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ABSTRACT

Our ability to understand language and perform reasoning crucially relies on a robust

system of semantic cognition (G. L. Murphy,  2002 ; Rogers & McClelland,  2004 ; Rips et

al.,  2012 ; Lake & Murphy,  2021 ): processes that allow us to learn, update, and produce

inferences about everyday concepts (e.g., cat, chair), properties (e.g., has fur, can be

sat on), categories (e.g., mammals, furniture), and relations (e.g., is-a, taller-than).

Meanwhile, recent progress in the field of natural language processing (NLP) has led to the

development of language models (LMs): sophisticated neural networks that are trained to

predict words in context (Devlin et al.,  2019 ; Radford et al.,  2019 ; Brown et al.,  2020 ),

and as a result build representations that encode the knowledge present in the statistics of

their training environment. These models have achieved impressive levels of performance

on a range of tasks that require sophisticated semantic knowledge (e.g. question answering

and natural language inference), often even reaching human parity. To what extent do LMs

capture the nuances of human conceptual knowledge and reasoning? Centering around this

broad question, this dissertation uses core ideas in human semantic cognition as guiding

principles and lays down the groundwork to establish effective evaluation and improvement

of conceptual understanding in LMs. In particular, I build on prior work that focuses on

characterizing what semantic knowledge is made available in the behavior and representations

of LMs, and extend it by additionally proposing tests that focus on functional consequences

of acquiring basic semantic knowledge.

I primarily focus on inductive generalization (Hayes & Heit,  2018 )—the unique ability of

humans to rely on acquired conceptual knowledge to project or generalize novel information—

as a context within which we can analyze LMs’ encoding of conceptual knowledge. I do

this, since the literature surrounding inductive generalization contains a variety of empirical

regularities that map to specific conceptual abstractions and shed light on how humans

store, organize and use conceptual knowledge. Before explicitly analyzing LMs for these

empirical regularities, I test them on two other contexts, which also feature the role of

inductive generalization. First I test the extent to which LMs demonstrate typicality effects—

a robust finding in human categorization literature where certain members of a category are
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considered to be more central to the category than are others. Specifically, I test the behavior

19 different LMs on two contexts where typicality effects modulate human behavior: 1)

verification of sentences expressing taxonomic category membership, and 2) projecting novel

properties from individual category members to the entire category. In both tests, LMs

achieved positive but modest correlations with human typicality ratings, suggesting that they

can to a non-trivial extent capture subtle differences between category members. Next, I

propose a new benchmark to test the robustness of LMs in attributing properties to everyday

concepts, and in making inductive leaps to endow properties to novel concepts. On testing

31 different LMs for these capacities, I find that while they can correctly attribute properties

to everyday concepts and even predict the properties of novel concepts in simple settings,

they struggle to do so robustly. Combined with the analyses of typicality effects, these

results suggest that the ability of LMs to demonstrate impressive conceptual knowledge and

reasoning behavior can be explained by their sensitivities to shallow predictive cues. When

these cues are carefully controlled for, LMs show critical failures in demonstrating robust

conceptual understanding. Finally, I develop a framework that can allow us to characterize

the extent to which the distributed representations learned by LMs can encode principles and

abstractions that characterize inductive behavior of humans. This framework operationalizes

inductive generalization as the behavior of an LM after its representations have been partially

exposed (via gradient-based learning) to novel conceptual information. To simulate this

behavior, the framework uses LMs that are endowed with human-elicited property knowledge,

by training them to evaluate the truth of sentences attributing properties to concepts. I apply

this framework to test four different LMs on 13 different inductive phenomena documented

for humans (Osherson et al.,  1990 ; Heit & Rubinstein,  1994 ). Results from these analyses

suggest that building representations from word distributions can successfully allow the

encoding of many abstract principles that can guide inductive behavior in the models—

principles such as sensitivity to conceptual similarity, hierarchical organization of categories,

reasoning about category coverage, and sample size. At the same time, the tested models

also systematically failed at demonstrating certain phenomena, showcasing their inability to

demonstrate pragmatic reasoning, preference to rely on shallow statistical cues, and lack of

context sensitivity with respect to high-level intuitive theories.
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1. INTRODUCTION

Much of our intuitive understanding of the world relies on mental representations (called

concepts), which store knowledge about everyday objects or events – knowledge involving

the class of entities they pick out (called categories), the properties that they possess, and

their inter-relations (Margolis, Laurence, et al.,  1999 ; G. L. Murphy,  2002 ; Machery,  2009 ).

Processes that underlie how such knowledge is acquired, stored, updated, and used during

everyday behavior constitute human semantic cognition (McClelland & Rogers,  2003 ; Rogers

& McClelland,  2004 ; Kemp & Jern,  2014 ).

Meanwhile, unprecedented progress in the field of natural language processing (NLP),

driven primarily by the re-emergence of connectionism (McClelland & Rumelhart,  1986 )—now

rebranded as Deep Learning (LeCun et al.,  2015 )—as well as advances in compute hardware

have resulted in the development of powerful neural network-based language models (Devlin

et al.,  2019 ; Radford et al.,  2018 ; Brown et al.,  2020 ), that are trained to predict words in

context (also known as “language modeling”). As a result of this training, these language

models (LMs) learn dense vector representations of word forms that reflect the statistical

information encoded in their training data—information such as what contexts a given word

has occurred in, its statistical dependence on other words, etc. These models are in par-

ticular modern day implementations of the distributional hypothesis (Harris,  1954 ; Firth,

 1957 ), a usage based perspective of word meanings that suggests the meaning of a word to

be determined by the context it occurs in. Often times, models trained with the language

modeling objective are used to perform a number of specialized downstream NLP tasks such

as question answering (Rajpurkar et al.,  2016 ), sentiment analysis (Socher et al.,  2013 ),

etc., and for this reason, the initial process of their training is often also referred to as “pre-

training,” and the models so trained are called “pre-trained language models” (PLMs). 

1
 The

general impressive performance of LMs on tasks requiring access to sophisticated semantic

knowledge raises a non-trivial possibility that progress in neural network models of language

processing can perhaps also translate to progress in modeling how humans might extract

meaning from language input.
1

 ↑ I will be using ‘PLMs’ and ‘LMs’ interchangeably in this dissertation. Therefore, unless stated otherwise,
an LM would denote a language model that is pre-trained.
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This rather ambitious and optimistic perspective has been the subject of much debate.

In particular, Bender and Koller (  2020 ) define natural language meaning to be a mapping

from form to some type of communicative intent, and under this definition, suggest that it

is impossible for any model to learn meaning only from form. Lake and Murphy ( 2021 ) take

a slightly less pessimistic viewpoint and do not discard the notion that LMs or their de-

scendants can encode meaning, but propose that the bar should be more stringent, and that

current benchmarks do not cut it. They then lay down multiple non-exhaustive desiderata

that computational models must satisfy in order to serve as models of psychological seman-

tics: that it should should demonstrate robust compositionality, encode knowledge about

entities goals and motivations, and flexibly update and deploy their beliefs in making in-

ferences. Importantly, they ground their recommendations in the conceptual basis of word

meaning (G. L. Murphy,  2002 ; ch. 11), where words are mapped to broader conceptual

structures that allow the intelligent system (largely, the human mind) to plan, communi-

cate, follow instructions, and make inferences in everyday life. Piantadosi and Hill ( 2022 )

and Pavlick (  2022 ,  2023 ) interpret language models to be compatible with conceptual role

semantics (Harman,  1982 ), which defines the meaning of a symbol to be a function of the

contexts within which it occurs, similar to the distributional hypothesis. Differing from most

accounts, they suggest direct referential grounding and communicative intent to not be the

sine qua non for meaning, and instead advocate for equal emphasis to be placed on the role

of symbols in inference. Importantly, LMs’ high dimensional, distributed representations

allow them to encode complex relationships between internal states that are present/elicited

by the input, giving them a non-trivial chance to capture conceptual structure internally

(Pavlick,  2023 ). Therefore, there is a genuine need for empirical investigations to under-

stand and evaluate the extent to which LMs (and other similar models) capture meaning

by analyzing their internal conceptual structure. Pavlick (  2023 ) in particular complements

these philosophical discussions by shedding light on a few recent works that indeed make

empirical advances towards this goal (Abdou et al.,  2021 ; Patel & Pavlick,  2022 ; Lovering &

Pavlick,  2022 ).

In this dissertation, I take semantic cognition as a lens to analyze language models ability

to demonstrate conceptual understanding, which I define to be the collection of behaviors
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that are compatible with the successful mapping of words to broader conceptual structures

that support reasoning and inference. This goal is empirical by definition, as it relies on

taking existing observations in studies of human semantic cognition—patterns and behaviors

exhibited by humans, along with their theoretical interpretations—as guiding principles to

enable effective evaluation and improvement of conceptual understanding in NLP systems.

This perspective is also related to many of the aforementioned viewpoints. In particular, like

Lake and Murphy (  2021 ), I take the conceptual basis of word meaning (Jackendoff,  1983 ;

G. L. Murphy,  2002 ; M. L. Murphy,  2010 ) to be ground truth, where a word’s meaning is

essentially some mapping to a concept, which is a pointer to a class or category of entities,

people, and states. Similarly, in line with Piantadosi and Hill (  2022 ) and Pavlick ( 2022 ,

 2023 ), this dissertation takes seriously the treatment of the role of conceptual knowledge

and structure in making appropriate inferences and demonstrate reasoning behavior. 

2
 

Coming back to the goals of this dissertation, I defined conceptual understanding—or

the extraction of conceptual meaning—to be compatible with the mapping of a word’s form

to a broader conceptual representation. The nature of this mapping has been constantly

contested. One school of thought casts it as a discrete, symbolic mapping between words

and concepts (Jackendoff,  1983 ; G. L. Murphy,  2002 ; Nirenburg & Raskin,  2004 ). The other

school has put forth the words-as-cues view (Elman,  2004 ; Lupyan & Lewis,  2019 ), where

instead of being mapped symbolically to discrete concepts, words act as cues to meaning,

and language plays a crucial role in shaping one’s semantic knowledge along with other

sources such as perception and interaction. Language models can be interpreted as models of

the words-as-cues perspective—they learn continuous representations of symbols in context,

which can be taken to operate as cues that drive downstream behavior of the model. Since

the information encoded by LMs is acquired through text data alone, they are models of the

words-as-cues view in the strongest sense. Implementing the words-as-cues perspective using

neural networks can shed light on debates concerning the nature of the mapping between

a word’s form to a conceptual representation. In particular, the two schools of thought
2

 ↑ as we will see next, an important context within which I evaluate LMs is that of inductive generaliza-
tion (Hayes & Heit,  2018 ), which by definition is an instance where humans use their existing conceptual
knowledge in making inferences about novel information.
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need not necessarily be at odds, since the distributed representations of neural networks (at

least those employed by LMs) are composed of low-level sub-symbolic units that “conspire”

together to give rise to complex semantic behavior not indifferent to symbolic processing

(Smolensky,  1988 ,  1995 ). Regardless of the extent to which current or future LMs genuinely

approximate symbolic behavior (McCoy, Linzen, et al.,  2019 ), analyzing them for their ability

to extract conceptual meaning from the perspective of human semantic cognition can serve

as an effective way to test the words-as-cues perspective.

What constitute as candidate behaviors when it comes to the evaluation of conceptual

understanding in language models? A considerable amount of work has been done to charac-

terize the semantic knowledge captured by distributional semantic models (Rubinstein et al.,

 2015 ; Lucy & Gauthier,  2017 ; Sommerauer & Fokkens,  2018 ; Petroni et al.,  2019 ; Weir et al.,

 2020 ; Ravichander et al.,  2020 ; N. Li et al.,  2021 ). In particular, most of these works test

the extent to which these models can elicit properties of everyday concepts—attributes or

predicates that are broadly applicable to the extension of the concept. For example, can

fly is a property roughly applicable to extensions of sparrow. Commonsense knowledge

about conceptual properties offer a direct and convenient way to go beyond a word’s form

and access broader unstated knowledge that expected to be a part of its conceptual rep-

resentation. However, experiments that aim to shed light on conceptual organization and

semantic cognition in humans rarely ever only test static knowledge. Instead, they focus on

how humans might deploy or use this knowledge in making semantic inferences or generalize

to new/unseen items. The rich literature on human inductive reasoning and generalization,

spanning more than 40 years, covers many of these behaviors (Feeney & Heit,  2007 ; Feeney,

 2018 ; Hayes & Heit,  2018 ). Our knowledge of properties, combined with a myriad of concep-

tual structure allows us to flexibly make inferences about novel concepts or properties even

when they are outside of our perceptual stimulus. For instance, knowing that penny is a cat

allows us to make the inference that it likely has paws, can make a meowing sound, has a

tail, etc. Similarly, when told that robins have the T9 hormone, we might readily extend this

property to other birds, at least relatively more strongly than when told that zebras have

the T9 hormone. 

3
 Numerous studies into human inductive behavior have brought about a

3
 ↑ the T9 hormone property is borrowed from Josh Tenenbaum’s presentations.
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substantial amount of insight into how humans use their background conceptual knowledge

in solving a multitude of different kinds of inductive problems (Kemp & Jern,  2014 ). For

instance, if a system predicts that a bird is more likely to share a novel property with other

birds than with non-birds suggests that it maintains clear sensitivities to categorical struc-

ture. In any case, it is a well known fact that neural networks (and other machine learning

models) are prone to relying on spurious cues/correlations to—in many cases—arrive at cor-

rect outputs, especially when these spurious cues are not controlled for, 

4
 making it seem

that they possess the genuine ability to mimic more sophisticated semantic processes (Niven

& Kao,  2019 ; McCoy, Pavlick, et al.,  2019 ). In the context of knowledge about conceptual

properties, these spurious cues might take the form of simple associations between lexical

items of the property and the concept—e.g., a model might successfully predict that birds

can fly simply due to the high lexical similarity between ‘bird’ and ‘fly’ since they are likely

to co-occur during training. This by no means is entirely a negative feature, in fact, we

would want models that are semantically competent to learn relatedness between words.

However, simply encoding these word/concept associations is different from also learning

the functional consequences of encoding these word/concept associations (Mahowald et al.,

 2023 )—i.e., demonstrating behavior that is compatible with access and use of conceptual

meaning in making inferences and generalizations. If a model is able to predict that robins

can fly but cannot reliably make this inference about a novel concept that is a subclass of

robins, then it raises doubts about the model’s ability to genuinely deploy its ‘knowledge,’

making it unclear that it has captured conceptual meaning. This is also by no means an

overly ambitious ask of distributional semantic models. For instance, Erk (  2016 ) shows in

her case study that distributional similarity obtained from models far simpler than today’s

best language models can be used as a mechanism to reason about properties of concepts—if

a model that has no knowledge of the word alligator observes it in context, then it can reason

about the properties of alligator by using its distributional similarity to other concepts

such as crocodile, etc.
4

 ↑ by ‘control’ I mean the general practice of identifying potential spurious cues than the models could pick
up on and devising stimuli that would penalize models that did in fact rely on spurious cues
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The above discussion sets up an important desideratum for establishing evidence of con-

ceptual meaning extraction—models should not only capture commonly known semantic

properties of concepts, but also show behavior that is compatible with the functional con-

sequences of encoding property knowledge. Therefore, building on considerable amount of

work aiming to diagnose conceptual properties in distributional semantic models, I propose

in this dissertation further contexts within which we can study language models’ understand-

ing of conceptual knowledge and organization. The primary context that this dissertation

focuses on will be inductive generalization (also known as inductive reasoning, property in-

duction, category-based induction, etc.)—the use of existing knowledge to make inferences

about novel situations (Hayes & Heit,  2018 ), where the reasoner must fundamentally go be-

yond the available data to make conclusions that are likely but not certain. Typical induc-

tive problems in experimental literature often expose human subjects to partial conceptual

information—e.g., specifying a novel property for known concepts, or known properties for a

novel concept—and then tasks them to project this information to other known cases—e.g.,

assigning the novel property to other concepts or predicting other properties for the novel

concept. In this manner, researchers have assimilated numerous insight about how humans

rely on their background conceptual knowledge to make inductive leaps. A good deal of

experiments and analyses in this dissertation borrow from this paradigm and analogously

task LMs to project novel conceptual information using stimuli that is controlled to target

specific behaviors that are indicative of genuine ability to represent and possess conceptual

meaning.

Complementing this important aspect of human semantic cognition, I also study the

extent to which LMs demonstrate typicality effects (Rosch,  1973 ,  1975 ), another important

consequence of human conceptual knowledge. Briefly, this phenomena suggests that mem-

bers of a coherent category (G. L. Murphy & Medin,  1985 ) fall under a continuum where

certain members are better exemplars of the category than are others. For instance, robin

and sparrow are often considered to be typical birds, while penguin and ostrich are

considered as atypical birds, for most native English speakers in the US (Rosch,  1975 ). Typ-

icality effects have been ubiquitously observed throughout several experiments concerning

categorization/category-based inferences (Rosch,  1973 ; Rips et al.,  1973 ; Rosch, Simpson,
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et al.,  1976 ; Kelly et al.,  1986 ; Garrod & Sanford,  1977 ; Osherson et al.,  1990 ), and as such,

overlap in properties are often considered important determinants of what makes a member

of a category typical (Wittgenstein,  1953 ; Rosch & Mervis,  1975 ). Thus, typicality can be

considered as an important candidate context within which we can study conceptual knowl-

edge in LMs. Additionally, I also revisit the question of property knowledge in language

models, in order to establish their prerequisite knowledge, which will be important when we

test for reasoning that exclusively relies on property knowledge that models have internal-

ized. I do so by devising tests that control for superficial cues and avoid making isolated

conclusions, in a manner that is relatively more robust compared to prior works aiming to

answer similar questions.  

5
 

Overall, these enquiries translate to the following research questions, which together

advance our knowledge of how well LMs—perhaps the most powerful models of the “words-

as-cues to meaning” perspective (Elman,  2004 ; Lupyan & Lewis,  2019 )—can encode and

extract conceptual meaning from language input:

RQ 1: To what extent do pre-trained language models capture typicality effects in making

category inferences?

RQ 2: RQ 2.1: How robustly do pre-trained language models capture the properties of

everyday concepts?

RQ 2.2: How robustly do they endow these properties to a novel concept that

is a subclass of existing concepts?

RQ 3: To what extent do the inductive generalizations of pre-trained language mod-

els, driven by their learned representations, align with empirical regularities and

phenomena observed in human inductive behavior?

These questions, along with the collection of analysis methods that aim to answer them,

and their results, form the main contribution of this dissertation.
5

 ↑ I expand in great detail on why conclusions derived from prior works are not robust enough in §  2.2 
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1.1 Why study language models?

Why would we want to study language models? The above discussion points to one obvious

reason: their close connection to many related viewpoints of how meaning can be extract-

ed/learned from language: distributional hypothesis (Harris,  1954 ; Firth,  1957 ), conceptual

role semantics (Harman,  1982 ), and the words as cues to meaning perspective (Elman,  2004 ;

Lupyan & Lewis,  2019 ). LMs are by far the most powerful implementations of these ideas,

and because they are able to demonstrate impressive performance on tasks that clearly

require access to sophisticated semantic knowledge, they provide us with an unique opportu-

nity to test the aforementioned viewpoints computationally. A clear advantage of LMs over

traditional distributional semantic models is that they can be analyzed for behavior that

goes beyond just simply storing word associations and relatedness measures—e.g. they can

be tested for the extent to which they can demonstrate complex reasoning behavior using

the distributional information they have acquired (RQs 2 and 3). This is primarily due to

their fundamental ability to handle sequences—as opposed to single words, in the case of

older vector space models—which can allow for greater expressivity of inputs and enable us

to place words in contexts from which their conceptual role can be established.

The seemingly impressive semantic behavior of language models makes it perhaps tempt-

ing to consider them as genuine models of how humans process and understand language.

However, I am not considering LMs to be explicit models of human semantic cognition in

this dissertation. This is largely because outside the fact that LMs learn from distributions

of word forms and process inputs using a series of linear and non-linear units along with

some sequential constraints, what computational, algorithmic, or even implementational hy-

potheses (Marr,  1982 ) they encode in the context of semantic cognition is rather unknown.

As a result, even if we observe behavioral alignment between LMs and humans (which would

indeed be an interesting result) it alone does not qualify an LM as a cognitive theory, thereby

casting doubt on its explanatory role (McCloskey,  1991 ; Guest & Martin,  2023 ). 

6
 Instead,

inspired by N. Kim (  2021 ), I take the perspective of McCloskey (  1991 ), who suggests the
6

 ↑ for instance, the alignment in behavior could also be due to multiple realizability where two systems with
completely different processing mechanisms can still achieve the same input-output mapping (Quine,  1951 ;
Fodor & Pylyshyn,  1988 )
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usage of artificial neural networks (ANNs) as animal models,  

7
 where to the extent that there

are shared properties between the human and the animal system, a better understanding of

the semantic knowledge and processing in the animal system could offer insights about the

human system. Analogous to how animal models provide us with the advantage of perform-

ing manipulations such as lesions into specific parts of the brain connectome or histological

investigation of tissues—those that are otherwise non-trivial or even unethical to perform

with humans—ANNs also provide greater degrees of freedom to delve deeper into the ways in

which a system can allow for complex semantic behavior to emerge from low-level units. For

instance, one can have full control of the training environment of an ANN and even “switch

off” some of its neurons in order to simulate a lesion. The primary advantage of this view-

point is that once a set of models have been discovered to somewhat replicate the behavior

of the human system of interest, they can then be subjected to analyses as described above,

allowing one to disentangle relevant factors that are conducive to the target behavior from

those that are not. For instance, N. Kim ( 2021 ), whose dissertation focuses on compositional

generalization (Fodor & Pylyshyn,  1988 ), argues:

“[...] the goal is first to explore whether we can train a set of models that

generalize compositionally without building in or teaching them explicit rules

of symbol manipulation that we assume to underlie those generalizations, and

then identify factors or model components that contribute to constraining the

learning space.”

However, even before getting a better grasp at the level of performing experimental

manipulations, one must first lay down the groundwork in actually scrutinizing the network

for replicating the behavior of the human system of interest (here, semantic cognition). That

is precisely what this dissertation aims to do—propose contexts within which we can analyze

the extent to which LMs show behavior that is compatible with conceptual understanding.
7

 ↑ see also Toneva ( 2021 ), who takes NLP systems to be “model organisms” for language processing in the
human brain
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1.2 Structure of this dissertation

This dissertation consists of three parts, each corresponding to a chapter, and each answering

the research questions stated above. Before embarking on these chapters, I first summarize

important background information in Chapter  2 : distributional semantics (Harris,  1954 ;

Firth,  1957 ), modern language models based on the transformer architecture (Vaswani et

al.,  2017 ), related literature on the study of conceptual knowledge in language models, and

important terminology and phenomena observed in studies of human inductive generaliza-

tion. The main chapters are summarized as follows:

In Part 1 (Chapter  3 ), I develop analyses that answer RQ1. In particular, I propose

two tests that involved language processing, and when applied to humans yielded sensitivities

to typicality effects. In the first test, I develop stimuli that express taxonomic knowledge (a

robin is a bird), and analyze LM-derived measure of their truth verification. In the second

test, I use an important result in inductive generalization where humans showed sensitivities

to typicality effects, and study LM behavior in extending new property information for

individual items to their categories. Applying these tests to 19 different LMs, I found that

in both tests the LMs demonstrated non-trivially positive—but also modest—correspondence

with humans, showing some promise in encoding relevant conceptual knowledge, but also

suggesting that text-based exposure alone is insufficient to acquire typicality knowledge.

This chapter is adapted from:

Misra, K., Ettinger, A., & Rayz, J. (2021). Do language models learn typicality

judgments from text?. In Proceedings of the Annual Meeting of the Cognitive

Science Society, 43, pages 216–222.

Part 2 (Chapter  4 ) focuses on RQs 2.1 and 2.2. Here, I propose COMPS, a collection

of minimal pair sentences that jointly tests pre-trained language models on their ability to

attribute properties to concepts and their ability to demonstrate property inheritance behav-

ior. Analyses of 29 different LMs on COMPS reveal that they can easily distinguish between

concepts on the basis of a property when they are trivially different, but find it relatively

difficult when concepts are related on the basis of nuanced knowledge representations. Fur-

thermore, LMs can demonstrate behavior consistent with property inheritance to a great
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extent, but fail in the presence of distracting information, which decreases the performance

of many models, sometimes even below chance. This lack of robustness in demonstrating

simple reasoning raises important questions about LMs capacity to make correct inferences

even when they appear to possess the prerequisite knowledge. This chapter is adapted from

Misra, K., Rayz, J., & Ettinger, A. (2023). COMPS: Conceptual Minimal Pair

Sentences for testing Robust Property Knowledge and its Inheritance in Pre-

trained Language Models. In Proceedings of the 17th Conference of the Euro-

pean Chapter of the Association for Computational Linguistics, pages 2928–2949,

Dubrovnik, Croatia. Association for Computational Linguistics.

In Part 3 (Chapter  5 ), I present a framework that simulates inductive generalizations

using the representations of pre-trained language models. This framework operationalizes in-

ductive generalization as the behavior of an LM after its representations have been partially

exposed (via gradient-based learning) to novel conceptual information. To simulate this

behavior, the framework uses LMs that are endowed with human-elicited property knowl-

edge, by training them to evaluate the truth of sentences attributing properties to concepts.

Using this framework, I analyze the extent to which LMs demonstrated 13 different em-

pirical regularities that have been observed in human inductive generalization literature.

The findings suggest that while LMs can demonstrate sensitivities to hierarchical structure,

conceptual similarity, diversity, and monotonicity, they were unable to capture typicality

effects, context specificity, and demonstrate generalization behavior that is compatible with

pragmatic reasoning. Importantly I found pre-training (i.e., acquisition of distributional se-

mantic knowledge) to be the prime driver of the successes of the models, and at the same

time also insufficient to result in other important behavior indicative of successful conceptual

abstraction. This chapter greatly modifies content presented in:

• Misra, K. (2022). On semantic cognition, inductive generalization, and language

models. In Proceedings of the AAAI Conference on Artificial Intelligence 36(11), pages

12894-12895.
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• Misra, K., Rayz, J., & Ettinger, A. (2022). A Property Induction Framework for Neu-

ral Language Models. In Proceedings of the Annual Meeting of the Cognitive Science

Society, 44, pages 1977–1984.

Finally, in Chapter  6 I summarize findings from the three parts, discuss specific and

broader limitations of the research program laid out in this work, and sketch proposals for

future work to bridge artificial intelligence and cognitive science.
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2. BACKGROUND

In this chapter, I briefly review important literature spanning computational linguistics, en-

gineering, and cognitive science, which form the theoretical and methodological background

for the dissertation.

2.1 Distributional Semantics and Language Models

The distributional semantics (DS) approach offers a “usage-based” perspective of word mean-

ing, and states that a word’s meaning can be characterized by the meanings of words that

occur in its observed linguistic contexts (Lenci,  2008 ; Erk,  2016 ; i.a.). The origins of this

approach can be traced back to American structuralists (Harris,  1954 ) as well as British lex-

icographers (Firth,  1957 ), who collectively put forth the so-called distributional hypothesis.

Computationally, DS has been operationalized using vector-space models (VSMs), that—as

their name suggests—represent words numerically using continuous vectors of real numbers,

learned from (typically large) text corpora. Regardless of the method used to construct

such vectors, a hallmark consequence of building VSMs is that vectors of words that are

related (e.g., cat-dog, or swim-swam, etc.) tend to be similar in vector space (Landauer &

Dumais,  1997 ; Mikolov, Sutskever, et al.,  2013 ; i.a.). That is, by relying on the distribu-

tional properties of a word’s form, VSMs tend to approximate and aggregate the myriad of

relations that the word takes part in, as reflected in the text corpus. Vector space models of

distributional semantics have come a long way—from the earliest boolean vector representa-

tion model of Spärck-Jones ( 1964 ), to the latent semantic analysis (LSA) model developed

by Landauer and Dumais (  1997 ), to the introduction of neural network-based vector-space

models (Mikolov, Sutskever, et al.,  2013 ; Mikolov, Chen, et al.,  2013 ; Pennington et al.,

 2014 ) to finally the present groundbreaking advances made by language models (e.g. Devlin

et al.,  2019 ; Peters et al.,  2018 ; Radford et al.,  2018 ) that continue to scale in their size and

performance. With the reemergence of connectionism, now re-branded as Deep Learning

(LeCun et al.,  2015 ), neural networks have now become a staple model for learning VSMs.

Typically, a neural network based model maps words to randomly initialized dense vectors—

known as embeddings—which are then updated (along with the rest of the neural-network’s
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parameters) to maximize the statistics of a given text corpus. For instance, earlier neural-

network based VSMs would be learned by optimizing simple feed-forward networks to either:

(1) predict a word given a window of h words around it (Mikolov, Sutskever, et al.,  2013 ); (2)

predict the words that occur in a window of h words, given a target word (Mikolov, Chen,

et al.,  2013 ); or (3) encode global co-occurrence statistics between words (Pennington et al.,

 2014 ). As a result, the input weight matrix of the trained neural network, which projects

words onto an n-dimensional space, forms the representation for each word, resulting in a

vector-space. Building on the success of neural network-based models of distributional se-

mantics, recent work has reconciled the many different ways of learning of word distributions

using a more general data-fitting task known as ‘language modelling,’ the goal of which is to

predict a word given either unidirectional or bidirectional context. 

1
 More formally, language

modeling is the task of assigning likelihoods to sequences of words. Borrowing notation from

the study of formal languages, let V be a finite set of words in a language, and V∗ be the

infinite set of sequences of the words in V , then a language model (LM) specifies a function

LM : V∗ → R that assigns probabilities to sequences in V∗—let Si ∈ V∗ be an n-length

sequence of words from V , Si = (w1, w2, . . . , wn), the goal of a language model is to estimate:

LM(Si) = p(Si) = p(w1, . . . , wn) (2.1)

Using the chain rule of probability, the above equation becomes:

LM(Si) = p(w1)× p(w2 | w1)× · · · × p(wn | w1, . . . , wn−1), (2.2)

That is, the task of language modeling essentially involves treating sentences as sequences

of words, and estimating the probabilities of words in context to assess the likelihood of a

sentence. In doing so, LMs essentially answer the question about how statistically plausible

a given sequence of words is in the language, the data of which they are trained on. By defi-

nition, there are no architectural constraints placed on LMs, so in principle, any mechanism
1

 ↑ unidirectional context refers to the sequence of words that appear either to the left or right of the predicted
word (left in English), e.g., ‘I was reading a ’ Bidirectional contexts on the other hand involve words
present in both directions of the predicted word, e.g., ‘I was a book.’
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that operates over sequences can be used to estimate p(Si). However, almost all LMs today

are trained using the transformer architecture (Vaswani et al.,  2017 ), the development of

which has seen unforeseen breakthroughs in NLP and AI. As such, transformer based LMs

are perhaps the strongest computational models of distributional semantics at the time of

writing, and are therefore the main subjects of study in this dissertation. In what follows, I

describe the practice of language modeling using transformers in more detail.

2.1.1 Language Modeling using Transformers

Transformers (Vaswani et al.,  2017 ) are sequence models built on the concept of attention

(Bahdanau et al.,  2014 ). In the context of sequence modelling, attention is a mechanism

that constructs representations of a given time-step by informing it by a weighted combina-

tion of the representations that represent the time-steps on which the current time-step is

conditioned. For example, in a left-to-right sequence model, the tth word is predicted by the

words that precede it (w1, . . . , wt−1), and therefore the hidden state representation of wt is

constructed using the hidden states of the previous words, each of which is weighted by its

interaction with the input at the current time-step (usually additive or dot-product based).

This interaction is also referred to as the process of “attention,” and since the weights add

up to 1, they are collectively called the “attention distribution.” Attention is an useful mech-

anism in sequence-learning as it enables long-range interactions between representations,

thereby facilitating better encoding of long-distance dependency into the model. It has seen

several successes in application to LSTM (Hochreiter & Schmidhuber,  1997 ) and GRU (Cho

et al.,  2014 ) architectures, as well as their bi-directional counterparts. With the transformer

architecture, Vaswani et al. ( 2017 ) take a drastic step and train a model that does away with

recurrence and is instead completely reliant on attention. While the original transformer

architecture was an encoder-decoder network trained to perform machine-translation, it can

also be used as a language model – e.g., GPT2 (Radford et al.,  2019 ) is a decoder-only

transformer LM, while BERT (Devlin et al.,  2019 ) performs a version of language modeling

using the encoder alone, while more recent works use the entire encoder-decoder setup to
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perform language modeling. The transformer architecture revolves around two main ideas

that have now become mainstay in much of sequence-modeling within NLP:

Multi-headed Self-Attention

Self-attention is a component within transformers that relates different positions of the se-

quence and composes them together in order to form the representation of a specific position,

allowing the model to learn long-range dependencies at every layer. For a given input con-

sisting of n tokens, self-attention is described as an interaction between a token’s query

representation to a set of n key-value representation pairs. Specifically, each token’s input

representation (R1×d) is projected to three individual vectors: (1) queries that represent the

focal word being operated on, packed together into a matrix Q ∈ Rn×dk ; (2) keys that repre-

sent the word that the query is being related to, packed together into a matrix K ∈ Rn×dk ;

and (3) values that correspond to words that the keys refer to, packed together into a matrix

V ∈ Rn×dv . The attention vector of a single token, then, is a weighted sum of the value vec-

tors, where the weight is calculated as a softmax transformation of the scaled dot-product

between the queries and the keys (for this reason, it is also referred to as “scaled dot-product

attention”). Mathematically, the output representations (packed as a matrix, the row vectors

of which are representations for each token) formed by a single computation of self-attention

are computed as follows:

Attention(Q, K, V) = softmax
(

QK>
√

dk

)
V (2.3)

A standard transformer architecture often employs multiple such attention components, each

of which is referred to as an attention “head.” Multiple such attention heads are concatenated

and then linearly projected to produce the final output (Rn×d) of the multi-headed attention

module in a transformer layer:

MultiHead(Q, K, V) = [head1; . . . ; headh]Wo,

where headi = Attention(QWQ
i , KWK

i , VWV
i ).

(2.4)
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(a) A transformer layer. Adapted and
modified from Misra ( 2020 ). Original ar-
chitecture by Vaswani et al. (  2017 ).

(b) The Scaled Dot-Product attention depiction for com-
puting a single row of the output of an attention head.
Similar computation is performed for all input tokens to
make up the entire head which is then concatenated with
the other h− 1 heads (see Equation (  2.4 )).

Figure 2.1. Components of the Transformer Architecture (Vaswani et al.,  2017 ).

Note that the above equations involve a slight abuse of notation, i.e., here Q, K, V ∈

Rn×d (different from eq. ( 2.3 ) which describes general computation), WQ
i ∈ Rd×dk , WK

i ∈

Rd×dk , WV
i ∈ Rd×dv , and Wo

i ∈ Rhdv×d. Note that in left-to-right models the dot-products in

the attention computation for all words to the right of a given input word are set to −∞

so that the prediction of a given word is always conditioned on words to its left. This will

be different for other variations of the language modelling task, as we will see in the next

section. Figure  2.1b depicts the attention operation for a single row in the output of an

attention head.

Positional Encodings

Instead of using recurrence, transformers incorporate sequential information by using po-

sitional encodings – embeddings that exclusively have a 1-1 mapping with the position of

a given token (i.e., the position encoding of any word in the second position is always the
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same). These embeddings are of the same dimension as the word embedding: d, so that the

two can be summed in order to infuse the word’s distributional information with information

about its position. Specifically in Vaswani et al. ( 2017 ),

pi =


sin(i/100002dim/d) if dim is even

cos(i/100002dim/d) if dim is odd
(2.5)

h0
i = e(wi) + pi, (2.6)

where h0
i represents the input representation (of the ith word) to the first transformer layer,

e(wi) represents the embedding of the ith word, and pi is its positional embedding, and dim

is the dimension of a given p vector.

Using multi-headed attention and positional encodings, the computations of a single

transformer block can be summarized by the following equations:

h0
i = e(wi) + pi (2.7)

x̃` = MultiHead(h`−1, h`−1, h`−1) (2.8)

x` = LayerNorm(x̃` + h`−1) (2.9)

h̃` = FFN(x`) (2.10)

h` = LayerNorm(h̃` + x`), (2.11)

where LayerNorm stands for the layer normalization operation (Ba et al.,  2016 ), and FFN

is a standard two-layer feed-forward network with an arbitrary hidden dimension. To perform

language modeling—predicting words in context—the output of the last layer at each step

is projected over all the tokens in the model’s vocabulary, resulting in unnormalized logits

which can then be converted into probabilities. Figure  2.1a depicts a single transformer

layer.
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The advent of efficient hardware and compute combined with engineering progress in

better LM architectures—part of which is summarized above—has brought about a stan-

dard paradigm in the NLP field that proposes to learn “general” language representations

by training LMs on large corpora, thereby encoding rich distributional information in their

representations which can be adapted for specific NLP applications such as question answer-

ing (Rajpurkar et al.,  2016 ), sentiment analysis (Socher et al.,  2013 ), etc. The language

modeling objective (of maximizing the probability of a given piece of text) in particular is a

convenient way for training the architectures discussed above since it has the unique prop-

erty of leveraging the statistical environment of text itself for supervision, circumventing the

need to collected labelled data, and allowing models to scale both in terms of expressivity

and training data. By being trained on large corpora using the language modeling objective,

models are able to learn highly sophisticated distributional information about words and

their contexts and represent them in their underlying parameters. In doing so, the repre-

sentations of these models provides a useful prior that allows them to achieve impressive

performance when fine-tuned on engineering applications (Howard & Ruder,  2018 ; Peters

et al.,  2018 ; Devlin et al.,  2019 ). As a result, such models are often also called “pre-trained”

language models. The pre-train then fine-tune paradigm is ubiquitous in the current state of

NLP research. A number of different pre-training schemes and language modeling objectives

have been proposed

Autoregressive Language Modeling

The most straightforward way of performing language modeling is to predict words in a

unidirectional manner, 

2
 where the probability of a word (wt) is estimated as:

pθ(wt | w1, . . . , wt−1), (2.12)

2
 ↑ this was in fact the only “type” of language modeling that existed, until 2018, when Devlin et al. released

the BERT pre-print. Note that language modeling as a task has been around much longer than the pre-
training paradigm. In fact, its development can be traced back to Shannon (  1948 ).
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where θ represents the parameters of the model. This method is especially convenient since it

allows generating natural language, by means of conditional sampling. Examples of models

that are trained using this objective include the GPT family of models (Radford et al.,  2018 ;

Radford et al.,  2019 ; Brown et al.,  2020 ) and Transformer-XL (Dai et al.,  2019 ), both of

which use the decode portion of the transformer architecture and mask the attention values

for words to the right of a given predicted word.

Masked Language Modeling

Diverging from the traditional language modeling task, models trained using the masked

language modeling objective, introduced in the BERT model (Devlin et al.,  2019 ). Instead

of predicting words by conditioning on words to their left (unidirectionally), masked language

modeling specifies an objective where words are predicted by conditioning on all words to

their left and right, i.e., it allows for bidirectional modeling of context. This setup closely

resembles Cloze-tasks (Taylor,  1953 ). In general masked language models operate using a

special ‘mask’ token, which specifies the position of the word to be predicted. For instance,

BERT (Devlin et al.,  2019 ) uses the following representation of an input during training.  

3
 

[cls] The quick brown [mask] was jumping over the lazy dog. [sep]

Mathematically, masked language models estimate the following measure:

pθ([mask] = wt | W\t), (2.13)

where W\t denotes the set of words in the input that exclude the tth position. In addition

to the masked language modeling objective, BERT was also trained on the ‘Next Sentence

Prediction’ task—where it predicts if in a pair of sentences, the second sentence sequentially

follows the first one. This was primarily motivated by the fact that several NLP tasks

require the modeling of the relationship between two pieces of text, such as natural language
3

 ↑ in addition to the [mask] token, BERT also uses two other special tokens, [cls] as the token to represent
the entire sentence, during fine-tuning, and [sep], to denote sentence boundaries.
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inference (Bowman et al.,  2015 ), and reading comprehension (Rajpurkar et al.,  2016 ). In

addition to BERT, several other models have been proposed: RoBERTa (does away with the

next sentence prediction task, and optimizes the BERT training process; Liu et al.,  2019 ),

ALBERT (replaces the next sentence prediction task with a sentence ordering objective, and

reduces overall parameter count by sharing parameters across layers; Lan et al.,  2020 ), etc.

2.2 Conceptual Knowledge in Minds and Machines

The goal of this dissertation is to characterize the extent to which language models, perhaps

the most powerful implementations of distributional semantics, can demonstrate conceptual

understanding—the collection of behaviors that are consistent with successful mapping of

words to broader conceptual structures that go beyond what is provided to them in their

input. Versions of this goal have been pursued numerous times in computational linguistics

and natural language processing. Here, I review important methodological contributions

related to this overall goal made in the past few years.

Past enquiries into semantic and conceptual knowledge encoded in distributional models

have primarily focused on testing the extent to which the models encode ‘properties’ of noun

concepts—symbolic expressions (often represented using natural language—e.g., ”can fly”)

that correspond to attributes or features of the concept. For instance, it would be desirable

for the representation of cat to encode information that is consistent with properties such

as has whiskers, has paws, is a mammal, is an animal, has a tail, etc. Such investigations are

especially useful because 1) distributional semantic models often learn dense representations

for words that are otherwise uninterpretable, so having a mapping from these representations

to a space of symbolically meaningful representations can improve our understanding of the

aspects of meaning that distributional semantic models are able to capture; and 2) properties

provide a natural pathway to make contact with broader grounded conceptual representa-

tions that go beyond the word’s form. Erk (  2016 ) describes an interesting case study for how

distributional evidence can support noisy and probabilistic property inferences about con-

cepts denoted by words. Erk uses the example of an alligator and sketches out experiments

to make probabilistic inferences about its properties by comparing its vector representation
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against that of crocodile and trout, whose properties are assumed to be known. She concludes

that because distributional data keeps track of the various predicates for words as well as

their selectional restrictions, they may provide an approximate and uncertain account of

property knowledge. Contemporary works that have been proposed since then fall primarily

under two distinct paradigms, focusing on different aspects of distributional semantic mod-

els (here restricted to sequence models such as LMs): (1) representational probing (Ettinger

et al.,  2016 ; Belinkov et al.,  2017 ; Adi et al.,  2017 ; Conneau et al.,  2018 ; Hupkes et al.,

 2018 ), which investigates the properties encoded in the vector space of the model; and (2)

behavioral evaluation, which leverages the fundamental task of language modeling, where

models are deemed to encode meaning sensitive capacities if they demonstrate predictive

behavior that is consistent with correct semantic knowledge. In what follows I describe both

these paradigms, discuss their advantages and shortcomings, and then propose means to go

beyond simple property knowledge, leading into inductive generalization, which stands out

as the distinct contribution of this thesis to the study of semantic knowledge of language

models.

The premise of probing methods is to answer the question: “Can the representational

space of a given model make a particular property readily accessible to a minimal classifier?”

The experimental procedure of the probing paradigm resembles that of a typical classification

problem. First, the researcher identifies the property of interest, e.g., has wings. Next, the

researcher collects samples (in this case, words) that may or may not possess the property,

e.g., robin, crow, cheetah, table, etc., and splits them into disjoint experimental sets (train,

validation, test). Then, a ‘minimal’ classifier referred to as a probe  

4
 is trained on the training

split, taking as input the words’ meaning representations corresponding to the model under

investigation, and classifying them accordingly (true vs. false with respect to the concept

possessing the property in this case). Finally its performance is evaluated on the disjoint

test set to form conclusions about how well the property’s information is reflected in the

input word representation. This allows a straightforward means to compare the quality of

representations learned by the model—by simply swapping input representations provided to
4

 ↑ usually a multi-layer perceptron or logistic regression classifier. In some cases also called as a diagnostic
classifier (Adi et al.,  2017 ; Hupkes et al.,  2018 ).
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the probe (Tenney et al.,  2019 ). Probing has been extremely popular in the interpretability

sub-field of NLP, having been used to understand the extent to which language models and

other sequence encoders make available in their representations grammatical features (Hewitt

& Manning,  2019 ; Klafka & Ettinger,  2020 ), function word information (empty citation),

phrasal composition (Yu & Ettinger,  2020 ), entity states (B. Z. Li et al.,  2021 ), etc.

From the perspective of conceptual knowledge, probing classifiers have also been used to

decode the extent to which vector space models of distributional semantics make properties

of everyday concepts available (Rubinstein et al.,  2015 ; Lucy & Gauthier,  2017 ; Sommerauer

& Fokkens,  2018 ), and this has since been extended to also analyze language model repre-

sentations (N. Li et al.,  2021 ; Derby et al.,  2021 ). In this case, a separate probe (usually a

multi-layer perceptron or SVM classifier) is trained for every individual property, and the

probe’s test set performance is used to conclude about how well the specific property’s infor-

mation is encoded within the model’s representations. While probing has revealed quite a bit

about what sequence mdoels such as LMs are able to encode and make available, its use as a

method for diagnosing conceptual properties from vector representations of LMs can suffer

from multiple limitations—ones that are beyond existing methodological debates surround-

ing the paradigm at large (Ravichander et al.,  2021 ; Belinkov,  2022 ), which I summarize in

what follows.

First, probing classifiers test for property knowledge in an implicit manner—i.e., it is the

probe that detects the presence and absence of the target property from a vector representa-

tion. This could be problematic since (1) many properties are often perfectly correlated with

each other and therefore would reward/penalize the model equally regardless of the amount

of variability in their genuine knowledge of the different correlated properties (i.e., a model

could perfectly capture the property of being a mammal but poorly capture the property of

which animals lay eggs, which in reality is almost perfectly correlated with the former, and

yet the probe might assign the same performance to the model); and (2) the probe might

just pick up on something spurious in the vector space that happens to be correlated with

the property in the training data (of the probe), which again would misrepresent the actual

knowledge present in the model. Next, probing requires supervision, and therefore unfortu-

nately restricts the space of properties that can be tested for, which is an issue since many
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properties are often idiosyncratic and core defining a concept (e.g., zebras having striped

patterns on their bodies). Finally, LMs’ encoding of conceptual knowledge is likely to be

distributed across neurons/units that span multiple layers and may require all of these units

to be jointly activated (hold some value) in order to make the property knowledge available.

As a result, using probes on isolated, intermediate states may not genuinely test for seman-

tic knowledge elicited by the input concept, leading to unfaithful conclusions. Note that

this issue is expected to be encountered largely for language model-based instantiations of

distributional semantics, since classical models are often single-layer and therefore only have

one single representation.

Diverging from the probing paradigm, which focuses on individual representations at a

time, approaches that fall under behavioral evaluation treat the entire model as one large

black-box (Alishahi et al.,  2019 ) and design tests that target specific linguistic behavior.

These behavioral methods primarily rely on the fundamental ability of language models to

perform word prediction in context, and as such design “incomplete” stimuli that are used

as inputs to the model of interest, the predictions of which are then analyzed to summarize

its performance. For instance, consider the problem of subject-verb agreement, where the

goal is to test the extent to which models’ predictions for a verb-expecting input context

(see ( 1 )) agree with that of the subject (penguins).

(1) The penguins by the iceberg

Testing LMs on multiple such stimuli can thereby reveal the extent to which they encode

simple hierarchical structure of English language sentences. Similar to the above example,

behavioral evaluations (Warstadt et al.,  2020 ) might often also include pairs of minimally

differing input, one of which violates the rules of the given language, and measure the extent

to which models’ sequence probabilities for acceptable inputs such as (  2a ) is greater than

that for paired unacceptable inputs such as ( 2b ).

(2) a. The robins next to the tree are dancing.

b. The robin next to the tree is dancing.
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Regardless of the particular method used, there have been numerous accounts of behavioral

testing that have brought about plenty of insight into the linguistic capacities of language

models. These range from a plethora of syntactic analyses (Gulordava et al.,  2018 ; Futrell

et al.,  2019 ; Warstadt et al.,  2020 ; Hu et al.,  2020 ), to tests for negation and semantic roles

(Kassner & Schütze,  2020 ; Ettinger,  2020 ), to a range of pragmatic tests (Ettinger,  2020 ;

Davis & Van Schijndel,  2020 ; Pandia et al.,  2021 ; Parrish et al.,  2021 ; Schuster & Linzen,

 2022 ; S. J. Kim et al.,  2022 ), etc. A modern reinterpretation of this paradigm has resulted

in the now ubiquitous prompting methods that allow the querying of natural language in-

structions and/or few-shot examples of ground-truth input-output pairs to models such as

GPT3 (Brown et al.,  2020 ), allowing them to demonstrate complex reasoning behavior (Wei,

Wang, et al.,  2022 ).

Behavioral methods seem to alleviate many of the concerns that I raised in the context

of the probing paradigm. First, behavioral testing allows us to explicitly query for the pre-

cise knowledge we are interested in—i.e., we can simply query the model to complete the

input “a zebra has ” with the appropriate knowledge (stripes). Second, since behavioral

testing is completely unsupervised, it places no restrictions on the types of properties/con-

ceptual knowledge being tested, unlike probing. Finally, since behavioral tests utilize the

entire model, knowledge that is distributed across multiple different can readily be activated

without any constraints, and contribute to semantic behavior.

As a result, many recent works have adopted the behavioral paradigm in order to test

models for conceptual and property knowledge. Notably, this was pioneered by the “Lan-

guage Models as Knowledge Bases” work by Petroni et al. (  2019 ). Since then, researchers

have proposed a range of behavioral tests and stimuli that directly query for semantic knowl-

edge of models (Weir et al.,  2020 ; Shwartz & Choi,  2020 ; Ravichander et al.,  2020 ; Hanna &

Mareek,  2021 ; Abdou et al.,  2021 ; i.a.). Importantly, these tests largely follow the original

single-context examples, where models are queried using cloze test examples (Taylor,  1953 )

such as:

(3) a. a can fly.

b. penguins are .
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c. chair is a type of .

While these are certainly non-trivial improvements over the probing paradigm, behavioral

testing of language models for conceptual knowledge—at least in the way done so far—has its

own drawbacks. Nearly every behavioral analysis of LMs that tests for conceptual knowledge

does so by using isolated input contexts such those as in (  3 ). Here, models are evaluated

positively if they successfully assign the target completion non-trivially positive probability.

However, without any other constraints, these models can get away with predicting, for e.g.,

“sparrow” for (  3a ) while also assigning greater probability to “dog” than to other concepts

that can fly. Conclusions derived using such isolated examples, then, cannot be considered as

fully robust. Relatedly, such isolated cloze contexts often involve queries that have multiple

correct answers. That is, the relations that are being tested as part of the property phrase

are often many-to-many—e.g., in (  3b ), the can be filled with anything ranging from

birds, animals, vertebrate to even subjective evaluations such as cute. 

5
 This can further bias

the conclusions one can draw, since they will be critically dependent on what the researcher

has set to be the correct answer.

Despite their clear limitations and trade-offs, both the probing and behavioral paradigms

have brought about important insights with respect to the knowledge that pre-trained lan-

guage models are able to capture—both in their representations as well as their behavior.

High level conclusions from both lines of work suggest—almost convergently—that distribu-

tional semantic models can capture some properties substantially better than others, and

more often than not, these properties are taxonomic in nature—e.g., is a bird, is an

animal, is a type of furniture, etc (Rubinstein et al.,  2015 ; Weir et al.,  2020 ; Hanna

& Mareek,  2021 ). Properties often expected to be absent from text-only models, such as

those requiring a visual or sensory perception (is yellow in color, is heavy, etc.) were

often captured poorly. A potential explanation for the strong performance on taxonomic

properties could be that hyponyms and hypernyms are often highly likely to co-occur in the

same contexts, and are often also substitutable, and that this information can reasonably

be captured by models that exclusively encode distributional statistics (Erk,  2016 ). These
5

 ↑ though this is likely to be universal.
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results are useful as they provide us with evidence for the kinds of knowledge that is clearly

captured by distributional semantic models, as well as areas where they might clearly be

lacking, thereby paving ways to build more robust systems.

The above line of research has shed considerable light on the abilities of LMs and dis-

tributional semantic models to capture static conceptual knowledge—associations between

concepts and their properties that LMs acquire from their training. This leaves open the

question of how this knowledge guides the models’ ability to plan, reason, and communicate

information about the world, which is an important functional property of human semantic

cognition (Carey,  1985 ; Rogers & McClelland,  2004 ; G. L. Murphy,  2002 ; Rips et al.,  2012 ).

I argue that knowledge of conceptual properties only scratches the surface of deeper investi-

gations into conceptual representations and meaning. A model that can successfully encode

and extract conceptual meaning should demonstrate behavior that goes beyond just captur-

ing static properties of concepts. That is, if a model is able to show evidence for storage

of conceptual knowledge but cannot show behavior that is consistent with this knowledge

(i.e., performing reasoning), then this raises clear doubts into the extent to which the model

genuinely possess knowledge about concepts it has encountered. Are these models simply

memorizing data or can they productively demonstrate useful generalizations? This question

is ever so relevant especially in modern times where it might often be intractable or even

impossible to have full characterization of a language model’s training data, 

6
 which leaves

open the alternative explanation that models are simply producing output that they might

have memorized from their training data, as opposed to showing generalization (though see

McCoy et al.,  2023 ). I therefore suggest that capturing properties may certainly

be necessary to show evidence of conceptual meaning, but it is not sufficient.

This argument is analogous to that of many cognitive scientists about the state of research

in categorization, a fundamental cognitive ability – while knowing a category is fundamental

to human semantic cognition, its primary purpose is to make inferences about novel items

(Smith & Medin,  1981 ; G. L. Murphy,  2002 ; Rips et al.,  2012 ; G. L. Murphy,  2016 ). There-

fore, testing for functional consequences of static conceptual information, such as reasoning,

can provide us with contexts that can advance our understanding of the extent to which
6

 ↑ e.g., as of June 14, 2023, OpenAI has still not disclosed what data GPT4 was trained on.
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distributional learning of word representations supports positive extraction and encoding of

conceptual meaning.

While a majority of the dissertation will primarily focus on reasoning behavior enabled

by conceptual knowledge, one important context within which we can study functional con-

sequences of capturing property information is that of typicality effects (Rosch,  1973 ,  1975 ).

In particular, the ability to encode properties of various concepts allows one to compare

concepts on the basis of how many properties they end up sharing. This, combined with the

hierarchical organization gives rise to graded measure of how well an object/item represents

its entire category. That is, category exemplars are considered to by typical members when

they have high family resemblance with the members of the category (Rosch & Mervis,  1975 ),

occur more frequently as instances of the category (Barsalou,  1985 ), and ‘fit the primary goal

of the category’ (Barsalou,  1985 ). For instance, in many western, English-speaking cultures,

robins are considered to be typical birds, while penguins are not. The existence of typicality

effects has been ubiquitous throughout numerous experiments dealing with categories (Rips

et al.,  1973 ; Rosch,  1973 ; Rosch, Simpson, et al.,  1976 ; Kelly et al.,  1986 ; Garrod & Sanford,

 1977 ; Osherson et al.,  1990 ), and as such is an important property of human conceptual or-

ganization/categorization. The next chapter delves deeper into the extent to which language

models can demonstrate typicality effects.

Going beyond typicality effects, perhaps an even more important and comprehensive

context that can shed light on deeper conceptual meaning extraction and use is inductive

generalization (Osherson et al.,  1990 ; Hayes & Heit,  2018 ), which allows humans to make

inferences on being partially exposed to novel information. For instance, encountering or

reading about buddy the dog allows one to make likely—but uncertain—inferences such

as he has paws, he can bark, has a tail, etc. Similarly, on learning that polar bears and

penguins share a novel property that one has never encountered before allows them to make

inferences about the property that go beyond available data—that perhaps other animals

that live in cold conditions also share that property. In fact, there are several different types

of inductive problems that humans encounter and solve on a daily basis (Kemp & Jern,  2014 ).

Importantly, researchers have assimilated multiple different phenomena that humans readily

show while making inductive inferences, each of which requires high level abstractions over
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conceptual structures (Rips,  1975 ; Osherson et al.,  1990 ; Heit & Rubinstein,  1994 ; Medin

et al.,  2003 ; Kemp & Tenenbaum,  2009 ; Kemp,  2011 ; Hayes & Heit,  2018 ). Therefore, one

important contribution of this dissertation is to propose analyses and tests for language

models that borrow from the principles of human inductive behavior.

In what follows, I zoom further into the topic of inductive generalization and discuss

ways in which it has revealed how humans deploy their acquired conceptual knowledge.

2.3 Inductive Generalization

A hallmark feature of the conceptual knowledge acquired by humans is its capacity to fa-

cilitate inductive generalizations—inferences that go beyond available data to project novel

information about concepts and properties (Osherson et al.,  1990 ; Chater et al.,  2011 ; Hayes

& Heit,  2018 ). Such inductive generalizations are also referred to as property induction

(Kemp & Jern,  2014 ). For example, our knowledge of taxonomic specificity is reflected when

we generalize a novel property of a concept (e.g., robins have T9 hormones) more strongly

to taxonomically close concepts (sparrows have T9 hormones) than to more taxonomically

distant concepts (tigers have T9 hormones). Inferences such as these are often interpreted as

a form of reasoning where a conclusion does not deductively follow from a premise (Kemp &

Jern,  2014 ; Feeney & Heit,  2007 ), and instead the reasoner makes inductive leaps in order to

process and generalize newly encountered information, by relying on its existing background

knowledge of concepts and properties.

Humans reason inductively on a daily basis—when learning meanings of new words

(Heibeck & Markman,  1987 ), predicting the trajectory of objects during motion (Spelke,

 1990 ), etc., and therefore the topic of induction is pervasive throughout the study of human

cognition. The importance of studying inductive reasoning is best highlighted by Tenenbaum

et al. (  2007 ), who describe inductive generalization (“inference”) as:

..a fundamental part of everyday life, and for cognitive scientists, a fundamen-
tal phenomenon of human learning and reasoning in need of a computational
explanation.
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The general principles of induction can be applied to a myriad of different problems in the

study of cognition. However, in this dissertation I consider a subset of the universe of induc-

tive problems (Kemp & Jern,  2014 ) that deal with knowledge of concepts and properties,

often collectively called category-based induction (Osherson et al.,  1990 ), property in-

duction (Gelman & Markman,  1986 ), or inductive generalization (Saxe et al.,  2019 ). I

will refer to these as inductive generalization throughout this dissertation.

Patterns of property induction observed in humans have shed a great deal of light on the

nature and organization of semantic cognition. For instance, early evidence from Gelman

and Markman (  1986 ) indicated a strong preference of children and adults, when making

generalizations about new and unfamiliar properties, to do so based on the structure of

biological taxonomies and category membership. Similarly, a number of researchers (see

Hayes et al.,  2010 ; Hayes & Heit,  2018 ; for a review) have assimilated various regularities that

have been robustly observed to occur in humans’ projection of novel information—ranging

from taxonomic phenomena such as typicality, diversity, monotonicity, etc. (Osherson et al.,

 1990 ) to sensitivity towards salient property knowledge (Heit & Rubinstein,  1994 ; Medin

et al.,  2003 ).

Based on the above experimental evidence, many researchers posit that property in-

ductions made by humans are governed by domain-specific knowledge (Carey,  1985 ; G. L.

Murphy & Medin,  1985 ; G. L. Murphy,  1993 ) that is activated by the novel stimuli, which

provides the basis of generalization. For instance, when given the novel information “dol-

phins have blickets,” an agent that activates knowledge about biological taxonomies is likely

to project it to other mammals, while an agent that activates behavioral knowledge is more

likely to project it to fishes instead. Due to its emphasis on domain-specificity, this perspec-

tive is therefore likely to challenge computations that arise from domain-general learning

systems (Rogers & McClelland,  2008 ). This is relevant because in a way, LMs can be inter-

preted to be domain-general—they are generally trained on a diverse set of data  

7
 that span

multiple domains, lack any explicit semantic/structural inductive bias, and their learned

representations generally perform better when they are specifically adapted for a task (e.g.,
7

 ↑ for instance, BERT is trained on Wikipedia articles and texts in novels.
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Devlin et al.,  2019 ; Gururangan et al.,  2020 ). Human-like property induction can therefore

be potentially challenging for LMs, and therefore warrants thorough exploration.

On the basis of goals, inductive generalizations such as the ones described above are

fundamentally different from the task of ‘Natural Language Inference’ (Bowman et al.,  2015 ;

Williams et al.,  2018 ; NLI in short), also called ‘Recognizing Textual Entailment’ (Dagan

et al.,  2005 ; Dagan et al.,  2013 ; RTE in short). In brief, NLI is the task of predicting the

logical relationship between two sentences (premise and hypothesis) – either the premise

entails the hypothesis, or it contradicts it. 

8
 There have been numerous iterations of the

NLI task over the years, each involving a dataset of sentence pairs along with the ground

truth label, typically collected by crowdsourcing. While early versions of the task instructed

workers to infer whether the hypothesis is “likely true” given a premise (Dagan et al.,  2005 ),

present-day NLI tasks have used phrases like “definitely true” in their instructions (Bowman

et al.,  2015 ). Despite the differences in the instructions, the data in these tasks often resemble

deductive inferences in which the relation between a premise and a hypothesis is entailment

iff. the hypothesis is true when the premise is true. This is contradictory to the kinds of

reasoning demonstrated during property induction, which necessarily focuses on likely but

uncertain inferences, given a premise. Therefore, an LM-based account of property induction

allows the study of human-like generalization (Linzen,  2020 ) that is yet to be studied in NLP

systems.

2.3.1 Terminology

Inductive generalization in humans is often studied experimentally through the use of in-

ductive arguments, which are often represented in the following premise-conclusion setup, as

popularized by Osherson et al. (  1990 ):

Robins have sesamoid bones.

Canaries have sesamoid bones.
(2)

8
 ↑ in some cases, there is also a third type of relation, labelled as neutral. In such cases, the exact relationship

between the premise and the hypothesis cannot be discerned.
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Argument  (2) is read as: “Robins have sesamoid bones. Therefore, canaries have sesamoid

bones.” In this notation, one or more premise(s) are written above the line, followed by

a single conclusion, written under the line. Arguments with conclusions involving two or

more concepts will be written separately. The subject of the premise sentence (Robin, in

this case) is referred to as the premise concept (similarly, if there are multiple premises, we

have a set of premise concepts), while that of the conclusion is called the conclusion concept.

Representing inductive generalization in such a manner allows us to use the construct of

“argument strength,” which in most cases quantifies the degree to which a human subject’s

belief in the premise statements strengthens their belief in the conclusion (Osherson et al.,

 1990 ). This then lets us compare different arguments in controlled experiments to shed light

on regularities and phenomena typically observed in how humans reason inductively.

Inductive arguments such as argument  (2) generally take two forms, based on the tax-

onomic status of the premise and the conclusion concepts. When the conclusion concept is

strictly a taxonomic parent of the premise concept (at arbitrary levels of a specified taxon-

omy), we have a general argument:

Tigers use the Dihedron neurotransmitter.

Felines use the Dihedron neurotransmitter.
(3)

When this is not the case, we have a specific argument:

Tigers use the Dihedron neurotransmitter.

Whales use the Dihedron neurotransmitter.
(4)
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Sometimes, an argument may contain a premise concept that is not included (taxonomically)

by the conclusion concept. In such a case, we have a mixed argument: 

9
 

Tigers use the Dihedron neurotransmitter.

Ostriches use the Dihedron neurotransmitter.

All mammals use the Dihedron neurotransmitter.

(5)

An important component of property induction is the type of property being used in argu-

ments. In many cases, researchers aim to control the type of novel properties provided to

participants, by using blank properties – that are true but assumed to be “expert knowledge”

and are therefore unknown to participants, or created synthetically. The primary reason be-

hind this is to force participants to use their knowledge of the relations between the premise

and conclusion concepts/categories to make generalizations (G. L. Murphy,  2002 ).

In some experiments and analyses, we will use arguments that deal with multiple prop-

erties of the same—usually, novel—concept. These instances are often referred to as object

generalization in the taxonomy of inductive problems proposed by Kemp and Jern (  2014 ):

A wug has no legs.

A wug can swim.

A wug has fins.

(6)

A special case of object generalization, known as category-to-feature inference (Estes,

 1994 ) or property inheritance (Sloman,  1998 ; G. L. Murphy,  2002 ), involves inferences that

are made for an entity whose higher level category is known/given, allowing recursive access

to a wealth of knowledge via the hierarchical structure of concepts. For instance, knowing

implicitly that cats have paws allows us to make inferences that endow the property to

cookie, a novel cat that we might encounter (see argument  (7) ). This kind of reasoning

has been ubiquitously studied by many classical theories of semantic memory (see Smith &
9

 ↑ note that ostriches are not mammals.
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Estes,  1978 ; for a review), and plays a generally important role in the study of knowledge

representation and concept organization.

cookie is a cat.

cookie has paws.
(7)

2.3.2 Touchstone Phenomena in Human Inductive Generalization

Research in human inductive generalization typically focuses on the relative argument strength

of inductive arguments as judged by human participants in an experimental setting. Such

experiments often provide participants with pairs of inductive arguments and task them

to select the argument the conclusions of which appeared to be more believable given the

premise (Rips,  1975 ; Osherson et al.,  1990 ). Alternatively, participants could also directly

be asked to provide a scalar value that indicates the extent to which the conclusion is likely,

given the premise (Heit & Rubinstein,  1994 ). By tracking patterns over multiple induc-

tive trials, researchers have characterized a number of phenomena that typically deal with

people’s knowledge about concepts and their properties, and drive induction in humans. In

what follows, I summarize hallmark phenomena in human induction, assimilated by cognitive

scientists over the years.

Phenomena based on Taxonomic Similarity

We begin with induction phenomena based on the hierarchical organization of concepts.

Here, generalization of newly-observed properties are made across taxonomies. A taxonomy

can be defined as a tree-like data structure, whose nodes represent concepts (or categories),

and edges represent a special relation called ‘is_a,’ which generally refers to a subsumption

relation – e.g., a dog is_a canine suggests that the concept of canine contains the concept

of dog. The nodes of a taxonomy at the same level often form a particular type or ‘kind’,

for instance canine and feline are often at the same level (under carnivore), and at

each level the concepts get progressively more specific than the ones “above” them. At the

very top lies the most general node (e.g., entity in case of WordNet). If in a taxonomy,
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carnivore

canine

dog wolf fox

feline

cat big cat

tiger lion cheetah leopard

Figure 2.2. An example of an incomplete taxonomy of a few carnivore
concepts, taken from WordNet (Miller,  1995 ).

concept a is at a higher level than concept b, then we say that a is the superordinate of b,

and b is the subordinate of a. Superordinates and subordinates are also called hypernyms

and hyponyms in linguistics (Jurafsky & Martin,  2020 ).

Taxonomies have a privileged status in the study of concepts and semantic cognition in

general – from inquiries into the nature of semantic memory (Collins & Quillian,  1969 ) to

studies on graded, typicality effects (Rosch,  1975 ) and the ‘basic-level’ (Rosch, Mervis, et al.,

 1976 ; Rosch & Lloyd,  1978 ), to the word learning research by Xu and Tenenbaum (  2007 ),

inter alia. In the context of property induction, Gelman and Markman (  1986 ) were one of

the first ones to observe the role of taxonomic relations emerge in patterns of induction in

children and adults. In their experiments, Gelman and Markman first displayed a picture

of a flamingo to their subjects and informed them that it had a “right aortic arch,” then

displayed a picture of a bat and told them that it had a “left aortic arch.” The subjects

were then shown a picture of a blackbird (that visually resembled the bat more than it did

the flamingo), and were asked whether it had a right or a left aortic arch. The subjects

attributed the “right aortic arch” to the blackbird, indicating a taxonomic bias in their

inductive judgments. Building on research by Gelman and Markman (  1986 ), Osherson et al.

( 1990 ) use the notion of similarity to describe their observations in a landmark paper that

documented 13 separate induction phenomena related to taxonomies. While Osherson et al.

do not explicitly define what they mean by similarity – a likely candidate could be property
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overlap (Tversky,  1977 ), 

10
 especially in the context of this dissertation. All 13 phenomena

compiled by Osherson et al. ( 1990 ) deal with taxonomic relations between concepts involved

in the premise and conclusion portion of inductive arguments. For instance, sometimes the

phenomena would involve the generalization from specific categories to a general category

that subsumes them (i.e., projections of a novel property from dog to the entire canine

category), while sometimes it may involve the generalization between concepts at similar

levels (for instance, generalization of a new property from lion and mice to wolf). The

following are the various phenomena reported by Osherson et al. (  1990 ) in their work:

Premise Typicality The phenomenon of typicality suggests that certain members of a cat-

egory are more representative to it, than are others (Rosch,  1975 ). For instance, apple

may be considered to be a more typical fruit than tomato. Like in many other cognitive

phenomena involving concepts and categories, typicality also modulates property induction.

Novel properties are more likely to be generalized to the rest of the category when linked

with typical—as opposed to atypical—concepts. That is, argument  (8) is considered to be

stronger than argument  (9) .

Robins have sesamoid bones.

All birds have sesamoid bones.
(8)

Penguins have sesamoid bones.

All birds have sesamoid bones.
(9)

Premise Diversity The diversity of premise concepts also tends to influence inductive judg-

ments, i.e., premises with similar concepts are less likely to generalize to the entire category

(that subsumes them) as compared to those that contain different ones (different, but still

subsumed by the conclusion category). That is, argument  (10) is considered to be stronger

than argument  (11) .
10

 ↑ this could correspond to the jaccard similarity between the binary feature representations of two cate-
gories. Mathematically, sim(A, B) = |A∩B|

|A∪B| .
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Lions have the T9 hormone.

Mice have the T9 hormone.

All animals have the T9 hormone.

(10)

Lions have the T9 hormone.

Tigers have the T9 hormone.

All animals have the T9 hormone.

(11)

This phenomena is also applicable to specific arguments, i.e., the pattern holds even if ‘all

animals’ in the conclusion of the above arguments is replaced by ‘giraffe.’

Conclusion Specificity The homogeneity of the conclusion concept with respect to the

premise concepts affects inductive generalization of novel properties. For the same set of

premise concepts (e.g., robin, sparrow), inductive arguments with more specific conclusion

concepts (e.g., bird) are stronger than those with more general conclusion concepts (e.g.,

animal). This implies that more evidence is typically needed to support a conclusion whose

concept has greater coverage relative to the premise concepts. For example, argument  (12) 

is stronger than argument  (13) :

Robins require Vitamin K.

Sparrows require Vitamin K

All birds require Vitamin K.

(12)

Robins require Vitamin K.

Sparrows require Vitamin K

All animals require Vitamin K.

(13)

Premise Monotonicity The inclusivity of the premise concepts promotes inductive gener-

alization. That is, arguments with greater number of premise concepts are generally stronger

than those with fewer premise concepts. For example, argument  (14) is stronger than argu-

ment  (15) :
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Foxes use Vitamin K to produce clotting agents in their blood.

Pigs use Vitamin K to produce clotting agents in their blood.

Wolves use Vitamin K to produce clotting agents in their blood.

All mammals use Vitamin K to produce clotting agents in their blood.

(14)

Foxes use Vitamin K to produce clotting agents in their blood.

Pigs use Vitamin K to produce clotting agents in their blood.

All mammals use Vitamin K to produce clotting agents in their blood.

(15)

This phenomena is also applicable to specific arguments, i.e., the pattern holds even if ‘all

mammals’ in the conclusion of the above arguments is replaced by ‘gorillas.’

Non-monotonic Effects Inductive arguments can be made weaker by the addition of a

premise concept that converts them into a mixed argument. Argument  (16) is stronger than

argument  (17) .
Crows secrete uric acid.

All birds secrete uric acid.
(16)

Crows secrete uric acid.

Gorillas secret uric acid.

All birds secrete uric acid.

(17)

This phenomena is also applicable to specific arguments, i.e., the pattern holds even if ‘all

birds’ in the conclusion of the above arguments is replaced by ‘Peacocks.’

Premise-Conclusion Asymmetry This phenomenon was first observed by Rips (  1975 ).

Single premise arguments are often not symmetric, i.e., the strength of an argument with a

premise P and a conclusion C is different than the argument that has C as its premise, and

P as its conclusion.

Inclusion Fallacy A general argument can sometimes be made weaker by converting it into

a specific argument. In such cases, experiment subjects can sometimes rate an argument to
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be stronger when its conclusion concept represents a whole category than when it represents

a subset of that category. Argument  (18) is rated to be stronger than argument  (19) .

Robins have an ulnar artery.

All birds have an ulnar artery.
(18)

Robins have an ulnar artery.

Ostriches have an ulnar artery.
(19)

This phenomenon is so named because if a given concept having a particular property makes

people think its superordinate also has that property to an extent, then all subordinate

concepts should have the property at least as much. Since this is not the case, we have a

fallacy. This is similar to the conjunction fallacy (Tversky & Kahneman,  1983 ).

Phenomena based on Salient Background Knowledge

Even though taxonomies have a privileged status in the study of semantic cognition, the full

range of inductive phenomena goes well beyond the hierarchical organization of concepts.

Indeed, a majority of works following that of Osherson et al. (  1990 ) have experimentally

confirmed the existence of inductive behavior in humans that cannot be explained by taxo-

nomic similarity, and instead show patterns that are in direct contrast to the ones discussed

previously (see Hayes et al.,  2010 ; Hayes & Heit,  2018 ; for a review). In such cases, inductive

generalization is observed to occur between concepts not on the basis of taxonomic relations,

but rather on the basis of salient property knowledge that is shared between them. For

instance, Heit and Rubinstein ( 1994 ) found inductive generalization of behavioral properties

such as “swimming in a zig-zag pattern” to be strongly generalized from sea-mammals such

as dolphins to fish as compared to other mammals such as giraffes and tigers. Such obser-

vations highlight the flexibility of inductive inferences, that is free from the shackles of any

one single theory of domain knowledge (G. L. Murphy,  1993 ; G. L. Murphy & Medin,  1985 ),

e.g. taxonomic relations between concepts. In such a viewpoint, property induction can be

viewed as a process that involves the identification of the appropriate domain knowledge,
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controlled by the context of the premise concepts and the property being generalized, and

then using the features implied by the domain knowledge to carry out the generalization

(G. L. Murphy,  2002 ). Even if we are to allow similarity to be the driver of induction,

as suggested by Osherson et al. (  1990 ), it is likely to be updated dynamically, possibly

by considering only the features of the domain knowledge activated by the premise during

induction.

The context specified by the premise in an inductive argument can vary in a myriad

of different ways. One possible way could be when the property being generalized is not

truly unfamiliar, or blank (Heit & Rubinstein,  1994 ). Recall that the original experimental

paradigm to study inductive reasoning used blank properties—properties that are likely to

be unfamiliar to the subjects of the experiments—in the premise (Rips,  1975 ; Osherson et

al.,  1990 ). Heit and Rubinstein (  1994 ) experimentally found that taxonomically motivated

similarity may not always account for induction when the property being generalized is non-

blank. Other ways in which the context of the premise may be modulated is when the

premise concepts share an implicit property that dictates the kind of induction that is being

made (e.g. polar bears and penguins, which activate the domain of “living in cold climate”),

as discussed by Medin et al. (  2003 ). Note that the aforementioned possibilities of premise

context modulation is certainly not exhaustive, but crucial enough to warrant substantial

discussion. I further expand on them in what follows.

Context Sensitivity When the property in a given inductive argument are not blank and

is instead familiar to the reasoner, its strength is determined by the domain knowledge/con-

text relevant to the property. For instance, Heit and Rubinstein ( 1994 ) found anatomical

properties such as “have an ulnar artery” to generalize taxonomically – i.e., argument  (20) 

is stronger than argument  (21) since sparrows and hawks are both birds and are likely to

share anatomical characteristics.

Sparrows have a ulnar artery.

Hawks have a ulnar artery.
(20)
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Tigers have a ulnar artery.

Hawks have a ulnar artery.
(21)

However, when the property in the inductive argument was behavioral (“study their food

before attacking”), then the generalization pattern reverses (as compared to arguments (  20 )

and (  21 ) – i.e., argument  (22) is stronger than argument  (23) since tigers and hawks are

both predators, and hence their similarity along this axis trumps their taxonomic relation.

Tigers study their food before attacking.

Hawks study their food before attacking.
(22)

Sparrows study their food before attacking.

Hawks study their food before attacking.
(23)

Nondiversity by Property Reinforcement Even when the properties are blank, there exist

cases where inductive phenomena covered in §  2.3.2 can be reversed. For instance (Medin

et al.,  2003 ) found that the Premise Diversity phenomenon is reversed when concepts in the

premise have a salient feature. In such a case, a general argument can be weakened even

in the presence of diverse premise concepts when the conclusion concept did not share the

implicit salient feature that was reinforced by the premise. Argument  (25) is weaker than

argument  (24) since it has the implicit property of “living in cold habitats” that is only

applicable to a specific subset of the animal category.

Polar bears have Property X

Antelopes have Property X

All animals have Property X

(24)

Polar bears have Property X

Penguins have Property X

All animals have Property X

(25)
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Nonmonotonicity by Property Reinforcement Similar to the Nondiversity by Property

Reinforcement phenomenon, the presence of salient features also overrides the Premise Mono-

tonicity phenomenon (Medin et al.,  2003 ). Consider arguments ( 26 ) and (  27 ). The premise

of argument  (27) reinforces the property of “being a bear” – that “Property X” is likely only

a property of bears, this is less likely in the case of argument  (26) , where the reinforcement

is weak. As a result, argument  (26) is stronger than argument  (27) .

Brown bears have Property X

Buffalo have Property X

(26)

Brown bears have Property X

Grizzly bears have Property X

Polar bears have Property X

Buffalo have Property X

(27)
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3. INVESTIGATING TYPICALITY EFFECTS IN LANGUAGE

MODELS

This chapter adapts work from the following publication:

Misra, K., Ettinger, A., & Rayz, J. (2021). Do language models learn typicality

judgments from text?. In Proceedings of the Annual Meeting of the Cognitive

Science Society (Vol. 43, No. 43).

It has been reproduced here with slight alterations.

3.1 Introduction

Perhaps one of the most important findings in the study of human categorical knowledge

is the phenomenon of typicality, the observation that certain members of a category are

considered to be more representative of the category than are others (G. L. Murphy,  2002 ).

As observed in the pioneering work of Rosch (  1975 ), native English speakers tend to rate

robins and canaries as more typical birds than penguins and emus, chairs and sofas as

more typical furniture than clocks and vases, etc. Apart from modulating categorization

experiments, typicality reliably affects people’s use of categories. In particular, typicality

differences in stimuli strongly predict response times in taxonomic sentence verification tasks

(Rips et al.,  1973 ; Rosch,  1973 ) and category production (Rosch, Simpson, et al.,  1976 ) –

human subjects take longer to verify sentences expressing atypical category-membership

knowledge as compared to typical ones, and similarly are more likely to produce typical

examples of categories as compared to atypical ones. In the context of concept learning,

typical items facilitate faster concept acquisition than do atypical items (Rosch, Simpson, et

al.,  1976 ). Typicality also prominently affects category-based inductive reasoning judgments

(Rips,  1975 ; Osherson et al.,  1990 ): 

1
 that is, subjects more readily extend new information

(has T9 hormones) about typical (robin)—as opposed to atypical (penguin)—items to

other members of their superordinate category (bird). In summary, typicality is a salient

and impactful phenomenon in the study of human category knowledge.
1

 ↑ an important class of inductive generalization problems solved by humans
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In this chapter, we propose tests—inspired by the aforementioned experimental studies—

that target the question of typicality in Language Models (LMs). Why should we investigate

typicality effects in LMs? I provide three reasons. First, as established in ch.  1 and ch.  2 , LMs

are perhaps the most powerful implementations of a perspective where words do not directly

map onto symbolic concepts but are instead cues to conceptual meaning (Elman,  2004 ;

Lupyan & Lewis,  2019 )—i.e., words directly affect ‘mental states’, which leads to semantic

behavior. Therefore, by learning representations for words from their usage, LMs encode a

possible way in which words can affect internal states of a system (Pavlick,  2022 ,  2023 ), and

are therefore possible accounts of how everyday concepts are used (as words). Since typicality

crucially affects people’s behaviors and judgments for stimuli involving everyday concepts and

categories, any genuine account of concept or category-use must ideally also exhibit typicality

effects. Second, LMs encode many desirable prerequisite properties of graded structure

by construction – they are composed of continuous vector spaces and predict probability

distributions over tokens, both of which are graded by definition. Investigations involving

typicality can therefore serve as a means by which we can relate the graded structure in LMs

with human conceptual structures. Finally, there are a number of empirical investigations of

LMs (and other distributional semantic models) that suggest them to be adept at predicting

category membership of everyday concepts as well as their commonly known properties (Lucy

& Gauthier,  2017 ; Petroni et al.,  2019 ; Weir et al.,  2020 ; Ettinger,  2020 ) 

2
 – factors that are

at the center of what makes an item a typical (or atypical) member of a category (described

by Rosch and Mervis (  1975 ) as family resemblance). By analyzing them for for typicality

effects, we can further cast light on the extent to which LMs go beyond simply capturing

static categorical and property knowledge for concepts (which can potentially be explained

by simpler word association effects or even memorization from their pre-training data), and

encode deeper nuances of conceptual structure.

In order to investigate LMs for typicality effects, we adopt two prior experimental

paradigms where humans showed clear sensitivities to typicality in processing of textual

stimuli. First, we build on prior work analyzing conceptual and categorical knowledge in
2

 ↑ though the question of just how robustly they capture category and property knowledge will be addressed
in the next chapter.
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LMs, and test whether typicality effects modulate LM judgments of taxonomic sentence

verification (“a robin is a bird”) as they do in humans (Rips et al.,  1973 ; Rosch,  1973 ).

Complementing this simple and direct test of taxonomic category membership, we add a

layer of complexity, and investigate the manifestation of typicality effects in LMs on the

basis of how they extend new information about items (“robins can dax”) to all members

of a category (“all birds can dax”), inspired by tests targeting psychological strength of

inductive arguments (Rips,  1975 ; Osherson et al.,  1990 ). Though the human experiments

that inspire these tests do not explicitly target typicality as a phenomenon, typicality effects

still robustly modulate human behavior on them. Hence, we examine whether LMs show

comparable typicality effects on stimuli similar to those used in the above experiments.

3.2 Methodology

3.2.1 Models Investigated

We conduct our analyses on pre-trained LMs based on the transformer architecture (Vaswani

et al.,  2017 ). Our choice of LMs is motivated by recent evidence that shows qualitative

alignment of category knowledge (“a robin is a bird”, “a bear has fur, has claws.”) in pre-

trained LMs (Ettinger,  2020 ; Weir et al.,  2020 ). Although we focus on a particular type of

pre-trained LMs (transformers) in this work, the tests we propose can be applied to any LM.

We investigate two broad classes of transformer-based pre-trained LMs: (1) Autoregressive

LMs, trained autoregressively (left to right) to predict one word at a time, when conditioned

on exclusively the left context; and (2) Masked LMs, that access context of the word to

be predicted bidirectionally, e.g., the models are optimized to predict correct completions

(airplane or bird) to sentences such as “the [mask] flew away,” where [mask] represents

the hidden word. We apply our tests on GPT (Radford et al.,  2018 ) and GPT2 (Radford

et al.,  2019 ) as our Autoregressive LMs, and ALBERT (Lan et al.,  2020 ), ELECTRA (Clark

et al.,  2020 ), BERT, (Devlin et al.,  2019 ) and RoBERTa (Liu et al.,  2019 ) as our Masked

LMs. In addition, we use compressed versions of the above models (Sanh et al.,  2019 ):

distilGPT2, distilBERT-base, and distilRoBERTa-base. All transformer-based pre-trained
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Table 3.1. Number of subordinate concepts (N ) per superordinate category
(Rosch,  1975 ).

Superordinate N Superordinate N

furniture 60 vegetable 56
tool 60 clothing 55
toy 60 bird 54

weapon 60 fruit 51
sport 59 vehicle 50

LMs were accessed using the minicons 

3
 library, a wrapper around the transformers library

(Wolf et al.,  2020 ).

3.2.2 Data and Stimuli

Item typicality data

For both experiments, we use as our primary source the list of 565 item-typicality ratings

compiled by Rosch (  1975 ) across 10 different categories. In the original human experiments,

209 native speakers of English were tasked to rate the “goodness of example” for various items

of each given category, on a scale of 1 (most typical) to 7 (least typical). The statistics of

the items and categories is presented in Table  3.1 . It should be noted that the experiments

we base our tests on involve sensitivities to typicality measured using different quantities

(response times and raw typicality ratings), but make none or only a small subset of re-

sults available. Therefore, we use the Rosch (  1975 ) ratings as the common “ground-truth”

typicality ratings for our experiments.

Stimuli Setup

Because the models we investigate are sentence processors, and because all of our tests involve

propositions about items and categories expressed as sentences, we rely on using sentence

stimuli in our experiments. Every stimulus consists of two components: (1) condition, which
3

 ↑  https://github.com/kanishkamisra/minicons 
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Table 3.2. Examples of stimuli used in our experiments. Our measures take
the form: log p(predicted | condition)

Experiment Stimulus

Taxonomic Sentence Verification A robin is a︸ ︷︷ ︸
condition

bird︸ ︷︷ ︸
predicted

.

Category-based Induction Saws can dax.︸ ︷︷ ︸
condition

All tools can dax.︸ ︷︷ ︸
predicted

is a noun phrase/sentence consisting of the item (robins, sparrows, eagles, etc.); and (2)

predicted material, which consists of the super-ordinate category (bird). The exact linguistic

format in which it appears depends on the experiments — we use single words as the predicted

material in our Taxonomic Sentence Verification experiment while for our Category-based

induction experiment we use an entire sentence as our predicted material. In evaluating

typicality measurements of various items for a given category, the predicted material remains

constant, while the condition changes depending on the item. Table  3.2 shows examples of

stimuli we use in each of our experiments.

3.2.3 Measures

Following precedent set by previous work evaluating conceptual knowledge in pre-trained

LMs, we use the models’ probability estimates as our main variable of interest. Specifi-

cally, we focus on the log-probability of the word or statement represented in the predicted

material, given the condition:

log pLM(predicted | condition), (3.1)

that is, we are measuring the effect on the probability of the predicted part (held constant for

a given category) due to the item mentioned in the condition. Our reason for separating the

item from the predicted material is two-fold: (1) it avoids skewed measurements due to the

choice of determiner (a vs an) that precedes the item in the condition (a model might assign

higher value to p(ostrich | an) simply due to a component that is sensitive to determiner
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prefixes), or when the model does not include the item word in its vocabulary, 

4
 and (2) it

aids in factoring out the role played by the frequency of the item in the condition – the model

can prefer an item over the other simply due to its frequency in the training corpus. While

it is straightforward to compute our conditional probability measure for Autoregressive LMs

by using the chain-rule, we rely on recent work by A. Wang and Cho (  2019 ) and Salazar et al.

( 2020 ) to approximate sequence log-probabilities in Masked LMs by summing the conditional

log-probabilities of all words in the stimuli.

3.3 Experiments and Analyses

We use two experimental paradigms where humans showed clear sensitivities to typicality

effects—(1) Taxonomic Sentence Verification; and (2) Category-based Induction. In what

follows, we first describe the typicality-related phenomenon observed in each of these experi-

ments, and then describe how the experiment and phenomenon can be linked to LM-derived

measures. We then discuss our precise experiment, and finally report and analyse its results.

3.3.1 Taxonomic Sentence Verification

Description of Phenomenon

Typicality effects in the sentence verification paradigm were introduced by Rips et al. (  1973 )

and Rosch ( 1973 ). Subjects were tasked with verifying the truth of sentences expressing

taxonomic propositions, such as “An X is a Y ”—where X and Y are the item and category,

respectively. The subjects consistently responded faster to verifying the truth of propositions

where X was a typical member of Y than when it was an atypical one.

Linking Phenomenon to LMs

We draw on the aforementioned findings and investigate whether typicality is able to account

for difference in the word probabilities to complete taxonomic sentences by our tested LMs.

Linking our hypothesis to the original experiment requires a simplifying assumption that
4

 ↑ E.g., RoBERTa and GPT2 segment the word ostrich into ostr and ich, and during estimation, the proba-
bility of ich given that it is preceded by ostr is anomalously high, skewing the overall sequence probability.
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an LM’s sequence log-probability is proportional to its plausibility for a sequence. That is,

we assume and expect a semantically sound LM to show overall high probability scores for

semantically plausible propositions, which in this case, are simple taxonomic propositions 

5
 .

Therefore, LMs that are more sensitive to typicality effects should show greater magnitudes

for the measure log pLM(Y | An X is a) when X is a more typical member of Y .

Experiment

We follow Rips et al. ( 1973 ) and Rosch (  1973 ) and construct sentences expressing taxonomic

propositions using items from the Rosch (  1975 ) data, i.e., “An X is a Y ,” amounting to 565

unique propositions. We test for typicality effects by measuring the Spearman correlation (ρ)

of the sequence log-probability log pLM(Y | An X is a) with the human typicality ratings for

items, as collected by Rosch ( 1975 ). This correlation measure reflects the extent to which the

predictive estimates of an LM reflect typicality information—or information that underlies

it—to assess taxonomic verification in sentences. Additionally, we perform a median split on

the Rosch ( 1975 ) ratings by the items’ typicality ratings, per category, leaving us with two

sets of typical and atypical ratings. We then compute the average log-probabilities assigned

to items in each set and compare them to the average ratings elicited by humans. All scores

in this analysis are re-scaled to be between 0 and 1.

Results

Figure  3.1 show results from our correlation and typicality-effect comparisons. Non-trivially

positive but modest correlations between LM log-probabilities and human typicality ratings

(ρ ∈ [0.24, 0.41], p < .001) suggest that LMs’ judgments of taxonomic propositions are

moderately reflective of typicality effects. Though all LMs assign greater probability scores

to category items with high—as compared to low—typicality (see Figure  3.1b ), they are

consistently less extreme as compared to humans (p < .001 across all models). Correlation

of 5-gram LM log-probabilities, though weakest in magnitude, is highly competitive with
5

 ↑ However, we acknowledge that this might not always be the case. For instance, LMs are largely insensitive
to negation and semantic role-reversals (Ettinger,  2020 ).
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Figure 3.1. Results from the Taxonomic Sentence Verification experiment.

certain smaller yet highly expressive LMs (ALBERT-b, ALBERT-xl, distilGPT2, and distil-

RoBERTa). This suggests that a substantial portion of the observed correspondence between

model and human typicality judgments can be attributed to fairly simpler sequential statis-

tical effects in word prediction (e.g. memorizing n-grams). Interestingly, with the exception

of the ALBERT family of Masked LMs, models with greater number of parameters tend to

show greater correspondence with humans on taxonomic judgments (ρ = 0.82, p < .001),

suggesting that the information needed to distinguish typical vs. atypical category members

during taxonomic attribution requires greater model expressivity.

3.3.2 Category-based Induction

Description of Phenomenon

As mentioned in §  2.3.2 , typicality plays a salient role in modulating human behavior on

inductive reasoning problems involving categories (Rips,  1975 ; Osherson et al.,  1990 ; i.e.,

category-based induction). In particular, typicality effects were one of the 13 phenomena

documented by Osherson et al. (  1990 ) – for single-premise general arguments 

6
 , human sub-

6
 ↑ see § 2.3.1 for what general arguments are.
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jects were more likely to believe in the conclusion when the category mentioned in the

premise was more typical member of that in the conclusion. That is, the argument strength

of argument  (28) was found to be greater than that of argument  (29) , since robin is a more

typical bird than is penguin.

Robins have sesamoid bones.

All birds have sesamoid bones.
(28)

Penguins have sesamoid bones.

All birds have sesamoid bones.
(29)

Linking Phenomenon to LMs

The Osherson et al. ( 1990 ) study explicitly targets the degree to which uncertain statements

such as “all birds have T9 hormones” are judged in light of new information about a subor-

dinate category such as robins. Analogously, we are interested in assessing whether sophisti-

cated LMs show similar behavior in assigning probabilities to conclusions when conditioned

on premises whose categories vary based on their typicality. If LMs show sensitivity to the

typicality of items in this setting, i.e., their log-probability is greater for conclusions with

typical versus atypical premise, then we take this as preliminary evidence that typicality—

or the factors that underlie it—modulates inductive inference in LMs. We formulate an

approximation of inductive argument strength (AS) in an LM as the probability it assigns

to the conclusion when conditioned on a given premise. For instance AS(robin, bird) for the

property “has T9 hormones” is given by:

log pLM(“All birds have T9 hormones.” | “Robins have T9 hormones.”)

The premise and conclusion sentences naturally fit within our stimulus setup discussed earlier

— the premise sentence is the condition, and the conclusion sentence the predicted material.
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Experiment

For our items and categories, we again use data from Rosch (  1975 ). Since Osherson et al.

do not make all of their blank predicates available, we construct synthetic properties using

novel (or pseudo) words such as dax, wugs, feps, vorpal, etc., as objects of common verbs such

as has, can, is a, etc. This allows us to conform to the blank predicate condition applied by

Rips (  1975 ) and Osherson et al. (  1990 ) since these words are either outside of the model’s

effective vocabulary, 

7
 or are usually rare in the corpora that the models are trained on. We

create between 15 to 30 properties 

8
 for all items in each category, resulting in a total of

12,180 premise-conclusion pairs across 10 categories. An example of the stimuli we use for

our category-based induction task is shown in Table  3.2 . We calculate the AS metric for

each premise-conclusion pair with each of our tested LMs.

Conditioning our LMs as we do here has two potential confounds: (1) Premise Order

Sensitivity (POS): A model might estimate high probabilities for words in the conclu-

sion simply because it is relying on lexical cues in its premise (Misra et al.,  2020 ), instead of

processing the premise compositionally and making inferences about items possessing a prop-

erty. To study this confound, we compute the LMs’ average probability for the conclusion

sentence when prefixed by a shuffled version of the premise (10 times, with random seeds).

We then calculate POS as the difference between this measure (which we call ASshuffled) and

the original AS score, for each item:

POSi = ASi − ASshuffled,i (3.2)

It would be desirable to have POS values that are greater than 0, signifying that the LM

is indeed sensitive to the correct word-order structure of the premise. Figure  3.2a displays
7

 ↑ Due to their tokenization mechanism, the LMs we study are always able to encode any text through ‘word
pieces’ instead of relying on <unk> tokens. So even if these words appear to be outside of the models’ effective
vocabulary, they will always be tokenized.
8

 ↑ The choice of properties depends largely on the class of word the items belong to, such that syntactic
constraints are met. For instance, if dax is a verb, it would be ungrammatical to have “can dax” as a
property of sports, which can be better paired with properties such as “involve” and “require”. The entire
unique set of synthetic properties and our construction method is made available in our supplementary
materials.
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the proportion of cases (out of 12,180) where POS was greater than 0, against the models’

total number of trainable parameters. We observe that only Incremental LMs show nearly

complete sensitivity to the word-order of the premise. Masked LMs on the other hand do

show sensitivity in a majority of cases, but are still far below incremental LMs, suggesting

that this confound greatly affects their results, and is likely not to affect Incremental LMs.

No particular effect of number of parameters was observed. (2) Taxonomic Sensitivity

(TS): LMs might tend to repeat the property phrase mentioned in the predicted material

with high probability when prefixed by a sentence containing it, i.e., repeating “can dax” in

the conclusion when already conditioned on the same phrase in the premise (Holtzman et

al.,  2019 ), confounding the degree to which the conclusion is generated using the taxonomic

relationship between the premise and the conclusion categories. In order to study this

tendency, we compute the LMs’ probabilities for conclusions consisting of a different category

with the exact same property as the original (for instance, “All fruits are slithy” given “Sofas

are slithy”). We call this measure ASflipped. Just like in our POS calculation, our TS measure

for each item is calculated as the difference between the original measure and the flipped

measure:

TSi = ASi − ASflipped,i (3.3)

As is the case with POS, it is desirable to have a strongly positive value for sensitivity towards

this confound (i.e., TS > 0). Figure  3.2b shows the proportion of cases (out of 12,180 for

each model) where TS was greater than 0, against the models’ total number of trainable

parameters. From Figure  3.2b , there is a non-trivial proportion of cases where models

produce greater AS scores for the conclusion when the premise concept had no taxonomic

relation to the conclusion concept as compared to when it did, suggesting that in many

cases models might not be processing based on the taxonomic relation between premise and

conclusion and may simply be assigning high probabilities to the property phrase because it

was listed in the preceding context – it is common-knowledge that LMs are highly conducive

to repeating text already seen in the input context (Holtzman et al.,  2019 ).
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Figure 3.2. Confounds from the Category-based Induction Experiment.

We find that a substantial amount of variance in our original AS scores is in fact captured

by both these confounds (overall r2 = 0.43, βts = 0.68, βpos = −0.04, p < .0001 in both cases).

We regress these relationships out from our AS scores by first fitting a multiple regression

model to predict AS using our confounds, and then subtracting its linear relationship with

TS and POS as follows:

AS = β0 + β1TS + β2POS + ε

AS ′ = AS − β1TS− β2POS

= β0 + ε (Adjusted AS)

Using the adjusted AS scores in each LM, we compute the score of generating the con-

clusion (scaled between 0 and 1) for each category, item, and synthetic property, and average

them to get the model’s overall score for extending new information about an item to its

category. We compute the Spearman’s correlation (ρ) between our normalized adjusted AS
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scores and the human typicality ratings from Rosch (  1975 ), and compare average AS scores

(across all blank properties that we used in this experiment) and human typicality ratings

assigned to low and high-typicality items.

Results

Figure  3.3 summarizes results from our category-based induction experiments. When LMs

extend information about an item to its category, they are moderately but positively influ-

enced by its typicality (ρ ∈ [0.27, 0.45], p < .001 everywhere). This influence is above and

beyond their usual predilection towards repeating sequences and being lexically sensitive to

items present in the premise (Misra et al.,  2020 ). In terms of the training objectives of the

models, Autoregressive LMs show stronger correspondence with human ratings as compared

to Masked LMs of comparable size, suggesting that they are slightly more sensitive to the

typicality of the premise item in generating the conclusion. We notice almost no effect of

model size (in terms of parameters) on the results, suggesting that the factors that underlie

typicality effects in property induction are likely independent of the number of parameters

of an LM. This contradicts the set of results reported in the previous experiment (§ 3.3.1 ),

where typicality-sensitive attribution of items to their superordinate categories was generally

found to be improved by scaling up the overall expressiveness of the model.

3.4 General Discussion

Extensive research in the field of cognitive science has highlighted the prevalent role played

by typicality in studies of categories—that certain items (chair) are considered to be bet-

ter representatives of a category (furniture) than others (vase). Motivated by recent evi-

dence showing pre-trained LMs to capture patterns exhibiting conceptual and categorical

knowledge, we presented two experiments targeting sensitivities to typicality in LMs. The

first experiment targets typicality directly, in its role played in associating items to their

taxonomic categories (“football is a sport”). Our second experiment complements this by

instead assessing the extent to which the “knowledge” of category typicality is used to ex-

tend information about items (“football involves blicking”) to their respective categories (“all
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Figure 3.3. Results from the Category-based Induction experiment.

sports involve blicking”). We investigate typicality effects in LMs by evaluating their log-

probabilities in response to stimuli as measures of (1) taxonomic verification and (2) inductive

argument strength (when conditioned on a premise). For each test, we made the simplify-

ing assumption that the likelihood assigned by the LM to the sentence stimuli corresponds

to the variables of interest—strength of category membership in the first experiment, and

argument strength in the second. Overall, the pre-trained LMs showed positive but modest

correlations with human typicality ratings in both experiments, and were, on average, far

less extreme in distinguishing between typical and atypical items than humans. We also

observed that a considerable amount of sensitivity to typicality effects can be attributed to

the mechanisms available to simpler LMs (5-gram), relative to the sophisticated pre-trained

LMs that we studied here, suggesting that the representational mechanisms in most models

that are optimized to reflect the statistics in training corpora only account for a minimal

gain over correspondence that is afforded by simpler sequential statistics. Results on pre-

trained LMs suggests that the statistical associations that inform their word probabilities

are modestly sensitive to human-elicited typicality ratings in (1) attributing items to their

category members, as well as (2) making complex inductive inferences about categories when

conditioned on new information about the items. While our taxonomic sentence verification
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experiments showed typicality correspondence to increase with model size, this was not the

case in our induction experiments, suggesting that extending new information about items

to their categories in a manner that is positively modulated by typicality effects does not

scale with an increase in parameters. We leave fine-grained exploration of specific language

modelling factors affecting typicality correspondence for future work.

LMs are trained by exclusively relying on distributional evidence to inform their word

predictions. In our experiments, we find that while the aforementioned word prediction

capacities show qualitatively similar patterns of associating concepts with human-produced

property norms (Weir et al.,  2020 ), they show weak agreement with the typicality effects

that are robustly elicited in humans (G. L. Murphy,  2002 ; and references therein). This

suggests that solely relying on text is insufficient for exhibiting quantitatively similar cate-

gorical knowledge to that in humans, and highlights the limitations of using word-prediction

capacities from state-of-the-art pre-trained LMs as mechanisms to model semantic cognition.

This is in line with work in knowledge acquisition through text, which suggests large textual

corpora to lack real world grounding, in that these corpora represent language use but distort

general knowledge about the world (Gordon & Van Durme,  2013 ; Shwartz & Choi,  2020 ).

Even though text data contain encyclopedic knowledge, they miss out on the more percep-

tual or semi-perceptual features that can be learned through visual input, and that have been

found to better align with human ratings of typicality, albeit on non-taxonomic categories

(Lake et al.,  2015 ). Another line of work supporting the lack of typicality signal in textual

corpora is that of Bergey et al. (  2020 ). These authors analyze parent-child interactions using

models that are similar to—but less-sophisticated than—pre-trained LMs, and find them to

negatively align with typicality ratings on adjective-noun compounds. The authors conclude

from their findings that much of what children hear (corresponding to language use by the

parent) is atypical, as opposed to typical information about noun concepts (specifically with

respect to the adjectives that modify them). While our results also shed light on the difficulty

of acquiring knowledge about typical members of categories, they do suggest the presence of

some typicality effects, by contrast to the findings of Bergey et al. (  2020 )—raising the pos-

sibility that associations in text that impact typicality of adjective-noun compounds could

be independent of, or even run in opposition to, those that impact taxonomic categories. At
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the same time, considering that we do see non-zero correspondence with human typicality

ratings, our results also suggest that textual corpora are not fully devoid of associations that

may align with empirical phenomena underlying typicality effects. Taking this as inspira-

tion, future work on modeling of typicality through text will likely require models to correct

for the distorted frequency of atypical items mentioned in text, and potentially also include

features informed from a more grounded source of knowledge. One promising way of doing

so could be to let LMs and their representations adapt to text data that explicitly specify

semantic knowledge about everyday concepts and categories (Bhatia & Richie,  2021 )—e.g.,

in the form of statements such as a robin has wings or dolphins are mammals. Explicitly

encoding semantic features into LMs could possibly make them compliant with feature-based

hypotheses of typicality (Rosch & Mervis,  1975 ; Rosch, Simpson, et al.,  1976 ) and inductive

reasoning (Sloman,  1993 ), and better facilitate research into other key facets of semantic

cognition (Rogers & McClelland,  2004 ) in computational models that learn through text.

While the aforementioned proposals to improve LM correspondence with typicality and

graded category structure involve additional training/fine-tuning or switching the class of

models, recent work has extended the body of work presented in this chapter by proposing

alternate measure derivations from the same types of models studied here. In particular,

Renner et al. (  2023 ) used one of the 19 models analyzed in this work (BERT-base) and

combined measures that were derived from the representations of the model (Chronis & Erk,

 2020 ) along with the relative information content between a category vs. the category mem-

ber as tracked by the WordNet taxonomy (Miller,  1995 ), to estimate typicality values. 

9
 This

resulted in improved correspondence to human typicality ratings by almost 34% (Spearman

correlation of 0.396 using our method vs. 0.528 using their method, for BERT-base). While

this approach objectively improves the correlation with human typicality judgments, they

have little to no bearing on the main research questions posed in this dissertation. This

is primarily because the main driver of improvement is the addition of the WordNet based

similarity metric. That is, the correspondence obtained using only BERT’s internal represen-

tations were either slightly worse, or only marginally better than the word-prediction based

measure proposed in this work, depending on the ground-truth data used. Therefore, there
9

 ↑ this work was published at the time of writing of this dissertation.
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is little to be said about how distributional statistics could contribute to broader conceptual

abilities beyond what our results already suggest. Nevertheless, one lesson learned from the

improvements brought about by Renner et al. ( 2023 ) is that perhaps explicit integration of

hierarchical conceptual organization within the LMs (Bouraoui et al.,  2020 ) could result in

more robust conceptual representations and better alignment with typicality effects. At the

same time, this would also require testing on multiple different contexts where typicality

modulates behavior—for instance, also testing on inductive generalization problems like we

have, in this chapter.
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4. A TEST FOR ROBUST PROPERTY KNOWLEDGE AND

ITS INHERITANCE

This chapter adapts work from the following publication:

Misra, K., Rayz, J., & Ettinger, A. (2023). COMPS: Conceptual Minimal Pair

Sentences for testing Robust Property Knowledge and its Inheritance in Pre-

trained Language Models. In Proceedings of the 17th Conference of the Euro-

pean Chapter of the Association for Computational Linguistics, pages 2928–2949,

Dubrovnik, Croatia. Association for Computational Linguistics.

It has been reproduced here with slight alterations, and is in accordance with the Copy-

right and Licensing guidelines stated on the ACL Anthology website, where the publication

resides. 

1
 

4.1 Introduction

The ability to learn, update and deploy ones knowledge about concepts (robin, chair) and

their properties (can fly, can be sat on), observed during everyday experience is fundamental

to human semantic cognition (G. L. Murphy,  2002 ; Rogers & McClelland,  2004 ; Rips et

al.,  2012 ). Knowledge of a concept’s properties, combined with the ability to infer the

IsA relation (Sloman,  1998 ; M. L. Murphy,  2003 ) leads to an important behavior known

as property inheritance (Quillian,  1967 ; Smith & Estes,  1978 ; G. L. Murphy,  2002 ), where

subordinates of a concept inherit its properties. For instance, one is likely to infer that an

entity called luna can meow, has a tail, is a mammal, etc., even if all they know is that it

is a cat. Importantly, property inheritance can also be viewed as an instance of inductive

generalization (see §  2.3 ) where the agent is provided a novel object (or concept) with a

category label, and must infer what properties it possesses (Kemp & Jern,  2014 ).

As discussed in Ch.  1 and Ch.  2 , the close connection between a word’s meaning and its

conceptual representation makes the aforementioned abilities crucial to conceptual under-

standing (G. L. Murphy,  2002 ; Lake & Murphy,  2021 ; as also established in ch.  2 ), making it
1

 ↑ see  https://aclanthology.org/faq/copyright/ 
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critical for computational models of language processing to also exhibit behavior consistent

with these capacities. Indeed, modern pre-trained language models (PLMs; Devlin et al.,

 2019 ; Brown et al.,  2020 ; etc.) have made impressive empirical strides in eliciting general

knowledge about real world concepts and entities (Petroni et al.,  2019 ; Weir et al.,  2020 ;

i.a.), as well as in demonstrating isomorphism with real world abstractions like direction

and color (Abdou et al.,  2021 ; Patel & Pavlick,  2022 ), often times without even having been

explicitly trained to do so. At the same time, their ability to robustly demonstrate such

capacities has recently been called to question, owing to failures due to reporting bias (Gor-

don & Van Durme,  2013 ; Shwartz & Choi,  2020 ), lack of consistency (Elazar et al.,  2021 ;

Ravichander et al.,  2020 ), and sensitivity to lexical cues (Kassner & Schütze,  2020 ; Misra

et al.,  2020 ; Pandia & Ettinger,  2021 ).

In this chapter, we cast further light on PLMs’ ability to robustly demonstrate knowl-

edge about concepts and their properties. To this end, we introduce Conceptual Minimal

Pair Sentences (comps), a collection of English minimal pair sentences, where each pair at-

tributes a property (can fly) to two noun concepts: one which actually possesses the property

(robin), and one which does not (penguin). Following standard practice in the minimal

pairs evaluation paradigm (Warstadt et al.,  2020 ; etc.), we test whether PLMs prefer sen-

tence stimuli expressing correct property knowledge over those expressing incorrect ones.

comps can be decomposed into three subsets, each containing stimuli that progressively

isolate deeper understanding of the task of attributing properties to concepts, by adding

controls for more superficial heuristics. Our first subset—comps-base—measures the ex-

tent to which PLMs attribute properties to the right concepts, while varying the similarity

of the positive (robin) and the negative concepts (penguin [high] vs. table [low]). This

controls for the possibility that models are relying on coarse-grained concept distinctions.

For instance, in this setup a model should prefer (  1a ) over both versions of ( 1b ).

(1) a. A robin can fly.

b. *A (penguin/table) can fly.
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Next, drawing on the phenomenon of property inheritance, the comps-wugs set introduces a

novel concept, wug, expressed as the subordinate of the positive and negative concepts from

a subset of the comps-base set, and tests the extent to which PLMs successfully attribute

it the given property when it is associated with the positive concept. This increases the

complexity of the reasoning task, as well as the distance between the associated concept

(robin) and property (can fly). These manipulations help to control for memorization of

the literal phrases being tested, forcing models to judge properties for a novel concept that

inherits the property from a known concept. In this task, given that a model successfully

prefers ( 1a ) over ( 1b ), it should also prefer (  2a ) over ( 2b ):

(2) a. A wug is a robin. Therefore, a wug can fly.

b. *A wug is a penguin. Therefore, a wug can fly.

The final subset—comps-wugs-dist, combines the aforementioned controls by using neg-

ative concepts as distracting content and inserting them into the comps-wugs stimuli.

Specifically, we transform the stimuli of comps-wugs by creating two subordinates for ev-

ery minimal pair; one for the positive concept (robin, subordinate: wug) and the other for

the negative concept (penguin, subordinate: dax), which acts as a distractor. This way, we

control for the possibility that models may be relying on simple word associations between

content words—of which there are only two in the prior tests—by introducing additional,

irrelevant but contentful words into the context. Here, we consider models to be correct if

they prefer (  3a ) over ( 3b ), given that they prefer (  1a ) over ( 1b ):

(3) a. A wug is a robin. A dax is a penguin. Therefore, a wug can fly.

b. *A wug is a robin. A dax is a penguin. Therefore, a dax can fly.

Together, the three sets of stimuli tease apart more superficial predictive behaviors, such as

contextual word associations, from more robust reasoning behaviors based on understanding

of concept properties. While we can expect superficial predictive strategies to be brittle in

the face of shallow perturbations and irrelevant distractions, robust property knowledge and

reasoning behaviors should not.
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4.2 Motivation for using minimal pairs

Why should we use minimal pairs to test PLMs for property knowledge and/or its inheri-

tance? I present an argument by contrasting and relating it to alternative test formats and

paradigms. In particular, prior work in exploring property knowledge in PLMs has adopted

two different paradigms: one which uses probing classifiers to test if the applicability of a

property can be decoded from the representations of LMs (Forbes et al.,  2019 ; Da & Kasai,

 2019 ; Derby et al.,  2021 ); and the other which uses cloze-testing, in which LMs are tasked

to fill in the blank in prompts that describe specific properties/factual knowledge about the

world (Petroni et al.,  2019 ; Weir et al.,  2020 ). As argued in §  2.2 both these approaches—

though insightful—have key limitations for evaluating property knowledge, and that minimal

pair testing overcomes these limitations to a beneficial extent.

Briefly, the probing setup does not allow the testing of property knowledge in a precise

manner. Specifically, several properties are often perfectly correlated in datasets such as the

one we use here (see § 4.3.1 ). For example, the property of being an animal and being able to

breathe and grow, etc., are all perfectly correlated with one another. Even if the models true

knowledge of these properties is highly variable, probing its representations for them could

yield the exact same result, leading to conclusions that overestimate the model’s capacity

for some properties, while underestimating for others. Furthermore, many properties are

often idiosyncratic (has striped patterns on its body) and are therefore sparsely distributed

in the world, making them non-trivial to be learned by a simple probing classifier. Similarly,

standard cloze-testing of PLMs (Petroni et al.,  2019 ; Weir et al.,  2020 ; Jiang et al.,  2021 ) also

faces multiple limitations. First, it does not allow for testing of multi-word expressions, as

by definition, it involves prediction of a single word/token. Second, it does not yield faithful

conclusions about one-to-many or many-to-many relations: e.g. the cloze prompts “Ravens

can .” and “ can fly.” do not have a single correct answer. This makes our conclusions

about models knowledge contingent on choice of one correct completion over the other.

The minimal pair evaluation paradigm combines useful properties of both the afore-

mentioned paradigms and by doing so, presents solutions to their limitations. In particu-

lar, it uses the concept of ‘negative samples’ from the probing paradigm, while explicitly
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representing property knowledge by generalizing the cloze-testing method to multi-word

expressions—i.e., by focusing on entire sentences. This allows for a straightforward way to

assess correctness: the choice between multiple correct completions is transformed into one

between correct and incorrect, at the cost of having several different instances (pairs) for

testing knowledge of the same property. Additionally, the minimal pair paradigm allows us

also to shed light on how the nature of negative samples affects model behavior, which has

been missing in approaches using probing and cloze-testing. Finally, the usage of minimal

pairs is a well-established practice in the literature, having been widely used in works that

analyze syntactic knowledge of PLMs (Marvin & Linzen,  2018 ; Futrell et al.,  2019 ; Warstadt

et al.,  2020 ), as well as the potential social biases they might encode (Nangia et al.,  2020 ;

e.g.). comps complements this body of work by introducing minimal-pair testing to the

study of conceptual knowledge in PLMs.

4.3 Dataset Design and Generation

4.3.1 Ground-truth Property Knowledge data

For our ground-truth property knowledge resource, we use a subset of the CSLB property

norms collected by Devereux et al. ( 2014 ), which was further extended by Misra et al.

( 2022 ). The original dataset was constructed by asking 123 human participants to generate

properties for 638 everyday concepts. Contemporary work has used this dataset by taking

as positive instances all concepts for which a property was generated, while taking the rest

as negative instances (Lucy & Gauthier,  2017 ; Da & Kasai,  2019 ; etc.) for each property.

While this dataset has been popularly used in related literature, Misra et al. (  2022 ; see also

ch.  5 ) recently discovered striking gaps in coverage among the properties included in the

dataset. 

2
 For example, the property can breathe was only generated for 6 out of 152 animal

concepts, despite being applicable for all of them—as a result, contemporary work can be

expected to have wrongfully penalized models that attributed this property to animals that

could indeed breathe, and similarly for other properties. To remedy this issue, Misra et al.

( 2022 ) manually extended CSLB’s coverage for 521 concepts and 3,643 properties. We refer
2

 ↑ See also Sommerauer and Fokkens (  2018 ) and Sommerauer ( 2022 ), who also discuss this limitation.

81



to this extended CSLB dataset as XCSLB, and we use it as our source for ground-truth

property knowledge.

4.3.2 Choice of Negative Samples

We rely on a diverse set of knowledge representation sources to construct negative samples

for comps. Each source has a unique representational structure which gives rise to different

pairwise similarity metrics, on the basis of which we pick out negative samples for each

property:

Taxonomy

To sample from taxonomies, we consider a hierarchical organization of our concepts, by

taking a subset of WordNet (Miller,  1995 ) consisting of our 521 concepts. We use the wup

similarity (Wu & Palmer,  1994 ) as our choice of taxonomic similarity.

Property Norms

We use the XCSLB dataset and organize it as a matrix whose rows indicate concepts and

columns indicate properties that are either present (indicated as 1) or absent (indicated as

0) for each concept. As our similarity measure, we consider the jaccard similarity between

the row vectors of concepts. This reflects the overlap in properties between concepts, and

is prevalent in studies utilizing conceptual similarity in cognitive science (Tversky,  1977 ;

Sloman,  1993 ; etc.).

Co-occurrence

We use the co-occurrence between concept words as an unstructured knowledge representa-

tion. For quantifying similarity, we use the cosine similarity of the GloVe vectors (Pennington

et al.,  2014 ) of our concept words.

82



Sampling Strategy

Each property (pi) in our dataset splits the set of concepts into two: a set of concepts

that possess the property (Qpi
), and a set of concepts that do not (¬Qpi

). We sample

min(|Qpi
|, 10)—i.e., at most 10—concepts from Qpi

and take them to be our positive set.

Then for each concept in the positive set, we sample from ¬Qpi
the concept that is most

similar (depending on the source) to the positive concept and take it as a negative concept

for the property. We additionally include a negative concept that is randomly sampled

from ¬Qpi
, leaving out the concepts sampled on the basis of the three previously described

knowledge sources. Examples of the four types of negative samples for the concept zebra

and the property has striped patterns are shown in Table  4.1 .

Table 4.1. Negatively sampled concepts selected on the basis of various knowl-
edge representational mechanisms, where the property is has striped patterns,
and the positive concept is zebra.

Knowledge Rep. Negative Concept Similarity

Taxonomy horse 0.88
Property Norms deer 0.63
Co-occurrence giraffe 0.75
Random bat -

4.3.3 Minimal Pair Construction

Following our negative sample generation process, we end up with total of 49,324 pairs of

positive and negative concepts that span across 3,643 properties (14 pairs per property, on

average). Every property is associated with a property phrase—a verb phrase which expresses

the property in English, as provided in XCSLB. Using these materials, we construct our three

datasets of minimal pair sentence stimuli, examples of which are shown in Figure  4.1 .
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COMPS-BASE

The comps-base dataset contains minimal pair sentences that follow the template:

“[DET] [CONCEPT] [property-phrase].”

where [DET] is an optional determiner, and [CONCEPT] is the noun concept. Applying this

template to our generated pairs results in 49,324 instances. See Figure  4.1a for an example.

COMPS-WUGS

We test property inheritance in PLMs using only the animal kingdom subset of comps-base

(152 concepts, 944 properties, and 13,888 pairs), keeping the same negative samples. We

convert the original minimal pair sentences in comps-base, in which the positive concept is

an animal, into pairs of two-sentence stimuli by first introducing a new concept (wug) to be

the subordinate of the concepts in the original minimal pair. We then express its property

inheritance in a separate sentence. Our two sentence stimuli follow the template:

“A wug is a [CONCEPT]. Therefore, a wug [property-phrase].”

Although we use wug as our running example for the subordinate concept, we use four

different nonsense words {wug, dax, blicket, fep} equal numbers of times, to avoid making

spurious conclusions based on a single nonsense word. 

3
 Introducing an intervening novel

concept allows us to robustly control for simple word-level associations between concepts

and properties that models might have picked up during training. Figure  4.1a shows an

example.

COMPS-WUGS-DIST

To add distracting information, we follow Pandia and Ettinger (  2021 ) and convert the

comps-wugs stimuli by associating a different subordinate concept (dax) with the negative

concept ([NEG-CONCEPT]), and inserting it before or in-between the sentence containing
3

 ↑ As we describe in § 4.5 , we also tried a different set of nonce words, to address concerns about possible
impacts of using nonce words from existing literature (e.g., wug).
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Property: can fly
Positive: robin
Negative: penguin
Subordinate: wug
COMPS-BASE: A (robin/penguin) can fly.
COMPS-WUGS: A wug is a (robin/penguin).
Therefore, a wug can fly.

(a) comps-base and comps-wugs instances.

A dax is a penguin.

         A wug is a robin.         Therefore, a (wug/dax) can fly.

in-betweenbefore

(b) Distraction scheme for stimuli in comps-wugs-
dist, where the distractor is inserted either before
or in between each comps-wugs stimulus.

Figure 4.1. Examples of materials used in our experiments. In this example,
robin is the positive concept.

the positive concept and its subordinate, separately. This results in two subsets (before

and in-between) of three-sentence minimal pair stimuli, which differ in the subordinate to

which the property is attributed. We use the following template to create our stimuli:

“A wug is a [CONCEPT]. A dax is a [NEG-CONCEPT]. Therefore, a (wug/dax)

[property-phrase].”

That is, we have stimuli that resemble comps-wugs but instead deal with a pair of com-

peting subordinate concepts in context. 

4
 See Figure  4.1b for an example.

4.4 Methodology

4.4.1 Models Investigated

We investigate property knowledge and property inheritance capacities of 22 different PLMs,

belonging to six different families. We evaluate four widely used masked language modeling

(MLM) families: (1) ALBERT (Lan et al.,  2020 ), (2) BERT (Devlin et al.,  2019 ), (3)

ELECTRA (Clark et al.,  2020 ), and (4) RoBERTa (Liu et al.,  2019 ); as well as two auto-

regressive language modeling families: (1) GPT2 (Radford et al.,  2019 ), and (2) the GPT-Neo

(Black et al.,  2021 ) and GPT-J models (B. Wang & Komatsuzaki,  2021 ) from EleutherAI.

We also use distilled versions of BERT-base, RoBERTa-base, and GPT2, trained using the

method described by Sanh et al. (  2019 ). Table  B.1 shows each models parameters, vocabulary
4

 ↑ We again choose from our list of four nonsense words (wug, dax, blicket, and fep), which amounts to 12
unique ordered pairs, after accounting for counterbalancing.

85



Table 4.2. An example of matched stimuli across different comps subsets, as
well as conditional log-probabilities elicited by GPT-J. Here, the property of
interest is has hooves, the positive concept is horse, and the negative concept
is dog. The negative concept in this case was sampled using the co-occurrence
knowledge representation method (see §  4.3.2 ). Emboldened words indicate
items that are different in the minimal pair. Refer to §  4.4.2 for discussion on
how ‘Score’ is computed.

COMPS subset Stimulus Score

base A horse has hooves. -3.829
A dog has hooves. -4.963

wugs A fep is a horse. Therefore, a fep has hooves. -2.153
A fep is a dog. Therefore, a fep has hooves. -3.392

wugs-dist (before) A wug is a dog. A fep is a horse. Therefore, a fep has hooves. -2.919
A wug is a dog. A fep is a horse. Therefore, a wug has hooves. -2.895

wugs-dist (in-between) A fep is a horse. A wug is a dog. Therefore, a fep has hooves. -3.616
A fep is a horse. A wug is a dog. Therefore, a wug has hooves. -3.092

size, and training corpora. All models were accessed using minicons (Misra,  2022 ), 

5
 a python

library that serves as a wrapper around Huggingface’s transformers (Wolf et al.,  2020 ), and

provides a unified mechanism for eliciting log-probabilities in batch-wise manner for any

autoregressive or masked LM that is accessible through the huggingface hub, or is trained

using the transformers library. Outside of these models, we also investigated 7 different

GPT-3/3.5 models, in separate experiments with a smaller subset of the comps stimuli (see

§ 4.5.4 ).

4.4.2 Measuring Performance

To evaluate models on comps, we compare their log-probabilities for the property phrase—

conditioned on contexts (to the left) containing the positive and negative noun concepts.

That is, we hold the property phrase constant, and compare across minimally differing
5

 ↑  https://github.com/kanishkamisra/minicons 
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conditions to evaluate the probability with which a property is attributed to each concept.

For example, we score stimuli in comps-base, e.g., “A dog can bark.” as:

log p(can bark. | A dog),

its corresponding stimulus in comps-wugs, “A wug is a dog. Therefore, a wug can bark.”

as:

log p(can bark. | A wug is a dog. Therefore, a wug),

and similarly—assuming cat as the negative concept—the corresponding stimuli in our

comps-wugs-dist subset, “A wug is a dog. A dax is a cat. Therefore, a wug can bark.”

as: 

6
 

log p(can bark. | A wug is a dog. A dax is a cat. Therefore, a wug).

This approach to eliciting conditional LM judgments is equivalent to the “scoring by premise”

method (Holtzman et al.,  2021 ), which has been shown to result in stable comparisons across

items. Additionally, this also takes into account the potential noise due to frequency effects

or tokenization differences (Misra et al.,  2021 ). Estimating these conditional log-probabilities

using auto-regressive PLMs can be directly computed in a left-to-right manner. For MLMs,

we use their conditional pseudo-loglikelihoods (Salazar et al.,  2020 ) as a proxy for conditional

log-probabilities.

Based on this simple method of eliciting relative acceptability measures from PLMs,

we evaluate a model’s accuracy on all comps stimuli as the percentage of times its log-

probability for a property is greater when conditioned on the context that attributes the

property to the positive—as opposed to the negative—concept. Since all cases are forced-

choice tasks between two instances, chance performance is set to 50%. Table  4.2 shows

examples of all comps stimuli and GPT-J’s conditional log-probabilities for them.
6

 ↑ Here we show an example where the distractor is added in-between the context specifying the positive
concept, and the queried property knowledge.
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Figure 4.2. Accuracies of PLMs on comps-base under various negative sam-
pling schemes. Chance performance for all rows is 50%, except for ‘Overall,’
where it is 6.25%. Refer to Table  B.1 for unabbreviated model names.

4.5 Experiments and Analyses

4.5.1 Base property knowledge of PLMs and their sensitivity to similarity ef-
fects

We begin by evaluating the 22 PLMs on comps-base. Here we focus on the extent to which

models robustly associate properties to the correct concepts across stimuli with varying

kinds of similarity between the positive and negative concepts. We report accuracies of

the 22 PLMs on comps-base across the four different negative sampling schemes that we

specified in §  4.3.2 . We additionally report a more stringent accuracy measure that we refer

to as ‘Overall accuracy,’ which is calculated for every property and its positive concept, as

the percentage of times a model correctly attributes the property to the positive concept in

all four types of negative sampling schemes. Chance performance for only the ‘Overall’

case is then 6.25% (0.54 × 100). Figure  4.2 shows these results.

From Figure  4.2 , we see that models strongly distinguish between positive and negative

concepts in cases where they are dramatically different—i.e., where negative concepts were

sampled randomly (e.g., bear [positive] vs bottle [negative] for the property can breathe).

However performance drops substantially when there are subtler differences between the two

concepts—e.g, the concepts walrus (positive) and shark (negative) for the property is a

mammal. For instance, the best performing model in any similarity-based negative sampling
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scheme (GPT-J, 76%, ‘Co-oc’) only slightly outperforms the worst model in the random

negative sampling scheme (Neo-125M, 71%). The performance of PLMs is not substantially

different across the three similarity-based negative sampling schemes, suggesting that the

dynamics of model sensitivity in attributing properties to concepts are largely harmonized

across various types of similarities. As a result of models’ insensitivity in presence of similar

negative concepts, the overall accuracies are very modest in value, with the overall accuracy

of the best performing model (GPT-J) being only 53%. This overall performance is, however,

significantly above chance (6.25%).

4.5.2 How does performance on COMPS-BASE vary by property type?

Devereux et al. (  2014 ) have categorized the properties that we use in our experiments to

lie in 5 different categories: (1) Taxonomic, e.g., is a mammal, is a vehicle, etc.; (2)

Functional, e.g., can keep the body warm, is used to hit nails, etc.; (3) Encyclopedic,

e.g., uses electricity, is warm blooded, etc.; (4) Visual Perceptual, e.g., has webbed feet,

has thick fur, etc.; and (5) Other Perceptual, e.g., makes grunting sounds and is sharp,

etc. We report results of the 22 PLMs on the comps-base stimuli across the five different

property types, in Figure  4.3 .

From Figure  4.3 , we observe that PLMs are substantially stronger in eliciting taxonomic

properties of concepts as compared to other types, with highest overall accuracy being 71%,

as compared to 48% on encyclopedic properties, 50% on visual perceptual properties, 57%

on functional properties, and 43% on non-visual perceptual properties. Recall that chance

accuracy for the ‘Overall’ scenario is just 6.25%, so these scores are fairly high. This corrobo-

rates evidence from previous work in analyzing property knowledge of distributional semantic

models as well as LM representations to lack perceptual knowledge (Lucy & Gauthier,  2017 ;

Da & Kasai,  2019 ; Rubinstein et al.,  2015 ; Weir et al.,  2020 ), likely due to reporting bias

(Gordon & Van Durme,  2013 ; Shwartz & Choi,  2020 ). However, different to most of these

works, the gap between performance on perceptual properties and non-perceptual properties

is small. We conjecture that this could be primarily due to the extension of the CSLB by

Misra et al. ( 2022 ), which lead to an increase in coverage of property knowledge for several
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properties. For instance, the property has teeth was mentioned only for 45 out of 67 potential

concepts, having been left out for concepts such as calf, 

7
 buffalo, kangaroo, etc. So

it could be the case that previous research has underestimated the extent to which property

knowledge is encoded by PLMs and other distributional semantic models of language.

4.5.3 Property Inheritance in PLMs

Having established the base property knowledge of PLMs, we now investigate the extent to

which they can show behavior that is consistent with reasoning required to handle property

inheritance. We first investigate their performance on comps-wugs, created using the

subset of comps-base containing only animal concepts (see §  4.3.3 for stimulus construction).

Table  4.3 shows average accuracies obtained by PLMs on our property inheritance stimuli,

and compares them to average accuracies on comps-base—aggregating across all negative

sampling schemes. Recall that the stimuli in comps-wugs present a more challenging

property attribution task than in comps-base, by not only controlling for coarse-grained

similarity effects, but also introducing an intervening novel concept that is expected to inherit

the properties of the positive concept. By measuring attribution of properties more indirectly,

these stimuli increase the complexity of the reasoning and control for memorization of the

literal phrase initially tested with comps-base.

Table  4.3 shows the average accuracy of the PLMs on each subset of comps. Despite

the increase in complexity, we see that PLMs actually show slightly stronger performance on

comps-wugs (68.9%) than on comps-base (67.1%). This means that there are instances

in which models prefer the property in the positive context over the negative context (  4a >

 4b ), but show the opposite behavior in comps-base ( 4d >  4c ).

(4) a. A wug is a robin. Therefore, a wug can fly.

b. A wug is a penguin. Therefore, a wug can fly.

c. A robin can fly.

d. A penguin can fly.

7
 ↑ the young one of a cow, and not the muscles in the vertebrate body
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Figure 4.3. comps-base performance across five property types annotated
in CSLB (Devereux et al.,  2014 ).

91



Table 4.3. Average accuracy (and standard error of the mean) of PLMs (N =
22) on each of our comps subsets. Chance performance is 50% throughout.

COMPS subset Size Acc.

base 49.3K 68.41.7
base (animal kingdom only) 13.8K 67.12.0

wugs 13.8K 68.92.3
wugs-dist (before) 13.8K 59.23.9
wugs-dist (in-between) 13.8K 47.24.5

This pattern of performance could lead to spurious conclusions that models are suc-

cessfully executing property inheritance, when in fact they show a lack of the pre-requisite

property knowledge based on their failure on comps-base. We will discuss these inconsis-

tencies in more detail below. Overall, however, the relatively strong performance on comps-

wugs suggests that models are largely unaffected when we control for simple memorization

of tested phrases—e.g., robin can fly—by linking known concepts to properties through an

intervening subordinate concept (wug). This suggests that models are not relying on simple

memorization, but does not control for the possibility that simple association between con-

tent words (robin and fly) could be responsible for seemingly desirable behavior—for this

we turn to comps-wugs-dist. The comps-wugs-dist test assesses whether models retain

strong property attribution performance when content words in the context are not all rele-

vant for the property prediction. The stimuli thus include irrelevant distractor concepts and

their subordinates—which, in a robust model, should not affect attribution of the property

to the correct concept (see §  4.3.3 for stimulus construction).

From Table  4.3 , the average accuracies of PLMs on both subsets of comps-wugs-dist

(before and in-between) indicate that overall, models now show clear degradation in prop-

erty inheritance performance as a result of the distracting information. Specifically, the

PLMs’ performance drops by 9.7 points on instances when the distracting information is

added before the relevant context and queried property, and by 21.7 points on instances

where it is added in-between the two, relative to the undistracted property inheritance

stimuli (comps-wugs). Notably, the latter drop in performance brings models level with
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Figure 4.4. Distribution of model performance on comps-wugs and comps-
wugs-dist (both subsets) across possible outcomes (correct = 3, incorrect =
7) of the models on corresponding minimal pairs in comps-base. Error bars
indicate 95% CI, while dashed line indicates chance performance (50%).

chance accuracy (we fail to reject the null hypothesis that avg. accuracy of models is 50%;

p = .62, Wilcoxon signed rank exact text), highlighting a pronounced lack of robustness in

PLMs’ capacity to attribute properties to the correct concepts in their input context.

Accounting for spurious performance

The comps-wugs results above raise the concern that models are often showing spuri-

ous performance: accurately demonstrating property inheritance behavior without actually

possessing the right property knowledge. To shed more light on this potential issue, we

plot the distribution of model accuracies on our property inheritance stimuli (comps-wugs

and comps-wugs-dist) divided based on their outcomes on the corresponding stimuli in

comps-base. Figure  4.4 shows these distributions. In comps-wugs and both subsets of

comps-wugs-dist, models show this spurious correct behavior on 41.3%, 55.6%, and 42.8%

of instances in which they produce incorrect judgments on the corresponding comps-base

stimuli (yellow bars in Figure  4.4 ). This non-trivial proportion of cases with spurious per-

formance further reinforces the idea that PLMs’ successful predictions on these tests are

likely relying on heuristics rather than robust inferences about property knowledge. We can

remove the effects of these spurious instances by filtering to items in which models give the
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Figure 4.5. Accuracies of individual models (grouped by family, in increasing
order based on number of parameters) on comps-wugs and comps-wugs-
dist. Black dashed line indicates chance performance (50%). Refer to Ta-
ble  B.1 for unabbreviated model names. Error bands indicate 95% Bootstrap
CIs.

correct answer on comps-base (blue bars in Figure  4.4 )—though we see that the overall

conclusions remain the same after this filtering.

On the pronounced effect of proximity in autoregressive PLMs

Our previous discussion summarized the aggregate property inheritance behavior of the 22

PLMs we considered—we now zoom in for a model-wise analysis. Figure  4.5 shows models’

relative accuracies on comps-wugs and comps-wugs-dist, filtering to items with correct

comps-base performance, as in the blue bars of Figure  4.4 . Consistent with our overall

findings, we observe distracting content to substantially degrade model performance across

the board. 

8
 A particularly noteworthy pattern is that the degradation in autoregressive

PLM families—GPT2 and EleutherAI—shows a stark sensitivity to proximity effects. While

these classes of model seem to suffer less when distracting content is added before the

context containing the positive concept (thus placing the distraction farther from the queried

property), they show substantially worse performance when the opposite is the case (i.e.,

when distraction is added in-between, and is therefore closer to the queried property). This
8

 ↑ See also Pandia and Ettinger (  2021 ) for a similar degradation of performance on cloze-tasks involving
factual retrieval.
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degradation due to proximity of the distracting content becomes catastrophically worse

as models grow larger in the number of pre-trained parameters—in fact bringing

their performance down to as much as 26.2 points below chance (in GPT-J, which has 6B

parameters). While MLMs also show similar levels of degraded performance in presence of

distraction, they do not seem to show any systematic sensitivity to proximity effects, likely

due to their bidirectional nature.

4.5.4 Testing GPT-3/3.5

Recent work in scaling PLMs to hundred billion parameters has led to models such as GPT-3

(Brown et al.,  2020 ), which are significantly larger than the largest model tested in the results

discussed above (i.e., GPT-J, with 6B parameters). Testing them on the entire set of comps

stimuli (49K + 3 × 13.8K pairs of sentences) is prohibitively expensive since they are only

accessible through paid APIs. Nonetheless, we sampled a small set of comps stimuli—which

we term as minicomps—in order to get a glimpse of how well substantially larger PLMs

elicit property knowledge and demonstrate reasoning behavior compatible with property

inheritance. Specifically, we created minicomps by sampling 1200 minimal pairs from each

of our original comps subsets (matched in terms of real world concepts and properties across

the subsets), such that all pairs of nonce words in the resulting minicomps-wugs-dist end

up being sampled equal number of times (100 times each).

Models

As test subjects, we chose four GPT-3 models (Brown et al.,  2020 ): ada, babbage, curie,

davinci, with the last one being the largest (at 175B parameters), and an additional fifth

davinci-based model called text-davinci-001, which fine-tunes davinci on human-written

demonstrations. We also test the recently proposed GPT-3.5 models, text-davinci-002 and

text-davinci-003, which improve over davinci by additionally fine-tuning it on code and

human-written demonstrations (Ouyang et al.,  2022 ). 

9
 All these models are autoregressive

9
 ↑ These models are also known as InstructGPT, as discussed in  https://platform.openai.com/docs/
model-index-for-researchers .
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Figure 4.6. Accuracies of GPT-3 models (arranged in increasing order of the
number of trained parameters) on minicomps-wugs and minicomps-wugs-
dist. Black dashed line indicates chance performance (50%). Error bands
indicate 95% Bootstrap CIs.

in nature, so we use the same scoring and evaluation method as described in §  4.4.2 . Since the

four original GPT-3 models (ada, babbage, curie, davinci) are trained using the same LM

objective on the same corpora, we analyze them separately from text-davinci-001, text-

davinci-002, and text-davinci-003, which we only compare to davinci. We do this to

remain consistent with the way we displayed results in §  4.5 —ordering models based on their

number of trained parameters—and also because models in the text-davinci-XXX series use

the same underlying davinci model augmented with additional training mechanisms (e.g.,

reinforcement learning and fine-tuning on human-feedback) and data (e.g., code) instead of

increasing its size, to our knowledge. The total cost of the experiments was $14.74 (as of

February 3, 2023).

Results

Figure  4.6 shows the performance of the four GPT-3 models on minicomps-wugs and

minicomps-wugs-dist, while Figure  4.7 compares GPT-3 davinci to its code and human-
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Figure 4.7. Accuracies of davinci models (GPT-3 and GPT-3.5) on
minicomps-wugs and minicomps-wugs-dist. Black dashed line indicates
chance performance (50%). Error bars indicate 95% Bootstrap CIs. davinci
and text-davinci-001 are GPT-3 (Brown et al.,  2020 ) models, while text-
davinci-002 and text-davinci-003 are GPT-3.5 models.

feedback adapted counterparts. From Figure  4.6 , we see robustness issues to persist even

for GPT-3 models, similar to our main results. Models perform remarkably well in the

absence of distraction (i.e., on minicomps-wugs), but struggle in its presence, especially

when it is closer to the queried property. In particular, performance on minicomps-wugs-

dist (before) increases with an increase in parameters until the largest model (davinci),

where the performance drops closer to chance. On minicomps-wugs-dist (in-between), all

models perform catastrophically worse than chance. This noteworthy pattern of proximity-

based degradation in performance mimics the results shown in Figure  4.5 , though we do not

see a systematic decline in performance with an increase in parameters as observed in the

GPT2 and EleutherAI models—with the 175B parameter model (davinci) demonstrating

an increase in performance over the relatively smaller curie model.

While the above results demonstrate that simply scaling autoregressive PLMs is unlikely

to overcome the lack of robustness against distracting content, we now test whether aug-

menting these large PLMs by additionally training on code (GPT-3.5 models) and aligning

them with human-provided demonstrations (text-davinci-001 and both GPT-3.5 models)

could lead to any improvements. For instance, training on code could provide training signals

to PLMs that encourage entity tracking (N. Kim & Schuster,  2023 ), which could potentially
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enable them, in our case, to resolve which subordinate concept (e.g., wug vs. dax) the tar-

get property is more likely to be associated with. Similarly, aligning with human-written

demonstrations could potentially improve their truthfulness, which in our case, could lead

to them to prefer correct property assignments. However, from Figure  4.7 , we see no note-

worthy improvements demonstrated by these augmented models. All augmented models

achieved similar accuracies on comps-wugs as the davinci model (within 90.5% and 91%),

suggesting that their augmentations preserved the general associations between the lexical

items that denote everyday concepts and properties. On stimuli containing distraction (i.e.,

both subsets of comps-wugs-dist), either the models performed systematically worse as

compared to davinci (with text-davinci-002 showing below-chance performance on both

subsets), or they showed mixed results, where an improvement on comps-wugs-dist (be-

fore) was accompanied by a decline on comps-wugs-dist (in-between).

Together, these results suggest that neither an increase in scale nor additional training

methods such as alignment with human instructions/feedback or training on code prevents

models from being distracted in associating properties to novel subordinate concepts intro-

duced in the input context. In fact, the catastrophic effects of proximity-based distraction

persists even for the most recent state of the art GPT-3/3.5 models.

4.5.5 Choice of nonce words

Nonce words constitute an important design decision for our stimuli—we followed precedents

in language acquisition research (Berko,  1958 ; Gopnik & Sobel,  2000 ; i.a.) and used previ-

ously existing nonce words (such as wug and blicket) to represent novel concepts in context.

While these are expected to be novel for humans, they may appear in pre-training corpora on

which PLMs are usually trained.  

10
 This raises a potential concern that PLMs could already

be biased toward certain properties for these words (e.g., wug is commonly depicted as a

bird), and may struggle to associate them with different properties.  

11
 To explore this em-

pirically, we conducted experiments with alternative nonce words (generated synthetically,
10

 ↑ e.g., wug appears in wikipedia:  https://en.wikipedia.org/wiki/Jean_Berko_Gleason (accessed on Jan
23)
11

 ↑ We thank Reviewers 1 and 3 of the paper (Misra et al.,  2023 ), Najoung Kim, and Kyle Mahowald for
raising this concern.
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Figure 4.8. Accuracies of individual models (grouped by family, in increasing
order based on number of parameters) on comps-wugs and comps-wugs-
dist with synthetically constructed nonce words. Black dashed line
indicates chance performance (50%). Refer to Table  B.1 for unabbreviated
model names.

similar to N. Kim et al. ( 2022 )). Specifically, we constructed novel character sequences—

each assigned as a replacement for our original four nonce words—of lengths ranging from

4-8 by sampling in an alternate fashion from consonants (odd positions) and vowels (even

positions). 

12
 A replication of Figure  4.5 using the stimuli with these newly sampled nonce

words is shown in Figure  4.8 .

On comparing figures  4.5 and  4.8 , we observe largely similar patterns of results on stim-

uli containing nonce words constructed using randomly sampled characters. That is, mod-

els generally performed well on comps-wugs, while they struggled on comps-wugs-dist.

There were some exceptions: (1) GPT-Neo 1.3B and 2.7B showed improvements (relative

to the original stimuli) in cases where distraction is added closer to the queried property

(i.e., in-between), though they still hover around chance performance, and additionally the

performance of GPT-J, like in the original results is still substantially below chance; and

(2) there were non-trivial improvements demonstrated by ALBERT models (large and xl)

on the before subset of comps-wugs-dist, and BERT-large on the in-between subset of

comps-wugs-dist.
12

 ↑ the resulting set of words is: {ruhisin, kifosa, rosibif, lepuvu}, still amounting to 12 unique ordered pairs
in the comps-wugs-dist stimuli.
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Table 4.4. Average agreement (× 100) in PLMs’ preference on stimuli con-
taining original and synthetically constructed nonce words.

Stimuli Avg. Agreement

comps-wugs 93.10.8
comps-wugs-dist (before) 73.94.6
comps-wugs-dist (in-between) 73.04.6

Overall 80.02.9

0.83

0.81

0.76

0.78

0.72

0.72

0.70

0.75

0.77

0.76

0.76

0.77

0.72

0.74

0.78

0.79

0.74

0.71

0.76

0.77

0.70

0.70

0.72

0.73

0.71

0.71

0.68

0.69

0.67

0.67

0.71

0.71

0.73

0.77

0.65

0.66

0.79

0.81

0.66

0.66

0.74

0.74

0.79

0.80

0.940.930.93 0.930.94 0.93 0.92 0.92 0.92 0.920.93 0.940.920.94 0.950.94 0.930.93 0.930.930.92 0.93

WUGS-DIST
(in-between)

WUGS-DIST
(before)

WUGS

A-b A-l A-x
l
A-x

xl dB-
b B-b B-l E-s E-b E-l dR-

b R-b R-l dGP
T2
GPT

2
GPT

2-m
GPT

2-l
GPT

2-xl

Neo
-125

M
Neo

-1.3
b
Neo

-2.7
B
GPT

-J

0.6 0.7 0.8 0.9 1.0
Agreement

Figure 4.9. Proportion of cases (in comps-wugs and both subsets of comps-
wugs-dist) where each listed model’s preference on the original stim-
uli matches that in stimuli with synthetically constructed nonce
words, measured as the ‘Agreement’. An agreement of 1.0 suggests that a
given model’s preferences are perfectly matched across both sets of stimuli.

To precisely quantify the difference between the two sets of results, we measured the

agreement between the predictions of the PLMs for both sets of stimuli, taken as the pro-

portion of minimal pairs in which the models’ relative preference agree. Figure  4.9 shows

individual model agreement on comps-wugs and comps-wugs-dist, while Table  4.4 shows

agreement percentages averaged across all models. From these results we observe models to

show greater robustness to the variability introduced by the choice of nonce words in stimuli

with one novel concept (comps-wugs) than in stimuli with multiple novel concepts (comps-

wugs-dist). Despite this discrepancy, there is generally a high average agreement (80%)

between a given model’s set of decisions on stimuli with original and alternative nonce words.
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Figure 4.10. Accuracies of individual models (grouped by family, in in-
creasing order based on number of parameters) on comps-wugs and comps-
wugs-dist with alternate framing of novel taxonomic information.
Black dashed line indicates chance performance (50%). Refer to Table  B.1 for
unabbreviated model names.

4.5.6 Framing of novel taxonomic information

Another relevant stimulus design decision is the phrasing for introducing novel concepts in

context. While we used “A wug is a [CONCEPT]” for our main experiments, we additionally

tested with an alternate framing: “A wug is a type of [CONCEPT].”, where wug indicates the

novel concept. In all cases, we simply alter the template, keeping everything else constant,

including the choice of nonce words.

Figure  4.10 shows accuracies of the models on stimuli with this alternate phrasing, while

Figure  4.11 and Table  4.5 show individual and averaged overall agreement between models’

preference on original and the alternatively-phrased stimuli, respectively. The agreement

percentages between models’ preferences are quite high (average agreement being 90%)—in

fact even greater than the agreement observed as a result of altering the nonce words (Ta-

ble  4.4 ), further cementing the robustness of our results.

4.6 General Discussion

The overall goal of this chapter (and comps) was to shed light on the extent to which PLMs

can robustly (1) attribute to real world concepts (e.g., horse, whale) their properties (e.g.,

101



Table 4.5. Average agreement (× 100) in PLMs’ preference on stimuli con-
taining original (A wug is a [CONCEPT].) and alternate framing of novel taxo-
nomic information (A wug is a type of [CONCEPT].).

Stimuli Avg. Agreement

comps-wugs 93.41.2
comps-wugs-dist (before) 88.53.1
comps-wugs-dist (in-between) 88.03.6

Overall 90.02.6
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Figure 4.11. Proportion of cases (in comps-wugs and both subsets of
comps-wugs-dist) where each listed model’s preference on the orig-
inal stimuli matches that in stimuli with alternate framing of novel
taxonomic information, measured as the ‘Agreement’. An agreement of 1.0
suggests that a given model’s preferences are perfectly matched across both
sets of stimuli.

is a mammal); and (2) demonstrate behavior consistent with property inheritance: a rea-

soning process in which concepts are endowed with the properties of their superordinates

(Smith & Estes,  1978 ; Sloman,  1998 ; G. L. Murphy,  2002 ). Testing PLMs for these abil-

ities allows us to ask key questions about how they encode and transfer their background

world knowledge (i.e., their inductive generalizations). To target these capabilities more

precisely, and mitigate potential inflation of performance by superficial heuristics such as

coarse-grained similarity, memorization, and word association, we propose incrementally in-

creasing levels of controls in constructing our minimal pair stimuli, progressively making the

task of attributing properties to concepts more challenging.
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Findings from our initial experiment on comps-base established that the basic capacity

of models to attribute properties to everyday concepts is largely coarse grained. PLMs were

more successful in making correct property attributions when the candidate concepts were

radically different, and struggled when the concepts shared semantic relations or had high

co-occurrence. On testing for ‘property inheritance’ behavior (via comps-wugs), PLMs ini-

tially appeared to demonstrate reasonable success, but they also showed spurious behavior

in achieving correct performance on a non-trivial number of instances for which they did

not succeed in the prerequisite base condition. Furthermore, this performance declined sub-

stantially in the presence of distracting information (comps-wugs-dist), providing further

evidence that what property knowledge and reasoning we appear to see in these PLMs is

more reliant on superficial heuristics than on ideal reasoning behavior. Of particular note

is our finding of catastrophic distraction in large autoregressive PLMs, whose sensitivity to

proximity effects brings their overall performance well under chance, especially when scaled

up to billions of parameters, demonstrating a case of inverse-scaling (McKenzie et al.,  2023 ).

Contemporary work has highlighted the promise of PLMs on high-level tasks requiring—

among other things—access to proper relational knowledge between concepts (see Petroni

et al.,  2019 ; Safavi & Koutra,  2021 ; Piantadosi & Hill,  2022 ). By drawing on the con-

cept of property inheritance, our experiments target reasoning ability based on perhaps the

most well-established of relations—the taxonomic or the IsA relation (M. L. Murphy,  2003 ).

Recent work has also alluded to the proficiency of PLMs in capturing taxonomic informa-

tion about everyday objects and entities (Weir et al.,  2020 ; Chen et al.,  2021 ; Hanna &

Mareek,  2021 ), though perhaps not systematically, (see Ravichander et al. ( 2020 )). Findings

from our controlled experiments suggest that PLMs’ approximation of the consequences of

the taxonomic relation is at best noisy, in light of clear failures especially in presence of

similarity-governed competition. We conclude from our analyses that instead of robustly

extracting relational information and reasoning about properties of concepts, it is likely that

the PLMs tested here are optimized to prefer superficial cues in making word predictions,

leading to mistakes and inaccuracies in presence of irrelevant and distracting information.

Since robust natural language understanding will be critically reliant on understanding of

property knowledge and implications of property transfer, these findings strongly motivate
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the adoption of rigorous assessment methods when it comes to evaluating for conceptual

knowledge and its functional consequences in PLMs.
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5. A FRAMEWORK FOR SIMULATING INDUCTIVE

GENERALIZATION IN LANGUAGE MODELS

This chapter adapts work from the following publications:

1. Misra, K. (2022). On semantic cognition, inductive generalization, and language mod-

els. In Proceedings of the AAAI Conference on Artificial Intelligence, 36 (11), 12894-

12895.

2. Misra, K., Rayz, J., & Ettinger, A. (2022). A Property Induction Framework for Neural

Language Models. In Proceedings of the Annual Meeting of the Cognitive Science

Society, 44.

They have been reproduced here with significant alterations.

5.1 Introduction

One of the hallmark features of human semantic cognition is its capacity to facilitate in-

ferences that go beyond available data to project novel information about concepts and

properties, also known as inductive generalization or property induction (Osherson et al.,

 1990 ; Feeney & Heit,  2007 ; Chater et al.,  2011 ; Kemp & Jern,  2014 ; Hayes & Heit,  2018 ).

Empirical studies of inductive generalization in adults and children have assimilated a variety

of touchstone inductive phenomena, thereby revealing aspects of conceptual knowledge that

influence how humans deploy novel information. Analogously, the principles of inductive

generalization can provide us with further context within which we can study the nature

of LMs understanding of conceptual knowledge and organization (as also argued in §  2.3 .

The previous two chapters have indeed featured—albeit in a very narrow sense—concept of

inductive generalization as a means to study PLMs’ conceptual knowledge, operationalizing

it using the models’ natural ability to perform word prediction. 

1
 In this chapter, we scru-

tinize this aforementioned approach and propose an alternate analysis framework that uses
1

 ↑ Ch.  3 uses a single phenomenon, typicality, which is known to modulate human inductive behavior; while
ch.  4 uses a very specific type of inductive generalization (object generalization or property inheritance) to
study the extent to which PLMs robustly attribute properties to concepts.
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PLMs to simulate inductive generalizations about everyday concepts and their properties.

In particular, this framework makes more direct contact with PLMs’ representational space,

in that the integration of novel information (premises in an inductive argument) constitutes

genuine updates to the models’ learned representations, which will have a causal effect on

the models’ responses to queries about how that information will apply in other settings.

This enables us to investigate whether the models’ learned representations place novel infor-

mation in their pre-constructed space whereby they can make desirable inductive inferences,

which further allows us to questions about how the representations of the PLMs drive gen-

eralizations, and what kinds of abstractions they encode. Additionally, this allows us to

offer complementary insight similar to other works that have followed similar principles of

inductive generalization as we pursue here, though they do so to shed light on the models’

capacity to make syntactic and grammatical generalization (van Schijndel & Linzen,  2018 ;

Prasad et al.,  2019 ; N. Kim & Smolensky,  2021 ), as opposed to semantic phenomena.

I use this framework to specifically simulate hallmark phenomena observed in human

inductive literature (Osherson et al.,  1990 ; Heit & Rubinstein,  1994 ) which have collectively

shed light on how the human mind stores, organizes, and uses acquired conceptual knowl-

edge to make inductive leaps given some novel information. For instance, the phenomenon of

conclusion specificity sheds light on sensitivities to the taxonomic organization of concepts—

humans were more likely to project a novel property from robins to all birds (more specific,

lower level node in a taxonomy) than to all animals (less specific, higher level node). Sim-

ilarly, the phenomenon of premise diversity highlights how humans reason about category

coverage: they are more likely to project a property to all birds when two diverse birds

(robins and ostriches)—likely to cover the category of birds better—share a property than

when two highly similar birds (robins and sparrows) share the property. Therefore, testing if

LMs can systematically show behavior that is compatible with these phenomena can allow us

to form conclusions about the extent to which their representations encode the abstractions

(such as hierarchical category membership relation) and principles (category coverage) that

are evidently observed in at least one system that has mastered conceptual understanding:

the human mind. In the analyses that follow, we will be comparing results from models with

and without pre-trained representations, which will allow us to conclude about the precise
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benefits that pre-training might provide to models when it comes to conceptual knowledge

and reasoning.

5.1.1 Desiderata

Recall from § 2.3 that inductive generalization is often studied in humans through the use

of arguments, represented in the following premise-conclusion format, as popularized by

Osherson et al. ( 1990 ):
concept A has property X.

concept B has property X.
(30)

Argument  (30) is read as “A has property X. Therefore, B has property X.” The subject of

the premise sentence (concept A) is referred to as the premise concept (similarly, if there

are multiple premises, we have a set of premise concepts), while that of the conclusion is

called the conclusion concept. Representing induction stimuli as arguments allows one to use

the notion of “argument strength,” which quantifies the degree to which a human subject’s

belief in the premise statements strengthens their belief in the conclusion (Osherson et al.,

 1990 ). Computationally, argument strength has been viewed as an estimate of the conditional

probability about a conclusion, given some premise (Kemp & Tenenbaum,  2003 ; Rogers &

McClelland,  2004 ; Shafto, Kemp, Baraff, Coley, et al.,  2005 ; Tenenbaum et al.,  2007 ; Kemp

& Tenenbaum,  2009 ):

p(conclusion | premise) (5.1)

This measure can be interpreted as the model’s estimate of the probability that the propo-

sition expressed by the conclusion is true, given that the premise is true. This is compatible

with multiple different types of inductive generalizations—ones that involve generalization

of a novel property across known concepts, or those that focus on generalizations involv-

ing novel concepts. For instance, in case of a novel property being generalized, the measure

would be interpreted as the probability that a property is shared between the conclusion and
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the premise concepts. Similarly, in the case of a novel concept being introduced, it would

be interpreted as the probability that the novel concept has one or more known properties

(conclusion), given that it has other known properties (premise) This interpretation leads to

two desiderata that the proposed framework aims to satisfy:

1 The ability to make judgments about the association of concepts to properties, ex-

pressed in natural language—i.e., provide an estimate for eq. (  5.1 ).

2 The ability to accept new conceptual knowledge and then be queried to assess gener-

alization or projection of this new conceptual knowledge to additional instances (con-

cepts/properties).

5.1.2 Scrutinizing the word prediction account of inductive generalization

One candidate method to perform inductive generalization with language models borrows

directly from the ‘LMs as Knowledge bases’ paradigm (Petroni et al.,  2019 ), by using word

prediction-based judgments of property knowledge. Probability estimation is natural to LMs

– they can readily assign likelihoods to any given piece of text, and can therefore also make

relative probability comparisons between statements expressing property knowledge. For

instance, assigning probability scores to statements such as “a cat has fur” or “a dog can

fly.” In this case, a competent LM should ideally assign greater probability to the former as

compared to the latter (see ch.  4 for exactly how robust models are in assigning properties

to concepts). Extending this method to inductive generalization–or any task dealing with

conceptual knowledge—would require one to use an LM’s probability for a sequence as

the sequence’s semantic plausibility, like in many previous works (Davison et al.,  2019 ;

Porada et al.,  2021 ). Operating under this very assumption, the previous two chapters—and

their associated publications—used a word-prediction based method of performing inductive

generalization, with the one proposed in Misra et al. ( 2021 ; and also ch.  3 ) being the first to

investigate inductive generalization in PLMs. That is, for the argument:

Tigers have T9 Hormones.

Cheetahs have T9 Hormones.
, (31)

108



a word prediction based account of inductive generalization would use the following measure

as a given language model’s approximation of the argument’s strength:

p(Cheetahs have T9 hormones. | Tigers have T9 hormones.) (5.2)

At first glance, the word prediction-based account holds up quite well to both the desider-

ata. Using sequence probability measures of the conclusion sentence given the premise is

certainly a straightforward—and perhaps obvious in the context of PLMs—method to esti-

mate eq. (  5.1 ). It appears to satisfy desideratum 1 , under the assumption that the sequence

probability of a sentence is an estimate of its statistical plausibility given the PLM’s train-

ing data and learned parameters. Similarly, since the contents of the premise sentence(s)

are present in the same input context as the conclusion, they are always available to the

transformer model (the primary subjects of this investigation) while it is queried with the

conclusion sentence, thereby satisfying desideratum 2 . However, a closer look raises princi-

pled concerns with this approach. The task of word prediction by itself is quite unconstrained

when it comes to reasoning problems. In the absence of precise contextual information, mod-

els might assign a large probability density to a number of acceptable continuations given

a prefix (Holtzman et al.,  2021 ). While minimal pairs control for this issue—especially in

the way we utilized in chapter 4—they have no real effect on the actual log-probabilities

that the models produce. Furthermore, while having the premise in the same context as the

conclusion is a necessity (under desideratum 2 ), it also makes it more likely for models to

leveraging surface level cues such as coarse grained lexical similarities (Misra et al.,  2020 ).

For example, a model might assign greater probability to “bird” merely due to the presence

of “robin” in the input context. This is especially seen in ch.  4 , where models would as-

sign greater probability to tokens of the property phrase (can fly) even for concepts that

cannot actually fly (penguin), due to the presence of distractor concepts (robin). Finally,

eq. (  5.2 )—the measure of argument strength as extracted from LMs—is more an estimate

of the extent to which a conclusion sequentially follows the premise in free-text, different

from the interpretation of eq. (  5.1 ) which aims to quantify the extent to which a conclu-
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sion is true given that a premise is true. In summary, using word prediction alone without

any further pressures to focus on the fundamentally pre-requisite task of assessing the ex-

tent to which properties apply to concepts divorces the experimental context of inductive

generalization from the LM. Note that this criticism is not a criticism of word prediction

as an objective for training language models. Instead, it scrutinizes the interpretation of

word-prediction as a means to achieve inductive reasoning without the appropriate experi-

mental context. Therefore, these limitations do not preclude the fact that the PLMs might

not be engaging in deeper world-modeling to arrive at their next word distributions—this

is an interesting and active area of research (see for instance B. Z. Li et al.,  2021 ; N. Kim

& Schuster,  2023 )—but due to the concerns raised above, may not paint the full picture of

the representational competence of PLMs which this chapter (and the framework proposed

herein) aims to characterize.

5.2 The framework

A solution to the above problems is presented by the influential work of Rogers and McClel-

land (  2004 ), who present a connectionist model of semantic cognition. Specifically, Rogers

and McClelland (  2004 ) developed a feed-forward neural-network that is trained to predict

a range of properties for a given input concept (1 if the property exists for a concept, and

0 otherwise) – treated as the model’s experience. For instance, for the concept robin the

model has to predict 1 for the properties is a bird, can fly, can grow, can sing, etc. and 0 for

the properties is a tree, can swim, etc. Rogers and McClelland (  2004 ) relate a wide range

of empirical phenomena in semantic cognition to the patterns observed during and after

training of this model. Immediately relevant to this dissertation is their experiments using

the feed-forward network to make inductive inferences exactly like the kind discussed in ??

– by projecting a new property (e.g., can queem), that they make up, from a single concept

to all other concepts in their toy dataset. To operationalize induction, the authors use the

same method as they used for optimizing the model’s parameters to fit the data: predictive

error driven learning (Rumelhart et al.,  1986 ), more commonly known as backpropagation.

Specifically, the authors first train the network using the initial set of properties for each
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concept, where the made-up property is always set to 0. Then, at the eth epoch, for a single

concept, they let the model also predict 1 for the made-up property and backpropagate the

error (which now also includes a component for the new property). They then query the

model’s predictions for linking the new property to all other concepts, completing one round

of an inductive inference.

In the context of an LM-based inductive generalization framework, two insights can be

gained from Rogers and McClelland (  2004 ), which can help alleviate the issues pointed out

in §  5.1.2 . First, we can take a positive step towards constraining the model’s parameters

to exclusively use property knowledge by further training the already pre-trained LM on a

task similar to that used by Rogers and McClelland (  2004 ). Note that the kind of induc-

tive generalization that this dissertation is concerned with is first and foremost a task of

judging how likely are one or more properties attributable to a concept (or a set of con-

cepts). Therefore, by ‘amplifying’ the aspects of knowledge needed to successfully predict

that a robin is a bird, can fly, can grow, can sing, etc., we are better suited to assess the

capacity of the LM to perform inductive generalizations. Under this viewpoint, the mea-

sure p(conclusion | premise)—now characterized as the probability that the conclusion is

true, given that the premise is true—provides relatively more insight about the conceptual

knowledge of the model as opposed to its word-prediction-based analogue. This is especially

because in order to succeed at making judgments about concept-property associations, a

competent model will have to rely on property knowledge – i.e., learn inductive preferences

that favor accurate conceptual knowledge over/in addition to word-sequences. Second and

more importantly, backpropagation has desirable properties to simulate induction. Assum-

ing that we have a model that is trained to predict a concept’s property knowledge, we can

integrate new property information (i.e., the premise in an inductive argument) by simply

backpropagating the error made by the model on the new information. Doing so allows

the integration of new information in the model as updates to its representations, which

encode knowledge used to inform how the model generalizes. Another desirable consequence

of casting induction as backpropagation is that we can now have an explicitly measurable

form of “acceptance” of the new information (desideratum 2 ). That is, we can quantify

the extent to which the model’s representation encode the novel information by measuring
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its loss after each round of backpropagation, which also allows us to control the rounds of

backpropagation for a given experiment. This unlocks opportunities to analyze the model

at a deeper level – e.g. measuring how fast different kinds of information are integrated, or

how likely is new information generalized compared to the number of backpropagation steps

needed, etc., which were otherwise not possible in the earlier account.

Taking into account the above insights, I propose a framework that simulates inductive

generalization in language models. In particular, I interpret the measure specified in eq. (  5.1 )

in the proposed framework as the probability that the information in conclusion is true, by

a model whose representations reflect the premise information. To satisfy desideratum 1 ,

the framework fine-tunes LMs to classify as true or false sentences that associate concepts

to properties—i.e., make property judgments, which will automatically allow the models to

estimate the probability that a property applies to a concept—as p(concept has property =

True). To satisfy desideratum 2 , the framework operationalizes inductive generalization as:

the behavior of a language model—constrained to make judgments about how

likely a property can be attributed to a concept—after being adapted to novel con-

ceptual information using predictive-error driven learning, or backpropagation.

These decisions map to two separate stages in the framework, both of which I describe in

further detail below:

5.2.1 Stage 1: Eliciting property judgments from LMs

The goal of the first stage is to construct a model that can make judgments about prop-

erty knowledge expressed as natural language sentences. In particular, this model should

distinguish correct concept-property associations (cat has whiskers) from those that are in-

correct (sparrow has whiskers). Based on the model’s objectives, it is similar to the network

described by Rogers and McClelland (  2004 ), but instead of using simple, localist representa-

tions as input, it uses dense distributed representations that are learned during pre-training

across several inter-connected layers and give rise to semantic behavior. 

2
 We construct such

2
 ↑ though importantly the very first layer (embedding), the input to the model is a localist one-hot represen-

tation of each word in the sentence.
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(a cat has fur, True) 
(a dog has feathers, False) 
(a tiger is a predator, True) 

..... 

(a cat can fly, False) 
(a robin is a canine, False) 
(a dog is a canine, True) 

..... 

Test Set 
(disjoint in properties)Train Set 

Concepts Properties 

Figure 5.1. Depiction of the property judgment stage. Concepts and proper-
ties are sampled to create experimental splits consisting of sentences and labels
corresponding to whether the assertion expressed by the sentence is true or
false. The model (with parameters φ(.)) takes in as input these sentences and
returns the probability of the True label. Crucially, the model is evaluated
on a set of property judgments that are disjoint from the training set (in this
case, in terms of properties).

a model by fine-tuning existing LMs to classify sentences that express concept-property as-

sociations to be true or false. 

3
 Importantly, we fine-tune models in a way that keeps the

evaluation sets disjoint in terms of properties—i.e., the model is trained to assess the prop-

erties has feathers, has a tail and then tested on a distinct set of properties: can fly, has a

beak.

Therefore, in order to succeed on this task (i.e., minimize loss on a disjoint evaluation set),

a model must rely on property knowledge encoded in its representations, to enable judgments

about properties never seen during fine-tuning. In experiments that follow, we verify the

extent to which the models are indeed able to draw on generalized property knowledge in

order to succeed in this task. Importantly, this stage assumes the presence of a repository of

concepts (C) and associated properties (P) as data for training and testing the model. We

create sentences that express property knowledge by pairing properties from P to concepts

from C. We then fine-tune the LM to classify these sentences as true or false. At the end
3

 ↑ using a binary classification set up might be considered too stringent, however to the best of my knowledge,
there are no existing resources that can support fine-grained graded judgments at a large enough scale.
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of this stage, we have a trained model (with parameters φ) that takes as input a sentence s

and produces a probability score p(True | s, φ) corresponding to the degree of truth of s as

internalized by the LM. For example, the model would—hypothetically—produce as output

p(True | a cat can fly, φ) = 0.04, or p(True | a cat has fur, φ) = 0.96. Figure  5.1 describes

the property judgment stage.

5.2.2 Stage 2: Inductive generalization as updates to LM representational space

In this stage (see Figure  5.2 ), we use the fine-tuned model from the previous stage to perform

inductive generalization, which we operationalize as the behavior of the model after adap-

tation to new property knowledge via backpropagation. A property induction trial involves

(1) a set of premise concepts (which we denote as the adaptation set A ⊂ C); (2) a set of

conclusion concepts (denoted as the generalization set G ⊂ C); and (3) a novel property

being generalized from the premise to the conclusion. We construct sentences that associate

the novel property to the concepts in A and G, yielding the premise and conclusion stimuli,

respectively (see Figure  5.2 ).

To perform property induction, we first adapt the model’s parameters φ to the premise

sentences by using standard backpropagation, yielding an updated state of the model, φ′,

that correctly attributes the concepts in A with the novel property. We then freeze φ′ and

query the model with the conclusion sentences to obtain the (log) probability of generalizing

(or “projecting”) the novel property to the concepts in G. We refer to this measure as the

“generalization score” (G)—i.e., the strength of projecting the novel property to a set of one

or more concepts in the generalization set:

G = 1
n

∑
ci∈G

log p(True | “ci has property X”, φ′) (5.3)

Before every round of induction, the model parameters are reset to their original state (φ),

i.e., the state acquired as a result of the property judgment stage. Additionally unless

otherwise stated, the model is backpropagated until it correctly predicts the label(s) of the

premise sentence(s).
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(a robin can dax, True)
(a penguin can dax., False)

Premise

an albatross can dax.
....

an ostrich can dax.

Conclusion

Bac��r����at���

Adaptation Set

Generalization Set

Fre���

Figure 5.2. Depiction of the Induction Stage, in this case, for testing the gen-
eralization of the property can dax. Here, the model is provided with informa-
tion that a robin can dax is true, but a penguin can dax is not. The model has
to then deploy this knowledge across all other birds. A = {robin, penguin},
G = {albatross, . . . , ostrich}.

Consider the following example (also depicted in figure  5.2 ): where a novel property (can

dax) is applied to robin but not to penguin, and the goal of the experiment is to test how

it is projected to other birds (the set B = {crow, . . . , ostrich}), the components of the

inductive generalization step are as follows:

N = {can dax}

A = {robin, penguin}

G = B −A

Premise = {(a robin can dax., True),

(a penguin can dax., False)}

Conclusion = {a crow can dax., . . . ,

an ostrich can dax.}

115



5.2.3 Alternate Formulations

While the above description of the framework is compatible with any type of neural network

that can process sentences, it is not restrictive to binary classification settings. That is, a

similar operationalization of inductive generalization can be construed using models that

perform word prediction but are in fact constrained to reflect property knowledge. This way,

one can keep the flexibility of word-prediction without violating the construct validity issues

raised in §  5.1.2 . Such a construal can be possible with models trained in the same way as

the COMET model (Bosselut et al.,  2019 ; Hwang et al.,  2021 ), which uses autoregressive

models such as GPT2 (Radford et al.,  2019 ) to predict the tokens that make up the property

phrase (can fly) given a concept (robin). This is done by reformulating the basic language

modeling objective to one that penalizes incorrect generation of properties given a concept.

5.3 Investigating LMs on Property Judgments

Our first experiment focuses on the first stage of the proposed induction framework. Here,

we fine-tune pre-trained LMs to evaluate the truth of sentences attributing properties to

concepts—i.e., we want our models to map the sentence a cat has fur to True and a cat can

fly to False. We use an existing semantic property norm dataset to construct our sentences

and split them into disjoint evaluation sets, where the properties we test the model on

are strictly different from those the model sees during fine-tuning. Therefore, a model must

learn to rely on its ‘prior’ (pre-trained) property knowledge in combination with task specific

information it picks up during fine-tuning in order to succeed on this task.

5.3.1 Ground-truth Property Knowledge Data

To construct sentences that express property knowledge, we rely on a property-norm dataset

collected by the Cambridge Centre for Speech, Language, and the Brain (CSLB; Devereux

et al.,  2014 ). The CSLB dataset was collected by asking 123 human participants to elicit

properties for a set of 638 concepts, and this dataset has been used in several studies focused

on investigating conceptual knowledge in word representations learned by computational
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models of text (e.g., Lucy & Gauthier,  2017 ; Da & Kasai,  2019 ; Bhatia & Richie,  2021 ).

Importantly, property-norm datasets such as CSLB only consist of properties that are ap-

plicable for a given concept and do not contain negative property-concept associations. As

a result, prior works that have used these datasets sample concepts for which a particular

property was not elicited and take them as negative instances for that property (e.g., table,

chair, shirt are negative instances for the property can breathe), which can then be used

in a standard machine-learning setting to evaluate a given representation-learning model.

Upon careful inspection of the CSLB dataset, we found that the above practice may un-

intentionally introduce incorrect or inconsistent data. Datasets such as CSLB are collected

through human elicitation of properties for a given concept, so it is possible for inconsisten-

cies to arise. One way that this may happen is if some participants choose not to include

properties that are obvious for the presented concept (e.g., breathing in case of living organ-

isms), while other participants do, resulting in an imbalance that can be left unaccounted

for. We found that this was indeed the case: e.g., the property has a mouth was only elicited

for 6 animal concepts (out of 152), so all other animals in the dataset would have been

added to the negative search space for this property during sampling, thereby propagating

incorrect and incomplete data. This indicates a potential pitfall of directly using property-

norm datasets to investigate semantic representations—and suggests that prior evaluations

and analyses (Lucy & Gauthier,  2017 ; Da & Kasai,  2019 ; Bhatia & Richie,  2021 ) may have

falsely rewarded or penalized models in such cases. Owing to space constraints, we provide

our detailed method and protocol to mitigate this problem in the supplemental materials.

The revised dataset that we produce consists of a set of 521 concepts, corresponding to 23

different taxonomic categories (as annotated by the original authors of the CSLB dataset)

and 3,643 properties, with 30,076 unique ground-truth property-concept pairs which we used

in our experiment.

For each of our 3,643 properties—associated with k different concepts—we sample k ad-

ditional concepts that are maximally similar to the k concepts associated with that property,

and take these to be negative samples. For instance, for the concept zebra, we want to

use horse for a negative sample rather than a more distant concept such as table. By

doing this, we make the property judgment tasks more difficult, increasing the chances that
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the models we obtain from this stage focus on finer-grained conceptual/property knowledge

as opposed to coarser-grained lexical similarity. For selecting similar concepts we take the

Wu-Palmer similarity as our similarity function (Wu & Palmer,  1994 ), which we compute

over the subset of the WordNet taxonomy (Miller,  1995 ) that contains the senses of the 521

concepts considered in our experiments. We then follow the method outlined by Bhatia and

Richie ( 2021 ) to convert our 60,152 property-concept pairs (30,076 × 2) into natural lan-

guage sentences, which we then use as inputs to our models. We split these sentences (paired

with their respective labels) into training, validation, and testing sets (80/10/10 split), such

that the testing and validation sets are only composed of properties that have never been

encountered during training (note that properties between training and validation sets are

also disjoint). We do this to avoid data leaks, and to ensure that we evaluate models on their

capacity to learn property judgment as opposed to memorization of the particular words and

properties in the training set. We make our negative sample generation algorithm and the

resulting dataset of property-knowledge sentences available in appendix  C .

5.3.2 Tested PLMs

While our framework can be applied to any PLM, we present results from fine-tuning four

pre-trained LM families, based on the precedent of using these models in standard sentence

classification tasks (A. Wang et al.,  2018 ; A. Wang et al.,  2019 ): BERT (Devlin et al.,  2019 ),

RoBERTa (Liu et al.,  2019 ), ALBERT (Lan et al.,  2020 ), DeBERTa v3 (He, Liu, et al.,

 2021 ; He, Gao, et al.,  2021 ). All four models use the transformer architecture (Vaswani

et al.,  2017 ), and are trained to perform masked language modeling: the task of predicting

masked words in context in a cloze-task setup, where models have access to context words

to the left and right of the masked word. We report results on BERT-large, RoBERTa-large,

ALBERT-v2-xxl, and DeBERTa v3-large, each of which uses approximately the same amount

of trainable parameters. We fine-tune each of the PLMs on the property knowledge data by

minimizing their binary cross-entropy loss on the training set using the AdamW optimizer

(Loshchilov & Hutter,  2018 ). We tune the hyper-parameters of the LMs on the validation
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Table 5.1. Performance of the fine-tuned PLMs on the (1) test set of the
property judgment task (F1), and (2) a subset of comps-base with properties
that do not occur in the models’ training set (accuracy reported per negative
sample type). Chance stands for a hypothetical model that is equivalent to a
coin flip.

Model Test F1 comps-base Accuracy

Taxonomic Prop. Norms Co-occ. Random

Chance 0.66 0.50 0.50 0.50 0.50
BERT-large 0.75 0.750.01 0.780.01 0.740.01 0.900.009

ALBERT-xxl 0.74 0.800.01 0.800.01 0.810.01 0.940.007

RoBERTa-large 0.76 0.770.01 0.800.01 0.770.01 0.910.009

DeBERTa-large 0.77 0.860.01 0.860.01 0.880.01 0.960.006

set, 

4
 and evaluate the four adapted models on the test set using F1 scores. Following ch.  4 ,

we also evaluate on the subset of the comps-base stimuli that do not appear in the models’

training set (N = 14, 437). That is, we use the models’ ability to estimate p(True) for the

minimal pair sentences in comps-base and take their accuracies to an additional measure

that sheds light on their ability to associate properties to concepts in a generalizable manner.

5.3.3 Results and Analysis

Table  5.1 shows the performance of the fine-tuned PLMs on the test set as well as on the

subset of comps-base disjoint from the models’ training data, further decomposed based

on the negative sample type. Note that chance performance for the test set (F1) is 0.66,

and that on each decomposed subset of comps-base is 0.50. From table  5.1 , we see that all

models perform well above chance across all evaluation settings (p < .001, FDR corrected),

suggesting strong capacities of all four models to assess the application of properties to con-

cepts. DeBERTa-large in particular stands out as the best model out of the four, consistently

achieving the highest F1 score/Accuracy in all settings, highlighting its distinctive robust-

ness and mastery of the property judgment task. Similar to the trend observed in ch.  4 , the
4

 ↑ we searched the best learning rate from the list: {1e-04, 3e-04, 5e-04, ... 9e-07}
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models performed best on comps-base stimuli where the negative sample was randomly

chosen (and was likely to be trivially different from the positive concept, e.g., robin and

chair for the property can fly.) as compared to those where the negative samples were

semantically similar to the positive concept. At the same time, there was a considerable

reduction in the gap between the performance achieved on stimuli with semantically similar

negative concepts and those with randomly chosen negative concepts. This suggests that

perhaps one way to overcome lack of robustness in assigning properties to concepts could

be to adapt models specifically for the task, where instead of assigning probabilities over

large vocabulary spaces, models only have to map sequences to two values (the True or False

labels).

5.4 Inductive Generalization Experiments

Using models trained using the property judgment task, I now describe a series of experi-

ments that simulate well known empirical regularities observed in human inductive general-

ization literature. Specifically, I first test the models’ ability to demonstrate key phenomena

observed by the pioneering work of Osherson et al. (  1990 ), which exclusively focuses on in-

ductive behavior across taxonomically organized categories (e.g., animal, mammal, bird,

etc). Importantly these phenomena usually assume (and design) the nature of the prop-

erty to be largely ambiguous and novel, and instead focus on systematic patterns observed

as a result of manipulating the categories/concepts present in these arguments. Following

the Osherson et al. experiments, I then turn to cases where conceptual relations and the

nature of the property being generalized both end up mattering, where human inductive

behavior is different, depending on the type of property, thus showcasing their (humans’)

meta-sensitivity to different conceptual structures. For the phenomena we consider here, we

either construct synthetic stimuli using the guiding principles of the given phenomenon or

use existing stimuli for cases where authors have made them available.

While our main subjects in these experiments are the pre-trained LMs fine-tuned to

perform property judgment, we additionally also use models with the same architecture

but those that are randomly initialized before being trained to perform property judgment.
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Results from these comparisons will shed light on the extent to which pre-trained features

result in the patterns we observe. As a sanity check, all randomly initialized models are at

chance on the property judgment task (see table  5.1 , and have overfit their training set. In

all cases, models are adapted using the same learning rate that was being used just before

their best performance on the development set of the property judgment task.

5.4.1 Empirical Regularities from Osherson et al. ( 1990 )

Our first set of experiments focus on the empirical regularities first discovered and docu-

mented by the pioneering work of Osherson et al. ( 1990 ). These regularities (also discussed

in depth in § 2.3.2 ) primarily focus on principles of hierarchical structure and organization of

concepts and categories. Osherson et al. (  1990 ) do not make their stimuli available and in-

stead describe in-depth the principles behind each phenomenon. For instance, in the premise

diversity phenomenon the premise concepts/categories of stronger arguments should be dif-

ferent from each other, relative to those in weaker arguments. We rely on these principles

to construct synthetic stimuli that adhere to every phenomenon of interest. We only fo-

cus on eleven out of the thirteen stimuli, and leave out (premise-conclusion identity) and

(premise-conclusion inclusion) since they do not involve genuine abstractions—the former

case is a sanity check, while the latter is deductive rather than inductive. Below I describe

a general framework that allows the sampling of an arbitrary amount of stimuli that encode

the Osherson phenomena.

To construct our synthetic stimuli, we define a world W = (C,P , T ,M) where C is the

set of animal concepts, P is the set of properties, T indicates a taxonomy—a hierarchically

organized structure with all items of C at the lowest level. Finally, M is a matrix whose

row indices indicate concepts and column indices indicate properties, and whose values are

either 1, if the concept has a property, or 0, if it does not. As a result, the rows of matrix are

binary vector representations of concepts. In terms of notation, we say that the first concept

(in our case, alligator) has the 22nd property (basks in the sun) if M1,22 = 1. Repre-

senting concepts and properties using binary vectors allows us to define similarities between

concepts—by comparing their respective vectors. One popular similarity metric between bi-
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nary vectors is the jaccard similarity, which we use to operationalize the notion of property

overlap—i.e., the extent to which two concepts share known properties. Mathematically, it

is defined as:

sim(c1, c2) =
∑|P|

i=1 min(M1,i,M2,i)∑|P|
i=1 max(M1,i,M2,i)

(5.4)

Equation ( 5.4 ) will play an important role in sampling concepts for the adaptation and

generalization sets, since many of the phenomena covered by Osherson et al. (  1990 ) deal with

conceptual similarities between the premise and conclusion. Relatedly, property overlap

constitutes an important factor in a prominent connectionist model of human inductive

generalization (Sloman,  1993 ). While W can be constructed using any set of concepts and

properties, we specifically use the data described by the training set of our property judgment

models, and restrict ourselves to the animal kingdom, the largest well-defined taxonomy

within our collection of training concepts. By doing so, we ensure that the models’ apparent

“knowledge” (set of outputs corresponding to concept-property association) aligns with the

properties encoded by the sampled stimuli. Overall, the instance of W we construct for

the experiments reported in this dissertation comprises of 152 concepts and 726 properties,  

5
 

which results in the matrixM to be of size 152× 726. For our taxonomy T , we extract the

subtree of WordNet (Miller,  1995 ) that entirely subsumes our concepts, represented at its

leaf nodes, similar to our design in the original property judgment experiments.

We generate stimuli for a given phenomenon using our instance of W as follows: First

we sample adaptation and generalization concepts according to the constraints of the phe-

nomenon (described below), resulting in strong and weak adaptation-generalization sets.

Next, we pair them with multiple different novel properties belonging to the set: {can dax,

can fep, has dax, has blickets, is a tove, is a wug, is mimsy, is vorpal}. We then follow

the method described in § 5.2.2 and perform multiple trials of inductive generalization using

models obtained from the property judgment task (see §  5.2.1 ). To measure the models’

inductive behavior, we analyse their average generalization score (see eq. (  5.3 )) over all eight
5

 ↑ out of 991 total animal-related properties, distributed across training, test, and validation sets.
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Table 5.2. Empirical regularities from Osherson et al. (  1990 ) that LMs
are tested for and their respective number of unique generated adaptation-
generalization pairs. Symbols in parentheses indicate type of argument: ‘G’
suggests general, ‘S’ suggests specific, and for cases with both ‘G’ and ‘S’, we
have two unique sets of stimuli, one for each type.

Phenomenon N Phenomenon N

Premise Conclusion Similarity (S) 240 Premise Monotonicity (G, S) 180
Premise Typicality (G) 120 Premise Nonmonotonicity (G, S) 150
Premise Diversity (G,S) 342 Inclusion Fallacy 240
Conclusion Specificity (G) 150 Premise Conclusion Asymmetry 2000

novel properties,  

6
 for the strong and weak arguments. We additionally measure the compat-

ibility of models with respect to the behavioral pattern associated with the phenomenon:

i.e., calculate the percentage of time a model shows greater generalization scores for stronger

versus weaker arguments. These analyses will result in clear observations about whether or

not models on average are able to capture the phenomena. For instance, it would be de-

sirable for models to show greater generalization scores for diverse premises than for highly

similar ones.

Below, I describe the generation process for the eleven different Osherson phenomena,

as well as our results from the aforementioned analyses. Unless otherwise specified, the

adaptation set concepts are sampled from the following higher level categories: {animal,

mammal, bird, reptile, insect, fish}, in all cases. Table  5.2 shows the list of Osherson

et al. (  1990 ) phenomena we simulate in this experiment.

Premise Conclusion Similarity

Generation: To create the adaptation set, we sample 10 pairs of items from our 6 cat-

egories, and for each concept pair, we sample 2 concepts from their nearest neighbors (as

computed using eq.  5.4 ) as the ‘high similarity’ generalization sets, and similarly 2 concepts

from the set of most dissimilar concepts as the ‘low similarity’ generalization sets. Doing
6

 ↑ this differs from standard practice where human participants/models are often analyzed for a single prop-
erty at a time.

123



BERT-large ALBERT-xxl RoBERTa-large DeBERTa-large

High
Similarity

Low
Similarity

High
Similarity

Low
Similarity

High
Similarity

Low
Similarity

High
Similarity

Low
Similarity

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

Argument Type

G
en

er
al

iz
at

io
n 

Sc
or

e

Representations pre-trained random

(a)

0.00

0.25

0.50

0.75

1.00

BERT
large

ALBERT
xxl

RoBERTa
large

DeBERTa
large

C
om
pa
ti
bi
lit
y

Representations pre-trained random

(b)

Figure 5.3. Premise-Conclusion Similarity Results. (a): Average general-
ization scores (along with 95% CI) obtained by the models on High and Low
similarity arguments. (b): Compatibility scores achieved by models fine-tuned
from pre-trained and random initializations.

so results in a total of 240 unique adaptation-generalization pairs. Combined with our 8

different novel properties, this results in 1,920 unique inductive arguments.

Results: Figure  5.3 shows the average generalization scores of the models for arguments

with high and low similarity between the two adaptation concepts and the generalization

concept (figure  5.3a ), as well as the compatibility of the models with the phenomena (fig-

ure  5.3b ). We observe that only the DeBERTa-large model that is fine-tuned on the property

judgement task starting from pre-trained representations is able to demonstrate the premise-

conclusion similarity phenomenon (compatibilty value of ≈0.60). All other models fail to

show this behavior, regardless of the nature of their initial representations (pre-trained vs.

random). Note that this phenomenon includes two adaptation concepts in the premise

throughout, in order to mimick the conditions specified by Osherson et al. (  1990 ). There-

fore, in order for a model to demonstrate this phenomenon, it must implicitly consider the

joint similarity of the premise concepts and the conclusion concept (approximating a process

similar to a logical conjunction). Since this may not necessarily be trivial for models to

perform, especially via backpropagation, we turn to a simpler setting of having only a single

adaptation concept in the premise, and measure the extent to which training-data similarity

(computed using eq. (  5.4 )) modulates models’ inductive behavior. To this end, we compute
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Figure 5.4. Scatter plots showing Normalized Generalization Scores and
Concept Similarities obtained from models’ training data (see eq. (  5.3 )), along
with the Spearman correlation (ρ) between them, across all models.

the generalization scores (normalized to be between 0 and 1) for every pair of concepts in our

world W , and measure their correlation against pairwise similarities between the concepts.

Figure  5.4 shows these results for all our models. From this figure, we see that all mod-

els that start with pre-trained representations show non-trivially positive correlation scores

(ρ ∈ [0.38, 0.51], p < .0001 everywhere, FDR corrected), with DeBERTa-large showing the

strongest value (0.51). Models that start from randomly initialized representations show

correlation values that are either lower than their pre-trained counterparts (BERT-large and

DeBERTa-large), or are not significant (ALBERT-xxl and RoBERTa-large). Overall, this

suggests that pre-trained representations can in principle be adapted to demonstrate induc-

tive behavior that is compatible with simple conceptual similarities between premise and

conclusions. However, they may not necessarily engage in behavior that resembles a simple

composition over these similarities (i.e., when the premise contains more than one adaptation

concepts).

Premise Typicality

Generation: We use all members of every category with at least 10 members as our

adaptation concepts—i.e., members of mammal (52), bird (36), insect (18), and fish
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Figure 5.5. Premise Typicality Results. (a): Average generalization scores
(along with 95% CI) obtained by the models on High and Low similarity
arguments. (b): Compatibility scores achieved by models fine-tuned from
pre-trained and random initializations.

(14)—and use these categories as the generalization set. This results in a total of 120 unique

adaptation-generalization pairs, giving us 960 different arguments, all of which are general in

nature (i.e., generalization from robin to bird). We then compute typicality measures for

the adaptation concepts with respect to their category by considering their low-dimensional

representations of their binary concept-property vectors (from M), as computed using a

singular value decomposition (see §  C.3 ). This method was inspired by the work of Saxe

et al. ( 2019 ), who used a similar formulation to mathematically define how a simple linear

connectionist network may be able to encode typicality. We perform a median split of the

typicality measures, giving us sets of high and low typicality members for each category.

We then randomly pair members from these sets, giving us a total of 60 strong and weak

adaptation-generalization pairs, and 480 different arguments.

Results: Figure  5.5 shows the average generalization scores of the models for arguments

that have high and low typicality adaptation concepts (figure  5.5a ), as well as the compat-

ibility of the models with the phenomena (figure  5.5b ). From these figures, we see that

none of the models are able to demonstrate this phenomenon, with all of their compatibility

hovering at chance. That is, the models are either indifferent to the typicality of the adapta-

tion concept when generalizing its properties to rest of the members of the target category,
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or in some cases show the opposite behavior. That is, even if their representations encode

individual-concept similarities and distinctions, it does not necessarily translate to graded

measures of “category-ness” as operationalized by the method described in §  C.3 .

Premise Diversity

Generation: We start with populating our adaptation set by first sampling from our

6 categories min(10, |C|) concepts, where |C| refers to the size of the category (number of

concepts within it). We formulate diverse premises as ones where the concepts are max-

imally different (e.g., robin and penguin). So, in order to create diverse (strong) and

similar (weak) premises, we sample three concepts each from the nearest and most dissimilar

neighbors. This creates at most 30 diverse pairs and 30 similar pairs for each superordinate

category, and in total we end up with 342 unique adaptation-generalization pairs,  

7
 giving us

2,736 different arguments. We repeat this process to create stimuli for specific arguments,

by replacing superordinate category members in the generalization set to just one randomly

sampled category member.

Results: Figure  5.6 shows the average generalization scores of the models for general (fig-

ure  5.6a ) and specific (figure  5.6c ) arguments with diverse and similar adaptation concepts,

as well as the compatibility of the models with the phenomena (General: figure  5.6b , Specific:

figure  5.6d ). For general arguments, we observe that only ALBERT-xxl and DeBERTa-large

(both with pre-trained representations) demonstrate the desired phenomenon—these models

are more likely to project a property to other members of a category when a diverse set of

concepts share the property. For specific arguments however, only DeBERTa-large (again

with pre-trained representations) is able to demonstrate behavior that is compatible with the

phenomenon above chance. In all cases, models trained starting from random representations

fail to demonstrate a premise diversity effect.
7

 ↑ some categories such as reptile had fewer than 10 concepts.
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Figure 5.6. Premise Diversity Results. (a) and (c): Average generalization
scores (along with 95% CI) obtained by the models on general (a) and specific
(c) arguments containing diverse and similar premises. (b) and (d): Com-
patibility scores achieved by models fine-tuned from pre-trained and random
initializations on general (b) and specific (d) arguments.

Conclusion Specificity

Generation: Here, we only consider 5 categories (bird, mammal, fish, insect, rep-

tile), and leave out animal to serve as the general, less specific, category. We then compare

generalization of a property from the premise to animal against that from the same premise

to all members of either of the 5 categories. To create our adaptation set, we sample pairs

of 15 concepts from each of our 5 sets of superordinate categories. For each pair, we cre-

ate two generalization sets – one including only the members of the specific superordinate

category, and one including all members of the animal category. This give us 150 unique

adaptation-generalization pairs, and therefore 1,200 arguments.
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Figure 5.7. Conclusion Specificity Results. (a): Average generalization
scores (along with 95% CI) obtained by the models on arguments with general
and specific conclusions. (b): Compatibility scores achieved by models fine-
tuned from pre-trained and random initializations.

Results: In order to successfully demonstrate this effect, a model must make sufficient

distinctions between specific and general categories—i.e., be sensitive to the hierarchical or-

ganization of concepts. Figure  5.7 depicts the average generalization scores of models for

arguments with the same premise (e.g., robin) to general (animal) and specific (bird)

categories (figure  5.7a ), as well as the percentage of cases where generalization to specific

categories was stronger than to general ones–i.e., the models’ compatibility (figure  5.7b ).

Note that the general category perfectly encompasses each of the specific ones. From fig-

ure  5.7 , we observe that all models that started with pre-trained representations robustly

showed this effect, and that their compatibility was substantially above chance. Models with

random initial representations were either below chance or just above it (ALBERT-xxl and

DeBERTa-large).

Premise Monotonicity

Generation: We create adaptation sets by sampling 1, 2, and 3 concepts from each high

level category. For general arguments, we include all members of the high level category, while

for specific arguments we randomly sample one member. We perform this sampling process

10 times for each of our 6 high level categories, and end up with 180 unique adaptation-
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Figure 5.8. Premise Monotonicity Results. (a) and (c): Average general-
ization scores (along with 95% CI) obtained by the models on general (a) and
specific (c) arguments containing 1, 2, and 3 premises. (b) and (d): Com-
patibility scores achieved by models fine-tuned from pre-trained and random
initializations on general (b) and specific (d) arguments.

generalization pairs for each argument type (specific and general).

Results: Figure  5.8 shows the average generalization scores of the models for general

(figure  5.8a ) and specific (figure  5.8a ) arguments with increasing number of adaptation con-

cepts, as well as the compatibility of the models with the phenomena (General: figure  5.8b ,

Specific: figure  5.8d ). We see that almost all models (with the exception of BERT-large

with randomly initialized representations) successfully the premise monotonicity effect—i.e.,

their projection of a property to other concepts is proportional to the amount of evidence

about the property provided in the premise. This result is relatively unsurprising, since we

can reasonably expect data-driven models to be more confident in their predictions as the
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number of samples provided to them increases, and so even models trained from randomly

initialized representations are able to demonstrate this effect.

Premise Nonmonotonicity

Generation: To create the adaptation set we first sample two concepts from our five lower

level categories (bird, mammal, fish, insect, reptile), giving us our strong argument

premise concepts. We then separately sample one concept from outside of each category and

pair it with the two previously sampled concepts to get the weak argument premise concepts.

In all cases, we measure generalization to the members of the lower category. Repeating this

process 15 times for each of our five categories gives us 150 total adaptation-generalization

pairs.

Results: Figure  5.9 shows the average generalization scores of the models for general (fig-

ure  5.9a ) and specific (figure  5.9a ) arguments that are either mixed (3 adaptation concepts,

weaker) or perfectly general (2 adaptation concepts, stronger), as well as the compatibility

of the models with the phenomena (General: figure  5.9b , Specific: figure  5.9d ). We see that

all models, regardless of their representations’ initial state fail to capture this effect. Recall

that in this case, arguments where the generalization concept converts the argument into a

mixed argument (i.e., adding pig to the premise of robin, eagle → bird) are the weaker

ones. Only in such a case, this effect contradicts the effect of premise monotonicity. Here,

only the reasoner that can robustly capture the principles of category membership and cov-

erage (how well do the premise concepts cover the category present in the conclusion) can

successfully demontrate this effect. As such, we take this test to serve as a possible check for

whether models employ genuine abstraction over category boundaries in their monotonicity

effect observed above or if they are simply matching observed strings of the property phrase

(e.g., can dax) to their corresponding labels (True). In the latter case, the models would

tend to more strongly predict True with greater number of premises since all of them contain

the same property phrase. Since all models seem to show below-chance compatibility with
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Figure 5.9. Premise Nonmonotonicity Results. Average generalization scores
(along with 95% CI) obtained by the models on general (a) and specific (c)
arguments containing 2, and 3 premises. (b) and (d): Compatibility scores
achieved by models fine-tuned from pre-trained and random initializations on
general (b) and specific (d) arguments.

this phenomenon, their behavior is likely more compatible with the “string-label matching”

explanation rather than one that is sensitive to category boundaries and coverage.

Inclusion Fallacy

Generation: We reused the adaptation-generalization sets from the premise typicality

stimuli, due to the close relation between the two phenomena. In particular, we paired each

specific argument (generalization from a lower level concept to another lower level concept)

with another argument with a general conclusion (to a higher level category). For example,

the argument robin → ostrich was paired with robin → bird. As a result we end up

having 120 specific arguments, compared against 120 general ones, for each of the 8 novel
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Figure 5.10. Percentage of time models (fine-tuned starting from pre-trained
and random representations) demonstrate the inclusion fallacy effect.

properties.

Results: Figure  5.10 shows the percentage of cases where models demonstrated inclusion

fallacy. For this phenomenon, we are only interested if models show the desired behavior

or not—that is, we no longer have a notion of “performance” or “ground-truth” like in the

previous analyses. Therefore, a model is compatible with this phenomenon just in case it

demonstrates behavior similar to inclusion fallacy, where its generalization from a concept

to a specific concept within a larger category is lower than that to the entire category. It

is also important to note that this behavior is expected, and emerges as a natural property

of the way we calculate generalization to a higher level category. That is, since we compute

generalization score to say, bird, by averaging over the log-probabilities for the individual

bird concepts, there are bound to be cases where some of generalization scores are lower than

that of the averaged value. From Figure  5.10 , we see that this is indeed observed for all the

models we considered. While it is no surprise that the models demonstrate this behavior,

this analysis can be treated as a sanity check for necessary behavior that a framework for

inductive generalization must demonstrate.
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Figure 5.11. Compatibility scores achieved by models fine-tuned from pre-
trained and random representations for showing premise-conclusion asymme-
try effects.

Premise Conclusion Asymmetry

Generation: We randomly sample 1000 adaptation and generalization sets (with each

generalization set comprising of single concepts) from all possible pairs from our list of con-

cepts. We then pair them each sampled adaptation-generalization instance with its reversed

version—where the generalization concept becomes the adaptation concept, and vice-versa.

In total, this gives us 2000 arguments across 8 novel properties.

Results: For our analyses, we simply check if the generalization score from an adaptation

concept to a generalization concept is different from the value obtained from its reversed

counterpart. We expect this to be satisfied all the time in our framework, since it is highly

unlikely for models to produce the same probability value for a label with changes to the

surface form of the input. Figure  5.11 shows the compatibility of all our models for this

phenomenon, and unsurprisingly, we see all models to perfectly satisfy it. Like the inclu-

sion fallacy case, this too can serve as a direct sanity check for inductive generalization

frameworks. Importantly models and frameworks that only consider similarity metrics like

cosine similarity, to produce inductive generalization scores will be unable to demonstrate

this phenomenon, as these metrics are by definition symmetric.
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5.4.2 Context Sensitive Inductive Generalization

While the previous set of experiments and analyses dealt explicitly with inter-concept/category

taxonomic relations by using properties that were essentially “novel” and ambiguous, we now

turn to a more complicated inductive phenomenon that removes this assumption: context

specificity (Gelman & Markman,  1986 ; Heit & Rubinstein,  1994 ; Shafto, Kemp, Baraff, Co-

ley, et al.,  2005 ; Kemp & Tenenbaum,  2009 ). This phenomenon questions the assumption

that there is only one type of similarity that modulates induction, and instead proposes

inductive behavior to be context-specific. Here, the conceptual content of the property may

allude to specific contexts which give rise to different similarities (or other related mea-

sures) that guide inductive behavior. For instance, while participants projected anatomical

properties (has an omentum in its body) along biological taxonomies (bear and whale),

they would often project properties that describe behavior (moves in a zig-zag motion) to

behaviorally related concepts (tuna and dolphin), often cutting across taxonomies.

Synthetically constructing stimuli that can test for context specificity in inductive gener-

alization can be non-trivial, as coming up with property descriptions that elicit a particular

type of context requires nuanced expertise. Therefore to test the extent to which the our

models show context-specific inductive behavior, we rely on stimuli made available by Heit

and Rubinstein (  1994 ), one of the first works that discovered this behavior.

Specifically, the Heit and Rubinstein stimuli contain 14 pairs of concepts, 7 of which

are related anatomically (and therefore taxonomically), and 7 of which are share specific

salient behaviors. Importantly, for every anatomically related pair, there is a behaviorally

related pair with the same conclusion concept (giving us minimal pairs). Heit and Rubinstein

( 1994 ) test human inductive behavior on 28 different properties, 14 of which are anatomical

in nature, and the other 14 are behavioral. Upon asking 41 University of Michigan students

to rate how likely the conclusion is given that the premise is true, they found that for

anatomically matched concepts, the subjects made stronger generalizations for anatomical

properties than for behavioral properties, and vice versa (see figure  5.12a ). We borrowed

these stimuli as is, and conducted our experiments with our eight property judgment models.

Briefly, we computed generalization scores for all individual arguments, and then computed
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Figure 5.12. Context Sensitivity Results. (a): Human inductive generaliza-
tion behavior based on property type and match. (b): Average generalization
scores (along with 95% CI) produced by the models on arguments with con-
cepts that are either anatomically or behaviorally related and properties that
are anatomical or behavioral in nature.

averages separately for arguments for anatomically and behaviorally matched concepts across

both types of properties. Figure  5.12b shows these average generalization scores for all our

models.

On comparing figure  5.12a and figure  5.12b , we observe that none of the models seem

to demonstrate the kinds of contextual sensitivities clearly observed in humans, regardless

of the nature of their initial representations (pre-trained vs. random). The models either

showed no significant differences in generalizing anatomical vs. behavioral properties to

anatomically/behaviorally matched concepts, or showed a marked preference toward one

kind of property. For instance, while other models showed the former pattern, BERT-large

(random) demonstrated a substantial preference towards behavioral properties, in that it on

average was more likely to project behavioral properties across concepts than anatomical

ones, regardless of the ways in which the concepts were related. While these results are from

a study with a very small sample size (only 7 pairs per property type), it provides preliminary

evidence that perhaps models may not reflect the flexibility/meta-reasoning ability required

to demonstrate genuine contextual sensitivities during inductive generalization.

The above results suggest that despite the fact that the models we have used to con-

duct inductive generalization represent words as a function of their context (thus being
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context-sensitive by definition), they may not systematically distinguish high level contex-

tual differences between properties (anatomical vs behavioral). One explanation could be

that perhaps this only happens when models are being adapted—i.e., the models might

still be representing non-trivial differences between concepts when paired with anatomical

vs. behavioral properties, but not use them in making inductive generalizations. To test

this, we tracked the cosine similarities between the vector representations of the premise and

conclusion concepts at various layers of the model (without making any updates). Briefly,

let Cg be a conclusion concept, with anatomically matched concept Ca, and behaviorally

matched concept Cb. Furthermore, let Pa be an anatomical property and Pb be a behavioral

property, and extractl(c, p) be a function that extracts the representation of a concept c

when paired with the property p from a model’s lth layer. Then, if models are successfully

representing higher level contextual differences in the interpretation of the concepts paired

with the properties, we expect the following two behaviors in the similarities between the

contextual representations of the concepts at layer l:

sim(extractl(Ca, Pa), extractl(Cg, Pa)) > sim(extractl(Cb, Pa), extractl(Cg, Pa)),

and

sim(extractl(Cb, Pb), extractl(Cg, Pb)) > sim(extractl(Ca, Pb), extractl(Cg, Pb)),

where sim() is the cosine similarity between two vectors. That is, we expect similarity

of an adaptation concept with the generalization concept to be high when the property they

are paired to match their conceptual similarities (anatomical and behavioral) as compared

to when the concept matches contradict the type of the property.

We calculated the proportion of cases where this behavior was observed across all layers,

and used it as a version of compatibility, as estimated or made available by the models’

representational space. Figure  5.13 shows our results for each layers, and also shows the

analogous compatibility scores achieved by models using the inductive generalization frame-
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Figure 5.13. Compatibility computed based on contextual representations of
the pre-trained models (blue) across their intermediate layers. Black dashed
line indicates chance performance, while red dotted line indicates compatibility
as a result of the inductive generalization experiments.

work. Note that all metrics here are from pre-trained models since models fine-tuned using

random-vectors would often produce cosines that only differed in the 5th or 6th significant

digit in their decimals, rendering little meaning to inter-representational differences. From

Figure  5.13 , we see that despite models showing no notion of context sensitivity when made

to inductively generalize can still somewhat store high level differences between concept rep-

resentations when paired with different types of properties. For instance in all three models,

the higher layers tend to show non-trivially above chance compatibility, and this is largely

observed for BERT, ALBERT, and RoBERTa. Overall, this suggests that in generalizing a

novel property to other concepts, models may not fully harness the conceptual information

made available at individual layers.

5.5 Discussion

Inductive generalization, or the ability to use one’s background knowledge to make uncer-

tain inferences about novel situations is an important consequence of acquiring conceptual

knowledge, and fundamental to human semantic cognition (G. L. Murphy,  2002 ; Hayes &

Heit,  2018 ). Humans engage in inductive reasoning about concepts and categories on a daily

basis (Hayes & Heit,  2018 ), and often readily show a variety of systematic patterns that have

revealed considerable insight into how they organize, use, and update their conceptual knowl-
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edge. Experimental studies into human inductive behavior typically provide human subjects

with novel conceptual information and then test the extent to which they project/generalize

this information to other known concepts/properties. In this chapter (and dissertation as a

whole), I have proposed methods and analyses that use inductive generalization as a context

where we can study language models, in order to conclude about how exposure to a word’s

distributional statistics can allow the learning and representation of conceptual meaning.

While the previous chapters have used inductive generalization as means to probe lan-

guage models for conceptual knowledge and reasoning, they primarily did so by casting

inductive reasoning as an instance of word-prediction in context, and largely focused on

limited number of cases (either one phenomena or one type of inductive generalization).

This chapter critically analyzes the word-prediction based account of inductive reasoning

in language models, raising questions into its construct validity. In particular, using the

conditional probability of a conclusion, given a premise, as a measure that arises due to

reasoning can be inappropriate in principle, as it is more of a measure of how likely the two

sentences are to be in a sequence rather than one derived from a genuine update of semantic

knowledge. As a solution, we propose a novel analysis framework, inspired by the influential

work of Rogers and McClelland (  2004 ), that makes a more representational contact with the

target model in simulating inductive generalizations. In particular, this framework opera-

tionalizes inductive generalization as the behavior of an LM after its representations have

been partially exposed (via gradient-based updates) to novel conceptual information. To

simulate this behavior, the framework uses LMs that are endowed with human-elicited prop-

erty knowledge, by training them to evaluate the truth of sentences attributing properties

to concepts. Using LMs trained exclusively to perform property judgment takes a positive

step over the concerns raised in prior work and provides the models with the experimental

context that matches that given to humans in cognitive psychology experiments.

Using this framework, we asked two related questions: (1) how do language models’

representations drive their generalization behavior? and (2) what kind of conceptual ab-

stractions are supported by language model representations? To study these questions, we

primarily focused on 11 different systematic phenomena observed in human inductive rea-

soning literature (Osherson et al.,  1990 ). In particular, I used the principles described by
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Osherson et al. ( 1990 ) to generate stimuli that encoded these phenomena, each focusing on

particular abstractions that humans might rely on in demonstrating inductive generaliza-

tion. For example, the phenomena of conclusion specificity crucially tests for sensitivity to

the hierarchical structure of category organization (generalization from a bird to other birds

is stronger than to all animals).

Table 5.3. Summary of the models’ performance at demonstrating the phe-
nomena discussed by Osherson et al. ( 1990 ). ‘PT’ represents models that are
fine-tuned starting from pre-trained representations, while ‘R’ represents those
that start using random representations.

Phenomenon Strong Weak
BERT-large ALBERT-xxl RoBERTa-large DeBERTa-large

PT R PT R PT R PT R

Premise Conclusion Similarity
robin, sparrow

↓
canary

robin, sparrow
↓

ostrich
7 7 7 7 7 7 3 7

Premise Conclusion Similarity (single)
lion
↓

cheetah

lion
↓

skunk
3 3 3 7 3 7 3 3

Premise Typicality
robin
↓

bird

penguin
↓

bird
7 7 7 7 7 7 7 7

Premise Diversity (general)
robin, penguin

↓
bird

robin, canary
↓

bird
7 7 3 7 7 7 3 7

Premise Diversity (specific)
lion, deer

↓
rat

lion, cheetah
↓

rat
7 7 7 7 7 7 3 7

Conclusion Specificity
crocodile, iguana

↓
reptile

crocodile, iguana
↓

animal
3 7 3 7 3 7 3 7

Premise Monotonicity (general)
robin
↓

bird

robin, penguin
↓

bird
3 3 3 3 3 3 3 3

Premise Monotonicity (specific)
tuna, salmon

↓
shark

tuna, salmon, herring
↓

shark
3 7 3 3 3 3 3 3

Premise Nonmonotonicity (general)
crocodile, iguana

↓
reptile

crocodile, iguana, eagle
↓

reptile
7 7 7 7 7 7 7 7

Premise Nonmonotonicity (specific)
tuna, salmon

↓
shark

tuna, salmon, giraffe
↓

shark
7 7 7 7 7 7 7 7

Inclusion Fallacy
robin
↓

bird

robin
↓

ostrich
3 3 3 3 3 3 3 3

Premise Conclusion Asymmetry - - 3 3 3 3 3 3 3 3

Total Compatible - - 6 4 7 4 6 4 9 5

Using these stimuli, we analyzed four different pre-trained LMs: BERT-large (Devlin et

al.,  2019 ), ALBERT-xxl (Lan et al.,  2020 ), RoBERTa-large (Liu et al.,  2019 ), and DeBERTa-

large (He, Gao, et al.,  2021 ). We additionally also analyzed these models’ randomly initial-
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ized counterparts. In all eight cases, the models were fine-tuned to predict the truth of sen-

tences that attributed properties to concepts. Table  5.3 summarizes the results from these

experiments, along with examples of strong and weak inductive arguments, as predicted by

the principles of each phenomenon.

In general, we observe that our models are able to demonstrate some, but not all, of

the Osherson et al. (  1990 ), suggesting clear—but expected—differences with the patterns

observed in humans, and by extension, also with the abstractions that they encode/rely

on. Additionally, the phenomena for which we observed a general consensus among all the

models (regardless of their initial state—pre-trained vs. random) were either expected for

data-driven models (Premise Monotoncity), or were a natural consequence based on how

our framework and generalization measurement is set up (Inclusion Fallacy and Premise

Conclusion Asymmetry), or were cases of complete failure to encode the target phenomena

(Premise Typicality and Premise Non-monotonicity). In all other cases (conclusion speci-

ficity, premise conclusion similarity, premise diversity), we observed models starting from a

pre-trained representational space to show generally greater capability to demonstrate desir-

able behavior than their randomly initialized counterparts, indicating the clear advantages

of learning distributional information through pre-training.

The DeBERTa-large model, with pre-trained initial state, stood out as the best model,

showing non-trivial compatibility with 9 out of 12 unique inductive phenomena that we

tested. 

8
 Interestingly, the same DeBERTa model also stood out in our property-judgment

experiments, consistently outperforming BERT (6/12), ALBERT (7/12), and RoBERTa

(6/12), on not only the unseen test instances of the property judgment task, but also on

subsets of the comps-base stimuli (Misra et al.,  2023 ; see also ch.  4 ), which were controlled

for shallow similarity-based effects via the use of multiple different negative samples. Overall,

this suggests that models that can robustly capture properties of everyday concepts can also

be expected to show important inductive behavior.

Delving deeper into individual phenomena that were otherwise not predictable to be

demonstrated by the models, we find all pre-trained models to successfully demonstrate sen-
8

 ↑ general and specific arguments were counted separately, and similarity analyses contains an additional
single-argument phenomenon tested post-hoc.
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sitivity to hierarchical organization of conceptual structure. That is, models were more likely

to project a novel property from a bird such as robin to all birds (more specific conclusion)

than to all animals (more general conclusion). Since none of the random models were able

to show this effect, this result provides strong evidence for pre-training (and by extension

distributional learning) to impart an inductive preference to models with respect to hier-

archical conceptual structure. Similarly, our pre-trained models were also able to show an

effect for similarity between premise and conclusion concepts, but only for single arguments.

Here, models were more likely to project a property to a concept that is similar to the

adaptation/premise concept. Importantly this was strongest in the case of DeBERTa, again

highlighting its relative mastery over conceptual knowledge. However, when considering

cases with two adaptation concepts—where models had to combine the similarities of both

the adaptation concepts to the conclusion concept—we only observed DeBERTa to show

alignment with the phenomena. Similarly, premise diversity is an important phenomena

that not only tests for hierarchical sensitivities, but also for precise and nuanced differences

between the premise concepts themselves. Demonstrating this phenomenon requires reason-

ing about coverage (Osherson et al.,  1990 ) of a category, where premise items that covered

the category better (robin, ostrich) would be more likely to generalize a novel property,

and those that were too similar (robin, canary) to each other would be less so. For general

premise diversity arguments, we find ALBERT and DeBERTa show non-trivial compatibility

whereas for specific arguments only DeBERTa showed this phenomenon. Overall, this sug-

gests that while basic taxonomic information can be imparted, or made accessible through

pre-training, diversity and complex similarity based phenomena might require a more robust

encoding of everyday conceptual knowledge (i.e., generalize better outside of the models’

training).

Turning to cases where models—at least the pre-trained ones—failed to capture the

target phenomenon, we first begin with premise typicality. Every model that we tested

using our inductive generalization framework seemed to have failed at demonstrating stronger

generalizations for typical as opposed to atypical premises. At first glance this may seem

counter-intuitive, since models are clearly sensitive to the taxonomic categories of items, and

also generally capture their properties well, suggesting that they have enough information
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to discern which concepts were more typical/overall more similar to other concepts in the

category. One possible explanation for this failure could be that the models never receive

training signal for higher level categories. For instance, they are not trained on properties

that are salient to being a bird—instead, all properties in the training data are reflected

equally. As a result, their knowledge about penguins not being able to fly, something that

is core to the concept of penguin, is expected to be encoded in a manner that is similar

to that about commonly known birds’ ability to fly (which is not core to those birds). This

lack of property salience could therefore be a limiting factor in learning graded conceptual

structure in a manner similar to collective human beliefs. One potential solution to this issue

could be to follow Bhatia and Richie (  2021 ), and repeat the sentences expressing concept-

property pairings as many times as in common property norms data sets—i.e., as many

times as people had generated a given property for a given concept during data collection

(also called production frequency).  

9
 Since their model is trained in a similar manner, it can

easily be analyzed using the framework developed in this chapter, something we plan to do

in the future. Another case where our models showed behavior opposite to that observed in

humans was that concerning premise non-monotonicity—a phenomenon where a property

that is shared by fewer category members is more strongly projected to all members of that

category, as compared to where the property is shared by a larger number of concepts that

do not all fall under the same category. For instance, brown bear → mammal is stronger

than brown bear, grizzly bear → mammal, since the second argument, despite having

more premise concepts, is more compatible with the generalization that suggests that only

bears have the property. In order to demonstrate this behavior, a reasoner must genuinely

take into consideration these suspicious coincidences, which requires making assumptions

about the sampling of the premise (Xu & Tenenbaum,  2007 ; Ransom et al.,  2016 ). Instead,

we see that models, having been updated using gradient descent algorithms seem to stick

to their strong preference in matching property-phrase strings to the True label. This paves

the way for future work where perhaps gradient-based updates to the representational space
9

 ↑ Note that since we manually extended a popular property norms dataset(Devereux et al.,  2014 ; see ap-
pendix  C ) to prevent training on incomplete data, we were not able to faithfully include their production
frequency and therefore we exclusively trained the models on presence or absence of property
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could be combined with communicative intent (Grice,  1989 )—where relevance of the precise

relationship between the premise concepts is taken into account, i.e., that it is perhaps

intentional for the arguments to contain concepts with semantically salient shared properties

(Medin et al.,  2003 ).

Diverging from our analyses of the Osherson et al. (  1990 ) phenomena, we also considered

an important finding in the human inductive reasoning literature: context sensitivity (Heit

& Rubinstein,  1994 ). Unlike in the case of Osherson et al. ( 1990 ), human behavior here is

no longer a function of a single, vague type of similarity. Instead, inductive generalization

from one concept to the other is dependent on the type of property being projected, and the

type of intuitive theory it evokes (G. L. Murphy & Medin,  1985 ; G. L. Murphy,  1993 ; Kemp

& Tenenbaum,  2009 ). For instance moves in a zig-zag motion is more likely to be shared

by concepts such as tuna and whale who may not be hierarchically similar but certainly

share many behavioral properties, while has a liver with two chambers is likely to be shared

by bear and whale, since both of them are mammals and are likely to share anatomical

properties. On testing models on the stimuli made available by Heit and Rubinstein ( 1994 ),

we found all our models to fail in displaying this nuanced type of behavior, and either did

not make any distinctions based on the property type, or showed the opposite behavior.

That is, they were not making precise high level distinctions between the property type and

the semantic relations shared by concepts, needed to demonstrate this phenomenon. This

was a counter-intuitive finding since these models are well-known for being context sensi-

tive (Nair et al.,  2020 ; Reif et al.,  2019 ), at least at the word level—since they are able

to represent similar usages of words in similar ways (e.g., bat as the mammal vs. sporting

equipment). To get a better grasp around this issue, we also tracked the behavior of the

intermediate representations of the adaptation and generalization concepts as produced by

the models and found that a slight amount of high level context sensitivity is indeed present

in the representations. This suggests that our inductive framework is unable to leverage this

information in making its updates. Regardless, it is important to note that these conclusions

are derived from an experiment that only contained 14 different concept pairs, and there-

fore, might not be conclusive. While it is non-trivial to come up with properties that evoke

different types of intuitive theories, future work should ideally strive to build a more compre-
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hensive analyses data that can test for a range of different intuitive theories. Additionally,

future work should also perhaps harness the representational information—especially context

sensitivity—in making inductive projections.

145



6. CONCLUSION and FUTURE WORK

Our ability to understand language and perform reasoning crucially relies on a robust system

of semantic cognition (G. L. Murphy,  2002 ; Rogers & McClelland,  2004 ; Lake & Murphy,

 2021 ): processes that allow us to learn, update, and produce inferences about everyday con-

cepts (e.g., cat, chair), properties (e.g., has fur, can be sat on), categories (e.g., mammal,

furniture), and relations (e.g., is-a, taller-than). Taking core ideas in semantic cogni-

tion research as guiding principles, this dissertation has laid down the groundwork to enable

the evaluation of conceptual knowledge and understanding in pre-trained language models—

perhaps the most sophisticated computational models that learn from statistics contained

in large text corpora. In particular, I build on prior work that focuses on characterising

what semantic knowledge is made available in the behavior and representations of language

models, and extend it by additionally proposing tests that focus on functional consequences

of acquiring basic semantic knowledge. To do so, I primarily focus on the interesting—and

perhaps unique—ability of humans to rely on acquired conceptual knowledge to project and

deploy novel information: inductive generalization (Osherson et al.,  1990 ; Feeney & Heit,

 2007 ; Kemp & Tenenbaum,  2009 ; Hayes & Heit,  2018 ), and use it as a context within

which the conceptual understanding of language models can be characterized. Before do-

ing so I additionally analyse the extent to which LMs can reflect typicality effects (Rosch,

 1975 )—graded measures of goodness of examples for everyday categories—and revisit the

question of the extent to which LMs can robustly elicit everyday semantic knowledge (cats

have fur) and deploy it by making inferences about novel concepts (another instance of in-

ductive generalization). Finally, I develop a framework that can allow us to characterize the

extent to which the distributed representations learned by LMs can encode principles and

abstractions that characterize inductive behavior of humans. I now summarize the findings

from these analyses.

6.1 Summary of Findings

The first context within which I analyzed conceptual understanding in LMs was that involv-

ing typicality effects in making category inferences. Typicality is an important functional
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consequence of human conceptual acquisition, and has bearing on how the human mind

organizes knowledge about category structure (G. L. Murphy,  2002 ). A long-observed find-

ing is that category-membership inferences are graded—i.e., certain members of a category

(bird) are more typical (robin, sparrow) than are others (penguin, ostrich), and this

is reflected in almost every categorization experiment involving human subjects. Language

models not only encode important prerequisite properties required to demonstrate typical-

ity effects by construction—e.g., producing graded responses as a result of distributional

learning—they also to a large extent map items to their categories with reasonable accuracy

(Ettinger,  2020 ; Weir et al.,  2020 ). To what extent can this ability of theirs account for

typicality effects? (RQ1) Answering this question can broadly shed light on the extent to

which the statistical associations in textual corpora can give rise to human-like conceptual

structure.

In Ch.  3 , I studied the behavior of 19 different LMs on two tasks in which humans

showed clear sensitivities to typicality in processing of textual stimuli that varied only in

terms of the concept: 1) verifying the truth of sentences expressing category membership (a

robin/penguin is a bird) and 2) extending novel properties of objects to their superordinate

category (robins/penguins have ulnar arteries. therefore, all birds have ulnar arteries)—an

instance of inductive generalization. In both tasks, LMs demonstrated positive but moderate

correlations (up to 0.42) with gold-standard human typicality ratings. Furthermore, LMs on

average, also produced behavior that distinguished between high and low typicality category

members in a manner that was qualitatively similar (but also relatively less extreme) to

humans. Interestingly, correlation to human preference monotonically increased with the

number of parameters in the LM, suggesting that building models of word-prediction that

have greater expressivity in their representational space could lead to increased capacities

in reflecting patterns of graded category-membership. At the same time, the rather modest

magnitudes of the correlations indicate the difficulty of acquiring the specific nuances of

human like conceptual organization from distributional signals in text.

Next in ch.  4 , I revisit the topic of property knowledge (how well can a system store

and retrieve properties of everyday concepts), a common context within which prior work

has repeatedly investigated conceptual knowledge in LMs and other distributional seman-
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tic models. An important limitation that these prior works suffer from, however, is that

they form their conclusions about how well LMs capture property knowledge in an isolated

manner. That is, they focus only on the models’ ability to predict properties for concepts

that do indeed possess the properties, without necessarily considering the extent to which

a property is deemed equally (or even more) likely given a concept that does not in fact

possess the property. Furthermore, one desideratum developed in this dissertation is that

LMs must go beyond just encoding static knowledge that they might as well have picked

up from pre-training, and produce behavior that is compatible with this knowledge. One

context that allows testing for such a scenario is property inheritance (Quillian,  1967 ; Smith

& Estes,  1978 ; Sloman,  1993 ), a type of inductive generalization where concepts tend to

inherit the properties of their superordinate concept. Demonstrating property inheritance

over natural language text requires robust extraction of relational information (a wug is a

sparrow → is_a(wug, sparrow)), implicit recall of commonsense knowledge (sparrows can

fly), and perform simple inference (a wug can fly). Testing LMs for these abilities allows us

to answer a key question: how robustly do they encode and transfer conceptual knowledge?

(RQ2.1 and 2.2)

To this end, and to additionally circumvent the issue of drawing conclusions from isolated

property judgments, I developed the comps (Conceptual Minimal Pairs) benchmark (Misra

et al.,  2023 ). comps is a collection of minimal pair sentence stimuli, each of which attributes

properties (e.g., can fly) to: (i) real world concepts (robin vs. penguin), and (ii) their newly

introduced subordinates (wug), instantiated by supplying a prefix sentence that indicates

taxonomic relations (e.g., a wug is a robin/penguin). By controlling for undesirable behavior

such as sensitivity to rote memorization and distracting lexical associations, comps progres-

sively isolates deeper understanding of concept properties, and penalizes models that rely

on spurious heuristics. Analyses of 31 state of the art LMs spanning seven different model

families, including GPT-3 and GPT-3.5, revealed that while they can correctly attribute

properties to real-world concepts and show behavior consistent with property inheritance in

simple settings, they struggle to do so robustly, and in particular show failures in presence of

irrelevant distracting information. Importantly this failure is especially catastrophic when

the distracting information is sequentially more recent—in that the performance of almost
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all LMs, regardless of expressivity or training data or objective is at or below chance level

performance. For instance, on processing the stimuli “a wug is a robin. a dax is a penguin,”

models were more likely to attribute can fly to “dax” than to “wug,” despite demonstrating

desirable behavior on cases without distraction. This is a valuable finding, as it offers a po-

tential explanation of LMs’ failures on important semantic processing capacities, as shown by

recent work (Ettinger,  2020 ; Ravichander et al.,  2020 ; Elazar et al.,  2021 ; Pandia & Ettinger,

 2021 ; N. Kim,  2021 ; Schuster & Linzen,  2022 ; etc.): LMs tend to rely on simple predictive

cues in context over processing language compositionally, which results in their critical fail-

ures on controlled tasks that cannot be solved by simple predictive processing. That is, LMs’

reliance on heuristics that may have enabled better word prediction—lexical cues (Misra et

al.,  2020 ; Kassner & Schütze,  2020 ) and sequentially recent information (this work)—seems

to trump robust information processing capacities critical to successful extraction of concep-

tual knowledge, leading to revealing failures where these heuristics do not lead to desirable

behavior (McCoy, Pavlick, et al.,  2019 ). In general, comps poses a severe challenge for

popular state of the art LMs, many of which achieve below-chance performance, and can

potentially serve as an important benchmark to tease apart robust conceptual understanding

from shallow processing in language processing systems.

Finally in ch.  5 , I turned to a more comprehensive and exclusive analysis of inductive

generalization in LMs (RQ3). In particular, I proposed and developed a framework that

simulates inductive generalization in LMs by tasking them to project novel information about

concepts and properties. This framework moves beyond the pure word-prediction based ac-

counts of “reasoning” in language models, which could suffer from construct validity issues

(see § 5.1.2 ), and instead makes a more representational contact with the LMs, similar in

spirit to work by Rogers and McClelland (  2004 ). My framework satisfies two important

desiderata of a computational model of inductive reasoning: (1) the ability to make judg-

ments about the attribution of properties to concepts (experimental context provided in

human experiments), and (2) the ability to accept and reflect new conceptual proposition

and then be queried to assess generalization or ‘projection’ of this new knowledge. Specifi-

cally, the framework operationalizes inductive generalization as the behavior of an LM after

its representations have been partially exposed (via gradient-based learning) to novel con-
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ceptual information. To simulate this behavior, the framework uses LMs that are endowed

with human-elicited property knowledge, by training them to evaluate the truth of sentences

attributing properties to concepts. For instance, if the inductive problem involved robins

having the property has T9 hormones, and tested the extent to which canaries also have

the property, then the underlying LM would first be adapted to attribute have T9 hormones

to robins via backpropagation, after which its representations would be frozen and it would

then be queried with “canaries have T9 hormones”. Therefore, the framework makes a di-

rect causal contact with the LMs’ representational space—in that the projection of novel

information is a causal consequence of its integration within the LMs’ representations. This

allows us to perform analyses that primarily target the extent to which an LM places novel

information within its pre-constructed space, in a manner that is conducive to systematic

regularities and abstractions that are observed in human inductive literature.

Using this framework I analysed the extent to which four different language models,

typically used for classification tasks, can capture 12 different systematic regularities that

humans readily show in deploying novel information, as documented by Osherson et al.

( 1990 ). Importantly, I performed these analyses with models that are fine-tuned to predict

the truth value of sentences that attribute properties to concepts. Furthermore, I com-

pared the inductive behavior of models that started from pre-trained information—thereby

encoding principles of distributional semantics—versus those that start from a randomly

initialized space (and are likely to overfit to the property-judgment training set). Results

from these analyses highlight the clear benefits of pre-training in endowing models with

important sensitivities such as that to the hierarchical organization of concepts, category

coverage (via premise diversity), and conceptual similarity. For instance, models were more

likely to project a novel property such as can dax or has feps from a robin to birds than

to animals. However, these benefits were more strongly observed for the DeBERTa model

(He, Gao, et al.,  2021 ), which was able to capture 9 out of the 12 tested phenomena. Im-

portantly, the DeBERTa model also consistently and substantially outperformed the other

three models (BERT, ALBERT, RoBERTa), in correctly attributing to concepts, proper-

ties that were unseen during the fine-tuning task, and did so robustly (as measured using

a subset of COMPS). Nevertheless, sensitivity to hierarchical organization was observed for
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models that started from a pre-trained representational space and was absent for all their

counterparts that started from random initialization, providing evidence for a systematic

relationship between distributional learning (via pre-training) and taxonomic organization.

Despite this partial observation of desirable inductive behavior, all models, regardless

of their starting state (pre-trained vs. random), failed to show two important patterns:

typicality and non-monotonicity. 

1
 First, with respect to typicality effects in making inductive

generalizations, we find models to make no particular distinction between typical and atypical

members, generalizing from both types of premises to all members of the category with nearly

the same preference. That is, even if models can successfully encode sensitivity to category

membership relations and even project properties based on individual conceptual similarities,

they are unable to capture typicality effects. One potential explanation for this observation

could be the fact that the properties they are trained on are reflected equally. That is, the

models’ knowledge about penguins not being able to fly, something that is core to what makes

them atypical members of the bird category, is given the same weight as all the properties

that are shared commonly across all birds. As a result, they have implicit evidence about

what properties are salient to being a prototypical bird and those that are not that we are able

to account for using the method applied in appendix  C . Next, moving to failures of model

on the nonmonotonicity phenomena we find them to stick to their proclivity of projecting

a property more strongly as the number of premise concepts increases (i.e., always showing

premise monotonicity effects). That is, they are more likely to project a property to all birds

when robins, sparrows, and tigers share it as compared to when just robins and sparrows

share it. This is opposite to humans who would override their monotonicity behavior and

use the suspicious coincidence that the latter argument only had birds in the premise to

rate it as the stronger inductive argument. The explanation for this behavior in models is

simple—they are being adapted to map sentences to two labels: True or False, and could

therefore be susceptible to string-label matching heuristics. During adaptation they observe

more evidence for the property can dax to be associated with True in the weaker argument (3

times) than in the stronger argument (2 times). They can then use this information and map

can dax-containing sentences to True with greater log-probability in the weaker argument,
1

 ↑ these spanned three different types of stimuli, one for premise typicality and two for non-monotonicity.
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which in this case has more number of premises. From our results it seems that this proclivity

is likely driving their inability to reason about the concepts themselves, thereby leading to

consistent failures. Importantly it is still unclear if the models are using this bias strictly,

or there is still genuine scope of pragmatic behavior regarding suspicious coincidence and

sampling assumptions (Xu & Tenenbaum,  2007 ; Ransom et al.,  2016 ) encoded within the

representations of these models. One potential way to further test for these cases would

be to (1) include more bizarrely different concepts in the premise—e.g., robin, sparrow,

screwdriver → bird vs. robin, sparrow → bird; or (2) test with more fine-grained category

members (e.g., felines or different types of bears) where there is an even greater effect of

suspicious coincidence (Medin et al.,  2003 ).

Outside of the Osherson et al. ( 1990 ) phenomena, I additionally analyzed models on the

extent to which they showed context sensitive induction—where different types of properties

were projected differently. This phenomena arises specifically when the properties are no

longer “blank” (as was the case for Osherson et al.), and inductive generalization is instead

viewed as a process that first identifies the appropriate domain knowledge or intuitive theory

(G. L. Murphy & Medin,  1985 ; G. L. Murphy,  1993 ,  2002 ) evoked by the context of the

premise and the property being generalized, and then uses the features implied by the domain

knowledge to carry out the generalization. For instance, anatomical properties such as has a

liver with multiple chambers were more likely to be shared by taxonomically related concepts

while a behavioral property such as moves in a zig-zag motion was instead shared between

concepts that shared one or more properties related to the property being projected, often

crossing taxonomic boundaries (Heit & Rubinstein,  1994 ). Testing models on a small set

of stimuli (made available by Heit and Rubinstein ( 1994 )) that targeted this phenomenon

lead to further systematic failures where none of the models demonstrated the sensitivity.

This suggested that LMs perhaps have yet to properly encode precise distinctions between

property type in projecting novel information. However, a follow-up analysis of only the

models’ representation for concepts to which the novel properties were being attributed

suggested some level of sensitivity at least at higher layers of the models, where the contextual

similarity of concepts matched that of the property type (showing desirable behavior as much

as 60% of time). Overall this demonstrated some evidence for models’ to store and represent
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non-trivial distinctions between different kinds of properties and their interaction with a

concept’s representation when paired. The divergence between models’ inductive behavior

versus contextual representation content is expected, since the final output value of the

model is a function of all intermediate representations at all layers, not just the ones that

demonstrated the desirable sensitivity to property types. Future work could therefore explore

using a more sophisticated update mechanism that integrates novel information in a manner

that is proportional to the models’ representation of context sensitivities at different layers.

6.2 Limitations

Culture and linguistic assumptions in testing for typicality effects

One important limitation of the work presented here is that it specifically tests for conceptual

knowledge using English stimuli, and additionally only tests models that were trained on

corpora that overwhelmingly contained English. Importantly, the specific type of English

that dominates these corpora is likely to be representative of Western, college educated

adults. For instance, the GPT and EleutherAI family of models were trained on corpora

containing Reddit, 

2
 the users of which are primarily from the U.S. 

3
 In sum, to the extent to

which LMs indeed pick up on robust conceptual knowledge from the distributional statistics

of words they have been trained on, their representations reflect a worldview that is likely to

be aligned with the demography of the U.S. This is not an unreasonable guess, since scores of

empirical work have shown LMs and other distributional models to pick up on socio-cultural

norms, preferences, and harmful stereotypes present in their training data (Bolukbasi et al.,

 2016 ; Caliskan et al.,  2017 ; Bender et al.,  2021 ; Arora et al.,  2023 ; Ramezani & Xu,  2023 ;

i.a.). In ch.  3 , these LMs were compared for typicality effects against human data that was

collected in the 1970s (Rosch,  1975 ). Typicality effects, the presence of which is observed

robustly, can still vary in their relative ordering of categories/concepts as the geographical

and linguistic background of the human subjects changes (Schwanenflugel & Rey,  1986 ).

This points to a natural limitation of our work in its failure to account for the gap between
2

 ↑ https://reddit.com
3

 ↑ According to Semrush (Semrush,  2023 ), 42.19% of reddit users are from the US, as of June 21, 2023
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the socio-cultural statistics that would have been present if LMs were trained on data in mid

to late 1900s versus those that are trained on more recent data.

Testing conceptual knowledge and reasoning using a zero-shot setup

Using a zero-shot setup to test PLMs for human-like capacities such as property inheritance,

as I have done in this dissertation and its associated papers—specifically Misra et al. ( 2021 )

and Misra et al. ( 2023 )—has recently come under scrutiny. In particular, Lampinen (  2022 )

argues that such a setup could be problematic because PLMs are trained to imitate the

language produced by countless individuals with different beliefs, cultures, and behaviors.

As a result, PLMs are likely to be handicapped in assigning sufficient probability mass to the

desired family of continuations, given minimal prompts without any particular task-specific

context. Instead, Lampinen (  2022 ) suggests the need for PLMs

“[...] to be guided into an experiment-appropriate behavioral context, analo-

gously to the way cognitive researchers place humans in an experimental context,

and orient them toward the task with instructions and examples.”

This criticism is valid, and it is possible that models could overcome their lack of robustness

to distraction effects by observing examples of our stimuli in context, though this has largely

been shown in PLMs that are significantly larger than the ones I have tested here (Brown

et al.,  2020 ; Chowdhery et al.,  2022 ; Wei, Tay, et al.,  2022 ). 

4
 Indeed, recent work has

demonstrated these larger PLMs to achieve strong performance on other types of reasoning—

such as those required for solving math problems, reversing sequences, etc.—by priming

models to produce additional textual content that represents intermediate reasoning steps

and explanations (Nye et al.,  2021 ; Wei, Wang, et al.,  2022 ; Lampinen et al.,  2022 ), in a

few-shot setting.  

5
 While it is non-trivial, and uninformative to test for typicality effects

using multiple in-context example, a few-shot version of comps stimuli could expose models
4

 ↑ though see recent work by Shi et al. ( 2023 ), who show distraction effects in such large PLMs in solving
arithmetic reasoning problems, even after using sophisticated in-context prompting methods such as Chain-
of-Thought (Wei, Wang, et al.,  2022 ), Least-to-Most (Zhou et al.,  2022 ), and Self-Consistency (X. Wang
et al.,  2022 ).
5

 ↑ See also Sinha et al. (  2023 ), who analyze PLMs comparable in size to those studied in this work in a
few-shot minimal-pair setting.
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to the possibility of leveraging heuristics that are naturally absent in the zero-shot setup,

and therefore such a setup would critically require the design of additional controls, which I

leave for future work.

Assumption of ideal reasoning behavior

Another limitation of our work (here, COMPS) is that it takes ideal and robust property

inheritance behavior as the monolithic gold-standard for human cognition, something that

recent work has cautioned against (Pavlick & Kwiatkowski,  2019 ; Dasgupta et al.,  2022 ;

Webson et al.,  2023 ). Although we 

6
 relied on a database of concept-property pairs that

were largely generated by human participants, whether or not humans will be robust to

the types of distraction that were observed in PLMs is an open question and requires fur-

ther investigation. However, notably we are not making direct comparisons between mod-

els and humans here—we argue that our primary contribution of controlled stimuli that

tease apart shallow processing from robust conceptual reasoning in PLMs bears substantial

merit that is independent from any comparisons between humans and computational sys-

tems. Furthermore, we emphasize that we are setting a reasonable—and to a certain extent,

human-independent—desideratum in this work, which is that models should robustly cap-

ture ground-truth knowledge about everyday concepts and their properties and reflect this

knowledge in their inferences about newly introduced concepts.

On the limits of binary classification for inductive generalization

The analysis of inductive generalization in language models that I have carried out in this

dissertation has primarily been conducted using a setting where the models are adapted to

perform property judgments in a binary classification setting. While this design decision

was made to ensure that the models’ objectives are aligned with the experimental context

presented in inductive reasoning experiments, is a bit of a radical change from their natural

environment of learning distributions of words in context—instead of producing a output

vector as large as their vocabulary, the models are constrained to instead produce a 2-
6

 ↑ my co-authors and I
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dimensional one (True vs. False). Additionally, this strict true vs. false classification also

misses out on the saliency of each individual property where models are unable to encode

the fact that having stripes on its body, for example, is salient to a zebra—this is largely

an artifact of our manual extension of the original property norms dataset our analyses are

based on, as opposed to a limitation of the framework or the binary classification setting (c.f.

Bhatia & Richie,  2021 ). Therefore, even though we see clear benefits of pre-training, the

binary classification setting may make it a non-zero possibility for models to not faithfully

display their full range of conceptual understanding capacities that they might have actually

gained from pre-training. Note that this is a limitation of our analyses and not the proposed

framework. As mentioned in §  5.2.3 , the framework can be readily applied to models that

stick to their word-prediction capacities, where instead of predicting the truth of sentences,

they are trained to predict the properties given a concept 

7
 in a manner similar to COMET

(Bosselut et al.,  2019 ; Hwang et al.,  2021 ).

6.3 Proposals for future work

Building on the the findings of this dissertation, as well as the limitations discussed above,

there are two obvious routes to pursue in improving our conclusions about the extent to

which computational models of distributional semantics and the “words as cues to meaning”

perspective can encode important functional consequences of encoding conceptual knowledge

(if at all). The first line of work is to conduct a more comprehensive analysis of typicality

effects in LM behavior. Specifically, this would not only involve additional contexts and

experimental data where typicality modulated human responses on textual stimuli (Kelly

et al.,  1986 ; Garrod & Sanford,  1977 ), it would also benefit from using LMs whose training

corpora can be directly accessed. This is primarily because it will allow us to form hypotheses

about the relationship between specific types of co-occurrence patterns and the extent to

which they affect typicality effects in LMs. For instance, we could use hearst patterns (Hearst,

 1992 ) to characterize the amount of explicit evidence that is available to LMs with respect to
7

 ↑ this may lead to an intended consequence of models not being robust due to the lack of signal about
what properties should not be predicted for concepts, but this could be mitigated by employing contrastive
learning (Khosla et al.,  2020 ) or unlikelihood training (Welleck et al.,  2020 ).
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taxonomic category memberships. Additionally, since one important limitation here was our

failure to take geographical, linguistic, and socio-cultural factors that determine typicality

effects (Schwanenflugel & Rey,  1986 ), another promising line of work is to perform analyses

on separate mono-lingual LMs each trained separately on data from target languages, and

rerunning the analysis presented and proposed here. The next line of work would be to

extend COMPS to a few-shot scenario, thereby providing additional experimental context,

as suggested by Lampinen ( 2022 ). However, simply taking random samples of COMPS

stimuli as in-context examples still leaves models open to using other shallow heuristics that

are orthogonal to the target reasoning behavior (property inheritance or category-feature

inference). For instance, consider the following example of a possible conception of few-shot

comps-wugs-dist stimuli:

Context:

ABC is a robin. DEF is a penguin. Therefore, ABC can fly.

XYZ is a horse. PQR is a dog. Therefore, XYZ has hooves.

Test sample:

KLM is a capybara. GHI is an elephant. Therefore, (KLM/GHI) has a trunk.

An LM here could simply use the heuristic that it is always the first entity (ABC, XYZ)

that possesses the target property and assign it greater probability. This would fail in the

event the test sample defines a context where the second, and not the first entity is one to

whom the property must be endowed. Similarly, another heuristic could be to assign the

property to the most recent concept. A promising design decision, then is to create stimuli

the few-shot contexts of which are compatible with principles of genuine reasoning as well as

shallow heuristics, while the test items are only compatible with genuine reasoning behavior.

Additional controls such as separating form vs. meaning, in a manner similar to N. Kim and

Schuster ( 2023 ), where the in-context examples’ mentions of the taxonomic context differs

in surface-form to the test example (e.g., is a vs. is a type of ), could further improve our

ability to conduct robust tests into the models’ reasoning behaviors.

Apart from the above two obvious avenues of future research, an important open problem

that the present work highlights is inability of pre-trained models to flexibly adhere to
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different contexts/structures in making inductive generalizations. In the context of human

inductive behavior, these context sensitivities arise from encoding of different “intuitive

theories” (Carey,  1985 ; G. L. Murphy & Medin,  1985 ; G. L. Murphy,  1993 ) which govern

how a novel property will be generalized. Computationally, these intuitive theories have

been operationalized using graph structures (Kemp & Tenenbaum,  2003 ; Shafto, Kemp,

Baraff, Coley, et al.,  2005 ; Kemp & Tenenbaum,  2009 ), which explicitly define the relations

between concepts, and thereby dictate extent to which a novel property would be shared

by one or more concepts. However, an analysis of context-sensitive inductive generalization

is non-trivial to conduct with real data, since it not only involves generation/collection of

real properties that can be said to generalize in according to a particular intuitive theory,

but also involves making assumptions of the models pre-training data—it is unclear whether

the training data has sufficient signal to map tested properties, or their lexical content to

the knowledge of the intended intuitive domain. The lack of information about the models

training data can weaken the general conclusions we can make about their context sensitivity.

As a solution, I propose to train and evaluate models on data that is generated synthetically,

and contains the intended intuitive theory or structure that governs the basis of inductive

inferences. Having full control of the experimental data will allow us to more robustly answer

questions about the extent to which distributional learning over carefully designed semantic

knowledge that explicates the relations between concepts—a form of indirect grounding

(Merrill et al.,  2021 )—can successfully support generalization that is compatible with the

structure reflected in the training data. This proposal has two main problems that we must

solve: (1) the creation of synthetic datasets that reflect the targeted conceptual structure,

and (2) a method to instil the target structure into the models, and measure success.

Analogues to both these problems have recently been addressed using a novel paradigm

that aims to combine the principles of structured bayesian models with that of artificial neural

networks, with a specific focus on language learning (McCoy & Griffiths,  2023 ). Specifically,

bayesian models can reliably encode structural constraints (with a top-down approach) from

very little data (relative to neural networks) but often struggle when it comes to performing

inference over natural data (Griffiths et al.,  2010 ). At the same time, neural networks learn

structure bottom-up and require data that are several orders of magnitude larger, but are
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flexible enough to interact with any type of naturalistic data (McClelland et al.,  2010 ). This

paradigm combines the two by using meta-learning (Thrun & Pratt,  2012 ), 

8
 where models

are trained on a series of tasks that bear high level similarities to the main task, after which it

can learn the main task easily. Here, structured Bayesian models are constructed to encode

the inductive biases and constraints of the target language, and then used to generate data

for multiple virtual tasks. Then, a neural network is ‘meta-trained’ on these tasks to arrive

at initialization that would rapidly learn a new target language—i.e., desirably encode its

structural constraints.

Using meta-learning—specifically model agnostic meta-learning (MAML; Finn et al.,

 2017 )—can certainly aid in solving problem 2, provided that problem 1 is solved: how should

we design targeted Bayesian models that encode the principles of the intuitive theories we

want to test for/also encode in our models? To address problem 1, I propose to use the

influential work of Kemp and Tenenbaum ( 2008 ,  2009 ), which defines methods to encode

complex conceptual structure (tree, ring, chain, arbitrary graph) into prior distributions,

which can then straightforwardly guide inductive generalizations. For instance, a prior that

encodes properties of a taxonomic structure, is likely to assign greater probability for concepts

in the same taxonomic category to share properties. Importantly this prior can act as a

generative model, and therefore allows samples to be drawn from it. For instance, we can

draw a sample of 1000 different features for our n synthetic concepts, and use this matrix as

a training data where a model receives a synthetic concept as input and predicts its known

features (represented symbolically using verb-phrases), using a simple language modeling

objective, similar to (Bosselut et al.,  2019 ; Hwang et al.,  2021 ). Importantly, we can draw

multiple such training data samples as virtual tasks for ANNs (that underlie LMs) to be meta-

trained using MAML (Finn et al.,  2017 ). This process can then be repeated for any arbitrary

structure, provided that we can easily define a prior that encodes the structure’s properties

(Kemp & Tenenbaum,  2008 ,  2009 ; Lake et al.,  2018 ). Running our framework on models

meta-trained using these synthetic data will allow us to conclude if they have successfully

encoded the abstractions that align with the implicit structure of the data. Importantly,
8

 ↑ a precursor to this work that does not use bayesian models is that by McCoy et al. (  2020 )
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we can do so without relying on the limited amount of data provided by studies of human

inductive behavior, since we will be dealing with synthetic data.
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A. SUPPLEMENTARY MATERIAL FOR Misra et al. (  2021 )

Table A.1. Superordinate and their 5 most and least typical subordinate
concepts, as rated by native English speakers, extracted from Rosch (  1975 ).

Superordinate
Subordinate

Most Typical Least Typical

toy doll, top, jack-in-the-
box, toy soldier, yo-yo

horse, gun, animals,
tennis racket, book

bird robin, sparrow, blue-
jay, bluebird, canary

ostrich, titmouse, emu,
penguin, bat

sport
football, baseball,
basketball, tennis,
softball

chess, dancing, check-
ers, cards, sunbathing

vegetable
pea, carrot, green
bean, string bean,
spinach

seaweed, garlic, dan-
delion, peanut, rice

tool saw, hammer, ruler,
screwdriver, drill

anvil, hatchet, rag,
scissor, crane

fruit orange, apple, banana,
peach, pear

nut, gourd, olive,
pickle, squash

clothing pant, shirt, dress,
skirt, blouse

watch, cuff link, neck-
lace, bracelet, cane

vehicle automobile, station
wagon, truck, car, bus

ski, skateboard,
wheelbarrow, surf-
board, elevator

furniture chair, sofa, couch, ta-
ble, easy chair

closet, vase, ashtray,
fan, telephone

weapon gun, pistol, revolver,
machine gun, rifle

foot, car, screw-
driver, glass, shoe
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B. SUPPLEMENTARY MATERIAL FOR Ch.  4 AND Misra

et al. ( 2023 )

Table B.1. Summary of the 22 models that we evaluate for chapter.
Legend for Corpora: Wiki: Wikipedia; bc: BookCorpus (Zhu et al.,  2015 ); cw: ClueWeb
(Callan et al.,  2009 ); cc: CommonCrawl Giga: Gigaword (Graff et al.,  2003 ); owtc:
OpenWebTextCorpus (Gokaslan & Cohen,  2019 ); cc-news: CommonCrawl News (Nagel,
 2016 ); Stories: Stories corpus (Trinh & Le,  2018 ); WebText: WebText corpus (Radford
et al.,  2019 ); Pile: The Pile (Gao et al.,  2020 ).

Family Model (Abbrev.) Parameters Vocab Size Tokenization Corpora Tokens

ALBERT

albert-base-v2 (A-b) 11M

30,000 SentencePiece Wiki and bc 3.3B
albert-large-v2 (A-l) 17M
albert-xlarge-v2 (A-xl) 59M
albert-xxlarge-v2 (A-xxl) 206M

BERT
distilbertbase-uncased (dB-b) 67M

30,522 WordPiece Wiki and bc 3.3Bbert-base-uncased (B-b) 110M
bert-large-uncased (B-l) 345M

ELECTRA
electra-small (E-s) 13M

30,522 WordPiece
Wiki and bc 3.3B

electra-base (E-b) 34M

electra-large (E-l) 51M
Wiki, bc, cw,
cc, and Giga

33B

RoBERTa
distilroberta-base (dR-b) 82M

50,265 Byte-pair encoding
owtc 2B

roberta-base (R-b) 124M bc, cc-news,
owtc, and Stories

30B
roberta-large (R-l) 355M

GPT2

distilgpt2 (dGPT2) 82M 50,257

Byte-pair encoding

owtc 2B
gpt2 (GPT2) 124M

50,257 WebText 8B∗gpt2-medium (GPT2-m) 355M
gpt2-large (GPT2-l) 774M
gpt2-xl (GPT2-xl) 1.5B

EleutherAI

gpt-neo-125M (Neo-125M) 125M

50,257 Byte-pair encoding pile

300B
gpt-neo-1.3B (Neo-1.3B) 1.3B 380B
gpt-neo-2.7B (Neo-2.7B) 2.7B 420B
gpt-j-6B (GPT-J) 6B 402B

∗As estimated by Warstadt et al. ( 2020 ).
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C. SUPPLEMENTARY MATERIAL FOR Ch.  5 AND Misra

et al. ( 2022 )

C.1 Property Knowledge Re-annotation

C.1.1 Premise

Datasets such as the CSLB (Devereux et al.,  2014 ) naturally lend themselves to investigations

that probe the conceptual knowledge of computational models and their representations. The

CSLB dataset was collected by tasking 123 human participants to generate properties of a

total of 638 concepts. For each property the authors then calculated its production frequency

for all concepts for which it was generated, i.e., if the property can fly was generated for

the concept robin by 20 out of the 30 participants who were shown the concept, then its

production frequency is 20. Note that the CSLB data set contains only positive property-

concept associations. To construct negative samples, prior works that use CSLB as ground-

truth to probe word representations typically use the set of concepts for which a given

property was not generated, as negative (e.g. Lucy & Gauthier,  2017 ; Forbes et al.,  2019 ;

Da & Kasai,  2019 ; Bhatia & Richie,  2021 ). That is, negative samples are usually generated

using concepts that have a production frequency of 0 for each property. Once a sufficient

number of negative samples have been generated, the authors then train a probing classifier

for every property, which predicts 1 if the production frequency of the property for that

concept is nonzero, and 0 otherwise.

C.1.2 Limitation

Since the task that was employed to construct the CSLB dataset was that of generation

as opposed to validation, it is possible—and perhaps likely—that it resulted in inconsistent

annotations, where some humans might have forgotten to generate obvious properties for

certain concepts, or simply ignored them. For instance, the property can breathe, which is

obviously applicable for all animals, was missing in 146 animal concepts within the dataset.

This means that if one were to follow the standard negative-sampling method described

earlier, they would consider all 146 of these animals as concepts for which the property can
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breathe does not hold true, which is incorrect. We conjecture that humans fail to generate

features that are obviously valid for certain concepts (e.g., can breathe, can grow, is a living

thing for animals) because they may be operating under Grice’s maxim of quantity (Grice,

 1989 ), by only eliciting non-trivial or truly informative properties for concepts in order to

avoid redundancy. While we leave the testing of the hypotheses within this conjecture for

future work, this limitation of incomplete data raises questions about the extent to which

we should trust the results and conclusions of prior work which are crucially affected by this

problem, which we summarize using the aphorism: absence of evidence is not evidence of

absence.

C.1.3 Manual re-annotation of missing property-concept pairs

To mitigate the limitation discussed above, we first selected the categories (hand-annotated

by Devereux et al.,  2014 ; e.g., bird, vehicle, tree, etc.) that had at least 9 concepts in the

dataset and were not labeled as “miscellaneous,” resulting in 23 different categories with a

total of 529 unique noun concepts, and 4,970 unique properties. Next, we manually removed

concepts and properties that contained proper nouns (e.g., rolls-royce, is in Harry Pot-

ter), stereotypical or subjective data (e.g., is meant for girls, is ugly), and explicit mentions

of similarity or relatedness (e.g., is similar to horse). We further normalized properties that

were paraphrases of each other (e.g., is used to flavor, does flavor → is used to flavor). This

resulted in 521 concepts and 3,643 properties. Again through manual search, we further

identified a total of 726 properties that were incompletely annotated (i.e., those that were

associated with certain concepts but were omitted for many relevant concepts during data

collection—e.g., the property can grow was missing for all invertebrates, despite being asso-

ciated with all of them). We manually extended the coverage for these properties by adding

in entries for concepts for which they had not been elicited. For instance, for the property

can breathe, which was generated for 6 out of 152 animals in the original dataset, we further

add the remaining 146 concepts as additional positively associated concepts, increasing its

coverage from 6 to 152. While the total number of incompletely annotated properties is small

(10% of the valid properties), our re-annotation process greatly increases the total number of
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concept-property pairs (from 13,355 pairs in the original, unmodified dataset, to 30,076: an

increase of 125%) since many of the incompletely labeled properties were applicable across

several categories (e.g., has a mouth, can grow, etc). After applying this process to the

CSLB dataset, we are left with 30,076 property-concept pairs, which we use in subsequent

experiments. The re-annotated data can be found in the file post_annotation_all.csv 

1
 in

the github repository.

C.1.4 Final thoughts

The re-annotation process described above was performed manually due to resource, time,

and financial constraints. However, we recommend running a large-scale empirical validation

studies for datasets such as CSLB and McRae, before using them for probing experiments.

While this is non-ideal in terms of resource use, it is necessary in order to draw faithful and

appropriate conclusions about the correspondence between conceptual knowledge in humans

and machines.

C.2 Negative Sample generation using Taxonomies

Here we describe our algorithm to generate negative samples for our first experiment in the

paper—the property judgment task, where LMs are fine-tuned to classify as True or False

sentences that attribute properties to concepts. For instance, the sentence a cat can fly is

labeled as False as cat is a negative sample for the property can fly, whereas, a robin can

fly is labeled as True. Briefly, for the set of positive samples for a given property, we sample

an equal-sized set of negative samples that are maximally similar to the positive samples.

We use a taxonomic similarity (described below) as our similarity measure as it is model-

free. Below we describe useful notation involved in the process, and then describe the full

algorithm.
1

 ↑  https://github.com/kanishkamisra/lm-induction/data/post_annotation_all.csv 
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C.2.1 Notation and Preliminaries

Table  C.1 describes the notation we follow to construct our property judgment dataset.

Our goal here is to generate 30,076 negative samples and then take the entire set of 60,152

concept-property pairs and their labels to carry out the property-judgment experiment.

Table C.1. Notation for various artifacts involved in the paper.
Notation Meaning Remarks

C The set of all concepts in our experiments. These are
also at the lowest level of the taxonomy—i.e., its leaf
nodes.

|C| = 521

P The set of all unique properties used in our experiments. |P| = 3735
QPi

The set of concepts that possess the property Pi. QPi
⊂ C, |QPi

| = k

¬QPi
The set of concepts that do not possess the property Pi,
i.e., ¬QPi

= C − QPi

|¬QPi
| = 521− k

δ(¬QPi
, k) A function that extracts k negative samples from ¬QPi

using the method described in Algorithm  1 (lines 6–9).
|δ(¬QPi

, k)| = k,

In order to generate negative samples, we first tag the senses of all our 521 concepts

using the WordNet (Miller,  1995 ) taxonomy, and also retrieve the sub-tree from WordNet

that perfectly contains our concepts and use this as our ground-truth taxonomy on the

basis of which we carry out subsequent experiments. We generate our negative samples by

choosing a measure derived primarily from the Wu-Palmer similarity (Wu & Palmer,  1994 ).

This similarity can be computed over any taxonomy using the following operations:

simwup(ci, cj) = 2× depth(lcs(ci, cj))
depth(ci) + depth(cj)

, (C.1)

where lcs(x1, x2) is a function that computes the least-common subsumer  

2
 of the two 

3
 

concepts, and depth(x) computes the length of the path between the input concept and
2

 ↑ a node in the hierarchy that is a hypernym/parent of the input concepts with minimum depth. For
instance, lcs(robin, bat) = vertebrate.
3

 ↑ although in practice it can be applied for multiple concepts.
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the root node of the hierarchy. We consider a generalized form of this measure (denoted as

simgwup), to compute the similarity of a single concept to a set of concepts:

simgwup(c1, . . . , cn) = n× depth(lcs(c1, . . . , cn))
depth(c1) + · · ·+ depth(cn) (C.2)

For every property Pi, we use this measure in algorithm  1 to sample k concepts from ¬QPi
,

based on their simgwup with QPi
= {c1, . . . , ck}. For example, consider the property has

striped patterns on its body, the corresponding artifacts would be:

Q = {zebra, tiger, bee, wasp}

¬Q = C − Q

= {accordion, . . . , yo-yo}

NS = δ(¬Q, 4) = {horse, lion, ant, beetle}

D = {[a zebra has striped patterns on its body, True],

. . . ,

[a beetle has striped patterns on its body, False]}

Note that we follow the method outlined by Bhatia and Richie ( 2021 ) to convert concept-

property pairs into sentences, which we denote as sentencizer() in Algorithm  1 .
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Algorithm 1 Algorithm to generate the dataset, D, for the property judgment task
Input: C = {c1, . . . , cn}: Set of all concepts, n = 521.

P = {P1, . . . , Pm}: Set of all properties, m = 3643.

1. D ← [ ] . the final set of stimuli for the property judgment task.

2. for i = 1, . . . , m :

3. QPi
← [c1, . . . , ck] . set of k concepts that possess the property Pi

4. ¬QPi
← C −QPi

5. . Lines 6–9 compute δ(¬QPi
, k)

6. NSPi
← [ ] . set of negative samples for the property Pi

7. ˜¬QPi
← argsort(¬QPi

, simgwup) . sort ¬QPi
based on simgwup(c1, . . . , ck, xj)∀xj ∈ ¬QPi

8. for j = 1, . . . , k :

9. NSPi
.append( ˜¬QPi

[j]) . take the top k concepts from ¬QPi
as negative samples

10. . the following pairs the positive and negative samples with their labels, and appends them to D

11. for j = 1, . . . , k :

12. . sentencize() constructs a sentence using a concept and a property-phrase (see Bhatia & Richie,

 2021 ).

13. D.append([sentencize(QPi
[j], Pi), True])

14. D.append([sentencize(NSPi
[j], Pi), False])

15. return D

C.3 Computing typicality from feature representations

Inspired by Saxe et al. (  2019 ), we compute typicality judgments for category members by

considering a low dimensional subspace of the concept-property matrix (M), defined as part

of our world W , computed using Singular-value decomposition. That is, we first decompose

M∈ R152×726 into three matrices, each of which has its own semantic interpretation:

M = UΣVT, (C.3)
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where U is a 152 × k matrix, Σ is a k × k diagonal matrix, and V is a 726 × k ma-

trix. The rows of U can be thought to represent concept-analyser vectors, where the ith

row represents the ith concept’s position in each of the k different semantic components.

Each component here could denote an important semantic distinction. For instance, there

could exist a component a ≤ k that effectively differentiates mammals from non-mammals,

where all mammals may have positive value, and all non-mammals could have a negative

value. Similarly, the columns of VT denote property-synthesizer vectors, 

4
 where each value

represents the extent to which that particular property (column) is present in the various

semantic components. For instance the third component could represent the differences be-

tween bird and non-bird, so it is likely that values in this row corresponding to bird-like

properties (lays eggs, can fly, has wings) hold similar values, while values corresponding to

non-bird properties might also hold similar values, and at the same time substantially differ-

ent from bird-properties. Finally, Σ is a diagonal matrix whose diagonal elements represent

the strength of each component, and are ordered descendingly according to their strength.

To extract typicality measures, we find the component in U that maximally separates

category members from non-category members. For instance, if the category of interest is

fish (N = 14), we take each column of U, representing a different component. We then

compute the difference between the values that are mapped to fishes and those that are

mapped to non-fishes, and select the component where this difference is maximal. We then

take the values of fish-concepts within this column vector as estimates for their typicality.

table  C.2 shows the fish members contained in W , organized by their typicality estimates.

4
 ↑ both concept-analyzer vectors and property-synthetizer vectors are names borrowed from Saxe et al. ( 2019 ).
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Table C.2. Typicality measures for fish concepts extracted from the compo-
nent of U with greatest difference in value for fish vs. non fish concepts (here,
component = 8). Typicality values are unmodified post-extraction, except for
being rounded up to three decimal places.

Concept Typicality Concept Typicality

tuna 0.162 trout 0.079
mackerel 0.153 eel 0.077
herring 0.152 flounder 0.068
sardine 0.137 minnow 0.067
salmon 0.129 carp 0.054
cod 0.119 shark 0.043
goldfish 0.106 seahorse 0.029
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