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PREFACE

“Mathematics is the language with which God wrote the universe.”

– Galileo di Vincenzo Bonaiuti de’ Galilei

This dissertation is focused on the problem of Byzantine-resilient distributed optimiza-

tion, which arises in the context of multi-agent systems where agents must cooperate to

optimize a global objective function while facing the challenge of malicious or faulty agents.

The importance of this problem stems from its applicability in a wide range of domains,

including sensor networks, control systems, and machine learning, among others. In this

preface, I will provide some historical background on optimization, distributed systems, and

security, and then highlight the contribution of this work in the context of existing literature.

“True optimization is the revolutionary contribution of modern research

to decision processes.” – George Dantzig

The history of mathematical optimization can be traced back to ancient times, with

the Greeks using geometric methods to solve optimization problems such as finding the

maximum area of a rectangle given a fixed perimeter. In modern times, the development

of optimization algorithms has been driven by applications in engineering, economics, and

computer science, among other fields. With the advent of computers, it became possible to

solve large-scale optimization problems using numerical methods, leading to the emergence

of optimization as a core area of research in mathematics and computer science.

“Computer science has as much to do with computers

as astronomy has to do with telescopes.” – Edsger Wybe Dijkstra

Distributed systems have a long history, dating back to the 1960s with the development of

computer networks. Over the years, distributed systems have become increasingly important,

with the rise of the internet and the proliferation of mobile devices. Distributed optimization,

which involves solving an optimization problem across multiple agents in a network, has

been an active area of research since the early 2000s. The key challenge in distributed

optimization is to design algorithms that can effectively harness the computational power of

multiple agents while ensuring convergence to the optimal solution.
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“The only truly secure system is one that is powered off, cast in a block of concrete and

sealed in a lead-lined room with armed guards.” – Gene Spafford

Security is a critical concern in any distributed system, and peer-to-peer networks in

which we consider are no exception. In the context of distributed optimization, security

is particularly important because malicious or faulty agents can undermine the integrity

of the optimization process and compromise the quality of the solution. Byzantine-resilient

distributed optimization is a variant of the problem that is designed to address this challenge

by ensuring that the optimization process remains robust in the face of Byzantine faults,

where agents can behave arbitrarily.

“If I have seen further, it is by standing on the shoulders of giants.”

– Sir Isaac Newton

Despite the significance of Byzantine-resilient distributed optimization, there has been

relatively limited effort in developing scalable algorithms with provable guarantees. Most of

the existing work in the literature focuses on the case where the number of decision variables

is small or even only a single variable. In this dissertation, we address the challenge of

large-scale resilient distributed optimization, where the number of decision variables and the

problem size are both substantial. We provide a comprehensive analysis of the problem and

propose a set of scalable algorithms that can converge to a neighborhood of the optimal

solution, even in the presence of Byzantine faults.

“All truths are easy to understand once they are discovered; the point is to discover them.”

– Galileo di Vincenzo Bonaiuti de’ Galilei

This dissertation is organized into four parts. The first part (Chapter  1 ) introduces each

of the works separately. The second part (Chapters  2 and  3 ) establishes the foundation for

resilient distributed convex optimization by analyzing the properties of the sum of convex

functions. The third part (Chapters  4 and  5 ) presents a set of scalable algorithms with

theoretical guarantees for different cases. Finally, Chapter 6 concludes our work and provides

directions for future research.
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ABSTRACT

The advent of advanced communication technologies has given rise to large-scale networks

comprised of numerous interconnected agents, which need to cooperate to accomplish various

tasks, such as distributed message routing, formation control, robust statistical inference, and

spectrum access coordination. These tasks can be formulated as distributed optimization

problems, which require agents to agree on a parameter minimizing the average of their

local cost functions by communicating only with their neighbors. However, distributed

optimization algorithms are typically susceptible to malicious (or “Byzantine”) agents that do

not follow the algorithm. This thesis offers analysis and algorithms for such scenarios. As the

malicious agent’s function can be modeled as an unknown function with some fundamental

properties, we begin in the first two parts by analyzing the region containing the potential

minimizers of a sum of functions. Specifically, we explicitly characterize the boundary of this

region for the sum of two unknown functions with certain properties. In the third part, we

develop resilient algorithms that allow correctly functioning agents to converge to a region

containing the true minimizer under the assumption of convex functions of each regular

agent. Finally, we present a general algorithmic framework that includes most state-of-the-

art resilient algorithms. Under the strongly convex assumption, we derive a geometric rate

of convergence of all regular agents to a ball around the optimal solution (whose size we

characterize) for some algorithms within the framework.
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1. INTRODUCTION

1.1 Motivation

Optimization has been an important tool in various fields, including machine learning [ 1 ],

signal processing [  2 ], control theory, [ 3 ]–[ 5 ], and robotics [ 6 ]–[ 8 ]. Given an objective function

to be optimized, there are several standard algorithms that can be applied to find the optimal

variables [  9 ]–[ 12 ]. However, recent advances in communication technologies have given rise

to the study of distributed optimization problems which can be traced back to the works

related to parallel and distributed computation [  13 ], [  14 ]. Their applications include machine

learning [  9 ], [  15 ]–[ 17 ], control of large-scale systems [ 18 ]–[ 20 ], and cooperative robotic systems

[ 21 ], [ 22 ]. In these settings, each node in a network has data which is commonly assumed

to be private and represented as a convex function. The objective of the network is to

collaboratively determine the minimizer of the sum of these functions. In order to tackle

the task, several algorithms have been proposed, including [  23 ]–[ 28 ], under some common

assumptions on the functions such as strongly convexity or bounded gradients. However,

these existing works typically make the assumption that all agents are trustworthy and

cooperative (i.e., they follow the prescribed protocol) [ 29 ]; indeed, such protocols fail if even

a single agent behaves in a malicious or incorrect manner [  30 ].

As security becomes a more important consideration in large scale systems, a handful

of recent papers have considered fault tolerant algorithms for the case where agent misbe-

havior follows specific patterns [  31 ], [  32 ]. Nevertheless, a more general (and serious) form

of misbehavior is captured by the Byzantine adversary model from computer science, where

misbehaving agents can send arbitrary (and conflicting) values to their neighbors at each

iteration of the algorithm. Under such Byzantine behavior, it has been shown that it is

impossible to guarantee computation of the true optimal point [ 30 ], [  33 ]. Thus, it is crucial

to analyze properties of the solution and develop algorithms that are resilient to agents that

do not follow the prescribed algorithm.
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1.2 Related Works

In the situation when the network contains Byzantine nodes which arbitrarily deviate

from the prescribed algorithm, it is shown that all regular nodes will fail to achieve the true

minimizer regardless of the implemented algorithm [  30 ], [  34 ]. To overcome the issue, one

possible direction is to consider robust optimization, where the objective function contains

some parametric uncertainty, and the goal is to choose the optimization variable to be robust

to the possible realizations of the uncertainty [  35 ]–[ 37 ]. The problem that we consider in

Chapter  2 and Chapter  3 also has a similar flavor, in that we assume that the optimization

objective is not fully known. However, rather than seeking to find a single solution that

is simultaneously robust to all possible realizations of the uncertain parameter (or learning

that parameter [ 37 ]), we instead seek to characterize the region where the minimizer could

lie for each possible realization of the uncertainty. This approach has the potential to yield

valuable insights into the nature of the possible solutions to the given uncertain optimization

problems. By identifying the region in which the true minimizer can lie (potential solution

region), we can better evaluate the effectiveness of resilient distributed optimization algo-

rithms. Moreover, this knowledge would offer central servers a way to combine machine

learning models in the context of federated learning setups [  38 ], [  39 ].

Another potential direction is to construct algorithms that allow the non-faulty nodes

to converge to a certain region (possibly containing the solution) [  33 ], [ 40 ]. However, one

major limitation of the works in this direction [ 30 ], [  34 ], [  41 ] is that they make the assump-

tion of scalar-valued objective functions, and the extension of the above ideas to general

multi-dimensional functions remains largely open. In fact, one major challenge for minimiz-

ing multi-dimensional functions is that the region containing the minimizer of the sum of

functions is itself difficult to characterize. Specifically, in contrast to the case of scalar func-

tions, where the global minimizer always lies within the smallest interval containing all local

minimizers [ 30 ], the region containing the minimizer of the sum of multi-dimensional func-

tions may not necessarily be in the convex hull of the minimizers as shown in the analytical

characterization and numerical experiments from Chapter  2 and Chapter  3 .
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There exists a branch of literature focusing on secure distributed machine learning in

a client-server architecture [ 42 ], [  43 ], where the server appropriately filters the information

received from the clients. The papers [  44 ], [ 45 ] consider a vector version of the resilient ma-

chine learning problem in a distributed (peer-to-peer) setting. These papers show that the

states of regular nodes will converge to the statistical minimizer with high probability (as

the amount of data of each node goes to infinity), but the analysis is restricted to i.i.d train-

ing data across the network. However, when each agent has a finite amount of data, these

algorithms are still vulnerable to sophisticated attacks as shown in [  46 ]. The recent work [  47 ]

considers a Byzantine distributed optimization problem for multi-dimensional functions, but

relies on redundancy among the local functions, and also requires the underlying communi-

cation network to be complete. These previous works assume either specific functions or a

restricted network topology. Hence, we consider developing resilient algorithms applicable

for functions with several variables with convergence guarantees under less restrictions on

both network topology and function properties in Chapter  4 .

In addition to the issue of scalability, much of the existing research demonstrates only

asymptotic convergence results for proposed algorithms, or fails to provide any convergence

analysis at all. In particular, while some algorithms, such as those proposed in [ 48 ], [ 49 ],

have shown promising numerical results, they lack rigorous theoretical analysis. Others,

including [  30 ], [  33 ], [  45 ], [  50 ]–[ 52 ] which rely on a simple distributed gradient descent al-

gorithm equipped with extreme value-based filtering, provide only asymptotic convergence

results. To address these gaps, we propose an algorithmic framework that includes several

state-of-the-art resilient distributed optimization algorithms in the literature as well as our

algorithms in Chapter  4 , and provide finite-time convergence analysis (including convergence

rate) for this set of algorithms, under a mild assumption on the local functions. Our analysis

not only provides finite-time convergence analysis for existing algorithms, but also proposes

a simple and easily-checkable sufficient condition for ensuring geometric convergence. This

work is presented in detail in Chapter  5 .
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1.3 Main Contributions

1.3.1 The Minimizer of the Sum of Two Strongly Convex Functions

In Chapter  2 , we first argue that identification of the region containing the minimizer of

multi-dimensional functions under mild assumptions on two unknown functions is challenging

as the potential solution region is neither contained in the smallest hyperrectangle contains

their local minimizers nor the convex hull of their local minimizers. Subsequently, we thor-

oughly study the potential solution region of the sum of two unknown multi-dimensional

functions. Our main contributions are summarized as follows.

(i) We characterize a region containing all valid minimizers for the sum of two arbitrary

strongly convex functions in which we call an outer approximation (Section  2.4 ). In

fact, the outer approximation comes from a geometrical relationship derived by using

the first-order necessary conditions for minimizers.

(ii) We characterize a region where every point is a valid minimizer for the sum of two arbi-

trary strongly convex functions in which we call an inner approximation (Section  2.5 ).

This inner approximation can be obtained from analyzing quadratic functions with

positive curvature (Section  2.5.1 ). Similar to the outer approximation case, we provide

the characterization for all distances between the minimizers of two strongly convex

function.

(iii) Lastly, we identify the region containing the minimizer of the sum of two arbitrary

strongly convex functions by noticing that the inner approximation essentially almost

coincides with the outer approximation. More precisely, we provide equations that

characterize the boundary of such region (Section  2.6 ).

1.3.2 On the Set of Possible Minimizers of a Sum of Known and Unknown
Functions

Since in many applications, it may be the case that the objective function is only par-

tially known, we instead seek to characterize the region where the minimizer could lie for

each possible realization of the uncertainty. This approach has the potential to yield insights
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regarding the nature of the possible solutions to the given uncertain optimization problem.

In contrast to Chapter  2 , we shall consider the case of optimizing a sum of known and un-

known functions where only limited information about the unknown function is available in

Chapter  3 . In this case, we are given some general characteristics of the unknown function,

namely a region containing the minimizer, and the strong convexity parameter of the func-

tion. Our goal is to determine necessary conditions for a point to be a minimizer of the sum.

In particular, we will determine a region where the potential minimizer of the sum can lie.

Thus, if a point from within this region is chosen as an estimate of the true minimizer of

the sum, the size of the region can be used to quantify how far the estimate can be from the

true minimizer. Our main contributions are summarized as follows.

(i) We provide a necessary condition for a point to be a potential minimizer of the sum

in the case that the uncertainty region is a compact set (Section  3.4 ). Essentially, the

analysis is based on the first-order necessary conditions for minimizers.

(ii) We provide a necessary condition for a point to be a potential minimizer of the sum

in the case that the uncertainty region is a ball (Section  3.5 ). In addition, it is com-

putationally cheaper to verify such condition than the previous case.

(iii) In Section  3.6 , we present an algorithm (Algorithm  1 ) to provide an over-approximation

of the potential solution set in the case that the uncertainty region is a ball.

1.3.3 Scalable Distributed Optimization of Multi-Dimensional Functions De-
spite Byzantine Adversaries

While in Chapter  2 and Chapter  3 , we consider the problems of potential locations of the

minimizer of the sum of functions, in Chapter  4 , we consider Byzantine-resilient distributed

optimization algorithms. Most of the previous algorithms either are applicable to single-

dimensional functions [  30 ], [ 34 ], [ 41 ] or require some restricted conditions on the functions

[ 44 ], [  45 ] or communication network [ 47 ]. In this work, we focus on scalable Byzantine-

resilient distributed optimization algorithms (i.e., applicable to high-dimensional functions)

with mild assumptions on the network topology. Our main contributions are summarized as

follows.
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(i) We propose two multi-dimensional resilient distributed algorithms (Algorithm  2 and

Algorithm  3 ). Algorithm  2 employs two types of filters: a distance-based filter and

min-max filter while Algorithm  3 utilizes only a distance-based filter.

(ii) For the first algorithm (Algorithm  2 ), we show that the states of regular agents can

asymptotically reach consensus. Furthermore, we provide convergence guarantees for

both algorithms irrespective of the actions of Byzantine agents (Section  4.4 ). In par-

ticular, both algorithms have the asymptotic convergence to the same region and we

explicitly characterize to size of this region. Even though Algorithm  3 does not have

consensus guarantee, it requires a more relaxed condition on the network topology, and

thus, it is more scalable.

(iii) We demonstrate the performance of both algorithms by providing the results from a

synthetic quadratic functions task and a machine learning task (banknote authenti-

cation task) (Section  4.6 ) and empirically show that the states of the regular agents

can get reasonably closed to the optimal solution even in the presence of sophisticated

Byzantine agents.

1.3.4 On the Geometric Convergence of Byzantine-Resilient Distributed Opti-
mization Algorithms

In Chapter  5 , we consider Byzantine-resilient (peer-to-peer) distributed deterministic

optimization problems as in Chapter  4 . However, in this work, we consider different as-

sumptions on the local functions. Specifically, we examine smooth, strongly convex local

functions in Chapter  5 in contrast to general convex local functions with bounded gradients

in Chapter  4 . Furthermore, we focus on analyzing convergence properties of existing algo-

rithms (including the algorithms proposed in Chapter  4 ) instead of proposing a new resilient

algorithm. Our contributions are as follows:

(i) We introduce an algorithmic framework called REDGRAF, a generalization of BRIDGE

in [  45 ], which includes some state-of-the-art Byzantine-resilient distributed optimiza-

tion algorithms as special cases.
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(ii) We propose a novel contraction property which we show provides a general method for

proving geometric convergence of algorithms in REDGRAF. To the best of our knowledge,

our work is the first to provide a geometric rate of convergence of all regular agents’

states to a ball containing the true minimizer for a class of resilient algorithms under the

strong convexity assumption. In addition, we explicitly characterize the convergence

rate and the size of the convergence region.

(iii) We introduce a general mixing dynamics property which is used to derive approximate

consensus results for algorithms in REDGRAF in which both the convergence rate and

the final consensus diameter are explicitly characterized.

(iv) Using our framework, we analyze the contraction and mixing dynamics properties of

some state-of-the-art algorithms, leading to convergence and consensus results for each

algorithm. Our work is the first to show the finite-time convergence result for some

existing resilient algorithms.

(v) We demonstrate and compare the performance of the resilient algorithms through

numerical simulations to corroborate the theoretical results for convergence and ap-

proximate consensus.
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2. THE MINIMIZER OF THE SUM OF TWO STRONGLY

CONVEX FUNCTIONS

© 2022 IEEE. Reprinted, with permission, from [K. Kuwaranancharoen and S. Sundaram,

“On the Location of the Minimizer of the Sum of Two Strongly Convex Functions,” in

IEEE/2018 IEEE Conference on Decision and Control (CDC), pp. 1769-1774, Jan. 2019,

DOI: 10.1109/CDC.2018.8619735].

2.1 Introduction

The problem of optimizing a sum of functions arises in a variety of applications, including

machine learning [  9 ], [ 15 ], [ 16 ], control of large-scale systems [ 18 ], [ 19 ], and cooperative

robotic systems [ 21 ], [ 22 ]. In these settings, each node in a network is assumed to possess

a convex function. There are many proposed algorithms to find the minimizer of the sum

of these functions [  23 ]–[ 27 ], under some common assumptions such as the functions being

strongly convex and the gradients being bounded.

In some cases, the exact functions themselves may not be fully known, and only certain

characteristics (such as minimizer and convexity parameters) may be known. In this case, it

is of interest to understand the potential set of minimizers of the sum of functions, despite

this limited knowledge of the individual functions. For example, in resilient distributed

optimization settings [  30 ], [ 40 ], the network contains malicious nodes that do not follow

the distributed optimization algorithm and one cannot guarantee that all nodes calculate

the true minimizer. Instead, one must settle for algorithms that allow the non-malicious

nodes to converge to a certain region [ 33 ], [  53 ]. In such situations, knowing the region where

the minimizer can lie would allow us to evaluate the efficacy of such resilient distributed

optimization algorithms. Another example involves the scenario where two similar machine

learning models trained on similar data are combined to achieve a common goal. However,

due to privacy concerns [ 54 ], the datasets used to train these models may not available

directly, which means we know the minimizer of each function for inference but not the

function itself. In this case, it is of interest to obtain a potential new minimizer, i.e., a
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combined machine learning model, which could offer enhanced performance for the original

inference task. More specifically, consider a federated learning setup [ 38 ], [ 39 ] with two

clients, each with access to local data. Each client, denoted by i, obtains a local optimal

parameter x∗
i that minimizes its own loss function fi. Now, if each client only reports x∗

i to

a server, can the server determine the set of potential optimal parameters for the combined

loss function f1 + f2, based solely on the information it has (i.e., x∗
1, x∗

2, and knowledge of

the convexity properties of f1 and f2)?

When the local functions fi at each node vi are univariate (i.e., fi : R → R), and

strongly convex, it is easy to argue that the minimizer of the sum must lie in the interval

bracketed by the smallest and largest minimizers of the functions [  30 ]. This is because the

gradients of all the functions will have the same sign outside that region, and thus cannot

sum to zero. However, a similar characterization of the region containing the minimizer of

multivariate functions is lacking in the literature, and is significantly more challenging to

obtain. For example, the conjecture that the minimizer of a sum of convex functions is in the

convex hull of their local minimizers can be easily disproved via simple examples; consider

f1(x, y) = x2 − xy + 1
2y

2 and f2(x, y) = x2 + xy + 1
2y

2 − 4x− 2y with minimizers (0, 0) and

(2, 0) respectively, whose sum has minimizer (1, 1). In our recent work [ 55 ], we studied this

problem and provided an outer approximation on the region containing the minimizer of two

strongly convex functions in a specific case; this region is determined by the minimizers of

the individual functions, their strong convexity parameters, and the specified bound on the

norms of the gradients of the functions at the location of the minimizer.

In this chapter, our goal is to characterize an outer approximation (i.e., a region

containing all valid minimizers) as well as an inner approximation (i.e., a region

where every point is a valid minimizer) for the sum of two unknown strongly

convex functions. More specifically, we provide an outer approximation that is more

general than the one given in [ 55 ]. As we will see, the inner approximation essentially

almost coincides with the outer approximation. More precisely, the boundary of both outer

and inner approximations are the same under the assumption that the gradients of the

two original functions are bounded by a finite number at the potential minimizer of the

sum. Thus, our analysis in this chapter complements and completes the analysis in [ 55 ] by
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fully characterizing the region containing the minimizer of the sum of two strongly convex

functions. While the analysis is complicated even for this scenario involving two functions,

our analysis provides insights that could be leveraged in future work to tackle the sum of

multiple functions.

This chapter is organized as follows. The notations used throughout this chapter and

preliminaries are provided in Section  2.2 . The problem formulation is in Section  2.3 . Our

main results regarding the outer approximation are in Section  2.4 , our analysis of the inner

approximation and potential solution region is in Section  2.5 , and the conclusions follow in

Section  2.7 .

2.2 Preliminaries

2.2.1 Sets

Let R denotes the set of real numbers. We denote by Rn the n-dimensional Euclidean

space. For a subset E of a topological space, we denote the complement, closure and interior

of a set E by Ec, E and E◦, respectively. The boundary of E is defined as ∂E = E \ E◦. We

also use dom(f) to denote the domain of function f . In addition, we use t to denote the

disjoint union operation. We will use this simple lemma later in this chapter.

Lemma 2.2.1. Let G and H be subsets of a topological space X such that G ⊆ H. Let P be

a partition of H. Then,

G◦ =
⊔

Z∈P

(
(G ∩ Z) \ (∂G ∩ Z)

)
.

Proof. For Z ∈ P, since G ∩ Z ∩ Zc = ∅, we have

G◦ ∩ Z = (G ∩ (∂G)c ∩ Z) ∪ (G ∩ Z ∩ Zc) = (G ∩ Z) ∩ (∂G ∩ Z)c = (G ∩ Z) \ (∂G ∩ Z).

Using the above equation, we can write

G◦ =
⊔

Z∈P

(G◦ ∩ Z) =
⊔

Z∈P

(
(G ∩ Z) \ (∂G ∩ Z)

)
.
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2.2.2 Linear Algebra

For simplicity, we often use (x1, . . . , xn) and [x1 x2 · · · xn]ᵀ to represent the column

vector x. We use 0 to denote the all-zero vector with appropriate dimension and ei to

denote the i-th basis vector (the vector of all zeros except for a one in the i-th position).

We denote by 〈u,v〉 the Euclidean inner product of vectors u and v, i.e., 〈u,v〉 := uᵀv, by

‖u‖ the Euclidean norm of u, i.e., ‖u‖ :=
√
〈u,u〉 = (∑i u

2
i )1/2. We define the functions

∠ : (Rn \ {0})× (Rn \ {0})→ [0, π] and ] : (R2 \ {0})× (R2 \ {0})→
[
− π

2 ,
π

2

]
as

∠(u,v) := arccos
(
〈u,v〉
‖u‖‖v‖

)
and ](u,v) := arcsin

(
u2v1 − u1v2

‖u‖‖v‖

)
, (2.1)

respectively. Note that ∠(u,v) = ∠(v,u) but ](u,v) = −](v,u). We use

B(x0, r0) := {x ∈ Rn : ‖x− x0‖ < r0} (2.2)

and B(x0, r0) to denote the open and closed balls, respectively, in Rn centered at x0 ∈ Rn

and with radius r0 ∈ R>0. We use I to denote the identity matrix of appropriate dimension.

For square matrix A ∈ Rn×n, we use λ(A), λmin(A) and Tr(A) to denote an eigenvalue, the

minimum eigenvalue and the trace of matrix A, respectively. For A ∈ Rm×n, we use R(A)

and N (A) to denote the column space and null space of matrix A, respectively.

2.2.3 Convex Sets and Functions

A set C ⊆ Rn is said to be convex if, for all x and y in C and all t in the interval (0, 1),

the point (1− t)x+ ty also belongs to C. A differentiable function f is called strongly convex

with parameter σ ∈ R>0 (or σ-strongly convex) if

〈∇f(x)−∇f(y), x− y〉 ≥ σ‖x− y‖2 (2.3)
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holds for all points x,y in its domain. We use S(x∗, σ) to denote the set of all differentiable

and σ-strongly convex functions that have their minimizer at x∗ ∈ Rn. Define Sn to be the

set of symmetric matrices in Rn×n, and Qn to be the set of all quadratic functions that map

Rn to R. A quadratic function f ∈ Qn parameterized by Q ∈ Sn, b ∈ Rn, and c ∈ R is given

by

f(x; Q, b, c) = 1
2xᵀQx + bᵀx + c.

For x∗ ∈ Rn and σ ∈ R>0, define

Q(n)(x∗, σ) :=
{
f(x; Q, b, c) ∈ Qn : λmin(Q) = σ, Qx∗ = −b

}
. (2.4)

We will omit the superscript (n) of Q(n) when it is clear from contexts. Note that every

function in Q(x∗, σ) is σ-strongly convex quadratic and has the minimizer at x∗, and

Q(x∗, σ) ⊂
⋃

σ̃≥σ

Q(x∗, σ̃) ⊂ S(x∗, σ). (2.5)

The following lemma shows that the strong convexity of functions is invariant under

some particular affine transformations. This property will help us to simplify the analysis

throughout this chapter.

Lemma 2.2.2. Let A ∈ Rn×n be an orthogonal matrix and b ∈ Rn. Suppose f : Rn → R is

a differentiable function and define h(x) = f(Ax + b). Then, f is σ-strongly convex if and

only if h is σ-strongly convex.

Proof. By the definition of strongly convex functions in ( 2.3 ), we have that

〈∇f(x)−∇f(y), x− y〉 ≥ σ‖x− y‖2 for all x,y ∈ Rn.

Since A is invertible, we can replace x and y by Ax + b and Ay + b, respectively, and the

above inequality is equivalent to

〈
∇f(Ax + b)−∇f(Ay + b), A(x− y)

〉
≥ σ‖A(x− y)‖2 for all x,y ∈ Rn. (2.6)
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Since ∇h(x) = Aᵀ∇f(Ax + b), we can rewrite the LHS of (  2.6 ) as
〈
Aᵀ
(
∇f(Ax + b) −

∇f(Ay + b)
)
, x − y

〉
= 〈∇h(x) − ∇h(y), x − y〉. On the other hand, since A is an

orthogonal matrix, the RHS of ( 2.6 ) becomes σ‖x− y‖2.

2.3 Problem Formulation

Consider two (unknown) functions f1 and f2. In order to investigate the minimizer of

the sum of two unknown functions f1 + f2, we will impose the following assumptions on the

structure of both functions.

1. Given σ1, σ2 ∈ R>0, the functions f1 : Rn → R and f2 : Rn → R are differentiable and

strongly convex with parameters σ1 and σ2, respectively.

2. Given x∗
1,x

∗
2 ∈ Rn, the minimizers of f1 and f2 are at x∗

1 and x∗
2, respectively.

3. Suppose x∗ ∈ Rn is the minimizer of f1 + f2. There is a finite (given) number L ∈ R>0

such that the norm of gradient of f1 and f2 evaluated at x∗ is less than L.

Assumption  1 and  2 will be captured using the notations introduced earlier: f1 ∈ S(x∗
1, σ1)

and f2 ∈ S(x∗
2, σ2). For Assumption  3 , since x∗ is the minimizer of f1 + f2, we have that

∇f1(x∗) = −∇f2(x∗). In addition, we can rewrite the bounded gradient at x∗ condition as

‖∇f1(x∗)‖ = ‖∇f2(x∗)‖ ≤ L. Essentially, our goal is to estimate the region M containing

all possible values x∗ satisfying the above conditions. More specifically, given x∗
1,x

∗
2 ∈ Rn,

σ1, σ2 ∈ R>0, and L ∈ R>0, we wish to estimate the potential solution region

M(x∗
1,x

∗
2, σ1, σ2, L) :=

{
x ∈ Rn : ∃f1 ∈ S(x∗

1, σ1), ∃f2 ∈ S(x∗
2, σ2),

∇f1(x) = −∇f2(x), ‖∇f1(x)‖ = ‖∇f2(x)‖ ≤ L
}
. (2.7)

For simplicity of notation, we will omit the argument of the set M(x∗
1,x

∗
2, σ1, σ2, L) and

write it as M.
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2.3.1 Discussion of Assumptions

Functions that satisfy both differentiable and strongly convex conditions (Assumption

 1 ) are common in many applications. In machine learning applications, for example, linear

regression and logistic regression models with L2-regularization are commonly used when

only a small amount of training data is available [ 1 ].

Assumption  2 can be generalized by assuming that for i ∈ {1, 2}, the minimizer x∗
i of

the function fi is not available but instead x∗
i is located in a known compact set Ai ⊂ Rn as

in [  56 ]. However, the analysis will be more involved, so we defer these assumptions to our

future works.

Assumption  3 is a technical assumption. Given x∗
1,x

∗
2 ∈ Rn such that x∗

1 6= x∗
2, let

L =
{
x ∈ Rn : there exists k ∈ R \ (−1, 1) such that x− x∗

1 = k(x∗
2 − x∗

1)
}
.

Without Assumption  3 , i.e., the norm of the gradient of each function at the minimizer of

the sum can be arbitrarily large, one can use the result from Proposition  2.5.1 to show that

M = Rn \ L. We can see that for n ∈ N \ {1}, the set L has measure zero and hence, M

covers almost the entire space. In other words, almost all points can be minimizers. One

can think of imposing the bound on the gradients as one of the ways to implicitly limit

the functions that we can choose from S(x∗
1, σ1) and S(x∗

2, σ2). However, there might be

other ways to restrict the class of functions that we can select, for example, considering

the functions that have Lipschitz continuous gradients in addition to Assumptions  1 and

 2 . For now, we restrict ourselves to the simpler assumption, Assumption  3 , and leave such

alternative assumptions for future work.

2.3.2 A Preview of the Solution

Recall the definition of the potential solution region M from ( 2.7 ). One way to charac-

terize the set M is to provide an explicit formula for the boundary ∂M in terms of x∗
1, x∗

2,

σ1, σ2 and L. In Fig.  2.1 , we provide a preview of the boundary ∂M in R2 given fixed param-

eters σ1 = 1.5, σ2 = 1, and L = 10, and a variable parameter r ∈ R>0. Suppose x∗
1 = (−r, 0)
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(a) For r = 2, ∂M consists
of 1 curve (blue curve) and
{x∗

1, x∗
2}.

(b) For r = 4, ∂M consists of 2
curves (blue and cyan curves)
and {x∗

1}.

(c) For r = 6, ∂M consists of
3 curves (blue, cyan and ma-
genta curves).

Figure 2.1. The boundary ∂M in R2 is plotted given minimizers x∗
1 = (−r, 0)

and x∗
2 = (r, 0) and fixed parameters σ1 = 1.5, σ2 = 1, and L = 10. Different

colors denote different equations that combine together to yield the boundary
∂M.

and x∗
2 = (r, 0). We illustrate ∂M for the case where r = 2, 4, and 6 in Fig.  2.1a , Fig.  2.1b 

and Fig.  2.1c , respectively. The different colors in the figures indicate different equations

that combine together to yield the boundary (as we will explicitly characterize in the rest of

this chapter).

2.3.3 Solution Approach

Since the analysis of the case x∗
1 = x∗

2 is trivial (i.e., the potential solution region is

M = {x∗
1}), without loss of generality, we assume that x∗

1 = (−r, 0, . . . , 0) ∈ Rn and

x∗
2 = (r, 0, . . . , 0) ∈ Rn with r = 1

2‖x
∗
2 − x∗

1‖ > 0.

To show this, given general x∗
1,x

∗
2 ∈ Rn with x∗

1 6= x∗
2, let the set of new bases J =

{e′
1, e

′
2, . . . , e

′
n} be such that e′

1 = x∗
2−x∗

1
‖x∗

2−x∗
1‖ and {e′

2, e
′
3, . . . , e

′
n} is obtained by Gram-Schmidt

orthogonalization. Let

E =
[
e′

1 e′
2 · · · e′

n

]
and b = 1

2(x∗
1 + x∗

2).

We let xJ = Eᵀ(x − b) be the coordinate transformation. One can verify that if x = x∗
1

then xJ =
(
− 1

2‖x
∗
2−x∗

1‖, 0
)

= (−r,0) and if x = x∗
2 then xJ =

(
1
2‖x

∗
2−x∗

1‖, 0
)

= (r,0).

For i ∈ {1, 2}, let f̃i : Rn → R be the function such that f̃i(xJ ) = fi(x) for all x ∈ Rn,
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i.e., f̃i’s value at the coordinate of point x on the new bases J is the same as fi at point

x. We can write f̃i(x) = fi(Ex + b) for i ∈ {1, 2}. Applying Lemma  2.2.2 , we have that

f̃i is σi-strongly convex for i ∈ {1, 2}. Once we attain the potential solution region M in

terms of xJ , we can always use the transformation to obtain the region in terms of x, i.e.,

the original coordinate system.

For convenience, we introduce the shorthand notation of sets that will be encountered

throughout this chapter. Recall the definition of B from ( 2.2 ). For i ∈ {1, 2}, define

Bi := B
(

x∗
i ,
L

σi

)
. (2.8)

Now, we introduce the functions that will be used to define the outer and inner approxima-

tions of M. For i ∈ {1, 2}, define the functions φ̃i : Bi →
[
0, π

2

]
to be such that

φ̃i(x) := arccos
(
σi

L
‖x− x∗

i ‖
)
, (2.9)

and the functions αi : Rn \ {x∗
i } → [0, π] to be such that

αi(x) := ∠(x− x∗
i , x∗

2 − x∗
1), (2.10)

i.e., the angle between vectors x − x∗
i and x∗

2 − x∗
1. Note that α2(x) ≥ α1(x) for all

x ∈ Rn \ {x∗
1,x

∗
2} due to the assumption that x∗

1 = (−r,0) and x∗
2 = (r,0). We define

ψ : Rn \ {x∗
1,x

∗
2} → [0, π] to be the function such that

ψ(x) := π−
(
α2(x)− α1(x)

)
. (2.11)

The interpretation of the angles φ̃i(x) and ψ(x) will be clarified later (in Fig.  2.2 ). In

addition, given x∗
1,x

∗
2 ∈ Rn, σ1, σ2 ∈ R>0, and L ∈ R>0, we define

X :=


{

x ∈ Rn : ‖x− x∗
i ‖ = L

σi
for all i ∈ {1, 2}

}
if ‖x∗

2 − x∗
1‖ = L

(
1

σ1
+ 1

σ2

)
,

∅ otherwise.
(2.12)
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Due to the assumption that x∗
1 = (−r,0) and x∗

2 = (r,0), for ‖x∗
2 − x∗

1‖ = L
(

1
σ1

+ 1
σ2

)
, we

have X =
{(
− r + L

σ1
, 0
)}

.

With these definitions in place, given x∗
1,x

∗
2 ∈ Rn, σ1, σ2 ∈ R>0, and L ∈ R>0, we define

the outer and inner approximations of M as

M↑(x∗
1,x

∗
2, σ1, σ2, L) :=

{
x ∈ Rn : φ̃1(x) + φ̃2(x) ≥ ψ(x)

}
(2.13)

and

M↓(x∗
1,x

∗
2, σ1, σ2, L) :=

{
x ∈ Rn : φ̃1(x) + φ̃2(x) > ψ(x)

}
∪ X , (2.14)

respectively. As before, we will omit the argument of the sets M↑(x∗
1,x

∗
2, σ1, σ2, L) and

M↓(x∗
1,x

∗
2, σ1, σ2, L), and write them as M↑ and M↓, respectively.

Remark 1. Recall the definition of φ̃i for i ∈ {1, 2} and ψ from (  2.9 ) and (  2.11 ), respectively.

Since M↑ and M↓ are defined using φ̃1, φ̃2 and ψ, implicitly, they must be subsets of

dom(φ̃1) ∩ dom(φ̃2) ∩ dom(ψ). In other words, the sets M↑ ⊆ (B1 ∩ B2) \ {x∗
1,x

∗
2} and

M↓ ⊆ (B1 ∩ B2) \ {x∗
1,x

∗
2} where Bi for i ∈ {1, 2} are defined in (  2.8 ).

In order to characterize the potential solution region M, we proceed as follows. First,

in Proposition  2.4.1 , we show that M ⊆ M↑ by considering a property of strongly convex

functions. Then, we characterize the boundary and interior of the outer approximation

(∂M↑ and (M↑)◦) for each value of r in Theorem  2.4.8 . In Proposition  2.5.1 , we consider

quadratic functions and show thatM↓ ⊆M in Proposition  2.5.2 . We use a similar approach

as in Theorem  2.4.8 to characterize the boundary and interior of the inner approximation

(∂M↓ and (M↓)◦) for each value of r which is presented in Theorem  2.5.2 . Finally, by

observing that ∂M↑ = ∂M↓ and (M↑)◦ = (M↓)◦ from Theorem  2.4.8 and Theorem  2.5.2 , we

conclude the chapter by showing that, in fact, the boundary of the potential solution region,

outer approximation, and inner approximation are identical, i.e., ∂M = ∂M↑ = ∂M↓, in

Theorem  2.6.1 .
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2.4 Outer Approximation

In this section, we derive necessary conditions for a point to be in the potential solution

region M and show that M ⊆ M↑ in Proposition  2.4.1 . Then, we explicitly characterize

an important part of ∂M↑ (and also ∂M↓) in Proposition  2.4.2 . In Theorem  2.4.8 , which is

the main result of this section, we identify ∂M↑ and (M↑)◦, and also provide a property of

M↑. Other lemmas in this section are presented as tools that will be utilized in the proof of

Theorem  2.4.8 (and also Theorem  2.5.2 ).

We will be using the following functions throughout our analysis. For i ∈ {1, 2}, define

ui : Rn \ {x∗
i } → Rn to be the function such that

ui(x) := x− x∗
i

‖x− x∗
i ‖
, (2.15)

i.e., the unit vector in the direction of x−x∗
i . Recall the definition of ∠(·, ·) from (  2.1 ). For

i ∈ {1, 2}, we define φi : Rn \ {x∗
i } →

[
0, π

2

]
to be the function such that

φi(x) := ∠
(
∇fi(x), ui(x)

)
, (2.16)

and Li : Rn → R to be the function such that

Li(x) := σi‖x− x∗
i ‖. (2.17)

Note that for i ∈ {1, 2}, the quantity Li(x) is a lower bound on the norm of the gradient of

fi at x ∈ Rn if fi ∈ S(x∗
i , σi).

In Fig.  2.2 , we illustrate the definition of ui, φi, φ̃i, αi for i ∈ {1, 2}, and ψ. More-

over, we illustrate the inequality φ̃1(x) + φ̃2(x) ≥ ψ(x) which is used to describe the outer

approximation M↑ in ( 2.13 ).

In the following proposition, we show a crucial result that the setM↑ covers the set that

we want to characterize, M. In other words, the points in the set M↑ satisfy necessary

conditions of a point to be a minimizer of the sum f1 + f2.
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Proposition 2.4.1. Suppose the setsM andM↑ are defined as in ( 2.7 ) and ( 2.13 ), respec-

tively. Then, M⊆M↑.

Proof. Recall the definition of the sets Bi for i ∈ {1, 2}, the angles φ̃i for i ∈ {1, 2}, and the

angle ψ from (  2.8 ), (  2.9 ), and (  2.11 ), respectively. First, we want to show that the necessary

conditions for a point x ∈ Rn \ {x∗
1,x

∗
2} to be in M are

(i) x ∈ B1 ∩ B2, and

(ii) φ̃1(x) + φ̃2(x) ≥ ψ(x).

From the definition of strongly convex functions in (  2.3 ), we have

〈
∇fi(x)−∇fi(y), x− y

〉
≥ σi‖x− y‖2

for all x,y ∈ Rn and for i ∈ {1, 2}. For i ∈ {1, 2}, recall the definition of ui(x) and

φi(x) from ( 2.15 ) and (  2.16 ), respectively. Since x∗
1 and x∗

2 are the minimizers of f1 and f2,

respectively, for x /∈ {x∗
1,x

∗
2}, we get

〈
∇fi(x)−∇fi(x∗

i ), x− x∗
i

〉
≥ σi‖x− x∗

i ‖2,

⇔ ‖∇fi(x)‖ cos(φi(x)) = 〈∇fi(x), ui(x)〉 ≥ σi‖x− x∗
i ‖ > 0. (2.18)

Suppose x is a candidate minimizer. Then, we have that ‖∇fi(x)‖ ≤ L for i ∈ {1, 2} by our

assumption. Recall the definition of Li for i ∈ {1, 2} from (  2.17 ). Inequality ( 2.18 ) becomes

cos(φi(x)) ≥ σi

L
‖x− x∗

i ‖ = Li(x)
L

. (2.19)

If L1(x) > L or L2(x) > L, we have that x cannot be the minimizer of the function f1 + f2

since there is no φi(x) that can satisfy inequality (  2.19 ). Thus, a necessary condition for

x ∈ Rn \{x∗
1,x

∗
2} to be a minimizer of f1 +f2 is that Li(x) ≤ L for i ∈ {1, 2} or equivalently,

x ∈ B1 ∩ B2, yielding part  (i) of the claim. We now prove part  (ii) .
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From the definition of ψ(x) in (  2.11 ) and that ∠(−u1(x),−u2(x)), α1(x) and π−α2(x)

are the angles of the triangle formed by the points x, x∗
1 and x∗

2, we can write that for all

x ∈ Rn \ {x∗
1,x

∗
2},

ψ(x) = (π− α2(x)) + α1(x) = π− ∠(−u1(x),−u2(x)) = ∠(u1(x),−u2(x)). (2.20)

Suppose that x ∈ B1 ∩ B2. Recall the definition of φ̃i for i ∈ {1, 2} from ( 2.9 ). From

inequality (  2.19 ), we have φi(x) ≤ φ̃i(x) for i ∈ {1, 2}. If φ̃1(x) + φ̃2(x) < ψ(x), then using

( 2.16 ) and (  2.20 ), we have

∠(∇f1(x),u1(x)) + ∠(−∇f2(x),−u2(x)) < ∠(u1(x),−u2(x)).

However, using [  57 , Corollary 12], we can write ∠(u1(x),−u2(x)) ≤ ∠(∇f1(x),u1(x))

+∠(∇f1(x),−u2(x)). Therefore, if φ̃1(x)+ φ̃2(x) < ψ(x), we have that ∇f1(x) 6= −∇f2(x)

which implies that x is not the minimizer of f1 + f2. This means that one of the necessary

conditions is that φ̃1(x) + φ̃2(x) ≥ ψ(x) which completes the proof of the claim.

In the above analysis, we considered the case when x ∈ Rn\{x∗
1,x

∗
2}. We are left with the

case when x ∈ {x∗
1,x

∗
2}. From the definition of strongly convex functions, for all x,y ∈ Rn,

〈
∇f2(x)−∇f2(y), x− y

〉
≥ σ2‖x− y‖2.

Since x∗
2 is the minimizer of f2 and x∗

1 6= x∗
2, we get

〈
∇f2(x∗

1), x∗
1 − x∗

2

〉
=
〈
∇f2(x∗

1)−∇f2(x∗
2), x∗

1 − x∗
2

〉
≥ σ2‖x∗

1 − x∗
2‖2 > 0,

and thus, ∇f2(x∗
1) 6= 0. This implies that∇f2(x∗

1)+∇f1(x∗
1) 6= 0 and x∗

1 is not the minimizer

of f1 + f2. By using similar approach, we can also conclude that x∗
2 is not the minimizer of

f1 + f2.

Remark 2. The angle functions φ̃i and αi for i ∈ {1, 2} defined in ( 2.16 ) and (  2.10 ), respec-

tively, can be expressed as functions of the distances ‖x∗
1 − x∗

2‖, ‖x − x∗
1‖, and ‖x − x∗

2‖.
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(a) (b)

Figure 2.2. (a) The figure illustrates the definition of ui, φi, and φ̃i for
i ∈ {1, 2}. In particular, inequality (  2.19 ) implies that φi(x) ∈ [0, φ̃i(x)]
for i ∈ {1, 2}, i.e., the gradient vectors ∇f1(x) and ∇f2(x) must lie in the
corresponding shaded regions. (b) The figure illustrates the definition of αi

for i ∈ {1, 2} and ψ. In addition, the inequality φ̃1(x) + φ̃2(x) ≥ ψ(x) in M↑

means that there is an overlapping region (light green region in the figure)
caused by one shaded region and the mirror of the other shaded region.
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This means that the inequality φ̃1(x) + φ̃2(x) ≥ ψ(x) depends only on the distance among

three points x, x∗
1 and x∗

2. Since x∗
1 = (−r,0) and x∗

2 = (r,0), we conclude that the shape

of M↑ (and M↓) is symmetric around x1-axis.

From this point, we will denote x = (x1, x̃) ∈ Rn where x1 ∈ R and x̃ = (x2, x3, . . . , xn) ∈

Rn−1. Next, we will provide an algebraic expression for a certain portion of ∂M↑ (and ∂M↓)

based on the geometric equation φ̃1(x) + φ̃2(x) = ψ(x), where φ̃i for i ∈ {1, 2} and ψ are

defined in (  2.9 ) and (  2.11 ), respectively. For convenience, we define

d1(x) := ‖x− x∗
1‖ =

√
(x1 + r)2 + ‖x̃‖2 and

d2(x) := ‖x− x∗
2‖ =

√
(x1 − r)2 + ‖x̃‖2.

(2.21)

Define the set of points

T :=
{

x ∈ Rn : ‖x‖2 − r2

d2
1(x) · d2

2(x) + σ1σ2

L2 =

√√√√ 1
d2

1(x) −
σ2

1
L2 ·

√√√√ 1
d2

2(x) −
σ2

2
L2

}
. (2.22)

Proposition 2.4.2. The set T defined in ( 2.22 ) can equivalently be written as T =
{
x ∈

Rn : φ̃1(x) + φ̃2(x) = ψ(x)
}
.

Proof. Based on the definition of αi(x) for i ∈ {1, 2} in ( 2.10 ), for any point x ∈ Rn\{x∗
1,x

∗
2},

we have

x1 = d1(x) cos(α1(x))− r = d2(x) cos(α2(x)) + r,

⇔ cos(α1(x)) = x1 + r

d1(x) and cos(α2(x)) = x1 − r
d2(x) . (2.23)

Similarly,

‖x̃‖ = d1(x) sin(α1(x)) = d2(x) sin(α2(x)),

⇔ sin(α1(x)) = ‖x̃‖
d1(x) and sin(α2(x)) = ‖x̃‖

d2(x) . (2.24)
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Since φ̃i(x) ∈
[
0, π

2

]
for i ∈ {1, 2}, we get φ̃1(x) + φ̃2(x) ∈ [0, π]. Recall from ( 2.11 ) that

ψ(x) ∈ [0, π]. Since the cosine function is one-to-one for this range of angles, equation

φ̃1(x) + φ̃2(x) = ψ(x) is equivalent to

cos
(
φ̃1(x) + φ̃2(x)

)
= cos

(
π− (α2(x)− α1(x))

)
= − cos

(
α2(x)− α1(x)

)
.

Expanding this equation and substituting ( 2.23 ), (  2.24 ), and cos(φ̃i(x)) = σi

L
di(x) for i ∈

{1, 2}, we get

σ1

L
d1(x) · σ2

L
d2(x)−

√
1−

(
σ1

L
d1(x)

)2
·
√

1−
(
σ2

L
d2(x)

)2

= −x1 − r
d2(x) ·

x1 + r

d1(x) −
‖x̃‖
d2(x) ·

‖x̃‖
d1(x) .

Dividing the above equation by d1(x) · d2(x) and rearranging it yields the result.

The subsequent lemmas (Lemma  2.4.1 -  2.4.7 ) are useful ingredients for proving the

characterization of the outer approximation M↑ (defined in ( 2.13 )) given in Theorem  2.4.8 ,

and their proofs are provided in Appendix  A.1 .

The following lemma provides a sufficient condition for the minimizers x∗
1 and x∗

2 to be

on the boundary of the outer approximation M↑ and the inner approximation M↓.

Lemma 2.4.1. Let M↑ and M↓ be as defined in ( 2.13 ) and ( 2.14 ), respectively.

(i) If r ∈
(
0, L

2σ2

]
then x∗

1 ∈ ∂M↑ and x∗
1 ∈ ∂M↓.

(ii) If r ∈
(
0, L

2σ1

]
then x∗

2 ∈ ∂M↑ and x∗
2 ∈ ∂M↓.

In the next lemma, we provide a property of points in a particular set which will be

used to characterize the setsM↑ andM↓ defined in (  2.13 ) and ( 2.14 ), respectively. Roughly

speaking, if x ∈ M↑ and x1 ∈ [ − r, r], then each point that has the same first component

and is closer to the x1-axis is also in M↑.

Lemma 2.4.2. Consider two points x = (x1, x̃) and y = (y1, ỹ). Suppose −r ≤ x1 = y1 ≤ r

and ‖x̃‖ > ‖ỹ‖. If φ̃1(x) + φ̃2(x) ≥ ψ(x) then either φ̃1(y) + φ̃2(y) > ψ(y) or y ∈ {x∗
1,x

∗
2}.
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Recall the definition of B from (  2.8 ). Since x∗
1 = (−r,0) and x∗

2 = (r,0) by our assump-

tion, we can explicitly write ∂Bi for i ∈ {1, 2} as follows:

∂B1 = ∂B
(

x∗
1,
L

σ1

)
=
{

x ∈ Rn : (x1 + r)2 + ‖x̃‖2 = L2

σ2
1

}
,

∂B2 = ∂B
(

x∗
2,
L

σ2

)
=
{

x ∈ Rn : (x1 − r)2 + ‖x̃‖2 = L2

σ2
2

}
.

(2.25)

For convenience, we define

γi := L2

σ2
i

for i ∈ {1, 2} and β := σ2

σ1
. (2.26)

By using the definitions above, we define

λ1 :=
( 1 + β

1 + 2β

)
γ1

2r −
r

1 + 2β and λ2 := −
(1 + β

2 + β

)
γ2

2r + βr

2 + β
. (2.27)

In the following lemma, we will show that if x ∈ {∂B1, ∂B2}, the value of the first

component x1 is necessary and sufficient to determine whether x is inM↑ andM↓, which are

defined in (  2.13 ) and ( 2.14 ), respectively. In other words, the angle condition φ̃1(x)+φ̃2(x) ≶

ψ(x) can be simplified if we consider a point in ∂B1 or ∂B2.

Lemma 2.4.3. Let λ1 and λ2 be as defined in ( 2.27 ). Consider x = (x1, x̃) ∈ (B1 ∩ B2) \

{x∗
1,x

∗
2}.

(i) If x ∈ ∂B1 then φ̃1(x) + φ̃2(x) ≶ ψ(x) if and only if x1 ≶ λ1.

(ii) If x ∈ ∂B2 then φ̃1(x) + φ̃2(x) ≶ ψ(x) if and only if x1 ≷ λ2.

In the following lemma, we will show that the points in the set of intersection between T

and ∂B1 (resp. T and ∂B2) have the same first component, if the intersection is non-empty.
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Moreover, the first component of these points is λ1 (resp. λ2) where λi for i ∈ {1, 2} are

defined in (  2.27 ). By using the definition of γ1, γ2 and β in ( 2.26 ), define

ν1 := r

2(1 + 2β)

√
−
(
γ1

r2 − 4
)(

(1 + β)2γ1

r2 − 4β2
)

and

ν2 := r

2(2 + β)

√
−
(
γ2

r2 − 4
)(

(1 + β)2γ2

r2 − 4
)
.

(2.28)

Lemma 2.4.4. Consider the sets of points T and ∂Bi for i ∈ {1, 2} defined in ( 2.22 ) and

( 2.25 ), respectively. Let λi and νi for i ∈ {1, 2} be as defined in ( 2.27 ) and ( 2.28 ), respectively.

(i) For i ∈ {1, 2}, if r ∈
(
0, L

2σi

]
, then T ∩ ∂Bi = ∅.

(ii) For i ∈ {1, 2}, if r ∈
(

L
2σi
, L

2 ( 1
σ1

+ 1
σ2

)
]
, then T ∩ ∂Bi =

{
x ∈ Rn : x1 = λi, ‖x̃‖ = νi

}
.

Recall that λ1 and λ2 are defined in (  2.27 ). In the following lemma, for i ∈ {1, 2}, we

consider a relationship between L
σir

and λi

r
. In particular, for r ∈

(
0, L

2 ( 1
σ1

+ 1
σ2

)
]
, recall from

Lemma  2.4.4 that if T ∩∂B1 6= ∅ (resp. T ∩∂B2 6= ∅), then every point in the intersection has

the first component equal to λ1 (resp. λ2). The next lemma compares λ1 to the maximum

value of the first component over all points of ∂B1 (which is −r+ L
σ1

), and compares λ2 to the

minimum value of the first component over all points of ∂B2 (which is r − L
σ1

), respectively.

Lemma 2.4.5. Let λi for i ∈ {1, 2} be as defined in ( 2.27 ).

(i) If r ∈
(
0, L

2σ1

]
then λ1 ≥ L

σ1
− r, with equality only if r = L

2σ1
.

(ii) r ∈
(

L
2σ1
, L

2

(
1

σ1
+ 1

σ2

))
if and only if λ1 <

L
σ1
− r.

(iii) If r ∈
(
0, L

2σ2

]
then λ2 ≤ r − L

σ2
, with equality only if r = L

2σ2
.

(iv) r ∈
(

L
2σ2
, L

2

(
1

σ1
+ 1

σ2

))
if and only if λ2 > r − L

σ2
.

In the next lemma, we will consider a relationship between T and ∂M↑ (the boundary

of the outer approximation), and T and ∂M↓ (the boundary of the inner approximation).

In particular, we will show that T ⊆ ∂M↑ and T ⊆ ∂M↓ for a particular range of r.
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Lemma 2.4.6. Let M↑, M↓ and T be defined as in ( 2.13 ), ( 2.14 ) and ( 2.22 ), respectively.

If r ∈
(

0, L
2

(
1

σ1
+ 1

σ2

))
, then T ⊆ ∂M↑ and T ⊆ ∂M↓.

For i ∈ {1, 2}, define half-planes

H+
i := {x ∈ Rn : x1 ≥ λi} and H−

i := {x ∈ Rn : x1 ≤ λi}, (2.29)

where λi for i ∈ {1, 2} are defined in (  2.27 ). In the lemma below, we examine properties of

points x ∈ ∂B1 ∩H+
1 (resp. x ∈ ∂B2 ∩H−

2 ).

Lemma 2.4.7. Let the sets Bi for i ∈ {1, 2}, and H+
1 and H−

2 be defined as in ( 2.8 ) and

( 2.29 ), respectively.

(i) If r ∈
(

L
2σ1
, L

2

(
1

σ1
+ 1

σ2

))
then

[
λ1, −r + L

σ1

]
⊆ (−r, r) and ∂B1 ∩ H+

1 ⊆ (B1 ∩ B2) \

{x∗
1,x

∗
2}.

(ii) If r ∈
(

L
2σ2
, L

2

(
1

σ1
+ 1

σ2

))
then

[
r− L

σ2
, λ2

]
⊆ (−r, r) and ∂B2∩H−

2 ⊆ (B1∩B2)\{x∗
1,x

∗
2}.

In the theorem below, we give the characterization of the boundary ∂M↑ and interior

(M↑)◦, and also a property of the set M↑ for each range of r. Define the set

T̃ := {x ∈ Rn : φ̃1(x) + φ̃2(x) > ψ(x)}, (2.30)

which will be used especially in Theorem  2.4.8 and Theorem  2.5.2 .

Theorem 2.4.8. Assume σ1 ≥ σ2. Let the setsM↑, T , T̃ , and Bi for i ∈ {1, 2} be defined as

in ( 2.13 ), ( 2.22 ), ( 2.30 ), and ( 2.8 ), respectively. Also, let the sets H+
i and H−

i for i ∈ {1, 2}

be defined as in ( 2.29 ).

(i) If r ∈
(
0, L

2σ1

]
then M↑ t {x∗

1,x
∗
2} is closed,

∂M↑ = T t {x∗
1,x

∗
2} and (M↑)◦ = T̃ .

44



(ii) If r ∈
(

L
2σ1
, L

2σ2

]
then M↑ t {x∗

1} is closed,

∂M↑ =
[
∂B1 ∩ (H−

1 )c
]
t T t {x∗

1} and

(M↑)◦ =
[
B1 ∩ (H−

1 )c
]
t
[
T̃ ∩ H−

1

]
.

(iii) If r ∈
(

L
2σ2
, L

2

(
1

σ1
+ 1

σ2

))
then M↑ is closed,

∂M↑ =
[
∂B1 ∩ (H−

1 )c
]
t
[
∂B2 ∩ (H+

2 )c
]
t T and

(M↑)◦ =
[
B1 ∩ (H−

1 )c
]
t
[
B2 ∩ (H+

2 )c
]
t
[
T̃ ∩ (H−

1 ∩H+
2 )
]
.

(iv) If r = L
2

(
1

σ1
+ 1

σ2

)
then M↑ =

{(
L
2

(
1

σ1
− 1

σ2

)
, 0
)}

.

(v) If r ∈
(

L
2

(
1

σ1
+ 1

σ2

)
, ∞

)
then M↑ = ∅.

Proof. For convenience, we define function ϕ : (B1 ∩ B2) \ {x∗
1,x

∗
2} → [ − π, π] to be such

that

ϕ(x) := φ̃1(x) + φ̃2(x)− ψ(x), (2.31)

where φ̃i for i ∈ {1, 2} and ψ are defined in (  2.9 ) and (  2.11 ), respectively.

Part  (i) : r ∈
(
0, L

2σ1

]
. First, we want to show that

if x ∈ ∂(B1 ∩ B2) then x ∈ {z ∈ Rn : ϕ(z) < 0} ∪ {x∗
1,x

∗
2}. (2.32)

Suppose x ∈ ∂(B1 ∩ B2) and x ∈ ∂B1. Since B1 is closed and x1 ∈
[
− r − L

σ1
,−r + L

σ1

]
,

from Lemma  2.4.5 part  (i) , we get x1 ≤ L
σ1
− r ≤ λ1. If x1 < λ1, from Lemma  2.4.3 part  (i) ,

we obtain ϕ(x) < 0. On the other hand, if x1 = λ1 (i.e., L
σ1
− r = λ1), from Lemma  2.4.5 

part  (i) , we get r = L
2σ1

. Substituting into x1 = L
σ1
− r, we obtain that x1 = L

2σ1
= r. Since

x ∈ ∂B(x∗
1, 2r) and x1 = r, we conclude that x = x∗

2 = (r,0).

From the assumption σ1 ≥ σ2 and the inequality r ≤ L
2σ1

, we get r ≤ L
2σ2

. We can

similarly show that if x ∈ ∂(B1∩B2) and x ∈ ∂B2 then either ϕ(x) < 0 or x = x∗
1 = (−r,0)
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by using Lemma  2.4.5 part  (iii) and Lemma  2.4.3 part  (ii) . Since ∂(B1 ∩ B2) ⊆ ∂B1 ∪ ∂B2,

we have proved our claim.

Since M↑ ⊆ B1 ∩ B2 from the definition of M↑ in ( 2.13 ) and ∂(B1 ∩ B2) ⊂ (M↑)c from

( 2.32 ), we have M↑ ⊆ B1 ∩ B2. Recall the definition of ϕ in (  2.31 ). Let R = (B1 ∩ B2) \

{x∗
1,x

∗
2}. We then partition the set R into 3 parts as follows:

R1 =
{
z ∈ R : ϕ(z) > 0

}
, R2 =

{
z ∈ R : ϕ(z) < 0

}
,

and R3 =
{
z ∈ R : ϕ(z) = 0

}
= T ,

where the last equality comes from Proposition  2.4.2 . We will show that



R1 ⊂ (∂M↑)c,

R2 ⊂ (∂M↑)c,

R3 ⊆ ∂M↑,

∂(B1 ∩ B2) \ {x∗
1,x

∗
2} ⊂ (∂M↑)c,

(dom(ϕ))c \ {x∗
1,x

∗
2} ⊂ (∂M↑)c.

(2.33)

Suppose x ∈ R1. Since ϕ is continuous, there exists ε > 0 such that for all x0 ∈ B(x, ε),

we have x0 ∈ R1 and ϕ(x0) > 0. Since R1 ⊆ M↑ and is open, we have R1 ⊆ (M↑)◦.

Similarly, we have R2 ⊆ (R \ M↑)◦. Suppose x ∈ R3 = T . Using Lemma  2.4.6 , we

have that R3 ⊆ ∂M↑. Since (M↑)◦, (R \M↑)◦, and ∂M↑ are disjoint, we conclude that

R1 ⊂ (∂M↑)c and R2 ⊂ (∂M↑)c.

Consider x ∈ ∂(B1∩B2)\{x∗
1,x

∗
2}. From (  2.32 ), we have x ∈ {z ∈ Rn : ϕ(z) < 0}. Since

dom(ϕ) = (B1 ∩B2) \ {x∗
1,x

∗
2} and ϕ is continuous, there exists ε > 0 such that for all x0 ∈

B(x, ε)∩dom(ϕ), we have ϕ(x0) < 0. Thus, ∂(B1∩B2)\{x∗
1,x

∗
2} ⊂ ((M↑)c)◦ which implies

that ∂(B1∩B2)\{x∗
1,x

∗
2} ⊂ (∂M↑)c. In addition, we have (dom(ϕ))c \{x∗

1,x
∗
2} ⊆ ((M↑)c)◦

(since (dom(ϕ))c \ {x∗
1,x

∗
2} ⊆ (M↑)c and is open) which implies (dom(ϕ))c \ {x∗

1,x
∗
2} ⊂

(∂M↑)c. Therefore, we have proved the claim (  2.33 ).
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Since we can partition Rn into R, ∂(B1 ∩ B2) \ {x∗
1,x

∗
2}, (dom(ϕ))c \ {x∗

1,x
∗
2} and

{x∗
1,x

∗
2}, using ( 2.33 ), we obtain that ∂M↑ ⊆ R3 t {x∗

1,x
∗
2}. However, we know that

R3 ⊆ ∂M↑ from the above analysis and {x∗
1,x

∗
2} ⊆ ∂M↑ from Lemma  2.4.1 . Thus, we have

∂M↑ = R3 t {x∗
1,x

∗
2} = T t {x∗

1,x
∗
2} by Proposition  2.4.2 .

From Proposition  2.4.2 , we have T = {z ∈ Rn : ϕ(z) = 0}. Using the definition ofM↑ in

( 2.13 ) and ∂M↑ = T t {x∗
1,x

∗
2}, we can write (M↑)◦ =M↑ \ ∂M↑ = T̃ where T̃ is defined

in ( 2.30 ). Since T ⊆ M↑, this implies that ∂M↑ = T t {x∗
1,x

∗
2} ⊆ M↑ t {x∗

1,x
∗
2}. Thus,

the set M↑ t {x∗
1,x

∗
2} is closed.

Part  (ii) : r ∈
(

L
2σ1
, L

2σ2

]
. We separately consider three disjoint regions: (H−

1 )c, H+
1 ∩H−

1 ,

(H+
1 )c. For the first region, we want to show that

T ∩ (H−
1 )c = ∅ and ∂M↑ ∩ (H−

1 )c = ∂B1 ∩ (H−
1 )c. (2.34)

From Lemma  2.4.7 part  (i) , we have ∂B1 ∩ (H−
1 )c ⊆ ∂B1 ∩ H+

1 ⊆ dom(ϕ). Consider

x ∈ ∂B1 ∩ (H−
1 )c and note that x1 ∈

(
λ1, −r + L

σ1

]
. From Lemma  2.4.3 part  (i) , we

have ϕ(x) > 0. Since
[
λ1, −r + L

σ1

]
⊆ (−r, r) from Lemma  2.4.7 part  (i) , we can apply

Lemma  2.4.2 to get that for all x ∈ B1 ∩ (H−
1 )c, we have ϕ(x) > 0. This implies that

B1 ∩ (H−
1 )c ⊆ T c and B1 ∩ (H−

1 )c ⊆M↑ ∩ (H−
1 )c, (2.35)

by Proposition  2.4.2 and the definition of M↑ in (  2.13 ), respectively. Since T ⊆ dom(ϕ),

we have (B1)c ∩ (H−
1 )c ⊆ T c. Using this inclusion and the first inclusion in (  2.35 ), we can

write

∅ =
[
T ∩

(
B1 ∩ (H−

1 )c
)]
∪
[
T ∩

(
(B1)c ∩ (H−

1 )c
)]

= T ∩ (H−
1 )c, (2.36)

which completes the first part of claim ( 2.34 ). Next, note that since −r + L
σ1
< r, we have

x∗
2 ∈ H+

1 . However, we have M↑ ⊆ B1 from the definition of M↑ in (  2.13 ). Combine this

argument with the second inclusion in (  2.35 ) yields

M↑ ∩ (H−
1 )c = B1 ∩ (H−

1 )c. (2.37)
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Since (H−
1 )c is open, (  2.37 ) implies that (M↑)◦ ∩ (H−

1 )c = B1 ∩ (H−
1 )c. Then, subtracting

this equation from ( 2.37 ), we obtain that ∂M↑ ∩ (H−
1 )c = ∂B1 ∩ (H−

1 )c, which completes the

second part of claim ( 2.34 ).

Next, consider the second region H+
1 ∩ H−

1 = {z ∈ Rn : z1 = λ1}. Recall the definition

of ν1 in ( 2.28 ). Consider the following three cases.

• Suppose x ∈ {z ∈ Rn : z1 = λ1, ‖z̃‖ > ν1}. Then, x ∈ (dom(ϕ))c \ {x∗
1,x

∗
2} which

implies that x /∈ T . Since (dom(ϕ))c \ {x∗
1,x

∗
2} ⊆ (M↑)c and is open, we also have

x /∈ ∂M↑.

• Suppose x ∈ {z ∈ Rn : z1 = λ1, ‖z̃‖ = ν1}. From Lemma  2.4.4 part  (ii) , we have

x ∈ T . Using Lemma  2.4.6 , we obtain that x ∈ ∂M↑.

• Suppose x ∈ {z ∈ Rn : z1 = λ1, ‖z̃‖ < ν1}. Since {z ∈ Rn : z1 = λ1, ‖z̃‖ = ν1} ⊆ T ,

from Lemma  2.4.2 , we have φ̃1(x) + φ̃2(x) > ψ(x) which implies that x /∈ T . Since

x ∈ (B1 ∩ B2) \ {x∗
1,x

∗
2} and ϕ is continuous, there exists ε ∈ R>0 such that for all

x0 ∈ B(x, ε), we have x0 ∈ M↑ by the definition of M↑ in (  2.13 ). This means that

x ∈ (M↑)◦ and thus, x /∈ ∂M↑.

Combining the analysis of these three cases, we have that

∂M↑ ∩ (H+
1 ∩H−

1 ) = {z ∈ Rn : z1 = λ1, ‖z̃‖ = ν1} = T ∩ (H+
1 ∩H−

1 ). (2.38)

Next, consider the third region (H+
1 )c = Rn \ H+

1 . First, we want to show that

if x ∈ ∂(B1 ∩ B2) ∩ (H+
1 )c then x ∈ {z ∈ Rn : ϕ(z) < 0} ∪ {x∗

1}. (2.39)

Suppose x ∈ ∂(B1∩B2) and x ∈ ∂B1∩ (H+
1 )c. Since x1 < λ1, from Lemma  2.4.3 part  (i) , we

obtain ϕ(x) < 0. By using the result from the proof of part  (i) , we have that if x ∈ ∂(B1∩B2)

and x ∈ ∂B2 then either ϕ(x) < 0 or x = x∗
1. Combining the two results, we have proved

the claim.

SinceM↑ ⊆ B1∩B2 from the definition ofM↑ in (  2.13 ) and ∂(B1∩B2)∩ (H+
1 )c ⊂ (M↑)c

from (  2.39 ), we have M↑ ∩ (H+
1 )c ⊆ (B1 ∩ B2) ∩ (H+

1 )c. Let R′ = R ∩ (H+
1 )c. We then
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partition the set R′ into R′
1, R′

2, and R′
3 where R′

i = Ri ∩ (H+
1 )c for i ∈ {1, 2, 3}. We can

use a similar argument as in the proof of (  2.33 ) to show that



R′
1 ⊂ (∂M↑)c ∩ (H+

1 )c,

R′
2 ⊂ (∂M↑)c ∩ (H+

1 )c,

R′
3 ⊆ ∂M↑ ∩ (H+

1 )c,

(∂(B1 ∩ B2) \ {x∗
1}) ∩ (H+

1 )c ⊂ (∂M↑)c ∩ (H+
1 )c,(

(dom(ϕ))c \ {x∗
1}
)
∩ (H+

1 )c ⊂ (∂M↑)c ∩ (H+
1 )c.

(2.40)

Since we can partition (H+
1 )c intoR′, (∂(B1∩B2)\{x∗

1})∩(H+
1 )c,

(
(dom(ϕ))c\{x∗

1}
)
∩(H+

1 )c

and {x∗
1}, using ( 2.40 ), we obtain that ∂M↑ ∩ (H+

1 )c ⊆ R′
3 t {x∗

1}. However, we know that

R′
3 ⊆ ∂M↑ ∩ (H+

1 )c from ( 2.40 ) and {x∗
1} ⊆ ∂M↑ ∩ (H+

1 )c from Lemma  2.4.1 . Thus, using

R′
3 = R3 ∩ (H+

1 )c and Proposition  2.4.2 we have

∂M↑ ∩ (H+
1 )c = R′

3 t {x∗
1} =

[
T ∩ (H+

1 )c
]
t {x∗

1}. (2.41)

Since Rn = (H−
1 )c t (H+

1 ∩H−
1 ) t (H+

1 )c, using (  2.34 ), (  2.38 ) and (  2.41 ), we obtain that

∂M↑ =
[
∂B1 ∩ (H−

1 )c
]
t
[
T ∩ (H+

1 ∩H−
1 )
]
t
[
T ∩ (H+

1 )c
]
t {x∗

1}. (2.42)

However, from ( 2.36 ), we can write T =
[
T ∩ (H+

1 ∩H−
1 )
]
t
[
T ∩ (H+

1 )c
]

which means that

we can rewrite (  2.42 ) as

∂M↑ =
[
∂B1 ∩ (H−

1 )c
]
t T t {x∗

1}. (2.43)

From (  2.37 ) and (  2.43 ), we can write
[
M↑ ∩ (H−

1 )c
]
\
[
∂M↑ ∩ (H−

1 )c
]

=
[
B1 ∩ (H−

1 )c
]
\[

∂B1 ∩ (H−
1 )c

]
= B1 ∩ (H−

1 )c. From the definition of M↑ in ( 2.13 ) and equation ( 2.38 ), we

can write
[
M↑∩ (H+

1 ∩H−
1 )
]
\
[
∂M↑∩ (H+

1 ∩H−
1 )
]

= T̃ ∩ (H+
1 ∩H−

1 ). From the definition of

M↑ in (  2.13 ) and equation (  2.41 ), we can write (M↑∩ (H+
1 )c)\ (∂M↑∩ (H+

1 )c) = T̃ ∩ (H+
1 )c.

Applying the above three equations to Lemma  2.2.1 , we obtain the result of (M↑)◦. Consider
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the characterization of ∂M↑ in (  2.43 ). Since ∂B1 ∩ (H−
1 )c ⊆M↑ from (  2.37 ), and T ⊆ M↑

from Proposition  2.4.2 and the definition ofM↑, we can write ∂M↑ ⊆M↑ t {x∗
1} and thus,

M↑ t {x∗
1} is closed.

Part  (iii) : r ∈
(

L
2σ2
, L

2

(
1

σ1
+ 1

σ2

))
. We can use a similar argument as in the proof of

part  (ii) to show that



∂M↑ ∩ (H−
1 )c = ∂B1 ∩ (H−

1 )c ⊆M↑, (similar to proving ( 2.34 ))

∂M↑ ∩ (H+
2 )c = ∂B2 ∩ (H+

2 )c ⊆M↑, (similar to proving ( 2.34 ))

∂M↑ ∩ (H+
1 ∩H−

1 ) = T ∩ (H+
1 ∩H−

1 ) ⊆M↑, (similar to proving ( 2.38 ))

∂M↑ ∩ (H+
2 ∩H−

2 ) = T ∩ (H+
2 ∩H−

2 ) ⊆M↑, (similar to proving ( 2.38 ))

∂M↑ ∩ (H+
1 ∪H−

2 )c = T ∩ (H+
1 ∪H−

2 )c ⊆M↑. (similar to proving ( 2.41 ))

Similar to ( 2.36 ), in this case, we have that T ∩(H−
1 )c = ∅ and T ∩(H+

2 )c = ∅. This means that

the last three equations regarding ∂M↑ above can be combined into ∂M↑∩ (H−
1 ∩H+

2 ) = T .

Combining this equation with the first two equations regarding ∂M↑ above, we obtain the

characterization of ∂M↑. For the characterization of (M↑)◦, we can use the same technique

as shown in the analysis of part  (ii) to obtain the result. From the five inclusions regarding

∂M↑ above, we can write ∂M↑ ⊆M↑ and we conclude that M↑ is closed.

Part  (iv) : r = L
2

(
1

σ1
+ 1

σ2

)
. In this case, we have B1∩B2 =

{(
L
2

(
1

σ1
− 1

σ2

)
, 0
)}

. Suppose

x =
(

L
2

(
1

σ1
− 1

σ2

)
, 0
)

. Since M↑ ⊆ B1 ∩ B2, we only need to check point x. At this point,

we get φ̃1(x) + φ̃2(x) = ψ(x) = 0 (since d1(x) = L
σ1

, d2(x) = L
σ2

, α1(x) = 0 and α2(x) = π).

So, we conclude that M↑ =
{(

L
2

(
1

σ1
− 1

σ2

)
, 0
)}

.

Part  (v) : r ∈
(

L
2

(
1

σ1
+ 1

σ2

)
, ∞

)
. Since r > L

2

(
1

σ1
+ 1

σ2

)
, we have B1 ∩ B2 = ∅. Since

M↑ ⊆ B1 ∩ B2, we conclude that M↑ = ∅.

Examples of the boundary ∂M↑ in R2 for the first three cases of Theorem  2.4.8 are

shown in Fig.  2.3 . We consider parameters σ1 = 1.5, σ2 = 1 and L = 10. For r = 2, as

we can see from Fig.  2.3a , we have ∂M↑ = T t {x∗
1,x

∗
2} (i.e., solid blue line + two red

dots) consistent with part  (i) of Theorem  2.4.8 . For r = 4, as we can see from Fig.  2.3b ,

we have ∂M↑ =
[
∂B1 ∩ (H−

1 )c
]
t T t {x∗

1} (i.e., solid cyan line + solid blue line + left red
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(a) For r = 2, the charac-
terization of boundary ∂M↑

corresponds to Theorem  2.4.8 

part  (i) .

(b) For r = 4, the charac-
terization of boundary ∂M↑

corresponds to Theorem  2.4.8 

part  (ii) .

(c) For r = 6, the charac-
terization of boundary ∂M↑

corresponds to Theorem  2.4.8 

part  (iii) .

Figure 2.3. The boundary ∂M↑ in R2 with different values of r for two orig-
inal minimizers x∗

1 = (−r, 0) and x∗
2 = (r, 0) is plotted given fixed parameters

σ1 = 1.5, σ2 = 1, and L = 10. The sets T , ∂B1 ∩ (H−
1 )c and ∂B2 ∩ (H+

2 )c are
shown by solid blue, cyan and magenta lines, respectively. The vertical dotted
lines represent the equations x1 = λ1 and x1 = λ2 and note that the value of
λ1 and λ2 depends on r.

dot) consistent with part  (ii) of Theorem  2.4.8 . For r = 6, as we can see from Fig.  2.3c , we

have ∂M↑ =
[
∂B1 ∩ (H−

1 )c
]
t
[
∂B2 ∩ (H+

2 )c
]
t T (i.e., solid cyan line + solid magenta line

+ solid blue line) consistent with part  (iii) of Theorem  2.4.8 . Note that the solid blue line,

solid cyan line and solid magenta line in the figures indicate that the corresponding sets of

points are subsets of the outer approximation M↑, i.e., T ⊆ M↑, ∂B1 ∩ (H−
1 )c ⊆ M↑ and

∂B2 ∩ (H+
2 )c ⊆M↑, respectively.

2.5 Inner Approximation and Potential Solution Region

In the previous section, we showed that the setM↑ defined in ( 2.13 ) is an outer approxi-

mation for the desired setM defined in (  2.7 ), in thatM⊆M↑. We now turn our attention

to the set M↓ defined in ( 2.14 ). We will show that M↓ ⊆ M, and consequently, provide a

tight characterization of M.

Since we have ⋃σ̃≥σQ(x∗, σ̃) ⊂ S(x∗, σ) for all x∗ ∈ Rn and σ ∈ R>0 from ( 2.5 ), we can

provide a region contained in the potential solution regionM by restricting our consideration

to only some classes of quadratic functions. In Section  2.5.1 , we analyze a sufficient and
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necessary condition for constructing a quadratic function with a given minimizer, gradient

and curvature. Then, using the result from Section  2.5.1 , in Section  2.5.2 , we prove a

relationship between the potential solution regionM and the inner approximationM↓, and

also provide a characterization of M↓.

2.5.1 Quadratic Functions Analysis

In this subsection, first we consider an equivalent condition for the existence of a quadratic

function with a given minimizer, gradient at a specific point and the smallest eigenvalue

associated to the quadratic term in n-dimensional space (i.e., in Rn) which is presented in

Proposition  2.5.1 . Then, we present Corollary  2.5.1 in which we provide a similar equivalent

condition for the class ⋃σ̃≥σQ(x∗, σ̃) for a given x∗ ∈ Rn and σ ∈ R>0.

In the following proposition (whose proof is provided in Appendix  A.2.1 ), we consider an

equivalent condition for the existence of a quadratic function with more than one independent

variable satisfying certain properties.

Proposition 2.5.1. Let Q be defined as in ( 2.4 ). For n ∈ N \ {1}, suppose we are given

points x∗ ∈ Rn and x0 ∈ Rn such that x0 6= x∗, vector g ∈ Rn, and scalar σ ∈ R>0. Then,

there exists a function f ∈ Q(n)(x∗, σ) with a gradient ∇f(x0) = g if and only if

(i) x0 ∈ B
(
x∗, ‖g‖

σ

)
and

(ii) ∠(g,x0 − x∗) ∈ {0} ∪
[
0, arccos

(
σ

‖g‖‖x0 − x∗‖
))

.

Note that if σ‖x0 − x∗‖ = ‖g‖, then
[
0, arccos( σ

‖g‖‖x0 − x∗‖)
)

= ∅.

Recall from (  2.5 ) that ⋃σ̂≥σQ(x∗, σ̂) ⊂ S(x∗, σ) for all x∗ ∈ Rn and σ ∈ R>0. One way to

characterize the inner approximationM↓ is to utilize sufficient conditions for the construction

of a function f ∈ ⋃σ̂≥σQ(x∗, σ̂). More generally, the following corollary presents necessary

and sufficient conditions for such construction.

Corollary 2.5.1. Let Q be defined as in ( 2.4 ). For n ∈ N \ {1}, suppose we are given

points x∗ ∈ Rn and x0 ∈ Rn such that x0 6= x∗, a vector g ∈ Rn, scalar L ∈ R>0 such

that ‖g‖ = L, and a scalar σ ∈ R>0. Then, there exists a function f ∈ ⋃σ̂≥σQ(x∗, σ̂) with

∇f(x0) = g if and only if
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(i) x0 ∈ B
(
x∗, L

σ

)
and

(ii) ∠(g, x0 − x∗) ∈ {0} ∪
[
0, arccos

(
σ
L
‖x0 − x∗‖

))
.

Note that if σ‖x0 − x∗‖ = L, then
[
0, arccos( σ

L
‖x0 − x∗‖)

)
= ∅.

Proof. From Proposition  2.5.1 , we can write that there exists a function f ∈ ⋃σ̂≥σQ(x∗, σ̂)

with a gradient ∇f(x0) = g and ‖∇f(x0)‖ = L if and only if

x0 ∈
⋃

σ̂≥σ

B
(

x∗,
‖g‖
σ̂

)
= B

(
x∗,

L

σ

)
,

and

∠(g, x0 − x∗) ∈ {0} ∪
⋃

σ̂≥σ

[
0, arccos

(
σ̂

‖g‖
‖x0 − x∗‖

))

= {0} ∪
[
0, arccos

(
σ

L
‖x0 − x∗‖

))
.

2.5.2 Inner Approximation Characterization

In this subsection, we use results from Section  2.5.1 to derive a sufficient condition for

a point to be in the potential solution region M, defined in (  2.7 ). In fact, the sufficient

condition is encapsulated in the description of the inner approximationM↓; therefore,M↓ ⊆

M which is presented in Proposition  2.5.2 . Then, in Theorem  2.5.2 , we characterize the

boundary ∂M↓ and interior (M↓)◦, and provide a property ofM↓ similar to Theorem  2.4.8 .

Recall the definition of Li for i ∈ {1, 2} from ( 2.17 ). Given i ∈ {1, 2}, x∗
i ∈ Rn, σi ∈ R>0,

and L ∈ R>0, from Corollary  2.5.1 , we define the set of gradient angles ∠(∇fi(x), x− x∗
i )

that we can choose to construct a quadratic function fi ∈
⋃

σ̂i≥σi
Q(x∗

i , σ̂i) with ‖∇fi(x)‖ ≤ L

as Φi : B
(
x∗

i ,
L
σi

)
→ 2[0, π

2 ) with

Φi(x) :=


[
0, arccos

(
Li(x)

L

))
if Li(x) < L,

{0} if Li(x) = L.

(2.44)
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Notice that the supremum of the set of angles Φi(x) is equal to φ̃i(x) which is defined in

( 2.9 ). That is, for i ∈ {1, 2}, for all x ∈ B
(
x∗

i ,
L
σi

)
, we have

sup Φi(x) = arccos
(
Li(x)
L

)
= φ̃i(x).

In two-dimensional space, for a given x ∈ B1 ∩ B2, for i ∈ {1, 2}, the set of admissible

angles Φi(x) and the quantity φ̃i(x) are shown in Fig.  2.4a . In the next proposition, using

Corollary  2.5.1 , we show that the inner approximation M↓ is contained in the potential

solution region M.

Proposition 2.5.2. Suppose the setsM andM↓ are defined as in ( 2.7 ) and ( 2.14 ), respec-

tively. Then, M⊇M↓.

Proof. Suppose x ∈ (B1 ∩ B2) \ {x∗
1,x

∗
2}. Recall the definition of X from (  2.12 ). We want

to show that if φ̃1(x) + φ̃2(x) > ψ(x) or x ∈ X , then x ∈M. Recall the definition of ui(x)

for i ∈ {1, 2} from ( 2.15 ). Consider the following two cases.

• Suppose φ̃1(x)+ φ̃2(x) > ψ(x). Since ψ(x) = ∠(u1(x),−u2(x)) from (  2.20 ), there ex-

ists a vector g ∈ Rn with ‖g‖ = L such that ∠(g,u1(x)) < φ̃1(x) and ∠(g,−u2(x)) <

φ̃2(x). By the definition of Φi in ( 2.44 ), this means that ∠(g,u1(x)) ∈ Φ1(x) and

∠(−g,u2(x)) ∈ Φ2(x).

• Suppose x ∈ X . Then, the point x =
(
− r+ L

σ1
,0
)

and −r+ L
σ1
∈ (−r, r) as discussed

below (  2.12 ). In this case, we choose g = Le′
1 where e′

1 = x∗
2−x∗

1
‖x∗

2−x∗
1‖ . This implies that

∠(g,u1(x)) = 0 ∈ Φ1(x) and ∠(−g,u2(x)) = 0 ∈ Φ2(x) by the definition of Φi in

( 2.44 ).

Using Corollary  2.5.1 , for both cases, we have that for i ∈ {1, 2}, there exist functions

fi ∈
⋃

σ̂>σQ(x∗
i , σ̂) such that g = ∇f1(x) = −∇f2(x) and ‖∇f1(x)‖ = ‖∇f2(x)‖ = L.

Using (  2.5 ), we have that there exist fi ∈ S(x∗
i , σ) with ‖∇fi(x)‖ ≤ L for i ∈ {1, 2} and x is

the minimizer of f1 + f2. Therefore, x ∈M. SinceM↓ ⊆ (B1 ∩ B2) \ {x∗
1,x

∗
2}, we conclude

that M⊇M↓.
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(a) (b)

Figure 2.4. (a) For given x, x∗ and σ, the figure illustrates the regions where
the vectors g1 and g2 with ‖g1‖ = ‖g2‖ = L must lie, so that we can construct
quadratic functions fi ∈

⋃
σ̂≥σQ(x∗, σ̂) with ∇fi(x) = gi for i ∈ {1, 2}. Recall

the definition of φi and Φi from ( 2.16 ) and (  2.44 ), respectively. In particular,
for i ∈ {1, 2}, it is sufficient to have φi(x) ∈ Φi(x) from Corollary  2.5.1 , i.e.,
pictorially, the vectors g1 and g2 must strictly lie in the corresponding shaded
regions. (b) The figure illustrates the inequality φ̃1(x) + φ̃2(x) > ψ(x) in the
description ofM↓ which means that there is an overlapping region (light green
region in the figure) caused by one shaded region and the mirror of the other
shaded region.
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In two-dimensional space, for a given x ∈ (B1 ∩ B2) \ {x∗
1,x

∗
2}, the geometrical in-

terpretation of the inequality φ̃1(x) + φ̃2(x) > ψ(x), which is used to describe the inner

approximation M↓, is represented in Fig.  2.4b .

Before characterizing the set M↓, recall the definition of λi and νi in (  2.27 ) and (  2.28 ),

respectively. For i ∈ {1, 2}, we define

Ci :=
{
x ∈ Rn : x1 = λi, ‖x̃‖ = νi

}
. (2.45)

Comparing the definition of M↑ in (  2.13 ) to that of M↓ in (  2.14 ), we see that the

description ofM↓ involves a strict inequality while it is not forM↑. Since the only difference

is the inequality sign, we could expect to see similar results as in Theorem  2.4.8 . Specifically,

the following theorem provides a characterization of ∂M↓ and (M↓)◦ explicitly, and also a

property ofM↓. Since most parts of the proof are similar to that of Theorem  2.4.8 , we defer

the proof to Appendix  A.2.2 .

Theorem 2.5.2. Assume σ1 ≥ σ2. Let the setsM↓, T , T̃ , and Bi for i ∈ {1, 2} be defined as

in ( 2.13 ), ( 2.22 ), ( 2.30 ), and ( 2.8 ), respectively. Also, let the sets H+
i and H−

i for i ∈ {1, 2}

be defined as in ( 2.29 ), and the sets Ci for i ∈ {1, 2} be defined as in ( 2.45 ).

(i) If r ∈
(
0, L

2σ1

]
then M↓ is open and

∂M↓ = T t {x∗
1,x

∗
2} and (M↓)◦ = T̃ .

(ii) If r ∈
(

L
2σ1
, L

2σ2

]
then (M↓ ∪ C1) ∩H+

1 is closed while M↓ ∩ (H+
1 )c is open, and

∂M↓ =
[
∂B1 ∩ (H−

1 )c
]
t T t {x∗

1} and

(M↓)◦ =
[
B1 ∩ (H−

1 )c
]
t
[
T̃ ∩ H−

1

]
.
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(iii) If r ∈
(

L
2σ2
, L

2

(
1

σ1
+ 1

σ2

))
then (M↓ ∪ C1) ∩ H+

1 and (M↓ ∪ C2) ∩ H−
2 are closed while

M↓ ∩ (H+
1 ∪H−

2 )c is open, and

∂M↓ =
[
∂B1 ∩ (H−

1 )c
]
t
[
∂B2 ∩ (H+

2 )c
]
t T and

(M↓)◦ =
[
B1 ∩ (H−

1 )c
]
t
[
B2 ∩ (H+

2 )c
]
t
[
T̃ ∩ (H−

1 ∩H+
2 )
]
.

(iv) If r = L
2

(
1

σ1
+ 1

σ2

)
then M↓ =

{(
L
2

(
1

σ1
− 1

σ2

)
, 0
)}

.

(v) If r ∈
(

L
2

(
1

σ1
+ 1

σ2

)
, ∞

)
then M↓ = ∅.

Examples of the boundary ∂M↓ in R2 for the first three cases of Theorem  2.5.2 are shown

in Fig.  2.5 . Again, we consider parameters σ1 = 1.5, σ2 = 1 and L = 10. For r = 2, as

we can see from Fig.  2.5a , we have ∂M↓ = T t {x∗
1,x

∗
2} (i.e., dotted blue line + two red

dots) consistent with part  (i) of Theorem  2.5.2 . For r = 4, as we can see from Fig.  2.5b , we

have ∂M↓ =
[
∂B1 ∩ (H−

1 )c
]
t T t {x∗

1} (i.e., solid cyan line + dotted blue line + left red

dot) consistent with part  (ii) of Theorem  2.5.2 . For r = 6, as we can see from Fig.  2.5c , we

have ∂M↓ =
[
∂B1 ∩ (H−

1 )c
]
t
[
∂B2 ∩ (H+

2 )c
]
t T (i.e., solid cyan line + solid magenta line

+ dotted blue line) consistent with part  (iii) of Theorem  2.5.2 . Note that the dotted blue

line in the figures indicates that the corresponding set of points is not a subset of the inner

approximationM↓, i.e., T 6⊆ M↓ whereas the solid cyan line and solid magenta line indicate

that ∂B1 ∩ (H−
1 )c ⊆M↓ and ∂B2 ∩ (H+

2 )c ⊆M↓, respectively.

2.6 Potential Solution Region

In this section, using results from analyzing the outer approximation M↑ in Section  2.4 

and the inner approximationM↓ in Section  2.5.2 , we derive relationships among the potential

solution regionM (which is the set that we want to identify), outer approximationM↑ and

inner approximation M↓.

Before stating the main theorem, we summarize the inclusions among the three sets.

Specifically, based on Proposition  2.4.1 and Proposition  2.5.2 , we get M ⊆M↑ and M↓ ⊆

M, respectively, and we can state the following proposition.
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(a) For r = 2, the charac-
terization of boundary ∂M↓
corresponds to Theorem  2.5.2 

part  (i) .

(b) For r = 4, the charac-
terization of boundary ∂M↓
corresponds to Theorem  2.5.2 

part  (ii) .

(c) For r = 6, the charac-
terization of boundary ∂M↓
corresponds to Theorem  2.5.2 

part  (iii) .

Figure 2.5. The boundary ∂M↓ in R2 with different values of r for two orig-
inal minimizers x∗

1 = (−r, 0) and x∗
2 = (r, 0) is plotted given fixed parameters

σ1 = 1.5, σ2 = 1, and L = 10. The set T is represented by blue dashed lines
since T ⊆ (M↓)c, while the sets ∂B1 ∩ (H−

1 )c and ∂B2 ∩ (H+
2 )c are represented

by cyan and magenta solid lines, respectively since they are both subsets of
M↓. The vertical dotted lines represent the equations x1 = λ1 and x1 = λ2
and note that the value of λ1 and λ2 depends on r.
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Proposition 2.6.1. Suppose the sets M, M↑ and M↓ are defined as in ( 2.7 ), ( 2.13 ) and

( 2.14 ), respectively. Then, M↓ ⊆M ⊆M↑.

Since Theorem  2.4.8 and Theorem  2.5.2 are similar, we will see that, in fact, the boundary

of the outer approximation ∂M↑ and inner approximation ∂M↓ are equal to the boundary of

the potential solution region ∂M for all values of r. This means that we obtain the explicit

characterization of ∂M from Theorem  2.4.8 or Theorem  2.5.2 . We present this result in the

following theorem.

Theorem 2.6.1. Suppose M, M↑ and M↓ are defined as in ( 2.7 ), ( 2.13 ) and ( 2.14 ), re-

spectively. Then, ∂M = ∂M↑ = ∂M↓.

Proof. Recall from Proposition  2.6.1 that M↓ ⊆ M ⊆ M↑. This entails that (M↓)◦ ⊆

(M)◦ ⊆ (M↑)◦ and M↓ ⊆ M ⊆ M↑. On the other hand, we have (M↓)◦ = (M↑)◦ and

∂M↓ = ∂M↑ from Theorem  2.4.8 and Theorem  2.5.2 . Combine the facts regarding the

interiors to obtain that (M↓)◦ = (M)◦ = (M↑)◦. Then, we can write

M↓ = (M↓)◦ t ∂M↓ = (M↑)◦ t ∂M↑ =M↑.

Combining the above equation with M↓ ⊆M ⊆M↑, we can write M↓ =M =M↑. Since

∂E = E\E◦ for any subset E in a topological space, we conclude that ∂M = ∂M↑ = ∂M↓.

Recall the definition of M, T , {∂Bi for i ∈ {1, 2}} and {H−
1 ,H+

2 } from (  2.7 ), (  2.22 ),

( 2.25 ), and (  2.29 ), respectively. Assuming that σ1 ≥ σ2, we summarize a characterization of

the potential solution region M as follows:



∂M = T t {x∗
1,x

∗
2} if r ∈

(
0, L

2σ1

]
,

∂M =
[
∂B1 ∩ (H−

1 )c
]
t T t {x∗

1} if r ∈
(

L
2σ1
, L

2σ2

]
,

∂M =
[
∂B1 ∩ (H−

1 )c
]
t
[
∂B2 ∩ (H+

2 )c
]
t T if r ∈

(
L

2σ2
, L

2

(
1

σ1
+ 1

σ2

))
,

M =
{(

L
2

(
1

σ1
− 1

σ2

)
, 0
)}

if r ∈
(

L
2σ2
, L

2

(
1

σ1
+ 1

σ2

))
,

M = ∅ if r ∈
(

L
2

(
1

σ1
+ 1

σ2

)
, ∞

)
,
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where the first three equations are obtained by applying Theorem  2.4.8 and Theorem  2.5.2 

to Theorem  2.6.1 , and the last two equations are obtained by applying Theorem  2.4.8 and

Theorem  2.5.2 to Proposition  2.6.1 . Examples of the boundary ∂M in R2 with different

values of r are shown in Fig.  2.1 . In particular, the solid blue, cyan and magenta curves in

the figure correspond to the sets T , ∂B1 ∩ (H−
1 )c and ∂B2 ∩ (H+

2 )c, respectively.

2.7 Discussion and Conclusions

In this chapter, we studied the possible locations of the minimizer of the sum of two

strongly convex functions. Based on the location of the two minimizers of the individual

functions, strong convexity parameters and a bound on the gradients at the minimizer of the

sum, we established a necessary condition and a sufficient condition for a given point to be

a minimizer, and called the set of points that satisfies the conditions as the outer approx-

imation M↑ and inner approximation M↓, respectively. We then explicitly characterized

the boundary and interior of the outer and inner approximations. The characterization of

these boundaries and interiors turned out to be identical. Subsequently, we showed that the

boundary of the potential solution region ∂M is also identical to those boundaries. In partic-

ular, we showed that it is sufficient to consider quadratic functions to establish (almost) the

entire set of potential minimizers. To visualize the boundary of the potential solution region

∂M, we provided examples with different distances between the two original minimizers in

Fig.  2.1 .

Our work in this chapter focused on the case of two functions. Future work could in-

clude identifying the region that the minimizer of the sum can lie for the case of multiple

strongly convex functions. One can also modify some assumptions, for example by consid-

ering strongly convex functions with Lipschitz continuous gradient condition.
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3. ON THE SET OF POSSIBLE MINIMIZERS OF A SUM OF

KNOWN AND UNKNOWN FUNCTIONS

© 2022 IEEE. Reprinted, with permission, from [K. Kuwaranancharoen and S. Sundaram,

“On the Set of Possible Minimizers of a Sum of Known and Unknown Functions,” in

IEEE/2020 American Control Conference (ACC), pp. 106-111, Jul. 2020,

DOI: 10.23919/ACC45564.2020.9147407].

3.1 Introduction

As discussed earlier in this thesis, optimization is an important tool in various fields,

including machine learning [  1 ], signal processing [  2 ], control theory, [ 3 ]–[ 5 ], and robotics [  6 ]–

[ 8 ]. Given an objective function to be optimized, there are several standard algorithms that

can be applied to find the optimal variables [  9 ]–[ 12 ].

However, in many applications, it may be the case that the objective function is only

partially known. For example, such scenarios are central to the field of robust optimization,

where the objective function contains some parametric uncertainty, and the goal is to choose

the optimization variable to be robust to the possible realizations of the uncertainty [ 35 ]–[ 37 ].

The problem that we consider in this chapter also has a similar flavor, in that we assume

that the optimization objective is not fully known. However, rather than seeking to find

a single solution that is simultaneously robust to all possible realizations of the uncertain

parameter (or learning that parameter [ 37 ]), we instead seek to characterize the region where

the minimizer could lie for each possible realization of the uncertainty. This approach has

the potential to yield insights regarding the nature of the possible solutions to the given

uncertain optimization problem.

In the previous chapter (Chapter  2 ), we determined a region containing the possible

minimizers of a sum of two arbitrary strongly convex functions, given only the minimizers

of the local functions, their strong convexity parameters, and a bound on their gradients.

In contrast, in this chapter, we shall consider the case of optimizing a sum of known and

unknown functions where only limited information about the unknown function is available.
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In this case, we are given some general characteristics of the unknown function, namely a

region containing the minimizer, and the strong convexity parameter of the function. Our

goal is to determine necessary conditions for a point to be a minimizer of the sum. In

particular, we will determine a region where the potential minimizer of the sum can lie.

Thus, if a point from within this region is chosen as an estimate of the true minimizer of

the sum, the size of the region can be used to quantify how far the estimate can be from the

true minimizer. Below, we describe an example scenario to illustrate this problem.

An Example Scenario

In supervised machine learning problems, one uses labeled training data in order to

construct a model that can be used to perform regression or classification tasks. The training

data consists of pairs xi ∈ Rn and yi ∈ R which are the feature vector and label of the i-

th example, respectively. For simplicity, assume that we have 2 training sets denoted by

Dj = {x(j)
i , y

(j)
i }

Nj

i=1 for j ∈ {1, 2}. We can write the aggregate loss function of the whole

dataset D = D1 ∪ D2 as

L(w;D) =
N1∑
i=1

`(w; x
(1)
i , y

(1)
i )︸ ︷︷ ︸

L1(w; D1)

+
N2∑
i=1

`(w; x
(2)
i , y

(2)
i )︸ ︷︷ ︸

L2(w; D2)

,

where w is a model parameter that we need to optimize and `(w; x
(j)
i , y

(j)
i ) is a loss function

for each sample. Assume that L(w;D) is a strongly convex function (which will be the

case when we consider linear regression problems or functions incorporating l2 regularization

[ 58 ]). Suppose w∗ and w∗
2 are the minimizer of L(w;D) and L2(w;D2), respectively.

Now suppose that the entity trying to find the optimal parameter w for L(w,D) can

only access the data set D1, but not D2 (or alternatively, can only access a corrupted or

poisoned version of D2 [ 59 ], [  60 ]). In this case, the entity may only know certain properties

of the function L2(w;D2) (such as its general form, convexity parameters, etc.), and a

region containing the minimizer of L2(w;D2) (e.g., based on the statistical properties of the

underlying data). Given this limited information about L2(w;D2), and with L1(w;D1) fully
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known, the entity could seek to find a region that is guaranteed to contain the minimizer of

the true function L(w;D). This is the problem tackled in this chapter.

3.2 Notation and Preliminaries

3.2.1 Sets

We denote the closure, interior, and boundary of a set E by Ē , E◦, and ∂E = Ē \ E◦,

respectively.

3.2.2 Linear Algebra

We denote by Rn the n-dimensional Euclidean space. For simplicity, we often use x =

(x1, . . . , xn) to represent the column vector
[
x1 x2 . . . xn

]T

. We use ei to denote the i-th

basis vector (the vector of all zeros except for a one in the i-th position). We denote by

〈u,v〉 the Euclidean inner product of u and v i.e., 〈u,v〉 = uT v, by ‖·‖ the Euclidean norm

‖x‖ := (∑i x
2
i )1/2 and by ∠(u,v) the angle between vectors u and v. Note that

∠(u,v) = arccos
(
〈u,v〉
‖u‖‖v‖

)
.

We use B(x0, r) = {x ∈ Rn : ‖x − x0‖ < r} and B̄(x0, r) to denote the open and closed

ball, respectively, centered at x0 of radius r. Moreover, the function u(x1,x2) : (Rn×Rn) \

{(z1, z2) ∈ Rn × Rn : z1 = z2} → Rn denotes the unit vector in the direction of x1 − x2,

i.e.,

u(x1,x2) = x1 − x2

‖x1 − x2‖
with x1 6= x2. (3.1)

3.2.3 Convex Sets and Convex Functions

A set C in Rn is said to be convex if, for all x1 and x2 in C and all θ in the interval (0, 1),

the point (1− θ)x1 + θx2 ∈ C.
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We say a vector g ∈ Rn is a subgradient of f : Rn → R at x ∈ dom f if for all z ∈ dom f ,

f(z) ≥ f(x) + 〈g, z − x〉.

If f is convex and differentiable, then its gradient at x is a subgradient; however, a

subgradient can exist even when f is not differentiable at x. A function f is called subdif-

ferentiable at x if there exists at least one subgradient at x. The set of subgradients of f at

the point x is called the subdifferential of f at x, and is denoted ∂f(x). The subdifferential

∂f(x) is always a closed convex set, even if f is not convex. In addition, if f is continuous

at x, then the subdifferential ∂f(x) is bounded.

A function f is called strongly convex with parameter σ > 0 (or σ-strongly convex) if for

all points x,y ∈ dom f , 〈gx − gy,x− y〉 ≥ σ‖x− y‖2 for all gx ∈ ∂f(x) and gy ∈ ∂f(y).

We denote the set of all convex functions by F , and the set of all σ-strongly convex functions

with minimizer x∗
u in the set A ⊆ Rn and dom(·) = Rn by S(A, σ).

3.3 Problem Statement

We consider a function of the form

f(x) = fk(x) + fu(x), (3.2)

where fk and fu are convex functions. We assume that we know fk exactly, but do not

know fu, other than some general properties described below.

We assume that fk ∈ F and fu ∈ S(A, σ) where A is a compact set (i.e., we only know

that fu is σ-strongly convex and that its minimizer lies in some set A). Our goal is to find

the set of points x ∈ Rn that could potentially be the minimizer of f(x) in (  3.2 ). To this

end, we will seek to characterize the region

M(fk,A, σ) :=
{
x ∈ Rn : ∃fu ∈ S(A, σ), 0 ∈ ∂fk(x) + ∂fu(x)

}
. (3.3)

For simplicity of notation, we will omit the argument of the setM(fk,A, σ) and write it as

M. Note thatM contains all points x ∈ Rn that can potentially be a minimizer of f , given

fk, and the quantity σ and the set A pertaining to fu.
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Remark 3. Returning to the regression scenario involving data that is not directly available

to the optimizing entity (described in the Introduction), the unknown function would be of

the form fu(x) = ‖Ax − y‖2 where A is a matrix containing (unknown) training data and

y is the (unknown) vector of corresponding labels. When A has full rank, the loss function

is strongly convex. In addition, if some general underlying statistical properties of the data

are known to the optimizing entity, it could estimate a lower bound on the strong convexity

parameter σ, and a region containing the possible minimizer of fu(x). Thus, using this

information, the central entity seeks to find the set of possible minimizers of the sum of this

unknown function and its own loss function (corresponding to data that it has access to

directly).

3.4 Analysis for General Uncertainty Region

In this section, we provide a necessary condition for a point x∗ ∈ dom fk to be the

minimizer of f in the general case where the uncertainty region A of the minimizer of the

unknown function is compact, but of arbitrary shape.

For any given point x∗ ∈ Rn \ A, define the set

Ã(A,x∗) :=
{
x ∈ ∂A : (1− θ)x + θx∗ /∈ A, ∀θ ∈ (0, 1)

}
. (3.4)

In words, Ã(A,x∗) is the set of points x on the boundary of A such that the line joining x

to x∗ does not intersect A (except at x).

Theorem 3.4.1. Suppose fk ∈ F and A ⊆ dom fk is a compact set. A necessary condition

for a point x∗ ∈ Rn to be in M(fk,A, σ) \ A is

min
x∗

u∈A, gk
x∗ ∈∂fk(x∗)

〈gk
x∗ ,u(x∗,x∗

u)〉
‖x∗ − x∗

u‖
≤ −σ. (3.5)

Furthermore, the above inequality ( 3.5 ) can be reduced to

min
(x∗

u,gk)∈X (fk,A,x∗)

〈gk,u(x∗,x∗
u)〉

‖x∗ − x∗
u‖

≤ −σ, (3.6)
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where

X (fk,A,x∗) :=
{
(x, g) ∈ Ã(A,x∗)× ∂fk(x∗) : 〈g,u(x∗,x)〉 < 0

}
. (3.7)

Proof. Suppose fu ∈ S(A, σ). For any x, y ∈ Rn, let gu
x ∈ ∂fu(x) and gu

y ∈ ∂fu(y). From

the definition of a strongly convex function, we have

〈gu
x − gu

y,x− y〉 ≥ σ‖x− y‖2

for all x,y ∈ Rn.

Let x∗
u ∈ A be the true minimizer of fu and suppose x∗ is the minimizer of f = fk + fu.

Then, substitute x∗ into x and x∗
u into y to get

〈gu
x∗ − gu

x∗
u
,x∗ − x∗

u〉 ≥ σ‖x∗ − x∗
u‖2

for all gu
x∗ ∈ ∂fu(x∗) and gu

x∗
u
∈ ∂fu(x∗

u). Since x∗
u is the minimizer of fu, we have 0 ∈

∂fu(x∗
u). Consider x∗ /∈ A, which implies x∗ 6= x∗

u, and rewrite the inequality above (with

gu
x∗

u
= 0) to get

〈
gu

x∗ ,
x∗ − x∗

u

‖x∗ − x∗
u‖

〉
≥ σ‖x∗ − x∗

u‖ > 0.

Recall the definition of u(·, ·) in ( 3.1 ). The inequality above becomes

〈gu
x∗ ,u(x∗,x∗

u)〉 ≥ σ‖x∗ − x∗
u‖. (3.8)

Using the fact that x∗ is the minimizer of f = fk + fu, we get 0 ∈ ∂fk(x∗) + ∂fu(x∗), so

there exists gk
x∗ ∈ ∂fk(x∗) and gu

x∗ ∈ ∂fu(x∗) such that gk
x∗ + gu

x∗ = 0. Since the inequality

( 3.8 ) is true for any gu
x∗ ∈ ∂fu(x∗), we can apply gu

x∗ = −gk
x∗ to (  3.8 ) and get

〈−gk
x∗ ,u(x∗,x∗

u)〉 ≥ σ‖x∗ − x∗
u‖ ⇔ 〈gk

x∗ ,u(x∗,x∗
u)〉

‖x∗ − x∗
u‖

≤ −σ.
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Thus, if fu ∈ S(A, σ), we have a necessary condition that

if x∗ ∈M \A then there exist x∗
u ∈ A and gk

x∗ ∈ ∂fk(x∗)

such that 〈gk
x∗ ,u(x∗,x∗

u)〉
‖x∗ − x∗

u‖
≤ −σ.

Since the sets A and ∂fk(x∗) are compact by the assumption that fk is convex, the necessary

condition above is equivalent to

min
x∗

u∈A, gk
x∗ ∈∂fk(x∗)

〈gk
x∗ ,u(x∗,x∗

u)〉
‖x∗ − x∗

u‖
≤ −σ. (3.9)

Next, we will show that we can consider the minimum over the set X (defined in ( 3.7 ))

instead of A× ∂fk(x∗). Define the set

D(fk,x∗) := {(x, gk
x∗) ∈ Rn × ∂fk(x∗) : 〈gk

x∗ ,u(x∗,x)〉 < 0}.

First, using the fact that σ and ‖x∗ − x∗
u‖ are positive, we have

〈gk
x∗ ,u(x∗,x∗

u)〉
‖x∗ − x∗

u‖
≤ −σ ⇒ 〈gk

x∗ ,u(x∗,x∗
u)〉 < 0.

This means that we can consider the pair (x∗
u, g

k
x∗) inside the set (A × Rn) ∩ D instead of

A× ∂fk(x∗). Next, let

E(A,x∗) := {x ∈ A : ∃θ ∈ (0, 1), (1− θ)x + θx∗ ∈ A}.

Suppose (x(1)
u , gk

x∗) ∈ D ∩ (E ×Rn). We choose θ̄ so that θ̄ ∈ (0, 1) and x(2)
u = (1− θ̄)x(1)

u +

θ̄x∗ ∈ A, i.e., x(2)
u is in between x(1)

u and x∗, and also in the set A. We have

〈gk
x∗ ,u(x∗,x(1)

u )〉 = 〈gk
x∗ ,u(x∗,x(2)

u )〉 < 0
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and so

〈gk
x∗ ,u(x∗,x(2)

u )〉
‖x∗ − x

(2)
u ‖

<
〈gk

x∗ ,u(x∗,x(1)
u )〉

‖x∗ − x
(1)
u ‖

,

i.e., if x(1)
u satisfies ( 3.10 ), then so does x(2)

u . This means that we can consider the pair

(x∗
u, g

k
x∗) inside the set

(
(A \ E)× Rn

)
∩ D instead of A× ∂fk(x∗). However, we will show

that in fact the set

A \ E =
{
x ∈ A : (1− θ)x + θx∗ /∈ A, ∀θ ∈ (0, 1)

}

is contained in ∂A, i.e., A \ E ⊆ ∂A. Suppose x ∈ A◦ so there exists ε > 0 such that

B(x, ε) ⊆ A. By choosing θ̂ = ε
2‖x∗−x‖ , we get (1 − θ̂)x + θ̂x∗ ∈ A and θ̂ ∈ (0, 1) since

x∗ /∈ A. This implies that x /∈ A \ E and therefore A \ E ⊆ ∂A. Using the definition of Ã

in ( 3.4 ), we can then rewrite the set A \ E as follows:

A \ E(A,x∗) = Ã(A,x∗).

From the definition of X in ( 3.7 ), we have

(
Ã(A,x∗)× Rn

)
∩ D(fk,x∗) = X (fk,A,x∗).

Thus, the necessary condition (  3.9 ) reduces to

min
(x∗

u,gk
x∗ )∈X (fk,A,x∗)

〈gk
x∗ ,u(x∗,x∗

u)〉
‖x∗ − x∗

u‖
≤ −σ.
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We can interpret the necessary condition in Theorem  3.4.1 as follows. To check whether

x∗ ∈ Rn can be a minimizer of f(x), we can follow the inequality (  3.5 ) and search for a pair

(x∗
u, g

k
x∗) with x∗

u ∈ A and gk
x∗ ∈ ∂fk(x∗) such that the pair satisfies the inequality

〈gk
x∗ ,u(x∗,x∗

u)〉
‖x∗ − x∗

u‖
≤ −σ. (3.10)

However, the inequality (  3.6 ) with X (fk,A,x∗) defined in ( 3.7 ) suggests that we do not have

to search throughout the space A× ∂fk(x∗). Instead, we can restrict our attention to be in

the set X . Now we have the variables x∗
u and gk

x∗ that are coupled through the inequality

〈gk
x∗ ,u(x∗,x∗

u)〉 < 0. That is, if we first choose gk
x∗ ∈ ∂fk(x∗), then we can consider x∗

u that

is in the set {x ∈ ∂A : 〈gk
x∗ ,u(x∗,x)〉 < 0, (1− θ)x + θx∗ /∈ A, ∀θ ∈ (0, 1)}. Similarly,

if we first choose x∗
u ∈ {x ∈ ∂A : (1− θ)x + θx∗ /∈ A, ∀θ ∈ (0, 1)}, then we can consider

gk
x∗ that is in the set {g ∈ ∂fk(x∗) : 〈g,u(x∗,x)〉 < 0}.

If the function fk is differentiable at x∗, we have a single element in the set ∂fk(x∗),

namely ∇fk(x∗), and we can search for x∗
u ∈ ∂A such that 〈∇fk(x∗),u(x∗,x∗

u)〉 < 0.

However, if the set A is arbitrary, this search may be computationally expensive. In the

next section, we consider additional structure on the set A to simplify the search.

Remark 4. Note that the set A◦ ⊆M(fk,A, σ). To see this, note that for all x∗ ∈ A◦, there

exists ε > 0 such that B(x∗, ε) ⊂ A◦. Suppose g ∈ ∂fk(x∗). We can choose fu(x) = σu

2

∥∥∥x−(
x∗ + g

σu

)∥∥∥2
where σu = 2k‖g‖

ε
and k = max

{
1, σε

2‖g‖

}
. One can verify that x∗

u ∈ B(x∗, ε),

∇fu(x∗) = −g, and σu ≥ σ.

3.5 Analysis for the Case where Uncertainty Region is a Ball

Here, we consider additional structure on the uncertainty set A in order to provide a

more specific characterization of the region M. In particular, we consider A = B̄(x̄, ε0),

where x̄ ∈ Rn is the best guess of what the true parameter x∗
u is, and ε0 is the maximum

possible deviation of the true minimizer from our best guess.

We begin by investigating a property of the necessary condition (  3.6 ) under a coordinate

transformation. Suppose x = (x(1), x(2), . . . , x(n)) ∈ Rn and x∗ /∈ B(x̄, ε0). Let T and R be
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the translation and rotation operators such that R(T(x̄)) = 0, R(T(x∗)) = (x̃∗
(1), 0, . . . , 0)

with x̃∗
(1) > 0, and R(gk) = (g̃(1), g̃(2), 0, . . . , 0) with g̃(2) ≥ 0 while preserving the distance

between any two points. In other words, given the ball B̄(x̄, ε0), a point x∗ and a vector gk,

we transform the coordinates so that the ball is centered at the origin, the point x∗ lies on

the x(1)-axis, and the vector gk lies on the x(1)-x(2) plane.

Next, consider the expression 〈g,u(x∗,x∗
u)〉

‖x∗−x∗
u‖ . Notice that both numerator and denominator

can be written as inner products. Since R is a unitary operator, we have

〈
R(g),u

(
R(T(x∗)),R(T(x∗

u))
)〉

‖R(T(x∗))−R(T(x∗
u))‖ = 〈g,u(x∗,x∗

u)〉
‖x∗ − x∗

u‖
.

This means that even though we use the coordinate transformation R(T(·)), we can still

apply Theorem  3.4.1 . Therefore, for the purpose of deriving our main result, without loss

of generality, we can consider x̄ = 0, x∗ = (x∗
(1), 0, . . . , 0) where x∗

(1) > ε0, and g (= gk) =

(g(1), g(2), 0, . . . , 0), where g(2) ≥ 0.

Before going into the result, we introduce some definitions that will appear in the theorem.

For any given x∗ ∈ Rn, define z1(x∗) ∈ Rn as

z1(x∗) := arg min
x∈B(x̄,ε0)

‖x− x∗‖. (3.11)

By our assumption that x∗ = (x∗
(1), 0, . . . , 0), we have z1(x∗) = (ε0, 0, . . . , 0). Since x∗ /∈

B(x̄, ε0), the point z1 is unique and is on ∂B(x̄, ε0). If g 6= α(x∗ − x̄) = (αx∗
(1), 0, . . . , 0) for

all α ≥ 0 (i.e., ∠(g,x∗ − x̄) 6= 0), we define the set P to be such that

P(g,x∗) := arg min
x∈∂B(x̄,ε0)

∠(g,x− x∗),

the point z2 ∈ Rn to be such that

z2(g,x∗) := arg min
x∈P(g,x∗)

‖x− x∗‖, (3.12)
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and the curve C0(x̄, ε0, g,x
∗) to be the shortest path on the surface ∂B(x̄, ε0) that connects

z1 and z2 together, i.e., C0 is the geodesic path between z1 and z2 on ∂B(x̄, ε0).

To clarify these definitions, we introduce two more objects. Let L be the ray that starts

from the point x∗ and runs parallel to the vector g i.e.,

L(g,x∗) = {x ∈ Rn : ∃ t ∈ [0,∞), x = x∗ + tg}.

If g 6= α(x∗ − x̄) = (αx∗
(1), 0, . . . , 0) for all α ∈ R, let P2 be the 2-dimensional plane that

contains the vectors g and x∗ − x̄ as its bases, and contains the point x∗, i.e.,

P2(x̄, g,x∗) := {x ∈ Rn : ∃ s, t ∈ R such that x = x∗ + sg + t(x∗ − x̄)}

= {x ∈ Rn : x(3) = x(4) = . . . = x(n) = 0},

where the second equality follows from the fact that

x∗ = (x∗
(1), 0, 0, . . . , 0) and g = (g(1), g(2), 0, . . . , 0).

There are two possible cases:

(i) the ray L passes through the ball B(x̄, ε0) and

(ii) the ray L does not pass through the ball B(x̄, ε0).

In the first case, we have

min
x∈∂B(x̄,ε0)

∠(g,x− x∗) = 0,

and there are either one or two elements in the set P . The point z2 is the one that closer to

the point x∗. Note that z2 ∈ P2. The illustration of the first case is shown in Figure  3.1 .

In the second case, we have

min
x∈∂B(x̄,ε0)

∠(g,x− x∗) > 0.
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Figure 3.1. The points z1 and z2, and the curve C0 on the surface ∂B(x̄, ε0)
in the case that the ray L passes through the ball B(x̄, ε0).

The vector z2 − x∗ is a tangent vector at the point z2 on the ball B̄ and has angle ∠(z2 −

x∗, x̄ − x∗) = arcsin
(

ε0
‖x∗−x̄‖

)
. Furthermore, the point z2 is on the plane P2 since z2 − x∗

and x̄ − x∗ must be on the same 2D-plane in order to minimize the angle between them.

The illustration of the second case is shown in Figure  3.2 .

Since P2 passes through the center x̄ of the ball B̄(x̄, ε0), we can define the great circle

G ⊂ P2 which is the intersection of ∂B̄ with P2. Since z1 and z2 are in G (and also in P2),

the geodesic path C0 is in P2. The geodesic path in both cases is also shown in Figure  3.1 

and Figure  3.2 .

Before stating the theorem, define the open half-space

H(g,x∗) := {x ∈ Rn : 〈g,u(x∗,x)〉 < 0},

Note that C0(x̄, ε0, g,x
∗) ∩ H(g,x∗) 6= ∅ as long as ∠(g, z2 − x∗) < π

2 or equivalently,

∠(g, x̄− x∗) < π

2 + arcsin
(

ε0
‖x∗−x̄‖

)
as shown in Figure  3.3 and Figure  3.4 .

We now come to the main result of this section.
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Figure 3.2. The points z1 and z2, and the curve C0 on the surface ∂B(x̄, ε0)
in the case that the ray L does not pass through the ball B(x̄, ε0).
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Theorem 3.5.1. Suppose fk ∈ F and ε0 > 0. A necessary condition for a point x∗ ∈ Rn to

be in M
(
fk,B(x̄, ε0), σ

)
\ B(x̄, ε0) is

min
(x∗

u,gk)∈X̃ (fk,x̄,ε0,x∗)

〈gk,u(x∗,x∗
u)〉

‖x∗ − x∗
u‖

≤ −σ, (3.13)

where

X̃ (fk, x̄, ε0,x
∗) :=

{
(x, g) ∈ C0(x̄, ε0, g,x

∗)× ∂fk(x∗)}. (3.14)

Proof. For a given gk
x∗ ∈ ∂fk(x∗) with gk

x∗ 6= 0, we consider the angle ∠(gk
x∗ ,x∗− x̄) in two

disjoint cases:

(a) Suppose the gradient gk
x∗ is colinear with the vector x∗ − x̄.

(i) If gk
x∗ = α(x∗−x̄) for some α > 0 (i.e., gk

x∗ is pointing directly away from B̄(x̄, ε0)

on the x(1)-axis), then 〈gk
x∗ ,u(x∗,x)〉 > 0 for all x ∈ B(x̄, ε0). Thus, no points

in B(x̄, ε0) can satisfy the inequality ( 3.10 ).

(ii) If gk
x∗ = α(x∗ − x̄) for some α < 0 (i.e., gk

x∗ is pointing directly toward B̄(x̄, ε0)

on the x(1)-axis), then the ray L passes through the ball B̄(x̄, ε0) at z1, and

thus {z1(x∗)} = {z2(gk
x∗ ,x∗)} = C0. Furthermore, B̄ ⊂ H. For simplicity of

notation, we will omit the arguments and write z1(x∗) and z2(gk
x∗ ,x∗) as z1 and

z2, respectively. From (  3.12 ), for all x ∈ ∂B̄, we have

∠(gk
x∗ ,u(z2,x

∗)) ≤ ∠(gk
x∗ ,u(x,x∗))

⇒ ∠(gk
x∗ ,u(x∗, z2)) ≥ ∠(gk

x∗ ,u(x∗,x))

⇒ cos∠(gk
x∗ ,u(x∗, z2)) ≤ cos∠(gk

x∗ ,u(x∗,x))

⇒ 〈gk
x∗ ,u(x∗, z2)〉 ≤ 〈gk

x∗ ,u(x∗,x)〉. (3.15)
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Since z2, x ∈ H, we have 〈gk
x∗ ,u(x∗, z2)〉 ≤ 〈gk

x∗ ,u(x∗,x)〉 < 0. In addition,

from (  3.11 ), for all x ∈ ∂B̄, we have 0 < ‖x∗− z1‖ ≤ ‖x∗−x‖. Since z1 = z2 in

this case, we obtain

−‖gk
x∗‖

‖x∗ − z1‖
= 〈g

k
x∗ ,u(x∗, z1)〉
‖x∗ − z1‖

≤ 〈g
k
x∗ ,u(x∗,x)〉
‖x∗ − x‖

for all x ∈ ∂B̄. Thus, it suffices to only check z1 ∈ C0 to see if (  3.10 ) is satisfied.

(b) Suppose the gradient gk
x∗ is not colinear with the vector x∗ − x̄. Then we can define

the points z1 and z2 as described earlier. If

∠(gk
x∗ , x̄− x∗) ≥ π

2 + arcsin
(

ε0

‖x∗ − x̄‖

)
,

then B̄(x̄, ε0) ∩ H(gk
x∗ ,x∗) = ∅ as shown in Figure  3.3 , and no points in B(x̄, ε0) can

satisfy the inequality (  3.10 ). If

∠(gk
x∗ , x̄− x∗) < π

2 + arcsin
(

ε0

‖x∗ − x̄‖

)
,

then B̄(x̄, ε0) ∩ H(gk
x∗ ,x∗) 6= ∅ and z2 ∈ H(gk

x∗ ,x∗) as shown in Figure  3.4 . In this

case, consider a point x ∈ ∂B̄(x̄, ε0) ∩H(gk
x∗ ,x∗) and x /∈ C0.

(i) Suppose ‖x − x∗‖ > ‖z2 − x∗‖. By the definition of z2 in (  3.12 ), we have

∠(gk
x∗ ,u(z2,x

∗)) ≤ ∠(gk
x∗ ,u(x,x∗)). Since z2, x ∈ H, using the same argument

as (  3.15 ), we get 〈gk
x∗ ,u(x∗, z2)〉 ≤ 〈gk

x∗ ,u(x∗,x)〉 < 0. Therefore,

〈gk
x∗ ,u(x∗, z2)〉
‖z2 − x∗‖

<
〈gk

x∗ ,u(x∗,x)〉
‖x− x∗‖

,

i.e., if x satisfies (  3.10 ), then so does z2. This means that we can consider z2 ∈ C0

instead of any point in ∂B̄(x̄, ε0) ∩H(gk
x∗ ,x∗) with greater distance from x∗.
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(ii) Suppose ‖x− x∗‖ ≤ ‖z2 − x∗‖. Since C0 is connected and h(y) = ‖y − x∗‖ is a

continuous function, {h(y) : y ∈ C0} is connected. Then, we have

[
‖z1 − x∗‖, ‖z2 − x∗‖

]
⊆
{
‖y − x∗‖ : y ∈ C0

}
.

Thus, there exists a z ∈ C0 ∩ H such that ‖z − x∗‖ = ‖x− x∗‖. However, since

C0 ⊂ P2, we get that

∠(gk
x∗ ,u(z,x∗)) ≤ ∠(gk

x∗ ,u(x,x∗)).

Furthermore, since z, x ∈ H, using the same argument as (  3.15 ), we get

〈gk
x∗ ,u(x∗, z)〉 < 〈gk

x∗ ,u(x∗,x)〉 < 0.

In this case, we also have

〈gk
x∗ ,u(x∗, z)〉
‖z − x∗‖

≤ 〈g
k
x∗ ,u(x∗,x)〉
‖x− x∗‖

,

i.e., if x satisfies (  3.10 ), then so does z.

Thus, we conclude that for each point x ∈ ∂B̄ ∩ H, there is a point z ∈ C0 such that
〈gk

x∗ ,u(x∗,z)〉
‖x∗−z‖ ≤ 〈gk

x∗ ,u(x∗,x)〉
‖x∗−x‖ . Therefore, to check if there is a point x ∈ ∂B̄ ∩ H satisfying

( 3.10 ), we only need to check points in C0, yielding (  3.13 ).

In fact, we can replace C0(x̄, ε0, g,x
∗) in Theorem  3.5.1 by C0(x̄, ε0, g,x

∗) ∩ H(g,x∗).

However, for simplicity of exposition, we forego the discussion of this further reduction in

search space.

The set X̃ (fk, x̄, ε0,x
∗) defined in (  3.14 ) suggests that we do not have to search for a

pair (x∗, gk) that satisfies the inequality

〈gk,u(x∗,x∗
u)〉

‖x∗ − x∗
u‖

≤ −σ
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Figure 3.3. The area above the black dotted line is H(gk
x∗ ,x∗) and the blue

dotted line shows the angle arcsin
(

ε0
‖x∗−x̄‖

)
. In this case, the angle ∠(gk

x∗ , x̄−
x∗) ≥ π

2 + arcsin
(

ε0
‖x∗−x̄‖

)
, so B̄(x̄, ε0) ∩H(gk

x∗ ,x∗) = ∅.

Figure 3.4. The area above the black dotted line is H(gk
x∗ ,x∗) and the blue

dotted line shows the angle arcsin
(

ε0
‖x∗−x̄‖

)
. In this case, the angle ∠(gk

x∗ , x̄−
x∗) < π

2 + arcsin
(

ε0
‖x∗−x̄‖

)
, so B̄(x̄, ε0) ∩H(gk

x∗ ,x∗) 6= ∅.
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throughout the set X (fk,A,x∗) defined in ( 3.7 ) but can instead restrict our attention to

be in the set X̃ (fk, x̄, ε0,x
∗) in (  3.14 ). Since the curve C0 depends on the vector gk that

we choose from ∂fk(x∗), we have to first select gk ∈ ∂fk(x∗) and then we can consider the

points on the curve C0 to see if they satisfy ( 3.10 ). We will use this in the algorithm for

computing the region M in the next section.

3.6 Algorithm and Example

3.6.1 Algorithm

Consider the case from the previous section where the uncertainty set is a ball, i.e.,

A = B̄(x̄, ε0). In this subsection, we will give an algorithm (Algorithm  1 ) to identify the

region that satisfies the necessary condition (  3.13 ). We provide a discussion of each of the

steps below.

Algorithm 1 Region M Identification (Ball Case)
Let X ⊆ dom fk be a set of points in the space
Input X, fk ∈ F , x̄ ∈ Rn, ε0 > 0, and σ > 0
Output minimizer(X)

1: for x∗ ∈ X do . Loop through the space
2: minimizer(x∗)← false
3: d← ‖x̄− x∗‖
4: g ← ∇fk(x∗)
5: α← ∠(g, x̄− x∗)
6: if α < π

2 + arcsin
(

ε0
d

)
then

7: for θ ∈
[
0, arccos( ε0

d
)
]

do
8: ‖x∗ − x∗

u‖ ←
√
d2 + ε2

0 − 2ε0d cos θ

9: ∠(g,x∗ − x∗
u)← α +

[
π− arcsin

(
ε0 sin θ

‖x∗−x∗
u‖

)]
10: 〈g,u(x∗,x∗

u)〉 ← ‖g‖ cos∠(g,x∗ − x∗
u)

11: if 〈g,u(x∗,x∗
u)〉

‖x∗−x∗
u‖ ≤ −σ then

12: minimizer(x∗)← true
13: end if
14: end for
15: end if
16: end for
17: return minimizer(X)
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Let X be a set of points; we wish to check whether each point in X is a potential

minimizer of fk + fu. For simplicity, we assume that the function fk is differentiable, i.e.,

∂fk(x∗) = {∇fk(x∗)} and the set of points X ⊆ dom fk. For example, we can use linspace

in MATLAB to form a range for each axis, followed by using meshgrid to construct X. The

object minimizer is an array that keeps a Boolean value for each point in X to indicate

whether it is a potential minimizer. First, we loop through each point x∗ in the set X and

assign Boolean ‘false’ to that x∗. In order to change the Boolean to be ‘true’, the point

x∗ has to satisfy the inequality (  3.13 ). Before checking that inequality, we need to compute

several intermediate variables. In the algorithm, we compute the distance between the center

of the ball x̄ and the point x∗ (d ← ‖x̄ − x∗‖), the gradient of fk at x∗ (g ← ∇fk(x∗)),

and the angle between the gradient and reference (α ← ∠(g, x̄ − x∗)). Note that we can

compute α explicitly by

α← ∠(g, x̄− x∗) = arccos
( 〈g, x̄− x∗〉
‖g‖‖x̄− x∗‖

)
.

We then verify the condition

∠(g, x̄− x∗) < π

2 + arcsin
(

ε0

‖x∗ − x̄‖

)

(line 6); if this is not satisfied, no points in B(x̄, ε0) can satisfy the inequality ( 3.10 ) as argued

in the proof of Theorem  3.5.1 and illustrated in Figure  3.3 . The next step is to compute

the path C0, which we parametrize by using the variable θ. The variable θ in the algorithm

corresponds to

θ = ∠(x∗
u − x̄,x∗ − x̄) where x∗

u ∈ C0

as shown in Figure  3.5 . So, we need to know the range of θ that characterizes the path C0.

This range can be computed by considering the points z1 and z2, at which the angle θ equals

0 and arccos( ε0
‖x̄−x∗‖), respectively, as shown in Figure  3.6 . Consider Figure  3.5 . For each

θ in the range (discretized to a sufficiently fine resolution), we can compute the distance
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Figure 3.5. Given ε0, d, and θ, we can compute ‖x∗ − x∗
u‖.

Figure 3.6. Given ε0 and d, we can compute ∠(z2 − x̄,x∗ − x̄).

‖x∗ − x∗
u‖ (line 8) by using the cosine law. Consider Figure  3.7 . We can compute the angle

∠(g,x∗ − x∗
u) (line 9) by using

∠(g,x∗ − x∗
u) = ∠(g,x∗ − x̄) + arcsin

(
ε0 sin θ
‖x∗ − x∗

u‖

)
and ∠(g,x∗ − x̄) = (π− ∠(g, x̄− x∗)).

After that we compute the inner product 〈g,u(x∗,x∗
u)〉 (line 10). Finally, we can compute

the LHS of (  3.13 ) and compare it to −σ. If the inequality ( 3.13 ) is satisfied by the current

values x∗ and θ, we set the Boolean associated to this x∗ to be ‘true’.
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Figure 3.7. Given ε0, θ, ‖x∗ − x∗
u‖, and α, we can compute ∠(g,x∗ − x∗

u).
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3.6.2 Example

Consider the known function fk(x) = (x1− 2)2 + x2
2, and suppose the unknown function

fu has minimizer in the ball centered at x̄ = (0, 0). We vary the radius of the ball of

uncertainty (ε0) among the values 0.1, 0.4, and 0.8, and the strong convexity parameter (σ)

of the function fu among the values 0.25, 2.0, and 5.0. Examples of the region that contains

the possible minimizer of the sum fk +fu are shown in Figure  3.8 . In the figure, the function

fk(x) is shown by using level curves and the uncertainty ball is shown by the beige circle.

The region containing the possible minimizers of fk + fu (i.e., the set of points x ∈ Rn that

satisfies (  3.13 )) is shown in blue (it contains the uncertainty set within it). Note that the

solution region shrinks with increasing σ and grows with increasing ε0.

3.7 Conclusions

In this chapter, we studied the properties of the minimizer of the sum of convex functions

in which one of the functions is unknown but the others are known. However, we assumed

that the unknown function is strongly convex with known convexity parameter, and that

we have a region A where the minimizer of this function lies. We established a necessary

condition for a given point to be a minimizer of the sum of known and unknown functions for

general compact set A. We then considered a special case where the region of the unknown

function’s minimizer is a ball. In this case, we simplified the necessary condition and provided

an algorithm to determine the region that satisfies the necessary condition.

Future work could focus on providing sufficient conditions for a given point to be a min-

imizer (to complement our necessary condition). Alternatively, one could analyze properties

of the set of solutions that satisfy the necessary condition.
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Figure 3.8. The function fk(x) = (x1− 2)2 + x2
2 is shown by the level curves

while the balls B(x̄, ε0) with the center at (0, 0) are shown by the beige circle.
The radius of the ball of uncertainty (ε0) and the strong convexity parameter
(σ) of the function fm are varied and the solution sets are shown by the dark
blue regions.
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4. SCALABLE DISTRIBUTED OPTIMIZATION OF

MULTI-DIMENSIONAL FUNCTIONS DESPITE BYZANTINE

ADVERSARIES

© 2022 IEEE. Reprinted, with permission, from [K. Kuwaranancharoen, L. Xin and S. Sun-

daram, “Byzantine-Resilient Distributed Optimization of Multi-Dimensional Functions,” in

IEEE/2020 American Control Conference (ACC), pp. 4399-4404, Jul. 2020,

DOI: 10.23919/ACC45564.2020.9147396].

4.1 Introduction

The design of distributed algorithms has received significant attention in the past few

decades [  61 ], [ 62 ]. In particular, for the problem of distributed optimization, a set of agents

in a network are required to reach agreement on a parameter that minimizes the average of

their local objective functions, using information received from their neighbors [  9 ], [ 63 ]–[ 65 ].

A variety of approaches have been proposed to tackle different challenges of this problem,

e.g., distributed optimization under constraints [  25 ], distributed optimization under time-

varying graphs [ 27 ], and distributed optimization for nonconvex nonsmooth functions [  66 ].

However, these existing works typically make the assumption that all agents are trustworthy

and cooperative (i.e., they follow the prescribed protocol); indeed, such protocols fail if even

a single agent behaves in a malicious or incorrect manner [  30 ].

As security becomes a more important consideration in large scale systems, it is crucial to

develop algorithms that are resilient to agents that do not follow the prescribed algorithm.

A handful of recent papers have considered fault tolerant algorithms for the case where

agent misbehavior follows specific patterns [  31 ], [ 32 ]. A more general (and serious) form of

misbehavior is captured by the Byzantine adversary model from computer science, where

misbehaving agents can send arbitrary (and conflicting) values to their neighbors at each

iteration of the algorithm. Under such Byzantine behavior, it has been shown that it is

impossible to guarantee computation of the true optimal point [ 30 ], [  33 ]. Thus, researchers

have begun formulating distributed optimization algorithms that allow the non-adversarial
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nodes to converge to a certain region surrounding the true minimizer, regardless of the

adversaries’ actions [  30 ], [  34 ], [  41 ].

It is worth noting that one major limitation of the above works is that they all make the

assumption of scalar-valued objective functions, and the extension of the above ideas to gen-

eral multi-dimensional convex functions remains largely open. In fact, one major challenge

for minimizing multi-dimensional functions is that the region containing the minimizer of

the sum of functions is itself difficult to characterize. Specifically, in contrast to the case of

scalar functions, where the global minimizer 

1
 always lies within the smallest interval contain-

ing all local minimizers, the region containing the minimizer of the sum of multi-dimensional

functions may not necessarily be in the convex hull of the minimizers (Chapter  2 ).

There exists a branch of literature focusing on secure distributed machine learning in a

client-server architecture [  42 ], [  43 ], [  67 ], where the server appropriately filters the information

received from the clients. However, their extensions to a distributed (peer-to-peer) setting

remains unclear. The papers [  44 ], [ 45 ] consider a vector version of the resilient machine

learning problem in a distributed (peer-to-peer) setting. These papers show that the states of

regular nodes will converge to the statistical minimizer with high probability (as the amount

of data of each node goes to infinity), but the analysis is restricted to i.i.d training data across

the network. However, when each agent has a finite amount of data, these algorithms are still

vulnerable to sophisticated attacks as shown in [ 46 ]. The work [  47 ] considers a Byzantine

distributed optimization problem for multi-dimensional functions, but relies on redundancy

among the local functions, and also requires the underlying communication network to be

complete. The recent work [ 68 ] studies resilient stochastic optimization problem. However,

the assumptions made are quite different, in that it considers non-convex smooth functions,

and the results do not ensure asymptotic consensus.

To the best of our knowledge, our conference paper [ 40 ] is the first one that provides

a scalable algorithm with convergence guarantees in general networks under very general

conditions on the multi-dimensional convex functions held by the agents in the presence of

Byzantine faults. Different from existing works, the algorithm in [  40 ] does not rely on any
1

 ↑ We will use the terms “global minimizer" and “minimizer of the sum" interchangeably since we only consider
convex functions.
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statistical assumptions or redundancy of local functions. Technically, the analysis addresses

the challenge of finding a region that contains the global minimizer for multiple-dimensional

functions, and shows that regular states are guaranteed to converge to that region under

the proposed algorithm. The Distance-MinMax Filtering Dynamics in [  40 ] requires each

regular node to compute an auxiliary point using resilient asymptotic consensus techniques

on their individual functions’ minimizers in advance. After that, there are two filtering steps

in the main algorithm that help regular nodes to discard extreme states. The first step is to

remove extreme states (based on the distance to the auxiliary point), and the second step is

to remove states that have extreme values in any of their components. On the other hand,

the algorithm in [ 40 ] suffers from the need to compute the auxiliary point prior to running

the main algorithm, since the fixed auxiliary point is only achieved by the resilient consensus

algorithm asymptotically.

In this chapter, we eliminate this drawback. The algorithms and analysis we propose here

expand upon the work in [  40 ] in the following significant ways. First, the algorithms in this

chapter bring the computation of the auxiliary point into the main algorithm, so that the

local update of auxiliary point and local filtering strategies are performed simultaneously.

This makes the analysis much more involved since we need to take into account the coupled

dynamics of the estimated auxiliary point and the optimization variables. Second, the algo-

rithms make better use of local information by including each regular node’s own state as

a metric. In practice, we observe that this performs better than the approach in [  40 ], since

each agent may discard fewer states and hence, there are more non-extreme states that can

help the regular agents get close to the true global minimizer. Again, we characterize the

convergence region that all regular states are guaranteed to converge to using the proposed

algorithm. Third, we present an alternate algorithm in this chapter which only makes use

of the distance filter (as opposed to both the distance and min-max filter); we show that

this algorithm significantly reduces the requirements on the network topology for our conver-

gence guarantees, at the cost of losing guarantees on consensus of the regular nodes’ states.

Importantly, our work represents the first attempt to provide convergence guarantees in a

geometric sense, characterizing a region where all states are ensured to converge to, without

relying on any statistical assumptions or redundancy of local functions.
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This chapter is organized as follows. Section  4.2 introduces various mathematical prelimi-

naries, and states the problem of resilient distributed optimization. We provide our proposed

algorithms in Section  4.3 . We then state the assumptions and some important results related

to properties of the proposed algorithms in Section  4.4 . In Section  4.5 , we provide discussion

on the results. Finally, we simulate our algorithms to numerically evaluate their performance

in Section  4.6 , and conclude in Section  4.7 .

4.2 Mathematical Notation and Problem Formulation

Let N, Z and R denote the set of natural numbers (including zero), integers, and real

numbers, respectively. We also denote the set of positive integers by Z+. The cardinality of

a set is denoted by | · |. The set of subgradients of a convex function f at point x is called

the subdifferential of f at x, and is denoted ∂f(x).

4.2.1 Linear Algebra

Vectors are taken to be column vectors, unless otherwise noted. We use x(`) to represent

the `-th component of a vector x. The Euclidean norm on Rd is denoted by ‖ · ‖. We denote

by 〈u,v〉 the Euclidean inner product of u and v, i.e., 〈u,v〉 = uT v and by ∠(u,v) the

angle between vectors u and v, i.e., ∠(u,v) = arccos
(

〈u,v〉
‖u‖‖v‖

)
. We use S+

d to denote the set

of positive definite matrices in Rd×d. The Euclidean ball in d-dimensional space with center

at x0 and radius r ∈ R>0 is denoted by B(x0, r) := {x ∈ Rd : ‖x− x0‖ ≤ r}.

4.2.2 Graph Theory

We denote a network by a directed graph G = (V , E), which consists of the set of nodes

V = {v1, v2, . . . , vN} and the set of edges E ⊆ V × V . If (vi, vj) ∈ E , then node vj can

receive information from node vi. The in-neighbor and out-neighbor sets are denoted by

N in
i = {vj ∈ V : (vj, vi) ∈ E} and N out

i = {vj ∈ V : (vi, vj) ∈ E}, respectively. A path from

node vi ∈ V to node vj ∈ V is a sequence of nodes vk1 , vk2 , . . . , vkl
such that vk1 = vi, vkl

= vj

and (vkr , vkr+1) ∈ E for 1 ≤ r ≤ l− 1. Throughout this chapter, the terms nodes and agents
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will be used interchangeably. Given a set of vectors {x1,x2, . . . ,xN}, where each xi ∈ Rd ,

we define for all S ⊆ V ,

{xi}S := {xi ∈ Rd : vi ∈ S}.

Definition 4.2.1. A graph G = (V , E) is said to be rooted at node vi ∈ V if for all nodes

vj ∈ V \{vi}, there is a path from vi to vj. A graph is said to be rooted if it is rooted at some

node vi ∈ V.

We will rely on the following definitions from [  69 ].

Definition 4.2.2 (r-reachable set). For a given graph G and a positive integer r ∈ Z+,

a subset of nodes S ⊆ V is said to be r-reachable if there exists a node vi ∈ S such that

|N in
i \ S| ≥ r.

Definition 4.2.3 (r-robust graph). For r ∈ Z+, a graph G is said to be r-robust if for all

pairs of disjoint nonempty subsets S1,S2 ⊂ V, at least one of S1 or S2 is r-reachable.

The above definitions capture the idea that sets of nodes should contain individual nodes

that have a sufficient number of neighbors outside that set. This will be important for

the local decisions made by each node in the network under our algorithm, and will allow

information from the rest of the network to penetrate into different sets of nodes.

4.2.3 Adversarial Behavior

Definition 4.2.4. A node vi ∈ V is said to be Byzantine if during each iteration of the

prescribed algorithm, it is capable of sending arbitrary (and perhaps conflicting) values to

different neighbors. It is also allowed to update its local information arbitrarily at each

iteration of any prescribed algorithm.

The set of Byzantine nodes is denoted by A ⊂ V . The set of regular nodes is denoted by

R = V \ A.

The identities of the Byzantine agents are unknown to regular agents in advance. Further-

more, we allow the Byzantine agents to know the entire topology of the network, functions

equipped by the regular nodes, and the deployed algorithm. In addition, Byzantine agents
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are allowed to coordinate with other Byzantine agents and access the current and previous

information contained by the nodes in the network (e.g. current and previous states of all

nodes). Such extreme behavior is typical in the study of the adversarial models [  30 ], [  33 ],

[ 44 ]. In exchange for allowing such extreme behavior, we will consider a limitation on the

number of such adversaries in the neighborhood of each regular node, as follows.

Definition 4.2.5 (F -local model). For F ∈ Z+, we say that the set of adversaries A is an

F -local set if |N in
i ∩ A| ≤ F , for all vi ∈ R.

Thus, the F -local model captures the idea that each regular node has at most F Byzantine

in-neighbors.

4.2.4 Problem Formulation

Consider a group of N agents V interconnected over a graph G = (V , E). Each agent

vi ∈ V has a local convex cost function fi : Rd → R. The objective is to collaboratively solve

the minimization problem

min
x∈Rd

1
N

∑
vi∈V

fi(x), (4.1)

where x ∈ Rd is the common decision variable. A common approach to solve such problems

is for each agent to maintain a local estimate of the solution to the above problem, which it

iteratively updates based on communications with its immediate neighbors. However, since

Byzantine nodes are allowed to send arbitrary values to their neighbors at each iteration of

any algorithm, it is not possible to solve Problem (  4.1 ) under such misbehavior (since one is

not guaranteed to infer any information about the true functions of the Byzantine agents)

[ 30 ], [  33 ]. Thus, the optimization problem is recast into the following form:

min
x∈Rd

1
|R|

∑
vi∈R

fi(x), (4.2)

i.e., we restrict our attention only to the functions held by regular nodes.
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Remark 5. The challenge in solving the above problem lies in the fact that no regular agent

is aware of the identities or actions of the Byzantine agents. Furthermore, in the worst-case

scenario, it is not feasible to achieve an exact solution to Problem  4.2 , as the Byzantine

agents can modify the functions while still adhering to the algorithm, making it impossible

to differentiate them [  30 ], [  33 ].

In the next section, we propose two scalable algorithms that allow the regular nodes

to approximately solve the above problem, regardless of the identities or actions of the

Byzantine agents (as proven later in the chapter).

4.3 Resilient Distributed Optimization Algorithms

4.3.1 Proposed Algorithms

The algorithms that we propose are stated as Algorithm  2 and Algorithm  3 . We start with

Algorithm 1. At each time-step k, each regular node 

2
 vi ∈ R maintains and updates a vector

xi[k] ∈ Rd, which is its estimate of the solution to Problem (  4.2 ), and a vector yi[k] ∈ Rd,

which is its estimate of an auxiliary point that provides a general sense of direction for each

agent to follow. Specifically, the auxiliary points yi[k] will be used to perform the distance-

based filtering step (Line 7) in which the neighbors’ states {xj[k]}vj∈N in
i

far from yi[k] are

removed at time-step k. We now explain each step used in Algorithm  2 in detail.  

3
 

• Line 1: x̂∗
i ← optimize (fi)

Each node vi ∈ R uses any appropriate optimization algorithm to get an approximate

minimizer x̂∗
i ∈ Rd of its local function fi. We assume that there exists ε∗ ∈ R≥0 such

that the algorithm achieves ‖x̂∗
i − x∗

i ‖ ≤ ε∗ for all vi ∈ R where x∗
i ∈ Rd is a true

minimizer of the function fi; we assume formally that such a true (but not necessary

unique) minimizer exists for each vi ∈ R in the next section.
2

 ↑ Byzantine nodes do not necessarily need to follow the above algorithm, and can update their states however
they wish.
3

 ↑ In the algorithm, Xi[k], X dist
i [k], Xmm

i [k], Yi[k] and Ymm
i [k] are multisets.
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Algorithm 2 Simultaneous Distance-MinMax Filtering Dynamics
Input Network G, functions {fi}N

i=1, parameter F
1: Each vi ∈ R sets x̂∗

i ← optimize(fi)
2: Each vi ∈ R sets xi[0]← x̂∗

i and yi[0]← x̂∗
i

3: for k = 0, 1, 2, 3, . . . do
4: for vi ∈ R do . Implement in parallel

Step I: Broadcast and Receive
5: broadcast(N out

i , xi[k], yi[k])
6: Xi[k], Yi[k]← receive(N in

i )
Step II: Resilient Consensus Step

7: X dist
i [k]← dist_filt(F, yi[k], Xi[k])

8: Xmm
i [k]← x_minmax_filt(F, X dist

i [k])
9: zi[k]← x_weighted_average(Xmm

i [k])
Step III: Gradient Update

10: xi[k + 1]← gradient(fi, zi[k])
Step IV: Update the Estimated Auxiliary Point

11: Ymm
i [k]← y_minmax_filt(F, Yi[k])

12: yi[k + 1]← y_weighted_average(Ymm
i [k])

13: end for
14: end for
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• Line 2: xi[0]← x̂∗
i and yi[0]← x̂∗

i

Each node vi ∈ R initializes its own estimated solution to Problem ( 4.2 ) (xi[0] ∈ Rd)

and estimated auxiliary point (yi[0] ∈ Rd) to be x̂∗
i .

• Line 5: broadcast (N out
i , xi[k], yi[k])

Node vi ∈ R broadcasts its current state xi[k] and estimated auxiliary point yi[k] to

its out-neighbors N out
i .

• Line 6: Xi[k], Yi[k]← receive(N in
i )

Node vi ∈ R receives the current states xj[k] and yj[k] from its in-neighbors N in
i . So,

at time step k, node vi possesses the sets of states  

4
 

Xi[k] :=
{
xj[k] ∈ Rd : vj ∈ N in

i ∪ {vi}
}

and

Yi[k] :=
{
yj[k] ∈ Rd : vj ∈ N in

i ∪ {vi}
}
.

The sets Xi[k] and Yi[k] have an indirect relationship through the distance-based filter

(Line 7) as only yi[k] ∈ Yi[k] is used as the reference to remove states in Xi[k].

• Line 7: X dist
i [k]← dist_filt(F, yi[k], Xi[k])

Intuitively, regular node vi ignores the states that are far away from its own auxiliary

state yi[k] in L2 sense. Formally, node vi ∈ R computes the distance between each

vector in Xi[k] and its own estimated auxiliary point yi[k]:

Dij[k] := ‖xj[k]− yi[k]‖ for xj[k] ∈ Xi[k]. (4.3)

Then, node vi ∈ R sorts the values in the set {Dij[k] : vj ∈ N in
i ∪ {vi}} and removes

the F largest values that are larger than its own value Dii[k]. If there are fewer than

F values higher than its own value, vi removes all of those values. Ties in values

are broken arbitrarily. The corresponding states of the remaining values are stored in
4

 ↑ In case a regular node vi has a Byzantine neighbor vj , we abuse notation and take the value xj [k] to be
the value received from node vj (i.e., it does not have to represent the true state of node vj).

92



X dist
i [k]. In other words, regular node vi removes up to F of its neighbors’ vectors that

are furthest away from the auxiliary point yi[k].

• Line 8: Xmm
i [k]← x_minmax_filt(F, X dist

i [k])

Intuitively, regular node vi ignores the states that contains extreme values in any

of their components in the ordering sense. Formally, for each time-step k ∈ N and

dimension ` ∈ {1, 2, . . . , d}, define the set Vremove
i (`)[k] ⊆ N in

i , where a node vj is in

Vremove
i (`)[k] if and only if

– x
(`)
j [k] is within the F -largest values of the set

{
x(`)

r [k] ∈ R : xr[k] ∈ X dist
i [k]

}
and

x
(`)
j [k] > x

(`)
i [k], or

– x
(`)
j [k] is within the F -smallest values of the set

{
x(`)

r [k] ∈ R : xr[k] ∈ X dist
i [k]

}
and x

(`)
j [k] < x

(`)
i [k].

Ties in values are broken arbitrarily. Node vi then removes the state of all nodes in⋃
`∈{1,2,...,d} Vremove

i (`)[k] and the remaining states are stored in Xmm
i [k]:

Xmm
i [k] =

{
xj[k] ∈ Rd : vj ∈ Vdist

i [k] \
⋃

`∈{1,...,d}
Vremove

i (`)[k]
}
, (4.4)

where Vdist
i [k] =

{
vj ∈ R : xj[k] ∈ X dist

i [k]
}
.

• Line 9: zi[k]← x_weighted_average(Xmm
i [k])

Each node vi ∈ R computes

zi[k] =
∑

xj [k]∈X mm
i [k]

wx,ij[k] xj[k], (4.5)

where wx,ij[k] > 0 for all xj[k] ∈ Xmm
i [k] and ∑xj [k]∈X mm

i [k] wx,ij[k] = 1.

• Line 10: xi[k + 1]← gradient (fi, zi[k])

Node vi ∈ R computes the gradient update as follows:

xi[k + 1] = zi[k]− η[k] gi[k], (4.6)
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where gi[k] ∈ ∂fi(zi[k]) and η[k] is the step-size at time k. The conditions correspond-

ing to the step-size are given in the next section.

• Line 11: Ymm
i [k]← y_minmax_filt(F, Yi[k])

For each dimension ` ∈ {1, 2, . . . , d}, node vi ∈ R removes the F highest and F

lowest values of its neighbors’ auxiliary points along that dimension. More specifically,

for each dimension ` ∈ {1, 2, . . . , d}, node vi sorts the values in the set of scalars

{y(`)
j [k] : yj[k] ∈ Yi[k]} and then removes the F largest and F smallest values that are

larger and smaller than its own value, respectively. If there are fewer than F values

higher (resp. lower) than its own value, vi removes all of those values. Ties in values are

broken arbitrarily. The remaining values are stored in Ymm
i [k](`) and the set Ymm

i [k]

is the collection of Ymm
i [k](`), i.e., Ymm

i [k] =
{
Ymm

i [k](`) : ` ∈ {1, 2, . . . , d}
}
.

• Line 12: yi[k + 1]← y_weighted_average(Ymm
i [k])

For each dimension ` ∈ {1, 2, . . . , d}, each node vi ∈ R computes

y
(`)
i [k + 1] =

∑
y

(`)
j [k]∈Ymm

i [k](`)

w
(`)
y,ij[k] y(`)

j [k], (4.7)

where w(`)
y,ij[k] > 0 for all y(`)

j [k] ∈ Ymm
i [k](`) and ∑

y
(`)
j [k]∈Ymm

i [k](`) w
(`)
y,ij[k] = 1.

Note that the filtering processes x_minmax_filt (Line 8) and y_minmax_filt (Line 11)

are different. In x_minmax_filt, each node removes the whole state vector for a neighbor

if it contains an extreme value in any component, while in y_minmax_filt, each node only

removes the extreme components in each vector. In addition, x_weighted_average (Line

9) and y_weighted_average_2 (Line 12) are also different in that x_weighted_average

designates agent vi at time-step k to utilize the same set of weights {wx,ij ∈ R : xj[k] ∈

Xmm
i [k]} for all components while y_weighted_average allows agent vi at time-step k to

use a different set of weights {w(`)
y,ij ∈ R : y(`)

j [k] ∈ Ymm
i [k](`)} for each coordinate ` (since

the number of remaining values in each component |Ymm
i [k](`)| is not necessarily the same).

These differences will become clear when considering the example provided in the next

subsection.
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We also consider a variant of Algorithm  2 defined as follows.

Algorithm 3 Simultaneous Distance Filtering Dynamics
Algorithm  3 is the same as Algorithm  2 except that

• Line 8 is removed, and

• Xmm
i [k] in Line 9 is replaced by X dist

i [k].

Although Algorithms  2 and  3 are very similar (differing only in the use of an additional

filter in Algorithm  2 ), our subsequent analysis will reveal the relative costs and benefits

of each algorithm. We emphasize that both algorithms involve only simple operations in

each iteration, and that the regular agents do not need to know the network topology, or

functions possessed by another agents. Furthermore, the regular agents do not need to know

the identities of adversaries; they only need to know the upper bound for the number of local

adversaries. However, we assume that all regular agents use the same step-size η[k] (Line

10, equation (  4.6 )).

4.3.2 Example of Algorithm  2 

Before we prove the convergence properties of the algorithms, we first demonstrate Al-

gorithm  2 , which is more complicated due to the min-max filtering step (Line 8), step by

step using an example.

Suppose there are 8 agents forming the complete graph (for the purpose of illustration).

Let node vi have the local objective function fi : R2 → R defined as fi(x) = (x(1) + i)2 +

(x(2)− i)2 for all i ∈ {1, 2, . . . , 8}. Let the set of adversarial nodes be A = {v4, v8} and thus,

we have R = {v1, v2, v3, v5, v6, v7}. Note that only the regular nodes execute the algorithm
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(and they do not know which agents are adversarial). Let F = 2 and at some time-step

k̂ ∈ N, each regular node has the following state and the estimated auxiliary point: 

5
 

x1[k̂] =
[
4 2

]T

, y1[k̂] =
[
0 0

]T

,

x2[k̂] =
[
4 1

]T

, y2[k̂] =
[
−1 −2

]T

,

x3[k̂] =
[
3 3

]T

, y3[k̂] =
[
−2 1

]T

,

x5[k̂] =
[
2 1

]T

, y5[k̂] =
[
0 2

]T

,

x6[k̂] =
[
1 4

]T

, y6[k̂] =
[
1 3

]T

,

x7[k̂] =
[
0 0

]T

, y7[k̂] =
[
1 3

]T

.

Let xa→b[k] (resp. ya→b[k]) be the state (resp. estimated auxiliary point) that is sent from

the adversarial node va ∈ A to the regular node vb ∈ R at time-step k. Suppose that in

time-step k̂, each adversarial agent sends the same states and the same estimated auxiliary

points to its neighbors (although this is not necessary) as follows:

x4→i[k̂] =
[
3 2

]T

, y4→i[k̂] =
[
−1 1

]T

,

x8→i[k̂] =
[
0 5

]T

, y8→i[k̂] =
[
2 2

]T

for all i ∈ {1, 2, 3, 5, 6, 7}. We will demonstrate the calculation of x1[k̂ + 1] and y1[k̂ + 1],

computed by regular node v1.

Since the network is the complete graph, the set of in-neighbors and out-neighbors of

node v1 is N in
1 = N out

1 = V \ {v1} and Xi[k̂] (resp. Yi[k̂]) includes all the states (resp.

estimated auxiliary points). Then, node v1 performs the distance filtering step (Line 7) as
5

 ↑ The number of agents in this demonstration is not enough to satisfy the robustness condition (Assump-
tion  4.4.4 ) presented in the next section. However, for our purpose here, it is enough to consider a small
number of agents to gain an understanding for each step of the algorithm.
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follows. First, it calculates the squared distances D2
1j[k̂] (since squaring does not alter the

order) for all xj[k̂] ∈ Xi[k̂] as in (  4.3 ). Node v1 has

D2
11[k̂] = 20, D2

12[k̂] = 17, D2
13[k̂] = 18, D2

14[k̂] = 13,

D2
15[k̂] = 5, D2

16[k̂] = 17, D2
17[k̂] = 0, D2

18[k̂] = 25.

Since D2
11[k̂] is the second largest, node v1 discards only node v8’s state (which is the furthest

away from v1’s auxiliary point) and X dist
1 contains all states except x8[k̂] = x8→1[k̂].

Then node v1 performs the min-max filtering process (Line 8) as follows. First, consider

the first component of the states in X dist
1 . The states of nodes v1 and v2 contain the highest

value in the first component (which is 4). Since the tie can be broken arbitrarily, we choose

x
(1)
1 [k̂] to come first followed by x(1)

2 [k̂] in the ordering, so none of these values are discarded.

On the other hand, the state of node v7 contains the lowest value in its first component, while

node v6’s state contains the second lowest value in that component (since node v8 has already

been discarded by the distance filtering process). Node v1 thus sets Vremove
1 (1)[k̂] = {v6, v7}.

Next, consider the second component in which the states of v6 and v3 contain the highest and

second highest values, respectively, and the states of v7 and v5 contain the lowest and second

lowest values, respectively. Thus, node v1 sets Vremove
1 (2)[k̂] = {v3, v5, v6, v7}. Since node v1

removes the entire state from all the nodes in both Vremove
1 (1)[k̂] and Vremove

1 (2)[k̂], according

to equation (  4.4 ), we have Xmm
1 [k̂] =

{
x1[k̂],x2[k̂],x4[k̂]

}
=
{
[4 2]T , [4 1]T , [3 2]T

}
.

Next, node v1 performs the weighted average step (Line 9) as follows, Suppose node v1

assigns the weights wx,11[k̂] = 0.5, wx,12[k̂] = 0.25 and wx,14[k̂] = 0.25. Node v1 calculates

the weighted average according to ( 4.5 ) yielding z
(1)
1 [k̂] = 3.75 and z

(2)
1 [k̂] = 1.75. In the

gradient step (Line 10), suppose η[k̂] = 0.1. Node v1 calculates the gradient of its local

function f1 at z1[k̂] which yields g1[k̂] = [9.5 1.5]T and then calculates the state x1[k̂ + 1]

as described in ( 4.6 ) which yields x1[k̂ + 1] = [2.8 1.6]T .

Next, we consider the estimated auxiliary point update of node v1. In fact, we can perform

the update (Line 11 and Line 12) for each component separately. First, consider the first

component in which v8 and v7 contain the largest and second largest values, respectively, and

v3 and v2 contain the smallest and second smallest values, respectively. Node v1 removes these
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values and thus, Ymm
1 [k̂](1) = {y(1)

1 [k̂], y(1)
4 [k̂], y(1)

5 [k̂], y(1)
6 [k̂]} = {0,−1, 0, 1}. Suppose node

v1 assigns the weights w(1)
y,11[k̂] = w

(1)
y,14[k̂] = w

(1)
y,15[k̂] = w

(1)
y,16[k̂] = 0.25. Then, the weighted

average of the first component according to (  4.7 ) becomes y(1)
1 [k̂ + 1] = 0. Finally, for the

second component, v6 and v7 contain the largest values, and v2 and v1 contain the smallest

and second smallest values, respectively. Node v1 removes the value obtained from v2, v6

and v7 and thus, the set Ymm
1 [k̂](2) = {y(2)

1 [k̂], y(2)
3 [k̂], y(2)

4 [k̂], y(2)
5 [k̂], y(2)

8 [k̂]} = {0, 1, 1, 2, 2}.

Suppose node v1 assigns the weights to each value in Ymm
1 [k̂](2) equally. The weighted average

of the second component becomes y(2)
1 [k̂ + 1] = 1.2. Thus, we have y1[k̂ + 1] = [0 1.2]T .

4.4 Assumptions and Main Results

Having defined the steps in Algorithms  2 and  3 , we now turn to proving their resilience

and convergence properties.

4.4.1 Assumptions

Assumption 4.4.1. For all vi ∈ V , the functions fi(x) are convex, and the sets arg min fi(x)

are non-empty and bounded.

Since the set arg min fi(x) is non-empty, let x∗
i be an arbitrary minimizer of the function

fi.

Assumption 4.4.2. There exists L ∈ R>0 such that ‖g̃i(x)‖2 ≤ L for all x ∈ Rd, vi ∈ V ,

and g̃i(x) ∈ ∂fi(x).

The bounded subgradient assumption above is common in the distributed convex opti-

mization literature [  70 ]–[ 72 ].

Assumption 4.4.3. The step-size sequence {η[k]}∞
k=0 ⊂ R>0 used in Line 11 of Algorithm  2 

is of the form

η[k] = c1

k + c2
for some c1, c2 ∈ R>0. (4.8)

Note that the step-size in (  4.8 ) satisfies η[k + 1] < η[k] for all k ∈ N, and

lim
k→∞

η[k] = 0 and
∞∑

k=0
η[k] =∞ (4.9)
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for any choices of c1, c2 ∈ R>0.

Assumption 4.4.4. Given a positive integer F ∈ Z+, the Byzantine agents form a F -local

set.

Assumption 4.4.5. For all k ∈ N and ` ∈ {1, 2, . . . , d}, the weights wx,ij[k] and w
(`)
y,ij[k]

(used in Line 9 and Line 12 of Algorithm  2 ) are positive if and only if xj[k] ∈ Xmm
i [k]

for Algorithm  2 (and xj[k] ∈ X dist
i [k] for Algorithm  3 ) and y

(`)
j [k] ∈ Ymm

i [k](`), respectively.

Furthermore, there exists ω ∈ R>0 such that for all k ∈ N and ` ∈ {1, 2, . . . , d}, the non-zero

weights are lower bounded by ω.

Remark 6. In fact, the parameter F in Assumption  4.4.4 can be an upper bound on the

number of local Byzantine agents. In exchange for guarding the system from powerful

Byzantine adversaries, we need to provide an upper bound on the number of them. In

particular, it is typical that in the design stage, one needs to determine the specifications of

the system, e.g. the type and the number of adversaries that the system can tolerate. Hence,

the assumption of knowing an upper bound on the number of adversaries is very common

in the literature on resilient distributed algorithms, e.g., [  43 ], [  44 ].

4.4.2 Analysis of Auxiliary Point Update

Since the dynamics of the estimated auxiliary points {yi[k]}R are independent of the dy-

namics of the estimated solutions {xi[k]}R, we begin by analyzing the convergence properties

of the estimated auxiliary points {yi[k]}R.

In order to establish this result, we need to define the following scalar quantities. For

k ∈ N and ` ∈ {1, 2, . . . , d}, let M (`)[k] := maxvi∈R y
(`)
i [k], m(`)[k] := minvi∈R y

(`)
i [k], and

D(`)[k] := M (`)[k]−m(`)[k]. Define the vector D[k] :=
[
D(1)[k], D(2)[k], · · · , D(d)[k]

]T
.

The proposition below shows that the estimated auxiliary points {yi[k]}R converge ex-

ponentially fast to a single point called y[∞].

Proposition 4.4.1. Suppose Assumption 4 hold, the graph G is (2F + 1)-robust, and the

weights w(`)
y,ij[k] satisfy Assumption  4.4.5 . Suppose the estimated auxiliary points of the reg-

ular agents {yi[k]}R follow the update rule described as Line 11 and Line 12 in Al-
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gorithm  2 . Then, in both Algorithm  2 and Algorithm  3 , there exists y[∞] ∈ Rd with

y(`)[∞] ∈
[
m(`)[k],M (`)[k]] for all k ∈ N and ` ∈ {1, 2, . . . , d} such that for all vi ∈ R,

we have

‖yi[k]− y[∞]‖ < βe−αk,

where α := 1
|R|−1 log 1

γ
> 0, β := 1

γ
‖D[0]‖, and γ := 1− ω|R|−1

2 .

The proof of the above proposition follows by noting that the updates for {yi[k]}R

essentially boil down to a set of d scalar consensus updates (one for each dimension of the

vector), Thus, one can directly leverage the proof for scalar consensus (with filtering of

extreme values) from [  30 , Proposition 6.3]. We provide the proof of Proposition  4.4.1 in

Appendix  B.3 .

Recall that {x̂∗
i }R is the set containing the approximate minimizers of the regular nodes’

local functions. Let x be a matrix in Rd×|R|, where each column of x is a different vector

from {x̂∗
i }R. In addition, let x and x be the vectors in Rd defined by xi = max1≤j≤|R| [x]ij

and xi = min1≤j≤|R| [x]ij, respectively. Since we set yi[0] = x̂∗
i for all vi ∈ R according to

Line 2 in Algorithm  2 , we can write

β = 1
γ
‖D[0]‖ = 1

γ
‖x− x‖.

4.4.3 Convergence to Consensus of States

Having established convergence of the auxiliary points to a common value (for the regu-

lar nodes), we now consider the state update and show that the states of all regular nodes

{xi[k]}R asymptotically reach consensus under Algorithm  2 . Before stating the main the-

orem, we provide a result from [ 30 , Lemma 2.3] which is important for proving the main

theorem.

Lemma 4.4.6. Suppose the graph G satisfies Assumption  4.4.4 and is ((2d+1)F+1)-robust.

Let G ′ be a graph obtained by removing (2d + 1)F or fewer incoming edges from each node

in G. Then G ′ is rooted.
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This means that if we have enough redundancy in the network (in this case, captured by

the ((2d+ 1)F + 1)-robustness condition), information from at least one node can still flow

to the other nodes in the network even after each regular node discards up to F neighboring

states in the distance filtering step (Line 7) and up to 2dF neighboring states in the min-

max filtering step (Line 8). This transmissibility of information is a crucial condition for

reaching consensus among regular nodes.

Theorem 4.4.7 (Consensus). Suppose Assumptions  4.4.2 ,  4.4.3 ,  4.4.4 , and  4.4.5 hold, and

the graph G is ((2d + 1)F + 1)-robust. If the regular agents follow Algorithm  2 then for all

vi, vj ∈ R, it holds that

lim
k→∞
‖xi[k]− xj[k]‖ = 0.

Proof. It is sufficient to show that all regular nodes vi ∈ R reach consensus on each compo-

nent of their vectors xi[k] as k →∞. For all ` ∈ {1, 2, . . . , d} and for all vi ∈ R, from (  4.5 )

and (  4.6 ), the `-th component of the vector xi[k] evolves as

x
(`)
i [k + 1] =

∑
xj [k]∈X mm

i [k]
wx,ij[k] x(`)

j [k]− η[k] g(`)
i [k].

From [  30 , Proposition 5.1], the above equation can be rewritten as

x
(`)
i [k + 1] =

∑
vj∈(N in

i ∩R)∪{vi}
w̄

(`)
x,ij[k] x(`)

j [k]− η[k] g(`)
i [k], (4.10)

where w̄(`)
x,ii[k] +∑

vj∈N in
i ∩R w̄

(`)
x,ij[k] = 1, and w̄(`)

x,ii[k] > ω and at least |N in
i | − 2F of the other

weights are lower bounded by ω
2 .

Consider the set Xmm
i [k] which is obtained by removing at most F + 2dF states received

from vi’s neighbors (up to F states removed by the distance filtering process in line 7,

and up to 2F additional states removed by the min-max filtering process on each of the d

components in line 8). Since the graph is ((2d+ 1)F + 1)-robust and the Byzantine agents

form an F -local set by Assumption  4.4.4 , from Lemma  4.4.6 , the subgraph consisting of

regular nodes will be rooted. Using the fact that the term η[k] g(`)
i [k] asymptotically goes to
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zero (by Assumptions  4.4.2 and (  4.9 )) and equation (  4.10 ), we can proceed as in the proof

of [  30 , Theorem 6.1] to show that

lim
k→∞
|x(`)

i [k]− x(`)
j [k]| = 0,

for all vi, vj ∈ R, which completes the proof.

Theorem  4.4.7 established consensus of the states of the regular agents, leveraging (and

extending) similar analysis for scalar functions from [  30 ], only for Algorithm  2 . However,

this does not hold for Algorithm  3 since there might exist a regular agent vi ∈ R, time-step

k ∈ N and dimension ` ∈ {1, 2, . . . , d} such that an adversarial state x(`)
s [k] ∈ {x(`)

j [k] ∈

R : xj[k] ∈ X dist
i [k], vj ∈ A} cannot be written as a convex combination of

{
x

(`)
j [k] ∈ R :

vj ∈ (N in
i ∩ R) ∪ {vi}

}
, and thus we cannot obtain equation ( 4.10 ). On the other hand,

Proposition  4.4.1 established consensus of the auxiliary points, which will be now used to

characterize the convergence region of both Algorithm  2 and Algorithm  3 .

4.4.4 The Region To Which The States Converge

We now analyze the trajectories of the states of the agents under Algorithm  2 and Algo-

rithm  3 . We start with the following result regarding the intermediate state zi[k] calculated

in Lines 7-9 of Algorithm  2 .

Lemma 4.4.8. Suppose Assumptions  4.4.4 and  4.4.5 hold. Furthermore:

• if the regular agents follow Algorithm  2 , suppose the graph G is ((2d+ 1)F + 1)-robust;

• otherwise, if the regular agents follow Algorithm  3 , suppose the graph G is (2F + 1)-

robust.

For all k ∈ N and vi ∈ R, if there exists Ri[k] ∈ R≥0 such that ‖xj[k] − yi[k]‖ ≤ Ri[k] for

all vj ∈ (N in
i ∩R) ∪ {vi} then ‖zi[k]− yi[k]‖ ≤ Ri[k].
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Proof. Consider the distance filtering step in Line 7 of Algorithm  2 . Recall the definition

of Dij[k] from (  4.3 ). We will first prove the following claim. For each k ∈ N and vi ∈ R,

there exists vr ∈ (N in
i ∩R) ∪ {vi} such that for all xj[k] ∈ X dist

i [k],

‖xj[k]− yi[k]‖ ≤ ‖xr[k]− yi[k]‖,

or equivalently, Dij[k] ≤ Dir[k].

There are two possible cases. First, if the set X dist
i [k] contains only regular nodes, we can

simply choose vr ∈ (N in
i ∩R) ∪ {vi} to be the node whose state xr[k] is furthest away from

yi[k]. Next, consider the case where X dist
i [k] contains the state of one or more Byzantine

nodes. Since node vi ∈ R removes the F states from N in
i that are furthest away from yi[k]

(Line 7), and there are at most F Byzantine nodes in N in
i , there is at least one regular state

removed by node vi. Let vr be one of the regular nodes whose state is removed. We then

have Dir[k] ≥ Dij[k], for all vj ∈ {vs ∈ V : xs[k] ∈ X dist
i [k]} which proves the claim.

If Algorithm  2 is implemented, let X̂i[k] = Xmm
i [k] and we have that Xmm

i [k] ⊆ X dist
i [k]

due to the min-max filtering step in Line 8. If Algorithm  3 is implemented, let X̂i[k] =

X dist
i [k] since Line 8 is removed. Then, consider the weighted average step in Line 9. From

( 4.5 ), we have

zi[k]− yi[k] =
∑

xj [k]∈X̂i[k]

wx,ij[k]
(
xj[k]− yi[k]

)
.

Since ‖xj[k]− yi[k]‖ ≤ ‖xr[k]− yi[k]‖ for all xj[k] ∈ X̂i[k] (where vr is the node identified

in the claim at the start of the proof), we obtain

‖zi[k]− yi[k]‖ ≤
∑

xj [k]∈X̂i[k]

wx,ij[k] ‖xj[k]− yi[k]‖

≤
∑

xj [k]∈X̂i[k]

wx,ij[k] ‖xr[k]− yi[k]‖.

Since vr ∈ (N in
i ∩R)∪{vi}, by our assumption, we have ‖xr[k]−yi[k]‖ ≤ Ri[k]. Thus, using

the above inequality and Assumption  4.4.5 , we obtain that ‖zi[k]− yi[k]‖ ≤ Ri[k].
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Lemma  4.4.8 essentially states that if the set of states {xj[k] : vj ∈ (N in
i ∩ R) ∪ {vi}}

is a subset of the local ball B(yi[k], Ri[k]) then the intermediate state zi[k] is still in the

ball. This is a consequence of using the distance filter (and adding the min-max filter in

Algorithm  2 does not destroy this property), and this will play an important role in proving

the convergence theorem.

Next, we will establish certain quantities that will be useful for our analysis of the con-

vergence region. For vi ∈ R and ε > 0, define

Ci(ε) := {x ∈ Rd : fi(x) ≤ fi(x∗
i ) + ε}. (4.11)

For all vi ∈ R, since the set arg min fi(x) is bounded (by Assumption  4.4.1 ), there exists

δi(ε) ∈ (0,∞) such that

Ci(ε) ⊆ B(x∗
i , δi(ε)). (4.12)

The following proposition, whose proof is provided in the supplementary material, intro-

duces an angle θi which is an upper bound on the angle between the negative of the gradient

of fi at a given point x and the vector x∗
i − x.

Proposition 4.4.2. If Assumptions  4.4.1 and  4.4.2 hold then for all vi ∈ R and ε > 0,

there exists θi(ε) ∈
[
0, π

2

)
such that for all x /∈ Ci(ε) and g̃i(x) ∈ ∂fi(x),

∠(−g̃i(x), x∗
i − x) ≤ θi(ε). (4.13)

Before stating the main theorem, we define

R̃i := ‖x∗
i − y[∞]‖. (4.14)

Furthermore, for all ξ ∈ R≥0 and ε ∈ R>0, we define the convergence radius

s∗(ξ, ε) := max
vi∈R

{
max{R̃i sec θi(ε), R̃i + δi(ε)}

}
+ ξ. (4.15)
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where R̃i, θi(ε) and δi(ε) are defined in ( 4.14 ), (  4.13 ) and ( 4.12 ), respectively. Based on the

definition above, we refer to B(y[∞], s∗(ξ, ε)) as the convergence ball.

We now come to the main result of this chapter, showing that the states of all the regular

nodes will converge to a ball of radius infε>0 s
∗(0, ε) around the auxiliary point y[∞] under

Algorithm  2 and Algorithm  3 .

Theorem 4.4.9 (Convergence). Suppose Assumptions  4.4.1 - 4.4.5 hold. Furthermore:

• if the regular agents follow Algorithm  2 , suppose the graph G is ((2d+ 1)F + 1)-robust;

• otherwise, if the regular agents follow Algorithm  3 , suppose the graph G is (2F + 1)-

robust.

Then regardless of the actions of any F -local set of Byzantine adversaries, for all vi ∈ R,

we have

lim sup
k
‖xi[k]− y[∞]‖ ≤ inf

ε>0
s∗(0, ε).

The proof of the theorem requires several technical lemmas and propositions, and thus,

we provide a proof sketch in Section  4.4.5 and a formal proof in the supplementary material.

The following theorem provides possible locations of the true minimizer x∗, which is in

fact inside the convergence region, even in the presence of adversarial agents.

Theorem 4.4.10. Let x∗ be a solution of Problem ( 4.2 ). If Assumptions  4.4.1 and  4.4.2 

hold, then x∗ ∈ B
(
y[∞], infε>0 s

∗(0, ε)
)
.

Proof. We will show that the summation of any subgradients of the regular nodes’ functions

at any point outside the region B
(
y[∞], infε>0 s

∗(0, ε)
)

cannot be zero.

Let x0 be a point outside B
(
y[∞], infε>0 s

∗(0, ε)
)
. Since ‖x0 − y[∞]‖ > maxvi∈R{R̃i +

δi(ε)} for some ε > 0, we have that x0 /∈ Ci(ε) for all vi ∈ R. By the definition of Ci(ε) in

( 4.11 ), we have fi(x0) > fi(x∗
i ) + ε for all vi ∈ R. Since the functions fi are convex, we

obtain gi(x0) 6= 0 for all vi ∈ R where gi(x0) ∈ ∂fi(x0).
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Consider the angle between the vectors x0 − x∗
i and x0 − y[∞]. If R̃i = 0, from (  4.14 ),

we have x∗
i = y[∞] which implies that ∠(x0 − x∗

i , x0 − y[∞]) = 0. Suppose R̃i > 0. Using

Lemma  B.1.1 , we can bound the angle as follows:

∠(x0 − x∗
i , x0 − y[∞]) ≤ arcsin

(
R̃i

‖x0 − y[∞]‖

)
.

Since ‖x0 − y[∞]‖ > maxvi∈R{R̃i sec θi(ε)} for some ε > 0 and arcsin(x) is an increasing

function in x ∈ [− 1, 1], we have

∠(x0 − x∗
i , x0 − y[∞]) < arcsin

(
R̃i

R̃i sec θi(ε)

)

and that arcsin(cos θi(ε)) = π

2 − θi(ε). Using Proposition  4.4.2 and the inequality above, we

can bound the angle between the vectors gi(x0) and x0 − y[∞] as follows:

∠(gi(x0), x0 − y[∞]) ≤ ∠(gi(x0), x0 − x∗
i ) + ∠(x0 − x∗

i , x0 − y[∞])

< θi(ε) +
(

π

2 − θi(ε)
)

= π

2 .

Note that the first inequality is obtained from [ 57 , Corollary 12]. Let u = x0−y[∞]
‖x0−y[∞]‖ . Compute

the inner product

〈 ∑
vi∈R

gi(x0), u
〉

=
∑

vi∈R
‖gi(x0)‖ cos∠(gi(x0), x0 − y[∞]).

The RHS of the above equation is strictly greater than zero since cos∠(gi(x0), x0−y[∞]) >

0 and ‖gi(x0)‖ > 0 for all vi ∈ R. This implies that ∑vi∈R gi(x0) 6= 0. Since we can arbitrar-

ily choose gi(x0) from the set ∂fi(x0), we have 0 /∈ ∂f(x0) where f(x) = 1
|R|
∑

vi∈R fi(x).

Theorem  4.4.9 and Theorem  4.4.10 show that both Algorithms  2 and  3 cause all regular

nodes to converge to a region that also contains the true solution, regardless of the actions

of any F -local set of Byzantine adversaries. The size of this region scales with the quantity

infε>0 s
∗(0, ε). Loosely speaking, this quantity becomes smaller as the minimizers of the

local functions of the regular agents get closer together. More specifically, consider a fixed
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ε ∈ R>0. If the functions fi(x) are translated so that the minimizers x∗
i get closer together

(i.e., R̃i is smaller while θi(ε) and δi(ε) are fixed), then s∗(0, ε) also decreases. Consequently,

the state xi[k] is guaranteed to become closer to the true minimizer x∗ as k goes to infinity.

Figure  4.1 illustrates the key quantities appearing in the main theorems.

Figure 4.1. The local minimizers x∗
i and the global minimizer x∗ are shown

in the plot. The estimated auxiliary point y[∞] is in the rectangle formed by
the local minimizers (Proposition  4.4.1 ) whereas the global minimizer x∗ is
not necessarily in the rectangle [ 55 ]. However, the ball centered at y[∞] with
radius infε>0 s

∗(0, ε) contains both the supremum limit of the state vectors
xi[k] and the global minimizer x∗ (Theorem  4.4.9 and  4.4.10 ).

4.4.5 Proof Sketch of the Convergence Theorem

We work towards the proof of Theorem  4.4.9 in several steps, which we provide an

overview below. The proofs of the intermediate results presented in this section are provided

in the supplementary material.

For the subsequent analysis, we suppose that the graph G

• is ((2d+ 1)F + 1)-robust for Algorithm  2 , and

• is (2F + 1)-robust for Algorithm  3 .

Furthermore, unless stated otherwise, we will fix ξ ∈ R>0 and ε ∈ R>0, and hide the

dependence of ξ and ε in δi(ε) and s∗(ξ, ε) by denoting them as δi and s∗, respectively.

107



Gradient Update Step Analysis

First, we consider the update from the intermediate states {zi[k]}R to the states {xi[k+

1]}R via the gradient step ( 4.6 ) (i.e., Line 10). In particular, we provide a relationship

between ‖zi[k]− y[∞]‖ and ‖xi[k + 1]− y[∞]‖ for three different cases:

• ‖zi[k]− y[∞]‖ ∈
[
0, maxvj∈R{R̃j + δj}

]
,

• ‖zi[k]− y[∞]‖ ∈
(

maxvj∈R{R̃j + δj}, s∗
]
,

• ‖zi[k]− y[∞]‖ ∈ (s∗,∞).

The corresponding formal statements are presented as follows. Lemma  4.4.11 below

essentially says that if k is sufficiently large and zi[k] ∈ B(y[∞],maxvi∈R{R̃i + δi}), then

after applying the gradient update ( 4.6 ), the state xi[k + 1] will still be in the convergence

ball. To establish the result, let k∗
1 ∈ N be a time-step such that η[k∗

1] ≤ ξ
L

.

Lemma 4.4.11. Suppose Assumptions  4.4.2 - 4.4.5 hold. For all vi ∈ R and k ≥ k∗
1, if

zi[k] ∈ B
(
y[∞], maxvj∈R{R̃j + δj}

)
then xi[k + 1] ∈ B(y[∞], s∗).

Lemma  4.4.12 , based on Proposition  4.4.2 , analyzes the relationship between ‖zi[k] −

y[∞]‖ and ‖xi[k + 1] − y[∞]‖ when ‖zi[k] − y[∞]‖ > R̃i + δi. The result will be used to

prove Lemma  4.4.13 .

For vi ∈ R, define ∆i : [R̃i,∞)× R≥0 → R to be the function

∆i(p, l) := 2l
(√

p2 − R̃2
i cos θi − R̃i sin θi

)
− l2. (4.16)

Lemma 4.4.12. Suppose Assumptions  4.4.1 ,  4.4.2 ,  4.4.4 and  4.4.5 hold. For all vi ∈ R

and k ∈ N, if ‖zi[k]− y[∞]‖ > R̃i + δi then

‖xi[k + 1]− y[∞]‖2 ≤ ‖zi[k]− y[∞]‖2 −∆i(‖zi[k]− y[∞]‖, η[k] ‖gi[k]‖), (4.17)

where gi[k] ∈ Rd is defined in ( 4.6 ).
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Similar to Lemma  4.4.11 , Lemma  4.4.13 below states that if k is sufficiently large and

‖zi[k]− y[∞]‖ ∈
(

maxvi∈R{R̃i + δi}, s∗
]

then by applying the gradient step (  4.6 ), we have

that the state xi[k + 1] is still in the convergence ball.

To simplify the notations, define

a±
i := −R̃i sin θi ±

√
(s∗)2 − R̃2

i cos2 θi and

bi := 2
(√

(s∗)2 − R̃2
i cos θi − R̃i sin θi

)
. (4.18)

Let k∗
2 ∈ N be a time-step such that η[k∗

2] ≤ 1
L

minvi∈R
{

min{a+
i , bi}

}
.

Lemma 4.4.13. Suppose Assumptions  4.4.1 - 4.4.5 hold. For all vi ∈ R and k ≥ k∗
2, if

‖zi[k]− y[∞]‖ ∈
(

maxvj∈R{R̃j + δj}, s∗
]

then ‖xi[k + 1]− y[∞]‖ ∈ [0, s∗].

The following lemma is useful for bounding the term ∆i appeared in ( 4.17 ) for the case

that ‖zi[k]− y[∞]‖ > s∗.

Define the set of agents

Iz[k] := {vi ∈ R : ‖zi[k]− y[∞]‖ > s∗}, (4.19)

and let k∗
3 ∈ N be a time-step such that η[k∗

3] ≤ 1
2L

minvi∈R bi.

Lemma 4.4.14. If Assumptions  4.4.1 - 4.4.5 hold then for all k ≥ k∗
3 and vi ∈ Iz[k],

∆i(‖zi[k]− y[∞]‖, η[k] ‖gi[k]‖) > 1
2biκiη[k],

where ∆i and gi[k] are defined in ( 4.16 ) and ( 4.6 ), respectively, and κi := ε
δi(ε) > 0.

Lemmas  4.4.11 - 4.4.14 collectively establish the complete relationship governing the up-

date from {zi[k]}R to {xi[k + 1]}R, which will be used to prove Lemma  4.4.15 .
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Bounds on States of Regular Agents

Next, we consider the update from the states {xi[k]}R to the intermediate states {zi[k]}R

via two filtering steps (Lines 7 and 8) and the weighted average step (Line 9). In particular,

utilizing Lemma  4.4.8 , we derive the following relationship.

Proposition 4.4.3. If Assumptions  4.4.4 and  4.4.5 hold, then for all k ∈ N and vi ∈ R, it

holds that

‖zi[k]− y[∞]‖ ≤ max
vj∈R
‖xj[k]− y[∞]‖+ 2‖yi[k]− y[∞]‖.

By combining the above inequality with the relationship between ‖zi[k] − y[∞]‖ and

‖xi[k + 1]− y[∞]‖ from Lemmas  4.4.11 - 4.4.14 , and bounding the second term on the RHS,

‖yi[k]−y[∞]‖, using Proposition  4.4.1 , we obtain a relationship between ‖xi[k+1]−y[∞]‖

and maxvj∈R ‖xj[k]−y[∞]‖. As a result, we can bound the distance maxvi∈R ‖xi[k]−y[∞]‖

by a particular bounded sequence defined below.

Define the time-step k0 ∈ N as k0 := max`∈{1,2,3} k
∗
` . Recall the definition of α and β

from Proposition  4.4.1 . Let

φ[k0] = max
vi∈R
‖xi[0]− y[∞]‖+ 2β

k0−1∑
k=0

e−αk + L
k0−1∑
k=0

η[k], (4.20)

and define a sequence {φ[k]}∞
k=k0 satisfying the update rule

φ2[k + 1] = max
{

(s∗)2,
(
φ[k] + 2βe−αk

)2
− 1

2η[k] min
vi∈R

biκi

}
. (4.21)

Lemma 4.4.15. Suppose Assumptions  4.4.1 - 4.4.5 hold. For all k ≥ k0, it holds that

max
vi∈R
‖xi[k]− y[∞]‖ ≤ φ[k].

Furthermore, there exists φ̄ ∈ R≥0 such that for all k ≥ k0, the sequence φ[k] can be uniformly

bounded as φ[k] < φ̄.
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Convergence Analysis

Finally, we will utilize the following lemma to further analyze the sequence {φ[k]} defined

in ( 4.21 ).

Lemma 4.4.16. Consider a sequence {η̂[k]}∞
k=0 ⊂ R≥0 that satisfies ∑∞

k=0 η̂[k] = ∞. If

γ1 ∈ R≥0, γ2 ∈ R>0 and λ ∈ (−1, 1), then there is no sequence {u[k]}∞
k=0 ⊂ R≥0 that satisfies

the update rule

u2[k + 1] = (u[k] + γ1λ
k)2 − γ2η̂[k].

By employing Lemmas  4.4.15 and  4.4.16 , Proposition  4.4.4 demonstrates that any re-

pulsion of the state zi[k] from the convergence ball B(y[∞], s∗) due to inconsistency of the

estimates of the auxiliary point (Proposition  4.4.1 and  4.4.3 ) is compensated by the gradi-

ent term pulling the state xi[k] to the convergence ball. Consequently, the quantity φ[k]

decreases until it does not exceed s∗. In other words, the sequence analysis results in

max
vi∈R
‖xi[k]− y[∞]‖ ≤ φ[k] ≤ s∗ (4.22)

for a sufficiently large time-step k. The crucial finite time convergence result is formally

stated as follows.

Proposition 4.4.4. Suppose Assumptions  4.4.1 - 4.4.5 hold. Then, there exists K ∈ N such

that for all vi ∈ R and k ≥ K, we have xi[k] ∈ B(y[∞], s∗).

Since all the prior analyses valid for all ξ ∈ R>0 and ε ∈ R>0, the convergence result in

Theorem  4.4.9 follows from taking infξ>0,ε>0 and lim supk to (  4.22 ).

4.5 Discussion

4.5.1 Redundancy and Guarantees Trade-off

An appropriate notion of network redundancy is necessary for any Byzantine resilient

optimization algorithm [  30 ]; for both Algorithm  2 and Algorithm  3 , this is captured by the

corresponding robustness conditions in Theorem  4.4.9 . In particular, Algorithm  2 requires
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the graph to be ((2d + 1)F + 1)-robust since it implements two filters (a distance-based

filter (Line 7) and a min-max filter (Line 8)) while Algorithm  3 requires the graph to only

be (2F + 1)-robust as a result of only using the distance-based filter. Since each of these

filtering steps discards a set of state vectors, the robustness condition allows the graph to

retain some flow of information. Thus, while Algorithm  2 requires significantly stronger

conditions on the network topology (i.e., requiring the robustness parameter to scale linearly

with the dimension of the functions), it provides the benefit of guaranteeing consensus.

Algorithm  3 only requires the robustness parameter to scale with the number of adversaries

in each neighborhood, and thus can be used for optimizing high-dimensional functions with

relatively sparse networks, at the cost of losing the guarantee on consensus.

Remark 7. In the vector resilient consensus problem [  73 ], [ 74 ], it has been established that

guaranteeing a non-empty interior for the convex hull, formed by the states of the regular

nodes, requires Ω(dF ) neighboring nodes, which aligns with Algorithm  2 . Moreover, for the

case where d ≥ 4, the corresponding time complexity has been shown to be exponential in

d [ 74 ]. However, our algorithms offer the advantage of significantly reducing computational

requirements, as will be discussed next.

4.5.2 Time Complexity

Suppose the network is r-robust and the number of in-neighbors |N in
i | is linearly propor-

tional to r for all vi ∈ V . For the distance-based filter (Line 7), each regular agent vi ∈ R

computes the L2-norm between its auxiliary state and in-neighbor states and then finds the

agent that attains the maximum value which take O(dr) operations. On the other hand, for

the min-max filter (Line 8), each regular agent vi ∈ R is required to sort the in-neighbor

states for each dimension which takes O(dr log r) operations. For Algorithms  2 and  3 , the

time complexities for filtering process are Õ(d2) and Õ(d), respectively.

4.5.3 Convergence Ball

Consider univariate functions (i.e., one-dimensional space) case. To facilitate the discus-

sion, we denote minvi∈R x
∗
i and maxvi∈R x

∗
i by x and x, respectively. For simplicity, assume
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that the local minimizer x∗
i is unique for all vi ∈ R so that δi defined in (  4.12 ) can be chosen

arbitrary close to zero for all vi ∈ R. In this case, we have that for all vi ∈ R, θi defined in

( 4.13 ) is zero. Therefore, the convergence radius s∗ in (  4.15 ) simplifies to maxvi∈R R̃i (where

R̃i defined in ( 4.14 )). In the best case, we can have y[∞] = 1
2(x + x) which results in the

convergence region [x, x] as derived in [ 30 ]. In the worst case, (assuming approximation error

ε∗ in Line 1 is zero) we can have y[∞] = x or x which results in the convergence region

[2x−x, x] or [x, 2x−x], respectively. In such worst case, the region is two times bigger than

the region derived in [  30 ]. These results are due to our “radius analysis" which is uniform in

all directions from y[∞].

4.5.4 Maximum Tolerance

Based on the robustness condition for each algorithm and a formula from [  75 ], given the

number of agents N in the complete graph and the number of dimensions for the optimization

variables d, the upper bound on the number of local Byzantine agents F such that the

corresponding guarantees still hold, is as follows:

• F =
⌊

N−1
2(2d+1)

⌋
for Algorithm  2 , and

• F =
⌊

1
4(N − 1)

⌋
for Algorithm  3 .

From a practical perspective, the robustness property demonstrates a natural trade-off for

the system designer. A network that has a stronger robustness property can tolerate more

adversaries, but can also induce more costs.

4.5.5 Importance of Main States Computation

If we simply implement a resilient consensus protocol on local minimizers similar to the

auxiliary states, yi[k], computation (in Lines 11-12) and remove the main states, xi[k],

computation (in Lines 7-9), we would obtain that the states of the regular agents converge

to the hyper-rectangle formed by the local minimizers (for resilient component-wise consensus

algorithms [  76 ]), or the convex hull of the local minimizers (for resilient vector consensus

algorithms [  74 ], [  77 ]). Even though this method works for the single dimension case due to the
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convergence to the same set as deploying a resilient distributed optimization algorithm [ 30 ],

[ 33 ], it might not give a desired result for the multi-dimensional case owing to several reasons.

First, it is possible that the minimizer of the sum lies outside both the hyper-rectangle

and convex hull [  55 ], [  56 ] as shown in Figure  4.1 . Second, using only a resilient consensus

protocol, one ignores the gradient information which steers the regular agents’ states toward

the true minimizer. Third, we empirically show in Section  4.6 that implementing a resilient

distributed optimization algorithm (especially Algorithm  2 ) usually gives better results in

terms of both optimality gap and distance to the global minimizer.

4.6 Numerical Experiment

We now provide two numerical experiments to illustrate Algorithm  2 and Algorithm  3 .

In the first experiment, we generate quadratic functions for the local objective functions.

Using these functions, we demonstrate the performance (e.g., optimality gaps, distances to

the global minimizer) of our algorithms. We also compare the optimality gaps of the function

value obtained using the states xi[k] and the value obtained using the auxiliary points yi[k],

and plot the trajectories of the states of a subset of regular nodes. In the second experiment,

we demonstrate the performance of our algorithm on a machine learning task (banknote

authentication task). Specifically, we compare the accuracy of the models obtained from our

algorithm (resilient distributed model) and that of a centralized model.

4.6.1 Synthetic Quadratic Functions

Preliminary Settings

• Main Parameters: We set the number of nodes to be n = 25 and the dimension of

each function to be d = 2.

• Adversary Parameters: We consider the F -local model, and set F = 2 for Algo-

rithm  2 and F = 5 for Algorithm  3 .

Network Settings
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• Topology Generation: We construct an 11-robust graph on n = 25 nodes follow-

ing the approach from [ 69 ], [  75 ]. This graph can tolerate up to 2 local adversaries

for Algorithm  2 , and up to 5 local adversaries for Algorithm  3 according to Theo-

rem  4.4.9 . Note that the same graph is used to perform numerical experiments for

both Algorithms  2 and  3 .

Adversaries’ Strategy

• Adversarial Nodes: We construct the set of adversarial nodes A by randomly choos-

ing nodes in V so that the set of adversarial nodes form a F -local set. Note that in

general, constructing A depends on the topology of the network. In our experiment, we

have A = {v9, v16} for Algorithm  2 and A = {v5, v11, v12, v17, v22, v24} for Algorithm  3 .

• Adversarial Values Transmitted: Here, we use a sophisticated approach rather

than simply choosing the transmitted values at random. Suppose vs is an adversary

node and vi is a regular node which is an out-neighbor of vs, i.e., vs ∈ N in
i . First,

consider the state of nodes in the network at time-step k. The adversarial node vs uses

an oracle to determine the region in the state space for the regular node vi in which

if the adversarial node selects the transmitted value to be outside the region then the

value will be discarded by that regular agent vi. Then, vs chooses xs→i[k] (the forged

state sent from vs to vi at time k) so that it is in the safe region and far from the

global minimizer. In this way, the adversaries’ values will not be discarded and also

try to prevent the regular nodes from getting close to the minimizer. Similarly, for the

auxiliary point update, the adversarial node vs uses an oracle to determine the safe

region in the auxiliary point’s space for the regular node vi. Since the safe region is a

hyper-rectangle in general, vs chooses ys→i[k] (the forged estimated auxiliary point sent

from vs to vi at time k) to be near a corner (chosen randomly) of the hyper-rectangle.

Objective Functions Settings

• Local Functions: For vi ∈ V , we set the local objective functions fi : Rd → R to be

fi(x) = 1
2xT Qix + bT

i x,
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where Qi ∈ S+
d and bi ∈ Rd are chosen randomly. Note that the same local functions

are used to perform numerical experiments for both Algorithms  2 and  3 .

• Global Objective Function: According to our objective ( 4.2 ), we then have the

global objective function f : Rd → R as follows:

f(x) = 1
|R|

(1
2xT

( ∑
vi∈R

Qi

)
x +

( ∑
vi∈R

bi

)T
x
)
,

where the set of regular nodes R = V \ A.

Algorithm Settings

• Initialization: For each regular node vi ∈ R, we compute the exact minimizer x∗
i =

−QT
i bi and use it as the initial state and auxiliary point of vi as suggested in Line

1-2 of Algorithm  2 .

• Weights Selection: For each time-step k ∈ N and regular node vi ∈ R, we randomly

choose the weights wx,ij[k], w(`)
y,ij[k] so that they follow the description of Line 9 and

Line 12, and Assumption  4.4.5 .

• Step-size Selection: We choose the step-size schedule (in Line 11 of Algorithm  2 )

to be η[k] = 1
k+1 .

• Gradient Norm Bound: We choose the upper bound of the gradient norm to be

L = 105. If the norm exceeds the bound, we scale the gradient down so that its norm

is equal to L, i.e.,

gi[k] =


∇fi(zi[k]) if ‖∇fi(zi[k])‖ ≤ L,

L
‖∇fi(zi[k])‖ · ∇fi(zi[k]) otherwise.

Simulation Settings and Results

• Time Horizon: We set the time horizon of our simulations to be K = 300 (starting

from k = 0).

116



• Experiments Detail: For both Algorithms  2 and  3 , we fix the graph, local functions,

and step-size schedule. However, since the set of adversaries are different, the global

objective functions, and hence the global minimizers are different. For each algorithm,

we run the experiment 10 times setting the same states initialization across the runs.

The results from the runs are different due to the randomness in the adversaries’

strategy.

• Performance Metrics: We examine the performance of our algorithms by consid-

ering the optimality gaps evaluated at different points (Figure  4.2a ), distances to the

global minimizer evaluated at different points (Figure  4.2b ), and trajectories of ran-

domly selected regular agents (Figure  4.2c ).

• Algorithm  2 ’s Results: The lines corresponding to the optimality gap and distance

to the global minimizer evaluated using auxiliary points are almost horizontal since the

convergence to consensus is very fast. However, one can see that the optimality gap and

distance to the minimizer obtained from the regular states are significantly smaller than

that from the auxiliary points due to the use of gradient information (Line 10) and

extreme states filtering (Line 8) in the regular state update. In particular, at k = 300,

the optimality gap and distance to the global minimizer at the regular states’ average

are only about 0.030 and 0.206, respectively. Moreover, the state trajectories converge

together and stay close to the global minimizer even in the presence of sophisticated

adversaries. Note that, from our observations, Algorithm  2 yields better results than

Algorithm  3 given the same settings.

• Algorithm  3 ’s Results: The optimality gaps and distances to the global minimizer

evaluated using the states are slightly better than the values obtained using the auxil-

iary points, and the state trajectories remain reasonably close to the global minimizer

showing that the algorithm can tolerate F = 5 local adversaries (which is more than Al-

gorithm  2 ). Interestingly, the state trajectories seem to converge together even though

the consensus guarantee is lacking due to the absence of the distance-based filter.
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(a) The optimality gap evaluated at the average of the regular nodes’ states
f(x̄) − f∗ averaged over 10 runs (blue line), and the optimality gap evaluated
at the average of the regular nodes’ auxiliary points f(ȳ)− f∗ averaged over 10
runs (red line).

(b) The distance between the average of the regular nodes’ states and the global
minimizer ‖x̄−x∗‖ averaged over 10 runs (blue line), and the distance between the
average of the regular nodes’ auxiliary points and the global minimizer ‖ȳ−x∗‖
averaged over 10 runs (red line).

(c) The trajectory of the states of a subset of the regular nodes. Different colors
of the trajectory represent different regular agents vi in the network.

Figure 4.2. The plots show the results obtained from (left) Algorithm  2 and
(right) Algorithm  3 . In the first four plots, the shaded regions represent +1/-1
standard deviation from the mean. In the last two plots, the contour lines
show the level sets of the global objective function (in this case, a quadratic
function) and the red dots represent the global minimizer.
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4.6.2 Banknote Authentication using Regularized Logistic Regression

Dataset Information  

6
 

• Description: The data were extracted from images that were taken from genuine and

forged banknote-like specimens.

• Data Points: The total number of data is 1,372.

• Features: The dataset consists of four features: (1) the variance of a wavelet trans-

formed image, (2) the skewness of a wavelet transformed image, (3) the curtosis of a

wavelet transformed image, and (4) the entropy of an image.

• Labels: There are two classes: ‘0’ (genuine) and ’1’ (counterfeit).

Preliminary Settings

• Main Parameters: We set the number of nodes to be n = 50. Since there are four

features, the dimension of the states is d = 5 (one for each feature and the other one

for the bias).

• Adversarial Parameters: We use the F -local model with F = 2.

• Dataset Partitioning: We randomly partition the dataset into three chunks: 1,000

training data points, 186 validation data points, and 186 test data points. We then

distribute the training dataset to the nodes in the network equally. Thus, each node

contains m = 20 training data points.

Network and Weights Settings

We construct the network and corresponding weight matrix using the same approach as

in the synthetic quadratic functions case.

Adversaries’ Strategy

We choose the set of adversarial nodes A and adversarial values transmission strategy

using the same method as in the synthetic quadratic functions case.

Objective Functions Settings
6

 ↑ https://archive.ics.uci.edu/ml/datasets/banknote+authentication
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• Notations: Let xij ∈ Rd−1 be the feature vector of the j-th data points at node

vi ∈ V , and Yij ∈ {0, 1} be the corresponding label. We let x̃ij =
[
xT

ij 1
]T

to account

for the bias term.

• Local Functions: Since this is a classification task, we choose the logistic regression

model with L2-regularization in which its loss function is strongly convex. For vi ∈ V ,

we set the local objective functions fi : Rd → R to be

fi(W ) = |R|
m∑

j=1
log

(
exp(−Yijx̃

T
ijW ) + 1

)
+ ς

2‖W ‖
2,

where the set of regular nodes R = V \A and ς ∈ R>0 is the regularization parameter

which will be chosen later.

• Global Objective Function: According to our objective ( 4.2 ), we then have the

global objective function f : Rd → R as follows:

f(W ) =
∑

vi∈R

m∑
j=1

log
(

exp(−Yijx̃
T
ijW ) + 1

)
+ ς

2‖W ‖
2.

• Regularization Parameter Selection: We consider ς ∈ {10−4, 10−3, . . . , 105}. We

train our (centralized) logistic model using the global objective function above for each

value of ς and then we select the value of ς that gives the best validation accuracy.

Algorithm Settings

• Initialization: As suggested in Line 1 of Algorithm  2 , we numerically find the min-

imizer of the local functions using the default optimizer of

sklearn.linear_model.LogisticRegression. Then, we use the minimizer of each

regular node to be the initial state and auxiliary point as in Line 2.

The methodology of step-size selection and gradient norm bound is the same as in the

synthetic quadratic functions case.

Simulation Settings and Results
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• Benchmark: We evaluate the performance (accuracy) of the (centralized) logistic

model with the selected regularization parameter, ς.

• Time Horizon: We set the time horizon of our simulations of our distributed algo-

rithm to be K = 200 (starting from k = 0).

• Simulation: We run the simulations of Algorithm  2 by varying the parameter η0 from

−2 to 4 with increasing step of 1. We evaluate the performance of each model (i.e., each

η0) by considering the accuracy obtained by using the state W̄ [K] = 1
|R|
∑

vi∈R W i[K]

for each η0 and the validation data. Then, we select the parameter η0 which provides

the best accuracy. Finally, with the selected value of η0, we evaluate the performance

(accuracy) of the corresponding model with the test data.

• Result: We repeat the whole process 5 times. In other words, each run uses differ-

ent realization of data partitioning (hence, different local functions and global func-

tion), network topology, and adversaries set. The result of each run is shown in Ta-

ble  4.1 . The first three rows show the adversaries set, regularization parameter and

step-size parameter of each run. The next (resp. last) three rows show the train-

ing (resp. test) accuracy of the centralized model, distributed model evaluated at

W̄ [K] = 1
|R|
∑

vi∈R W i[K], and the minimum accuracy among the local model of reg-

ular nodes evaluated at its own state W i[K]. We can see that despite the presence

of adversaries with sophisticated behavior, the performance of our algorithm is just

slightly lower than the centralized model’s performance for this task.

4.7 Conclusion and Future work

In this chapter, we considered the distributed optimization problem in the presence of

Byzantine agents. We developed two resilient distributed optimization algorithms for multi-

dimensional functions. The key improvement over our previous work in [  40 ] is that the

algorithms proposed in this chapter do not require a fixed auxiliary point to be computed

in advance (which will not happen under finite time in general). Our algorithms have low
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Table 4.1. Training/Test Accuracy of Centralized (C), Distributed (D) Mod-
els and Minimum among Regular Agents’ Models (MIN) for each Run of Ban-
knote Authentication Task

1st Run 2nd Run 3rd Run 4th Run 5th Run
vi ∈ A 9, 23 9, 15 10, 11 5, 29 24, 47
ς 1.0 1.0 10 1.0 1.0
η0 1 1 2 4 1

Train (C) 99.40 99.20 99.00 98.90 99.10
Train (D) 98.10 97.90 97.70 98.30 98.00

Train (MIN) 97.80 97.60 97.50 98.30 97.70
Test (C) 99.46 98.39 99.46 99.46 98.92
Test (D) 97.85 95.70 98.92 97.85 98.39

Test (MIN) 97.85 95.70 98.92 97.85 97.85
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complexity and each regular node only needs local information to execute the steps. Algo-

rithm  2 (with the min-max state filter), which requires more network redundancy, guarantees

that the regular states can asymptotically reach consensus and enter a bounded region that

contains the global minimizer, irrespective of the actions of Byzantine agents. On the other

hand, Algorithm  3 (without the min-max filter) has a more relaxed condition on the network

topology and can guarantee asymptotic convergence to the same region, but cannot guaran-

tee consensus. For both algorithms, we explicitly characterized the size of the convergence

region, and showed through simulations that Algorithm  2 appears to yield results that are

closer to optimal, as compared to Algorithm  3 .

As noted earlier, the consensus guarantee for Algorithm  2 comes at the cost of requir-

ing that the robustness of the network scale linearly with the dimension of the local func-

tions, which can be restrictive in practice. This seems to be a common challenge for re-

silient consensus-based algorithms in systems with multi-dimensional states, e.g., [ 47 ], [ 74 ],

[ 78 ]. Finding a relaxed condition on the network topology for high-dimensional resilient dis-

tributed optimization problems (with guaranteed consensus) would be a rich area for future

research.
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5. ON THE GEOMETRIC CONVERGENCE OF

BYZANTINE-RESILIENT DISTRIBUTED OPTIMIZATION

ALGORITHMS

5.1 Introduction

As discussed in Chapter  1 and Chapter  4 , distributed optimization problems pertain to a

setting where each node in a network has a local cost function, and the goal is for all agents

in the network to agree on a minimizer of the average of the local cost functions. In the

distributed optimization literature, there are two main paradigms: client-server and peer-to-

peer. Motivated by settings where the client-server paradigm may suffer from a single point

of failure or communication bottleneck, there is a growing amount of work on the peer-to-peer

setting where the agents in the network are required to send and receive information only

from their neighbors. A variety of algorithms have been proposed to solve such problems

in peer-to-peer architectures (e.g., see [  70 ], [ 71 ], [ 79 ]–[ 81 ]). The works [  82 ], [ 29 ] and [  83 ]

summarize the recent advances in the field of (peer-to-peer) distributed optimization.

These aforementioned works typically make the assumption that all agents are trustwor-

thy and cooperative (i.e., they follow the prescribed protocol). However, it has been shown

that the regular agents fail to reach an optimal solution even if a single misbehaving (or

“Byzantine”) agent is present [ 30 ], [  33 ]. Thus, designing distributed optimization algorithms

that allow all the regular agents’ states in the network to stay close to the minimizer of

the sum of regular agents’ functions regardless of the adversaries’ actions has become a pre-

vailing problem. Nevertheless, as discussed in Chapter  4 , the number of works addressing

Byzantine-resilient algorithms in the peer-to-peer setup is relatively limited when compared

to the client-server setting.

In contrast to Chapter  4 , which addressed Byzantine-resilient distributed determinis-

tic optimization problems under a general convexity assumption, this chapter explores the

problem under a strong convexity assumption. Our contributions are as follows. (i) We

introduce an algorithmic framework called REDGRAF, a generalization of BRIDGE in [ 45 ],

which includes some state-of-the-art Byzantine-resilient distributed optimization algorithms
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as special cases. (ii) We propose a novel contraction property which we show provides a

general method for proving geometric convergence of algorithms in REDGRAF. To the best of

our knowledge, our work is the first to provide a geometric rate of convergence of all regular

agents’ states to a ball containing the true minimizer for a class of resilient algorithms under

the strong convexity assumption. In addition, we explicitly characterize the convergence rate

and the size of the convergence region. (iii) We introduce a novel mixing dynamics property

which is used to derive approximate consensus results for algorithms in REDGRAF in which

both the convergence rate and the final consensus diameter are explicitly characterized. (iv)

Using our framework, we analyze the contraction and mixing dynamics properties of some

state-of-the-art algorithms, leading to convergence and consensus results for each algorithm.

Our work is the first to show that these algorithms satisfy such properties. (v) We demon-

strate and compare the performance of the algorithms through numerical simulations to

corroborate the theoretical results for convergence and approximate consensus.

5.2 Related Work

The survey paper [ 84 ] provides an overview of some Byzantine-resilient algorithms for

both the client-server and peer-to-peer paradigms. Since we are focusing on resilient al-

gorithms for peer-to-peer settings, we discuss the following research papers attempting to

solve such problems. The papers [ 33 ], [  30 ] and [ 50 ] show that using the distributed gradient

descent (DGD) equipped with a trimmed mean filter guarantees convergence to the convex

hull of the local minimizers under scalar-valued objective functions. Adopting a similar al-

gorithm, the paper [  51 ] gives the same guarantee for scalar-valued problems under deception

attacks. The work [  52 ] also considers the scalar version of such problems but relies on trusted

agents which cannot be compromised by adversarial attacks. To tackle vector-valued prob-

lems, the paper [ 44 ] proposes ByRDiE, a coordinate descent method for machine learning

problems leveraging the algorithm in [ 33 ], while the paper [  45 ] presents BRIDGE, an al-

gorithm framework for Byzantine-resilient distributed optimization problems. Even though

[ 44 ] and [  45 ] show the convergence to the minimizer with high probability (for certain specific

algorithms), they require that the training data is i.i.d. across the agents in the network.
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While resilient algorithms with the trimmed mean filter are widely used, e.g., [  30 ], [  33 ], [  45 ],

[ 50 ]–[ 52 ], the convergence analysis for multivariate functions under general assumptions is

still lacking. The work [  48 ] proposes RSGP, a resilient algorithm based on a Subgradient-

Push method [  27 ] equipped with a maliciousness score for detecting adversaries. However,

the work requires that the regular agents’ functions have common statistical characteristics,

and does not provide any guarantees on the proposed algorithm. In Chapter  4 , we propose

Algorithms  2 and  3 (referred in this chapter as SDMMFD and SDFD, respectively), resilient

algorithms for deterministic distributed convex optimization problems for multi-dimensional

functions, which have an asymptotic convergence guarantee to a proximity of the true mini-

mum. However, the work does not provide the convergence rate for the proposed algorithms.

The work [ 47 ] provides an algorithm with provable exact fault-tolerance, but relies on redun-

dancy among the local functions, and also requires the underlying communication network

to be complete.

For distributed stochastic optimization problems, the paper [ 85 ] introduces a resilient

algorithm based on a total variation norm penalty motivated from [ 86 ]. The recent paper

[ 49 ] also considers stochastic problems, and proposes an algorithm utilizing a distance-based

filter and objective value-based filter, but does not provide any performance guarantees. The

recent paper [  87 ] which also considers stochastic problems especially for machine learning,

proposes a validation-based algorithm for both i.i.d. and non-i.i.d. settings. In particular,

the work theoretically shows a convergence guarantee for the proposed algorithm under

convex loss functions and i.i.d. data. The recent papers [ 68 ] and [  88 ] propose algorithms

which converge to a neighborhood of a stationary point for distributed stochastic non-convex

optimization problems.

As described earlier in our contributions section, our work in this chapter addresses the

gaps in the existing literature by showing geometric rate of convergence of all regular agents’

states to a ball containing the true minimizer for a class of resilient algorithms under the

strong convexity assumption, and explicitly characterizing the size of the ball. In particular,

our work provides the convergence analysis of resilient algorithms with the trimmed mean

filter studied in [ 30 ], [  33 ], [  45 ], [  50 ]–[ 52 ] under mild assumptions.
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5.3 Background

Let N, Z and R denote the set of natural numbers (including zero), integers, and real

numbers, respectively. Let Z+, R≥0 and R>0 denote the set of positive integers, non-negative

real numbers, and positive real numbers, respectively. For convenience, for an integer N ∈

Z+, we define [N ] := {1, 2, . . . , N}. The cardinality of a set is denoted by | · |. Given positive

integers F ∈ Z+ and s ≥ F , and a set of scalars X = {x1, x2, . . . , xs}, define MF (X ) and

mF (X ) to be the F -th largest element and F -th smallest element, respectively, of the set X .

5.3.1 Linear Algebra

Vectors are taken to be column vectors, unless otherwise noted. We use x(`) to represent

the `-th component of a vector x. The Euclidean norm on Rd is denoted by ‖ · ‖. We

use 1 and I to denote the vector of all ones and the identity matrix, respectively, with

appropriate dimensions. We denote by 〈u,v〉 the Euclidean inner product of vectors u and

v, i.e., 〈u,v〉 = uT v and by ∠(u,v) the angle between vectors u and v, i.e., ∠(u,v) =

arccos
(

〈u,v〉
‖u‖‖v‖

)
. The Euclidean ball in Rd with center at x0 ∈ Rd and radius r ∈ R≥0 is

denoted by B(x0, r) := {x ∈ Rd : ‖x − x0‖ ≤ r}. For N ∈ Z+, a matrix W ∈ RN×N is

(row-)stochastic if W 1 = 1 and wij ≥ 0 for all i, j ∈ [N ]. For N ∈ Z+, we use SN to denote

the set of all N ×N (row-)stochastic matrices.

5.3.2 Functions Properties

For a differentiable function f : Rd → R and a point x ∈ Rd, define the vector ∇f(x) ∈

Rd to be the gradient of f at point x.

Definition 5.3.1 (strongly convex function). Given a non-negative real number µ ∈ R≥0

and differentiable function f : Rd → R, f is µ-strongly convex if for all x1, x2 ∈ Rd,

f(x1) ≥ f(x2) + 〈∇f(x2),x1 − x2〉+ µ

2‖x1 − x2‖2. (5.1)

Note that a differentiable function is convex if it is 0-strongly convex.
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Definition 5.3.2 (Lipschitz gradient). Given a non-negative real number L ∈ R≥0 and

differentiable function f : Rd → R, f has an L-Lipschitz gradient if for all x1, x2 ∈ Rd,

‖∇f(x1)−∇f(x2)‖ ≤ L‖x1 − x2‖. (5.2)

5.3.3 Graph Theory

We denote a network by a directed graph G = (V , E), which consists of the set of N

nodes V = {v1, v2, . . . , vN} and the set of edges E ⊆ V × V . If (vi, vj) ∈ E , then node vj

can receive information from node vi. The in-neighbor and out-neighbor sets are denoted by

N in
i = {vj ∈ V : (vj, vi) ∈ E} and N out

i = {vj ∈ V : (vi, vj) ∈ E}, respectively. A path from

node vi ∈ V to node vj ∈ V is a sequence of nodes vk1 , vk2 , . . . , vkl
such that vk1 = vi, vkl

= vj

and (vkr , vkr+1) ∈ E for r ∈ [l − 1]. Throughout this chapter, the terms nodes and agents

will be used interchangeably. Given a set of vectors {x1,x2, . . . ,xN}, where each xi ∈ Rd,

we use the following shorthand notation for all S ⊆ V : {xi}S = {xi ∈ Rd : vi ∈ S}.

Definition 5.3.3. A graph G = (V , E) is said to be rooted at vi ∈ V if for all vj ∈ V \ {vi},

there is a path from vi to vj. A graph is said to be rooted if it is rooted at some vi ∈ V.

We will rely on the following definitions from [  69 ].

Definition 5.3.4 (r-reachable set). For a given graph G and a positive integer r ∈ Z+,

a subset of nodes S ⊆ V is said to be r-reachable if there exists a node vi ∈ S such that

|N in
i \ S| ≥ r.

Definition 5.3.5 (r-robust graphs). For a positive integer r ∈ Z+, a graph G is said to be

r-robust if for all pairs of disjoint nonempty subsets S1,S2 ⊂ V, at least one of S1 or S2 is

r-reachable.

The above definitions capture the idea that sets of nodes should contain individual nodes

that have a sufficient number of neighbors outside that set. This will be important for

the local decisions made by each node in resilient distributed algorithms, and will allow

information from the rest of the network to penetrate into different sets of nodes.
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Next, following [  89 ], we define the composition of two graphs and conditions on a se-

quence of graphs which will be useful for stating a mild condition for achieving approximate

consensus guarantees later as follows.

Definition 5.3.6 (composition). The composition of a directed graph G1 = (V , E1) with a

directed graph G2 = (V , E2) written as G2 ◦ G1, is the directed graph (V , E) with (vi, vj) ∈ E if

there is a vk ∈ V such that (vi, vk) ∈ E1 and (vk, vj) ∈ E2.

Definition 5.3.7 (jointly rooted). A finite sequence of directed graphs {Gk}k∈[K] is jointly

rooted if the composition GK ◦ GK−1 ◦ · · · ◦ G1 is rooted.

Definition 5.3.8 (repeatedly jointly rooted). An infinite sequence of graphs {Gk}k∈Z+ is

repeatedly jointly rooted if there is a positive integer q ∈ Z+ for which each finite sequence

Gq(k−1)+1, . . . ,Gqk is jointly rooted for all k ∈ Z+.

For a stochastic matrix S ∈ SN , let G(S) denote the graph G whose adjacency matrix is

the transpose of the matrix obtained by replacing all of S’s nonzero entries with 1’s.

5.3.4 Adversarial Behavior

Definition 5.3.9. A node vi ∈ V is said to be Byzantine if during each iteration of the

prescribed algorithm, it is capable of sending arbitrary values to different neighbors. It is

also allowed to update its local information arbitrarily at each iteration of any prescribed

algorithm.

The set of Byzantine agents is denoted by VB ⊂ V . The set of regular agents is denoted

by VR = V \ VB. The identities of the Byzantine agents are unknown to the regular agents

in advance. Furthermore, we allow the Byzantine agents to know the entire topology of the

network, functions equipped by the regular nodes, and the deployed algorithm. In addition,

Byzantine agents are allowed to coordinate with other Byzantine agents and access the

current and previous information contained by the nodes in the network (e.g. current and

previous states of all nodes). Such extreme behavior is typical in the field of distributed

computing [  90 ] and in adversarial distributed optimization [  30 ], [  33 ], [  44 ], [  91 ], [  92 ]. In
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exchange for allowing such extreme behavior, we will consider a limitation on the number of

such adversaries in the neighborhood of each regular node, as follows.

Definition 5.3.10 (F -local model). For a positive integer F ∈ Z+, we say that the set of

adversaries VB is an F -local set if |N in
i ∩ VB| ≤ F , for all vi ∈ VR.

Thus, the F -local model captures the idea that each regular node has at most F Byzantine

in-neighbors.

5.4 Problem Formulation

Consider a group of N agents V interconnected over a graph G = (V , E). Each agent vi ∈

V has a local cost function fi : Rd → R. Since Byzantine nodes are allowed to send arbitrary

values to their neighbors at each iteration of any algorithm, it is not possible to minimize

the quantity 1
N

∑
vi∈V fi(x) that is typically sought in distributed optimization (since one is

not guaranteed to infer any information about the true functions of the Byzantine agents)

[ 30 ], [  33 ]. Thus, we restrict the summation only to the regular agents’ functions, i.e., the

objective is to minimize

f(x) := 1
|VR|

∑
vi∈VR

fi(x). (5.3)

A key challenge in solving the above problem is that no regular agent is aware of the identities

or actions of the Byzantine agents. In particular, solving Problem  5.3 exactly is not possible

under Byzantine behavior, since the identities and local functions of the Byzantine nodes

are not known (the Byzantine agents can simply change their local functions and pretend

to be a regular agent in the algorithms and these can never be detected). Therefore, one

must settle for computing an approximate solution to Problem  5.3 (see [  30 ], [  33 ] for a more

detailed discussion of this fundamental limitation).

Establishing the convergence (especially obtaining the rate of convergence) for resilient

distributed optimization algorithms under general assumptions on the local functions (i.e.,

not assuming i.i.d. or redundancy) is non-trivial as evidenced by the lack of such results in

the literature. We close this gap by introducing a “proper" intermediate step which is showing

the states contraction property (Definition  5.6.1 ) before proceeding to show the convergence

130



Algorithmic Framework 1 Resilient Distributed Gradient-Descent Algorithmic Frame-
work (REDGRAF)
Input: Network G, functions {fi}VR , parameter F

1: Step I: Initialization
Each vi ∈ VR sets zi[0]← init(fi)

2: for k = 0, 1, 2, 3, . . . do
3: for vi ∈ VR do . Implement in parallel
4: Step II: Broadcast and Receive

vi broadcasts zi[k] to N out
i and receives zj[k] from vj ∈ N in

i

Let Zi[k] =
{
zj[k] : vj ∈ N in

i ∪ {vi}
}

5: Step III: Filtering Step
z̃i[k]← filt(Zi[k], F ) . Note: z̃i[k] =

[
x̃T

i [k], ỹT
i [k]

]T
6: Step IV: Gradient Update

xi[k + 1] = x̃i[k]− αk∇fi(x̃i[k]),
yi[k + 1] = ỹi[k] (if exists),

(5.4)

where αk ∈ R>0 is the step-size
7: end for
8: zi[k + 1] =

[
xT

i [k + 1],yT
i [k + 1]

]T
for vi ∈ VR

9: end for

(Theorem  5.6.4 ). Importantly, the contraction property not only captures some of state-of-

the-art resilient distributed optimization algorithms in the literature (Theorem  5.6.8 ) but

also facilitates the (geometric) convergence analysis.

5.5 Resilient Distributed Optimization Algorithms

5.5.1 Our Framework

In this subsection, we introduce a class of resilient distributed optimization algorithms

represented by the Resilient Distributed Gradient-Descent Algorithmic Framework (RED-

GRAF) shown in Algorithmic Framework  1 . At each time-step k ∈ N, each regular agent 

1
 

vi ∈ VR maintains and updates a state vector xi[k] ∈ Rd, which is its estimate of the

solution to Problem  5.3 , and optionally an auxiliary vector yi[k] ∈ Rd′ where the di-

mension d′ ∈ N depends on the specific algorithm. In our algorithmic framework, we let
1

 ↑ Byzantine agents do not necessarily need to follow the above algorithm, and can update their states
however they wish.
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zi[k] =
[
xT

i [k],yT
i [k]

]T
∈ Rd+d′ , and similarly, z̃i[k] =

[
x̃T

i [k], ỹT
i [k]

]T
∈ Rd+d′ . In fact, RED-

GRAF is a generalization of BRIDGE proposed in [ 45 ] in the sense that our framework allows

the state vector zi[k] to include the auxiliary vector yi[k]. In Algorithmic Framework  1 ,

the operation init(fi) initializes zi[0] =
[
xT

i [0],yT
i [0]

]T
, and the operation filt(Zi[k], F )

performs a filtering procedure (to remove potentially adversarial states received from neigh-

bors) and returns a vector z̃i[k]. These functions will vary across algorithms, and will be

discussed for specific algorithms later.

5.5.2 Definition of Some Standard Operations for Resilient Distributed Opti-
mization

To show that our framework (REDGRAF) captures several existing resilient distributed

optimization algorithms as special cases, we first define some operations that are used by

existing algorithms. Throughout, let Vi[k] ⊆ N in
i ∪ {vi}, Xi[k] = {xj[k]}N in

i ∪{vi} and Yi[k] =

{yj[k]}N in
i ∪{vi}.

• Ṽi[k]← dist_filt(Vi[k], Zi[k], F ):

Regular agent vi ∈ VR removes F states that are far away from yi[k]. More specifically,

an agent vj ∈ Vi[k] is in Ṽi[k] if and only if

‖xj[k]− yi[k]‖ ≤ max{qM , ‖xi[k]− yi[k]‖},

where qM = MF

(
{‖xs[k]− yi[k]‖}vs∈Vi[k]

)
.

• Ṽi[k]← full_mm_filt(Vi[k], Xi[k], F ):

Regular agent vi ∈ VR removes states that have extreme values in any of their

components. For a given k ∈ N and ` ∈ [d], let q(`)
m = mF

(
{x(`)

s [k]}Vi[k]
)

and

q
(`)
M = MF

(
{x(`)

s [k]}Vi[k]
)
. An agent vj ∈ Vi[k] is in Ṽi[k] if and only if for all ` ∈ [d],

min{q(`)
m , x

(`)
i [k]} ≤ x

(`)
j [k] ≤ max{q(`)

M , x
(`)
i [k]}.
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• {Ṽ(`)
i [k]}`∈[d] ← cw_mm_filt(Vi[k], Xi[k], F ):

For each dimension ` ∈ [d], regular agent vi ∈ VR removes the F highest and F lowest

values of the states of agents in Vi[k] along that dimension. More specifically, for a

given k ∈ N and ` ∈ [d], let q(`)
m = mF

(
{x(`)

s [k]}Vi[k]
)

and q
(`)
M = MF

(
{x(`)

s [k]}Vi[k]
)
. An

agent vj ∈ Vi[k] is in Ṽ(`)
i [k] if and only if

min{q(`)
m , x

(`)
i [k]} ≤ x

(`)
j [k] ≤ max{q(`)

M , x
(`)
i [k]}.

• x̃i[k]← full_average(Vi[k], Xi[k]):

Regular agent vi ∈ VR computes

x̃i[k] =
∑

vj∈Vi[k]
wij[k] xj[k], (5.5)

where ∑vj∈Vi[k] wij[k] = 1 and wij[k] ∈ R>0 for all vj ∈ Vi[k].

• x̃i[k]← cw_average({V(`)
i [k]}`∈[d], Xi[k]):

For each dimension ` ∈ [d], regular agent vi ∈ VR computes

x̃
(`)
i [k] =

∑
vj∈V(`)

i [k]

w
(`)
ij [k] x(`)

j [k], (5.6)

where w(`)
ij [k] ∈ R>0 for all vj ∈ V (`)

i [k] and ∑
vj∈V(`)

i [k] w
(`)
ij [k] = 1.

• x̃i[k]← safe_point(Vi[k], Xi[k], F ):

Regular agent vi ∈ VR returns a state x̃i[k] which can be written as

x̃i[k] =
∑

vj∈Vi[k]∩VR

wij[k] xj[k], (5.7)

where wij[k] ∈ R>0 for all vj ∈ Vi[k] ∩ VR and ∑vj∈Vi[k]∩VR wij[k] = 1. The works [  74 ],

[ 77 ] discuss methods used to compute x̃i[k].
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5.5.3 Mapping Existing Algorithms into REDGRAF

Using the operations defined above, we now discuss some algorithms in the literature

that fall into our algorithmic framework.

Simultaneous Distance-MixMax Filtering Dynamics (SDMMFD) and Simultaneous Dis-

tance Filtering Dynamics (SDFD) [ 93 ]: These two algorithms are captured in our framework

by defining zi[k] =
[
xT

i [k],yT
i [k]

]T
where yi[k] ∈ Rd. In the initialization step zi[0] ←

init(fi) (Line 1) of both algorithms, each regular agent vi ∈ VR computes an approximate

minimizer x̂∗
i ∈ Rd of its local function fi (using any appropriate optimization algorithm) and

then sets xi[0] ∈ Rd arbitrarily and yi[0] = x̂∗
i . In the filtering step z̃i[k] ← filt(Zi[k], F )

(Line 5), SDMMFD executes the following sequence of methods:

1. Vdist
i [k]← dist_filt(N in

i ∪ {vi},Zi[k], F ),

2. Vx,mm
i [k]← full_mm_filt(Vdist

i [k],Xi[k], F ),

3. x̃i[k]← full_average(Vx,mm
i [k],Xi[k]),

4. {Ṽ(`)
i [k]}`∈[d] ← cw_mm_filt(N in

i ∪ {vi},Yi[k], F ),

5. ỹi[k]← cw_average({Ṽ(`)
i [k]}`∈[d],Yi[k]).

The first three steps compute the intermediate main state x̃i[k] while the last two steps

compute the intermediate auxiliary vector ỹi[k]. On the other hand, SDFD executes the

same sequence of methods except that step (ii) is removed and Vx,mm
i [k] in step (iii) is

replaced by Vdist
i [k]. Then, for both algorithms, we set z̃i[k] = [x̃T

i [k], ỹT
i [k]]T .

Coordinate-wise Trimmed Mean (CWTM) [ 30 ], [  33 ], [  45 ], [  50 ]–[ 52 ] and Resilient Vector

Optimization (RVO) based on resilient vector consensus [ 74 ], [ 77 ]: These algorithms are

captured by setting zi[k] = xi[k] (i.e., yi[k] = ∅). In the initialization step zi[0]← init(fi)

(Line 1) of both algorithms, the regular agents vi ∈ VR arbitrarily initialize xi[0] ∈ Rd. In

the filtering step z̃i[k] ← filt(Zi[k], F ) (Line 5), CWTM executes the following sequence

of methods:

1. {Ṽ(`)
i [k]}`∈[d] ← cw_mm_filt(N in

i ∪ {vi},Xi[k], F ),
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2. x̃i[k]← cw_average({V(`)
i [k]}`∈[d],Xi[k]),

whereas RVO executes

1. x̃i[k]← safe_point(N in
i ∪ {vi},Xi[k], F ).

In fact, the algorithms proposed in [  49 ], [  85 ]–[ 87 ] also fall into our framework. However,

in this work, we focus on analyzing the four algorithms above since they share some com-

mon property (stated formally in Theorem  5.6.8 ), and we will provide a discussion on the

algorithms in the work [ 49 ], [  85 ]–[ 87 ] in Section  5.6.4 .

5.6 Assumptions and Main Results

We now turn to stating assumptions and definitions in Section  5.6.1 which will be used

to prove convergence properties in Section  5.6.2 and consensus properties in Section  5.6.3 .

Finally, in Section  5.6.4 , we analyze certain properties of each algorithm mentioned in the

previous section.

5.6.1 Assumptions and Definitions

Assumption 5.6.1. For all vi ∈ V , given positive numbers µi ∈ R>0 and Li ∈ R>0, the

functions fi are µi-strongly convex and differentiable. Furthermore, the functions fi have

Li-Lipschitz continuous gradients.

The strongly convexity and Lipschitz continuous gradient assumptions given above are

common in the distributed convex optimization literature [ 29 ], [ 80 ], [ 94 ]–[ 96 ]. We define

L̃ := maxvi∈VR Li and µ̃ := minvi∈VR µi. Since {fi}vi∈VR are strongly convex functions,

let x∗
i ∈ Rd be the minimizer of the function fi, i.e., fi(x∗

i ) = minx∈Rd fi(x). Moreover,

let c∗ ∈ Rd and r∗ ∈ R≥0 be such that x∗
i ∈ B(c∗, r∗) for all vi ∈ VR. Let x∗ ∈ Rd

be the minimizer of the function f(x), i.e., the solution of Problem  5.3 . In other words,

f(x∗) = minx∈Rd f(x). For convenience, we also denote f ∗ := f(x∗) and gi[k] := ∇fi(x̃i[k]).

Assumption 5.6.2. Given a positive integer F ∈ Z+, the Byzantine agents form a F -local

set.
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Assumption 5.6.3. There exists a positive number ω ∈ R>0 such that for all k ∈ N

and ` ∈ [d], the non-zero weights wij[k] in full_average and safe_point, and w
(`)
ij [k] in

cw_average (all defined in Section  5.5.2 ) are lower bounded by ω.

Now, we introduce certain properties of the filtering step of our algorithmic framework.

These definitions will be important ingredients in proving the convergence result in Sec-

tion  5.6.2 and consensus result in Section  5.6.3 .

Definition 5.6.1. For a vector xc ∈ Rd, constant γ ∈ R≥0, and sequence {c[k]}k∈N ⊂ R, a

resilient distributed optimization algorithm A in REDGRAF is said to satisfy the (xc, γ, {c[k]})-

states contraction property if it holds that limk→∞ c[k] = 0 and for all k ∈ N and vi ∈ VR,

‖x̃i[k]− xc‖ ≤
√
γ max

vj∈VR
‖xj[k]− xc‖+ c[k]. (5.8)

In the above definition, the vector xc is called the contraction center and the constant

γ is called the contraction factor. In general, we want the contraction factor γ to be small

so that the intermediate state x̃i[k] remains close to the center xc. The sequence {c[k]}k∈N

captures a perturbation to the contraction term in each time-step. If an algorithm A in

REDGRAF satisfies the (xc, γ, {c[k]})-states contraction property, we define

rc := max
vi∈VR

‖xc − x∗
i ‖. (5.9)

Definition 5.6.2. Suppose Assumption  5.6.1 holds, and a resilient distributed optimization

algorithm A in REDGRAF satisfies the (xc, γ, {c[k]})-states contraction property (for some

xc ∈ Rd, γ ∈ R≥0, and {c[k]}k∈N ⊂ R). Then, algorithm A is said to satisfy the (γ, α)-

reduction property if γ ∈ [0, 1) and αk = α ∈
(
0, 1

L̃

]
, or γ ∈

[
1, 1

1− µ̃

L̃

)
and αk = α ∈(

1
µ̃

(
1− 1

γ

)
, 1

L̃

]
.

Let VR = {vi1 , vi2 , . . . , vi|VR|} denote the set of all regular agents. For a set of vectors

{ui}i∈V ⊂ Rd and ` ∈ [d], we denote u(`) =
[
u

(`)
i1 , u

(`)
i2 , . . . , u

(`)
i|VR|

]T
∈ R|VR|, the vector

containing `-th dimension of each vector ui corresponding to the regular agents’ indices. The
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following definition characterizes the dynamics of all the regular agents in the network which

will be a crucial ingredient in showing the approximate consensus result in Section  5.6.3 .

Definition 5.6.3. For a set of sequences of matrices {W (`)[k]}k∈N, `∈[d] ⊂ S|VR| and constant

G ∈ R≥0, a resilient distributed optimization algorithm A in REDGRAF is said to possess

({W (`)[k]}, G)-mixing dynamics if the state dynamics can be written as

x(`)[k + 1] = W (`)[k]x(`)[k]− αkg(`)[k] (5.10)

for all k ∈ N and ` ∈ [d], the sequences of graphs {G(W (`)[k])}k∈N are repeatedly jointly

rooted for all ` ∈ [d], and lim supk ‖gi[k]‖∞ ≤ G for all vi ∈ VR.

The matrix W (`)[k] is called a mixing matrix which directly affects the ability of the nodes

to reach consensus [  89 ] while the constant G quantifies an upper bound on the perturbation

(i.e., the scaled gradient αkg(`)[k]) to the consensus process.

5.6.2 The Region To Which The States Converge

In this subsection, we will derive a convergence result for some particular algorithms

in REDGRAF (Theorem  5.6.4 ), and show that the minimizer x∗ which is the solution of

Problem  5.3 is, in fact, in the convergence region (Theorem  5.6.5 ). For convenience, if

Assumption  5.6.1 holds and the step-size αk = α for all k ∈ N, we define

β :=
√

1− αµ̃. (5.11)

We now come to one of the main results of this chapter, showing that the states of all the

regular agents will converge to a ball for all algorithms in REDGRAF satisfying the reduction

(Definition  5.6.2 ) and the states contraction (Definition  5.6.1 ) properties. The proof is

provided in Appendix  C.2.3 .
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Theorem 5.6.4 (Convergence). Suppose Assumption  5.6.1 holds. If an algorithm A satisfies

the (γ, α)-reduction property (for some γ ∈ R≥0 and α ∈ R>0), then for all vi ∈ VR, it holds

that

lim sup
k
‖xi[k]− xc‖ ≤

rc

√
αL̃

1− β√γ := R∗, (5.12)

where xc, rc and β are defined in Definition  5.6.1 , ( 5.9 ) and ( 5.11 ), respectively. Further-

more, if c[k] = O(ξk) and ξ ∈ (0, 1) \ {β√γ}, then for all vi ∈ VR,

‖xi[k]− xc‖ ≤ R∗ +O
(
(max{β√γ, ξ})k

)
. (5.13)

We refer to R∗ in (  5.12 ) as the convergence radius, and B(xc, R
∗) as the convergence

region. In particular, the convergence region is the ball which has the center at xc and

the radius R∗ depending on the functions’ parameters µi and Li, the contraction factor γ,

the constant step-size α, and the constant capturing the position of the contraction center

rc (defined in (  5.9 )). We emphasize that the convergence region does not depend on the

contraction perturbation sequence {c[k]}k∈N as long as the sequence converges to 0.

Considering the expression of the convergence radius R∗ in (  5.12 ), it should be noted

that R∗ is strictly decreasing with respect to γ. In addition, applying Lemma  C.1.4 in

Appendix  C.1.3 (by setting L̃
µ̃

= σ and α = s
µ̃

in R∗) and noting that R∗ is a continuous

function with respect to α, we can conclude as follows.

• For γ ∈ [0, 1), a small constant step-size α would yield a small convergence radius R∗

(since R∗
∣∣∣
α=0

= 0 and R∗
∣∣∣
α= 1

µ̃

= rc

√
L̃
µ̃
). Furthermore, we have R∗ ≤ R∗

∣∣∣
α= 1

µ̃
(1−γ)

=

rc√
1−γ

√
L̃
µ̃

for all valid values of α.

• For γ ∈ [1,∞), the optimal convergence radius is obtained by choosing α = 1
L̃

(due

to the condition on α in Theorem  5.6.4 ) and the corresponding radius is R∗
∣∣∣
α= 1

L̃

=
rc

1−√
γ

√
1− µ̃

L̃

.

From (  5.13 ), we can conclude that the states of the regular agents converge geomet-

rically to the convergence region B(xc, R
∗). Furthermore, recall the definition of β from
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( 5.11 ). For β√γ > ξ, the inequality ( 5.13 ) suggests that the convergence rate increases as

the constant step-size α increases.

Next, recall that x∗ ∈ Rd is the minimizer of the function 1
|VR|

∑
vi∈VR fi(x) which is

our objective function (Problem  5.3 ). The following theorem shows that, in fact, the true

minimizer x∗ is in the convergence region given that a certain condition on γ and α holds

(proved in Appendix  C.2.4 ).

Theorem 5.6.5. Suppose Assumption  5.6.1 holds. Then, x∗ ∈ B
(
xc,

L̃
µ̃
rc

)
. Furthermore, if

γ ∈
[
1, 1

1− µ̃

L̃

)
and α ∈

(
1
µ̃

(
1− 1

γ

)
, 1

L̃

]
, then x∗ ∈ B(xc, R

∗).

It is important to emphasize that Theorems  5.6.4 and  5.6.5 together implies that the

regular agents’ states converge geometrically to a neighborhood of the true minimizer x∗,

which is impossible to determine exactly in the presence of Byzantine agents.

Our result from Theorem  5.6.4 offers a different approach to convergence proofs than

those typically found in the literature, which are often designed for specific algorithms. By

focusing on proving the state contraction property (Definition  5.6.1 ), rather than the details

of the functions involved, one can save a considerable amount of time and effort. However,

it is worth noting that this approach only provides a sufficient condition for convergence.

There may be resilient algorithms that do not satisfy the property but still converge geomet-

rically. In fact, finding general necessary conditions for convergence in resilient distributed

optimization remains an open question in the literature.

Remark 8. The work [ 68 ] introduces a contraction property which seems to be similar to

Definition  5.6.1 . However, there is a subtle difference in that their contraction center is

time-varying (since it is a function of neighbors’ states) while it is a constant (but depends

on algorithms) in our case. However, it is unclear whether their notion of contraction allows

for the proof of geometric convergence, as demonstrated in Theorem  5.6.4 .

Having established convergence of all regular agent’s values to a ball that contains the

true minimizer, we now turn our attention to characterizing the distance between the regular

agents’ values within that ball. Given the states contraction property in Definition  5.6.1 ,

using ( 5.12 ), we can simply obtain a bound on the distance between the values held by

different nodes as lim supk ‖xi[k] − xj[k]‖ ≤ 2R∗ for all vi, vj ∈ VR. However, this bound
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is not meaningful since the quantity on the RHS can be large. As we will show in the next

subsection, the mixing dynamics (Definition  5.6.3 ) and a constant step-size are sufficient to

obtain a better bound on the approximate consensus.

5.6.3 Convergence to Approximate Consensus of States

The following theorem characterizes the approximate consensus among the regular agents

in the network under the mixing dynamics (Definition  5.6.3 ) and a constant step-size (proved

in Appendix  C.3.2 ).

Theorem 5.6.6 (Consensus). If an algorithm A in REDGRAF satisfies the ({W (`)[k]}, G)-

mixing dynamics property (for some {W (`)[k]}k∈N, `∈[d] ⊂ S|VR| and G ∈ R≥0) and αk = α

for all k ∈ N, then there exist ρ ∈ R≥0 and λ ∈ (0, 1) such that for all vi, vj ∈ VR, it holds

that

lim sup
k
‖xi[k]− xj[k]‖ ≤ αρG

√
d

1− λ . (5.14)

From the consensus theorem above, we note that maxvi,vj∈VR ‖xi[k]− xj[k]‖ = O(α
√
d)

if G does not depend on the constant step-size α and the dimension d.

Remark 9. According to [ 89 ], the quantity λ ∈ (0, 1) depends only on the network topology

(for each time-step) induced by the sequence of graphs {G(W (`)[k])} while the quantity

ρ ∈ R≥0 depends on the number of regular agents |VR| and the quantity λ.

In fact, the states contraction property (Definition  5.6.3 ) implies a bound on the gradient

‖gi[k]‖∞ (the formal statement is provided in Appendix  C.3.1 ) which is one of the require-

ments of the mixing dynamics. Thus, we can achieve a similar approximate consensus result

as Theorem  5.6.6 given that an algorithm satisfies the states contraction property and the

associated sequence of graphs for each dimension is repeatedly jointly rooted as shown in

the following corollary whose proof is provided in Appendix  C.3.3 .

Corollary 5.6.7. Suppose Assumption  5.6.1 holds. If an algorithm A satisfies the (γ, α)-

reduction property (for some γ ∈ R≥0 and α ∈ R>0), and the dynamics of the regular states
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can be written as ( 5.10 ) where {G(W (`)[k])}k∈N is repeatedly jointly rooted for all ` ∈ [d],

then there exists ρ ∈ R≥0 and λ ∈ (0, 1) such that for all vi, vj ∈ VR,

lim sup
k
‖xi[k]− xj[k]‖ ≤ αρrcL̃

√
d

1− λ

1 +

√
αγL̃

1− β√γ

)
:= D∗, (5.15)

where rc and β are defined in ( 5.9 ) and ( 5.11 ), respectively. Furthermore, if c[k] = O(ξk)

where ξ ∈ (0, 1)\{β√γ}, then there exists ρ ∈ R≥0 and λ ∈ (0, 1) such that for all vi, vj ∈ VR,

‖xi[k]− xj[k]‖ ≤ D∗ +O
(
(max{β√γ, ξ, λ})k

)
. (5.16)

We refer to D∗ in (  5.15 ) as the approximate consensus diameter. To analyze the expres-

sion of D∗, we simplify the expression as follows. Let dom(D∗
normalized) =

{
(σ, γ, α̂) ∈ R3 :

σ ∈ [1,∞), γ ∈ [0, 1) and α̂ ∈
(
0, 1

σ

]
, or σ ∈ [1,∞), γ ∈

[
1, σ

σ−1

)
and α̂ ∈

(
1− 1

γ
, 1

σ

]}
. Using

changes of variables σ = L̃
µ̃

and α̂ = αµ̃ and then normalizing the expression by ρrc

√
d

1−λ
, we

have the (normalized) approximate consensus diameter D∗
normalized : dom(D∗

normalized)→ R≥0

defined as

D∗
normalized(σ, γ, α̂) = σα̂

(
1 +

√
σγα̂

1−√γ ·
√

1− α̂

)
.

Note that the valid values of each variable are σ ∈ [1,∞), γ ∈
[
1, σ

σ−1

)
and α̂ ∈

(
1− 1

γ
, 1

σ

]
.

It can be noted that D∗
normalized is strictly increasing with both σ and γ. However, D∗

normalized

is neither an increasing nor decreasing function with respect to α̂. The plots between the

(normalized) approximate consensus diameter D∗
normalized and the (scaled) constant step-size

α̂ for some values of σ and γ are given in Figures  5.1a ,  5.1b , and  5.1c . The plots suggest

that for γ ≤ 1, small constant step-sizes α provide small approximate consensus diameters

D∗ while large constant step-sizes α may be preferable in the case that γ > 1.

From (  5.16 ), we can conclude that the distance between any two regular agents’ states

converge geometrically to the approximate consensus diameter D∗. Furthermore, as sug-

gested by ( 5.16 ), for β√γ > max{ξ, λ}, the convergence rate increases as the constant

step-size α increases.
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(a) σ = 1.5

(b) σ = 2

(c) σ = 3

Figure 5.1. The (normalized) approximate consensus diameter D∗
normalized for

different values of the contraction factor γ and for legitimate values of the
(scaled) constant step-size α̂.
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5.6.4 Implications for Existing Resilient Distributed Optimization Algorithms

We now describe the implication of our above results (for our general framework) for

the specific existing algorithms discussed in Section  5.5.3 : SDMMFD, SDFD [ 93 ], CWTM

[ 30 ], [  33 ], [  45 ], [  50 ]–[ 52 ], and RVO [ 74 ], [  77 ]. In particular, we show that the algorithms

satisfy the states contraction (Definition  5.6.1 ) and the mixing dynamics (Definition  5.6.3 )

properties with different quantities which are determined in the following theorem whose

proof is provided in Appendix  C.4.1 .

Before stating the theorem, recall that d is the number of dimensions of the optimization

variable x in (  5.3 ) and F is the parameter in the F -local model. Since the step in RVO

depends on a specific implemented algorithm, we assume that there exists a function p :

Z+ × Z+ → Z+ such that if the graph G is p(d, F )-robust then the step in RVO returns a

non-empty state.

Theorem 5.6.8. Suppose Assumptions  5.6.1 - 5.6.3 hold, αk = α for all k ∈ N, and rc and

β are defined in ( 5.9 ) and ( 5.11 ), respectively. Let {0[k]} = {0}k∈N.

• If G is ((2d + 1)F + 1)-robust then there exists c1, c2 ∈ R≥0 such that the SDMMFD

from [  93 ] satisfies the (y[∞], 1, {2c1e
−c2k})-states contraction property and there exists

{W (`)[k]}k∈N,`∈[d] ⊂ S|VR| such that the algorithm satisfies the ({W (`)[k]}, G)-mixing

dynamics property with G = rcL̃
(

1 +
√

αL̃
1−β

)
.

• If G is (2F + 1)-robust then there exists c1, c2 ∈ R≥0 such that the SDFD from [  93 ]

satisfies the (y[∞], 1, {2c1e
−c2k})-states contraction property.

• If G is (2F + 1)-robust then the CWTM from [  30 ], [  33 ], [  45 ], [  50 ]–[ 52 ] satisfies the

(c∗, d, {0[k]})-states contraction property and there exists {W (`)[k]}k∈N,`∈[d] ⊂ S|VR|

such that the algorithm satisfies the ({W (`)[k]}, G)-mixing dynamics property with G =

rcL̃
(

1 +
√

αdL̃

1−β
√

d

)
.

• If G is p(d, F )-robust then the RVO from [ 74 ], [  77 ] satisfies the (c∗, 1, {0[k]})-states

contraction property and there exists {W (`)[k]}k∈N,`∈[d] ⊂ S|VR| such that the algorithm

satisfies the ({W (`)[k]}, G)-mixing dynamics property with G = rcL̃
(

1 +
√

αL̃
1−β

)
.
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Recall the definition of rc from ( 5.9 ). It is worth noting that the constant rc appears

in two important quantities: the convergence radius R∗ and approximate consensus diam-

eter D∗ defined in (  5.12 ) and ( 5.15 ), respectively. In fact, rc can be upper bounded by a

quantity depending on the diameter of the minimizers of the regular agents’ functions r∗

defined in Section  5.6.1 . The formal statement is provided below and its proof is deferred to

Appendix  C.4.2 .

Lemma 5.6.9. Suppose Assumption  5.6.1 holds and for the initialization step of SDMMFD

and SDFD, there exists ε∗ ∈ R≥0 such that ‖x̂∗
i − x∗

i ‖∞ ≤ ε∗ for all vi ∈ VR.

• For SDMMFD and SDFD, we have rc ≤
√
d(r∗ + ε∗) + r∗.

• For CWTM and SCC, we have rc ≤ r∗.

Applying the lemma to (  5.12 ), we can conclude that the convergence radius R∗ isO(
√
dr∗)

for SDMMFD and SDFD, and O(r∗) for CWTM and RVO. In fact, even in the simple case

of univariate functions, the convergence radius of O(r∗) is typical in the literature [ 30 ], [  33 ],

and an additional assumption, e.g., i.i.d. training samples [  44 ], [  45 ] or redundancy among

the local functions [  47 ] is needed to obtain R∗ = o(r∗). Still, the question regarding a tight

lower bound on the convergence radius for the general case (whether it is Ω(r∗)) remains an

open problem.

Remark 10. It is worth noting that the algorithms proposed in [  86 ] and [  85 ] do not satisfy

the states contraction property (Definition  5.6.1 ). However, in fact, they satisfy inequality

( 5.8 ) with the perturbation term being bounded by a constant, and thus it is not difficult to

use our techniques to show that they geometrically converge to a region with the contraction

center xc but the region has the radius greater than R∗ given in (  5.12 ). On the other hand,

the algorithms in [ 49 ], [  87 ] do not satisfy the contraction property and may require other

techniques to establish convergence (if possible).

Having proved the states contraction and mixing dynamics properties of the algorithms

from [  30 ], [  33 ], [  45 ], [  50 ]–[ 52 ], [  74 ], [  77 ], [  93 ], from Theorem  5.6.4 , we can deduce that un-

der certain conditions on the graph robustness and step-size αk, the states of the regular
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agents geometrically converge to the convergence region with xc and γ determined by Theo-

rem  5.6.8 . In addition, by Theorem  5.6.5 , the convergence region B(xc, R
∗) (which depends

on the implemented algorithm) contains the true minimizer x∗. On the other hand, from

Theorem  5.6.6 , we can deduce that the states of the regular agents geometrically converge

together at least until the diameter reaches the approximate consensus diameter D∗ (where

the parameters rc and γ depend on the implemented algorithm).

To the best of our knowledge, our work is the first to show the geometric convergence

results and characterize the convergence region for the resilient algorithms mentioned above.

Thus, our framework, defined properties, and proof techniques provide a general approach

for analyzing the convergence region and rate for a wide class of resilient optimization algo-

rithms.

5.7 Numerical Experiment

We now provide a numerical experiment to illustrate the behavior of the algorithms

discussed in Section  5.5 , SDMMFD, SDFD, CWTM and RVO. In the experiment, we consider

quadratic functions with two independent variables as the local cost functions. We choose the

number of agents in the network to be 40 and construct an 11-robust graph. We consider the

F -local adversary model with F = 2. Each Byzantine agent sends to each regular neighboring

agent, a random vector which is close to the other vectors received by the regular agent. For

all the algorithms, we set the constant step-size to be α = 0.02 or 0.04. Fixing the network,

local functions and Byzantine agents, we re-run the experiment for each algorithm 5 times

due to the randomness of the states initialization and adversarial behavior, and report the

average and standard deviation over all runs of the metrics described below.

In Figure  5.2a , each solid curve corresponds to the Euclidean distance from the average of

the regular agents’ states to the true minimizer, i.e., ‖x̄[k]−x∗‖, and the dashed line labeled

as “min_local" corresponds to the minimum over all regular agents of the Euclidean distance

from the minimizers of the local functions to the true minimizer, i.e., minvi∈VR ‖x∗
i − x∗‖.

In Figure  5.2b , each solid curve corresponds to the optimality gap computed at the average

of the regular agents’ states, i.e., f(x̄[k]) − f ∗ where x̄[k] = 1
|VR|

∑
vi∈VR xi[k], and the
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(a) The Euclidean distance from the average of the regular agents’ states to the true
minimizer ‖x̄− x∗‖ for each algorithm.

(b) The optimality gap evaluated at the average of the regular agents’ states f(x̄)− f∗ for
each algorithm.

(c) The maximum Euclidean distance between two regular agents’ states (regular states’
diameter) maxvi,vj∈VR ‖xi − xj‖ for each algorithm.

Figure 5.2. The plots show the results obtained from SDMMFD (blue),
SDFD (orange), CWTM (green), and RVO (red) for given constant step-sizes
α = 0.02 (left), and α = 0.04 (right).
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dashed line labeled as “min_local" corresponds to the minimum over all regular agents of the

optimality gap computed at the minimizers of the local functions, i.e., minvi∈VR f(x∗
i )− f ∗.

In Figure  5.2c , each solid curve corresponds to the maximum Euclidean distance between

two regular agents’ states (or regular agents’ diameter), i.e., maxvi,vj∈VR ‖xi[k]− xj[k]‖. In

Figures  5.2a ,  5.2b and  5.2c , the solid curves are the means over all the experiment rounds

and the shaded regions represent ±1 standard deviation from the means.

As we can see from Figure  5.2a , for both cases, α = 0.02 and α = 0.04, the distances

to the true minimizer drop at geometric rates in the early time-steps. However, in the

later time-steps, the distances to the true minimizer hardly change (but oscillate with small

magnitudes) as the regular nodes’ states have entered the convergence region. In addition,

the convergence rates of all algorithms increase as the constant step-size α changes from

0.02 to 0.04 (as predicted by Theorem  5.6.4 ). Still, for each algorithm, the distances to the

minimizer at later time-steps are comparable for both constant step-sizes. The optimality

gaps shown in Figure  5.2b exhibit similar behaviors as the distance to the minimizer in

Figure  5.2a . For Figure  5.2c , note that the plots show a shorter horizon for the time-

step k. We can observe that the diameters drop at geometric rates in the early time-steps

and then hardly change after that. In addition, as the constant step-size α changes from

0.02 to 0.04, the convergence rates of SDMMFD, SDFD and CWTM increase (as shown

in Corollary  5.6.7 ) and the diameters of all the algorithms at the later time-steps increase

(as discussed in Section  5.6.3 ). Note that even though in general, from Theorem  5.6.8 , the

contraction factor of CWTM is γ = d (and in this case d = 2), for most of the time-steps,

in this experiment, the states contraction property (  5.8 ) for CWTM holds with γ = 1.

From Figures  5.2a and  5.2b , in fact, we observe that the results from the algorithms are

usually better than the best value achieved by the local minimizers (i.e., comparing the solid

curves to the dashed line) even though all the local minimizers are inside the convergence

region B(xc, R
∗). Besides, comparing the algorithms, SDMMFD, SDFD and CWTM achieve

comparable mean performance for both convergence rate and final value for all the metrics

but RVO performs worse than the other three algorithms in this case. Also, SDMMFD and

SDFD are more sensitive to the adversarial behavior than CWTM and RVO as we can see

from their standard deviations in Figures  5.2a and  5.2b .
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5.8 Conclusions

In this chapter, we considered the (peer-to-peer) distributed optimization problem in the

presence of Byzantine agents. We introduced a general resilient (peer-to-peer) distributed

gradient descent framework called REDGRAF which includes some state-of-the-art resilient

algorithms such as SDMMFD, SDFD (i.e., Algorithms  2 and  3 ) [  93 ], CWTM [  30 ], [  33 ], [  45 ],

[ 50 ]–[ 52 ], and RVO [  74 ], [ 77 ] as special cases. We analyzed the convergence of algorithms

captured by our framework, assuming they satisfy a certain states contraction property. In

particular, we derived a geometric rate of convergence of all regular agents to the convergence

region under the strong convexity of the local functions and constant step-size regime. As we

have shown, the convergence region, in fact, contains the true minimizer (the minimizer of the

sum of the regular agents’ functions). In addition, given a mixing dynamics property, we also

derived a geometric rate of convergence of all regular agents to approximate consensus with a

certain diameter under similar conditions. Considering each resilient algorithm, we analyzed

the states contraction and mixing dynamics properties which in turn, dictate the convergence

rates, the size of the convergence region and the approximate consensus diameter.

Future work includes developing resilient algorithms satisfying both the states contraction

and mixing dynamics properties which give fast rates of convergences as well as a small

convergence region and small approximate consensus diameter, identifying other properties

for resilient algorithms to achieve good performance, analyzing the convergence property of

other existing algorithms from the literature, considering non-convex functions with certain

properties, and establishing a tight lower bound for the convergence region.
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6. SUMMARY AND FUTURE WORK

6.1 Summary

In this dissertation, we delved into the challenges of resilient distributed optimization,

where a network of benign agents collaboratively optimizes the sum of local functions while

contending with Byzantine agents that can behave arbitrarily and disrupt the optimization

process. To address this issue, we adopted the notion of unknown functions with shared

properties for Byzantine agents. In Chapters  2 and  3 , we focused on characterizing the

potential solution region, which represents the feasible region for the minimizer of the sum. In

Chapter  2 , we specifically considered the sum of two strongly convex functions and obtained

the closed-form equation of the boundary of the potential solution region (Theorem  2.6.1 ).

In Chapter  3 , we explored the case where only one function is unknown, and we established

necessary conditions (Theorems  3.4.1 and  3.5.1 ) for a point to be a minimizer, along with

an algorithm (Algorithm  1 ) to determine the region satisfying these conditions.

Shifting our focus to resilient optimization algorithms in Chapters  4 and  5 , one fundamen-

tal limitation is that it is not possible to determine the optimal solution under Byzantine

behavior. Therefore, we adopted alternative criteria to measure algorithm performance,

aiming for solutions reasonably close to the optimal solution. In Chapter  4 , we proposed

two resilient optimization algorithms, Algorithms  2 and  3 , based on distance-based and ex-

treme value filtering techniques, applicable to multi-variate functions. Under convexity and

bounded gradient assumptions, for Algorithm  2 , we derived asymptotic convergence and

consensus theorems (Theorems  4.4.9 and  4.4.7 , respectively), while Algorithm  3 provides

asymptotic convergence (Theorem  4.4.9 ) with significantly less redundancy, thus enabling

more scalability.

In Chapter  5 , we introduced an algorithmic framework (Algorithmic Framework  1 ) that

encompasses several state-of-the-art resilient algorithms, including Algorithms  2 and  3 . We

analyzed the convergence rate and identified the convergence region under strong convex-

ity and smoothness assumptions. Essentially, leveraging the novel concept of states con-

traction, we established geometric convergence of several resilient algorithms towards the
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convergence region (Theorem  5.6.4 ), which guarantees to encompass the optimal solution

(Theorem  5.6.5 ).

In conclusion, this dissertation makes significant contributions to the field of resilient dis-

tributed optimization by providing insights into the potential solution region, proposing re-

silient optimization algorithms with theoretical guarantees, and analyzing their convergence

properties. These findings contribute to advancing the understanding and development of

robust and scalable optimization algorithms in the presence of Byzantine agents.

6.2 Future Work

In this section, we list some potential research directions. Some of them may be jointly

considered.

(i) Analysis of the minimizer of the sum of multiple strongly convex functions:

In the first part of this work (Chapter  2 ), we considered the region containing the

minimizer of the sum of two strongly convex functions. In the case of two functions,

we obtained the explicit characterization of the region that contains the minimizer by

considering the necessary conditions (Section  2.5 ) and the sufficient conditions (Section

 2.4 ) separately, and noticed the tightness of inner and outer approximations. However,

in the case of multiple functions, it might not be possible to use the same techniques as

in Chapter  2 and the resulted regions might be more under-estimated or over-estimated.

(ii) Analysis of the minimizer of the sum of two strongly convex functions with

Lipschitz continuous gradient: In the first part of this work (Chapter  2 ), we have

considered the region containing the minimizer of the sum of two strongly convex func-

tions where the gradient norm of both functions at the potential minimizer is bounded

by a specified constant. This condition, in particular, is not a common characteri-

zation of a strongly convex function and instead, a more popular characterization is

Lipschitz continuous gradient (or smoothness) [ 81 ]. It is of interest to characterize the

region containing the minimizer of the sum of two strongly convex functions given this

condition.
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(iii) Byzantine-resilient distributed optimization algorithm with previous states

exploitation: In the third part of this work (Chapter  4 ), we have provided two

algorithms: Simultaneous Distance-MinMax Filtering Dynamics (Algorithm  2 ) and

Simultaneous Distance Filtering Dynamics (Algorithm  3 ). In the proposed algorithms,

in each time-step, each regular agent considers only its (main and auxiliary) states and

its neighboring states at that time-step. It might be possible to design an algorithm

that can leverage the knowledge of the states of the previous time-steps to obtain

better performance or even better theoretical guarantees.

(iv) Byzantine-resilient distributed optimization algorithm with gradient track-

ing: In the third part of this work (Chapter  4 ), the two provided algorithms are

constructed based on Distributed Gradient Descent (DGD) algorithm [  70 ] which is one

of the most simplest distributed algorithm with a convergence guarantee. In the dis-

tributed optimization literature, one of the most popular approaches to improve the

convergence rate in the deterministic setting is to use the technique called gradient

tracking [ 80 ]. It might be of interest to modify an algorithm with gradient track-

ing to be resilient to Byzantine agents while maintaining the linear-rate convergence

guarantee.

(v) Resilient distributed stochastic optimization: We have considered resilient dis-

tributed (deterministic) optimization problem in Chapters  4 and  5 . However, popular

applications such as machine learning problems are framed as stochastic optimization

problems. Furthermore, safety training of a machine learning model is one of the most

important requirements for real-world applications [  84 ]. Hence, it is of interest to

study the distributed stochastic optimization in the presence of adversarial agents and

provide a resilient algorithm that is invulnerable to the attack.

(vi) Lower bound on the convergence radius: In both Chapters  4 and  5 , we have

provided the convergence radii R∗ for resilient optimization algorithms, and showed

that the convergence regions contains the true minimizer. In particular, we conclude

that the convergence radius R∗ = O(r∗) where r∗ is the radius of a ball containing
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the local minimizers of the regular agents, is typical in the literature [ 30 ], [  33 ] without

extra assumptions. However, a tight lower bound on the convergence radius for the

general case (whether it is Ω(r∗)) remains an open problem.
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A. SUPPLEMENTARY MATERIALS FOR CHAPTER  2 

A.1 Proofs of Theoretical Results for Outer Approximation

A.1.1 Proof of Lemma  2.4.1 

Proof of Lemma  2.4.1 . Consider part  (i) of the lemma. Suppose xε = x∗
1 + εe1 for ε ∈ R.

We want to show that

(a) If r ∈
(
0, L

2σ2

]
then for all ε ∈

(
0, min

{
L
σ1
, 2r

})
, we have φ̃1(xε) + φ̃2(xε) > ψ(xε).

(b) If r ∈
(
0, L

2σ2

)
then for all ε ∈

(
−min

{
L
σ1
, L

σ2
− 2r

}
, 0
)

, we have φ̃1(xε) + φ̃2(xε) <

ψ(xε).

(c) If r = L
2σ2

then for all ε ∈ (−∞, 0), we have xε /∈ (B1 ∩ B2) \ {x∗
1,x

∗
2}.

First, consider case  (a) . Suppose ε ∈
(
0, min

{
L
σ1
, 2r

})
. Let xε,1 be the first component

of the point xε. We have xε,1 ∈
(
− r, min

{
− r + L

σ1
, r
})

. Since r ∈
(
0, L

2σ2

]
, we have

−r ∈
[
r − L

σ2
, r
)
. Therefore, xε ∈ (B1 ∩ B2) \ {x∗

1,x
∗
2}. By the location of xε, from (  2.10 ),

we get α1(xε) = 0 and α2(xε) = π. Consequently, from (  2.11 ), we obtain ψ(xε) = 0. Since

xε /∈ ∂B1 ∪ ∂B2, from (  2.9 ), we have that φ̃i(xε) ∈
(
0, π

2

]
for i ∈ {1, 2}. This means that

φ̃1(xε) + φ̃2(xε) > ψ(xε).

Second, consider case  (b) . Suppose ε ∈
(
− min

{
L
σ1
, L

σ2
− 2r

}
, 0

)
. We have xε,1 ∈(

max
{
− r− L

σ1
, r− L

σ2

}
, −r

)
which implies that xε ∈ (B1∩B2) \ {x∗

1,x
∗
2}. By the location

of xε, from (  2.10 ), we get α1(xε) = π and α2(xε) = π. Consequently, from ( 2.11 ), we obtain

ψ(xε) = π. Since xε /∈ {x∗
1,x

∗
2}, from ( 2.9 ), we have that φ̃i(xε) ∈

[
0, π

2

)
for i ∈ {1, 2}. This

means that φ̃1(xε) + φ̃2(xε) < ψ(xε).

Third, consider case  (c) . Suppose ε ∈ (−∞, 0). If x ∈ B2 then x1 ∈
[
r − L

σ2
, r + L

σ2

]
=

[ − r, 3r]. However, we have xε,1 ∈ (−∞,−r). This means that xε /∈ B2 which implies that

xε /∈ (B1 ∩ B2) \ {x∗
1,x

∗
2}. We complete the proof of our claim.

Recall the definition of M↑ and M↓ in ( 2.13 ) and (  2.14 ), respectively. From our claim,

we can see that if r ∈
(
0, L

2σ2

]
then for all δ ∈ R>0, there exist xin,xout ∈ B(x∗

1, δ) such

that xin ∈ M↑, xin ∈ M↓, xout /∈ M↑ and xout /∈ M↓. This implies that x∗
1 ∈ ∂M↑ and

x∗
1 ∈ ∂M↓. The analysis for part  (ii) of the lemma follows in an identical manner.
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A.1.2 Proof of Lemma  2.4.2 

Proof of Lemma  2.4.2 . Recall from ( 2.10 ) that αi(x) = ∠(x − x∗
i , x∗

2 − x∗
1) for i ∈ {1, 2}.

Suppose y /∈ {x∗
1,x

∗
2}. Since −r ≤ x1 = y1 ≤ r and ‖x̃‖ > ‖ỹ‖, we have α1(x) ≥ α1(y) and

α2(x) ≤ α2(y), which implies that

ψ(x) = π− (α2(x)− α1(x)) ≥ π− (α2(y)− α1(y)) = ψ(y). (A.1)

On the other hand, since x1 = y1 and ‖x̃‖ > ‖ỹ‖, we get

‖x− x∗
1‖ > ‖y − x∗

1‖ > 0 and ‖x− x∗
2‖ > ‖y − x∗

2‖ > 0.

Using the above inequalities and the definition of (  2.9 ), we get that φ̃i(x) < φ̃i(y) for

i ∈ {1, 2}. Applying φ̃1(x) + φ̃2(x) ≥ ψ(x) and inequality (  A.1 ), we can write

ψ(y) ≤ ψ(x) ≤ φ̃1(x) + φ̃2(x) < φ̃1(y) + φ̃2(y),

which completes the proof.

A.1.3 Proof of Lemma  2.4.3 

Proof of Lemma  2.4.3 . Consider part  (i) of the lemma. Since x ∈ ∂B1, we get ‖x−x∗
1‖ = L

σ1

and thus φ̃1(x) = 0 from (  2.9 ). Consider the inequality φ̃1(x) + φ̃2(x) ≶ ψ(x). Substitute

φ̃1(x) = 0 and ψ(x) = π − (α2(x) − α1(x)), and take cosine of both sides of the inequality

(and use cos φ̃2(x) = σ2
L
d2(x) from ( 2.9 )) to get

σ2

L
d2(x) ≷ − cos

(
α2(x)− α1(x)

)
.

Expand the cosine and substitute the equations (  2.23 ) and (  2.24 ) to obtain

σ2

L
d2(x) ≷ −x

2
1 + ‖x̃‖2 − r2

d1(x) · d2(x) . (A.2)
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Since x ∈ ∂B1, we have d1(x) = L
σ1

and ‖x̃‖2 = L2

σ2
1
− (x1 +r)2 from ( 2.25 ). Also, from (  2.21 ),

we have

d2
2(x) = (x1 − r)2 + ‖x̃‖2 = (x1 − r)2 + L2

σ2
1
− (x1 + r)2 = −4rx1 + L2

σ2
1
. (A.3)

Multiply inequality (  A.2 ) by d1(x) · d2(x) and then substitute d1(x), ‖x̃‖2, and d2
2(x) to get

σ2

σ1

(
− 4rx1 + L2

σ2
1

)
≷ 2r2 + 2rx1 −

L2

σ2
1
,

⇔ x1

(
2r + 4rσ2

σ1

)
≶
σ2

σ1
· L

2

σ2
1

+ L2

σ2
1
− 2r2,

⇔ x1 ≶
( 1 + β

1 + 2β

)
γ1

2r −
r

1 + 2β = λ1,

where γ1 and β are defined in (  2.26 ). The proof of the second part is similar to the first

part.

A.1.4 Proof of Lemma  2.4.4 

Proof of Lemma  2.4.4 . We will prove the case that i = 1; however, the proof of the case

that i = 2 can be obtained using the same approach. Suppose x ∈ ∂B1. Substituting

‖x̃‖2 = L2

σ2
1
− (x1 + r)2, d1(x) = L

σ1
and (  A.3 ) into the expression of T in ( 2.22 ), we get

x2
1 + ‖x̃‖2 − r2

d2
1(x) · d2

2(x) + σ1σ2

L2 =
L2

σ2
1
− 2rx1 − 2r2

L2

σ2
1

(
− 4rx1 + L2

σ2
1

) + σ1σ2

L2 = 0. (A.4)

Multiply both sides of the above equation by L2

σ2
1

(
− 4rx1 + L2

σ2
1

)
and then use the definition

of γ1 and β in ( 2.26 ) to get

4βrx1 − βγ1 = γ1 − 2rx1 − 2r2, ⇔ x1 =
( 1 + β

1 + 2β

)
γ1

2r −
r

1 + 2β = λ1.
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Then, substituting x1 =
(

1+β
1+2β

)
γ1
2r
− r

1+2β
back into the expression of ∂B1 in ( 2.25 ), we get

‖x̃‖2 = γ1 −
[( 1 + β

1 + 2β

)
γ1

2r −
r

1 + 2β + r

]2

= − 1
4r2(1 + 2β)2

[
(γ1 − 4r2)(γ1(1 + β)2 − 4β2r2)

]
,

⇒ ‖x̃‖ = r

2(1 + 2β)

√
−
(
γ1

r2 − 4
)(

γ1

r2 (1 + β)2 − 4β2
)

= ν1.

This equation is valid only when the term in the square root is a non-negative real number.

Equivalently,

4β2

(1 + β)2 ≤
γ1

r2 ≤ 4, ⇔ L

2σ1
≤ r ≤ L

2σ1

(
1 + 1

β

)
= L

2

( 1
σ1

+ 1
σ2

)
.

Since we multiplied (  A.4 ) by d2
1(x) · d2

2(x) = L2

σ2
1

(
− 4rx1 + L2

σ2
1

)
to obtain the result, x∗

1 or

x∗
2 might appear in the intersection T ∩ ∂B1 even if {x∗

1,x
∗
2} 6⊆ T . Therefore, we need to

verify that the intersection points are not x∗
1 or x∗

2. Considering the solution of the equation

‖x̃‖ = ν1 = 0 (i.e., x is on the x1-axis), we see that r = L
2σ1

and r = L
2

(
1

σ1
+ 1

σ2

)
are the

candidates that we need to check. Substituting r = L
2σ1

into the equation x1 = λ1, we get

x1 = L
2σ1

= r which is x∗
2 = (r,0) and therefore we conclude that there are no intersection

points when r = L
2σ1

. Next, substituting r = L
2

(
1

σ1
+ 1

σ2

)
into the equation x1 = λ1, we get

x1 = L
2

(
1

σ1
− 1

σ2

)
which is a legitimate value of an intersection point.

A.1.5 Proof of Lemma  2.4.5 

Proof of Lemma  2.4.5 . To simplify notations in the proof, we define a new variable

χ1 := L

σ1r
=
√
γ1

r
. (A.5)

First, consider part  (ii) of the lemma. By the definition of λ1 in (  2.27 ), we can rewrite the

inequality λ1 <
L
σ1
−r as

(
1+β
1+2β

)
γ1
2r2− 1

1+2β
< L

σ1r
−1. Using χ1 defined in (  A.5 ), the inequality

becomes
1
2

( 1 + β

1 + 2β

)
χ2

1 −
1

1 + 2β < χ1 − 1. (A.6)
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Multiplying both sides by 1 + 2β and then rearranging the resulting inequality, we get

(χ1 − 2)
(1

2(1 + β)χ1 − β
)
< 0, ⇔ 2β

1 + β
< χ1 < 2.

The last equivalence holds since 2β
1+β

< 2. Substituting χ1 = L
σ1r

and β = σ2
σ1

, the inequality
2β

1+β
< χ1 becomes r < L

2

(
1

σ1
+ 1

σ2

)
and the inequality χ1 < 2 becomes r > L

2σ1
, which

completes the proof of part  (ii) .

Next, we can see that part  (ii) of the lemma implies that if r ∈
(
0, L

2σ1

]
then λ1 ≥ L

σ1
−r.

By proceeding the algebraic simplification similar to (  A.6 ) except using equality instead, we

can conclude that given r ∈
(
0, L

2σ1

]
, we have λ1 = L

σ1
−r only when r = L

2σ1
. This completes

the proof of part  (i) .

The proof of part  (iii) and part  (iv) can be carried out using similar steps as the proof

given above.

A.1.6 Proof of Lemma  2.4.6 

Proof of Lemma  2.4.6 . Let x = (x1, x̃) ∈ T , and e′
2(x) = v(x)

‖v(x)‖ where v(x) = (x − x∗
1) −

〈x− x∗
1, e1〉 e1. Suppose θ(x) = 1

2(α1(x) + α2(x)) where αi(x) for i ∈ {1, 2} are defined in

( 2.10 ) and

x′
ε = x + ε

(
cos(θ(x)) e1 + sin(θ(x)) e′

2(x)
)

for ε ∈ R. (A.7)

Our claim is that if r ∈
(
0, L

2

(
1

σ1
+ 1

σ2

))
then

(i) for all

ε ∈
(

max
{

max
i=1,2
−2di(x) sin 1

2
(
φ̃1(x) + φ̃2(x)

)
, −‖x̃‖ csc(θ(x))

}
, 0
)
,

it holds that φ̃1(x′
ε) + φ̃2(x′

ε) > ψ(x′
ε) (i.e., x′

ε ∈M↑ and x′
ε ∈M↓), and

(ii) for all ε ∈ (0,∞), either φ̃1(x′
ε)+φ̃2(x′

ε) < ψ(x′
ε), or φ̃1(x′

ε) or φ̃2(x′
ε) is not well-defined

(i.e., x′
ε ∈ (M↑)c and x′

ε ∈ (M↓)c).

Recall from Proposition  2.4.2 that T =
{
z ∈ Rn : φ̃1(z) + φ̃2(z) = ψ(z)

}
. First, we will

show that e′
2(x) is well-defined, i.e., v(x) 6= 0 if x ∈ T . Note that v(x) = 0 if and only if
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x = x∗
1 + ke1 for some k ∈ R. In fact, this is equivalent to x = (k′,0) for some k′ ∈ R since

x∗
1 = (−r,0). Suppose x = (x1,0). Consider the following cases.

• Consider x1 ∈ (−∞,−r) ∪ (r,∞). Then, we have ψ(x) = π (since α1(x) = α2(x) = π

when x1 ∈ (−∞, r), and α1(x) = α2(x) = 0 when x1 ∈ (r,∞)). This implies that

φ̃1(x) = φ̃2(x) = π

2 since φ̃i ∈
[
0, π

2

]
for i ∈ {1, 2}. Using the definition of φ̃i for

i ∈ {1, 2} in (  2.9 ), we obtain that x = x∗
1 and x = x∗

2 which contradicts the fact that

r = 1
2‖x

∗
2 − x∗

1‖ > 0.

• Consider x1 ∈ (−r, r). Then, we have ψ(x) = 0 (since α1(x) = 0 and α1(x) = π). This

implies that φ̃1(x) = φ̃2(x) = 0 since φ̃i ∈
[
0, π

2

]
for i ∈ {1, 2}. Using the definition

of φ̃i for ∈ {1, 2} in ( 2.9 ), we obtain that |x1 + r| = L
σ1

and |x1 − r| = L
σ2

. Since

x1 ∈ (−r, r), we have x1 = −r+ L
σ1

and x1 = r− L
σ2

. This implies that r = L
2

(
1

σ1
+ 1

σ2

)
which contradict our assumption.

• Consider x1 = −r or x1 = r. We have that x = x∗
1 or x = x∗

2. However, x∗
1 /∈ T and

x∗
2 /∈ T by the definition of T .

Since x 6= (k,0) for all k ∈ R, we conclude that e′
2(x) is well-defined.

Next, we will verify that for x = (x1, x̃) ∈ T and i ∈ {1, 2}, the statements −2di(x) ·

sin 1
2(φ̃1(x) + φ̃2(x)) < 0 and −‖x̃‖ · csc(θ(x)) < 0, which are used to specify a range of

ε’s value in our claim, hold. Since x /∈ {x∗
1,x

∗
2}, we have di(x) > 0 for i ∈ {1, 2}. In

addition, from the above analysis, since x /∈ span{e1}, we have φ̃i(x) ∈
(
0, π

2

)
for i ∈ {1, 2}.

Therefore, it holds that 1
2(φ̃1(x) + φ̃2(x)) ∈

(
0, π

2

)
and then combining the two facts, we

verify the first statement. Since x /∈ span{e1} from the analysis above, we have ‖x̃‖ > 0,

and αi(x) ∈ (0, π) for i ∈ {1, 2} (from the definition of αi in (  2.10 )). Therefore, we have

csc(θ(x)) = csc
(

1
2(α1(x) +α2(x))

)
∈ [1,∞). Combining the two facts, we verify the second

statement.

Then, given a point x ∈ T , we consider the new set of bases J (x) = {e′
1(x), e′

2(x),

. . . , e′
n(x)} where e′

1(x) = e1, e′
2(x) = v(x)

‖v(x)‖ (as discussed at the beginning of the proof),

and e′
3(x), e′

4(x), . . . , e′
n(x) can be obtained by applying Gram-Schmidt procedure to the set

of standard bases. Note that 〈e1, e
′
2(x)〉 = 0 by our construction. We denote (·, ·, . . . , ·)J (x)
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as the coordinate (or vector’s component) with respect to the set of new bases. Let x̂2 =

‖x̃‖ ∈ R>0. Then, by our construction, we have x = (x1, x̂2,0)J (x). Let the point

y =
(
x1 − x̂2 cot θ(x), 0

)
J (x)

.

Recall that x′
ε is defined as given in (  A.7 ). We can write y = x′

ε with ε = −x̂2 csc θ(x).

We will show that y1 = x1 − x̂2 cot θ(x) ∈ (−r, r). Since α2(x) > α1(x) (by the fact that

x /∈ span{e1}), we have

cotα1(x) > cot θ(x), ⇔ x1 + r

x̂2
> cot θ(x), ⇔ x1 − x̂2 cot θ(x) > −r.

The last inequality is due to x̂2 > 0. Similarly, since α2(x) > α1(x) (by the fact that

x /∈ span{e1}), we have

cotα2(x) < cot θ(x), ⇔ x1 − r
x̂2

< cot θ(x), ⇔ x1 − x̂2 cot θ(x) < r.

For convenience, let

a(x) = max
{

max
i∈{1,2}

−2di(x) sin 1
2
(
φ̃1(x) + φ̃2(x)

)
, −‖x̃‖ csc θ(x)

}
. (A.8)

Next, we will show that for all ε ∈ (a(x), 0), we have α1(x′
ε) < α1(x) and α2(x′

ε) > α2(x),

and for all ε ∈ (0,∞), we have α1(x′
ε) > α1(x) and α2(x′

ε) < α2(x) which will lead to proving

parts  (i) and  (ii) , respectively, of our claim. Consider the triangle formed by the points x∗
1,

x, and y. Suppose ε ∈ (a(x), 0). Then, the point x′
ε is on the line segment connecting

y and x. Since for a given z ∈ Rn \ {x∗
1}, α1(z) = ∠(z − x∗

1, e1) (from the definition of

α1 in ( 2.10 )) and y1 > −r, we have α1(x′
ε) < α1(x). Next, suppose ε ∈ (0,∞). Then, the

point x′
ε is on the ray from y to x but not on the line segment connecting y and x which

implies that α1(x′
ε) > α1(x). Now, consider the triangle formed by the points x∗

2, x, and y.

By using similar argument as before (with the fact that α2(z) = ∠(z − x∗
2, e1) for a given

z ∈ Rn \ {x∗
2}, and y1 < r), we can verify that α2(x′

ε) < α2(x).
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We will show that for all ε ∈ (a(x), 0) and i ∈ {1, 2}, we have ‖x′
ε − x∗

i ‖ < ‖x − x∗
i ‖,

and for all ε ∈ (0,∞) for i ∈ {1, 2}, we have ‖x′
ε − x∗

i ‖ > ‖x− x∗
i ‖. Suppose ε ∈ (a(x), 0).

Then, we have ε > −2d1(x) sin 1
2

(
φ̃1(x)+ φ̃2(x)

)
. Using φ̃1(x)+ φ̃2(x) = π−(α2(x)−α1(x))

and sin
(

π

2 − z
)

= cos z for all z ∈ R, we can write

ε > −2d1(x) cos 1
2
(
α2(x)− α1(x)

)
, ⇔ ε+ 2d1(x) cos

(
θ(x)− α1(x)

)
> 0.

Expanding the cosine and using d1(x) cosα1(x) = x1+r and d1(x) sinα1(x) = x̂2 from (  2.23 )

and (  2.24 ), respectively, we obtain ε+ 2(x1 + r) cos θ(x) + 2x̂2 sin θ(x) > 0. Multiplying the

inequality by ε (which is negative) and then adding (x1 + r)2 + x̂2
2 to both sides, we get

(x1 + ε cos θ(x) + r)2 + (x̂2 + ε sin θ(x))2 < (x1 + r)2 + x̂2
2,

which is ‖x′
ε − x∗

1‖ < ‖x− x∗
1‖. Next, suppose ε ∈ (0,∞). Recall the definition of di(x) for

i ∈ {1, 2} in ( 2.21 ). Since 0 < α1(x) ≤ α2(x) < π (by the fact that x /∈ span{e1}), we have

cos
(
θ(x)− α1(x)

)
> 0, ⇔ d1(x) cosα1(x) cos θ(x) + d1(x) sinα1(x) sin θ(x) > 0.

Since d1(x) cosα(x) = x1 + r and d1(x) sinα(x) = x̂2 from (  2.23 ) and (  2.24 ), respectively,

we obtain (x1 + r) cos θ(x) + x̂2 sin θ(x) > 0. Using the assumption that ε > 0, we can write

ε

2 + (x1 + r) cos θ(x) + x̂2 sin θ(x) > 0.

Multiplying the above inequality by 2ε (which is positive), then adding (x1 +r)2 + x̂2
2 to both

sides, and rearranging, we get ‖x′
ε − x∗

1‖ > ‖x − x∗
1‖. By using similar steps as above, we

can also show that ‖x′
ε − x∗

2‖ < ‖x − x∗
2‖ for ε ∈ (a(x), 0) and ‖x′

ε − x∗
2‖ > ‖x − x∗

2‖ for

ε ∈ (0,∞).

Here, we will prove part  (i) of our claim. Suppose ε ∈ (a(x), 0). From the above analysis,

we have α1(x′
ε) < α1(x), α2(x′

ε) > α2(x) and ‖x′
ε − x∗

i ‖ < ‖x − x∗
i ‖ for i ∈ {1, 2}. Since

α1(x′
ε) < α1(x) and α2(x′

ε) > α2(x), we obtain that ψ(x′
ε) < ψ(x) by the definition of ψ in
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( 2.11 ). For i ∈ {1, 2}, since ‖x′
ε − x∗

i ‖ < ‖x − x∗
i ‖, we obtain that φ̃i(x′

ε) > φ̃i(x) by the

definition of φ̃i in ( 2.9 ). Therefore, it holds that

φ̃1(x′
ε) + φ̃2(x′

ε) > φ̃1(x) + φ̃2(x) = ψ(x) > ψ(x′
ε).

Here, we will prove part  (ii) of our claim. Suppose ε ∈ (0,∞). From the above analysis,

we have α1(x′
ε) > α1(x), α2(x′

ε) < α2(x) and ‖x′
ε −x∗

i ‖ > ‖x−x∗
i ‖ for i ∈ {1, 2}. By using

similar argument as the proof of part  (i) , we get ψ(x′
ε) > ψ(x). However, for i ∈ {1, 2},

‖x′
ε − x∗

i ‖ > ‖x − x∗
i ‖ implies that either φ̃i(x′

ε) < φ̃i(x), or φ̃i(x′
ε) is not well-defined. In

the case that φ̃i(x′
ε) < φ̃i(x) for i ∈ {1, 2}, it holds that

φ̃1(x′
ε) + φ̃2(x′

ε) < φ̃1(x) + φ̃2(x) = ψ(x) < ψ(x′
ε).

Finally, suppose x ∈ T . Recall the quantity a(x) from (  A.8 ). For δ ∈ R>0, let xin = x′
ε

with ε = max
{
a(x),− δ

2

}
and xout = x′

ε with ε = δ
2 . From our claim, we have that for

all δ ∈ R>0, it holds that xin,xout ∈ B(x, δ), xin ∈ M↑, xin ∈ M↓, xout ∈ (M↑)c, and

xout ∈ (M↓)c. Thus, we conclude that x ∈ ∂M↑ and x ∈ ∂M↓.

A.1.7 Proof of Lemma  2.4.7 

Proof of Lemma  2.4.7 . Consider part  (i) of the lemma. From Lemma  2.4.5 part  (ii) , we have

λ1 <
L
σ1
− r. So, the interval

[
λ1, −r + L

σ1

]
is well-defined. From the definition of β and γ1

in ( 2.26 ), we have (1 + β)γ1 ≥ 0 and −4βr2 < 0. Combining the two inequalities, we get

(1 + β)γ1 > −4βr2. By subtracting 2r2 from both sides and then rearranging the inequality,

we obtain

λ1 =
( 1 + β

1 + 2β

)
γ1

2r −
r

1 + 2β > −r.

On the other hand, since r > L
2σ1

, we get −r+ L
σ1
< r. Combining the two inequalities yields[

λ1, −r + L
σ1

]
⊆ (−r, r).

For x ∈ ∂B1∩H+
1 , we have x1 ∈

[
λ1, −r+ L

σ1

]
(from ( 2.25 )) which from above, implies that

x ∈ B1\{x∗
1,x

∗
2}. It remains to show that x ∈ B2. By examining the equation describing the
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set ∂B1 in ( 2.25 ) and the inequality describing the set B2 = {z ∈ Rn : (z1 + r)2 + ‖z̃‖2 ≤ γ2}

where γ2 is defined in (  2.26 ), one can verify that

∂B1 ∩ B2 =
{

z ∈ ∂B1 : z1 ∈
[ 1
4r (γ1 − γ2), −r + L

σ1

]}
. (A.9)

On the other hand, by performing some algebraic manipulation and using the definition of

β and γi for i ∈ {1, 2} in ( 2.26 ), one can verify that

r ∈
(

0, L2

( 1
σ1

+ 1
σ2

))
, ⇔ λ1 =

( 1 + β

1 + 2β

)
γ1

2r −
r

1 + 2β >
1
4r (γ1 − γ2).

From the definition of H+
1 in (  2.29 ) and equation ( A.9 ), this means that ∂B1 ∩ H+

1 ⊂

∂B1 ∩B2 ⊆ B2. For part  (ii) of the lemma, we can proceed in a similar manner as the above

analysis.

A.2 Proofs of Theoretical Results for Inner Approximation

A.2.1 Proof of Proposition  2.5.1 

Before proving Proposition  2.5.1 , we consider an equivalent condition for the existence

of a quadratic function with two independent variables satisfying certain properties.

Lemma A.2.1. Let Q be defined as in ( 2.4 ). Suppose we are given x∗ ∈ R2, x0 ∈ R2 such

that x0 6= x∗, g ∈ R2, and σ ∈ R>0. Then, there exists a function f ∈ Q(2)(x∗, σ) with a

gradient ∇f(x0) = g if and only if

(i) x0 ∈ B
(
x∗, ‖g‖

σ

)
and

(ii) ∠(g, x0 − x∗) ∈ {0} ∪
[
0, arccos

(
σ

‖g‖‖x0 − x∗‖
))

.

Note that if σ‖x0 − x∗‖ = ‖g‖, then
[
0, arccos( σ

‖g‖‖x0 − x∗‖)
)

= ∅.

Proof. For the forward direction, suppose that f ∈ Q(2)(x∗, σ) and ∇f(x0) = g. Since

Q(x∗, σ) ⊂ S(x∗, σ), from (  2.3 ), we have

‖g‖ ‖x0 − x∗‖ ≥ 〈∇f(x0), x0 − x∗〉 ≥ σ‖x0 − x∗‖2. (A.10)
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We then have ‖x0 −x∗‖ ≤ ‖g‖
σ

(i.e., x0 ∈ B
(
x∗, ‖g‖

σ

)
) which corresponds to part  (i) . On the

other hand, we can rewrite the second inequality of ( A.10 ) as

‖g‖ cos∠(g, x0 − x∗) ≥ σ‖x0 − x∗‖ > 0,

which implies that ‖g‖ ∈ R>0 and ∠(g, x0 − x∗) ∈
[
0, π

2

)
.

Since f ∈ Q(2)(x∗, σ), we can write f(x) = 1
2xᵀP x+bᵀx+c where P =

p11 p12

p12 p22

 ∈ S2,

b ∈ R2, and c ∈ R. The gradient of f is ∇f(x) = P x + b. Since x∗ is the minimizer of the

quadratic function, by substituting x∗ into the gradient equation and using ∇f(x∗) = 0,

we get b = −P x∗, and we can rewrite the gradient as g = ∇f(x0) = P (x0 − x∗). Let

v = x0 − x∗ and then rewrite the gradient equation into two equations as follows:


g1 = p11v1 + p12v2,

g2 = p12v1 + p22v2,

⇔


p12v2 = −p11v1 + g1,

p22v
2
2 = v1(p11v1 − g1) + g2v2.

(A.11)

Since σ is an eigenvalue of matrix P , by expanding the equation det(σI − P ) = 0 and

rearranging the resulting equation, we get

p2
12 = σ2 − (p11 + p22)σ + p11p22. (A.12)

Multiply (  A.12 ) by v2
2, then substitute p12v2 and p22v

2
2 from (  A.11 ) into the resulting equation,

and rearrange it to get

(σv2
1 − g1v1 + σv2

2 − g2v2)p11 = σg1v1 + σ2v2
2 − σg2v2 − g2

1. (A.13)

Let the function R : (−π, π]→ R2×2 be such that R(θ) =

cos θ − sin θ

sin θ cos θ

 (i.e., a rotation

matrix), d = ‖v‖ = ‖x0 − x∗‖, and φ = ](g, v) where ](·, ·) is defined in (  2.1 ). Since

172



∠(g,v) ∈
[
0, π

2

)
from the above analysis, we have that φ ∈

(
− π

2 ,
π

2

)
and we can decompose

gradient g as

g = ‖g‖ R(φ)
(

x0 − x∗

‖x0 − x∗‖

)
= ‖g‖

d
R(φ) v. (A.14)

For simplicity of notations, we let L̂ = ‖g‖
d

which can be viewed as the norm of the gradient

at x0 (i.e., ‖∇f(x0)‖) normalized by distance from the minimizer (i.e., ‖x0 − x∗‖). Note

that since ‖g‖ > 0 and d > 0, we have L̂ > 0. Then, rewrite the expression ( A.14 ) into two

equations as follows: 
g1 = L̂(v1 cosφ− v2 sinφ),

g2 = L̂(v1 sinφ+ v2 cosφ).
(A.15)

We then substitute (  A.15 ) into (  A.13 ) to get

d2(L̂ cosφ− σ)p11 = L̂(L̂ cosφ− σ)(v2
1 cosφ− 2v1v2 sinφ− v2

2 cosφ) + (L̂2 − σ2)v2
2. (A.16)

Multiply p22v
2
2’s equation in (  A.11 ) by d2(L̂ cosφ − σ), then substitute ( A.15 ) and (  A.16 )

into the resulting equation, and rearrange it yields

d2(L̂ cosφ− σ)p22 = (L̂ cosφ− σ)(σv2
1 + 2L̂v1v2 sinφ+ L̂v2

2 cosφ) + (L̂v1 sinφ)2. (A.17)

We then add (  A.16 ) to (  A.17 ) and simplify the expression to obtain

(L̂ cosφ− σ)(p11 + p22) = L̂2 − σ2. (A.18)

Let µ ∈ R be the other eigenvalue of matrix P . We want to compute µ in terms of σ, L̂,

and φ. Since Tr(P ) = p11 + p22 = σ + µ, using equation (  A.18 ), we have

(L̂ cosφ− σ)µ = L̂(L̂− σ cosφ). (A.19)

Consider the following cases on the term L̂ cosφ− σ.

• Suppose σ = L̂ cosφ. Then, (  A.19 ) becomes 0 = L̂2(1 − cos2 φ) which implies that

φ = 0.
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• Suppose σ 6= L̂ cosφ. Then, we can rewrite equation ( A.19 ) as

µ = L̂(L̂− σ cosφ)
L̂ cosφ− σ

. (A.20)

Since λmin(P ) = σ, we have that µ ≥ σ where µ is given in (  A.20 ). Specifically, we

will show that

given µ as expressed in (  A.20 ) with L̂ > 0 and σ > 0,

it holds that µ ≥ σ if and only if L̂ cosφ− σ > 0. (A.21)

For the forward direction, suppose µ ≥ σ and L̂ cosφ− σ < 0. We have

µ = L̂(L̂− σ cosφ)
L̂ cosφ− σ

≥ σ, ⇔ cosφ ≥ 1
2

(
L̂

σ
+ σ

L̂

)
.

However, since L̂ > 0 and σ > 0, we get 1
2

(
L̂
σ

+ σ
L̂

)
≥ 1. Therefore, we obtain that

cosφ = 1
2

(
L̂
σ

+ σ
L̂

)
= 1 which implies that φ = 0 and L̂ = σ. However, we get

L̂ cosφ − σ = 0 which makes µ undefined. For the converse, suppose µ < σ and

L̂ cosφ− σ > 0, we have

µ = L̂(L̂− σ cosφ)
L̂ cosφ− σ

< σ, ⇔ cosφ > 1
2

(
L̂

σ
+ σ

L̂

)
.

However, this is not possible since 1
2

(
L̂
σ

+ σ
L̂

)
≥ 1 for σ

L̂
> 0 and we have proved the

claim.

Since ‖x0 − x∗‖ ∈
(
0, ‖g‖

σ

]
(or equivalently σd

‖g‖ ∈ (0, 1]), the expression arccos
(

σ
L̂

)
is well-

defined. Combining the two cases (σ = L̂ cosφ and σ 6= L̂ cosφ), we have shown that if there
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exists f ∈ Q(x∗, σ) with the gradient ∇f(x0) = g then from the definition of ](·, ·) and

∠(·, ·) in ( 2.1 ), we have

](g,v) ∈ {0} ∪
(
− arccos

(
σ

L̂

)
, arccos

(
σ

L̂

))
,

⇔ ∠(g,v) ∈ {0} ∪
[
0, arccos

(
σ

L̂

))
,

which corresponds to part  (ii) .

For the converse, let f(x) = 1
2xᵀP x − (x∗)ᵀP x and each entry of P will be specified

below. First, suppose that σ < L̂ (i.e., x0 ∈ B
(
x∗, ‖g‖

σ

)
) and φ = ∠(g, x0 − x∗) ∈[

0, arccos
(

σ
L̂

))
. This implies that L̂ cosφ− σ > 0. If v2 6= 0, let

p12 = − v1

d2v2
(L̂v2

1 cosφ− 2L̂v1v2 sinφ− L̂v2
2 cosφ)

− (L̂2 − σ2)v1v2

d2(L̂ cosφ− σ)
+ L̂

(
v1

v2
cosφ− sinφ

)
. (A.22)

We choose p11, p12, and p22 as given in (  A.16 ), (  A.22 ), and (  A.17 ), respectively. Note that

p11, p12, and p22 are well-defined since L̂ cosφ− σ 6= 0. If v2 = 0, we choose

p11 = L̂ cosφ, p12 = L̂ sinφ, and p22 = σ + (L̂ sinφ)2

L̂ cosφ− σ
.

In both cases (v2 6= 0 and v2 = 0), one can easily verify that ∇f(x0) = P v = g and

∇f(x∗) = 0. In order to show that λmin(P ) = σ, first, we check that p11, p12, and p22

satisfy (  A.12 ) which means that σ is an eigenvalue of P . Next, using the fact that the other

eigenvalue µ = Tr(P ) − σ = (p11 + p22) − σ, we obtain µ as expressed in (  A.20 ) for both

cases. Since L̂ cosφ− σ > 0, from the statement ( A.21 ), we have µ ≥ σ.

Now suppose that σ = L̂ (i.e., x0 ∈ ∂B
(
x∗, ‖g‖

σ

)
) and φ = ∠(g, x0 − x∗) = 0. Let

the orthogonal matrix T =
[

v
‖v‖

v⊥
‖v⊥‖

]
∈ R2×2 where v⊥ 6= 0 is a vector perpendicular to

vector v and P = σT T ᵀ = σI. We have ∇f(x0) = P v = σv = ‖g‖ · v
‖v‖ . However, since

∠(g, v) = 0, we have ∇f(x0) = g. We also have ∇f(x∗) = 0 and λmin(P ) = σ by our

construction of f . Thus, for both cases, we obtain that f ∈ Q(2)(x∗, σ) and ∇f(x0) = g.
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Proof of Proposition  2.5.1 . For given points x∗ ∈ Rn, x0 ∈ Rn such that x0 6= x∗ and vector

g ∈ Rn, let

e′
1 = x0 − x∗

‖x0 − x∗‖
, e′

2 =


g−〈g,e′

1〉e′
1

‖g−〈g,e′
1〉e′

1‖ if g /∈ span({e′
1}),

u where u ∈ N ((e′
1)ᵀ) otherwise,

(A.23)

and E =
[
e′

1 e′
2

]
∈ Rn×2. We let xg = x∗ + g to be the point generated by vector g and

P2 = {x ∈ Rn : x = x∗ + Es for some s ∈ R2} = x∗ +R(E)

to be a 2-D plane in Rn. One can verify that e′
1 and e′

2 are orthonormal, and {x∗,x0,xg} ⊂

P2. We let T : R2 → P2 to be such that T (s) = x∗ + Es. Since function T is bijective, we

then have T −1 : P2 → R2 such that T −1(x) = Eᵀ(x−x∗). Next, consider a property of the

norm and angle function which we will use in the subsequent analysis. Using EᵀE = I and

that T is bijective, we have that for all i ∈ {1, 2, 3, 4}, si ∈ R2 and xi ∈ P2,

• distance invariance: ‖T (s1)−T (s2)‖ = ‖s1− s2‖ and ‖T −1(x1)−T −1(x2)‖ = ‖x1−

x2‖, and

• angle invariance: ∠(T (s1) − T (s2), T (s3) − T (s4)) = ∠(s1 − s2, s3 − s4) and

∠(T −1(x1)− T −1(x2), T −1(x3)− T −1(x4)) = ∠(x1 − x2, x3 − x4).

For the forward direction, suppose f ∈ Q(n)(x∗, σ) and ∇f(x0) = g. Let f(x) =
1
2xᵀP x + bᵀx + c for some P ∈ Sn, b ∈ Rn, and c ∈ R that satisfies the conditions. Let

f̃(s) = f(x∗ + Es). We then have

f̃(s) = 1
2sᵀEᵀP Es + (P x∗ + b)ᵀEs +

(1
2(x∗)ᵀP x∗ + bᵀx∗ + c

)
, (A.24)

and

∇f̃(T −1(x0)) = Eᵀ
(
P ET −1(x0) + P x∗ + b

)
= Eᵀ

(
P T (T −1(x0)) + b

)
= Eᵀg,
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where the second and third equalities are obtained by using the transformation T (s) =

x∗ + Es at s = T −1(x0) and ∇f(x0) = P x0 + b = g, respectively. Similarly, we have

∇f̃(T −1(x∗)) = 0. Let σ̃ be the strong convexity parameter of f̃ . We conclude that f̃ ∈

Q(2)(T −1(x∗), σ̃) and ∇f̃(T −1(x0)) = Eᵀg. However, from (  A.24 ), we have that

σ̃ = λmin(EᵀP E) = min
s∈R2

sᵀ(EᵀP E)s

sᵀs
= min

x∈R(E)

xᵀP x

xᵀx
≥ min

x∈Rn

xᵀP x

xᵀx
= σ. (A.25)

Using Lemma  A.2.1 , the distance invariance of T −1 and (  A.25 ), we have

‖x0 − x∗‖ = ‖T −1(x0)− T −1(x∗)‖ ≤ ‖E
ᵀg‖
σ̃

= ‖T
−1(xg)− T −1(x∗)‖

σ̃
≤ ‖g‖

σ
.

In addition, using Lemma  A.2.1 , the angle invariance of T −1 and (  A.25 ), we have

∠(g, x0 − x∗) = ∠
(
T −1(xg)− T −1(x∗), T −1(x0)− T −1(x∗)

)
= ∠

(
Eᵀg, T −1(x0)− T −1(x∗)

)
∈ {0} ∪

[
0, arccos

(
σ̃

‖Eᵀg‖
‖T −1(x0)− T −1(x∗)‖

))

⊆ {0} ∪
[
0, arccos

(
σ

‖g‖
‖x0 − x∗‖

))
,

which complete the proof of the forward direction of the proposition.

For the converse, suppose ‖x0 − x∗‖ ≤ ‖g‖
σ

and ∠(g,x0 − x∗) ∈
[
0, arccos

(
σ

‖g‖ · ‖x0 −

x∗‖
))
∪ {0}. Using similar techniques as above, we can write

• ‖T −1(x0)− T −1(x∗)‖ ≤ ‖Eᵀg‖
σ

and

• ∠(Eᵀg, T −1(x0)− T −1(x∗)) ∈
[
0, arccos

(
σ

‖Eᵀg‖‖T
−1(x0)− T −1(x∗)‖

))
∪ {0}.

Using Lemma  A.2.1 , we have that there exists a function f ∈ Q(2)(T −1(x∗), σ) with the

gradient ∇f(T −1(x0)) = Eᵀg. Let f : R2 → R be such that f(s) = 1
2sᵀP s + bᵀs + c where

P ∈ S2, b ∈ R2 and c ∈ R. To satisfy the conditions of f , we have 0 = ∇f(T −1(x∗)) =

∇f(0) = b,

Eᵀg = ∇f(T −1(x0)) = ∇f(Eᵀ(x0 − x∗)) = P Eᵀ(x0 − x∗), (A.26)
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and λmin(P ) = σ.

To construct a quadratic function f̃ : Rn → R satisfying f̃ ∈ Q(n)(x∗, σ) and∇f̃(x0) = g,

recall the expression of e′
1 and e′

2 from ( A.23 ). Let {ṽ1, ṽ2, . . . , ṽn−2} be a set of unit

vectors in Rn for which
[
e′

1 e′
2 ṽ1 ṽ2 · · · ṽn−2

]
∈ Rn×n is orthogonal. Let Ṽ =[

ṽ1 ṽ2 · · · ṽn−2

]
∈ Rn×(n−2), Λ̃ = diag(σ̃1, σ̃2, . . . , σ̃n−2) ∈ R(n−2)×(n−2) such that {σ̃1, σ̃2,

. . . , σ̃n−2} is chosen to satisfy Λ̃ � σI, and f̃ : Rn → R be such that

f̃(x) = 1
2xᵀQx + (−Qx∗ + Eb)ᵀx +

(1
2(x∗)ᵀQx∗ − bᵀEᵀx∗ + c

)
,

where Q = EP Eᵀ + Ṽ Λ̃Ṽ
ᵀ
∈ Rn×n. Note that EᵀE = I, Ṽ

ᵀ
Ṽ = I and Ṽ

ᵀ
E = 0. Since

b = 0, we also have ∇f̃(x∗) = Qx∗ + (−Qx∗ + Eb) = 0 and ∇f̃(x0) = Q(x0 − x∗). Using

EEᵀg = E
(
Eᵀ(xg − x∗)

)
= ET −1(xg) = T (T −1(xg))− x∗ = g,

Ṽ
ᵀ(x0 − x∗) = 0 (since x0 − x∗ ∈ span({e′

1})) and (  A.26 ), we can write

∇f̃(x0) = Q(x0 − x∗) = EP Eᵀ(x0 − x∗) + Ṽ Λ̃Ṽ
ᵀ(x0 − x∗) = EEᵀg = g.

It remains to show that λmin(Q) = σ.

Suppose P ∈ S2 can be decomposed as P = V ΛV ᵀ where V ∈ R2×2 is a matrix whose

i-th column is the (unit) eigenvector vi of P , and Λ is the diagonal matrix whose diagonal

elements are the corresponding eigenvalues. We can rewrite Q = EP Eᵀ + Ṽ Λ̃Ṽ
ᵀ as

Q = E(V ΛV ᵀ)Eᵀ + Ṽ Λ̃Ṽ
ᵀ =

[
EV Ṽ

] Λ 0

0 Λ̃


V ᵀEᵀ

Ṽ
ᵀ

 . (A.27)

Since
[
EV Ṽ

]
is an orthogonal matrix (using the fact that (EV )ᵀṼ = 0 and ‖Evi‖ = 1 for

i ∈ {1, 2}), we have that equation ( A.27 ) is the eigendecomposition of Q. By our construction

of Λ̃ and λmin(P ) = σ, we have λmin(Q) = σ. Thus, we conclude that f̃ ∈ Q(n)(x∗, σ) with

∇f̃(x0) = g.
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A.2.2 Proof of Theorem  2.5.2 

Proof of Theorem  2.5.2 . Part  (i) : r ∈
(
0, L

2σ1

]
. The proof of the characterization of the

boundary ∂M↓ can be carried out in the same manner as in the proof of part  (i) of The-

orem  2.4.8 . We are left to show the property related to the set M↓ and the characteri-

zation of (M↓)◦. By the definition of M↓ in ( 2.14 ) and ∂M↓ = T t {x∗
1,x

∗
2}, we have

that ∂M↓ ⊂ (M↓)c. Therefore, we can conclude that M↓ is open. Since M↓ is open,

(M↓)◦ =M↓ = T̃ , where T̃ is defined in (  2.30 ).

Part  (ii) : r ∈
(

L
2σ1
, L

2σ2

]
. Consider points in the set (H−

1 )c. By proceeding the same

steps as in the proof of (  2.36 ), we obtain that

T ∩ (H−
1 )c = ∅. (A.28)

By using the same reasoning as in the corresponding part of the proof of Theorem  2.4.8 

part  (ii) , we obtain the results, which are similar to (  2.37 ) and (  2.34 ), that

M↓ ∩ (H−
1 )c = B1 ∩ (H−

1 )c and ∂M↓ ∩ (H−
1 )c = ∂B1 ∩ (H−

1 )c. (A.29)

Then, recall the definition of λ1 and ν1 from ( 2.27 ) and (  2.28 ), respectively. Consider points

in the set H+
1 ∩H−

1 , i.e., {z ∈ Rn : z1 = λ1}. Considering three disjoint regions in H+
1 ∩H−

1 :

‖z̃‖ > ν1, ‖z̃‖ < ν1, and ‖z̃‖ = ν1, we obtain similar results as in the corresponding part of

the proof of Theorem  2.4.8 part  (ii) summarized as follows:



{z ∈ Rn : z1 = λ1, ‖z̃‖ > ν1} ⊆ ((M↓)c)◦ ∩ T c,

{z ∈ Rn : z1 = λ1, ‖z̃‖ < ν1} ⊆ (M↓)◦ ∩ T c,

{z ∈ Rn : z1 = λ1, ‖z̃‖ = ν1} = C1 ⊆ ∂M↓ ∩ T .

(A.30)

Combining these results, we get a similar result as in (  2.38 ), i.e.,

∂M↓ ∩ (H+
1 ∩H−

1 ) = C1 = T ∩ (H+
1 ∩H−

1 ). (A.31)
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From the first equation in (  A.29 ), (  A.30 ), and C1 ⊆ (M↓)c (since C1 ⊆ T ), we have

M↓ ∩H+
1 =

[
M↓ ∩ (H−

1 )c
]
∪
[
M↓ ∩ (H+

1 ∩H−
1 )
]

=
[
B1 ∩ (H−

1 )c
]
∪ {z ∈ Rn : z1 = λ1, ‖z̃‖ < ν1}.

(A.32)

Next, consider points in the set (H+
1 )c. Recall the definition of ϕ from (  2.31 ). By using the

same reasoning as in the proof of ( 2.39 ) and (  2.41 ), we obtain that

∂(B1 ∩ B2) ∩ (H+
1 )c ⊆ {z ∈ Rn : ϕ(z) < 0} ∪ {x∗

1}, (A.33)

and

∂M↓ ∩ (H+
1 )c =

[
T ∩ (H+

1 )c
]
t {x∗

1}, (A.34)

respectively. Using ( A.28 ), we can write T =
[
T ∩ (H+

1 ∩H−
1 )
]
t
[
T ∩ (H+

1 )c
]
, and combining

the second equation in (  A.29 ), equation ( A.31 ) and equation ( A.34 ) together yields the

characterization of ∂M↓:

∂M↓ =
[
∂B1 ∩ (H−

1 )c
]
t

=T︷ ︸︸ ︷[
T ∩ (H+

1 ∩H−
1 )
]
t
[
T ∩ (H+

1 )c
]
t{x∗

1}.

For the characterization of (M↓)◦, we can also use the same technique as in the proof of

Theorem  2.4.8 part  (ii) .

For the property related to the set M↓, recall the definition of C1 from (  2.45 ). Using

equation ( A.32 ) and {z ∈ Rn : z1 = λ1, ‖z̃‖ ≤ ν1} = B1 ∩ (H+
1 ∩H−

1 ), we have

(M↓ ∪ C1)∩H+
1 = (M↓ ∩H+

1 )∪ C1 =
[
B1 ∩ (H−

1 )c
]
∪
[
B1 ∩ (H+

1 ∩H−
1 )
]

= B1 ∩H+
1 , (A.35)

which is closed. Next, from ( A.33 ), we can write

M↓ ⊆ {z ∈ Rn : ϕ(z) ≥ 0} \ {x∗
1} ⊆

(
∂(B1 ∩ B2)

)c
∪ (H+

1 )c.
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Using the fact that M↓ ⊆ B1 ∩ B2, the above inclusion implies that M↓ ∩ (H+
1 )c ⊆ (B1 ∩

B2) ∩ (H+
1 )c. Suppose x ∈ M↓ ∩ (H+

1 )c. However, from the definition of M↓ in (  2.14 ), we

can write

M↓ ∩ (H+
1 )c = {z ∈ Rn : ϕ(z) > 0} ∩ (H+

1 )c = {z ∈ B1 ∩ B2 : ϕ(z) > 0} ∩ (H+
1 )c. (A.36)

Since ϕ is continuous, and B1 ∩ B2 and (H+
1 )c are open, there exists ε ∈ R>0 such that for

all x0 ∈ B(x, ε) such that x0 ∈ {z ∈ Rn : ϕ(z) > 0} ∩ (B1 ∩ B2) ∩ (H+
1 )c = M↓ ∩ (H+

1 )c.

Thus, we conclude that M↓ ∩ (H+
1 )c is open.

Part  (iii) : r ∈
(

L
2σ2
, L

2

(
1

σ1
+ 1

σ2

))
. In this case, we can use similar argument as in the

proof of part  (ii) to show the following statements.



∂M↓ ∩ (H−
1 )c = ∂B1 ∩ (H−

1 )c, (similar to proving ( A.29 ))

∂M↓ ∩ (H+
2 )c = ∂B2 ∩ (H+

2 )c, (similar to proving ( A.29 ))

∂M↓ ∩ (H+
1 ∩H−

1 ) = T ∩ (H+
1 ∩H−

1 ), (similar to proving ( A.31 ))

∂M↓ ∩ (H+
2 ∩H−

2 ) = T ∩ (H+
2 ∩H−

2 ), (similar to proving ( A.31 ))

∂M↓ ∩ (H+
1 ∪H−

2 )c = T ∩ (H+
1 ∪H−

2 )c. (similar to proving ( A.34 ))

Combining these equations, we obtain the characterization of ∂M↓. For the characterization

of (M↑)◦, we can use the same technique as shown in the proof of Theorem  2.4.8 part  (ii) .

For the property related to the setM↓, recall the definition of Ci from ( 2.45 ). Using a similar

approach to part  (ii) , we can show that



(M↓ ∪ C1) ∩H+
1 = B1 ∩H+

1 which is closed, (similar to proving ( A.35 ))

(M↓ ∪ C2) ∩H−
2 = B2 ∩H−

2 which is closed, (similar to proving ( A.35 ))

M↓ ∩ (H+
1 ∪H−

2 )c = {z ∈ B1 ∩ B2 : ϕ(z) > 0} ∩ (H+
1 ∪H−

2 )c

which is open. (similar to proving ( A.36 ))

181



Part  (iv) : r = L
2

(
1

σ1
+ 1

σ2

)
. In this case, we obtain that B1 ∩ B2 =

{(
L
2

(
1

σ1
− 1

σ2

)
, 0
)}

.

Suppose x =
(

L
2

(
1

σ1
− 1

σ2

)
, 0

)
. Since M↓ ⊆ B1 ∩ B2, we only need to check the point x.

However, the point x ∈ X where X is defined in ( 2.12 ), and we obtain the result due to the

definition of M↓.

Part  (v) : r ∈
(

L
2

(
1

σ1
+ 1

σ2

)
, ∞

)
. Since r > L

2

(
1

σ1
+ 1

σ2

)
, we have B1 ∩ B2 = ∅. Since

M↓ ⊆ B1 ∩ B2, we conclude that M↓ = ∅.
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B. SUPPLEMENTARY MATERIALS FOR CHAPTER  4 

B.1 Additional Lemma

We provide a lemma which is utilized in the proof of Theorem  4.4.10 and Lemma  4.4.12 .

Lemma B.1.1. For given x̂ ∈ Rd and R ≥ 0, if x /∈ B(x̂, R) then

max
y∈B(x̂,R)

∠(x− y, x− x̂) = arcsin
(

R

‖x− x̂‖

)
.

Proof. Since the angle is measured with respect to the vector x − x̂, consider any 2-D

planes passed through the center x̂ and the point x. Since the planes pass through x̂,

the intersections between of the ball B(x̂, R) and the planes are great circles of radius R.

Thus, all of the intersections generated from each plane are identical and we can consider

the angle using a great circle instead of the ball. From geometry, the maximum angle

φ = ∠(x− y∗, x− x̂) only occurs when the ray starting from the point x touches the circle

at point y∗. Therefore, ∠(x̂− y∗,x− y∗) = π

2 and ‖x̂− y∗‖ = R. We have

sinφ = ‖x̂− y∗‖
‖x̂− x‖

= R

‖x̂− x‖

and the result follows.

B.2 Proof of the Auxiliary States Proposition

Proof of Proposition  4.4.1 . For any S ⊆ V , ζ ∈ R and k̄, k ∈ N with k̄ ≥ k, define the sets

J (`)
M (S, k̄, k, ζ) := {vi ∈ S : y(`)

i [k̄] > M (`)[k]− ζ},

J (`)
m (S, k̄, k, ζ) := {vi ∈ S : y(`)

i [k̄] < m(`)[k] + ζ}.

Consider a fixed ` ∈ {1, 2, . . . , d} and any time-step k ∈ N. Define ζ(`)
0 = 1

2D
(`)[k]. Note that

the set J (`)
M (V , k, k, ζ(`)

0 ) ∩ J (`)
m (V , k, k, ζ(`)

0 ) = ∅.

By the definition of these sets, when D(`)[k] > 0, the sets J (`)
M (R, k, k, ζ(`)

0 ) 6= ∅ and

J (`)
m (R, k, k, ζ(`)

0 ) 6= ∅. Since the graph is (2F + 1)-robust, at least one of J (`)
M (R, k, k, ζ(`)

0 )
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or J (`)
m (R, k, k, ζ(`)

0 ) is (2F + 1)-reachable which means that at least one of them contains a

vertex that has at least 2F + 1 in-neighbors from outside it.

If such a node vi is in J (`)
M (R, k, k, ζ(`)

0 ), we claim that in the update, vi cannot use the

values strictly greater than M (`)[k] and it uses at least one value from V \ J (`)
M (V , k, k, ζ(`)

0 ).

To show the first claim, note that the nodes that possess the value (in `-component) greater

than M (`)[k] must be Byzantine agents by the definition of M (`)[k]. Since the regular node

vi discards up to F -highest values and there are at most F Byzantine in-neighbors, the

Byzantine agents that hold the value greater than M (`)[k] must be discarded. To show the

second claim, let S(`)
1 [k] = J (`)

M (A, k, k, ζ(`)
0 ) and S(`)

2 [k] = V \ J (`)
M (V , k, k, ζ(`)

0 ) to simplify

the notation. We have

• V \ J (`)
M (R, k, k, ζ(`)

0 ) = S(`)
1 [k] ∪ S(`)

2 [k], and

• S(`)
1 [k] ∩ S(`)

2 [k] = ∅.

From Assumption  4.4.4 , we have |S(`)
1 [k]∩N in

i | ≤ F . Applying (2F+1)-reachable property of

vi and two above properties, we obtain that |S(`)
2 [k]∩N in

i | ≥ F + 1. Let V̄(`)
i [k] ⊆ N in

i be the

set of nodes that vi ∈ R discards their values in dimension ` at time-step k. From the fact

that vi ∈ J (`)
M (R, k, k, ζ(`)

0 ), and Line 11 of Algorithm  2 , we know that |S(`)
2 [k]∩V̄(`)

i [k]| ≤ F .

Combining this with the former statement, we can conclude that vi uses at least one value

from S(`)
2 [k] in its update, i.e., (S(`)

2 [k] ∩N in
i ) \ V̄(`)

i [k] 6= ∅.

Consider the auxiliary point update rule (  4.7 ) (in Line 12 of Algorithm  2 ). We can

rewrite the update as

y
(`)
i [k + 1] =

∑
vj∈(S(`)

2 [k]∩N in
i )\V̄(`)

i [k]

w
(`)
y,ij[k] y(`)

j [k]

+
∑

vj∈
(

vi∪(JM (V,k,k,ζ
(`)
0 )∩N in

i )
)

\V̄(`)
i [k]

w
(`)
y,ij[k] y(`)

j [k].
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Since y(`)
j [k] on the first and second terms on the RHS are upper bounded by M (`)[k]−ζ(`)

0 and

M (`)[k], respectively, and the non-zero weights w(`)
y,ij[k] are lower bounded by the constant ω

(Assumption  4.4.5 ), the value of this node at the next time-step is upper bounded as

y
(`)
i [k + 1] ≤ ω(M (`)[k]− ζ(`)

0 ) + (1− ω)M (`)[k] = M (`)[k]− ωζ(`)
0 .

Note that the above bound is applicable to any node that is inR\J (`)
M (V , k, k, ζ(`)

0 ), since such

a node will use its own value in its update. Similarly, if there is a node vj ∈ J (`)
m (R, k, k, ζ(`)

0 )

that uses the value of a node outside that set, then y(`)
j [k+ 1] ≥ m(`)[k] + ωζ

(`)
0 . This bound

is also applicable to any node that is in R \ J (`)
m (V , k, k, ζ(`)

0 ).

Now, define the quantity ζ
(`)
1 = ωζ

(`)
0 . We have that the set J (`)

M (V , k + 1, k, ζ(`)
1 ) ∩

J (`)
m (V , k + 1, k, ζ(`)

1 ) = ∅. Furthermore, by the bounds provided above, we see that at least

one of the following must be true:

|J (`)
M (R, k + 1, k, ζ(`)

1 )| < |J (`)
M (R, k, k, ζ(`)

0 )|, or

|J (`)
m (R, k + 1, k, ζ(`)

1 )| < |J (`)
m (R, k, k, ζ(`)

0 )|.

If J (`)
M (R, k + 1, k, ζ(`)

1 ) 6= ∅ and J (`)
m (R, k + 1, k, ζ(`)

1 ) 6= ∅, then again by the fact that the

graph is (2F+1)-robust, there is at least one node in one of these sets that has at least 2F+1

in-neighbors outside from the set. Suppose vi ∈ J (`)
M (R, k + 1, k, ζ(`)

1 ) is such a node. Then,

vi cannot use the values strictly greater than M (`)[k + 1] and it uses at least one value from

V \ J (`)
M (V , k + 1, k, ζ(`)

1 ). Since at time-step k, all regular nodes cannot use values that are

strictly greater than M (`)[k] in the update, we have that M (`)[k + 1] ≤ M (`)[k]. Therefore,

the value of node vi at the next time-step is upper bounded as

y
(`)
i [k + 2] ≤ ω(M (`)[k]− ζ(`)

1 ) + (1− ω)M (`)[k + 1] ≤M (`)[k]− ω2ζ
(`)
0 .

Again, this upper bound also holds for any regular node that is in R\J (`)
M (V , k + 1, k, ζ(`)

1 ).

Similarly, if there is a node vj ∈ J (`)
m (R, k + 1, k, ζ(`)

1 ) that has 2F + 1 in-neighbors from
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outside that set then y
(`)
j [k + 2] ≥ m(`)[k] + ω2ζ

(`)
0 . This bound also holds for any regular

node that is not in the set R \ J (`)
m (V , k + 1, k, ζ(`)

1 ).

We continue in this manner by defining ζ(`)
s = ωsζ

(`)
0 for s ∈ N. At each time step k + s,

if both J (`)
M (R, k+ s, k, ζ(`)

s ) 6= ∅ and J (`)
m (R, k+ s, k, ζ(`)

s ) 6= ∅ then at least one of these sets

will shrink in the next time-step. If either of the sets is empty, then it will stay empty at the

next time-step, since every regular node outside that set will have its value upper bounded

by M (`)[k]− ζ(`)
s or lower bounded by m(`)[k] + ζ(`)

s . After |R| − 1 time-steps, at least one of

the sets J (`)
M (R, k + |R| − 1, k, ζ(`)

|R|−1) or J (`)
m (R, k + |R| − 1, k, ζ(`)

|R|−1) must be empty since

the sets J (`)
M (R, k, k, ζ(`)

0 ) and J (`)
m (R, k, k, ζ(`)

0 ) can contain at most R − 1 regular nodes.

Suppose the former set is empty; this means that

M (`)[k + |R| − 1] ≤M (`)[k]− ζ(`)
|R|−1.

Since m(`)[k + |R| − 1] ≥ m(`)[k], we obtain

D(`)[k + |R| − 1] ≤ D(`)[k]− ζ(`)
|R|−1 =

(
1− ω|R|−1

2

)
D(`)[k] = γD(`)[k]. (B.1)

The first equality comes from the fact that ζ(`)
s = ωsζ

(`)
0 and ζ

(`)
0 = 1

2D
(`)[k]. The same

expression as (  B.1 ) arises if the set J (`)
m (R, k + |R| − 1, k, ζ(`)

|R|−1) = ∅.

Using the fact that

[
m(`)[k + 1], M (`)[k + 1]

]
⊆
[
m(`)[k], M (`)[k]

]
(B.2)

for all k ∈ N and the inequality (  B.1 ), we can conclude that for all vi ∈ R, limk→∞ y
(`)
i [k] =

y(`)[∞] exists and for all k, we have

y(`)[∞] ∈
[
m(`)[k], M (`)[k]

]
. (B.3)

This completes the first part of the proof.
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For the second part, let consider the quantity D(`)[k] as follows. For all k ∈ N, we can

write

D(`)[k] ≤ D(`)
[⌊

k

|R| − 1

⌋
(|R| − 1)

]
≤ γ

⌊
k

|R|−1

⌋
D(`)[0] < γ

k
|R|−1 −1D(`)[0]. (B.4)

The first inequality is obtained by using x ≥ bxc and ( B.2 ). To obtain the second inequality,

we apply the inequality (  B.1 )
⌊

k
|R|−1

⌋
times. The last inequality comes from the fact that

γ < 1 and bxc > x− 1 implies γbxc < γx−1. From (  B.3 ) and (  B.4 ), for all vi ∈ R, we have

|y(`)
i [k]− y(`)[∞]| ≤ D(`)[k] < γ

k
|R|−1 −1D(`)[0]. (B.5)

Since the inequality (  B.5 ) holds for all ` ∈ {1, 2, . . . , d}, we have

‖yi[k]− y[∞]‖2 =
d∑

`=1
|y(`)

i [k]− y(`)[∞]|2 < γ
2
(

k
|R|−1 −1

)
d∑

`=1

(
D(`)[0]

)2
.

Taking square root of both sides yields

‖yi[k]− yi[∞]‖ < γ
k

|R|−1 −1‖D[0]‖ = 1
γ
‖D[0]‖ e− 1

|R|−1 log( 1
γ

) k,

which completes the proof.

B.3 Proof of Proposition  4.4.2 

Proof of Proposition  4.4.2 . Consider a regular agent vi ∈ R. From Assumption  4.4.1 , for all

x, y ∈ Rd, we have fi(y) ≥ fi(x) + 〈g̃i(x), y − x〉, where g̃i(x) ∈ ∂fi(x). Substitute a

minimizer x∗
i of the function fi into the variable y to get

−〈g̃i(x), x∗
i − x〉 ≥ fi(x)− fi(x∗

i ). (B.6)

Let θ̂i(x) = ∠(g̃i(x), x− x∗
i ). The inequality (  B.6 ) becomes

‖g̃i(x)‖ ‖x∗
i − x‖ cos θ̂i(x) ≥ fi(x)− fi(x∗

i ).

187



Fix ε ∈ R>0, and suppose that x /∈ Ci(ε). From Assumption  4.4.2 , applying ‖g̃i(x)‖ ≤ L,

we have

cos θ̂i(x) ≥ fi(x)− fi(x∗)
L ‖x∗

i − x‖
. (B.7)

Let x̃i ∈ Rd be the point on the line connecting x∗
i and x such that fi(x̃i) = fi(x∗

i ) + ε. We

can rewrite the point x as

x = x∗
i + t(x̃i − x∗

i ) where t = ‖x− x∗
i ‖

‖x̃i − x∗
i ‖
≥ 1.

Consider the term on the RHS of (  B.7 ). Since x̃i ∈ Ci(ε), and (  4.12 ) holds, we have

fi(x)− fi(x∗
i )

‖x− x∗
i ‖

= fi(x∗
i + t(x̃i − x∗

i ))− fi(x∗
i )

t‖x̃i − x∗
i ‖

≥ fi(x∗
i + t(x̃i − x∗

i ))− fi(x∗
i )

t ·maxy∈Ci(ε) ‖y − x∗
i ‖

≥ fi(x∗
i + t(x̃i − x∗

i ))− fi(x∗
i )

t δi(ε)
. (B.8)

Since the quantity fi(x∗
i +t(x̃i−x∗

i ))−fi(x∗
i )

t
is non-decreasing in t ∈ [1,∞) [ 97 , Lemma 2.80], the

inequality ( B.8 ) becomes

fi(x)− fi(x∗
i )

‖x− x∗
i ‖

≥ fi(x̃i)− fi(x∗
i )

δi(ε)
= ε

δi(ε)
. (B.9)

Therefore, combining (  B.7 ) and (  B.9 ), we obtain

cos θ̂i(x) ≥ ε

Lδi(ε)
. (B.10)

However, from Assumption  4.4.1 , we have

fi(x∗
i ) ≥ fi(x̃i) + 〈g̃i(x̃i), x∗

i − x̃i〉
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where g̃i(x̃i) ∈ ∂fi(x̃i). Since ‖g̃i(x̃i)‖ ≤ L by Assumption  4.4.2 and ‖x∗
i − x̃i‖ ≤ δi(ε), we

get

ε = fi(x̃i)− fi(x∗
i ) ≤ −〈g̃i(x̃i), x∗

i − x̃i〉 ≤ Lδi(ε).

From ε ∈ R>0 and the above inequality, the inequality (  B.10 ) becomes

θ̂i(x) ≤ arccos
(

ε

Lδi(ε)

)
:= θi(ε) <

π

2 ,

which completes the proof.

B.4 Proof of Lemmas  4.4.11 -  4.4.14 

Proof of Lemma  4.4.11 . From Proposition  4.4.1 , the limit point y[∞] ∈ Rd exists. Consider

a time-step k ∈ N such that k ≥ k∗
1. Using the gradient step ( 4.6 ), we can write

‖xi[k + 1]− y[∞]‖ = ‖zi[k]− y[∞]− η[k] gi[k]‖

≤ ‖zi[k]− y[∞]‖+ η[k] ‖gi[k]‖.

Using Assumptions  4.4.2 and  4.4.3 , and ‖zi[k]− y[∞]‖ ≤ maxvj∈R{R̃j + δj}, we obtain

‖xi[k + 1]− y[∞]‖ ≤ max
vj∈R
{R̃j + δj}+ η[k∗

1]L.

By the definition of k∗
1 and s∗ in ( 4.15 ), the above inequality becomes

‖xi[k + 1]− y[∞]‖ ≤ max
vj∈R
{R̃j + δj}+ ξ ≤ s∗,

which completes the proof.
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Proof of Lemma  4.4.12 . From Proposition  4.4.1 , the limit point y[∞] ∈ Rd exists. Consider

an agent vi ∈ R and a time-step k ∈ N for which the condition in the lemma holds. Since

x∗
i ∈ B(y[∞], R̃i) from ( 4.14 ), we have

∠(x∗
i − zi[k], y[∞]− zi[k]) ≤ max

u∈B(y[∞],R̃i)
∠(u− zi[k], y[∞]− zi[k])

= arcsin R̃i

‖zi[k]− y[∞]‖ , (B.11)

where the last step is from using Lemma  B.1.1 . Using the gradient step ( 4.6 ), we can write

∠(xi[k + 1] − zi[k], y[∞] − zi[k]) = ∠(−η[k]gi[k], y[∞] − zi[k]). Since for all vi ∈ R and

k ∈ N,

∠(−η[k]gi[k], y[∞]− zi[k]) ≤ ∠(−η[k]gi[k], x∗
i − zi[k]) + ∠(x∗

i − zi[k], y[∞]− zi[k])

by [ 57 , Corollary 12], applying Proposition  4.4.2 and inequality (  B.11 ), we have

∠(xi[k + 1]− zi[k], y[∞]− zi[k]) ≤ θi + arcsin R̃i

‖zi[k]− y[∞]‖ := ψi[k]. (B.12)

Note that ψi[k] ∈ [0, π) since θi ∈
[
0, π

2

)
and arcsin R̃i

‖zi[k]−y[∞]‖ ∈
[
0, π

2

]
. Then, consider the

triangle which has the vertices at xi[k + 1], zi[k], and y[∞]. We can calculate the square of

the distance by using the law of cosines:

‖xi[k + 1]− y[∞]‖2 = ‖xi[k + 1]− zi[k]‖2 + ‖y[∞]− zi[k]‖2

− 2‖xi[k + 1]− zi[k]‖ · ‖y[∞]− zi[k]‖ cos∠(xi[k + 1]− zi[k], y[∞]− zi[k]).

Using the gradient step ( 4.6 ) and the inequality ( B.12 ), we get

‖xi[k + 1]− y[∞]‖2 ≤ η2[k] ‖gi[k]‖2 + ‖zi[k]− y[∞]‖2

− 2 η[k] ‖gi[k]‖ · ‖zi[k]− y[∞]‖ cosψi[k]. (B.13)
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In addition, we can simplify the term ‖zi[k]− y[∞]‖ cosψi[k] in the above inequality using

the definition of ψi[k] in (  B.12 ). Regarding this, we can write

‖zi[k]− y[∞]‖ cosψi[k] =
√
‖zi[k]− y[∞]‖2 − R̃2

i · cos θi − R̃i sin θi.

Substituting the above equation into ( B.13 ), we obtain the result.

Proof of Lemma  4.4.13 . First, note that by the definition of s∗ in (  4.15 ), we have a+
i > 0

and a−
i < 0 since s∗ ≥ R̃i + ξ, and bi > 0 since s∗ ≥ R̃i sec θi + ξ.

For vi ∈ R, let Γi : [R̃i,∞)× R+ → R be the function

Γi(p, l) := p2 −∆i(p, l), (B.14)

where function ∆i is defined in (  4.16 ). Consider an agent vi ∈ R and a time-step k ∈ N such

that k ≥ k∗
2. We can compute the second derivative of Γi(p, l) with respect to p as follows:

∂2Γi

∂p2 = 2 + 2lR̃2
i (p2 − R̃2

i )− 3
2 cos θi.

Note that ∂2Γi

∂p2 > 0 for all p ∈ (R̃i,∞). This implies that

sup
p∈(maxvj ∈R{R̃j+δj}, s∗]

Γi(p, l) ≤ max
p∈[R̃i, s∗]

Γi(p, l) = max
{
Γi(R̃i, l), Γi(s∗, l)

}
. (B.15)

First, let consider Γi(R̃i, l). From the definition of Γi in ( B.14 ), we have that

Γi(R̃i, l) ≤ (s∗)2 ⇐⇒ l ∈ [a−
i , a

+
i ], (B.16)

where a+
i and a−

i are defined in (  4.18 ). Using Assumption  4.4.2 and  4.4.3 , and the definition

of k∗
2, we have that

η[k] ‖gi[k]‖ ≤ η[k]L ≤ min
vj∈R

{
min{a+

j , bj}
}
≤ a+

i .
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By the above inequality and statement ( B.16 ), we obtain that

Γi(R̃i, η[k] ‖gi[k]‖) ≤ (s∗)2. (B.17)

Now, let consider Γi(s∗, l). From the definition of Γi in ( B.14 ), we have that

Γi(s∗, l) ≤ (s∗)2 ⇐⇒ l ∈ [0, bi], (B.18)

where bi is defined in (  4.18 ). Using Assumption  4.4.2 and  4.4.3 , and the definition of k∗
2, we

have that

η[k] ‖gi[k]‖ ≤ η[k]L ≤ min
vj∈R

{
min{a+

j , bj}
}
≤ bi.

By the above inequality and statement ( B.18 ), we obtain that

Γi(s∗, η[k] ‖gi[k]‖) ≤ (s∗)2. (B.19)

Combine ( B.17 ) and (  B.19 ) to get that

max
{
Γi(R̃i, η[k] ‖gi[k]‖), Γi(s∗(ξ), η[k] ‖gi[k]‖)

}
≤ (s∗)2. (B.20)

From Lemma  4.4.12 , we can write

‖xi[k + 1]− y[∞]‖2 ≤ Γi(‖zi[k]− y[∞]‖, η[k] ‖gi[k]‖).

Applying (  B.15 ) and (  B.20 ), respectively to the above inequality yields the result.

Proof of Lemma  4.4.14 . Consider any time-step k ≥ k∗
3 and agent vi ∈ Iz[k]. By the defini-

tion of the function ∆i in ( 4.16 ), it is clear that if p1 > p2 ≥ R̃i then ∆i(p1, l) > ∆i(p2, l).

Then, we get

∆i(‖zi[k]− y[∞]‖, η[k] ‖gi[k]‖) > ∆i(s∗, η[k] ‖gi[k]‖). (B.21)
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Furthermore, the function ∆i satisfies

∆i(p, l) ≥
(√

p2 − R̃2
i cos θi−R̃i sin θi

)
l ⇐⇒ l ∈

[
0,
√
p2 − R̃2

i cos θi−R̃i sin θi

]
. (B.22)

We restate inequality ( B.9 ) obtained in the proof of Proposition  4.4.2 here:

fi(x)− fi(x∗
i )

‖x− x∗
i ‖

≥ ε

δi(ε)
. (B.23)

Recall the definition of Ci(ε) in (  4.11 ). For x /∈ Ci(ε), from the definition of convex functions,

we have −〈gi(x), x∗
i − x〉 ≥ fi(x)− fi(x∗

i ). Using the inequality (  B.23 ), we obtain

‖gi(x)‖ ≥ fi(x)− fi(x∗
i )

‖x− x∗
i ‖

≥ ε

δi(ε)
= κi.

Using the above inequality, Assumption  4.4.2 , and the definition of k∗
3, we have that

η[k]κi ≤ η[k] ‖gi[k]‖ ≤ η[k]L ≤ bi

2 . (B.24)

Since η[k] ‖gi[k]‖ ∈ [0, bi

2 ], we can apply ( B.22 ) to get

∆i

(
s∗, η[k] ‖gi[k]‖

)
≥ bi

2 η[k] ‖gi[k]‖. (B.25)

Combine ( B.21 ), (  B.25 ), and the first inequality of (  B.24 ) to obtain the result.

B.5 Proof of Proposition  4.4.3 and Lemma  4.4.15 

Proof of Proposition  4.4.3 . From Proposition  4.4.1 , the limit point y[∞] ∈ Rd exists. For

all vi, vj ∈ R, we have

‖xj[k]− yi[k]‖ ≤ ‖xj[k]− y[∞]‖+ ‖yi[k]− y[∞]‖.
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Apply Lemma  4.4.8 to obtain that for all vi ∈ R, we have

‖zi[k]− yi[k]‖ ≤ max
vj∈R
‖xj[k]− y[∞]‖+ ‖yi[k]− y[∞]‖.

Substituting the above inequality into

‖zi[k]− y[∞]‖ ≤ ‖zi[k]− yi[k]‖+ ‖yi[k]− y[∞]‖,

we obtain the result.

Proof of Lemma  4.4.15 . Suppose maxvi∈R ‖xi[k] − y[∞]‖ ≤ φ[k] for a time-step k ≥ k0.

From Proposition  4.4.1 and  4.4.3 , we have that for all vi ∈ R,

‖zi[k]− y[∞]‖ ≤ φ[k] + 2βe−αk, (B.26)

where α and β are defined in Proposition  4.4.1 .

Recall the definition of Iz[k] from ( 4.19 ). For all vi ∈ Iz[k], from Lemma  4.4.12 and

 4.4.14 , we have

‖xi[k + 1]− y[∞]‖2 ≤ ‖zi[k]− y[∞]‖2 − 1
2biκiη[k].

Applying (  B.26 ) to the above inequality, we obtain that for all vi ∈ Iz[k],

‖xi[k + 1]− y[∞]‖2 ≤
(
φ[k] + 2βe−αk

)2
− 1

2biκiη[k]

≤
(
φ[k] + 2βe−αk

)2
− 1

2η[k] min
vj∈R

bjκj.

On the other hand, for all vi ∈ R \ Iz[k], we have ‖zi[k] − y[∞]‖ ≤ s∗ by the definition of

Iz[k]. From Lemma  4.4.11 and  4.4.13 , we get ‖xi[k + 1]− y[∞]‖ ≤ s∗ for all vi ∈ R \ Iz[k].

Therefore, we conclude that for all vi ∈ R,

‖xi[k + 1]− y[∞]‖2 ≤ max
{

(s∗)2,
(
φ[k] + 2βe−αk

)2
− 1

2η[k] min
vj∈R

bjκj

}
.
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Using the update rule (  4.21 ), the above inequality implies that maxvi∈R ‖xi[k+1]−y[∞]‖ ≤

φ[k + 1].

Next, consider a time-step k ∈ N. From the gradient update step (  4.6 ), for all vi ∈ R,

we have

‖xi[k + 1]− y[∞]‖ = ‖zi[k]− y[∞]− η[k]gi[k]‖

≤ ‖zi[k]− y[∞]‖+ η[k] ‖gi[k]‖.

Since ‖gi[k]‖ ≤ L from Assumption  4.4.2 , we can rewrite the above inequality as

‖xi[k + 1]− y[∞]‖ ≤ ‖zi[k]− y[∞]‖+ η[k] L. (B.27)

On the other hand, from Proposition  4.4.1 and  4.4.3 , for all vi ∈ R, we have

‖zi[k]− y[∞]‖ ≤ max
vj∈R
‖xj[k]− y[∞]‖+ 2βe−αk. (B.28)

Combine the inequalities (  B.27 ) and ( B.28 ) together and apply the result recursively to

obtain

max
vi∈R
‖xi[k0]− y[∞]‖ ≤ max

vi∈R
‖xi[0]− y[∞]‖+ 2β

k0−1∑
k=0

e−αk + L
k0−1∑
k=0

η[k].

Since the RHS of the above inequality is φ[k0], this completes the first part of the proof.

Consider a time-step k ∈ N such that k ≥ k0. From the update equation (  4.21 ), using

the fact that 1
2η[k] minvi∈R biκi > 0 for all k ∈ N, we can write

φ[k + 1] < max
{
s∗, φ[k]

}
+ 2βe−αk.

Applying the above inequality recursively, we can write that for all k ≥ k0,

φ[k] < max
{
s∗, φ[k0]

}
+ 2β

k−1∑
k′=k0

e−αk′
.
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Substituting equation (  4.20 ) into the above inequality and using the fact that ∑k−1
k′=0 e

−αk′
<∑∞

k′=0 e
−αk′ = 1

1−e−α for all k ∈ N, we obtain the uniform bound as follows:

φ[k] < max
{
s∗, max

vi∈R
‖xi[0]− y[∞]‖+ L

k0−1∑
k′=0

η[k′]
}

+ 2β
1− e−α

.

Setting the RHS of the above inequality to φ̄, we obtain the result.

B.6 Proof of Lemma  4.4.16 , Proposition  4.4.4 and Theorem  4.4.9 

Lemma  4.4.16 is used to establish the proof of Proposition  4.4.4 .

Proof of Lemma  4.4.16 . Suppose that there exists a sequence {u[k]}∞
k=0 ⊂ R≥0 that satisfies

the given update rule. Since η̂[k] ∈ R≥0 for all k ∈ N, we have u2[k + 1] ≤ (u[k] + γ1λ
k)2.

Since u[k] ≥ 0 for all k ∈ N, it follows that

0 ≤ u[k + 1] ≤ |u[k] + γ1λ
k| ≤ u[k] + γ1|λ|k.

Apply the above inequality recursively to obtain that for all k ∈ N,

u[k] ≤ u[0] + γ1

k∑
`=0
|λ|` ≤ u[0] + γ1

1− |λ| := ū.

From the update rule, we can write

u2[k + 1] = u2[k] + 2γ1λ
ku[k] + γ2

1λ
2k − γ2η̂[k]

≤ u2[k] + 2γ1λ
kū+ γ2

1λ
2k − γ2η̂[k].

Applying the above inequality recursively, we obtain

u2[k] ≤ u2[0] + 2γ1ū
k∑

`=0
λ` + γ2

1

k∑
`=0

λ2` − γ2

k∑
`=0

η̂[`].
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However, the first three terms on the RHS are bounded in k while the last term is unbounded.

This implies that there exists a time-step k̃ ∈ N such that u2[k̃] < 0 which contradicts the

fact that u[k̃] ∈ R≥0.

Proof of Proposition  4.4.4 . Let ν = 1
2 minvi∈R biκi to simplify the notations. Let k∗

4 ∈ N be

a time-step such that η[k∗
4] ≥ 4β

ν

(
φ̄e−αk∗

4 + βe−2αk∗
4
)
. Note that k∗

4 ∈ N exists since η[k]

decreases slower than the exponential decay due to its form given in Assumption  4.4.3 .

First, we will show that if the time-step k ∈ N satisfies k ≥ max{k0, k
∗
4} and

(
φ[k] +

2βe−αk
)2
− νη[k] > (s∗)2, then

φ[k + 1] < φ[k]. (B.29)

Consider a time-step k ≥ max{k0, k
∗
4}. Since

(
φ[k]+2βe−αk

)2
−νη[k] > (s∗)2, the update

equation ( 4.21 ) reduces to

φ2[k + 1] =
(
φ[k] + 2βe−αk

)2
− νη[k]. (B.30)

Using the definition of k∗
4, from k ≥ k∗

4, we can write η[k] ≥ 4β
ν

(
φ̄e−αk + βe−2αk

)
. Since

φ[k] < φ̄, we have that

η[k] > 4β
ν

(
φ[k]e−αk + βe−2αk

)
.

By multiplying ν and adding φ2[k] to both sides, and then rearranging, we can write φ2[k] >(
φ[k] + 2βe−αk

)2
− νη[k], which is equivalent to φ[k + 1] < φ[k] by (  B.30 ). This completes

our claim.

Next, we will show that there exists a time-step K̃ ∈ N such that φ
[

max{k0, k
∗
4}+ K̃

]
=

s∗.

Suppose that
(
φ[k]+2βe−αk

)2
−νη[k] > (s∗)2 for all k ≥ max{k0, k

∗
4}. Then, the update

equation ( 4.21 ) reduces to

φ2[k + 1] =
(
φ[k] + 2βe−αk

)2
− νη[k].
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However, since φ[k] is non-negative for all k ∈ N by its definition, from Lemma  4.4.16 ,

there is no sequence {φ[k]}∞
k=k0 that can satisfy the above update rule. Hence, there exists

a constant K̃ ∈ N such that

(
φ[k′] + 2βe−αk′)2

− νη[k′] ≤ (s∗)2,

where k′ = max{k0, k
∗
4} + K̃ − 1, which yields φ

[
max{k0, k

∗
4} + K̃

]
= s∗ by the equation

( 4.21 ). This completes the second claim.

Consider any time-step k ∈ N such that k ≥ max{k0, k
∗
4}+K̃ and φ[k] = s∗. Such a time-

step exists due to the argument above. Then, suppose
(
φ[k]+2βe−αk

)2
−νη[k] > (s∗)2. From

( B.29 ), we have that φ[k+1] < s∗ which is not possible due to the fact that φ[k′] ≥ s∗ for all

k′ ≥ k0 from the update equation (  4.21 ). Hence, we conclude that
(
φ[k]+2βe−αk

)2
−νη[k] ≤

(s∗)2, and φ[k + 1] = s∗ by ( 4.21 ). This means that φ[k] = s∗ for all k ≥ max{k0, k
∗
4} + K̃.

Then, by the definition of φ[k], we can rewrite the equation as maxvi∈R ‖xi[k]− y[∞]‖ ≤ s∗

for all k ≥ max{k0, k
∗
4}+ K̃ := K which completes the proof.

Finally, we utilize the finite-time convergence result from Proposition  4.4.4 to give a proof

for Theorem  4.4.9 presented below.

Proof of Theorem  4.4.9 . From Proposition  4.4.4 , for a fixed ξ ∈ R>0 and ε ∈ R>0, we have

that for all k ≥ K,

max
vi∈R
‖xi[k]− y[∞]‖ ≤ s∗(ξ, ε).

Note that K is a function of ξ and ε. However, the above inequality implies that s∗(ξ, ε) ≥

lim supk maxvi∈R ‖xi[k] − y[∞]‖. Since the inequality is valid for all ξ > 0 and ε > 0, and

infξ>0, ε>0 s
∗(ξ, ε) = infε>0 s

∗(0, ε) by the definition of s∗(ξ, ε) in ( 4.15 ), we have

lim sup
k

max
vi∈R
‖xi[k]− y[∞]‖ ≤ inf

ε>0
s∗(0, ε),

which completes the proof.
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C. SUPPLEMENTARY MATERIALS FOR CHAPTER  5 

C.1 Additional Lemmas

C.1.1 Graph Robustness

We now state a lemma regarding transmissibility of information after dropping some

edges from the graph (from Lemma 2.3 in [  30 ]).

Lemma C.1.1. Suppose r ∈ Z+ and G is r-robust. Let G ′ be a graph obtained by removing

r − 1 or fewer incoming edges from each node in G. Then G ′ is rooted.

This means that if we have enough redundancy in the network, information from at least

one node can still flow to the other nodes in the network even after each regular node discards

some neighboring states.

C.1.2 Series of Products

Lemma C.1.2. Suppose {b[k]}k∈N ⊂ R is a sequence such that limk→∞
∑k

s=0 b[s] = b.

• If {a[k]}k∈N ⊂ R is a sequence such that lim supk a[k] = a∗, then it holds that

lim sup
k

k∑
s=0

a[s]b[k − s] ≤ a∗b. (C.1)

• If {a[k]}k∈N ⊂ R is a sequence such that lim infk a[k] = a∗, then it holds that

lim inf
k

k∑
s=0

a[s]b[k − s] ≥ a∗b. (C.2)
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Proof. Consider the first part of the lemma. Since lim supk a[k] = a∗, we have that for a

given ε ∈ R>0, there exists k′(ε) ∈ N such that a[k] ≤ a∗ + ε for all k ≥ k′(ε). Suppose k̃ ∈ N

and k̃ ≥ k′(ε), and we can write

k̃∑
s=0

a[s]b[k̃ − s] =
k′(ε)−1∑

s=0
a[s]b[k̃ − s] +

k̃∑
s=k′(ε)

a[s]b[k̃ − s]

≤
k′(ε)−1∑

s=0
a[s]b[k̃ − s] + (a∗ + ε)

k̃−k′(ε)∑
s=0

b[s]. (C.3)

Since limk→∞
∑k

s=0 b[s] = b, we have that limk→∞ b[k] = 0. Taking lim supk̃ to both sides of

( C.3 ), we obtain that

lim sup
k̃

k̃∑
s=0

a[s]b[k̃ − s] ≤
k′(ε)−1∑

s=0
a[s] lim

k̃→∞
b[k̃ − s] + (a∗ + ε) lim

k̃→∞

k̃−k′(ε)∑
s=0

b[s]

= (a∗ + ε)b.

Since ε ∈ R>0 can be chosen to be arbitrary small, we obtain (  C.1 ).

For the second part of the lemma, since lim infk a[k] = a∗, we have that for a given

ε ∈ R>0, there exists k′(ε) ∈ N such that a[k] ≥ a∗ + ε for all k ≥ k′(ε). By using this fact

and taking the steps same as the proof above, we obtain ( C.2 ).

Corollary C.1.3. Suppose {a[k]}k∈N ⊂ R is a sequence such that limk→∞ a[k] = 0 and

{b[k]}k∈N ⊂ R is a sequence such that limk→∞
∑k

s=0 b[s] is finite. Then, it holds that

lim
k→∞

k∑
s=0

a[s]b[k − s] = 0. (C.4)

Proof. Since limk→∞ a[k] = 0, we can write

lim sup
k

a[k] = lim inf
k

a[k] = 0.
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Using Lemma  C.1.2 , we have that

0 ≤ lim inf
k

k∑
s=0

a[s]b[k − s] ≤ lim sup
k

k∑
s=0

a[s]b[k − s] ≤ 0.

The inequalities above implies that

lim inf
k

k∑
s=0

a[s]b[k − s] = lim sup
k

k∑
s=0

a[s]b[k − s] = 0,

and the result ( C.4 ) follows.

C.1.3 Function Analysis

Lemma C.1.4. Given a constant γ ∈ R≥0, suppose h :
(
max

{
1− 1

γ
, 0
}
, 1
]
→ R≥0 such that

h(s) =
√
s

1−√γ ·
√

1− s
.

Then, the following statements hold.

• If γ ∈ [1,∞), then h is a strictly decreasing function.

• If γ ∈ [0, 1), then h is strictly increasing on the interval (0, 1−γ] and strictly decreasing

on the interval (1− γ, 1].

Proof. Compute the derivative of h with respect to s yields

h′(s) =
( 1

1−√γ
√

1− s

)2(1−√γ
√

1− s
2
√
s

−
√
γ
√
s

2
√

1− s

)

=
( 1

1−√γ
√

1− s

)2(√1− s−√γ
2
√
s
√

1− s

)
.

From the expression h′(s) above, we need to consider only the sign of
√

1− s −√γ. First,

consider the case that γ ≥ 1. We have s ∈
(
1− 1

γ
, 1
]

which implies that
√

1− s−√γ < 0.

Next, consider the case that γ ∈ [0, 1). We have that s ∈ (0, 1−γ] implies that
√

1− s−√γ ≥

0 with equality only if s = 1− γ, and s ∈ (1− γ, 1] implies that
√

1− s−√γ < 0.
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C.2 Proof of Convergence Results in Subsection  5.6.2 

C.2.1 Convex Functions

From [  98 ], an equivalent definition of a µ-strongly convex differentiable function f is as

follows: for all x1, x2 ∈ Rd,

〈∇f(x1)−∇f(x2), x1 − x2〉 ≥ µ‖x1 − x2‖2. (C.5)

We will use the following useful result from [  98 ] regarding the convexity and Lipschitz

gradient of a function.

Lemma C.2.1. If f is convex and has L-Lipschitz gradient then for all x1, x2 ∈ Rd,

f(x1) ≥ f(x2) + 〈∇f(x2),x1 − x2〉+ 1
2L‖∇f(x1)−∇f(x2)‖2, (C.6)

and

f(x1) ≤ f(x2) + 〈∇f(x2),x1 − x2〉+ L

2 ‖x1 − x2‖2. (C.7)

C.2.2 The Reduction Property Implication

We first introduce the following lemma which is useful for deriving the convergence result

(Theorem  5.6.4 ).

Lemma C.2.2. Suppose Assumption  5.6.1 holds. If an algorithm A in REDGRAF satisfies

the (γ, α)-reduction property, then β
√
γ < 1.

Proof. In the first case where γ ∈ [0, 1) and αk = α ∈
(
0, 1

L

]
, we have β√γ = √γ ·

√
1− αµ̃ <

1. In the second case, since γ ∈
[
1, 1

1− µ̃

L̃

)
, we have that 0 ≤ 1

µ̃

(
1 − 1

γ

)
< 1

L̃
which indicates

that setting the step-size αk = α ∈
(

1
µ̃

(
1 − 1

γ

)
, 1

L̃

]
is valid. Since α > 1

µ̃

(
1 − 1

γ

)
, we also

obtain that β√γ = √γ ·
√

1− αµ̃ < 1. For both cases, we have that β√γ < 1.
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C.2.3 Proof of Theorem  5.6.4 

We refactor Theorem  5.6.4 into Proposition  C.2.1 and Corollary  C.2.3 where Proposi-

tion  C.2.1 mainly captures the final convergence radius and Corollary  C.2.3 captures the

convergence rate.

Proposition C.2.1. Suppose Assumption  5.6.1 holds. If algorithm A in REDGRAF satisfies

the (xc, γ, {c[k]})-states contraction property (for some xc ∈ Rd, γ ∈ R≥0 and {c[k]}k∈N ⊂ R)

and αk = α ∈
(
0, 1

L̃

]
then for all k ∈ N and vi ∈ VR,

‖xi[k]−xc‖ ≤ (β√γ)k max
vs∈VR

‖xs[0]−xc‖+β
k−1∑
s=0

(β√γ)sc[k−s−1]+rc

√
αL̃

k−1∑
s=0

(β√γ)s, (C.8)

where rc and β are defined in ( 5.9 ) and ( 5.11 ), respectively. Furthermore, if A satisfies the

(γ, α)-reduction property, then for all vi ∈ VR, it holds that

lim sup
k
‖xi[k]− xc‖ ≤

rc

√
αL̃

1− β√γ . (C.9)

Proof. Consider a regular agent vi ∈ VR. Since xi[k + 1] = x̃i[k] − αkgi[k] from (  5.4 ), we

can write

‖xi[k + 1]− xc‖2 = ‖x̃i[k]− xc‖2 − 2〈x̃i[k]− xc, αkgi[k]〉+ α2
k‖gi[k]‖2. (C.10)

Since fi is µi-strongly convex (from Assumption  5.6.1 ), from ( 5.1 ) we have that −〈x̃i[k]

−xc, gi[k]〉 ≤ (fi(xc)− fi(x̃i[k]))− µi

2 ‖x̃i[k]− xc‖2. Substituting this inequality into (  C.10 )

to get

‖xi[k + 1]− xc‖2 ≤ (1− αkµi)‖x̃i[k]− xc‖2 + α2
k‖gi[k]‖2

+ 2αk(fi(xc)− fi(x̃i[k])). (C.11)
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Since fi has Li-Lipschitz gradient (from Assumption  5.6.1 ), from (  C.6 ) we have that ‖gi[k]‖2 ≤

2Li(fi(x̃i[k])− fi(x∗
i )). Substituting this inequality into ( C.11 ) yields

‖xi[k + 1]− xc‖2 ≤ (1− αkµi)‖x̃i[k]− xc‖2 − 2αk(1− αkLi)fi(x̃i[k])

− 2α2
kLifi(x∗

i ) + 2αkfi(xc). (C.12)

Since fi has Li-Lipschitz gradient (from Assumption  5.6.1 ), from (  C.7 ) we have that fi(xc) ≤

fi(x∗
i ) + Li

2 ‖xc − x∗
i ‖2. Substituting this inequality into ( C.12 ), we obtain

‖xi[k + 1]− xc‖2 ≤ (1− αkµi)‖x̃i[k]− xc‖2

− 2αk(1− αkLi)(fi(x̃i[k])− fi(x∗
i )) + αkLi‖xc − x∗

i ‖2.

Since αk = α ∈
(
0, 1

L̃

]
, Li ≤ L̃ and µi ≥ µ̃, the above inequality implies that

‖xi[k + 1]− xc‖2 ≤ (1− αµ̃)‖x̃i[k]− xc‖2 + αL̃‖xc − x∗
i ‖2. (C.13)

Since the algorithm A satisfies the (xc, γ, {c[k]})-states contraction property given in (  5.8 ),

( C.13 ) becomes

‖xi[k + 1]− xc‖2 ≤ (1− αµ̃)
(√

γ max
vj∈VR

‖xj[k]− xc‖+ c[k]
)2

+ αL̃ max
vj∈VR

‖xc − x∗
j‖2,

which implies that

‖xi[k + 1]− xc‖ ≤
√
γ ·
√

1− αµ̃ max
vj∈VR

‖xj[k]− xc‖

+
√

1− αµ̃ c[k] +
√
αL̃ max

vj∈VR
‖xc − x∗

j‖.

Recall the definition of rc and β from ( 5.9 ) and (  5.11 ), respectively. Since the above inequality

holds for all vi ∈ VR, taking maximum over vi ∈ VR yields

max
vi∈VR

‖xi[k + 1]− xc‖ ≤ β
√
γ max

vi∈VR
‖xi[k]− xc‖+ βc[k] + rc

√
αL̃.
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Unfolding the recursive inequality above, we obtain that

max
vi∈VR

‖xi[k]− xc‖ ≤ (β√γ)k max
vi∈VR

‖xi[0]− xc‖

+ β
k−1∑
s=0

(β√γ)sc[k − s− 1] + rc

√
αL̃

k−1∑
s=0

(β√γ)s,

which completes the first part of the proof.

Consider the second part of the theorem. Since the algorithm A satisfies the (γ, α)-

reduction property, from Lemma  C.2.2 , we have that β√γ < 1. Considering the RHS of

( C.8 ), since limk→∞
∑k

s=0(β
√
γ)s is finite, using Corollary  C.1.3 , we have

lim
k→∞

[
rc

√
αL̃

k−1∑
s=0

(β√γ)s + β
k−1∑
s=0

(β√γ)sc[k − s− 1]

+ (β√γ)k max
vs∈VR

‖xs[0]− xc‖
]

= rc

√
αL̃

1− β√γ .

The result ( C.9 ) follows from taking lim supk on both sides of ( C.8 ) and then applying the

above equation.

Corollary C.2.3. Suppose Assumption  5.6.1 holds. If there exist constants xc ∈ Rd, γ ∈

R≥0 and ξ ∈ (0, 1)\{β√γ} such that an algorithm A in REDGRAF satisfies the (xc, γ, {c[k]})-

states contraction and (γ, α)-reduction properties with c[k] = O(ξk), then for all vi ∈ VR,

‖xi[k]− xc‖ ≤ R∗ +O
(
(max{β√γ, ξ})k

)
. (C.14)

Proof. Consider the second term on the RHS of ( C.8 ). Since c[k] = O(ξk), we obtain that

β
k−1∑
s=0

(β√γ)sc[k − s− 1] = O
(
ξk−1 ∑

s=0

(
β
√
γ

ξ

)s
)

= O
(

(β√γ)k − ξk

β
√
γ − ξ

)
= O

(
(max{β√γ, ξ})k

)
.

Using the above equation and the fact that rc

√
αL̃ ·∑k−1

s=0(β√γ)s ≤ R∗, we have that (  C.8 )

implies (  C.14 ).
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C.2.4 Proof of Theorem  5.6.5 

Proof of Theorem  5.6.5 . Suppose x is a point in Rd such that ‖x− xc‖ > L̃
µ̃
rc. In order to

conclude that x∗ ∈ B
(
xc,

L̃
µ̃
rc

)
, we will show that ∑vi∈VR∇fi(x) 6= 0.

In the first step, we will show that cos∠(∇fi(x),x − xc) > 0 for all vi ∈ VR. For a

regular agent vi ∈ VR, consider the angle between the vectors x− xc and x− x∗
i . Suppose

rc > 0; otherwise, we have that ∠(x−xc,x−x∗
i ) = 0. Using Lemma 9 in [  93 ], we can bound

the angle as follows:

∠(x−xc,x−x∗
i ) ≤ max

x0∈B(xc,rc)
∠(x−xc,x−x0) = arcsin

(
rc

‖x− xc‖

)
< arcsin

(
µ̃

L̃

)
. (C.15)

On the other hand, for a regular agent vi ∈ VR, since fi is µi-strongly convex, from (  C.5 ),

we have 〈∇fi(x),x− x∗
i 〉 ≥ µi‖x− x∗

i ‖2 which is equivalent to

‖∇fi(x)‖ cos∠(∇fi(x),x− x∗
i ) ≥ µi‖x− x∗

i ‖. (C.16)

Since fi has Li-Lipschitz gradient, from (  5.2 ), we have ‖∇fi(x)‖ ≤ Li‖x− x∗
i ‖. Substitute

this inequality into (  C.16 ) to obtain cos∠(∇fi(x),x− x∗
i ) ≥ µi

Li
≥ µ̃

L̃
which implies that

∠(∇fi(x),x− x∗
i ) ≤ arccos

(
µ̃

L̃

)
. (C.17)

Using ( C.15 ) and (  C.17 ), we can bound the angle between the vectors ∇fi(x) and x−xc as

follows:

∠(∇fi(x),x− xc) ≤ ∠(∇fi(x),x− x∗
i ) + ∠(x− xc,x− x∗

i )

< arccos
(
µ̃

L̃

)
+ arcsin

(
µ̃

L̃

)
= π

2 ,

where the first inequality is obtained from Corollary 12 in [ 57 ]. This means that 0 <

cos∠(∇fi(x),x− xc) as desired.
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In the second step, we will show that ‖∇fi(x)‖ > 0 for all vi ∈ VR. For a regular agent

vi ∈ VR, consider the lower bound of the gradient’s norm ‖∇fi(x)‖ in (  C.16 ) which implies

that

‖∇fi(x)‖ ≥ µi‖x− x∗
i ‖ ≥ µi

(
‖x− xc‖ − ‖x∗

i − xc‖
)
.

Since ‖x− xc‖ > L̃
µ̃
rc, the above inequality becomes

‖∇fi(x)‖ >
(
L̃

µ̃
max
vj∈VR

‖x∗
j − xc‖ − ‖x∗

i − xc‖
)
≥ 0,

where the second inequality is obtained by using L̃ ≥ µ̃.

In the last step, we will show that ∑vi∈VR∇fi(x) 6= 0. Consider the following inner

product

〈 ∑
vi∈VR

∇fi(x),x− xc

〉
= ‖x− xc‖

∑
vi∈VR

‖∇fi(x)‖ cos∠(∇fi(x),x− xc).

Since ‖∇fi(x)‖ > 0 and cos∠(∇fi(x),x−xc) > 0 for all vi ∈ VR, and ‖x−xc‖ > 0, we have

that
〈∑

vi∈VR∇fi(x),x − xc

〉
> 0. This implies that ∑vi∈VR∇fi(x) 6= 0 which completes

the first part of the proof.

For the second part of the theorem, in order to conclude that x∗ ∈ B(xc, R
∗), we will

show that L̃
µ̃
rc ≤ R∗ where R∗ is defined in (  5.12 ). Since γ ≥ 1, we have that

R∗ ≥ rc

√
αL̃

1−
√

1− αµ̃.

Multiplying 1 +
√

1− αµ̃ to both the numerator and denominator of the RHS of the above

inequality, we obtain that

R∗ ≥ rc

√√√√ L̃

µ̃

(
1√
αµ̃

+
√

1
αµ̃
− 1

)
.
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Since α ≤ 1
L̃

implies that 1
αµ̃
≥ L̃

µ̃
, we can bound R∗ as follows:

R∗ ≥ rc

√√√√L̃

µ̃

(√√√√ L̃

µ̃
+

√√√√ L̃

µ̃
− 1

)
= rc

(
L̃

µ̃
+

√√√√ L̃

µ̃

(
L̃

µ̃
− 1

))
.

Since L̃ ≥ µ̃, we obtain that R∗ ≥ L̃
µ̃
rc which completes the second part of the proof.

C.3 Proof of Consensus Results in Subsection  5.6.3 

C.3.1 Bound on Gradients

As we have claimed in the main text, the states contraction property (Definition  5.6.3 )

implies a bound on the gradient ‖gi[k]‖∞. The following lemma formally illustrates this fact.

Lemma C.3.1. Suppose Assumption  5.6.1 holds. If an algorithm A in REDGRAF satisfies the

(xc, γ, {c[k]})-states contraction property (for some xc ∈ Rd, γ ∈ R≥0, and {c[k]}k∈N ⊂ R)

and αk = α ∈
(
0, 1

L̃

]
then for all k ∈ N and vi ∈ VR,

‖gi[k]‖∞ ≤ L̃
√
γ

[
(β√γ)k max

vs∈VR
‖xs[0]− xc‖

+ β
k−1∑
s=0

(β√γ)sc[k − s− 1] + rc

√
αL̃

k−1∑
s=0

(β√γ)s

]
+ L̃c[k] + rcL̃, (C.18)

where rc and β are defined in ( 5.9 ) and ( 5.11 ), respectively. Furthermore, if A satisfies the

(γ, α)-reduction property, then it holds that for all vi ∈ VR,

lim sup
k

‖gi[k]‖∞ ≤ rcL̃

(
1 +

√
αγL̃

1− β√γ

)
. (C.19)

Proof. Consider a time-step k ∈ N, and a regular agent vi ∈ VR. We can write

‖x̃i[k]− x∗
i ‖ ≤ ‖x̃i[k]− xc‖+ ‖x∗

i − xc‖.
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Since the algorithm A satisfies the (xc, γ, {c[k]})-states contraction property, applying (  5.8 )

into the above inequality yields

‖x̃i[k]− x∗
i ‖ ≤

√
γ max

vj∈VR
‖xj[k]− xc‖+ c[k] + rc, (C.20)

where rc is defined in (  5.9 ). Since gi[k] = ∇fi(x̃i[k]), using Assumption  5.6.1 , we can write

‖gi[k]‖ = ‖∇fi(x̃i[k])−∇fi(x∗
i )‖ ≤ L̃‖x̃i[k]− x∗

i ‖.

Substituting (  C.20 ) into the above inequality and using the fact that ‖gi[k]‖∞ ≤ ‖gi[k]‖, we

obtain that

‖gi[k]‖∞ ≤ L̃
√
γ max

vj∈VR
‖xj[k]− xc‖+ L̃c[k] + rcL̃. (C.21)

Substituting (  C.8 ) from Theorem  5.6.4 into the above inequality yields ( C.18 ).

To show the second part of the lemma, taking lim supk to both sides of (  C.21 ), we have

that

lim sup
k
‖gi[k]‖∞ ≤ L̃

√
γ lim sup

k
max
vj∈VR

‖xj[k]− xc‖+ L̃ lim
k→∞

c[k] + rcL̃.

Using (  5.12 ) from Theorem  5.6.4 and limk→∞ c[k] = 0 yields the result ( C.19 ).

C.3.2 Proof of Theorem  5.6.6 

Here, we present a more general version of Theorem  5.6.6 which will be used to prove

Corollary  5.6.7 .

Theorem C.3.2 (Consensus). If an algorithm A in REDGRAF satisfies the

({W (`)[k]}, G)-mixing dynamics property (for some {W (`)[k]}k∈N, `∈[d] ⊂ S|VR| and G ∈ R≥0)

and αk = α for all k ∈ N, then there exist ρ ∈ R≥0 and λ ∈ (0, 1) such that for all k ∈ N

and vi, vj ∈ VR, it holds that

‖xi[k]− xj[k]‖ ≤ ρ
√
d

(
λk max

vr∈VR
‖xr[0]‖∞ + α

k−1∑
s=0

λk−s−1 max
vr∈VR

‖gr[s]‖∞

)
. (C.22)
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Furthermore, there exist ρ ∈ R≥0 and λ ∈ (0, 1) such that for all vi, vj ∈ VR, it holds that

lim sup
k
‖xi[k]− xj[k]‖ ≤ αρG

√
d

1− λ . (C.23)

Proof. Consider a time-step k ∈ Z+ and a dimension ` ∈ [d]. Since the algorithm A satisfies

the ({W (`)[k]}, G)-mixing dynamics property in ( 5.10 ), we have that

x(`)[k] = W (`)[k − 1]x(`)[k − 1]− αk−1g
(`)[k − 1]. (C.24)

Let Φ(`)[t, s] =


W (`)[t]W (`)[t− 1] · · ·W (`)[s] if t ≥ s,

I if t < s,

for s, t ∈ N. We can expand (  C.24 )

as follows:

x(`)[k] = Φ(`)[k − 1, 0]x(`)[0]−
k−1∑
s=0

αsΦ(`)[k − 1, s+ 1]g(`)[s]. (C.25)

Let q(`)(s) ∈ R|VR| be such that limt→∞ Φ(`)[t, s] = 1q(`)T [s], and let x̄(`)[k] = 1q(`)T [k]x(`)[k].

We can write

‖x(`)[k]− x̄(`)[k]‖∞ =
∥∥∥∥(I − 1q(`)T [k]

)
x(`)[k]

∥∥∥∥
∞
.

Applying (  C.25 ) to the above equation, we obtain that

‖x(`)[k]− x̄(`)[k]‖∞ ≤
∥∥∥Φ(`)[k − 1, 0]− 1q(`)T [0]

∥∥∥
∞
‖x(`)[0]‖∞

+
k−1∑
s=0

(
αs

∥∥∥Φ(`)[k − 1, s+ 1]− 1q(`)T [s+ 1]
∥∥∥

∞
‖g(`)[s]‖∞

)
. (C.26)

From Proposition 1 in [ 89 ], we have that there exist constants ρ′ ∈ R≥0 and λ ∈ (0, 1) such

that for all k > s ≥ 0, ∥∥∥∥Φ(`)[k − 1, s]− 1q(`)T [s]
∥∥∥∥

∞
≤ ρ′λk−s.

Thus, applying the above inequality, (  C.26 ) can be bounded as

‖x(`)[k]− x̄(`)[k]‖∞ ≤ ρ′λk‖x(`)[0]‖∞ +
k−1∑
s=0

αsρ
′λk−s−1‖g(`)[s]‖∞. (C.27)
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Since αs = α for all s ∈ N, and for s ∈ N, ` ∈ [d] and z(`)[s] = x(`)[s] or g(`)[s],

‖z(`)[s]‖∞ ≤ max
`∈[d]

max
vi∈VR

|z(`)
i [s]| = max

vi∈VR
‖zi[s]‖∞,

the inequality (  C.27 ) becomes

‖x(`)[k]− x̄(`)[k]‖∞ ≤ ρ′λk max
vi∈VR

‖xi[0]‖∞ + αρ′
k−1∑
s=0

λk−s−1 max
vi∈VR

‖gi[s]‖∞. (C.28)

Let x̄(`)[k] = q(`)T [k]x(`)[k]. For vi ∈ VR, we can write

‖xi[k]− x̄[k]‖ =
√∑

`∈[d]
|x(`)

i [k]− x̄(`)[k]|2 ≤
√∑

`∈[d]
‖x(`)[k]− x̄(`)[k]‖2

∞.

Using the above inequality, we have that for all vi, vj ∈ VR,

‖xi[k]− xj[k]‖ ≤ ‖xi[k]− x̄[k]‖+ ‖xj[k]− x̄[k]‖ ≤ 2
√∑

`∈[d]
‖x(`)[k]− x̄(`)[k]‖2

∞.

Substituting ( C.28 ) into the above inequality and letting ρ = 2ρ′, we obtain the result (  C.22 ).

Taking lim supk to both sides of ( C.22 ), we have

lim sup
k
‖xi[k]− xj[k]‖ ≤ αρ

√
d lim sup

k

k−1∑
s=0

λk−s−1 max
vr∈VR

‖gr[s]‖∞.

Since for all vr ∈ VR, we have lim supk ‖gr[k]‖∞ ≤ G from Definition  5.6.3 and 1
1−λ

=

limk→∞
∑k

s=0 λ
k, using Lemma  C.1.2 , the above inequality becomes (  C.23 ).

C.3.3 Proof of Corollary  5.6.7 

Proof of Corollary  5.6.7 . From the inequality ( C.19 ) in Lemma  C.3.1 , we have that the

algorithm A satisfies the ({W (`)[k]}, G)-mixing dynamics property with

G = rcL̃

(
1 +

√
αγL̃

1− β√γ

)
.
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Substituting G into ( C.23 ) in Theorem  5.6.6 yields the result ( 5.15 ).

To show the second part of the theorem, consider the expression in the square bracket of

( C.18 ). Since c[k] = O(ξk) and ξ ∈ (0, 1) \ {β√γ}, we have that

(β√γ)k max
vs∈VR

‖xs[0]− xc‖+ β
k−1∑
s=0

(β√γ)sc[k − s− 1] + rc

√
αL̃

k−1∑
s=0

(β√γ)s

≤ R∗ +O
(
(max{β√γ, ξ})k

)
,

where R∗ is defined in (  5.12 ). Substituting the above inequality into (  C.18 ), we obtain that

for all vi ∈ VR,

‖gi[k]‖∞ ≤ L̃
√
γ
[
R∗ +O

(
(max{β√γ, ξ})k

)]
+O(ξk) + rcL̃

= R∗L̃
√
γ + rcL̃+O

(
(max{β√γ, ξ})k

)
.

Substituting the above inequality into ( C.22 ) in Theorem  5.6.6 , we have that there exist

ρ ∈ R≥0 and λ ∈ (0, 1) such that for all vi, vj ∈ VR,

‖xi[k]− xj[k]‖ ≤ ρ
√
d

[
O(λk) + αL̃

1− λ(rc +R∗√γ)

+ α
k−1∑
s=0

λk−s−1O
(
(max{β√γ, ξ})s

)]
. (C.29)

If λ = max{β√γ, ξ}, we can replace λ in (  C.29 ) with λ′ = λ+ ε where ε ∈ (0, 1− λ). Thus,

without loss of generality, there exist ρ ∈ R≥0 and λ ∈ (0, 1) \ {max{β√γ, ξ}} such that

for all vi, vj ∈ VR, the inequality (  C.29 ) holds. Consider the last term of (  C.29 ). Since

λ 6= max{β√γ, ξ}, we have that

k−1∑
s=0

λk−s−1O
(
(max{β√γ, ξ})s

)
= O

(
(max{β√γ, ξ, λ})k

)
.

Substituting the above equality into ( C.29 ) yields the result (  5.16 ).
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C.4 Proof of Algorithms Results in Subsection  5.6.4 

C.4.1 Proof of Theorem  5.6.8 

Before proving Theorem  5.6.8 , we consider a property of SDMMFD (Algorithm  2 ) and

SDFD (Algorithm  3 ). Specifically, for SDMMFD and SDFD, since the dynamics of the

estimated auxiliary points {yi[k]}VR ⊂ Rd are independent of the dynamics of the estimated

solutions {xi[k]}VR ⊂ Rd, we restate the convergence results of the estimated auxiliary points

{yi[k]}VR from Proposition  4.4.1 .

Lemma C.4.1. Suppose the set of estimated auxiliary points {yi[k]}VR follow SDMMFD or

SDFD [ 93 ]. Suppose Assumption  5.6.2 hold, the graph G is (2F + 1)-robust, and the weights

w
(`)
ij [k] satisfy Assumption  5.6.3 . Then, there exists c1 ∈ R>0, c2 ∈ R≥0, and y[∞] ∈ Rd with

y(`)[∞] ∈
[

min
vi∈VR

y
(`)
i [k], max

vi∈VR
y

(`)
i [k]

]
(C.30)

for all k ∈ N and ` ∈ [d] such that for all vi ∈ VR, we have

‖yi[k]− y[∞]‖ < c1e
−c2k. (C.31)

Essentially, the lemma above shows that the estimated auxiliary points {yi[k]}VR con-

verge exponentially fast to a single point called y[∞] ∈ Rd.

We now provide a proof of Theorem  5.6.8 

Proof of Theorem  5.6.8 . We first show that each algorithm satisfies the states contraction

property with some particular quantities.

Consider a regular agent vi ∈ VR following SDMMFD or SDFD. From Lemma 2 in [ 93 ],

we have that

‖x̃i[k]− yi[k]‖ ≤ max
vj∈VR

‖xj[k]− yi[k]‖. (C.32)

From Lemma  C.4.1 , the limit point y[∞] ∈ Rd exists, and we can write

‖xj[k]− yi[k]‖ ≤ ‖xj[k]− y[∞]‖+ ‖y[∞]− yi[k]‖.
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Substitute the above inequality into ( C.32 ) to get

‖x̃i[k]− yi[k]‖ ≤ max
vj∈VR

‖xj[k]− y[∞]‖+ ‖y[∞]− yi[k]‖. (C.33)

Thus, we can write

‖x̃i[k]− y[∞]‖ ≤ ‖x̃i[k]− yi[k]‖+ ‖yi[k]− y[∞]‖

≤ max
vj∈VR

‖xj[k]− y[∞]‖+ 2‖yi[k]− y[∞]‖,

where the last inequality comes from substituting (  C.33 ). Let c1 ∈ R>0 and c2 ∈ R≥0 be the

constants given in Lemma  C.4.1 . By directly applying ( C.31 ) to ‖yi[k]−y[∞]‖ in the above

inequality, we conclude that the algorithms satisfy (y[∞], 1, {2c1e
−c2k})-states contraction

property.

Consider a regular agent vi ∈ VR following CWTM. Since vi has at least 2F + 1 in-

neighbors, from Proposition 5.1 in [  30 ], we have

x̃
(`)
i [k] =

∑
vj∈(N in

i ∩VR)∪{vi}
w̃

(`)
ij [k]x(`)

j [k],

where ∑vj∈(N in
i ∩VR)∪{vi} w̃

(`)
ij [k] = 1. Thus, we can write

|x̃(`)
i [k]− c∗(`)| ≤

∑
vj∈(N in

i ∩VR)∪{vi}
w̃

(`)
ij [k] |x(`)

j [k]− c∗(`)| ≤ max
vj∈VR

|x(`)
j [k]− c∗(`)|.

Using the above inequality, we obtain that

‖x̃i[k]− c∗‖2 =
∑
`∈[d]
|x̃(`)

i [k]− c∗(`)|2 ≤
∑
`∈[d]

max
vj∈VR

|x(`)
j [k]− c∗(`)|2 ≤

∑
`∈[d]

max
vj∈VR

‖xj[k]− c∗‖2.

Thus, we have that ‖x̃i[k] − c∗‖ ≤
√
d maxvj∈VR ‖xj[k] − c∗‖ which corresponds to the

(c∗, d, {0[k]})-states contraction property in Definition  5.6.1 .
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Finally, consider a regular agent vi ∈ VR following RVO. From ( 5.7 ), we can write

x̃i[k]− c∗ =
∑

vj∈(N in
i ∩VR)∪{vi}

wij[k] (xj[k]− c∗).

Since ∑vj∈(N in
i ∩VR)∪{vi} wij[k] = 1, we have

‖x̃i[k]− c∗‖ ≤
∑

vj∈(N in
i ∩VR)∪{vi}

wij[k] ‖xj[k]− c∗‖ ≤ max
vj∈VR

‖xj[k]− c∗‖,

which corresponds to the (c∗, 1, {0[k]})-states contraction property in Definition  5.6.1 .

Next, we show that SDMMFD, CWTM and RVO satisfy the mixing dynamics prop-

erty with some particular quantities. To this end, we need to show that there exists

{W (`)[k]}k∈N,`∈[d] ⊂ S|VR| such that the state dynamics of each algorithm can be written

as (  5.10 ), the sequences of graphs {G(W (`)[k])}k∈N are repeatedly jointly rooted for all

` ∈ [d], and there exists G ∈ R≥0 such that

lim sup
k
‖gi[k]‖∞ ≤ G for all vi ∈ VR.

For SDMMFD, since in the dist_filter step, each regular agent removes at most F

states and in the full_mm_filter step, each regular agent removes at most 2dF states, from

Proposition 5.1 in [ 30 ], for all k ∈ N, ` ∈ [d] and vi ∈ VR, the dynamics can be rewritten as

x
(`)
i [k + 1] =

∑
vj∈(N in

i ∩VR)∪{vi}
w̃

(`)
ij [k] x(`)

j [k]− αk g
(`)
i [k],

where w̃(`)
ii [k] +∑

vj∈N in
i ∩VR w̃

(`)
x,ij[k] = 1, and w̃(`)

ii [k] > ω and at least |N in
i | − (2d+ 1)F of the

other weights are lower bounded by ω
2 (where ω is defined in Assumption  5.6.3 ). For k ∈ N,

` ∈ [d] and vi, vj ∈ VR, let

(W̃ (`)[k])ij =


w̃

(`)
ij [k] if vj ∈ (N in

i ∩ VR) ∪ {vi},

0 otherwise,
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and we can write the dynamics of all regular agents as

x(`)[k + 1] = W̃
(`)[k]x(`)[k]− αkg(`)[k]. (C.34)

Following the proof of Theorem 6.1 in [ 30 ], we have that each regular agent vi ∈ VR removes

at most (2d + 1)F incoming edges (including all incoming edges from Byzantine agents).

Since the graph G is ((2d + 1)F + 1)-robust, applying Lemma  C.1.1 , we can conclude that

the subgraph G(W̃ (`)[k]) is rooted for all k ∈ N and ` ∈ [d] (which implies that the sequence{
G(W̃ (`)[k])

}
k∈N

is repeatedly jointly rooted for all ` ∈ [d]). Since SDMMFD satisfies the

states contraction property with γ = 1, substituting γ = 1 into the inequality (  C.19 ) in

Lemma  C.3.1 , we obtain the mixing dynamics result.

For CWTM, by noting that the graph G is (2F+1)-robust and in the cw_mm_filter step,

each regular agent removes at most 2F states, we can use the same steps as in SDMMFD

case to show that there exists {W̃ (`)[k]}k∈N,`∈[d] such that the dynamics of all regular agents

can be written as (  C.34 ) and G(W̃ (`)[k]) is rooted for all k ∈ N and ` ∈ [d]. Since CWTM

satisfies the states contraction property with γ = d, substituting γ = d into the inequality

( C.19 ) in Lemma  C.3.1 , we obtain the mixing dynamics result.

For RVO, from the safe_point step, for all k ∈ N and vi ∈ VR, we can write

xi[k + 1] =
∑

vj∈(N in
i ∩VR)∪{vi}

wij[k]xj[k]− αkgi[k],

where wij[k] is defined as in (  5.7 ). For k ∈ N and vi, vj ∈ VR, let

(W [k])ij =


wij[k] if vj ∈ (N in

i ∩ VR) ∪ {vi},

0 otherwise,

and we can write the dynamics of all regular agents as ( 5.10 ) using the above W [k] for all

` ∈ [d]. Since p(d, F ) > F from the definition of p in Section  5.6.4 , the subgraph G(W [k]) is

rooted for all k ∈ N (by Lemma  C.1.1 ). Since RVO satisfies the states contraction property
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with γ = 1, substituting γ = 1 into the inequality (  C.19 ) in Lemma  C.3.1 , we obtain the

mixing dynamics result.

C.4.2 Proof of Lemma  5.6.9 

Proof of Lemma  5.6.9 . First, consider the case where the regular agents follow SDMMFD

or SDFD. From ( C.30 ), we have that for all ` ∈ [d],

y(`)[∞] ∈
[

min
vi∈VR

y
(`)
i [0], max

vi∈VR
y

(`)
i [0]

]
. (C.35)

Since in the initialization step, we set yi[0] = x̂∗
i for all vi ∈ VR, we can rewrite ( C.35 ) as

y(`)[∞] ∈
[

min
vi∈VR

x̂
∗(`)
i , max

vi∈VR
x̂

∗(`)
i

]
.

Using the above expression, we can write

y(`)[∞]− c∗(`) ≤ max
vi∈VR

x̂
∗(`)
i − c∗(`).

Let vi′ ∈ VR be an agent such that x̂∗(`)
i′ = maxvi∈VR x̂

∗(`)
i . The above inequality becomes

y(`)[∞]− c∗(`) ≤
(
x̂

∗(`)
i′ − x∗(`)

i′

)
+
(
x

∗(`)
i′ − c∗(`)

)
.

Since ‖x̂∗
i′ − x∗

i′‖∞ ≤ ε∗ and ‖x∗
i′ − c∗‖ ≤ r∗ from the definition of c∗ and r∗, the above

inequality becomes

|y(`)[∞]− c∗(`)| ≤
∣∣∣x̂∗(`)

i′ − x∗(`)
i′

∣∣∣+ ∣∣∣x∗(`)
i′ − c∗(`)

∣∣∣ ≤ ε∗ + r∗.

Applying the above inequality, we have that

‖y[∞]− c∗‖2 =
∑
`∈[d]
|y(`)[∞]− c∗(`)|2 ≤ d(r∗ + ε∗)2.
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Consider a regular agent vi ∈ VR. Using the above inequality and the definition of c∗ and

r∗, we obtain that

‖x∗
i − y[∞]‖ ≤ ‖x∗

i − c∗‖+ ‖c∗ − y[∞]‖ ≤
√
d(r∗ + ε∗) + r∗.

The result follows from noting that xc = y[∞] for SDMMFD and SDFD.

Now, consider the case where the regular agents follow CWTM or RVO. Since in this

case, xc = c∗, the result directly follows from the definition of c∗ and r∗.
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