ss
h

lib
xm
l2

llv
m
-li
bc
xx
ab
i

op
en
ss
l-
1.
0.
1f

op
en
ss
l-
1.
0.
2d

op
en
ss
l-
1.
1.
0c

op
en
th
re
ad

pc
re
2

pr
oj
4

re
2

sq
lit
e

vo
rb
is

w
of
f2

w
pa
nt
un
d

1.0

afl-gcc (121.2M) StochFuzz (124.7M)

Figure 4.11. Total number of fuzzing executions in 24 hours on Google FTS
with intentional data inlining

on the fuzzing results and hence rewriting errors in them are irrelevant to our purpose. And

as long as they are covered/accessed, StochFuzz can expose and repair their rewriting

errors. The results are presented in Table 4.7 . The second column presents the number of

instrumented basic blocks. Columns 3-6 present the numbers of intentional crashes caused

by hlt (indicating discovery of new code), unintentional crashes caused by rewriting errors,

and unintentional crashes caused by program bugs, and their sum, respectively. The last four

columns show the percentage of FN and FP at the beginning and the end of fuzzing process.

Observe that at the beginning, with the initial probability analysis results, StochFuzz has

11.74% FNs and 1.48% FPs on average. At the end, they are reduced to almost non-existent

(0.04% and 0.03%, respectively). These results are consistent with our theoretical bounds

developed in Section 4.4 . We randomly inspect some of the FPs and find that all of them

are data bytes that have no effect on execution path (and hence have no negative impact on

fuzzing results). Neither do they cause crashes. Also note that the FNs are at the byte level.

If we look at the basic block level, StochFuzz does not miss any basic blocks. In other

words, in very rare cases (0.04%), it may miss the first one or two bytes in a basic block,

but recognizes and instruments the following instructions. These FNs hence have no impact

168

Table 4.7. Incremental and stochastic rewriting. #IC, #UCE, #UCB, and
Sum denote the number of intentional crashes, unintentional crashes caused
by rewriting errors, unintentional crashes caused by real bugs, and their sum,
respectively. FN and FP denote false negative and false positive, respectively.
“Begin" and “End" denote the beginning and end of fuzzing.

Program

Crashes Rewriting

#IC #UCE #UCB Sum
Begin End

%FN %FP %FN %FP

boringssl 114 98 0 212 12.59 6.18 0.09 0.08
c-ares 2 0 0 2 17.49 0.00 0.00 0.00
freetype2 335 10 0 461 10.58 2.47 0.03 0.05
guetzli 200 1 0 201 8.46 0.16 0.01 0.00
harfbuzz 448 5 0 453 9.25 4.64 0.04 0.14
json 80 0 0 80 14.40 0.00 0.02 0.00
lcms 137 0 0 137 16.90 0.04 0.06 0.01
libarchive 215 0 0 215 11.35 0.00 0.04 0.00
libjpeg-turbo 77 4 0 81 9.11 2.91 0.03 0.26
libpng 32 0 0 32 8.17 0.00 0.01 0.00
libssh 123 1 0 124 19.56 0.09 0.04 0.00
libxml2 315 2 0 317 8.80 0.05 0.04 0.00
llvm-libcxxabi 304 0 7,258 7,562 12.86 0.00 0.00 0.00
openssl-1.0.1f 166 45 0 211 12.29 0.50 0.18 0.01
openssl-1.0.2d 25 3 0 28 9.74 0.00 0.03 0.00
openssl-1.1.0c 183 186 0 369 11.11 2.61 0.13 0.08
openthread 19 7 0 26 13.77 0.37 0.06 0.00
pcre2 398 2 37 437 5.64 0.97 0.00 0.00
proj4 46 1 0 47 13.16 0.14 0.02 0.00
re2 133 2 0 135 18.80 0.37 0.09 0.02
sqlite 693 7 0 700 9.03 0.31 0.02 0.00
vorbis 51 7 0 58 8.74 3.25 0.04 0.10
woff2 33 19 0 52 5.31 10.45 0.02 0.04
wpantund 893 1 0 894 14.53 0.00 0.05 0.00

Average 209 17 304 535 11.74 1.48 0.04 0.03

on fuzzing results. Also observe that the number of crashes by rewriting errors is very small

(17) compared to that of intentional crashes (209). The former entails the relatively more

expensive error diagnosis and repair process. It implies that most rewriting errors are fixed

by observing new coverage, without triggering unintentional crashes. Figure 4.12 shows how

these numbers change over time for freetype2. Observe that they stabilize/converge quickly.

The results for others are similar and elided.

169

Figure 4.12. Change of intentional/unintentional crashes and false posi-
tive/negative rate over time for freetype2

12
1.

8M

21
.8

M

17
5.

4M

65
.3

M

29
.9

M

22
4.

0M

24
.5

M

12
1.

4M

45
.7

M

17
8.

1M

75
.8

M

26
.9

M

21
8.

3M

24
.9

M

0.0K
50.0M

100.0M
150.0M
200.0M
250.0M

bi
nu

til
s

bz
ip

2

fil
e

lib
ar

ch
iv

e

lib
pn

g

lib
tif

f

tc
pd

um
p

RetroWrite (94.7M) StochFuzz (98.7M)

Figure 4.13. The number of total fuzzing executions in 24 hours on
RetroWrite’s fuzzing benchmarks

4.6.3 Comparison with RetroWrite

Different from other techniques, RetroWrite has a number of strong prerequisites about

target binaries. The binary has to contain symbols and relocation information, should not

be written in C++, should not contain inlined data, and is position independent. Hence,

RetroWrite cannot be used in the Google FTS experiments. To compare with RetroWrite,

we use their benchmarks that satisfy all the above conditions. Figure 4.13 and Table 4.8

170

Table 4.8. Path Coverage on RetroWrite’s benchmark
Tools binutils bzip2 file libarchive libpng libtiff tcpdump Average

RetroWrite 6200 636 29 2706 977 969 3673 2170
StochFuzz 6392 1416 29 2384 928 969 3344 2209

Table 4.9. Zero-day vulnerabilities disclosed by StochFuzz
Program Released Date Size MD5 Status

CUDA Binary Utilities 2020-09-20 33M edaf12b5 Fixed
PNGOUT 2020-01-15 89K 64f6899d CVE-2020-29384

show the numbers of fuzzing executions and the path coverage in 24 hours, respectively.

StochFuzz led to 98.7M executions and RetroWrite led to 94.7M executions, on average.

The results show StochFuzz achieves similar performance to RetroWrite.

4.7 Case Studies

4.7.1 Finding Zero-days in Closed-source Programs

In this case study, we demonstrate StochFuzz’s applicability in closed-source or COTS

binaries. We run StochFuzz on a set of 7 such binaries including CUDA Toolkit (cuob-

jdump, nvdisasm, cu++filt, and nvprune), PNGOUT, RAR (rar and unrar) for a week.

It discloses two zero-day vulnerabilities, as listed in Table 4.9 . The first column presents

the programs, and columns 2-5 present the release date of subject programs, the size, the

first 4 bytes of MD5 Hash, and current bug status, respectively. CUDA Binary Utilities,

developped by NVIDIA, are a set of utilities which can extract information from CUDA

binary files [114]. The bug has been Fixed in CUDA 11.3 [115]. PNGOUT is a closed-source

PNG file compressors, which is adopted by multiple commercial or non-commercial image

optimizers [116 , 117]. These optimizers are further used by thousands of website to speed

up image uploading. The PNGOUT vulnerability has been assigned a CVE ID.

171

Table 4.10. Maze solving by different approaches

Maze
Plain IJON-Source IJON-Binary

afl-clang-fast afl-clang-fast afl-qemu StochFuzz

Sm
al

l
Easy 2/3 3 3 3

Hard 1/3 3 3 3
La

rg
e Easy 7 3 3 3

Hard 7 3 3 3

4.7.2 Collect Other Runtime Feedback Than Coverage

We conduct a case study in which we use StochFuzz to collect other runtime feedback

than coverage. IJON [95], a state-aware fuzzing technique, increases fuzzing effectiveness

by observing how the values of given variables change. Specifically, the tester annotates

important variables in source code and the compiler instruments accesses to these variables

to track their runtime changes. The changes, together with code coverage, guide input

mutation. As reported in [95], it substantially improves fuzzer performance for specific kinds

of programs such as complex format parsers. We port IJON to support binary-only fuzzing

based on StochFuzz, and conduct the same maze experiment in the IJON paper, which

was used to show the effectiveness of state-aware fuzzing. In the experiment, the target

programs are games where the player has to walk through an ASCII art maze. Fuzzers

instead of a human player are used to walk the mazes. IJON has advantages over vanilla

fuzzers as it observes maze states and uses them to guide input mutation. The ported IJON

can resolve the mazes as fast and as effective as the original source-based version, and much

more effective than running IJON on afl-qemu.

We follow the exact same setup in IJON, with two maze sizes (large and small) and

two sets of rules. With the easy rule, a game is terminated once an incorrect step is taken.

With the hard one, the player is allowed to backtrack. Note that in the later case, the state

space is much larger. We experiment with 4 tools, afl-clang-fast without IJON plugin, afl-

clang-fast with IJON plugin, binary-only afl-qemu with ported IJON plugin, and binary-only

172

Table 4.11. Average time-to-solve in minutes ± the standard deviation to
solve the small / large maze

Maze
Plain IJON-Source IJON-Binary

afl-clang-fast afl-clang-fast afl-qemu StochFuzz
Sm

al
l

Easy 95.42± 40.47 1.52± 0.45 20.96± 10.56 1.64± 0.51
Hard 149.78± 0.0 0.46± 0.09 3.85± 1.90 0.52± 0.06

La
rg

e Easy - 20.66± 9.19 150.28± 30.27 22.94± 14.49
Hard - 5.31± 1.59 96.85± 16.61 5.12± 1.89

StochFuzz with ported IJON plugin. We run each tool three times with a 12-hour timeout

according to the setting of the original paper. Table 4.10 shows the overall effectiveness. The

first column presents the different mazes under different rules. Columns 2-5 denote whether

the maze is solved by the 4 different tools, respectively. Symbol 7 denotes no solution was

found in any run, 3 denotes that all runs solved the maze. Afl-clang-fast solves the small

maze with the easy rule 2 out of 3 trials, and the small maze with the hard rule 1 out of

3 trials. The other tools successfully solve all the mazes. Table 4.11 shows the average

time (in minutes) needed to solve the mazes and the standard deviation. Observe that

although afl-clang-fast can solve some small mazes, it takes the longest time. Regarding the

two binary-only approaches, StochFuzz is around 8× faster than afl-qemu. Additionally,

StochFuzz only has around 8% slowdown compared with afl-clang-fast plus IJON, which

demonstrates the capabilities of StochFuzz.

4.8 Summary

We develop a new fuzzing technique for stripped binaries. It features a novel incremental

and stochastic rewriting technique that piggy-backs on the fuzzing procedure. It leverages

the large number of trial-and-error chances provided by the numerous fuzzing runs to improve

rewriting accuracy over time. It has probabilistic guarantees on soundness. The empirical

results show that it outperforms state-of-the-art binary-only fuzzers that are either not sound

or having higher overhead.

173

5. EXPANDING VIEWPOINTS: DELVING INTO DL-BASED

BINARY ANALYSIS

Deep Learning (DL) models are increasingly used in many cyber-security applications and

achieve superior performance compared to traditional solutions. In this chapter, we discuss

backdoor vulnerabilities in naturally trained models used in binary analyses. These back-

doors are not injected by attackers but rather products of defects in datasets and/or training

processes. The attacker can exploit these vulnerabilities by injecting some small fixed in-

put pattern (e.g., an instruction) called backdoor trigger to their input (e.g., a binary code

snippet for a malware detection DL model) such that misclassification can be induced (e.g.,

the malware evades the detection). We focus on transformer models used in binary analysis.

Given a model, we leverage a trigger inversion technique particularly designed for these mod-

els to derive trigger instructions that can induce misclassification. During attack, we utilize

a novel trigger injection technique to insert the trigger instruction(s) to the input binary

code snippet. The injection makes sure that the code snippets’ original program semantics

are preserved and the trigger becomes an integral part of such semantics and hence cannot

be easily eliminated.

5.1 Introduction

Rapidly advancing Deep Learning (DL) techniques have led to unprecedented capabilities

in many areas, such as Computer Vision (CV), Natural Language Processing (NLP), and

Robotics. Many believe that similar new capabilities can be developed for cyber-security ap-

plications. Recently, DL models are being increasingly used in a wide range of security tasks,

such as binary code disassembly for malware analysis and code hardening [101 , 118 – 120],

binary similarity analysis for malware detection, software fingerprinting, and code theft de-

tection [121 – 128], decompilation including type inference [129 – 132], function signature infer-

ence [129 , 131 – 133], and function name prediction [131 , 134 – 136], APT attack forensics [137 –

 142], and intrusion detection [143 – 146]. These techniques demonstrate superior performance

compared to their traditional counterparts that are not based on DL models. The advan-

174

tages of using such data-driven techniques are clear. In particular, many cyber security tasks

have substantial inherent uncertainty. For example, a classic challenge in decompilation is

to determine variable types when symbolic information has been stripped away. To recover

such types, many heuristics have to be used, leading to uncertainty. Such uncertainty can

be naturally modeled by probabilities [45] and reasoned by distribution analysis, which are

the underpinnings of DL techniques. In addition, while rules and heuristics used in classic

techniques require substantial domain expertise, DL techniques can automatically learn such

rules from data. For example, XDA [118] and DeepDi [119] are recent proposals that use

DL models to recognize function entries in binary executables and then perform disassembly.

They do not require any pre-defined rules or heuristics. Instead, they train DL models from

a large code repository and achieve superior performance. Inspired by these successes, many

more DL based security solutions will likely be developed and deployed in the near future.

However, recent research [147 , 148] in the CV and NLP domains have demonstrated that

pre-trained clean DL models are vulnerable to backdoor attack [149 – 154], which is a special

kind of adversarial attack [155 – 160]. Specific input pattern called backdoor trigger can be

derived such that samples stamped with such trigger can cause the model to misbehave,

e.g., misclassify to some target label. These triggers are usually model specific but not input

specific. Examples of triggers include a small patch (for vision models) and a special word

(for NLP models). In contrast, adversarial attacks [155 , 157] derive unique perturbations

for individual samples to induce misclassification and hence are input specific.

The study of backdoor vulnerabilities in naturally trained deep learning models used in

binary analysis tasks is of importance in the development of cutting-edge cyber-security solu-

tions. The exploitation of such vulnerabilities can have severe consequences, particularly in

malware analysis. Despite the utilization of deep learning models, human analysts still play

a vital role in the analysis of malware samples and tracing their origins. Security companies,

such as Mandiant [161], have made substantial investments in the development of reverse

engineering tools specifically for use by human analysts, including tools for symbol recovery,

function annotation, binary code matching, and binary code attribution. If these models

were to be attacked and produce incorrect labels, such as manipulated function names, it

could lead to human analysts overlooking critical attack behaviors and ultimately failing in

175

their analysis tasks. This highlights the importance of ongoing research into potential at-

tack techniques and the improvement of the security of these models. It is also worth noting

that there is a substantial body of existing work [149 – 154 , 162 – 164] on injecting backdoors

into deep learning models through poisoned training data. However, in our context, we are

more focused on finding backdoor vulnerabilities in models trained naturally, referred to as

natural backdoors. This is because security models are usually trained by trusted parties.

Existing attacks in the vision and NLP domains cannot be easily adapted to attack these

models. Specifically, vision models deal with a continuous input space, namely, input pixels

can change continuously. Hence, existing attacks often leverage gradient descent to invert

a backdoor trigger. In contrast, many security DL models deal with discrete inputs, e.g.,

instruction sequences and log entries. Continuous input changes unlikely yield new valid in-

puts. For example, changing the encoding of a ret instruction 0xC3 to 0xC4 does not yield a

valid instruction. NLP models deal with similar discrete inputs, which need to be a sequence

of legitimate words. Existing attack methods in the NLP domain mitigate the problem by

inverting triggers in the continuous word embedding domain instead of the discrete input

domain and finding the input that has the closest embedding to the inversion result [165 ,

 166]. However, backdoor triggers generated for security models often need to preserve strict

semantic properties when inserted to an input. For example, a mov trigger instruction may

completely break the semantics of a malware when inserted.

In this chapter, we develop a novel method to identify and exploit backdoor vulnerabilities

in DL models used in recent binary analysis models. These models take binary executable

code as input and predict various things such as instruction boundaries, function entries,

function signatures, and code similarities. They serve a wide range of downstream cyber

security applications. Our attack is effective and successfully compromises all the models

we study, including some closed-source models that run as commercial online services. By

exploiting the backdoors identified by our technique, the attacker can mutate their binaries

accordingly (using our tool) before releasing them to the wild and the mutated binaries can

fail model-based disassembly/decompilation efforts, disrupt analysis, and so on. Our attack

features a trigger inversion method that can guarantee the generated triggers are legitimate

instruction sequences. It also has a novel trigger insertion method that not only preserves the

176

semantic of an input binary, but also ensures that the trigger instruction becomes part of the

original semantics after injection, instead of inaccessible code that can be easily identified

and removed.

Our contributions are summarized as follows.

• We study backdoor vulnerabilities in naturally trained DL models used in binary code

analysis. Our findings suggest that such vulnerabilities widely exist and they need to

be properly mitigated due to their critical roles in security applications.

• We develop a trigger inversion technique that can generate valid instructions as back-

door triggers.

• We devise a trigger injection technique that ensures the trigger becomes an integral

part of the original code’s semantics and the injected (and patched) code has the

same semantics as before. It features a block-level randomized execution engine and a

symbolic patching method.

• We develop a prototype Pelican [167] and evaluate it on 5 binary analysis tasks and

15 models. Our evaluation shows that Pelican can achieve 86.09% attack success rate

(ASR) with only three trigger instructions. Pelican has 93.01% higher ASR than a

baseline method that adapts an existing NLP trigger inversion technique; 94.14% of

injected triggers by Pelican can evade detection, whereas all the triggers injected by

opaque predicates [168] are detected. Our backdoor-injected binaries have 204.23%

lower runtime overhead compared to those by opaque predicates. We also conduct

a case study of exploiting two closed-source commercial tools, i.e., DeepDi [119] and

BinaryAI [128], in the black-box scenario. Pelican will be publicly available upon

publication.

Threat Model. We aim to exploit backdoors in naturally trained models, not models that

have injected backdoors by data poisoning [149] or trojaning [169]. This is analogous to

finding vulnerabilities in regular software, not malware. We focus on transformer models

used in binary code analyses, which are primitives for a wide range of cyber security applica-

tions: malware analysis, vulnerability finding, software hardening, decompilation, and foren-

177

sic analysis. Transformers are the most effective models in these analysis, out-performing

other models such as CNN, RNN, and LSTM. Note that attacking models used in other

applications, such as network traffic based intrusion detection requires completely different

trigger injection technique (in order to preserve traffic semantics). We hence consider it out

of the scope.

We consider two scenarios: white-box attack and black-box attack. In the former, we

assume the attacker has access to the model such that gradient descent can be applied

to generate trigger instructions. Note that many binary analysis tools (and hence the DL

models used by these tools) [15 , 39 , 119 , 170] are supposed to run by the end users. It is

hence reasonable to assume the attacker can access these models. Even if these tools are

closed-source, the attacker can still leverage model reverse engineering techniques [171 – 176]

to acquire model copies. In the black-box attack scenario, the attacker does not have access

to the subject model. We hence leverage the transferability [177 , 178] of these backdoor vul-

nerabilities. The assumption is that many these models tend to learn similar features, which

are rooted at the compiler behaviors, e.g., function epilogue and prologue, leading to similar

vulnerabilities. As such, the attacker can derive a backdoor trigger on a model he has access

to, and then use that to exploit another model that he has no access to. In addition, although

not explored in this chapter, black-box attacks that utilize gradient approximation [179] can

be leveraged too. We will leave it to our future work. At the end, we want to point out our

trigger injection technique is general, applicable in both white-box and black-box scenarios.

Natural Backdoor and Universal Perturbation. Most existing backdoor attacks re-

quire data poisoning to inject a trigger. During attack, stamping the trigger can universally

cause misclassification for many inputs. We call the problems identified in this chapter nat-

ural backdoor as we can find a trigger in naturally trained models that can be exploited in

the same way as those in injected backdoors. Natural backdoor shares a similar nature as

universal adversarial perturbations [180] which was originally proposed in the CV domain.

Specifically, a universal adversarial perturbation that is small and pervasive can cause mis-

classification of the subject model. We call the backdoor we study natural backdoor to raise

the alert level as it is analogous to vulnerabilities in software.

178

typedef struct entry_t {
struct entry_t *next;
struct entry_t *prev;
int data;

} Entry;

void init_data(Entry *p, int x)
{
p->data = x;

}

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

<init_data>:
push rbp
mov rbp, rsp
mov qword ptr [rbp–8], rdi # store p into a local variable
mov dword ptr [rbp-12], esi # store x into a local variable
mov rax, qword ptr [rbp-8] # load p into register rax
mov edx, dword ptr [rbp-12] # load x into register edx
mov dword ptr [rax+16], edx # p->data = x
pop rbp
ret

A1.
A2.
A3.
A4.
A5.
A6.
A7.
A8.
A9.

<init_auth_entry>:
movsxd rax, esi # store i into a register rax
lea rax, [rax+rax*2] # rax *= 3 (rax = 3 * i)
shl rax, 3 # rax <<= 3 (rax = 24 * i)
lea rdi, [rdi+rax] # rdi = p = &s[i] (sizeof(*p)=24)
lea rsi, [rdi+24] # rsi = q = &s[i + 1]
mov qword ptr [rdi], rsi # p->next = q
mov qword ptr [rsi+8], rdi # q->prev = p
mov esi, 0
call init_data # init_data(p, 0)
ret

B1.
B2.
B3.
B4.
B5.
B6.
B7.
B8.
B9.
B10.

(a) Source code of the motivation example

void init_auth_entry(
Entry at[], int i)

{
Entry *p = &at[i];
Entry *q = &at[i + 1];
p->next = q;
q->prev = p;
init_data(p, 0);

}

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

(b) Assembly code of init_data compiled w/ O0

(c) Assembly code of init_auth_entry compiled w/ O3

Figure 5.1. Motivation Example

5.2 Motivation

We use an example to motivate our technique. In this example, we use a transformer

based technique StateFormer [129] to reverse engineer the function signatures (i.e., function

parameters and their types) of code snippets from the leaked Linux.Mirai malware [181].

179

It is an important step for downstream tasks, such as understanding the malware behavior

and malware classification. We then show how a naive attack adapted from an existing

transformer attack in the NLP domain has difficulties and how Pelican addresses these

challenges.

Figure 5.1 (a) presents a source code snippet from the malware [181], which is simplified

for the illustrative purpose. We show the source code just for better understanding and all

the tools in this chapter work directly on stripped binaries. Specifically, lines 1-5 declare

a doubly linked list. Function init_data (lines 7-10) updates the data field of *p by a

given integer x. On the right side, function init_auth_entry() initializes the i-th element

of a given Entry array at (lines 11-12), linking it with the (i + 1)-th element in at and

setting its data field to 0. Figure 5.1 (b) and Figure 5.1 (c) show the assembly code of

init_data() and init_auth_entry(), respectively. We comment each instruction with its

corresponding source code information for interested readers. We compile init_data() with

O0 and init_auth_entry() with O3. We will show that we can exploit an backdoor to cause

StateFarmer to produce wrong function signatures for both functions without changing their

semantics.

Transformer Pipeline of StateFormer StateFormer is a transformer-based binary type

inference technique that can recover precise function signatures from stripped binaries. It is

highly resilient to compiler obfuscation. Figure 5.2 depicts the pipeline. A piece of assembly

code, e.g., the init_auth_entry() function, is fed to StateFormer as input and tokenized

as an assembly sequence at step 1. Each assembly instruction is split into multiple tokens

during tokenization, e.g., the first instruction movsxd rax, esi is tokenized to four tokens

“MOVSXD”, “RAX”, “,”, and “ESI". At step 2, to avoid a prohibitively large vocabulary size,

StateFormer abstracts away all the immediate values in instructions, e.g., the token “2”

in the second instruction lea rax, [rax+rax*2] is normalized as “NUM”. Note that the

token “init_data” in instruction call init_data has also been normalized, since function

addresses are encoded as immediate values in the machine code. A transformer model then

predicts the function signature from the normalized assembly sequence at step 3.

180

movsxd rax, esi
lea rax, [rax+rax*2]
shl rax, 3
lea rdi, [rdi+rax]
lea rsi, [rdi+24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi+8], rdi
mov esi, 0
call init_data
ret

void f2(struct *a1, int a2)

Step 2.
Normalize

Step 1. Tokenize Step 3. Predict

Downstream Security Applications

MOVSXD RAX , ESI
LEA RAX , [RAX + RAX * NUM]
SHL RAX , NUM
LEA RDI , [RDI + RAX]
LEA RSI , [RDI + NUM]
MOV QWORD PTR [RDI] , RSI
MOV QWORD PTR [RSI + NUM] , RDI
MOV ESI , NUM
CALL NUM
RET

MOVSXD RAX , ESI
LEA RAX , [RAX + RAX * 2]
SHL RAX , 3
LEA RDI , [RDI + RAX]
LEA RSI , [RDI + 24]
MOV QWORD PTR [RDI] , RSI
MOV QWORD PTR [RSI + 8] , RDI
MOV ESI , 0
CALL init_data
RET

Assembly Code

Assembly Sequence Normalized Assembly Sequence

Figure 5.2. Pipeline of StateFormer

MOV MOV MOV [[[RDX RDX RDX RDX
PUSH RBP
MOV RBP , RSP
MOV QWORD PTR [RBP – NUM] , RDI
MOV DWORD PTR [RBP – NUM] , ESI
MOV RAX , QWORD PTR [RBP – NUM]
MOV EDX , DWORD PTR [RBP – NUM]
MOV DWORD PTR [RAX + NUM] , EDX
POP RBP
RET

void f1(struct *a1, int a2, void *a3)

MOV MOV MOV [[[RDX RDX RDX RDX
MOVSXD RAX , ESI
LEA RAX , [RAX + RAX * NUM]
SHL RAX , NUM
LEA RDI , [RDI + RAX]
LEA RSI , [RDI + NUM]
MOV QWORD PTR [RDI] , RSI
MOV QWORD PTR [RSI + NUM] , RDI
MOV ESI , NUM
CALL NUM
RET

void f2(struct *a1, int a2, void *a3)

(a) Backdoored sequences of init_data (b) Backdoored sequences of init_auth_entry

Figure 5.3. Natural backdoor generated by an existing NLP trigger inversion technique

Natural Backdoor in StateFormer by Existing Attack Technique. As demonstrated

by a recent study [147 , 182], natural backdoors are prevalent in the computer vision and

NLP domains, even in naturally trained clean models. It is often due to the model being

overfitted on some low-level features [147] We speculate similar vulnerabilities may exist in

181

models used in binary analysis. Intuitively, mainstream compilers tend to introduce specific

code patterns, e.g., field accesses are performed by first loading the base address of data

structure to a register, and then adding the field offset to the register. These low-level

syntactic code patterns are prevalent in the training set, likely causing overfit.

We first adapt a state-of-the-art adversarial attack for transformer models in the NLP

domain [183] to scan for possible natural backdoors in StateFarmer. The technique uses

gradient descent to invert some tokens that can cause the model to misbehave on all the

given input samples when they are stamped with the tokens. Figure 5.3 presents the inverted

trigger, where Figure 5.3 (a) and Figure 5.3 (b) show the backdoored assembly sequences for

functions init_data() and init_auth_entry(), respectively, with the trigger highlighted in

red at the beginning and the mis-predicted function signatures at the bottom. Note that

although we only present two functions, the inverted trigger can alter the results for over

90% of functions. Compared with the ground truth, the mis-predicated function signature

contains one more argument void *a3.

With further inspection, we find that register rdx is used to pass the third argument (i.e.

a3) in the x64 calling conventions [184]. We further observe that an assembly instructions

with a “MOV” token and a bracket token always performs a dereference of memory address,

e.g., mov [rax], rbx. Hence, it is likely that StateFormer mistakenly associates these low-

level syntactic features with a pointer being passed as a3, without considering real program

semantics.

However, even though tokens can be found to cause model misbehaviors, the inverted

triggers are not legitimate instructions and hence unable to launch a real-world attack, not

to mention preserving input code semantics.

Our technique. Pelican is inspired by two insights.

First Insight: different from natural languages and high-level programming languages (e.g.,

Java), assembly code has relatively simple syntax. Taking the syntax into account during

backdoor generation can produce legitimate trigger instructions without scarifying the efficacy.

The syntax of assembly code imposes constraints largely within a single instruction. Our

empirical study shows that an individual x64 instruction only comprises 9 tokens on average

182

MOV QWORD PTR [RSI - NUM] , <REG>

MOV QWORD PTR [RSI - NUM] , RDI
PUSH RBP
MOV RBP , RSP
MOV QWORD PTR [RBP – NUM] , RDI
MOV DWORD PTR [RBP – NUM] , ESI
MOV RAX , QWORD PTR [RBP – NUM]
MOV EDX , DWORD PTR [RBP – NUM]
MOV DWORD PTR [RAX + NUM] , EDX
POP RBP
RET

void f1(struct *a1, void *a2)

MOV QWORD PTR [RSI - NUM] , RSI
MOVSXD RAX , ESI
LEA RAX , [RAX + RAX * NUM]
SHL RAX , NUM
LEA RDI , [RDI + RAX]
LEA RSI , [RDI + NUM]
MOV QWORD PTR [RDI] , RSI
MOV QWORD PTR [RSI + NUM] , RDI
MOV ESI , NUM
CALL HEXVAR
RET
void f2(struct *a1, void *a2)

Backdoor Trigger:

(a) Effectiveness of semantic-breaking trigger injection

void f1(struct *a1, void *a2)

xchg rsi, rsp
mov qword ptr [rsi–8], rdi
mov dword ptr [rsi-12], esp
mov rax, qword ptr [rsi-8]
mov edx, dword ptr [rsi-12]
mov dword ptr [rax+16], edx
xchg rsi, rsp
ret

push rbp
mov rbp, rsp
mov qword ptr [rbp–8], rdi
mov dword ptr [rbp-12], esi
mov rax, qword ptr [rbp-8]
mov edx, dword ptr [rbp-12]
mov dword ptr [rax+16], edx
pop rbp
ret

void f1(struct *a1, int a2)

(b) Effectiveness of semantic-preserving trigger injection for init_data

movsxd rax, esi
lea rax, [rax+rax*2]
shl rax, 3
lea rdi, [rdi+rax]
lea rsi, [rdi+24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi+8], rdi
mov esi, 0
call init_data
ret

movsxd rax, esi
lea rax, [rax+rax*2]
shl rax, 3
lea rdi, [rdi+rax]
lea rsi, [rdi+24]
mov qword ptr [rsi-24], rsi
mov qword ptr [rsi+8], rdi
mov esi, 0
call init_data
ret

void f1(struct *a1, void *a2)void f1(struct *a1, int a2)

(c) Effectiveness of semantic-preserving trigger
injection for init_auth_entry

Figure 5.4. Natural backdoor generation and semantics-preserving trigger
injection by Pelican

and 17 tokens at most. As such, we devise a syntax-aware trigger inversion technique taking

advantage of a pre-defined instruction dictionary. The instruction dictionary is collected

183

from the SPEC2000 dataset (compiled with a large number of different options) and contains

119640 normalized instructions. The trigger optimization is performed over the instruction

dictionary instead of individual tokens, and hence intrinsically follows the syntax of assembly

code. Figure 5.4 (a) presents the instruction sequence with our inverted trigger. The trigger

and the mis-predicted function signatures are highlighted at the top and the bottom of the

figure, respectively. Observe the second argument is misclassified. In real-world scenarios,

three or more trigger instructions may be needed to launch an effective attack, preventing

a naive approach of enumerating all instructions in the dictionary, as the complexity of

enumerating three instructions is 1196403 ≈ 1.7× 1015.

Second Insight: the injected triggers should not only preserve the program semantics but also

become an integral part of the semantics. With triggers in the form of valid instructions, a

naive approach to injecting these triggers is to add them as dead-code (and hence having

the original input semantics preserved), e.g., using opaque predicates [168]. However, such

dead code can be easily detected and eliminated [185 – 191].

We hence propose a novel injection technique. It is driven by a randomized micro-

execution technique that describes program semantics by a set of constraints, and a solving-

based synthesis technique that generates code satisfying both the requirements of preserving

semantics and injecting triggers (see Section 5.5). Figure 5.4 (b) and Figure 5.4 (c) illustrate

the generated code of init_data() and init_auth_entry(), respectively, after the semantic-

preserving trigger injection. We use red to denote the triggers and blue to denote the other

entailed patches. In Figure 5.4 (b), to inject the trigger mov qword ptr [rsi-8], rdi,

the first instruction in blue exchanges the values of registers rsi and rsp. The next four

instructions retain their original functionalities of manipulating the local variables using rsi

(in blue) as the stack frame pointer. The seventh instruction remains unchanged and the

eighth one (in blue) exchanges registers rsi and rsp back before returning to the caller.

Observe that the trigger becomes a natural and integral part of the program data flow and

hard to remove. In Figure 5.4 (c), mov qword ptr [rsi-24], rsi is the trigger instance

and also the only change compared with the original code, in which the memory operand

changes from [rdi] to [rsi-24]. The modification is guaranteed to be correct since the

184

A small set of clean binaries

Victim Model

Syntax-aware
Trigger Inversion

Semantic-preserving
Trigger Injection

Backdoor
Trigger

Arbitrary
Binary

Backdoored
Binary

Figure 5.5. Framework of Pelican

constraint of rsi = rdi + 24 has been derived from the previous instruction lea rsi,

[rdi+24]. This illustrates the sophistication of our injection method.

5.3 Design Overview

The overall design is illustrated in Figure 5.5 . Given a small set of clean binaries and a

victim model, Pelican reverse-engineers the backdoor trigger using gradient descent. The

trigger inversion procedure is syntax-aware. That is, each generated trigger instruction fol-

lows the proper assembly syntax. Pelican achieves this goal by constructing an instruction

dictionary, where instructions serve as the backdoor trigger candidates. It then leverages

gradient descent to search for the trigger instructions that can induce misclassification. The

search by its nature is a discrete optimization problem and cannot be directly solved through

gradient descent. Pelican performs a linear relaxation and defines a convex hull for fea-

sible optimization. See detailed discussion in Section 5.4 . With the generated backdoor

trigger, the next step is to inject it into some binary without altering the binary’s original

semantics. Particularly, given an arbitrary binary, Pelican first introduces a randomized

micro-execution process to extract higher order semantics of the given binary, which are

represented by program state changes (e.g., register value changes). These changes are en-

coded by symbolic constraints. They are resolved together with constraints representing the

injection of the trigger and the synthesis of needed patches (to preserve semantics), using

Z3 [192] (see details in Section 5.5). Finally, Pelican produces a backdoored binary with

185

[[0.0, 1.0, …]
…]

Inverted Vector !"Backdoor Instructions

[[1.0, 0.1, …]
…]

17×768

[[0.1, 0.3, …]
[1.3, 2.8, …]

…]
Sequence of Instructions

Instruction Dictionary

120k

17×768

[[0.2, 0.1, …]
…]

120k

Weight Vector "

[[0.1, 0.3, …]
[1.0, 0.1, …]
…
[1.3, 2.8, …]

…]
Trigger-injected Input

Trigger Inversion

17×768

Figure 5.6. Syntax-aware trigger inversion

the trigger injected and the same semantics as the original binary. It can induce the desired

misclassification on the victim model.

Use Cases of Pelican. Pelican operates on assembly code. It leverages datalog disas-

sembly [64], a state-of-the-art binary reassembling tool which has demonstrated its success

on thousands of commonly used binaries, to produce reassembleable assembly code from

binary. After trigger injection, Pelican reassembles the code to binary. When source code

is available for attackers (e.g., malware developers), Pelican can also be applied as part of

the compilation tool chain, by modifying the intermediate assembly code.

5.4 Syntax-aware Trigger Inversion

Figure 5.6 illustrates the workflow of our syntax-aware trigger inversion. Given an in-

put binary, it is first mapped to the embedding space with 17 × 768 dimensions for each

instruction, where value 17 denotes the number of tokens in an instruction and value 768

the embedding size of a token. The resultant matrix is shown on the top left in Figure 5.6 .

Pelican aims to invert a backdoor trigger at the instruction level, which is syntax-aware.

We construct an instruction dictionary with 119640 instructions and each instruction is rep-

resented by a 17× 768-dimension embedding as shown on the bottom left. Pelican uses a

weight vector γ to denote the trigger, whose size is u × 119640 (where u is the number of

186

instructions in the trigger and 119640 is the dictionary size). By multiplying the dictionary

with γ, Pelican obtains the trigger instruction embeddings in the middle of Figure 5.6 ,

which is then injected to an input sample on the top right. Pelican leverages gradient

descent to optimize the weight vector γ such that it can induce misclassification for a set

of samples. Ideally, the inverted vector γ̂ has only one dimension with 1 that denotes the

trigger instruction and the others with 0. For example, the second dimension having value

1 means that the inverted trigger is the second instruction in the dictionary.

5.4.1 Trigger Generation

The trigger generation aims to produce a small piece of binary code that can induce

misclassification on the subject binary analysis model. A straightforward idea is to directly

generate code tokens, such as operators, registers, etc. Such a method however cannot

guarantee the generated trigger code snippet following the proper syntax of assembly code.

As discussed in Section 5.2 and shown in Figure 5.3 , the backdoor trigger generated by an

existing NLP inversion technique has invalid syntax.

In Pelican, we construct an instruction dictionary collected from the SPEC2000 dataset

containing 119640 normalized instructions. This provides us with a large pool of feasible

trigger candidates. We hence make use of a gradient descent method to search for the possible

combination of instructions as the backdoor trigger, which can induce misclassification for a

set of input binary samples on the subject model. Assume a subject model f : X 7→ Y , the

instruction dictionary d (i.e., a large table of embeddings), and a discrete variable c ∈ Nu×v
+ ,

where u is the number of instructions in the trigger and v is the size of the dictionary d (i.e.,

the number of instructions). The trigger generation process can be written as follows.

arg max
c

E
(x,y)∼{X ,Y}

L
(

f
(
x⊕ d(c)

)
, y
)

, (5.1)

where (x, y) is a sample from the set {X ,Y} that we use for trigger generation. We as-

sume x has already been mapped to the embedding space for discussion simplicity. L is

the loss function. Operator ⊕ denotes the trigger stamping. Operation d(c) looks up the

instruction embeddings for index c in the dictionary. Observe that index c is discrete and

187

hence cannot be directly optimized through gradient descent [193 – 195]. To address the above

non-differentiability problem, we construct a convex hull to denote the input space.

Definition 5.4.1. Let S = [1, v] be the set of instructions in the dictionary. The convex

hull over the input space is H = {∑v
i=1 γid(i) | ∑v

i=1 γi = 1, γi ≥ 0}.

An input t in the hull is essentially a weighted sum of all instruction embeddings in the

dictionary: t = ∑v
i=1 γid(i) and the sum of weights γi, i ∈ {1, 2, ..., v} must equal to 1. To

satisfy the constraint, we introduce a weight vector p and compute γ as the softmax over p

like the following.

γi = exp(pi)∑v
j=1 exp(pj)

. (5.2)

Note that with the projection, while p is unbounded (and hence easy to optimize), γ can

satisfy the constraint of summing up to 1. With the above formalization, we avoid optimizing

in the discrete index space (variable c in Equation 5.1) but rather focus on the weight vector

p and hence γ in the convex hull (which is differentiable). The trigger generation is thus to

solve the following optimization problem

1
 .

arg max
γ

E
(x,y)∼{X ,Y}

L
(

f
(
x⊕

{ v∑
j=1

γijd(j)
}u

i=1

)
, y
)

. (5.3)

In a nutshell, we use a linear combination of all the possible instructions in the dictionary

as the potential trigger instruction and allow the optimization to find the most promising

instruction through gradient descent. The ideal ultimate γ has only one dimension with

value 1 and the others value 0. In practice, the weight vector may not always converge to

an ideal vector. We hence sort the weight values in p in descending order and select the top

5 instructions as the trigger candidates.

Synonym Instructions. We expand the pool of potential trigger candidates by including

synonymous instructions of the backdoor trigger as well. In particular, synonymous instruc-

tions are derived from the original trigger instruction by substituting a terminal symbol with
1

 ↑ We use γ as the variable to optimize in the equation for notation simplicity, whereas our true variable is
p.

188

void f2(struct *a1, int a2, int a3)

movsxd rax, esi
lea rax, [rdx+rax*2]
lea rax, [rax+rax*2]
shl rax, 3
lea rdi, [rdi+rax]
lea rsi, [rdi+24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi+8], rdi
mov esi, 0
call init_data
ret

movsxd rax, esi
mov rdx, rax
lea rax, [rdx+rax*2]
shl rax, 3
lea rdi, [rdi+rax]
lea rsi, [rdi+24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi+8], rdi
mov esi, 0
call init_data
ret

void f2(void *a1, int a2)

(a) Before trigger injection (b) After trigger injection

Figure 5.7. Example trigger by per-instance adversarial attack

a different one. The substituted symbols must be of the same token type, e.g., register tokens

“RDI” and “RSI”, operand size tokens “QWORD” and “DWORD”.

Location of Trigger Stamping. To invert position-independent trigger instructions, Pel-

ican stamps triggers at different locations upon different samples. Those locations are ran-

domly selected prior to the optimization step of trigger inversion, and hence vary among

samples. During injection, the place of inserting the trigger instruction(s) is determined by

the constraint solver (Section 5.5).

5.4.2 Why Not Per-instance Adversarial Attack

A backdoor trigger targets a set of input samples for inducing misclassification. A similar

path would be to generate a per-instance perturbation as in adversarial attacks. Technically

this is feasible as the goal is to fool the subject model by adding perturbation (e.g., an extra

instruction) to the input. In this chapter, we aim to make the trigger an integral part of

the original binary’s semantics such that it cannot be easily discarded by sanitization. The

trigger injection process hence requires preserving the semantics of the binary through some

transformation (discussed in Section 5.5). The triggers generated by per-instance adversar-

ial attack may not be effective after the injection procedure. Figure 5.7 shows an example

trigger generated by per-instance adversarial attack. We use the same code snippet as in Sec-

tion 5.2 for the trigger generation. Figure 5.7 (a) presents the assembly code with the directly

189

movsxd rax, esi
lea rax, [rax+rax*2]
shl rax, 3
lea rdi, [rdi+rax]
lea rsi, [rdi+24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi+8], rdi
mov esi, 0

Basic Block

Constraint
Generator

Randomized
Micro-execution

MOV QWORD PTR [RSI - NUM] , <REG>

Backdoor Trigger

xchg rsi, rsp
mov qword ptr [rsi–8], rdi
mov dword ptr [rsi-12], esp
mov rax, qword ptr [rsi-8]
mov edx, dword ptr [rsi-12]
mov dword ptr [rax+16], edx
xchg rsi, rsp

Generated Code
Z3

Constraint
Solver

Program
States

Program
States

Program
States

Constraints

Constraints

Constraints

Instruction Dictionary

Figure 5.8. Workflow of Pelican’s semantic-preserving trigger injection

inserted trigger instruction and Figure 5.7 (b) the assembly code after semantic-preserving

trigger injection. Observe that directly inserting the trigger instruction can cause the sub-

ject model to have the wrong prediction. But the trigger is not effective any more after the

semantic-preserving transformation. This is because per-instance adversarial attack only

aims to induce misclassification for one particular input and the generated trigger may not

be effective on other inputs. The assembly code produced by the semantic-preserving trans-

formation is different from the original code, causing the generated trigger by per-instance

adversarial attack ineffective. Our generated backdoor trigger, on the other hand, are ef-

fective for a set of binary samples, which can maintain its effectiveness on the transformed

assembly code.

5.5 Semantic-preserving Trigger Injection

With the triggers in legitimate forms, a naïve approach is to inject the triggers as dead

code and hence have the semantics preserved. However, such efforts become ineffective when

the input data is sanitized before use, e.g., discarding garbage code or pruning non-critical

190

program paths. Furthermore, a popular technique to inject dead code, i.e., using opaque

predicates [168], usually incurs high runtime overhead, rendering the attack infeasible for

some performance-sensitive applications, e.g., crypto-mining malware. We hence propose a

novel trigger injection technique. It takes a subject basic block, a backdoor trigger, and

a pre-collected instruction dictionary as inputs, and synthesizes a semantic-equivalent code

snippet that naturally includes the trigger. In Pelican, we use a greedy search algorithm

to find a basic block to inject trigger. Since these models are usually quite vulnerable, the

search is simple and its discussion is elided.

Figure 5.8 depicts the workflow. Given a block, we start multiple micro-executions to

extract higher order semantics of the code. The semantics are represented by program states

(i.e., the concrete value of each register and memory object) before and after executing the

basic block. The constraint generator further transforms the program states to symbolic

constraints so that the trigger injection task is reduced to a constraint solving problem.

Z3 [192] is hence involved to solve the constraints and synthesize the injected (and patched)

code. Note that the code synthesis with a single micro-execution instance is very likely prob-

lematic. For example, mov rax, 12 can be synthesized while the ground truth instruction is

add rax, rax from a micro-execution result with rax being 6 before execution and 12 after.

The problem can be avoided with high probability when other micro-execution instances are

involved, e.g., having rax changed from 37 to 74.

Since the synthesis has only probabilistic guarantees, Pelican further performs symbolic

equivalence checking to ensure the synthesized code is equivalent to the original block. The

injection is performed on a different block if the validation is not successful (which is very

rare).

An alternative to expressing program semantics is to directly perform symbolic execution

(instead of micro-executions then constructing symbolic constraints on concrete states like

in Pelican). However, this approach inevitably introduces quantified formulas and array

models (for memory objects) in the generated constraints, inducing difficulties in the down-

stream solver[196 – 200]. For example, the symbolic constraint of a heap memory read entails

an quantifier operation on the symbolic address, which is further translated inside the solver

to numerous comparisons with all the possible addresses that have been written to. It is

191

〈BasicBlock〉 b ::= s
〈Statement〉 s ::= s1; s2 | l : i
〈Instruction〉 i ::= rd := e | rd := R(ra) | W(ra, rv)
〈Expression〉 e ::= r | c | e1 op e2
〈Label〉 l ::= L0 | L1 | L2 | . . .
〈Register〉 r ::= r0 | r1 | r2 | . . .
〈Operator〉 op ::= + | − | ∗ | ÷ | BitOp | . . .
〈Constant〉 c ::= Z

Figure 5.9. A simple language for branching-free assembly code sequence

hence very expensive. Pelican, on the other hand, leverages a randomized concrete repre-

sentation such that the derived constraints are quantifier-free and can be effectively solved

using a quantifier-free bit-vector (QF_BV) theory [192].

In the remainder of this section, we discuss details of individual component and how we

address practical challenges.

5.5.1 Randomized Micro-execution

The goal of randomized micro-execution is to have a low cost method to concretize

program semantics, i.e., how the values of randomly initialized register and memory objects

change after executing the code. To do so, the micro-execution needs to calibrate objects

that are accessed during execution, and tracks the changes of these objects.

Language. To facilitate discussion, we introduce a low-level language to model basic blocks

in assembly code. The language is designed to illustrate our key idea, and hence omits

many irrelevant details. The syntax of is in Figure 5.9 . A basic block is constituted by a

statement which is either a concatenation of two statements or an instruction. We label

the location before an instruction as l (like a program counter). Instruction rd := e denotes

the computation and data movement among registers and e denotes an expression. R(ra)

and W(ra, rv) model memory read and write operations, respectively, where ra holds the

memory address and rv holds the value to write. Note that the language does not model

branching instructions, which will appear unchanged after injection and remain to be the

last instruction of a block.

192

Definitions. We briefly discuss the definitions used by the semantics of the randomized

micro-execution. The formal definitions can be found at the top of Figure 5.10 . Specifically,

we use Λreg and Λmem to denote the register store and the memory store, respectively.

Different program points, distinguished by labels, have different register and memory stores.

For instance, the initial value of rax is denoted as Λreg(L0)(rax) and the memory object

[52] at the program location L3 is denoted as Λmem(L3)(52). Register and memory stores

constitute the program state Λ.

Semantics. The overarching process is to concretely execute the code and check every

object before use. If the object is not initialized, we assign it a random value and record the

initial value as part of the initial program state (i.e. Λreg/mem(L0)). As such, the concertized

semantics, i.e., which objects are used and what their initial and final states are, can be

determined by accessing the program states before and after the execution (i.e., Λreg/mem(L0)

and Λreg/mem(Ln+1) where Ln+1 denotes the last program point).

Figure 5.10 presents the semantics of the randomized micro-execution. Specifically, a

concatenated statement is evaluated by evaluating its components in sequential order (rule

(1)). Note that “Λ |= s ⇒ Λ′” denotes that the program state changes from Λ to Λ′ after

executing the statement s. Rule (2) defines how the micro-execution evaluates expressions.

Given a previous program state Λ and an instruction rd := r1 op r2, Pelican first initializes

registers r1 and r2 by InitReg (rule (2), line 2), calculates the outcome v of the expression

(line 3), and sets register rd as v at the next program point (line 4). InitReg(Λreg, l, r)

initializes register r at the program point l, whose semantics are defined by rules (5) and

(6). If register r has already been initialized at the program point l, Λreg remains the same

(rule (5)). Otherwise, a random value v is used to update register r at l (rule (6), lines 1-2),

while the initial program state of r is set as the same value v (line 3). The semantics of

memory read and write operations are defined by rules (3) and (4), respectively. Specifically,

rule (3) first initializes register ra and reads its value va (line 2), initializes and accesses

the memory object located at address va (line 3), and updates register rd (line 4). Memory

write operation (rule (4)) is similar to the read operation, and InitMem (rules (7) and (8))

is similar to InitReg.

193

Definitions:
Λreg ∈ RegisterStore ::= Label→ Register → Z
Λmem ∈ MemoryStore ::= Label→ Z→ Z
Λ ∈ ProgramState ::= 〈RegisterStore ×MemoryStore〉

Semantic Rules:
Given a basic block b ::= s, “⊥ |= s⇒ Λ” denotes that s is evaluated to Λ from

an empty state.

Λ |= s1 ⇒ Λ′, Λ′ |= s2 ⇒ Λ′′

Λ |= s1; s2 ⇒ Λ′′ (5.4)
(Λreg, Λmem) = Λ

Λ′
reg = InitReg(InitReg(Λreg, l, r1), l, r2)

v = Λ′
reg(l)(r1) op Λ′

reg(l)(r2)
Λ′ = (Λ′

reg[next(l) 7→ Λ′
reg(l)[rd 7→ v]], Λmem)

Λ |= l : rd := r1 op r2 ⇒ Λ′ (5.5)

(Λreg, Λmem) = Λ
Λ′

reg = InitReg(Λreg, l, ra), va = Λ′
reg(l)(ra)

Λ′
mem = InitMem(Λmem, l, va), vv = Λ′

mem(l)(va)
Λ′ = (Λ′

reg[next(l) 7→ Λ′
reg(l)[rd 7→ vv]], Λ′

mem)
Λ |= l : rd := R(ra)⇒ Λ′ (5.6)

(Λreg, Λmem) = Λ
Λ′

reg = InitReg(InitReg(Λreg, l, ra), l, rv)
va = Λ′

reg(l)(ra), vv = Λ′
reg(l)(rv)

Λ′
mem = InitMem(Λmem, l, va)

Λ′ = (Λ′
reg, Λ′

mem[next(l) 7→ Λ′
mem(l)[va 7→ vv]])

Λ |= l : W(ra, rv)⇒ Λ′ (5.7)

r ∈ dom(Λreg(l))
Λ′

reg = Λreg

Λ′
reg = InitReg(Λreg, l, r) (5.8)

r 6∈ dom(Λreg(l)), v = random()
Λ′

reg = Λreg[l 7→ Λreg(l)[r 7→ v]]
Λ′′

reg = Λ′
reg[L0 7→ Λ′

reg(L0)[r 7→ v]]
Λ′′

reg = InitReg(Λreg, l, r) (5.9)

va ∈ dom(Λmem(l))
Λ′

mem = Λmem

Λ′
mem = InitMem(Λmem, l, va) (5.10)

va 6∈ dom(Λmem(l)), vv = random()
Λ′

mem = Λmem[l 7→ Λmem(l)[va 7→ vv]]
Λ′′

mem = Λ′
mem[L0 7→ Λmem(L0)[va 7→ vv]]

Λ′′
mem = InitMem(Λmem, l, va) (5.11)

Figure 5.10. Semantics of the randomized micro-execution

194

Table 5.1. Running example of the randomized micro-execution
Label Instr Λreg Λmem R

l = L0 r1 := r0

Λreg(L0)[r0 7→ 6] -
6Λreg(next(l)[r0 7→ 6] -

Λreg(next(l)[r1 7→ 6]] -

l = L1 r0 := r0 + r1 Λreg(next(l)[r0 7→ 12] - -

l = L2 r1 := R(r0) - Λmem(L0)[12 7→ 19] 19Λreg(next(l)[r1 7→ 19] Λmem(next(l)[12 7→ 19]

l = L3 W(r1, r0) - Λmem(L0)[19 7→ 96] 96- Λmem(next(l)[19 7→ 12]

Evaluation result after (⊥,⊥) |= s⇒ (Λreg, Λmem)

Λreg ≡ {L0 7→ {r0 7→ 6} , L4 7→ {r0 7→ 6, r1 7→ 19}}
Λmem ≡ {L0 7→ {12 7→ 19, 19 7→ 96} , L4 7→ {12 7→ 19, 19 7→ 12}}

R denotes random() invoked at each step.

Example. Table 5.1 presents an example of randomized micro-execution. The first column

lists the labels and the second column the correspond instructions. The next two columns

demonstrate the changes of register store Λreg and memory store Λmem, respectively. The

last column shows the generated random values at each program location. The register

and memory stores after the micro-execution are presented at the last row. Specifically,

instruction L0 : r1 := r0 moves the value of r0 to r1. Since register r0 is not initialized, a

random value 6 is selected, and registers r0 and r1 at the program point L1 are updated

accordingly. Λreg(L0)(r0) is further synced as 6, denoting that the initial value of r0 is 6.

The next instruction sets r0 as 12. Instruction L2 : r1 := R(r0) performs data movement

from the memory object [r0] to r1. Note that r0 is evaluated as 12 at L2 but [r0] ≡ [12] has

not been initialized. Memory location [12] is hence randomly initialized as 19, recorded by

Λmem(L0)(12). The last memory write operation accesses a new memory object [r1] ≡ [19]

which is initialized as 96 and then updated as 12. Observe that two register objects r0 and r1

and two memory objects [12] and [19] are determined to be accessed during execution, based

on the final program state. The value changes of these objects are also well demonstrated.

�

195

5.5.2 Constraint Generation

With the concretized program semantics (i.e., Λ), Pelican aims to generate a new code

snippet that performs the same state updates on register and memory objects, and injects

the trigger instructions. To do so, it first introduces a set of boolean variables xk
i to guide the

code synthesis, where i denotes the instruction ID in the pre-collected dictionary, k denotes

the program location, and xk
i denotes whether the k-th instruction (in the synthesized code)

holds ID i (in the dictionary). The code needs to satisfy a number of objective constraints,

e.g., ∀k, (∑i∈ID xk
i) = 1 which guarantees there is only one instruction placed at location k.

We further encode the state changes (on register and memory objects) as transformations

defined by xk
i . The changes are constrained to be the same as the original code. Trigger

injection is achieved by (∑k xk
t) ≥ 1 in which t is the ID of the trigger instruction, that is,

the trigger instruction is at least inserted once. As such, we reduce the semantic-preserving

trigger injection to a satisfiability modulo theories (SMT) solving task, where the trigger-

injected code can be derived from a satisfying model of xk
i , which essentially encodes the

set of instructions placed at individual locations, including the trigger instruction and the

needed patch instructions to make sure the semantics are preserved after injection.

Figure 5.11 presents the details. It first defines the inputs of the constraint generator.

Λreg and Λmem are the register and memory stores collected from the randomized micro-

executions. Ln denotes the last program location of the subject block, i.e., Λreg/mem(Ln+1)

denotes the final program state. Ω and t denote the pre-defined instruction dictionary and

the ID of trigger instruction (in the dictionary), respectively. The length of the generated

block is pre-set as m. In practice, starting from the length of the original code (i.e., n), we

gradually increase m until the synthesis succeeds or m reaches a predefined length (n + 20

in our setting).

Several auxiliary variables are introduced to help model the state changes. A denotes

the accessible memory objects (objects that have been accessed during micro-executions)

which can be derived from the final memory store (i.e., Λmem(Ln+1)). Intuitively, semantic-

equivalent blocks should access exactly the same memory objects. Rk
r and Mk

a denote the

values of register r and memory object [a], respectively, after executing the first k generated

196

Input:
Λreg RegisterStore produced by the randomized evaluation
Λmem MemoryStore produced by the randomized evaluation
Ln The last instruction’s label of the subject block
Ω Instruction candidates used during code synthesis (Ω ::= IDarrowInstruction)
t The ID of the trigger instruction, i.e., Ω(t) is the trigger instruction
m The target length (i.e. # of instructions) of the generated code

To Solve:
xk

i A boolean variable denotes whether the instruction (in Ω) with ID i is the k-th instruction in the
generated code (1 ≤ k ≤ m, i ∈ ID, xk

i ∈ {0, 1})

Variables:
A Accessible memory objects, i.e., memory objects accessed by subject code (A=dom(Λmem(Ln+1)))
Rk

r The value of register r after executing the first k generated instructions (0 ≤ k ≤ m, r ∈ Register)
Mk

a The value stored in [a] after executing the first k generated instructions (0 ≤ k ≤ m, a ∈ A)
T k Whether the k-th generated instruction accesses non-accessible memory objects

(1 ≤ k ≤ m, T k ∈ {0, 1})

Constraint Construction:

Step 1. Initialization
1 (

∧
r ∈ dom(Λreg(L0))

R0
r = Λreg(L0)(r)) ∧ (

∧
r 6∈ dom(Λreg(L0))

R0
r = random())

2
∧

a ∈ dom(Λmem(L0))
M0

a = Λmem(L0)(a)

Step 2. Constructing Constraints by Induction
Assuming we have constructed the constraints for the first k−1 generated instructions, i.e., we have

constructed Rk−1
r , Mk−1

a , and T k−1

Temporary Variables:
iRk

r : The value of register r after executing the first k generated instructions if the k-th one’s ID is i
iMk

a : The value stored in [a] after executing the first k generated instructions if the k-th one’s ID is i
iT k: Whether the generated code accesses non-accessible memory after executing the first k generated

instructions and the k-th one’s ID is i

Construction Rules:
3 ∀i ∈ ID, s.t.Ω(i) ≡ rd := r1 op r2arrow

(iRk
rd

= Rk−1
r1 op Rk−1

r2) ∧ (iT k = 0) ∧ (
∧

r 6=rd

iRk
r = Rk−1

r) ∧ (
∧

a∈A

iMk
a = Mk−1

a)

? 4 ∀i ∈ ID, s.t.Ω(i) ≡ rd := R(ra)arrow if a = Rk−1
ra 6∈ A then iT k = 1;

else (iRk
rd

= Mk−1
a) ∧ (iT k = 0) ∧ (

∧
r 6=rd

iRk
r = Rk−1

r) ∧ (
∧

a∈A

iMk
a = Mk−1

a)

? 5 ∀i ∈ ID, s.t.Ω(i) ≡ W(ra, rv)arrow if a = Rk−1
ra 6∈ A then iT k = 1;

else (iMk
a = Rk−1

rv) ∧ (iT k = 0) ∧ (
∧
r

iRk
r = Rk−1

r) ∧ (
∧

a′ 6=a

iMk
a′ = Mk−1

a′)

6 (
∧
r

(Rk
r =

∑
i∈ID

iRk
r × xk

i))∧(
∧

a∈A
(Mk

a =
∑

i∈ID

iMk
a × xk

i))∧(T k =
∑

i∈ID

iT k × xk
i)

Step 3. Constructing the Objective Constraints
7 (

∧
r ∈ dom(Λreg(Ln+1))

Rm
r = Λreg(Ln+1)(r)) ∧ (

∧
r 6∈ dom(Λreg(Ln+1))

Rm
r = R0

r)

8
∧

a∈A
Mm

a = Λmem(Ln+1)(a) 9
∧

1≤k≤m

∑
i∈ID xk

i = 1 10
∑

1≤k≤m

T k = 0

11
∑

1≤k≤m

xk
t ≥ 1 12

∧
1≤k≤m

∧
i ∈ ID

(xk
i = 1 ∨ xk

i = 0)

? Rules 4 and 5 can be encoded as a sequence of (consecutive/nested) if-then-else
statements by enumerating all accessible addresses in A, see running example 5.12

Figure 5.11. Rules of constraint construction

197

instructions. For instance, R0
r0 denotes the initial value of register r0, and M2

12 denotes the

value of [12] after executing the first two synthesized instructions. We introduce boolean

variables T k to denote whether the k-th generated instruction accesses any invalid memory

object. Note that all T k’s are constrained to be 0 during synthesis.

The constraints of keeping the same state changes are constructed by induction. At

the initialization stage, we constrain all R0
r and M0

a . Specifically, R0
r is set as the initial

value of r, if r has been initialized by the original code (constraint 1)). Otherwise, R0
r

is randomly selected (constraint 1) and we constrain register r to keep the same value in

the final program state. This is reasonable as a code snippet accessing additional registers

but preserving their initial values is considered semantic-equivalent in our context. M0
a

is set as the initial value accordingly (constraint 2). For now, memory behaviors are

strictly constrained to be the same. Assuming stage k− 1 is done properly, i.e., Rk−1
r ,

Mk−1
a , and T k−1 are well constrained, the next step is to construct Rk

r , Mk
a , and T k. The

overall idea is to enumerate all the instructions in the dictionary and model Rk
r , Mk

a , and T k

under the assumption of a specific instruction i being selected. This is done by introducing

a few temporary variables iRk
r , iMk

a , and iT k. iRk
r is defined as the value of Rk

r under

the assumption that the k-th generated instruction is i, and iMk
a and iT k are defined in

a similar fashion. Constraint 3 describes the construction rule for rd := r1 op r2. iRk
rd

is updated as the outcome of the expression among Rk−1
r1 and Rk−1

r2 , while other registers

except rd remain untouched, i.e., Rk
r inherits the value of Rk−1

r . iT k stays false and all

memory objects remain unchanged, as memory is not involved. Constraint 4 describes the

rule for rd := R(ra). It first checks whether [Rk−1
ra

] ≡ [a] is accessible. If not, iT k is marked as

true to indicate an access violation. Otherwise, iRk
rd

and other objects are updated according

to the semantics. Likewise, constraint 5 defines the rule of the memory write operations.

Observe that constraints 4 and 5 are not typical bit-vector operations but can be encoded

as several if-then-else statements in Z3. Interested readers can refer to our running example

in Figure 5.12 . After enumerating all iRk
r , iMk

a , and iT k, variables xk
i are use to select the

proper Rk
r , Mk

a , and T k (constraint 6). For instance, Rk
r0 equals to ∑i∈ID

iRk
r0 × xk

i . Note

that there is only one xk
i (i.e., xk

î) solved as 1 and the rest 0, so that Rk
r0 is selected as îRk

r .

198

The objective constraints are listed at the bottom of the figure. Constraints 7 and 8

guarantee the synthesized code has the same outcomes. Note that any unused register r (by

the original code) needs to keep its initial value (to avoid global side-effects). Constraints 9 ,

10 , and 11 ensure that the generated block is legitimate, shares exactly the same memory

behaviors, and has triggers injected, respectively. Note that as mentioned in Section 5.4.1 ,

we can have a pool of trigger candidates after the trigger inversion. We do not explicitly

select the trigger from the candidate pool, but instead let the solver decide which one to

choose. Specifically, the constraint 11 originally guarantees a specific trigger instruction t

is injected. When having a pool of trigger instructions, i.e. P = {t1, t2, . . . , tp}, we change

the constraint to ∑t∈P,1≤k≤m xk
t ≥ 1, i.e., at least one trigger instruction in the pool being

injected. The last constrain guarantees xk
i has a boolean value.

Example Continued. We use Figure 5.12 to illustrate the constraint generation process. The

inputs consist of the subject block from Table 5.1 , its last label L3, the program state Λ

analyzed from Table 5.1 , an instruction dictionary Ω containing 7 instructions, a trigger

instruction r0 := r0 × 2, and a target length m = 3. At the initialization stage, R0
r0 is set

as register r0’s initial value 6 and R0
r1 is randomly initialized as 8. There are two accessible

memory objects, [12] and [19]. M0
12 and M0

19 are then set as the corresponding initial values.

During induction, assuming the stage k−1 is done, we start the construction of stage k.

Recall that we need to enumerate all instructions and construct the corresponding iRk
r0 ,

iRk
r1 , iMk

12, iMk
19, and iT k. Instruction 0 : r0 := r0 × 2 sets 0Rk

r0 as 0Rk−1
r0 × 2 and keeps 0T k

false. Any unmentioned variable inherits the value of its ancestor, e.g., 0Rk
r1 = 0Rk−1

r1 , and

we hence omit these constraints in the running example. Expression instructions 1 and 2

follow a similar rule to construct the variables. Instruction 3 : r0 := R(r1) uses a nested if-

then-else statement to construct 3Rk
r0 and 3T k. Specifically, if the target address (i.e., Rk−1

r1)

equals to 12 or 19, 3Rk
r0 is set as Mk−1

12 or Mk−1
19 , respectively. Otherwise, the memory read

operation is invalid, and we set 3Rk
r0 as Rk−1

r0 (which is a meaningless placeholder) and flip
3T k as true to indicate the access violation. Instruction 4 is handled the same way. The next

instruction 5 : W(r0, r1) also leverages if-then-else statements to describe the memory write

operation. That is, the memory object 5Mk
12 (or 5Mk

19) is set as Rk−1
r1 if the target address

199

Subject Block:
L0 : r1 := r0; L1 : r0 := r0 + r1; L2 : r1 := R(r0); L3 : W(r1, r0)

Input:

A Λreg ≡ {L0 7→ {r0 7→ 6}, L4 7→ {r0 7→ 6, r1 7→ 19}} D t = 0, i.e., trigger instruction Ω(0) ≡ r0 := r0 × 2

B Λmem ≡ {L0 7→ {12 7→ 19, 19 7→ 96}, L4 7→ {12 7→ 19, 19 7→ 12}} E Ln = L3 F m = 3

C Ω ≡ {0 7→ r0 := r0 × 2, 1 7→ r0 := r0 + r1, 2 7→ r1 := r0, 3 7→ r0 := R(r1),
4 7→ r1 := R(r0), 5 7→ W(r0, r1), 6 7→ W(r1, r0)}

Variables:

G A = {12, 19} H Rk
r ∈ {R0

r0 , R1
r0 , R2

r0 , R3
r0 , R0

r1 , R1
r1 , R2

r1 , R3
r1}

I Mk
a ∈ {M0

12, M1
12, M2

12, M3
12, M0

19, M1
19, M2

19, M3
19} J T k ∈ {T 0, T 1, T 2, T 3}

Initialization:

K (R0
r0 = 6) ∧ (R0

r1 = random() = 8) L (M0
12 = 19) ∧ (M0

19 = 96)

Induction:

Assuming stage k−1 is done, i.e., we have constructed Rk−1
r , Mk−1

a , and T k−1

M Constraints of iRk
r , iMk

a , and iT k: iRk
r = iRk−1

r , iMk
a = iMk−1

a if not mentioned
if-then-else statement is denoted by If(cond, then, else) in Z3

i Ω(i) Constraints

0 r0 := r0 × 2 (0Rk
r0 = Rk−1

r0 × 2) ∧ (0T k = 0)

1 r0 := r0 + r1 (1Rk
r0 = Rk−1

r0 + Rk−1
r1) ∧ (1T k = 0)

2 r1 := r1 (2Rk
r1 = Rk−1

r0) ∧ (2T k = 0)

3 r0 := R(r1)
3Rk

r0 = If(Rk−1
r1 = 12, Mk−1

12 , If(Rk−1
r1 = 19, Mk−1

19 , Rk−1
r0))

3T k = If(Rk−1
r1 = 12, 0, If(Rk−1

r1 = 19, 0, 1))

4 r1 := R(r0)
4Rk

r1 = If(Rk−1
r0 = 12, Mk−1

12 , If(Rk−1
r0 = 19, Mk−1

19 , Rk−1
r1))

4T k = If(Rk−1
r0 = 12, 0, If(Rk−1

r0 = 19, 0, 1))

5 W(r0, r1)
5Mk

12 = If(Rk−1
r0 = 12, Rk−1

r1 , Mk−1
12) 5Mk

19 = If(Rk−1
r0 = 19, Rk−1

r1 , Mk−1
12)

5T k = If(Rk−1
r0 = 12, 0, If(Rk−1

r0 = 19, 0, 1))

6 W(r1, r0)
6Mk

12 = If(Rk−1
r1 = 12, Rk−1

r0 , Mk−1
12) 6Mk

19 = If(Rk−1
r1 = 19, Rk−1

r0 , Mk−1
12)

6T k = If(Rk−1
r1 = 12, 0, If(Rk−1

r1 = 19, 0, 1))

N (Rk
r0 =

∑
0≤i≤6

iRk
r0 × xk

i) ∧ (Rk
r1 =

∑
0≤i≤6

iRk
r1 × xk

i) ∧ (Mk
12 =

∑
0≤i≤6

iMk
12 × xk

i) ∧ (Mk
19 =

∑
0≤i≤6

iMk
19 × xk

i)∧

(T k =
∑

i∈ID

iT k × xk
i)

Objective Constraints:

O (R3
r0 = 6) ∧ (R3

r1 = 19) ∧ (M3
12 = 19) ∧ (M3

19 = 12) P (
∑

0≤i≤6
x1

i = 1) ∧ (
∑

0≤i≤6
x2

i = 1) ∧ (
∑

0≤i≤6
x3

i = 1)

Q
∧

1≤k≤3

∧
0≤i≤6

(xk
i = 1 ∨ xk

i = 0) R x1
0 + x2

0 + x3
0 ≥ 1 S T 1 + T 2 + T 3 = 0

Results:
x1

0 = x2
4 = x3

6 = 1 and the rest are 0. The generated code s′ is:
L0 : Ω(0) ≡ r0 := r0 × 2; L1 : Ω(4) ≡ r1 := R(r0); L2 : Ω(6) ≡ W(r1, r0)

Figure 5.12. Running example for constraint construction

200

equals to 12 (or 19), and remains unchanged otherwise. The rest constraints are easy to

understand and the description is hence elided. A satisfying model of above mentioned

constraints is that x1
0 = x2

4 = x3
6 = 1 and the rest are 0, deriving a trigger-embedded block

L0 : Ω(0) ≡ r0 := r0 × 2; L1 : Ω(4) ≡ r1 := R(r0); L2 : Ω(6) ≡ W(r1, r0). Observe that it

has the same semantics as the original code and the trigger injected. �

5.6 Evaluation

We evaluate Pelican on 5 binary analysis tasks and 15 models. The evaluation studies

the effectiveness of Pelican in inducing misclassification on subject models in both white-

box and black-box scenarios. We investigate the underlying reason that backdoors exist in

the pre-trained models. The experiments are performed on a server equipped with a 48-cores

CPU (Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz), 256G main memory, and 8 NVIDIA

Quadro RTX 6000 GPUs.

5.6.1 Experiment Setup

Tasks and Models. We evaluate on 5 binary analysis tasks and 15 models, which are pre-

sented in Table 5.2 . The first column denotes the tasks. The second and third columns show

the binary analyses and their model architectures. The fourth and fifth columns present the

evaluation metrics used for measuring the performance of the subject models and their values.

The last column denotes how the models are obtained. In total, we have 10 Transformer-

based models and 5 RNN-based models. The performance of all the evaluated models is

consistent with that in the original papers. We chose to induce the misbehavior of the in-

struction boundary detection model (i.e., XDA-call) for a specific instruction type (i.e.,

call), to demonstrate a real-world attack that the attacker tries to hide a few critical in-

structions (e.g., calling a malicious function) instead of completely breaking the disassembler.

Attack Settings. We randomly select 10% binaries from our SPEC2000 dataset (around

2000 functions) to invert backdoor triggers, and launch attacks with samples from the author-

provided test sets. This is similar to the real-world attack scenario where the attackers can

prepare their own dataset for backdoor inversion without prior knowledge of the victim

201

Table 5.2. Summary of models used, along with how we collect these mod-
els (i.e., Source). P , T , and O denote the models are provided by the au-
thors, trained with the author-provided dataset, and trained with our own
dataset, respectively. The techniques named with a suffix ++ are enhanced
by PalmTree [201], an instruction embedding technique.

Task Technique Architecture Metric Score Source

Dis-
assembly

BiRNN-func3 [120] Bidirectional
RNN Precision 99.12% O

XDA-func3 [118] Transformer Precision 99.36% P

XDA-call4 [118] Transformer Precision 100.00% P

Function
Signature
Recovery

StateFormer [129] Transformer Precision 96.60% T

EKLAVYA [133] RNN Precision 70.29% T

EKLAVYA++ [133] RNN + TE1 Precision 74.25% T

Function
Name

Prediction

in-nomine [135] Transformer Precision2 33.97% P

in-nomine++ [135] Transformer +
TE1 Precision2 25.26% T

Compiler
Provenance

S2V [123] RNN +
structure2vec Precision 73.06% T

S2V++ [123] RNN + TE1

structure2vec Precision 73.64% T

Binary
Similarity

Trex [121] Transformer Top@1 Acc 91.11% P

SAFE [122] Bidirectional
RNN Top@1 Acc 89.29% P

SAFE++ [122] Bidirectional
RNN + TE1 Top@1 Acc 87.01% T

S2V-B [123] RNN +
structure2vec Top@1 Acc 81.10% T

S2V-B++ [123] RNN + TE1

structure2vec Top@1 Acc 82.78% T

1 The instruction embedding is generated by a transformer model [201].
2 We consider a prediction correct if there are more than 5% tokens correctly predicted.

3 BiRNN-func and XDA-func are to detect function boundaries.
3 XDA-call is to detect boundaries of all call instructions.

model’s training process. The epoch number and the learning rate of the trigger inversion

are 50 and 0.1, respectively.

Computational Cost. As mentioned in Section 5.2 , the memory usage of Pelican’s

trigger inversion is dominated by the 119640 × 17 × 768 matrix, which consumes around

6G GPU memory. Note that multiplying the dictionary embedding matrix with the weight

vector produces a small matrix of size 17 × 768. We argue that it is within capacity of

modern GPUs. And there are many attacks [202 , 203] in CV and NLP domains that consume

202

much more resources but remain feasible for modern GPUs. On average, Pelican’s trigger

inversion takes 30 minutes to generate an effective backdoor for each model.

Attack for Disassembly Models. The disassembly models take bytes as input instead

of assembly instructions. We hence develop a dedicated attack for these disassembly mod-

els (i.e., BiRNN-func, XDA-func, and XDA-call). Specifically, the backdoor triggers are

inverted in form of bytes and injected at locations that cannot be reached during runtime,

e.g., the preceding bytes before each function entrypoint.

Threats to Validity. In the context of attacking disassembly models, the semantic-

preserving syntax-aware effort is not utilized, and the measurement of functionality preser-

vation reflects the efficacy of the underlying binary rewriting engine rather than that of

Pelican. However, our intention in including disassembly models in our evaluations is

to demonstrate the pervasiveness of backdoor vulnerability in various deep learning binary

analysis tasks. It is possible that other adversarial machine learning techniques may achieve

similar attack success rates as Pelican on disassembly models.

5.6.2 Attack Effectiveness

The attack results of Pelican are shown in Table 5.3 . The first column presents the

binary analysis techniques and the second column the original performance of these tech-

niques. We apply Pelican with different backdoor sizes, i.e., the number of instructions

that can be injected to a binary function. Note that all the binary analysis techniques are

originally evaluated at the function level. We hence follow the same setting by injecting the

backdoor trigger in each function to induce misclassification. Columns 3-14 show the attack

performance of Pelican with different backdoor sizes. Column ASR denotes the attack suc-

cess rate, i.e., the percentage of functions that a subject model produces correct predictions

for before attack but wrong after. Column Score denotes the performance of the subject

model measured using its original metric as shown in Table 5.2 . Column Dis. presents the

edit distance between the trigger-injected function and its original version. Note that the

edit distance is presented as the ratio to the size of original functions. For example, with

x the edit distance and y the original size, x/y is presented. Observe that with only one

203

T
ab

le
5.

3.
A

tt
ac

k
eff

ec
tiv

en
es

s
of

P
el

ic
an

w
ith

di
ffe

re
nt

tr
ig

ge
r

siz
es

.
A

SR
de

no
te

s
th

e
at

ta
ck

su
cc

es
s

ra
te

an
d

Sc
or

e
th

e
m

od
el

pe
rfo

rm
an

ce
.

D
is

.
de

no
te

s
th

e
ed

it
di

st
an

ce
be

tw
ee

n
th

e
tr

ig
ge

r-
in

je
ct

ed
fu

nc
tio

ns
an

d
th

e
or

ig
in

al
ve

rs
io

ns
ov

er
th

e
or

ig
in

al
s.

Te
ch

ni
qu

e
O

rig
in

al
Sc

or
e

B
ac

kd
oo

r
Si

ze
:

1
B

ac
kd

oo
r

Si
ze

:
3

B
ac

kd
oo

r
Si

ze
:

5
B

ac
kd

oo
r

Si
ze

:
7

A
SR

Sc
or

e
D

is.
A

SR
Sc

or
e

D
is.

A
SR

Sc
or

e
D

is.
A

SR
Sc

or
e

D
is.

B
iR

N
N

-fu
nc

99
.1

2%
91

.2
4%

8.
50

%
0.

15
%

96
.3

5%
3.

39
%

0.
46

%
98

.1
2%

1.
62

%
0.

76
%

98
.1

2%
1.

62
%

1.
06

%
X

D
A

-fu
nc

99
.3

6%
93

.4
4%

6.
53

%
0.

15
%

98
.3

1%
1.

68
%

0.
46

%
98

.3
2%

1.
67

%
0.

76
%

98
.3

2%
1.

67
%

1.
06

%
X

D
A

-c
al

l
10

0.
00

%
99

.4
9%

0.
51

%
3.

95
%

99
.5

7%
0.

43
%

6.
59

%
99

.5
7%

0.
43

%
9.

23
%

99
.5

7%
0.

43
%

11
.8

6%

St
at

eF
or

m
er

96
.6

0%
45

.0
9%

53
.7

8%
11

.7
3%

77
.5

2%
21

.7
3%

35
.1

9%
89

.5
1%

10
.6

6%
58

.6
5%

94
.8

8%
4.

89
%

82
.1

1%
EK

LA
V

YA
70

.2
9%

55
.3

3%
32

.9
1%

2.
76

%
84

.4
3%

12
.8

8%
7.

16
%

92
.9

3%
6.

45
%

12
.8

4%
96

.1
1%

3.
73

%
16

.1
5%

EK
LA

V
YA

+
+

74
.2

5%
60

.4
9%

31
.8

5%
2.

12
%

89
.6

3%
8.

51
%

6.
36

%
92

.6
3%

8.
05

%
10

.6
0%

93
.8

1%
6.

75
%

14
.8

3%

in
-n

om
in

e
33

.9
7%

42
.8

5%
19

.4
2%

2.
44

%
68

.2
5%

10
.7

9%
8.

56
%

83
.7

5%
5.

52
%

15
.8

9%
85

.4
2%

4.
95

%
19

.5
5%

in
-n

om
in

e+
+

25
.2

6%
47

.2
6%

13
.3

2%
1.

83
%

81
.5

2%
4.

67
%

6.
72

%
87

.6
5%

3.
12

%
11

.6
1%

92
.2

5%
1.

96
%

17
.7

2%

S2
V

73
.0

6%
42

.6
4%

42
.6

4%
5.

90
%

73
.7

3%
19

.5
1%

17
.7

1%
83

.6
6%

12
.1

2%
29

.5
2%

89
.6

6%
7.

64
%

41
.3

3%
S2

V
+

+
73

.6
4%

32
.8

7%
51

.7
1%

4.
78

%
73

.6
8%

19
.9

1%
14

.3
5%

85
.2

8%
11

.0
6%

23
.9

2%
90

.8
8%

6.
81

%
33

.4
8%

Tr
ex

91
.1

1%
59

.3
2%

37
.8

3%
1.

74
%

89
.8

9%
9.

50
%

5.
22

%
96

.4
0%

3.
39

%
8.

70
%

98
.3

0%
1.

60
%

12
.1

8%
SA

FE
89

.2
9%

74
.1

8%
23

.6
8%

5.
09

%
94

.4
4%

5.
20

%
15

.2
6%

98
.0

4%
1.

84
%

27
.9

8%
98

.9
9%

0.
96

%
38

.1
5%

SA
FE

+
+

87
.0

1%
64

.7
5%

31
.5

8%
3.

82
%

94
.7

6%
4.

98
%

11
.4

5%
98

.7
9%

1.
15

%
19

.0
8%

99
.7

1%
0.

30
%

26
.7

1%
S2

V
-B

81
.1

0%
89

.5
5%

8.
86

%
4.

52
%

96
.5

8%
3.

09
%

13
.5

7%
98

.1
4%

1.
66

%
22

.6
2%

98
.9

4%
1.

02
%

31
.6

7%
S2

V
-B

+
+

82
.7

8%
59

.3
6%

34
.5

2%
6.

03
%

78
.6

8%
18

.1
9%

18
.0

9%
86

.1
2%

11
.9

3%
30

.1
6%

89
.9

7%
8.

79
%

42
.2

2%

A
ve

ra
ge

78
.4

6%
63

.8
7%

26
.5

1%
3.

80
%

86
.4

9%
9.

63
%

11
.1

4%
92

.5
9%

5.
38

%
18

.8
2%

95
.0

0%
3.

54
%

26
.0

1%

204

Our Tool NLP Trigger Inversion

77
.5

2%

89
.6

3%

83
.4

1%

73
.6

8% 89
.8

9%

94
.7

6%

78
.6

8%

50
.9

5%

31
.2

5%

16
.6

9%

19
.0

5%

59
.1

7%

67
.2

1%

60
.1

0%

State
Former

EKLAVYA++

in-nomine++
S2V++

Trex
SAFE++

S2V-B++

Figure 5.13. Comparison between an adopted NLP trigger inversion tech-
nique and Pelican

injected instruction, Pelican has already over 90% ASR on BiRNN-func, XDA-func, and

XDA-call. The ASR on other models such as EKLAVYA++, SAFE, SAFE++, and S2V-B

are also reasonable, with an over 60% ASR when only one instruction is injected. When the

backdoor size is increased to 5, Pelican is able to break all the evaluated models with over

80% ASR. The performance of these models measured by their corresponding metrics is only

5.38% on average. The edit distance increases when injecting more backdoor instructions.

This is reasonable as Pelican needs to add more instructions in each function. One may

notice that the edit distance is relatively high for StateFormer. It is because the functions

from StateFormer’s test set are shorter than other, rendering the ratio high. We find when

the backdoor size is 3, Pelican achieves a good balance with 86.49% ASR and 11.14% edit

distance on average.

5.6.3 Comparison with Baselines

We compare Pelican with three baselines: using an adopted NLP inversion technique to

invert triggers, using opaque predicates to inject triggers, and a state-of-the-art per-instance

adversarial attack that does not rely on trigger inversion.

205

77
.5

2%

84
.4

3%

89
.6

3%

82
.2

6%

89
.1

1%

73
.7

3%

73
.6

8%

89
.8

9%

94
.4

4%

94
.7

6%

96
.5

8%

78
.6

8%

94
.7

4%

91
.5

6%

96
.6

3%

84
.2

2%

88
.1

6%

60
.4

2%

30
.8

1%

98
.4

3%

82
.5

6%

81
.2

7% 96
.2

4%

64
.6

0%

St
at

eF
or

m
er

EK
LA

V
Y

A

EK
LA

V
Y

A
++

in
-n

om
in

e

in
-n

om
in

e+
+

S2
V

S2
V

++

Tr
ex

SA
FE

SA
FE

++

S2
V

-B

S2
V

-B
++

Our Tool Opaque Predicates

Figure 5.14. Comparison between a baseline method using opaque predicts
to inject triggers and Pelican

Adopted NLP Trigger Inversion Technique. The baseline method adopts an existing

NLP trigger inversion technique [183]. During the trigger inversion, we gradually discard the

opcode tokens that take more operands, so that the baseline method can eventually invert

a legitimate one. For instance, in the worst case, only nullary opcodes are available and any

inverted token is a legitimate nullary instruction. We use all the 7 models that take tok-

enized assembly sequence as input, and compare the baseline method’s attack performance

to Pelican’s. The backdoor size is 3 and the result is shown in Figure 5.13 . Observe that

the baseline method has at most 67.21% ASR on SAFE++, whereas Pelican has 94.76%

ASR. The baseline performs worst on in-nomine++ with only 16.69%. Pelican, on the

other hand, still has 81.52% ASR. This is because the target triggers, i.e., the ones that the

models are undesirably overfitting to, are hard to invert when the inversion technique does

not take the assembly syntax into account. Overall, Pelican substantially outperforms the

baseline inversion method.

Trigger Injection by Opaque Predicates. Another baseline method leverages opaque

predicates to inject backdoor triggers [204]. It aims to attack Android malware classifiers

206

Backdoor Trigger Coverage

94
.4

3%
99

.7
5%

96
.8

1%
96

.9
1%

94
.7

3%
87

.1
2%

88
.7

4%
97

.0
1%

96
.9

8%
95

.3
0%

90
.1

4%
91

.7
8%

St
at

eF
or

m
er

E
K

LA
V

Y
A

E
K

LA
V

Y
A

++
in

-n
om

in
e

in
-n

om
in

e+
+

S2
V

S2
V

++
T

re
x

SA
FE

SA
FE

++
S2

V
-B

S2
V

-B
++

Figure 5.15. The runtime trigger coverage

based on code features, e.g., code size. It uses opaque predicates to inject arbitrary bytes

to subject malwares. Opaque predicates are predicates whose true branches can never be

taken. As such, any instructions (or even arbitrary bytes) guarded by these predicates will

never be executed. Since our models are not based on code size, their technique is not

directly applicable. We hence leverage its opaque predicate transformation to inject the

trigger instructions generated by our inversion technique. We compare attack performance

on the 12 models that are not the disassembly ones. We additionally study the impact of

data sanitization (e.g., remove instructions that are not covered during execution) and the

runtime overhead of trigger-injected binaries.

Attack Success Rate. Figure 5.14 presents the ASRs of the two methods. Pelican achieves

comparable ASRs with the baseline methods on all the models. Observe that the baseline

attack performs slightly better for function signature recovering tasks (i.e., StateFormer,

EKLAVYA, and EKLAVYA++). This is because it always just injects triggers at the be-

ginning of functions, achieving the maximum attack effects on function signature recovery

models. However, this may backfire. Observe that the baseline has only 30.81% ASR on

207

S2V++, while Pelican’s still reaches 73.73%. Overall, compared to the baseline, our attack

is just as effective and more stable.

Input Sanitization. Many existing research works [204 – 207] have emphasized the importance

of inconspicuousness and hence aim at generating stealthy backdoored/adversarial samples.

Malware Makeover [205], a state-of-the-art malware evasion technique, further asserts the

possible defence of pruning out crafted bytes in unreachable regions of the binary. De-

obfuscation techniques [208 – 210] are also largely adapted by the RE community. We hence

study possible defense by sanitizing input binaries. One possible approach is to dynami-

cally execute the program and eliminate the uncovered code. Note that although one can-

not discard unexecuted code in general, in the context of de-obfuscation (before passing

an executable to a malware classifier), it is justifiable to suppress the un-executed instruc-

tions [211 , 212]. We inject different triggers (which are inverted from 12 subject models)

into the SPEC2000 programs and study the trigger coverage (i.e., the percentage of dynam-

ically covered trigger instructions). We use the reference input set provided by SPEC2000

to collect runtime information. Note that we cannot collect the trigger coverage for the

author-provided test programs due to the lack of valid input data. Figure 5.15 details the

coverage. Observe that even in the worst case, Pelican still achieves 87.12% trigger cov-

erage, i.e., almost all triggers injected by Pelican are dynamically executed (and hence an

integral part of the sanitized programs). On the other hand, triggers injected by the baseline

method can be easily eliminated since the dead code is never executed.

We additionally implement a naïve opaque predicate detector inspired by [191]. It is

a hybrid static-dynamic technique without considering complex program semantics. The

results show 54.84% opaque predicates are detected, indicating that more than half of in-

jected triggers can be eliminated. Many other state-of-the-art opaque predicate detection

techniques [185 – 190 , 213] are believed to have better performance.

Runtime Overhead. We use SPEC2000 programs to study the runtime overhead of backdoor-

injected binaries by different trigger injection methods. To avoid the randomness from

each execution, we run all the binaries for 3 times and obtain the average. On average,

the binaries with Pelican’s injected backdoors have 4.36%, 8.21%, 10.98%, and 15.13%

runtime overhead when the trigger size is 1, 3, 5, and 7, respectively. The baseline opaque

208

predicates, on the other hand, has around 200% runtime overhead, rendering the attack

infeasible for performance-sensitive applications. Recall that we adapt the settings of an

existing work [204], where opaque predicates are to validate if a set of random values satisfy

a preset 3-SAT formula, to avoid being easily determined as a bogus predicate (by a static

analysis). The runtime overhead is mainly caused by the execution of opaque predicates [168].

Detailed results are provided in Table 5.5 (in Section 5.6.6).

Instance-specific Attack. Malware Makeover [205] (hereinafter referred to as MalMakeover)

is a state-of-the-art per-instance attack against malware classifiers. For a given malware sam-

ple, MalMakeover iteratively applies semantics-preserving transformations upon the sample

until the resultant variant induces misclassification. To efficiently guide the transformations,

MalMakeover proposes an optimization algorithm which, at each iteration, only selects a

transformation that can entail a lower attack CW loss [157] (compared to the current mal-

ware variant). MalMakeover achieves a high evasion rate against DL-based malware detec-

tors [205]. It is hence interesting to compare its performance on binary analysis models with

ours.

Experiment Configuration. In our modifications to the original version of MalMakeover, we

have made two significant alterations. Firstly, we have reduced the scope of mutation from

an entire program to a single function. In contrast to the original MalMakeover, which se-

lected functions to mutate in an iterative manner, our variant focuses exclusively on a given

function. This modification was necessary as our subject models accept input in the form

of a single function, as opposed to the original MalMakeover, which took malware binaries

as input. Secondly, we have replaced the disassembling frontend of MalMakeover with a

custom implementation that accepts text-form assembly code as input. This change was

required as the test sets provided by the authors of the subject models did not consist of

complete programs, but rather individual functions. To accomplish this, we utilized Key-

stone for assembly and Capstone for disassembly, which provided the necessary information

at the instruction-level. Additionally, since the original MalMakeover relied on a register

liveness analysis, which is not supported by Capstone, we developed such an analysis our-

selves. Our variant of MalMakeover supports both in-place randomization and displacement.

209

Table 5.4. Attack success rates of untargeted attacks

Model Tool
Backdoor Size

1 3 5 7

EKLAVYA Pelican 55.33% 84.43% 92.93% 96.11%
MalMakeover 29.07% 57.31% 70.34% 76.64%

EKLAVYA++ Pelican 60.49% 89.63% 92.63% 93.81%
MalMakeover 25.82% 58.13% 67.80% 75.61%

in_nomine Pelican 42.85% 68.25% 83.75% 85.42%
MalMakeover 41.15% 67.85% 83.38% 85.37%

in_nomine++ Pelican 47.26% 81.52% 87.65% 92.25%
MalMakeover 41.81% 85.19% 87.18% 91.22%

StateFormer Pelican 45.09% 77.52% 89.51% 94.88%
MalMakeover 50.82% 84.30% 84.34% 84.41%

It is worth noting that the original design of MalMakeover was intended for models that ac-

cept a program as input and output a predicted label, which is essential for the use of CW

loss. However, for the disassembly and binary similarity tasks, the output is in the form

of sequences and embedding vectors, respectively, making them incompatible with the orig-

inal design of MalMakeover. Furthermore, MalMakeover calculates the difference of input

embeddings before and after mutation. The S2V and S2V++ models, which take CFG-like

graphs as inputs, pose a challenge in this regard as the embedding difference cannot be easily

calculated after displacement mutation, which significantly alters the CFG. Consequently,

we exclude disassembly models, binary similarity models, S2V, and S2V++ from our evalu-

ation. In our study, we examine the efficacy of untargeted attacks (i.e., causing the model to

misclassify a sample to any other label), the performance of targeted attacks (i.e., causing

the model to misclassify a sample to a specified label), and the runtime overhead of mutated

binaries.

Untargeted Attack. Table 5.4 presents the ASRs of untargeted attacks performed by Pel-

ican and MalMakeover. The first two columns denote the subject models and the attack

techniques, respectively. Columns 3-6 present the ASRs with backdoor sizes of 1, 3, 5, and

7. It is important to note that MalMakeover does not reverse trigger instructions, thus the

metric of backdoor size is not directly relevant. To make a meaningful comparison, for each

210

function sample, we guarantee that the edit distances of the function variants generated by

Pelican and MalMakeover are equivalent with respect to the original function. To calcu-

late the edit distance, we compare the original assembly sequence of the subject function to

the mutated sequence and consider each instruction as a unit for the purposes of counting.

Observe that Pelican and MalMakeover achieve comparable ASRs for untargetted attacks.

Specifically, MalMakeover slightly outperforms Pelican on in_nomine++ with a backdoor

size of 3 and on StateFormer with 1 and 3, while Pelican achieves superior ASRs in the

other settings. Also note that for StateFormer, although MalMakeover gets better ASRs

with backdoor sizes of 1 and 3, its attack performance reaches an upper bound ASR of 85%

when the backdoor size is larger than 3, while the ASR of Pelican is close to 95% with

a backdoor size of 7. We have also conducted a comprehensive evaluation of the average

time required by Pelican and MalMakeover to launch a successful untargeted attack. The

parameters for backdoor size and the number of micro-execution instances were set to 5 and

3, respectively. Our results demonstrate that Pelican requires an average of 19.23 seconds

per function to achieve a successful untargeted attack, whereas MalMakeover requires only

7.68 seconds. It is worth noting that Pelican necessitates an additional 30 minutes to

generate an effective backdoor for each model through trigger inversion. We have carried

out further investigation to understand the factors contributing to MalMakeover’s efficient

performance in this regard. We observe that code displacement [214] is the most effective

transformation. It moves a branching-free code piece to a new executable section and fills

the original place by a leading jmp instruction (to redirect the control flow to the displaced

code) and a set of semantic-nop instructions (i.e., instructions that cumulatively do not af-

fect the memory or register values and have no side effects). This is mainly because, when

pre-processing data, these binary analysis models do not take control-flow information into

consideration. Instead, they assume all instructions of a function are contiguous in memory,

and therefore consecutively collect instructions from the function entrypoint, until the first

instruction that belongs to another function. Despite being valid in most cases, the conti-

guity assumption is broken by code displacement, where several instructions are displaced

to a distinct memory space. As a result, these binary models can only access non-displaced

instructions and understandably have an inferior performance. The success of MalMakeover

211

93
.6
4%

94
.3
3%

86
.0
0%

94
.3
5%

88
.5
0%

39
.6
1% 59
.6
5%

3.
92
%

16
.1
3%

1.
24
%22
.7
9% 45
.5
1%

1.
18
%

8.
46
%

0.
00
%

EKLA
VYA
EKLA

VYA+
+
in_nom

ine
in_nom

ine++
StateFo

rmer

Pelican MalMakeover Random

Figure 5.16. Attack success rates of targeted attacks

in untargeted attacks also suggests the de-facto necessity of a proper data pre-processing step

when developing binary analysis models, e.g., restoring displaced instructions.

Targeted Attack. Figure 5.16 depicts the performance of targeted attacks against 5 models.

The green, red, and grey bars denote the ASRs of Pelican, MalMakeover, and a baseline

approach that randomly selects backdoor instructions to inject without trigger inversion,

respectively. The target label of EKLAVYA, EKLAVYA++, and StateFormer is “int", and

that of in_nomine and in_nomine++ is “init". We adapt the setting of backdoor size 7.

Observe that the best ASR MalMakeover can achieve is close to 60% and its ASRs on

in_nomine and StateFormer are 3.92% and 1.24%, respectively. In comparison, Pelican

always achieves an ASR above 85% for all the subject models. The baseline method performs

worst. We further investigate the underlying reason of the superiority of Pelican in tar-

geted attacks. As mentioned in Section 5.2 , many models undesirably learn some low-level

syntactic features. For example, StateFormer overfits on “add [r8], esi" and always pre-

dicts a function’s first argument as “int" as long as the function contains that add instruction

(i.e., the trigger instruction). Note that Pelican can effectively identify trigger instructions

via the syntax-aware trigger inversion. Meanwhile, Pelican’s semantic-preserving trigger

injection is able to inject arbitrary inverted trigger instructions into the subject binary. On

the other hand, MalMakeover mutates binaries by performing a set of pre-defined semantics-

preserving transformations. These pre-defined transformations can introduce a few typical

212

types of instructions (e.g., nop, push, and pop) into the subject binary, while those in the trig-

ger are beyond this scope. For example, it is less likely for these transformations to precisely

produce the “add [r8], esi" instruction, rendering a suboptimal ASR of MalMakeover on

StateFormer.

5.6.4 Functionality Preservation

Pelican employs a semantic-preserving trigger injection technique to ensure that the

functionality of the mutated binaries is retained. In this study, we have conducted an em-

pirical examination of the preservation of functionality in backdoor-injected binaries. Our

dataset consists of binaries from SPEC2000 [20], SPEC2006 [215], Binutils 2.39 [216], and

Coreutils 8.25 [69]. These datasets are well-suited for our purposes as they come equipped

with a large number of comprehensive test cases. For each binary, we have applied 12 back-

door triggers (inverted from 12 non-disassembly models), resulting in a total of 1800 mutated

binaries. Our attacks were executed under two distinct scenarios: with and without access

to the source code. In the former scenario, Pelican was integrated into the compilation

toolchain and inserted backdoor instructions into the compiler-generated assembly code,

which was then converted into binary form by the default assembler. In the latter scenario,

the subject binaries were first disassembled into reassembleable assembly code using dat-

alog disassembly [64] and then instrumented by Pelican. The results show that, in the

source-assisted setting, all the mutated binaries produce the expected outputs on the bench-

mark test cases, demonstrating the effectiveness of Pelican’s semantic-preserving trigger

injection. In the binary-only setting, 93.3% of the mutated binaries produce the expected

outputs, while the rest of them crash or produce incorrect outputs. These failures are due

to limitations in the datalog disassembly process.

5.6.5 Why Backdoors Exist in These Models?

In this section, we investigate the underlying reason that backdoors exist in the models

of three classification tasks (i.e., function signature recovery, function name prediction, and

compiler provenance). The binary similarity models are not used as their outputs are embed-

213

Normalized R1 Score Normalized R2 Score

(a) EKLAVYA (b) in-nomine (c) S2V

84
.4

3%

69
.7

3%

55
.9

9% 70
.5

7%

76
.1

9%

69
.4

9%

25
.8

9%

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

int ch
ar

flo
at

po
int

er
en

um
em

pty

ran
do

m

82
.2

6%

59
.4

3%

60
.0

3%

56
.4

2%

62
.9

8% 74
.7

9%

60
.8

0%

28
.0

9%

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

ini
t

ab
ort

ap
pe

nd bo
ot

bu
ild

ch
ec

k

de
fau

lt

ran
do

m

73
.7

3%

46
.8

2% 61
.2

3%

66
.1

3%

8.
46

%

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

O0 O1 O2 O3

ran
do

m

ASR

Figure 5.17. The relation between ASR and the underlying training bias.
R1 and R2 score denote the sample-level and feature-level bias, respectively.
Random denotes a baseline method that randomly selects trigger instructions.

ding vectors instead of some specific labels. For each task, we select two models and a few

classes. Particularly, we study the relation between the attack success rate and the training

bias evaluated by two metrics: sample-level bias and feature-level bias. The sample-level bias

(R1) calculates the ratio of target class samples in the whole training set. The feature-level

bias (R2) measures the ratio between two computed percentages: the percentage of samples

containing backdoor instructions in the target class, and the percentage of samples con-

taining backdoor instructions in other classes. For instance, assuming there are n training

samples, na class-A samples, k1 class-A samples containing the inverted trigger instructions,

and k2 non-class-A samples containing the triggers, R1 = na

n
and R2 = k1

na
/ k2

n−na
. The results

are shown in Figure 5.17 . The x-axis denotes different target classes where random denotes

a baseline method that the trigger instruction is randomly selected rather than inverted by

Pelican. The y-axis presents the ratio values. The bars show the ASRs on the test sets

when using the corresponding class as the target during trigger generation. The dashed

brown and blue lines show the results for the sample-level bias (R1) and the feature-level

bias (R2), respectively. We have normalized the R1 and R2 scores for better visualization.

In Figure 5.17 (a), observe that the R2 line has a similar trend as the ASR bars, indicating

EKLAVYA overfits on a few distinctive instructions in each class. Specifically, for the target

214

class int, both ASR and R2 are high, meaning EKLAVYA largely relies on the backdoor

instructions (e.g., mov ebx, edx) for predicting class int. Similar observations can be made

for other models as shown in Figure 5.17 (b)(c)(d)(e)(f). The R1 line has the same trend

but the trend is less significant, indicating a smaller contribution of the sample-level bias.

To better understand the root cause of the vulnerabilities, we investigate a concrete case

of EKLAVYA. Recall that the trigger instruction of “mov ebx, edx" is able to misguide

EKLAVYA to incorrectly predict the subject function’s third argument as an integer. Ac-

cording to the x64 calling conventions [184], register rdx (i.e., the 64-bit extension of edx) is

used to pass the third argument, which is however call-clobbered. Meanwhile, register rbx

(i.e., the 64-bit extension of ebx) is a call-preserved general purpose register. To consistently

use the argument’s value, mainstream compilers tend to load it into a call-preserved regis-

ter. As a result, “mov ebx, edx" is frequently used by functions whose third arguments are

32-bit integers. It hence introduces natural bias into the training dataset, where such “mov"

instructions are prevalent in the aforementioned functions but relatively rare in the rest of

the dataset. Without the awareness and a proper remediation of such a bias, EKLAVYA

undesirably relies on the low-level syntactic features (i.e., the present of “mov ebx, edx")

to make prediction, regardless of the underlying program semantics. Also observe that the

baseline attack (i.e. random) performs poorly, rendering the importance of the syntax-aware

trigger inversion. Overall, this study suggests that these models may focus on a few very dis-

tinctive instructions for prediction instead of relying on input semantics. Pelican can hence

diagnose and exploit the vulnerability by inverting the trigger instructions and injecting the

triggers back to the subject functions.

5.6.6 Runtime Overhead

We use SPEC2000 programs to study the runtime overtime of backdoor-injected binaries

by different trigger injection methods. To avoid the randomness from each execution, we

run all the binaries for 3 times and obtain the average. The results are shown in Table 5.5 .

The first two columns denote the trigger injection methods and the programs. The follow-

ing columns present the runtime overhead of these binaries when backdoors with different

215

Table 5.5. Runtime overhead

Injection Program
Backdoor Size

1 3 5 7

P
el

ic
an

164.gzip 4.16% 7.34% 6.36% 6.98%
175.vpr 8.51% 12.48% 9.31% 14.85%
176.gcc 1.56% 8.95% 8.17% 9.34%
181.mcf -0.80% 2.39% 0.80% 3.59%
186.crafty 8.33% 9.52% 11.11% 23.02%
197.parser 3.97% 8.85% 13.17% 14.64%
252.eon -1.96% 1.31% 11.11% 24.84%
253.perlbmk 5.36% 4.46% 13.39% 20.76%
254.gap 5.03% 9.75% 16.04% 15.09%
255.vortex 10.56% 16.67% 26.76% 26.06%
256.bzip2 4.25% 9.81% 10.25% 11.27%
300.twolf 3.39% 7.00% 5.30% 11.17%

Average 4.36% 8.21% 10.98% 15.13%

O
pa

qu
e

Pr
ed

ic
at

e
[2

04
]

164.gzip 65.24% 66.46% 65.24% 64.01%
175.vpr 79.41% 85.94% 84.55% 72.48%
176.gcc 189.49% 190.66% 194.94% 179.38%
181.mcf 10.56% 5.98% 1.79% 5.18%
186.crafty 278.57% 271.03% 264.29% 260.71%
197.parser 233.71% 233.71% 240.52% 217.82%
252.eon 337.91% 341.18% 334.64% 321.57%
253.perlbmk 248.21% 250.45% 259.38% 243.75%
254.gap 396.86% 390.57% 384.28% 374.84%
255.vortex 479.81% 453.99% 561.97% 449.30%
256.bzip2 125.48% 124.01% 113.76% 110.83%
300.twolf 85.10% 82.84% 77.20% 76.07%

Average 210.86% 208.07% 215.21% 198.00%

M
al

M
ak

eo
ve

r
[2

05
]

164.gzip 1.96% -0.37% 3.92% 6.61%
175.vpr 4.95% 0.99% 9.31% 11.49%
176.gcc 6.23% 2.72% 10.12% 22.18%
181.mcf -0.60% -1.59% -1.00% -1.39%
186.crafty 6.35% 11.90% 16.67% 33.73%
197.parser 7.15% 9.76% 13.51% 29.40%
252.eon 0.98% 22.22% 22.55% 50.65%
253.perlbmk 15.85% 12.72% 20.76% 42.63%
254.gap 6.60% 18.55% 18.24% 42.45%
255.vortex 5.63% 20.89% 23.24% 66.90%
256.bzip2 1.90% 1.46% 7.03% 17.57%
300.twolf 1.47% 1.02% 1.81% 6.66%

Average 4.87% 8.36% 12.18% 27.41%

sizes are injected. Obverse that binaries with Pelican’s injected backdoors have low run-

216

Table 5.6. Transfer attack. TS denotes whether the victim model and surro-
gate model are trained from the same dataset. V-ARS and T-ASR denote
the original attack success rate and the one for transfer attack, respectively.

TS Victim Model V-ASR Surrogate Model T-ASR Degradation
Sa

m
e

D
at

as
et

EKLAVYA 84.43% EKLAVYA++ 83.29% 1.14%
EKLAVYA++ 89.63% EKLAVYA 88.55% 1.08%

in-nomine 68.25% in-nomine++ 41.30% 26.95%
in-nomine++ 81.52% in-nomine 77.72% 3.80%

S2V 73.73% S2V++ 46.90% 26.83%
S2V++ 73.68% S2V 44.70% 28.98%
SAFE 94.44% SAFE++ 87.04% 7.40%

SAFE++ 94.76% SAFE 88.54% 6.22%
S2V-B 96.58% S2V-B++ 86.52% 10.06%

S2V-B++ 78.68% S2V-B 75.84% 2.84%

Average 11.53%

D
iff

er
en

t
D

at
as

et
s

BiRNN-func 96.35% XDA-func 95.33% 1.02%
XDA-func 98.31% BiRNN-func 97.96% 0.35%

StateFormer 77.52% EKLAVYA 38.43% 39.09%
EKLAVYA 84.43% StateFormer 57.22% 27.21%

EKLAVYA++ 89.63% StateFormer 40.34% 49.29%
Trex 89.89% SAFE 86.69% 3.20%

SAFE 94.44% Trex 65.39% 29.05%
SAFE++ 94.76% Trex 81.28% 13.48%

S2V-B 96.58% SAFE 84.44% 12.14%
S2V-B++ 78.68% SAFE 73.46% 5.22%

Average 18.01%

time overhead (4.36-15.13% on average). MalMakeover achieves similar comparable runtime

overhead . The baseline opaque predicates, on the other hand, has around 200% runtime

overhead, rendering the attack infeasible for performance-sensitive applications.

5.6.7 Transfer Attack

The backdoors generated by Pelican are effective in inducing misclassification on the

evaluated models as discussed in previous sections. In this section, we study how the gen-

erated backdoor on one subject model can transfer to other models. This is particularly

interesting as in the black-box attack scenario the subject model is inaccessible by the ad-

versary. We call the model used in generating the backdoor the surrogate model, and the

217

model being attacked the victim model. We study two settings that the victim model and the

surrogate model are trained from (1) the same dataset and (2) different datasets. Table 5.6

presents the results. Column TS denotes the aforementioned two settings. Column Victim

Model denotes the victim model and column V-ASR shows the attack success rate of directly

attacking the victim model (assuming accessibility). Column Surrogate Model denotes the

surrogate model that the adversary utilizes. Column T-ASR shows the attack success rate

on the victim model when using the backdoors generated on the surrogate model. Column

Degradation denotes the ASR difference between the third and fifth columns. In the same

dataset setting, Pelican achieves more than 80% T-ASR for half of the models, demon-

strating the potential transferability of Pelican’s attack. The difference between V-ASR

and T-ASR is only 11.53% on average, delineating the effectiveness of Pelican in exposing

the fundamental vulnerabilities of these models. In the different datasets setting, we have

similar observations. Particularly, the backdoors generated by Pelican on XDA-func and

BiRNN-func can even achieve more than 95% T-ASR on the victim models. This is because

the models undesirably learn the low-level syntactic features, e.g., function prologue gener-

ated by mainstream compilers, regardless of the training data. One may notice that the ASR

degradation is as high as 50% for EKLAVYA++. It is reasonable given the completely dif-

ferent model architectures and training sets. We argue that a black-box attack with a worst

case of 40.32% ASR poses realistic threat. On average, the attack success rate difference is

18.01% in the second setting, slightly larger than the previous one. This study demonstrates

the possibility of using Pelican to launch attacks on closed-source tools, which is discussed

in Section 5.7 .

5.7 Case Study

In this section, we present a case study of a black-box attack in which we launch transfer

attacks on proprietary binary analysis models. Specifically, we investigate the security of

DeepDi [119], a recently-proposed commercial disassembler. Our results have been disclosed

in a responsible manner, and the authors of DeepDi have acknowledged the issue and are

working to improve their product.

218

Benign Binaries Backdoored Binaries
99.19% 96.02% 92.82% 91.14% 96.42% 90.99%

85.97% 88.33% 87.01% 89.13% 91.64%

2.13%

22.00%
15.74% 13.32% 11.48%

1.04%

29.95%
22.80% 19.39%

28.25%
16.67%

32-O0 32-O1 32-O2 32-O3 32-Os 64-O0 64-O1 64-O2 64-O3 64-Os Average

Figure 5.18. The F1 score for function boundary identification achieved by
DeepDi [119], a closed-source commercial disassembler, is noteworthy.

DeepDi is a state-of-the-art GNN-based disassembler, proposed by DeepBits Technol-

ogy [217]. It achieves low false positive and negative rates on both normal and obfuscated

code. In this case study, the backdoor trigger is generated from XDA and the subject

binaries are from SPEC2000. The trigger comprises 3 bytes and is injected as padding

bytes before each function entrypoint. Figure 5.18 presents DeepDi’s F1 score for function

boundary identification. The green and red bars denote benign and backdoor binaries, re-

spectively. The x-axis denotes the compilation flags, and the last two columns show the

average numbers. The y-axis denotes the F1 score. Observe that our attack is most effective

for binaries compiled by O0, where the F1 scores have decreased from 99.19% to 2.13% and

from 90.99% to 1.04% for 32-bit and 64-bit programs, respectively. On average, the F1 scores

drop from 91.64% to 16.67% after the backdoor attack, demonstrating the effectiveness of

black-box attack. Note that DeepDi, as a GNN-based model, is originally not within the

scope of Pelican (i.e., sequence models). However, the hypothesis of models overfitting on

compiler-generated syntactic patterns holds, which enables such a transfer attack towards

DeepDi. Further investigation shows that, the trigger, i.e., "85 e6 74”, can be decoded as

"test esi, esp; je XX” if followed by an arbitrary byte "XX”. Note that test and je con-

stitute a common code pattern of encoding conditional statements, inducing the misbehavior

of DeepDi.

219

5.8 Summary

We study the security of DL models used in binary code analyses, which have a lot of

downstream security applications. Our attack features a trigger generation technique for

these models that produces instructions causing the models to misclassify, and a trigger

injection technique that can preserve input program semantics.

220

6. DISCUSSION

The application of our proposed probabilistic analysis techniques is not confined to the spe-

cific binary analysis tasks discussed earlier. These methods offer a broad, flexible framework

that can be employed in a wide array of applications where there is a need to deal with un-

certainty. This is especially true for tasks that involve the extraction of higher-level insights

from lower-level data.

In this chapter, we discuss the potential applicability of our probabilistic analysis across

various fields of software engineering and security. The inherent adaptability of probabilistic

analysis allows it to be used in diverse and complex scenarios, with the ability to navigate

through the challenges posed by uncertainty and recover valuable insights from intricate

low-level data. Specifically, we see significant potential for our proposed techniques for

disassembly, network protocol reverse engineering, Android security policy interpretation,

and malware behavioural analysis. These tasks, while varied in nature, share the common

requirement of extracting high-level insights from low-level data in uncertain conditions.

Through our robust and flexible probabilistic analysis techniques, we are able to tackle these

challenges head-on. In the following sections, we will explore each of these application areas

in greater detail, demonstrating how our probabilistic analysis can be applied to address

these complex tasks.

6.1 Disassembly

Disassembly, the task of reconstructing assembly code from binary code, is a fundamental

process in various domains such as reverse engineering, vulnerability detection, and malware

analysis. Conventionally, there are two prevalent disassembly techniques. The first, referred

to as linear sweep disassemblers, operates by disassembling instructions in a sequential ad-

dress order. On the other hand, traversal disassemblers follow the control flow edges, such

as jumps and calls, to disassemble instructions. Both methods, while effective in their ways,

present significant limitations.

Linear sweep disassemblers often grapple with false positives and negatives due to the

interleavings of code and data. Conversely, traversal disassemblers struggle with indirect

221

control flow resulting from elements such as function pointers, virtual tables, and switch-

case statements, which makes the recognition of control transfer targets exceedingly difficult.

These limitations persist even in contemporary disassemblers such as BAP [17], IDA-Pro [15],

OllyDbg [218], Jakstab [219], SecondWrite [220], and Dyninst [221]. Some of these can

overlook up to 30% of the code in complex binaries [222].

Efforts have been made to address these issues. For instance, machine learning-based

methods [101] have been proposed to recognize function entries by identifying patterns in

the instruction set. Yet, they remain prone to false positives and negatives as many library

functions do not adhere to specific patterns. Similarly, superset disassembly [38] was pro-

posed as a method that disassembles at each address to generate a superset of instructions,

thereby ensuring no false negatives. However, this approach causes a significant size overhead

and runtime overhead on the rewritten binaries.

In light of these challenges, we emphasize the crucial role of handling uncertainty in

binary analysis, particularly due to the lack of symbolic information. Our core proposi-

tion involves employing probabilistic models to handle such uncertainty and subsequently,

carry out probabilistic inference to guide the disassembly of subject binaries. We present

a disassembly algorithm that computes a posterior probability for each address in the code

section, denoting the likelihood of that address indicating a true positive instruction (i.e.,

an instruction generated by the compiler).

In our approach, we disassemble the binary at each address, akin to superset disassembly,

generating what we term as superset or valid instructions. We then identify relationships

among these superset instructions, such as one being the transfer target of another or one

defining a register that is later accessed by another. These relationships, or hints, represent

semantic features that true code bodies would likely exhibit. However, they are uncertain as

instructions decoded from random bytes may coincidentally possess such features. Therefore,

we compute the prior probabilities of these hints using apriori probability analysis.

We propose an algorithm that aggregates these hints and computes the posterior prob-

abilities. The resulting disassembler offers probabilistic assurances of no false negatives,

lowering the likelihood of missing a true positive instruction to less than 1
1000 . We have

222

developed two variants of our probabilistic disassembly algorithms specifically for x86 and

ARM binaries.

Our x86 disassembler, evaluated on 2, 064 binaries, demonstrated no false negatives and

a false positive rate of 3.7%. It managed to not miss any instructions even when function

entries were unavailable, with a 6.8% FP. Furthermore, our evaluation on SPEC Windows PE

binaries showed a noticeable improvement over traditional methods, with our tool missing

no instructions compared to the 3, 095 instructions missed by objdump. In the context of

binary rewriting, our method outperformed the state-of-the-art superset rewriting technique,

reducing the size of the rewritten binary by about 47% and improving the runtime speed of

the rewritten binary by 3%.

On the other hand, our ARM disassembler was evaluated on over 5, 000 binaries, covering

a wide range of compilation conditions, including different options, architecture, instruction

set configurations, online sources, and even obfuscation. When compared with five well-

known tools (Ghidra [39], IDA [15], P-Disasm [60], XDA [118], and D-Disasm [64]), our

tool consistently outperformed them, consistently achieving an F1 score over 95% in the

majority of the cases. The resilience of our tool was evident even when faced with significant

obfuscation; while other tools scored F1 scores in the range of 2.83-56.45%, our tool managed

an impressive 78.16-88.72%.

Furthermore, our case study demonstrated the potential benefits of using our disassembler

in downstream binary rewriting tasks. Our tool resulted in fewer execution failures and more

accurate coverage reports, contributing to overall improved efficiency.

The technical details and inner workings of our disassembler are thoroughly discussed in

our papers [60 , 223]. Our work underscores the necessity of a probabilistic approach when

dealing with uncertainty in disassembly, demonstrating considerable improvements in both

efficiency and accuracy.

6.2 Network Protocol Reverse Engineering

The undertaking of reverse engineering network protocols poses a significant challenge

within the realm of cybersecurity. It has been observed that several applications, central

223

to the interests of security analysts, typically employ their unique, undocumented commu-

nication protocols. For instance, autonomous vehicles adopt protocols like CAN bus and

FlexRay, control systems incorporate Modbus and DNP3, while online chatting and confer-

encing applications engage their customized protocols. Various security analyses, such as

static/symbolic vulnerability scanning [224 , 225], exploit generation [226 , 227], fuzzing [96 ,

 228 – 230], attack detection [231 , 232], and malware behavior analysis [233 , 234] necessitate

a detailed modeling of the network protocol. For instance, in the context of fuzzing, seeding

input generation relies critically on understanding the protocol of a networking application.

Malware analysis often entails crafting well-structured messages to the Command and Con-

trol (C&C) server to invoke concealed behaviors [235 , 236]. Furthermore, static/symbolic

analysis requires accurate modeling of networking functions to avoid the production of ex-

cessive false positives.

Existing techniques for protocol reverse engineering can be organized into a few cat-

egories. One approach capitalizes on program analysis [13 , 14 , 33 , 237 – 239], where the

rich semantics of the application’s implementation are dissected to achieve high accuracy.

However, this method typically requires access to program binaries, often an impractical re-

quirement due to factors such as the protective mechanisms over IoT firmware, the difficulties

associated with dynamic analysis of obfuscated or packed binaries, or the elusive nature of

server-side binaries for a client application. Consequently, an alternative category centers

on utilizing network traces, often obtainable by network eavesdropping. This category in-

cludes two main methodologies for network trace-based reverse engineering: alignment-based

(such as PIP [240], ScritGen [241], and Netzob [242]) and token-based techniques (such as

Veritas [243] and Discoverer [244]). Alignment-based methods utilize sequence alignment al-

gorithms to align message pairs and calculate similarity scores. Message clusters are formed

based on these scores, with formats derived from analyzing the commonality within the

clusters. However, the wide variance in message contents may significantly compromise the

alignment quality, posing issues for further analysis. Token-based methods propose initial

message tokenization (e.g., into textual fields and binary fields) before alignment to reduce

variations. Furthermore, these techniques often require token identifiers, which may be

non-existent for binary protocols, or may generate an excessive number of clusters due to

224

deterministic heuristic reliance. In other words, tokenization based on ad-hoc rules may not

be applicable in numerous cases, leading existing techniques to often yield incorrect results

due to the failure to model such uncertainties.

We observe that pinpointing the keyword field, which inherently determines a message’s

type, is a fundamental aspect of network protocol reverse engineering. Various heuristics

are available to assist in locating such keywords, but they inherently come with a degree

of uncertainty. Moreover, the reverse engineering processes for both the client side and

the server side can be executed simultaneously to harness their robust correspondences and

create a synergistic effect Based on these observations, we introduce a novel probabilistic

methodology for reverse engineering network protocols. This approach is entirely rooted in

network trace data, thus eliminating the necessity for access to source or binary code. More

specifically, our technique employs multiple sequence alignment (MSA) [245], a strategy fre-

quently used in bioinformatics, to circumvent the costly pairwise alignment in conventional

methods. We perform a conservative alignment on all the messages initially. This com-

prehensive initial step reveals the common structure shared by all messages, including the

keyword field, as it needs to be parsed before any type-specific parsing can take place. Once

we complete the alignment, we use a probabilistic method to identify the potential keyword

among the aligned fields. Acknowledging the inherent uncertainty, we introduce a random

boolean variable to speculate if a field is indeed the keyword. All messages are then tenta-

tively classified based on the values of this potential keyword. We can gain insights from

the resulting clusters, such as the degree of similarity among messages within a cluster, and

whether corresponding messages from the client side and the server side group into corre-

sponding clusters. We introduce additional random variables to represent our confidence

in these observations. By considering the correlations between the keyword variable and

observation variables, we establish a joint probability distribution. We can then compute

the posterior marginal probabilities for the keyword variables, which gives us an indication

of the likelihood of each field being the true keyword. Once we identify the keyword, we can

group messages based on their keyword values. The subsequent alignment and analysis of

messages within these clusters will reveal type-specific structures.

225

To assess the efficacy of our novel approach, we put it through rigorous testing across ten

protocols commonly adopted in competing projects. The results indicate that our tool attains

an impressive 100% homogeneity and 97.9% completeness. This is considerably higher than

the performances of leading existing techniques, which only yield roughly 92% homogeneity

and 52.3% completeness. To further illustrate its wide applicability, we employed our tool to

reverse engineer wireless physical-layer protocols, as well as a variety of unidentified protocols

utilized in real-world IoT devices. We further substantiated the practical utility of our

approach through two case studies: (i) we successfully reverse engineered the protocol for

Google Nest, a popular IoT smart app. This enabled us to exert control over an A/C unit

managed by the app, showcasing the real-world effectiveness of our technique; and (ii) we

reverse engineered the command and control (C&C) protocol of a recent strain of malware,

unveiling its hitherto hidden malevolent behaviors.

For a comprehensive understanding of the technical details and functioning of our tool,

we direct the reader to our paper [246].

6.3 Android Security Policy Interpretation

Access control systems are often susceptible to security policy anomalies, including in-

consistent enforcement of security policies. The Android security model is a case in point.

Several research endeavors [247 – 249] have exposed access control inconsistencies within the

Android framework, which houses framework system services and implements Application

Programming Interfaces (APIs). Such inconsistencies arise when a sensitive resource (e.g.,

a field access, internal method, or API invocation) demands more stringent access control

enforcement along one path than another. This disparity creates opportunities for malicious

third-party application developers to exploit the less-protected pathway to access sensitive

resources.

Previous research offers valuable, albeit approximate, solutions for detecting access con-

trol inconsistencies at the framework level. Tools like Kratos [247], AceDroid [248], and

ACMiner [249] employ convergence analysis to evaluate the sufficiency of access control en-

forcement. These tools follow various paths to a reachable shared convergence point, where

226

they extract and compare the implemented access control measures to pinpoint inconsis-

tencies. AceDroid refines the approach of Kratos by modeling and normalizing access con-

trol checks, thereby reducing the likelihood of false alarms. Recent approaches, such as

FReD [250] and IAceFinder [251], strive to uncover access control inconsistencies at the

framework level by exploiting security specifications across different layers of the Android

software stack. FReD identifies conflicting access control requirements for APIs by compar-

ing them against the permissions of their reachable Linux-layer files. In contrast, IAceFinder

compares the enforcement of access control in both Java and native contexts to detect dis-

crepancies between these contexts.

While existing research in this domain has provided valuable insights, it is important to

note that current works do possess notable limitations. First, cross-layer inconsistency de-

tection approaches are somewhat restrictive as they can only uncover vulnerabilities in APIs

with specific implementations, such as APIs that access files as in FReD [250], or APIs that

reach a JNI interface as with IAceFinder [251]. Second, even though in-framework incon-

sistency detection methods offer a larger landscape for examining access control due to the

significant number of reachable resources at the framework layer, their underlying detection

methodology is fundamentally simplistic. This simplicity often results in inaccurate findings

unless further heuristics are implemented. Specifically, these tools rely on the assumption

that two APIs converging on an instruction (such as field update or method invocation) are

related and therefore require analogous protections. However, the convergence point might

merely be auxiliary to the main functionality and hence, is likely irrelevant to the enforced

access control. Overlooking the relevance of the convergence point can lead to a high rate

of false positives. Furthermore, these tools depend exclusively on a reachability analysis

to connect resources and deduce their access control. Yet, we have observed that Android

resources are also interconnected through implicit structural, semantic, and data-flow rela-

tionships. For instance, a data-flow between two resources may suggest they require similar

protections. Likewise, a naming similarity between a protected API and a reachable resource

could indicate that the resource likely requires the API’s protection. Modeling these implicit

relationships can help expose new inconsistencies.

227

A fundamental limitation with existing tools is that statically determining the necessary

protections for specific resources is highly imprecise. In a given Android API, a protec-

tion check may precede both security-relevant and non-security-relevant resources, leading

to ambiguity. Simultaneously, inferring an access control implication from an implicit rela-

tionship linking resources, such as a naming similarity, inherently involves a certain level of

uncertainty.

In this research, we reframe the inconsistency detection problem by incorporating prob-

abilistic inference to account for inherent uncertainties. Rather than asserting precise cor-

relations between resources and access control (such as, resource r necessitates protection

p), we propose probabilistic associations (namely, resource r may need protection p with

a confidence level of c). Our approach operates as follows: initially, we carry out a static

analysis of each Android API to accumulate basic access control facts via a path-sensitive

analysis. These facts correlate a resource r within the API to a protection p, constituting

a collection of co-joined security constraints derived from discerned control dependencies.

Each unique correlation is subsequently assigned a prior probability value, which signifies

our degree of belief in the access control implication. We then propagate these initially

assigned protections to other resources via implication constraints. These constraints en-

code the statically observed structural, semantic, and data-flow relationships that connect

resources and facilitate the propagation of their protections. To accommodate the intrinsic

uncertainty, this propagation is carried out probabilistically. Lastly, the probabilistic infer-

ence engine amalgamates the statically collected basic facts, observations, and constraints

to provide a high-confidence protection recommendation for a resource. Depending on the

type and quantity of facts and observations, the inference refines the initial probabilities and

mitigates uncertainties. The resulting probabilistic protection recommendations can then be

utilized naturally to detect access control inconsistencies.

We have implemented our proposed static analysis and probabilistic inference approach

within an analysis pipeline. The evaluation of our tool highlights its efficiency in formulating

protection recommendations for resources that demonstrate sufficient facts and observations.

Our tool has shown remarkable performance, predicting normalized protections that are anal-

ogous to those implemented by AOSP with an accuracy rate reaching 84%. Moreover, our

228

evaluation indicates that our methodology is proficient at identifying inconsistencies. We ap-

plied our tool to scrutinize three custom images from Amazon, Xiaomi, and LG, identifying

26 veritable inconsistencies. Notably, 10 of these inconsistencies were uniquely uncovered

by our tool. To further demonstrate the security implications of these inconsistencies, we

constructed end-to-end Proof of Concepts (PoCs) for 8 of them. One standout observation

is that a single instance of an implicit relationship led to the exposure of 118 APIs, resulting

in substantial security risks, such as acquiring permissions at runtime, enforcing a recov-

ery password, and others. We responsibly disclosed these vulnerabilities to the concerned

vendors. Each vulnerability has been acknowledged and subsequently rectified.

For a comprehensive understanding and technical specifics of our tool, please refer to our

paper [252].

6.4 Malware Behavioural Analysis

The rapid evolution and sophistication of malware represent a significant and ever-

evolving security risk. Recent attacks highlight a shift in strategy from malware authors,

who now aim for stealth and leave lighter footprints. For instance, fileless malware [253 , 254]

leverages in-built tools and features to infiltrate a host without requiring the installation of

malicious software. Clickless infections [255] bypass end-user interaction by exploiting shared

access points and remote execution vulnerabilities. Moreover, cryptocurrency malware [256 ,

 257] enables attackers to generate substantial revenues illicitly by executing mining algo-

rithms using the system resources of victims. According to [258], a vast cryptocurrency

mining botnet accrued an astounding $3 million revenue in 2018. This evolving threat land-

scape implies that malicious payloads now present themselves quite differently compared to

their traditional counterparts. Consequently, a pressing challenge faced by the security com-

munity today involves comprehending and analyzing emerging malware behavior to avert

potentially epidemic consequences.

One widely employed approach to comprehend malware behavior is its execution within

a sandbox. However, this presents a significant challenge as the necessary environment or

setup might not be available (for instance, if the Command and Control server is down or

229

critical libraries are missing), thereby hindering the execution of the malware. Furthermore,

modern malware often employs various cloaking techniques, such as packing, time-bomb,

logic bomb, and VM/debugger detectors. These techniques set very specific temporal and

contextual conditions for payload release and prevent execution when the malware is under

surveillance.

In light of these challenges, researchers proposed a technique called "forced-execution" (X-

Force) [32]. X-Force bypasses these malware self-protection mechanisms by force-setting the

outcomes of specific conditional instructions, such as those checking triggering conditions.

Considering that forced execution paths could lead to corrupted states and subsequent ex-

ceptions, X-Force incorporates a "crash-free execution model" that allocates a new memory

block on-demand whenever there is an invalid pointer dereference. However, X-Force has its

shortcomings: it’s a resource-intensive technique that is challenging to deploy in practical

scenarios. Specifically, to maintain program semantics, when X-Force rectifies an invalid

pointer variable (by assigning a newly allocated memory block to the variable), it needs to

update all correlated pointer variables. This requirement mandates the tracking of all mem-

ory operations (to detect invalid accesses) and all move/addition/subtraction operations (to

keep tabs on pointer variable correlations/aliases). Such tracking incurs significant overhead

and is hard to implement correctly due to the complexity of the instruction set and the

numerous corner situations to consider (e.g., in computing pointer relations). Consequently,

the original X-Force does not support tracing into library functions.

Inspired by the potential benefits of probabilistic analysis, we propose a practical forced

execution technique that bypasses the need for tracking individual memory or arithmetic

instructions and obviates the need for on-demand memory allocation. This forced execution

is very close to a native execution, naturally handling libraries and dynamically generated

code. Specifically, it accomplishes crash-free execution (with probabilistic guarantees) via an

innovative memory pre-planning phase. This phase pre-allocates a memory region starting

from address 0, filling it with carefully designed random values. These values are crafted

in such a way that if they are interpreted as addresses and subsequently dereferenced, they

fall within the pre-allocated region and don’t trigger an exception. Moreover, they present

diverse random values such that semantically unrelated pointer variables are unlikely to

230

dereference the same random address, thereby preventing bogus program dependencies and

corrupted states. An execution engine is developed to systematically explore different paths

by force-setting varying sets of branch outcomes. For each path, multiple processes are

launched to execute the path with diverse randomized memory pre-planning schemes, fur-

ther decreasing the likelihood of coincidental failures. The results from these processes are

consolidated to produce the results for the particular path. The engine then proceeds to the

next path.

Our technique has been implemented into a prototype and has undergone rigorous test-

ing on SPEC2000 programs, which include software like gcc, and a diverse array of 200

contemporary real-world malware samples. The results have been overwhelmingly positive,

demonstrating our tool as a highly efficient and potent forced execution technique. When

contrasted with X-Force, our approach outperforms it significantly. Specifically, our tech-

nique is faster by a factor of 84, and the rates of false positives (FP) and false negatives

(FN) concerning dependence analysis are reduced by 650% and 10% respectively. Further-

more, our approach allows the detection of 102% more malicious behaviours during malware

analysis. Moreover, it also significantly outperforms recent commercial and academic mal-

ware analysis engines like Cuckoo [23] and Padawan [259], offering more comprehensive and

accurate analysis capabilities.

These results present strong evidence of the practical benefits of our proposed technique,

showing that probabilistic analysis can be a powerful tool for uncovering and understanding

malware behaviour. For a more in-depth discussion of the methodology and findings, please

refer to our paper [58].

231

7. RELATED WORK

7.1 Program Analysis.

Program Dependence and Point-to Analysis. Program dependence analysis [260 – 269]

are widely studied. Most of these techniques require source code. In addition, many existing

works also consider control dependence whereas BDA only focuses on data dependence. Our

technique is also related to points-to analysis [270 – 278] that addresses a similar problem.

The difference lies in that our analysis does not require symbol information and hence is

more difficult. Some techniques aim to reduce the runtime complexity of path-sensitive

analyses [279 , 280]. In contrast, our technique is sampling based. We believe BDA is

complementary to existing work.

Force Execution. Force-execution [32] concretely executes a binary along different paths,

by force-setting branch outcomes. It features an expensive execution engine that recovers

from exceptions caused by violations of path feasibility. Due to its cost, force-execution has

difficulty covering long paths. To address the above limitation, [58] propose a light-weight

force-execution technique with probabilistic memory pre-planning. However, their context-

insensitive path exploration strategy only focuses on predicates, leading to accuracy loss in

dependence analysis.

Random Interpretation. Our underpinning technique, BDA, is related to random in-

terpretation, a well-known probabilistic program analysis technique used in precise inter-

procedural analysis [281], global value numbering [282] and discovering affine equalities [283].

It features a randomized abstract interpretation that executes both branches of a conditional

predicate on each run and performs a randomized affine combination at join points. However,

such an affine combination is limited for numerical operations and hard to scale to binary

program dependence analysis. Compared with these works, our per-path interpretation is

more like concrete execution with higher accuracy and scalability.

232

7.2 Binary Analysis.

Binary analysis could be static [43 , 284 , 285], dynamic [33 , 44 , 286] or hybrid [287 ,

 288]. It has a wide range of applications, such as IoT firmware security [289 – 294], memory

forensics [295 , 296], malware analysis [297], and auto-exploit [298 , 299]. A large body of

works focus on function entry identification [70], which is the fundamental but challenging

tasks of binary analysis.

Memory Dependence. Alto [24] and VSA [19] aim to provide a sound solution to iden-

tifying aliases among memory accesses. Compared to these two, our technique is sampling

based and per-sample abstract interpretation based, and hence features better precision

(with probabilistic guarantee under assumption) and scalability, as shown by our results.

Recently, machine learning is extensively used in binary analysis, e.g., identifying func-

tion boundary [120], pinpointing function type signature [133], and detecting similar binary

code [127 , 300]. In particular, [301] use LSTM to distinguish the different types of memory

regions in VSA analysis. However, it does not change the core of VSA.

Variable Recovery and Type Inference. Most related to Osprey are the studies that

focus on binary variable recovery and type inference [33 , 42 – 44]. Specifically, TIE [43] and

REWARD [33] perform static and dynamic analysis to recover type information, respectively.

Howard [44] improves REWARDS using heuristics to resolve conflicts. Angr [42] leverages

symbolic execution to recover variables.

Decompilation. Our works are also related to decompilation techniques. Phoenix [40]

is a security-analysis-oriented decompiler. With correctness guarantees, it aims to recover

abstraction as much as possible to minimize the complexity that must be handled in down-

stream security analysis. To achieve this, it proposes a new control-flow recovery algorithm

via semantics-preserving structural analysis and iterative refinement. Since it focuses on

control-flow recovery, BDA and Osprey are complementary.

Binary-only Fuzzing. Closely related to StochFuzz is binary-only fuzzing that targets

on closed-source software which has only binary executables available [64 , 78 , 88 , 89 , 92 ,

 96 – 99]. As aforementioned in Chapter 4 , these works either reply on expensive operations or

make impractical assumptions, limiting their wide adoption on real-world stripped binaries.

233

7.3 Probabilistic Program Analysis.

Probabilistic techniques have been increasingly used in program analysis in recent years.

Probabilistic symbolic execution [302 , 303] quantifies how likely it is to reach certain pro-

gram points. Probabilistic model checking [304 – 306] encodes the probability of making a

transition between states and entails computation of the likelihood that a target system

satisfies a given property. Probabilistic disassembling [60] computes a probability for each

address in the code space, which indicates the likelihood of the address representing a true

positive instruction. Probabilistic type inference uses probabilistic graph models to infer

data type [67]. There are also works on using MCMC type of sampling to derive analysis

information such as memory access pattern for race detection [307] and leak detection [308],

and runtime events for program understanding [309 , 310]. Most of them are concrete ex-

ecution based. By introducing stochastic algorithms, those hard-to-solve problems using

traditional program analysis techniques can be (partially) solved in a light-weight manner,

whose correctness has probabilistic guarantees under practical assumptions. Our techniques

also belong to probabilistic program analysis. Specifically, BDA features a novel unbiased

path sampling algorithm and leverages abstract interpretation to study the memory depen-

dence in stripped binary code, Osprey enforces probabilistic type inference based on the

BDA-collected hints about the usage of variables and data structure fields, and StochFuzz

leverages probabilistic analysis to aggregate evidence through many sample runs and improve

rewriting on-the-fly.

7.4 N-version Programming.

N-version programming [311] is a software fault-tolerance technique, in which multi-

ple variants of a program are executed in parallel and the results of individual executions

are aggregated to reduce the likelihood of errors. It has been adopted to ensure memory

safety [58 , 312], concurrency security [313 , 314], and computing correctness [315 , 316], etc.

UnTracer [317] continuously modifies target programs on the fly during fuzzing using source

instrumentation so that they self-report when a test case causes new coverage, in order to

improve fuzzing efficiency. Inspired by these works, StochFuzz also uses many versions of

234

rewritten binaries whose validity can be approved/disapproved by numerous fuzzing runs.

The difference lies that StochFuzz is driven by a rigorous probability analysis that updates

probabilities on-the-fly. Our idea of disassembling at all addresses is inspired by Superset

Disassembly [38], which however does not leverage probabilities.

235

8. CONCLUSION

In this dissertation, we address the inherent uncertainty in binary analysis by developing a

novel probabilistic analysis methodology, founded upon program sampling and probabilis-

tic inference principles. Additionally, we introduce an iterative refinement architecture to

enhance the effectiveness of the proposed probabilistic analysis when applicable to down-

stream applications. By employing the proposed methodology, we demonstrate its efficacy

through three prominent binary analysis tasks: binary program dependence analysis, variable

and data structure recovery, and effective and efficient binary-only fuzzing. Our method-

ology yields promising results in each of these tasks. We further discuss the comparison

between our approach and data-driven approaches, as well as the potential applicability of

our methodology to problems in other domains. All proposed solutions have successfully

undergone code delivery and evaluation by the Office of Naval Research (ONR).

To address the challenge of binary dependence analysis, we introduce BDA, a practical

and scalable technique featuring a novel unbiased whole-program path sampling algorithm

and per-path abstract interpretation. Given certain assumptions, our technique provides

a probabilistic guarantee for disclosing dependence relations. Experimental results demon-

strate that our technique substantially advances the state-of-the-art, such as value set anal-

ysis, and improves performance.

In order to recover variables and data structures from stripped binaries, we devise a novel

probabilistic analysis technique based on BDA. This technique employs random variables to

denote the likelihood of recovery results, enabling the organic integration of numerous hints

while considering inherent uncertainty. We develop a customized and optimized probabilis-

tic constraint solving technique to address these constraints. Our experiments reveal that

our technique significantly outperforms the state-of-the-art and enhances two downstream

analyses.

To facilitate effective and efficient binary-only fuzzing, we devise a new fuzzing technique

for stripped binaries featuring a novel incremental and stochastic rewriting technique that

piggybacks on the fuzzing procedure. This approach capitalizes on the multitude of trial-and-

error opportunities presented by numerous fuzzing runs to incrementally improve rewriting

236

accuracy. Our technique offers probabilistic guarantees on soundness, and empirical results

indicate that it surpasses state-of-the-art binary-only fuzzers in terms of either soundness or

overhead.

In comparison to DL-based approaches, we assert that although such strategies can reach

performance levels similar to our method, they inherently lack explainity and are prone to

adversarial exploitation. Our research emphasizes the value of harnessing domain-specific

knowledge and logical reasoning in the realm of binary analysis. We substantiate our claim

by proposing a novel attack, characterized by a trigger generation technique that causes

models to misclassify and a trigger injection technique that preserves input program seman-

tics. This attack achieves over 90% success rate on state-of-the-art Deep Learning models.

The outcomes of our investigation underscore the potential of our probabilistic approach in

binary analysis tasks, suggesting the potential benefits of integrating DL techniques with

our method.

To evaluate the applicability of our proposed methodology for addressing problems in

other domains, we examine its potential for tackling challenges in areas exhibited uncertain

natures and attempts to recover high-level semantics from low-level representations. We

explore several problems in depth, including disassembly, network protocol reverse engineer-

ing, Android security policy analysis, and malware analysis. Our findings suggest that the

probabilistic analysis approach can be widely adapted when faced with uncertainty.

237

REFERENCES

[1] J. P. Loyall and S. A. Mathisen, “Using dependence analysis to support the software
maintenance process,” in Proceedings of the Conference on Software Maintenance,
ICSM 1993, Montréal, Quebec, Canada, September 1993, 1993, pp. 282–291.

[2] K. B. Gallagher and J. R. Lyle, “Using program slicing in software maintenance,”
IEEE Trans. Software Eng., vol. 17, no. 8, pp. 751–761, 1991.

[3] J. Zeng, Y. Fu, K. A. Miller, Z. Lin, X. Zhang, and D. Xu, “Obfuscation resilient bi-
nary code reuse through trace-oriented programming,” in 2013 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS’13, Berlin, Germany, Novem-
ber 4-8, 2013, 2013, pp. 487–498.

[4] A. Sæbjørnsen, J. Willcock, T. Panas, D. J. Quinlan, and Z. Su, “Detecting code clones
in binary executables,” in Proceedings of the Eighteenth International Symposium on
Software Testing and Analysis, ISSTA 2009, Chicago, IL, USA, July 19-23, 2009,
2009, pp. 117–128.

[5] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained control-flow integrity through
binary hardening,” in Detection of Intrusions and Malware, and Vulnerability Assess-
ment - 12th International Conference, DIMVA 2015, Milan, Italy, July 9-10, 2015,
Proceedings, 2015, pp. 144–164.

[6] S. Wang, W. Wang, Q. Bao, P. Wang, X. Wang, and D. Wu, “Binary code retrofitting
and hardening using SGX,” in Proceedings of the 2017 Workshop on Forming an
Ecosystem Around Software Transformation, FEAST@CCS 2017, Dallas, TX, USA,
November 3, 2017, 2017, pp. 43–49.

[7] A. Quach, A. Prakash, and L. Yan, “Debloating software through piece-wise compi-
lation and loading,” in 27th USENIX Security Symposium, USENIX Security 2018,
Baltimore, MD, USA, August 15-17, 2018., 2018, pp. 869–886.

[8] K. Ferles, V. Wüstholz, M. Christakis, and I. Dillig, “Failure-directed program trim-
ming,” in Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, 2017,
pp. 174–185.

238

[9] Y. Li, B. Chen, M. Chandramohan, S. Lin, Y. Liu, and A. Tiu, “Steelix: Program-
state based binary fuzzing,” in Proceedings of the 2017 11th Joint Meeting on Foun-
dations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September
4-8, 2017, 2017, pp. 627–637.

[10] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, “Vuzzer: Application-
aware evolutionary fuzzing.,” in NDSS, vol. 17, 2017, pp. 1–14.

[11] D. X. Song et al., “Bitblaze: A new approach to computer security via binary anal-
ysis,” in Information Systems Security, 4th International Conference, ICISS 2008,
Hyderabad, India, December 16-20, 2008. Proceedings, 2008, pp. 1–25.

[12] H. Yin, D. X. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: Capturing
system-wide information flow for malware detection and analysis,” in Proceedings of
the 2007 ACM Conference on Computer and Communications Security, CCS 2007,
Alexandria, Virginia, USA, October 28-31, 2007, 2007, pp. 116–127.

[13] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: Automatic extraction of
protocol message format using dynamic binary analysis,” in Proceedings of the 14th
ACM Conference on Computer and Communications Security, 2007, pp. 317–329.

[14] Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic protocol format reverse engineer-
ing through context-aware monitored execution,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), vol. 8, 2008, pp. 1–15.

[15] https://www.hex-rays.com/products/ida .

[16] https://www.grammatech.com/products/codesurfer .

[17] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A binary analysis
platform,” in International Conference on Computer Aided Verification, Springer,
2011, pp. 463–469.

[18] https://angr.io/ .

[19] G. Balakrishnan and T. Reps, “Analyzing memory accesses in x86 executables,” in
International conference on compiler construction, Springer, 2004, pp. 5–23.

[20] http://www.spec2000.com/ .

239

https://www.hex-rays.com/products/ida
https://www.grammatech.com/products/codesurfer
https://angr.io/
http://www.spec2000.com/

[21] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, “Understanding linux mal-
ware,” in 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings,
21-23 May 2018, San Francisco, California, USA, 2018, pp. 161–175.

[22] Z. Zhang, W. You, G. Tao, G. Wei, Y. Kwon, and X. Zhang, “Bda: Practical de-
pendence analysis for binary executables by unbiased whole-program path sampling
and per-path abstract interpretation,” Proceedings of the ACM on Programming Lan-
guages, vol. 3, no. OOPSLA, pp. 1–31, 2019.

[23] https://cuckoosandbox.org/ .

[24] S. K. Debray, R. Muth, and M. Weippert, “Alias analysis of executable code,” in
POPL ’98, Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, San Diego, CA, USA, January 19-21, 1998, 1998,
pp. 12–24.

[25] J. Yang and R. Gupta, “Frequent value locality and its applications,” ACM Transac-
tions on Embedded Computing Systems (TECS), vol. 1, no. 1, pp. 79–105, 2002.

[26] T. Ball and J. R. Larus, “Efficient path profiling,” in Proceedings of the 29th annual
ACM/IEEE international symposium on Microarchitecture, IEEE Computer Society,
1996, pp. 46–57.

[27] J. Lumbroso, “Optimal discrete uniform generation from coin flips, and applications,”
arXiv preprint arXiv:1304.1916, 2013.

[28] O. Lhoták and K. A. Chung, “Points-to analysis with efficient strong updates,” in
Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, 2011,
pp. 3–16.

[29] https://rada.re/r/ .

[30] https://www.virustotal.com/ .

[31] R. Muth, S. Debray, S. Watterson, K. De Bosschere, and V. E. E. Informatiesystemen,
“Alto: A link-time optimizer for the dec alpha,” 1998.

240

https://cuckoosandbox.org/
https://rada.re/r/
https://www.virustotal.com/

[32] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force: Force-executing bi-
nary programs for security applications,” in Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014., 2014, pp. 829–844.

[33] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data structures from
binary execution,” in Proceedings of the 11th Annual Information Security Sympo-
sium, 2010, pp. 1–1.

[34] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-flow bending:
On the effectiveness of control-flow integrity,” in 24th {USENIX} Security Symposium
({USENIX} Security 15), 2015, pp. 161–176.

[35] J.-P. Martin, M. Hicks, M. Costa, P. Akritidis, and M. Castro, “Dynamically checking
ownership policies in concurrent c/c++ programs,” ACM Sigplan Notices, vol. 45,
no. 1, pp. 457–470, 2010.

[36] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang, “Mapping kernel
objects to enable systematic integrity checking,” in Proceedings of the 16th ACM
conference on Computer and communications security, 2009, pp. 555–565.

[37] K. Fawaz, H. Feng, and K. G. Shin, “Anatomization and protection of mobile apps lo-
cation privacy threats,” in 24th {USENIX} Security Symposium ({USENIX} Security
15), 2015, pp. 753–768.

[38] E. Bauman, Z. Lin, K. W. Hamlen, et al., “Superset disassembly: Statically rewriting
x86 binaries without heuristics.,” in NDSS, 2018.

[39] https://ghidra-sre.org/ .

[40] D. Brumley, J. Lee, E. J. Schwartz, and M. Woo, “Native x86 decompilation using
semantics-preserving structural analysis and iterative control-flow structuring,” in
Presented as part of the 22nd USENIX Security Symposium (USENIX Security 13),
2013, pp. 353–368.

[41] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and W. Lee, “{Razor}: A frame-
work for post-deployment software debloating,” in 28th {USENIX} Security Sympo-
sium ({USENIX} Security 19), 2019, pp. 1733–1750.

[42] Y. Shoshitaishvili et al., “Sok:(state of) the art of war: Offensive techniques in bi-
nary analysis,” in 2016 IEEE Symposium on Security and Privacy (SP), IEEE, 2016,
pp. 138–157.

241

https://ghidra-sre.org/

[43] J. Lee, T. Avgerinos, and D. Brumley, “TIE: principled reverse engineering of types
in binary programs,” in Proceedings of the Network and Distributed System Security
Symposium, NDSS 2011, San Diego, California, USA, 6th February - 9th February
2011, 2011.

[44] A. Slowinska, T. Stancescu, and H. Bos, “Howard: A dynamic excavator for reverse
engineering data structures,” in Proceedings of the Network and Distributed System
Security Symposium, NDSS 2011, San Diego, California, USA, 6th February - 9th
February 2011, 2011.

[45] Z. Zhang et al., “Osprey: Recovery of variable and data structure via probabilistic
analysis for stripped binary,” in 2021 IEEE Symposium on Security and Privacy (SP),
IEEE, 2021, pp. 813–832.

[46] G. Balakrishnan and T. Reps, “Wysinwyx: What you see is not what you execute,”
ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 32,
no. 6, pp. 1–84, 2010.

[47] https://github.com/NationalSecurityAgency/ghidra/blob/master/Ghidra/Features
/Decompiler/ghidra_scripts/CreateStructure.java#L25 .

[48] E. De Cristofaro, J.-M. Bohli, and D. Westhoff, “Fair: Fuzzy-based aggregation pro-
viding in-network resilience for real-time wireless sensor networks,” in Proceedings of
the second ACM conference on Wireless network security, 2009, pp. 253–260.

[49] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: Fuzzing by program transforma-
tion,” in 2018 IEEE Symposium on Security and Privacy (SP), IEEE, 2018, pp. 697–
710.

[50] http://lcamtuf.coredump.cx/afl .

[51] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, “NEUZZ: efficient fuzzing
with neural program smoothing,” in 2019 IEEE Symposium on Security and Privacy,
SP 2019, San Francisco, CA, USA, May 19-23, 2019, 2019, pp. 803–817.

[52] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs,” in 8th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2008, December 8-10, 2008,
San Diego, California, USA, Proceedings, 2008, pp. 209–224.

242

https://github.com/NationalSecurityAgency/ghidra/blob/master/Ghidra/Features/Decompiler/ghidra_scripts/CreateStructure.java#L25
https://github.com/NationalSecurityAgency/ghidra/blob/master/Ghidra/Features/Decompiler/ghidra_scripts/CreateStructure.java#L25
http://lcamtuf.coredump.cx/afl

[53] X. Ge, K. Taneja, T. Xie, and N. Tillmann, “Dyta: Dynamic symbolic execution
guided with static verification results,” in Proceedings of the 33rd International Con-
ference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May
21-28, 2011, R. N. Taylor, H. C. Gall, and N. Medvidovic, Eds., ACM, 2011, pp. 992–
994.

[54] J. Chen, W. Hu, L. Zhang, D. Hao, S. Khurshid, and L. Zhang, “Learning to ac-
celerate symbolic execution via code transformation,” in 32nd European Conference
on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018, Amsterdam, The
Netherlands, T. D. Millstein, Ed., ser. LIPIcs, vol. 109, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2018, 6:1–6:27.

[55] S. Person, G. Yang, N. Rungta, and S. Khurshid, “Directed incremental symbolic
execution,” in Acm Sigplan Notices, ACM, vol. 46, 2011, pp. 504–515.

[56] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for in-vivo multi-path
analysis of software systems,” Acm Sigplan Notices, vol. 46, no. 3, pp. 265–278, 2011.

[57] T. Xie, N. Tillmann, J. De Halleux, and W. Schulte, “Fitness-guided path exploration
in dynamic symbolic execution,” in 2009 IEEE/IFIP International Conference on
Dependable Systems & Networks, IEEE, 2009, pp. 359–368.

[58] W. You et al., “Pmp: Cost-effective forced execution with probabilistic memory pre-
planning,” in 2020 IEEE Symposium on Security and Privacy (SP), 2020, pp. 381–
398.

[59] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee, “Merlin: Specification
inference for explicit information flow problems,” ACM Sigplan Notices, vol. 44, no. 6,
pp. 75–86, 2009.

[60] K. Miller, Y. Kwon, Y. Sun, Z. Zhang, X. Zhang, and Z. Lin, “Probabilistic disas-
sembly,” in 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), IEEE, 2019, pp. 1187–1198.

[61] M. A. B. Khadra, D. Stoffel, and W. Kunz, “Speculative disassembly of binary code,”
in 2016 International Conference on Compliers, Architectures, and Sythesis of Em-
bedded Systems (CASES), IEEE, 2016, pp. 1–10.

[62] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static disassembly of obfuscated
binaries,” in USENIX security Symposium, vol. 13, 2004, pp. 18–18.

243

[63] M. Popa, “Binary code disassembly for reverse engineering,” Journal of Mobile, Em-
bedded and Distributed Systems, vol. 4, no. 4, pp. 233–248, 2012.

[64] A. Flores-Montoya and E. Schulte, “Datalog disassembly,” in 29th {USENIX} Security
Symposium ({USENIX} Security 20), 2020.

[65] H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. R. Kschischang, “The
factor graph approach to model-based signal processing,” Proceedings of the IEEE,
vol. 95, no. 6, pp. 1295–1322, 2007.

[66] N. E. Beckman and A. V. Nori, “Probabilistic, modular and scalable inference of
typestate specifications,” in Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation, 2011, pp. 211–221.

[67] Z. Xu, X. Zhang, L. Chen, K. Pei, and B. Xu, “Python probabilistic type inference
with natural language support,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2016, pp. 607–
618.

[68] T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler, “From uncertainty to belief:
Inferring the specification within,” in Proceedings of the 7th symposium on Operating
systems design and implementation, 2006, pp. 161–176.

[69] https://www.gnu.org/software/coreutils/ .

[70] D. Andriesse, X. Chen, V. Van Der Veen, A. Slowinska, and H. Bos, “An in-depth
analysis of disassembly on full-scale x86/x64 binaries,” in 25th {USENIX} Security
Symposium ({USENIX} Security 16), 2016, pp. 583–600.

[71] https://en.wikipedia.org/wiki/F1_score .

[72] A. V. Aho and J. D. Ullman, Principles of compiler design. Addison-Wesley, 1977.

[73] P. Zhao and J. N. Amaral, “Function outlining and partial inlining,” in 17th In-
ternational Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD’05), IEEE, 2005, pp. 101–108.

[74] https://en.wikipedia.org/wiki/Fortune_(Unix) .

244

https://www.gnu.org/software/coreutils/
https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/Fortune_(Unix)

[75] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation,” in Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO’04), Palo Alto, California, Mar. 2004.

[76] https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-
binary-instrumentation-tool.html .

[77] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Addresssanitizer: A fast
address sanity checker,” in Presented as part of the 2012 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 12), 2012, pp. 309–318.

[78] S. Dinesh, N. Burow, D. Xu, and M. Payer, “Retrowrite: Statically instrumenting cots
binaries for fuzzing and sanitization,” in SP, 2020.

[79] https://nvd.nist.gov/vuln/detail/CVE-2019-12802 .

[80] https://github.com/ZhangZhuoSJTU/StochFuzz .

[81] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based greybox fuzzing as
markov chain,” in CCS, 2016, pp. 1032–1043.

[82] W. You, X. Liu, S. Ma, D. Perry, X. Zhang, and B. Liang, “SLF: Fuzzing without
valid seed inputs,” in ICSE, 2019, pp. 712–723.

[83] https://software.intel.com/content/www/us/en/develop/blogs/processor-tracing.
html .

[84] https://www.qemu.org/ .

[85] https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-
binary-instrumentation-tool.html .

[86] R. Wartell, Y. Zhou, K. W. Hamlen, M. Kantarcioglu, and B. Thuraisingham, “Differ-
entiating code from data in x86 binaries,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, Springer, 2011, pp. 522–536.

[87] C. Pang et al., “Sok: All you ever wanted to know about x86/x64 binary disassembly
but were afraid to ask,” arXiv preprint arXiv:2007.14266, 2020.

[88] https://github.com/talos-vulndev/afl-dyninst .

245

https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://nvd.nist.gov/vuln/detail/CVE-2019-12802
https://github.com/ZhangZhuoSJTU/StochFuzz
https://software.intel.com/content/www/us/en/develop/blogs/processor-tracing.html
https://software.intel.com/content/www/us/en/develop/blogs/processor-tracing.html
https://www.qemu.org/
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://github.com/talos-vulndev/afl-dyninst

[89] G. J. Duck, X. Gao, and A. Roychoudhury, “Binary rewriting without control flow
recovery,” in PLDI, 2020, pp. 151–163.

[90] Z. Zhang, W. You, G. Tao, Y. Aafer, X. Liu, and X. Zhang, “Stochfuzz: Sound and
cost-effective fuzzing of stripped binaries by incremental and stochastic rewriting,” in
2021 IEEE Symposium on Security and Privacy (SP), IEEE, 2021, pp. 659–676.

[91] https://github.com/google/fuzzer-test-suite .

[92] G. Zhang, X. Zhou, Y. Luo, X. Wu, and E. Min, “Ptfuzz: Guided fuzzing with pro-
cessor trace feedback,” IEEE Access, 2018.

[93] https://github.com/google/AFL/tree/master/qemu_mode .

[94] https://github.com/google/AFL/tree/master/llvm_mode .

[95] C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz, “Ijon: Exploring deep state
spaces via fuzzing,” in SP, 2020, pp. 1597–1612.

[96] Y. Chen et al., “Ptrix: Efficient hardware-assisted fuzzing for cots binary,” in Proceed-
ings of the 2019 ACM Asia Conference on Computer and Communications Security,
2019, pp. 633–645.

[97] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz, “Kafl: Hardware-
assisted feedback fuzzing for {os} kernels,” in USENIX Security, 2017, pp. 167–182.

[98] https://github.com/vanhauser-thc/afl-pin .

[99] https://github.com/vanhauser-thc/afl-dynamorio .

[100] https://github.com/GJDuck/e9afl .

[101] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “BYTEWEIGHT: Learning
to recognize functions in binary code,” in USENIX Security, 2014, pp. 845–860.

[102] A. Zeller, “Yesterday, my program worked. today, it does not. why?” ACM SIGSOFT
Software engineering notes, pp. 253–267, 1999.

246

https://github.com/google/fuzzer-test-suite
https://github.com/google/AFL/tree/master/qemu_mode
https://github.com/google/AFL/tree/master/llvm_mode
https://github.com/vanhauser-thc/afl-pin
https://github.com/vanhauser-thc/afl-dynamorio
https://github.com/GJDuck/e9afl

[103] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized belief propagation,” in
Advances in neural information processing systems, 2001, pp. 689–695.

[104] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product
algorithm,” IEEE Transactions on information theory, vol. 47, no. 2, pp. 498–519,
2001.

[105] K. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propagation for approximate
inference: An empirical study,” arXiv preprint arXiv:1301.6725, 2013.

[106] C.-C. Hsu, C.-Y. Wu, H.-C. Hsiao, and S.-K. Huang, “Instrim: Lightweight instru-
mentation for coverage-guided fuzzing,” in Symposium on Network and Distributed
System Security (NDSS), Workshop on Binary Analysis Research, 2018.

[107] https://afl-1.readthedocs.io/en/latest/user_guide.html .

[108] https://www.capstone-engine.org/ .

[109] https://www.keystone-engine.org/ .

[110] W. You et al., “Profuzzer: On-the-fly input type probing for better zero-day vulner-
ability discovery,” in SP, 2019.

[111] P. Zong, T. Lv, D. Wang, Z. Deng, R. Liang, and K. Chen, “Fuzzguard: Filtering out
unreachable inputs in directed grey-box fuzzing through deep learning,” in USENIX
Security, 2020, pp. 2255–2269.

[112] https://github.com/AFLplusplus/AFLplusplus/issues/24 .

[113] https://github.com/hunter-ht-2018/ptfuzzer .

[114] https://www.clear.rice.edu/comp422/resources/cuda/html/cuda-binary-utilities/
index.html .

[115] https://www.nvidia.com/en-us/security/acknowledgements/ .

[116] https://ewww.io/ .

[117] https://github.com/ImageOptim/ImageOptim .

247

https://afl-1.readthedocs.io/en/latest/user_guide.html
https://www.capstone-engine.org/
https://www.keystone-engine.org/
https://github.com/AFLplusplus/AFLplusplus/issues/24
https://github.com/hunter-ht-2018/ptfuzzer
https://www.clear.rice.edu/comp422/resources/cuda/html/cuda-binary-utilities/index.html
https://www.clear.rice.edu/comp422/resources/cuda/html/cuda-binary-utilities/index.html
https://www.nvidia.com/en-us/security/acknowledgements/
https://ewww.io/
https://github.com/ImageOptim/ImageOptim

[118] K. Pei, J. Guan, D. Williams-King, J. Yang, and S. Jana, “Xda: Accurate, robust
disassembly with transfer learning,” in 28th Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2021, virtually, February 21-25, 2021, The Internet
Society, 2021.

[119] S. Yu, Y. Qu, X. Hu, and H. Yin, “Deepdi: Learning a relational graph convolutional
network model on instructions for fast and accurate disassembly,”

[120] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in binaries with
neural networks,” in 24th USENIX Security Symposium (USENIX Security 15), 2015,
pp. 611–626.

[121] K. Pei, Z. Xuan, J. Yang, S. Jana, and B. Ray, “Trex: Learning execution semantics
from micro-traces for binary similarity,” arXiv preprint arXiv:2012.08680, 2020.

[122] L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Querzoni, “Safe: Self-
attentive function embeddings for binary similarity,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment, Springer, 2019,
pp. 309–329.

[123] L. Massarelli, G. A. Di Luna, F. Petroni, L. Querzoni, and R. Baldoni, “Investigating
graph embedding neural networks with unsupervised features extraction for binary
analysis,” in Proceedings of the 2nd Workshop on Binary Analysis Research (BAR),
2019.

[124] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, “Neural machine translation
inspired binary code similarity comparison beyond function pairs,” arXiv preprint
arXiv:1808.04706, 2018.

[125] X. Zhang, W. Sun, J. Pang, F. Liu, and Z. Ma, “Similarity metric method for binary
basic blocks of cross-instruction set architecture,” in Proceedings 2020 Workshop on
Binary Analysis Research, Internet Society, 2020.

[126] K. Redmond, L. Luo, and Q. Zeng, “A cross-architecture instruction embedding
model for natural language processing-inspired binary code analysis,” arXiv preprint
arXiv:1812.09652, 2018.

[127] S. H. Ding, B. C. Fung, and P. Charland, “Asm2vec: Boosting static representation
robustness for binary clone search against code obfuscation and compiler optimiza-
tion,” in 2019 IEEE Symposium on Security and Privacy (SP), IEEE, 2019, pp. 472–
489.

248

[128] Z. Yu, R. Cao, Q. Tang, S. Nie, J. Huang, and S. Wu, “Order matters: Semantic-
aware neural networks for binary code similarity detection,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 1145–1152.

[129] K. Pei et al., “Stateformer: Fine-grained type recovery from binaries using generative
state modeling,” in Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
2021, pp. 690–702.

[130] A. Maier, H. Gascon, C. Wressnegger, and K. Rieck, “Typeminer: Recovering types in
binary programs using machine learning,” in International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, Springer, 2019, pp. 288–
308.

[131] J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. Vechev, “Debin: Predicting debug
information in stripped binaries,” in Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2018, pp. 1667–1680.

[132] Q. Chen, J. Lacomis, E. J. Schwartz, C. Le Goues, G. Neubig, and B. Vasilescu, “Aug-
menting decompiler output with learned variable names and types,” arXiv preprint
arXiv:2108.06363, 2021.

[133] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can learn function type
signatures from binaries,” in 26th USENIX Security Symposium (USENIX Security
17), 2017, pp. 99–116.

[134] H. Gao, S. Cheng, Y. Xue, and W. Zhang, “A lightweight framework for function
name reassignment based on large-scale stripped binaries,” in Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis, 2021,
pp. 607–619.

[135] F. Artuso, G. A. Di Luna, L. Massarelli, and L. Querzoni, “In nomine function: Nam-
ing functions in stripped binaries with neural networks,” arXiv preprint arXiv:1912.07946,
2019.

[136] J. Lacomis et al., “Dire: A neural approach to decompiled identifier naming,” in
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE), IEEE, 2019, pp. 628–639.

249

[137] S. I. Popoola, R. Ande, B. Adebisi, G. Gui, M. Hammoudeh, and O. Jogunola, “Fed-
erated deep learning for zero-day botnet attack detection in iot edge devices,” IEEE
Internet of Things Journal, 2021.

[138] C. Do Xuan, M. H. Dao, and H. D. Nguyen, “Apt attack detection based on flow net-
work analysis techniques using deep learning,” Journal of Intelligent & Fuzzy Systems,
vol. 39, no. 3, pp. 4785–4801, 2020.

[139] K. Yu et al., “Securing critical infrastructures: Deep-learning-based threat detection
in iiot,” IEEE Communications Magazine, vol. 59, no. 10, pp. 76–82, 2021.

[140] N. Koroniotis, N. Moustafa, and E. Sitnikova, “Forensics and deep learning mecha-
nisms for botnets in internet of things: A survey of challenges and solutions,” IEEE
Access, vol. 7, pp. 61 764–61 785, 2019.

[141] A. Alsaheel et al., “ATLAS: A sequence-based learning approach for attack investi-
gation,” in 30th USENIX Security Symposium (USENIX Security 21), 2021.

[142] G. Wang, Y. Cui, J. Wang, L. Wu, and G. Hu, “A novel method for detecting advanced
persistent threat attack based on belief rule base,” Applied Sciences, vol. 11, no. 21,
p. 9899, 2021.

[143] W. Wang et al., “Hast-ids: Learning hierarchical spatial-temporal features using deep
neural networks to improve intrusion detection,” IEEE access, vol. 6, pp. 1792–1806,
2017.

[144] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach for intrusion detection
using recurrent neural networks,” Ieee Access, vol. 5, pp. 21 954–21 961, 2017.

[145] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach to net-
work intrusion detection,” IEEE transactions on emerging topics in computational
intelligence, vol. 2, no. 1, pp. 41–50, 2018.

[146] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-Nemrat, and S.
Venkatraman, “Deep learning approach for intelligent intrusion detection system,”
IEEE Access, vol. 7, pp. 41 525–41 550, 2019.

[147] S. Zhao, X. Ma, Y. Wang, J. Bailey, B. Li, and Y.-G. Jiang, “What do deep nets learn?
class-wise patterns revealed in the input space,” arXiv preprint arXiv:2101.06898,
2021.

250

[148] G. Tao et al., “Model orthogonalization: Class distance hardening in neural networks
for better security,” in 2022 IEEE Symposium on Security and Privacy (SP), IEEE,
2022.

[149] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating backdooring
attacks on deep neural networks,” IEEE Access, 2019.

[150] A. Shafahi et al., “Poison frogs! targeted clean-label poisoning attacks on neural
networks,” in NeurIPS, 2018.

[151] A. Salem, R. Wen, M. Backes, S. Ma, and Y. Zhang, “Dynamic backdoor attacks
against machine learning models,” arXiv preprint arXiv:2003.03675, 2020.

[152] X. Zhang, Z. Zhang, and T. Wang, “Trojaning language models for fun and profit,”
in European S&P, 2021.

[153] X. Chen, A. Salem, M. Backes, S. Ma, and Y. Zhang, “Badnl: Backdoor attacks
against nlp models,” arXiv preprint arXiv:2006.01043, 2020.

[154] K. Kurita, P. Michel, and G. Neubig, “Weight poisoning attacks on pre-trained mod-
els,” in ACL, 2020.

[155] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” in International Conference on Learning Representations (ICLR), 2015.

[156] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial attacks: Reliable
attacks against black-box machine learning models,” in International Conference on
Learning Representations (ICLR), 2018.

[157] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,”
in 2017 IEEE Symposium on Security and Privacy (SP), IEEE, 2017, pp. 39–57.

[158] N. Carlini and D. Wagner, “Adversarial examples are not easily detected: Bypass-
ing ten detection methods,” in Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, 2017, pp. 3–14.

[159] S. Chen et al., “Automated poisoning attacks and defenses in malware detection
systems: An adversarial machine learning approach,” Computers & Security, vol. 73,
pp. 326–344, 2018.

251

[160] C. Xiao, J. Y. Zhu, B. Li, W. He, M. Liu, and D. Song, “Spatially transformed
adversarial examples,” in 6th International Conference on Learning Representations,
ICLR 2018, 2018.

[161] https://www.theregister.com/2022/03/26/machine_learning_malware/ .

[162] Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A natural backdoor attack
on deep neural networks,” in ECCV, 2020.

[163] J. Lin, L. Xu, Y. Liu, and X. Zhang, “Composite backdoor attack for deep neural
network by mixing existing benign features,” in CCS, 2020.

[164] E. Bagdasaryan and V. Shmatikov, “Blind backdoors in deep learning models,” arXiv
preprint arXiv:2005.03823, 2020.

[165] J. Li, S. Ji, T. Du, B. Li, and T. Wang, “Textbugger: Generating adversarial text
against real-world applications,” in 26th Annual Network and Distributed System Se-
curity Symposium, 2019.

[166] Z. Gong, W. Wang, B. Li, D. Song, and W.-S. Ku, “Adversarial texts with gradient
methods,” arXiv preprint arXiv:1801.07175, 2018.

[167] Z. Zhang et al., “Pelican: Exploiting backdoors of naturally trained deep learning
models in binary code analysis,” 2023.

[168] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-llvm–software pro-
tection for the masses,” in 2015 IEEE/ACM 1st International Workshop on Software
Protection, IEEE, 2015, pp. 3–9.

[169] Y. Liu et al., “Trojaning attack on neural networks,” in NDSS, 2018.

[170] https://binary.ninja/ .

[171] V. Duddu, D. Samanta, D. V. Rao, and V. E. Balas, “Stealing neural networks via
timing side channels,” arXiv preprint arXiv:1812.11720, 2018.

[172] X. Hu et al., “Deepsniffer: A dnn model extraction framework based on learning archi-
tectural hints,” in Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, 2020, pp. 385–
399.

252

https://www.theregister.com/2022/03/26/machine_learning_malware/
https://binary.ninja/

[173] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional neural networks
through side-channel information leaks,” in 2018 55th ACM/ESDA/IEEE Design Au-
tomation Conference (DAC), IEEE, 2018, pp. 1–6.

[174] Y. Xiang et al., “Open dnn box by power side-channel attack,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 67, no. 11, pp. 2717–2721, 2020.

[175] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy: Leveraging shared re-
source attacks to learn DNN architectures,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020, pp. 2003–2020.

[176] Y. Zhu, Y. Cheng, H. Zhou, and Y. Lu, “Hermes attack: Steal DNN models with
lossless inference accuracy,” in 30th USENIX Security Symposium (USENIX Security
21), 2021.

[177] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practical
black-box attacks against machine learning,” in Proceedings of the 2017 ACM on Asia
conference on computer and communications security, 2017.

[178] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial examples
and black-box attacks,” arXiv preprint arXiv:1611.02770, 2016.

[179] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial attacks with
limited queries and information,” in International Conference on Machine Learning,
PMLR, 2018.

[180] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adversarial
perturbations,” in CVPR, 2017, pp. 1765–1773.

[181] https://github.com/jgamblin/Mirai-Source-Code .

[182] Y. Liu, G. Shen, G. Tao, Z. Wang, S. Ma, and X. Zhang, “Ex-ray: Distinguishing
injected backdoor from natural features in neural networks by examining differential
feature symmetry,” arXiv preprint arXiv:2103.08820, 2021.

[183] C. Guo, A. Sablayrolles, H. Jégou, and D. Kiela, “Gradient-based adversarial attacks
against text transformers,” arXiv preprint arXiv:2104.13733, 2021.

[184] https://en.wikipedia.org/wiki/X86_calling_conventions .

253

https://github.com/jgamblin/Mirai-Source-Code
https://en.wikipedia.org/wiki/X86_calling_conventions

[185] R. Tofighi-Shirazi, I.-M. Asavoae, P. Elbaz-Vincent, and T.-H. Le, “Defeating opaque
predicates statically through machine learning and binary analysis,” in Proceedings
of the 3rd ACM Workshop on Software Protection, 2019, pp. 3–14.

[186] J. Ming, D. Xu, L. Wang, and D. Wu, “Loop: Logic-oriented opaque predicate detec-
tion in obfuscated binary code,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, 2015, pp. 757–768.

[187] R. K. R. Prakash, P. Amritha, and M. Sethumadhavan, “Opaque predicate detection
by static analysis of binary executables,” in International Symposium on Security in
Computing and Communication, Springer, 2017, pp. 250–258.

[188] T. Rinsma, Seeing through obfuscation: Interactive detection and removal of opaque
predicates, 2017.

[189] D. Bruschi, L. Martignoni, and M. Monga, “Detecting self-mutating malware using
control-flow graph matching,” in International conference on detection of intrusions
and malware, and vulnerability assessment, Springer, 2006, pp. 129–143.

[190] M. D. Preda, M. Christodorescu, S. Jha, and S. Debray, “A semantics-based approach
to malware detection,” ACM SIGPLAN Notices, vol. 42, no. 1, pp. 377–388, 2007.

[191] M. Dalla Preda, M. Madou, K. De Bosschere, and R. Giacobazzi, “Opaque predi-
cates detection by abstract interpretation,” in International Conference on Algebraic
Methodology and Software Technology, Springer, 2006, pp. 81–95.

[192] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in International conference
on Tools and Algorithms for the Construction and Analysis of Systems, Springer, 2008,
pp. 337–340.

[193] J. Turian, L.-A. Ratinov, and Y. Bengio, “Word representations: A simple and general
method for semi-supervised learning,” in Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics, Uppsala, Sweden: Association for
Computational Linguistics, Jul. 2010, pp. 384–394. [Online]. Available: https://aclan
thology.org/P10-1040 .

[194] M. E. Peters, W. Ammar, C. Bhagavatula, and R. Power, “Semi-supervised sequence
tagging with bidirectional language models,” 2017.

[195] M. Gardner et al., “Allennlp: A deep semantic natural language processing platform,”
ACL 2018, p. 1, 2018.

254

https://aclanthology.org/P10-1040
https://aclanthology.org/P10-1040

[196] A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability. IOS press, 2009,
vol. 185.

[197] P. Fontaine and H.-J. Schurr, “Quantifier simplification by unification in smt,” in
International Symposium on Frontiers of Combining Systems, Springer, 2021.

[198] A. R. Bradley, Z. Manna, and H. B. Sipma, “Whats decidable about arrays?” In
International Workshop on Verification, Model Checking, and Abstract Interpretation,
Springer, 2006.

[199] D. Trabish and N. Rinetzky, “Relocatable addressing model for symbolic execution,”
in Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2020.

[200] D. Kuts, “Towards symbolic pointers reasoning in dynamic symbolic execution,” in
2021 Ivannikov Memorial Workshop (IVMEM), IEEE, 2021.

[201] X. Li, Y. Qu, and H. Yin, “Palmtree: Learning an assembly language model for
instruction embedding,” in CCS ’21: 2021 ACM SIGSAC Conference on Computer
and Communications Security, Virtual Event, Republic of Korea, November 15 - 19,
2021, Y. Kim, J. Kim, G. Vigna, and E. Shi, Eds., ACM, 2021, pp. 3236–3251. doi:

 10.1145/3460120.3484587 . [Online]. Available: https://doi.org/10.1145/3460120.
3484587 .

[202] Y. Zang et al., “Word-level textual adversarial attacking as combinatorial optimiza-
tion,” arXiv preprint arXiv:1910.12196, 2019.

[203] X. Dong, A. T. Luu, R. Ji, and H. Liu, “Towards robustness against natural language
word substitutions,” arXiv preprint arXiv:2107.13541, 2021.

[204] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, “Intriguing properties of
adversarial ml attacks in the problem space,” in 2020 IEEE Symposium on Security
and Privacy (SP), IEEE, 2020, pp. 1332–1349.

[205] K. Lucas, M. Sharif, L. Bauer, M. K. Reiter, and S. Shintre, “Malware makeover:
Breaking ml-based static analysis by modifying executable bytes,” in Proceedings of
the 2021 ACM Asia Conference on Computer and Communications Security, 2021.

[206] L. Yang et al., “Jigsaw puzzle: Selective backdoor attack to subvert malware classi-
fiers,” arXiv preprint arXiv:2202.05470, 2022.

255

https://doi.org/10.1145/3460120.3484587
https://doi.org/10.1145/3460120.3484587
https://doi.org/10.1145/3460120.3484587

[207] G. Severi, J. Meyer, S. Coull, and A. Oprea, “{Explanation-guided} backdoor poi-
soning attacks against malware classifiers,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021.

[208] Z. Kan, H. Wang, L. Wu, Y. Guo, and D. X. Luo, “Automated deobfuscation of
android native binary code,” arXiv preprint arXiv:1907.06828, 2019.

[209] L. Coniglio, “Combining program synthesis and symbolic execution to deobfuscate
binary code,” M.S. thesis, University of Twente, 2019.

[210] Y. Guillot and A. Gazet, “Automatic binary deobfuscation,” Journal in computer
virology, vol. 6, no. 3, 2010.

[211] C. Jindal, C. Salls, H. Aghakhani, K. Long, C. Kruegel, and G. Vigna, “Neurlux:
Dynamic malware analysis without feature engineering,” in Proceedings of the 35th
Annual Computer Security Applications Conference, 2019.

[212] S. Wu and X. Xiao, “Convdroid: Lightweight neural network based andoird malware
detection.,” Aust. J. Intell. Inf. Process. Syst., vol. 16, no. 3, 2019.

[213] Y.-J. Tung and I. G. Harris, “A heuristic approach to detect opaque predicates that
disrupt static disassembly,”

[214] H. Koo and M. Polychronakis, “Juggling the gadgets: Binary-level code randomization
using instruction displacement,” in AsiaCCS, 2016.

[215] https://www.spec.org/cpu2006/ .

[216] https://www.gnu.org/software/binutils/ .

[217] https://www.deepbits.com/ .

[218] O. Yuschuk, “Ollydbg,” http://www. ollydbg. de/, 2007.

[219] J. Kinder and H. Veith, “Jakstab: A static analysis platform for binaries,” in Inter-
national Conference on Computer Aided Verification, Springer, 2008, pp. 423–427.

[220] M. Smithson, K. Anand, A. Kotha, K. Elwazeer, N. Giles, and R. Barua, Second
write: Binary rewriting without relocation information, University of Maryland, 2010.

256

https://www.spec.org/cpu2006/
https://www.gnu.org/software/binutils/
https://www.deepbits.com/

[221] A. R. Bernat and B. P. Miller, “Anywhere, any-time binary instrumentation,” in
Proceedings of the 10th ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools, ACM, 2011, pp. 9–16.

[222] X. Meng and B. P. Miller, “Binary code is not easy,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, ACM, 2016, pp. 24–35.

[223] Y. Ye, Z. Zhang, Q. Shi, Y. Aafer, and X. Zhang, “D-arm: Disassembling arm binaries
by lightweight superset instruction interpretation and graph modeling,” in 2023 IEEE
Symposium on Security and Privacy (SP), IEEE Computer Society, 2022, pp. 728–
745.

[224] E. Hoque, O. Chowdhury, S. Y. Chau, C. Nita-Rotaru, and N. Li, “Analyzing opera-
tional behavior of stateful protocol implementations for detecting semantic bugs,” in
2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2017, pp. 627–638.

[225] K. Borgolte, C. Kruegel, and G. Vigna, “Delta: Automatic identification of unknown
web-based infection campaigns,” in Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, 2013, pp. 109–120.

[226] M. von Hippel, C. Vick, S. Tripakis, and C. Nita-Rotaru, “Automated attacker syn-
thesis for distributed protocols,” arXiv preprint arXiv:2004.01220, 2020.

[227] T. Bao, R. Wang, Y. Shoshitaishvili, and D. Brumley, “Your exploit is mine: Auto-
matic shellcode transplant for remote exploits,” in 2017 IEEE Symposium on Security
and Privacy (SP), 2017, pp. 824–839.

[228] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida, “Parmesan: Sanitizer-guided
greybox fuzzing,” in 29th USENIX Security Symposium (USENIX Security), 2020,
pp. 2289–2306.

[229] V. Jain, S. Rawat, C. Giuffrida, and H. Bos, “Tiff: Using input type inference to
improve fuzzing,” in Proceedings of the 34th Annual Computer Security Applications
Conference, 2018, pp. 505–517.

[230] S. Jero, M. L. Pacheco, D. Goldwasser, and C. Nita-Rotaru, “Leveraging textual
specifications for grammar-based fuzzing of network protocols,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 9478–9483.

257

[231] A. Abdou, D. Barrera, and P. C. Van Oorschot, “What lies beneath? analyzing auto-
mated ssh bruteforce attacks,” in International Conference on PASSWORDS, 2015,
pp. 72–91.

[232] Y. Cao, Y. Shoshitaishvili, K. Borgolte, C. Kruegel, G. Vigna, and Y. Chen, “Protect-
ing web-based single sign-on protocols against relying party impersonation attacks
through a dedicated bi-directional authenticated secure channel,” in International
Workshop on Recent Advances in Intrusion Detection, 2014, pp. 276–298.

[233] G. Starnberger, C. Kruegel, and E. Kirda, “Overbot: A botnet protocol based on
kademlia,” in Proceedings of the 4th International Conference on Security and Privacy
in Communication Netowrks, 2008, pp. 1–9.

[234] M. Antonakakis et al., “Understanding the mirai botnet,” in 26th USENIX Security
Symposium (USENIX Security), 2017, pp. 1093–1110.

[235] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel, “Disclosure: De-
tecting botnet command and control servers through large-scale netflow analysis,”
in Proceedings of the 28th Annual Computer Security Applications Conference, 2012,
pp. 129–138.

[236] P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel, and E. Kirda, “Automatically
generating models for botnet detection,” in European Symposium on Research in
Computer Security, 2009, pp. 232–249.

[237] G. Wondracek, P. M. Comparetti, C. Kruegel, E. Kirda, and S. S. S. Anna, “Automatic
network protocol analysis,” in Proceedings of the Network and Distributed System
Security Symposium (NDSS), vol. 8, 2008, pp. 1–14.

[238] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex: Protocol
specification extraction,” in 30th IEEE Symposium on Security and Privacy (SP),
2009, pp. 110–125.

[239] C. Y. Cho, D. Babic, P. Poosankam, K. Z. Chen, E. X. Wu, and D. Song, “Mace:
Model-inference-assisted concolic exploration for protocol and vulnerability discov-
ery,” in 20th USENIX Security Symposium (USENIX Security), vol. 139, 2011.

[240] M. A. Beddoe, “Network protocol analysis using bioinformatics algorithms,” Toorcon,
2004.

258

[241] C. Leita, K. Mermoud, and M. Dacier, “Scriptgen: An automated script generation
tool for honeyd,” in 21st Annual Computer Security Applications Conference (AC-
SAC), 2005, 12–pp.

[242] G. Bossert, F. Guihéry, and G. Hiet, “Towards automated protocol reverse engi-
neering using semantic information,” in Proceedings of the 9th ACM Symposium on
Information, Computer and Communications Security, 2014, pp. 51–62.

[243] Y. Wang, Z. Zhang, D. D. Yao, B. Qu, and L. Guo, “Inferring protocol state ma-
chine from network traces: A probabilistic approach,” in International Conference on
Applied Cryptography and Network Security, 2011, pp. 1–18.

[244] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic protocol reverse engi-
neering from network traces,” in 16th USENIX Security Symposium (USENIX Secu-
rity), 2007, pp. 1–14.

[245] D.-F. Feng and R. F. Doolittle, “Progressive sequence alignment as a prerequisitetto
correct phylogenetic trees,” Journal of Molecular Evolution, vol. 25, no. 4, pp. 351–
360, 1987.

[246] Y. Ye, Z. Zhang, F. Wang, X. Zhang, and D. Xu, “Netplier: Probabilistic network
protocol reverse engineering from message traces.,” in NDSS, 2021.

[247] Y. Shao, J. Ott, Q. Alfred Chen, Z. Qian, and Z. Morley Mao, “Kratos: Discover-
ing Inconsistent Security Policy Enforcement in the Android Framework,” Internet
Society, May 2017. doi: 10.14722/ndss.2016.23046 .

[248] Y. Aafer, J. Huang, Y. Sun, X. Zhang, N. Li, and C. Tian, “AceDroid: Normalizing
Diverse Android Access Control Checks for Inconsistency Detection,” Internet Society,
Feb. 2018. doi: 10.14722/ndss.2018.23121 .

[249] S. A. Gorski et al., “ACMiner: Extraction and Analysis of Authorization Checks in
Android’s Middleware,” Jan. 2019. [Online]. Available: http://arxiv.org/abs/1901.
03603 .

[250] S. A. Gorski III, S. Thorn, W. Enck, and H. Chen, “{Fred}: Identifying file {re-
delegation} in android system services,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 1525–1542.

[251] H. Zhou, H. Wang, X. Luo, T. Chen, Y. Zhou, and T. Wang, “Uncovering cross-
context inconsistent access control enforcement in android,” 2022.

259

https://doi.org/10.14722/ndss.2016.23046
https://doi.org/10.14722/ndss.2018.23121
http://arxiv.org/abs/1901.03603
http://arxiv.org/abs/1901.03603

[252] Z. El-Rewini, Z. Zhang, and Y. Aafer, “Poirot: Probabilistically recommending pro-
tections for the android framework,” in Proceedings of the 2022 ACM SIGSAC Con-
ference on Computer and Communications Security, 2022, pp. 937–950.

[253] https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/
fileless-threats .

[254] https://www.cybereason.com/blog/fileless-malware .

[255] https://blog.barkly.com/powerpoint-malware-installs-when-users-hover-over-a-link .

[256] https : / / www . trendmicro . com / vinfo / us / threat - encyclopedia / malware / hktl _
coinmine .

[257] https://gbhackers.com/evil-clone-attack-legitimate-pdf-software .

[258] https://blog.alertlogic.com/10-must-know-2018-cybersecurity-statistics/ .

[259] https://padawan.s3.eurecom.fr/about .

[260] J. Bergeretti and B. Carré, “Information-flow and data-flow analysis of while-programs,”
ACM Trans. Program. Lang. Syst., vol. 7, no. 1, pp. 37–61, 1985.

[261] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph and
its use in optimization,” ACM Trans. Program. Lang. Syst., vol. 9, no. 3, pp. 319–349,
1987.

[262] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE
Journal on Selected Areas in Communications, vol. 21, no. 1, pp. 5–19, 2003.

[263] A. C. Myers, “Jflow: Practical mostly-static information flow control,” in POPL ’99,
Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, San Antonio, TX, USA, January 20-22, 1999, 1999, pp. 228–
241.

[264] J. A. Clause, W. Li, and A. Orso, “Dytan: A generic dynamic taint analysis frame-
work,” in Proceedings of the ACM/SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2007, London, UK, July 9-12, 2007, 2007, pp. 196–206.

260

https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/fileless-threats
https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/fileless-threats
https://www.cybereason.com/blog/fileless-malware
https://blog.barkly.com/powerpoint-malware-installs-when-users-hover-over-a-link
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/hktl_coinmine
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/hktl_coinmine
https://gbhackers.com/evil-clone-attack-legitimate-pdf-software
https://blog.alertlogic.com/10-must-know-2018-cybersecurity-statistics/
https://padawan.s3.eurecom.fr/about

[265] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic detection, anal-
ysis, and signaturegeneration of exploits on commodity software,” in Proceedings of
the Network and Distributed System Security Symposium, NDSS 2005, San Diego,
California, USA, 2005.

[266] E. Zhu et al., “Dytaint: The implementation of a novel lightweight 3-state dynamic
taint analysis framework for x86 binary programs,” Computers & Security, vol. 52,
pp. 51–69, 2015.

[267] K. Olmos and E. Visser, “Composing source-to-source data-flow transformations with
rewriting strategies and dependent dynamic rewrite rules,” in Compiler Construction,
14th International Conference, CC 2005, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8,
2005, Proceedings, 2005, pp. 204–220.

[268] J. Bell, G. E. Kaiser, E. Melski, and M. Dattatreya, “Efficient dependency detection
for safe java test acceleration,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 -
September 4, 2015, 2015, pp. 770–781.

[269] V. K. Palepu, G. (Xu, and J. A. Jones, “Improving efficiency of dynamic analysis with
dynamic dependence summaries,” in 2013 28th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2013, Silicon Valley, CA, USA, November
11-15, 2013, 2013, pp. 59–69.

[270] B. Steensgaard, “Points-to analysis in almost linear time,” in Conference Record of
POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Papers Presented at the Symposium, St. Petersburg Beach, Florida,
USA, January 21-24, 1996, 1996, pp. 32–41.

[271] D. Liang and M. J. Harrold, “Efficient points-to analysis for whole-program analysis,”
in Software Engineering - ESEC/FSE’99, 7th European Software Engineering Con-
ference, Held Jointly with the 7th ACM SIGSOFT Symposium on the Foundations of
Software Engineering, Toulouse, France, September 1999, Proceedings, 1999, pp. 199–
215.

[272] M. Emami, R. Ghiya, and L. J. Hendren, “Context-sensitive interprocedural points-to
analysis in the presence of function pointers,” in Proceedings of the ACM SIGPLAN’94
Conference on Programming Language Design and Implementation (PLDI), Orlando,
Florida, USA, June 20-24, 1994, 1994, pp. 242–256.

261

[273] A. Deutsch, “Interprocedural may-alias analysis for pointers: Beyond k-limiting,” in
Proceedings of the ACM SIGPLAN’94 Conference on Programming Language De-
sign and Implementation (PLDI), Orlando, Florida, USA, June 20-24, 1994, 1994,
pp. 230–241.

[274] V. Kahlon, “Bootstrapping: A technique for scalable flow and context-sensitive pointer
alias analysis,” in Proceedings of the ACM SIGPLAN 2008 Conference on Program-
ming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008,
2008, pp. 249–259.

[275] X. Zheng and R. Rugina, “Demand-driven alias analysis for C,” in Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, San Francisco, California, USA, January 7-12, 2008, 2008, pp. 197–208.

[276] M. Hirzel, D. von, Dincklage, A. Diwan, and M. Hind, “Fast online pointer analysis,”
ACM Trans. Program. Lang. Syst., vol. 29, no. 2, p. 11, 2007.

[277] R. Thiessen and O. Lhoták, “Context transformations for pointer analysis,” in Pro-
ceedings of the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, 2017, pp. 263–
277.

[278] G. Xu and A. Rountev, “Merging equivalent contexts for scalable heap-cloning-based
context-sensitive points-to analysis,” in Proceedings of the ACM/SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2008, Seattle, WA, USA,
July 20-24, 2008, 2008, pp. 225–236.

[279] I. Dillig, T. Dillig, and A. Aiken, “Sound, complete and scalable path-sensitive anal-
ysis,” in Proceedings of the ACM SIGPLAN 2008 Conference on Programming Lan-
guage Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, 2008, pp. 270–
280.

[280] M. Das, S. Lerner, and M. Seigle, “ESP: path-sensitive program verification in polyno-
mial time,” in Proceedings of the 2002 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Berlin, Germany, June 17-19, 2002,
2002, pp. 57–68.

[281] S. Gulwani and G. C. Necula, “Precise interprocedural analysis using random in-
terpretation,” in Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2005, Long Beach, California, USA,
January 12-14, 2005, 2005, pp. 324–337.

262

[282] S. Gulwani and G. C. Necula, “Global value numbering using random interpreta-
tion,” in Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2004, Venice, Italy, January 14-16, 2004, 2004,
pp. 342–352.

[283] S. Gulwani and G. C. Necula, “Discovering affine equalities using random interpreta-
tion,” in Conference Record of POPL 2003: The 30th SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, New Orleans, Louisisana, USA, January
15-17, 2003, 2003, pp. 74–84.

[284] B. D. Sutter, B. D. Bus, K. D. Bosschere, P. Keyngnaert, and B. Demoen, “On the
static analysis of indirect control transfers in binaries,” in Proceedings of the Interna-
tional Conference on Parallel and Distributed Processing Techniques and Applications,
PDPTA 2000, June 24-29, 2000, Las Vegas, Nevada, USA, 2000.

[285] H. Theiling, “Extracting safe and precise control flow from binaries,” in 7th Inter-
national Workshop on Real-Time Computing and Applications Symposium (RTCSA
2000), 12-14 December 2000, Cheju Island, South Korea, 2000, pp. 23–30.

[286] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda, “Inspector gadget: Automated ex-
traction of proprietary gadgets from malware binaries,” in 31st IEEE Symposium
on Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California,
USA, 2010, pp. 29–44.

[287] M. H. Nguyen, T. B. Nguyen, T. T. Quan, and M. Ogawa, “A hybrid approach
for control flow graph construction from binary code,” in 20th Asia-Pacific Software
Engineering Conference, APSEC 2013, Ratchathewi, Bangkok, Thailand, December
2-5, 2013 - Volume 2, 2013, pp. 159–164.

[288] W. He et al., “Rethinking access control and authentication for the home internet
of things (iot),” in 27th {USENIX} Security Symposium ({USENIX} Security 18),
2018, pp. 255–272.

[289] E. Gustafson et al., “Toward the analysis of embedded firmware through automated
re-hosting,” in 22nd International Symposium on Research in Attacks, Intrusions and
Defenses ({RAID} 2019), 2019, pp. 135–150.

[290] G. Hernandez, F. Fowze, D. Tian, T. Yavuz, and K. R. Butler, “Firmusb: Vetting usb
device firmware using domain informed symbolic execution,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, 2017,
pp. 2245–2262.

263

[291] K. Jansen, M. Schäfer, D. Moser, V. Lenders, C. Pöpper, and J. Schmitt, “Crowd-gps-
sec: Leveraging crowdsourcing to detect and localize gps spoofing attacks,” in 2018
IEEE Symposium on Security and Privacy (SP), IEEE, 2018, pp. 1018–1031.

[292] D. Freed et al., “" is my phone hacked?" analyzing clinical computer security inter-
ventions with survivors of intimate partner violence,” Proceedings of the ACM on
Human-Computer Interaction, vol. 3, no. CSCW, pp. 1–24, 2019.

[293] H. Cho et al., “Prime+Count: Novel Cross-world Covert Channels on ARM Trust-
Zone,” in Proceedings of the Annual Computer Security Applications Conference (AC-
SAC), Dec. 2018.

[294] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in 2019 IEEE
Symposium on Security and Privacy (SP), IEEE, 2019, pp. 1–19.

[295] A. Reina, A. Fattori, F. Pagani, L. Cavallaro, and D. Bruschi, “When hardware meets
software: A bulletproof solution to forensic memory acquisition,” in Proceedings of the
28th annual computer security applications conference, 2012, pp. 79–88.

[296] M. Schwarz and A. Fogh, “Drama: How your dram becomes a security problem,”
2016.

[297] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando, “Explaining vulnerabili-
ties of deep learning to adversarial malware binaries,” arXiv preprint arXiv:1901.03583,
2019.

[298] M. Schwarz et al., “Automated detection, exploitation, and elimination of double-fetch
bugs using modern cpu features,” in Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, 2018, pp. 587–600.

[299] H. Lee, C. Song, and B. B. Kang, “Lord of the x86 rings: A portable user mode
privilege separation architecture on x86,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp. 1441–1454.

[300] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-based graph
embedding for cross-platform binary code similarity detection,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, 2017, pp. 363–376.

264

[301] W. Guo, D. Mu, M. Du, X. Xing, and D. Song., “Deepvsa: Facilitating value-set anal-
ysis with deep learning for postmortem program analysis,” in 28th USENIX Security
Symposium, USENIX Security 2019, 2019.

[302] J. Geldenhuys, M. B. Dwyer, and W. Visser, “Probabilistic symbolic execution,” in
International Symposium on Software Testing and Analysis, ISSTA 2012, Minneapo-
lis, MN, USA, July 15-20, 2012, 2012, pp. 166–176.

[303] M. Borges, A. Filieri, M. d’Amorim, and C. S. Pasareanu, “Iterative distribution-
aware sampling for probabilistic symbolic execution,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo,
Italy, August 30 - September 4, 2015, 2015, pp. 866–877.

[304] M. Z. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of proba-
bilistic real-time systems,” in Computer Aided Verification - 23rd International Con-
ference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, 2011, pp. 585–
591.

[305] A. Filieri, C. Ghezzi, and G. Tamburrelli, “Run-time efficient probabilistic model
checking,” in Proceedings of the 33rd International Conference on Software Engineer-
ing, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, 2011, pp. 341–350.

[306] A. F. Donaldson, A. Miller, and D. Parker, “Language-level symmetry reduction for
probabilistic model checking,” in QEST 2009, Sixth International Conference on the
Quantitative Evaluation of Systems, Budapest, Hungary, 13-16 September 2009, 2009,
pp. 289–298.

[307] Y. Cai, J. Zhang, L. Cao, and J. Liu, “A deployable sampling strategy for data race
detection,” in Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18,
2016, 2016, pp. 810–821.

[308] M. Hauswirth and T. M. Chilimbi, “Low-overhead memory leak detection using adap-
tive statistical profiling,” in Proceedings of the 11th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS
2004, Boston, MA, USA, October 7-13, 2004, 2004, pp. 156–164.

[309] Y. Zhong and W. Chang, “Sampling-based program locality approximation,” in Pro-
ceedings of the 7th International Symposium on Memory Management, ISMM 2008,
Tucson, AZ, USA, June 7-8, 2008, 2008, pp. 91–100.

265

[310] N. Toronto, J. McCarthy, and D. V. Horn, “Running probabilistic programs back-
wards,” in Programming Languages and Systems - 24th European Symposium on Pro-
gramming, ESOP 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
2015, pp. 53–79.

[311] A. Avizienis, “The n-version approach to fault-tolerant software,” IEEE Transactions
on software engineering, no. 12, pp. 1491–1501, 1985.

[312] E. D. Berger and B. G. Zorn, “Diehard: Probabilistic memory safety for unsafe lan-
guages,” in PLDI, M. I. Schwartzbach and T. Ball, Eds., 2006, pp. 158–168.

[313] J. Xu, B. Randell, A. Romanovsky, C. M. Rubira, R. J. Stroud, and Z. Wu, “Fault
tolerance in concurrent object-oriented software through coordinated error recovery,”
in Twenty-Fifth International Symposium on Fault-Tolerant Computing. Digest of
Papers, IEEE, 1995, pp. 499–508.

[314] J. Xu, A. Romanovsky, and B. Randell, “Concurrent exception handling and resolu-
tion in distributed object systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 11, no. 10, pp. 1019–1032, 2000.

[315] J. Oberheide, E. Cooke, and F. Jahanian, “Cloudav: N-version antivirus in the net-
work cloud,” in USENIX Security, 2008, pp. 91–106.

[316] A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and M. Pezzè, “Automatic recovery
from runtime failures,” in ICSE, 2013.

[317] S. Nagy and M. Hicks, “Full-speed fuzzing: Reducing fuzzing overhead through coverage-
guided tracing,” in SP, 2019, pp. 787–802.

266

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	The Thesis
	Problem Statement
	Overview
	Program Sampling: Analyzing Data Dependence in Binary Executables
	Probabilistic Inference: Recovering Variables and Data Structures
	Iterative Refinement: Effective and Efficient Binary-only Fuzzing
	Expanding Viewpoints: Delving into DL-based Binary Analysis
	Discussion

	Contributions and Organization
	Publications

	PROGRAM SAMPLING: ANALYZING DATA DEPENDENCE IN BINARY EXECUTABLES
	Introduction
	Motivation
	Limitations of Existing Techniques
	Observations
	Our Technique

	Design
	Path Sampling
	Path Counting
	Path Sampling and Probability Analysis
	Addressing Practical Challenges

	Abstract Interpretation
	Posterior Analysis
	Evaluation
	Coverage
	Program Dependence
	Applications

	Summary

	PROBABILISTIC INFERENCE: RECOVERING VARIABLES AND DATA STRUCTURES
	Introduction
	Motivation
	Our Technique

	Design Overview
	Deterministic Reasoning
	Probabilistic Reasoning
	Probabilistic Inference Rules
	Probabilistic Constraint Solving

	Evaluation
	Evaluation on Coreutils
	Evaluation on Howard Benchmark
	Sensitivity Analysis
	Execution Time
	Scalability
	Impact of Aggressive Optimization
	Impact of Different Compilers
	Contribution Breakdown of Different Components

	Applications
	Improving IDA Decompilation
	Harden Stripped Binary

	Summary

	ITERATIVE REFINEMENT: EFFECTIVE AND EFFICIENT BINARY-ONLY FUZZING
	Introduction
	Motivation
	Limitations of Existing Technique
	Our Technique

	System Design
	Probability Analyzer
	Incremental and Stochastic Rewriting
	Crash Analyzer
	Optimizations

	Probabilistic Guarantees
	Practical Challenges
	Evaluation
	Evaluation on Google FTS
	Evaluation on Google FTS with Intential Data Inlining
	Comparison with RetroWrite

	Case Studies
	Finding Zero-days in Closed-source Programs
	Collect Other Runtime Feedback Than Coverage

	Summary

	EXPANDING VIEWPOINTS: DELVING INTO DL-BASED BINARY ANALYSIS
	Introduction
	Motivation
	Design Overview
	Syntax-aware Trigger Inversion
	Trigger Generation
	Why Not Per-instance Adversarial Attack

	Semantic-preserving Trigger Injection
	Randomized Micro-execution
	Constraint Generation

	Evaluation
	Experiment Setup
	Attack Effectiveness
	Comparison with Baselines
	Functionality Preservation
	Why Backdoors Exist in These Models?
	Runtime Overhead
	Transfer Attack

	Case Study
	Summary

	DISCUSSION
	Disassembly
	Network Protocol Reverse Engineering
	Android Security Policy Interpretation
	Malware Behavioural Analysis

	RELATED WORK
	Program Analysis.
	Binary Analysis.
	Probabilistic Program Analysis.
	N-version Programming.

	CONCLUSION
	REFERENCES

