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ABSTRACT

Convolutional Neural Networks (CNNs) are machine learning models that are commonly

used for computer vision tasks like image classification and object detection. State-of-the-art

CNNs achieve high accuracy by using many convolutional filters to extract features from the

input images for correct predictions. This high accuracy is achieved at the cost of high com-

putational intensity. Large, accurate CNNs typically require powerful Graphics Processing

Units (GPUs) to train and deploy, while attempts at creating smaller, less computationally-

intense CNNs lose accuracy. In fact, maintaining consistent accuracy is a challenge for even

the state-of-the-art CNNs. This presents a problem: the vast energy expenditure demanded

by CNN training raises concerns about environmental impact and sustainability, while the

computational intensity of CNN inference makes it challenging for low-power devices (e.g.

embedded, mobile, Internet-of-Things) to deploy the CNNs on their limited hardware. Fur-

ther, when reliable network is limited or when extremely low latency is required, the cloud

cannot be used to offload computing from the low-power device, forcing a need to research

methods to deploy CNNs on the device itself: to improve energy efficiency and mitigate

consistency and accuracy losses of CNNs.

This dissertation investigates causes of CNN accuracy inconsistency and energy consump-

tion. We further propose methods to improve both, enabling CNN deployment on low-power

devices. Our methods do not require training to avoid the high energy costs associated with

training.

To address accuracy inconsistency, we first design a new metric to properly capture such

behavior. We conduct a study of modern object detectors to find that they all exhibit in-

consistent behavior. That is, when two images are similar, an object detector can sometimes

produce completely different predictions. Malicious actors exploit this to cause CNNs to

mispredict, while image distortions caused by camera equipment and natural phenomena

can also cause mispredictions. Regardless the cause of the misprediction, we find that mod-

ern accuracy metrics do not capture this behavior, and we create a new consistency metric

to measure the behavior. Finally, we demonstrate the use of image processing techniques to

improve CNN consistency on modern object detection datasets.
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To improve CNN energy efficiency and reduce inference latency, we design the focused

convolution operation. We observe that in a given image, many pixels are often irrelevant to

the computer vision task – if the pixels are deleted, the CNN can still give the correct pre-

diction. We design a method to use a depth mapping neural network to identify which pixels

are irrelevant in modern computer vision datasets. Next, we design the focused convolution

to automatically ignore any pixels marked irrelevant outside the Area of Interest (AoI). By

replacing the standard convolutional operations in CNNs with our focused convolutions, we

find that ignoring those irrelevant pixels can save up to 45% energy and inference latency.

Finally, we improve the focused convolutions, allowing for (1) energy-efficient, auto-

mated AoI generation within the CNN itself and (2) improved memory alignment and better

utilization of parallel processing hardware. The original focused convolution required AoI

generation in advance, using a computationally-intense depth mapping method. Our AoI

generation technique automatically filters the features from the early layers of a CNN us-

ing a threshold. The threshold is determined using an Accuracy vs Latency curve search

method. The remaining layers will apply focused convolutions to the AoI to reduce energy

use. This will allow focused convolutions to be deployed within any pretrained CNN for

various observed use cases. No training is required.
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1. INTRODUCTION

Convolutional Neural Networks (CNNs) are deep learning models that are commonly used

for computer vision tasks. In recent years, CNNs have achieved high accuracy in vision

tasks like image recognition, object detection, and semantic segmentation [  1 ]–[ 3 ]. To achieve

high accuracy, modern CNNs are generally very deep and large - state-of-the-art CNNs are

comprised of billions of parameters, trained to perform hundreds of billions of mathematical

operations. The training process itself consumes tremendous amounts of energy; multi-

Graphics Processing Unit (GPU) clusters can draw thousands of Watts for days on end,

experimenting with different training recipes to find the one that achieves the best CNN

accuracy. Thus, achieving high accuracy with state-of-the-art CNNs often requires lots of

computation resources and energy to run the hardware.

Besides posing environmental energy use concerns, these demanding computation and

energy requirements make CNNs challenging to deploy on affordable, low-power devices,

e.g., mobile, Internet-of-Things (IoT), and embedded [  4 ]. These devices are constrained by

batteries, low power draw, or limited computational and memory capacity. However, it has

become increasingly desirable to deploy computer vision on such low-power devices without

requiring heavy re-training.

In many computer vision use cases, it is not possible to simply offload the heavy-duty

CNN computation to the cloud; the computation must be completed on the low-power

device. For example, driver assistance/collision avoidance systems in cars cannot afford the

unreliability or the latency of a cloud connection to determine whether to apply brakes; the

computation is executed on the car’s embedded processors. Even battery-powered mobile

phones, with high-speed cellular Internet connections, are often expected to perform on-

device computer vision due to the privacy concerns of sending personal or sensitive image data

to remote servers. Thus, it is beneficial to research methods to mitigate the computational

requirements of CNNs so that they can better accommodate low-power devices.

Improving the energy efficiency of CNNs presents a new hurdle for deployment on low-

power devices: mitigating the degradation of prediction correctness. Deployed CNNs must

behave accurately and do so consistently - it would be disastrous if a collision avoidance
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system mis-identified a pedestrian or if an automated package sorter misread a label and

routed an important, time-sensitive parcel to the wrong address. Since CNNs tend to lose

accuracy with improved energy efficiency, it thus becomes important to find methods to

accurately characterize and mitigate the losses of consistency in a CNN.

1.1 Problem Exploration

Maintaining consistent accuracy and improving energy efficiency, both without additional

training, present challenges that we intend to address with the techniques in this dissertation.

The challenges are detailed as follows:

1.1.1 Insufficiency of Accuracy As A Measure of CNN Prediction Correctness

At a high level, typical CNN accuracy metrics can be described as measures of how

correct the neural network is, on average, over a given dataset. For example, if given a

binary classifier, the CNN is either right or wrong for a given image. Accuracy denotes what

percentage of the dataset the CNN predicted correctly. Although that is useful information,

there is more to the story that is not captured by the accuracy metric: how consistently the

CNN is right or wrong, assuming the input is similar.

If a CNN is presented with two images that appear similar or indistinguishable to human

eyes, the desired behavior is for the CNN to give similar predictions for the images, even if

the two images are slightly different from each other (e.g., offset by a couple pixels, slightly

darker, etc.) However, accuracy metrics do not measure whether a CNN exhibits this desired

behavior.  Figure 1.1  shows an example of cases when slightly different images cause a CNN

to behave very differently, but the accuracy metric does not capture that undesired behavior,

remaining stable.

Finding a way to properly measure the behavior missed by accuracy metrics is important,

because as CNNs are deployed, they are often faced with images that are slightly different

from each other [ 5 ]. For example, traffic monitoring camera systems are placed outdoors

and are constantly subject to slight changes in lighting and exhaust particles in the air, all

of which introduce small differences in each picture recorded by the camera. Video cameras

19



(a) (b)

Figure 1.1. State-of-the-art object detector Mask-RCNN is inconsistent on
two images taken 0.03s apart, even though both images look alike. In (a), the
woman is missed (red dashed-line box) while the man is detected (green solid
box). In (b), the reverse is true. (All other people are detected correctly in
both images, giving an average 3/4 accuracy in both images.)

mounted on moving platforms like drones and cars will experience jostle and shake, such

that successive video frames will be slightly different from each other. In these cases, it

is important to capture how consistently the CNN behaves across such images with small

differences. We introduce our consistency metric to do this in Section  1.2.1 .

1.1.2 Resource Demands of a CNN and Limitations of a Low-Power Device

A CNN is computationally intensive, causing heavy energy expenditure during both train-

ing and inference. To achieve high accuracy, researchers use clusters of top-end NVIDIA

GPUs to train CNNs with dozens of different training recipes, with each recipe requir-

ing hundreds of epochs. During inference time, the trained CNNs can require billions of

Multiply-Accumulate (MAC) operations, straining the limited computation resources of low-

power devices.  Table 1.1  shows examples of the demands imposed by several modern image

classification and object detection CNNs.

Low-power devices have dramatically less computational capabilities than the GPUs

typically used to run CNNs. The latest top-tier NVIDIA GPUs are priced well above $1,000
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Table 1.1. Computation Demands of Popular CNNs

CNN Measure of Computational Intensity Value

VGG-16
Number of Parameters 138M
Number of MACs 15.4G
Model Size 553.4 MB

ResNet-18
Number of Parameters 11.7M
Number of MACs 1.81G
Model Size 46.7 MB

ConvNeXt-B
Number of Parameters 88.6M
Number of MACs 15.4G
Model Size 354.2 MB

Mask-RCNN
Number of Parameters 44.4M
Number of MACs 134.4G
Model Size 177.6 MB

RetinaNet
Number of Parameters 34.0M
Number of MACs 151.6G
Model Size 136.1 MB

Table 1.2. Comparison of Powerful GPUs and Low-Power Devices
Device Power Num Cores Ops/Sec Memory Price ($USD)
NVIDIA RTX 4090 450 W 16384 100 TFLOPS 24 GB $1500
NVIDIA Jetson Nano 10 W 128 472 GFLOPS 4 GB $100
Raspberry Pi 4B 5 W 4 8 GFLOPS 4GB $55
Raspberry Pi Zero 5 W 1 58 MFLOPS 512 MB $5

USD, while low-power devices like an Arm-based Raspberry Pi costs just $40. The sheer

price discrepancy means that GPUs can be equipped with tremendous amounts of computing

cores to handle the many matrix operations demanded by CNN inference, while the low-

power devices cannot.  Table 1.2  shows a comparison between low-power devices and top-end

GPUs to illustrate the discrepancy in computing capability.

To enable CNN deployment on low-power devices, we propose methods to reduce the

computation done by CNNs. Our approach removes pixels from computation if the pixels

are determined to have no impact on the output of the CNN. We emphasize the re-use of

weights and biases in a pretrained CNN, allowing our techniques to be used without costly

training. We introduce our method in Section  1.2.2 .
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1.2 Our Contributions

This dissertation develops techniques to address the challenges facing the deployment of

computer vision on low-power devices: (1) improving CNN accuracy metrics and correspond-

ing performance, and (2) improving energy efficiency while maintaining model accuracy. To

address (1), we introduce a new metric called consistency, designed to cover the shortcom-

ings of typical accuracy metrics. We investigate causes of consistency loss and propose image

processing techniques to mitigate them. To address (2), we introduce the focused convolu-

tion, a replacement of the standard CNN convolution operation, designed to ignore pixels

that do not significantly impact the outcome of the CNN. In so doing, the CNN performs

less computation and achieves better energy efficiency. We demonstrate our techniques on

popular computer vision datasets, using state-of-the-art CNNs, on different types of com-

puter hardware. Our techniques do not require training. Instead, they are designed to work

with a pretrained CNN, saving the additional energy cost of training. The methods are

summarized below.

1.2.1 Consistency Metric

Consistent accuracy can be generally summarized as follows: for the same CNN, when

inputs are similar, the output predictions should be similar. Since traditional accuracy

metrics do not capture this behavior, we design a metric to measure this behavior concretely

for object detectors: Consistency.

Our consistency metric relies on a rolling average across pairs of adjacent video frames.

Modern videos are taken at relatively high framerates (e.g. 30, 60 FPS), so adjacent frames

are similar. For a given pair of adjacent frames containing the same ground truth objects, we

compare the predictions made by the CNN in the first frame with those made in the second

frame. The more overlap between the two frames, the higher the pairwise consistency. We

then take this averaged across the entire video. We measure consistency for several modern

object detection CNNs using the MOT 2015 Challenge, a dataset of video frames taken with

stationary cameras. We discover that all object detectors exhibit inconsistency.
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Figure 1.2. Our focused convolution technique references a pregenerated
Area of Interest (AoI) to ignore irrelevant pixels during computation. The
irrelevant pixels are pixels deemed to not have an impact on the output of the
CNN, and are chosen using a MiDaS [  7 ] depth mapping neural network.

We also investigate natural image distortions (e.g., camera sensor noise, motion blur,

etc.) within MOT 2015 as probable causes of inconsistent behavior in CNNs. We confirm

that image distortion mitigation techniques (e.g., image compression, Gaussian denoise, etc.)

can improve CNN consistency when applied to the images before they are sent for inference.

These methods can all be performed on the input images themselves, without tampering

with the architecture of the CNNs or requiring training.

1.2.2 Focused Convolutions

We observe that in many images, some pixels can be considered irrelevant, i.e., they do

not significantly impact the predictions of the CNN. Existing work in CNN saliency indicates

that, like the human eyes, some pixels are important, and others are not [  6 ]. For example,

in  Figure 1.2  , the buses and ground are important; the buildings are not.

We conduct a study on popular computer vision datasets, demonstrating that many pixels

(an average of 48%) are irrelevant. We do this by using a neural network called MiDaS to

generate depth maps on the images, and then counting pixels at the same depth level (ie same

distance from the camera) as a ground truth label to be a relevant pixel. These additional

pixels around the ground truth labels are used to provide additional information to the CNN

to contextualize the pixels inside the ground truth. Other pixels are thus deemed irrelevant.

We then illustrate the energy consumption and inference latency savings possible by re-

moving the irrelevant pixels from computation during a CNN’s inference. We design the fo-
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cused convolution, a replacement operation for the standard convolution operation in CNNs.

The focused convolution uses the same weights and biases as the standard convolution, but

it specifically skips over any pixel deemed as irrelevant during computation. We replace the

convolutional layers in modern CNNs with focused convolutions, and then by deleting the

pixels deemed irrelevant from our computer vision dataset study, we demonstrate that CNNs

can save up to 45% energy in modern vision datasets, with little to no loss in accuracy.

1.2.3 Training-Free, Automatically Generated Areas of Interest with Improved
Focused Convolutions

Using MiDaS depth maps for AoI generation is computation-intensive and consumes a

lot of energy. This completely offsets any energy savings gained from the use of the focused

convolution, forcing MiDaS AoI generation to be done offline or only once in a while. This

limits the use cases of focused convolutions.

We mitigate this and other shortcomings of the focused convolution using an end-to-end,

training-free, automated technique for generating AoIs within the CNN itself. We apply a

threshold to filter the activations from the early layers of the CNN to identify pixels that

are irrelevant. The threshold is selected by briefly iterating over the training data (but not

performing training) to conduct a search along the CNN’s accuracy-versus-latency curve for

a point that satisfies accuracy and latency targets. All irrelevant pixels are ignored by later

focused convolutions in the CNN.

We also improve the focused convolution by using memory alignment to properly utilize

the parallel processing cores on the hardware at inference time. The new focused convolution

should use a single AoI mask (which can be comprised of multiple disjoint regions) across

all layers, without needing the initial forward pass previously required.

1.3 Outline

This dissertation is organized as follows: The first three chapters present different aspects

of our work, each with a contained background section that discusses relevant information

and related work. Chapter  2 introduces our consistency metric. We present a study of a
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Figure 1.3. We propose a training-free application of a threshold that can
filter the CNN feature maps via automated AoI generation. This allows the
focused convolution to be widely adopted and used with any pretrained CNN.
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major object detection dataset (MOT Challenge 2015 [  8 ]) and demonstrate that modern

CNNs are inconsistent on the dataset. We further investigate different image processing

techniques to improve the consistency of the CNNs on the data. Chapter  3 presents the

focused convolution. We conduct a study to show that many pixels are irrelevant in computer

vision datasets. We then demonstrate that when those irrelevant pixels are ignored by the

focused convolutions, pretrained CNNs see improved inference latency and energy efficiency.

Chapter  4 describes our improvements to the focused convolution: designing a self-contained

CNN that generates its own AoIs for focused convolution use. We also propose improving

the parallel compute capability of the focused convolution. Chapter  5 summarizes the work

and concludes the document. The software artifacts and source code for our techniques are

available on GitHub at https://github.com/PurdueCAM2Project/focused-convolutions.
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2. CONSISTENCY

Much of modern computer vision relies on object detectors. An object detector is a Deep

Neural Network (DNN) that takes an image as the input and then identifies the locations

and types of objects found in that image. Across scientific disciplines, object detectors are

increasingly ubiquitous. From electronic package sorting in e-commerce to collision detection

in traffic monitoring, from remote sensing in low-orbit satellites to automated MRI screening

in the fight against cancer: object detectors are driving an entire frontier of technology. With

so many critical applications, object detectors need to be consistently accurate. Modern

object detectors use different architectures (e.g., single-shot, R-CNN, etc.) and training

methods (e.g., multitask loss, neural architecture search, etc.) to achieve state-of-the-art

accuracy on popular image datasets like Microsoft COCO (Common Objects in Context)

[ 9 ].

2.1 Introduction to Consistency

Even though object detectors are carefully tested for accuracy, this dissertation observes

that consistency is also a valuable metric that receives less attention in literature. As we

discuss later, common image datasets make it challenging to test for consistency.

2.1.1 The Consistency Problem

Accuracy typically measures how often an object detector is correct on average. This

information is partially deficient because it does not capture the variation in an object

detector’s performance when input images are similar. Since accuracy is reported as an

average, there could be multiple ways an object detector achieves a given accuracy, some

of which may be less desirable. For example, in Fig.  2.1 , a state-of-the-art object detector

(Mask-RCNN [  10 ]) detects three out of four people per image. The accuracy is the same on

average (3/4), yet the detector behaves inconsistently: it misses a different person in each

image.
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(a) (b)

Figure 2.1. State-of-the-art object detector Mask-RCNN is inconsistent on
two images taken 0.03s apart, even though both images look alike. In (a), the
woman is missed (red dashed-line box) while the man is detected (green solid
box). In (b), the reverse is true. (All other people are detected correctly in
both images, giving an average 3/4 accuracy in both images.)

Inconsistent behavior becomes cause for concern in vision applications that demand strict

performance guarantees. For example, a collision prevention algorithm with 95% accuracy

that misses the same 5% of objects allows one to investigate the cause of the 5% error more

easily, because the defective behavior is consistent. However, an algorithm that behaves

inconsistently, missing different objects across each image in the test, is much harder to

troubleshoot.

This dissertation investigates object detector consistency as a method to augment ex-

isting accuracy metrics. Consistency measures the difference in predictions from an object

detector across similar images. We explore different methods to quantify consistency, ulti-

mately choosing a metric that tracks a detectors behavior on time-series images from the

MOT Challenge [ 8 ]—a dataset originally intended to benchmark object tracking. As shown

in  Figure 2.2 , we find that state-of-the-art detectors (Mask-RCNN, Faster-RCNN [ 11 ], Reti-

naNet [  12 ], SSD [ 13 ]) exhibit inconsistent behavior. In our experiments, we observe up to

an average of 17% inconsistent detections. We evaluate methods to improve consistency
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Table 2.1. Terminology used for calculating object detection accuracy.

Object detected Object not detected

Object exists True Positive
(TP)

False Negative
(FN)

Object does
not exist

False Positive
(FP)

True Negative
(TN)

and present a selection of methods (lossy image compression, gamma boosting, etc.) that

successfully raise consistency by up to 5%.

2.1.2 What Accuracy Measures

We determine accuracy by comparing the predictions of an object detector against the

ground truth in a dataset of images. Standard accuracy metrics like mean Average Precision

(mAP) usually consider two factors simultaneously: (1) how much of the ground truth the

detector successfully predicts, and (2) how many of the detectors predictions were incorrect.

To get perfect accuracy, each of the predictions an object detector makes must be correct:

it cannot blanket the image with guesses.

In computer vision, we define the mAP accuracy metric in terms of precision and recall

using true/false positives and negatives (see  Table 2.1  ). Precision and recall are defined in

 Equation 2.1  and  Equation 2.2  , respectively. mAP is calculated for a given image dataset

by integrating the area under the precision-versus-recall curve with respect to recall (  Equa-

tion 2.3  ).

precision p = TP

TP + FP
(2.1)

recall r = TP

TP + FN
(2.2)

accuracy =
∫ 1

0
p(r)dr (2.3)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.2. Different object detectors behave inconsistently on images that
look visually similar. Left images are taken 0.03s before the right. Red, dashed-
line boxes are missed detections, green solid boxes are correct detections. (a)-
(b) Mask-RCNN. (c)-(d) Faster-RCNN. (e)-(f) RetinaNet. (g)-(h) SSD.
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2.1.3 Accuracy does not measure consistency

When accuracy is not 100%, there may be more to the story (for context, the state-of-

the-art Mask-RCNN reaches 63% mAP on the COCO dataset). Accuracy does not describe

whether the detector is consistent. Consider an object detector that achieves 50% accuracy

on a set of images, where each image is slightly different but still contains the same objects.

One might hope that the detector would predict consistently as shown in  Figure 2.3 a-b.

However, it is still possible for other detector predictions ( Figure 2.3 c-d) to achieve the same

50% accuracy, albeit inconsistently.

Additionally, simply reporting fine-grained accuracy statistics does not capture consis-

tency. It is true that we can infer more information about the neural networks consistency by

reporting additional statistics like the standard deviation or variance of per-image accuracy

across a dataset of similar images. However, reporting the standard deviation still does not

reveal the  Figure 2.3  c-d case discussed above, where the detector inconsistently detects and

misses different objects in each frame even though the number of objects remains the same.

As we showed earlier in  Figure 2.2  , inconsistent behavior exists even in popular object

detectors. Thus, accuracy does not always communicate the full picture of a detectors

performance because it does not explicitly describe consistency. Inconsistency may have

severe consequences in applications that involve safety.

2.2 Related work on consistency

There is a growing number of studies to improve computer vision, but they do not focus

on consistency. These efforts can largely be grouped into two categories: (1) adversarial

attacks and (2) synthetic image distortions.

2.2.1 Adversarial attacks

Adversarial attacks present a significant challenge to neural networks. Goodfellow, et

al. [ 14 ] demonstrate that a well-trained image classifier can be tricked into misclassifying

an image by slightly perturbing the values of the pixels. In a typical adversarial attack,
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(a) (b)

(c) (d)

Figure 2.3. Accuracy does not capture consistency. For object detections
shown in similar-looking images, (a)-(b) has the same average accuracy (i.e.
1/2 correct) as (c)-(d). (a)-(b) has consistent detections (same object detected
in both images), but (c)-(d) is inconsistent (different objects detected in both
images).
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an algorithm makes minute, calculated adjustments to the pixels of a correctly predicted

image until the neural network makes an incorrect prediction. The final image, known as

the adversarial sample, appears to human eyes as very similar to the original image. Several

different adversarial samples are shown in  Figure 2.4 .

Existing methods to defend against adversarial attacks often involve some combination of

(1) including adversarial samples during network training [ 14 ], (2) transforming input images

into a lower-dimensional space before feeding the neural networks [  17 ], and (3) filtering

adversarial samples through a custom neural network before they reach the main network

[ 18 ].

2.2.2 Synthetic image distortions and data augmentation

Computer vision models can make incorrect predictions on images from natural sources

(i.e., not manipulated for adversarial attacks) [ 19 ]. Two images of the same scene can be

captured by the same camera less than a second apart, yet the predictions of a neural network

on those two visually similar images can differ dramatically. The small differences between

the two images are called image distortions, and they can be caused by a range of factors,

including ambient light level and camera sensor noise [  5 ].

To make neural networks more robust against image distortions, data augmentation

is widely used. The networks are trained on datasets that are modified, or synthetically

distorted, to emulate the natural distortions. Common synthetic image distortions (shown

in  Figure 2.5 ) include perturbing the pixels with Gaussian noise, adding artificial motion

blur, adjusting color saturation and brightness, and even adding computer-generated fog,

snow, and rain. [  19 ]

2.2.3 Quantifying image similarity

This dissertation emphasizes the importance of using similar-looking images to test for

consistency. We use consecutive frames from videos in the MOT Challenge because such

frames are taken up to 30 times per second, ensuring that adjacent frames look similar.
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(a) (b) (c) (d)

Figure 2.4. Similar-looking adversarial samples generated from an image
in the MNIST handwriting dataset. (a) Original image. Correctly classified
as 8 with 0.9 confidence. (b) Fast-Gradient Sign Method adversarial sample.
Wrongly classified as 4 with 0.9 confidence [ 14 ]. (c) Jacobian Saliency Map
Attack adversarial sample. Wrongly classified as 9 with 0.6 confidence [ 15 ].
(d) DeepFool adversarial sample. Wrongly classified as 4 with 0.83 confidence
[ 16 ].

(a) (b)

(c) (d)

Figure 2.5. Examples of synthetic image distortions. (a) Original image. (b)
Increased brightness. (c) Motion blur. (d) Artificial fog.
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Beyond the scope of this dissertation, other popular image similarity measurement meth-

ods attempt to relate two images beyond raw pixel value differences. The Structural Sim-

ilarity Index (SSIM) [  20 ] identifies structural details about the images and then compares

the details. This means that SSIM identifies a noisy version of an image as similar to the

original, even though raw pixel values are very different. Beyond SSIM, techniques such

as the Feature Similarity Index (FSIM) [  21 ] and deep-learning driven comparison extract

low-level features to better approximate the way humans compare images.

2.2.4 IoU and non-maximum suppression

IoU (Intersection-over-Union) is a common measurement in object detection, used to

determine if two bounding boxes overlap sufficiently to be counted as the same object. It is

calculated by dividing the area of two bounding boxes overlap by the area of the union of

the two boxes. If IoU = 1, then the boxes perfectly overlap. If IoU = 0, the boxes have no

overlap. In literature, an IoU threshold of 0.5 is typically used [  5 ] to decide if two bounding

boxes sufficiently overlap.

Non-maximum suppression is a common application of IoU to filter an object detectors

predictions so that only the best ones remain. It finds all overlapping predicted bounding

boxes (determined by the IoU threshold) and then filters out the ones that have the same

object class and lower confidence scores.

The discussed previous work uses only accuracy as the metrics, without explicitly measur-

ing consistency. Although some publications [ 22 ], [ 23 ] explore ways to measure the robustness

of a neural network beyond accuracy, they neither concretely define consistency nor propose

solutions. This dissertation aims to do both.

2.3 Considerations when measuring consistency

In this dissertation, we define consistency as a metric of how differently an object detector

behaves on similar images:

If images appear similar to the human eye, an object detector should consistently detect the

same objects.
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(a) (b) (c)

Figure 2.6. Consistency is only meaningful when measured across images that
look similar (a), (b) (where (b) is taken a second later and camera autofocus is
slightly blurred). Consistency is meaningless on images that look different (a),
(c). Popular datasets use images that look different, making them appropriate
for measuring accuracy, but less suited for measuring consistency.

Since accuracy does not always quantify consistency, we now discuss the considerations

needed to properly capture consistency.

2.3.1 Use Video/Time-Series Data: consistency measurements require similar
test images

A meaningful metric for consistency should use input images that are already consistent.

Consider  Figure 2.6  a, b. Those pictures appear similar to the human eye, so we would expect

consistent performance from an object detector. However, if the images are significantly

different ( Figure 2.6 a, c), it is meaningless to use them to make claims about consistency.

As Tung, et al. [ 5 ] observe, popular image datasets (e.g., ImageNet, Microsoft COCO)

are filled with visually dissimilar images. Thus, those datasets are largely unsuitable for

consistency testing. Instead, those authors recommend consecutive frames from videos as

a better source of visually similar images. Although adversarial attacks and artificial im-

age transformations can also be used to generate consistency test data from such popular

datasets, Gu, et al. [  23 ] report that such techniques do not well represent image distortions

that would occur naturally. Instead, this dissertation uses consecutive frames from video to

test consistency - this way, any inconsistencies would be caused by natural image distortions.
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2.3.2 Use MOT Ground Truth: Consistency measurements need additional
labels

When benchmarking an object detector, bounding box and class ground truth labels

are sufficient to report accuracy, but they cannot reveal all inconsistencies. In particular,

that ground truth cannot show whether the same objects were detected between two similar

images (the above  Figure 2.3  c-d problem): the ground truth is identifier-agnostic. Thus, we

need a way to check whether objects from two images are the same, so that consistency can

be measured.

We choose to use per-image object identifier (Object ID) ground truth labels to keep

track of objects during measurement. Each unique object is assigned the same Object ID

across the dataset.

2.3.3 Requirements for Consistency Test Data

In summary, object detection consistency test data has certain additional requirements

beyond that of typical accuracy test data. Testing object detection accuracy merely requires

ground truth labels. Testing consistency requires a series of images that (1) are visually

similar to each other and (2) contain the same objects (and relevant Object ID labels). This

is why we use the MOT Challenge datasets; the video datasets inside are high-framerate,

ensuring that adjacent frames will be visually similar, while the object tracking labels allow

us to identify the same object across frames.

Note: Measuring consistency can be done on adversarial attack datasets as well, since

images are similar (slight noise injected) and contain the same objects. However, because we

wish to test scenarios that occur naturally, we use MOT Challenge videos for our experiments.

2.4 Our method of measuring consistency

Based on our prior discussion of accuracy vs. consistency, we present a method that

specifically tracks whether an object detector detects the same objects, given visually similar,

time-series images. Our source of visually similar images is the Multi-Object Tracking (MOT)

Challenge [ 8 ], consisting of high-quality videos from various datasets.
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The pairwise consistency Ci,j refers to the object detector’s consistency on a pair of images

Ii and Ij. It is calculated as shown in  Equation 2.4  . If the detector is perfectly consistent,

Ci,j is 1. If it is entirely inconsistent, then Ci,j is 0. As shown in  Figure 2.7 , consistency looks

to capture whether objects were detected in one image and missed in another.

Ci,j = |Gi ∩ Gj| − |Mi,j| − |Mj,i|
|Gi ∩ Gj|

(2.4)

 Equation 2.4 is explained using the example in  Figure 2.8 .  Figure 2.8 a is image Ii, and

 Figure 2.8  b is image Ij. Gi is the set of Ii’s ground truth Object IDs {A, B, C}, and Gj is

the set of Ij’s ground truth Object IDs {D, A, B}. Mi,j, Mj,i captures the objects that were

inconsistently detected as follows: Mi,j is the set of ground truth Object IDs that satisfy

the following conditions: (1) the ground truth box is present in both images Ii, Ij (i.e. in

Gi ∩ Gj), (2) the object detector detected the object in frame Ii, and (3) the object detector

missed the object in frame Ij. So Mi,j is object B, while Mj,i is empty.

If an object is present in both images, yet is detected in only one of the images, than

consistency should decrease. Taken together, Mi,j, Mj,i captures consistency decreases in

Ii, Ij. This also implies that if both |Mi,j|, |Mj,i|=0, the detector can be said to be consistent.

Bounding boxes predicted by the object detector are eligible for consideration in Mi,j, Mj,i

calculations only after being filtered through non-maximum suppression (we use the common

IoU threshold = 0.5) and a confidence threshold of 0.7 (see sidebar: “IoU and non-maximum

suppression”).

We measure consistency across a given video V with N frames by measuring pairwise

consistency between each pair of adjacent frames in the video, and then averaging the results

across all N − 1 pairs. This is expressed in  Equation 2.5  .

CV = 1
N − 1

N−1∑
i=1

Ci,i+1 (2.5)

As shown earlier in  Figure 2.7  , consistency and accuracy can work together to supply

more information about object detection performance than either could on its own. Improv-

ing accuracy does not necessarily imply improved consistency and vice versa. Colloquially,

one might say that consistency indicates how similarly an object detector behaves on two
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.7. Consistency tracks whether an object is detected in one im-
age and missed in another similar-looking image. This complements accuracy
measurements. (a)-(b) 100% accurate (all objects correctly detected in both
images), 100% consistent (nothing was missed in one image and detected in an-
other). (c)-(d) 50% accurate (only one of two objects detected in each image),
100% consistent (nothing was missed in one image and detected in another).
(e)-(f) 50% accurate (only one of two objects detected in each image), 0% con-
sistent (any objects detected in one image was missed in the other). (g)-(h)
0% accurate (nothing detected), 100% consistent (nothing was missed in one
image and detected in another). Improving accuracy does not necessarily im-
ply improving consistency and vice versa.
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(a) (b)

Figure 2.8. Visualization of  Equation 2.4 , where (a) is Ii, (b) is Ij and the
green boxes indicate object detections. Gi ∩ Gj contains objects A and B since
they appear in both Ii, Ij. Objects C and D are not included in calculations
because they do not appear in both images. Because object B is detected in
Ii but missed in Ij, so Mi,j contains object B. No shared boxes are detected in
Ij and missed in Ii, so Mj,i = ∅. Thus, consistency Ci,j = (2 − 1 − 0)/2 = 0.5.

similar images, while accuracy indicates whether that behavior is desirable (detects every-

thing consistently) or undesirable (misses everything consistently).

Finally, note that we choose to compare bounding box object IDs instead of output feature

maps to calculate consistency. This is because comparing feature maps requires arbitrary

similarity metrics - selecting an appropriate metric is itself an open problem. Additionally,

bounding boxes are already used for accuracy measurements; re-using boxes for consistency

will make it more convenient for researchers to take consistency measurements.

2.5 Measuring the consistency of modern object detectors

We present the consistency of several state-of-the-art object detectors, showing that they

exhibit inconsistent behavior. We demonstrate using highly accurate two-stage object de-

tectors (Faster-RCNN and Mask-RCNN) as well as the faster, but less accurate, single-shot

detectors (RetinaNet and SSD). We use Facebooks official, pretrained models from their

torchvision Python package. Measurements are taken on the videos found in the MOT

Challenge.
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(a)

(b)

Figure 2.9. Object detector consistency (our method, (a)) and accuracy
(mAP, (b)) measured on the different videos in the MOT Challenge. Videos
are: AR-6: ADL-Rundle-6, AR-8: ADL-Rundle-8, E-B: ETH-Bahnhof, E-P:
ETH-Pedcross2, E-S: ETH-Sunnyday, K-13: KITTI-13, K-17: KITTI-17, P-
S: PETS09-S2L1, T-C: TUD-Campus, T-S: TUD-Stadtmitte, V-2: Venice-2.
State-of-the-art object detectors exhibit inconsistent behavior, ranging from
83.2% to 97.1% consistency. The two-stage models are both more consistent
(a) and more accurate (b) than their single-shot counterparts.
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As shown in  Figure 2.9  , all object detectors exhibit some inconsistent behavior, ranging

from 83.2% to 97.1% consistency (CV as calculated in  Equation 2.5  ). We also see that the

two-stage models are more accurate and more consistent.

2.6 Our work to improve consistency

Object detector inconsistency is caused by the detector missing an object. As described in

Related Work, missed detections can be caused by adversarial attacks and image distortions.

Because the MOT Challenge is not an adversarial dataset, we expect the inconsistencies

to be caused by image distortions naturally present in the dataset. Therefore, we apply

different image distortion corrections from literature to compare their efficacies at improving

consistency.

Common training techniques such as data augmentation and dropout are known to im-

prove a model’s robustness to image transformations and distortions. Despite these tech-

niques being employed to produce our pretrained models, we find that inconsistencies still

persist. To improve consistency, we use post-training image distortion corrections because

of their accessibility. However, emerging training methods appear promising for improving

consistency. Zhang et al. propose weakly-supervised, context-based techniques [  24 ], [ 25 ]

that gather context for the scene (e.g., optical flow and prior knowledge) to provide addi-

tional information to an object detector - this information could stabilize the detector and

improve consistency over time-series data from videos. Other techniques project neural net-

work features into low-dimensional representations during training [  17 ] - this could improve

consistency on images of similar objects taken from different angles, lighting, etc.

1) Gaussian Denoise (GD). Random sensor noise and shot noise can decrease detection

performance. As demonstrated by Kang et al. [  26 ], we apply a normalized Gaussian filter

to all images in the dataset in an attempt to reduce the noise.

2) Horizontal Flip (HF). Zhang, et al. [  22 ] note that the slight translation of an object in

an image could cause a previously misdetected object to become correctly detected. Further,

Yin, et al. [ 27 ] observe that horizontally flipping an image can mitigate the detrimental

effects of noise on a neural network. Thus, we horizontally flip all images.
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3) WEBP Compression (WC). Compressing an image using the lossy JPEG format is

already known to defeat adversarial attacks [  19 ]. Yin, et al. [  27 ] find that because WEBP

compression introduced loop filtering, it is even better suited to breaking down the structures

in an image that result from synthetic image distortions. Thus, we apply WEBP compression

to the dataset images using a compression quality factor of 30 (Yin, et al. find that lower

quality factors allow neural networks to perform better).

4) Unsharp Mask (UM). Tung, et al. [  5 ] explain that if an object is moving, the motion

blur can make it harder for a network to extract features along the objects edges. The

Unsharp Mask is a linear image processing technique commonly used to remove blur. The

technique first identifies a set of blurry details by subtracting a further-blurred image from

the original. The details are then emphasized in the original image. We apply the Unsharp

Mask to the dataset to reduce the blur on object edges.

5) Gamma Correction (GC). Yeu, et al. [  28 ] show that artificially increasing an images

contrast and perceived brightness can help object detectors like Faster-RCNN perform better,

particularly when the detectors are trained on daytime images. Gamma Correction is a

common brighten/contrast technique that is driven by the Power Law expression; we use it

on the dataset as well.
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Table 2.2. Avg. Consistency Improvements

Faster-
RCNN

Mask-
RCNN RetinaNet SSD

GD 0% -0.3% 0% -0.6%
HF -5.3% -5.4% -7.3% -10.1%
WC 0.6% 0.5% 0.7% 0.4%
UM 3.6% 2.6% 3.0% 1.1%
WC+UM 5.1% 3.0% 3.2% 1.3%
GC 0.1% 0.1% 0.4% 0.1%

Table 2.3. Avg. Accuracy Improvements

Faster-
RCNN

Mask-
RCNN RetinaNet SSD

GD 2.1% 2.4% -0.6% -1.1%
HF -19.3% -19.4% -25.5% -28.4%
WC 1.5% 1.8% 0.5% 0.5%
UM 2.0% 3.2% 8.3% 3.6%
WC+UM 3.2% 4.1% 8.6% 3.9%
GC 0.1% -0.5% -0.7% -0.1%
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 Table 2.2  shows the average improvement across the MOT Challenge in terms of consis-

tency percentage points (i.e. a table entry of Y% means that it raises consistency from X%

to X+Y%), when the different distortion corrections are applied. Similarly,  Table 2.3  shows

the accuracy improvement.

We see that both WEBP Compression (WC) and Unsharp Mask (UM) improve both

consistency and accuracy for all object detectors. Applying both effects at the same time

(WC+UM) gives a further overall improvement. In fact, the example inconsistencies in

 Figure 2.1 and  2.2 are resolved using WC+UM. Gaussian Denoise (GD) and Horizontal

Flip (HF) both degrade consistency and accuracy (likely because applying these effects on

relatively un-noisy images degrades the feature structure of the images [  21 ]).

Finally, we note that improvements in consistency do not always equate to improvements

in accuracy. Gamma Correction (GC) improves consistency, but degrades accuracy: in other

words, the detector is consistently worse on the GC data, as described earlier in  Figure 2.7  .

2.7 Dissertation Contributions on Consistency

Object detectors are vital to many modern computer vision applications. However, even

state-of-the-art object detectors exhibit inconsistent behavior when the input undergoes

small changes. This inconsistent behavior is not fully captured by existing measurement

tools; accuracy metrics and popular image datasets cannot measure whether the same objects

are detected consistently. We devise a consistency measurement method that uses images

from videos and object ID labels. Our method compliments accuracy measurement. Using

this method, we show that object detectors have consistency ranging from 83.2% up to 97.1%,

depending on the input data. Additionally, applying image distortion corrections like WEBP

Compression and Unsharp Masking can improve consistency by as much as 5.1%. There is

still room for improvement by the community. We only explore post-training methods to raise

consistency. Any future exploration should explore training-aware consistency improvements

and further investigate the relationship between accuracy and consistency.
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3. FOCUSED CONVOLUTIONS

Computer vision is often performed using Convolutional Neural Networks (CNNs). CNNs are

compute-intensive and challenging to deploy on power-contrained systems such as mobile and

Internet-of-Things (IoT) devices. CNNs are compute-intensive because they indiscriminately

compute many features on all pixels of the input image. We observe that, given a computer

vision task, images often contain pixels that are irrelevant to the task. For example, if the

task is looking for cars, pixels in the sky are not very useful. Therefore, we propose that a

CNN be modified to only operate on relevant pixels to save computation and energy. We

propose a method to study three popular computer vision datasets, finding that 48% of pixels

are irrelevant. We also propose the focused convolution to modify a CNN’s convolutional

layers to reject the pixels that are marked irrelevant. On an embedded device, we observe

no loss in accuracy, while inference latency, energy consumption, and multiply-accumulate

count are all reduced by about 45%.

3.1 Introduction to Focused Convolutions

Convolutional Neural Networks (CNNs) are known for their high accuracy at many com-

puter vision tasks. However, this accuracy comes at a cost: CNNs are compute-intensive.

ResNet, a popular computer vision CNN for performing the relatively simple task of image

classification, needs to compute nearly 30 million parameters across all the pixels in the in-

put image [ 29 ]. This high compute requirement is typically satisfied by running the CNN on

powerful Graphics Processing Units (GPUs) or other hardware accelerators. However, low-

power systems (i.e., Internet-of-Things (IoT), mobile, and embedded devices) often impose

power and memory constraints that make it challenging to deploy CNNs on them [ 29 ].

To lessen the computation of a CNN on low-power systems, many methods opt to reduce

the sheer magnitude of CNN parameters. These include pruning [ 30 ] and quantization [ 31 ]

to cut away redundant parameters or reduce precision, and further include knowledge distil-

lation [ 32 ] and neural architecture search [ 33 ] to train small CNNs with fewer parameters.
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These methods all improve efficiency by changing the computer vision model itself; we

instead propose changing the input to the model. CNNs operate indiscriminately on every

single pixel in the input; therefore, if we reduce the input, we reduce the computation.

In this dissertation, we propose that input images have many pixels that can be deleted,

and that by doing so, a CNN would save energy. We confirm this idea by creating methods

to (1) identify that three different popular computer vision datasets all contain many such

pixels and (2) demonstrate the energy and inference speed improvements possible by using

our focused convolution to delete those pixels.

An irrelevant pixel ( Figure 3.1  ) (formally defined in  section 3.3  ) is one that is not useful

for the computer vision task (e.g., a building’s pixels are not useful when looking for cars).

We use depth maps to convert ground truth labels into irrelevant pixel maps, showing that

in the Microsoft Common Objects in Context (COCO, 164,000+ images) [ 9 ], Multi-Object

Tracking Challenge (MOT Challenge, 5,500 images) [ 8 ], and PASCAL VOC [  34 ] (17,900+

images) datasets, roughly 48% of pixels are irrelevant.

Given the irrelevant pixels, we further experiment to find that explicitly excluding those

pixels during inference significantly reduces a CNN’s compute expenses, saving energy and

speeding inference. Our proposed focused convolution technique modifies a CNN such that

the model itself can exclude pixels marked as irrelevant while still using the same parameters

and General Matrix-Multiplication convolutional technique. Similarly inspired work includes

Uber’s SBNet and its variations; SBNet does convolution in ResNet-sized blocks and tries

to fit the blocks into the relevant pixels [ 35 ], [ 36 ]. Those other methods still require the

model to be changed and re-trained, while ours does not require training. Replacing normal

convolution with the focused convolution on the three datasets reduces multiply-accumulate

operations, energy consumption, and inference latency by about 45% in two popular CNNs.

This dissertation’s contributions: (1) use depth maps to find how many pixels are irrele-

vant in three popular computer vision datasets, and (2) demonstrate that CNNs can save on

inference latency and energy consumption by excluding irrelevant pixels from computation

and only performing operations on relevant ones, via our focused convolution.
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(a) (b)

Figure 3.1. Example of irrelevant pixels in a PASCAL VOC dataset image, deter-
mined using our depth mapping technique. (a) The shuttle buses are highlighted in
red. (b) Our method shows that a significant number of pixels (black) are irrelevant,
providing little utility, even though CNNs waste computation on them. Note that
pixels deemed relevant (white) using this technique can include additional pixels in
the vicinity of the shuttle buses as “contextually related”, i.e. they degrade the final
predictions of a neural network if they are removed.
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3.2 Related Work to Focused Convolutions

This section describes the efforts creating energy-efficient CNNs and prior work about

focused convolutions.

3.2.1 Novelty of Our Contributions

We present a novel design to modify any CNN to generate AoIs at inference time, using

its existing training, so that the convolutional layers can use focused convolutions on the AoI.

We design a new focused convolution to use a single AoI across all layers, without needing

the initial forward pass previously required. As shown in  Table 3.1 , our approach exhibits

notable improvements over existing work; mainly, we do not require additional training and

do not lose accuracy. We test our work using a custom C kernel on different devices, on

different datasets (including both image classification and object detection), for different

CNNs. Detailed comparison with related work is presented below.

3.2.2 Techniques for Energy-Efficient CNNs

CNNs have high energy demands because of their computational intensity [ 3 ] to encode

the necessary information for the model to make accurate predictions. Efforts to improve

CNN efficiency is typically focused on: (1) reducing the model size (allowing it to fit more

effectively into processor caches), (2) reducing the number of operations (reducing the load

on the processor) with as little loss to accuracy as possible. We divide existing work into two

categories: (1) require training once the method is applied, and (2) do not require training

if the method is applied to a pretrained network.

Hardware improvements generally also improve CNN performance. For example, hard-

ware accelerators built into CPUs can increase floating-point operation parallelization [  37 ].

Eight-bit Floating Point (FP8) is an upcoming hardware standard for representing floating-

point numbers with eight bits, instead of the typical 16-, 32-, or 64-bit implementations

found in the IEEE Standard [ 38 ]. Processors that support FP8 will allow new models to be

trained from the ground up or quantized after training using 8-bit floating point numbers and
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Table 3.1. Comparison of proposed method with existing work

Existing Work Benefits of our Approach
Accelerators [ 37 ], FP8 [  38 ] Does not use special hardware
Quantization [ 39 ], pruning [  3 ],
knowledge distillation [  3 ]

No re-training required,
no loss of accuracy

Neural Architecture Search [  40 ] No expensive architecture
search required

Hierarchical Neural Networks [ 41 ]
Compatible with all CV tasks
without re-architecting
the CNN

Throttlable Neural Networks [  42 ] No re-training required,
no loss of accuracy

Restructurable Activation
Networks [  43 ]

No re-training required, no
redesign of CNN architecture

NN-Mass [  44 ] Quicker search method, no
redesign of CNN architecture

Post-Training Quantization [  39 ] No loss of accuracy
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Figure 3.2. Area of Interest (AoI) contains the Relevant pixels for a CNN
to make a correct detection on the original image; other pixels are deemed
Irrelevant and should be excluded from computation. As illustrated, we [  45 ]
generate AoIs using a depth-mapping neural network. This is computation-
ally intensive. Alternative AoI generation methods such as spectral residual
saliency [ 46 ] and background subtraction [  6 ] are also computationally inten-
sive.

scaling factors. However, this dissertation focuses on software-side improvements, discussed

below.

3.2.3 Methods that Require Training

Many methods attempt to improve existing CNN architectures before training so that

they can be more energy-efficient without incurring steep accuracy degradation. Quantiza-

tion reduces the size of an existing CNN by reducing a CNN’s precision (e.g. storing numbers

as 8-bit integers instead of 32-bit floats) [ 39 ]. “Quantization-Aware Training” is often used

to mitigate accuracy losses that accompany the precision drop [  39 ]. Pruning reduces both

computation and model sizes by deleting channels/features or neurons that are not activat-

ing often (i.e. are not very useful during inference); the smaller model can then be retrained

to tune the accuracy [  3 ]. Knowledge Distillation uses a large, trained model to “teach” a

smaller, more efficient model for deployment [  3 ].

Other approaches build entirely new, energy-efficient CNN architectures. Neural Archi-

tecture Search treats a search space of CNN architecture hyperparameters (e.g. number of

convolutional filters, number of layers, etc.) as differentiable, using a training process to

optimize a CNN’s design for energy efficiency (EfficientNet is an example) [ 40 ]. Hierarchical

Neural Networks are trained to use small neural networks configured in a tree, instead of a

large, monolithic DNN. The root nodes eliminate parts of the search space, and the later
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neural network nodes in the tree refine the final prediction [  41 ]. Throttlable Neural Networks

are trained incrementally such that they can make predictions using only a subset of their

convolutional filters, making increasingly accurate predictions the more filters are enabled

at inference time. To run a lightweight, less accurate model, more features could be turned

off [  42 ]. Restructurable Activation Networks use a parameterized ReLU activation function

to collapse entire sections of a CNN into a single lightweight, linear operation [ 43 ].

3.2.4 Training-Free Methods

Although the above methods have generated such designs as the lightweight, yet accurate

EfficientNet – the methods all require training. Training consumes large amounts of energy

and resources, sometimes at prohibitively high rates. For instance, EfficientNet uses a cluster

of top-end GPUs to perform Neural Architecture Search, and the final architecture further

required parameter tuning and 300 epochs of training time [  40 ]. Therefore, some emerging

techniques (including the focused convolution) are designed to improve upon an existing

model, without additional training.

NN-Mass can predict the learning capacity and training behavior of a neural network

without training, thus enabling the optimization of the model architecture for specific hard-

ware constraints [  44 ]. Post-Training Quantization can be beneficial in certain contexts as

well. Typical static quantization only quantizes the activations at inference time, but dy-

namic post-training quantization pre-quantizes the weights in advance. This is useful when

the model’s latency is dominated by loading weights from memory. Static quantization fuses

and quantizes the activations in advance, but this requires calibration with a dataset [ 39 ].

3.3 Irrelevant Pixels in Datasets

We propose a method to study datasets for irrelevant pixels. We find that irrelevant

pixels are commonly found in the COCO, PASCAL VOC, and MOTChallenge datasets.
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(a) (b)

Figure 3.3. Ground truth pixels alone (a) are not always a sufficient amount of
relevant pixels for a CNN to make good predictions (red box is inaccurate, misses
second bus); contextual pixels at similar depth levels are also needed (b) for CNN
accuracy (two good detections).

3.3.1 Counting Irrelevant Pixels with Depth Maps

Our study defines a dataset’s relevant pixels as: all pixels that comprise the dataset ground

truth objects and their associated depth levels. In  Figure 3.1  a, the ground truth pixels are

represented by the red area around the shuttle buses. The final pixelwise map of relevant

pixels, shown in  Figure 3.1  b, is generated using depth level thresholding (explained below)

and includes additional pixels.

Ground truth pixels alone do not represent all relevant pixels. A typical CNN uses not

only the pixels comprising the object ( Figure 3.3 a), but also the pixels from the surrounding

area of an object ( Figure 3.3  b) to extract features that contextualize and understand the

object [  47 ]. To properly include these contextual pixels, our method uses depth maps. Shown

in  Figure 3.4 a, an image’s depth map represents each pixel in the image with one value,

referred to as the pixel’s depth level, denoting how far away from the camera that pixel is.

Pixels that have similar depth levels to a given object on the ground are known to provide

useful, contextual pixels that surround the object [  48 ]. For example, a car will be at a similar

depth level as its context: the road on which it drives. Therefore, by thresholding the depth

level appropriately, we can capture all the relevant pixels: both the contextual pixels and

their associated objects.
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For each of our test datasets, we generate depth maps with “MiDaS,” a depth estimation

model by Ranftl, et al. [  49 ] MiDaS is chosen from among other monocular depth estimation

techniques because it is uniquely trained using a diverse mix of 11 datasets totaling nearly

3,000,000 images, instead of training on only one dataset at a time like other depth estimation

models.

Our method thresholds the depth map to create a binary, pixelwise mask of relevant

and irrelevant pixels, such that the relevant pixel region encapsulates the ground truth (see

 Figure 3.4 ). Camera focal lengths tend to cause pictures to be taken at mid-range depth

levels [ 47 ], so we apply a threshold to an image’s MiDaS depth map exactly at the mid-range

of its distribution, filtering out pixels at short-range and long-range depth levels. The filtered

pixels are considered irrelevant and the remaining pixels are considered relevant. We then

record the number of irrelevant VS relevant pixels for each dataset, using this technique.

Simple subset testing on the ground truth indicates that this technique works well – it

does not miss much ground truth. Specifically, we check if the relevant pixels resulting from

the mask include all pixels inside the ground truth bounding boxes. Occasionally (roughly

5% of the time on our largest dataset, COCO), the threshold causes ground truth to be

filtered out (i.e. rejects relevant pixels). When this occurs, we increase the threshold until

the ground truth is fully captured (this would not be possible during test time, but is useful

for our experiments). Therefore, we can guarantee that the masks used to test our focused

convolutions contain 100% of the ground truth objects in all our datasets.

3.3.2 Exploring Datasets for Irrelevant Pixels

In our study, we use our depth map method to count irrelevant pixels in each image in the

three datasets, totaling nearly 200,000 images. Results are shown in  Figure 3.5  . Irrelevant

pixels are quite common in the three datasets. On average, 42% of all pixels are irrelevant

in PASCAL VOC, 49% are irrelevant in MOT Challenge, and 45% are irrelevant in COCO.

This suggests that CNNs are wasting significant amounts of compute resources on embedded

devices by computing convolutions on all those irrelevant pixels.
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(a)

(b)

Figure 3.4. This is how to count the number of irrelevant pixels in datasets:
First, use MiDaS to generate the image’s depth map (a). Next, threshold
the depth map, producing a small Relevant Pixels region (b). Verify against
ground truth to ensure all important data is captured.
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Figure 3.5. Average percentage of pixels that are relevant. Less than 1%
of images contain 10-30% or 90-100% useful pixels and are not shown on the
graph. As shown, most images contain 50%-60% relevant (40-50% irrelevant
pixels). This means that in most images, 40-50% of pixels do not contribute
to useful CNN computations and, therefore, can be excluded from processing.
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3.4 Excluding Irrelevant Pixels in Datasets

To demonstrate that being able to exclude irrelevant pixels can reduce computer vision

energy consumption and inference latency, we propose the focused convolution technique.

In typical CNN computer vision models, the 2D-convolutional layer is responsible for up

to 80% of the computations performed by the neural network [  29 ]. Standard convolution

layers are not designed to exclude irrelevant pixels. Instead, they operate on all the input

pixels, wasting computation on irrelevant pixels. Because CNNs have multiple convolutional

layers in succession, this waste is repeated across multiple layers, compounding the negative

impact on the model’s energy use and speed. The focused convolution reduces this waste by

excluding any pixels marked irrelevant by some assumed oracle - in this case, our relevant

VS irrelevant pixelwise masks generated in  subsection 3.3.2 .

3.4.1 Using Focused Convolutions to Exclude Irrelevant Pixels

Our focused convolution improves the popular General Matrix Multiplication (GEMM)

technique [ 50 ] for convolutions on computer hardware. The GEMM technique reduces a

sequential, sliding-window 2D-convolution to a parallelized, matrix-multiplication opera-

tion; matrix multiplications are heavily optimized on modern computers [  50 ]. GEMM (  Fig-

ure 3.6a  ) uses a procedure called im2col to convert patches of the 3D input tensor (e.g.,

an RGB image) into the columns of a 2D matrix, and then multiplies the matrix by the

convolutional weights to retrieve the results of convolution.

The focused convolution enables the im2col procedure to accommodate a pixelwise mask

(such as those generated in  subsection 3.3.2 ) indicating whether a pixel is relevant or not.

If a patch of pixels is labeled irrelevant, then the modified im2col will not convert the patch

into a column of the matrix. Thus, those irrelevant pixels get excluded entirely by the matrix

multiplication, as shown in  Figure 3.6b .

Because the focused convolution is simply designed to accommodate the pixelwise masks

as inputs, it does not need to change the model itself. It can be used in any pretrained CNN,

requiring no additional training. It can replace existing convolution layers without changing
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the weights and biases. If no pixelwise mask is supplied, the focused convolution behaves

identically to a standard convolution.

For a given image and convolutional layer, we can count the number of operations needed

to complete a GEMM convolution’s matrix multiplication. Assume the input has dimensions

BI × CI × HI × WI (batch, channels, height, width), and the convolutional weights are of

dimensions SW × SW (side length, side length) with stride s and no padding. A normal

im2col would convert each channel of the input to HI−SW

s
WI−SW

s
columns of SW SW pixels.

That amounts to multiplying the weights with a SW SW ×CI
(HI−SW )

s
WI−SW

s
matrix, BI times.

That is a total of BI
CI(HI−SW )

s
WI−SW

s
SW SW multiply/add operations.

If we convert the GEMM convolution to a focused convolution, we save matrix multi-

plication operations by excluding columns of irrelevant pixels. As we discovered in  subsec-

tion 3.3.2  , an average of 48% of pixels are irrelevant in popular datasets. If the region of

relevant pixels is a rectangle that takes up p% of the pixels, then the focused convolution

would produce only p%HI−SW

s
WI−SW

s
columns, resulting in a 100 − p% reduction in opera-

tions. Therefore, the focused convolution’s energy and latency improvements is a function

of the linear relationship between number of irrelevant pixels and image size.

We simplify a notable portion of the focused convolution source code, shown below,

illustrating how the focused convolution modifies the GEMM process to remove irrelevant

patches from outside the AoI during convolution. This results in a matrix multiplication

with smaller matrixes.

3.4.2 Evaluating the Compute Savings of Focused Convolutions

We implement and test the focused convolution using PyTorch on a Raspberry Pi 3

(average power 5 W). We compare the focused convolution with a normal PyTorch GEMM

convolution. Excluding pixels is beneficial on more powerful hardware, too - we compare the

focused convolution with an Intel MKL-optimized convolution [ 51 ] on a Intel Core i7 CPU

(average power 28 W). For input images, we use the MOT Challenge, COCO, and PASCAL

VOC. We exclude the pixels deemed irrelevant by our method from  subsection 3.3.1  .
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Listing 3.1. Focused Convolution forward pass.
# Simplified code showing how a Focused Convolution layer works
# Detailed source on GitHub:
# https://github.com/PurdueCAM2Project/focused-convolutions

def FocusedConvolutionForwardPass(aoi_mask_tensor, x, k):
"""

aoi_mask_tensor: AoI mask
x: input tensor
k: convolutional kernel, original weights
k_unfolded: convolutional kernel, GEMM-unfolded using im2row

"""

# GEMM unfold procedure using im2row
# size: 1 X patch length X number of patches
aoi_patches = gemm_unfold(aoi_mask_tensor, k.shape)

# size: number of patches
patch_idxes_to_keep = aoi_patches.sum(dim=1).squeeze(0) > 0

# size: batchsize X patch length X number of patches
in_patches = gemm_unfold(x, k.shape)

# size: batchsize X patch length X number of patches selected
selected_in_patches = in_patches[:, :, patch_idxes_to_keep]

# This matrix multiplication only uses the patches inside
# the AoI to multiply with the weight matrix
selected_out_mat = matrixmultiply(k_unfolded, selected_in_patches)

# Completes the GEMM process, reshaping the matrix
# to a 3D output tensor
return gemm_fold(selected_out_mat)

59



Table 3.2. By excluding irrelevant pixels from popular datasets (MOTChal-
lenge, COCO, PASCAL VOC), CNNs equipped with our focused convolutions
outperform those without (Normal). On an Intel CPU, MKL-optimized
convolutions are comparable in performance to focused convolutions.

RPi: Raspberry Pi 3, Intel: Intel Core i7 CPU, ED: EfficientDet, SL: SSD-Lite,
MKL: using Intel MKL optimized convolution.

MOT2015 COCO PASCAL VOC
ED SL ED SL ED SL

Number of Mult-Add Operations (M/inference)
Normal 384.5 483.6 384.5 483.6 384.5 483.6

Focused 196.1 246.8 211.4 266.0 223.0 280.4
Inference Latency (s/inference)

RPi
(5W)

Normal 2.10 2.26 2.00 2.33 2.06 2.29
Focused 1.11 1.30 1.33 1.51 1.47 1.56

Intel
(28W)

Normal 0.25 0.28 0.25 0.29 0.25 0.28
MKL 0.18 0.19 0.18 0.20 0.18 0.20
Focused 0.17 0.18 0.18 0.20 0.19 0.20

Energy Consumption (J/inference)
RPi

(5W)
Normal 10.22 11.80 10.15 11.81 10.20 10.90
Focused 5.60 6.11 6.71 7.50 7.44 7.80

Intel
(28W)

Normal 6.61 7.39 6.45 7.42 6.69 7.81
MKL 5.18 5.09 5.09 5.61 5.23 5.60
Focused 4.76 5.04 5.10 5.60 5.29 5.62
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Our tests comprise of two popular computer vision CNNs designed for use on low-power

devices: EfficientDet [  52 ] and SSD-Lite [ 53 ]. We use PyTorch’s pretrained weights, and we

replace each CNN’s convolutional layer with a focused convolutional layer. The pixelwise, bi-

nary Relevant-VS-Irrelevant masks we generated in  subsection 3.3.2  are propagated through

the CNN by scaling the mask’s size for each layer.

 Table 3.2 summarizes the observed energy consumption/inference latency improvements

from the focused convolutions. As shown, we see that equipping a CNN with focused con-

volution allows it to dramatically reduce its computation expense by excluding irrelevant

pixels on images from popular datasets. On Intel CPU, the MKL optimizations allow a

fullsize, “wasteful” convolution to operate comparably to the focused convolution, but such

optimizations are unavailable on low-power devices, so the focused convolution is preferable.

Finally, the focused convolution-equipped CNN’s detection accuracy remains identical to

the original CNN. This is reasonable, because we use the same convolutional weights in both

the focused convolutions and the normal convolutions, and all ground truth is contained in

the relevant pixel masks.

3.5 Dissertation Contributions on Focused Convolutions

We observe that in computer vision, CNNs are compute-heavy because they waste time

looking at pixels that are irrelevant. We propose a thresholded depth mapping technique

to study modern computer vision datasets for irrelevant pixels. We find that an average of

42%, 49%, and 45% of pixels per image are irrelevant, for three popular datasets (PASCAL

VOC, MOT Challenge, and COCO, respectively). We further propose that we can signifi-

cantly reduce a convolutional layer’s multiply-accumulate operations, energy consumption,

and inference latency with our focused convolution: this modifies the layer’s standard GEMM

operations to ignore pixels marked as relevant. Ignoring the irrelevant pixels we computed on

the three datasets, we find that multiply-accumulate operations are reduced by an average of

48.3%, energy consumption by 42.7%, and inference latency by 47.4% for two popular object

detection CNNs on an embedded device. This dissertation assumes that including all pixels

at the same depth level as ground truth gives a complete count of relevant pixels. This may
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not be true when a camera’s focus is extended (e.g. wide, scenic shots). Still, our technique

is demonstrably sufficient for three major datasets. We also assume the focused convolu-

tion’s pixelwise mask-generating oracle negligibly impacts computational expense. This is

reasonable because even computation-intensive oracles can generate reusable masks for fixed

cameras (e.g., surveillance) or be offloaded to another device to send masks periodically.
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(a)

(b)

Figure 3.6. (a) Traditional GEMM convolution uses the im2col procedure
to convert a 1 × 4 × 6 × 1 input tensor (light gray), assuming a stride-1, 3 × 3
weight kernel (dark gray), to a 9 × 8 matrix for matrix multiplication. Each
9 × 1 column of the matrix (e.g., red, blue dashed line) represents one 3 × 3
patch from the input tensor. (b) The proposed focused convolution modifies
im2col exclude patches deemed irrelevant by an oracle-generated pixelwise
mask. Thus, the final 9 × 6 matrix will have fewer columns than that of
traditional GEMM, resulting in less computation on embedded devices.
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4. AUTOMATED AOI GENERATION FOR FOCUSED

CONVOLUTIONS

We note that there are areas for improvement on our previous focused convolution work. The

existing focused convolutions have limited use cases; they can only be used in surveillance

situations or when the AoI can be reused over time. The depth mapping AoI generation

method is computationally intensive, and the focused convolutions require a complete for-

ward pass of the CNN once with the AoI in order to use it for new inference. Therefore, we

propose a method that generates an AoI automatically within the CNN itself. We modify

an existing CNN to apply a threshold filter to the features from the CNN’s early layers. Any

features that make it past the filter are considered inside the AoI, and can be operated on

by focused convolutions later in the CNN, making the entire modified CNN work with any

computer vision use case.

4.1 Introduction to Training-Free, Automated AoI Generation

Modern computer vision models are often associated with ever-increasing energy and

compute costs. In pursuit of higher accuracy, researchers have built deeper models, designed

to leverage the computation of power-hungry—and sometimes multiple—Graphics Process-

ing Units (GPUs) to train and deploy the Convolutional Neural Networks (CNNs). This

approach raises concerns about energy waste [  54 ]: apart from earthly sustainability concerns

from the GPUs, we need energy-efficient methods for deployment in environments where

a substantial electricity source may not be readily available, such as battery/solar power,

mobile processing, and embedded Internet-of-Things systems. This is true for both training

and inferencing [  4 ].

This dissertation proposes a method to reduce energy-consumption of pretrained CNNs

without retraining or accuracy degradation. Our proposed CNN modifications can be ap-

plied to any feedforward CNN (tested on popular object detection and image classification

networks), by inserting a custom layer. This method improves both theoretical computation

(e.g. number of Multiply-Accumulate operations, MACs) and practical hardware utilization
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(a)

(b)

(c)

Figure 4.1. (a) A pretrained CNN does computation on 100% of the input
pixels for all N layers. The proposed method makes the CNN more efficient
by: (b) First, only do 100% computation during the first k layers to collect
contextual features. Second, apply a brightness threshold τ on the feature map
from the kth layer to identify an Area of Interest (AoI) mask. As illustrated,
white regions are relevant for an accurate prediction, black regions are irrele-
vant. Note: Select k, τ beforehand via a CNN energy consumption projection
( subsection 4.3.2  ) and an accuracy-vs-latency curve search ( subsection 4.3.3  ),
respectively. (c) Finally, in the last N − k layers, completely ignore the irrel-
evant regions using focused convolutions (  subsection 4.3.4  ). This saves up to
22% computation for faster, less energy-hungry inference with little to no loss
in accuracy (  section 4.4 ).
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(e.g., utilization of the processor’s vector registers and instructions that can operate Single-

Instruction-Multi-Data (SIMD) style), reducing inference latency and energy consumption.

As previously noted, in modern object detection datasets, many pixels were irrelevant,

i.e. removing these irrelevant pixels did not degrade accuracy. The focused convolution, a

modification of a standard General-Matrix-Multiply (GEMM) convolution operation, ignored

irrelevant pixels outside an Area of Interest (AoI) as determined by a depth-mapping neural

network to save on computation during inference for better inference latency and energy

consumption. It is computationally intensive to deploy a depth-mapping neural network

for generating an AoI; attempting to deploy that at runtime before a focused convolutional

CNN would consume even more energy than the original CNN. Thus, generating an AoI

must be done in advance, limiting their approach to such use cases as security camera object

detection, in which the AoI will change less often.

Our new approach enables lightweight, automated generation of an AoI within the pre-

trained CNN itself at inference time, as shown in  Figure 4.1  . We reuse features produced

by the top layers of the CNN to generate an activation map which can then be manipulated

by simple matrix operations and filtered by a threshold to produce an AoI. The threshold

is decided using a training-free Accuracy vs. Latency curve search. The remaining layers of

the CNN use improved focused convolutions to ignore pixels outside the AoI. Further, our

improved focused convolutions employ a system-aware approach to improve compute effi-

ciency. We set the convolutions to operate within a block-size that is a direct multiple of the

parallel processing unit register sizes, improving utilization efficiencies. This enables users

to make their existing, pre-trained CNNs more energy-efficient with little effort. Because no

weights are changed, the modified CNNs retain their original accuracy.

This dissertation presents a method to automatically identify irrelevant pixels in pre-

trained CNNs. The method excludes these pixels from computations via focused convolu-

tion blocks. We plan to test the proposed technique on multiple popular pretrained models,

including ResNet [ 55 ], VGG [  56 ], ConvNeXt [  1 ], Faster-RCNN [  2 ], and SSDLite [  57 ]. We

will test on ImageNet [  58 ] for image classification and on Microsoft COCO [  59 ] for object

detection. We expect to find that our method can reduce a CNN’s inference energy on dif-
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ferent processor types (Intel, AMD, Arm), without loss of accuracy. This method requires

no additional training or manual AoI generation.

4.2 Background on Automated AoI Generation

In this section, we highlight background from the focused convolution work that is rele-

vant to automated AoI generation. It describes our previous work on focused convolutions

and removing irrelevant pixels. We highlight a few areas of improvement of our method.

This dissertation mitigates those issues by producing an entirely automated approach to

focused convolution usage in CNNs.

4.2.1 Similarly Inspired Methods to Our Technique

Some techniques also use the concept of identifying unnecessary computation to skip at

inference time. Specifically, they use contextual information to determine what computation

is useful.

Contextual information is meta-information about the image that helps the CNN make a

more informed decision. For instance, knowing that a car is usually found on roads and not

underwater can help the system identify the car and ignore regions where it is unlikely to

appear. This enables explainable attention mechanisms [  60 ], and is also the inspiration for

our approach to generating AoIs. We filter the learned information from the early layers of

the CNN, enabling the later layers to make more informed decisions in an efficient manner.

Other techniques in this space include: BranchyNet is a custom CNN architecture that

decides if the CNN is confident enough to make a prediction before it finishes executing all

the layers; it employs this early-exit strategy to great effect on ImageNet [  61 ]. The Spatially

Adaptive Computation (SACT) model is another type of CNN architecture; it can be trained

end-to-end to identify regions of interest and then use special blocks to reduce computation

outside those regions [ 62 ]. We compare our technique with these methods in  section 4.4 .
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4.2.2 Area of Interest Generation

Irrelevant pixels in an image do not contribute to the CNN’s ability to make an accurate

prediction. The pixels that are useful to the CNN comprise “Areas of Interest” (AoI) of

Relevant Pixels; irrelevant pixels fall outside the AoI. An image can have multiple, disjoint

regions that comprise the image’s AoI (e.g. one region for cars on the road, another for boats

on the water). Our previous method of generating AoIs (see  Figure 3.2 ) uses a computation-

ally intensive approach: we use a neural network called MiDAS [ 7 ] to generate a depth map

of an input image, and then filter the pixels of the depth map to find an AoI. The method is

suitable for stationary cameras (such as surveillance), it is impractical to generate AoIs on a

per-image basis (e.g. for drone vision, detection datasets, etc.), because the overhead of AoI

generation would outweigh the computational savings from ignoring the irrelevant pixels at

inference time. Other AoI generation approaches include background subtraction [ 6 ], and

spectral residual saliency [ 46 ].

We conduct a study to consider the techniques to generate the AoI before CNN infer-

ence. As shown in  Figure 3.2  , AoIs can be generated using techniques like depth mapping,

background subtraction, and spectral residual saliency. We then test the generated AoIs

with CNNs using focused convolutions to see if accuracy is negatively impacted. We find

that depth mapping produces the best AoIs: CNNs achieve the highest accuracy using depth

mapping. Unfortunately, the depth mapping approach is also compute-intensive since it re-

quires the use of another neural network like MiDaS. Spectral residual saliency, while much

faster, also produces the worst accuracy. Meanwhile, background subtraction techniques of-

ten produce AoIs that are too close to the image objects, obscuring contextual pixels needed

to help the CNN make its predictions. Therefore, this dissertation uses a different approach:

we apply a threshold to the feature maps generated by the CNN’s early layers.

4.2.3 Focused Convolutions

The focused convolution is based on the popular General-Matrix Multiply (GEMM) tech-

nique for doing convolutions [  63 ]. In GEMM, an input image is segmented into convolution

kernel-sized windows called patches. Each window is then vectorized into a column of a
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Figure 4.2. Existing methods (illustrated) to generate (Areas of Interest)
AoIs are too computationally intensive. AoIs contain the Relevant pixels for
a CNN to make a correct detection on the original image; other pixels are
deemed Irrelevant and should be excluded from computation. AoIs can be
accurately generated using a depth-mapping neural network [ 45 ]. This is com-
putationally intensive. Other AoI generation methods like spectral residual
saliency [ 46 ] and background subtraction [  6 ] are also computationally inten-
sive. This dissertation inserts a layer into the CNN to filter out irrelevant
pixels from computation.

matrix via a process called im2col. That matrix is then multiplied with the kernel of weights

to produce the convolution output.

The focused convolution, a drop-in-replacement for a GEMM convolution, applies a pro-

vided AoI during this process. Any patches not found inside the AoI are deemed irrelevant

and then excluded from the im2col matrix. That results in a smaller matrix and thus a less

computation-intense matrix multiplication. An entire forward pass of the network is required

to assign the AoI before deployment. However, the AoI not being generated at inference time

keeps the CNN from being able to truly replace existing models for any application.

4.3 Proposed Method for Automated AoI Generation and Deployment

This section describes a new method that can identify and remove irrelevant pixels at

runtime. The section presents the modified CNN. It reduces energy consumption without

loss of accuracy and does not require training. We propose using features already generated

within the CNN to determine the AoI. The method is discussed in the following section.
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4.3.1 Generating AoIs by Feature Map Filtering

The proposed technique takes a pretrained CNN and then generates a modified version of

that CNN – one that can automatically generate AoIs and apply them for focused convolution

energy improvements. The new CNN behaves as follows during inference:

1. Process input image using the top n layers (n chosen in Section  4.3.2 ) of the CNN

(referred to as NN.top). Produces feature map X.

2. Sum X along the channels. Produces Xsum.

3. Filter Xsum with the activation brightness threshold τ (τ chosen in Section  4.3.3 ) to

produce the AoI. Activations bright enough to clear the τ threshold are allowed through

as corresponding regions of relevant pixels; the rest are discarded. Produces Xthresh

4. Maxpool Xthresh to break the feature map into blocks that utilize the parallelization

hardware on the processor (see Section  4.3.4 ).

5. All convolutional layers after NN.top use our improved focused convolutions (Section

 4.3.4 ) on the generated AoI, saving energy by discarding irrelevant pixels. The focused

convolutions use the same weights and biases as the convolutions they replace.

To generate this modified CNN, we need to choose n and τ , and replace the convolutional

layers after the n-th layer with focused convolutions. We refer to such modified CNNs as

fCNNs. Our technique chooses n by estimating the amount of energy consumed by the CNN

and selecting the n that allows the energy consumption estimate to satisfy a given target (e.g.

10% energy savings). Next, the CNN is iterated a few times over the training dataset with

different τ threshold values applied to NN.top and focused convolutions in the remaining

layers, generating points on an accuracy-latency tradeoff curve for that CNN. The technique

then chooses τ that can satisfy the user’s accuracy and latency targets A and T , respectively.

This newly configured fCNN can then be deployed for reduced energy consumption. While

the concept bears similarities to attention mechanisms in some CNN and vision transformer

models, the proposed method is more advantageous because it can modify any CNN without

any training. The process is described in detail in the following subsections.
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Figure 4.3. The later the τ -threshold is inserted (i.e., the larger the n, the
fewer layers can take advantage of Focused convolutions, and the slower and
less energy-efficient the CNN. Conversely, a smaller n allows for a faster, more
energy-efficient CNN. Therefore, smaller n is generally beneficial.

4.3.2 Choosing the Layers

To convert a CNN into an fCNN, we first choose which layer’s output to filter with

threshold (i.e., choose n: after the nth layer, the τ -threshold is applied). The smaller n is,

the earlier the τ -threshold will get applied. This also implies that more layers remain in the

CNN to take advantage of the energy improvements of the focused convolution. Therefore,

a smaller n is beneficial, as illustrated in  Figure 4.3 .

Meanwhile, n cannot be too small: there is insufficient information encoded within the

features to make a useful threshold AoI [ 3 ]. CNNs generally collect basic features about the

input image in the first few layers. Deeper layers accumulate those into more complex features

later in the network. The deeper layers are also responsible for spatially downsampling those

feature maps [  56 ]. Therefore n must be large enough to capture useful information in the

features produced at the nth layer.

To choose n, we use a heuristic: choose the latest layer (i.e., largest n) that is still small

enough such that the resulting fCNN can satisfy the given energy consumption target.

We now measure the energy consumption of the CNN, and then use that information to

project the energy savings of its fCNN equivalent. Focused convolution energy savings were
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determined to be approximately linear with respect to AoI size [ 45 ]. Therefore, if one has

both an expectation of the average AoI size on the data and the known energy consumption

of a CNN, they could easily infer whether the possible fCNN energy savings could meet their

target.

Let the energy consumption of the ith convolutional layer be Ec,i, the expected AoI size be

a as a percentage of the original input size, and the measured energy from the computational

overhead introduced by the focused convolution be c (this can be measured by manually

setting the focused convolution AoI size to 100% and then subtracting Ec,i). Then, the

energy use of the corresponding focused convolutional layer Ef,i is shown in  Equation 4.1 .

Ef,i = aEc,i + c (4.1)

We choose to use this linear estimation of energy because as noted by Yang, et. al [  64 ],

the energy use of the memory accesses and computation of a sliding-window convolution

operation both scale linearly with respect to input size. We note that other factors such

as the hardware platform, memory hierarchy, and optimization techniques employed may

impact the runtime characteristics of the neural network, reducing the accuracy of our en-

ergy estimation. However, we empirically show in  section 4.4 that the energy consumption

improvements of our model are linear with respect to AoI size (i.e., effective input size of the

layer), so we believe this energy estimation to be reasonable to use.

Thus, for a CNN with N total conv layers, of which n belong to NN.top, then there will

be N − n focused convolutional layers. Based on  Equation 4.1  , then, we can model the total

energy consumed by the convolutions in the fCNN in  Equation 4.2 .

Etotal = (N − n)c +
n∑

i=1
Ec,i +

N∑
i=n+1

aEc,i (4.2)

Thus, n can be selected such that Etotal satisfies the energy target, selected according

to the constraints of the target hardware. To keep n from becoming too small, we fix the

lower-bound on n as the index of layer at which the first feature downsampling occurs in the

CNN. Conversely, if the energy target cannot be satisfied due to the lower bound, then our

technique determines that a suitable fCNN is unachievable.
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Selecting an n does not guarantee that it is possible to achieve a model that can achieve a

given accuracy target. Adjusting for accuracy uses a separate accuracy-latency curve search

approach, described below in  subsection 4.3.3 .

4.3.3 Choosing the Activation Brightness Threshold

The activation brightness threshold τ determines which pixels are considered relevant

inside the AoI and which are deemed irrelevant. Because each CNN is built differently,

the threshold will be different for each CNN, even when trained on the same data. Thus,

our method refines its τ selection by iterating the fCNN over the training dataset with

different values of τ . After each full iteration over the dataset, it measures the average

accuracy and inference latency to see if it satisfies a given target. If not, it iterates again

with an adjusted τ -value. Although this bears similarity to training, our method does not

backpropagate or modify any model weights at all, whereas training requires many epochs

and backpropagation [  55 ].

As shown in  Figure 4.4  , the proposed technique chooses the activation brightness thresh-

old τ as follows: τ is used to filter the output of NN.top, the top layers of the CNN. If

a given region is brighter than the threshold, then it is allowed through as relevant pixels

in the AoI. The higher τ is, the fewer pixels are allowed through and the smaller the AoI

is. τ is initialized to the minimum value of the sum of all NN.top features, ensuring that

any NN.top output will pass through the threshold (i.e. 100% AoI). We wish to achieve a

maximum target T for the CNN’s inference latency NN.t, as well as a minimum target A for

the CNN’s accuracy NN.a. Note that this method is not restricted to only use latency VS

accuracy to search. This method can be trivially modified to search energy use VS accuracy

instead, for example. A decreasing latency is used in this case as a proxy for decreasing

energy, as it is easier to measure latency than it is to instrument one’s models for repeated

energy measurements.

The proposed technique increases τ by increments of some ε, reducing the AoI and

improving latency, until the latency target is met. Then, it checks to see if the accuracy

target is also satisfied. If not, it begins reducing τ to attempt to find a smaller τ that can
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class AoiThresholder(nn.Module):
...
def forward(self, x):

"""
Assigns an AoI mask for remaining focused convolutions to use

x: input, the features from the previous layers
"""

# Assign the AoI based on the tau threshold
# Remaining FocusedConv2d layers reference the `aoi_mask` field
self.aoi_mask = (torch.sum(x, dim=1).squeeze(0) >= self.threshold)

# Pass through the features to the remaining layers
return x

Listing 4.1. AoI τ -threshold masking.

satisfy both targets. The size of the increment is adjusted based on the relative distance of

NN.a from A, getting smaller the closer the search gets to the target (i.e. as |A − NN.a|

shrinks in size, relative to A). The search succeeds if both T, A are both attainable, and times

out if the search cannot succeed after a pre-set period of time. Thus, the search explores

along the accuracy-latency tradeoff curve, succeeding when (T, A) is a point on or within

the curve.

Once configured, the τ -threshold is applied to the output of the previous layer to identify

an AoI mask for all remaining focused convolution layers to reference, allowing the features

to pass through to the remaining layers for focused inference. An example of the source code

is as follows:

74



(a)

(b)

Figure 4.4. ( 4.4a ) Training-free process to choose activation brightness
threshold τ , given a maximum inference latency threshold of T and a min-
imum accuracy threshold of A. This proposed method will succeed if latency
and accuracy targets T, A are simultaneously attainable. (  4.4b ) This technique
searches along the accuracy-latency curve, succeeding if (T, A) is on the curve.
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(a) (b) (c)

Figure 4.5. Our technique incorporates hardware-parallelization (e.g. Single-
Instruction-Multiple-Data). The AoI is shown in red letters for some input
data in ( 4.5a ). On hardware that can parallelize the data processing in blocks
of 4, the original focused convolution’s sliding-window patch selection (  4.5b )
will result in two blocks of size-4 data to be sent for processing. The proposed
technique ( 4.5c ) instead indexes the input data downsampled to multiples of
the hardware blocksize, resulting in only one block of size-4 data being sent,
thus saving processing on one block. The algorithm is shown in Listing  4.2 .

4.3.4 System utilization improvements

Modern computer architectures implement specialized hardware (e.g., “Neon” vector reg-

isters on Arm CPUs and “CUDA” cores on NVIDIA GPUs) used to parallelize code that

needs to perform the same operation on multiple, independent pieces of data. These paral-

lel operations are supported by Single-Information-Multiple-Data (SIMD) instructions. The

data is collated into blocks that perfectly fit the size of a SIMD register on the processor. The

processor then uses specialized instructions to process the entire registers data in parallel.

For example, a GEMM convolution operating on an entire input tensor could use im2col to

send multiple patches for simultaneous processing to improve inference latency. SIMD pro-

cessing is so useful that many processor designers like Intel, AMD, and Arm all implement

such techniques on their chips.

Contemporary machine learning frameworks like PyTorch and TensorFlow already rely

on C-native libraries under the hood to use parallel processing for built-in operations like

“Conv2d” and “MaxPool2d”. The focused convolution already uses these libraries, but we

observe that the generic sliding-window indexing approach used by the original focused

convolution results in inefficient utilization of the parallel processing cores. An example is

illustrated in  Figure 4.5  : imagine the processor can parallel-process blocks of size 4. The
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# Here, Python is written sequentially so that it is easier to
# understand.
# In practice, accelerated numpy folding functions are used
def gemm_mask_to_patches(mask, k_side):

"""
mask: AoI mask
k_side: kernel side length
"""
# Find the indices where the matrix is nonzero
nonzero_indices = torch.nonzero(mask)

# Block the nonzero elements into squares
for index in nonzero_indices:

row, col = index.tolist()
row_patch_start = (row // k) * k
col_patch_start = (col // k) * k
patch_matrix[row_patch_start:row_patch_start + k,

col_patch_start:col_patch_start + k] =
mask[row_patch_start:row_patch_start + k,

col_patch_start:col_patch_start + k]

return patch_matrix

Listing 4.2. Algorithm for selecting GEMM patches based on the AoI mask
in our improved focused convolution.
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AoI (  Figure 4.5a  ) contains three points of data (A, B, C). The original focused convolution

design would use a parallelized sliding-window approach to select data in blocks. As shown,

two size-4 blocks get selected ( Figure 4.5b ). Our technique will only select a single block

( Figure 4.5c ), thus saving the processing on one block.

To achieve this, we design the focused convolution to use memory alignment. We pre-

divide the input into a grid, where each cell is sized in multiples of the parallel processing

block size. If a cell contains part of the AoI, the entire cell is sent for parallel processing.

Memory alignment ensures a more efficient usage of the processor than the original focused

convolution. Because we do not need to directly change the kernel parallelization primitives,

and only change the way the data is laid out, the proposed technique is instantly compatible

with any libraries or frameworks using optimizations for SIMD, CUDA, etc.

This technique shares similarity with sparse convolutions [ 17 ]. Sparse convolutions are

specifically designed to apply convolutions only on non-zero elements in an input. They do

this by storing indexes of non-zero elements in a memory-efficient data structure, and then

referencing those inputs during inference. Some form of aggregation then has to be performed

at the end in order to produce the final output feature map. This approach tends to require

specialized hardware or kernel support, while our approach can be drop-in swapped with

standard convolution layers.

The previous focused convolution required a single forward pass of the CNN to scale

the AoI correctly, pixel-by-pixel, for the field of perception at each layer before the focused

convolutions could be deployed. This is unacceptable overhead for AoI generation at run-

time. By using the parallel processing-aware blocks described above, our method can rapidly

compute which blocks to keep and which to ignore from a single AoI. Thus, we do not need

to pre-scale the AoI for each layer, removing the overhead cost entirely.

4.4 Results and Discussion

To demonstrate the utility of our method, we measure various performance aspects of

different pretrained models when modified using our technique. We choose three pretrained

image classifier models (VGG-16, ResNet-18, ConvNeXt-T) and two pretrained object de-
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Table 4.1. Pretrained CNNs are compared with their corresponding “fCNNs”
(in bold) using our method on an Intel laptop, an AMD desktop, and an
Arm embedded device. Latency improvements can be achieved with little to
no accuracy loss. Cells with “-” indicate that the model could not run on the
device (exceeded memory capacity).

CNN Dataset Accuracy MAC/inf Energy/inference (J) Latency/inference (ms)
Intel AMD Arm Intel AMD Arm

VGG-16 ImageNet-1K 0.716 15.50G 6.9 11.2 10.1 242.1 83.2 2020.9
fVGG-16 ImageNet-1K 0.716 14.19G 6.4 10.9 8.9 222.8 77.1 1799.0
ResNet-18 ImageNet-1K 0.698 1.82G 2.0 3.1 2.3 54.2 18.2 457.7
fResNet-18 ImageNet-1K 0.697 1.60G 1.5 2.6 2.1 50.19 16.4 410.8
ConvNeXt-T ImageNet-1K 0.821 4.47G 3.4 6.5 5.1 112.4 41.6 960.4
fConvNeXt-T ImageNet-1K 0.818 4.05G 2.9 5.2 4.3 99.9 37.0 854.3
Faster-RCNN COCO 0.370 120.87G 68.1 106.8 - 2390.1 751.9 -
fFaster-RCNN COCO 0.370 101.30G 57.7 88.9 - 2011.5 616.6 -
SSDLite COCO 0.210 716.42M 3.0 7.2 5.7 100.5 48.6 1083.7
fSSDLite COCO 0.192 599.06M 2.3 5.8 4.5 79.4 39.7 876.4
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Figure 4.6. For a pretrained CNN equipped with focused convolutions, as
we vary the activation brightness threshold τ , different amounts of activations
are filtered, causing the CNN’s accuracy, latency, and AoI size to change.
We designate the CNNs that achieve the best accuracy as “fCNNs”. Left:
ImageNet accuracy trades off with inference latency. Fortunately, the tradeoff
can be little to nonexistent – our fVGG-16 achieves faster inference than VGG-
16 without losing accuracy. Right: Larger AoI sizes yield better accuracy. Note
that latency is reported from an AMD desktop CPU.

tection models (Faster-RCNN and SSDLite) from Meta AI Research’s Torchvision library.

We then use the proposed technique, with ImageNet for image classification and Microsoft

COCO for object detection, to determine k and τ . Then, we modify each model to use

focused convolutions, and we measure energy consumption, inference latency, accuracy, and

Multiply-Accumulate (MAC), comparing the focused convolution models with the unmodi-

fied ones.

Note: In this section, we often compare the perfomance of an unmodified, pretrained CNN

with the focused-convolution fCNN version using “% improvement” or “% degradation”. This

is calculated using the below formula:

%difference = |unmodified − focusedconv|
unmodified × 100% (4.3)
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(a) (b) (c)

(d) (e) (f)

Figure 4.7. The proposed technique can ignore regions of irrelevant pixels
(marked in blue in the thresholded saliency maps) from the original images.
The resulting Area of Interest (AoI) focuses on parts of the image that the hu-
man eye would. (a) Original COCO image. (b) fFaster-RCNN. (c) fSSDLite.
(d) Original ImageNet image. (e) fResNet-18. (f) fVGG-16. By ignoring
computation on the blue regions, fCNNs save up to 12% energy on Ima-
geNet and up to 28% energy on COCO.
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# Source code excerpt from
# https://github.com/PurdueCAM2Project/focused-convolutions/
def focusify_all_conv2d(m: nn.Module, aoi: AoI):

"""
Recursively locate all Conv2d layers in a model m,
then assign to use specified AoI as FocusedConv2d
"""
for child_name in m._modules:

child_m = m._modules[child_name]
if type(child_m) == nn.Conv2d:

in_channels = child_m.in_channels
out_channels = child_m.out_channels
kernel_size = child_m.kernel_size
stride = child_m.stride
padding = child_m.padding
dilation = child_m.dilation
groups = child_m.groups

# All weights are kept
new_conv = FocusedConv2d(in_channels, out_channels, kernel_size,

stride, padding, dilation, groups, aoi=aoi)
new_conv.weight = copy.deepcopy(child_m.weight)
new_conv.bias = copy.deepcopy(child_m.bias)

m._modules[child_name] = new_conv
else:

focusify_all_conv2d(child_m, aoi)

Listing 4.3. Function to replace any Conv2D layer in the model using
Focused Convolution layers.
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An unmodified VGG-16 operates on the

entire image. We use our technique on this

model to identify layer-index 3 as the layer at

which to insert the AoI τ -threshold.
VGG(

(features): Sequential(

(0): Conv2d(3, 64, kernel_size=(3, 3), )

(1): ReLU(inplace=True)

(2): Conv2d(64, 64, kernel_size=(3, 3), )

(3): ReLU(inplace=True)

# AoI threshold layer will be inserted here

# Layers 4-30 currently operating on

# irrelevant pixels

(4): MaxPool2d(kernel_size=2, stride=2, )

(5): Conv2d(64, 128, kernel_size=(3, 3), )

(6): ReLU(inplace=True)

(7): Conv2d(128, 128, kernel_size=(3, 3), )

(8): ReLU(inplace=True)

(9): MaxPool2d(kernel_size=2, stride=2, )

(10): Conv2d(128, 256, kernel_size=(3, 3), )

(11): ReLU(inplace=True)

(12): Conv2d(256, 256, kernel_size=(3, 3), )

(13): ReLU(inplace=True)

(14): Conv2d(256, 256, kernel_size=(3, 3), )

(15): ReLU(inplace=True)

(16): MaxPool2d(kernel_size=2, stride=2, )

(17): Conv2d(256, 512, kernel_size=(3, 3), )

(18): ReLU(inplace=True)

(19): Conv2d(512, 512, kernel_size=(3, 3), )

(20): ReLU(inplace=True)

(21): Conv2d(512, 512, kernel_size=(3, 3), )

(22): ReLU(inplace=True)

(23): MaxPool2d(kernel_size=2, stride=2, )

(24): Conv2d(512, 512, kernel_size=(3, 3), )

(25): ReLU(inplace=True)

(26): Conv2d(512, 512, kernel_size=(3, 3), )

(27): ReLU(inplace=True)

(28): Conv2d(512, 512, kernel_size=(3, 3), )

(29): ReLU(inplace=True)

(30): MaxPool2d(kernel_size=2, stride=2, )

)

...)

Our modified Focused fVGG-16. Conv2d

layers extract features up to layer index 3.

The AoI τ -threshold is applied, and remain-

ing layers are FocusedConv2d layers.
VGG(

(features): Sequential(

(0): Sequential(

(0): Conv2d(3, 64, kernel_size=(3, 3), )

(1): ReLU(inplace=True)

(2): Conv2d(64, 64, kernel_size=(3, 3), )

(3): ReLU(inplace=True)

)

(1): AoIThresholder()

(2): Sequential(

(4): MaxPool2d(kernel_size=2, stride=2, )

(5): FocusedConv2d(64, 128, kernel_size=(3, 3), )

(6): ReLU(inplace=True)

(7): FocusedConv2d(128, 128, kernel_size=(3, 3), )

(8): ReLU(inplace=True)

(9): MaxPool2d(kernel_size=2, stride=2, )

(10): FocusedConv2d(128, 256, kernel_size=(3, 3), )

(11): ReLU(inplace=True)

(12): FocusedConv2d(256, 256, kernel_size=(3, 3), )

(13): ReLU(inplace=True)

(14): FocusedConv2d(256, 256, kernel_size=(3, 3), )

(15): ReLU(inplace=True)

(16): MaxPool2d(kernel_size=2, stride=2, )

(17): FocusedConv2d(256, 512, kernel_size=(3, 3), )

(18): ReLU(inplace=True)

(19): FocusedConv2d(512, 512, kernel_size=(3, 3), )

(20): ReLU(inplace=True)

(21): FocusedConv2d(512, 512, kernel_size=(3, 3), )

(22): ReLU(inplace=True)

(23): MaxPool2d(kernel_size=2, stride=2, )

(24): FocusedConv2d(512, 512, kernel_size=(3, 3), )

(25): ReLU(inplace=True)

(26): FocusedConv2d(512, 512, kernel_size=(3, 3), )

(27): ReLU(inplace=True)

(28): FocusedConv2d(512, 512, kernel_size=(3, 3), )

(29): ReLU(inplace=True)

(30): MaxPool2d(kernel_size=2, stride=2, )

)

)

...)
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4.4.1 Experimental Setup

We test using three devices with different levels of power consumption and different

operating systems:

• Embedded (5 W): Broadcom ARM Cortex-A5, Debian

• Laptop PC (28 W): Intel Core i7, Ubuntu

• Desktop PC (142 W): AMD Ryzen 9, Windows

On the ARM embedded device, energy consumption is physically measured using a Mon-

soon Solutions HV Power Monitor. On the Intel laptop PC, measurements are taken using

Intel’s “Power Gadget” software, and on the AMD desktop, measurements are recorded with

ASUS’ “Armoury Crate” software. Baseline steady-state power consumption is recorded and

subtracted from the numbers measured during inference.

The focused convolutions are compiled to use with Pytorch. On each device, the SIMD

blocksize (Section  4.3.4 ) is set according to the specifications from the processor’s documen-

tation.

We measure inference accuracy on ImageNet and Microsoft COCO using the “Torch-

bench” software. MAC counts are measured using the “ptflops” library. Inference latency

is determined using Python’s built-in timers. All timing/energy experiments are averaged

across the dataset.

4.4.2 Activation Brightness Threshold Selection

We follow the method described in  section 4.3  to create fCNNs from the pretrained CNNs.

For image classification, we start the automated search for a latency target T that is 10%

better than the pretrained CNN, with an accuracy target A matching the accuracy of the

original CNN. As the τ value increases, less pixels are allowed past the threshold, shrinking

the size of the AoI. This also causes the model’s accuracy to begin dropping linearly; the

accuracy-latency curves explored by the search are shown on the left in  Figure 4.6  . As

shown by our method, there are points on the curve at which it is possible to achieve the
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accuracy of the original models while improving latency. The technique selects the

best point, where the most latency is saved while dropping the least accuracy. Those models

using our technique are denoted as the “fCNN” models. The same process is repeated to

determine the “fCNN” models for the object detectors on Microsoft COCO.

To choose the τ for our “fCNN” models, we do not need to retrain. Although our curve

search will iterate over the training dataset, it is much faster than retraining a model, since

we do not do backpropagation and only use 7 iterations to select a τ .

4.4.3 Improvements On Pretrained CNNs

We compare our “fCNN” models with their corresponding unmodified pretrained CNNs

in  Table 4.1  . As shown, across desktop, laptop, and embedded processors, the technique suc-

cessfully converts pretrained CNNs into faster, more energy-efficient models that still achieve

the same or mildly degraded accuracy. Object detection models achieve more improvements

because the COCO images often have smaller AoIs than the ImageNet images.

The qualitative results are positive as well. In  Figure 4.7 , we show examples of the AoIs

selected by our τ -thresholds in the different CNNs on images from COCO and ImageNet.

Often, the selected AoIs draw the CNN’s focus to the same areas that human eyes would

focus on, although sometimes, the pretrained CNN seems to focus on areas of the image that

seem less relevant. As shown, the technique can identify multiple AoIs in the pictures.

A notable regression is fSSDLite. The Torchvision pretrained SSDLite model is noted

as more sensitive to perturbations in pixel values, so we suspect that the deletion of pixels

marked irrelevant still negatively impacts the model.

We also note that as more aggressive τ thresholds are selected, the energy consumption of

the models improves more quickly than the accuracy degrades; for a more extreme example,

it is possible to achieve a 28% energy consumption improvement on ConvNeXt-T with only

a 15% loss in accuracy.The accuracy degradation is low relative to the energy improvements.
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Figure 4.8. Our technique “(focused)” compared with ImageNet state-of-the-
art on our Intel CPU. SACT [  62 ] and branching [ 61 ] CNNs require training
and a complete redesign of the CNN; our technique not only either beats
them or stays competitive, but it also requires zero training, keeping
the pretrained CNN intact. Static-quantized [  39 ] and unmodified ResNet-
18 are shown to provide a baseline reference.

4.4.4 Comparison with State-of-the-Art (SOTA)

While not an apples-to-apples comparison since our technique does not require the train-

ing that the SOTA methods do, we provide a comparison with similarly inspired techniques

( subsection 4.2.1 ) and an INT8-quantized baseline for ResNet-18. Our focused fResNet-18

is both faster and more accurate than BranchyNet [  61 ], is faster than the standard ResNet-

18 [  55 ], is more accurate than quantized ResNet-18 [  39 ], and is faster than SACT [  62 ]. In

short, our technique either outperforms or stays competitive with the SOTA techniques

( Figure 4.8 ), all while being easy to implement because it requires no training.

4.4.5 Saliency Mapping and Explainability

A Pretreained CNN’s training naturally causes it to focus more heavily on certain regions

of a given image. For example, a CNN trained to detect people might have its predictions

more heavily weighed based on regions of the image that looked like a head. Those regions,

then, contain the most relevant information for producing an accurate prediction, and it

would behoove our technique to keep those regions during the threshold process.
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For a given image, those relevant regions can be identified via saliency mapping tech-

niques like Grad-CAM (Gradient-weighted Class Activation Mapping) [  65 ]. After inference

on the image, Grad-CAM generates a heatmap of the pretrained CNN’s strongest activa-

tions, weighted by gradients from the last convolutional layer. This heatmap identifies the

areas containing the most relevant information for the pretrained CNN’s prediction.

Using the τ -threshold fFaster-RCNN, we compare our AoI for the input image with the

heatmap to see what percentage the heatmap’s relevant regions are contained in our AoI.

We do this comparison for the entirety of COCO, finding that on average, 97% of the

Grad-CAM relevant regions are contained inside our AoI. An example is shown in  Figure 4.9  .

This confirms that our technique is explainable: it can cover the saliency maps of the neural

networks.

4.5 Dissertation Contributions on Improved Focused Convolutions and AoI
Generation

This dissertation presents a novel technique for converting a pretrained computer vision

model into a more energy-efficient model, without losing accuracy or requiring additional

training. We observe that highly accurate CNNs are typically accompanied by high energy

consumption. We propose a technique to convert a CNN into a more energy-efficient model

without requiring additional training. We apply a threshold (determined using an accuracy-

latency curve search method) to the features produced by the top few layers of the CNN to

automatically generate an Area of Interest (AoI) for the given input image. Pixels inside the

AoI are relevant, the rest are irrelevant. The AoI is used by the remaining convolutional layers

in the CNN as focused convolutions. Irrelevant pixels are ignored, reducing computational

cost and energy expenditure while improving inference latency. The proposed technique uses

a memory alignment method to ensure full utilization of parallel processing instructions. By

keeping the weights and biases of the original pretrained model, we expect to achieve both

energy expenditure and inference latency improvements without losing accuracy or requiring

additional training.
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(a) (b) (c)

(d) (e) (f)

Figure 4.9. (a), (d) Original COCO images (cropped to square). (b), (e)
Grad-CAM generated saliency map of Faster-RCNN. Warmer colors are more
important, and colder colors are less important to the neural network. (c), (f)
AoI generated by our τ -threshold AoI generation technique. Relevant pixels
are white, irrelevant pixels are black. We see that our technique is explainable –
it captures the most relevant regions (red, orange areas in (b), (e) are included
in the white regions of (c), (f)) of the Faster-RCNN saliency map, and leaves
out the irrelevant regions.
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5. SUMMARY and CONCLUSION

In this dissertation, we present our work to measure and address the problem of inconsistent

computer vision and to make CNNs more energy-efficient using focused convolutions to ignore

pixels outside an Area of Interest (AoI). We also propose another technique to improve upon

the focused convolutions: automatically generating AoIs within the CNN itself to filter out

pixels at inference time.

5.1 Consistency Metric

In  chapter 2 , we discuss our work on measuring and improving CNN consistency. A CNN

is expected to give similar predictions if the input images are similar. However, accuracy

metrics do not measure whether CNNs meet that expectation. We create a consistency

metric to measure that, and find that modern object detectors exhibit inconsistent behavior.

We demonstrate consistency improvements by up to 5% using training-free, image processing

techniques on the images.

5.2 Focused Convolutions

In  chapter 3  , we discuss our work on the focused convolution. We observe that in many

images, there are pixels that are irrelevant to the computer vision task. The pixe ls that

impact the CNN’s prediction are relevant and comprise the AoI, and the rest are irrelevant.

Our depth mapping dataset study finds that up to 48% of pixels in popular datasets are

irrelevant. We design the focused convolution to ignore those irrelevant pixels during CNN

inference, allowing CNNs to improve their energy consumption by up to 45%.

5.3 Automated AoI Generation for Improved Focused Convolutions

In  chapter 4 , we present our notable improvements to the focused convolution, enabling

an end-to-end, training free solution to generate AoIs automatically. The existing focused

convolutions require a full forward-pass of an existing AoI through the CNN before the

CNN can then be used to do inference on the corresponding image. Additionally, the depth
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mapping method used to generate AoIs is computationally intensive. Therefore, we filter the

features from the early layers in a CNN to automatically determine the AoI at runtime, with

little computational overhead. This method requires no training and could be customized

for each CNN, mitigating any accuracy lost during the process. Implemented end-to-end, we

demonstrate that pretrained CNNs can be modified to fully automate AoI generation and

deploy focused convolutions for up to 28% inference latency improvement on large datasets

like Microsoft COCO, with at most 2% accuracy degradation.

5.4 Concluding Remarks

To conclude, focused convolutions show promise as a method for improving energy ef-

ficiency and CNN latency by deleting irrelevant pixels outside an AoI, without requiring

training. The consistency metric augments existing accuracy metrics as a way to ensure

that energy-efficient CNNs maintain consistent accuracy. Any future work building on this

dissertation should focus on further methods for improving CNN consistency and generating

AoIs automatically, so that these methods can be more widely and easily adopted. Our code

is available at GitHub: https://github.com/PurdueCAM2Project/focused-convolutions.
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