
LEVERAGING MULTIMODAL SENSING FOR ENHANCING
THE SECURITY AND PRIVACY OF MOBILE SYSTEMS

by

Habiba Farrukh

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

August 2023

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Z. Berkay Celik, Chair

Department of Computer Science

Dr. Antonio Bianchi

Department of Computer Science

Dr. Dongyan Xu

Department of Computer Science

Dr. Sonia Fahmy

Department of Computer Science

Dr. Chunyi Peng

Department of Computer Science

Approved by:

Dr. Kihong Park, Graduate Study Committee Chair

2

To friends and family, both given and chosen.

3

ACKNOWLEDGMENTS

I started my graduate school in 2017 when I traveled outside my home country for the

first time to pursue a Ph.D. in Computer Science at Purdue University. As I write this thesis,

I am overwhelmed with a profound sense of gratitude and humility. I learned a lot of lessons

during my Ph.D. that shaped me into who I am today, and I have several individuals and

entities to thank for supporting me through this challenging but rewarding journey.

First and foremost, my deepest gratitude goes to my advisor, Prof. Z. Berkay Celik. His

unwavering support during my Ph.D. was instrumental in my growth as a researcher. Berkay

not only taught me the art of effective research and communication but also inspired me to

become an empathetic and thoughtful academic. Working alongside him, I gained numerous

opportunities to collaborate with fellow researchers, honing my mentoring and leadership

skills. The values of ethics and professionalism that he instilled in me have transformed my

perspective on research and life, helping me become a better scholar. I am truly honored to

have been advised by him, and I am committed to passing on these invaluable lessons to

future generations of academics.

I am also extremely thankful to Prof. Antonio Bianchi for his guidance, invaluable

comments, and positive attitude toward my research work. He has taught me a great deal

about mobile security and provided me with insightful feedback for my projects. I also certainly

appreciated his knowledge of US immigration law when navigating through visa issues. I

extend my heartfelt thanks to Prof. Dongyan Xu and Prof. Sonia Fahmy for serving on my

thesis committee, sharing their invaluable feedback, and supporting me in my academic job

search. I would also like to thank Prof. Chunyi Peng for serving on my examining committee.

Additionally, I am indebted to Dr. Roopsha Samanta for being my initial advisor. When

I joined Purdue CS, Dr. Samanta was extremely kind in helping me settle at Purdue and

navigate through graduate school.

This thesis would not have been possible without the help and support of Dr. He Wang.

He introduced me to the field of mobile sensing and taught me several fundamental concepts

in computer vision and signal processing that helped me immensely in my research. His

feedback on my initial projects greatly improved my critical thinking and helped me learn

4

from my mistakes. I also learned to tackle research problems with perseverance and patience

from him. I am forever grateful to him.

I am deeply grateful to Purdue University and the Department of Computer Science for

supporting me during my Ph.D. I made several memories in the Lawson building over the last

six years that I will cherish forever. I am especially thankful to the staff members at Purdue

CS who continue to help grad students through all academic/non-academic problems and try

their best to provide a welcoming environment to the students during stressful times. Some

of my fondest memories from my Ph.D. journey are associated with the weekly graduate

social hours, and I am forever grateful to the Purdue CS graduate office for organizing them.

I am also thankful for the friendship and encouragement that I received from several of my

friends at Purdue, including Adil Ahmad, Haleema Sadia, Meher Alam, Anna Mirza, Dana

El Rushaidat, Pavani Guttula, Gowtham Kaki, Vikram Ravindra, Negin Karisani, Iqra Nazir,

Mah Gull Syed, Neha Zaidi, Roshan Salim, Bilal Ahmed, Muddassar Hussain, Kamran Khalil,

Ans Fida, Muhammad Haseeb Malik, Qudsia Rizvi, Nouraldin Jaber, Joe Eappen, Gregory

Essertel, Yi Sun, Lu Yan, Pedro da Costa Abreu, Kevin and Amy Smith, and Samantha and

Andrew Hansford.

At Purdue, I have been fortunate to be a part of a vibrant research community in the

PurSec Lab. I express my gratitude to all the lab members for their support, encouragement,

and camaraderie. I will fondly remember our weekly group meetings (with and without pizza

:)) with all the presentations and discussions. The material in this dissertation is spawned

from several research projects, none of which would be possible if not for the help I received

from my exceptionally talented labmates and collaborators. These collaborators include

Siyuan Cao, Reham Aburas, Ozgur Ozmen, Arjun Arunaslam, Doguhan Yeke, Abdullah

Imran, Muhammad Ibrahim, Faik Kerem Ors, Chandrika Mukherjee, Ruoyu Song, Raymond

Muller, Prashast Srivastava, Jianliang Wu, Khaled Serag, Kyungtae Kim, Hyungsub Kim,

Arslan Khan, Siddharth Muralee, Ashwin Nambiar, Zeyu Lei, and Abdulellah Alsaheel. They

not only taught me new perspectives in problem-solving but also created a friendly lab

environment that made research an enjoyable and enriching experience. I particularly want

to thank Siyuan since she was the first to help me navigate research, and her examples

significantly improved my writing and development skills. I am grateful for her mentorship,

5

friendship, and kindness during my initial years. I am also indebted to Reham for being a

constant support throughout this challenging Ph.D. journey. We sat next to each other in

the lab for five years and experienced the highs and lows of life together. I will always cherish

her friendship, support, and encouragement. A special shoutout also goes to Arjun for being

the kindest and caring labmate, collaborator, and friend. I will always remember Arjun’s

kindness and support during my academic job search and beyond.

Before joining Purdue, I was an undergraduate student at the Lahore University of

Management Sciences (LUMS), where I had the privilege of being mentored by world-class

professors, without whose encouragement perhaps I would not have dreamt of pursuing a

doctorate. I am deeply indebted to Prof. Junaid Haroon Siddiqui, Prof. Ihsan Ayyub Qazi,

and Prof. Fareed Zaffar. They introduced me to the concept of conducting high-quality

research, and their contagious passion for teaching and mentoring significantly shaped my

career. I hope, someday, I can change a student’s life the way they changed mine.

I am incredibly lucky to have made lasting friendships during my undergraduate and high

school. Over the years, it is to these friends that I have often turned to during both good and

tough times. To name a few, I am forever grateful to Shalan Naqvi, Mahir Latif, Shabhaz

Gardezi, Ubaid Ullah Hafeez, Izza Tariq, Murayyiam Parvez, Aynoor Saleem, Rahma Nawab,

Asher Anjum, Tayyab Hussain, Aqib Nisar, Aiman Awan, and Zammad Idrees.

I am grateful to the Greater Lafayette community with whom I shared six years of my

life. I am happy to call this beautiful and peaceful town my home, and I will always cherish

my memories of it.

Lastly, my deepest gratitude goes to my parents and brother for their unconditional

love and unwavering support. They have always put my needs before theirs, supporting me

through the highs and lows of life. I am forever indebted to them and strive to make them

proud and content. Above all, I owe an immeasurable debt of gratitude to my partner, whose

unconditional love, tireless support, and constant encouragement made all the work described

in this thesis possible.

6

TABLE OF CONTENTS

LIST OF TABLES . 11

LIST OF FIGURES . 12

ABSTRACT . 16

1 INTRODUCTION . 17

1.1 Thesis Contributions . 20

2 S3:SIDE-CHANNEL ATTACK ON STYLUS PENCIL THROUGH SENSORS . . 24

2.1 Introduction . 24

2.2 Threat Model . 28

2.3 Pencil Tracking: A First Look . 29

2.3.1 2D Magnetic Map . 30

2.3.2 2D Tracking . 30

2.4 System Architecture . 32

2.5 System Design . 33

2.5.1 Pencil Magnetic Map Generation . 34

2.5.2 Pencil Tracking . 38

2.5.3 Stroke Detection . 43

2.6 Evaluation . 44

2.6.1 Data Collection and Implementation 44

2.6.2 Performance Results . 46

2.7 Limitations and Discussion . 55

2.8 Related Work . 56

2.9 Details of the ML Models . 57

3 LOCIN: INFERRING SEMANTIC LOCATION FROM SPATIAL MAPS IN

MIXED REALITY . 59

3.1 Introduction . 59

7

3.2 Background . 62

3.3 Problem Statement and Threat Model . 64

3.3.1 Motivation . 64

3.3.2 Problem Statement . 65

3.3.3 Threat Model . 67

3.3.4 Design Challenges . 67

3.4 LocIn Attack Overview . 69

3.5 LocIn Design . 70

3.5.1 Spatial Map Preprocessing . 70

3.5.2 Spatial Understanding Encoder . 71

3.5.3 Multi-Task Location Decoder . 73

3D Object Decoder . 75

3D Semantic Decoder . 78

3D Location Classifier . 79

3.6 Implementation . 80

3.7 Evaluation . 81

3.7.1 Evaluation Setup and Datasets . 81

3.7.2 Overall Effectiveness (RQ1) . 84

3.7.3 Effectiveness of Decoders (RQ2) . 86

3.7.4 Parameter Analysis . 88

3.7.5 Generalizability of LocIn (RQ5) . 90

3.7.6 Comparison with Baseline (RQ6) . 91

3.7.7 Comparison with Prior Work (RQ7) 92

3.8 Limitations and Discussion . 93

3.9 Related Work . 95

3.10 Labeling ARKitScenes Dataset . 97

4 FACEREVELIO: A FACE LIVENESS DETECTION SYSTEM FOR SMART-

PHONES WITH A SINGLE FRONT CAMERA 99

4.1 Introduction . 99

8

4.2 Background . 101

4.3 FaceRevelio System Overview . 103

4.4 FaceRevelio Attack Model . 104

4.5 FaceRevelio System Design . 105

4.5.1 Light Passcode Generator . 105

Random Passcode Generator . 105

4.5.2 Video Preprocessing and Filtering . 107

4.5.3 Image Recovery . 108

4.5.4 Photometric Stereo and 3D Reconstruction 112

4.5.5 Liveness Detection . 114

4.6 Evaluation . 118

4.6.1 Implementation and Data Collection 118

4.6.2 Performance Results . 119

4.7 Related Work . 124

4.8 Discussion . 126

5 ONE KEY TO RULE THEM ALL: SECURE GROUP PAIRING FOR HETERO-

GENEOUS IOT DEVICES . 127

5.1 Introduction . 127

5.2 Problem Statement . 130

5.2.1 Design Requirements and Challenges 132

5.2.2 Threat Model . 133

5.3 IoTCupid . 134

5.3.1 System Overview . 134

5.3.2 Event Detection . 136

Sensor Data Extraction and Pre-processing 136

Event Signal Detection . 136

5.3.3 Context Extraction . 139

Event Clustering . 139

Context Evidence Generation . 140

9

5.3.4 Establishing Group Keys from Evidences 141

Design Space Exploration . 142

Our Group Key Establishment Protocol 143

5.4 Implementation . 147

5.5 Evaluation . 148

5.5.1 Event Detection Performance . 150

5.5.2 Context Extraction and Key Agreement 154

5.5.3 Security Analysis . 157

5.5.4 Performance Evaluation . 158

5.5.5 Comparison with Prior Work . 160

5.6 Limitations and Discussion . 162

5.7 Related Work . 164

5.8 Sensor Data Pre-processing . 165

5.9 Partitioned GPAKE Security Analysis . 166

6 CONCLUSIONS AND FUTURE WORK . 169

6.1 Future Research Directions . 170

6.1.1 Privacy Preserving Sensing Systems 170

6.1.2 Cross-Device Security and Privacy 171

6.1.3 Digital Safety for Diverse Populations 171

REFERENCES . 173

A List of Publications . 194

A.1 Conference Publications . 194

A.2 Workshop/Symposium Publications . 195

10

LIST OF TABLES

2.1 S3’s detection accuracy in different environmental settings. 53

3.1 Details of the evaluation dataset. 82

3.2 LocIn’s overall attack effectiveness. 84

3.3 Effect of individual decoders in LocIn’s multi-task decoder on its performance. . 86

3.4 LocIn’s results with varying sparsity of spatial map. 88

3.5 LocIn’s performance on Holo3DMaps dataset. 90

3.6 LocIn’s comparison with baseline approaches. 92

3.7 Location type to object mapping. 97

4.1 Summary of existing face liveness detection methods 123

5.1 Commonly occurring events in IoT environments and the sensors impacted by
these events. 131

5.2 Our group key establishment protocol. 141

5.3 Comparison of group key exchange approaches. 143

5.4 Events detected by sensors in IoT environments. 150

5.5 Smart home event detection results. 151

5.6 Smart office event detection results. 152

5.7 Event detection results for malicious devices. 157

5.8 Comparison of IoTCupid with context-aware pairing schemes for IoT devices. . 165

11

LIST OF FIGURES

2.1 Example of magnetometer readings when a user writes on the iPad using Apple
Pencil. 25

2.2 The magnetometer readings change when a user writes different characters on the
screen. 26

2.3 The magnetometer readings change when a user writes the same character on the
screen. 26

2.4 2D magnetic map: the magnetic impact of the Pencil at different locations on the
screen in (a) X, (b) Y , and (c) Z dimensions. 31

2.5 Tracking results from a simple implementation of particle filter. 31

2.6 System architecture. 32

2.7 (a) Screen and Pencil coordinate systems and the location of the magnetometer.
(b) An example that the location of the magnetometer in the Pencil coordinate
system is the same, even when the Pencil’s locations and orientations are different.
(c) Setup for tracking the Pencil orientation. 34

2.8 Pencil magnetic map for z = −5mm (left), z = 0mm (center), and z = 5mm
(right), before (top) and after (bottom) optimization. 37

2.9 Tracking results without (a) and with (b) writing behavior model. 41

2.10 (a-d) shows how adaptive particle resampling chooses the number of particles over
time. (e-h) show the estimation of Pencil’s location when history of particles is used. 42

2.11 Stroke detection to determine the beginning and end of a stroke. 44

2.12 Overall accuracy of the correctly guessed letters, numbers and shapes in 1, 2 and
3 guesses. 47

2.13 Tracking result examples: (a) letters, (b) numbers, and (c) shapes. 47

2.14 Accuracy of the first guess for (a) each letter, (b) each number, and (c) each shape. 48

2.15 S3’s accuracy in detecting 3 to 6 letter words. 49

2.16 Examples of tracking results for the words. 50

2.17 Accuracy of detecting letters, shapes, and numbers across different locations on
the iPad screen. Grid 1, 2, and 3 are the left, center, and right part of the input
region. 51

2.18 (a) Detection accuracy of letters, shapes, and numbers for different users. (b)
Distribution of the altitude and (c) azimuth angles for the strokes written on the
screen. 52

12

2.19 Accuracy of the correctly guessed letters, numbers and shapes in 1, 2 and 3 guesses
when the user is holding the iPad in hand (a) while sitting, (b) while standing,
(c) while laying down, and (d) while walking. 52

3.1 An example of a spatial map captured with an MR device in an office (a) without
and (b) with color. 63

3.2 A malicious MR application accesses the 3D spatial map of a user’s environment
to integrate virtual content. The app can exploit this map to infer the user’s
location. 66

3.3 Overview of LocIn attack. 69

3.4 LocIn’s spatial understanding encoder architecture based on a hierarchical neural
network (PointNet++). 71

3.5 LocIn’s object decoder architecture with a deep Hough voting, object proposal,
and classification module. 75

3.6 An illustration of (a) object detection and (b) semantic segmentation output. The
color in (b) represents the semantic label for points in that region. 77

3.7 LocIn’s semantic decoder consists of upsampling and PointNet layers that generate
point-wise semantic labels. 78

3.8 Distribution of the indoor location types across (a) ScanNet and (b) ARKitScenes
datasets. 82

3.9 LocIn’s confusion matrix on (a) ScanNet and (b) ARKitScenes dataset. 84

3.10 Examples of spatial maps of the “hallway” location type misclassified by LocIn. 85

3.11 LocIn’s performance with varying map size. 89

3.12 LocIn’s performance with varying noise levels. 94

4.1 System overview . 103

4.2 An example of 3D reconstruction using four basic light patterns displayed on four
quarters of the screen. 105

4.3 An example of a random passcode. The top row shows the four random patterns
in the passcode before and after low-pass filtering and the final patterns after
applying the Gram-Schmidt process to the filtered pattern. The bottom row shows
the FFT of these patterns before and after applying the Gram-Schmidt process.
The frequency bound still holds after applying the Gram-Schmidt process. . . . 106

4.4 The recovered stereo images corresponding to the four patterns in the passcode.
The bottom row shows a binary representation to emphasize the differences in
these stereo images. 112

13

4.5 Normal map calculation (left) shows 2D triangulated face mesh generated by
using facial landmarks. (right) shows the X, Y , and Z components of the normal
map generated from Algorithm 2 . 114

4.6 Examples of 3D reconstruction from human faces. Side and top views are shown. 114

4.7 Examples of 3D reconstruction from 2D printed photographs. Side and top views
are shown. 115

4.8 Architecture of the Siamese neural network. One of the twin neural networks takes
a known human depth map as input while the other is passed the candidate 3D
reconstruction. 115

4.9 Video Replay Attack: (left) shows the distribution of correlation between recorded
passcodes from human face and the original passcode. (right) shows the percentage
of passcodes which have a correlation with another random passcode higher than
a threshold for different thresholds. 116

4.10 ROC curve for detecting photo attack in dark and daylight setting with a passcode
of 1s. The detection rate is 99.7 and 99.3% when true accept rate is 98% and
97.7% for the two settings respectively. 119

4.11 Distribution of the correlation between the passcode on the phone and the camera
response from real human and video attack combined for dark and daylight setting. 120

4.12 Processing time of the different modules of the system for a passcode of 1s duration. 120

4.13 ROC curve for passcode durations of 1, 2, and 3 seconds in dark (left) and daylight
(right) settings. 121

4.14 Distribution of the correlation between passcode on the phone and the camera
response from real human and video attack for 2s (left) and 3s (right) long passcodes. 122

4.15 Top row shows images chosen as background for the light passcode. Bottom row
shows what the passcode looks like with an image as background 123

5.1 An illustration of how common events sensed by different sensors can be used for
device pairing. 130

5.2 Overview of IoTCupid’s architecture. 135

5.3 Signal detection using lower (TL) and upper (TU) thresholds. (a) shows short
discontinuities between detected signals aggregated by our approach in (b). . . . 137

5.4 (a) Raw sensor data collected from a temperature sensor. (b) Absolute of the first
derivative of the temperature data with upper and lower thresholds. 138

5.5 Comparison of event clustering through K-Means and Fuzzy C-Means algorithms. 140

5.6 IoT deployments in (a) a smart home and (b) office. 149

5.7 (a) Precision and (b) recall with varying distance between sensors and the event
sources. 153

14

5.8 (a) Precision and (b) recall with varying number of events used for sensor calibra-
tion. 153

5.9 CDF of inter-event timings for (a) smart home’s door events, (b) smart office’s
door, and (c) coffee events. 155

5.10 # of matching inter-event timings for (a) smart home’s door events, (b) smart
office’s door, and (c) coffee machine events with K-Means and fuzzy C-Means
clustering. 155

5.11 Key establishment time overhead with (a) varying number of devices when number
of event types is 4, (b) varying number of event types when number of devices is 5. 159

5.12 (a) Encryption and (b) communication cost with IoTCupid’s group keys and
Perceptio’s individual keys. 160

5.13 Sensor data (a) before and (b) after pre-processing. 166

15

ABSTRACT

Mobile systems, such as smartphones, wearables (e.g., smartwatches, AR/VR headsets),

and IoT devices, have come a long way from being just a method of communication to

sophisticated sensing devices that monitor and control several aspects of our lives. These

devices have enabled several useful applications in a wide range of domains ranging from

healthcare and finance to energy and agriculture industries. While such advancement has

enabled applications in several aspects of human life, it has also made these devices an

interesting target for adversaries.

In this dissertation, I specifically focus on how the various sensors on mobile devices can

be exploited by adversaries to violate users’ privacy and present methods to use sensors

to improve the security of these devices. My thesis posits that multi-modal sensing can be

leveraged to enhance the security and privacy of mobile systems.

In this, first, I describe my work demonstrating that human interaction with mobile devices

and their accessories (e.g., stylus pencils) generates identifiable patterns in permissionless

mobile sensors’ data, revealing sensitive information about users. Specifically, I developed S3

to show how embedded magnets in stylus pencils impact the mobile magnetometer sensor

and can be exploited to infer a users incredibly private handwriting. Then, I designed LocIn

to infer a users indoor semantic location from 3D spatial data collected by mixed reality

devices through LiDAR and depth sensors. These works highlight new privacy issues due to

advanced sensors on emerging commodity devices.

Second, I present my work that characterizes the threats against smartphone authentication

and IoT device pairing and proposes usable and secure methods to protect against these threats.

I developed two systems, FaceRevelio and IoTCupid, to enable reliable and secure user

and device authentication, respectively, to protect users’ private information (e.g., contacts,

messages, credit card details) on commodity mobile and allow secure communication between

IoT devices. These works enable usable authentication on diverse mobile and IoT devices

and eliminate the dependency on sophisticated hardware for user-friendly authentication.

16

1. INTRODUCTION

Mobile systems, including smartphones, wearables, AR/VR headsets, and Internet of Things

(IoT) devices, have evolved significantly over the years. They have transformed from being

a simple source of communication into advanced sensing devices that play a crucial role in

monitoring and managing various aspects of our daily lives. With the ever-increasing storage

capacities of mobile devices, more and more sensitive information in the form of messages,

photos, bank accounts and more find its place on these devices. The continuous improvements

in cellular communication and wireless networking have pushed mobile devices from being

a simple two-way communication channel to being GPS navigators, browsers, personal

assistants, and even handheld gaming consoles. A lot of these additional functionalities can

be attributed to the availability of several mobile sensors incorporated in these devices. For

example, today’s smartphones come embedded with 14 sensors including but not limited

to accelerometer, gyroscope, magnetometer, microphone, and ambient light sensor. The

data from these sensors has enabled a vast variety of applications in mobile health, context

awareness, activity tracking, gaming, etc. Although these applications have increased the

overall usability of these devices, they also leak information about aspects of users’ activities

that might be considered private.

The security and privacy implications of unauthorized access to users’ personal information,

habits, behaviors, and preferences through sensor data have long been a significant concern [1 ,

 2]. Mobile operating systems like Android and iOS have implemented permission systems that

require users to explicitly grant access to sensitive data, such as GPS locations, microphones,

and camera recordings, to applications. However, the regulation of data from more generic

sensors like the magnetometer, accelerometer, and gyroscope is less stringent, allowing

applications to access this data without users’ permission. This unmonitored access to sensor

data has opened doors to a variety of side-channel attacks on mobile devices.

Previous research has highlighted the security and privacy risks associated with appli-

cations accessing various permission-less sensors e.g., motion sensors. These studies have

proposed attacks aimed at inferring users’ privacy-sensitive information, including touch

actions and keystrokes [3 – 5], passwords and PIN codes [4 , 6], and application and webpage

17

fingerprinting [7 , 8]. Unfortunately, side-channel attacks remain a significant concern for both

users and developers as software updates and new devices are continually introduced to the

market. For instance, in iOS, despite restrictions on apps’ activity in the background since iOS

5, an application can stay active in the background and continuously access motion sensors’

data if it performs specific tasks such as playing audio, receiving updates from a server, and

using location services. Given this, an adversary can easily mimic a benign legitimate app

such as a fitness and activity tracker to stay active in the background to collect motion

data and track a user’s activity and behavior. Similarly, modern mixed reality headsets

(e.g., HoloLens and Oculus) are equipped with specialized depth sensors that continuously

build high-quality maps of users’ environment, revealing sensitive information about users and

their surroundings. Thus, this ongoing threat underscores the need for careful investigation of

the impact of user interaction with mobile devices and their accessories on mobile sensors and

the methods that allow adversaries to exploit sensor data for inferring private information.

In tandem, the existence of vast amounts of privacy-sensitive information on mobile and

IoT devices and the potential privacy leakages through sensors demand an investigation of

effective measures to mitigate the risks posed by unauthorized access to sensor data. Securing

this data involves two main challenges. First, the identity of the user operating and interacting

with the device must be authenticated. For this, access to modern devices is secured by

enabling different authentication solutions, such as PINs/passwords, face recognition, and

fingerprint. In recent years, face authentication on mobile devices has become a popular

alternative to traditional password-based protection mechanisms due to the ease with which

face can be captured with the front camera on these devices and highly accurate face

recognition systems. However, most of the existing systems either rely on 2D face recognition

systems that are vulnerable to spoofing attacks or employ specialized hardware (e.g., to verify

the liveness of the subjects [9]. Although such specialized hardware increases the security

guarantee provided by these systems, deployment of such specialized hardware components,

adding a notch on the screen, is against the current bezel-less trend in the smartphone market

and limits its adoption to several existing devices. Therefore, an ideal liveness detection

should not rely on any extra hardware components or user involvement and still provide a

high-security guarantee.

18

Second, secure communication channels need to be established between mobile and IoT

devices to ensure the confidentiality and security of data exchanges between devices [10].

Existing approaches for establishing these secure communication channels i.e., pairing methods,

can be mainly categorized into two approaches (1) human-in-the-loop based approaches and (2)

context-based solutions. Human-in-the-loop-based pairing approaches require user involvement

to perform physical contact between devices or specific actions such as entering passwords,

scanning QR codes, or manual interactions [11 , 12]. However, these approaches have usability

and scalability limitations, especially with an increasing number of devices. To overcome

these limitations, context-based pairing schemes have gained interest. These schemes use

co-located sensors to establish shared keys based on observed events [13 , 14]. However, they

are limited to devices with homogeneous sensors of the same modality [10 , 15]. To address

these limitations, there is a need for pairing schemes that support devices with heterogeneous

sensors. These schemes would enable secure communication based on shared context without

extensive user involvement or identical sensor capabilities across devices.

Given the imminent need for protecting users’ privacy and the “double-edged sword”

nature of the sensor data, this dissertation focuses on two important questions that naturally

arise: (1) What private information can possibly be inferred from mobile sensor data? and

(2) How can we protect mobile systems from unauthorized access to users’ data? To answer

these two questions, my thesis is:

By combining signal processing, computer vision, and machine learning methods,

multi-modal sensing can be leveraged to investigate privacy threats and design

usable and secure methods for modern mobile and IoT device authentication.

The first half of this dissertation unveils privacy leakages through mobile sensors using

a combination of signal processing, computer vision, and machine learning methods. This

dissertation demonstrates two novel permissionless sensor-based side channels on mobile

devices and show that leakages through these channels seriously threaten users’ privacy. We

develop S3 to show how embedded magnets in stylus pencils impact the mobile magnetometer

sensor and can be exploited to infer a users incredibly private handwriting. We then design

LocIn to infer a users indoor semantic location from 3D spatial data collected by mixed

19

reality devices through LiDAR and depth sensors. These works highlight new privacy issues

due to advanced sensors on emerging commodity devices.

The second half of this dissertation explores secure and usable user and device authentica-

tion for smartphones and IoT devices. This dissertation develops two systems, FaceRevelio

and IoTCupid to enable reliable and secure user and device authentication to protect users’

private information (e.g., contacts, messages, credit card details) on commodity mobile and

allow secure communication between IoT devices. First, we design FaceRevelio, a novel live-

ness detection system to protect facial authentication mechanisms on commodity smartphones

from spoofing attacks, without requiring effort from the users or any external hardware. Then,

we introduce IoTCupid, a secure and usable group pairing system for heterogeneous sensing

devices in IoT environments. These works enable usable authentication on diverse mobile

and IoT devices and eliminate the dependency on sophisticated hardware for a user-friendly

authentication mechanism.

1.1 Thesis Contributions

This section presents an overview of the research problems investigated in this thesis.

Following the thesis statement above, I make the following contributions:

• S3. With smart devices being an essential part of our everyday lives, unsupervised

access to the mobile sensors’ data can result in a multitude of side-channel attacks. In

chapter 2 , we study potential data leaks from Apple Pencil (2nd generation) supported by

the Apple iPad Pro, the latest stylus pen which attaches to the iPad body magnetically

for charging. We observe that the Pencil’s body affects the magnetic readings sensed by

the iPad’s magnetometer when a user is using the Pencil. Therefore, we ask: Can we

infer what a user is writing on the iPad screen with the Apple Pencil, given access to

only the iPad’s motion sensors’ data? To answer this question, we present Side-channel

attack on Stylus pencil through Sensors (S3), a system that identifies what a user is

writing from motion sensor readings. We first use the sharp fluctuations in the motion

sensors’ data to determine when a user is writing on the iPad. We then introduce

a high-dimensional particle filter to track the location and orientation of the Pencil

20

during usage. Lastly, to guide particles, we build the Pencil’s magnetic map serving as

a bridge between the measured magnetic data and the Pencil’s location and orientation.

We evaluate S3 with 10 subjects and demonstrate that we correctly identify 93.9%,

96%, 97.9%, and 93.33% of the letters, numbers, shapes, and words by only using

motion sensors’ data. This chapter originally appeared in the Proceedings of the ACM

on Interactive, Mobile, Wearable and Ubiquitous Technologies (UbiComp 2021) [16].

• LocIn. Mixed reality (MR) devices capture 3D spatial maps of users’ surroundings to

integrate virtual content into their physical environment. Existing permission models

implemented in popular MR platforms allow all MR apps to access these 3D spatial

maps without explicit permission. Unmonitored access of MR apps to these 3D spatial

maps poses serious privacy threats to users as these maps capture detailed geometric

and semantic characteristics of users’ environments. In chapter 3 , we present LocIn,

a new location inference attack that exploits these detailed characteristics embedded

in 3D spatial maps to infer a user’s indoor location type. LocIn develops a multi-task

approach to train an end-to-end encoder-decoder network that extracts a spatial feature

representation for capturing contextual patterns of the user’s environment. LocIn

leverages this representation to detect 3D objects and surfaces and integrates them

into a classification network with a novel unified optimization function to predict the

user’s indoor location. We demonstrate LocIn attack on spatial maps collected from

three popular MR devices and show that it infers a user’s location type with an average

84.1% accuracy. This chapter originally appeared in the USENIX Security Symposium

2023 [17].

• FaceRevelio. Facial authentication mechanisms are gaining traction on smartphones

because of their convenience and increasingly good performance of face recognition

systems. However, mainstream systems use traditional 2D face recognition technologies,

which are vulnerable to various spoofing attacks. Existing systems perform liveness

detection via specialized hardware, such as infrared dot projectors and dedicated cameras.

Although effective, such methods do not align well with the smartphone industry’s

desire to maximize screen space.

21

In chapter 4 , we present a new liveness detection system, FaceRevelio, for commodity

smartphones with a single front camera. It utilizes the smartphone screen to illuminate

a user’s face from multiple directions. The facial images captured under varying

illumination enable the recovery of the face surface normals via photometric stereo,

which can then be integrated into a 3D shape. We leverage the facial depth features

of this 3D surface to distinguish a human face from its 2D counterpart. On top of

this, we change the screen via a light passcode consisting of a combination of random

light patterns to provide security against replay attacks. We evaluate FaceRevelio

with 30 users trying to authenticate under various lighting conditions and with a series

of 2D spoofing attacks. The results show that using a passcode of 1s, FaceRevelio

achieves a mean EER of 1.4% and 0.15% against photo and video attacks, respectively.

In the worst case, the EER is still low at 1.4% and 0.3% for photo and video attacks,

respectively. This chapter originally appeared at the International Conference on Mobile

Computing and Networking (MobiCom 2020) [18].

• IoTCupid. Pairing schemes establish cryptographic keys to secure communication among

IoT devices. Existing pairing approaches that rely on trusted central entities, human

interaction, or shared homogeneous context are prone to a single point of failure, have

limited usability, and require additional sensors. Recent work has explored event timings

observed by devices with heterogeneous sensing modalities as proof of co-presence for

decentralized pairing. Yet, this approach incurs high pairing time, cannot pair sensors

that sense continuous physical quantities and does not support group pairing, making

it infeasible for many IoT deployments. In chapter 5 , we design and develop IoTCupid,

a secure group pairing system for IoT devices with heterogeneous sensing modalities,

without requiring active user involvement. IoTCupid operates in three phases: (a)

detecting events sensed by both instant and continuous sensors with a novel window-

based derivation technique, (b) grouping the events through a fuzzy clustering algorithm

to extract inter-event timings, and (c) establishing group keys among devices with

identical inter-event timings through a partitioned group password-authenticated key

exchange scheme. We evaluate IoTCupid in smart home and office environments with

22

11 heterogeneous devices and show that it effectively pairs all devices with only 2 group

keys with a minimal pairing overhead. This chapter originally appeared in the IEEE

Symposium on Security and Privacy (SP 2023) [19].

The following chapters describe the design and evaluation details of each of these four

systems outlined above. Lastly, chapter 6 presents concluding remarks and discusses the

future research directions in mobile security and privacy.

23

2. S3:SIDE-CHANNEL ATTACK ON STYLUS PENCIL

THROUGH SENSORS

2.1 Introduction

Modern-day smart devices come embedded with various sensors, enabling a vast range

of applications in activity recognition, context awareness, mobile health, and productivity.

Unfortunately, these sensors are also gateways for unintended information leakage about

users’ activities. Unauthorized access to users’ personal information, habits, behaviors, and

preferences through sensor data has long been a major security and privacy concern. Mobile

operating systems such as Android and iOS require users’ explicit permission to grant access

to sensitive data (e.g., GPS locations, microphone, and camera recordings) to an application.

However, data from more generic sensors such as magnetometer, accelerometer and gyroscope

are less regulated, and often can be accessed by applications without users’ permission.

Unmonitored access to these sensors’ data has recently opened the door to a multitude of

side-channel attacks. Prior efforts have unveiled security and privacy concerns that result

from applications having access to motion sensors’ data. Such works propose attacks targeted

at inferring users privacy-sensitive data such as touch actions and keystrokes [3 – 5], passwords

and PIN codes [4 , 6], and application and webpage fingerprinting [7 , 8]. Unfortunately,

side-channel attacks continue to be a major source of concern to users and developers due to

frequent software updates and new devices introduced in the market.

With the ever-increasing popularity of large-screen handheld devices, many manufacturers

have started equipping their products with stylus pencils to improve user experience. In this

thesis, we study the recently launched "Apple Pencil" used with one of Apple’s most popular

devices, the iPad Pro. The Apple Pencil lets users write, draw, and make selections in a

variety of generic and custom-designed applications with ease. The second generation of this

product launched in 2018 offers a convenient new feature where the pencil pairs with the

iPad to charge wirelessly. The pencil’s body is embedded with multiple magnets, allowing

it to magnetically attach to the iPad’s body. In this thesis, we present a novel side-channel

attack on the Apple Pencil. The magnetic readings sensed by the iPad’s magnetometer are

impacted when the user interacts with the screen using the pencil. We show that, given that

24

(a) (b)

Figure 2.1. Example of magnetometer readings when a user writes on the
iPad using Apple Pencil.

the Apple Pencil is often used to fill text fields in applications [20], an adversary can infer a

victim’s private data such as passwords, notes, text messages and signatures by only tracking

the movement of the pencil through the motion sensors’ data.

To illustrate our idea, Figure 2.2b presents the recorded magnetometer data in X, Y,

and Z directions when a user writes the character ‘a’ on the iPad with the Pencil, as shown

in Figure 2.1a . We show that an adversary can infer what users are writing on the iPad’s

screen by observing the fluctuations in the magnetic readings by only having access to motion

sensors’ data. We note that the attack does not rely on any touch information (i.e., the pencil

tip position) since iOS does not allow third-party applications running in the background to

access this information.

As observed in Figure 2.1 , we can readily determine when the pencil is used to write on

the screen from the magnetic data. However, to infer the contents written on the screen,

the magnetic readings require detailed analysis. In our preliminary experiments, we observe

various subtle fluctuations in magnetic readings characterized by different letters and words

written on the screen. To illustrate, we present the recorded magnetometer data in Figure 2.2

when the letters ‘a’, ‘b’ and ‘c’ are written on the iPad’s screen (Figure 2.2a). Figure 2.2b

shows the magnetometer readings in three axes, where fluctuations in the magnetometer

readings are different for each of the three characters. One intuitive approach to extract

25

0 100

Horizontal Edge (mm)

0

50

100

150

200

V
e
rt

ic
a
l E

d
g
e
 (

m
m

)

(a)

0 5 10 15

Time (s)

-45

-40

-35

M
a
g
X

(
T

)

a

b

c

0 5 10 15

Time (s)

20

25

M
a
g
Y

(
T

)

a

b

c

0 5 10 15

Time (s)

-60

-55

-50

M
a
g
Z

(
T

)

a

b

c

(b)

Figure 2.2. The magnetometer readings change when a user writes different
characters on the screen.

0 100

Horizontal edge (mm)

0

50

100

150

200

V
e
rt

ic
a
l e

d
g
e
 (

m
m

)

a
1

a
2

a
3

a
4

(a) (b)

Figure 2.3. The magnetometer readings change when a user writes the same
character on the screen.

information from these readings is to train a learning model. This model can then be used

to identify useful patterns (e.g., letters, numbers, shapes) from similarities between the

magnetic data over time for a given set of characters. Yet, this approach works when the

pencil’s magnetic impact is consistent when it is held at different locations or with different

orientations on the screen for a given character. To determine whether this is the case for

Apple Pencil and iPad Pro, we wrote the character ‘a’ with the pencil at different locations

and orientations on the iPad’s screen. Figure 2.3a illustrates two letters written at different

locations (a1 and a3) and two letters in the same location when the pencil is rolled by 180◦

26

(a3 and a4). We observe that magnetometer readings vary significantly, although the traces

of characters are visually the same.

Based on these observations, we design a tracking algorithm to track the pencil’s tip

movement using the magnetic field data to identify users’ writing. Building such an algorithm

requires finding the correct mapping between a given magnetic reading and the pencil tip’s

location and its orientation with respect to the screen. A common method for finding such

mappings is through war-driving. Unfortunately, the mapping space is five-dimensional since

we want to track the pencil’s 2D location on the screen while keeping a record of its 3D

orientation. War-driving for all possible locations and orientations of the pencil on the iPad

leads to a huge search space and necessitates a huge amount of human effort.

To address this, we reduce the war-driving space by building a 3D magnetic field map

around the pencil instead of determining the magnetic field for the screen itself. We collect

magnetometer data while writing with different orientations of the pencil at different locations

on the screen. We employ a computer vision-based approach for pose-estimation to track

the pencil’s 3D orientation since iOS’s touch API does not provide full information about

the pencil’s 3D orientation. We apply Kalman filtering [21] and smoothing to the estimated

pencil orientations to remove noisy data. We then use this orientation along with the pencil

tip location and magnetic data to build the magnetic map with respect to the pencil. Lastly,

to further improve our magnetic field map precision, we adopt a magnetic vector field

reconstruction technique [22], which uses the divergence and curl properties [23] of the

magnetic fields for optimizing the reconstruction process. This map generation is conducted

offline and does not require information collected from the target user.

Using the designed magnetic field map, we build a multi-dimensional particle filter [24]

to track the status of the pencil on the iPad’s screen, which solely operates with the data

collected from motion sensors. The particles’ state includes the pencil tip’s location and

the 3D orientation of the pencil represented as quaternion vectors [25]. We use the human

writing behavior to guide the particles initialization and transition (components of our particle

filter). Additionally, we used KLD resampling [26] to improve efficiency and incorporated

particles’ history to handle scattered particle clusters that may exist at the beginning of the

tracking process. For an end-to-end attack, we also analyzed the variance in the magnetometer,

27

accelerometer, and gyroscope readings to estimate when the user begins and ends writing on

the screen.

We implement our system, S3 (Side-channel attack on Stylus pencil through Sensors), on

Apple 11" iPad Pro running iOS 12.0. We evaluate S3 with 10 subjects, where the subjects

write different letters, numbers, shapes, and words at different locations of the screen. We

show that an adversary (randomly chosen from the subjects) is able to correctly identify

93.9%, 96%, and 97.9% of the written letters, numbers, and shapes, and English words with

an accuracy of 93.33%.

The main contributions of this work are summarized as follows:

• We unveil a privacy leakage through motion sensor data in modern tablet devices due

to the introduction of stylus pencils with embedded magnets.

• We design a novel tracking algorithm by constructing a magnetic map of the pencil and

building a sophisticated multi-dimensional particle filter that can track users’ writing.

• We implemented our system on an iPad Pro with Apple Pencil. A thorough evaluation

with 10 human subjects demonstrates its high accuracy in uncovering letters, numbers,

shapes, and words in a variety of scenarios, without significant overhead.

2.2 Threat Model

We use Apple’s iPad and Pencil (2nd generation) to demonstrate a proof-of-concept of

inferring information about what the user is writing from motion sensors data. However, our

attack can be a threat to any mobile device with a stylus pen support using embedded magnets.

The sensitive information being leaked out from user writings can be an unprecedented threat

to the confidentiality of user data processed by the writing apps; an adversary can infer

passwords, text messages, secure access codes, and other secrets of the user.

We consider an adversary that controls a malicious native application installed on the

victim’s device, which has access to the motion sensors data and runs in the background during

data collection. The native application does not have any information about other running

applications and does not have access to system resources. To detail, the iOS applications,

28

by default, have access to the motion sensor data, and only web applications from iOS 12.2

and onwards require explicit user permission. Starting from iOS 5, an application can stay

active in the background if it performs specific tasks such as playing audio, receiving updates

from a server, and using location services. Given these facts, an adversary can easily mimic a

benign legitimate app such as a fitness and activity tracker to stay active in the background

to collect motion data. The application periodically logs the motion sensors’ data, including

accelerometer, gyroscope, and magnetometer readings. The recorded sensor data is stored

locally and sent to a remote server for processing. These processes incur minimal energy and

computation overhead in order to remain undetected (Detailed in Section 3.7).

We additionally assume that the adversary can obtain or learn a model to capture the

users’ writing behavior, which is used to predict how the Pencil’s movement changes over time

through Pencil’s previous positions. The adversary could learn such a model by collecting

handwriting samples (various letters, numbers, shapes, etc.) from a small number of people

(up to 3 users is sufficient for the attack to succeed as detailed in our evaluation in Section 3.7).

To build this model, an adversary uses a computer vision-based technique (See Section 2.5.1)

to track the Pencil’s orientation while logging the Pencil’s location and motion sensors’ data.

We note that the handwriting samples are not collected from the potential attack victims and

are solely obtained from the adversary and their accomplices. After the model is learned,

the adversary uses the model to infer the free-form handwriting of unaware users solely by

collecting motion sensor data. We emphasize that the Pencil location and orientation data

are collected only during the training process. An adversary does not need to access this

information at attack time to infer user writings.

2.3 Pencil Tracking: A First Look

In our quest for inferring the user’s writing from the sensors’ data, we begin by exploring

the simplest case: assume that the user always holds the Pencil in a fixed orientation, i.e.,

vertically such that the Pencil altitude remains 90◦. In this case, to track how the Pencil

moves on the screen, we first determine a mapping between the magnetic readings and the

location of the Pencil tip. We define this mapping as the 2D magnetic map.

29

2.3.1 2D Magnetic Map

The 2D magnetic field map would be a function, f , that returns the magnetic readings

corresponding to a given location on the screen i.e.

(mx, my, mz) = f(x, y) (2.1)

where x and y are the coordinates of the Pencil tip location and mx, my and mz are the

magnetic reading in x, y and z directions. We consider the shorter edge of the iPad as x-axis

and the longer edge as y-axis.

To build this map, we draw on the screen using the Pencil such that we cover the entire

screen. We use a custom drawing application that logs the x and y coordinates of the Pencil

on the screen using iOS touch API, at a rate of 120Hz. The magnetic data is recorded in

the background at a frequency of 50Hz. The timestamps recorded with the magnetic and

touch data are used to align the magnetic readings with each of the touch samples. We start

collecting the magnetic data a few minutes before drawing (when the Pencil is detached

from the iPad and is not on the screen) to sense the ambient magnetic field. The average of

the ambient magnetic data is subtracted from the collected data to eliminate the magnetic

impact of the surroundings. Figure 2.4 shows the 2D magnetic field map in the x, y and z

directions.

2.3.2 2D Tracking

Once we have built the 2D magnetic map, we ask the question: how can we track the

Pencil location using only the magnetic data? Here we borrow a standard tracking algorithm,

particle filter, to track the Pencil’s location. Particle filtering is a probabilistic approximation

algorithm for state estimation problems [24]. In particular, for object location estimation,

particle filter operates by maintaining a probability distribution for the location estimate

at time t, which is represented by a set of weighted samples called particles. The state of

these particles is updated based on a motion model for the object, and the weights for these

particles are assigned at each timestamp by a likelihood model for the recorded sensor data.

30

0 50 100 150

Horizontal edge (mm)

0

50

100

150

200V
e
rt

ic
a
l
e
d
g
e
 (

m
m

)

-2

0

2

4

6

8

(a)

0 50 100 150

Horizontal edge (mm)

0

50

100

150

200V
e
rt

ic
a
l
e
d
g
e
 (

m
m

)

0

5

10

(b)

0 50 100 150

Horizontal edge (mm)

0

50

100

150

200V
e
rt

ic
a
l
e
d
g
e
 (

m
m

)

-5

0

5

10

15

(c)

Figure 2.4. 2D magnetic map: the magnetic impact of the Pencil at different
locations on the screen in (a) X, (b) Y , and (c) Z dimensions.

0 100

Horizontal edge (mm)

0

50

100

150

200

V
e

rt
ic

a
l
e

d
g

e
 (

m
m

)

Particle filter tracking

Ground truth

(a)

0 100

Horizontal edge (mm)

0

50

100

150

200

V
e

rt
ic

a
l
e

d
g

e
 (

m
m

)

Particle filter tracking

Ground truth

(b)

0 100

Horizontal edge (mm)

0

50

100

150

200

V
e

rt
ic

a
l
e

d
g

e
 (

m
m

)

Particle filter tracking

Ground truth

(c)

Figure 2.5. Tracking results from a simple implementation of particle filter.

The particles are then resampled at each timestamp using importance sampling to choose a

new set of particles according to the weights of the prior samples.

We define the state vector for the particle filter as st, representing the Pencil tip location.

Here, t represents the timestamp, which is updated at a frequency of 50Hz. For the simple

case, we define the Pencil movement model as:

st+1 = st + bt (2.2)

where bt is a random perturbation added to the state, with a Gaussian distribution.

31

Figure 2.6. System architecture.

Weights are assigned to each particle at each timestamp with the function:

wi
t = exp

(
(mt − rt)2

σ

)
(2.3)

Here rt is the magnetic readings obtained from the magnetometer at time t and mt is the

queried magnetic readings given state is st, using Equation 2.1 . The location of the Pencil tip

at each timestamp is the weighted average of the particles.

Figure 2.5 shows the results of this simple implementation of particle filter when used

to track a letter (‘A’ - Figure 2.5a), a shape (a square - Figure 2.5b) and a word (‘hello’ -

Figure 2.5c). Even though we assumed that the Pencil orientation is fixed for this case, the

tracking results show promise that we can infer what the user is writing.

2.4 System Architecture

This section presents the functional overview of our system S3as shown in Figure 2.6 . We

will detail each component of our system in Section 2.5 .

To launch a realistic attack, our system should find out what the user is writing in their

natural handwriting style, unlike the fixed orientation case in the previous section. For this

32

purpose, we need a mapping between the magnetic data collected and the status of the

Pencil, which now includes location and orientation, i.e., 5 degrees of freedom (〈x, y〉 location

and 3D orientation of the Pencil). We generate this map through war-driving and reduce

the effort involved by building the magnetic map around the Pencil. We extend computer

vision techniques to track the Pencil’s orientation by attaching a checkerboard on top of the

Pencil and recording the Pencil movement with a camera. A magnetic field reconstruction

technique [22] is used to remove noise from the collected magnetic data and generate a

continuous magnetic field map for the Pencil. This magnetic map for a given iPad and Pencil

can be built solely by the attacker. It is a one-time effort since the same map is used to track

the user’s handwriting in different locations and environments.

We also build a model for writing behavior by writing different letters, numbers, and

shapes at different locations on the screen multiple times while tracking the Pencil orientation

with a camera, as previously mentioned. This model finds the relationship between orientation

and location changes while writing via linear regression. It predicts how these parameters

should change at a given timestamp with respect to the Pencil’s previous position. Similar to

the magnetic map, this writing behavior model is also trained on data collected from the

attacker and their accomplices and does not involve the victim.

The motion sensors’ data (including magnetometer, accelerometer, and gyroscope data)

collected by the attacker’s application is sent to a back-end server for processing. We apply

stroke detection on this motion data to detect the start and end of a stroke. The magnetic

data corresponding to the detected stroke is then fed into a multi-dimensional particle filter

(Section 2.5.2), together with the writing behavior model. The writing behavior model helps

in predicting the next state of the particle filter. The particle filter outputs the tracking traces

of the stroke. An attacker then looks at the tracking result to guess what the user wrote.

2.5 System Design

This section describes the details for tracking when the users write with their natural

handwriting style. To this end, we first describe our approach for building the Pencil’s

magnetic map. This is followed by the details of our tracking algorithm and stroke detection.

33

(a) (b) (c)

Figure 2.7. (a) Screen and Pencil coordinate systems and the location of the
magnetometer. (b) An example that the location of the magnetometer in the
Pencil coordinate system is the same, even when the Pencil’s locations and
orientations are different. (c) Setup for tracking the Pencil orientation.

2.5.1 Pencil Magnetic Map Generation

The magnetic field map needed for tracking the Pencil movement is a function, f , mapping

the location of the Pencil tip and its 3D orientation to the magnetic readings in x, y and z

directions i.e.

(mx, my, mz) = f(x, y, orientation) (2.4)

To build this magnetic map, we first want to introduce the coordinate systems for the iPad

screen and the Pencil and clarify the notion of the Pencil’s orientation.

Figure 2.7a shows the coordinate systems for the iPad screen, Cs. The top-left corner of

the iPad screen is the origin for Cs. The Pencil tip location reported by the iOS touch API

is also in the screen coordinate system. The Z axis of Cs points downwards based on the

right-hand rule. Mloc and Tloc are the locations of the magnetometer and Pencil tip in Cs,

respectively. We assume that Mloc is known beforehand. Figure 2.7a also shows the Pencil’s

coordinate system, Cp. The Z-axis of the Pencil runs vertically through the Pencil’s body.

We define the orientation of the Pencil as its axes expressed as vectors in the Cs denoted by

Xps, Yps and Zps.

34

We can now define equation 2.4 as

(mx, my, mz) = f(Tloc, Xps, Yps, Zps) (2.5)

For the free-form writing case, we need to move the Pencil in all possible locations and

orientations to get the magnetic impact for each location and orientation. This requires a

huge amount of human effort. Hence, we focus on opportunities to reduce the war-driving

space for building the magnetic field map.

So far, we have considered building the magnetic map from the iPad’s perspective, i.e., the

Pencil’s location and orientation, and the magnetic readings are in Cs. Another way to look

at this problem is to build the map from the Pencil’s perspective. Recording the Pencil

movement’s magnetic impact on the screen is essentially the same as keeping the Pencil

stationary and moving the magnetometer around it. In other words, for any position of the

Pencil in Cs, we can find the corresponding magnetometer position in Cp. Given that we

know the location of the magnetometer, Mloc, in Cs, if the Pencil tip is at location, Tloc, the

3D position of the magnetometer in Cp, M ′
loc can be represented by

M ′
loc = Ps ∗ (Mloc − Tloc) (2.6)

where Ps is the tuple (Xps, Yps, Zps) representing Pencil’s axes in screen space.

Similarly, we can also transform the magnetic readings in Cs, m to magnetic readings in

Cp, m′ by

m′ = Ps ∗m (2.7)

Building a map around the Pencil reduces the search space for war-driving since M ′
loc

can be the same for more than one Pencil position in Cs. This means that if we express

equation 2.6 as

Tloc = Mloc − P T
s ∗M ′

loc (2.8)

we can show that there are multiple pairs of Tloc and Ps which would correspond to the

same M ′
loc in Cp. Figure 2.7b shows an example of this case. Even though the Tloc and Ps

35

are different for the two Pencils, M ′
loc is the same for these two Pencils in Cp. Due to this

redundancy, if we cover one of these Pencil positions while war-driving, we also determine the

magnetic impact for a large number of other positions automatically. This greatly reduces the

number of positions we need to cover through war-driving. Additionally, instead of collecting

only one sample for each Pencil location and orientation, we can collect multiple samples for

a position in Cp when we move the Pencil at different locations on the screen.

Considering the benefits mentioned above, we build the magnetic map around the Pencil,

which can now be expressed as

m′ = f(M ′
loc) (2.9)

For this purpose, we use our setup shown in Figure 2.7c to track the orientation of the Pencil

while randomly drawing on the screen for a few hours. We record the Pencil movement with

a camera placed at a distance above the iPad and looking down upon the screen. In this

random drawing, we rotate and move the Pencil such that we can cover the entire screen

and maximum possible orientations. Similar to the procedure for building the 2D magnetic

map, we collect the magnetic data in the background at 50Hz and touch data, Tloc, from iOS

API at 120Hz. The touch API only provides information about the azimuth and altitude

angles [27] of the Pencil. However, the Pencil rotation around its Z-axis also affects the

magnetic readings sensed by the magnetometer. Hence, the Pencil orientation, Ps, cannot

be obtained without any ambiguity directly from the touch API. Therefore, we employ a

computer vision approach to track the orientation.

The camera acts as a bridge between the screen and the Pencil. By finding the camera’s

orientation in Cs and then finding the Pencil orientation in the camera’s coordinate system,

we can finally find the orientation of the Pencil in Cs. To find the orientation of the camera

in Cs, we use a standard camera calibration technique [28]. Once the camera is calibrated, we

use PnP algorithm [29] to find the orientation of the checkerboard in the camera’s coordinate

system.

Due to the noise in camera calibration and pose estimation steps, the orientation obtained

is noisy. To remove this noise, we apply Kalman filtering [21] and smoothing to the orientation

obtained over time. Since the checkerboard’s origin is attached to the Pencil end, the 3D axes

36

-200 -100 0 100 200

X axis (mm)

-200

-100

0

100

200

Y
 a

x
is

 (
m

m
)

(a)

-200 -100 0 100 200

X axis (mm)

-200

-100

0

100

200

Y
 a

x
is

 (
m

m
)

(b)

-200 -100 0 100 200

X axis (mm)

-200

-100

0

100

200

Y
 a

x
is

 (
m

m
)

(c)

-200 -100 0 100 200

X axis (mm)

-200

-100

0

100

200

Y
 a

x
is

 (
m

m
)

(d)

-200 -100 0 100 200

X axis (mm)

-200

-100

0

100

200

Y
 a

x
is

 (
m

m
)

(e)

-200 -100 0 100 200

X axis (mm)

-200

-100

0

100

200

Y
 a

x
is

 (
m

m
)

(f)

Figure 2.8. Pencil magnetic map for z = −5mm (left), z = 0mm (center), and
z = 5mm (right), before (top) and after (bottom) optimization.

of the checkerboard in Cs obtained after smoothing are indeed the Pencil axes in Cs as well.

Therefore, by tracking the checkerboard axes, we can track the orientation of the Pencil as it

moves on the screen.

We now have the touch data from the iOS API, the orientation data from the camera,

and the magnetic data from the magnetometer. For each touch sample, we transform the

Mloc and sample’s corresponding m to Cp using equations 2.6 and 2.7 respectively. These

transformed magnetic readings in Cp are finally quantized into 5mm by 5mm grids based on

the 3D location of the Mloc corresponding to the reading. The average of all the magnetic

data samples is computed for each grid. Figure 2.8 (top) shows the XY plane of this 3D map

built around the Pencil for z = −5mm, z = 0mm and z = 5mm in Cp.

Here, we emphasize that we remove the magnetic impact of the ambient environment from

the collected magnetic data before generating this map. As a result, the same magnetic map

can be used to track the Pencil movement while the victim is using their iPad in different

37

locations. Hence, this process is a one-time effort and does not involve any input from the

victim. We also note that the setup shown in Figure 2.7c for Pencil’s orientation tracking

is only used for offline map generation and is not needed at attack time to infer victim’s

handwriting.

Map Optimization: As shown in Figure 2.8 (top), some of the grids in the 3D map have

missing or noisy data. Instead of using a simple interpolation approach, we adopted a vector

field reconstruction technique that considers the divergence and curl of the vector field [22].

According to Maxwell’s equations bounding the magnetic field [30], the regularization

parameter λc should be small while λd should be large. Considering the noise in the magnetic

readings, we perform a grid search to determine the optimal values of regularization parameters,

guided by the optimal values given in [31] for different signal to noise ratios. The resulting 3D

magnetic map from this approach is continuous with reduced noise. Figure 2.8 (bottom) shows

the XY plane of this 3D map for z = −5mm, z = 0mm and z = 5mm after reconstruction.

2.5.2 Pencil Tracking

With the reconstructed 3D map, we are now prepared to describe our system for tracking

the Pencil’s location and orientation as a user writes on the iPad screen. Similar to the 2D

case, we use particle filter to track the Pencil movement. However, now the state vector for

the particle filter also has to take into account the Pencil’s orientation.

Earlier, we defined the Pencil orientation as its axes, (Xps, Yps, Zps) , in Cs. This definition

is intuitive and works well for magnetic map generation but using this definition in particle

filter is complicated. Another common way to represent the orientation of a rigid body is to

use the Euler angles, which represent the 3D orientation of an object using a combination

of three rotations about different axes [25]. Although intuitive, Euler angles suffer from

singularities and give erroneous orientation representation when used to track an object’s

successive rotations. Fortunately, there is another formal representation for 3D rotation,

which is the quaternions [25], which allows easier interpolation between different orientations.

Quaternions encode any rotation in a 3D coordinate system as a four-element vector, where

the squared sum of the four elements is equal to 1. Using quaternions, we can describe how

38

the orientation changes sequentially more efficiently and smoothly [32]. Hence, for using

the quaternion representation to describe the Pencil’s orientation, our particle filter has to

consider 6 parameters (〈x, y〉 location of the Pencil tip and the Pencil orientation as 4-element

quaternion vector) to track the Pencil movement, instead of 5.

To consider the orientation, we define the state vector for each particle at time t as:

st = < xt, yt, q1t, q2t, q3t, q4t > (2.10)

Here, q1t, q2t, q3t and q4t represent the four scalar values for the quaternion representation of

the Pencil’s orientation at time t.

So far, we have considered that the Pencil can move in any orientation. However, in

practice, the movement of the Pencil is limited by the range of motion of the human hand and

wrist. Therefore, based on our observations of the human handwriting behavior, we limit the

range for the Pencil’s possible orientation. We assume that the altitude range of the Pencil is

30◦ to 90◦. Similarly, for the azimuth angle, we specify the range to be within 60◦ to 170◦.

We do not limit the rotation of the Pencil around its Z axis. These ranges are determined by

analyzing the minimum and maximum values of these angles observed in the data collected

by the attacker and their accomplices for training the writing behavior model (described

below). We specify the ranges for orientation in terms of the altitude and azimuth for ease of

understanding, but these ranges are actually checked in the quaternion representation.

Algorithm 1 describes the algorithm for Pencil tracking.

Particles initialization: We begin by initializing the particles Si
0 where i = 1, 2, ...N .

Since 6 parameters now determine the state, we need a huge number of particles to cover

the entire state space. We employ a grid search approach on data collected from a small

set of users (e.g., data collected for training writing behavior model which is not included

in our evaluation set) to determine the optimal number of particles initially. To detail, we

generate candidates from a grid of parameter values specified from 10000 to 10000000 with

increasing the number of particles by 10000 in each iteration. We evaluate each of these

particle values on the users’ data and use the parameter that leads to highest accuracy at

the elbow point [33] to prevent overfitting. Based on our search results, we set the number of

39

Algorithm 1 Pencil Tracking
1: Initialize particles Si

0 where i = 1, 2, ...N using orientation constraints
2: Compute the weights
3: Select top K particles with the highest weights
4: for t ≥ 1
5: Sample Si

t using Si
max(t−3,1):t−1 based on writing behavior model

6: Update particle history Si
0:t ← (Si

0:t−1, Si
t)

7: Compute the weights
8: Resample Si

t to obtain Ka updated particles
9:

10: end for
11: Track Pencil using Si

0:t
12: function ComputeWeight(s)
13: Ps ← s
14: M ′

loc ← Ps ∗ (Mloc − Tloc)
15: Query Pencil magnetic map using M ′

loc to obtain m′

16: m← P T
s ∗m′

17: w ← exp(− (m−r)2

2σ2)
18: return w
19: end function

particles, N , to 5000000. The x and y location for these particles are uniformly drawn from

within the range of the iPad screen. Altitude (θ1) , azimuth (θ2) and rotation around Z axis

(θ3) are drawn uniformly from the range 30◦ − 90◦, 60◦ − 170◦ and 0◦ − 360◦ respectively.

From these values for the three angles, we compute the axes representation for the Pencil in

Cs. These axes are converted into quaternions and are included in the state vector. Once we

have found Si
0 meeting our criteria, we compute their weights using the ComputeW eights

function. For efficient computation, we specify a bound on the maximum number of particles

at each timestamp as K = 50000. This bound is also found through the same grid search

approach described above. Therefore, from S0, we choose K particles which have the highest

weights.

Movement model: We define the model for Pencil’s movement for natural handwriting

as:

st+1 = st + vt + bt (2.11)

40

0 50 100

X (mm)

50

100

150

200

Y
 (

m
m

)

(a)

0 50 100

X (mm)

50

100

150

200

Y
 (

m
m

)

(b)

Figure 2.9. Tracking results without (a) and with (b) writing behavior model.

where vt is the change in particles’ states, and bt is the random perturbation added to the

state. Previously, for the fixed orientation case in Section 2.3.2 , we used vt = 0 since the state

space was small. For this case, we build a writing behavior model, which uses the changes

in state from the last three timestamps to predict the state change for current timestamps

using linear regression. To train this model, we write different letters, numbers, and shapes at

different locations on the screen. We use a camera to track the Pencil’s orientation and iOS

touch API to track location, as described in Section 2.5.1 . This camera setup is only used

while collecting training data for this model and is not used at attack time. Data collected

from a small number of users (3 in case of our evaluation) is sufficient for training this model.

We capture the relationship between location and orientation change in human handwriting

from this location and orientation data. Figure 2.9b shows the result when this model is used

in state transition. We can observe that the tracking result is more accurate and smoother

than simply adding random perturbation to the last state (Figure 2.9a).

Computing particle weights: Here we transform the quaternions in the state vector to

Pencil’s axes, Ps, in Cs. We use these axes to find M ′
loc using equation 2.6 in Section 2.5.1 to

query our Pencil magnetic map. In this equation, Tloc is the x and y location in the state

41

0 50 100

X (mm)

0

50

100

150

200

250

Y
 (

m
m

)

(a)

0 50 100

X (mm)

0

50

100

150

200

250
Y

 (
m

m
)

(b)

0 50 100

X (mm)

0

50

100

150

200

250

Y
 (

m
m

)

(c)

0 50 100

X (mm)

0

50

100

150

200

250

Y
 (

m
m

)

(d)

0 50 100

X (mm)

0

50

100

150

200

250

Y
 (

m
m

)

(e)

0 50 100

X (mm)

0

50

100

150

200

250

Y
 (

m
m

)

(f)

0 50 100

X (mm)

0

50

100

150

200

250

Y
 (

m
m

)

(g)

0 50 100

X (mm)

0

50

100

150

200

250

Y
 (

m
m

)

(h)

Figure 2.10. (a-d) shows how adaptive particle resampling chooses the number
of particles over time. (e-h) show the estimation of Pencil’s location when history
of particles is used.

vector. The result of the query is m′, which is the magnetic reading in Cp. This reading is

converted to Cs using:

m = P T
s ∗m′ (2.12)

Weights are assigned with the function:

w = exp
(

(m− r)2

2σ2

)
(2.13)

where r is the magnetometer reading corresponding to the given state.

Adaptive particle resampling: While a huge number of particles, in our case K = 50000,

are needed to determine the initial Pencil position accurately, a smaller number of particles

can suffice for tracking once the particles’ states start to converge. For this purpose, we use

the Kullback-Leibler distance (KLD) [34] resampling [26] approach to decide the number

of particles, Ka, on the fly for every timestamp. KLD resampling operates by choosing the

number of particles to resample such that the KLD between the particles’ distribution before

and after resampling does not exceed a predefined threshold. If the particles are widely spread,

a large number of particles are used, whereas if the particles are more concentrated, a smaller

number is resampled. We use a batched approach to increase the sample size for improving

the efficiency of the resampling process. Figures 2.10a - 2.10d show how the resampling phase

operates over time. In Figure 2.10a , the particles are scattered into two separate clusters;

42

hence a large number of particles is resampled. Overtime, once the particles start converging,

the number of samples selected at each timestamp decreases as shown in Figure 2.10b - 2.10d .

Pencil location estimation: In addition to keeping track of the state, each particle also

carries its history S0:t−1 along with it for all timestamps t ≥ 1. For the simple case of location

tracking, we directly used the centroid of the particles to determine the Pencil’s position at

each timestamp. However, in this case, given the huge state space, the particles might exist

in various clusters in different regions of the space, making it difficult to track using just the

centroid. For example, in Figure 2.10a , there are two clusters of particles, and the centroid of

these clusters (shown as red circle) does not match well to the ground truth Pencil location

(i.e., bottom part of the character ‘β’). In contrast, if we choose the maximum weighted

particle in the last timestamp and use its history as the location estimate, we observe that

all the particles converge at the beginning. This means that using the history of the particles

returns us a path for the Pencil’s movement with high accuracy. Figure 2.10e - 2.10f shows the

path retraced from the history of particles (red circle in Figure 2.10f).

2.5.3 Stroke Detection

To track a user’s writing, we need to identify the precise period during which the user is

writing from the collected motion sensors’ data. To achieve this goal, we design a two-step

stroke detection algorithm.

Step 1 : Rough estimation: As shown in Figure 2.11 (a), the magnetic field around the

iPad will fluctuate when a user is writing, while it is stable when the Pencil moves away

from the screen. Using this fluctuation, we first generate a rough estimate of the period when

the user is writing. The basic idea is to use a sliding window with an appropriate size that

contains a sequence of magnetometer data and move the window along the timeline. We mark

the midpoint of this window as the starting timestamp of a stroke when the magnetic data

variance is larger than a predefined threshold. Similarly, the ending timestamp is marked as

the center of the window when the variance is below the threshold. We analyzed the data

collected for training the writing behavior model for determining the optimal values for the

window size and the threshold and set them to 100 and 0.12, respectively.

43

Figure 2.11. Stroke detection to determine the beginning and end of a stroke.

Step 2 : Precise detection: A rough estimation is able to help us identify time periods

which may contain a stroke. However, since the magnetic field starts fluctuating when the

pencil is moving close to the iPad, it is difficult to identify the precise beginning and end

of a stroke through magnetic data alone. Therefore, we utilize accelerometer and gyroscope

data to detect the strokes more precisely. The intuition behind this step is that the iPad will

vibrate slightly at both moments when the Pencil touches and is lifted from the screen. As

shown in Figure 2.11 (b) and (c), the beginning and end of the stroke are visible as prominent

peaks in the accelerometer and gyroscope data. Hence the same threshold-based approach

can be used on this data to identify the stroke with higher precision.

2.6 Evaluation

2.6.1 Data Collection and Implementation

We evaluated S3 on an Apple 11" iPad Pro running iOS 12.0. We implemented two

applications for conducting our experiments. The first application, A, acts as the malicious

application installed on the victim’s iPad, mimicking a legitimate application (such as a

44

fitness tracker) that accesses the motion sensors’ data and stays alive in the background

(e.g., by use of location services). Application A logs the magnetometer readings at 50Hz,

and accelerometer and gyroscope data at 100Hz in the background. The second application,

B, mimics a chatting application with a text input region in the lower half of the iPad screen

when it is used in landscape mode. This is where the user writes using the Apple Pencil. The

input region is divided into 3 equally sized grids. This application acts as the application

under attack from application A. The sensor data collected from application A is stored on

the iPad during the data collection process and is transferred to a server for analysis. During

our experiments, we observe that on average, with a fully charged battery, this application

consumes less than 10% of the battery while logging the motion sensor’s data, over a duration

of 3 hours. We use our own custom application (application B) for writing to record the

touch API data for ground truth. We also tested these applications on the latest iOS version

(14.0) to validate our assumptions regarding required permissions.

Three authors (pretending to be attackers) collected magnetic data for the Pencil’s

magnetic map generation while randomly drawing on the iPad screen for a total duration of

3 hours. We used the setup shown in Figure 2.7c to record the orientation of the Pencil and

the touch API’s data for recording the Pencil’s location. The three authors also wrote/drew

the 26 lowercase alphabet letters (a-z), 10 numbers (0-9), and five different shapes (square,

triangle, circle, heart, and star) twice in each grid in the input region of the application B.

This data was used to train the writing behavior model described in Section 2.5 and was not

a part of the evaluation set.

To evaluate S3, we conducted experiments with 10 subjects, recruited by advertising on

the university campus after IRB approval. These subjects included 6 females and 4 males.

During the experiments, subjects were seated next to a table on which the iPad was placed.

We asked each subject to use the Pencil to write the 26 lowercase alphabet letters (a-z), 10

numbers (0-9) and five different shapes (square, triangle, circle, heart and star) twice in each

grid in the input region. The subjects were guided to write in their natural handwriting style

and we did not impose any restriction on the size of the strokes within the input region. In

total, we collected the motion sensor data for 1560 letters, 600 numbers and 300 shapes.

45

In addition to letters, numbers, and shapes, we also tested our system’s ability to track

words. We asked five subjects to write words of lengths varying between three to six letters,

where each word consisted of lowercase letters randomly selected from the English alphabet.

We instructed each subject to write 30 words for each of the four word lengths. We also

investigated our system’s performance in detecting legitimate English words. For this purpose,

we asked these subjects to write 30 words each, randomly selected from the 500 most commonly

used English words [35]. These words represented a diverse set of words varying in length

between 3 to 8 letters with an average length of 5 letters.

To demonstrate the practicality of our system, we also conducted experiments with

different positions of the iPad and analyzed the impact of various environment settings.

We randomly selected one of the volunteers to act as an attacker and showed S3’s Pencil

tracking results to the attacker for each of our experiments. The attacker was given three

guesses to identify each stroke. Hence our system’s accuracy is determined as the number of

strokes correctly identified by the attacker in the first three guesses. We use this top-k guess

method considering the similarity in shapes of some letters in the English alphabet.

2.6.2 Performance Results

We answer the following questions to evaluate S3’s performance:

1. How well can S3 detect the letters, numbers and shapes?

2. What is the detection accuracy for different letters, numbers, and shapes, and why?

3. Is S3 able to detect words?

4. Can S3 detect continuous strokes?

5. How does the location of the Pencil tip affect the performance of S3?

6. Does the performance of S3 change across users?

7. How does the positioning of the iPad affect S3’s performance?

8. How do the environmental factors impact the performance of S3?

46

Figure 2.12. Overall accuracy of the correctly guessed letters, numbers and
shapes in 1, 2 and 3 guesses.

(a)

(b)

(c)

Figure 2.13. Tracking result examples: (a) letters, (b) numbers, and (c) shapes.

9. How does S3 perform compared to other machine learning techniques?

(1) How well can S3 detect the letters, numbers, and shapes?

We evaluated our system’s performance by randomly selecting one of the volunteers acting

as an attacker to guess what the users wrote from S3’s Pencil tracking results. The tracking

results for different strokes were shuffled for this process to remove any possible bias. We

47

(a) (b) (c)

Figure 2.14. Accuracy of the first guess for (a) each letter, (b) each number,
and (c) each shape.

recorded the top 3 guesses from the attacker for each stroke. Figure 2.12 shows the overall

detection accuracy when the attacker’s 1st, 2nd or 3rd guess is correct for different strokes.

The attacker correctly guessed 93.9%, 96%, and 97.9% of the letters, numbers, and shapes,

respectively. This detection accuracy is based on whether any of the 3 guesses for a stroke

matched with the actual letter, number or shape. Figure 2.13 shows a set of examples from

the Pencil traces generated by S3 solely using the motion sensor data. We encourage the

reviewers to guess what letter, number, or shape is shown in each example. We give the

correct answers at the end of this chapter.

(2) What is the detection accuracy for different letters, numbers, and shapes

and why?

We analyzed how different letters, numbers, and shapes contributed to the overall detection

accuracy reported earlier. Figure 2.14 shows the detection accuracy for each letter, number,

and shape based on the attacker’s first guess. Here, we can clearly see that some letters,

numbers, and shapes are detected better than the others in the first guess. For example,

letters like ‘b’, ‘e’, and ‘z’ have a high detection accuracy. In contrast, letters like ‘i’, ‘j’, and

‘t’ have lower accuracy. We found that these letters are usually written in two strokes. Since

S3 does not consider two strokes separately, the letter’s shape is not obvious in the Pencil’s

trace. This can also be seen in Figure 2.13a , where it is difficult to recognize the letter ‘j’

(third trace in the bottom row). Apart from this observation, some letters like ‘h’ and ‘n’ have

a low accuracy of 70% and 60% respectively because of the similarities in their shapes. The

48

second letter in the top row of Figure 2.13a can be inferred as ‘h’ although it is actually ‘n’.

We observe similar patterns for ‘r‘ and ‘v’ (67% accuracy for both) whose traces are similar

to each other as shown in Figure 2.13a (‘v’ - third last letter in row 1, ‘r’ - 8th letter in row

2). Similarly, the number ‘7’ can be confused with the number ‘1’. We note that the letters,

numbers, and shapes whose traces are distinct from others are detected with high accuracy

in the first guess. Examples of such cases are letters ‘m’, number ‘8’, and star shape.

Given that we did not impose any restriction on subjects’ handwriting styles, we observed

that the same strokes written by the same subject often varied slightly in size or style

(e.g., slanted). However, since S3 does not rely on a specific handwriting style for accurate

recognition, these variations do not affect its accuracy.

Figure 2.15. S3’s accuracy in detecting 3 to 6 letter words.

(3) Is S3 able to detect words?

To answer this question, we shuffled the tracking results for all the words collected from

the 5 subjects and presented them to the attacker as described previously. Figure 2.15 shows

S3’s detection accuracy for the random words of varying lengths. The attacker correctly

guessed 89.3% and 84.67% of the 3 and 4 letter words. Given the completely random nature

of these words, we observe that the number of correctly guessed words decreases as the

words’ length increases. This is due to the similarity in the tracking results of different

letters, as described above, which becomes more prominent in longer words. However, human

handwriting in practice mainly consists of legitimate English words where little randomness

is involved. For our experiments with the commonly used English words (three to eight-letter

words), the attacker could guess the words with an accuracy of 93.33% in the first three

guesses. Figure 2.16 shows a set of examples of the tracking results for this case. We found

49

Figure 2.16. Examples of tracking results for the words.

that the tracking results, in some cases, are noisy, making it difficult to guess all the letters in

words. An example of this observation is seen in the rightmost word in Figure 2.16 . Yet, the

attacker can guess the words correctly in these cases since she is able to infer a few letters of

the word from the tracking results, which allows her to figure out what the complete word is.

(4) Can S3 detect continuous strokes?

To evaluate continuous stokes, we conducted an end-to-end attack with S3. To detail, we

consider a real-world scenario where the victim uses the Apple Pencil to write a text message

in a chatting application. The attacker’s goal is to infer the text message (English sentences)

based on the magnetometer’s readings collected by the malicious application running in the

background.

In these experiments, we invited three volunteers to write 10 different text messages on

the iPad while sitting and holding it in hand. The subjects were asked to write valid English

sentences, used in common text message conversations (without punctuation and emojis), with

up to 8 words in each case. The number of words in the sentences written by the volunteers

ranged from three to eight, with a median of five words. S3’s stroke detection component was

used to separate the magnetic readings for different words within each sentence and fed into

the particle filter. The attacker was able to guess 66.67% of all the words collected in the

first three guesses through the tracking results (42.5% in the first guess and 59.1% in two

guesses). We found that the estimated beginning and end of some strokes are not very precise

when the time gap between different words while writing a sentence is small. Therefore, the

tracking results for these strokes are noisy, making it difficult for the attacker to guess the

correct word. However, the attacker was able to guess 80% of the sentences correctly when

the tracking output of all the words in a given sentence were shown together as part of a

50

single sentence. Thus, the context helps the attacker infer the complete sentence correctly

even when the tracking results of individual words are noisy.

Figure 2.17. Accuracy of detecting letters, shapes, and numbers across different
locations on the iPad screen. Grid 1, 2, and 3 are the left, center, and right
part of the input region.

(5) How does the location of the Pencil tip affect the performance of our

system?

As mentioned earlier, we split the input region into 3 grids during the experiments. This

enabled us to evaluate S3’s performance when a user writes on different iPad screen locations.

Figure 2.17 shows the detection accuracy of letters, numbers, and shapes in the 3 grids. Since

grids 2 and 3 are close to the magnetometer location, we observe that the range for magnetic

fluctuations caused by the Pencil is large in these grids, whereas grid 1, which is farther from

the magnetometer, is less sensitive to the Pencil’s movement. However, we observe that our

system performs consistently well across all grids despite detecting only small fluctuations in

the grid 1. This observation clearly demonstrates that small changes in magnetic reading can

be tracked by S3.

(6) Does the performance change across users?

We show in Figure 2.18a how well S3 performs across different users. The detection

accuracy is equal to or greater than 90% for letters, numbers, and shapes for all users. From

the touch API data recorded for ground truth, we observe that the range for altitude and

azimuth angles vary broadly across 10 users for each category. Figure 2.18b and Figure 2.18c

show the average altitude and azimuth angles along with their standard deviation for each

of the 10 users. Though we defined a fixed range for these two angles, the consistent good

51

(a) (b) (c)

Figure 2.18. (a) Detection accuracy of letters, shapes, and numbers for
different users. (b) Distribution of the altitude and (c) azimuth angles for the
strokes written on the screen.

(a) (b) (c) (d)

Figure 2.19. Accuracy of the correctly guessed letters, numbers and shapes in
1, 2 and 3 guesses when the user is holding the iPad in hand (a) while sitting,
(b) while standing, (c) while laying down, and (d) while walking.

accuracy for all users shows that our tracking algorithm can accommodate a broad range of

Pencil orientations and is not affected by the way a user holds the Pencil while writing.

(7) How does the positioning of the iPad affect S3’s performance?

We evaluated S3’s performance with a variety of iPad positions. Apart from the experi-

ments with the iPad placed on the table, we conducted experiments with three volunteers in

the following scenarios: 1) iPad is held in the hand while sitting, 2) iPad is held in the hand

while standing, 3) iPad is held in the hand while laying down, and 4) iPad is held in the hand

while walking. In each scenario, we asked the volunteers to write letters, numbers, and shapes

on the iPad screen, as described earlier. Figure 2.19 shows the detection accuracy for letters,

numbers and shapes in the top three guesses for each scenario. While a user is holding the

iPad in hand, the writing causes small movements in the iPad body that introduce minor

fluctuations in the motion sensors’ data. However, a detection accuracy of higher than 90%

for all strokes shows that S3 is resilient to these small fluctuations and can still identify the

52

Table 2.1. S3’s detection accuracy in different environmental settings.
Scenario Letters (%) Numbers (%) Shapes (%)

Door opening and closing 93.37 95.55 96.67
People walking around in the room 93.80 96.58 97.86

Watch with metallic bracelet 91.88 95.55 96.67
Smart folio iPad case 91.67 94.44 96.67

Pencil’s magnetic impact in scenarios 1, 2, and 3. For the scenario when the user is writing

on the iPad while walking, we observe that S3’s detection accuracy reduces (66.2%, 77.8%

and 87.8% for letters, numbers and shapes respectively) because the continuous change in

ambient magnetic readings makes it difficult to separate the magnetic impact of the Pencil

and the ambient environment.

(8) How does the environment impact the performance of S3?

In our experiments, we observed that the magnetic field sensed by the iPad’s magnetometer

is not affected by regular objects such as books, clothes, etc., in the surroundings. The

experiments described above were all conducted in a lab setting where electrical devices

like computers, laptops, monitors, etc., were present in the surroundings. Based on these

results, we concluded that the existence of these devices did not impact the performance of

our system. Similarly, events such as opening or closing the door, people walking around, and

the movement of furniture in the environment had no significant effect on S3’s performance.

We also evaluated how S3’s performance is affected by the presence of magnetic objects

in the environment. We invited three volunteers to perform experiments in the following

scenarios: 1) while wearing a watch with a magnetic bracelet on their non-dominant wrist,

and 2) while writing on an iPad with a smart folio case. In both scenarios, the subjects

were instructed to hold the iPad in hand. Table 2.1 shows our system’s detection accuracy

in the top 3 guesses for each scenario described above. In scenario 1, even though the

magnetic bracelet is very close to the Pencil while the user is writing, its impact on the

magnetic readings is much smaller than the Pencil’s magnetic impact. As a result, despite the

interference, S3 is able to accurately track the Pencil position. In the case of the smart folio

iPad cover, although the magnets in the cover affect the magnetic readings sensed by the

53

iPad, their magnetic impact stays consistent over time, allowing S3 to separate the impact of

the Pencil as it moves over time.

(9) How does S3 perform compared to other machine learning techniques?

To conduct a comparative evaluation with our system, we implemented three machine

learning methods to infer the users’ writing from the motion sensors’ data. These methods

included 1) k-nearest neighbors (k-NN) regression model, 2) Long Short Term Memory net-

works (LSTM) model for classification, and 3) an ensemble of LSTM models for classification

trained for different locations of the iPad screen. We selected these algorithms as they capture

the order dependence in our dataset and consider the nearest neighbors or previous states

while guiding us about the pencil location over time (we detail the models in the Appendix.)

The tracking results generated from the k-NN model allowed the attacker to guess only

11.54%, 18.67%, and 3% of the letters, numbers and shapes, respectively. The low accuracy

is due to the fact that the magnetic readings can be similar for different Pencil locations and

orientations and the k-NN model fails to capture the relationship between Pencil’s previous

states and its current location and orientation. Hence, the tracking results generated from this

model are hardly legible. The LSTM model similarly achieved an accuracy of 7.69%, 10%, and

21.67% for letters, numbers, and shapes. This model fails to precisely infer useful information

about the users’ handwriting due to the variations in magnetic readings caused by changes

in the Pencil location and orientation, even when a user is writing the same character (as

illustrated in Figure 2.3), To guide the LSTM about the Pencil location, we also trained 3

separate LSTM models on data collected from each of the 3 grids in the input region. We

observe that this approach slightly improves the LSTM model’s accuracy and yields 11.54%,

16.67%, and 29.67% for letters, numbers, and shapes, respectively. However, this model also

yields less accurate results than S3’s particle filter algorithm despite having a smaller search

space for the Pencil’s location. This is because this model fails to capture the combined

impact of the changes in Pencil’s location and orientation on the magnetic readings from the

given data. In contrast to these models, S3 can accurately track the Pencil’s movement over

time solely through the magnetic readings without requiring any large training dataset.

54

2.7 Limitations and Discussion

In this section, we discuss limitations and opportunities for the improvement of our

system.

Limitations: S3 currently can detect individual letters, numbers, and words. As we have

mentioned in the evaluation, S3 can infer sentences with a good accuracy when the tracking

results of its words are analyzed together. Although this approach allows an adversary to infer

commonly used English sentences through their semantic content, it might not be feasible for

complex sentences when the semantic connections among words are lost or difficult to infer. A

natural extension to our work would be to incorporate language models [36] for improving the

detection accuracy of complex words and sentences. Since language models capture long-term

dependencies, hierarchical relations and sentiment of the language, a sentence drawn from

the modelled language, regardless of its complexity, can be inferred from an initial imprecise

guess with a high accuracy.

We also demonstrated that S3’s performance is resilient to subtle changes in the envi-

ronment. However, continuous changes in the ambient magnetic field, such as when a user

travels in a vehicle, might interfere with Pencil’s magnetic impact, making it difficult for S3

to infer the users’ writing.

In S3’s stroke detection process, more complex models through Recurrent neural networks

(RNN) and Long-short term memory (LSTM) can be learned to capture the underlying

sequence patterns in sensor data for detecting the beginning and ending timestamps of each

stroke more accurately. Furthermore, our attack has a human in the loop for guessing what the

victim is writing. Future work will expand our analysis to support models built on computer

vision techniques to recognize letters, and natural language processing techniques (NLP) to

infer words and sentences to infer user writings without human interaction.

Defense Techniques: We now discuss possible defenses for the side-channel attack presented

in this chapter. First, we observed in our preliminary experiments that if the sampling rate

for accelerometer and gyroscope data is decreased, say to 50Hz, detecting the beginning

and end of the strokes becomes very difficult. Similarly, if the magnetic data is sampled at

a frequency of 5Hz, the tracking results become less tangible. Hence, a potential defense

55

against our attack would require iOS to reduce the available sampling rate for accelerometer,

gyroscope, and magnetic data when a user interacts with the iPad using Apple Pencil. Another

potential defense would be to pause the motion sensors when a user interacts with the Pencil.

However, both solutions heavily affect the operation of legitimate applications running in the

background, which use motion sensors for activity, context, and gesture recognition. Another

possible defense is to apply magnetic shielding [37] to the Apple Pencil. However, this will

greatly impact the weight and hence the usability of the Pencil. Future work will analyze

the trade-offs between these defense techniques and applications’ access patterns to motion

sensors.

2.8 Related Work

Side-channel attacks through motion sensors: Several recent works have demon-

strated potential privacy leaks from mobile sensors. Wang et al. explored how motion sensors’

data collected from smartwatches are used to infer what a user is typing on a keyboard [3].

Another work demonstrated that the changes in the accelerometer readings are powerful

enough to help extract passwords typed on smartphone touchscreens [6]. Michalevsky et al.

showed the MEMS gyroscopes in modern smartphones could sense acoustic signals, which

can be used to identify and parse speech [38]. A recent work unveiled a side-channel at-

tack leveraging smartphone accelerometers to eavesdrop on the smartphone speaker and

reconstruct the audio signals [39]. Das et al. [40] combined multiple motion sensors and

used inaudible audio stimulation to fingerprint different users by measuring anomalies in

the signals. Another line of work leveraged magnetometers to infer private information. It is

shown that the magnetometer of a smartphone placed next to the hard drive of a computer

allows an attacker to infer patterns about the system details, such as the type of operating

system and applications used [41]. Block et al. leveraged magnetometers’ ability to detect

locations of users’ devices within commercial GPS accuracy [42]. Researchers also demon-

strated that electromagnetic field measured by smartphone magnetometers could be exploited

for webpage [8], and device [43] fingerprinting. Compared with existing side channels, we

56

introduce a new side-channel attack to identify users’ handwriting by analyzing the magnetic

impact of the embedded magnets in modern stylus pencils sensed by device magnetometers.

Handwriting tracking through motion sensors: There have also been efforts that

explored the use of motion sensors for eavesdropping on users’ handwriting. Motion sensor

readings collected from a smartwatch are used to infer what the user is writing [44 , 45].

However, these approaches require a compromised smartwatch to be worn on the victim’s

writing hand. In contrast, S3 does not require any extra device, and tracks the Pencil

movement with high accuracy without restricting the victim’s handwriting style. Another

work introduced Finexus to track fingertip movements in 3D space by instrumenting the

fingertips with electromagnets and measuring the corresponding magnetic field changes using

four magnetometers [46]. Although Finexus tracks the fingertip movements with millimeter

level accuracy, it requires multiple magnetometers for precision. Our system tracks the pencil

tip and achieves high accuracy in inferring handwriting with a single magnetometer. Similarly,

TMotion presented a self-contained 3D input device that enables interactions in 3D space

around smartphones by embedding a permanent magnet and an inertial measurement unit

(IMU) in the stylus pen [47]. While this work is effective at tracking the stylus, it requires

attaching an extra wand on top of the stylus pencil to accommodate a magnet and an extra

IMU sensor, impacting the stylus pen’s overall usability. In contrast, our system requires no

such hardware for accurate pencil tracking. Lastly, a recent work introduced a sensing system

for eavesdropping on handwriting by analyzing the magnetic field changes produced by stylus

pens [48]. However, a commodity smartphone with a magnetometer must be placed within

20cm of the victim’s device to sense the magnetic field. In contrast, S3 uses the magnetometer

on the victim’s device, resulting in a higher detection accuracy, and does not require the

attacker to be present in close proximity of the victim.

2.9 Details of the ML Models

K-Nearest Neighbors (k-NN) regression: We trained a k-NN model on the data collected

for generating the magnetic map for the Pencil and evaluated it on the data collected from

the subjects in our user study. The model was designed to predict the Pencil’s location and

57

orientation at time t when given the magnetic readings for the previous three timestamps.

We used a grid search to find the best value for k within the range of 1 to 5 on our training

data and chose the value which resulted in the highest accuracy. The attacker was shown the

tracking results generated from predicted Pencil location trace for each stroke.

Long Short-term Memory Network (LSTM): We implemented a LSTM model for

predicting which letter, number or shape corresponds to magnetic readings collected for a

stroke. We used TensorFlow’s Keras library [49] for implementing the LSTM network. The

model required a three-dimensional input of the shape [samples, time steps, features] where

samples is the number of strokes, time steps is the number of magnetic samples for each

stroke (fixed to 200 samples) and the number of features is 3 representing the x, y and z

axis of the magnetometer readings. The output of the LSTM model was a 26 element vector

(10 and 5 in the case of numbers and shapes respectively) representing the probability of

a given stroke being any of the 26 letters (10 numbers or 5 shapes). We defined the model

as sequential model with two LSTM hidden layers followed by a dropout layer to reduce

over-fitting on training data. The features extracted from the LSTM layers were fed into a

dense fully connected layer followed by a final output layer used to make predictions. We

trained this model on the data collected from the 10 subjects in our user study using a

leave-one-out cross validation approach [50].

In an attempt to improve the LSTM network’s performance, we limited the search space

for the Pencil’s location by implementing separate models for each of the three grids in the

input region of the screen. The same network architecture was used for the three models. For

final inference, we used the output of the model with the highest confidence score.

Ground truth for examples in Figure 2.13 in order: Letters are y, n, c, e, l, z, w, u,

a, b, g, q, v, m, h, k, s, i, p, d, o, x, r, h, t, f, j, q, and f. Numbers are 7, 5, 0, 6, 9, 6, 1, 2, 5,

8, 4, 5, 0, 3, 1, 8, 3, 2, 8, 4, 6, 9, 0, 3, 7, and 6. Shapes are heart, star, circle, heart, square,

star, circle, square, heart, heart, triangle, star, and square.

Ground truth for examples in Figure 2.16 in order: make, have, now, hello, time,

own.

58

3. LOCIN: INFERRING SEMANTIC LOCATION FROM

SPATIAL MAPS IN MIXED REALITY

3.1 Introduction

Mobile mixed reality (MR)

1
 has become increasingly popular over the last decade with

the release of dedicated headsets and apps that blend virtual content into users’ real-world

environments. Apart from gaming and entertainment, mobile MR applications have recently

found utility in enabling interactive healthcare, education, and e-commerce experiences [51 –

 53]. For instance, e-commerce apps like IKEA place [54] allow customers to experience how a

product fits in their environment before purchasing.

MR apps require an elaborate description of the user’s surroundings in three dimensions

(3D) to localize the MR device and enable realistic assimilation of virtual content in the user’s

environment. To capture the user’s 3D environment, common MR devices, including dedicated

headsets and even off-the-shelf smartphones, are equipped with specialized sensors such as

depth cameras and LiDAR sensors. For instance, HoloLens 2 equips a depth camera, and

Apple’s latest iPhone and iPad Pro employ a LiDAR sensor to capture the real-time depth of

the surrounding space and objects [55]. These sensors capture the distance between the device

and physical points in the environment to generate a 3D spatial map of the environment.

As mobile MR adoption grows [56], there is increasing concern about the security impli-

cations of 3D spatial maps accessed by mobile apps [57 , 58]. All MR apps require explicit

user permission for camera access to deliver their functionality, i.e., integrate virtual content

in the user’s environment. Once camera permission is granted, MR apps on popular MR

platforms [59 – 61] have access to the 3D spatial maps. MR apps’ access to 3D spatial maps

opens doors to a new type of reconnaissance attack where an adversary-controlled malicious

app exploits the 3D spatial map of the user’s environment to infer user’s indoor locations

(i.e., semantic location).

An adversary’s ability to locate users enables them to launch physical attacks and case a

target’s environment for burglary and assault. With mobile MR use cases in entertainment,

education, and retail, such threat broadly applies to our homes, businesses, educational
1

 ↑ We use MR as an umbrella term for augmented and virtual reality.

59

facilities, and many others. Moreover, an adversary can combine the user’s indoor location

information along with the object and semantic properties of the user’s environment to

build a profile for delivering personalized ads and recommendations. An adversary can also

exploit this to understand users socio-economic status, accessibility requirements, and product

preferences, as well as their identity, routines, and activities.

In this chapter, we study how an adversary can exploit 3D spatial maps from MR devices

to infer a user’s indoor location. Prior work has explored indoor location inference from 2D

and RGB-D images [62 – 67]. However, the direct application of existing approaches to spatial

maps is impractical because location inference from spatial maps requires a different type

of feature extraction and optimization process due to its sparse, non-uniform, and dynamic

nature. To achieve this, a recent work [68] built a location classifier from spatial maps.

This approach, however, suffers from two main limitations. First, it only uses the high-level

geometric features of spatial maps without leveraging their semantic context. The lack of

such semantics leads to poor accuracy in inferring different indoor environments. Second, it

compares a given location of a user with a labeled database of that user’s previously visited

locations with the goal of finding whether the user has been in that location before. From an

attack perspective, it fails to infer the location of users without knowing a priori the spatial

maps of their indoor environments. These limit its attack practicability, ultimately making it

infeasible to conduct a location inference attack in practice.

To this end, we present LocIn, a location inference attack on mobile MR devices which

exploits 3D spatial maps to infer a user’s location. We observe that indoor environments

are uniquely characterized by their semantic context (e.g., objects and surfaces in the

environment). Yet, unlike pixel arrays in images, a 3D spatial map is a set of unordered

points with non-uniform density, making detecting objects and surfaces in the environment

challenging. Therefore, we introduce a new location inference learning representation that

composites the geometric and contextual patterns embedded in the spatial map to infer a

user’s location. We design a multi-task learning approach and build an end-to-end encoder-

decoder network that can successfully infer the user’s location from spatial maps captured by

various MR devices.

60

LocIn first preprocesses the 3D points in a 3D spatial map through farthest point

sampling [69] to remove outlier points and subsample the map to a fixed number of points.

The preprocessed map is then fed as input to LocIn’s spatial encoder, which extends a

hierarchical neural network [70] to extract a spatial feature representation of the map. This

feature representation embeds geometric and contextual patterns of the user’s environment.

This representation is invariant to dynamic changes (e.g., changes in viewing angle or size

of the map) in spatial maps as users interact with the MR apps. Lastly, LocIn’s encoder

output is fed to LocIn’s multi-task location decoder. The multi-task decoder performs 3D

object detection and semantic segmentation to generate 3D bounding boxes of objects and

point-wise labels for objects and surfaces in the environment. It then integrates the object

and semantic context into a classification network to predict the location type (e.g., bedroom,

office) of the input spatial map.

We present three studies to evaluate LocIn’s effectiveness. In a first study, we evaluated

LocIn on a dataset [71] consisting of ∼1, 500 spatial maps collected via an iPad Air 2 equipped

with a depth sensor belonging to 13 unique indoor location types where MR devices are

typically used. To demonstrate LocIn’s effectiveness on MR devices with different depth

sensing techniques, in a second study, we evaluated LocIn on a dataset [72] collected through

an iPad Pro equipped with a LiDAR scanner consisting of ∼5,000 spatial maps. The spatial

maps belonged to 9 unique indoor location types in real-world homes. Finally, to show LocIn

attack’s practicality on dedicated headsets, we evaluated LocIn on our dataset of spatial

maps collected via HoloLens 2. LocIn correctly predicted the location types from the spatial

maps with an average accuracy of 84.1%. We also show the LocIn attack is robust against

varying sparsity (number of points) and size of the 3D spatial maps.

In summary, we make the following contributions:

• We present a location inference attack on mobile mixed reality devices that exploits

the 3D spatial maps captured from users’ environments to predict their location type.

• We design LocIn, a multi-task learning framework that leverages an encoder-decoder

architecture to infer the user’s location by integrating the geometric and contextual

patterns embedded in the spatial maps.

61

• We evaluate LocIn on 3D spatial maps captured using three MR devices from 13 unique

location types. We demonstrate that LocIn can infer a user’s location with an average

accuracy of 84.1%, and it is robust against varying sizes and sparsity of the spatial

maps.

3.2 Background

Mixed Reality. The influx of reality-altering headsets and applications has brought mixed

reality (MR) to the spotlight in recent years. Consequently, mobile industry has been striving

to enable comfortable and realistic MR experiences for users. For instance, Google and Apple

released ARCore [60] and ARKit [61] to enable MR app development for smartphones and

tablets. Moreover, dedicated standalone headsets, such as HoloLens, have recently emerged

with their own MR development platforms, e.g., Windows Mixed Reality Toolkit [59].

MR devices integrate virtual reality (VR) and augmented reality (AR) to allow users to

visualize and interact with both real and virtual content in their own physical environment. MR

use-cases range from social media apps (e.g., Snapchat filters [73]) and games (e.g., Pokemon

Go [74]) to e-commerce (e.g., IKEAPlace [54]) and educational apps (e.g., chemical molecular

structures [75], human anatomy [76]).

To enable mixed reality experiences, MR devices embed multiple sensors, such as RGB

cameras and microphones that capture input from the user’s surroundings. These devices are

often equipped with an inertial measurement unit (IMU) to enable tracking of users’ head

and body movements. Some recent MR devices are also equipped with specialized depth

sensors. For instance, HoloLens 2 uses a depth camera while the latest iPhones and iPads

employ a LiDAR sensor to build an understanding of their surroundings [55 , 77].

3D Spatial Maps. MR devices need to accurately locate themselves in relation to the

physical world and understand the objects and surfaces in the environment to seamlessly

superimpose digital content in the user’s surroundings. Most MR devices rely on camera and

sensing-based localization techniques to locate themselves in the user’s environment [78]. These

techniques require access to a detailed 3D digital representation of the user’s environment,

which is used by MR apps to overlay virtual content in the user’s surroundings. To this end,

62

<x, y, z>

(a) (b)

Figure 3.1. An example of a spatial map captured with an MR device in an
office (a) without and (b) with color.

commonly available MR devices - dedicated headsets and even off-the-shelf smartphones - are

equipped with depth sensors that measure the distance between the device and points in the

real environment. These depth sensors include Time-of-Flight (ToF) cameras (e.g., HoloLens),

and LiDAR scanners (e.g., on iPhone 13 and iPad Pro).

The 3D mapping of the user’s environment is shared with MR apps to allow virtual or

augmented content to interact with the physical world, e.g., anchoring a virtual object on

user’s desk. MR devices provide the 3D representation of the users’ environment to MR apps

as a 3D spatial map. The 3D spatial map is represented by a set of 3D points {P = p1, . . . , pn},

where each point pi is a vector of its (x, y, z) coordinate in space. Figure 3.1 shows an example

of a 3D spatial map captured by iPad Pro, with and without the color information. Some MR

devices also include color and normal vectors (e.g., HoloLens [79]) representing orientation

for each point in the 3D spatial map.

63

3.3 Problem Statement and Threat Model

3.3.1 Motivation

MR Permission Models. The MR devices leverage the same permission models as tradi-

tional mobile operating systems e.g., iOS and Android, to control apps’ access to sensitive

data [80 – 82]. Since access to the camera is essential for MR apps to visually integrate virtual

content in the user’s environment, users must grant camera permission to allow MR apps to

function as intended. Prior works have highlighted that sensitive data such as credit cards

details, sensitive documents, or bystanders’ facial identities could be revealed from images

and videos, captured by MR devices [83 – 86]. Consequently, several works have attempted to

protect visual privacy by only sharing user-defined privacy-preserving visual features with

apps [83 , 85 , 87], augmenting privacy markers (e.g., QR codes, RFID tags) into the real world

to avoid sensitive content [84 , 88], and defining fine-grained permissions for app’s access to

visual data [89 , 90].

Significant efforts have been made to restrict MR apps from accessing users’ private data

through images and videos [86]. Yet, these apps must access the 3D spatial maps of the user’s

environment to deliver MR content. Hence, once camera permission is granted to an app, it

can access the spatial map.

Security and Privacy Implications of Spatial Data. Access to 3D spatial maps of the

user’s environment poses serious privacy threats as these maps capture privacy-sensitive cues

about the user’s surroundings. For instance, a spatial map captures detailed characteristics

of the environment, such as its geometric properties (e.g., length and width of the room),

and embeds semantic information about the types of objects or surfaces present in it. Similar

to how humans perceive an indoor environment based on its layout, objects, and surface

properties [91], an adversary can extract these characteristics from the 3D spatial map to

infer user’s location, i.e., the type of indoor environment.

Unlike images and videos, 3D spatial maps are not easily interpretable by average MR

users and, therefore, are not perceived as sensitive data yet, exacerbating their privacy threat.

Moreover, spatial maps, unlike images, are not sensitive to lighting conditions, occlusions, or

64

camera orientations/viewpoints which allows an adversary to infer private information about

the user in a variety of scenarios.

An adversary can exploit spatial maps to infer a user’s location (e.g., user is at their office

or home), without explicitly requesting location permission from the user. The adversary

could exploit this information to launch a physical attack (e.g., robbery or assault). The

adversary could also gain a fine-grained understanding of the user’s routine (e.g., when the

user wakes up, goes to work) based on the inferred locations across time. This information

can be leveraged by data brokers aiming at selling detailed user profiles to third parties.

An adversary can also combine the object and semantic segmentation information em-

bedded in a spatial map with the inferred location to reveal additional private information

about the user. First, an adversary could leverage the detected objects and the inferred

location to understand users socioeconomic status, accessibility requirements, and product

preferences. For instance, a wheelchair in a bedroom or handles near a toilet might indicate

a user’s accessibility needs. Similarly, the type of appliances found in a user’s environment

could reveal their income level. Second, an adversary could use information about rooms and

objects sizes and timing of a collected map to distinguish locations visited by a user (e.g., bed

on day-1 vs. day-2) and infer users identity, behavior, and activities. For instance, the number

of beds in a room could reveal the familial structure of a user, and the presence of athletic

equipment could indicate a user’s hobbies. Lastly, with recent permissions for tracking user

activities on mobile OS (e.g., Apple’s app-tracking-permission), access to spatial maps aid

adversaries in building user profiles for delivering targeted ads based on their visited locations.

This is privacy critical as users are unaware of their data being collected.

Therefore, in this chapter, we set the foundation for uncovering users private information

inferable from spatial maps.

3.3.2 Problem Statement

We investigate how an adversary can exploit the 3D spatial maps captured by MR devices

to infer the indoor location of a user, e.g., a user is in the office or bedroom. We consider the

spatial map of a user’s environment, P = {p1, p2, . . . , pn}, where n is the number of points in

65

3rd Party
MR Application

User’s
environment

MR Device
e.g., smartphone,

HoloLens

3D Spatial Map

LocIn

User’s
environment with

virtual content

User’s
location:

office

3D Spatial
Map

Figure 3.2. A malicious MR application accesses the 3D spatial map of a
user’s environment to integrate virtual content. The app can exploit this map
to infer the user’s location.

the map and each pi consists of the 3D coordinates of a point. Given P , our goal is to infer

the indoor location where the spatial map was captured.

To illustrate, consider the scenario in Figure 3.2 where a user installs a malicious virtual

meeting app on their mixed reality device (e.g., iPad Pro with LiDAR sensor). The app

requests camera permission from the user to display avatars of other meeting attendees. The

user interacts with the app in their office to conduct a meeting with their colleagues. The

malicious app accesses the 3D spatial map of the user’s current surroundings and shares it

with a remote server.

A remote adversary can exploit this spatial map to infer that the user is at their office and

leverage this information to break into the house when the user is not home. The adversary

could also exploit this information to gain a fine-grained understanding of the user’s identity,

routine, and preferences (e.g., when the user wakes up, goes to work, user’s hobbies, etc.).

Additionally, based on the user’s inferred location, an adversary can create a detailed profile

of a user to deliver unsolicited personalized ads to generate ad revenue. For example, a virtual

meeting app could display ads for office furniture or work productivity tools while the user is

in their office.

66

3.3.3 Threat Model

We consider an adversary with the goal of inferring the type of user’s indoor location

(e.g., bedroom, kitchen, office) while a user is using an MR device. The target device can be

any MR device, capturing a 3D spatial map via the device camera equipped with a depth

sensor or LiDAR scanner, e.g., a smartphone with MR capabilities and HoloLens. We assume

the adversary has no prior knowledge about the target user’s indoor environment, including

its physical location, spatial maps from prior app usage, and location type. The adversary

trains the attack model using publicly available datasets that include typical indoor location

types [71 , 72]. We discuss in Section 5.6 how the adversary can infer location types not

observed during the training process.

An adversary provides the user with an MR app, which accesses the 3D spatial map of the

user’s surroundings while the user interacts with the app. The adversary can achieve this by

(1) distributing the MR app on MR platforms’ app stores and third-party MR forums, and (2)

deceiving users into installing the MR app via phishing and other social engineering methods.

We note that 3D spatial map can be accessed if the camera permission is granted to an app.

As MR apps require camera access to deliver their basic functionality, camera permission is

given to all MR apps. The app does not require any other permissions, such as permissions

for the device location, or the images and videos recorded by the device; additionally, the 3D

spatial map accessed by the app does not contain any color or normal vector information.

We note that given the adversary deploys a malicious app on the target user’s device, it has

knowledge of the user’s MR device model and its depth-sensing technology. Based on this,

the adversary trains an attack model on publicly available datasets collected using similar

depth sensors as the target device.

3.3.4 Design Challenges

C1: Extracting Location Cues from Spatial Maps. Given a 3D spatial map, intuitively,

an adversary could train a classifier that extracts high-level features, such as structural and

geometric properties (e.g., length and width or floor map) of the user’s environment to infer

the location. However, this is a challenging task as indoor environments of the same type

67

vary significantly in their structural and geometric properties. For instance, the size of two

bedrooms in a user’s house may differ. Similarly, the geometric features of different locations

may share similarities (e.g., structure of a classroom may share similarities with that of a

conference room).

One potential solution to this problem is leveraging the semantic context of indoor

locations to discriminate them better. To achieve this, an adversary could train a 3D spatial

map model trained either on objects or 3D surfaces present in the environment. Yet, solely

using objects or 3D surfaces yields incorrect location inference (demonstrated in Section 3.7)

because, unlike image pixel arrays, a 3D spatial map is an unordered collection of points

with a non-uniform point density, which makes detecting objects and 3D surfaces challenging.

Therefore, to accurately infer the location, we build a feature extraction and loss minimization

pipeline that simultaneously captures both geometric properties and the semantic context of

the user’s environment.

C2: Invariance to App Usage. Spatial maps captured by MR devices change dynamically

in size and viewing angle when a user interacts with different MR apps. For example, while

playing an MR game, a user may walk around the room, and while using a shopping MR

app, a user may position products to specific locations in a real-world perspective. Hence, to

infer the user’s location from the captured spatial map, the location inference model must be

invariant to spatial map transformations. For instance, translating or rotating the spatial map

points should not change the model’s location prediction. We leverage 3D point subsampling

and hierarchical multi-scale spatial feature learning to overcome this challenge.

C3: Lack of Prior Knowledge and Generalization. To launch location inference attacks

in practice, an adversary must be able to infer the target users’ location without making

any assumptions or prior information about their environments. One naive approach would

be collecting spatial maps from a set of users while they are using an MR app and then

manually-label them with a set of location labels. However, while this approach may yield an

acceptable attack success rate for seen users, it is tedious and time-consuming and may fail to

generalize to unseen users due to the bias to specific locations, and produce incorrect results

(Section 3.7). To address this, we use public spatial map datasets with diverse location labels

68

Preprocessing

Semantic
Decoder

Object
Decoder

Location
Decoder

Location label
Office

Input Spatial Map

Nx3

Point-wise
semantic labels

Nx1

Object 3D
bounding boxes

Spatial
Understanding

Encoder

Sp
at

ia
l F

ea
tu

re
 R

ep
re

se
nt

at
io

n
M

xD

Multi-task
Location Decoder

Location Inference

Xx3

Figure 3.3. Overview of LocIn attack.

(in addition to the dataset we collected). Additionally, to eliminate the sparse, non-uniform,

and noisy nature of such datasets, we leverage a data-driven upsampling method to generate

dense points while improving proximity-to-surface and distribution uniformity in the 3D

point representations.

3.4 LocIn Attack Overview

We present LocIn, a location inference attack for mobile mixed reality devices, which

exploits 3D spatial maps to identify a user’s indoor location. Figure 3.3 illustrates the overview

of LocIn attack. Given that the sparsity of spatial maps varies based on the MR device

and device usage duration, we first preprocess the input map by removing outlier points

and subsampling the 3D points in the spatial map (1). Here, we leverage farthest point

sampling [69], resulting in a reduced size map with N points (addressing C2, C3).

As discussed in Section 3.3.4 , inferring a user’s location solely from geometric (i.e., structure

and appearance of an environment) or semantic (i.e., objects and surfaces present in the

environment) properties of an indoor environment can often lead to ambiguous results. To

address this issue, we introduce a new location inference learning representation by combining

69

the geometric and semantic properties of a 3D spatial map. For this, we use a multi-task

learning approach and train an end-to-end encoder-decoder [92], which, in turn, successfully

infers the user’s location (addressing C1).

Specifically, we extract the geometric and semantic properties of the user’s environment

by extending a PointNet++-based hierarchical neural network encoder [70] (2). The encoder

extracts a spatial feature representation of the input spatial map (Z). Z is then fed to LocIn’s

multi-task location decoder (3). The multi-task decoder is a composite model consisting of

three components: (1) location decoder, (2) object decoder, and (3) semantic decoder. The

location decoder consists of a fully-connected neural network classifier trained to predict

the type of input spatial map’s location. The object decoder extends a 3D object detection

network [93] that detects the objects in the user’s environment. Lastly, the semantic decoder

leverages a segmentation network [70] to provide fine-grained information about the objects

and surfaces present in the user’s environment.

To ensure that the location decoder integrates the intrinsic patterns from object detection

and semantic segmentation, we introduce a unified optimization function that combines the

loss functions of the three decoders to train LocIn.

3.5 LocIn Design

3.5.1 Spatial Map Preprocessing

LocIn attack aims to infer the location of the user without any prior knowledge about

the user’s MR device. As different MR devices use different sensors to generate the 3D spatial

map of the user’s surroundings, the number of points in the 3D spatial map varies from one

device to another. For example, the spatial map’s point density captured via a HoloLens 2

with depth cameras is different from the spatial map obtained through the iPad’s LiDAR

scanner. Moreover, spatial maps’ point density is largely dependent on the user’s app usage.

For instance, if the user moves quickly in their environment while interacting with the app,

the spatial map has fewer points.

To infer location from spatial maps with varying densities, we transform the input spatial

map to a fixed number of 3D points. Given an input map (P) of size X × 3, with a 3D

70

…

Sampling

Grouping

PointNet Sampling

Grouping

PointNet

Nx3

Sp
at
ia
lF

ea
tu

re
 R

ep
re

se
nt

at
io

n,
 M

xD

Input Spatial Map M1x3

M1xKx3

M1xD Msx3

MsxKx3

MxD

Figure 3.4. LocIn’s spatial understanding encoder architecture based on a
hierarchical neural network (PointNet++).

coordinate for each X point, we apply farthest point sampling [69] to the map to generate a

transformed map of size N × 3. Specifically, we select a random point and then iteratively

sample points that are farthest from the selected samples. This ensures that the input spatial

map is subsampled to a fixed size for efficient processing while providing sufficient coverage.

3.5.2 Spatial Understanding Encoder

To infer the user’s location, a method is needed to understand the geometric properties

and semantic context from the preprocessed spatial map. For this, we convert the input spatial

map, P , into a high-level spatial feature representation Z that only encodes information

relevant for uniquely identifying the user’s location. For instance, for the spatial map of

a bedroom, Z could represent features of objects or surfaces in the map that can help

differentiate its location from others, e.g., 3D points of a bed and nightstand placed close to

a wall.

To learn the spatial feature representation, instead of relying on hand-crafted geometric

and semantic features, we leverage network architecture for learning point-wise features from

3D point clouds [70 , 94 , 95]. While LocIn’s approach is not limited to a specific network, we

71

extend PointNet++ [70] as an encoder to learn hierarchical features that preserve spatial

localities in the spatial map at different contextual scales

Figure 3.4 illustrates the architecture of LocIn’s encoder. The encoder’s PointNet++-

based hierarchical structure consists of multiple set abstraction levels with skip connections.

At each abstraction level, a subset of points from the input spatial map is selected to ensure

efficient computation and processed into a feature vector that represents the local context of

the selected points. The set abstraction consists of three main operations: (1) sampling, (2)

grouping and (3) PointNet feature extraction.

Iterative Spatial Sampling. The sampling operation in each set abstraction level leverages

iterative farthest-point sampling to select a subset of the spatial map’s points such that each

point in the subset is the most distant from the remaining points in the subset. Therefore,

given an input set of points of size N × 3, the sampling operation generates a set of points of

size M × 3. In contrast to random sampling, the farthest point sampling ensures that the

sampled points provide better coverage of the entire spatial map. This sampling operation is

similar to LocIn’s preprocessing step (Section 3.5.1). Yet, it is repeated at each set abstraction

level with a decreasing number of samples, followed by the spatial grouping operation.

Spatial Locality Grouping. With the grouping operation, we generate groups of neighboring

points for each point selected during the sampling operation. These groups represent local

regions of the input spatial map used for feature extraction via PointNet [94]. To identify

the neighboring points, we extend ball query algorithm [96] for the grouping operation

to find all points within a specified radius of a given point. Ball query algorithm uses a

divide-and-conquer approach to build a ball-tree i.e., a binary tree in which each node of the

tree represents the set of neighboring points within a specific radius. Starting from the set

of 3D points from the sampling layer as its root node, we iteratively build the ball-tree by

selecting the farthest point from the centroid of root node points as the left child and the

farthest point from this left child as the right child of the root node. The points in the root

node are then assigned to the children nodes based on their distance from the node.

The grouping operation transforms the input spatial map of size N × 3 into a set of

groups of points of size M ×K × 3. Here, M is the number of groups centered around the

72

points selected via sampling operation, and K is the number of neighboring points found

for each selected point. We note that K varies across groups, but the spatial feature vector

extraction layer converts variable length groups to a fixed vector size.

Spatial Feature Vector Extraction. For each of the local spatial map regions (groups)

extracted via the sampling and grouping operations, we extract a spatial feature vector that

encodes the context of the local region through PointNet [94]. We first extract the coordinates

of points in each of the M local regions relative to the centroid of the region. The resulting

groups of coordinates are then fed as input to PointNet.

Given the set of points for a specific region, PointNet maps the points to a D-dimensional

feature vector through a multi-layer perceptron (MLP) network and a max-pooling function

Thus, the feature extraction layer of LocIn’s encoder returns a spatial feature representation

(Z) of size M ×D, capturing the local context of various parts of the input spatial map.

3.5.3 Multi-Task Location Decoder

We translate the problem of inferring location from the feature encoding of the spatial

map into a classification task. Given the encoding Z of the user’s environment obtained

from the spatial encoder, LocIn’s location decoder predicts the user’s indoor location. For

this, LocIn first extracts the high-level geometric features of the user’s environment to infer

its location. It then combines these geometric features with the map’s contextual patterns

through object and semantic decoders.

We consider pairs of spatial feature encodings and their location label,

{(zi, yi)}n
i=1 ∼ P n(z), zi ∈ RD, yi ∈ ∆c (3.1)

where c is the number of location classes, and ∆c is the set of c-dimensional probability

vectors. Given this data, our goal is to learn a location decoder

ft = arg min
f∈Ft

1
n

n∑
i=1

Lloc (yi, σ (f (zi))) + Ω(‖f‖) (3.2)

73

where Ft is a class of functions from RD to Rc, the function σ : Rc → ∆c is the softmax

operation, the function Lloc : ∆c ×∆c → R+is the cross-entropy loss

Lloc(y, ŷ) = −
c∑

k=1
yk log ŷk (3.3)

and Ω : R→ R is an increasing function as a regularizer.

To infer the location from the spatial encoding, ft can be implemented as a deep neural

network that extracts high-level features of the spatial map useful for predicting its location.

However, these features often lack distinctive local or global semantic patterns necessary for

uniquely identifying a location (See our evaluation in Section 3.7). Moreover, the lack of

labeled data (i.e., pairs of spatial maps and their location label) makes learning a generalized

location classification model for various users challenging.

We observe that indoor environments are uniquely characterized by their semantic context

i.e., the types of objects and fine-grained details about surfaces present in the environment.

For instance, a bedroom can be uniquely identified because of the presence of a bed, and a

kitchen can be identified if a stove is detected in the spatial map.

To integrate contextual information into our learning representation for location decoding,

we propose a new composite learning representation for location decoding by leveraging the

multi-task learning paradigm in transfer learning [92]:

fs = arg min
f∈Fs

1
n

n∑
i=1

[αLloc + βLobj + γLsem] (3.4)

Here Lobj and Lsem are the loss functions for detecting objects and extracting semantic

patterns from the input spatial encoding (detailed in Sections 3.5.3 and 3.5.3).

Through this learning representation, we learn a model to classify the location of a given

spatial map while concurrently learning the contextual patterns from objects and surfaces

in the map. Our representation is inspired by the teacher-student networks in knowledge

distillation where the learning of a student model is guided by the teacher networks [97]. In

our case, the location decoder is the student network, while the object and semantic decoders

act as teacher networks. Object and semantic decoders benefit from stronger supervision

74

…

Upsample

…

MLP

Spatial Encoder

Votes
MʹxD

Vote Clusters
KxD

Sampling &
Grouping

MLP

3D Object
Bounding

Boxes
B

Voting Object Proposal & Classification

Figure 3.5. LocIn’s object decoder architecture with a deep Hough voting,
object proposal, and classification module.

during learning as the labeled data for these tasks includes ground truth for multiple objects

and point-wise semantic class labels.We show in Section 3.7 that this composite learning

representation helps improve LocIn’s overall accuracy.

3D Object Decoder

The goal of LocIn’s object decoder is to localize and recognize 3D objects present in the

user’s environment as indoor environments are characterized by the objects present within

them. This process involves detecting the orientated 3D bounding box for each object from

the spatial map as well as predicting the semantic class of each detected object.

To this end, we extend VoteNet [93], a voting-based network for object detection Figure 3.5

illustrates the architecture of LocIn’s object decoder, consisting of two modules: a voting

module and an object proposal and classification module.

Object Voting. The voting module adapts Hough transform [98] to generate votes for points

in a 3D spatial map based on their distance to objects’ centers. Since depth sensors used by

MR devices typically only capture object surfaces, 3D object centers may not be close to

any point. For accurate bounding box generation around object centers, VoteNet leverages

75

the Hough voting to sample seed points which are close to object centers and generate votes

based on their features.

We use the spatial encoding Z of size M ×D as the input to the voting module. To ensure

significant coverage of spatial map points for object detection, we first perform upsampling on

the M points via multiple feature propagation layers and obtain spatial feature representation

for M ′ points in the original map. The feature propagation layer interpolates the point

features of the input points to output points by computing the weighted average of their three

nearest input points features and concatenates features from LocIn’s encoder (forwarded

through skip-connections) through an MLP network.

Given the set of upsampled points and their features, M ′ ×D, we generate votes for each

point via a shared MLP with fully connected layers. The MLP computes the vote for each

point pi by predicting its offset from an object’s center ∆pi through the following regression

loss minimization:

Lvote = 1
Mo

∑
i
‖∆pi −∆p∗

i ‖1[pi on object surface] (3.5)

where Mo is the total number of points lying on the object surface, ∆p∗ is the ground truth

displacement of the point pi from the object’s center it belongs to and 1[pi on object surface]

indicates whether the point lies on an object surface.

The resulting votes represent the semantics of different parts of the objects in the

environment.

Object Proposal and Classification. The object proposal and classification module groups

and aggregates the votes generated by the voting module to generate object bounding box

proposals. It first clusters the votes via uniform sampling and grouping according to spatial

proximity and then processes them through a series of MLP and max-pool layers to generate

the bounding box proposals. This generates a set of bounding boxes, B, for various objects in

the input spatial map. These bounding boxes are represented as a multi-dimensional vector,

including the center coordinates and size of the bounding box.

Object Detection Loss. The object decoder generates the bounding boxes for the detected

objects and assigns the semantic class label to each object. Therefore, we train it by optimizing

76

(a) (b)

Figure 3.6. An illustration of (a) object detection and (b) semantic segmenta-
tion output. The color in (b) represents the semantic label for points in that
region.

a multi-task loss function consisting of the vote (Lvote), objectness (Lobj-cls), 3D bounding

box estimation (Lbox), and semantic classification (Lsem-cls) losses.

Lobj = Lvote + λ1Lobj-cls + λ2Lbox + λ3Lsem-cls (3.6)

Objectness loss gauges whether the detected box proposals indeed belong to an object.

For this, we categorize the detected object proposals based on their distance from the ground

truth object center into positive (< 0.3m) and negative proposals (> 0.6m). Objectness loss

is then computed via a cross-entropy loss normalized by the total number of proposals.

The box loss optimizes the detected parameters of the 3D bounding boxes, i.e., their

centers (x, y, z coordinates), size (height, width, and length), and the heading angle along

Z-axis. Thus, the loss is defined as a combined regression loss of the detected bounding box’s

center, heading angle and size.

The semantic classification predicts the object labels through standard cross-entropy loss

(Lsem-cls).

77

…

Upsample

…

PointNet

Skip Connections

Spatial Encoder

MʹxD NxR

Softmax
Point-wise Semantic

Labels
Nx1

PointNetUpsample

MxD

Figure 3.7. LocIn’s semantic decoder consists of upsampling and PointNet
layers that generate point-wise semantic labels.

3D Semantic Decoder

The objects in a given location type help distinguish it from other locations. However,

the object decoder is sensitive to the sparsity of the input spatial map. The object decoder

also does not consider planar surfaces, e.g., walls, floor, or ceiling of a room, or fails to detect

smaller objects (See Figure 3.6a for an illustration of the object decoder’s output).

To extract fine-grained contextual patterns from the user’s environment, LocIn leverages a

semantic decoder that performs semantic segmentation for classifying each point in the input

map to its semantic object class. For instance, all points belonging to walls are assigned the

same label (as shown in Figure 3.6b). The semantic decoder’s output is a set of homogeneous

subsets of 3D points, where each subset represents a semantically meaningful object or surface.

Figure 3.7 shows the architecture of LocIn’s semantic decoder. LocIn first performs feature

upsampling on the spatial encoding, Z, of the input spatial map. This process ensures that

the semantic labels are generated for all points in the spatial map. We employ a hierarchical

feature propagation strategy, inspired by PointNet++ [70]. The spatial feature representation

from LocIn’s encoder of size, M ×D, is propagated through a series of upsampling layers

where each upsampling layer interpolates feature values, f , for the points in set abstraction

level, l, of the encoder, at the coordinates of points in set abstraction level, l + 1.

78

We perform the interpolation through the inverse distance weighted average [99] based

on the k-nearest neighbors for each point. Specifically, for a given point p in layer l + 1, the

interpolated features are computed as:

fp = Σk
i=1w(p).fpi

Σk
i=1w(p) , where w(p) = 1

d(p, pi)
(3.7)

The interpolated features at each layer, fp, are then processed through a PointNet layer

consisting of convolution, shared fully connected and rectified linear unit (ReLU) activation

layers to obtain semantically meaningful features for each point. The final interpolation layer

generates R-dimensional semantic features for all N points in the input spatial map. Lastly,

we apply a softmax function to the semantic features to obtain the per-point semantic labels

S for the input map.

Semantic Segmentation Loss. The semantic segmentation decoder is inherently a classifi-

cation network that assigns a semantic class to all input spatial map points. To train the

semantic decoder, we leverage the cross-entropy loss function. Given pairs of 3D points and

their semantic class label {(pi, si)}n
i=1, we compute the semantic loss by minimizing:

Lsem(s, ŝ) = −
j∑

k=1
sk log ŝk (3.8)

By minimizing this loss, the semantic decoder assigns the semantic object label to each of

the N points in the map.

3D Location Classifier

LocIn leverages the contextual patterns extracted from its object and semantic decoders

to perform location classification. LocIn’s location classifier predicts the user’s location based

on the composite learned representation of the object and semantic decoders, as shown in

Eq. 3.4 .

The location classifier processes the spatial feature representation Z obtained from

LocIn’s encoder through an MLP network which concatenates the skip-linked features from

the encoder’s intermediary set abstraction layers with Z. The concatenated features are then

79

fed to a series of fully connected layers followed by a softmax operation that outputs the

probability vectors for the c location classes.

3.6 Implementation

We implemented LocIn in Python 3.6 with PyTorch 1.2 [100].

LocIn’s Network Architecture. We implement LocIn’s spatial understanding encoder with

four set abstraction layers and consider the output of last layer as the encoder’s spatial feature

representation (Z). For LocIn’s object decoder, we implement two feature propagation layers

and concatenate the skip-linked features from the encoder’s second, third, and fourth set

abstraction layers to the feature propagation layers’ output. We use the output of the second

feature propagation layer as the input seed points for generating votes and then process the

votes for object proposal and classification through two MLP networks. We use the smooth-L1

loss [101] for computing the box regression loss (Lbox) and PyTorch’s CrossEntropyLoss [102]

for objectness (Lobj-cls) and semantic classification (Lsem-cls) losses.

LocIn’s semantic decoder consists of four feature upsampling layers that upsample the

points and features from LocIn’s spatial encoder to N ×R semantic features. Lastly, LocIn’s

location classifier uses three fully connected layers followed by a drop-out and softmax layer

to predict the probability vectors for all location classes.

LocIn Training and Inference. To train LocIn’s network, we subsample the input spatial

maps’ 3D points to a fixed number of N = 4096 points. To address spatial maps’ rotation

and scale variations, we augment our dataset by randomly flipping the maps in the horizontal

direction, rotating the 3D points by ±5° around the map’s z-axis, and scaling the map by a

factor of 0.85 to 1.15. We use the Adam optimizer [103] with a batch size of 8 and a learning

rate of 0.001. We adopt a grid search to set the optimal values for α, β and γ in LocIn’s

optimization function (Eq. 3.4). We also empirically set the object decoder’s loss parameters

i.e., λ1, λ2 and λ3 such that each component of the loss function is similar in scale.

At inference time, LocIn takes a 3D spatial map collected by an MR app and predicts the

user’s location through one forward pass of its encoder-decoder network. While LocIn’s object

80

and semantic decoders generate the bounding boxes for objects and semantic segmentation

of the input spatial map, we only consider the location prediction as LocIn’s output.

3.7 Evaluation

We describe our experience of applying LocIn attack to 3D spatial maps collected from

three popular MR devices. We show that LocIn achieves an average accuracy of 84.1% in

inferring location on two publicly available spatial map datasets. We also demonstrate that

LocIn’s attack is generalizable to other MR devices equipped with different depth sensors.

We additionally show the effectiveness of our multi-task learning-based location decoding

model through an ablation study and demonstrate LocIn’s robustness against different spatial

map sizes and point densities. Lastly, we compare LocIn with various baselines and prior

work [68] for recognizing indoor locations and show it achieves higher accuracy.

We present LocIn’s results by focusing on the following research questions:

RQ1 How effective is LocIn in inferring users’ location?

RQ2 How effective is LocIn’s multi-task learning decoder?

RQ3 How does the sparsity of the 3D spatial map affect LocIn’s performance?

RQ4 What is the impact of a 3D spatial map’s size on LocIn’s effectiveness?

RQ5 How generalizable is LocIn attack?

RQ6 How does LocIn compare against baseline methods?

RQ7 How does LocIn compare to other spatial attacks?

3.7.1 Evaluation Setup and Datasets

We evaluate LocIn’s effectiveness on spatial maps captured from three MR devices, (1)

iPad with depth sensor, (2) iPad with LiDAR scanner, and (3) HoloLens 2. The spatial maps

from two iPad versions (with depth sensor and LiDAR scanner) are from two publicly available

datasets [71 , 72] while we create our dataset of HoloLens 2 spatial maps – Holo3DMaps.

Table 3.1 presents the detailed statistics of the three datasets.

81

Table 3.1. Details of the evaluation dataset.

Dataset MR
Device

of Location
Classes

of Object
Classes

of Spatial
Maps

Training Test

ScanNet iPad Air2 with
depth sensor 13 18 1201 312

ARKitScenes iPad Pro with
LiDAR scanner 9 17 4482 548

Holo3DMaps HoloLens 5 8 - 20

0 50 100 150 200 250
No. of Samples

Misc.
Storage

Office
Living Rm.

Laundry Rm.
Kitchen
Hallway

Mail Rm.
Conference Rm.

Library
Bedroom

Bathroom
Apartment

In
do

or
 L

oc
at

io
ns

(a)

0 200 400 600 800 100012001400
No. of Samples

Misc.
Storage

Office
Living Rm.

Laundry Rm.
Kitchen

Dining Rm.
Bedroom

Bathroom

In
do

or
 L

oc
at

io
ns

(b)

Figure 3.8. Distribution of the indoor location types across (a) ScanNet and
(b) ARKitScenes datasets.

ScanNet Dataset. ScanNet [71] is a richly annotated dataset consisting of 1,513 3D spatial

maps captured from 707 distinct indoor environments via a depth sensor attached to an iPad

Air2. These spatial maps belong to 13 indoor location types and include annotations for 18

object categories.

Figure 3.8a shows the distribution of the number of samples for each location type in the

dataset. The “Miscellaneous” location type is assigned to samples that do not distinctively

belong to the other location types. We use 1,201 maps from the dataset for training while

the remaining for testing. Each spatial map, on average, includes 150K points with a spatial

extent of 5.5m Œ 5.1m Œ 2.4m.

ARKitScenes Dataset. ARKitScenes [72] is the first indoor 3D spatial map dataset captured

via the Apple LiDAR scanner. It consists of 5,048 spatial maps from 1,661 unique indoor

82

environments in real-world homes. The dataset includes ground truth for the oriented 3D

bounding boxes of room-defining objects belonging to 17 different object categories. However,

the dataset does not contain the ground truth for location labels and point-wise semantic

labels for spatial maps.

We designed a semi-automated approach to generate the ground truth for location and

semantic segmentation labels for the dataset (Detailed in Appendix 3.10). Figure 3.8b

illustrates the sample distribution for each location type after labeling. We use 4,482 maps

for training while the remaining for testing.

Holo3DMaps Dataset. To evaluate LocIn’s effectiveness on various MR devices, we

collected our own dataset of spatial maps using HoloLens 2 (there is no publicly available

3D scene understanding dataset captured using HoloLens). We scanned 20 different indoor

environments where HoloLens is typically used. These environments are from 5 location types,

including bedroom, living room, office, conference room, and kitchen (4 samples per class).

We leveraged Microsoft MRTK’s Spatial Mapping [79] to extract the 3D spatial maps of

these environments. Two researchers manually annotated the spatial maps to generate the

ground truth for location, object detection, and semantic segmentation labels.

Ethical Considerations. We collected Holo3DMaps from public places (e.g., labs and

common rooms) and a hotel on a university campus. For each environment, we ensure that

no human subjects are present during the data collection process and do not collect any

personally identifiable information (PII). For the hotel environment, we received permission

from the hotel management to visit unoccupied hotel rooms and suites to collect the maps.

We contacted our university’s IRB office and got advised that IRB approval is not required

since our environments do not include any human subjects and we do not collect any sensitive

information.

Evaluation Setup. We train the LocIn attack model on the training samples from the

ScanNet and ARKitScenes datasets separately. We split each dataset into disjoint training

and test sets such that each set’s indoor environments are distinct. This splitting ensures

that LocIn’s reported results are independent of users and prior knowledge about their

environments. We subsample each spatial map to 4,096 points through LocIn’s preprocessing

83

Table 3.2. LocIn’s overall attack effectiveness.
Dataset Avg. Accuracy Avg. Precision Avg. Recall
ScanNet 81.6% 82% 81.6%

ARKitScenes 85.6% 85.7% 85.6%
St

ud
io

Ba
th

ro
om

Be
dr

oo
m

Li
br

ar
y

C
on

f.
R

m
.

M
ai

l R
m

.
H

al
lw

ay
Ki

tc
he

n
La

un
dr

y
Li

vi
ng

 R
m

.
O

ffi
ce

St
or

ag
e

M
is

c.

Ground Truth Location

Studio
Bathroom
Bedroom

Library
Conf. Rm.

Mail Rm.
Hallway
Kitchen

Laundry
Living Rm.

Office
Storage

Misc.

Pr
ed

ic
te

d
Lo

ca
tio

n

0.86 0 0.06 0 0 0 0 0 0 0 0 0 0

0 0.95 0 0 0 0 0.2 0 0 0 0 0 0

0.14 0 0.9 0 0 0 0 0 0 0.050.03 0 0

0 0 0 0.62 0 0 0 0 0 0.070.03 0 0.5

0 0 0 0 0.85 0 0 0 0 0.05 0 0 0

0 0 0 0 0 0.64 0.2 0 0 0 0.11 0 0

0 0 0 0.08 0 0 0.4 0 0 0 0 0 0

0 0 0 0 0.03 0 0 0.95 0 0.02 0 0 0.17

0 0 0.02 0 0 0 0 0 0.75 0 0 0.12 0

0 0 0 0.080.090.18 0 0 0 0.790.05 0 0

0 0 0.020.23 0 0.18 0.2 0 0 0 0.78 0 0.17

0 0.05 0 0 0 0 0 0.050.25 0 0 0.62 0

0 0 0 0 0.03 0 0 0 0 0.02 0 0.250.17
0.0

0.2

0.4

0.6

0.8

(a)

Ba
th

ro
om

Be
dr

oo
m

D
in

in
g

R
m

.

O
ffi

ce

Ki
tc

he
n

La
un

dr
y

Li
vi

ng
 R

m
.

St
or

ag
e

M
is

c.

Ground Truth Location

Bathroom

Bedroom

Dining Rm.

Office

Kitchen

Laundry

Living Rm.

Storage

Misc.
Pr

ed
ic

te
d

Lo
ca

tio
n

0.95 0 0 0 0.03 0.11 0.02 0 0

0 0.88 0 0 0 0 0.09 0 0

0 0 1.0 0 0 0 0.01 0 0

0 0.01 0 0.89 0 0 0 0 0

0.03 0 0 0 0.84 0.11 0.1 0 0

0.03 0 0 0 0 0.78 0 0 0

0 0.11 0 0.11 0.14 0 0.78 0 0

0 0 0 0 0 0 0.01 0.75 0

0 0 0 0 0 0 0 0.25 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 3.9. LocIn’s confusion matrix on (a) ScanNet and (b) ARKitScenes dataset.

step. We perform all our experiments on a PC with 32 GB RAM and dual NVIDIA GTX

1080 Ti SLI GPUs. We provide LocIn’s implementation details in Appendix 5.4 .

3.7.2 Overall Effectiveness (RQ1)

We measure the effectiveness of LocIn through three evaluation metrics: average accuracy,

precision, and recall. We compute the average accuracy as the number of correctly predicted

location types in the test set. We calculate the precision for each location type as the average

ratio of correctly predicted spatial maps to the total number of spatial maps classified to that

type. We report recall for each location type as the average ratio of the number of correctly

84

(a) (b)

Figure 3.10. Examples of spatial maps of the “hallway” location type misclas-
sified by LocIn.

predicted spatial maps to the total number of spatial maps of the given type. Table 3.2 shows

LocIn’s results for ScanNet and ARKitScenes.

Evaluation Results with ScanNet. LocIn infers the location from the spatial maps

with an average accuracy of 81.6% with 82% and 81.6% average precision and recall rate.

Figure 3.9a shows the confusion matrix of the location inference results.

LocIn classifies indoor environments, including distinct object types, correctly with high

accuracy. For instance, bedroom, bathroom, and kitchen include unique objects (e.g., bed,

sink, and stove) that provide semantic context to LocIn’s location decoder and are classified

with > 90% accuracy. In contrast, location types that typically lack such distinct objects

have comparatively lower accuracy. For example, spatial maps of “library” type with only

chairs and tables are misclassified to “office” since “office” spatial maps include the same

object types and share similar geometric structures.

We found that the majority of the spatial maps for location types with low accuracy

(e.g., “hallway”) included objects commonly found in other location types or no objects,

causing LocIn to misclassify them. To illustrate, we present two examples of spatial maps

85

Table 3.3. Effect of individual decoders in LocIn’s multi-task decoder on its performance.
Dataset LocInLOC LocInOBJ LocInSEM LocIn
ScanNet 57% 80.1% 78.4% 81.6%

ARKitScenes 58.6% 83.7% 79.7% 85.6%

from the “hallway" class in Figure 3.10 . These spatial maps share similarities with office

environments; thus, they are misclassified.

Evaluation Results with ARKitScenes. LocIn achieves an average accuracy of 85.6% in

inferring the locations of ARKitScenes spatial maps. It classifies the 9 location types with a

precision and recall rate of 85.7% and 85.6%. Figure 3.9b presents the confusion matrix for

ARKitScenes results.

The number of spatial maps per class in ARKitScenes is hugely imbalanced (as shown

in Figure 3.8). However, because LocIn leverages the class weights in the cross-entropy loss

function for its location classifier during training, it accurately infers the location types with

few training samples. Similar to ScanNet, LocIn accurately detects distinct indoor locations

(e.g., bathroom, bedroom, kitchen) with high accuracy.

LocIn Inference Time. We evaluate LocIn’s inference time by measuring the average time

taken to predict the user’s location type from spatial maps collected through an iPhone 14

equipped with a LiDAR scanner. Overall, given a spatial map subsampled to 4,096 points,

LocIn takes 0.89s on average to predict the user’s semantic location. Specifically, LocIn’s

object decoder takes 0.64s on average to generate the bounding boxes for the detected objects

and predict their labels. LocIn’s semantic decoder predicts the semantic labels for each point

in the spatial map within 0.25s on average. The low inference time of LocIn’s multi-task

framework allows an adversary to infer a user’s location in real-world MR apps.

3.7.3 Effectiveness of Decoders (RQ2)

To understand how each component of LocIn contributes to its performance, we perform

an ablation study by training three models: (1) location classifier without LocIn’s multi-task

86

optimization function, (2) LocIn’s object decoder with location classifier and (3) LocIn’s

semantic decoder with location classifier and comparing their performance with LocIn.

LocIn’s location classifier in (2) and (3) is solely needed to infer the location labels from

the detected objects and semantic features. Table 3.3 shows the average accuracy of LocIn

compared to these simplified models.

Location Classification. As discussed in Section 3.5.3 , an adversary could infer a user’s

location by training a DNN classifier directly on the spatial maps. We compare LocIn to a

location classifier (LocInLOC) trained on the spatial maps solely with the cross-entropy loss

for classification (See Eq. 3.3).

Table 3.3 shows that LocInLOC without LocIn’s multi-task learning optimization function

can only achieve 57% and 58.6% accuracy on ScanNet and ARKitScenes datasets. This

is because without leveraging context (i.e., object and semantic patterns), the classifier

extracts only high-level geometric features (i.e., structure and appearance of the environment).

These features are unable to distinguish different indoor locations due to similarities in their

structure and appearance, resulting in lower classification accuracy compared to LocIn.

Object Detection. We study the impact of object detection on LocIn’s performance by

building a model, LocInOBJ, that only leverages the LocIn’s object decoder for classification

i.e., we only consider Lloc and Lobj (in Eq. 3.4) for training.

We found that integrating object detection for location classification significantly improves

the accuracy of the location classifier. With object decoder, LocInOBJ can achieve an average

accuracy of 81.9% that is ∼24% higher than the model trained without object detection

(LocInLOC). This gain in accuracy shows that objects uniquely characterize indoor location

types and enable accurate discrimination between them.

Semantic Segmentation. We study how semantic decoder influences LocIn’s performance

by training a model, LocInSEM, that combines only Lloc and Lsem in Eq. 3.4 . It improves

accuracy by ∼22% compared to the location classifier, LocInLOC. The semantic decoder helps

LocIn extract fine-grained details (e.g., planar surfaces, sparse/small objects) about the

environment that help in location classification.

87

Table 3.4. LocIn’s results with varying sparsity of spatial map.
Dataset 512 1024 2048 4096
ScanNet 71.7% 75.5% 78.4% 81.6%

ARKitScenes 75.6% 79.7% 83.4% 85.6%

We note that the accuracy gain with LocInSEM is 2% less than that from LocInOBJ. This

is because predicting point-wise semantic object labels is more prone to errors resulting

from sparse or missing points on an object’s surface. However, combining the object and

semantic decoder in LocIn’s multi-task decoder provides higher accuracy in inferring locations

than using them individually for location classification. This accuracy gain demonstrates the

effectiveness of LocIn’s unified multi-task network architecture.

3.7.4 Parameter Analysis

We evaluate the impact of the input spatial map’s point density and size on LocIn’s

performance.

Spatial Map Sparsity (RQ3). The results reported in the previous sections are achieved

on spatial maps with N = 4096 points. We now evaluate the impact of varying the number of

points, N , subsampled in LocIn’s preprocessing module on its effectiveness. Table 3.4 shows

the accuracy of LocIn on spatial maps with varying sparsity.

LocIn achieves more than 70% accuracy on both datasets even when the input spatial

maps have fewer points i.e., N = 512. We note that even with sparse maps, LocIn’s location

decoder extracts the environment’s structural and semantic properties, sufficient for accurate

location classification. This ensures that LocIn infers the user’s location even if the map is

captured while the user quickly scans their environment.

Spatial Map Size (RQ4). An important factor concerning LocIn’s practicality is the input

spatial map’s size since MR device depth sensors have a limited field of view of the user’s

environment due to object/surface occlusions or their non-panoramic nature. We define size

as the area of the user’s environment captured by the MR device.

88

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Percentage of Spatial Map Size

50

60

70

80

Av
g.

 A
cc

ur
ac

y

ScanNet
ARKitScenes

Figure 3.11. LocIn’s performance with varying map size.

To this end, we evaluated the ScanNet and ARKitScenes datasets by creating submaps

from each spatial map in the test dataset by randomly selecting a point in the map and

cropping a bounding box around it. The resulting submaps only include a subset of objects

and walls (including the case where no walls are sampled) present in the user’s environment.

The size of the bounding box is a percentage of the original map’s size. We discard submaps

with less than N = 4096 points.

Figure 3.11 presents the average accuracy of LocIn on submaps generated from the two

datasets as we vary the percentage of the indoor environment’s size captured by the MR

device. LocIn achieves an average accuracy of 69.1% in classifying the indoor location type

when the spatial map captures only 50% of the environment. The accuracy improves to 77%

as the spatial map size increases to 70%. LocIn effectiveness deteriorates as the size of the

map decreases since the cropped submaps lack complete semantic and object details necessary

for distinguishing the indoor location (e.g., cropped/missing bed in a bedroom’s submap).

We note that we perform this evaluation on LocIn model trained on the complete spatial

maps of the indoor environments. Hence, one possible approach to improve LocIn’s robustness

to map size would be to train on cropped submaps.

89

Table 3.5. LocIn’s performance on Holo3DMaps dataset.
Training

Depth Senor
Avg.

Accuracy
Avg.

Precision
Avg.

Recall
Indirect ToF (ScanNet) 85% 85% 86%
LiDAR (ARKitScenes) 45% 45% 60%

3.7.5 Generalizability of LocIn (RQ5)

We perform LocIn’s main evaluation on the two publicly available datasets (i.e., ScanNet

and ARKitScenes) collected using iPads with two different depth sensors. To evaluate LocIn’s

generalizability to other MR devices with different depth-sensing technologies, we collected

our own dataset (Holo3DMaps) of spatial maps from indoor environments using Microsoft’s

HoloLens 2 equipped with indirect Time-of-Flight (ToF) depth sensor [77]. We evaluate

LocIn’s performance on Holo3DMaps through two models: (a) LocIn trained on a dataset

collected using indirect Time-of-Flight depth sensor (ScanNet) and (b) LocIn trained on a

dataset collected using LiDAR scanner (ARKitScenes).

Table 3.5 shows LocIn’s effectiveness on Holo3DMaps on the two models. LocIn achieves

80% accuracy in inferring user location when trained on the ScanNet dataset. Interestingly,

LocIn’s accuracy deteriorates when evaluated on the model trained with ARKitScenes dataset.

This is due to the resolution differences in the spatial maps captured by HoloLens 2 and iPad

with LiDAR scanner. HoloLens 2 employs indirect Time-of-Flight (ToF) depth sensor that

illuminates the observed scene with infrared light and uses the reflected light to calculate

scene depth [104]. In contrast, iPad’s LiDAR scanner (direct ToF) uses timed light pulses to

measure scene depth, instead of illuminating the whole scene with modulated light like an

indirect ToF sensor [105].

Due to the differences in depth calculation methods, the spatial maps of two devices

have inherent differences in their 3D point cloud sparsity. Thus, if LocIn is trained on

LiDAR spatial maps (ARKitScenes), the features from spatial maps in Holo3DMaps are

inconsistent with the features observed during training, causing LocIn to misclassify them.

90

Contrarily, given that both ScanNet and Holo3DMaps are created using indirect ToF sensors,

LocIn trained on ScanNet dataset generalizes well to Holo3DMaps. Therefore, an adversary

can leverage LocIn trained on one MR device to attack a different device with the same

depth-sensing technology.

3.7.6 Comparison with Baseline (RQ6)

We compare LocIn’s effectiveness against three baseline approaches on ScanNet and

ARKitScenes datasets. First, we compare LocIn with a naive ML classifier (Base-RFobj) that

leverages the objects in the user’s environment. For this, we predict the semantic labels for

objects using VoteNet [93] and generate a histogram of the objects present in a given location

type. We then train a Random Forest classifier on these object class histograms to predict the

location. We choose Random Forest classifier as it classifies the point cloud based on statistical

features from the object histogram. Second, we compare LocIn against another Random

Forest classifier trained on the object class histogram generated from ground-truth object

semantic labels (Base-RFobj). This eliminates the impact of errors in object detection and

evaluate how object information without spatial information impacts location classification

accuracy. Lastly, we compare LocIn with a baseline deep neural network that takes the

spatial representation obtained from PointNet++ [70] as input and processes it through a

series of fully connected layers followed by a softmax operation to predict the location class

(Base-DN).

Table 3.6 shows the accuracy of the baseline models in contrast to LocIn. Base-RFobj

achieves an accuracy of only 29.6% and 38.8% on ScanNet and ARKitScenes, respectively.

This is because Base-RFobj does not consider the spatial and geometric information in the

spatial map. We find that the accuracy for location types with distinct objects (e.g., bed

in bedroom and toilet in bathroom) is higher than location types with no distinct objects

(e.g., office and living room). Moreover, the errors in the object detection model contribute

to inaccuracies in the object class histograms and, in turn, the location inference accuracy.

Base-RFground achieves a higher location inference accuracy of 41.7% on ScanNet and

44.2% on ARKitScenes. While this model eliminates the impact of errors in object detection,

91

Table 3.6. LocIn’s comparison with baseline approaches.
Dataset Base-RFobj Base-RFground Base-DN LocIn
ScanNet 29.6% 41.7% 57.1% 81.6%

ARKitScenes 38.8% 44.2% 58.6% 85.6%

it still does not capture the correlation between spatial, geometric, and semantic features of a

spatial map. Similarly, Base-DN extracts high-level features, such as structural and geometric

properties (e.g., length and width or floor map) of the users environment. However, since

indoor environments of the same type vary significantly in their geometric and structural

properties (e.g., size of two bedrooms in a house), it is difficult to predict the specific

location type, resulting in a low accuracy of 57.1% and 58.6% on ScanNet and ARKitScenes

datasets, respectively. In contrast to these models, LocIn’s multi-task learning framework

performs feature extraction and loss minimization that simultaneously capture both geometric

properties and semantic context of the users environment to accurately infer the location.

3.7.7 Comparison with Prior Work (RQ7)

We compare LocIn with a recent work [68], the only prior work that leverages 3D spatial

maps from an MR device to infer the user’s indoor location. This work extracts 3D spin

image features [106] from the input spatial map and employs nearest neighbor distance and

deep learning-based 3D place recognizer (PointNetVLAD) [107] to determine if the map’s

feature vector matches with one of the maps from the user’s previously visited locations.

However, their attack has limited practicality as it assumes that the attacker has access to a

labeled dataset of 3D spatial maps of the target user’s indoor locations. Therefore, it only

targets a specific user and her previously visited locations.

To evaluate how this work compares against LocIn in a realistic attack scenario (no

prior knowledge about a user is available), we implement its DNN place recognizer [107] to

extract global features from 3D spatial maps. Since our goal is to infer the location type, we

replace its final Euclidean distance-based feature matching step with our location classifier

that processes the spatial feature vector through an MLP followed by a softmax operation.

92

We train this model on the ScanNet dataset with the same training parameters as described

in [107]. It achieves an accuracy of 50.1% on ScanNet’s test dataset which is much lower

compared to LocIn’s 81.6% accuracy. This significant difference in accuracy shows that LocIn

is more effective in inferring users’ location from spatial maps without any prior knowledge

about the user’s location.

3.8 Limitations and Discussion

Inferring Location of Complex Environments. LocIn can infer users’ location from 3D

spatial maps in various indoor environments with common objects (Section 5.5.1). However,

if a user’s environment includes unique objects or very few objects or planar surfaces, LocIn’s

effectiveness will mainly rely on its location classification decoder. This is because LocIn’s

object and semantic segmentation decoders cannot extract meaningful patterns from the

input map. We conducted an additional experiment to evaluate LocIn’s effectiveness on

spatial maps where no objects are present in the user’s environment. In this case, LocIn

infers the users’ environment based on its geometric properties with an accuracy of 59.1%.

Generalization to Various MR Devices. We demonstrate LocIn attack on three popular

MR devices that leverage depth cameras or LiDAR sensors to capture the spatial map of a

user’s environment. However, spatial maps from different MR devices have varying sparsity

and non-uniform point density because various MR devices employ different sensors and depth

calculation techniques to generate the 3D spatial maps [94 , 104]. For instance, in contrast

to LiDAR scanner-based devices, devices leveraging ToF depth cameras (e.g., smartphones,

HoloLens) build spatial maps based on the reflection of light pulses emitted by the device.

As a result, they experience difficulty in capturing a complete 3D representation of reflective

surfaces and objects, such as mirrors, polished metal, or very dark surfaces, producing more

sparse spatial maps. Although we show that LocIn attack is transferrable across devices

that leverage the same depth sensor type, this inherent difference in spatial map properties

requires building a specialized model for each MR device.

Predicting Unknown Location Types. We demonstrate in Section 3.7 that LocIn can

effectively identify 13 indoor location types where MR devices are typically used. LocIn,

93

0.0 0.1 0.2 0.3 0.4 0.5
Noise Level (σ)

40

50

60

70

80

Av
g.

 A
cc

ur
ac

y

All points
Objects only

Figure 3.12. LocIn’s performance with varying noise levels.

however, is limited to inferring location types observed during its training process. Thus, if

the user interacts with their MR device in a location not included in the LocIn’s training,

LocIn cannot correctly infer the location from the spatial map. An adversary can leverage

outlier detection techniques to detect samples out of distribution from the known location

classes [108 , 109] and collect a more comprehensive dataset with diverse labels for training

LocIn.

LocIn Counter Measures. One possible defense against LocIn is to limit the MR app’s

access to the raw 3D spatial maps and only share privacy-preserving features (e.g., planar

surfaces or 3D points of a user-defined region) to enable MR content. Yet, this would affect

MR apps’ functionality as they rely on detailed spatial understanding to enable MR content,

requiring further investigation into its usability for MR apps.

Another possible defense is to inject noise into the 3D spatial maps shared with the MR

apps to force LocIn to misclassify the user’s location. To test this defense, we conducted two

sets of experiments on the ScanNet dataset. First, we applied random perturbations to all

points in the spatial maps in our test dataset by adding Gaussian noise to their points’ 3D

coordinates and predicted their location using LocIn trained on raw spatial maps. Second,

94

we applied random perturbations of varying intensity only to points belonging to objects

present within the spatial maps. In both cases, we change the noise intensity by changing

the standard deviation (σ) of the added noise. Figure 3.12 presents the change in accuracy

with varying noise for both experiments. We observe that LocIn’s accuracy drops to 61%

when all points are perturbed in the spatial maps by a noise level of σ = 0.3. Similarly, when

similar noise is added to only objects, LocIn’s accuracy deteriorates to 49.5%. This decrease

in accuracy occurs since noisy points in the spatial map make it difficult to detect the objects

and semantic features of the user’s environment.

Although noise injection reduces LocIn’s effectiveness, its feasibility is limited as the

perturbed spatial maps reduce usability for the MR apps. For instance, MR apps leverage

the spatial map to localize a user in its environment [110]; thus, a perturbed spatial map

may result in erroneous localization results, affecting the apps’ functionality. Moreover,

implementing this defense requires evaluating different spatial map usage scenarios to ensure

app functionality is not affected.

3.9 Related Work

Privacy Leakage in Mobile Mixed Reality. Recent works have exposed attacks that

leverage the multi-modal sensors on MR devices, similar to privacy leakages in other mo-

bile devices [2 , 16 , 111]. For instance, a line of work proposed virtual keystroke detection

side-channel attacks on MR devices by exploiting the channel state information (CSI) of

WiFi signals [112], headset motion sensors [113 , 114] and IMU sensors on MR device hand

controllers [115]. Another work [116] proposed an eavesdropping attack through motion

sensors on head-mounted MR devices to detect facial movements for inferring human speech.

In this chapter, we show a new privacy leakage from MR devices by exploiting the 3D spatial

maps to infer the user’s location type.

Location Inference Attacks. Several works exploit radio frequency (RF) signals emitted

by commodity devices to infer users’ location [117 , 118]. However, these approaches require a

physically proximate attacker to deploy sniffing devices near users. In contrast, LocIn attack

operates remotely without requiring any additional devices or information about the user.

95

Another line of attacks exploits mobile sensors, e.g., microphone [119] and IMU sensors [120],

to infer users’ location. Yet, these works only localize a user with respect to the mobile device

and require an indoor map of the environment.

Previous approaches have also investigated indoor location inference from images and

videos through hand-crafted features and deep learning models [62 , 63 , 65 – 67]. Yet, these

attacks are ineffective in various scenarios. First, these attacks are sensitive to lighting and

occlusion, decreasing their location inference accuracy in low-lighting conditions or when

objects are partially obscured. Second, the accuracy of these attacks is influenced by different

camera orientations/viewpoints while capturing images/videos. Lastly, given users’ privacy

concerns surrounding apps’ access to camera images and videos, several privacy-preserving

approaches attempt to eliminate location attacks through visual data [87 , 89 , 90] and various

MR devices limit apps’ access to image and video data. In contrast, LocIn exploits spatial

maps, shared with apps to enable device localization, to infer locations from different camera

orientations/viewpoints regardless of low lighting and occlusion.

A recent work [68] leveraged spatial data on MR devices to recognize users’ previously

visited locations. While this work, similar to LocIn, exploits the spatial data on MR devices

to infer private user information, its practicality is limited as it only recognizes a specific

user’s previously visited indoor locations. Contrarily, LocIn infers a user’s location without

any prior information through its semantic aware multi-task network and generalizes well to

unseen users (Section 3.7.7).

Multi-task Learning on 3D Data. Several prior works have leveraged multi-task learn-

ing for scene understanding tasks (e.g., object detection, semantic segmentation, object

classification) on 3D data [93 , 121 – 124]. Previous works [123 , 124] simultaneously learned

embedded features for 3D object instance segmentation and semantic segmentation through

a combined loss function. A recent work [122] learned the shape of 3D objects and their

labels simultaneously based on objects’ curvature. A line of work [121 , 125] used multi-task

learning to improve a robot’s ability to recognize a scene by combining color and geometric

properties of 3D data. In contrast, LocIn leverages 3D objects and semantic context of a

user’s environment from 3D spatial data to infer its location.

96

3.10 Labeling ARKitScenes Dataset

We describe our approach for generating ground truth labels for location type and

point-wise semantic labels for the ARKitScenes dataset [72].

Table 3.7. Location type to object mapping.
Location Type Object Type
t0 : Living Room sofa, fireplace
t1 : Bedroom bed
t2 : Kitchen stove, dishwasher, oven, refrigerator
t3 : Bathroom bathtub, toilet

Location Type Labels. We adopted a semi-automated annotation process to label each

spatial map in ARKitScenes with its location type, Since ARKitScenes includes ground truth

for the objects (including bounding boxes and object semantic labels), we leverage the fact

that objects uniquely characterize indoor environments to assign an initial location label to

each spatial map. Specifically, two researchers developed a mapping (M) between typical

indoor environments and the objects that uniquely identify them (Table 3.7). For instance,

a bedroom must have a bed, and a kitchen must have a stove. This mapping includes four

location types commonly observed in real-world homes where ARKitScenes is collected and a

subset of objects from the 17 objects types in the ARKitScenes dataset. We assigned an label

to each spatial map through the function l = arg max(t0, t1, t2, t3) where

ti = Σ(u0, u1, . . . , um), where uj = k

U
(3.9)

Here, k is the number of objects of type uj in the spatial map, m is the number of object

types present in the mapping for location type (ti), and U is the total number of objects in

the input spatial map that belong to location type ti in M .

Two researchers then manually inspected and verified the initial labels by visualizing the

spatial map and its associated images available in the dataset. We found that among 5,048

spatial maps in the dataset, 256 maps did not include any objects in the location-object

type mapping in Table 3.7 and hence could not be labeled in the initial labeling process.

The two researchers manually labeled these 256 samples individually and assigned them

97

labels following the location types in the ScanNet dataset. The authors then met to discuss

and reconcile differences. We assigned the “Miscellaneous” label to samples for which no

conclusive location type could be derived from the spatial map and its corresponding images.

Semantic Segmentation Labels. We used the ground truth for 3D objects in the maps

to assign the semantic label to each point based on the object the point belonged to. For

instance, we assigned the semantic label “bed” to all points within the bounding box of the

bed object in a given spatial map. This approach, however, only considers points that belong

to one of the 17 object types annotated in the ARKitScenes dataset. These types do not

include planar surfaces such as walls, floors, and ceilings. Hence, to annotate points on these

planar surfaces, we adopted a semi-automated annotation approach.

We first identified an estimate of all planar surfaces in a given spatial map through

Random Sampling Consensus (RANSAC) [126] algorithm for plane detection. For this, we

employed an iterative procedure that randomly samples a subset of points from an input

spatial map and fits a plane equation on these points. The number of points that satisfy the

plane equation (inliers) in each iteration is used to calculate a confidence score for the plane

equation. We then marked the plane equation, which achieves the highest confidence score

as a planar surface in the spatial map. We used this process to identify the horizontal and

vertical planar surfaces (along x and y axes of the spatial maps) only because these planes

represent the walls, floors, and ceiling in the spatial maps.

Two researchers manually inspected the plane detection output and corrected errors in

the point-wise semantic labels. Through this procedure, we annotated all spatial maps in the

dataset and assigned the points to one of 20 object types (17 objects in ARKitScenes and

wall, floor and ceiling).

98

4. FACEREVELIO: A FACE LIVENESS DETECTION SYSTEM

FOR SMARTPHONES WITH A SINGLE FRONT CAMERA

4.1 Introduction

Considering the growingly extensive use of smartphones in all aspects of our daily life, reli-

able user authentication for securing private information and mobile payments is an absolute

necessity. Recent years have witnessed a rising usage of face authentication on smartphones

as a promising alternative to traditional password-based protection mechanisms. Most of the

existing face authentication systems use traditional 2D face recognition technologies, which

suffer from vulnerability to spoofing attacks where the attacker uses 2D photos/videos or 3D

masks to bypass the authentication system.

Recently, some smartphone manufacturers have introduced liveness detection features to

some of their high-end products, e.g. iPhone X/XR/XS and HUAWEI Mate 20 Pro. These

phones are embedded with specialized hardware components on their screens to detect the

3D structure of the user’s face. For example, Apple’s TrueDepth system [127] employs an

infrared dot projector coupled with a dedicated infrared camera beside its traditional front

camera.

Although effective, deployment of such specialized hardware components, adding a notch

on the screen, is against the bezel-less trend in the smartphones’ market. Customers’ desire for

higher screen-to-body ratio has consequently forced manufacturers to search for alternative

methods. For example, Samsung recently launched S10 as its first phone with face authenti-

cation and an Infinity-O hole-punch display. However, S10’s lack of any specialized hardware

for capturing facial depth, made it an easy target for 2D photo or video attacks [128].

Therefore, we ask the following question: How can we enable liveness detection on

smartphones only relying on a single front camera?

Prior works on face liveness detection for defense against 2D spoofing attacks have relied

on computer vision techniques to detect and analyze facial liveness clues like blinking and

eye movements [129], nose and mouth features [130 , 131], and skin reflectance [132]. Usually,

extracting such characteristics from a face requires ideal lighting conditions, which are hard

to guarantee in practice. Another common approach is the use of challenge-response protocols

99

where the user is asked to respond to a random challenge, such as pronouncing a word,

blinking or other facial gestures. These techniques, however, are unreliable because facial

gestures can be simulated using modern technologies, such as media-based facial forgery [133].

A time-constrained protocol was recently introduced to defend against these attacks, which

however still required the users to make specific expressions [9]. The additional time-consuming

efforts and their reliance on users’ cooperation, make such protocols harder to use in many

scenarios, including but not limited to elderly usage and emergency cases.

In this chapter, we introduce a novel face liveness system, FaceRevelio, that only uses the

front camera on commodity smartphones. Our system reconstructs 3D models of users’ faces

in order to defend against 2D-spoofing attacks. FaceRevelio exploits smartphone screens as

light sources to illuminate the human face from different angles. Our main idea is to display

combinations of light patterns on the screen and simultaneously record the reflection of those

patterns from the users’ faces via the front camera. We employ a variant of photometric

stereo [134] to reconstruct 3D facial structures from the recorded videos. To this end, we

recover four stereo images of the face from the recorded video via a least squared method

and use these images to build a normal map of the face. Finally, the 3D model of the face

is reconstructed from the normal map using a quadratic normal integration approach [135].

From this reconstructed model, we analyze how the depth changes across a human face

compared to model reconstructed from a photograph or video and train a deep neural network

to detect various spoofing attacks.

Implementing our idea of reconstructing the 3D face structure for liveness detection

using a single camera involved a series of challenges. First, displaying simple and easily

forgeable light patterns on the screen makes the system susceptible to replay attacks. To

secure our system from replay attacks, we designed the novel idea of a light passcode, which is

a random combination of patterns in which the screen intensity changes during the process of

authentication, such that an attacker would be unable to correctly guess the random passcode.

Second, in the presence of ambient lighting, the intensity of the reflection of our light passcode

was small, hence difficult to separate from ambient lighting. In order to make FaceRevelio

practical in various realistic lighting conditions, we carefully designed light passcodes to

be orthogonal and "zero-mean" to remove the impact of environment lighting. In addition,

100

we had to separate the impact of each pattern from the mixture of captured reflections

to accurately recover the stereo images via the least square method. For this purpose, we

linearized the camera responses by fixing camera exposure parameters and reversing gamma

correction [136]. Finally, the unknown direction of lighting used in the four patterns causes

an uncertainty in the surface normals computed from the stereo images which could lead

to inaccurate 3D reconstruction. We designed an algorithm to find this uncertainty using a

general template for human surface normals. We used landmark-aware mesh warping to fit

this general template to users’ face structures.

FaceRevelio is implemented as a prototype system on Samsung S10 smartphone. By

collecting 3800 videos with a resolution of 1280× 960 and a frame rate of 30fps, we evaluated

FaceRevelio with 30 volunteers under different lighting conditions. FaceRevelio achieves an

EER of 1.4% for both dark and day light settings, respectively against 2D printed photograph

attacks. It detects the replay video attacks with an EER of 0.0%, and 0.3% for each lighting,

respectively.

The contributions of our research are summarized as follows:

1. We design a liveness detection system for commodity smartphones with only a single

front camera by reconstructing the 3D surface of the face, without relying on any extra

hardware or human cooperation.

2. We introduce the notion of light passcodes which combines randomly-generated lighting

patterns on four quarters of the screen. Light passcode enables reconstructing 3D

structures from stereo images and more importantly, defends against replay attacks.

3. We implement FaceRevelio as an application on Android phones and evaluate the

system performance on 30 users in different scenarios. Our evaluations show promising

results on applicability and effectiveness of FaceRevelio.

4.2 Background

In this section, we introduce photometric stereo and explain how it is used for 3D

reconstruction under known/unknown lighting conditions.

101

Photometric stereo is a technique for recovering the 3D surface of an object using multiple

images in which the object is fixed and lighting conditions vary [137]. Its key idea is to utilize

the fact that the amount of light that a surface reflects depends on the orientation of the

surface with respect to the light source and the camera.

Computing Normals under Known Lighting Conditions: Besides the original

assumptions under which photometric stereo is normally used [137] (e.g. point light sources,

uniform albedo, etc.), we now assume that the illumination is known.

Given three point light sources, the surface normal vectors S can be computed by solving

the following linear equation based on the two known variables:

IT = LT S, (4.1)

where I = [I1, I2, I3] is the stacked three stereo images exposed to different illumination,

and L = [L1, L2, L3] is the lighting direction for these three images. Note that at least three

images under variant lighting conditions are required to solve this equation and to make sure

that the surface normals are constrained.

Computing Normals under Unknown Lighting Conditions: Now we consider

the case when the lighting conditions are unknown. The matrix of intensity measurements is

further denoted as M , which is of size m× n where m is the number of images. Therefore

M = LT S. (4.2)

For solving this approximation, M is factorized using Singular Value Decomposition

(SVD) [138]. Using SVD the following is obtained

M = UΣV T . (4.3)

This decomposition can be used to recover L and S in the form of LT = U
√

ΣA and

S = A−1
√

ΣV T , where A is an 3× 3 linear ambiguity matrix. [134] provides the details about

how this equation can be solved with four images under different lighting conditions.

102

Temporal

Correlation

Verification

Preprocessing

Face Detection and

Stabilization

Gamma Decoding

Filtering (Gaussian Pyramid)

Random Light

Passcode Generator

Random Seed Generation

Low Pass Filtering

Orthogonalization

Light Passcode

Image Recovery

=

Photometric Stereo and

3D Reconstruction

Face Mesh Generation

Surface Normal Computation

Normal Integration

3D Reconstructed Face

Decision Model
Deep Siamese

Neural Network

Human? Yes No

Figure 4.1. System overview

4.3 FaceRevelio System Overview

FaceRevelio is a liveness detection system designed to defend against various spoofing

attacks on face authentication systems.

Figure 4.1 shows an overview of FaceRevelio’s architecture. It begins its operation by

dividing the phone screen into four quarters and using each of them as a light source. Random

Light Passcode Generator module is used to select a random light passcode which is a

collection of four orthogonal light patterns displayed in the four quarters of the phone screen.

The front camera records a video clip containing the reflection of these light patterns from

the user’s face. These light patterns are not only used during video recording, but also help

reconstruct 3D structure of the face and detect replay attacks. The recorded video then

passes through a preprocessing module where first face region is extracted and aligned in each

adjacent video frame. This is followed by an inverse gamma calibration operation applied to

each frame to ensure linear camera response. Finally, the video is filtered by constructing

its Gaussian Pyramid [139], where each frame is smoothed and subsampled to remove noise.

After preprocessing, a temporal correlation between the passcode in the video frames and the

one generated by the Random Light Passcode Generator is checked. If a high correlation is

verified, the filtered video frames along with the random light passcode are fed into an Image

Recovery module. The goal of this module is to recover the four stereo images corresponding

to the four light sources, by utilizing the linearity of the camera response. The recovered stereo

103

images are then used to compute face surface normals under unknown lighting conditions

using a variant of photometric stereo technique [134]. A generalized human normal map

template and its 2D wired mesh connecting the facial landmarks are used to compute these

normals accurately. A 3D face is finally reconstructed from the surface normals by using

a quadratic normal integration method [135]. Once the 3D structure is reconstructed, it

is passed on to a liveness detection decision model. Here, a Siamese neural network [140]

is trained to extract depth features from a known sample human face depth map and the

reconstructed candidate 3D face. These feature vectors are then compared via L1 distance

and a sigmoid activation function to give a similarity score for the two feature vectors. The

decision model declares the 3D face as a real human face if this score is above a threshold

and detects a spoofing attack otherwise.

4.4 FaceRevelio Attack Model

Attacks to face authentication techniques can be classified into static and dynamic attacks.

In a 2D static attack, a still object such as a photograph or mask is used, such that the

face recognition algorithms would not be able to differentiate these presented objects from

an actual face. Dynamic attacks aim at spoofing systems where some form of user action

is required like making an expression or a gesture. In these attacks, a video of the user is

replayed performing the requested action. These videos can easily be forged by merging user’s

public photos with its facial characteristics. Adversaries can also launch a 3D static attack by

using 3D models of the face. However, this requires advanced 3D printing capabilities which

requires high cost. Similarly, 3D dynamic attacks involving building a 3D model in virtual

settings, are impractical as described in [9].

Our goal is to prevent adversaries from spoofing face authentication systems with 2D

static and dynamic attacks. We assume that an attacker has access to high-quality images

of the legitimate user’s face. We also assume that the adversary can record a video of the

user while using FaceRevelio. In this case, the recorded video will capture the light patterns’

reflections from the user’s face. The attacker prepares these videos beforehand and launches

an offline attack on our system by displaying them on a laptop screen/monitor. Conducting an

104

online attack is extremely difficult since our system displays a random passcode on the screen

each time. This would require the attacker to use a very high-speed camera and computer

to determine the random passcode and then generate a forged video response using this

passcode, all within the duration of a frame of the passcode; hence impractical.

4.5 FaceRevelio System Design

4.5.1 Light Passcode Generator

To apply photometric stereo, we need to generate four images of the face illuminated

under various light sources, from different directions. In order to simulate these light sources

using the phone screen, we divide the screen into four quarters where each quarter is assumed

a light source. During the video recording, each of these quarters is illuminated alternately

in four equal intervals, while the other three quarters are dark. Figure 4.2 shows how the

screen changes with different patterns during the four intervals and an example of the 3D

reconstruction of the face using these patterns.

1 2 3 4

(a) (b)

Figure 4.2. An example of 3D reconstruction using four basic light patterns
displayed on four quarters of the screen.

Random Passcode Generator

It could be argued that using these basic light patterns, the system would be prone to

replay attacks. Keeping this in mind, we consider the idea of illuminating all the four quarters

together for a certain period and changing the screen lighting randomly at each time instance

and each quarter to a random value between 0 and 1. Now, each quarter of the screen is

105

0 20 40 60
Samples

-0.4

-0.2

0

0.2

0.4

0.6

0.8
A

m
pl

itu
de

Random
Filtered Signal
Pattern

(a)

0 20 40 60
Samples

-0.4

-0.2

0

0.2

0.4

0.6

0.8

A
m

pl
itu

de

Random
Filtered Signal
Pattern

(b)

0 20 40 60
Samples

-0.4

-0.2

0

0.2

0.4

0.6

0.8

A
m

pl
itu

de

Random
Filtered Signal
Pattern

(c)

0 20 40 60
Samples

-0.4

-0.2

0

0.2

0.4

0.6

0.8

A
m

pl
itu

de

Random
Filtered Signal
Pattern

(d)

0 5 10 15
Frquency in Hz

0

5

10

A
m

pl
itu

de

Random
Filtered Signal
Pattern

(e)

0 5 10 15
Frquency in Hz

0

5

10

A
m

pl
itu

de

Random
Filtered Signal
Pattern

(f)

0 5 10 15
Frquency in Hz

0

5

10

A
m

pl
itu

de

Random
Filtered Signal
Pattern

(g)

0 5 10 15
Frquency in Hz

0

5

10

A
m

pl
itu

de

Random
Filtered Signal
Pattern

(h)

Figure 4.3. An example of a random passcode. The top row shows the four
random patterns in the passcode before and after low-pass filtering and the
final patterns after applying the Gram-Schmidt process to the filtered pattern.
The bottom row shows the FFT of these patterns before and after applying
the Gram-Schmidt process. The frequency bound still holds after applying the
Gram-Schmidt process.

illuminated simultaneously with a random pixel value, simulating four light sources. Based

on this, we define a light passcode as a collection of four random light patterns displayed in

the four quarters. In the rest of the chapter, we will use passcode as a short-term for light

passcode.

For the passcode, a random light pattern Pj is generated for a quarter j. During a time

interval ts, Pj is the light pattern represented as a sequence of random numbers, between

0 and 1, of length ts. The light pattern represents what each pixel of the screen is set to

in the quarter j. The screen quarter is white when this value is 1 and black when 0. In

order to account for the smartphone screen refreshing rate, we apply an ideal low pass filter

with a frequency threshold of 3Hz to each of the four light patterns. Although current

smartphone screens support a refreshing rate of 60Hz, there is a delay when the screen is

gradually updated from top to bottom. As a result, when the frequency threshold is set to a

higher value, the intensity within each quarter may not be consistent. Additionally, setting

a higher frequency threshold would result in rapid changes in the screen intensity, making

106

it uncomfortable for users’ eyes. These filtered patterns are then normalized such that each

pattern is zero-mean.

One problem in illuminating the four quarters together is that the recorded video has

a mixture of reflections of the four light patterns from the face. To be able to recover the

stereo images from the mixture of reflections, we guarantee independence when combining

the light patterns into a passcode. On top of ensuring their independence, we also introduce

orthogonality between these four patterns. We apply Gram-Schmidt [141] process to the four

light patterns to get their orthogonal basis and use these as patterns. Orthogonality assures a

good separation between the impact of the four patterns on the human face and hence helps

in the recovery of stereo images. Using induction and the fact that Gram-Schmidt process is

linear, we can prove that if each of the original patterns satisfies the frequency threshold of

3Hz, the resulting orthogonal patterns are also within 3Hz. Figure 4.3 shows an example of

a passcode with four patterns and the FFT of these patterns before and after the application

of Gram-Schmidt process. We can see that the FFT of the patterns generated after applying

Gram-Schmidt to the filtered random sequence only has components below 3Hz. On a side

note, the above process is analogous to code-division multiple access (CDMA) [142] used in

radio communications. In our case, the face is analogous to the shared media, the camera

is the receiver and our orthogonal patterns are like the codes in CDMA. The stereo images

generated by each independent quarter are like the data bit sent by each user. The difference

is that in our case, we design and use patterns of continuous values that satisfy a frequency

bound requirement.

As a result of the above steps, we obtain four orthogonal zero-mean light patterns, forming

a passcode. This passcode is then added on top of a constant base intensity value and

displayed on the screen. Section 4.5.5 describes how the passcodes are used to defend against

replay video attacks.

4.5.2 Video Preprocessing and Filtering

After generating a random passcode, the corresponding light patterns are displayed on

the smartphone screen. Meanwhile, a video of their reflections from a user’s face is recorded

107

using the front camera. From the recorded video, first, we locate and extract the face in each

frame by identifying the facial landmarks (83 landmarks) using Face++ [143]. We then use

these landmarks to align the face position in every adjacent frame to neutralize the impact of

slight head movements and hand tremors.

Since our following algorithms focus on how the changes in lighting conditions affect

the captured face images, we preprocess the recorded video by converting each frame from

the color space to the HSV space [144]. Only the V component will be kept and the other

two components are discarded since the V component reflects the brightness of an image.

Then, each video frame represented by the V component is further processed using Gaussian

pyramid [139] for removing noises and optimizing the video size. We use two levels of pyramid

and select the peak of the pyramid in the subsequent steps for video analysis, which reduces

the system’s processing time.

4.5.3 Image Recovery

Recall that in photometric stereo, at least three stereo images with different single light

sources are needed for computing the surface normals. However, what we obtained so far is a

series of frames, in which the lighting on the face at any given time is a combined effect of all

four light patterns on the screen. Therefore, we need to recover these stereo images for each

quarter from the preprocessed video frames, which is different from the traditional way of

directly collecting stereo images used for photometric stereo.

Based on the theory that the intensities of incoherent lights add linearly [145], we propose

to recover the stereo images by directly solving the equation, G = WX, where G is a

f × n matrix representing the light intensity values received on each pixel in the recorded

video frames, where f is the number of frames and n is the number of pixels in one frame.

W represents the f × 4 light patterns [P1; P2; P3; P4] used while recording the video. X

(= [I1; I2; I3; I4]) is a 4× n matrix representing the four stereo images that we aim to recover.

This equation utilizes the fact that under a combined lighting condition, the light intensity

received on a certain pixel is a weighted sum of four light intensities with a single light from

each quarter.

108

However, we cannot directly use the above equation unless under the assumption that

camera sensors can accurately capture light intensities and reflect the actual values. Problems,

e.g. inaccurate image recovery, will arise if we ignore the possible effects of camera parameters

and sensitivity. Recently, smartphone camera APIs

1
 started supporting manual camera mode

which gives the user full control of the exposure parameters, i.e. aperture, shutter speed

(exposure time) and sensitivity (ISO). In automatic mode, the camera continuously adjusts

its ISO to compensate for lighting changes in the scene. In order to have a smoother camera

response with changing light intensity, we use the camera in manual mode where its ISO is

set to a fixed value.

Although the camera response curve is smooth after fixing the ISO, we still need to

linearize the relationship between the image captured and the light from the screen to be

able to use the equation for solving G. For this purpose, we dig deep into the mechanics

of the camera sensor and image processing involved in generating the final output images.

Cameras typically apply a series of operations on the raw camera sensor data to give us the

final output images. These include linearization of sensor data, white balancing, demosaicing

[146] and gamma calibration [136]. Gamma calibration is where non-linearity arises between

the captured pixel values and the light intensity from the scene. In order to make use of

linear relationship between these two, we apply an inverse of the gamma calibration, to the

recorded video frames obtained from the camera. As a result, the resulting pixel values in

the range between black and saturation level have a linear relationship with the actual light

present in the scene. This relationship can be formulated as the linear model, y = kx + b,

where b is the y-intercept introduced to account for the non-zero black level of the camera

sensor. This inverse calibration is applied to each frame in the video preprocessing before

face extraction. Now by generalizing the linear model to every frame, containing multiple

pixels, we get

K = kG + B, (4.4)
1

 ↑ Android supports manual camera mode starting from Android Lollipop 5.1

109

where K is the video frames that the camera actually captured for the duration of the

passcode. By substituting the definition of G into Equation 4.4 , we get

K = kWX + B. (4.5)

Finally, we use the least square method to solve

WX = 1
k

(K −B) (4.6)

which can be written as

X = (W T W)−1W T (1
k

(K −B)) (4.7)

Here, notice that B is a constant matrix and since each of the four patterns in the passcode

W are zero-mean, the term W T B will be eliminated. Hence Equation 4.7 becomes:

X = (W T W)−1W T (1
k

K) (4.8)

Note that this solution X will have an uncertainty of a scale factor. For any α > 0, let

X ′ = αX, k′ = 1
α
k. X ′, k′ will also minimize the above function.

However, this will not have an impact on the reconstructed surface normals. Recall, that

surface normals are computed by taking SVD of the stereo images. So, when X and X ′ are

both factorized using SVD, the decompositions are

X = UΣV T , (4.9)

X ′ = U(αΣ)V T . (4.10)

The surface normal V T will stay the same in these two cases. From the above observation,

we can set k = 1 without any impact on the surface normals. Now, we can solve for X ′ by

X ′ = (W T W)−1W T K (4.11)

110

So far, we assumed that the only light present in the scene is due to the passcode displayed

on the screen. However, we still need to consider the ambient light present in the scene as well

as the base intensity value of the screen on top of which the passcode is added. To account

for these other light sources, Equation 4.5 now becomes

K = kWX + B + C (4.12)

where C is the constant light present in the scene. Again, since C is a constant, because of

the orthogonal and zero-mean nature of our passcode, W , W T C will become 0. As a result,

Equation 4.11 will give a solution for X even when ambient light is present.

Due to the inherent delay in the camera hardware, the recorded video may have some extra

frames and the timestamps for each video frame captured and the four patterns displayed on

the screen at that point may differ. To ensure that we obtain a correct and fine alignment

between these two, we first compute the average brightness of each frame and then apply a

low pass filter on the average brightness across frames. The peaks and valleys in the average

brightness are matched with those of the passcode and finally, DTW [147] is used to align

the two series correctly. Once aligned, the result is the video frames which exactly represent

the reflection of the passcode from the face. These video frames are then given as input to

Equation 4.11 to recover the four stereo images as X. We define the average brightness of

these video frames as the recorded passcode for later sections.

An example of the recovered four stereo images corresponding to every single light i.e

four patterns displayed in each quarter is shown in Figure 4.4 . The top 4 images are the

recovered stereo images. The bottom images are the binary representation of these stereo

images such that in each image, a pixel value is 1 if the pixel in the corresponding stereo

image is larger than the mean value of the same pixel in the other three stereo images. This

binary representation is just to visually emphasize how different these stereo images are and

how they represent the face illuminated from lighting in four different directions.

111

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4. The recovered stereo images corresponding to the four patterns in
the passcode. The bottom row shows a binary representation to emphasize the
differences in these stereo images.

4.5.4 Photometric Stereo and 3D Reconstruction

The stereo images recovered from the least squared method approximate the facial images

taken with four different point lights. Now, we can use these stereo images to compute the

surface normals of the face as described in Section 4.2 .

However, as mentioned earlier, these surface normals have an ambiguity of matrix A.

We design an algorithm illustrated in Algorithm 2 to compute the normals without this

uncertainty. We use a generalized template, Nt, for the surface normals of a human face

and use this to solve for A. This template can be the surface normals of any human face

recovered without any ambiguity like surface normals computed when the lighting is known.

Note that obtaining this template is a one-time effort and the same normal template is

used for all users. Along with the normal map, we also have a 2D wired triangulated mesh,

Mt, connecting the facial landmarks (vertices), for this template. Now, when computing the

normals of a user subject, we use the facial landmarks detected from an RGB image of the

face to build a triangulated mesh of the face, M , using Mt as a reference for connecting the

vertices and triangles. A representation of this mesh can be seen in Figure 4.5 (left). An

affine transformation from the template mesh, Mt to M is then found independently for each

corresponding pair of triangles in the two meshes and applied to the matching piece in Nt.

As a result, the transformed normal map template, N ′
t now fits the face structure of the user.

112

Algorithm 2 Surface Normal Computation
1: procedure SurfaceNormalComputation
2: Input: normal map template Nt, template mesh Mt, stacked four stereo images I,

and face RGB image R
3: Output: surface normals S
4:
5: V ← getFaceLandmarks(R)
6: M ← buildMesh(V, Mt)
7: Ŝ, L̂T ← SVD(I)
8: N ′

t ← transform(Nt, Mt, M)
9: Solve N ′

t = AŜ for A
10: S ′ ← AŜ
11: Ms ← symmetrizeMesh(M)
12: S ← transform(S, M, Ms)
13: S ← adjustNormalValues(S)
14:
15: function transform(Z, T1, T2)
16: for each pair of triangles < t1, t2 >∈ T1, T2 do
17: a← affineTransformation(t1, t2)
18: Zout ← warp(Z(t1), a)
19: Z(t2)← Zout
20: end for
21: end function
22: end procedure

This transformed template can finally be used to find the unknown A, by solving N ′
t = AŜ

where Ŝ are the approximate normals recovered from SVD, and obtain the surface normals,

S ′. The last step in normal map computation is to make the normal map symmetric. This is

needed to reduce noise in the recovered stereo images and hence the surface normals. We

first find the center axis of the 2D face mesh using landmarks on the face contour, nose

tip and mouth. Once the center is found, each pairing landmarks like eyes, eyebrow corner

etc. are adjusted such that they have equal distance to the center to get a symmetric mesh.

After symmetrizing the mesh, we fit S into this symmetrized mesh. Now, we can easily apply

inverse symmetry to the x component of S and symmetrize the values in y and z components

of S. Note that by introducing symmetry, we might loose some tiny details of the facial

features as all human faces are not symmetrical. However, since our goal is to distinguish

113

the human face from their spoofing counterpart and not another human, the information

retained in the surface normals is more than sufficient. Figure 4.5 (right) shows an example

of the x, y and z components of a normal map generated from our algorithm.

(a) (b)

Figure 4.5. Normal map calculation (left) shows 2D triangulated face mesh
generated by using facial landmarks. (right) shows the X, Y , and Z components
of the normal map generated from Algorithm 2 .

After we have successfully recovered the surface normals, we can reconstruct the 3D surface

of the face from them. For 3D reconstruction, we follow the quadratic normal integration

approach described in [135]. The results of 3D reconstruction are shown in Figure 4.6 . Side

and top view are shown for each reconstructed model.

(a) (b) (c)

Figure 4.6. Examples of 3D reconstruction from human faces. Side and top
views are shown.

4.5.5 Liveness Detection

FaceRevelio aims to provide security against two broad categories of spoofing attacks: 2D

printed photograph attack and video replay attack.

2D Printed Photograph Attack: To defend against the 2D printed photograph

attacks, we need to determine whether the reconstructed 3D face belongs to a real/live person

or a printed photograph. Figure 4.7 shows examples of 3D reconstruction from a printed

114

(a) (b) (c)

Figure 4.7. Examples of 3D reconstruction from 2D printed photographs. Side
and top views are shown.

photograph using the approach described in the previous section. It is interesting to note here

that the same general human face normal map template is used for computing the surface

normals of a photograph. As a result, the overall structure of the reconstructed model looks

similar to a human face. However, even when using this human normal map template, the

freedom provided by solving for A is only upto 9 dimensions. Therefore, despite having a

similar structure, the reconstruction from the 2D photograph lacks depth details in facial

features, e.g. nose, mouth and eyes, as is clear in the examples in Figure 4.7 .

Sample Depth Map

Candidate Depth Map

Conv

128@10x10

128@151x111

Max Pool

128@75x45

Conv

256@7x7

Conv

256@4x4

Max Pool Max Pool

256@69x49

256@34x24

256@31x21

256@15x10

512@12x7 Feature Vector,

4096x1

Conv

512@4x4

Flatten,

Dense

Fully connected,

sigmoid,

L1 distance

Output,

1x1

Figure 4.8. Architecture of the Siamese neural network. One of the twin neural
networks takes a known human depth map as input while the other is passed
the candidate 3D reconstruction.

Based on these observations, we employ a deep neural network to extract facial depth

features from the 3D reconstruction and classify it as a human face or a spoofing attempt.

We train a Siamese neural network adapted from [140] for this purpose. The Siamese network

consists of two parallel neural networks whose architecture is the same, however, their inputs

115

are different. One of these networks takes in a known depth map of a human face while the

other is given the candidate depth map obtained after the 3D reconstruction. Both these

networks output a feature vector for their inputs. These feature vectors are then compared

using L1 distance and a sigmoid activation function. The final output of the Siamese network

is the probability of the candidate depth map being that of a real human face. Figure 4.8

shows the architecture of the Siamese network. Every time a subject tries to authenticate

using FaceRevelio, the reconstructed 3D model along with a sample human depth map is fed

as input to the Siamese network. If the output of the Siamese network is above a threshold

τs, the system detects a real face. Otherwise, a spoofing attempt is identified.

Since Siamese network uses the concept of one-shot learning [148] and takes pairs as

input for training, the amount of data required for training is much smaller than traditional

convolutional neural networks. Here, one may argue that why not train the model with the

raw images/videos captured by the front camera, for the duration of passcode, instead of the

depth map? Training a model with these raw images would significantly increase the storage

and computation costs of our system and would require huge amounts of training data for

the different ambient environments.

0.8 0.85 0.9 0.95 1
Correlation

0

0.05

0.1

0.15

0.2

P
ro

ba
bi

lit
y

(a)

1 2 3
Passcode Length in Seconds

0%

0.5%

1%

P
er

ce
nt

ag
e

threshold = 0.84
threshold = 0.85
threshold = 0.86

0.0003%
0.0002%

0.0001%

(b)

Figure 4.9. Video Replay Attack: (left) shows the distribution of correlation
between recorded passcodes from human face and the original passcode. (right)
shows the percentage of passcodes which have a correlation with another
random passcode higher than a threshold for different thresholds.

Video Replay Attacks: FaceRevelio has a two-fold approach for defending against video

replay attacks. The first line of defense is to utilize the randomness of the passcode. When a

116

human subject tries to authenticate via FaceRevelio, the passcode displayed on the screen is

reflected from the face and captured by the camera. As a result, the average brightness of

the video frames across time has a high correlation with the light incident upon the face i.e.

the sum of the four patterns in the passcode displayed on the screen. Figure 4.9 (left) shows

a distribution of the correlation between recorded passcodes and the original passcode for

experiments conducted with humans. The correlation between the two passcodes is higher

than 0.85 for more than 99.9% of the cases. An adversary may try to spoof our system by

recording a video of a genuine user while using FaceRevelio and replay this video on a laptop

screen or monitor in front of the phone later. In this case, the video frames captured by the

camera will have the reflections of the passcode on the phone screen as well as the passcode

present in the replay video. Since FaceRevelio chooses a totally random passcode each time as

described in 4.5.1 , the probability that the passcode displayed on the screen and the passcode

in the video has a high correlation is extremely low. To give an idea, for a passcode duration

of 3s, if we compare 300 million pairs of random passcodes, only 0.0003% of the pairs will

have a correlation greater than 0.84. Figure 4.9 (right) shows the percentage of passcode with

a correlation higher than threshold values 0.84, 0.85 and 0.86 for passcode lengths of 1, 2

and 3s. Hence, just by computing and setting a threshold on the correlation between the

recorded passcode and the sum of passcode from the screen, the chances of detecting a replay

attack are very high.

For the rare cases when the correlation is higher than the predefined threshold, our second

line of defense comes into play. Similar to 2D photograph attack, video replay attacks can also

be detected using the reconstructed 3D model. The reconstruction from the replayed video

suffers from two main problems. First, it is hard for the adversary to accurately synchronize

playing the attack video with the start of the passcode display on the smartphones. Second,

even if the correlation passes the threshold, there will be some differences in the replayed

passcode and FaceRevelio’s passcode. Because of this, the DTW matching will not match

the recorded video frames with the displayed passcode very well, resulting in wrong stereo

image recovery. The incorrect 3D reconstruction from these wrong stereo images is sufficient

to identify a spoofing attempt.

117

4.6 Evaluation

We describe the implementation and evaluation of our system in this section. We first

describe the experiment settings and the data collection details and then the performance of

our system in different settings.

4.6.1 Implementation and Data Collection

We implemented a prototype for FaceRevelio on Samsung S10 which runs Android 9, with

10 MP front camera that supports Camera2 API. The videos collected for our authentication

system have a resolution of 1280x960 and a frame rate of 30fps. For each experiment setting,

we display the passcode patterns on the smartphone screen and record a video of the reflections

from the user’s face via the front camera. We use Face++ [143] for landmark detection and

OpenCV in the image recovery and reconstruction modules of our system. Python libraries

for TensorFlow [149] and Keras were used to train the neural network for liveness detection

while TensorFlow Lite was used for inference on Android.

We evaluated FaceRevelio with 30 volunteers using our system for liveness detection.

The volunteers included 19 males and 11 females with ages ranging from 18 to 60. These

volunteers belonged to different ethnic backgrounds including Americans, Asians, Europeans

and Africans. During the experiments, the volunteers were asked to hold the phone in front

of their faces and press a button on the screen to start the liveness detection process. Once

the button was clicked, the front camera started recording a video for the duration of the

passcode. During all experiments, we collected a high-quality image of the user to test the

performance of our system against photo attacks. For the video replay attack, we used the

videos collected from real users and replayed them to the system.

We collected a total of 3800 videos from the 30 volunteers over a duration of 2 weeks.

We evaluated the performance of our system in natural daylight as well as in dark. For the

daylight setting, all experiments were conducted during daytime however the lighting varied

based on the weather conditions on the day and time of the experiment. Each volunteer

performed 10 trials of liveness detection using our system for each of the two light settings. A

random passcode of 1s duration was added on top of a gray background (grayscale intensity

118

value of 128) for these trials. We also tested FaceRevelio with passcode durations of 2 and 3s

in the two light settings. We also evaluated the impact of indoor lighting and the use of a

background image on the performance of our system. For these scenarios, we collected data

from 10 volunteers with a passcode duration of 1s. These volunteers also used the system 10

times for each scenario.

We used the Siamese neural network described in section 4.5.5 to test a user by using the

depth maps generated from data collected from the remaining users for training.

4.6.2 Performance Results

For evaluating FaceRevelio system performance, we answer the following questions:

(1) What is the overall performance of FaceRevelio?

To determine the overall performance of our system, we evaluated our system’s ability to

defend against 2D printed photographs and video replay attacks. We report the accuracy of

our system as the true and false accept rate for the two light settings. We also determine the

equal error rate (EER) for the attacks.

0 1 2 3 4 5
False Accept Rate (%)

95

96

97

98

99

100

Tr
ue

 A
cc

ep
t R

at
e

(%
)

Dark
Day light

Figure 4.10. ROC curve for detecting photo attack in dark and daylight
setting with a passcode of 1s. The detection rate is 99.7 and 99.3% when true
accept rate is 98% and 97.7% for the two settings respectively.

First, we describe our system’s performance against printed photograph attack. Figure 4.10

shows the ROC curve for FaceRevelio’s defense against photo attack in the dark and daylight

setting with a passcode duration of 1s. For dark setting, with a true accept rate of 98%, the

false accept rate is only 0.33%. This means that a photo attack is detected with an accuracy

of 99.7% when the real user is rejected in 2% of the trials. The EER for the dark setting is

1.4%. In daylight, the photo attack is detected with an accuracy of 99.3% when the true

accept rate is 97.7%. The EER in this case is also 1.4%. FaceRevelio performs better in dark

119

setting because the impact of our light passcode is stronger when the ambient lighting is

weaker. Hence, the signal-to-noise ratio in the recorded reflections from the face is higher,

resulting in a better 3D reconstruction.

0 0.2 0.4 0.6 0.8
Correlation

0

0.2

0.4

0.6

Pr
ob

ab
ilit

y

Figure 4.11. Distribution of the correlation between the passcode on the
phone and the camera response from real human and video attack combined
for dark and daylight setting.

We also evaluated our system against video replay attacks by using videos collected from

the volunteers during the experiments. Each video was played on a Lenovo Thinkpad laptop,

with a screen resolution of 1920 x 1080, in front of a Samsung S10 with FaceRevelio installed.

Our system detected these video replay attacks with an EER of 0% in dark and 0.3% in

daylight settings. Figure 4.11 shows a histogram of the correlation between the passcode

displayed on the phone and the camera response for all experiments with 1s long passcode.

The correlation for all the attack videos is less than 0.9. In contrast, 99.8% of the videos from

real human users have a correlation higher than 0.9.

Solving images

Calculating normal map

3D reconstruction

Model inference
Total

0

50

100

150

T
im

e
(M

ill
is

ec
on

d)

2.5

55.9
38.1 35.4

131.9

Figure 4.12. Processing time of the different modules of the system for a
passcode of 1s duration.

Another performance metric is the total time it takes to detect liveness with FaceRevelio.

Figure 4.12 shows the processing time of the different modules of our system. On top of

the signal duration of the passcode, the liveness detection process only takes 0.13s in total.

The stereo images recovery only takes 3.6ms. The most expensive computation step is the

normal map computation, taking 56ms, since it involves two 2D warping transformations.

120

3D reconstruction and feature extraction and comparison via the Siamese network take 38.1

and 35.4 ms respectively.

(2) What is the effect of the duration of the light passcode?

0 1 2 3 4 5
False Accept Rate (%)

95

96

97

98

99

100

T
ru

e
A

cc
ep

t R
at

e
(%

)

1 second
2 seconds
3 seconds

(a)

0 1 2 3 4 5
False Accept Rate (%)

95

96

97

98

99

100

T
ru

e
A

cc
ep

t R
at

e
(%

)

1 second
2 seconds
3 seconds

(b)

Figure 4.13. ROC curve for passcode durations of 1, 2, and 3 seconds in dark
(left) and daylight (right) settings.

To answer this question, we tested the performance using passcodes of time durations 1,

2 and 3s. Figure 4.13 shows the ROC curve for photo attack with different passcode duration

in dark (left) and daylight (right) settings. In dark, the attacks are detected with an accuracy

of 99.7% for passcodes of length 1, 2 and 3 seconds each. These accuracies are achieved when

the true accept rate is 98%, 99% and 99.3% for the three time durations respectively. The

EER is 1.44% for 1s and 0.7% for 2 and 3 each. For daylight, the detection accuracy is 99.3%

for 1s and 2s. For 3s, the photograph attack is detected with an accuracy of 99.7%. These

accuracies are achieved when the true accept rate is 97.7%, 98.3% and 99.3% for 1, 2 and 3s

respectively. We observe that the performance of FaceRevelio improves as we increase the

duration of the passcode. Although the true accept rate deteriorates when a passcode of 1s is

used, achieving a higher attack detection accuracy within a short duration is the priority of

an effective liveness detection system.

We also evaluated the effect of passcode duration on detecting video attacks. Figure 4.14

shows the correlation distribution for human and video attack combined for passcode duration

of 2 (Figure 4.14 left) and 3 (Figure 4.14 right) seconds in the two light settings. For 2s,

all the video attacks have a correlation less than 0.84 while 99.8% of the human data have

121

0 0.2 0.4 0.6 0.8
Correlation

0

0.2

0.4

0.6

P
ro

ba
bi

lit
y

(a)

-0.2 0 0.2 0.4 0.6 0.8
Correlation

0

0.1

0.2

0.3

0.4

P
ro

ba
bi

lit
y

(b)

Figure 4.14. Distribution of the correlation between passcode on the phone
and the camera response from real human and video attack for 2s (left) and 3s
(right) long passcodes.

a correlation higher than 0.86. In case of 3s, 99.8% of the real human experiments have a

correlation higher than 0.8. In comparison, all attack videos have correlation of less than 0.8.

We also determine the effect of the passcode duration on the processing time in the

authentication phase. The duration of the passcode only affects the time taken to determine

the least squared solution for recovering the four stereo images as that depends on the number

of frames in the recorded video. The computation time for the other components of the

system stays consistent across different passcode duration. The total processing time remains

below 0.15s for all three passcode durations.

(3) How well does FaceRevelio perform in indoor lighting?

To evaluate the effect of indoor lighting, we conducted experiments with 10 volunteers in

a room with multiple lights on. The goal was to determine if this extra light had any impact

on the efficacy of our light passcode. In these experiments, we used 1s long passcodes. For a

true accept rate of 98%, FaceRevelio’s accuracy against 2D attacks is 99.7%. It achieves an

EER of 1.4% which is comparable to the dark setting. Hence, we conclude that FaceRevelio

performs well even when artificial light is present in the scene.

(4) What is the effect of displaying the signal on a background image?

So far, we used gray image as a base for the light passcode displayed on the screen to

evaluate our system. Here we want to determine how the system performance change if we

122

used an RGB image for the passcode instead of the gray background. For this purpose, we

selected a total of 5 background images (shown in Figure 4.15 (top)). Figure 4.15 also shows

an example of what the passcode frames look like with an image background across time. We

performed experiments with 10 users where each user performed 10 trials in daylight setting

using the 5 background images. Our system achieves an EER of 1.15% against the spoofing

attacks. A photo attack is detected with an accuracy of 99.4% when the true accept rate

for humans is 97%. These results show that FaceRevelio’s process can be made more user

friendly by using images of the user’s choice as a base for the passcode.

(a) (b) (c) (d) (e) (f)

Figure 4.15. Top row shows images chosen as background for the light passcode.
Bottom row shows what the passcode looks like with an image as background

Table 4.1. Summary of existing face liveness detection methods
Algorithm Attack

Resistance
Special

Hardware?
User Interaction

Required?
Limitation Accuracy

FaceID [127] 2D & 3D TrueDepth No 3D head mask attack > 99.9%
Samsung FR [150] None No No Photo Attack -

EchoFace [151] 2D photo No No Audible sound 96%
FaceCloseup [152] 2D

photo/video
No Requires moving

the phone
Slow response 99.48%

EchoPrint [153] 2D
photo/video

No No Audible sound, low accuracy
in low illumination

93.75%

Face Flashing [9] 2D
photo/video

No Requires expression Slow response 98.8%

FaceHeart [154] 2D
photo/video

No Place fingertip on
back camera

Low accuracy in low
illumination

EER 5.98%

FaceLive [133] 2D
photo/video

No Requires moving
the phone

Slow, low accuracy in low
illumination

EER 4.7%

Patel et al. [155] 2D
photo/video

No No Device dependent, low
accuracy in low illumination

96%

Chen et al. [130] 2D
photo/video

No Requires moving
the phone

Slow response 97%

(5) Where does FaceRevelio stand compared to existing face liveness detection

methods?

Table 4.1 gives an overview of the existing methods for face liveness detection on smart-

phones. It shows the type of attacks these methods can defend against and if they require any

extra hardware or user interaction for doing so. Among the commercial solutions, Samsung’s

123

face recognition is vulnerable to simple 2D photo attacks and needs to be combined with

other authentication methods for security [150]. Apple’s FaceID [127] is the most secure

method against 2D and 3D spoofing attacks, owing to the TrueDepth camera [127] used

for 3D reconstruction. However, among methods that do not rely on any extra specialized

hardware [9 , 133 , 152 , 154], FaceRevelio achieves the highest accuracy in detecting 2D photo

and video attacks with the fastest response time of 1s. Tang et al. [9] use a challenge-response

protocol to achieve a high detection accuracy, however, their approach relies on the user to

make facial expressions as instructed and takes 6s or more (depending on the number of video

frames collected) to perform well. In contrast, FaceRevelio detects the spoofing attempts in

1s, without requiring any user interaction, increasing its overall usability. Another important

comparison metric is the performance variation in different lighting conditions. For methods

like [153 – 155], the performance mentioned in table 4.1 is achieved under controlled lighting

conditions and deteriorates in dark environments. EchoFace [151] achieves a good accuracy

by using an acoustic sensor based approach however their sound frequency is within human

audible range, (owing to smartphones’ speaker limitation [156]) making it less user friendly.

4.7 Related Work

Several software-based face liveness detection techniques have been proposed in the

literature. These depend on features and information extracted from face images captured

without additional hardware. Texture-based methods detect the difference in texture between

real face and photographs/screens. In [132], local binary patterns were used to detect the

difference in local information of a real face and a 2D image using binary classification.

Another technique, [157], measures the diffusion speed of the environmental light which helps

distinguish a real face. [154] operates by comparing photoplethysmograms independently

extracted from the face and fingertip videos captured by front and back cameras. Similarly

[158] uses a combination of rPPG and texture features for spoof detection. These works do

not perform well in poor lighting conditions and are affected by the phone camera limitations.

Some works [155 , 159], make use of the degraded image quality of attack photos or videos.

However, with modern cameras and editing softwares, an adversary can easily obtain high

quality images and videos to conduct an attack. In contrast to these approaches, FaceRevelio

124

works in different lighting conditions and is not dependent on the quality of the videos

captured.

Other techniques use the involuntary human actions such as eye blinking [129] or lips

movement [160] to detect spoofing, but these techniques fail against video replay attacks.

Challenge-response protocols require the user to respond to a random challenge, such as

blinking, face expression, head gesture, etc [161]. These systems are limited by their un-

constrained response time and are still prone to replay attacks. Another work, [9], used a

time constrained challenge-response technique that shows different colors on the screen and

detects the difference in the time of reflection between a real face and an attack. This work

differs from FaceRevelio as they utilize the random challenge on the screen to perform a

timing verification whereas we use the screen lighting to reconstruct the 3D surface of the

face. Also, [9] requires the user to make a face expression to defend against static attacks.

Some works like [130 , 133] require the user to move the phone in front of their face and

analyze the consistency between the motion sensors’ data and the recorded video to detect

liveness. These approaches require some form of user interaction unlike our system which

operates independently of the user.

Some hardware-based techniques require extra hardware or different sensors to detect

more features of the human face structure. FaceID was introduced by Apple in the iPhone X to

provide secure 3D face authentication using a depth sensor [127]. However, the extra hardware

consumes screen space and requires additional cost. [153] developed an authentication system

that uses the microphone with the front camera to capture the 3D features of the face.

However, this technique does not work well in poor lighting and depends on deep learning

which requires large training datasets. Similarly, [151] uses acoustic sensors to detect the

3D facial structure. Both these techniques play audible sound for detection, which makes

their system less user friendly. Some other techniques use thermal camera [162], 3D-camera

or multiple 2D-cameras [163]. Again, these techniques suffer from the setup cost for these

extra devices.

125

4.8 Discussion

FaceRevelio depends on light emitted from the screen, therefore it is sensitive to rapid

changes in the ambient lighting like when a user is in a moving car. The accuracy of our

system would be affected in such scenarios. This requires investigating other camera features

to recognize the small light changes produced by our passcode in the presence of strong,

changing ambient light.

Recently, some advanced machine learning based attacks [164 , 165] have been successful

in spoofing state-of-the-art face recognition systems. However, FaceRevelio can defend against

these attacks because the random light passcode changes with every use of our system and

does not have any relation to the passcodes used previously. Hence, learning a machine

learning model to guess the password on the fly and replaying it to the system is not possible.

Here, we admit that FaceRevelio can be spoofed by using a 3D printed mask of the subject,

however, such attacks are costly and much more difficult to execute than existing attacks.

In our system, we divided the phone screen into four quarters for displaying four random

patterns in the passcode. These passcodes helped us achieve a good accuracy in detecting

replay attacks. However, we can further push the randomness involved in our passcodes by

dividing the screen into smaller regions or using combination of different shapes to display

the light patterns. We also plan to increase the system usability by using more sophisticated

light patterns, such as a picture of blinking stars or animated waterfall.

FaceRevelio provides a promising solid idea for secure liveness detection without any extra

hardware. Our technique can be integrated with existing 2D face recognition technologies on

smartphones. Detecting the 3D surface of the face through our system before face recognition

would help them in identifying spoofing attacks at an early stage. This will improve the

overall accuracy of these state-of-the-art technologies. Apart from this, our system also has

the potential to be used for 3D face authentication directly.

126

5. ONE KEY TO RULE THEM ALL: SECURE GROUP

PAIRING FOR HETEROGENEOUS IOT DEVICES

5.1 Introduction

Internet of Things (IoT) devices need secure wireless communication channels to protect

the confidentiality and integrity of the data they exchange (e.g., sensor measurements,

actuator states). This protection is critical to prevent various attacks (e.g., man-in-the-

middle (MitM) [13 , 166] and protocol manipulation [167 , 168]), provide user privacy and

ensure the trustworthiness of IoT systems [10 , 15]. Therefore, IoT devices require a pairing

mechanism, which establishes shared cryptographic keys between devices to enable secure

wireless communication among them.

Traditional pairing methods employ a centralized approach where a user pairs each device

with a trusted IoT gateway/hub through an external helper device (e.g., user typing a password

on their smartphone to pair a smart light with the IoT hub). Yet, central gateways/hubs

(a) are prone to temporary or permanent failures due to operational malfunctions [169], and

(b) can be compromised due to their vulnerabilities [168 , 170]. In such cases, devices need a

secure mechanism for directly communicating with each other.

To illustrate, consider a smart home that turns on the lights and unlocks the door when

smoke is detected for fire safety. If the hub is not present or experiences a failure, these

devices cannot communicate with each other, resulting in severe consequences, e.g., residents

being trapped in a fire.

Consequently, IoT platforms have recently been pushing towards decentralized IoT net-

working protocols (e.g., OpenThread [171]). Such decentralized protocols have applications

in smart homes and industrial automation due to their reliability (always-on), scalability

(easy device addition), and adaptability (supporting devices from different vendors). Past

efforts at decentralized secure IoT device pairing have explored two primary approaches: (1)

human-in-the-loop-based and (2) context-based pairing.

In human-in-the-loop-based approaches, a user needs to be physically involved to facilitate

the pairing process. A line of work requires users to contact devices by exploiting the fact that

the movement pattern is correlated in multiple devices [172 , 173]. For instance, a user with a

127

wristband touches a device [12] or shakes two devices at the same time for pairing [11]. Another

line of work relies on the user to enter passwords, read QR codes, or press buttons [174].

For example, OpenThread requires a user to scan the QR code of each device with a mobile

phone [171]. These approaches, however, require human involvement that affects usability

and scalability with an increasing number of devices.

To address these limitations, there is an increasing interest in context-based pairing

schemes [13]. In this, co-located sensors establish shared keys based on the entropy extracted

when they observe common events. Yet, these approaches are limited to pairing devices

only equipped with homogeneous sensors that sense identical sensing modalities [14 , 15 , 175 ,

 176]. For instance, to pair a power meter with a microphone, another microphone must be

embedded into the power meter so that both devices capture a common audio context.

Recent work has proposed capturing event timings among heterogeneous devices as

evidence for device co-presence to derive secure keys [10]. While this approach supports

heterogeneous sensing types without human intervention, it suffers from four fundamental

limitations: (1) takes several hours or a few days for pairing, (2) is limited to sensors that only

sense instant physical quantities (e.g., cannot pair widely deployed temperature and humidity

sensors), (3) entire pairing process is impaired by concurrent events (e.g., when the sound

from door lock and coffee machine overlaps), and (4) can pair solely two sensors at a time.

These limit its usability, make it infeasible for pairing diverse device types and ultimately fail

in offering promise for adoption to a wide-variety of IoT deployments in practice.

In this chapter, we design and develop IoTCupid, a secure group pairing system for

IoT deployments with heterogeneous sensing modalities. IoTCupid complements trusted

gateways in IoT deployments when they experience operation failures or are compromised and

enables secure communication among devices. It operates both on instantly and continuously

influenced sensors, supports concurrent events for context extraction, and establishes a secure

shared group key among devices that sense the same events.

IoTCupid first obtains the sensor measurements corresponding to events sensed by each

device. It implements a feature processing technique through a window-based derivation

algorithm to support sensors that measure instant (e.g., sound) and continuous physical

quantities (e.g., temperature and humidity). It then derives temporal sensor features from

128

detected events, extends a fuzzy clustering algorithm to group concurrent and independent

events into different types, and obtains inter-event timings (time interval between consecutive

events) for each event type. Lastly, it uses the inter-event timings as evidence to authenticate

the devices and establishes a shared group key among all devices that sense the same events.

IoTCupid’s group key establishment protocol enables dynamic group generation and is

resilient to MitM, offline brute-force and denial of key exchange attacks. In contrast to

previous approaches, IoTCupid provides a fast, practical, and secure group pairing scheme

that automates pairing diverse device types with no active user involvement and a minimal

computational and storage cost.

We present two studies evaluating IoTCupid’s effectiveness. In a first study, we conducted

experiments in a smart home with 4 sensors and 4 event sources while two residents were

conducting their routine activities. We also deployed devices outside the home to evaluate

IoTCupid’s resilience against attacker devices that aim to pair with legitimate devices. To

demonstrate IoTCupid’s practicality in different environmental conditions, in a second study,

we evaluated IoTCupid on a dataset [177 , 178] collected in an office environment with multiple

devices and event sources while four people were conducting their everyday work. IoTCupid

correctly detected events with an average precision and recall rate of 95.8% and 83%, and

successfully paired all devices with only four equivalent inter-event timings. We show that

the attacker devices cannot pair with legitimate devices using IoTCupid. These studies

demonstrate IoTCupid establishes group keys without a significant overhead. It takes 39

milliseconds on average to derive group keys among 20 devices with 4 event sources, and

the overhead increases linearly with an increasing number of event sources and devices. In

summary, we make the following contributions:

• We introduce IoTCupid, a secure and practical group pairing system for heterogeneous

sensors. IoTCupid leverages inter-event timings of commonly sensed events to pair

devices with diverse sensing modalities in a short duration with minimal computation

and storage cost.

• We design a dynamic group key establishment protocol that extends a partitioned

group password-authenticated key exchange scheme with provable security.

129

Time

So
un

d
Te

m
pe

ra
tu

re
Time

Po
w

er

Time

door-open
door-close & coffee-machine-on
door-close
coffee-machine-on
heater-on

concurrent events

inter-event timing

continuous
impact

Figure 5.1. An illustration of how common events sensed by different sensors
can be used for device pairing.

• We perform two studies in a smart home and smart office to show IoTCupid’s effective-

ness and performance in pairing multiple devices with diverse modalities.

5.2 Problem Statement

Trusted gateways may not always be available in IoT deployments. In such cases, secure

communication channels are constructed through decentralized pairing systems that authen-

ticate the devices and establish cryptographic keys for device-to-device communication. Most

of these systems require human involvement (e.g., simultaneously shaking two devices) to

pair the devices. However, such solutions have limited usability and are infeasible for IoT

deployments with the increasing number of devices. Therefore, recent efforts have explored

context-based pairing to provide secure communication channels [14 , 15 , 175 , 176]. These

approaches, however, can only pair devices equipped with homogeneous sensors that sense

identical sensing modalities.

Since IoT devices are equipped with sensors with different capabilities and sensing

modalities, our goal is to design a secure, and practical pairing system for these heterogeneous

devices based on their shared context, without user involvement. To illustrate, we consider an

IoT deployment with three devices. Each device is equipped with one of the following sensors: a

130

Table 5.1. Commonly occurring events in IoT environments and the sensors
impacted by these events.

Event Sensors Impacted

door-open/close air pressure, humidity, illuminance, microphone,
motion, temperature

coffee-machine-on/off microphone, power

window-open/close air pressure, humidity, illuminance,
motion, temperature

oven-on/off humidity, power, temperature
light-on/off illuminance, power

AC-on/off air pressure, humidity, microphone,
power, temperature

heater-on/off humidity, microphone, power, temperature
TV-on/off illuminance, microphone, power

dryer-on/off humidity, microphone, power, temperature

microphone, a power meter, and a temperature sensor. In the morning, user-A opens the door

(door-open) to go out. Meanwhile, user-B turns on the coffee machine (coffee-machine-on).

While the coffee machine is on, user-A returns and closes the door (door-close). User-A

prepares a cup of coffee for herself (coffee-machine-on) and turns on the heater (heater-on).

Figure 5.1 presents the physical influences of the described event sequence on the sensors,

where all devices perceive common events. For instance, the door-open/close events influence

the microphone and temperature sensor while the microphone and power meter sense the

coffee-machine-on event. Similarly, heater-on influences all three sensors.

In general, commonly occurring events in typical IoT environments are sensed by multiple

devices equipped with heterogeneous sensors [10 , 177 , 179 – 181]. Table 5.1 summarizes

commonly occurring events and the group of sensors impacted by these events in a typical

smart home setting. Although the devices’ measurements are not directly comparable due to

different signal characteristics and their times may not be synchronized, these devices can

leverage the inter-event timings to verify they observed the same event. Particularly, two or

more devices can use the time interval between the subsequent occurrences of a commonly

131

observed event type (e.g., coffee-machine-on events sensed by the microphone and power

meter) as a proof of co-presence and use them as an evidence to establish a symmetric key.

Definitions. In this chapter, we use the term events to refer to instances of changes in

the device states (e.g., door-open, coffee-machine-on and heater-on). Events influence a

set of physical channels that are measured by sensors. We use the term signals to refer to

the processed sensor readings that represent the influence of an event separated from the

background noise. Common devices in IoT environments are influenced by multiple event

types. For instance, a device equipped by a temperature sensor may be influenced by events

of types door-open, heater-on and AC-on.

5.2.1 Design Requirements and Challenges

Several schemes leveraged shared homogeneous context to securely pair IoT devices [14 ,

 15 , 175 , 176], and only a single prior work [10] explored using inter-event timings for the

secure pairing of heterogeneous sensing devices. However, these schemes suffer from four

primary problems, which makes them impractical in many IoT environments. We detail them

below and address each with IoTCupid.

Short Pairing Time. Existing works use cryptographic primitives that are vulnerable to

offline brute-force attacks. In these attacks, the attacker enumerates all possible inter-event

timings to derive the cryptographic keys. Thus, they require many inter-event timings to

provide sufficient entropy for the shared keys to be cryptographically secure. The time needed

to derive secure keys is further increased due to concurrent events, which cannot be used for

pairing as they create inter-event timing mismatches (Detailed below).

Pairing Continuously Influenced Sensors. Prior pairing systems only consider sensors

that are instantly influenced by an event. Yet, in real environments, many sensors measure

continuous physical quantities (e.g., temperature and humidity). We refer to such sensors

as continuously influenced sensors. For instance, in Figure 5.1 , the heater-on event’s sound

instantly influences the microphone. However, the temperature continuously increases over

time. Unless event detection considers gradual changes in the temperature, the heater-on

event cannot be detected and used to pair the microphone and temperature sensor. Without

132

considering continuously influenced sensors, the number and types of devices which can be

paired are very limited.

Concurrent Events. Existing pairing schemes mainly evaluate scenarios where a device

only senses a single event per time period. However, in practical scenarios, multiple events

occur simultaneously and produce an overlapping influence on the sensors. In Figure 5.1 ,

coffee-machine-on and door-close happen concurrently, and the microphone measures

their aggregated influence. Prior works group concurrent events into a new separate event

type. This leads to longer pairing times since the inter-event timings for a device sensing

concurrent events will not match with another device sensing only one of those event types.

To address this, a method to separate independent and concurrent events into groups is

needed for scalable and practical pairing.

Deriving Group Keys. In centralized IoT deployments, a trusted hub monitors and controls

the devices. However, in decentralized IoT protocols, devices need to broadcast their states

to invoke their event-triggered automations. For instance, a smoke-detector broadcasts the

smoke-detected event; upon receiving, the lights are turned on and the door is unlocked for

user safety. Previous decentralized pairing schemes establish individual keys among pairs of

devices. When a device needs to broadcast a message, it individually encrypts it with all

shared keys and then sends the ciphertexts, causing linear computation, communication and

energy consumption overhead. Since IoT devices typically have limited resources and energy

constraints, this overhead negatively impacts their performance and battery.

5.2.2 Threat Model

The attacker, A, aims to eavesdrop on the communication between IoT devices and learn

private information about users. We assume that the devices are deployed within an indoor

closed physical space (e.g., smart home, smart office, industrial control room, etc.), and

controlled by a common trusted entity (e.g., smart home owner, office occupants, etc.). We

assume that the attacker is not present within the physical boundary of the indoor IoT

environment and cannot access, add devices or control the devices inside. We also assume

133

that the attacker has complete knowledge of the pairing protocol and has access to the

communication channels.

We consider A can launch the following attacks: (1) Eavesdropping attack, A places

malicious devices DA outside the IoT environment’s physical boundary to pair them with

legitimate devices. DA may be (a) embedded with off-the-shelf sensors with similar capabilities

as the legitimate devices, or (b) equipped with higher-end sensors that are more powerful and

expensive compared to the legitimate devices. (2) Man-in-the-middle attack, A intercepts

the messages between legitimate devices and attempts to establish keys with them. (3)

Brute-force attacks, A tries every possible evidence to derive the cryptographic keys used

by legitimate devices. A can conduct this attack in two ways. For online attacks, A joins

the key establishment process and guesses the evidence. For offline attacks, A eavesdrops on

the communication between the legitimate devices and attempts to crack the established key

after pairing. (4) Denial of key exchange, A participates in group key establishment with

random evidences to prevent legitimate devices from establishing a key.

5.3 IoTCupid

5.3.1 System Overview

Figure 5.2 illustrates the three stages of IoTCupid. IoTCupid first processes the raw

time-series data collected in real-time by both instant and continuously influenced sensors

and performs a threshold-based signal detection to separate the sensor data corresponding

to events (signals) from background noise (1). For instance, it determines that Device A

detects five signals (a1-a5), and Device B and Device C detect four signals (b1-b4, c1-c4).

Second, IoTCupid extracts distinctive time-series features from the signals each sensor has

detected. It then extends a fuzzy clustering algorithm to group independent and concurrent

signals into different events (2). For example, Device A creates two event clusters, E1 and

E2. It then groups each detected signal into one or both of these clusters (a5 is grouped into

both clusters as E1 and E2 occur concurrently). The clustered events are used to obtain the

sequence of time intervals between consecutive events of a given type, which serve as evidence

of the devices’ shared context.

134

a1 a2 a3 a4 a5

c2 c4c1 c3

b1 b4b2 b3

Event Detection Context Extraction
Group Key

Establishment

Preprocessing
Raw Sensor

Data
Signal

Detection
Fuzzy C-Means

Clustering
Feature

Extraction

Device A

Device B

Device C

Partitioned
GPAKE

Evidence
Encoding

E
ve

nt
 S

ig
na

ls

In
te

r-
ev

en
t T

im
in

gs

Shared Group Key

a1 a2 a5
a3 a4 a5

b1 b4b2
b1 b3

c1
c3

c2 c4
e4c1

inter-event timings
Device A

Device B

Device C

events

E1

E2

E1

E3

E1

E3

Figure 5.2. Overview of IoTCupid’s architecture.

Lastly, IoT devices use the inter-event timings to authenticate each other and establish

a shared group key (3). IoTCupid encodes the inter-event timings into passwords and

extends a partitioned group password-based authenticated key exchange scheme for a group

key establishment protocol. We consider the devices that sense the same event as a group.

Through this, each subset of devices that have the same inter-event timings establishes a

group key. For instance, Devices A, B, and C derive a shared group key since they extract

matching inter-event timings through E1.

Deployment. IoTCupid presents a secure system for ad-hoc connectivity among heteroge-

neous IoT devices without a central gateway or IoT hub. It does not require specific user

actions to initiate the protocol or trigger events in the IoT environment. It solely depends

on the entropy extracted from events resulting from users’ routine activities. In IoTCupid’s

key establishment protocol initiation, all devices broadcast their public keys encrypted with

the extracted inter-event timings for establishing group keys. Given the ad-hoc nature of the

network, any device broadcasting its encrypted public key can initiate and participate in the

135

protocol. Thus, IoTCupid operates without knowing the number of devices present in the

IoT deployment.

5.3.2 Event Detection

IoTCupid’s event detection operates on each sensor’s raw time-series data. We first

pre-process the sensor data for signal smoothing and noise reduction. We then perform

threshold-based signal detection to separate the events’ impact on sensor data from noise.

We adapt our approach for both instantly and continuously influenced sensors.

Sensor Data Extraction and Pre-processing

To extract signals corresponding to events, we first segment the sensor data into multiple

samples with window size, ws. Many sensor values heavily fluctuate throughout the day

(e.g., temperature sensor readings depend on ambient temperature) [10 , 16]. To address this,

we first normalize the sensor readings to eliminate these fluctuations’ impact and capture the

transient changes caused by events. We then apply a smoothing filter by computing sensor

data’s exponentially weighted moving average (EWMA) to reduce noise. We compute the

sensor data’s EWMA as Sw = α ∗ Yw + (1− α) ∗ Sw−1, where α is the weight, Yw is the sensor

data in window w, and Sw−1 is the EWMA of the preceding window. Appendix 5.8 shows an

example of the sensor data before and after pre-processing.

Event Signal Detection

We design a threshold-based approach to distinguish events’ influence on sensor readings

from background noise. We leverage a lower threshold, TL, to identify peaks in the sensor

readings that distinguish events’ impact from background noise, and an upper threshold, TU,

to remove high amplitude noise signals. We consider the consecutive timestamps at which

the sensor values exceed TL but are below TU as a signal representing a single event.

Figure 5.3 (highlighted region) shows how the thresholds determine the microphone signal

corresponding to an event. We disregard short discontinuities between the signals (Figure 5.3a)

to ensure small fluctuations do not segment a signal representing a single event into multiple

136

4.27 4.28 4.29 4.3 4.31
Time (s) 104

0

2

4

6

8

10

12
rm

s db

T
U

T
L

Event

(a)

4.27 4.28 4.29 4.3 4.31
Time (s) 104

0

2

4

6

8

10

12

rm
s db

T
U

T
L

Event

(b)

Figure 5.3. Signal detection using lower (TL) and upper (TU) thresholds. (a)
shows short discontinuities between detected signals aggregated by our approach
in (b).

signals. To detail, we aggregate consecutive events into a single signal if the duration between

these signals is less than the aggregation threshold, tA, (Figure 5.3b).

Detecting Continuous Physical Quantities. The event detection approach described

above is suitable for sensors instantly impacted by an event since the raw sensor readings

can be directly compared to the thresholds. Yet, many sensors measure continuous physical

quantities, such as temperature, and humidity, that may not change instantly in response to

an event. For instance, a heater-on event occurring at time t causes a gradual increase in

temperature sensor values after a delay (∆t), which may vary depending on environmental

factors such as the sensor’s distance from the heater.

To illustrate, consider the raw sensor data from a temperature sensor shown in Figure 5.4a .

The sensor values gradually increase or decrease in response to heater-on/off events. However,

the maximum (or minimum) temperature values are sensed after a delay from the original

event timestamp. The length of this delay is different even for two events of the same type. For

example, for the two heater-on events, ∆theater-on2 is larger than ∆theater-on1. Additionally,

the maximum (or minimum) values recorded in response to the two events also vary. Due to

137

heater-on

heater-off

Δtheater-off1

Δtheater-on1

heater-off

Δtheater-off2

Δtheater-on2

Time (s)

heater-on

4

(a)

C
h
a
n

g
e

 i
n

 T
e
m

p
e
ra

tu
re

 (
˚C

)

Time (s)

TL

TU

4

(b)

Figure 5.4. (a) Raw sensor data collected from a temperature sensor. (b)
Absolute of the first derivative of the temperature data with upper and lower
thresholds.

these variations, using thresholds determined from the raw sensor data results in inaccurate

event detection and incorrect inter-event timings.

To account for the gradual changes and the varying delay in the impact on sensor readings,

IoTCupid leverages the rate of change in the sensor readings to detect signals corresponding

to events for continuously influenced sensors. IoTCupid first computes the derivative of

the pre-processed sensor values in each window (w) as S′
w = (Swws

− Sw0)/ws, where ws is the

window size and w0 and wws are the first and last sensor values in the window. IoTCupid

then applies the lower and upper thresholds (TL and TU) determined based on the average

derivative values for each sensor. We extract the timestamps where the absolute value of the

sensor readings’ derivatives lie within the predetermined TL and TU for the sensor. Compared

to the raw sensor data, the sensor data’s derivative has clear peaks that align well with the

events’ timestamps, as shown in Figure 5.4b .

138

5.3.3 Context Extraction

IoTCupid leverages inter-event timings as evidence of a shared context among devices.

To compute inter-event timings, it first derives the temporal features of the detected signals,

performs dimensionality reduction, and clusters them into events. It then computes the

sequence of time intervals between the start times of events of a given type.

Event Clustering

We cluster the detected signals into different events to extract their inter-event timings.

This is because each device can sense multiple event types, and the devices do not know the

type of detected signals. We use temporal features extracted from the detected signals to

cluster similar events via a fuzzy clustering algorithm, without any prior information about

the event types.

Deriving Temporal Sensor Features. IoTCupid implements a feature extraction and

selection algorithm to extract features representing different events. It extracts time-domain

features (F) such as min, max, mean, and median from the signals corresponding to each event.

We perform feature selection to identify the features that enable the correct characterization

of different events. We normalize the selected features and perform dimensionality reduction

through principal component analysis (PCA) [182] to select a subset of features, Fmin, which

is used to differentiate event types.

Fuzzy C-Means Event Clustering. In real IoT deployments, multiple events may occur

simultaneously and produce an overlapping signal on the devices. For instance, consider the

event sequence shown in Figure 5.5 , where door-open and coffee-machine-on events occur

concurrently. The signal features corresponding to such simultaneous events may significantly

differ from the same event’s occurrence in isolation. Thus, traditional hard clustering methods

such as K-Means may cluster concurrent events into a separate type instead of the existing

types (as shown by the K-Means output in Figure 5.5). This approach results in a higher

mismatch in the inter-event timings generated by two devices for a given event type, leading

to longer pairing times.

139

t1 t2 t3 t4 t5 t6 t7

t2

t5

t1

t1 t3

t7

t4

t4

t6

t6

t4

t1

t3
t7

t4

t1

t2

t5
Event Sequence

K-Means Clusters Fuzzy C-Means Clusters

t

Figure 5.5. Comparison of event clustering through K-Means and Fuzzy
C-Means algorithms.

To address this, we extend fuzzy C-Means clustering [183] to assign the detected signals

into one or more appropriate event clusters based on the extracted features. Fuzzy C-Means

partitions signal into c fuzzy event clusters, where c is an input. Each signal corresponding to

an event is assigned a degree of membership to each of the c clusters. For a given signal (e),

the degree of its membership (uej) in cluster j is determined by uej = 1/
∑c

k=1(dej/dek)2/m−1,

where dej represents the Euclidean distance between the cluster j’s centroid and signal

e’s feature vector. Since a device does not know the possible event types that may occur,

IoTCupid employs the elbow method to identify the optimal value of c [33]. The fuzziness

index, m, is the hyper-parameter controlling the tendency of an element to belong to multiple

clusters. We detail how c and m are determined in Section 5.4 . This process allows two events

occurring simultaneously to belong to their appropriate clusters (Figure 5.5 (Right)).

Context Evidence Generation

IoTCupid generates inter-event timings, I, for each device after clustering the detected

signals into different event types. Each device d extracts and concatenates the time intervals

between the start times of event occurrences 〈e1, . . . , en〉 in cluster k to generate inter-event

timings, ik. IoTCupid uses the inter-event timings for all events sensed by a device (I) as

evidence in our group key establishment protocol (Section 5.3.4).

140

Table 5.2. Our group key establishment protocol.
Device 1 (d1) Device 2 (d2) ... Device N (dN)

Step 1: Evidence Extraction
1 {i1,d1 . . . ic1,d1} = Context_Extraction(d1) {i1,d2 . . . ic2,d2} = Context_Extraction(d2) {i1,dN . . . icN,dN} = Context_Extraction(dN)

Step 2: Encoding
2 {pw1,d1 . . . pwc1,d1} = b{i1,d1 . . . ic1,d1}/Wc {pw1,d2 . . . pwc2,d2} = b{i1,d2 . . . ic2,d2}/Wc {pw1,dN . . . pwcN,dN} = b{i1,dN . . . icN,dN}/Wc

Step 3: Partitioned GPAKE
3 Determine the public parameters, two primes p and q, a finite field Fq and a group Zp. E(Fq) is an elliptic curve, and P ∈ E(Fq) is its generator.
4 Choose random {x1,d1 . . . xc1,d1}

$←− Zp Choose random {x1,d2 . . . xc2,d2}
$←− Zp Choose random {x1,dN . . . xcN,dN}

$←− Zp

5 Xi,d1 ← xi,d1 · P mod q, Yi,d1 ← Encpwi,d1
(Xi,d1) Xi,d2 ← xi,d2 · P mod q, Yi,d2 ← Encpwi,d2

(Xi,d2) Xi,dN ← xi,dN · P mod q, Yi,dN ← Encpwi,dN
(Xi,dN)

6 Broadcast (d1, Yi,d1), where i ∈ {1, . . . , c1} Broadcast (d2, Yi,d2), where i ∈ {1, . . . , c2} Broadcast (dN, Yi,dN), where i ∈ {1, . . . , cN}
7 For every received message (dj, Yj,dj), where j ∈ {1, . . . , N}:
8 Xj,dj ← Decpwi,d1

(Yj,dj), if(Xj,dj ∈ E(Fq)) : Xj,dj ← Decpwi,d1
(Yj,dj), if(Xj,dj ∈ E(Fq)) : Xj,dj ← Decpwi,d1

(Yj,dj), if(Xj,dj ∈ E(Fq)) :
9 sidi,j,d1 = {d1, Yi,d1 , dj, Yj,dj} sidi,j,d2 = {d2, Yi,d2 , dj, Yj,dj} sidi,j,dN = {dN, Yi,dN , dj, Yj,dj}
10 ski,j,d1 ← H(d1, dj, Xi,d1 , Xj,dj , xi,d1 · Xj,dj mod q) ski,j,d2 ← H(d2, dj, Xi,d2 , Xj,dj , xi,d2 · Xj,dj mod q) ski,j,dN ← H(dN, dj, Xi,dN , Xj,dj , xi,dN · Xj,dj mod q)
11 ri,d1

$←− Zp, αi,j,d1 ← Encski,j,d1
(ri,d1) ri,d2

$←− Zp, αi,j,d2 ← Encski,j,d2
(ri,d2) ri,dN

$←− Zp, αi,j,dN ← Encski,j,dN
(ri,dN)

12 Broadcast (d1, sidi,j,d1 , αi,j,d1) Broadcast (d2, sidi,j,d2 , αi,j,d2) Broadcast (dN, sidi,j,dN , αi,j,dN)
13 For every received message (dj, sidi,j,dj , αi,j,dj), where i ∈ {1, . . . , c} and j ∈ {1, . . . , N}:
14 if(Yi,d1 ∈ sidi,j,dj) : ri,j,dj ← Decski,j,d1

(αi,j,dj) if(Yi,d2 ∈ sidi,j,dj) : ri,j,dj ← Decski,j,d2
(αi,j,dj) if(Yi,dN ∈ sidi,j,dj) : ri,j,dj ← Decski,j,dN

(αi,j,dj)
15 keyi ←

∑t
j=1(ri,j,dj) keyi ←

∑t
j=1(ri,j,dj) keyi ←

∑t
j=1(ri,j,dj)

Using inter-event timings as evidence to bootstrap key establishment has significant advan-

tages for pairing heterogeneous devices. First, two devices detecting the same event roughly

record the same inter-event timings even if their raw signals have different characteristics

(e.g., door-close events sensed by a microphone and gyroscope). Second, inter-event timings

eliminate the need for a global clock or time synchronization. Even if an event’s timestamps

observed by two devices are not synchronized (e.g., heater-on is instantly sensed by a sound

sensor but gradually sensed by a temperature sensor with a delay), the time intervals between

consecutive events of the same type are still similar. Third, inter-event timings eliminate

the impact of changes in the duration of detected events, e.g., a coffee-machine-on event’s

duration depends on the number of cups.

5.3.4 Establishing Group Keys from Evidences

After devices extract inter-event timings, they use the timings as evidence to authenticate

each other and establish group keys. A group key is shared between the devices that sense

the same event type, and all devices in the group can securely communicate using a single

key. Group keys have unique advantages over deriving individual keys among each device

pair. First, devices must store an individual key for each device they pair with. Second, when

141

a device communicates with multiple devices (e.g., broadcasts a message), it must encrypt

and authenticate the message with all individual keys. Due to the storage, computation, and

energy constraints of IoT devices, linear storage, communication, and computation overhead

from individual keys significantly deteriorates the devices’ performance and battery.

Design Space Exploration

Deriving group keys using inter-event timings from multiple events in a dynamic IoT

deployment introduces several challenges. First, the groups must be generated dynamically

based on the devices that sense the same event. Second, the group key establishment protocol

must support device addition and removal. When a device is added, it must pair with the

existing devices for secure communication, and when a device is removed, its keys must be

revoked since an adversary can capture it (e.g., through reselling or returning [168 , 184]) and

physically extract the keys. Unfortunately, prior works cannot be easily extended to address

these challenges.

Group Diffie-Hellman. Group keys can be generated using the secure communication

channels from the individual keys derived through a standard pairing protocol. This means

the devices run an additional Group Diffie-Hellman (GDH) [185] protocol to derive group

keys, increasing the pairing time. Here, the group key establishment protocol must be run over

the secure communication channels to prevent MitM attacks. Since group key establishment

protocols require multiple broadcasting rounds, using the secure channels between each pair

of devices further increases the communication and computation overhead of the group key

establishment. Additionally, when a device is added to the IoT environment, it must first

individually pair with other devices to be authenticated and then participate in the group

key establishment.

Fuzzy Commitment. Several approaches use fuzzy commitment schemes [186 , 187] to

generate individual keys. These schemes are built on error-correcting codes and enable

verifying two evidences even when they have small differences (e.g., Hamming distance less

than a threshold). These schemes can be extended to derive group keys where each device

broadcasts its commitment, and the ones with similar evidences derive the same keys. Yet,

142

Table 5.3. Comparison of group key exchange approaches.
Group Key Dynamic Group Efficiency Resilience to Resilience to Denial

Exchange Protocol Generation Offline Attacks of Key Exchange
Group DH 7 7 3 3

Fuzzy Commitment-based 3 7 7 3

Group PAKE 7 3 3 7

Our Protocol 3 3 3 3

approaches only built on fuzzy commitment are vulnerable to offline brute-force key guessing

attacks [12]. In this attack, the adversary collects the network traffic and tries all evidences

until they find the one that can decrypt the network traffic.

There are two approaches to protect against these attacks. First, a large number of

evidences (i.e., inter-event timings) can be used to derive the keys. Yet, this approach

sacrifices efficiency since it may take a long time to derive a large number of evidences.

Second, Password-Authenticated Key Exchange (PAKE) schemes have been proposed to

prevent offline brute-force attacks. However, extending PAKE into group settings is non-trivial,

as discussed below.

Group PAKE (GPAKE). GPAKE enables multiple devices sharing the same evidence to

derive group keys [188 , 189]. However, the passwords of all devices that participate in the key

agreement must be the same because these schemes abort without establishing a shared key

even if a single password is different. The adversary can leverage this limitation by joining

the key agreement protocol with arbitrary evidences to deny legitimate devices from deriving

shared keys. We refer to this attack as Denial of Key Exchange.

Our Group Key Establishment Protocol

Table 5.2 shows our group key establishment protocol, which offers dynamic group

generation with computational efficiency, device addition/removal, and resilience to offline

brute-force and denial of key exchange attacks. We extend a partitioned GPAKE scheme [190]

to build our protocol. Particularly, we include evidence extraction and encoding steps to first

143

derive inter-event timings and then encode them into passwords to address their deviations.

The devices then use the passwords to run the partitioned GPAKE scheme such that

each subset of devices sensing the same events derives a group key. Here, we implement

the partitioned GPAKE scheme over an elliptic curve to offer compact key sizes and fast

computations. Lastly, we introduce a re-initiation-based key management scheme to support

device additions and removals. Table 5.3 shows our protocol’s advantages over the alternatives.

Evidence Extraction. Each device first extracts inter-event timings as evidence of co-

location (1). We represent the evidences as {i1, . . . , ic}, where c is the number of event

types the device senses. For each event type, the devices can concatenate multiple inter-event

timings to increase the entropy of the evidence. Our protocol requires 32-bit entropy in its

evidences, whereas the protocols based only on fuzzy commitment (e.g., Perceptio’s key

establishment [10]) need 128-bit entropy that requires a larger number of inter-event timings.

This is because our protocol is resilient to offline brute-force attacks, where an adversary who

guesses the password correctly after the group keys are established cannot extract the keys.

We further elaborate on each inter-event timing’s entropy and required number of timings in

Section 5.5 .

Encoding. Slight deviations in the inter-event timings may occur since devices may have

different sampling rates for their measurements. For instance, a device with a 10 Hz rate

collects a sensor measurement every 0.1 seconds, whereas a device with 1 Hz rate collects

every second. This leads the first device to compute an inter-event timing of 24.2 whereas the

second device computes it as 24. Yet, the passwords used in the partitioned GPAKE must

be identical for the devices to pair. To address this, we use a quantization window (W) to

round down the inter-event timings while deriving the passwords (2). Here, the quantization

window introduces a trade-off between efficiency and the password’s entropy. With a larger

W, more devices have matching passwords, and with a smaller W, the passwords have higher

entropy.

Partitioned GPAKE. We extend a partitioned GPAKE scheme with provable key secrecy

and password privacy [190]. In this, a probabilistic polynomial time adversary who does not

144

know the passwords cannot extract keys or passwords by eavesdropping or MitM attacks

(See Appendix 5.9 for proof).

We implement the partitioned GPAKE scheme on an elliptic curve (EC). The devices first

determine the public EC parameters (3). Each device then generates a unique private and

public key pair for each event type it senses and encrypts the public keys with its passwords

(4 - 5). The devices broadcast the encrypted public keys with their device identifiers (6).

Only the devices with the same password can decrypt the messages, preventing an adversary

from conducting a MitM attack.

After a device receives the encrypted public keys (7), it tries to decrypt them using all

of its passwords. If one matches with the password the public key was encrypted with, the

device derives a valid public key (8). The device then generates session IDs using the received

IDs and public keys (9), and derives intermediate two-party elliptic curve Diffie-Hellman

(ECDH) keys (10). It generates random values for each event type, encrypts them using the

intermediate keys, and broadcasts along with its ID and the session ID (11 - 12).

Upon receiving a message, the device checks whether its ID is in the session ID of the

received message. If it is, the device decrypts the message with its intermediate key to derive

the random value of the other device (13 - 14). After collecting all such random values, the

device adds them to derive the group keys (15). Since random values are uniformly sampled

from Zp, the group keys are random and secure. Yet, if the devices do not have a reliable

source of randomness, they can use a key derivation function instead of addition to generate

group keys. At the end of the protocol, each device derives a separate shared group key with

the other devices that can sense the same event type.

Key Management. In IoT environments, device additions and removals are common. Yet,

an added device cannot securely communicate with other devices without establishing keys

with them, and an adversary may leverage the removed devices to physically extract keys.

Therefore, a key management scheme is required to support added and removed devices. Prior

schemes for sensor networks, however, require a trusted entity to assign keys to devices [191 –

 193], which is infeasible for IoT devices from different vendors.

145

To address this problem, we integrate a re-initiation-based key management strategy.

First, the added devices re-initiate IoTCupid and extract inter-event timings to prove their

legitimacy to the existing devices. Thus, when IoTCupid is re-initiated, the existing devices

also start extracting inter-event timings to pair with the newly added devices. Yet, an

adversary can abuse this and attempt a denial of service attack by initiating the protocol

unnecessarily. Such attacks are easy to detect since the adversary cannot prove its legitimacy

and pair with the existing devices. When an adversarial pairing attempt is detected, the

devices notify the user and we provide a waiting period to re-initiate the protocol. This period

offers a trade-off between time to re-initiate the protocol for benign devices and the security

against denial of service attacks.

Second, the removed devices can no longer derive correct inter-event timings. We integrate

a periodic liveness check to detect if a device is removed and initiate IoTCupid to derive new

keys after a device fails the liveness check.

Group-to-Group Communication. Devices may need to communicate with other devices

in the same environment that they do not share a common event type. In such cases, they

can leverage intermediary devices from their groups for communication. For instance, we

consider a case where devices da, db, dc share a key, and devices db, dc, dd share a key. When

da needs to communicate with dd, it can leverage db or dc as an intermediary device for secure

communication.

Attack Resiliency. Our protocol offers resiliency to MitM attacks, offline brute-force

password enumeration, and denial of key exchange. First, the adversary can try to conduct

a MitM attack by intercepting a legitimate device’s messages and establishing keys with

other devices. Yet, as legitimate devices encrypt their public keys with passwords (5), the

adversary cannot decrypt them to join the protocol. Thus, the passwords (i.e., inter-event

timings) provide the authentication necessary to protect against MitM attacks.

Second, the adversary can enumerate all possible inter-event timings to find the password

used. However, the adversary still cannot extract the group keys due to the online ECDH

session in the partitioned GPAKE (10). Particularly, since the probability that the adversary

can guess the password is very low (e.g., 1/232), the adversary’s attack can be successful

146

only after the key agreement is completed. If an adversary recovers the password after keys

are established, the adversary can decrypt the devices’ broadcasted public keys. Yet, the

adversary cannot use them to derive the private keys or group keys due to the hardness of

the computational elliptic curve Diffie-Hellmann problem [194].

Lastly, an adversary can enter the protocol with random passwords to disrupt pairing.

Here, the legitimate devices cannot decrypt the adversary’s public keys and thus would ignore

the adversary’s keys while deriving their group keys.

5.4 Implementation

Event Detection. We implement IoTCupid’s event detection in Python 3.9.12. IoTCupid’s

event detection module uses lower and upper thresholds for sensors to detect events. Prior

pairing schemes relying on event detection for pairing assume that these thresholds are

built-in to the sensors by device manufacturers or manually configured [10]. However, in the

case that such thresholds are not available (as for the devices in our experiments), we design

an approach for threshold identification, which requires minimal sensor data without any

information about the event types.

Our approach begins by separating the ambient noise from the event signals from the

sensor data. We first extract the signal data in the interval [ts −∆tn, te + ∆tn] for all events,

where ts and te are event start and end timestamps, and consider the rest of sensor data as

noise. From the sensor signal values corresponding to an event, we consider the values between

intervals [ts, ts + ∆tv] and [te −∆tv, te] as event start and end signals. Here, we empirically

determine ∆tn and ∆tv from a specific event type’s average duration. We determine the

frequency distribution of the signal values for noise and event samples separately by assigning

them to equally sized bins. We then select the bin with the highest and lowest frequency for the

event and noise samples, respectively. We set the selected bin’s maximum and minimum values

as the upper (TU) and lower (TL) thresholds. This approach allows IoTCupid to determine

event detection thresholds for both instantly and continuously influenced sensors.

147

To determine the optimal value for the event detection window size (ws) and aggregation

threshold (ta), we perform a grid search between 1 sec to 5 mins and choose the ones that

give the highest event detection accuracy.

Context Extraction. We use the MinimalFCParameters class of tsfresh [195] package in

Python to extract common time-domain features. We extend the Scikit-Fuzzy [196] package

to implement the fuzzy C-Means clustering. To determine the optimal number of clusters

(c), we employ elbow method [33], average Silhouette coefficient [197], and gap statistic [198].

We observe the optimal number of clusters is similar using these methods and select the

elbow method. Since IoTCupid does not assume any prior information about the type of

events occurring in the environment, we need to identify the fuzziness index (m) to accurately

separate independent and concurrent events. For this, we perform a grid search to select

the optimal value for the fuzziness index (m) based on the variance in the distances between

cluster centroids and event feature vectors.

Group Key Establishment. We implement partitioned GPAKE on the FourQ elliptic

curve [199], which offers 128-bit security with fast computations. We use blake2 [200] as the

hash function and ChaCha-Poly [201] as the authenticated encryption due to their efficiency.

We leverage the portable libraries of FourQ [202], blake2 [203] and ChaCha-Poly [204] to

implement our protocol in C. We implement the communication rounds with the zeromq

library [205].

5.5 Evaluation

We perform two studies to evaluate IoTCupid in two different IoT environments, a smart

home and smart office.

In the first study, we conduct experiments with 4 sensors and 4 event sources to evaluate

IoTCupid’s effectiveness in pairing devices inside a home and its security against attacks

launched from outside the environment. In the second study, we evaluate IoTCupid on a

dataset [177 , 178] collected in an office with multiple sensors and event sources to demonstrate

IoTCupid’s practicality in different environmental conditions. Our studies show IoTCupid

effectively pairs all devices in the smart home and office via shared group keys using only

148

a
b
c

Sensors

d

Event Sources

1
2
3
4

Door

Sound

Humidity

Light Bulb

Illuminance

Coffee Machine
Radiator

Temperature

2

b

3

4

c

1
d

a

(a)

a
b
c

Sensors

d

Event Sources

1
2
3
4

Door

Sound 1

Gyroscope

Light Bulb

Sound 2

Coffee Machine
Radiator

Illuminance
a

2

b

c

d

4

1 3

5

6 7
5 Temperature
6 Humidity
6 Coffee Pow. Meter

(b)

Figure 5.6. IoT deployments in (a) a smart home and (b) office.

four equivalent inter-event timings extracted from 13 or fewer events detected by each device.

We present our IoTCupid analysis results by focusing on several research questions:

RQ1 What is the accuracy of IoTCupid in event detection?

RQ2 What is the impact of sensors’ locations on IoTCupid’s event detection accuracy?

RQ3 What is the time required to achieve sufficient entropy for our group key establishment

protocol?

RQ4 How effective is IoTCupid in establishing group keys?

RQ5 How resilient is IoTCupid against adversarial sensors?

RQ6 What is IoTCupid’s performance overhead?

RQ7 How does IoTCupid perform against other schemes?

Evaluation Setup. Figure 5.6a shows the placement of the 4 event sources and 4 sensors in

the smart home. The deployed sensor types are similar to commonly found sensors in smart

homes. The event sources include the smart home’s interior door, a ceiling light, an electric

drip coffee machine, and a portable heater. We collect sensor traces over three days during

which events are sporadically triggered by the two occupants (authors) while conducting

their daily activities (e.g., walking, cooking, cleaning, etc.). We contacted our universitys IRB

office and got advised that IRB approval is not required as we do not collect any sensitive

information.

149

Table 5.4. Events detected by sensors in IoT environments.
Events† Sound Illum. Gyroscope Temp. Humidity Pow. meter

Door-open/close 3 3 3 3 3 7

Coffee-machine-on 3 7 7 7 7 3

Light-on/off 7 3 7 7 7 7

Radiator-on/off 7 7 7 3 3 7

† The smart home includes a BMP180 temperature sensor, DHT11 humidity sensor, pho-
toresistive illuminance sensor and an iPhone XR microphone. The smart office includes
two USB microphones, a TSL2560 illuminance sensor, an ST Micro LSM9DS1 gyroscope, a
BMP280 temperature sensor and a BME680 humidity sensor. There are two microphones in
the office and they detect the same events.

For the second environment, we use 4 event sources and 7 sensors, as shown in Figure 5.6b .

The sensor data is measured over three days while four people are using the office for their

everyday work. The door, light, and coffee events are triggered during the office occupants’

routine activities, while the radiator events are triggered automatically.

We run IoTCupid on a Raspberry Pi 4 with ARM Cortex-A72 processor and 2 GB RAM.

5.5.1 Event Detection Performance

We evaluate each sensor’s performance in distinguishing the events’ physical influences

from background noise. With a higher event detection accuracy, more sensors can derive

similar inter-event timings in a shorter duration and establish group keys. Table 5.4 presents

the events detected in the two environments. For instance, door-open/close events are

detected by all devices except the power meter, and light-on/off events are detected by

the illuminance sensor.

We present the event detection accuracy for each sensor type in terms of precision and

recall. The precision represents the ratio of the number of detected events whose start times

accurately match the ground truth event start times. The recall is the ratio of the number of

correctly detected events to the number of events occurred. We only use the events’ ground

truth timestamps in the first hour of data collection from the smart office for identifying event

150

Table 5.5. Smart home event detection results.
Event Sources Sensors Precision Recall

a door-open/close

¶ Sound 1.0 1.0
· Illuminance 1.0 1.0
¸ Temperature 1.0 0.97
¹ Humidity 0.9 1.0

b light-on/off · Illuminance 1.0 1.0
c coffee-machine-on ¶ Sound 1.0 1.0

d radiator-on/off
¸ Temperature 1.0 1.0
¹ Humidity 1.0 1.0

thresholds and exclude these events from our evaluation. We use the same thresholds for event

detection in both smart home and office. IoTCupid correctly detects events with an average

precision and recall of 95.8% and 83%, and uses these detected events to extract matching

inter-event timings for group key establishment. We note that IoTCupid’s event detection

may not capture some events with very small influence on the sensor data, resulting in a

lower recall rate. Yet, the high precision detection of high impact events ensures IoTCupid

extracts a sufficient number of inter-event timings for group key establishment.

Smart Home Deployment Results. Table 5.5 presents the event detection results of

the 4 sensors in the smart home. All sensors detect events with a high precision and recall.

For instance, all sensors detect the door-open/close events with a precision and recall

greater than 0.9. Thus, these sensors can use the door events to successfully establish a group

key. Additionally, we found that the events’ influence on the sensor data is relatively large

compared to the ambient noise such as disturbances from the home occupant’s activities,

resulting in a high event detection accuracy.

Smart Office Deployment Results. Table 5.6 shows the precision and recall rate for the

7 sensors in the smart office. All sensors detect events with high precision. The recall rate

is also high for gyroscope, coffee power meter, and sound sensors for all events. Yet, the

temperature and humidity sensors yield a lower recall rate for the radiator-on/off and

door-open/close events. This low recall is attributed to the relatively small influence of these

151

Table 5.6. Smart office event detection results.
Event Sources Sensors Precision Recall

a door-open/close

¶ Sound 1 1.0 0.97
· Sound 2 0.91 0.86
¸ Illuminance 0.98 0.64
¹ Gyroscope 1.0 1.0
º Temperature 0.84 0.42
» Humidity 0.98 0.44

b light-on/off ¸ Illuminance 1.0 1.0

c coffee-machine-on
¶ Sound 1 1.0 0.71
· Sound 2 1.0 0.71
¼ Power Meter 1.0 1.0

d radiator-on/off
º Temperature 0.8 0.55
» Humidity 0.75 0.33

events on sensor measurements, compared to the ambient changes in the temperature and

humidity levels, particularly due to the uncontrolled disturbances from four office occupants’

activities. Similarly, although the illuminance sensor accurately detects light-on/off, its

recall is lower for the door-open/close events. This is because the change in illuminance

caused by some events occurring during the day is insignificant compared to the ambient

lighting in the office. Despite the low recall rate, these sensors’ high precision event detection

ensures that they can still correctly extract sufficient inter-event timings for participating in

group pairing.

Impact of Distance on Event Detection. We conduct additional experiments in the

smart home to demonstrate varying sensors’ locations impact on event detection. We vary

the devices’ distance from the event sources between 1 to 5 m. Figure 5.7 shows the precision

and recall for the detected events at different distances. IoTCupid’s threshold-based signal

detection lets most sensors detect all events correctly even when their distance from the event

source increases. We find that the influence of door events on temperature and humidity

sensors slightly deteriorates with an increased distance. This is because the short duration of

the door events results in a small change in temperature and humidity, making it difficult to

detect the events at a longer distance.

152

a a a a b c d d1 2 3 4 2 1 3 4

(a)
a a a a b c d d1 2 3 4 2 1 3 4

(b)

Figure 5.7. (a) Precision and (b) recall with varying distance between sensors
and the event sources.

1 2 3 4 5 6 7

(a)
1 2 3 4 5 6 7

(b)

Figure 5.8. (a) Precision and (b) recall with varying number of events used
for sensor calibration.

Impact of Number of Events on Sensor Calibration. We analyze how the number

of events used for sensor calibration (i.e., determining sensor thresholds and parameters)

impacts IoTCupid’s event detection accuracy. We perform this analysis on the smart office

dataset since it is collected in a noisy environment with a higher variance in the events’

influence on the sensor data. Figure 5.8 shows the precision and recall rates for the detected

events with an increasing number of events used for calibration. Both the precision and recall

increase with more event calibration data as it improves the generalization of determined

153

signal thresholds in detecting different event types. All sensors detect events with a precision

higher than 0.8. Sensors that only detect a single event type require fewer events to achieve

accurate detection. For instance, the coffee power meter and gyroscope need less than 10

events for high precision and recall.

5.5.2 Context Extraction and Key Agreement

We evaluate IoTCupid’s efficacy in context extraction and key establishment by analyzing

events’ entropy and then present the groups of securely paired sensors. IoTCupid’s fuzzy

clustering enables deriving four matching inter-event timings among six sensors when only 13

or fewer events are detected by each device.

Entropy Analysis. We analyze the events’ entropy to determine how many bits of security

each inter-event timing provides with different quantization windows (W). This window is

used in IoTCupid’s encoding to address slight deviations in inter-event timings extracted by

different devices. This analysis is required to determine the number of inter-event timings

sufficient to securely pair the devices. We found inter-event timings provide enough entropy,

even with larger windows, that can be used in IoTCupid’s key establishment.

Previous works model event arrivals as a Poisson process, and thus, inter-event timings’

probability density function follows a gamma distribution [10 , 206 , 207]. Hence, we fit a

gamma distribution on the inter-event timings to compute their entropies. Figure 5.9 shows

the cumulative distribution function (CDF) of the inter-event timings of the events sensed

by multiple devices (door events in the smart home and door and coffee events in the smart

office). From this, an adversary can uniformly sample inter-event timings from the intervals

([0, T]) that contain 95% of the timings to establish keys with legitimate devices. In this case,

the probability that the adversary successfully guesses the inter-event timing is W/T. Thus, an

inter-event timing’s bit security is log2(T/W). For instance, the coffee machine events in the

smart office provide log2(100500/30) = 11.71 bits of security when the quantization window

is W = 30 secs, and 95% of the inter-event timings fall into an interval of [0, T = 100500].

Inter-event Timings Analysis. We present the similarity of inter-event timings computed

by IoTCupid from the detected events after event clustering. Our analysis shows that sensors

154

0 1000 2000 3000 4000 5000
Smart Home Door's Inter-event Timing (s)

0

0.2

0.4

0.6

0.8

1
Pr

ob
ab

ilit
y

(C
D

F)

95%
interval

(a)

0 1 2 3 4 5 6
Smart Office Door's Inter-event Timing (s) 104

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y
(C

D
F)

95%
interval

(b)

0 0.5 1 1.5 2
Smart Office Coffee Machine's Inter-event Timing (s)

105

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y
(C

D
F)

95%
interval

(c)

Figure 5.9. CDF of inter-event timings for (a) smart home’s door events, (b)
smart office’s door, and (c) coffee events.

5 10 15 20 25
of Door Events

0

2

4

6

8

10

of

 M
at

ch
in

g
In

te
r-

ev
en

t T
im

in
gs

Fuzzy C-Means
K-Means

(a)

10 20 30 40
of Door Events

1

2

3

4

5

6

of

 M
at

ch
in

g
In

te
r-

ev
en

t T
im

in
gs

Fuzzy C-Means
K-Means

(b)

2 4 6
of Coffee Events

1

2

3

4

5

of

 M
at

ch
in

g
In

te
r-

ev
en

t T
im

in
gs

Fuzzy C-Means
K-Means

(c)

Figure 5.10. # of matching inter-event timings for (a) smart home’s door
events, (b) smart office’s door, and (c) coffee machine events with K-Means
and fuzzy C-Means clustering.

influenced by the same event types extract a sufficient number of matching inter-event timings.

We determine the number of equivalent inter-event timings from the events sensed by multiple

devices (door events in the smart home and door and coffee machine events for the smart

office) as they can derive group keys with these timings.

Figure 5.10 shows the number of matching inter-event timings extracted by each sensor

with an increasing number of events. We compute the inter-event timings for smart home

door events with a quantization window W = 8 seconds to account for the differences in sensor

sampling rates. Based on our entropy analysis, for the smart home sensors, only four matching

inter-event timings are sufficient to achieve 32-bit password security. This enables four sensors

155

influenced by door events to derive a secure group key with matching inter-event timings

from less than 10 detected events.

For the smart office events, we use a larger quantization window W = 60 seconds due to

the larger number of devices and higher ambient noise. Since the door and coffee events in

the smart office offer a higher entropy (See Figure 5.9), four similar inter-event timings are

sufficient to securely pair the devices despite the larger quantization window. The six smart

office sensors sensing the door events establish a group key with only 13 door events. Even

though the recall rate of temperature and humidity sensors for door events is relatively low,

the correctly detected events are sufficient for these devices to derive the group key. The

number of coffee events required to pair the sound sensors and the coffee power meter is even

smaller, as shown in Figure 5.10c .

Comparison of K-means with Fuzzy C-Means. Figure 5.10 shows the effect of using

K-Means instead of fuzzy clustering in distinguishing event types. K-Means takes longer

to extract the same number of matching inter-event timings for door events in the smart

office as it clusters concurrent events into separate event types. For instance, generating four

matching inter-event timings among the six sensors needs 13 detected door events with fuzzy

C-Means clustering while it takes 20 events with K-Means. The inter-event timings generated

for the door events in the home and coffee events in the office are similar for the two methods

since their timings do not overlap with the other events in the datasets.

Group-to-group Communication. IoTCupid supports group-to-group communication

where devices that do not share a key can securely communicate over a common device.

In the smart office, sensors are paired into two groups, i.e., the six sensors influenced by

the door events and the sound sensors and power meter influenced by the coffee events.

Although the power meter is not directly paired with the illuminance, temperature, humidity,

and gyroscope sensors, it can still securely communicate with these devices via the sound

sensors. With group-to-group communication, multiple devices that belong to various groups

can broker communication between devices in different groups. Thus, unlike centralized IoT

systems, IoTCupid does not rely on a single device for secure communication.

156

Table 5.7. Event detection results for malicious devices.
Event Sources Sensors Precision Recall

a door-open/close

Sound 0.0 0.0
Illuminance 0.0 0.0
Temperature 0.0 0.0
Humidity 0.0 0.0

b light-on/off Illuminance 1.0 0.2
c coffee-machine-on Sound 0.0 0.0

d radiator-on/off
Temperature 0.0 0.0
Humidity 0.0 0.0

Advanced attacker devices include a Snowball Black Ice USB microphone, a TSL2560
illuminance sensor and a BME 680 temperature and humidity sensor.

5.5.3 Security Analysis

We evaluate IoTCupid against eavesdropping attacks where an attacker tries to sense

the events from outside. We conduct experiments in the smart home by placing sound,

illuminance, temperature and humidity sensors outside the front door to simulate attacker

devices (DA). We deploy two types of DA equipped with: (a) off-the-shelf sensors with the

same capabilities as the smart home devices, and (b) advanced sensors that are more powerful

and expensive compared to the inside sensors. Our experiments show that DA can only detect

events with a precision and recall rate of 0.125 and 0.025 on average. Thus, an attacker is

unable to extract sufficient inter-event timings for pairing.

Table 5.7 demonstrates the average event detection results for the two types of DA. We

found that both the normal and advanced DA’s sound, temperature and humidity sensors

cannot correctly detect any of the events that occur inside the home; hence they cannot

participate in the pairing protocol. This is because the home walls induce a significant

distortion and attenuation in the event signals. We observe that the illuminance sensor senses

a limited light-on/off events with a precision of 1.0. The light penetrates through the

window when the light inside the home is turned on, especially at night when the outside

ambient light is too low. Yet, the recall rate of the illuminance sensor is 0.2, lower than

157

the sensors inside the home. This prevents it from extracting sufficient inter-event timings

required for pairing with inside sensors.

We note that IoTCupid, by design, offers resiliency to MitM, offline brute-force, denial of

key exchange attacks, and key extraction from removed devices. We show in Section 5.3.4

that IoTCupid’s partitioned GPAKE scheme offers provable password and group key se-

curity against a probabilistic polynomial-time adversary conducting a MitM or brute-force

attacks [190]. To launch a denial of key exchange attack, the adversary uses a malicious

device to enter the key establishment with random passwords. Yet, legitimate devices still

derive their group keys despite this attack because they discard the public keys of malicious

devices as they do not share a password. Lastly, a removed device’s keys cannot be used to

communicate with legitimate devices since the legitimate devices derive new group keys with

new inter-event timings in each key update.

5.5.4 Performance Evaluation

Event Detection and Context Extraction Overhead. We evaluate IoTCupid’s event

detection overhead by measuring the average time for processing and detecting events

in each sensor data window. IoTCupid takes, on average, 20.08 secs to pre-process and

extract event signals when the window size (ws) is 2 mins. From the extracted event signals,

IoTCupid performs feature extraction in 5.66 ms and inter-event timing extraction in 73.9

ms on average. Since the computation overhead for signal detection and feature extraction is

negligible compared to the sensor data window size, it does not impact the overall performance

of IoTCupid.

Group Key Establishment Overhead. We evaluate IoTCupid’s key establishment over-

head, the time between context extraction to deriving group keys, with an increasing number

of devices and event types. Figure 5.11 shows the computation time where we run our protocol

100 times and compute the average and standard deviation of the timings. IoTCupid can

efficiently pair a large number of devices with inter-event timings extracted from multiple

event types. For instance, with 4 event types and 20 devices, the computation overhead is

39.04± 13.78 ms (≈ 39M CPU cycles), and with 10 event types and 5 devices, the overhead is

158

0 5 10 15 20
Number of Devices

0

10

20

30

40

50

60
Ke

y
Es

ta
bl

is
hm

en
t T

im
e

(m
s)

(a)

2 4 6 8 10
Number of Events

0

5

10

15

20

25

30

Ke
y

Es
ta

bl
is

hm
en

t T
im

e
(m

s)

(b)

Figure 5.11. Key establishment time overhead with (a) varying number of
devices when number of event types is 4, (b) varying number of event types
when number of devices is 5.

20.77± 7.32 ms (≈ 20.8M CPU cycles). The overhead increases linearly with the number of

devices (See Figure 5.11a) and event types (See Figure 5.11b). This is because the communi-

cation rounds and elliptic curve scalar multiplications dominate the time overhead, and their

number increases linearly.

Memory Usage. IoTCupid requires each device to temporarily store the data received from

other devices during the group key establishment protocol’s communication rounds. This

corresponds to 96 ∗X ∗ Y Bytes, where X is the number of event types and Y is the number

of devices. For instance, when there are 100 devices that sense 10 event types, the memory

usage of each device is 93.75 KB, which is acceptable even for low-end IoT devices.

Encryption and Communication Cost. We evaluate IoTCupid’s encryption and com-

munication cost with a varying number of devices (See Section 5.5.5 for comparison with

individual keys). We run the encryption scheme for a 32-byte message 100 times. We observe

IoTCupid’s secure channels incur 0.21±0.005 ms (≈ 0.2M CPU cycles). Figure 5.12 shows that

IoTCupid’s computation overhead and communication cost are constant with an increasing

number of devices as the devices communicate with a group key.

159

0 10 20 30 40 50
Number of Devices

0

1

2

3

4

5

6

7

8
En

cr
yp

tio
n

O
ve

rh
ea

d
(m

ic
ro

se
co

nd
s) IoTCupid

Individual Keys

(a)

0 10 20 30 40 50
Number of Devices

0

200

400

600

800

1000

1200

1400

1600

C
om

m
un

ic
at

io
n

C
os

t (
By

te
s)

IoTCupid
Individual Keys

(b)

Figure 5.12. (a) Encryption and (b) communication cost with IoTCupid’s
group keys and Perceptio’s individual keys.

We also evaluate IoTCupid’s group-to-group communication cost when devices that do

not share a key securely communicate over a common device that they share a key with. This

requires one additional decryption and encryption operation, which takes 0.42± 0.007 ms.

5.5.5 Comparison with Prior Work

Among existing pairing approaches, only two works, T2Pair [12] and Perceptio [10], can

pair heterogeneous IoT devices. T2Pair requires users to swipe screens or press buttons on

devices and uses the timings of these actions as evidence for pairing. Given the need for active

user involvement, quantitatively comparing T2Pair with IoTCupid is infeasible. Therefore,

we discuss its strengths and weaknesses in comparison to IoTCupid in Section 5.7 .

Perceptio [10], similar to IoTCupid, leverages inter-event timings from various sensing

modalities as evidence of co-presence to pair devices. It detects events for only instantly

influenced sensors and leverages a fuzzy commitment scheme to establish individual keys

among devices with similar inter-event timings. Below, we quantitatively compare IoTCupid

with Perceptio.

160

Paired Devices. We compare the number of devices paired using IoTCupid and Perceptio

in our evaluation setup. Perceptio can only pair 7 out of the 11 devices (63%) in the two IoT

environments while IoTCupid pairs all of them. Perceptio can only pair instant sensors but

cannot detect events for continuously influenced sensors since it cannot capture the gradual

changes in sensor values (as described in Section 5.3.2). For instance, Perceptio cannot pair

the temperature and humidity sensors with the other devices even though they commonly

sense the door events. In contrast, IoTCupid detects the events for both instantaneously and

continuously influenced sensors and pairs all six devices in the smart office influenced by the

door events.

Pairing Time. To compare IoTCupid and Perceptio’s pairing time, we assume the time

required to extract inter-event timings is same for both systems and compare their entropy

bits required to defend against offline attacks. Since Perceptio relies on fuzzy commitment,

it requires 128-bit entropy whereas IoTCupid requires 32-bit entropy due to its resilience

to offline brute-force attacks. Thus, IoTCupid requires 4× less matching inter-event tim-

ings, resulting in 4× faster pairing compared to fuzzy commitment-based pairing protocols.

Moreover, IoTCupid extracts correct inter-event timings using a fewer number of events.

Particularly, for smart office’s door events, IoTCupid extracts four matching inter-event

timings from 13 occurred events whereas Perceptio requires 20. This translates into 54%

faster pairing with IoTCupid.

Secure Communication Cost. We compare IoTCupid’s computation and communication

cost with Perceptio’s when a device aims to broadcast a single 32-Byte message. IoTCupid

incurs a constant overhead, whereas Perceptio’s overhead linearly increases due to its pairwise

individual keys [10] (Figure 5.12). Particularly, a device needs to encrypt the message one by

one with all the individual keys and then send it to the other devices individually. For instance,

broadcasting a message to 50 devices takes on average 0.21 ms and requires transmitting 32-

Byte with IoTCupid’s group key, while it takes on average 6.73 ms and requires transmitting

1600-Byte with Perceptio’s individual keys. We note that linear overhead is inherent in any

pairing protocol that establishes pairwise individual keys. On the contrary, with IoTCupid’s

group keys, the device encrypts the message only once with the group key and broadcasts it.

161

5.6 Limitations and Discussion

Handling Mismatches in Inter-event Timings. IoTCupid requires concatenating four

inter-event timings in a password to provide enough entropy for group key establishment.

However, inter-event timings of sensors that sense the same event may not always match

(e.g., due to a sensor missing an event). This would create discrepancies in the passwords

and prevent them from establishing a key.

To address such mismatches, we initially considered integrating a private set intersection

(PSI) protocol [208] into IoTCupid for devices to determine which inter-event timings they

should use for their passwords. However, since the universal set of possible inter-event timings

is small (e.g., 28-212), an adversary can enter the PSI protocol with many inter-event timings

to learn the benign devices’ timings. Thus, we let devices enter our group key establishment

protocol with all combinations of their inter-event timings, allowing them to use the matching

ones to derive keys. We set an upper limit (np) on the number of inter-event timings the

device should extract before entering key establishment to ensure the number of combinations

does not hurt the protocol’s scalability. For instance, when np = 10, the number of devices

is 20, and the number of event types is 4, it takes, on average, ≈ 8 secs to run our key

establishment protocol.

Deployment Considerations. IoTCupid uses window-based pre-processing and sensor

thresholds for event detection and identifies the optimal parameters for clustering via statistical

methods [33]. In practice, IoTCupid’s calibration for determining these parameters can be

performed in two ways: (a) offline by device manufacturers or (b) online by IoT service

provider at the time of device installation. For the offline calibration, device manufacturers

may calibrate sensors by (1) generating commonly occurring events in IoT deployments or

(2) using publicly available smart home datasets [177 , 178 , 209 – 211] that include different

sensors’ measurements corresponding to common events.

We show in Section 5.5.1 that parameters extracted from a publicly available dataset [177]

are transferable across IoT deployments. Yet, some IoT environments may include unique

event types or may be exposed to environmental disturbances, distinct from typical IoT

environments. In such cases, the manufacturer determined parameters may require fine-tuning

162

for the specific deployment. For this, calibration can be initiated by IoT service providers by

recording timestamps of various events occurring in the IoT deployment for a given amount

of time (a few hours is sufficient, detailed in Section 5.5.1). Both of these calibration methods

do not require any information about the event types. Each device only needs the sensor data

and the timestamps at which events occurred to determine its parameters.

Resourceful Attackers. IoTCupid is resilient against normal and advanced eavesdropping

attackers (Section 5.5.3). Yet, an attacker may have access to devices with asymmetric

capabilities (e.g., x-ray vision). We do not consider such attackers as they could already

visualize and reveal users’ private activities, independent of our pairing protocol. Moreover,

an outside attacker may attempt to inject signals to the inside sensors to pair with them

or disrupt the pairing process. For this, the attacker may use electromagnetic interference

(EMI), acoustic injection, and inaudible voice attacks [212 – 214]. Yet, such attacks require a

high amplitude signal, which is difficult to achieve since outside signals experience a high

attenuation from the walls (as shown in Section 5.5.3). Besides, these attacks can be identified

by anomaly detection and prevented by shielding techniques [215 – 218].

Pairing in Large Spaces. We demonstrate in Section 5.5.1 that IoTCupid can successfully

pair devices at a distance of up to 5m. In large indoor spaces, some devices may be located far

away from event sources and may not be able to sense the same events as other devices and

establish the same group keys. However, such devices may share group keys with common

devices (e.g., a nearby device paired with far away devices) or there may exist transient devices

that have a view of different areas of the room (e.g., an illuminance sensor in a dining area

may view both the kitchen and living room) and can sense the events occurring in each. These

devices can then use the inter-event timings of the commonly observed events as evidence

and act as a bridge between the groups in two distant areas for secure communication.

Rarely/Regularly Occurring Events. Although a few frequent events (e.g., door-open)

commonly sensed by sensors are enough to establish group keys, some sensors may only detect

rarely occurring events (e.g., a laundry washer’s power meter). Such rarely occurring events

would cause longer pairing times. Devices equipped with such sensors would need additional

sensors (e.g., a microphone) that measure diverse events to timely pair with other devices.

163

Contrarily, some events may regularly occur in an IoT environment (e.g., smart home door

opening at 9 am every day) and may be predictable by attackers. However, it is extremely

difficult to predict successive timestamps of such events at a fine granularity. Thus, given that

IoTCupid’s group key establishment concatenates multiple inter-event timings of a given

event type as evidence of co-presence and event detection accuracy is very low for attacker

devices (Section 5.5.3), an attacker cannot extract evidences matching with the legitimate

devices.

Impact of Environmental Noise. We develop a signal threshold-based event detection

approach where we subtract the sensor readings’ mean value in the preceding window for

each window and compute the absolute difference before applying a smoothing filter for

noise removal (Detailed in Section 5.3.2). This allows us to accurately detect events even

with varying environmental noise. In rare cases, environmental noise’s impact might be

significantly higher than an event’s physical influence, eliminating the event’s impact on the

sensor readings. Yet, this limitation is present in all existing systems that rely on sensing

physical processes.

5.7 Related Work

Human-in-the-loop-based Pairing. Initial methods leverage mobile phone cameras and

2D barcodes to establish keys [219]. Mayrhofer et al. propose pairing the devices with a user

simultaneously shaking them [11]. Move2Auth requires users to perform hand gestures by

holding their smartphones in front of the devices and uses the variations in received signal

strength for pairing [172]. Tap2Pair pairs devices through a user synchronously tapping on

a device following the patterns displayed on the other device [173]. T2Pair needs users to

apply operations such as pressing a button and swiping a touchscreen, and uses timestamps

as a source of entropy [12]. SenCS pairs devices with mobile phones carried by users using

the entropy from their actions (e.g., walking) [220]. These schemes need human involvement

which only allows pairwise device pairing, incurring a huge manual effort from users with

an increasing number of devices. Automating these user actions would require specialized

equipment (e.g., robotic arms); thus, impractical for typical IoT environments.

164

Table 5.8. Comparison of IoTCupid with context-aware pairing schemes for IoT devices.
Pairing Scheme Sensing Modality Concurrent Group Continuous

Events Pairing Sensors
Schurmann et al. [176] Ambient sound 7 7 7
Mathur et al. [221] Wireless signal 7 7 7
Miettinen et al. [14] Ambient sound or light 7 7 7
Rostami et al. [175] Heart beat 7 7 7
FastZIP [15] Accelerometer, Gyroscope, Barometer 7 7 7
Perceptio [10] Heterogeneous sensors 7 7 7
IoTCupid Heterogeneous sensors 3 3 3

Context-aware Pairing. To address the limitations of above approaches, context-aware

pairing schemes have been proposed. Table 5.8 compares IoTCupid with several of them.

Schurrman et al. leverage audio context [176] and Miettinen et al. [14] use fingerprints

from sound and luminosity to pair sensors. Mathur et al. [221] use similarities in the temporal

variations in wireless channels between two nearby wireless devices as evidence. Rostami et

al. [175] use the entropy extracted from heart beat signals of patients to pair implantable

medical devices with their controllers. FastZIP [15] uses sensor fusion to construct fingerprints

of shared context for intra-car device pairing with a Fuzzy PAKE scheme. Yet, these schemes

do not support heterogeneous sensor modalities and therefore, their use cases are limited.

Similar to IoTCupid, Perceptio [10] uses inter-event timings from heterogeneous sensing

modalities as evidence for co-presence to pair devices. Unfortunately, it does not support

pairing continuously influenced sensors (e.g., temperature and humidity), does not support

concurrent events, and only establishes individual keys. This results in longer pairing times

to establish the keys, and linear storage, computation, and communication overhead after the

keys are established. IoTCupid addresses these limitations, providing a secure and practical

group pairing solution.

5.8 Sensor Data Pre-processing

Figure 5.13 shows an example of the temperature sensor signal before and after IoTCupid’s

pre-processing during event detection. As a result, the signal becomes smoother and amenable

for event detection.

165

4.4 4.6 4.8 5
Time (s) 104

33

33.5

34

34.5

35

35.5
T

em
pe

ra
tu

re
 (
°C

)

(a)

4.4 4.6 4.8 5
Time (s) 104

33.5

34

34.5

35

T
em

pe
ra

tu
re

 (
°C

)

(b)

Figure 5.13. Sensor data (a) before and (b) after pre-processing.

5.9 Partitioned GPAKE Security Analysis

Following [190], we provide a formal security analysis of the partitioned GPAKE protocol.

We first define two security properties, key secrecy and password-privacy. Key secrecy means

that assuming the passwords (evidences) are distributed uniformly at random and only a

constant number of passwords can be checked by the adversary on each online attack, the

probability that the adversary can derive a group key with legitimate devices is negligible.

Password-privacy ensures that an adversary that conducts an online attack cannot gain any

information on the passwords used by legitimate devices, including which devices actually

share the same password. We provide a proof sketch below, and refer to [190] for the full proof.

We note that we reduce our protocol’s security to computational elliptic curve Diffie-Hellmann

(ECDH) instead of traditional computational DH in [190], although the reductions remain

the same.

Theorem 5.9.1. Let the encryption scheme in Table 5.2 be both unforgeable and chosen

plaintext semantically-secure. Then, the protocol in Table 5.2 is a correct partitioned group

password-authenticated key exchange scheme that achieves key secrecy and password-privacy

under the elliptic curve computational Diffie-Hellman assumption in the random oracle and

ideal cipher model.

166

Proof Sketch. Correctness. In an honest execution of the partitioned GPAKE protocol where

no adversaries are involved, it is straightforward to verify that all devices that share the same

password derive the same session ids and a shared group key. This follows from the fact that

the devices that share the same password first derive session keys with each other, and then

use these session keys to broadcast a random value. The devices with the same session key

can decrypt the random values and add them to derive the group key. All the devices that

share the same password conduct these steps, and thus, they all add the same random values

shared among them, deriving a correct group key.

Key Secrecy. An adversary can target different stages of the protocol to gain information

about the group keys.

First, we consider an adversary (A) who has a valid tuple (di, dj, Xi,di , Xj,dj , xi,di ·

Xj,dj mod q) in the group key establishment protocol. Such an adversary can derive the same

group key with legitimate devices as it has a valid session key. However, we show that if such

an adversary exists, we can construct another adversary (B) that can break the computational

elliptic curve Diffie-Hellman (ECDH) assumption. Particularly, given the input of x · P and

y · P , B’s goal is to derive x · (y · P). For this, B picks two random user indices (i and j) and

a random execution number. It next sets the ith device’s Xi,di as x ·P and jth device’s Xj,dj as

y · P . B then uses A as a subroutine and returns xi,di ·Xj,dj mod q. If B guesses the random

user indices and the execution number correctly, it correctly breaks the computational ECDH

problem and derives x · (y · P). Therefore, the security of the session key of the partitioned

GPAKE protocol reduces to the hardness of the computational ECDH problem.

We next consider an adversary who guesses a password correctly. Such an adversary can

participate in the protocol and derive the same keys with legitimate devices by following an

honest execution of the protocol. However, assuming the password’s are uniformly distributed,

the probability of such an adversary existing is q
2‖pw‖ where q is the number of times the

adversary can guess a password in an online attack and pw is the bit-length of the password.

Therefore, if the password has a sufficient bit-length, the probability of such an attack is

negligible.

Lastly, we consider an adversary who modifies the messages in the broadcast stages of the

protocol such that it crafts messages that can decrypt correctly by legitimate devices to derive

167

shared keys with them. Yet, existence of such an adversary reduces to the unforgeability of

the encryption scheme used.

Password-privacy. The proof for password-privacy is very similar to the one for key secrecy.

This is because after the devices encrypt their public keys using their passwords with an

unforgeable and CCA-secure encryption scheme, the protocol messages become independent

of the passwords. Therefore, a polynomial-time adversary who has no prior knowledge about

the passwords cannot learn any information about them from the protocol under the hardness

of the computational ECDH problem and the unforgeability of the encryption scheme.

Following this proof, the security of IoTCupid relies on (1) the randomness of the

passwords, (2) the hardness of the computational elliptic curve Diffie-Hellman problem,

and (3) the security of the encryption scheme used in GPAKE. We show in our evaluation

that the inter-event timings provide enough entropy to be used as passwords. The security

of the computational ECDH problem and used symmetric encryption scheme are already

well-established.

168

6. CONCLUSIONS AND FUTURE WORK

In this thesis, I presented my studies on how mobile sensors pose privacy threats to users

and then how we can leverage these sensors to improve the security of these devices through

usable user and device authentication methods.

Chapter 2 introduced a side-channel attack through motion sensors by exploiting the

vulnerability introduced due to the introduction of embedded magnets in stylus pencils. We

presented S3, a novel system that infers what a user is writing from motion sensors’ data on

an iPad Pro using the latest version of the Apple Pencil. To track the Pencil movement, we

developed a novel multi-dimensional particle filtering algorithm using a 3D magnetic map

of the Pencil to identify the magnetic impact of different locations and orientations of the

Pencil. We evaluated S3 with 10 subjects and demonstrated that an attacker could identify

93.9%, 96%, 97.9%, and 93.33% of the letters, numbers, shapes, and words correctly by only

using the motion sensors’ data. In future work, we will expand our analysis to support more

devices that use stylus pencils with embedded magnets to find potential privacy leaks.

In chapter 3 , we present LocIn, a new location inference attack on mixed reality (MR)

devices via 3D spatial data. LocIn exploits the 3D spatial maps accessible to MR apps to

extract contextual patterns from a user’s environment and infer their location. It leverages

a multi-task learning approach to train an end-to-end encoder-decoder architecture that

integrates these contextual patterns into a classification network for predicting users’ location.

Our evaluation on spatial maps collected from three MR devices demonstrates that LocIn

can effectively infer an MR user’s location type. Future work will explore LocIn attack’s

transferability across various MR devices that leverage different depth sensors and develop

countermeasures that optimize the spatial maps’ utility and privacy.

In chapter 4 , we presented a secure liveness detection system, FaceRevelio, that uses

a single smartphone camera with no extra hardware. FaceRevelio uses the smartphone

screen to illuminate the human face from various directions via a random light passcode. The

reflections of these light patterns from the face are recorded to construct the 3D surface of

the face. This is used to detect if the authentication subject is a human or not. FaceRevelio

achieves a mean EER 1.4% and 0.15% against photo and video replaying attacks, respectively.

169

While FaceRevelio focuses on spoofing attacks via photos and videos, future work will

investigate liveness detection methods against generative spoofing attempts (e.g., adversarial

examples simulating 3D human face and its depth features) and 3D masks.

In chapter 5 , we introduced IoTCupid, a secure group pairing system for heterogeneous

devices, without requiring active user involvement. IoTCupid exploits the fact that multiple

co-located sensors sense the same events and the time between subsequent event occurrences

sensed by different sensors is similar. IoTCupid pairs both instantly and continuously influ-

enced sensors, supports distinguishing concurrent events for context extraction and establishes

group keys from inter-event timings with partitioned GPAKE. We evaluated IoTCupid on two

IoT environments, a smart home and a smart office, and showed that it can pair devices with

diverse sensing modalities with minimal overhead. IoTCupid is an important step forward in

automated and practical secure device pairing in IoT deployments. Future efforts will focus

on developing automated pairing approaches for public IoT environments with no physical

security guarantees.

6.1 Future Research Directions

6.1.1 Privacy Preserving Sensing Systems

With new computing devices emerging and frequent software updates, privacy leakages

through sensors continue to be a serious threat to users’ security and privacy. This thesis

has highlighted a few of these privacy leakages through sensors on existing mobile devices.

However, users’ awareness and understanding of sensor-based privacy threats still remain

largely unexplored. In the short term, I plan to conduct large-scale studies to gauge users’

awareness of the private data collected by sensors and their perception of the associated

threats. For example, I seek to answer questions such as do mobile users understand which of

their activities impact motion sensors and whether they think existing mobile permissions

control apps’ access to this data.

Based on the findings about users’ understanding and perception, in the long term, I

aim to develop sensing systems that leverage sensor data to enable useful applications while

maintaining users’ privacy. Existing solutions for sensor-based privacy leakages focus on

170

limiting apps’ access to sensor data or data modification techniques (e.g., noise injection)

without considering their impact on this data’s utility for useful applications. Developing

privacy and utility-preserving sensing systems requires a careful in-depth analysis of desired

applications of mobile sensor data and the design of machine learning techniques that

transform sensor data while optimizing its utility.

6.1.2 Cross-Device Security and Privacy

My prior research has focused on improving the security of interactions between mobile

and IoT devices. I plan to extend my insights on secure and usable authentication to emerging

computing platforms. For instance, traditional user authentication and pairing mechanisms

are not feasible for emerging mixed reality or intermittent computing devices due to their

unique interfaces and energy constraints. In the short term, I seek to investigate the unique

challenges introduced by these devices and address them to improve the usability and security

of authentication and communication mechanisms for AR/VR and energy-constrained devices.

While my current research has focused on individual devices or single components of

mobile systems, in the long term, I strive to evaluate the security and privacy of multi-device

systems. We now live in a world where users simultaneously interact with smartphones,

wearables, IoT devices, and even autonomous vehicles while these devices interact with each

other. This interconnectivity of various systems creates unique security and privacy challenges

that must be addressed presently. For example, without unified access control, an app on

a smartphone and smartwatch connected to a car may access a user’s location even if the

location permission is not granted on the phone and watch. I plan to leverage multi-modal

sensing and my skills in computer vision and machine learning to design context-aware privacy

solutions for multi-device systems and verify their usability for end-users.

6.1.3 Digital Safety for Diverse Populations

I also aim to expand this thesis to a broad investigation of the societal impacts of emerging

computing platforms. As access to technology is becoming widespread, understanding the

privacy needs and challenges of users with diverse social and cultural backgrounds is imperative

171

for developing privacy solutions for all. My work on understanding the impact of technology

on the security and privacy of refugees is the first step in this direction. I plan to expand my

work by investigating the security and privacy of marginalized and vulnerable populations

from a cross-culture perspective. In the future, I aim to conduct research that brings more

diverse perspectives into security and privacy scholarship. For instance, most of the existing

security research relies on the assumption that each device has a single user. This assumption

is invalid for many developing countries where an entire family may share a single device. To

this end, I will develop privacy mechanisms that are responsive to local and global constraints

and explore methods to improve privacy legislation to account for potential privacy issues

across regions and cultures.

172

REFERENCES

[1] A. K. Sikder, G. Petracca, H. Aksu, T. Jaeger, and A. S. Uluagac, “A survey on sensor-
based threats and attacks to smart devices and applications,” IEEE Communications
Surveys & Tutorials, 2021.

[2] P. Delgado-Santos, G. Stragapede, R. Tolosana, R. Guest, F. Deravi, and R. Vera-
Rodriguez, “A survey of privacy vulnerabilities of mobile device sensors,” ACM
Computing Surveys (CSUR), 2022.

[3] H. Wang, T. T.-T. Lai, and R. Roy Choudhury, “Mole: Motion leaks through smart-
watch sensors,” in Proceedings of the 21st Annual International Conference on Mobile
Computing and Networking, ACM, 2015, pp. 155–166.

[4] M. Mehrnezhad, E. Toreini, S. F. Shahandashti, and F. Hao, “Touchsignatures:
Identification of user touch actions and pins based on mobile sensor data via javascript,”
CoRR, vol. abs/1602.04115, 2016. arXiv: 1602.04115 . [Online]. Available: http://arxiv
.org/abs/1602.04115 .

[5] A. Maiti, O. Armbruster, M. Jadliwala, and J. He, “Smartwatch-based keystroke
inference attacks and context-aware protection mechanisms,” in Proceedings of the
11th ACM on Asia Conference on Computer and Communications Security, ser. ASIA
CCS ’16, Xi’an, China: ACM, 2016, pp. 795–806, isbn: 978-1-4503-4233-9. doi: 10.114
5/2897845.2897905 . [Online]. Available: http://doi.acm.org/10.1145/2897845.2897905 .

[6] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “Accessory: Password inference
using accelerometers on smartphones,” in Proceedings of the Twelfth Workshop on
Mobile Computing Systems & Applications, ACM, 2012, p. 9.

[7] R. Ning, C. Wang, C. Xin, J. Li, and H. Wu, “Deepmag: Sniffing mobile apps in
magnetic field through deep convolutional neural networks,” in 2018 IEEE Inter-
national Conference on Pervasive Computing and Communications (PerCom), Mar.
2018, pp. 1–10.

[8] N. Matyunin, Y. Wang, T. Arul, J. Szefer, and S. Katzenbeisser, “Magneticspy:
Exploiting magnetometer in mobile devices for website and application fingerprinting,”
arXiv preprint arXiv:1906.11117, 2019.

[9] D. Tang, Z. Zhou, Y. Zhang, and K. Zhang, “Face flashing: A secure liveness detection
protocol based on light reflections,” arXiv preprint arXiv:1801.01949, 2018.

173

https://arxiv.org/abs/1602.04115
http://arxiv.org/abs/1602.04115
http://arxiv.org/abs/1602.04115
https://doi.org/10.1145/2897845.2897905
https://doi.org/10.1145/2897845.2897905
http://doi.acm.org/10.1145/2897845.2897905

[10] J. Han et al., “Do you feel what i hear? enabling autonomous IoT device pairing using
different sensor types,” in IEEE Symposium on Security and Privacy (S&P), 2018.

[11] R. Mayrhofer and H. Gellersen, “Shake well before use: Intuitive and secure pairing of
mobile devices,” IEEE Transactions on Mobile Computing, 2009.

[12] X. Li, Q. Zeng, L. Luo, and T. Luo, “T2pair: Secure and usable pairing for heteroge-
neous IoT devices,” in ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2020.

[13] M. Fomichev, F. Álvarez, D. Steinmetzer, P. Gardner-Stephen, and M. Hollick, “Survey
and systematization of secure device pairing,” IEEE Communications Surveys &
Tutorials, 2017.

[14] M. Miettinen, N. Asokan, T. D. Nguyen, A.-R. Sadeghi, and M. Sobhani, “Context-
based zero-interaction pairing and key evolution for advanced personal devices,” in
ACM SIGSAC Conference on Computer and Communications Security (CCS), 2014.

[15] M. Fomichev, J. Hesse, L. Almon, T. Lippert, J. Han, and M. Hollick, “Fastzip: Faster
and more secure zero-interaction pairing,” in International Conference on Mobile
Systems, Applications, and Services, 2021.

[16] H. Farrukh, T. Yang, H. Xu, Y. Yin, H. Wang, and Z. B. Celik, “S3: Side-channel
attack on stylus pencil through sensors,” Interactive, Mobile, Wearable and Ubiquitous
Technologies (UbiComp), 2021.

[17] H. Farrukh, R. M. Aburas, A. Nare, A. Bianchi, and Z. B. Celik, “Inferring semantic
location from spatial maps in mixed reality,” in USENIX Security Symposium, 2023.

[18] H. Farrukh, R. M. Aburas, S. Cao, and H. Wang, “Facerevelio: A face liveness detection
system for smartphones with a single front camera,” in Proceedings of the International
Conference on Mobile Computing and Networking (MobiCom), 2020.

[19] H. Farrukh, M. O. Ozmen, F. K. Ors, and Z. B. Celik, “One key to rule them all:
Secure group pairing for heterogeneous iot devices,” in IEEE Symposium on Security
and Privacy (SP), 2022.

[20] “Use apple pencil to enter text in any text field.” (), [Online]. Available: https://supp
ort.apple.com/en-gb/guide/ipad/ipad355ab2a7/ipados .

174

https://support.apple.com/en-gb/guide/ipad/ipad355ab2a7/ipados
https://support.apple.com/en-gb/guide/ipad/ipad355ab2a7/ipados

[21] P. Zarchan, H. Musoff, A. I. of Aeronautics, and Astronautics, Fundamentals of Kalman
Filtering: A Practical Approach (Progress in astronautics and aeronautics). American
Institute of Aeronautics and Astronautics, Incorporated, 2000, isbn: 9781563473999.
[Online]. Available: https://books.google.com/books?id=AQxRAAAAMAAJ .

[22] E. Bostan, P. D. Tafti, and M. Unser, “A dual algorithm for L1-regularized recon-
struction of vector fields,” in IEEE International Symposium on Biomedical Imaging
(ISBI), IEEE, 2012.

[23] T. Chow, Introduction to Electromagnetic Theory: A Modern Perspective. Jones and
Bartlett Publishers, 2006, isbn: 9780763738273. [Online]. Available: https://books.goo
gle.com/books?id=dpnpMhw1zo8C .

[24] J. Hightower and G. Borriello, “Particle filters for location estimation in ubiquitous
computing: A case study,” in UbiComp 2004: Ubiquitous Computing, N. Davies, E. D.
Mynatt, and I. Siio, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 88–
106, isbn: 978-3-540-30119-6.

[25] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation vectors,”
2006.

[26] D. Fox, “Kld-sampling: Adaptive particle filters,” in Advances in neural information
processing systems, 2002, pp. 713–720.

[27] “Celestial coordinates.” (), [Online]. Available: http://spiff.rit.edu/classes/phys373/le
ctures/radec/radec.html#altaz .

[28] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on
pattern analysis and machine intelligence, vol. 22, 2000.

[29] X. X. Lu, “A review of solutions for perspective-n-point problem in camera pose
estimation,” in Journal of Physics: Conference Series, IOP Publishing, vol. 1087, 2018,
p. 052 009.

[30] J. C. Maxwell, “Viii. a dynamical theory of the electromagnetic field,” Philosophical
transactions of the Royal Society of London, no. 155, pp. 459–512, 1865.

[31] P. D. Tafti and M. Unser, “On regularized reconstruction of vector fields,” IEEE
Transactions on Image Processing, vol. 20, no. 11, pp. 3163–3178, 2011. doi: 10.1109
/TIP.2011.2159230 .

175

https://books.google.com/books?id=AQxRAAAAMAAJ
https://books.google.com/books?id=dpnpMhw1zo8C
https://books.google.com/books?id=dpnpMhw1zo8C
http://spiff.rit.edu/classes/phys373/lectures/radec/radec.html#altaz
http://spiff.rit.edu/classes/phys373/lectures/radec/radec.html#altaz
https://doi.org/10.1109/TIP.2011.2159230
https://doi.org/10.1109/TIP.2011.2159230

[32] R. Mukundan, “Quaternions: From classical mechanics to computer graphics, and
beyond,” Jan. 2002.

[33] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[34] S. Kullback and R. A. Leibler, “On information and sufficiency,” The Annals of
Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951, issn: 00034851. [Online].
Available: http://www.jstor.org/stable/2236703 .

[35] “Word frequency data.” (), [Online]. Available: https://www.wordfrequency.info/ .

[36] J. Howard and S. Ruder, Universal language model fine-tuning for text classification,
2018. arXiv: 1801.06146 [cs.CL] .

[37] G. R. Scott, “Magnetic shielding,” in Encyclopedia of Geomagnetism and Paleomag-
netism, D. Gubbins and E. Herrero-Bervera, Eds. Dordrecht: Springer Netherlands,
2007, pp. 540–542, isbn: 978-1-4020-4423-6. doi: 10.1007/978-1-4020-4423-6_183 .
[Online]. Available: https://doi.org/10.1007/978-1-4020-4423-6_183 .

[38] Y. Michalevsky, D. Boneh, and G. Nakibly, “Gyrophone: Recognizing speech from
gyroscope signals,” in 23rd USENIX Security Symposium (USENIX Security 14), 2014,
pp. 1053–1067.

[39] Z. Ba et al., “Learning-based practical smartphone eavesdropping with built-in ac-
celerometer,” in Proceedings of the Network and Distributed Systems Security (NDSS)
Symposium, 2020.

[40] A. Das, N. Borisov, and M. Caesar, “Tracking mobile web users through motion
sensors: Attacks and defenses.,” in NDSS, 2016.

[41] S. Biedermann, S. Katzenbeisser, and J. Szefer, “Hard drive side-channel attacks
using smartphone magnetic field sensors,” in International Conference on Financial
Cryptography and Data Security, Springer, 2015, pp. 489–496.

[42] K. Block and G. Noubir, “My magnetometer is telling you where i’ve been?: A mobile
device permissionless location attack,” in Proceedings of the 11th ACM Conference on
Security & Privacy in Wireless and Mobile Networks, ACM, 2018, pp. 260–270.

176

http://www.jstor.org/stable/2236703
https://www.wordfrequency.info/
https://arxiv.org/abs/1801.06146
https://doi.org/10.1007/978-1-4020-4423-6_183
https://doi.org/10.1007/978-1-4020-4423-6_183

[43] B. Perez, M. Musolesi, and G. Stringhini, “Fatal attraction: Identifying mobile devices
through electromagnetic emissions,” in Proceedings of the 12th Conference on Security
and Privacy in Wireless and Mobile Networks, ACM, 2019, pp. 163–173.

[44] H. Jiang, “Motion eavesdropper: Smartwatch-based handwriting recognition using
deep learning,” in 2019 International Conference on Multimodal Interaction, ser. ICMI
’19, Suzhou, China: Association for Computing Machinery, 2019, pp. 145–153, isbn:
9781450368605. doi: 10.1145/3340555.3353740 . [Online]. Available: https://doi.org/10
.1145/3340555.3353740 .

[45] Q. Xia, F. Hong, Y. Feng, and Z. Guo, “Motionhacker: Motion sensor based eavesdrop-
ping on handwriting via smartwatch,” in IEEE INFOCOM 2018 - IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), 2018, pp. 468–473.
doi: 10.1109/INFCOMW.2018.8406879 .

[46] K.-Y. Chen, S. N. Patel, and S. Keller, “Finexus: Tracking precise motions of multiple
fingertips using magnetic sensing,” in Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems, ACM, 2016, pp. 1504–1514.

[47] S. H. Yoon, K. Huo, and K. Ramani, “Tmotion: Embedded 3d mobile input using mag-
netic sensing technique,” in Proceedings of the TEI’16: Tenth International Conference
on Tangible, Embedded, and Embodied Interaction, ACM, 2016, pp. 21–29.

[48] Y. Liu, K. Huang, X. Song, B. Yang, and W. Gao, “Maghacker: Eavesdropping on stylus
pen writing via magnetic sensing from commodity mobile devices,” in Proceedings
of the 18th International Conference on Mobile Systems, Applications, and Services,
2020, pp. 148–160.

[49] F. Chollet et al. “Keras.” (2015), [Online]. Available: https://github.com/fchollet/ker
as .

[50] “Leave-one-out cross-validation,” in Encyclopedia of Machine Learning, C. Sammut
and G. I. Webb, Eds. Boston, MA: Springer US, 2010, pp. 600–601, isbn: 978-0-387-
30164-8. doi: 10.1007/978-0-387-30164-8_469 . [Online]. Available: https://doi.org/10
.1007/978-0-387-30164-8_469 .

[51] C. E. Hughes, C. B. Stapleton, D. E. Hughes, and E. M. Smith, “Mixed reality in
education, entertainment, and training,” IEEE computer graphics and applications,
2005.

177

https://doi.org/10.1145/3340555.3353740
https://doi.org/10.1145/3340555.3353740
https://doi.org/10.1145/3340555.3353740
https://doi.org/10.1109/INFCOMW.2018.8406879
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1007/978-0-387-30164-8_469
https://doi.org/10.1007/978-0-387-30164-8_469
https://doi.org/10.1007/978-0-387-30164-8_469

[52] J. Gerup, C. B. Soerensen, and P. Dieckmann, “Augmented reality and mixed reality
for healthcare education beyond surgery: An integrative review,” International journal
of medical education, 2020.

[53] B. John and N. Wickramasinghe, “A review of mixed reality in health care,” Delivering
Superior Health and Wellness Management with IoT and Analytics, 2020.

[54] Ikea place, https://apps.apple.com/us/app/ikea-place/id1279244498 , [Online; accessed
01-May-2023], 2023.

[55] Apple unveils new ipad pro with breakthrough lidar scanner, https://www.apple.com
/newsroom/2020/03/apple-unveils-new-ipad-pro-with-lidar-scanner-and-trackpad-sup
port-in-ipados/ , [Online; accessed 01-May-2023], 2023.

[56] Mixed reality market, https://www.fortunebusinessinsights.com/industry-reports/mix
ed-reality-market-101783 , [Online; accessed 01-May-2023], 2023.

[57] J. A. d. Guzman, K. Thilakarathna, and A. Seneviratne, “A first look into privacy
leakage in 3d mixed reality data,” in European Symposium on Research in Computer
Security, 2019.

[58] N. Wu, R. Cheng, S. Chen, and B. Han, “Preserving privacy in mobile spatial com-
puting,” in Workshop on Network and Operating Systems Support for Digital Audio
and Video, 2022.

[59] Mrtk, https://github.com/Microsoft/MixedRealityToolkit-Unity , [Online; accessed
01-May-2023], 2023.

[60] Arcore, https://developers.google.com/ar/ , [Online; accessed 01-May-2023], 2023.

[61] Arkit, https://developer.apple.com/augmented-reality/ , [Online; accessed 01-May-
2023], 2023.

[62] D. Du, L. Wang, H. Wang, K. Zhao, and G. Wu, “Translate-to-recognize networks
for rgb-d scene recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[63] L. Herranz, S. Jiang, and X. Li, “Scene recognition with cnns: Objects, scales and
dataset bias,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

178

https://apps.apple.com/us/app/ikea-place/id1279244498
https://www.apple.com/newsroom/2020/03/apple-unveils-new-ipad-pro-with-lidar-scanner-and-trackpad-support-in-ipados/
https://www.apple.com/newsroom/2020/03/apple-unveils-new-ipad-pro-with-lidar-scanner-and-trackpad-support-in-ipados/
https://www.apple.com/newsroom/2020/03/apple-unveils-new-ipad-pro-with-lidar-scanner-and-trackpad-support-in-ipados/
https://www.fortunebusinessinsights.com/industry-reports/mixed-reality-market-101783
https://www.fortunebusinessinsights.com/industry-reports/mixed-reality-market-101783
https://github.com/Microsoft/MixedRealityToolkit-Unity
https://developers.google.com/ar/
https://developer.apple.com/augmented-reality/

[64] S. Liu, G. Tian, and Y. Xu, “A novel scene classification model combining resnet
based transfer learning and data augmentation with a filter,” Neurocomputing, 2019.

[65] A. Wang, J. Cai, J. Lu, and T.-J. Cham, “Modality and component aware feature
fusion for rgb-d scene classification,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[66] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning deep features for
scene recognition using places database,” Advances in neural information processing
systems, 2014.

[67] H. Zhu, J.-B. Weibel, and S. Lu, “Discriminative multi-modal feature fusion for rgbd
indoor scene recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[68] J. A. d. Guzman, A. Seneviratne, and K. Thilakarathna, “Unravelling spatial privacy
risks of mobile mixed reality data,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 2021.

[69] C. Moenning and N. A. Dodgson, “Fast marching farthest point sampling,” University
of Cambridge, Computer Laboratory, Tech. Rep., 2003.

[70] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature
learning on point sets in a metric space,” Advances in neural information processing
systems, 2017.

[71] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner, “Scan-
net: Richly-annotated 3d reconstructions of indoor scenes,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[72] G. Baruch et al., “Arkitscenes: A diverse real-world dataset for 3d indoor scene under-
standing using mobile rgb-d data,” in Conference on Neural Information Processing
Systems, 2021.

[73] Snap ar, https://ar.snap.com/en-US/lens-studio , [Online; accessed 01-May-2023],
2023.

[74] Pokemon go, https://pokemongolive.com/en/ , [Online; accessed 01-May-2023], 2016.

179

https://ar.snap.com/en-US/lens-studio
https://pokemongolive.com/en/

[75] School vr subjects: Chemistry science resources, https://www.classvr.com/vr-ar-resou
rces/science-chemistry-vr-teaching-resources/ , [Online; accessed 01-May-2023], 2023.

[76] Holoanatomy software suite, https : //case . edu/holoanatomy/ , [Online; accessed
01-May-2023], 2023.

[77] Hololens 2 hardware, https://www.microsoft.com/en-us/hololens/hardware , [Online;
accessed 01-May-2023], 2023.

[78] S. Rokhsaritalemi, A. Sadeghi-Niaraki, and S.-M. Choi, “A review on mixed reality:
Current trends, challenges and prospects,” Applied Sciences, 2020.

[79] Spatial mapping, https://learn.microsoft.com/en-us/windows/mixed-reality/design/s
patial-mapping , [Online; accessed 01-May-2023], 2023.

[80] Verifying device support and user permission, https://developer.apple.com/docume
ntation/arkit/verifying_device_support_and_user_permission , [Online; accessed
01-May-2023], 2023.

[81] Enable arcore, https://developers.google.com/ar/develop/java/enable-arcore , [Online;
accessed 01-May-2023], 2023.

[82] J. Hu, A. Iosifescu, and R. LiKamWa, “Lenscap: Split-process framework for fine-
grained visual privacy control for augmented reality apps,” in International Conference
on Mobile Systems, Applications, and Services (MobiSys), 2021.

[83] S. Jana, A. Narayanan, and V. Shmatikov, “A scanner darkly: Protecting user privacy
from perceptual applications,” in IEEE symposium on security and privacy (S&P),
2013.

[84] N. Raval, A. Srivastava, K. Lebeck, L. Cox, and A. Machanavajjhala, “Markit: Privacy
markers for protecting visual secrets,” in ACM International joint conference on
pervasive and ubiquitous computing, 2014.

[85] R. Templeman, M. Korayem, D. J. Crandall, and A. Kapadia, “Placeavoider: Steering
first-person cameras away from sensitive spaces.,” in Networks and Distributed Systems
Security (NDSS), 2014.

180

https://www.classvr.com/vr-ar-resources/science-chemistry-vr-teaching-resources/
https://www.classvr.com/vr-ar-resources/science-chemistry-vr-teaching-resources/
https://case.edu/holoanatomy/
https://www.microsoft.com/en-us/hololens/hardware
https://learn.microsoft.com/en-us/windows/mixed-reality/design/spatial-mapping
https://learn.microsoft.com/en-us/windows/mixed-reality/design/spatial-mapping
https://developer.apple.com/documentation/arkit/verifying_device_support_and_user_permission
https://developer.apple.com/documentation/arkit/verifying_device_support_and_user_permission
https://developers.google.com/ar/develop/java/enable-arcore

[86] J. A. De Guzman, K. Thilakarathna, and A. Seneviratne, “Security and privacy
approaches in mixed reality: A literature survey,” ACM Computing Surveys (CSUR),
2019.

[87] Y. Kim, S. Boorboor, A. Rahmati, and A. Kaufman, “Design of privacy preservation
system in augmented reality,” in IEEE Symposium on Visualization for Cyber Security,
2021.

[88] N. Raval, A. Srivastava, A. Razeen, K. Lebeck, A. Machanavajjhala, and L. P. Cox,
“What you mark is what apps see,” in International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2016.

[89] S. Jana et al., “Enabling {fine-grained} permissions for augmented reality applications
with recognizers,” in USENIX Security Symposium, 2013.

[90] F. Roesner, D. Molnar, A. Moshchuk, T. Kohno, and H. J. Wang, “World-driven
access control for continuous sensing,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2014.

[91] R. A. Epstein and C. I. Baker, “Scene perception in the human brain,” Annual review
of vision science, 2019.

[92] R. Caruana, “Multitask learning,” Machine learning, 1997.

[93] C. R. Qi, O. Litany, K. He, and L. J. Guibas, “Deep hough voting for 3d object
detection in point clouds,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[94] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for
3d classification and segmentation,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[95] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic
graph cnn for learning on point clouds,” ACM Transactions On Graphics (ToG), 2019.

[96] A. M. Kibriya and E. Frank, “An empirical comparison of exact nearest neighbour
algorithms,” in European conference on principles of data mining and knowledge
discovery, 2007.

181

[97] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
in NeurIPS Deep Learning and Representation Learning Workshop, 2015.

[98] P. Mukhopadhyay and B. B. Chaudhuri, “A survey of hough transform,” Pattern
Recognition, 2015.

[99] G. Y. Lu and D. W. Wong, “An adaptive inverse-distance weighting spatial interpola-
tion technique,” Computers & geosciences, 2008.

[100] A. Paszke et al., “Pytorch: An imperative style, high-performance deep learning
library,” Advances in neural information processing systems, 2019.

[101] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” Advances in neural information processing
systems, 2015.

[102] Cross entropy loss, https://pytorch.org/docs/stable/generated/torch.nn.CrossEntrop
yLoss.html , [Online; accessed 01-May-2023], 2023.

[103] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” International
Conference on Learning Representations (ICLR), 2014.

[104] Y. Zhang, T. Scargill, A. Vaishnav, G. Premsankar, M. Di Francesco, and M. Gorlatova,
“Indepth: Real-time depth inpainting for mobile augmented reality,” Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2022.

[105] I. Chugunov, S.-H. Baek, Q. Fu, W. Heidrich, and F. Heide, “Mask-tof: Learning mi-
crolens masks for flying pixel correction in time-of-flight imaging,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2021.

[106] A. E. Johnson and M. Hebert, “Using spin images for efficient object recognition in
cluttered 3d scenes,” IEEE Transactions on pattern analysis and machine intelligence,
1999.

[107] M. A. Uy and G. H. Lee, “Pointnetvlad: Deep point cloud based retrieval for large-scale
place recognition,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[108] L. Yang et al., “{Cade}: Detecting and explaining concept drift samples for security
applications,” in USENIX Security Symposium, 2021.

182

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

[109] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and out-of-
distribution examples in neural networks,” International Conference on Learning
Representations (ICLR), 2016.

[110] F. Pittaluga, S. J. Koppal, S. B. Kang, and S. N. Sinha, “Revealing scenes by inverting
structure from motion reconstructions,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[111] R. Mohamed, H. Farrukh, Y. Lu, H. Wang, and Z. B. Celik, “Istelan: Disclosing
sensitive user information by mobile magnetometer from finger touches,” Proceedings
on Privacy Enhancing Technologies, 2023.

[112] Z. Ling, Z. Li, C. Chen, J. Luo, W. Yu, and X. Fu, “I know what you enter on gear
vr,” in IEEE Conference on Communications and Network Security (CNS), 2019.

[113] S. Luo, X. Hu, and Z. Yan, “Holologger: Keystroke inference on mixed reality head
mounted displays,” in IEEE Conference on Virtual Reality and 3D User Interfaces
(VR), 2022.

[114] Ü. Meteriz-Yldran, N. F. Yldran, A. Awad, and D. Mohaisen, “A keylogging inference
attack on air-tapping keyboards in virtual environments,” in IEEE Conference on
Virtual Reality and 3D User Interfaces (VR), 2022.

[115] A. Al Arafat, Z. Guo, and A. Awad, “Vr-spy: A side-channel attack on virtual key-
logging in vr headsets,” in IEEE Virtual Reality and 3D User Interfaces (VR), 2021.

[116] C. Shi et al., “Face-mic: Inferring live speech and speaker identity via subtle facial
dynamics captured by ar/vr motion sensors,” in International Conference on Mobile
Computing and Networking (MobiCom), 2021.

[117] A. Acar et al., “Peek-a-boo: I see your smart home activities, even encrypted!” In
Conference on Security and Privacy in Wireless and Mobile Networks, 2020.

[118] Y. Zhu et al., “Et tu alexa? when commodity wifi devices turn into adversarial motion
sensors,” in Network and Distributed Systems Security (NDSS), 2020.

[119] R. Nandakumar, A. Takakuwa, T. Kohno, and S. Gollakota, “Covertband: Activity
information leakage using music,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 2017.

183

[120] S. Kumar, S. Gil, D. Katabi, and D. Rus, “Accurate indoor localization with zero start-
up cost,” in Annual international conference on Mobile computing and networking,
2014.

[121] S. Huang, M. Usvyatsov, and K. Schindler, “Indoor scene recognition in 3d,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020.

[122] J. Lahoud, B. Ghanem, M. Pollefeys, and M. R. Oswald, “3d instance segmentation
via multi-task metric learning,” in IEEE International Conference on Computer Vision
(CVPR), 2019.

[123] Q.-H. Pham, T. Nguyen, B.-S. Hua, G. Roig, and S.-K. Yeung, “Jsis3d: Joint semantic-
instance segmentation of 3d point clouds with multi-task pointwise networks and
multi-value conditional random fields,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[124] X. Wang, S. Liu, X. Shen, C. Shen, and J. Jia, “Associatively segmenting instances
and semantics in point clouds,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[125] Y. Ming, X. Yang, G. Zhang, and A. Calway, “Cgis-net: Aggregating colour, geometry
and implicit semantic features for indoor place recognition,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2022.

[126] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fit-
ting with applications to image analysis and automated cartography,” Communications
of the ACM, 1981.

[127] “About face id advanced technology.” (), [Online]. Available: https://support.apple.co
m/en-us/HT208108 .

[128] You should probably turn off the galaxy s10s face unlock if you value basic security.
[Online]. Available: https://www.androidauthority.com/galaxy-s10-face-unlock-insecu
re-964276/ .

[129] H.-K. Jee, S.-U. Jung, and J.-H. Yoo, “Liveness detection for embedded face recognition
system,” International Journal of Biological and Medical Sciences, vol. 1, no. 4, pp. 235–
238, 2006.

184

https://support.apple.com/en-us/HT208108
https://support.apple.com/en-us/HT208108
https://www.androidauthority.com/galaxy-s10-face-unlock-insecure-964276/
https://www.androidauthority.com/galaxy-s10-face-unlock-insecure-964276/

[130] S. Chen, A. Pande, and P. Mohapatra, “Sensor-assisted facial recognition: An enhanced
biometric authentication system for smartphones,” in Proceedings of the 12th annual
international conference on Mobile systems, applications, and services, ACM, 2014,
pp. 109–122.

[131] K. Kollreider, H. Fronthaler, and J. Bigun, “Non-intrusive liveness detection by face
images,” Image and Vision Computing, vol. 27, no. 3, pp. 233–244, 2009.

[132] X. Tan, Y. Li, J. Liu, and L. Jiang, “Face liveness detection from a single image with
sparse low rank bilinear discriminative model,” in European Conference on Computer
Vision, Springer, 2010, pp. 504–517.

[133] Y. Li, Y. Li, Q. Yan, H. Kong, and R. H. Deng, “Seeing your face is not enough: An
inertial sensor-based liveness detection for face authentication,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, ACM,
2015, pp. 1558–1569.

[134] H. Hayakawa, “Photometric stereo under a light source with arbitrary motion,” JOSA
A, vol. 11, no. 11, pp. 3079–3089, 1994.

[135] Y. Quéau, J. Durou, and J. Aujol, “Variational methods for normal integration,”
CoRR, vol. abs/1709.05965, 2017. arXiv: 1709.05965 . [Online]. Available: http://arxiv
.org/abs/1709.05965 .

[136] “Understanding gamma correction.” (), [Online]. Available: https://www.cambridgein
colour.com/tutorials/gamma-correction.htm .

[137] R. J. Woodham, “Photometric method for determining surface orientation from
multiple images,” Optical engineering, vol. 19, no. 1, p. 191 139, 1980.

[138] L. N. Trefethen and D. Bau III, Numerical linear algebra. Siam, 1997, vol. 50.

[139] P. J. Burt and E. H. Adelson, “A multiresolution spline with application to image
mosaics,” ACM Transactions on Graphics (TOG), vol. 2, no. 4, pp. 217–236, 1983.

[140] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for one-shot
image recognition,” in ICML deep learning workshop, Lille, vol. 2, 2015.

185

https://arxiv.org/abs/1709.05965
http://arxiv.org/abs/1709.05965
http://arxiv.org/abs/1709.05965
https://www.cambridgeincolour.com/tutorials/gamma-correction.htm
https://www.cambridgeincolour.com/tutorials/gamma-correction.htm

[141] K. A. Dukes, “Gramschmidt process,” in Wiley StatsRef: Statistics Reference Online.
American Cancer Society, 2014, isbn: 9781118445112. doi: 10.1002/9781118445112.st
at05633 . eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat
05633 . [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/97811184
45112.stat05633 .

[142] A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication. Redwood City,
CA, USA: Addison Wesley Longman Publishing Co., Inc., 1995, isbn: 0-201-63374-4.

[143] “Face++.” (), [Online]. Available: https://www.faceplusplus.com/landmarks/ .

[144] M. K. Agoston, Computer Graphics and Geometric Modeling: Implementation and
Algorithms. Springer London, 2005, pp. 300–306.

[145] F. A. Jenkins and H. E. White, Fundamentals of optics. Tata McGraw-Hill Education,
1937.

[146] “Processing raw images in matlab.” (), [Online]. Available: https://rcsumner.net/raw
_guide/RAWguide.pdf .

[147] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time
series.,” in KDD workshop, Seattle, WA, vol. 10, 1994, pp. 359–370.

[148] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories,” IEEE
transactions on pattern analysis and machine intelligence, vol. 28, no. 4, pp. 594–611,
2006.

[149] Martn Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous
systems, Software available from tensorflow.org, 2015. [Online]. Available: https://ww
w.tensorflow.org/ .

[150] “How does face recognition work on galaxy note10, galaxy note10+, and galaxy fold?”
(), [Online]. Available: https://www.samsung.com/global/galaxy/what-is/face-recogn
ition/ .

[151] H. Chen, W. Wang, J. Zhang, and Q. Zhang, “Echoface: Acoustic sensor-based media
attack detection for face authentication,” IEEE Internet of Things Journal, 2020.

186

https://doi.org/10.1002/9781118445112.stat05633
https://doi.org/10.1002/9781118445112.stat05633
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat05633
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat05633
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat05633
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat05633
https://www.faceplusplus.com/landmarks/
https://rcsumner.net/raw_guide/RAWguide.pdf
https://rcsumner.net/raw_guide/RAWguide.pdf
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.samsung.com/global/galaxy/what-is/face-recognition/
https://www.samsung.com/global/galaxy/what-is/face-recognition/

[152] Y. Li et al., “A closer look tells more: A facial distortion based liveness detection for
face authentication,” in Proceedings of the 2019 ACM Asia Conference on Computer
and Communications Security, ser. Asia CCS 19, Auckland, New Zealand: Association
for Computing Machinery, 2019, pp. 241–246, isbn: 9781450367523. doi: 10.1145/332
1705.3329850 . [Online]. Available: https://doi.org/10.1145/3321705.3329850 .

[153] B. Zhou, J. Lohokare, R. Gao, and F. Ye, “Echoprint: Two-factor authentication using
acoustics and vision on smartphones,” in Proceedings of the 24th Annual International
Conference on Mobile Computing and Networking, ACM, 2018, pp. 321–336.

[154] Y. Chen, J. Sun, X. Jin, T. Li, R. Zhang, and Y. Zhang, “Your face your heart: Secure
mobile face authentication with photoplethysmograms,” in IEEE INFOCOM 2017 -
IEEE Conference on Computer Communications, 2017.

[155] K. Patel, H. Han, and A. K. Jain, “Secure face unlock: Spoof detection on smartphones,”
IEEE Transactions on Information Forensics and Security, vol. 11, no. 10, pp. 2268–
2283, 2016.

[156] P. Lazik and A. Rowe, “Indoor pseudo-ranging of mobile devices using ultrasonic
chirps,” in Proceedings of the 10th ACM Conference on Embedded Network Sensor
Systems, 2012, pp. 99–112.

[157] W. Kim, S. Suh, and J.-J. Han, “Face liveness detection from a single image via diffusion
speed model,” IEEE transactions on Image processing, vol. 24, no. 8, pp. 2456–2465,
2015.

[158] B. Lin, X. Li, Z. Yu, and G. Zhao, “Face liveness detection by rppg features and
contextual patch-based cnn,” in Proceedings of the 2019 3rd International Conference
on Biometric Engineering and Applications, ser. ICBEA 2019, Stockholm, Sweden:
Association for Computing Machinery, 2019, pp. 61–68, isbn: 9781450363051. doi: 10
.1145/3345336.3345345 . [Online]. Available: https://doi.org/10.1145/3345336.3345345 .

[159] H. Yu, T.-T. Ng, and Q. Sun, “Recaptured photo detection using specularity distribu-
tion,” in 2008 15th IEEE International Conference on Image Processing, IEEE, 2008,
pp. 3140–3143.

[160] K. Kollreider, H. Fronthaler, M. I. Faraj, and J. Bigun, “Real-time face detection
and motion analysis with application in liveness assessment,” IEEE Transactions on
Information Forensics and Security, vol. 2, no. 3, pp. 548–558, 2007.

187

https://doi.org/10.1145/3321705.3329850
https://doi.org/10.1145/3321705.3329850
https://doi.org/10.1145/3321705.3329850
https://doi.org/10.1145/3345336.3345345
https://doi.org/10.1145/3345336.3345345
https://doi.org/10.1145/3345336.3345345

[161] G. Pan, L. Sun, Z. Wu, and Y. Wang, “Monocular camera-based face liveness detection
by combining eyeblink and scene context,” Telecommunication Systems, vol. 47, no. 3-4,
pp. 215–225, 2011.

[162] T. I. Dhamecha, A. Nigam, R. Singh, and M. Vatsa, “Disguise detection and face
recognition in visible and thermal spectrums,” in Biometrics (ICB), 2013 International
Conference on, IEEE, 2013, pp. 1–8.

[163] A. Lagorio, M. Tistarelli, M. Cadoni, C. Fookes, and S. Sridharan, “Liveness detection
based on 3d face shape analysis.,” in IWBF, 2013, pp. 1–4.

[164] A. J. Bose and P. Aarabi, Adversarial attacks on face detectors using neural net based
constrained optimization, 2018. arXiv: 1805.12302 [cs.CV] .

[165] Q. Song, Y. Wu, and L. Yang, Attacks on state-of-the-art face recognition using
attentional adversarial attack generative network, 2018. arXiv: 1811.12026 [cs.CV] .

[166] A. Kumar, N. Saxena, G. Tsudik, and E. Uzun, “A comparative study of secure device
pairing methods,” Pervasive and Mobile Computing, 2009.

[167] I. Stellios, P. Kotzanikolaou, M. Psarakis, C. Alcaraz, and J. Lopez, “A survey of IoT-
enabled cyberattacks: Assessing attack paths to critical infrastructures and services,”
IEEE Communications Surveys & Tutorials, 2018.

[168] W. Zhou et al., “Discovering and understanding the security hazards in the interactions
between IoT devices, mobile apps, and clouds on smart home platforms,” in USENIX
Security, 2019.

[169] R. Roman, J. Zhou, and J. Lopez, “On the features and challenges of security and
privacy in distributed internet of things,” Computer Networks, 2013.

[170] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging smart home
applications,” in IEEE Symposium on Security and Privacy (S&P), 2016.

[171] Openthread, ’ https://openthread.io/ ’, [Online; accessed 30-Jul-2022], 2022.

[172] J. Zhang, Z. Wang, Z. Yang, and Q. Zhang, “Proximity based IoT device authentica-
tion,” in IEEE Conference on Computer Communications (INFOCOM), 2017.

188

https://arxiv.org/abs/1805.12302
https://arxiv.org/abs/1811.12026
https://openthread.io/

[173] T. Zhang et al., “Tap-to-pair: Associating wireless devices with synchronous tapping,”
ACM Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018.

[174] M. K. Chong, R. Mayrhofer, and H. Gellersen, “A survey of user interaction for
spontaneous device association,” ACM Computing Surveys (CSUR), 2014.

[175] M. Rostami, A. Juels, and F. Koushanfar, “Heart-to-heart (H2H) authentication
for implanted medical devices,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2013.

[176] D. Schürmann and S. Sigg, “Secure communication based on ambient audio,” in IEEE
Transactions on Mobile Computing, 2011.

[177] S. Birnbach, S. Eberz, and I. Martinovic, “Peeves: Physical event verification in smart
homes,” in ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2019.

[178] S. Birnbach, S. Eberz, and I. Martinovic, “Haunted house: Physical smart home event
verification in the presence of compromised sensors,” ACM Transactions on Internet
of Things, 2021.

[179] Z. B. Celik, G. Tan, and P. D. McDaniel, “IoTGuard: Dynamic enforcement of security
and safety policy in commodity IoT.,” in NDSS, 2019.

[180] M. O. Ozmen, X. Li, A. Chu, Z. B. Celik, B. Hoxha, and X. Zhang, “Discovering
IoT physical channel vulnerabilities,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2022.

[181] M. O. Ozmen, R. Song, H. Farrukh, and Z. B. Celik, “Evasion attacks and defenses
on smart home physical event verification,” in NDSS, 2023.

[182] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdisciplinary
Reviews: Computational Statistics, 2010.

[183] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means clustering algorithm,”
Computers & Geosciences, 1984.

[184] M. A. Khan and K. Salah, “IoT security: Review, blockchain solutions, and open
challenges,” Future Generation Computer Systems, 2018.

189

[185] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-hellman key distribution extended to
group communication,” in ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), 1996.

[186] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data,” in International Conference on the Theory and
Applications of Cryptographic Techniques, 2004.

[187] A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS), 1999.

[188] M. Abdalla, E. Bresson, O. Chevassut, and D. Pointcheval, “Password-based group
key exchange in a constant number of rounds,” in International Workshop on Public
Key Cryptography, 2006.

[189] M. Abdalla and D. Pointcheval, “A scalable password-based group key exchange
protocol in the standard model,” in International Conference on the Theory and
Application of Cryptology and Information Security, 2006.

[190] D. Fiore, M. I. G. Vasco, and C. Soriente, “Partitioned group password-based authen-
ticated key exchange,” The Computer Journal, 2017.

[191] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes for sensor
networks,” in IEEE Symposium on Security and Privacy (S&P), 2003.

[192] L. Eschenauer and V. D. Gligor, “A key-management scheme for distributed sensor
networks,” in ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2002.

[193] J. Lee and D. R. Stinson, “Deterministic key predistribution schemes for distributed
sensor networks,” in International Workshop on Selected Areas in Cryptography, 2004.

[194] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic curve cryptography.
Springer Science & Business Media, 2006.

[195] Tsfresh, https://tsfresh.readthedocs.io/en/latest/ , [Online; accessed 15-Jul-2022],
2022.

[196] Scikit-fuzzy, https://pythonhosted.org/scikit-fuzzy/ , [Online; accessed 15-Jul-2022],
2022.

190

https://tsfresh.readthedocs.io/en/latest/
https://pythonhosted.org/scikit-fuzzy/

[197] S. Aranganayagi and K. Thangavel, “Clustering categorical data using silhouette coef-
ficient as a relocating measure,” in IEEE International Conference on Computational
Intelligence and Multimedia Applications, 2007.

[198] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of clusters in a
data set via the gap statistic,” Journal of the Royal Statistical Society, 2001.

[199] C. Costello and P. Longa, “Fourq: Four-dimensional decompositions on a q-curve over
the mersenne prime,” in International Conference on the Theory and Application of
Cryptology and Information Security, 2015.

[200] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan, “Sha-3 proposal blake,”
Submission to NIST, 2008.

[201] Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF protocols,” Internet
Engineering Task Force, 2015.

[202] Fourqlib, https://github.com/microsoft/FourQlib , [Online; accessed 24-Jul-2022],
2022.

[203] Blake2, https://github.com/BLAKE2/libb2 , [Online; accessed 24-Jul-2022], 2022.

[204] Chachapoly, https://github.com/grigorig/chachapoly , [Online; accessed 24-Jul-2022],
2022.

[205] Zeromq, https://zeromq.org/ , [Online; accessed 24-Jul-2022], 2022.

[206] A. Ihler, J. Hutchins, and P. Smyth, “Adaptive event detection with time-varying pois-
son processes,” in ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2006.

[207] T. Mahmud, M. Hasan, A. Chakraborty, and A. K. Roy-Chowdhury, “A poisson
process model for activity forecasting,” in IEEE International Conference on Image
Processing (ICIP), 2016.

[208] M. Rosulek and N. Trieu, “Compact and malicious private set intersection for small
sets,” in ACM SIGSAC Conference on Computer and Communications Security (CCS),
2021.

191

https://github.com/microsoft/FourQlib
https://github.com/BLAKE2/libb2
https://github.com/grigorig/chachapoly
https://zeromq.org/

[209] H. Alemdar, H. Ertan, O. D. Incel, and C. Ersoy, “Aras human activity datasets
in multiple homes with multiple residents,” in IEEE International Conference on
Pervasive Computing Technologies for Healthcare and Workshops, 2013.

[210] D. J. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan, “Casas: A smart home
in a box,” Computer, 2012.

[211] T. Van Kasteren, A. Noulas, G. Englebienne, and B. Kröse, “Accurate activity
recognition in a home setting,” in International Conference on Ubiquitous Computing,
2008.

[212] J. Mao, S. Zhu, and J. Liu, “An inaudible voice attack to context-based device
authentication in smart IoT systems,” Journal of Systems Architecture, 2020.

[213] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, “Walnut: Waging doubt
on the integrity of mems accelerometers with acoustic injection attacks,” in IEEE
European Symposium on Security and Privacy (Euro S&P), 2017.

[214] Y. Tu, S. Rampazzi, B. Hao, A. Rodriguez, K. Fu, and X. Hei, “Trick or heat?
manipulating critical temperature-based control systems using rectification attacks,”
in ACM SIGSAC Conference on Computer and Communications Security (CCS),
2019.

[215] C. Fu, Q. Zeng, and X. Du, “Hawatcher: Semantics-aware anomaly detection for
appified smart homes,” in USENIX Security, 2021.

[216] I. Giechaskiel and K. Rasmussen, “Taxonomy and challenges of out-of-band signal
injection attacks and defenses,” IEEE Communications Surveys & Tutorials, 2019.

[217] A. K. Sikder, L. Babun, H. Aksu, and A. S. Uluagac, “Aegis: A context-aware security
framework for smart home systems,” in Annual Computer Security Applications
Conference (ACSAC), 2019.

[218] Y. Zhang and K. Rasmussen, “Detection of electromagnetic interference attacks on
sensor systems,” in IEEE Symposium on Security and Privacy (S&P), 2020.

[219] J. M. McCune, A. Perrig, and M. K. Reiter, “Seeing-is-believing: Using camera phones
for human-verifiable authentication,” in IEEE Symposium on Security and Privacy
(S&P), 2005.

192

[220] C. Li, X. Ji, B. Wang, K. Wang, and W. Xu, “Sencs: Enabling real-time indoor prox-
imity verification via contextual similarity,” ACM Transactions on Sensor Networks
(TOSN), 2021.

[221] S. Mathur, R. Miller, A. Varshavsky, W. Trappe, and N. Mandayam, “Proximate:
Proximity-based secure pairing using ambient wireless signals,” in International Con-
ference on Mobile Systems, Applications, and Services, 2011.

193

A. List of Publications

A.1 Conference Publications

C1 Habiba Farrukh, Reham Mohamed Aburas, Aniket Nare, Antonio Bianchi, and Z.

Berkay Celik, “Inferring Semantic Location from Spatial Maps in Mixed Reality”,

USENIX Security Symposium, 2023.

C2 Habiba Farrukh*, Muslum Ozgur Ozmen*, Faik Kerem Ors, and Z. Berkay Celik,

“One Key to Rule Them All: Secure Group Pairing for Heterogeneous IoT Devices”,

IEEE Security and Privacy (S&P), 2023.

C3 Reham Mohamed Aburas, Habiba Farrukh, He Wang, Yidong Lu, and Z. Berkay

Celik, “Disclosing Sensitive User Information by Mobile Magnetometer from Finger

Touches”, Privacy Enhancing Technologies (PoPETs), 2023.

C4 Muslum Ozgur Ozmen, Ruoyu Song, Habiba Farrukh, and Z. Berkay Celik

“Evasion Attacks on Smart Home Physical Event Verification and Defenses”, Network

and Distributed System Security Symposium (NDSS), 2023.

C5 Abdullah Imran, Habiba Farrukh, Muhammad Ibrahim, Z. Berkay Celik, and An-

tonio Bianchi, “SARA: Secure Android Remote Authorization”, USENIX Security

Symposium, 2022.

C6 Siddharth Divi, Yi-Shan Lin, Habiba Farrukh, and Z. Berkay Celik, “New Metrics

to Evaluate the Performance and Fairness of Personalized Federated Learning”, Inter-

national Workshop on Federated Learning for User Privacy and Data Confidentiality,

co-located with International Conference on Machine Learning (ICML), 2021.

C7 Habiba Farrukh, Tinghan Yang, Hanwen Xu, Yuxuan Yin, He Wang, and Z. Berkay

Celik, “S3: Side-channel attack on Stylus Pencils through Sensors”, Proceedings of the

ACM Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT /UbiComp),

2021.

194

C8 Habiba Farrukh, Reham Aburas, Siyuan Cao, and He Wang, “FaceRevelio: A Face

Liveness Detection System for Smartphones with a Single Front Camera”, Proceedings of

the ACM International Conference on Mobile Computing and Networking (MobiCom),

2020.

C9 Siyuan Cao, Habiba Farrukh, and He Wang, “Towards Context Address for Camera-to-

Human Communication”, IEEE International Conference on Computer Communications

(InfoCom), 2020.

C10 Siyuan Cao, Habiba Farrukh, and He Wang, “Demo: Enabling Public Cameras to

Talk to the Public”, Proceedings of the ACM International Conference on Mobile

Systems, Applications, and Services (MobiSys), 2018.

A.2 Workshop/Symposium Publications

W1 Muslum Ozgur Ozmen*, Habiba Farrukh*, Hyungsub Kim, Antonio Bianchi, and

Z. Berkay Celik, “Rethinking Secure Pairing in Drone Swarms”, ISOC Symposium on

Vehicle Security and Privacy (VehicleSec), 2023.

∗ denotes equal contribution

195

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Thesis Contributions

	SSSIDE-CHANNEL ATTACK ON STYLUS PENCIL THROUGH SENSORS
	Introduction
	Threat Model
	Pencil Tracking: A First Look
	2D Magnetic Map
	2D Tracking

	System Architecture
	System Design
	Pencil Magnetic Map Generation
	Pencil Tracking
	Stroke Detection

	Evaluation
	Data Collection and Implementation
	Performance Results

	Limitations and Discussion
	Related Work
	Details of the ML Models

	LOCIN: INFERRING SEMANTIC LOCATION FROM SPATIAL MAPS IN MIXED REALITY
	Introduction
	Background
	Problem Statement and Threat Model
	Motivation
	Problem Statement
	Threat Model
	Design Challenges

	LocIn Attack Overview
	LocIn Design
	Spatial Map Preprocessing
	Spatial Understanding Encoder
	Multi-Task Location Decoder
	3D Object Decoder
	3D Semantic Decoder
	3D Location Classifier

	Implementation
	Evaluation
	Evaluation Setup and Datasets
	Overall Effectiveness (RQ1)
	Effectiveness of Decoders (RQ2)
	Parameter Analysis
	Generalizability of LocIn (RQ5)
	Comparison with Baseline (RQ6)
	Comparison with Prior Work (RQ7)

	Limitations and Discussion
	Related Work
	Labeling ARKitScenes Dataset

	FACEREVELIO: A FACE LIVENESS DETECTION SYSTEM FOR SMARTPHONES WITH A SINGLE FRONT CAMERA
	Introduction
	Background
	FaceRevelio System Overview
	FaceRevelio Attack Model
	FaceRevelio System Design
	Light Passcode Generator
	Random Passcode Generator

	Video Preprocessing and Filtering
	Image Recovery
	Photometric Stereo and 3D Reconstruction
	Liveness Detection

	Evaluation
	Implementation and Data Collection
	Performance Results

	Related Work
	Discussion

	ONE KEY TO RULE THEM ALL: SECURE GROUP PAIRING FOR HETEROGENEOUS IOT DEVICES
	Introduction
	Problem Statement
	Design Requirements and Challenges
	Threat Model

	IoTCupid
	System Overview
	Event Detection
	Sensor Data Extraction and Pre-processing
	Event Signal Detection

	Context Extraction
	Event Clustering
	Context Evidence Generation

	Establishing Group Keys from Evidences
	Design Space Exploration
	Our Group Key Establishment Protocol

	Implementation
	Evaluation
	Event Detection Performance
	Context Extraction and Key Agreement
	Security Analysis
	Performance Evaluation
	Comparison with Prior Work

	Limitations and Discussion
	Related Work
	Sensor Data Pre-processing
	Partitioned GPAKE Security Analysis

	CONCLUSIONS AND FUTURE WORK
	Future Research Directions
	Privacy Preserving Sensing Systems
	Cross-Device Security and Privacy
	Digital Safety for Diverse Populations

	REFERENCES
	List of Publications
	Conference Publications
	Workshop/Symposium Publications

