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ABSTRACT

The problem of system identification is to learn the system dynamics from data. While

classical system identification theories focused primarily on achieving asymptotic consistency,

recent efforts have sought to characterize the number of samples needed to achieve a desired

level of accuracy in the learned model. This thesis focuses on finite sample analysis for

identifying/learning dynamical systems.

In the first part of this thesis, we provide novel results on finite sample analysis for learn-

ing different linear systems. We first consider the system identification problem of a fully

observed system (i.e., all states of the system can be perfectly measured), leveraging data

generated from an auxiliary system that shares “similar” dynamics. We provide insights on

the benefits of using the auxiliary data, and guidelines on selecting the weight parameter

during the model training process. Subsequently, we consider the system identification prob-

lem for a partially observed autonomous linear system, where only a subset of states and

multiple short trajectories of the system can be observed. We present a finite sample error

bound and characterize the learning rate.

In the second part of this thesis, we explore the practical usage of finite sample analy-

sis under several different scenarios. We first consider a parameter learning problem in a

distributed setting, where a group of agents wishes to collaboratively learn the underlying

model. We propose a distributed parameter estimation algorithm and provide finite time

bounds on the estimation error. We show that our analysis allows us to determine a time

at which the communication can be stopped (due to the costs associated with communica-

tions), while meeting a desired estimation accuracy. Subsequently, we consider the problem

of online change point detection for a linear system, where the user observes data in an

online manner, and the goal is to determine when the underlying system dynamics change.

We provide an online change point detection algorithm, and a data-dependent threshold

that allows one to achieve a pre-specified upper bound on the probability of making a false

alarm. We further provide a finite-sample-based lower bound for the probability of detecting

a change point with a certain delay.

13



Finally, we extend the results to linear model identification from non-linear systems. We

provide a data acquisition algorithm followed by a regularized least squares algorithm, along

with an associated finite sample error bound on the learned linearized dynamics. Our error

bound demonstrates a trade-off between the error due to nonlinearity and the error due to

noise, and shows that one can learn the linearized dynamics with arbitrarily small error given

sufficiently many samples.
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1. INTRODUCTION

Learning a predictive model from data is an important problem in many fields [ 1 ], includ-

ing machine learning, economics and control theory. Classical control theories are typically

model-based. When modeling from first principles is not possible, one can attempt to learn a

predictive model from data. The problem of system identification is to learn the parameters

of dynamical system, given the measurements of the inputs to and outputs from the system.

While classical system identification theories focused primarily on achieving asymptotic con-

sistency [  2 ]–[ 4 ], these results may not directly translate into guarantees on the quality of

learned model, given a finite number of samples. Having a finite sample bound for the error

is not only of interest on its own, but also can be integrated with techniques like robust

control to come up with overall performance guarantees for the closed loop system, e.g., [ 5 ],

[ 6 ]. Consequently, we focus on studying the following problem:

Can we characterize the quality of the learned dynamics from a finite number of samples

collected from the system?

In this thesis, we attempt to systematically address the above problem. We present novel

non-asymptotic guarantees for learning the dynamics of systems under various settings. We

summarize our contributions below. The details and comparisons over existing results are

provided in the beginning of each chapter.

1.1 Overview and Contributions

1.1.1 Learning Dynamical Systems by Leveraging Data from Similar Systems

In Chapter  2 , we study the problem of identifying the dynamics of a linear system when

one has access to samples generated by a similar (but not identical) system, in addition to

data from the true system. We use a weighted least squares approach, and provide a finite

sample error bound of the learned model as a function of the number of samples and various

system parameters from the two systems as well as the weight assigned to the auxiliary data.

We show that the auxiliary data can help to reduce the intrinsic system identification error

due to noise, at the price of adding a portion of error that is due to the differences between

15



the two system models. We further provide a data-dependent bound that is computable

when some prior knowledge about the systems, such as upper bounds on noise levels and

model difference, is available. This bound can also be used to determine the weight that

should be assigned to the auxiliary data during the model training stage. Our analysis can

be applied to a variety of important settings. For example, if the system dynamics change at

some point in time (e.g., due to a fault), how should one leverage data from the prior system

in order to learn the dynamics of the new system? As another example, if there is abundant

data available from a simulated (but imperfect) model of the true system, how should one

weight that data compared to the real data from the system? Our analysis provides insights

into the answers to these questions.

1.1.2 Learning the Dynamics of Autonomous Linear Systems From Multiple
Trajectories

In Chapter  3 , we consider the problem of learning the dynamics of partially-observed

autonomous linear systems (i.e., systems that are not affected by external control inputs)

from observations of multiple trajectories of those systems, with finite sample guarantees.

Existing results on learning rate and consistency of autonomous linear system identification

rely on observations of steady state behaviors from a single long trajectory, and are not

applicable to unstable systems. In contrast, we consider the scenario of learning system

dynamics based on multiple short trajectories, where there are no easily observed steady

state behaviors. We provide a finite sample analysis, which shows that the dynamics can

be learned at a rate O( 1√
N

) for both stable and unstable systems, where N is the number

of trajectories, when the initial state of the system has zero mean (which is a common

assumption in the existing literature). We further generalize our result to the case where the

initial state has non-zero mean. We show that one can adjust the length of the trajectories

to achieve a learning rate of O(
√

logN
N

) for strictly stable systems and a learning rate of

O( (logN)d
√
N

) for marginally stable systems, where d is some constant.

16



1.1.3 Finite Sample Guarantees for Distributed Online Parameter Estimation
with Communication Costs

In Chapter  4 , we study the problem of distributed online parameter learning. Existing

distributed online optimization algorithms typically provide bounds on regret, which may

not be directly translated into bounds on error of the learned model. In this chapter, we

propose a distributed online learning algorithm in a networked setting, which enables each

agent to improve its learning accuracy by communicating with neighbors in the network. We

provide non-asymptotic bounds on the learning error, leveraging the statistical properties

of the underlying model. Our analysis demonstrates a trade-off between learning error and

communication costs. Further, our analysis allows us to determine a time at which the

communication can be stopped (due to the costs associated with communications), while

meeting a desired estimation accuracy.

1.1.4 Online Change Points Detection for Linear Dynamical Systems with Fi-
nite Sample Guarantees

In Chapter  5 , we study the problem of online change point detection, where the goal

is to detect abrupt changes in properties of time series, ideally as soon as possible after

those changes occur. Existing work on online change point detection either assumes i.i.d

data, focuses on asymptotic analysis, does not present theoretical guarantees on the trade-

off between detection accuracy and detection delay, or is only suitable for detecting single

change points. In this chapter, we study the online change point detection problem for linear

dynamical systems with unknown dynamics, where the data exhibits temporal correlations

and the system could have multiple change points. We develop a data-dependent threshold

that can be used in our test that allows one to achieve a pre-specified upper bound on the

probability of making a false alarm. We further provide a finite-sample-based bound for

the probability of detecting a change point. Our bound demonstrates how parameters used

in our algorithm affect the detection probability and delay, and provides guidance on the

minimum required time between changes to guarantee detection.
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1.1.5 Learning Linearized Models from Nonlinear Systems with Finite Data

In Chapter  6 , we consider the problem of identifying a linearized system model from a

nonlinear system. This is different from many existing works on linear model identification,

where the underlying assumption is that the system is indeed linear. We provide a mul-

tiple trajectories-based deterministic data acquisition algorithm followed by a regularized

least squares algorithm, along with an associated finite sample error bound on the learned

linearized dynamics. Our error bound demonstrates a trade-off between the error due to

nonlinearity and the error due to noise, and shows that one can learn the linearized dy-

namics with arbitrarily small error given sufficiently many samples. We validate our results

through experiments, where we also show the potential insufficiency of linear system identi-

fication using a single trajectory with i.i.d random inputs (which is a common setup in the

literature), when nonlinearity does exist.

Finally, in Chapter  7 , we conclude the thesis by summarizing our main results and dis-

cussing directions for future work.
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1.2 Mathematical Notation and Terminology

Vectors are taken to be column vectors unless otherwise specified. Let R and N denote

the sets of real numbers and natural numbers, respectively. Let σn(·) and σmin(·) be the n-th

largest and smallest singular value, respectively, of a symmetric matrix. The eigenvalues of

a given matrix are ordered with nonincreasing magnitude, i.e., |λ1(·)| ≥ · · · ≥ |λmin(·)|. The

spectral radius of a given matrix is denoted as ρ(·). A square matrix A is called strictly

stable if ρ(A) < 1, marginally stable if ρ(A) ≤ 1, and unstable if ρ(A) > 1. For a given

matrix A, we use A(i, j) to denote the element in its i-th row and j-th column, A
′ to

denote its transpose, A† to denote its pseudoinverse, and vec(A) to denote its vectorization

(i.e., the vector obtained by stacking the columns of A from left). We use ∥A∥, ∥A∥1 and

∥A∥F to denote the spectral norm, 1-norm and Frobenius norm, respectively, of matrix

A. A Gaussian distributed random vector is denoted as u ∼ N (µ, Σ), where µ is the

mean and Σ is the covariance matrix. We use I to denote the identity matrix. We use

E to denote the expectation. We use tr(·) to denote the trace of a given matrix. Let 1n
denote a vector of dimension n with all of its elements equal to 1. The symbol ∏j

t=i At

is used to denote the matrix product, AiAi+1 · · · Aj. We use the symbol mod to denote

the modulo operator. The symbols ∪ and ∩ are used to denote the union and intersection

of sets, respectively. The symbol σ(·) is used to denote the sigma field generated by the

corresponding random vectors. We use Sn−1 to denote the unit sphere in n-dimensional

space. The open l1 ball in d-dimensional space with center at x0 and radius r is denoted

by Bd(x0, r) ≜ {x ∈ Rd : ∥x − x0∥1 < r}. We denote edi as a d-dimensional vector with the

i-th component equal to 1 and all other components equal to 0. The symbols ⌊·⌋ and ⌈·⌉ are

used to denote the floor and ceiling functions, respectively. We use 0 to denote a zero vector

with dimension that is clear from the context.
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2. LEARNING DYNAMICAL SYSTEMS BY LEVERAGING

DATA FROM SIMILAR SYSTEMS

2.1 Introduction

The existing literature on finite sample analysis of system identification is typically either

single trajectory-based or multiple trajectories-based. The single trajectory setup assumes

that one has samples from a single trajectory from the system, which enables system iden-

tification in an online manner, i.e., there is no need to restart the system from an initial

state. This setup has been studied extensively over the past few years and is still an ongoing

research topic [ 7 ]–[ 12 ]. A key challenge in the analysis is addressing the dependencies of

samples from the single trajectory. The derived sample complexity results typically show

how the system identification error goes to zero by increasing the number of samples used in

the single trajectory. For the multiple trajectories setup, it is typically assumed that one has

access to data generated from multiple independent trajectories [ 13 ]–[ 17 ]. In practice, the

multiple trajectories setup has the advantage of being able to handle unstable systems, and

other cases where collecting a single long trajectory is infeasible. Technically, the assump-

tion of independence of data usually allows for more direct use of standard concentration

inequalities. Consequently, the derived results typically only show that the error goes to zero

by increasing the number of trajectories. The recent paper [ 18 ] carefully addresses learning

dynamical systems from a mix of both dependent and independent data, i.e., learning from

multiple trajectories each with a non-trivial length. The paper [ 18 ] provides sharp bounds

that hold in expectation, and shows that the error goes to zero at a rate that is determined

by the product of the number of trajectories and the number of samples used from these

trajectories.

We note that all of the above works make the assumption that the data used for system

identification are generated from the true system model that one wants to learn. However, in

many cases, collecting abundant data from the true system can be costly or even infeasible.

In such cases, one may want to rely on data generated from other systems that share similar

dynamics. For example, for non-engineered systems like animals, one may only have a limited

amount of data from the true individual animal one wants to model, due to the challenge of
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conducting experiments for such systems. On the other hand, it may be possible to collect

data from other animals in the herd or from a reasonably good simulator. Furthermore,

when the dynamics of a system changes (e.g., due to failures), one needs to decide whether

to discard all of the previous data, or to leverage the old information in an appropriate way.

In settings such as the ones described above, it is of great interest to understand how one can

leverage the data generated from systems that share similar (but not identical) dynamics.

This idea is similar to the notion of transfer learning in the machine learning community,

where one wants to transfer knowledge from related tasks to a new task [  19 ]. However, in

contrast to system identification, most of the papers on transfer learning (in the context of

estimation) consider learning a static mapping from a feature space to a label space [ 20 ].

The recent works [ 21 ], [ 22 ] study joint learning of multiple dynamical systems, assuming all

systems are weighted equally in the training stage. However, an open question remains on

how to effectively utilize samples from other systems to enhance the accuracy of the model

for the true system of interest, especially when the number of samples from the true system

is limited.

Our conference paper [ 23 ] provides finite sample analysis of system identification with the

help of an auxiliary system, using a weighted least squares approach, under the assumption

of having access to multiple trajectories from both the true system and the auxiliary system.

The paper [  23 ] decomposes the overall system identification error into the error due to noise

and the error due to model difference, and shows that the auxiliary data can help to reduce

the error due to noise by introducing a portion of constant error that is due to the difference

in the models between the true and auxiliary systems. However, although the algorithm in

[ 23 ] uses all samples from these trajectories (different from [ 13 ], where only two data points

from each trajectory are used, assuming all samples are generated from the same system),

the result is conservative in characterizing the effect of the trajectory length. In particular,

the error due to noise can only go to zero by increasing the number of trajectories from the

two systems.

In this chapter, we address the above problem. Our contributions are as follows.
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• We provide finite sample data-independent bounds for learning dynamical systems by

leveraging data from an auxiliary system, using a weighted least squares approach.

Again, we decompose the error into a portion due to noise and a portion due to model

difference. Different from [  23 ], we show that the error due to noise can go to zero

by increasing either the number of trajectories or the trajectory length from the two

systems, or both.  

1
 Our analysis is general in that when the two systems have same

system matrices (such that we only have the error due to noise), our result qualitatively

matches the results in the recent paper [  18 ], which characterizes how the expected error

goes to zero with respect to the number of trajectories and the trajectory length, given

samples from the same system. Importantly, our bounds provide insights on general

guidelines for assigning weights to the auxiliary system, when there is not enough prior

knowledge about the systems.

• We also provide a data-dependent bound that is computable when some prior knowl-

edge about the systems, such as upper bounds on noise levels and model difference,

is available (based on a regularized weighted least squares approach). The data-

dependent bound can be used in a data-driven scheme for selecting a good weight

parameter that provides better performance guarantees in practice.

To the best of our knowledge, our work in this chapter is the first to study finite sam-

ple analysis for weighted least squares-based system identification given different systems.

Technically, we overcome the challenges of addressing the dependencies of samples from in-

dependent system trajectories in a less conservative way, compared to [ 13 ], [  23 ]. We carefully

analyze how different weights used in system identification and difference of system dynam-

ics affect the finite sample error. We provide a new upper bound of the sample covariance

matrix in the multiple trajectories setup for systems that have inputs. We also provide a new

lower bound for the smallest eigenvalue of the sample covariance matrix for non-Gaussian

time series in a more general context. This result could be of independent interest since it

can be used in the analyses of many regression-based problems.
1

 ↑ We note that the paper [ 23 ] also allows the auxiliary system to be time-varying. However, the derived
bound again degrades when the trajectory length becomes longer. In this chapter, we will assume the
auxiliary system is time-invariant.
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This chapter is organized as follows. Section  2.2 formulates the system identification

problem and introduces the algorithm we use. In Section  2.3 , we present our main results. We

present various numerical examples capturing different scenarios in Section  2.4 to illustrate

our results, and conclude in Section  2.5 . All of the proofs are included in Section  2.6 .

2.2 Problem formulation and algorithm

Consider the following discrete time linear time-invariant (LTI) system

x̄t+1 = Āx̄t + B̄ūt + w̄t, (2.1)

where x̄t ∈ Rn, ūt ∈ Rp, w̄t ∈ Rn, are the state, input, and process noise, respectively, and

Ā ∈ Rn×n and B̄ ∈ Rn×p are the system matrices we wish to learn from data. In this chapter,

we also assume that both the input ūt and state x̄t can be perfectly measured.

Suppose that we have access to Nr independent experiments of system ( 2.1 ), in which

the system restarts from an initial state x̄0, and each experiment is of length Tr. We call the

state-input pairs collected from each experiment a rollout (or trajectory), and denote the set

of samples we have as {(x̄it, ūit) : 1 ≤ i ≤ Nr, 0 ≤ t ≤ Tr}. Note that we use the superscript

to denote the rollout index and the subscript to denote the time index.

Let z̄it =
[
x̄i

′
t ūi

′
t

]′

∈ Rn+p for t ≥ 0. For each rollout i, define X̄ i =
[
x̄i1 · · · x̄iTr

]
∈

Rn×Tr , Z̄i =
[
z̄i0 · · · z̄iTr−1

]
∈ R(n+p)×Tr , W̄ i =

[
w̄i

0 · · · w̄i
Tr−1

]
∈ Rn×Tr . Further, define

the batch matrices X̄ =
[
X̄1 · · · X̄Nr

]
∈ Rn×NrTr , Z̄ =

[
Z̄1 · · · Z̄Nr

]
∈ R(n+p)×NrTr , W̄ =[

W̄ 1 · · · W̄Nr

]
∈ Rn×NrTr . Denoting Θ ≜

[
Ā B̄

]
∈ Rn×(n+p), we have

X̄ = ΘZ̄ + W̄ .

Typically, one would like to solve the following optimization problem:

min
Θ̃∈Rn×(n+p)

∥X̄ − Θ̃Z̄∥2
F ,
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and obtain an estimate ΘLS ≜
[
ĀLS B̄LS

]
, of which the analytical form is

ΘLS = X̄Z̄
′(Z̄Z̄

′)−1,

under the assumption that the matrix Z̄Z̄
′ is invertible. The quality of the recovered estimate

will depend on Nr and Tr; in particular, if both Nr and Tr are small, the obtained estimate

could have large estimation error [ 7 ], [  13 ].

Suppose that, in addition to samples from the true system, we also have access to samples

generated from an auxiliary system that shares “similar” (but unknown) dynamics to system

( 2.1 ). In particular, consider an auxiliary discrete time linear time-invariant system

x̂t+1 = Âx̂t + B̂ût + ŵt, (2.2)

where x̂t ∈ Rn, ût ∈ Rp, ŵt ∈ Rn are the state, input, and process noise, respectively, and

Â ∈ Rn×n and B̂ ∈ Rn×p are system matrices. 

2
 The above dynamics can be rewritten as

x̂t+1 = (Ā + δA)x̂t + (B̄ + δB)ût + ŵt, (2.3)

where δA = Â − Ā, δB = B̂ − B̄. Intuitively, the samples generated from the above system

will be useful for identifying system (  2.1 ) if both ∥δA∥ and ∥δB∥ are small. For example,

suppose that we want to identify the dynamics of a vehicle, the auxiliary system could be

another vehicle of the same type produced by the same manufacturer. We also provide a

scenario involving a change in dynamics of a system where the true and the auxiliary systems

have the same state representation in our experiment section later in the chapter. 

3
 

Thus, suppose that we also have access to Np independent experiments of system ( 2.2 ),

in which the system restarts from an initial state x̂0, and each experiment is of length Tp.

Let {(x̂it, ûit) : 1 ≤ i ≤ Np, 0 ≤ t ≤ Tp} denote the samples from these experiments. Let

ẑit =
[
x̂i

′
t ûi

′
t

]′

∈ Rn+p for t ≥ 0. The matrices X̂ i ∈ Rn×Tp , Ẑi ∈ R(n+p)×Tp , Ŵ i ∈ Rn×Tp , X̂ ∈

2
 ↑ In the terminology of transfer learning, system ( 2.1 ) can be referred to as a target system, and system

( 2.2 ) can be referred to as a source system.
3

 ↑ In practice, the auxiliary system needs to share the same set of state variables to be considered “similar”,
although our results hold for general systems where the states are unrelated.
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Rn×NpTp , Ẑ ∈ R(n+p)×NpTp , Ŵ ∈ Rn×NpTp are defined similarly, using the signals ûit, x̂it, ŵi
t from

system ( 2.2 ). Let X =
[
X̄ X̂

]
∈ Rn×(NrTr+NpTp), Z =

[
Z̄ Ẑ

]
∈ R(n+p)×(NrTr+NpTp), W =[

W̄ Ŵ

]
∈ Rn×(NrTr+NpTp) and δΘ =

[
δA δB

]
∈ Rn×(n+p). Defining

∆i =
[
δΘẑi0 · · · δΘẑiTp−1

]
∈ Rn×Tp ,

for all i ∈ {1, . . . , Np}, and denoting

∆ =
[
0 · · · 0 ∆1 · · · ∆Np

]
∈ Rn×(NrTr+NpTp),

where we use 0 to denote zero matrices with appropriate dimensions, we have the relationship

X = ΘZ + W + ∆. (2.4)

Letting q ∈ R≥0 be a design parameter that specifies the relative weight assigned to

samples generated from the auxiliary system ( 2.2 ), we can define Q = diag(INrTr , qINpTp) ∈

R(NrTr+NpTp)×(NrTr+NpTp). Setting the regularization parameter λ ≥ 0, we are interested in

the following (regularized-) weighted least squares problem:

min
Θ̃∈Rn×(n+p)

{∥XQ
1
2 − Θ̃ZQ

1
2 ∥2

F + λ∥Θ̃∥2
F}. (2.5)

The well known (regularized-) weighted least squares estimate [ 24 ] is ΘWLS ≜
[
ĀWLS B̄WLS

]
,

which has the form

ΘWLS = XQZ ′(ZQZ ′ + λIn+p)−1, (2.6)

when the matrix ZQZ ′ + λIn+p is invertible. Using ( 2.4 ), the system identification error can

be expressed as
∥ΘWLS − Θ∥ = ∥ − λΘ(ZQZ ′ + λIn+p)−1

+ WQZ ′(ZQZ ′ + λIn+p)−1

+ ∆QZ ′(ZQZ ′ + λIn+p)−1∥.

(2.7)
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In particular, when the regularization parameter is set to be λ = 0, we recover the standard

weighted least squares estimate.

The above steps are encapsulated in Algorithm  1 .

Algorithm 1 System Identification Using Auxiliary Data
1: Gather Nr rollouts of samples (each of length Tr) generated from the true system ( 2.1 ),

each starting from x̄i0 for all 1 ≤ i ≤ Nr.

2: Gather Np rollouts of samples (each of length Tp) generated from the auxiliary system

( 2.2 ), each starting from x̂i0 for all 1 ≤ i ≤ Np.

3: Construct the matrices X, Q, Z. Compute ΘWLS = XQZ ′(ZQZ ′ + λIn+p)−1.

4: Return the first n columns of ΘWLS as an estimated Ā, and the remaining columns of

ΘWLS as an estimated B̄.

Remark 1. The weight parameter q specifies how much we weight the data from the auxiliary

system relative to the data from the true system, and can depend on the number of samples

(Nr, Tr and Np, Tp) from each of those systems or the data available to us. The specific choice

of q will be discussed in detail later as we present our main results.

Our results will leverage the following definition of sub-Gaussian random vectors [ 25 ].

Definition 2.2.1. A real-valued random variable w is called sub-Gaussian with parameter

R2 if we have

∀α ∈ R,E[ exp(αw)] ≤ exp(α2R2

2 ).

A random vector x ∈ Rn is called R2 sub-Gaussian if for all unit vectors v ∈ Sn−1 the

random variable v′x is R2 sub-Gaussian.

We make the following assumption. Recall that the inputs ūt, ût are known, while the

noise terms w̄t, ŵt are unknown.

Assumption 1. The random vectors w̄t, ūt, x̄0, ŵt, ût, x̂0 are independent sub-Gaussian with

independent coordinates for all t ≥ 0. Furthermore, they have positive definite covariance

matrices and sub-Gaussian parameters σ2
w̄, σ2

ū, σ2
x̄0 , σ2

ŵ, σ2
û, σ2

x̂0, respectively.
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We note that independent random inputs are commonly used in the context of system

identification to provide excitation of the system dynamics [  8 ], [ 13 ]. Studying the optimal

input for system identification is an active area of research [  26 ]. Further, random initial

states can be easily obtained from deterministic initial states that are equal to zero. A

simple way to achieve this is to apply zero input and treat the first state as the initial state

for each trajectory (which is random due to noise). Our results could also be generalized to

include bounded deterministic initial states.

To ease the notation, we make some definitions now. We denote σ̄max = max(σw̄, σū, σx̄0).

Letting v(j) denote the j-th component of a vector v, we define

σ̄min ≜ min({E[w̄(i)2], E[ū(j)2], E[x̄0(i)2]}),

σ̄∗ ≜ max
 E[w̄(i)4]

E[w̄(i)2]2 ,
E[ū(j)4]
E[ū(j)2]2 ,

E[x̄0(i)4]
E[x̄0(i)2]2


 ,

for all t ≥ 0, 1 ≤ i ≤ n, 1 ≤ j ≤ p, where we omitted the time index t for the ease of

exposition. Further, define the following matrix for t ≥ 0:

Ḡt ≜
t∑
i=0

ĀiĀi′ +
t−1∑
i=0

ĀiB̄B̄′Āi′. (2.8)

The terms σ̂max, σ̂min, σ̂∗ and Ĝt are defined similarly for the auxiliary system ( 2.2 ).

In the next section, we provide data-independent bounds (assuming λ = 0) and a data-

dependent bound (assuming λ > 0) of the system identification error in ( 2.7 ). We study the

case when λ = 0 in the data-independent bounds to highlight our key insights (the benefits

of the auxiliary data and the role of the weight parameter q), and the results for λ > 0

can be easily generalized. The data-independent finite sample upper bounds characterize

the error as a function of Nr, Tr, Np, Tp, q, ∥δΘ∥ and other parameters from the true system

and the auxiliary system. While the data-independent error bounds provide insights on

the benefits of using the auxiliary samples, the derived results may not be used directly in

practice, since they involve unknown system parameters. To address that, we also provide

a data-dependent bound for the case when λ > 0. The non-zero regularization parameter

λ not only helps us to derive the data-dependent result, but also provides the user with
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more flexibility to tune the estimate in practice. One could set λ to be small to reduce the

impact of regularization on the estimate. The derived data-dependent bound is computable,

applicable to more general input and noise, and can be used in real-world applications to

select the weight parameter q (and regularization parameter λ). More specifically, the bound

characterizes the error as a function of σw̄, σŵ, q, ∥δΘ∥, λ, ∥Θ∥, and the available data. Both

our data-independent bounds and data-dependent bound will provide insights and guidance

on selecting an appropriate weight parameter q. We will assume that system ( 2.1 ) and

system ( 2.2 ) have the same stability in our discussions, i.e., both ρ(Ā) and ρ(Â) are less

than 1, or both ρ(Ā) and ρ(Â) are equal to 1, or both ρ(Ā) and ρ(Â) are greater than 1

(although ρ(Ā) does not need to equal to ρ(Â)), but similar insights can be extended even

if they are different.

2.3 Finite Sample Guarantees of the System Identification Error

In this section, we provide data-independent bounds (assuming λ = 0), and a data-

dependent bound (assuming λ > 0) on the system identification error in ( 2.7 ). The proof of

the data-independent bounds follow by upper bounding the error terms ∥WQZ ′(ZQZ ′)− 1
2 ∥,

∥(ZQZ ′)− 1
2 ∥, and ∥∆QZ ′∥ separately. The proof of the data-dependent bound follows by

directly evaluating an upper bound of the term ( 2.7 ) from data, but with the replacement

of the noise-dependent term ∥WQZ ′(ZQZ ′ + λIn+p)− 1
2 ∥ by a high-probability upper bound.

All of the proofs are presented in section  2.6 .

2.3.1 Data-independent Bounds

Here, we present our first main result, a data-independent finite sample upper bound on

the weighted least squares estimation error in (  2.7 ) when λ = 0. In the following result, we

let c, c1 denote some positive constants. 

4
 

Theorem 2.3.1. Fix q ≥ 0, δ ∈ (0, 2
e
), and let Assumption  1 hold. Denote ζ̄ = σ̄min

c1σ̄∗
and

ζ̂ = σ̂min

c1σ̂∗
. Suppose that NrTr ≥ max{8c2

1σ̄
2
∗(log 2

δ
+ (n + p) log 144ḡ( δ

2 )
ζ̄2(NrTr−1)) + 1, 33}, NpTp ≥

max{8c2
1σ̂

2
∗(log 2

δ
+ (n + p) log 144ĝ( δ

2 )
ζ̂2(NpTp−1)) + 1, 33}, ḡ( δ2) ≥ ζ̄2(NrTr−1)

16 , and ĝ( δ2) ≥ ζ̂2(NpTp−1)
16 .

4
 ↑ See Remark  6 and Remark  7 in section  2.6 for more discussions on the constants c, c1.
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Then with probability at least 1−5δ, the weighted least squares estimate ΘWLS from Algorithm

 1 using λ = 0 satisfies

∥ΘWLS − Θ∥ ≤
20 max(σw̄,

√
qσŵ)

√
log 9n

δ
+ (n + p) log(ϕ)√

NrTrζ̄2 + qNpTpζ̂2︸ ︷︷ ︸
Error due to noise

+ q∥δΘ∥ 33ĝ(δ)
NrTrζ̄2 + qNpTpζ̂2︸ ︷︷ ︸

Error due to difference between true and auxiliary systems

,

(2.9)

where
ϕ = ϕ(Nr, Tr, Np, Tp, q) = 33(ḡ(δ) + qĝ(δ))

NrTrζ̄2 + qNpTpζ̂2
+ 1,

ḡ(δ) = Nr

Tr−1∑
t=0

(tr(Ḡt) + p)(1
c

log(2
δ

) + 1)σ̄2
max,

ĝ(δ) = Np

Tp−1∑
t=0

(tr(Ĝt) + p)(1
c

log(2
δ

) + 1)σ̂2
max.

Remark 2. Interpretation of Theorem  2.3.1 . Recall that Nr is the number of rollouts

from the true system ( 2.1 ), Tr is the length of each rollout of the true system ( 2.1 ), Np is

the number of rollouts from the auxiliary system ( 2.2 ), and Tp is the length of each rollout

of the auxiliary system ( 2.2 ). Consequently, the quantities NrTr and NpTp capture the total

number of samples from the true system and the auxiliary system, respectively. Further, recall

that σw̄, σŵ capture the noise levels from the two systems, and ∥δΘ∥ captures the difference

between the two system models. For strictly stable systems ( 2.1 )-( 2.2 ), ḡ(δ) and ĝ(δ) grow at

most linearly with respect to Tr and Tp. For marginally stable systems, ḡ(δ) and ĝ(δ) grow

at most polynomially with respect to Tr, Tp (see Proposition  2.6.2 in section  2.6 ). The terms

ḡ(δ) and ĝ(δ) grow at most linearly with respect to Nr, Np, irrespective of the spectral radius

of the systems. Consequently, the parameter ϕ remains bounded with respect to Tr, Tp for

strictly stable systems, grows at most polynomially with respect to Tr, Tp for marginally stable

systems, and remains bounded with respect to Nr, Np, irrespective of the spectral radius of

the systems. We discuss some further observations below.
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Error due to noise and error due to model difference: Theorem  2.3.1 decomposes the

overall estimation error into the error due to noise (or the intrinsic error) and the error

due to model difference. Suppose that q = 1, and both systems are strictly stable for now.

The error due to noise depends on the noise levels from the true system and the auxiliary

system, and can be reduced by increasing the number of samples from the true system and the

auxiliary system (increase NrTr or NpTp). Theorem  2.3.1 is an improvement over the result

in [ 23 ], since Theorem  2.3.1 shows that one can reduce the error due to noise by increasing

either the number of rollouts or the length of these rollouts (or both), whereas the result in

[ 23 ] only shows the error due to noise can be reduced by increasing the number of rollouts.

The dependence on √
n + p is due to the dimension of the system model we wish to learn.

The error due to model difference depends on how similar the two systems are, and becomes

smaller if the auxiliary system is more similar to the true system (smaller ∥δΘ∥), or if there

are more samples from the true system than auxiliary system (increase NrTr). Consequently,

one can observe that increasing the number of samples from the auxiliary system helps to

reduce the error due to noise, at the price of adding a portion of error due to model difference

(note that the error due to model difference is always bounded when we increase Np or Tp).

In particular, when the two systems are exactly the same, i.e., ∥δΘ∥ = 0, Theorem  2.3.1 

recovers the learning rate O( 1√
NrTr+NpTp

), which qualitatively matches the learning rate as

reported in [ 18 ], when all samples are generated from the same system.

When the two systems are both marginally stable, one can see that the error due to noise

can still go to zero as Tr, Tp increase, since the term ϕ grows at most polynomially with

respect to Tr, Tp. However, the error due to model difference may amplify as Tp increases.

We provide a slightly refined bound for large NpTp in Theorem  2.3.2 to capture this case.

The benefits of collecting multiple trajectories: The existing literature has shown that the

multiple trajectories setup has the benefit of handling unstable systems (when all samples are

collected from the true system), since restarting the system from an initial state prevents the

system state from going to infinity over time [ 13 ]. This benefit is captured by our result. In

particular, fixing Tr, Tp, q, one can observe that the error due to noise always goes to zero

as we increase Nr or Np, irrespective of the spectral radius of the two systems, since the

parameter ϕ is bounded. Further, the error due to model difference always goes to zero as
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we increase Nr, and remains constant as we increase Np, again irrespective of the spectral

radius of the two systems. 

5
 

The selection of weight parameter q: In practice, selecting a good weight parameter q

based on Theorem  2.3.1 requires an oracle, since one has to know the specific values of the

different parameters in Theorem  2.3.1 . Further, due to the different realizations of random

variables, the optimal weight might differ at each experiment. A commonly used approach

for tuning parameters in the training process is to leverage a cross-validation process (see

[ 27 ] for an overview). In section  2.3.2 , we also provide a data-dependent bound, which is

computable and can help one to select a good value of q based on data. However, general

guidelines can be given based on the upper bound provided by Theorem  2.3.1 when Np or Tp

is large and ∥δΘ∥ is small, supposing that the two systems are strictly stable (for simplicity):

• When NrTr is small, we can set q to be relatively large to make sure that the first term

in the error bound is small (use the auxiliary data to reduce the error due to noise).

Consequently, the error bound is essentially dominated by the second term, which is

small if the two systems are similar. This corresponds to the case where we have little

data from the true system, and thus there may be a large identification error due to

using only that data. In this case, it is worth placing more weight on the data from

the auxiliary system, up to the point that the reduction in estimation error due to the

larger amount of data is balanced out by the differences between the systems.

• When NrTr is large, we can decrease q to reduce the second term as well, since the

first term is already made small enough. This corresponds to the case where we have a

large amount of data from the true system, and only need the data from the auxiliary

system to slightly improve our estimates. In this case, we place a lower weight on the

auxiliary data in order to avoid excessive bias due to the difference in the dynamics of

the two systems.

Furthermore, Theorem  2.3.1 demonstrates how the weight parameter should scale. For ex-

ample, it can be verified that one can set q = O( 1√
Nr

) to ensure consistency, when Np grows
5

 ↑ In fact, the literature has shown that unstable systems that satisfy a certain regularity condition can also
be consistently estimated using a single trajectory [ 11 ]. It would be interesting to capture that in our setup
in future work.
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linearly with respect to Nr (when Tr, Tp are fixed). These ideas will also be illustrated exper-

imentally in Section  2.4 .

Finally, the following corollary of Theorem  2.3.1 provides a sufficient condition under

which using the data from the auxiliary system (setting q ̸= 0) leads to a smaller error

bound compared to using data only from the true system (setting q = 0), when both the

true system and the auxiliary system are strictly stable.

Corollary 1. Suppose that both system ( 2.1 ) and system ( 2.2 ) are strictly stable, i.e., ρ(Ā) <

1 and ρ(Â) < 1. Consider the estimation error bound provided in Theorem  2.3.1 . Suppose

that q satisfies the following inequality:

σw̄

√
log 9n

δ
+ (n + p) log( 33ḡ(δ)

NrTr ζ̄2 + 1)√
NrTrζ̄2

>
max(σw̄√

q
, σŵ)

√
log 9n

δ
+ (n + p) log( γ

ζ2 + 1)√
NpTpζ̂2

+ ∥δΘ∥ γ

20ζ̂2
,

(2.10)

where ζ = min(ζ̄ , ζ̂), and γ is any positive constant that satisfies

max(33(tr(Ḡt) + p)(1
c

log(2
δ

) + 1)σ̄2
max,

33(tr(Ĝt) + p)(1
c

log(2
δ

) + 1)σ̂2
max) ≤ γ

for all t ≥ 0. Then the resulting error bound will be smaller than the error bound obtained

using q = 0.

Remark 3. Interpretation of Corollary  1 . Note that γ always exists since tr(Ḡt) and

tr(Ĝt) are bounded for strictly stable systems (see Proposition  2.6.2 in section  2.6 ). We

also note that the above condition might be conservative, and may not be easily checked in

practice since it involves unknown parameters. However, we describe the insights provided

by this condition here. One may observe that condition ( 2.10 ) is more likely to hold if ∥δΘ∥

is small (the true system and the auxiliary system shares “similar” dynamics), and NpTp is
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large (one has abundant samples from the auxiliary system), as these conditions can make

the right hand side of the inequality smaller. In other words, the auxiliary samples tend to

be more informative in such cases. In contrast, condition ( 2.10 ) is less likely to hold if NrTr

is large, since it will make the left hand side of the inequality smaller, i.e., if we already have

a lot of samples from the true system, then the auxiliary samples tend to be less informative.

The effect of the noise can be quite subtle, since it shows up in various places. However,

loosely speaking, having a smaller σŵ while assigning higher weight q may still help to make

the right hand side of the inequality smaller by making the term max(σw̄√
q
, σŵ) smaller, when

the terms ζ̂ and ζ are not affected too much. In other words, we might be able to benefit

from the auxiliary system if the auxiliary system is not too noisy, and if we attach enough

importance to the auxiliary samples.

The following result is a slightly refined bound for large NpTp.

Theorem 2.3.2. Under the same conditions in Theorem  2.3.1 , with probability at least

1 − 5δ, the weighted least squares estimate ΘWLS from Algorithm  1 using λ = 0 satisfies

∥ΘWLS − Θ∥ ≤
20 max(σw̄,

√
qσŵ)

√
log 9n

δ
+ (n + p) log(ϕ)√

NrTrζ̄2 + qNpTpζ̂2︸ ︷︷ ︸
Error due to noise

+ ∥δΘ∥(1 + 33ḡ(δ)
NrTrζ̄2 + qNpTpζ̂2

)︸ ︷︷ ︸
Error due to difference between true and auxiliary systems

.

(2.11)

Remark 4. Theorem  2.3.2 yields a tighter bound when NpTp is large. Fixing q > 0, it

can be observed that the error bound converges exactly to ∥δΘ∥ as Tp increases, when the

auxiliary system is marginally stable or strictly stable (ρ(Â) ≤ 1), since the ϕ term grows

at most polynomially with respect to Tp, and the error due to model difference converges

to ∥δΘ∥. Further, the bound converges exactly to ∥δΘ∥ as Np increases, irrespective of the

spectral radius of the system. In other words, one is essentially learning the dynamics of the

auxiliary system when we use a lot of auxiliary samples.
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2.3.2 Data-dependent Bound

In this section, we provide a data-dependent upper bound of the system identification

error using Algorithm  1 , assuming λ > 0. The regularized solution with strictly positive λ

helps us to establish the data-dependent bound, and provides the user with more flexibility to

tune the estimate in practice. The bound is computable when some prior knowledge about

the systems (as will be discussed below) is available, and applies to more general input

and noise. One can also use it for the selection of weight parameter q and regularization

parameter λ in practice (by selecting the weight parameter q and regularization parameter

λ that give a smaller error bound).

Theorem 2.3.3. Consider the systems ( 2.1 )-( 2.2 ), where the random vectors w̄t, ūt, x̄0, ŵt,

ût, x̂0 are independent, and w̄t, ŵt are sub-Gaussian with parameters σ2
w̄ and σ2

ŵ, respectively,

for all t ≥ 0. Fix q ≥ 0, λ > 0, and δ > 0. Let V = λIn+p and V̄ = (ZQZ ′ + V )V −1. With

probability at least 1 − δ, the regularized weighted least squares estimate ΘWLS obtained from

running Algorithm  1 on the above systems satisfies

∥ΘWLS − Θ∥ ≤
max(σw̄,

√
qσŵ)

√
32
9 (log 9n

δ
+ 1

2 log det(V̄ ))√
λmin(ZQZ ′ + λIn+p)

+ q∥δΘ∥∥ẐẐ ′(ZQZ ′ + λIn+p)−1∥

+ ∥Θ∥ λ

λmin(ZQZ ′ + λIn+p)
.

(2.12)

Remark 5. Practically, one can compute the error bound in Theorem  2.3.3 using various

different q and λ, and choose a value of q and λ that give the smallest error bound. We

will illustrate the selection of q in Section  2.4 . Note that the model difference term ∥δΘ∥

in ( 2.12 ) can be replaced by an upper bound on the difference between the models (if that

is available). In practice, an appropriate upper bound of the term ∥δΘ∥ could be obtained

using prior knowledge or previous estimates from data. For example, if one knows that

an auxiliary system is different from the true system only in certain subsystems, where the

entries are restricted to a fixed range, that information can be used to compute an upper bound

of ∥δΘ∥. Also, the difference between the subsystems of the true system and the auxiliary can
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be estimated from data using any existing techniques (e.g., least squares method). This may

be helpful if doing experiments on the subsystems is easy. The bound on ∥Θ∥ can be obtained

similarly using prior knowledge (e.g., using known range on entries). The noise distribution

of the two systems and their corresponding sub-Gaussian parameters can also be estimated

from data [ 28 ].

2.4 Numerical Experiments to Illustrate Various Scenarios for System Identi-
fication from Auxiliary Data

In order to validate our main results in Theorem  2.3.1 and Theorem  2.3.3 and gain more

insights, we now provide numerical examples of the weighted least squares-based system

identification algorithm (Algorithm  1 ). All of the numerical results are averaged over 10

independent experiments.

2.4.1 Predetermined weight

In this section, we provide numerical experiments using various predetermined weight

parameters q. Such a situation may occur if we have a firm belief that the auxiliary system

has similar dynamics to the true system, but upper bounds on ∥δΘ∥, σw̄ and σŵ are not

available. Setting λ = 0, the experiments are performed using the following true system and

auxiliary system:

Ā =


0.6 0.5 0.4

0 0.5 0.4

0 0 0.4

 , B̄ =


1 0.5

0.5 1

0.5 0.5

 , (2.13)

Â =


0.7 0.5 0.4

0 0.5 0.4

0 0 0.4

 , B̂ =


1.1 0.5

0.5 1

0.5 0.5

 . (2.14)

We set x̄0, x̂0, ūt, ût, w̄t, ŵt to be zero mean Gaussian random vectors with covariance matrices

being identity matrices. The model difference of the above two systems is ∥δΘ∥ ≈ 0.1414. The

numbers of rollouts Nr and Np are set to be 1. We provide experiments to illustrate various

scenarios, including those we mentioned earlier in Section  2.1 . Note that the experiments in
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this section are conducted by varying the lengths of the trajectories from the two systems,

while the experiments in [ 23 ] are performed by varying the number of trajectories from the

two systems.

2.4.1.1 Scenario 1: Both Tr and Tp are increasing

In the first experiment, we set the length of the trajectory from the auxiliary system be

Tp = 3Tr. In practice, one may encounter such a scenario when gathering data from the true

system is time consuming or costly, whereas gathering data from an auxiliary system (such

as a simulator) is faster or cheaper.

In Fig.  2.1 , we plot the estimation error ∥Θ − ΘWLS∥ versus Tr using different weight

parameters q. As expected, when one does not have enough data from the true system (Tr
is small), setting q > 0 leads to a smaller estimation error of system matrices. However,

the curve for q = 1 and q = 1010 (corresponding to treating all samples equally and paying

almost no attention to the samples from the true system, respectively) eventually plateau

and incur more error than not using the the auxiliary data (q = 0). This phenomenon

matches with the theoretical guarantee in Theorem  2.3.1 . Specifically, when q is a nonzero

constant and both Tp and Tr are increasing in a linear relationship, it can be verified that

the upper bound in Theorem  2.3.1 will not go to zero as Tr increases. In other words, there

is no need to attach high importance to the auxiliary data when one has enough data from

the true system. In contrast, setting q to be diminishing with Tr could perform consistently

better than q = 0 in this example, even when Tr becomes large. Indeed, one can choose

q = O( 1√
Tr

) in the upper bound given by ( 2.9 ) in Theorem  2.3.1 , and show that the upper

bound becomes O( 1√
Tr

).

Key Takeaway: When Tp and Tr are both increasing linearly, having q diminish with

Tr with a rate of O( 1√
Tr

) helps to reduce the system identification error when Tr is small

(by leveraging data from the auxiliary system), and avoids excessive bias from the auxiliary

system when Tr is large.
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Figure 2.1. Scenario 1: Both
Tr and Tp increase over time
(Tp = 3Tr). Choosing q =
O( 1√

Tr
) strikes a good balance

between reducing error when
Tr is small and ensuring con-
sistency when Tr is large

Figure 2.2. Scenario 2: Tp
is fixed, and Tr increases over
time. Having q diminish with
Tr could reduce the error when
Tr is small, and avoid un-
wanted bias from the auxiliary
system when Tr is large

Figure 2.3. Scenario 3: Tr
is fixed, and Tp increases over
time. Setting q to be relatively
balanced could make the error
smaller than the extreme cases
(q = 0, 1010)
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2.4.1.2 Scenario 2: Tp is fixed but Tr is increasing

For the second experiment, we fix the number of samples from the auxiliary system to

be Tp = 2400, and look at what happens as the number of samples from the true system

increases. In practice, one may encounter such a scenario when the system dynamics change

at some point in time (e.g., due to faults). In this case, the true system we want to learn is

the one after the fault, and the auxiliary system is the one prior to the fault. Consequently,

while the data from the old (auxiliary) system may not accurately represent the new (true)

system dynamics, leveraging the old data might be beneficial in this case.

In Fig.  2.2 , we plot the estimation error versus Tr for different weight parameters q.

As expected, setting q > 0 leads to a much smaller error during the initial phase when

Tr is small. This can be confirmed by Theorem  2.3.1 since the overall estimation error is

essentially the error due to the model difference. Namely, the auxiliary data helps to build

a good initial estimate when Tr is small. When we set the weight to be q = 1010, we are

paying little attention to the samples from the true system, i.e., we are not gaining any new

information as we collect more data from the true system. Consequently, the error is almost

a flat line as Tr increases when q = 1010. As can be observed from Theorem  2.3.1 , when

Tp is fixed, we can always make the error go to 0 as we increase Tr, using the weights we

selected in this experiment. However, when q is set to be too large, it could make the error

even larger due to the model difference (or bias) introduced by the auxiliary system. This

is captured by Theorem  2.3.1 since when q is set to be too large (such that qTp is large

compared to Tr), even when Tr becomes larger, the second term in the error bound ( 2.9 )

(capturing model difference) is still large.

Key Takeaway: When Tp is fixed and large, and Tr increases over time, setting q to

be nonzero builds a good initial estimate for the true system dynamics when we have little

data from the true system. Again, having q diminish with Tr could reduce the system

identification error when Tr is small, and avoid unwanted bias from the auxiliary system

when Tr is large.
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2.4.1.3 Scenario 3: Tr is fixed but Tp is increasing

In the last experiment, we fix the number of samples from the true system to be Tr = 50.

As discussed earlier, one may encounter such a scenario when one has only a limited amount

of time to gather data from the true system. Consequently, leveraging information from other

“similar” systems (e.g., from a reasonably accurate simulator) could be helpful to augment

the data. This is the most subtle case, since Theorem  2.3.1 does not ensure consistency

when Tr is fixed.

In Fig.  2.3 , we plot the the estimation error versus Tp using different weight parameters

q. As it can be seen, setting q = 0 (not using the auxiliary samples) gives a flat line, which

represents the error we can achieve purely based on Tr = 50 samples from the true system.

When q = 1010, we are paying little attention to the true system, and essentially learning

the dynamics of the auxiliary system. In contrast, the results for q = 1, 0.6, 0.3 suggest that

setting a relatively balanced weight q to the auxiliary data could make the error smaller than

the two extreme cases (q = 0, 1010) in this example. However, in practice, one may want to

leverage a cross-validation process to tune the hyper-parameter q, when there is not enough

prior knowledge about the dynamics of the true system and the auxiliary system.

Key Takeaway: Although consistency cannot be guaranteed when Tr is fixed and Tp

increases over time, a relatively balanced q could make the error smaller than the extreme

cases (q = 0, 1010).

2.4.2 Selecting weight based on Theorem  2.3.3 

In this section, we study selecting the weight parameter q using Theorem  2.3.3 using a

fixed regularization parameter λ. We plot the true error ∥Θ − ΘWLS∥ and the theoretical

data-dependent bound in Theorem  2.3.3 as a function of weight parameter q varying from

0 to 2, where the increment is set to be 0.01. This corresponds to the situation where some

upper bounds on ∥δΘ∥, σw̄ and σŵ are available (as discussed in Remark  5 ). We set the

confidence parameter to be δ = 0.01, and all other parameters in Theorem  2.3.3 are assumed

to be known exactly for simplicity. The system matrices of the true system and the auxiliary

system are set to be
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Ā =


0.6 0.5 0.4

0 0.5 0.4

0 0 0.4

 , B̄ =


1 0.5

0.5 1

0.5 0.5

 , (2.15)

Â =


0.7 0.5 0.4

0 0.5 0.4

0 0 0.4

 , B̂ =


1 + ∆ 0.5

0.5 1

0.5 0.5

 . (2.16)

We set the regularization parameter to be λ = 1. We set x̄0, x̂0, ūt, ût, w̄t, ŵt to be zero

mean Gaussian random vectors, where the covariance matrices of x̄0, x̂0, ūt, ût are set to be

identity matrices. The trajectory lengths are set to be Tr = 10, Tp = 50, and the number

of trajectories from the auxiliary system is set to be Np = 20. The covariance matrices of

w̄t, ŵt are set to be σ2
w̄In+p, σ2

ŵIn+p, and the values of ∆, σw̄, σŵ, Nr are specified under the

figures.

Figure 2.4. Baseline case 1:
∆ = 0.1, σw̄ = σŵ = 1, Nr =
20. An intermediate value of
weighting parameter q is opti-
mal

Figure 2.5. Baseline case
2: ∆ = 0.11, σw̄ = 1, σŵ =
1.1, Nr = 19. An intermediate
value of weighting parameter q
is optimal

As can be seen in Fig.  2.4 and Fig.  2.5 , setting q to be non-zero could result in smaller

error bounds, which show the benefits of leveraging the auxiliary data. However, for the

values of the weight q we plotted, the optimal weights that obtain the smallest error bounds
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Figure 2.6. Large model dif-
ference: ∆ = 3, σw̄ = σŵ =
1, Nr = 20. In this case, it is
optimal to not use data from
the auxiliary system (q = 0)

Figure 2.7. Noisy auxiliary
system: ∆ = 0.1, σw̄ = 1, σŵ =
5, Nr = 20. In this case, it is
optimal to not use data from
the auxiliary system (q = 0)

in Theorem  2.3.3 do not align with the optimal weights q that minimize the true error

∥Θ − ΘWLS∥. Such mismatches could be due to the conservativeness of the bound. On the

other hand, the optimal weight from the bound still captures how the true optimal weight

should scale. As can be seen in Fig.  2.6 , Fig.  2.7 , and Fig.  2.9 , the optimal weight for both

the bound and the true error tend to be small when (1) the model difference is large; or

(2) the auxiliary system becomes much more noisy; or (3) when one has a large number of

samples from the true system. Such empirical results also match with our observations in

Corollary  1 when λ = 0. In Fig.  2.8 , both the optimal weight from our bound and the true

optimal weight are greater than 1, since the true system is very noisy and hence the data

from the true system tend to be less informative compared to the data from the auxiliary

system. We further note that, in practice, selecting the exact optimal weight q that minimizes

∥ΘWLS − Θ∥ is very hard, and one would instead focus on selecting a relatively good weight

q. The weight that results in a small error bound can be integrated with techniques like

robust control to improve the overall system performance guarantee.
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Figure 2.8. Noisy true sys-
tem: ∆ = 0.1, σw̄ = 5, σŵ =
1, Nr = 20. In this case, it is
optimal to assign higher weight
to the auxiliary system (q = 2)

Figure 2.9. Large number of
true samples: ∆ = 0.1, σw̄ =
σŵ = 1, Nr = 1200. In this
case, it is optimal to not use
data from the auxiliary system
(q = 0)

2.5 Chapter Summary

In this chapter, we provided finite sample analysis of system identification using a weighted

least squares approach, when one has an auxiliary system that shares similar dynamics as the

true system we want to learn. The analysis improves the result in [  23 ] as we show the error

due to noise can be reduced by increasing either the number of trajectories or the trajectory

length of the true system and the auxiliary system, or both. Our analysis provides insights

on the benefits of using the auxiliary system, and how to weight the data from the auxiliary

system. We also provided a data-dependent bound that is computable when some prior

knowledge about the systems is available, which is tighter and can be used to determine the

appropriate weight parameter in the training process.

There are various directions for future research. First, as shown in [ 11 ], [ 12 ], the least

squares estimator is consistent for certain types of unstable systems even if multiple trajec-

tories of data are not available. It would be interesting to study how to capture that in our

analysis. Second, it would be of interest to relax the conditions on the full rankness of the

covariance matrix of noise/input in our setup such that one could handle systems with longer
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memory. Another interesting direction is to develop lower bounds for such transfer learning-

based system identification methods, which could potentially enable the development of an

optimal estimator. Some possible approaches are to leverage assumptions like sparsity [  20 ]

or prior knowledge, e.g., known auxiliary system model. Finally, studying how to leverage

the idea of learning from similar systems/transfer learning in control-related problems would

also be a rich area for future research [  29 ].

2.6 Proofs of Results

2.6.1 Intermediate Results

We will leverage the following Hanson-Wright inequality to upper bound the terms ∥Z̄Z̄ ′∥

and ∥ẐẐ ′∥.

Lemma 1. [ 30 , Theorem 1.1] Let X =
[
X1 . . . Xn

]′
∈ Rn be a random vector with

independent components Xi which satisfy E[Xi] = 0 and ∥Xi∥ψ2 ≤ K, where ∥ · ∥ψ2 denotes

the sub-Gaussian norm, i.e., ∥Xi∥ψ2 = inf{ζ > 0 : E[ exp(X2
i /ζ2)] ≤ 2}. Let A be an n × n

matrix. Then, for every t ≥ 0, we have

P (|X ′AX − E[X ′AX]| > t) ≤ 2 exp(−c0 min( t2

K4∥A∥2
F

,
t

K2∥A∥
)),

where c0 is some positive universal constant.

We have the following result.

Lemma 2. Let Assumption  1 hold. For any fixed δ ∈ (0, 2
e
), each of the following inequalities

holds with probability at least 1 − δ:

∥
Nr∑
i=1

Tr−1∑
t=0

z̄tz̄
′
t∥ ≤ ḡ(δ),

∥
Nr∑
i=1

Tp−1∑
t=0

ẑtẑ
′
t∥ ≤ ĝ(δ),

where

ḡ(δ) = Nr

Tr−1∑
t=0

(tr(Ḡt) + p)(1
c

log(2
δ

) + 1)σ̄2
max,
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ĝ(δ) = Np

Tp−1∑
t=0

(tr(Ĝt) + p)(1
c

log(2
δ

) + 1)σ̂2
max,

and c is some positive constant.

Proof. We will only show the first inequality since the analysis for the second one is essentially

the same. Let ZNr
Tr

=
[
Z1′

. . . ZN ′
r

]′
∈ R(n+p)NrTr , where Zi =

[
z̄i

′
0 . . . z̄i

′
Tr−1

]′
∈ R(n+p)Tr

for i = 1, . . . , Nr. We have

∥
Nr∑
i=1

Tr−1∑
t=0

z̄it z̄
i′

t ∥ ≤
Nr∑
i=1

Tr−1∑
t=0

z̄i
′

t z̄it = ZN ′
r

Tr
ZNr
Tr

. (2.17)

Note that we have

ZN ′
r

Tr
ZNr
Tr

≤ E[ZN ′
r

Tr
ZNr
Tr

] + |ZN ′
r

Tr
ZNr
Tr

− E[ZN ′
r

Tr
ZNr
Tr

]|. (2.18)

Now we will upper bound the two terms after the inequality in ( 2.18 ). We consider the term

E[ZN ′
r

Tr
ZNr
Tr

] first. Let

H =
[
H1 H2

]
∈ R(n+p)Tr×(n+p)Tr

,

where H1 ∈ R(n+p)Tr×nTr is defined as

H1 =



In 0 0 · · · 0 0

0 0 0 · · · 0 0

Ā In 0 · · · 0 0

0 0 0 · · · 0 0

Ā2 Ā In · · · 0 0

0 0 0 · · · 0 0
... ... ... ... ... ...

ĀTr−1 ĀTr−2 ĀTr−3 · · · Ā In

0 0 0 · · · 0 0



,
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and H2 ∈ R(n+p)Tr×pTr is defined as

H2 =



0 0 0 · · · 0 0

Ip 0 0 · · · 0 0

B̄ 0 0 · · · 0 0

0 Ip 0 · · · 0 0

ĀB̄ B̄ 0 · · · 0 0

0 0 Ip · · · 0 0
... ... ... ... ... ...

ĀTr−2B̄ ĀTr−3B̄ ĀTr−4B̄ · · · B̄ 0

0 0 0 · · · 0 Ip



,

where we use 0 to denote zero matrices with appropriate dimensions. Further, let H =

diag(H, · · · , H) ∈ R(n+p)NrTr×(n+p)NrTr and g =
[
g1′

g2′ · · · gN
′
r

]′
∈ R(n+p)NrTr , where

gi =
[
x̄i

′
0 w̄i′

0 · · · w̄i′
Tr−2 ūi

′
0 · · · ūi

′
Tr−1

]′
∈ R(n+p)Tr for i = 1, . . . , Nr. With these defini-

tions, we have Hg =
[
Z1′

. . . ZN ′
r

]′
= ZNr

Tr
, and hence

ZN ′
r

Tr
ZNr
Tr

= g′H′Hg = tr(g′H′Hg) = tr(gg′H′H). (2.19)

Taking the expectation, and from the relationship tr(AB) ≤ λmax(A) tr(B) for real symmet-

ric A and real B ⪰ 0 [  31 ], we have

E[ tr(gg′H′H)] = tr(E[gg′]H′H) ≤ ∥E[gg′]∥ tr(H′H)

= σ̄2
max tr(H′H) = σ̄2

maxNr tr(H ′H)

= σ̄2
maxNr(

Tr−1∑
t=0

tr(Ḡt) +
Tr−1∑
k=0

tr(Ip))

= σ̄2
maxNr

Tr−1∑
t=0

(tr(Ḡt) + p),

(2.20)
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where Ḡt is defined in (  2.8 ). Now we consider the term |ZN ′
r

Tr
ZNr
Tr

− E[ZN ′
r

Tr
ZNr
Tr

]| in ( 2.18 ).

From ( 2.19 ), we have

|ZN ′
r

Tr
ZNr
Tr

− E[ZN ′
r

Tr
ZNr
Tr

]| = |g′H′Hg − E[g′H′Hg]|.

From [ 32 ], we have each component of g has sub-Gaussian norm that is upper bounded by

4σ̄max. We can apply Lemma  1 to the above term with the replacement of c0 by min(1, c0)

to obtain
P (|g′H′Hg − E[g′H′Hg]| > t)

≤ 2 exp(− min( c0t
2

256σ̄4
max∥H′H∥2

F

,
c0t

16σ̄2
max∥H′H∥

))

≤ 2 exp(− min( ct2

σ̄4
max∥H′H∥2

F

,
ct

σ̄2
max∥H′H∥

)),

(2.21)

where c ≜ c0
256 .

Fixing δ ∈ (0, 2
e
) and setting t = 1

c
log(2

δ
)σ̄2

max tr(H′H), we have

ct2

σ̄4
max∥H′H∥2

F

= 1
c
( tr(H′H)
∥H′H∥F

)2(log(2
δ

))2

≥ (log(2
δ

))2 ≥ log(2
δ

),

and
ct

σ̄2
max∥H′H∥

= log(2
δ

)tr(H′H)
∥H′H∥

≥ log(2
δ

),

where we used the fact that ∥H′H∥ ≤ ∥H′H∥F ≤ ∥H∥2
F = tr(H′H).

Combining the above inequalities with ( 2.21 ), we have with probability at least 1 − δ

|ZN ′
r

Tr
ZNr
Tr

− E[ZN ′
r

Tr
ZNr
Tr

]| = |g′H′Hg − E[g′H′Hg]|

≤ 1
c

log(2
δ

)σ̄2
max tr(H′H)

= 1
c

log(2
δ

)σ̄2
maxNr

Tr−1∑
t=0

(tr(Ḡt) + p).
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Consequently, considering the above inequality in conjunction with ( 2.20 ), and from

( 2.18 ), we have with probability at least 1 − δ

ZN ′
r

Tr
ZNr
Tr

≤ Nr

Tr−1∑
t=0

(tr(Ḡt) + p)(1
c

log(2
δ

) + 1)σ̄2
max.

Remark 6. The constant c in Lemma  2 depends on the constant c0 in the Hanson-Wright

inequality in Lemma  1 . Attempts to explicitly characterize c0 can be found in [ 33 ], [ 34 ]. One

can also derive similar upper bounds using the Markov inequality to get rid of the constant

c, but at the price of having linear dependence on δ in the denominators of the bounds.

We will leverage the following definitions on ϵ-net and the block martingale small-ball

conditions in [ 7 ].

Definition 2.6.1. Let (T, d) be a metric space. Consider a subset K ⊂ T and let ϵ > 0. A

subset N ⊆ K is called an ϵ-net of K if every point in K is within distance ϵ of some point

of N, i.e.,

∀x ∈ K ∃x0 ∈ N : d(x.x0) ≤ ϵ.

Definition 2.6.2. [ 7 , Definition 2.1]) Let {Zt}t≥1 be a {Ft}t≥1-adapted random process

taking values in R. We say {Zt}t≥1 satisfies the (k, v, p)-block martingale small-ball (BMSB)

condition if, for any j ≥ 0, one has 1
k

∑k
i=1 P (|Zj+i| ≥ v|Fj) > p almost surely.

The following result establishes a lower bound of the smallest eigenvalue of the sample

covariance matrix for general time series, leveraging the above definitions, a concentration

inequality in [ 35 ], and the ideas in [ 36 ]. Note that we use v(i) to denote the i-th component

of a vector v.

Lemma 3. Let {lt}t≥0 be a sequence of random vectors that is adapted to a filtration {Ft}t≥0,

where lt ∈ Rd. Let {ηt}t≥1 be another sequence of random vectors such that ηt is Ft-

measurable, where ηt ∈ Rd. Further, suppose ηt+1|Ft has zero mean and independent co-

ordinates, where each coordinate has bounded fourth moment for all t ≥ 0. Suppose that

E[ηt+1η
′
t+1|Ft] ⪰ σ2

ηId, and max1≤i≤d
E[ηt+1(i)4|Ft]
E[ηt+1(i)2|Ft]2 ≤ cη for all t ≥ 0, where ση, cη ∈ R>0.
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Let ζ = ση

c1cη
, where c1 is a positive absolute constant. Define the sequence zt+1 = lt + ηt+1

for t ≥ 0, where z0 ∈ Rd. Fix δ > 0 and a constant M ≥ ζ2(T−1)
16 such that it holds

∥ ∑T−1
t=0 ztz

′
t∥ ≤ M with probability at least 1− δ

2 . Then, if T ≥ 8c2
1c

2
η(log 2

δ
+d log 144M

ζ2(T−1))+1,

we have with probability at least 1 − δ,

T−1∑
t=0

ztz
′
t ⪰ ζ2(T − 1)

32 Id.

Proof. Note that for any fixed v ∈ Sd−1 and t ≥ 0, we have

v′zt+1|Ft = v′lt|Ft + v′ηt+1|Ft.

From Proposition  2.6.3 , we have

P (|v′zt+1| ≥
√

σ2
η

2 |Ft) ≥ 1
c1 × cη

almost surely. Since the scalar process {v′zt}t≥1 is adapted to the filtration {Ft}t≥1, the

above inequality implies that v′zt satisfies the (1,
√

2ση

2 , 1
c1×cη

) BMSB condition (see Definition

 2.6.2 ). Denoting m = ζ2(T−1)
16 , we can now apply Lemma  11 to obtain

P (
T−1∑
t=1

(v′zt)2 ≤ m) ≤ exp(−(T − 1)
8c2

1c
2
η

)

≤ exp(log δ

2 + log(ζ2(T − 1)
144M

)d)

= δ

2( m

9M
)d,

(2.22)

where the last inequality is due to our assumption that T ≥ 8c2
1c

2
η(log 2

δ
+ d log 144M

ζ2(T−1)) + 1.

Since M ≥ m, we can let N( m
4M ) be a m

4M - net of Sd−1 with the smallest cardinality (see

Definition  2.6.1 ). From Lemma  6 , we know that there are at most (9M
m

)d elements in N( m
4M ).

Applying a union bound to combine the events in ( 2.22 ) for all v ∈ N( m
4M ), we have with

probability at least 1 − δ
2

min
v∈N( m

4M
)

T∑
t=1

(v′zt)2 ≥ m. (2.23)
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Note that for any realization of the matrix ∑T−1
t=0 ztz

′
t, we can fix a v∗ ∈ Sn−1 such that

λmin(∑T−1
t=0 ztz

′
t) = ∑T−1

t=0 v∗′
ztz

′
tv

∗, and let v0 ∈ N( m
4M ) be a vector such that ∥v∗ − v0∥ ≤ m

4M ,

to obtain
λmin(

T−1∑
t=0

ztz
′
t) =

T−1∑
t=0

(v0 + v∗ − v0)′ztz
′
t(v0 + v∗ − v0)

=
T−1∑
t=0

v′
0ztz

′
tv0 +

T−1∑
t=0

v′
0ztz

′
t(v∗ − v0)

+
T−1∑
t=0

(v∗ − v0)′ztz
′
tv0 +

T−1∑
t=0

(v∗ − v0)′ztz
′
t(v∗ − v0)

≥
T−1∑
t=0

(v′
0zt)2 − m

2M
∥
T−1∑
t=0

ztzt∥

≥
T−1∑
t=1

(v′
0zt)2 − m

2M
∥
T−1∑
t=0

ztzt∥

≥ min
v∈N( m

4M
)

T−1∑
t=1

(v′zt)2 − m

2M
∥
T−1∑
t=0

ztzt∥.

Applying a union bound to combine the event ∥ ∑T−1
t=0 ztz

′
t∥ ≤ M and the event in ( 2.23 ), we

have with probability at least 1 − δ,

λmin(
T−1∑
t=0

ztz
′
t) ≥ m

2 = ζ2(T − 1)
32 .

We have the following result.

Proposition 2.6.1. Let Assumption  1 hold. Denote ζ̄ = σ̄min

c1σ̄∗
and ζ̂ = σ̂min

c1σ̂∗
, where c1 is

a positive absolute constant. Fixing δ ∈ (0, 1), suppose that NrTr ≥ 8c2
1σ̄

2
∗(log 2

δ
+ (n +

p) log 144ḡ( δ
2 )

ζ̄2(NrTr−1)) + 1, NpTp ≥ 8c2
1σ̂

2
∗(log 2

δ
+ (n + p) log 144ĝ( δ

2 )
ζ̂2(NpTp−1)) + 1, ḡ( δ2) ≥ ζ̄2(NrTr−1)

16 , and

ĝ( δ2) ≥ ζ̂2(NpTp−1)
16 , where ḡ( δ2), ĝ( δ2) are defined in Lemma  2 . Then, we have with probability

at least (1 − δ)2

ZQZ ′ ⪰ (NrTr − 1)ζ̄2 + q(NpTp − 1)ζ̂2

32 In+p.
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Proof. We have

ZQZ ′ = Z̄Z̄ ′ + qẐẐ ′ =
Nr∑
i=1

Tr−1∑
t=0

z̄it z̄
i′

t + q
Np∑
j=1

Tp−1∑
k=0

ẑjkẑ
j′

k . (2.24)

We now focus on the first summation in (  2.24 ) since the analysis for the second one is

essentially the same. We can define the sequence {zt}t≥0 as

zt =



z̄1
t if 0 ≤ t ≤ Tr − 1

z̄2
t−Tr

if Tr ≤ t ≤ 2Tr − 1

z̄3
t−2Tr

if 2Tr ≤ t ≤ 3Tr − 1
... ...,

where z̄ab for a > Nr and b = 0, . . . , Tr − 1 are generated using the same way as z̄ab for

a = 1, . . . , Nr and b = 0, . . . , Tr − 1. In words, zt is the sequence formed by concatenating

the sequence {z̄1
t }Tr−1

t=0 , {z̄2
t }Tr−1

t=0 , . . .. The sequences {wt}t≥0 and {ut}t≥0 are defined similarly

using the signals w̄i
t and ūit. Further, we define the sequence {xt}t≥0 as xt = x̄t+1

0 , where x̄a0

for a > Nr are generated using the same way as x̄a0 for a = 1, . . . , Nr. With these definitions,

we have
Nr∑
i=1

Tr−1∑
t=0

z̄it z̄
i′

t =
NrTr−1∑
t=0

ztz
′
t.

We now verify the conditions in Lemma  3 . Note that for t satisfying t ≥ 0 and (t +

1) mod Tr ̸= 0, we have

zt+1 =

Θzt

0

 +

 wt

ut+1

 .

For t satisfying t ≥ 0 and (t + 1) mod Tr = 0, we have

zt+1 =

x t+1
Tr

ut+1

 .
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Let lt =

Θzt

0

 and ηt+1 =

 wt

ut+1

 for t satisfying t ≥ 0 and (t+1) mod Tr ̸= 0. Similarly,

let lt = 0 and ηt+1 =

x t+1
Tr

ut+1

 for t satisfying t ≥ 0 and (t + 1) mod Tr = 0. Define the

filtration {Ft}t≥0, where Ft = σ({li}ti=0 ∪ {ηj}tj=1). We have lt is Ft-measurable for t ≥ 0, ηt

is Ft-measurable for t ≥ 1, E[ηt+1η
′
t+1|Ft] ⪰ σ̄2

minIn+p and max1≤i≤(n+p)
E[ηt+1(i)4|Ft]
E[ηt+1(i)2|Ft]2 ≤ σ̄∗ for

t ≥ 0 due to our assumption.

Fixing δ ∈ (0, 1), from Lemma  2 , we have ∥ ∑NrTr−1
t=0 ztz

′
t∥ ≤ ḡ( δ2) with probability at least

1 − δ
2 . Consequently, letting NrTr ≥ 8c2

1σ̄
2
∗(log 2

δ
+ (n + p) log 144ḡ( δ

2 )
ζ̄2(NrTr−1)) + 1, we can apply

Lemma  3 to get
Nr∑
i=1

Tr−1∑
t=0

z̄it z̄
i′

t =
NrTr−1∑
t=0

ztz
′
t ⪰ (NrTr − 1)ζ̄2

32 In+p

with probability at least 1 − δ. Applying a similar procedure for the second summation in

( 2.24 ) and leveraging the independence of data, we have with probability at least (1 − δ)2

Nr∑
i=1

Tr−1∑
t=0

z̄it z̄
i′

t + q
Np∑
j=1

Tp−1∑
k=0

ẑjkẑ
j′

k ⪰ (NrTr − 1)ζ̄2 + q(NpTp − 1)ζ̂2

32 In+p.

We will use the following lemma, which provides an upper bound for self-normalized

martingales.

Lemma 4. ([ 37 , Theorem 1] ) Let {Ft}t≥0 be a filtration. Let {wt}t≥1 be a real valued

stochastic process such that wt is Ft-measurable, and wt is conditionally sub-Gaussian on

Ft−1 with parameter R2. Let {zt}t≥1 be an Rm-valued stochastic process such that zt is Ft−1-

measurable. Assume that V is a m × m dimensional positive definite matrix. For all t ≥ 0,

define

V̄t = V +
t∑

s=1
zsz

′
s, St =

t∑
s=1

wszs.

Then, for any δ > 0, and for all t ≥ 0,

P (∥V̄
− 1

2
t St∥2 ≤ 2R2 log(det(V̄

1
2
t ) det(V − 1

2 )
δ

)) ≥ 1 − δ.
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The following lemma generalizes the above result to the case where wt is multi-dimensional,

and will be used to bound the error term ∥WQZ ′(ZQZ ′)− 1
2 ∥. The proof is similar to [ 36 ,

Proposition V.4].

Lemma 5. Let {Ft}t≥0 be a filtration. Let {wt}t≥1 be a Rn-valued stochastic process such

that wt is Ft-measurable, and wt is conditionally sub-Gaussian on Ft−1 with parameter R2.

Let {zt}t≥1 be a Rm-valued stochastic process such that zt is Ft−1-measurable. Assume that

V is a m × m dimensional positive definite matrix. For all t ≥ 0, define

V̄t = V +
t∑

s=1
zsz

′
s, St =

t∑
s=1

zsw
′
s.

Then, for any δ > 0, and for all t ≥ 0,

P (∥V̄
− 1

2
t St∥ ≤

√
32
9 R2(log 9n

δ
+ 1

2 log det(V̄tV −1)) ≥ 1 − δ.

Proof. We have

∥V̄
− 1

2
t St∥ = ∥V̄

− 1
2

t

t∑
s=1

zsw
′
s∥ = sup

v∈Sn−1
∥V̄

− 1
2

t

t∑
s=1

zsw
′
sv∥.

Note that for any fixed unit vector v ∈ Sn−1, the random variable w
′
sv is conditionally sub-

Gaussian with parameter R2. Let N(1
4) be a 1

4 - net of Sn−1 with the smallest cardinality

(see Definition  2.6.1 ). From Lemma  6 , we know that there are at most 9n elements in N(1
4).

For any fixed δ ∈ (0, 1) and v ∈ N(1
4), we can apply Lemma  4 to obtain with probability at

least 1 − δ
9n

∥V̄
− 1

2
t

t∑
s=1

zsw
′
sv∥2 ≤ 2R2 log 9n det(V̄

1
2
t ) det(V − 1

2 )
δ

= 2R2(log 9n
δ

+ 1
2 log det(V̄tV −1)).
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Applying a union bound over all 9n events, from Lemma  7 , we have with probability at

least 1 − δ

∥V̄
− 1

2
t

t∑
s=1

zsw
′
s∥ ≤ 4

3 sup
v∈N( 1

4 )
∥V̄

− 1
2

t

t∑
s=1

zsw
′
sv∥

≤
√

32
9 R2(log 9n

δ
+ 1

2 log det(V̄tV −1).

2.6.2 Proofs of Theorem  2.3.1 

Proof. Recall that the system identification error in ( 2.7 ) (using λ = 0) satisfies

∥ΘWLS − Θ∥ ≤ ∥(ZQZ ′)− 1
2 ZQW ′∥∥(ZQZ ′)− 1

2 ∥

+ ∥∆QZ ′∥∥(ZQZ ′)−1∥,
(2.25)

under the invertibility assumption. Let NrTr, NpTp, δ satisfy the conditions in Theorem  2.3.1 ,

and let V = NrTr ζ̄2+qNpTpζ̂2

33 In+p. From Proposition  2.6.1 , we have with probability at least

1 − 2δ

ZQZ ′ ⪰ V, (2.26)

conditioning on which we have

∥(ZQZ ′)− 1
2 ∥ ≤ ∥V − 1

2 ∥, (2.27)

where we used the relationship (NrTr−1)ζ̄2+q(NpTp−1)ζ̂2

32 ≥ NrTr ζ̄2+qNpTpζ̂2

33 when min{NrTr, NpTp} ≥

33 in ( 2.26 ), and Lemma  8 in conjunction with Lemma  9 for (  2.27 ).

Further, conditioning on ( 2.26 ), we also have ZQZ ′ ⪰ V ⇒ 2ZQZ ′ ⪰ ZQZ ′ + V ⇒

(ZQZ ′)−1 ⪯ 2(ZQZ ′ + V )−1, where we used Lemma  8 . Applying Lemma  10 , we have

∥(ZQZ ′)− 1
2 ZQW ′∥ ≤

√
2∥(ZQZ ′ + V )− 1

2 ZQW ′∥. (2.28)
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Next, to use Lemma  2 , we define a new pair of sequences {zt}t≥1 and {wt}t≥1 using the

signals used in the terms ZQZ ′ = ∑Nr
i=1

∑Tr−1
t=0 z̄it z̄

i′
t + q

∑Np

j=1
∑Tp−1
k=0 ẑjkẑ

j′

k and ZQW ′ =∑Nr
i=1

∑Tr−1
t=0 z̄itw̄

i′
t + q

∑Np

j=1
∑Tp−1
k=0 ẑjkŵ

j′

k . That is,

zt =



z̄1
t−1 if 1 ≤ t ≤ Tr

z̄2
t−Tr−1 if Tr + 1 ≤ t ≤ 2Tr

z̄3
t−2Tr−1 if 2Tr + 1 ≤ t ≤ 3Tr

...
...

z̄Nr

t−(Nr−1)Tr−1 if (Nr − 1)Tr + 1 ≤ t ≤ NrTr

√
qẑ1

t−NrTr−1 if NrTr + 1 ≤ t ≤ NrTr + Tp

√
qẑ2

t−NrTr−Tp−1 if NrTr + Tp + 1 ≤ t ≤ NrTr + 2Tp

√
qẑ3

t−NrTr−2Tp−1 if NrTr + 2Tp + 1 ≤ t ≤ NrTr + 3Tp

...
...,

and

wt =



w̄1
t−1 if 1 ≤ t ≤ Tr

w̄2
t−Tr−1 if Tr + 1 ≤ t ≤ 2Tr

w̄3
t−2Tr−1 if 2Tr + 1 ≤ t ≤ 3Tr

...
...

w̄Nr

t−(Nr−1)Tr−1 if (Nr − 1)Tr + 1 ≤ t ≤ NrTr

√
qŵ1

t−NrTr−1 if NrTr + 1 ≤ t ≤ NrTr + Tp

√
qŵ2

t−NrTr−Tp−1 if NrTr + Tp + 1 ≤ t ≤ NrTr + 2Tp

√
qŵ3

t−NrTr−2Tp−1 if NrTr + 2Tp + 1 ≤ t ≤ NrTr + 3Tp

...
...,

where √
qẑab ,

√
qŵa

b for a > Np and b = 0, . . . , Tp − 1 are generated using the same way as
√

qẑab ,
√

qŵa
b for a = 1, . . . , Np and b = 0, . . . , Tp − 1.

Consequently, we have

ZQZ ′ =
NrTr+NpTp∑

t=1
ztz

′
t,

and

ZQW ′ =
NrTr+NpTp∑

t=1
ztw

′
t.
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Now define the filtration {Ft}t≥0, where Ft = σ({zi+1}ti=0 ∪{wj}tj=1). With these definitions,

we can see that the noise terms wt are Ft-measurable, and wt|Ft−1 are sub-Gaussian with

parameter max(σ2
w̄, qσ2

ŵ) for all t ≥ 1. Consequently, we can apply Lemma  5 to obtain with

probability at least 1 − δ

√
2∥(ZQZ ′ + V )− 1

2 ZQW ′∥ ≤ 3 max(σw̄,
√

qσŵ)
√

log 9n
δ

+ log det((ZQZ ′ + V )V −1).
(2.29)

Further, from Lemma  2 , we have with probability at least 1 − 2δ

det((ZQZ ′ + V )V −1) ≤ ∥ZQZ ′ + V ∥n+p

det(V )

≤ (∥ ∑Nr
i=1

∑Tr−1
t=0 z̄it z̄

i′
t ∥ + q∥ ∑Np

i=1
∑Tp−1
t=0 ẑit ẑ

i′
t ∥ + ∥V ∥)n+p

det(V )

≤ ( 33(ḡ(δ) + qĝ(δ))
NrTrζ̄2 + qNpTpζ̂2

+ 1)n+p = ϕn+p.

(2.30)

Applying a union bound over the events in ( 2.28 ), ( 2.29 ), and ( 2.30 ), we have with probability

at least 1 − 5δ

∥(ZQZ ′)− 1
2 ZQW ′∥ ≤ 3 max(σw̄,

√
qσŵ)

√
log 9n

δ
+ (n + p) log(ϕ). (2.31)

Next, conditioning on the event in Lemma  2 , notice that we also have

∥∆QZ ′∥ = ∥
Np∑
i=1

Tp−1∑
t=0

qδΘẑit ẑ
i′

t ∥ ≤ q∥δΘ∥∥
Np∑
i=1

Tp−1∑
t=0

ẑtẑ
′
t∥

≤ q∥δΘ∥ĝ(δ).
(2.32)

Finally, combining ( 2.27 ), (  2.31 ) and ( 2.32 ), we have the desired result.
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2.6.3 Proof of Corollary  1 

Proof. Setting q = 0, from Theorem  2.3.1 , we have with probability at least 1 − δ

∥ΘWLS − Θ∥ ≤
20σw̄

√
log 9n

δ
+ (n + p) log( 33ḡ(δ)

NrTr ζ̄2 + 1)√
NrTrζ̄2

. (2.33)

When q ̸= 0, from Theorem  2.3.1 , after some algebraic manipulations, we can show that

with probability at least 1 − δ

∥ΘWLS − Θ∥ ≤
20 max(σw̄√

q
, σŵ)

√
log 9n

δ
+ (n + p) log( γ

ζ2 + 1)√
NpTpζ̂2

+ ∥δΘ∥ γ

ζ̂2
. (2.34)

The proof follows by setting the upper bound in ( 2.33 ) to be greater than the one in ( 2.34 ).

2.6.4 Proof of Theorem  2.3.2 

Proof. The proof follows the same procedure as the proof of Theorem  2.3.1 . However, instead

of bounding the term ∥∆QZ ′(ZQZ ′)−1∥ by ∥∆QZ ′∥∥(ZQZ ′)−1∥, we use the following bound

∥∆QZ ′(ZQZ ′)−1∥ =

∥(
Np∑
j=1

Tp−1∑
k=0

qδΘẑjkẑ
j′

k )(
Nr∑
i=1

Tr−1∑
t=0

z̄it z̄
i′

t + q
Np∑
j=1

Tp−1∑
k=0

ẑjkẑ
j′

k )−1∥

≤ ∥δΘ∥∥In+p − (
Nr∑
i=1

Tr−1∑
t=0

z̄it z̄
i′

t )(
Nr∑
i=1

Tr−1∑
t=0

z̄it z̄
i′

t + q
Np∑
j=1

Tp−1∑
k=0

ẑjkẑ
j′

k )−1)∥

≤ ∥δΘ∥(1 + ∥
Nr∑
i=1

Tr−1∑
t=0

z̄it z̄
i′

t ∥∥(
Nr∑
i=1

Tr−1∑
t=0

z̄it z̄
i′

t + q
Np∑
j=1

Tp−1∑
k=0

ẑjkẑ
j′

k )−1)∥),

(2.35)

where we used the relationship AB = (C + A)B − CB for real matrices A, B, C in the first

inequality. When the events in Proposition  2.6.1 and Lemma  2 happen, we can upper bound

the right hand side of the last inequality in (  2.35 ) by ∥δΘ∥(1 + 33ḡ(δ)
NrTr ζ̄2+qNpTpζ̂2 ).
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2.6.5 Proof of Theorem  2.3.3 

Proof. From ( 2.7 ), note that the system identification error satisfies

∥ΘWLS − Θ∥ ≤ λ∥Θ∥∥(ZQZ ′ + λIn+p)−1∥

+ ∥(ZQZ ′ + λIn+p)− 1
2 ZQW ′∥∥(ZQZ ′ + λIn+p)− 1

2 ∥

+ ∥∆QZ ′(ZQZ ′ + λIn+p)−1∥

≤ λ∥Θ∥
λmin(ZQZ ′ + λIn+p)

+ ∥(ZQZ ′ + λIn+p)− 1
2 ZQW ′∥√

λmin(ZQZ ′ + λIn+p)

+ q∥δΘ∥∥ẐẐ ′(ZQZ ′ + λIn+p)−1∥.

(2.36)

Note that all terms in the above inequality can be evaluated from data, except for the

term ∥(ZQZ ′ + λIn+p)− 1
2 ZQW ′∥. We can follow a similar procedure to apply Lemma  5 as

in the proof of Theorem  2.3.1 . Fixing δ > 0, from Lemma  5 , we have with probability at

least 1 − δ

∥(ZQZ ′ + λIn+p)− 1
2 ZQW ′∥ ≤ max(σw̄,

√
qσŵ)

√
32
9 (log 9n

δ
+ 1

2 log det(V̄ )).

The result then follows.

2.6.6 Auxiliary Results

Lemma 6. ([ 38 , Corollary 4.2.13]) Let ϵ > 0, and let N(Sn−1, ϵ) be the smallest possible

cardinality of an ϵ-net of the unit Euclidean sphere Sn−1. We have the following inequality:

N(Sn−1, ϵ) ≤ (2
ϵ

+ 1)n.
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Lemma 7. ([ 38 , Lemma 4.4.1]) Let A be an m by n matrix and ϵ ∈ [0, 1). Then, for any

ϵ-net N of the sphere Sn−1, we have

∥A∥ ≤ 1
1 − ϵ

· sup
x∈N

∥Ax∥.

Lemma 8. ([ 39 , Lemma 3]) Let A ∈ Rn×n and B ∈ Rn×n be positive definite matrices. If

A ⪯ B, then we have A−1 ⪰ B−1.

Lemma 9. ([ 39 , Theorem 2]) Let A ∈ Rn×n and B ∈ Rn×n be positive semidefinite matrices.

If A ⪯ B, then we have A
1
2 ⪯ B

1
2 .

Lemma 10. Let A ∈ Rn×n and B ∈ Rn×n be positive semidefinite matrices. Let C ∈ Rn×m.

If A ⪯ B, then we have

∥A
1
2 C∥ ≤ ∥B

1
2 C∥.

Proof. From A ⪯ B, we have

C ′AC ⪯ C ′BC,

which implies

∥A
1
2 C∥ =

√
λmax(C ′AC) ≤

√
λmax(C ′BC) = ∥B

1
2 C∥.

Proposition 2.6.2. Assuming that ρ(Ā) < 1 and ρ(Â) < 1, we have both tr(Ḡt) and tr(Ĝt)

are O(1). If ρ(Ā) = 1 and ρ(Â) = 1, we have tr(Ḡt) = O(t2κ̄) and tr(Ĝt) = O(t2κ̂), where κ̄,

κ̂ are the largest Jordan blocks corresponding to the unit eigenvalues of Ā and Â, respectively.

Proof. We only consider the term tr(Ḡt) as the term tr(Ĝt) is essentially the same. Defining

F̄t =
[
In Ā · · · Āt B̄ ĀB̄ Ā2B̄ · · · Āt−1B̄

]
∈ Rn×(tn+tp+n) for t ≥ 0, we have Ḡt =

F̄tF̄t
′. Further, we have

tr(Ḡt) ≤ n∥Ḡt∥ ≤ n∥F̄t∥2 ≤ n(
t∑
i=0

∥Āi∥ +
t−1∑
i=0

∥Āi∥∥B̄∥)2.

From [ 40 , Lemma E.2.] (i.e., Lemma  16 ), we have ∑t
i=0 ∥Āi∥ is O(1) for strictly stable

systems, and O(tκ̂) for marginally stable systems. The result then follows.
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Lemma 11. [ 7 , Proposition 2.5]) Suppose that {Zt}t≥1 satisfies the (k, v, p)-BMSB condi-

tion. Denoting ⌊·⌋ as the floor function, we have

P (
T∑
i=1

Z2
i ≤ v2p2

8 k⌊T/k⌋) ≤ exp(−⌊T/k⌋p2

8 ).

Proposition 2.6.3. [ 35 , Proposition C.2.] Let µ ∈ R and M ∈ Rd×d be a full rank matrix.

Let w ∈ Rd be a random vector such that each coordinate w(i) has positive variance and

finite fourth moment. Further, each coordinate w(i) is independent and zero-mean. Then,

for any fixed v ∈ Sd−1,

Pw(|⟨v, µ + Mw⟩| ≥
√

λmin(MΣM ′)/2) ≥ 1
c1Cw

,

where Σ = Ew[ww′], c1 is an absolute constant, and Cw = max1≤i≤d
E[w(i)4]
E[w(i)2]2 .

Remark 7. The constant c1 is due to the application of the Rosenthal’s inequality. As

suggested in [ 35 , Proposition C.2.], one can take c1 = 192.
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3. LEARNING THE DYNAMICS OF AUTONOMOUS LINEAR

SYSTEMS FROM MULTIPLE TRAJECTORIES

3.1 Introduction

 

6
 As mentioned in Chapter  2 , non-asymptotic analysis of system identification based on a

single trajectory has been studied extensively over the past few years [ 7 ], [  9 ], [  11 ], [  12 ], [  42 ],

[ 43 ]. However, in practice, performing system identification using a single trajectory could

be problematic for many applications. For example, having the system run for a long time

could incur risks when the system is unstable. Furthermore, only historical snippets of data

about the system may be available, without the ability to easily observe long-run behav-

ior. Additionally, in settings where one has the ability to restart the system or have several

copies of the system running in parallel, one may obtain multiple trajectories generated by

the system dynamics [ 44 ]. The paper [ 13 ] studies the sample complexity of identifying a

system whose state is fully measured using only the final data points from multiple trajecto-

ries. Using a similar setup, the paper [ 14 ] explores the benefits of adding an ℓ1 regularizer.

The paper [ 15 ] studies the sample complexity of partially-measured system identification by

including nuclear norm regularization, again only using the final samples from each trajec-

tory. For partially-measured systems, the paper [ 16 ] allows for more efficient use of data. As

mentioned in [ 16 ], compared to the single trajectory setup, the multiple trajectories setup

usually allows for more direct application of concentration inequalities due to the assumption

of independence over multiple trajectories.

In addition to the potential lack of single long trajectories, in many settings we may not

be able to actually apply inputs to the system in order to perform system identification;

this could be due to the costs of applying inputs, or due to the fact that we are simply

observing an autonomous system that we cannot control. The uncontrolled system may also

be serving as a subsystem connected to the main system that one wants to control, and having

a better model of the subsystem could be useful in controlling the main system. For partially-

measured systems, the characterization of finite sample error of purely stochastic systems

(systems that are entirely driven by unmeasurable noise) is more challenging as indicated in
6

 ↑ The material in this chapter was published at the 2022 American Control Conference [ 41 ]

60



[ 40 ]. There, the goal is to estimate the system matrices as well as the steady state Kalman

filter gain of the corresponding system. The paper [ 40 ] shows that classical stochastic system

identification algorithm can achieve a learning rate of O( 1√
N̄

) (up to logarithmic factors) for

both strictly stable and marginally stable systems, where N̄ denotes the number of samples

in a single trajectory.

In this chapter, we are motivated by the challenge of system identification for partially-

measured and autonomous stochastic linear systems (with no controlled inputs) as in [ 40 ], but

for the case where a single long-run trajectory is unavailable. Existing results on consistency

and learning rate of stochastic system identification algorithms (including [ 40 ]) typically

convert the original system to a statistically equivalent form of the Kalman filter that is

assumed to have reached steady state [ 2 ], [ 40 ], [ 45 ]. The analysis is then performed by

assuming that the covariance matrix of the initial state of the system is the same as the

steady state Kalman filter error covariance matrix, which simplifies the analysis. We note,

however, that this assumption is invalid when one has no long run observation of the system

trajectory, since it is in general unclear how long one should wait until the Kalman filter

“converges” (even if it converges exponentially fast) for an unknown system. Furthermore,

the available short trajectories may not be long enough to guarantee that the underlying

filter has converged. Consequently, the single trajectory-based results cannot be directly

applied to the multiple (short) trajectories case. Our goal in this chapter is to estimate

the system matrices (up to similarity transformations) using only multiple trajectories of

transient responses of a partially-measured system that is entirely driven by noise.

Our work is inspired by recent work on stochastic system identification (with a single

long trajectory) [ 40 ], and system identification with multiple trajectories (but with controlled

inputs) [  16 ], and extends them in the following ways. First, we provide results on the sample

complexity of learning the dynamics of an autonomous stochastic linear system using multiple

trajectories, without assuming that the associated Kalman filter has reached steady state

(i.e., the initial states can have arbitrary covariance matrix). Compared to [ 16 ] and [  40 ], our

results neither rely on controlled inputs, nor rely on observations of steady state behaviors

of the system. Second, we provide the asymptotic learning rate of the multiple-trajectories-

based stochastic system identification algorithm. If N is the number of trajectories, we prove
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a learning rate of O( 1√
N

) when the initial state in each trajectory has zero mean (which is

a common assumption in the existing literature). This rate is consistent with [ 16 ] and [ 40 ]

(up to logarithmic factors). We further generalize the result to the case when the initial

state in each trajectory has non-zero mean. In such case, we show that we can adjust the

length of the regressor to achieve a learning rate of O(
√

logN
N

) for strictly stable systems and

a learning rate of O( (logN)d
√
N

) for marginally stable systems, where d is some constant.

3.2 Problem Formulation

Consider a discrete time linear time-invariant system with no user specified inputs:

xk+1 = Axk + wk, yk = Cxk + vk, (3.1)

where xk ∈ Rn, yk ∈ Rm, wk ∈ Rn, vk ∈ Rm, A ∈ Rn×n and C ∈ Rm×n. The noise terms

wk and vk are assumed to be i.i.d Gaussian, i.e., wk ∼ N (0, Q), vk ∼ N (0, R). The initial

state is also assumed to be independent of wk and vk, and is distributed as x0 ∼ N (µ, Σ0).

In addition, whether µ is zero or non-zero is assumed to be known. If µ is non-zero, the

system matrix A is assumed to be strictly stable or marginally stable. The system order n

is also assumed to be known. We refer to the above system as an autonomous stochastic

linear system. We will make the following assumption.

Assumption 2. The output covariance matrix R is positive definite. The pair (A, C) is

observable and (A, Q
1
2 ) is controllable.

Under the above assumption, the Kalman Filter associated with system (  3.1 ) is a system

of the form

x̂k+1 = Ax̂k + Kkek, yk = Cx̂k + ek, (3.2)

where x̂k is an estimate of state xk, with the initial estimate being the mean of the initial

state in system ( 3.1 ), i.e., x̂0 = µ. The sequence of matrices Kk ∈ Rn×m is called the Kalman

gain, given by

Kk = APkC
′(CPkC

′ + R)−1, (3.3)
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where the estimation error covariance Pk ∈ Rn×n is updated based on the Riccati equation

Pk+1 = APkA
′ + Q − APkC

′(CPkC
′ + R)−1CPkA

′
,

with P0 = Σ0. Finally, ek = yk − Cx̂k are independent zero mean Gaussian innovations with

covariance matrix given by

R̄k = CPkC
′ + R. (3.4)

Since the outputs of system ( 3.1 ) and system ( 3.2 ) have identical statistical properties

[ 46 ], we will perform analysis on system ( 3.2 ). The subspace identification problem for

stochastic systems that we tackle in this chapter is to identify the system matrices (A, C) up

to a similarity transformation, given multiple trajectories of outputs of the system ( 3.1 ). As a

byproduct, we will also simultaneously learn the Kalman filter gain Kk of the corresponding

system, at some time step k. In particular, we are interested in the quality of the estimates

of (A, C) given a finite number of samples.

3.3 Subspace Identification Technique

Here we describe a variant of classical subspace identification algorithm [  46 ] to estimate

(A, C) matrices (up to a similarity transformation). We will first establish some definitions.

Suppose that we have access to N independent output trajectories of system ( 3.1 ), each

of some length T ∈ N, and each obtained right after restarting the system from an initial

state x0 ∼ N (µ, Σ0). We denote the data from these trajectories as {yik : 1 ≤ i ≤ N, 0 ≤

k ≤ T − 1}, where the superscript denotes the trajectory index and the subscript denotes

the time index. Let p + f = T , where p, f are design parameters that satisfy p, f > n, where

n is the order of the system. We split the output samples from each output trajectory i into
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past and future outputs with respect to p, and denote the past output and future output

vectors for trajectory i as:

Y i
− ≜

[
yi

′
0 yi

′
1 · · · yi

′
p−1

]′

,

Y i
+ ≜

[
yi

′
p yi

′
p+1 · · · yi

′
p+f−1

]′

,

(3.5)

respectively. The batch past output and batch future output matrices are formed by stacking

all N output trajectories:

Y− ≜
[
Y 1

− Y 2
− · · · Y N

−

]
, Y+ ≜

[
Y 1

+ Y 2
+ · · · Y N

+

]
. (3.6)

The past and future innovations Ei
−, Ei

+, E−, E+ are defined similarly, using the signals eik

rather than yik.

Let the batch matrix of initial states be X̂0 ≜
[
x̂1

0 x̂2
0 · · · x̂N0

]
. Define the largest norm

of innovation covariance matrices as R̄T ≜ maxt∈0,...,T−1 ∥R̄t∥, where R̄t is defined in ( 3.4 ).

For any l ≥ 1, the extended observability matrix Ol ∈ Rml×n and the reversed extended

controllability matrix Kp ∈ Rn×mp are defined as:

Ol ≜
[
C

′ (CA)′ · · · (CAl−1)′
]′

,

Kp ≜



((A − Kp−1C) · · · (A − K1C)K0)
′

...

((A − Kp−1C)Kp−2)
′

K
′
p−1



′

.

Define

G ≜ OfKp. (3.7)

Let K ∈ Rn×m be the steady state Kalman gain K = APC
′(CPC

′ + R)−1, where

P ∈ Rn×n is the solution to the Riccati equation, P = APA
′ +Q−APC

′(CPC
′ +R)−1CPA

′
.

From Kalman filtering theory, the matrix A − KC has spectral radius strictly less than 1
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[ 47 ]. Denote the reversed extended controllability matrix formed by the steady state Kalman

gain K as

Kp ≜
[
(A − KC)p−1K (A − KC)p−2K · · · K

]
.

We further make the following assumption.

Assumption 3. We have rank(Kp) = rank(Kp) = n.

The rank condition on Kp is standard, e.g., [ 4 ], [ 40 ]. The rank condition on Kp is needed

to ensure that G has rank n, which can be satisfied in practice by choosing p to be relatively

large if the rank condition on Kp is satisfied (see Proposition  3.6.4 in section  3.6 ).

Finally, for any integer a ≥ 0 and b ≥ 2, define the block-Toeplitz matrix T a
b ∈ Rmb×mb

as:

T a
b ≜



Im 0 · · · 0

CKa Im · · · 0
... ... ...

CAb−2Ka CAb−3Ka+1 · · · Im


.

3.3.1 Linear Regression

The subspace identification technique first uses linear regression to estimate G from ( 3.7 ),

which will subsequently form the basis for the recovery of the system parameters.

For any output trajectory i ∈ {1, · · · , N}, by iterating ( 3.2 ), the future output matrix

Y i
+ satisfies

Y i
+ = Of x̂

i
p + T p

f Ei
+. (3.8)

Note that at any time step k, the state x̂ik can be expressed from ( 3.2 ) as

x̂ik = Ax̂ik−1 + Kk−1(yik−1 − Cx̂ik−1)

= Kk−1y
i
k−1 + (A − Kk−1C)x̂ik−1.
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By expanding the above relationship recursively, we have

x̂ip = Kp−1y
i
p−1 + · · · + (A − Kp−1C) · · · (A − K1C)K0y

i
0 + (A − Kp−1C) · · · (A − K0C)x̂i0

= KpY
i

− + (A − Kp−1C) · · · (A − K0C)x̂i0.

By substituting the above equality into ( 3.8 ), the relationship between the batch output

matrices is given by

Y+ = GY− + Of (A − Kp−1C) · · · (A − K0C)X̂0 + T p
f E+.

An estimate of G (motivated by the least squares approach) is

Ĝ = Y+Y
′

−(Y−Y
′

−)−1. (3.9)

Consequently, the estimation error for matrix G can be expressed as

Ĝ − G =T p
f E+Y

′

−(Y−Y
′

−)−1 + Of (A − Kp−1C) · · · (A − K0C)X̂0Y
′

−(Y−Y
′

−)−1, (3.10)

where the second term can be dropped if ∥X̂0∥ = 0, i.e., the initial state of system ( 3.1 )

has zero mean. When ∥X̂0∥ is known to be non-zero but the system is marginally stable

(ρ(A) ≤ 1), we can leverage the fact that the norm ∥(A − Kp−1C) · · · (A − K0C)∥ converges

to zero exponentially fast with p (see Proposition  3.6.2 in section  3.6 ) by setting p = c log N

for some positive constant c, to make the second term go to zero asymptotically. The above

steps are encapsulated in Algorithm  2 .

Algorithm 2 Linear regression to calculate an estimate Ĝ of G

Input N output trajectories {yik : 1 ≤ i ≤ N, 0 ≤ k ≤ T − 1}, parameters p, f

1: For each output trajectory i ∈ {1, · · · , N}, construct the past output and future output

Y i
−, Y i

+ as in ( 3.5 ).

2: Construct the batch past output and batch future output Y−, Y+ as in ( 3.6 ).

3: Return Ĝ = Y+Y
′

−(Y−Y
′

−)−1.
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Remark 8. Note that the matrix G itself can be used to predict future outputs from past

outputs. The value GY i
− represents the Kalman prediction of the next f outputs using the

past p measurements, assuming the initial state has zero mean. Its role is similar to the

Markov parameters that map inputs to outputs in the case when one has measured inputs.

3.3.2 Balanced Realization

The following balanced realization algorithm uses a standard Singular Value Decompo-

sition to extract the estimated system matrices (Â, Ĉ, K̂p−1) from the estimate Ĝ.

Algorithm 3 Balanced realization to calculate estimates (Â, Ĉ, K̂p−1) of (A, C, Kp−1) up to
a similarity transformation
Input The estimate Ĝ, parameters n, m, f

1: Perform the Singular Value Decomposition: Ĝ =
[
Û1 Û2

] Σ̂1 0

0 Σ̂2


V̂

′
1

V̂
′

2

 , where Σ1 ∈

Rn×n contains the n-largest singular values of Ĝ.

2: Compute the estimated observability matrix Ôf = Û1Σ̂
1
2
1 , and let the top m rows of Ôf

be Ĉ.

3: Compute the estimated reversed extended controllability matrix K̂p = Σ̂
1
2
1 V̂

′
1 , and let the

last m columns of K̂p be K̂p−1.

4: Compute Â = (Ôu
f )†Ôl

f , where Ôu
f is the submatrix formed by the top m(f − 1) rows of

Ôf , and Ôl
f is the submatrix formed by dropping the first m rows of Ôf .

5: Return (Â, Ĉ, K̂p−1).

3.4 Main Results

In this section, we will present our main results on bounding the estimation error ∥Ĝ−G∥

from ( 3.10 ). We will show that the term ∥(Y−Y
′

−)−1∥ decreases with a rate of O( 1
N

), and then

upper bound the growth rate of other terms in ( 3.10 ) separately. Using recent results on the

balanced realization algorithm with the adjustments to accommodate the non-steady state

Kalman filter, we then show that the estimation error of the system matrices A, C, Kp−1 will

also be bounded when the error ∥Ĝ − G∥ is small enough.
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First, denote the covariance matrix of the weighted past innovation T 0
p Ei

−, 1 ≤ i ≤ N ,

as:

ΣE ≜ E[T 0
p Ei

−Ei′

−T 0′

p ] = T 0
p diag(R̄0, · · · , R̄p−1)T 0′

p .

Let σE ≜ σmin(ΣE). We first show that the weighted innovation covariance matrix ΣE is

strictly positive definite. The proof is similar to [ 40 , Lemma 2].

Proposition 3.4.1. Let σE ≜ σmin(ΣE). We have σE ≥ σmin(R) > 0.

Proof. For any output trajectory i, its corresponding weighted past innovation T 0
p Ei

− can be

written as

T 0
p Ei

− = Y i
− − Opx̂

i
0 = Op(xi0 − x̂i0) + TW i

− + V i
−,

where W i
− and V i

− are the process and output noises respectively in system ( 3.1 ), and are

defined similarly as Y i
−. Matrix T is a block-Toeplitz matrix which accounts for the weight

of the process noise in system ( 3.1 ), and its explicit form is omitted in the interest of space.

Since xi0 − x̂i0, V i
− and W i

− are independent, we have

ΣE = E[T 0
p Ei

−Ei′

−T 0′

p ] ⪰ E[V i
−V i′

− ] = diag(R, · · · , R).

Hence, we have σE ≥ σmin(R) > 0, where the second inequality comes from Assumption

 2 .

Next we will show that the term ∥(Y−Y
′

−)−1∥ is decreasing with a rate of O( 1
N

). Since

Y− = OpX̂0 + T 0
p E−, the explicit form of Y−Y

′
− is

Y−Y
′

− = OpX̂0X̂
′

0O
′

p + T 0
p E−E

′

−T 0′

p

+ OpX̂0E
′

−T 0′

p + T 0
p E−X̂

′

0O
′

p,
(3.11)

and we will bound these terms separately.

We will rely on the following lemma from [ 13 , Lemma 2], which provides a non-asymptotic

lower bound of a standard Wishart matrix.
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Lemma 12. Let ui ∼ N (0, Imp), i = 1, . . . , N be i.i.d random vectors. For any fixed δ > 0,

we have √√√√λmin(
N∑
i=1

uiu∗
i ) ≥

√
N − √

mp −
√

2 log 1
δ

with probability at least 1 − δ.

Proposition 3.4.2. For any fixed δ > 0, let N ≥ N0 ≜ 8mp + 16 log 2
δ
. We have

T 0
p E−E

′

−T 0′

p ⪰ N

4 σEImp

with probability at least 1 − δ.

Proof. For any output trajectory i, note that the past innovation Ei
− has the same dis-

tribution as a single Gaussian random vector, Ei
− ∼ N (0, diag(R̄0, · · · , R̄p−1)), since the

innovations ei0, · · · , eip−1 are independent zero-mean Gaussian random vectors with covari-

ance matrices R̄0, · · · , R̄p−1, respectively. We can rewrite Ei
− as

Ei
− = diag(R̄

1
2
0 , · · · , R̄

1
2
p−1)ui,

where ui are i.i.d random vectors with ui ∼ N (0, Imp). Let U− =
[
u1 u2 · · · uN

]
. Fixing

δ > 0 and applying Lemma  12 , with probability of at least 1 − δ, we have

√
λmin(U−U

′
−) ≥

√
N − √

mp −
√

2 log 2
δ

. (3.12)

Considering the inequality 2(a2 + b2) ≥ (a + b)2 and the assumption that N ≥ N0 ≜

8mp + 16 log 2
δ
, we have

2(mp + 2 log 2
δ

) ≥ (√mp +
√

2 log 2
δ

)2,

⇒
√

N

2 ≥ √
mp +

√
2 log 2

δ
.
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In conjunction with ( 3.12 ), this yields
√

λmin(U−U
′
−) ≥ 1

2

√
N with probability at least

1 − δ. Hence, we have

U−U
′

− ⪰ N

4 Imp

with probability of at least 1 − δ.

Finally, multiplying by T 0
p diag(R̄

1
2
0 , · · · , R̄

1
2
p−1) from the left and diag(R̄

1
2
0 , · · · , R̄

1
2
p−1)T 0′

p

from the right gives T 0
p E−E

′
−T 0′

p ⪰ N
4 ΣE ⪰ N

4 σEImp with probability at least 1 − δ.

To bound the cross terms due to the possibly non-zero batch matrix of initial states in

( 3.11 ), X̂0E
′
−, we will be using the following lemma from [ 42 , Lemma A.1].

Lemma 13. Let M ∈ Rm×n be a matrix with m ≥ n, and let η ∈ R be such that ∥M∥ ≤ η.

Let Z ∈ Rm×k be a matrix with independent standard normal entries. Then, for all t ≥ 0,

with probability at least 1 − 2 exp(−t2
2 ),

∥M
′
Z∥ ≤ η(

√
2(n + k) + t).

Proposition 3.4.3. For any fixed δ > 0, let γp ≜ R̄
1
2
T (

√
2(n + mp) +

√
2 log 2

δ
), and γf ≜

R̄
1
2
T (

√
2(n + mf) +

√
2 log 2

δ
). For N ≥ n, each of these inequalities hold with probability at

least 1 − δ:

∥X̂0E
′

−∥ ≤ ∥X̂0∥γp,

∥X̂0E
′

+∥ ≤ ∥X̂0∥γf .

Proof. We will only show the first inequality as the second one is almost identical. We

can rewrite E− = diag(R̄
1
2
0 , · · · , R̄

1
2
p−1)U−, where U− =

[
u1 u2 · · · uN

]
, where ui are i.i.d

random vectors with ui ∼ N (0, Imp). Applying Lemma  13 , we obtain

∥X̂0E
′

−∥ = ∥X̂0U
′

− diag(R̄
1
2
0 , · · · , R̄

1
2
p−1)∥

≤ ∥X̂0∥R̄
1
2
T (

√
2(n + mp) + t)
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with probability at least 1−2 exp(−t2
2 ). Finally, setting δ = 2 exp(−t2

2 ), we have t =
√

2 log 2
δ
.

Plugging t into the above inequality, we get the desired form.

Now we are ready to show that ∥(Y−Y
′

−)−1∥ is decreasing with a rate of O( 1
N

).

Lemma 14. Fix any δ > 0 and let N ≥ max{N0, N1}, where N0 = 8mp + 16 log 2
δ
, and

N1 ≜
16∥T 0

p ∥∥Op∥∥X̂0∥γp

σE
. Define ζ ≜ Opµµ

′O′
p. We have

∥(Y−Y
′

−)−1∥ ≤ 8
Nσmin(σEImp + 8ζ)

with probability at least 1 − 2δ.

Proof. Recall the explicit form of Y−Y
′

− in ( 3.11 ). Letting u ∈ Rmp be an arbitrary unit

vector, we can write

u
′
Y−Y

′

−u = u
′OpX̂0X̂

′

0O
′

pu + u
′T 0
p E−E

′

−T 0′

p u + u
′OpX̂0E

′

−T 0′

p u + u
′T 0
p E−X̂

′

0O
′

pu

≥ u
′OpX̂0X̂

′

0O
′

pu + u
′T 0
p E−E

′

−T 0′

p u − 2∥X̂0E
′

−∥∥T 0
p ∥∥Op∥,

where we used the Cauchy–Schwarz inequality. Fixing δ > 0, letting N ≥ N0, applying

Proposition  3.4.2 and Proposition  3.4.3 , and using a union bound, we have

u
′
Y−Y

′

−u ≥ u
′OpX̂0X̂

′

0O
′

pu + N

4 σE − 2∥T 0
p ∥∥Op∥∥X̂0∥γp

with probability at least 1 − 2δ.

Conditioning on the above event and letting N ≥ N1 = 16∥T 0
p ∥∥Op∥∥X̂0∥γp

σE
, we have

u
′
Y−Y

′

−u ≥ u
′OpX̂0X̂

′

0O
′

pu + N

8 σE

= u
′OpNµµ

′O′

pu + u
′ N

8 σEImpu,

where the equality is due to the fact that x̂i0 = µ for all i.

Consequently, we have

Y−Y
′

− ⪰ OpNµµ
′O′

p + N

8 σEImp.
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Taking the inverse we get the desired result.

To see that N will eventually be greater than N1 even if ∥X̂0∥ is non-zero, note that

when the system is strictly stable or marginally stable, ∥T 0
p ∥ and ∥Op∥ will grow no faster

than O(pd) for some constant d (see Proposition  3.6.1 for ∥T 0
p ∥, and [ 40 , Corollary E.1] for

∥Op∥). Further, γp is O(p 1
2 ), and ∥X̂0∥ =

√
N∥µ∥ = O(

√
N). Thus if p = O(log N), N will

eventually be greater than N1 as N increases.

Now we will show that the term ∥E+E
′
−∥ is O(

√
N). We will leverage the following

Lemma from[ 13 , Lemma 1] to bound the product of the innovation terms.

Lemma 15. Let fi ∈ Rm, gi ∈ Rn be independent random vectors fi ∼ N (0, Σf ) and

gi ∼ N (0, Σg), for i = 1, · · · , N . Let N ≥ 2(n + m) log 1
δ
. For any fixed δ > 0, we have

∥
N∑
i=1

fig
∗
i ∥ ≤ 4∥Σf∥

1
2 ∥Σg∥

1
2

√
N(m + n) log 9

δ
.

with probability at least 1 − δ.

Proposition 3.4.4. For any fixed δ > 0, let N ≥ N2 ≜ 2(mf + mp) log 1
δ
. We have

∥T p
f E+E

′

−T 0′

p ∥ ≤ 4∥T p
f ∥∥T 0

p ∥R̄T

√
N(mf + mp) log 9

δ

with probability at least 1 − δ.

Proof. Note that the columns of E+ are independent Gaussian random vectors, i.e., Ei
+ ∼

N (0, diag(R̄p, · · · , R̄p+f−1)). Similarly, the columns of E− are independent Gaussian random

vectors, i.e., Ei
− ∼ N (0, diag(R̄0, · · · , R̄p−1)). Further, Ei

+ and Ei
− are independent from

classical results of Kalman filtering theory [ 47 ]. Applying Lemma  15 , we get the desired

result.

With Proposition  3.4.4 , we are now in place to prove the bound on the estimation error

of G .

Theorem 3.4.1 (Bound on estimation error of G). Consider the Kalman filter form ( 3.2 ) of

system ( 3.1 ) under Assumptions  2 and  3 , and let G be defined as in ( 3.7 ). For any fixed δ > 0,
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let Ĝ defined in ( 3.9 ) be the output of the linear regression described in Algorithm  2 given

N trajectories of outputs, where N ≥ max{N0, N1, N2}, where N0 = 8mp + 16 log 2
δ
, N1 =

16∥T 0
p ∥∥Op∥∥X̂0∥γp

σE
, N2 = 2(mf + mp) log 1

δ
. We have:

∥Ĝ − G∥ ≤ ϵ1√
Nσmin(σEImp + 8ζ)

+ ∥X̂0∥ϵ2 + ∥X̂0∥2ϵ3

Nσmin(σEImp + 8ζ)

with probability at least 1 − 4δ, where

ϵ1 = 32∥T p
f ∥∥T 0

p ∥R̄T

√
(mf + mp) log 9

δ

ϵ2 = 8γf∥T p
f ∥∥Op∥ + 8∥(A − Kp−1C) · · · (A − K0C)∥γp∥T 0

p ∥∥Of∥,

ϵ3 = 8∥Of∥∥Op∥∥(A − Kp−1C) · · · (A − K0C)∥,

γp = R̄
1
2
T (

√
2(n + mp) +

√
2 log 2

δ
),

γf = R̄
1
2
T (

√
2(n + mf) +

√
2 log 2

δ
), ζ ≜ Opµµ

′O′

p.

Proof. Recall the expression of the error Ĝ − G in ( 3.10 ). We first bound the error term

T p
f E+Y

′
−(Y−Y

′
−)−1. Using Y− = OpX̂0 + T 0

p E−, we have

∥T p
f E+Y

′

−(Y−Y
′

−)−1∥ ≤ ∥T p
f E+X̂

′

0O
′

p∥∥(Y−Y
′

−)−1∥

+ ∥T p
f E+E

′

−T 0′

p ∥∥(Y−Y
′

−)−1∥.

Fix δ > 0 and let N ≥ max{N0, N1, N2}. Applying Proposition  3.4.3 , Proposition  3.4.4 

and Lemma  14 to the above inequality and using a union bound, we obtain

∥T p
f E+Y

′

−(Y−Y
′

−)−1∥ ≤
8∥X̂0∥γf∥T p

f ∥∥Op∥
Nσmin(σEImp + 8ζ) +

32∥T p
f ∥∥T 0

p ∥R̄T

√
(mf + mp) log 9

δ√
Nσmin(σEImp + 8ζ)

(3.13)

with probability at least 1 − 4δ.

Second, we bound the error term Of (A − Kp−1C) · · · (A − K0C)X̂0Y
′

−(Y−Y
′

−)−1. We have

∥X̂0Y
′

−∥ = ∥X̂0X̂
′

0O
′

p + X̂0E
′

−T 0′

p ∥.
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Conditioning on the event ∥X̂0E
′
−∥ ≤ ∥X̂0∥γp from Proposition  3.4.3 , we have

∥X̂0Y
′

−∥ ≤ ∥X̂0∥2∥Op∥ + ∥X̂0∥γp∥T 0
p ∥.

Conditioning on the above event and the event ∥(Y−Y
′

−)−1∥ ≤ 8
Nσmin(σEImp+8ζ) from Lemma

 14 , we have
∥Of (A − Kp−1C) · · · (A − K0C)X̂0Y

′

−(Y−Y
′

−)−1∥ ≤

∥Of∥∥(A − Kp−1C) · · · (A − K0C)∥∥X̂0Y
′

−∥∥(Y−Y
′

−)−1∥

≤ 8∥Of∥∥(A − Kp−1C) · · · (A − K0C)∥∥X̂0∥2∥Op∥
Nσmin(σEImp + 8ζ)

+
8∥Of∥∥(A − Kp−1C) · · · (A − K0C)∥∥X̂0∥γp∥T 0

p ∥
Nσmin(σEImp + 8ζ) .

(3.14)

Finally, we combine the two upper bounds from ( 3.13 ) and ( 3.14 ) to get the desired

form.

Below, we present some interpretations of Theorem  3.4.1 .

Learning rate when ∥X̂0∥ is zero, and the effects of trajectory length: When ∥X̂0∥ = 0,

i.e., the initial state of the system ( 3.1 ) has zero mean, the upper bound of the error will

not depend on ϵ2, ϵ3. Noting the dependencies on p, f in ϵ1, setting p and f to be small

will generally result in a smaller error bound of G, since we are estimating a smaller G.

However, p, f should be greater than the order n (and p should also be large enough such

that Assumption  3 is satisfied), so that Algorithm  3 can recover the system matrices from

G. The estimator Ĝ can achieve a learning rate of O( 1√
N

). This rate is faster than the single

trajectory case reported in [ 40 ] in that there are no logarithmic factors, and it applies to

both stable and unstable systems. This confirms the benefits of being able to collect multiple

independent trajectories starting from x0 ∼ N (0, Σ0).

Learning rate when ∥X̂0∥ is nonzero, and the effects of trajectory length: When ∥X̂0∥ is

nonzero, the error bound will depend on ϵ2, ϵ3. Note that ∥X̂0∥ =
√

N∥µ∥ when the initial

state of each trajectory has mean µ. The term ∥X̂0∥2ϵ3
Nσmin(σEImp+8ζ) is O(1) when p is fixed. In

such case, if the system is known to be marginally stable (ρ(A) ≤ 1), we can leverage the

fact that the norm ∥(A − Kp−1C) · · · (A − K0C)∥ in ϵ3 converges to zero exponentially fast
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with p (see Proposition  3.6.2 in section  3.6 ), by setting p = c log N for some sufficiently large

c, to force the term ∥(A − Kp−1C) · · · (A − K0C)∥ to go to zero no slower than O( 1√
N

). The

term R̄T is O(1) since the Kalman filter converges [ 47 ]. For the same reason, by fixing a

small f > n, ∥T p
f ∥ is O(1). In addition, ∥T 0

p ∥ and ∥Op∥ are O(1) for stable systems, and

O(pd) for some constant d for marginally stable systems (see Proposition  3.6.1 in section  3.6 

for ∥T 0
p ∥, and [ 40 , Corollary E.1] for ∥Op∥). As a result, the error will decrease with a rate

of O(
√

logN
N

) for strictly stable systems, and O( (logN)d
√
N

) for some constant d for marginally

stable systems, even if ∥X̂0∥ is non-zero.

The next step shows that the realization error of system matrix estimates (Â, Ĉ, K̂p−1)

provided by Algorithm  3 is bounded. Based on our assumption that Of and Kp have rank

n, the true G also has rank n. The proof of the following theorem entirely follows [  40 ,

Theorem 4], with the only difference being the replacement of steady state Kalman gain K

by non-steady state Kalman gain Kp−1.

Theorem 3.4.2 (Bound on realizations of system matrices). Let G and Ĝ be defined in

( 3.7 ) and ( 3.9 ). Let the estimates based on Ĝ using Algorithm  3 be Ôf , K̂p, Â, Ĉ, K̂p−1, and

the corresponding matrices based on the true G using Algorithm  3 be Õf , K̃p, Ã, C̃, K̃p−1. If

G has rank n and ∥Ĝ − G∥ ≤ σn(G)
4 , then there exists an orthonormal matrix T ∈ Rn×n such

that:
∥Ôf − ÕfT ∥ ≤ 2

√
10n

σn(G)∥Ĝ − G∥,

∥Ĉ − C̃T ∥ ≤ ∥Ôf − ÕfT ∥,

∥Â − T ′
ÃT ∥ ≤

√
∥G∥ + σo

σ2
o

∥Ôf − ÕfT ∥,

∥K̂p−1 − T ′
K̃p−1∥ ≤ 2

√
10n

σn(G)∥Ĝ − G∥,

where σo ≜ min(σn(Ôu
f ), σn(Õu

f )). Recall that the notation Ôu
f , Õu

f refers to the submatrix

formed by the top m(f − 1) rows of the respective matrix.

Remark 9. Note that the matrices Ã, C̃, K̃p−1 are equivalent to the original A, C, Kp−1

matrices up to a similarity transformation. As p increases, ∥G∥ = ∥OfKp∥ is O(1) since

f is fixed, and ∥Kp∥ is also O(1) (see Proposition  3.6.3 in section  3.6 ). From Proposition
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 3.6.4 in section  3.6 , σn(G) is lower bounded as p increases. As suggested in[  40 , Remark 3],

the random term σn(Ôu
f ) in σo can be replaced by a deterministic bound as

σn(Ôu
f ) ≥ σn(Õu

f ) − ∥Ôf − ÕfT ∥.

Hence σo will be lower bounded by σn(Õu
f )

2 > 0 when the error ∥Ôf − ÕfT ∥ is small enough,

where the inequality is due to the fact that we assumed the system is observable. Consequently,

the term
√

∥G∥+σo

σ2
o

is always O(1).

As a result, all estimation errors of system matrices depend linearly on ∥Ĝ − G∥, even

if p is increasing. Hence, the realization error will decrease at least as fast as O( 1√
N

) when

∥X̂0∥ = 0, and p is fixed. When ∥X̂0∥ is non-zero, the error can decrease at a rate of

O(
√

logN
N

) for strictly stable systems, and at a rate of O( (logN)d
√
N

) for some constant d for

marginally stable systems by setting p = c log N for some positive constant c. Note that as p

goes to infinity, the matrix K̂p−1 estimates the steady state Kalman gain T ′
K̃.

On the other hand, the dependencies on σn(G) and σn(Ôu
f ) also show that the estimation

error of system matrices depends on the “normalized estimation error” of G. Consequently,

although our bound suggests that setting p, f to be small could potentially reduce the estima-

tion error of G (when µ = 0), it may not necessarily reduce the error of the system matrices.

A similar issue also appears in the recovery of system matrices from Markov parameters [ 16 ].

It is of interest to study how trajectory length directly affects the realization error in future

work.

3.5 Chapter Summary

In this chapter, we performed finite sample analysis of learning the dynamics of au-

tonomous systems using multiple trajectories. Our results rely neither on controlled inputs,

nor on observations of steady state behaviors of the system. We proved a learning rate that

is consistent with [ 16 ] and [ 40 ] (up to logarithmic factors).
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3.6 Proofs of Results

Lemma 16. ([ 40 , Lemma E.2]). Consider the series St = ∑t
i=0 ∥Ai∥. If the matrix A is

strictly stable (ρ(A) < 1), then St = O(1); if the matrix A is marginally stable (ρ(A) = 1),

then St = O(td), where d is the largest Jordan block of A corresponding to a unit circle

eigenvalue ∥λ∥ = 1.

Proposition 3.6.1. The norm ∥T 0
p ∥ is O(pd) with p for some constant d when the system

matrix A is marginally stable, and is O(1) when the system matrix A is strictly stable.

Proof. Letting Kmax(p) = maxt∈0,...,p−2 ∥Kt∥, where Kt is defined in ( 3.3 ). We have

∥T 0
p ∥ ≤ ∥Imp∥ + ∥C∥Kmax(p) + ∥C∥∥A∥Kmax(p) + · · · + ∥C∥∥Ap−2∥Kmax(p)

= 1 + ∥C∥Kmax(p)
p−2∑
i=0

∥Ai∥.

From Kalman filtering theory, the Kalman gain Kt converges to its steady state K under

Assumption  2 . Hence Kmax(p) = O(1). From Lemma  16 , we have the above sum is O(1) if

A is strictly stable, and O(pd) when A is marginally stable.

Lemma 17. ([ 48 , Theorem 6.6]). Let U + A1, U + A2, · · · be a sequence of n × n matrices.

Given ϵ > 0, there is a δ(ϵ) such that if ∥Ak∥ ≤ δ(ϵ) for all k, then

∥(U + Ak) · · · (U + A1)∥ ≤ σ(ρ(U) + ϵ)k

for some constant σ.

Proposition 3.6.2. For any fixed integer k, where p − 1 ≥ k ≥ 0, we have

∥(A − Kp−1C) · · · (A − KkC)∥ = O(e−c0p),

for some positive constant c0.

Proof. From Kalman filtering theory, the Kalman gain Kt converges to its steady state K,

and the matrix A − KC has spectral radius less than 1 under Assumption  2 . Hence, we
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can write A − KtC = A − KC + ηt for t ≥ 0, where ∥ηt∥ converges to 0. Pick ϵ such that

ϵ + ρ(A − KC) < 1. To apply Lemma  17 , let U = A − KC, and let k + t(ϵ) be the smallest

index such that ∥ηt∥ ≤ δ(ϵ) for all t ≥ k + t(ϵ). Letting p ≥ k + t(ϵ) + 1, we have

∥(A − Kp−1C) · · · (A − KkC)∥ ≤ ∥
p−k−t(ϵ)∏
t=1

(U + ηp−t)∥∥
p−k∏

t=p−k−t(ϵ)+1
(U + ηp−t)∥

≤ σ(ρ(U) + ϵ)p−k−t(ϵ)∥
p−k∏

t=p−k−t(ϵ)+1
(U + ηp−t)∥

= O(e−c0p),

where the second inequality comes from Lemma  17 .

Proposition 3.6.3. The norm ∥Kp∥ is O(1) with p.

Proof. From Kalman filtering theory, the Kalman gain Kp−1 converges to its steady state

K, and the matrix A − KC has spectral radius less than 1 under Assumption  2 . Hence

for any t ≥ 1 we can write A − KtC = A − KC + ηt, where ∥ηt∥ converges to 0. Let

Kmax(p) = maxt∈0,...,p−1 ∥Kt∥. We have Kmax(p) = O(1) since Kt converges to K. Pick ϵ

such that ϵ + ρ(A − KC) < 1. To apply Lemma  17 , let U = A − KC, and let t(ϵ) be the

smallest index such that ∥ηt∥ ≤ δ(ϵ) for all t ≥ t(ϵ). Letting p ≥ t(ϵ) + 1, we have

∥Kp∥ ≤ Kmax(p) + Kmax(p)
p∑
t=2

∥
t∏

j=2
(U + ηp−j+1)∥

= Kmax(p) + Kmax(p)
p∑

t=p−t(ϵ)+2
∥

t∏
j=2

(U + ηp−j+1)∥ + Kmax(p)
p−t(ϵ)+1∑
t=2

∥
t∏

j=2
(U + ηp−j+1)∥.

From Proposition  3.6.2 , we have

Kmax(p)
p∑

t=p−t(ϵ)+2
∥

t∏
j=2

(U + ηp−j+1)∥ = O(e−c0p). (3.15)
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From Lemma  17 , we have

Kmax(p)
p−t(ϵ)+1∑
t=2

∥
t∏

j=2
(U + ηp−j+1)∥ ≤ Kmax(p)

p−t(ϵ)+1∑
t=2

σ(ρ(U) + ϵ)t−1

≤ Kmax(p)σ
1 − ρ(U) − ϵ

= O(1),
(3.16)

where the second inequality comes from geometric series.

Finally, combining ( 3.15 ) and ( 3.16 ), we obtain ∥Kp∥ = O(1).

Proposition 3.6.4. Assume that rank(Of ) = rank(Kp) = n, where n is the order of the

system. Fix any positive integer k, n ≤ k < p. Let Kss be the matrix formed by the last k

block columns of the reversed extended controllability matrix Kp. For sufficiently large p, we

have the following inequalities:

σn(G) ≥ σn(OfKss)
2 > 0,

σn(Kp) ≥ σn(Kss)
2 > 0.

Proof. We will only show the first inequality as the second one is similar. Recall the definition

of G in ( 3.7 ). We can rewrite G = [M OfKtv], where Ktv is the matrix formed by the last

k block columns of Kp, and M is some residual matrix. We have

GG
′ ⪰ OfKtvK

′

tvO
′

f .

Hence, we have

σn(G) ≥ σn(OfKtv) = σn(OfKss + OfKtv − OfKss)

≥ σn(OfKss) − ∥Of∥∥Ktv − Kss∥,

where the last inequality comes from the application of [ 49 , Theorem 3.3.16(c)]. From

Kalman filtering theory, the Kalman gain Kt converges to its steady state K under Assump-

tion  2 . Consequently, we have ∥Ktv − Kss∥ converges to zero as p increases. We see that
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σn(G) will eventually be lower bounded by σn(Of Kss)
2 > 0 as p increases, where the inequal-

ity comes from the assumption that Of and Kp have full rank and the Cayley-Hamilton

Theorem.
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4. FINITE SAMPLE GUARANTEES FOR DISTRIBUTED

ONLINE PARAMETER ESTIMATION WITH

COMMUNICATION COSTS

4.1 Introduction

 

7
 In this chapter, we consider the system identification problem (or more generally, pa-

rameter estimation) in a distributed setting. In many cases, the available datasets are usually

split among multiple agents/learners and come in a streaming manner, which require on-

line processing. Coordination among the various agents to process their data also comes

with a communication cost, and thus algorithms must be designed to balance the amount of

communication with the speed and accuracy of learning.

The problem of distributed learning/optimization has been studied extensively over the

last few decades, e.g.,[ 51 ], [ 52 ]. These papers typically provide theoretical guarantees on the

convergence of local solutions to the optimizer of the sum of local functions over the network.

When it comes to distributed online parameter estimation, the existing literature typically

focuses on proving asymptotic convergence of the estimate to the true value, e.g., [  53 ], [  54 ].

There is another branch of research on distributed online learning that focuses on providing

bounds on regret, which is defined as the difference between the costs generated by the

sequence of local decisions and the true optimal costs obtained in hindsight, e.g., [ 55 ]–[ 57 ].

The bound on regret can be used as an appropriate metric to evaluate a proposed algorithm,

as a sublinear regret implies that the algorithm performs as well as its centralized counterpart

on average (over time). However, it is unclear how such bounds can be translated into the

bounds on the accuracy of the learned model after a finite number of time-steps. The paper

[ 58 ] studies distributed state estimation problem with finite time convergence guarantee

with a fixed observation matrix, and under Byzantine faults. In contrast, we consider the

problem where the observation/feature matrix is random, which is often encountered in

general machine learning problems.
7

 ↑ The material in this chapter was published at the 2022 Conference on Decision and Control [ 50 ].
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In this chapter, we propose a distributed online parameter estimation algorithm in a

networked setting, which enables each agent to improve its estimation accuracy by commu-

nicating with neighbors in the network. Our algorithm can be viewed as an extension of the

distributed least squares method in [ 59 ] to an online setting. In our algorithm, each agent

stores two estimates of the true parameter: one computed purely based on local data and

one computed after communicating with neighbors in the network. We provide finite time

(or sample) upper bounds on the estimation errors of both of these two estimates, which

highlight the role of communication. Our results demonstrate a trade-off between estima-

tion error and communication costs. To balance such a trade-off, we discuss how we can

leverage our finite time error bounds to determine a time at which the communication can

be stopped (due to the costs associated with maintaining communications), while meeting a

desired estimation accuracy. We also provide a numerical example to validate our results.

4.2 Problem Formulation

Consider a group of m agents V interconnected over an undirected and connected graph

G = (V , E). An edge (i, j) ∈ E is an unordered pair, which indicates a bidirectional com-

munication link between agents i and j. Let Ni ≜ {j : (i, j) ∈ E} be the set of neighbors

of agent i. The goal of these agents is to collaboratively estimate an unknown parameter

Θ ∈ Rl×n with finite time guarantees, under a finite number of communication steps. At

each time step t = 1, 2, · · · , each agent i ∈ V gathers the data pair (xi,t, yi,t) generated by

the following model

yi,t = Θxi,t + ηi,t, (4.1)

where yi,t ∈ Rl is the label vector, xi,t ∈ Rn is the feature vector, and ηi,t ∈ Rl is the noise.

We make the following assumption.

Assumption 4. The feature vector xi,t and noise ηi,t are Gaussian random vectors that are

independent over time and agents, where xi,t ∼ N (µi,t, σ2
xIn) and ηi,t ∼ N (0, σ2

ηIl). The

mean µi,t ∈ Rn is deterministic with sup{∥µi,t∥ : i ∈ V , t ∈ Z≥1} = û ∈ R≥0.
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The above model can be used to capture many problems. For example, it can be used to

capture the problem of dynamical system identification via multiple independent trajectories

(assuming zero initial condition and without process noise), where yi,t is the output of the

system in each trajectory, xi,t is the input applied in each trajectory, and Θ is the Markov

parameter matrix of the system, e.g., [ 15 ]. We note that the xi,t considered in our model

allows for time-varying and agent-dependent mean µi,t, and hence is more general than

the analogous system identification problem, which typically considers zero-mean Gaussian

inputs. We also note that our algorithm does not require any parameters of the model to be

known in advance. However, we assume that there are known upper bounds on σx, ση, µ̂, ∥Θ∥,

and there is a known non-zero lower bound on σx. These bounds will facilitate the design of

certain user-specified parameters in our algorithm, which will become clear when we present

our results.

Remark 10. One may observe that a trivial solution to the above problem might be to

not communicate at all, i.e., each agent only updates based on its local dataset. However,

such a solution does not leverage the distributed nature of the problem, which provides each

agent with the potential to speed up the learning by communicating with the other agents in

the network. On the other hand, communications with the other agents should be carefully

designed, as information from others might become less useful when each agent already has

a good estimate based on the information it has so far. In the sequel, we study a distributed

algorithm that leverages the communication network, which allows all agents to learn the

model efficiently (when some upper/lower bounds on σx, ση, µ̂, ∥Θ∥ are available). More

specifically, the algorithm allows every agent to hold an estimate with an estimation error

comparable to that of the centralized solution throughout time, while saving communication

costs.
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4.3 Algorithm

In this section, we describe a two-time-scale distributed algorithm. At each time step

t = 1, 2, · · · , based on its local dataset, each agent i ∈ V wishes to solve the following least

squares problem:

min
Θ̃∈Rl×n

t∑
j=1

∥yi,j − Θ̃xi,j∥2. (4.2)

The least squares local estimate for agent i, given its samples collected up to time step t, is

Θ̂i,t+1 = (
t∑

j=1
yi,jx

′

i,j)(
t∑

j=1
xi,jx

′

i,j)−1, (4.3)

assuming the matrix ∑t
j=1 xi,jx

′
i,j is invertible.

The above estimate can be updated iteratively with the arrival of new data pair (xi,t, yi,t),

through
αi,t+1 = αi,t + yi,tx

′

i,t,

βi,t+1 = βi,t + xi,tx
′

i,t,

Θ̂i,t+1 = αi,t+1β
†
i,t+1,

(4.4)

where αi,1 = 0, βi,1 = 0. Note that β†
i,t+1 = β−1

i,t+1 once βi,t+1 becomes invertible. Also,

β−1
i,t+1 can be updated iteratively using the Sherman-Morrison formula [  60 ], which states

β−1
i,t+1 = β−1

i,t − β−1
i,t xi,tx

′
i,tβ

−1
i,t

1+x′
i,tβ

−1
i,t xi,t

.

The algorithm enters the communication phase when the conditions t mod ζ = 0 and

t ≤ S are satisfied, where ζ ∈ Z≥1 and S ∈ Z≥0, i.e., when the current time step t is an

integer multiple of the pre-specified communication period ζ and is less than the pre-specified

stopping time S. Letting the superscript k denote the current communication time step, each

agent i ∈ V sets α0
i,t+1 = αi,t+1, β0

i,t+1 = βi,t+1. At each communication time step k, each
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agent i ∈ V broadcasts its current αki,t+1 and βki,t+1 to its neighbors j ∈ Ni, and receives

αkj,t+1 and βkj,t+1 from j ∈ Ni. The update is given by

αk+1
i,t+1 = W (i, i)αki,t+1 +

∑
j∈Ni

W (i, j)αkj,t+1,

βk+1
i,t+1 = W (i, i)βki,t+1 +

∑
j∈Ni

W (i, j)βkj,t+1,
(4.5)

for k = 0, 1, . . . , T − 1, where T ∈ Z≥1 is the number of pre-specified total communication

steps whenever the algorithm enters the communication phase, and W ∈ Rm×m is the matrix

where W (i, j) is the weight agent i ∈ V assigns to agent j ∈ V . We make the following

assumption on W , which is commonly used, e.g., [ 61 ].

Assumption 5. The weight matrix W ∈ Rm×m associated with the communication graph

G = (V , E) is assumed to satisfy: (1) W (i, j) ∈ R and W (i, j) ≥ 0 for all i, j ∈ V,

and W (i, j) = 0 if j ̸∈ Ni and i ̸= j; (2)W1m = 1m; (3) W = W
′ and (4) ρ(W ) ≜

max{λ2(W ), −λm(W )} < 1.

The local estimate after communication is set to be Θ̄i,t+1 = αTi,t+1(βTi,t+1)†. If there is no

communication happened at the current time step t, agent i just keeps its estimate from the

previous time-step, i.e., Θ̄i,t+1 = Θ̄i,t.

The above steps are encapsulated in Algorithm  4 .

Remark 11. Note that Algorithm  4 has two time scales. In practice, this can capture

the scenario where communication occurs at a much faster rate than obtaining samples.

Further, note that both Θ̂i,t+1 (without communication) and Θ̄i,t+1 (after communication)

are estimates of the true parameter Θ. In the next section, we will provide bounds on the

finite time estimation errors ∥Θ̂i,t+1 − Θ∥ and ∥Θ̄i,t+1 − Θ∥. In practice, one could choose

the estimate with smaller (estimated) error bound as the “true” output of the algorithm. In

section  4.5 , we will discuss how to choose the user-specified parameters ζ, S and T to enable

efficient learning.
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Algorithm 4 Distributed Online Estimation Algorithm
Input Weight matrix W , stopping time S, communication period ζ, number of communica-
tion steps T

1: Each vi ∈ V initializes αi,1 = 0, βi,1 = 0, Θ̄i,1 = 0
2: for t = 1, 2, 3, . . . do
3: for vi ∈ V do ▷ Implement in parallel
4: Gather the data pair (xi,t, yi,t), where xi,t ∼ N (µi,t, σ2

xIn)
5: Update αi,t+1, βi,t+1, Θ̂i,t+1 as in ( 4.4 )
6: if t mod ζ = 0 and t ≤ S then
7: Set α0

i,t+1 = αi,t+1, β0
i,t+1 = βi,t+1

8: for k = 0, 1, . . . , T − 1 do
9: Broadcast αki,t+1 βki,t+1 to j ∈ Ni, and receive αkj,t+1 βkj,t+1 from j ∈ Ni

10: Update αk+1
i,t+1, βk+1

i,t+1 as in ( 4.5 )
11: end for
12: Θ̄i,t+1 = αTi,t+1(βTi,t+1)†

13: else
14: Θ̄i,t+1 = Θ̄i,t

15: end if
16: end for
17: end for
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4.4 Analysis of the Error

4.4.1 Local Estimation Error Without Communication

We will start with bounding the estimation error using only local samples. Note that for

any agent i ∈ V , we have

∥Θ̂i,t+1 − Θ∥ = ∥αi,t+1β
−1
i,t+1 − Θ∥

= ∥(
t∑

j=1
yi,jx

′

i,j)(
t∑

j=1
xi,jx

′

i,j)−1 − Θ∥

= ∥(
t∑

j=1
ηi,jx

′

i,j)(
t∑

j=1
xi,jx

′

i,j)−1∥

≤ ∥
t∑

j=1
ηi,jx

′

i,j∥∥(
t∑

j=1
xi,jx

′

i,j)−1∥,

(4.6)

assuming the the matrix ∑t
j=1 xi,jx

′
i,j is invertible. The proof follows by upper bounding the

above terms separately.

Now we start with our first result.

Lemma 18. Let Assumption  4 hold. Fix δ > 0 and let t ≥ max(t1, t2), where t1 =

8n + 16log 2
δ
, t2 = (16µ̂(

√
4n+

√
2 log 2

δ
)

σx
)2. For any i ∈ V, letting µ̄i,t = 4

tσ2
x

∑t
j=1 µi,jµ

′
i,j, with

probability at least 1 − 2δ, we have both of the following inequalities:

∥
t∑

j=1
xi,jx

′

i,j∥ ≤ t(19
8 σ2

x + µ̂2),

λmin(
t∑

j=1
xi,jx

′

i,j) ≥ tσ2
x

8 λmin(In + µ̄i,t).

Proof. Fixing i ∈ V , we can rewrite xi,j = σxui,j + µi,j, where ui,j ∼ N (0, In) for j = 1, . . . .t.

We have

t∑
j=1

xi,jx
′

i,j =
t∑

j=1
(σxui,j + µi,j)(σxu

′

i,j + µ
′

i,j)

=
t∑

j=1
σ2
xui,ju

′

i,j +
t∑

j=1
µi,jµ

′

i,j +
t∑

j=1
σxui,jµ

′

i,j +
t∑

j=1
σxµi,ju

′

i,j.

(4.7)
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To derive the upper bound in Lemma  18 , we start with upper bounding the norm of the

first term in the last equality of ( 4.7 ). Fixing δ > 0 and applying Lemma  12 , we have with

probability at least 1 − δ,

√√√√λ1(
t∑

j=1
ui,ju

′
i,j) ≤

√
t +

√
n +

√
2 log 2

δ
. (4.8)

Further, we have
1
2

√
t ≥

√
n +

√
2 log 2

δ

⇐⇒ t

4 ≥ (
√

n +
√

2 log 2
δ

)2.

Noting the inequality 2(a2 + b2) ≥ (a + b)2, we can write 2(n + 2 log 2
δ
) ≥ (

√
n +

√
2 log 2

δ
)2.

Letting t ≥ 8n + 16 log 2
δ
, one can then show that the following holds with probability at

least 1 − δ: √√√√λ1(
t∑
i=1

ui,ju
′
i,j) ≤

√
t +

√
n +

√
2 log 2

δ
≤ 3

2
√

t.

Consequently, we have with probability at least 1 − δ,

∥
t∑
i=1

σ2
xui,ju

′

i,j∥ ≤ 9
4σ2

xt. (4.9)

For the second term in the last equality of ( 4.7 ), from Assumption  4 , we have

∥
t∑
i=1

µi,jµ
′

i,j∥ ≤ tµ̂2. (4.10)

For the last two terms in the last equality of ( 4.7 ), since t ≥ n, we have

∥
t∑

j=1
σxui,jµ

′

i,j∥ = ∥
t∑

j=1
σxµi,ju

′

i,j∥

= σx∥
[
µi,1 · · · µi,t

] [
ui,1 · · · ui,t

]′

∥

≤ σx
√

tµ̂(
√

4n +
√

2 log 2
δ

), (4.11)
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with probability at least 1 − δ, where the inequality comes from applying Lemma  13 and the

fact that ∥
[
µi,1 · · · µi,t

]
∥ ≤

√
tµ̂. Combining (  4.9 ), ( 4.10 ) and ( 4.11 ) using a union bound,

letting t ≥ max{8n + 16 log 2
δ
, (16µ̂(

√
4n+

√
2 log 2

δ
)

σx
)2}, we have with probability at least 1 − 2δ,

∥
t∑

j=1
xi,jx

′

i,j∥ ≤ t(9
4σ2

x + µ̂2) + 2σx
√

tµ̂(
√

4n +
√

2 log 2
δ

)

≤ t(9
4σ2

x + µ̂2) + t
σ2
x

8
= t(19

8 σ2
x + µ̂2),

which is of the desired form.

Now we prove the lower bound in Lemma  18 . We first lower bound the smallest eigenvalue

of first term in the last equality of ( 4.7 ). Note that conditioning on the event in ( 4.8 ), we

also have √√√√λmin(
t∑

j=1
ui,ju

′
i,j) ≥

√
t −

√
n −

√
2 log 2

δ

from Lemma  12 . Letting t ≥ 8n + 16 log 2
δ
, we have

√
λmin(∑t

j=1 ui,ju
′
i,j) ≥ 1

2

√
t, which

implies

t∑
i=1

σ2
xui,ju

′

i,j ⪰ 1
4σ2

xtIn. (4.12)

Further, from ( 4.7 ), note that

λmin(
t∑

j=1
xi,jx

′

i,j) ≥ λmin(
t∑

j=1
σ2
xui,ju

′

i,j +
t∑

j=1
µi,jµ

′

i,j) − 2∥
t∑

j=1
σxui,jµ

′

i,j∥,

where the inequality comes from [ 49 , Theorem 3.3.16(c)]. Now, conditioning on the event in

( 4.11 ) and the event in ( 4.12 ), denoting µ̄i,t = 4
tσ2

x

∑t
j=1 µi,jµ

′
i,j, we have

λmin(
t∑

j=1
σ2
xui,ju

′

i,j +
t∑

j=1
µi,jµ

′

i,j) − 2∥
t∑

j=1
σxui,jµ

′

i,j∥

≥ tσ2
x

4 λmin(In + µ̄i,t) − 2σx
√

tµ̂(
√

4n +
√

2 log 2
δ

).
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Hence, when t ≥ (16µ̂(
√

4n+
√

2 log 2
δ

)
σx

)2, we have

tσ2
x

4 λmin(In + µ̄i,t) − 2σx
√

tµ̂(
√

4n +
√

2 log 2
δ

) ≥ tσ2
x

8 λmin(In + µ̄i,t).

Next, we will bound the error due to noise.

Proposition 4.4.1. Let Assumption  4 hold. Fix δ > 0 and let t ≥ t3 = 2(n + l) log 1
δ
. For

any i ∈ V, we have with probability at least 1 − 2δ,

∥
t∑

j=1
ηi,jx

′

i,j∥ ≤
√

tση

4σx

√
(n + l) log 9

δ
+ µ̂(

√
2(l + n) +

√
2 log 2

δ
)
 .

Proof. Fixing i ∈ V , we can rewrite ηi,j = σηfi,j and xi,j = σxgi,j + µi,j, where fi,j, gi,j

are independent Gaussian random vectors with fi,j ∼ N (0, Il) and gi,j ∼ N (0, In), for

j = 1, . . . , t. We have

∥
t∑

j=1
ηi,jx

′

i,j∥ = ∥
t∑

j=1
σηfi,j(σxg

′

i,j + µ
′

i,j)∥

≤ ∥
t∑

j=1
σησxfi,jg

′

i,j∥ + ∥
t∑

j=1
σηfi,jµ

′

i,j∥.

Fixing δ > 0 and letting t ≥ 2(n + l) log 1
δ
, applying Lemma  15 , we have with probability at

least 1 − δ

∥
t∑

j=1
σησxfi,jg

′

i,j∥ ≤ 4σxση.

√
t(n + l) log 9

δ
. (4.13)

Next, notice that

∥
t∑

j=1
σηfi,jµ

′

i,j∥ = ση∥
[
µi,1 · · · µi,t

] [
fi,1 · · · fi,t

]′

∥.
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Using the fact that ∥
[
µi,1 · · · µi,t

]
∥ ≤

√
tµ̂ and applying Lemma  15 , we have with probability

at least 1 − δ

∥
t∑

j=1
σηfi,jµ

′

i,j∥ ≤ ση
√

tµ̂(
√

2(n + l) +
√

2 log 2
δ

). (4.14)

Applying a union bound over the events in ( 4.13 ) and ( 4.14 ), we get the desired form.

Theorem 4.4.1. Let Assumption  4 hold. Fix δ > 0 and let t ≥ max(t1, t2, t3), where

t1 = 8n + 16log 2
δ
, t2 = (16µ̂(

√
4n+

√
2 log 2

δ
)

σx
)2, t3 = 2(n + l) log 1

δ
. For any i ∈ V, letting µ̄i,t =

4
tσ2

x

∑t
j=1 µi,jµ

′
i,j, we have with probability at least 1 − 4δ,

∥Θ̂i,t+1 − Θ∥ ≤ C1√
tσ2
xλmin(In + µ̄i,t)

, (4.15)

where C1 = 8ση(4σx
√

(n + l) log 9
δ

+ µ̂(
√

2(l + n) + 2
√

log 2
δ
)).

Proof. Recall the expression of the estimation error in ( 4.6 ). Noting that ∥(∑t
j=1 xi,jx

′
i,j)−1∥ =

1
λmin(

∑t

j=1 xi,jx
′
i,j)

, we can combine the second event in Lemma  18 and the event in Proposition

 4.4.1 via a union bound to get the desired result.

Remark 12. Theorem  4.4.1 shows that the error is O( 1√
t
). Note that when the mean µi,j

is non-zero but invariant for all t, the bound could become more conservative when n > 1

(since the µ̄i,t term will not make the denominator larger). If this is known in advance, one

could set ŷi,t = yi,2t−1 − yi,2t and x̂i,t = xi,2t−1 − xi,2t. One then has ŷi,t = Θx̂i,t + η̂i,t, where

x̂i,t ∼ N (0, 2σ2
xIn) and η̂i,t ∼ N (0, 2σ2

ηIl). The same bound will still apply to the least squares

solution using the transformed dataset, i.e., with the price of reducing the amount of samples

by one-half, one could force the mean-dependent terms in Theorem  4.4.1 to go to zero. Such

a transformation could result in a smaller bound when µ̂ is large enough.
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4.4.2 Global Estimation Error

Next, we look at the estimation error of the least squares estimate supposing that one

has access to all samples across the network up to time step t. The global estimate and its

associated estimation error are

Θ̂t+1 ≜ (
m∑
i=1

t∑
j=1

yi,jx
′

i,j)(
m∑
i=1

t∑
j=1

xi,jx
′

i,j)−1

= (
m∑
i=1

αi,t+1)(
m∑
i=1

βi,t+1)−1,

(4.16)

∥Θ̂t+1 − Θ∥ = ∥(
m∑
i=1

t∑
j=1

ηi,jx
′

i,j)(
m∑
i=1

t∑
j=1

xi,jx
′

i,j)−1∥,

assuming the matrix ∑m
i=1

∑t
j=1 xi,jx

′
i,j is invertible. The proof of the following theorem

entirely follows Theorem  4.4.1 due to Assumption  4 , with slight adjustments to accommodate

possibly different means of xi,j across the network.

Theorem 4.4.2. Let Assumption  4 hold. Fix δ > 0, and let t ≥ 1
m

max(t1, t2, t3), where t1 =

8n + 16log 2
δ
, t2 = (16µ̂(

√
4n+

√
2 log 2

δ
)

σx
)2, t3 = 2(n + l) log 1

δ
. Letting µ̄t = 4

mtσ2
x

∑m
i=1

∑t
j=1 µi,jµ

′
i,j,

we have with probability at least 1 − 4δ,

∥Θ̂t+1 − Θ∥ ≤ C1√
mtσ2

xλmin(In + µ̄t)
,

where C1 is defined in Theorem  4.4.1 .

Remark 13. Theorem  4.4.2 indicates that the global estimation error bound is approximately
1√
m

of the local estimation error bound for agent i ∈ V in Theorem  4.4.1 (when µ̄t in

Theorem  4.4.2 is approximately equal to µ̄i,t in Theorem  4.4.1 ). Next, we will analyze the

local estimation error after finite communication steps, which shows how communication

could help agents benefit from the global dataset.
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4.4.3 Local Estimation Error After Communication

To derive the error bound of the local estimate after communication, we first define

some quantities for notational simplicity. Recall the roles of the stopping time S and the

communication period ζ in Algorithm  4 . For t satisfying t mod ζ = 0 and t ≤ S (note that we

will only consider such t in this section), define ᾱt+1 ≜ 1
m

∑m
i=1 αi,t+1 and β̄t+1 ≜ 1

m

∑m
i=1 βi,t+1.

For any i ∈ V , note that

∥Θ̄i,t+1 − Θ∥ = ∥αTi,t+1(βTi,t+1)−1 − Θ∥

= ∥αTi,t+1(βTi,t+1)−1 − ᾱt+1β̄
−1
t+1 + ᾱt+1β̄

−1
t+1 − Θ∥

≤ ∥αTi,t+1(βTi,t+1)−1 − ᾱt+1β̄
−1
t+1∥ + ∥ᾱt+1β̄

−1
t+1 − Θ∥,

(4.17)

under the invertibility assumption.

The second portion of the above inequality can be bounded using Theorem  4.4.2 , since

∥ᾱt+1β̄
−1
t+1 − Θ∥ = ∥Θ̂t+1 − Θ∥. Now we will focus on bounding the first term, which corre-

sponds to the error due to network convergence at time step t, using T steps of communica-

tion. For t satisfying t mod ζ = 0 and t ≤ S, fixing i ∈ V and defining ϵᾱT
i,t+1

≜ αTi,t+1 − ᾱt+1

and ϵ(βT
i,t+1)−1 ≜ (βTi,t+1)−1 − β̄−1

t+1, we have

∥αTi,t+1(βTi,t+1)−1 − ᾱt+1β̄
−1
t+1∥ = ∥(ᾱt+1 + ϵᾱT

i,t+1
)(β̄−1

t+1 + ϵ(βT
i,t+1)−1) − ᾱt+1β̄

−1
t+1∥

≤ ∥ᾱt+1ϵ(βT
i,t+1)−1∥ + ∥ϵᾱT

i,t+1
β̄−1
t+1∥ + ∥ϵᾱT

i,t+1
ϵ(βT

i,t+1)−1∥

≤ ∥ᾱt+1∥∥ϵ(βT
i,t+1)−1∥ + ∥ϵᾱT

i,t+1
∥∥β̄−1

t+1∥ + ∥ϵᾱT
i,t+1

∥∥ϵ(βT
i,t+1)−1∥,

(4.18)

and we will bound the above terms separately.

Before we proceed, we will define some probabilistic events. Let t satisfy t mod ζ = 0

and t ≤ S. With the replacement of δ by δ̂, let t ≥ max(t1, t2, t3) defined in Lemma  18 

and Proposition  4.4.1 . Let E1 be the event such that the event in Lemma  18 occurs for all

i ∈ V at time step t, i.e., E1 ≜ {{∥ ∑t
j=1 xi,jx

′
i,j∥ ≤ t(19

8 σ2
x + µ̂2)} ∩ {λmin(∑t

j=1 xi,jx
′
i,j) ≥

tσ2
x

8 λmin(In + µ̄i,t)}} for all i ∈ V , where µ̄i,t = 4
tσ2

x

∑t
j=1 µi,jµ

′
i,j. Similarly, let E2 be the

event such that the event in Proposition  4.4.1 occurs for all i ∈ V at time step t, i.e.,
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E2 ≜ {∥ ∑t
j=1 ηi,jx

′
i,j∥ ≤

√
tση(4σx

√
(n + l) log 9

δ̂
+ µ̂(

√
2(l + n) +

√
2 log 2

δ̂
))} for all i ∈ V .

Applying a union bound over all i ∈ V , we have

E3 ≜ E1 ∩ E2 (4.19)

occurs with probability at least 1 − 4mδ̂.

Proposition 4.4.2. Conditioning on event E3 in ( 4.19 ), we have

∥ᾱt+1∥ ≤ tc1 +
√

tc2,

where c1 ≜ ∥Θ∥(19
8 σ2

x + µ̂2), c2 ≜ ση(4σx
√

(n + l) log 9
δ̂

+ µ̂(
√

2(l + n) +
√

2 log 2
δ̂
)).

Proof. We have

∥ᾱt+1∥ = ∥ 1
m

m∑
i=1

αi,t+1∥

= ∥ 1
m

m∑
i=1

t∑
j=1

yi,jx
′

i,j∥

= ∥ 1
m

m∑
i=1

t∑
j=1

(Θxi,j + ηi,j)x
′

i,j∥

≤ 1
m

(∥Θ∥∥
m∑
i=1

t∑
j=1

xi,jx
′

i,j∥ + ∥
m∑
i=1

t∑
j=1

ηi,jx
′

i,j∥)

≤ t∥Θ∥(19
8 σ2

x + µ̂2) +
√

tση(4σx

√
(n + l) log 9

δ
+ µ̂(

√
2(l + n) +

√
2 log 2

δ
)),

where the last inequality is due to event E3.

We will use the following result from [  62 ].

Lemma 19. Consider a weight matrix W ∈ Rm×m that satisfies Assumption  5 . The follow-

ing inequality holds:

max
i∈{1,··· ,m}

∑
j∈{1,··· ,m}

∣∣∣∣W T (i, j) − 1
m

∣∣∣∣ ≤
√

m(ρ(W ))T ,

where ρ(W ) = max{λ2(W ), −λm(W )}.
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Proposition 4.4.3. Let Assumption  5 hold. Conditioning on event E3 in ( 4.19 ), for all

i ∈ V, we have

∥ϵᾱT
i,t+1

∥ ≤ m
3
2
√

l(ρ(W ))T (tc1 +
√

tc2),

where c1 and c2 are defined in Proposition  4.4.2 .

Proof. Define AT
t+1 =

[
αT1,t+1, · · · , αTm,t+1

]
and Āt+1 =

[
ᾱt+1, · · · , ᾱt+1

]
. For all i ∈ V , we

have

∥ϵᾱT
i,t+1

∥ ≤ ∥AT
t+1 − Āt+1∥, (4.20)

since ϵᾱT
i,t+1

is a submatrix of the matrix AT
t+1 −Āt+1. Now, let W ∈ Rm×m be the weight ma-

trix associated with the communication graph, W̄ ∈ Rm×m be a matrix with all components

equal to 1
m

, and

α̂i,jt+1 =
[
α1,t+1(i, j) α2,t+1(i, j) · · · αm,t+1(i, j)

]′

.

We have

∥AT
t+1 − Āt+1∥ ≤ ∥AT

t+1 − Āt+1∥F

= ∥ vec(AT
t+1 − Āt+1)∥

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



W T − W̄ 0 · · · 0

0 W T − W̄ · · · 0
... ... . . . ...

0 0 · · · W T − W̄





α̂1,1
t+1

α̂1,2
t+1
...

α̂l,nt+1



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ ∥W T − W̄∥

∥∥∥∥[
α1,t+1 α2,t+1 · · · αm,t+1

]∥∥∥∥
F

.

(4.21)

Now applying Lemma  19 , we have

∥W T − W̄∥ = ∥(W T )′ − W̄
′∥ ≤

√
m∥(W T )′ − W̄

′∥1

≤ m(ρ(W ))T .
(4.22)
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Further, since the rank of the matrix
[
α1,t+1 α2,t+1 · · · αm,t+1

]
is at most l, conditioning

on event E3, we have

∥∥∥∥[
α1,t+1 α2,t+1 · · · αm,t+1

]∥∥∥∥
F

≤
√

l

∥∥∥∥[
α1,t+1 α2,t+1 · · · αm,t+1

]∥∥∥∥
≤

√
ml max

i∈{1,··· ,m}
(∥αi,t+1∥)

≤
√

ml max
i∈{1,··· ,m}

(∥Θ∥∥
t∑

j=1
xi,jx

′

i,j∥ + ∥
t∑

j=1
ηi,jx

′

i,j∥)

≤
√

ml(t∥Θ∥(19
8 σ2

x + µ̂2)

+
√

tση(4σx

√
(n + l) log 9

δ̂
+ µ̂(

√
2(l + n) +

√
2 log 2

δ̂
)).

(4.23)

The result follows by substituting (  4.22 ) and ( 4.23 ) into (  4.21 ).

Proposition 4.4.4. Conditioning on event E3 in ( 4.19 ), we have

∥β̄−1
t+1∥ ≤ 8

σ2
xt

.

Proof. Conditioning on event E3 in ( 4.19 ), we have

β̄t+1 = 1
m

m∑
i=1

βi,t+1 ⪰ σ2
x

8 tIn.

Taking the inverse we get the desired result.

Proposition 4.4.5. Let Assumption  5 hold. Conditioning on event E3 in ( 4.19 ), for all

i ∈ V, we have

∥ϵ(β̄T
i,t+1)−1∥ ≤ ρ(W ))T c3

t
,

where c3 ≜ 152m
3
2

√
5n

σ2
x

+ 64m
3
2

√
5n

σ4
x

µ̂2.
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Proof. Denote ϵβT
i,t+1

= βTi,t+1 − β̄t+1. Letting W ∈ Rm×m be the weight matrix associated

with the communication graph, W̄ ∈ Rm×m be the matrix with all components equal to 1
m

.

Following the same procedure as in the proof of Proposition  4.4.3 , for all i ∈ V , we have

∥ϵβ̄T
i,t+1

∥ ≤ ∥W T − W̄∥
∥∥∥∥[

β1,t+1 β2,t+1 · · · βm,t+1

]∥∥∥∥
F

≤ m
3
2
√

n(ρ(W ))T max
i∈{1,··· ,m}

(∥βi,t+1∥)

≤ m
3
2
√

n(ρ(W ))T t(19
8 σ2

x + µ̂2),

(4.24)

where the last inequality is due to event E3.

Further, for all i ∈ V , we have

∥ϵ(β̄T
i,t+1)−1∥ = ∥(βTi,t+1)−1 − β̄−1

t+1∥

≤
√

5 max{ 1
σ2
min(βTi,t+1)

,
1

σ2
min(β̄t+1)

}∥ϵβ̄T
i,t+1

∥,
(4.25)

where the inequality comes from [  63 ].

Conditioning on event E3 and noting that βTi,t+1 = ∑m
i=1 qiβi,t+1 for some weights 0 ≤

qi ≤ 1 and ∑m
i=1 qi = 1, we have

σmin(βTi,t+1) = σmin(
m∑
i=1

qiβi,t+1) ≥ σ2
x

8 t. (4.26)

Consequently, substituting the above inequality and Proposition  4.4.4 into ( 4.25 ), and

combining with ( 4.24 ), we obtain

∥ϵ(β̄T
i,t+1)−1∥ ≤ 64

√
5

σ4
xt

2 ∥ϵβ̄T
i,t+1

∥

≤ 64
√

5
σ4
xt

2 m
3
2
√

n(ρ(W ))T t(19
8 σ2

x + µ̂2).

Now we are ready to bound the local estimation error after communication.
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Theorem 4.4.3. Let Assumptions  4 and  5 hold. Fix δ̂ > 0 and let t ≥ max(t1, t2, t3), where

t1 = 8n + 16log 2
δ̂
, t2 = (

16µ̂(
√

4n+
√

2 log 2
δ̂

)

σx
)2, t3 = 2(n + l) log 1

δ̂
. For t mod ζ = 0 and t ≤ S, fix

δ > 0 and denote µ̄t = 4
mtσ2

x

∑m
i=1

∑t
j=1 µi,jµ

′
i,j. We have with probability at least 1−4mδ̂−4δ,

∥Θ̄i,t+1 − Θ∥ ≤ (ρ(W ))TC0︸ ︷︷ ︸
Error due to network convergence

+ C1√
mtσ2

xλmin(In + µ̄t)︸ ︷︷ ︸
Error due to noise

,
(4.27)

for all i ∈ V, where C0 = c3(c1 + t−1/2c2) + 8m
3
2

√
l(c1+t−1/2c2)
σ2

x
+ (ρ(W ))Tm

3
2
√

lc3(c1 + t−1/2c2),

and C1, c1, c2, c3 are defined in Theorem  4.4.1 , Proposition  4.4.2 and Proposition  4.4.5 .

Proof. Recall the decomposition of error from ( 4.17 ) and ( 4.18 ). Note that the event E3 in

( 4.19 ) occurs with probability at least 1 − 4mδ̂ when t ≥ max(t1, t2, t3). Combine event E3

and the event in Theorem  4.4.2 using a union bound. Applying Propositions  4.4.2 ,  4.4.3 ,

 4.4.4 and  4.4.5 , we get the desired result.

Remark 14. Theorem  4.4.3 demonstrates a trade-off between estimation error and com-

munication costs. By choosing δ̂ small, as T tends to infinity, the first term in the bound

tends to zero, and agent i ∈ V can almost recover the same performance guarantee as if it

had access to all samples across the network up to time step t (note that the second term in

the error bound reduces the local estimation error bound in Theorem  4.4.1 by approximately
1√
m

). The speed the first term goes to zero depends on the network topology. Further, this

result implies that by choosing T large such that the first term in the bound is small, commu-

nication becomes less important as t increases (i.e., as each agent keeps collecting samples),

since the the second term goes to zero more slowly. Consequently, the improvements of the

new local estimate after communication over the old estimates Θ̄i,t+1 and Θ̂i,t+1 will become

smaller. In the next section, we discuss how to choose those user specified parameters to

balance the trade-off between estimation error and communication costs, leveraging the above

observation.
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4.5 Determining the communication period, the stopping time, and the number
of communication steps

In short, the communication can be stopped when the minimum between the largest local

error bound (over agents) in Theorem  4.4.1 and the error bound in Theorem  4.4.3 is less

than some pre-specified threshold value ϵ ∈ R>0. To achieve that, one needs to first specify

the communication period ζ. Note that larger ζ corresponds to sparser communication.

Further, one can specify how much error at most due to network convergence in Theorem

 4.4.3 (first term in ( 4.27 )) can be tolerated, denoted as ϵN ∈ R>0. Smaller ϵN would require

more communication steps. Based on that, one can compute the number of communication

steps T that makes the error due to network convergence in Theorem  4.4.3 always less than

ϵN . Consequently, one can then evaluate the bounds in Theorem  4.4.1 and Theorem  4.4.3 

and determine the stopping time S. Note that the bounds in Theorem  4.4.1 and Theorem

 4.4.3 involve parameters that may be unknown in practice. However, it suffices to replace

µ̄t, µ̄i,t by 0, and σx, ση, µ̂, ∥Θ∥ by their corresponding estimated upper/lower bounds.

Although communication could still help to reduce estimation error after t > S, even

infinite communication steps can only allow each agent to recover the same estimation error

bound as if it had access to the global dataset, under which the reduction of error could

be negligible in practice when ∥Θ̂i,t+1 − Θ∥ or ∥Θ̄i,t+1 − Θ∥ is already small enough. Con-

sequently, it might be preferable for these agents to start updating purely based on local

data, considering the communication costs. We will illustrate this idea in the next section

empirically.

4.6 Numerical Experiment

In this example, we consider a network of m = 6 agents trying to learn model ( 4.1 ),

where

Θ =

1.6 0.3

0.8 0.3

 , σx = 3, ση = 1,
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and µi,t = 0 for all i and t. The weight matrix associated with the communication graph is

W =



1/3 1/3 0 0 0 1/3

1/3 1/3 1/3 0 0 0

0 1/3 1/3 1/3 0 0

0 0 1/3 1/3 1/3 0

0 0 0 1/3 1/3 1/3

1/3 0 0 0 1/3 1/3


.

We set ζ = 20 and assume that all parameters in Theorem  4.4.1 and Theorem  4.4.3 are known

for simplicity. The number of communication steps is set to T = 38, which is computed based

on the guidelines suggested in Section  4.5 such that the error due to network convergence

in Theorem  4.4.3 is always less than 0.01 (using δ̂ = 0.001). The communication is stopped

when the smallest error bound between the one in Theorem  4.4.1 (using δ = 0.05) and the one

in Theorem  4.4.3 (using δ = 0.05, δ̂ = 0.001) is less than 0.5, which leads to S = 1620. We

plot the average (over agents) local estimation error without communication ∥Θ̂i,t+1−Θ∥, the

average local estimation error after communication ∥Θ̄i,t+1 − Θ∥, and the global estimation

error ∥Θ̂t+1 − Θ∥. All results are averaged over 10 independent runs.

As expected, the error ∥Θ̄i,t+1−Θ∥ is almost the same as ∥Θ̂t+1−Θ∥ when communication

happens. Further, the error ∥Θ̄i,t+1 − Θ∥ decreases relatively rapidly, and is much smaller

than ∥Θ̂i,t+1 − Θ∥ at the beginning. However, the error ∥Θ̄i,t+1 − Θ∥ decreases more slowly,

and its improvement over ∥Θ̂i,t+1 − Θ∥ becomes less obvious, as each agent gathers more

samples. Although the communication is stopped at t = 1620, leveraging the global dataset

has only marginal improvements over the estimates Θ̂i,t+1, Θ̄i,t+1 after t = 1620, implying

communication becomes less important, which confirms our observation in Theorem  4.4.3 .

On the other hand, although the minimum between ∥Θ̂i,t+1 −Θ∥ and ∥Θ̄i,t+1 −Θ∥ is less than

0.5 after t = 1620, the simulation also implies that our finite time bound is conservative. It

is of interest to develop tighter bounds in future work.
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Figure 4.1. Average ∥Θ̂i,t+1−Θ∥, average ∥Θ̄i,t+1−Θ∥, and
∥Θ̂t+1 − Θ∥. The communication is stopped after t = 1620.

4.7 Chapter Summary

In this chapter, we proposed an online distributed parameter estimation algorithm with

finite time performance guarantees. Our results demonstrate a trade-off between estimation

error and communication costs, and we show that one can leverage the error bounds to

determine a time at which the communication can be stopped.
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5. ONLINE CHANGE POINTS DETECTION FOR LINEAR

DYNAMICAL SYSTEMS WITH FINITE SAMPLE

GUARANTEES

5.1 Introduction

The problem of change point detection (CPD) is to detect when abrupt changes in prop-

erties of time series occur. This problem has wide application in various fields, including

monitoring of medical conditions, speech recognition, environmental surveillance, and image

analysis [ 64 ]. In an offline setting, the goal is to determine the change points by looking at

the entire dataset all at once [ 65 ]. In contrast, in an online (or sequential) setting, the goal

is to detect when changes occur as soon as possible based on new data points arriving in a

streaming manner [ 66 ].

Online CPD under the assumption of independence of samples over time has been studied

extensively over the past few decades [ 67 ]–[ 70 ], and many approaches have been proposed;

for example, [ 71 ], [ 72 ] leveraged Bayesian methods for online CPD, while [ 73 ], [ 74 ] explored

the use of neural networks. The CPD problem is more challenging when the data exhibits

correlations over time, and coming up with theoretical guarantees for such settings is an

active area of research [  75 ]. Indeed, time-correlations between data are commonly observed

in practice. For example, data generated by dynamical systems is inherently correlated over

time; such systems commonly occur in control theory, machine learning and economics [ 76 ].

As a practical example, when learning system dynamics from observed data, one may want

to know if the system changes dynamics at some point of time to avoid using biased data

[ 23 ]. There are several papers that focus on CPD for dynamical systems [  77 ]–[ 79 ]. However,

the existing works typically do not provide finite sample guarantees for the probabilities of

making false and true alarms, i.e., it is unclear how well these algorithms perform given a

finite number of data points.

A common approach used for online CPD is to compare a data-based statistic against a

given threshold, with an alarm being raised if the statistic is larger than the threshold. There

are some papers that provide threshold values that can achieve desired probabilities of false
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and true alarms, based on Bayesian approaches [ 80 ], [ 81 ]. However, these works typically

require a known probability distribution of the data prior to the change or do not have

a theoretical analysis that demonstrates the relationship between detection accuracy and

detection delay. Indeed, a rigorous characterization of the relationship between detection

accuracy and detection delay is rarely provided in the literature. The paper [ 82 ] studies

change point detection leveraging multivariate singular spectrum analysis, where the authors

model the time series data as being generated by a spatio-temporal model and theoretically

demonstrate the trade-off between detection delay and false alarm rate. However, the main

focus of their analysis is on how a user-specified threshold value used in their test affects

the performance of the algorithm in expectation. In contrast, our focus in this chapter is on

finite sample guarantees for the probabilities of making false and true alarms, and how the

number of samples used in our algorithm at each time step affects the detection accuracy

and detection delay.

Lastly, we note that all of the above mentioned works do not theoretically demonstrate

how the presence of multiple change points affects the performance of the CPD algorithms.

This aspect is captured in our algorithm and its associated analysis.

In summary, our contributions are as follows.

• We provide an online change point detection algorithm for linear dynamical systems

that is suitable for multiple change points. The algorithm is based on a least squares

approach and can be easily implemented. We develop a data-dependent threshold that

can be used in our test, which enables the user to achieve a pre-specified false alarm

probability (assuming certain prior knowledge about the system is available). We note

that the threshold does not require perfect knowledge of the system parameters at any

given time. This is different from many existing works on CPD, e.g., [ 80 ], [ 83 ], [  84 ],

which usually require known distribution prior to the change (when there is only a

single change point).

• We provide a finite-sample-based lower bound for the probability of making a true

alarm after changes occur with a certain delay. Our result demonstrates the trade-off
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between accurate detection and detection delay, as well as the ability to detect fast

changes.

Our theoretical analysis and guarantees are demonstrated and validated via numerical

examples at the end of this chapter.

5.2 Problem formulation and algorithm

Consider the discrete time linear dynamical system

xk+1 = Akxk + Bkuk + wk, (5.1)

where k ∈ N is the time index, xk ∈ Rn is the state, uk ∈ Rp is the input, wk ∈ Rn is the

process noise, Ak ∈ Rn×n and Bk ∈ Rn×p are system matrices. The input and process noise

are assumed to be i.i.d Gaussian, with uk ∼ N (0, σ2
uIp) and wk ∼ N (0, σ2

wIn). We define

σmin ≜ min(σw, σu). The initial state x0 is assumed to be independent of uk and wk. The

system matrices Ak, Bk are deterministic but unknown. Let Θk =
[
Ak Bk

]
. We further

assume that there are known parameters bσw and bΘ that satisfy σw ≤ bσw and ∥Θk∥ ≤ bΘ

for all k ≥ 0. We call a time index k̂ ∈ N≥1 a change point if ∆k̂ ≜ ∥Θk̂−1 − Θk̂∥ > 0. Our

goal is to determine the change points using observed data from system (  5.1 ) in an online

fashion. From the perspective of control theory, one can treat the above model as a switched

system with unknown dynamics [ 85 ], where the goal is to detect when the system switches

dynamics and learn a model for each mode of the system, so that one can design a better

controller; one can also treat Ak in system (  5.1 ) as a closed loop system under control, and

the input uk as a small exploratory input (which is a common strategy used in the adaptive

control literature [ 5 ]).

Let N ≥ 2 be a design parameter that corresponds to the length of the interval of

previously seen data we would like to use at each step to detect change points (our analysis

later will provide guidance on how to select N). Let {(xi, uj) : 0 ≤ i ≤ 2N − 1, 0 ≤ j ≤

2N − 2} denote the initial dataset. At each time step k ≥ 2N − 1, a sample (xk+1, uk)
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generated by system ( 5.1 ) is observed. Let the label matrices for the reference window and

the test window at time step k be

Xref
k =

[
xk−2N+3 · · · xk−N+1

]
∈ Rn×(N−1), (5.2)

and

X test
k =

[
xk−N+3 · · · xk+1

]
∈ Rn×(N−1), (5.3)

respectively. Let zk =
[
x′
k u′

k

]′

∈ Rn+p for k ≥ 0, and define the regressor matrices for the

reference window and the test window at time step k as

Zref
k =

[
zk−2N+2 · · · zk−N

]
∈ R(n+p)×(N−1),

Ztest
k =

[
zk−N+2 · · · zk

]
∈ R(n+p)×(N−1).

(5.4)

Furthermore, we denote the noise matrices for the reference window and the test window at

time step k as
W ref
k =

[
wk−2N+2 · · · wk−N

]
∈ Rn×(N−1),

W test
k =

[
wk−N+2 · · · wk

]
∈ Rn×(N−1).

(5.5)

Based on these data windows, we consider the following intuitive approach. Let Θ̂ref
k

and Θ̂test
k be the estimated system models using the data from the reference window and the

test window, respectively. If the data from the reference window and the test window are

generated by the same dynamics, then their estimated models should be similar; if the data

from these windows are generated by different dynamics, i.e., if there is a change point, their

estimated models should be quite different, i.e., one may flag a change point if the metric

∥Θ̂ref
k − Θ̂test

k ∥ is larger than some user-specified threshold value. To find Θ̂ref
k and Θ̂test

k , we

will solve the following regularized least squares problems at each time step k

min
Θ̃ref

k
∈Rn×(n+p)

{∥Xref
k − Θ̃ref

k Zref
k ∥2

F + λ∥Θ̃ref
k ∥2

F},
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and
min

Θ̃test
k

∈Rn×(n+p)
{∥X test

k − Θ̃test
k Ztest

k ∥2
F + λ∥Θ̃test

k ∥2
F},

where λ > 0 is a regularization parameter. The closed-form solutions of the above problems

are given by

Θ̂ref
k = Xref

k (Zref
k )′(Zref

k (Zref
k )′ + λIn+p)−1, (5.6)

and

Θ̂test
k = X test

k (Ztest
k )′(Ztest

k (Ztest
k )′ + λIn+p)−1, (5.7)

respectively. In this chapter, we will develop a data-dependent threshold γk = γk(δ) that

has provable finite-sample guarantees, where δ ∈ (0, 1) is a user-specified upper bound of the

false alarm probability. The specific expression of γk will be given later when we present our

results (Lemma  20 ).

Our guarantees will apply to change points that are sufficiently separated (in time) from

other change points. We make the following definition to make this formal.

Definition 5.2.1 (Sufficiently Separated Change Point). Suppose the system has q ∈ N≥1

change points. Let the sequence of change points be 0 < k1 < · · · < kq. We call a change

point ki, 1 ≤ i ≤ q − 1, sufficiently separated if ki − ki−1 ≥ 4N − 1 and ki+1 − ki ≥ 4N − 1,

where k0 = 0. The change point kq is sufficiently separated if kq − kq−1 ≥ 4N − 1.

If the system has infinitely many change points 0 < k1 < k2 < · · · , we call a change point

ki, i ≥ 1, sufficiently separated if ki − ki−1 ≥ 4N − 1 and ki+1 − ki ≥ 4N − 1, where k0 = 0.

We let the value Sk represent the most recent change point predicted by the algorithm at

time step k ≥ 2N − 1, where the initialization is given by S2N−2 = 0. If the current metric

∥Θ̂ref
k − Θ̂test

k ∥ is greater than the threshold γk, and k − Sk−1 > 2N − 2, then the algorithm

will predict a change point and set Sk = k; otherwise, no change point will be predicted

and the algorithm will set Sk = Sk−1. The requirement of k − Sk−1 > 2N − 2 is needed in

addition to ∥Θ̂ref
k − Θ̂test

k ∥ ≥ γk to deal with potentially multiple change points. Intuitively,

if the metric is larger than the threshold for some consecutive time steps, we may not want

to flag all of them as change points if all of the change points are sufficiently separated, so we

wait for a period of time to make sure that the current dynamics have settled before making
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the next prediction. In general, if there is no change point at time step k, i.e., ∥∆k∥ = 0, we

want the algorithm to output Sk ̸= k; if there is a change point at time step k, we would like

the algorithm to detect that as soon as possible, i.e., if ∥∆k∥ > 0, we want the algorithm to

output St ≥ k for some t ≥ k, and the value minSt≥k{St} should be small.

The above steps are encapsulated in Algorithm  5 .

Algorithm 5 Online Change Point Detection
Input False alarm probability δ ∈ (0, 1), window size N ≥ 2, parameters λ > 0, bσw , bΘ

1: Initialize S2N−2 = 0

2: for k = 2N − 1, 2N, 2N + 1, . . . do

3: Gather the sample (xk+1, uk)

4: Compute Θ̂ref
k and Θ̂test

k as in ( 5.6 ) and ( 5.7 ), respectively

5: Compute γk as in ( 5.10 )

6: if ∥Θ̂ref
k − Θ̂test

k ∥ ≥ γk and k − Sk−1 > 2N − 2 then

7: Set Sk = k

8: Flag k as a change point

9: else

10: Set Sk = Sk−1

11: end if

12: end for

Remark 15. One can update the least squares solution using the Sherman-Morrison formula

[ 60 ], which provides an efficient way to update the matrix inverse if the changes are ‘small’

(in our case, the change at each time step is the replacement of the oldest sample by the

most recent one). The threshold γk will be provided in the next section, and depends on the

parameters bσw and bΘ (which depend on prior knowledge of the system, or can be estimated

in practice). If those parameters are not available, one can replace γk with any other positive

value, but at the cost of losing performance guarantees. In general, a smaller threshold would

lead to a higher probability of both false and true alarms.
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In the next section, we will present our main results showing that Algorithm  5 ensures

the false alarm probability will be less than δ. We further provide a finite-sample-based lower

bound on the true alarm probability, which demonstrates the trade-off between detection

accuracy and detection delay.

5.3 Finite Sample Analysis of Algorithm  5 

In this section, we present theoretical guarantees for Algorithm  5 . Some of the proofs

are included in section  5.6 . In Section  5.3.1 , we present some intermediate results that are

used later. Our main results (the finite-sample bounds on the probabilities of making false

and true alarms) are presented in Section  5.3.2 . We first make the following assumption on

system ( 5.1 ).

Assumption 6. There exists a constant β > 0 such that tr(E[xkx′
k]) ≤ β for all k ≥ 0.

If we have ρ(Ak) < 1 for all k ≥ 0, i.e., all potential systems are strictly stable, As-

sumption  6 simply requires the dynamics to not change too frequently [ 86 ] (as a sufficient

condition) or that there are finitely many change points.

5.3.1 Intermediate results

The lemma below provides a value for the threshold γk, along with an associated proba-

bility bound on the recovered system matrices Θ̂ref
k and Θ̂test

k .

Lemma 20. Consider any time step k∗ ≥ 2N − 1. Let V̄ ref
k∗ = (Zref

k∗ (Zref
k∗ )′ + V )V −1 and

V̄ test
k∗ = (Ztest

k∗ (Ztest
k∗ )′ + V )V −1, where V = λIn+p. Suppose

Xref
k∗ = Θk∗−2N+2Z

ref
k∗ + W ref

k∗ , (5.8)

and

X test
k∗ = Θk∗−N+2Z

test
k∗ + W test

k∗ , (5.9)
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i.e., the system matrices at the start of the reference interval and the test interval are the

same throughout the interval, and that the threshold is chosen as

γk∗ =
bσw

√
32
9 (log 9n2

δ
+ 1

2 log det(V̄ ref
k∗ ))√

λmin(Zref
k∗ (Zref

k∗ )′ + λIn+p)

+ λbΘ

λmin(Zref
k∗ (Zref

k∗ )′ + λIn+p)

+
bσw

√
32
9 (log 9n2

δ
+ 1

2 log det(V̄ test
k∗ ))√

λmin(Ztest
k∗ (Ztest

k∗ )′ + λIn+p)

+ λbΘ

λmin(Ztest
k∗ (Ztest

k∗ )′ + λIn+p)
.

(5.10)

Then we have

P (∥Θ̂ref
k∗ − Θk∗−2N+2∥ + ∥Θ̂test

k∗ − Θk∗−N+2∥ ≥ γk∗) ≤ δ.

Proof. We will focus on bounding the term ∥Θ̂ref
k∗ − Θk∗−2N+2∥ as the analysis for the term

∥Θ̂test
k∗ − Θk∗−N+2∥ is almost the same. Recalling the expression of Θ̂ref

k∗ in ( 5.6 ), we have

∥Θ̂ref
k∗ − Θk∗−2N+2∥

= ∥W ref
k∗ (Zref

k∗ )′(Zref
k∗ (Zref

k∗ )′ + λIn+p)−1 − λΘk∗−2N+2(Zref
k∗ (Zref

k∗ )′ + λIn+p)−1∥

≤ ∥W ref
k∗ (Zref

k∗ )′(Zref
k∗ (Zref

k∗ )′ + λIn+p)−1∥ + ∥λΘk∗−2N+2(Zref
k∗ (Zref

k∗ )′ + λIn+p)−1∥

≤ ∥W ref
k∗ (Zref

k∗ )′(Zref
k∗ (Zref

k∗ )′ + λIn+p)−1∥ + λbΘ

λmin(Zref
k∗ (Zref

k∗ )′ + λIn+p)
.

(5.11)

For the first term after the last inequality of ( 5.11 ), we have

∥W ref
k∗ (Zref

k∗ )′(Zref
k∗ (Zref

k∗ )′ + λIn+p)−1∥

≤ ∥W ref
k∗ (Zref

k∗ )′(Zref
k∗ (Zref

k∗ )′ + λIn+p)−1/2∥∥(Zref
k∗ (Zref

k∗ )′ + λIn+p)−1/2∥

= ∥W ref
k∗ (Zref

k∗ )′(Zref
k∗ (Zref

k∗ )′ + λIn+p)−1/2∥√
λmin(Zref

k∗ (Zref
k∗ )′ + λIn+p)

= ∥(λIn+p + ∑k∗−N
t=k∗−2N+2 ztz

′
t)−1/2(∑k∗−N

t=k∗−2N+2 ztw
′
t)∥√

λmin(Zref
k (Zref

k )′ + λIn+p)
.

(5.12)
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Now we will bound the numerator of the last equality of ( 5.12 ) using Lemma  5 . Define the se-

quence pairs {z̄t}t≥1 and {w̄t}t≥1, where z̄t = zk∗−2N+1+t and w̄t = wk∗−2N+1+t. Then we have

∥(λIn+p + ∑k∗−N
t=k∗−2N+2 ztz

′
t)−1/2(∑k∗−N

t=k∗−2N+2 ztw
′
t)∥ = ∥(λIn+p + ∑N−1

t=1 z̄tz̄
′
t)−1/2(∑N−1

t=1 z̄tw̄
′
t)∥.

Further, define the filtration {Ft}t≥0, where Ft = σ({z̄i}1+t
i=1 ∪ {w̄j}tj=1). With these defi-

nitions, we have the noise terms w̄t are Ft-measurable, and w̄t|Ft−1 are sub-Gaussian with

parameter σ2
w for all t ≥ 1. Consequently, fixing δ > 0, we can apply Lemma  5 to obtain

with probability at least 1 − δ
2

∥(λIn+p + ∑k∗−N
t=k∗−2N+2 ztz

′
t)−1/2(∑k∗−N

t=k∗−2N+2 ztw
′
t)∥√

λmin(Zref
k∗ (Zref

k∗ )′ + λIn+p)
≤

√
32
9 σ2

w(log 9n2
δ

+ 1
2 log det(V̄ ref

k∗ )√
λmin(Zref

k∗ (Zref
k∗ )′ + λIn+p)

.

(5.13)

Combining the above inequality with ( 5.11 ), using σw ≤ bσw , we have with probability at

least 1 − δ
2

∥Θ̂ref
k∗ − Θk∗−2N+2∥ ≤

bσw

√
32
9 (log 9n2

δ
+ 1

2 log det(V̄ ref
k∗ ))√

λmin(Zref
k∗ (Zref

k∗ )′ + λIn+p)
+ λbΘ

λmin(Zref
k∗ (Zref

k∗ )′ + λIn+p)
.

(5.14)

Following a similar procedure for the term ∥Θ̂ref
k∗ − Θk∗−N+2∥, and applying a union bound,

we have the desired result.

The following lemma bounds the probability of the metric ∥Θ̂ref
k − Θ̂test

k ∥ being larger

than the threshold γk if there is not a change point in both the reference interval and the

test interval.

Lemma 21. Consider any time step k∗ ≥ 2N − 1. If it holds that Θk∗ = Θk∗−1 = . . . =

Θk∗−2N+1, then we have

P (∥Θ̂ref
k∗ − Θ̂test

k∗ ∥ ≥ γk∗) ≤ δ.

Proof. Since Θk∗ = Θk∗−1 = . . . = Θk∗−2N+1, we have

∥Θ̂ref
k∗ − Θ̂test

k∗ ∥ = ∥(Θ̂ref
k∗ − Θk∗) − (Θ̂test

k∗ − Θk∗)∥

≤ ∥Θ̂ref
k∗ − Θk∗∥ + ∥Θ̂test

k∗ − Θk∗∥

= ∥Θ̂ref
k∗ − Θk∗−2N+2∥ + ∥Θ̂test

k∗ − Θk∗−N+2∥.
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Further, note that we also have

Xref
k∗ = Θk∗−2N+2Z

ref
k∗ + W ref

k∗ ,

X test
k∗ = Θk∗−N+2Z

test
k∗ + W test

k∗ .

Applying Lemma  20 , we get the desired result.

The following two lemmas are used to establish our finite-sample bound on the true alarm

probability, with proofs provided in section  5.6 .

Lemma 22. Let k∗ be a time step such that k∗ ≥ 2N − 1. For any fixed δ̄ > 0, let N ≥

max(42, 200(n + p) log(13
δ̄

)). Then with probability at least 1 − 2δ̄, the following inequalities

hold simultaneously:

Zref
k∗ (Zref

k∗ )′ + λIn+p ⪰ Nσ2
min + 42λ

42 In+p,

Ztest
k∗ (Ztest

k∗ )′ + λIn+p ⪰ Nσ2
min + 42λ

42 In+p.

Lemma 23. Let k∗ be a time step such that k∗ ≥ 2N − 1. For any fixed δ̄ > 0, with

probability at least 1 − 2δ̄, the following inequalities hold simultaneously:

∥Zref
k∗+N−2(Z

ref
k∗+N−2)′∥ ≤ C1

δ̄
,

∥Ztest
k∗+N−2(Ztest

k∗+N−2)′∥ ≤ C1

δ̄
,

where C1 = (N − 1)(β + σ2
up).

The following result bounds the probability of the threshold value γk being small com-

pared to the magnitude of the change, and will be used later to lower bound the probability

of making an accurate detection.
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Lemma 24. Let k∗ ≥ 2N − 1 be a change point. Let N1 = 200(n + p)(log( 7λ
C1

) + ∥∆k∗∥√
Nσ2

min+42λ
2500b2

σw
(n+p) − 168λbΘ√

2500b
σ2

w
(n+p)(Nσ2

min+42λ)
). Consider any N satisfying N ≥ max(42, N1,

336λbΘ
∥∆k∗ ∥σ2

min
− 42λ

σ2
min

). Further let λ ≤ 4C1
eδe

, where

δe = 8C1

λ exp(∥∆k∗∥
√

Nσ2
min+42λ

10000b2
σw

(n+p) −
√

log( 9n2
δ

)
n+p )

.

Then we have

P ({2γk∗+N−2 ≤ ∥∆k∗∥}) ≥ 1 − δe,

where γk∗+N−2 is defined in Lemma  20 , and C1 is defined in Lemma  23 .

Proof. Fix δ̄ > 0. From Lemma  22 , when N ≥ max(42, 200(n + p) log(13
δ̄

)), we have with

probability at least 1 − 2δ̄ the following inequalities

λmin(Zref
k∗+N−2(Z

ref
k∗+N−2)′ + λIn+p) ≥ Nσ2

min + 42λ

42 , (5.15)

λmin(Ztest
k∗+N−2(Ztest

k∗+N−2)′ + λIn+p) ≥ Nσ2
min + 42λ

42 . (5.16)

From Lemma  23 , letting λ ≤ C1
eδ̄

, we have with probability at least 1 − 2δ̄

det(V̄ ref
k∗+N−2) = det(Zref

k∗+N−2(Z
ref
k∗+N−2)′ + V )

det(V )

≤
(∥Zref

k∗+N−2(Z
ref
k∗+N−2)′∥ + λ)n+p

λn+p

≤ (C1

δ̄λ
+ 1)n+p ≤ (2C1

δ̄λ
)n+p,

(5.17)

and

det(V̄ test
k∗+N−2) ≤ (2C1

δ̄λ
)n+p, (5.18)

112



where V̄ ref
k∗+N−2 and V̄ test

k∗+N−2 are defined in Lemma  20 . Applying a union bound, we have the

events in ( 5.15 )-( 5.18 ) occur simultaneously with probability at least 1 − 4δ̄, which implies

2γk∗+N−2 ≤
50bσw

√
log(9n2

δ
) + 50bσw log(2C1

δ̄λ
)√n + p√

Nσ2
min + 42λ

+ 168λbΘ

Nσ2
min + 42λ

,

where we used the relationship that
√

a + b ≤
√

a +
√

b for positive a, b, and that λ ≤ C1
eδ̄

⇒
2C1
δ̄λ

≥ e ⇒
√

log(2C1
δ̄λ

) ≤ log(2C1
δ̄λ

).

Setting the right hand side of the above inequality to ∥∆k∗∥, after some algebraic ma-

nipulations, we have
δ̄ = 2C1

λ exp( c
50bσw

√
n+p)

, (5.19)

where c = ∥∆k∗∥
√

Nσ2
min + 42λ− 168λbΘ√

Nσ2
min+42λ

−50bσw

√
log(9n2

δ
). When N ≥ 336λbΘ

∥∆k∗ ∥σ2
min

− 42λ
σ2

min
,

we have c ≥ ∥∆k∗ ∥
√
Nσ2

min+42λ
2 − 50bσw

√
log(9n2

δ
), which implies δ̄ ≤ δe

4 . Finally, recall that

we also required the conditions N ≥ max(42, 200(n + p) log(13
δ̄

)) and λ ≤ C1
eδ̄

. Substituting

( 5.19 ) into these conditions, using δ̄ ≤ δe

4 , and after some simplifications, we have the desired

result.

Remark 16. In Theorem  5.3.2 , we will show that a smaller δe corresponds to a higher

probability of true alarm. Note that N will be larger than N1 for sufficiently large N since

the term C1 grows linearly fast.

The following result lower bounds the probability of the metric ∥Θ̂ref
k −Θ̂test

k ∥ being larger

than the threshold γk with some delay, when there is a change point.

Lemma 25. Consider any time step k∗ that is a sufficiently separated change point. Suppose

the conditions in Lemma  24 are satisfied. Then we have

P (
k∗+N−2⋃
t=k∗

{∥Θ̂ref
t − Θ̂test

t ∥ ≥ γt}) ≥ 1 − δ − δe,

where δe is defined in Lemma  24 .
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Proof. Note that we have

P (
k∗+N−2⋃
t=k∗

{∥Θ̂ref
t − Θ̂test

t ∥ ≥ γt}) ≥ P ({∥Θ̂ref
k∗+N−2 − Θ̂test

k∗+N−2∥ ≥ γk∗+N−2}).

We will lower bound the probability after the above inequality now. We have

∥Θ̂ref
k∗+N−2 − Θ̂test

k∗+N−2∥

= ∥(Θk∗−1 + Θ̂ref
k∗+N−2 − Θk∗−1) − (Θk∗ + Θ̂test

k∗+N−2 − Θk∗)∥

= ∥∆k∗ + (Θ̂ref
k∗+N−2 − Θk∗−1) − (Θ̂test

k∗+N−2 − Θk∗)∥

≥ ∥∆k∗∥ − ∥Θ̂ref
k∗+N−2 − Θk∗−1∥ − ∥Θ̂test

k∗+N−2 − Θk∗∥,

(5.20)

where the last inequality is due to the triangle inequality. Since k∗ is a sufficiently separated

change point, we have Θk∗−1 = Θk∗−2 = . . . = Θk∗−4N+1 and Θk∗ = Θk∗+1 = . . . = Θk∗+4N−2.

Hence, we have

∥Θ̂ref
k∗+N−2 − Θk∗−1∥ = ∥Θ̂ref

k∗+N−2 − Θk∗−N∥. (5.21)

For the same reason, we have

Xref
k∗+N−2 = Θk∗−NZref

k∗+N−2 + W ref
k∗+N−2, (5.22)

and

X test
k∗+N−2 = Θk∗Ztest

k∗+N−2 + W test
k∗+N−2. (5.23)

Applying Lemma  20 , we can obtain that with probability at least 1 − δ

∥Θ̂ref
k∗+N−2 − Θk∗−N∥ + ∥Θ̂test

k∗+N−2 − Θk∗∥ ≤ γk∗+N−2, (5.24)

which implies that

∥Θ̂ref
k∗+N−2 − Θ̂test

k∗+N−2∥ ≥ ∥∆k∗∥ − γk∗+N−2 (5.25)
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with probability at least 1− δ from ( 5.20 ) and ( 5.21 ). Furthermore, applying Lemma  24 and

a union bound, we have with probability at least 1 − δ − δe

∥Θ̂ref
k∗+N−2 − Θ̂test

k∗+N−2∥ ≥ ∥∆k∗∥ − γk∗+N−2

≥ γk∗+N−2.

5.3.2 Main results: Finite-sample probability bounds on making false and true
alarms

Now, we state our first main theorem, which shows that the the probability of false alarm

is upper bounded by δ (recall that setting Sk = k is always associated with flagging time

step k as a change point).

Theorem 5.3.1 (Probability of False Alarm). Consider any time step k∗ ≥ 2N − 1. If it

holds that Θk∗ = Θk∗−1 = . . . = Θk∗−2N+1, we have

P (Sk∗ = k∗) ≤ δ.

Proof. From Algorithm  5 , we have P (Sk∗ = k∗) ≤ P (∥Θ̂ref
k∗ −Θ̂test

k∗ ∥ ≥ γk∗). Applying Lemma

 21 , we have P (Sk∗ = k∗) ≤ δ.

Remark 17. Note that δ is a user specified parameter that can be arbitrarily small. However,

a small δ could reduce the true alarm probability, which will be discussed when we present

Theorem  5.3.2 . We also note that although we assumed that both the input uk and the noise

wk are i.i.d Gaussian, this result actually holds for independent sub-Gaussian noise and

arbitrary input that is independent of future noise. However, our finite-sample lower bound

of the true alarm probability, i.e., if there is a change point, requires the assumption of i.i.d

Gaussian input and i.i.d Gaussian noise. We leave the analysis of more general distributions

of input and noise to future work.

Next, we state our result that lower bounds the probability of making a true alarm (with

some delay).
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Theorem 5.3.2 (Probability of True Alarm). Consider any time step k∗ that is a sufficiently

separated change point. Suppose the conditions on N, λ in Lemma  24 are also satisfied. Recall

that C1 = (N − 1)(β + σ2
up), and

δe = 8C1

λ exp(∥∆k∗∥
√

Nσ2
min+42λ

10000b2
σw (n+p) −

√
log( 9n2

δ
)

n+p )
.

Then we have

P (
k∗+N−2⋃
t=k∗

{St = t}) ≥ 1 − (2N + 1)δ − δe,

where the term (2N + 1)δ captures the uncertainty due to settling from the previous change

point, and the term δe captures the uncertainty due to noise.

Proof. Define the events E1 ≜
⋃k∗+N−2
t=k∗ {∥Θ̂ref

t − Θ̂test
t ∥ ≥ γt} and E2 ≜

⋂k∗−1
t=k∗−2N{∥Θ̂ref

t −

Θ̂test
t ∥ ≤ γt}. We have P (E1) ≥ 1 − δ − δe by applying Lemma  25 . Since k∗ is a sufficiently

separated change point, we also have Θk∗−1 = Θk∗−2 = . . . = Θk∗−4N+1. Hence we can apply

Lemma  21 and combine the 2N events in E2 using a union bound to obtain P (E2) ≥ 1−2Nδ.

Recall the conditions for setting St = t in Algorithm  5 . Conditioning on E1 ∩ E2, let t̂ be

the smallest time step such that ∥Θ̂ref
t − Θ̂test

t ∥ ≥ γt for t = k∗, . . . , k∗ + N − 2. Note that

on the event E1 ∩ E2 we also have

t̂ − St̂−1 ≥ k∗ − Sk∗−2N−1 ≥ k∗ − (k∗ − 2N − 1)

> 2N − 2,

with probability 1, which implies St̂ = t̂. Consequently, combining events E1 and E2 using

a union bound, we have

P (
k∗+N−2⋃
t=k∗

{St = t}) ≥ P (E1 ∩ E2) ≥ 1 − (2N + 1)δ − δe.

Remark 18. Interpretation of Theorem  5.3.2 . Recall that setting St = t implies

flagging time step t as a change point. Theorem  5.3.2 provides a high probability lower bound
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on true detection in the long run (i.e., predict the change point after k∗, but within any pre-

specified large time steps), where the associated delay is bounded by N − 2. Note that the

term −2Nδ is added to the probability lower bound in Lemma  25 . This term is included due

to the need to deal with potentially multiple change points, since the algorithm may conclude

that the dynamics have settled by observing the event E2 = ⋂k∗−1
t=k∗−2N{∥Θ̂ref

t − Θ̂test
t ∥ ≤ γt},

i.e., we want to make sure that the reason the metric is greater than the threshold is that

we have a new change point instead of that we are observing some residual effects from the

previous change point. Below we further discuss the effects of some parameters.

Discussions on the effects of δ, N: Suppose that the window size N is fixed for

now. We see from Theorem  5.3.2 that a smaller false probability δ would lead to a smaller

uncertainty due to the need to confirm the dynamics has settled from the previous change

point. However, if δ is set to be too small, δe may become very large and make the overall

lower bound small, which implies a potentially smaller probability of true detection in the long

run. To make the true alarm probability lower bound large and maintain a small false alarm

probability δ, we can use a larger window size N . More specifically, by setting δ = a
exp(

√
N)

for some constant a > 0, we see that a larger N corresponds to a smaller false alarm

probability, and ensures both a smaller uncertainty due to settling and a smaller uncertainty

due to noise, since the term C1 in the numerator of δe grows at most linearly with respect

to N , and the denominator of δe grows exponentially fast with respect to the square root of

N . The price, on the other hand, is that the guaranteed delay is larger due to a larger N .

Consequently, this result demonstrates a trade-off between detection accuracy and detection

delay, i.e., to maintain both a low false alarm probability and a high true alarm probability

in the long run, one has to suffer from a potentially larger delay by using a larger N . Such

a non-asymptotic characterization is different from existing approaches, where algorithm

performance is typically measured in expectation, e.g., using Average Running Length [ 82 ].

Furthermore, as N becomes larger, there may be fewer change points that satisfy the sufficient

separation condition, i.e., the speed of the change of the dynamics may appear to be too fast

relative to the time interval we are monitoring. In other words, this result further implies

that a smaller N is suitable for more frequent changes, but at the price of being less likely to

predict the change accurately.
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Discussions on the effects of ∥∆k∗∥: Finally, note that the denominator of δe also

grows exponentially fast with respect to the magnitude of change ∥∆k∗∥ (supposing that N is

large enough). Hence, a larger change in dynamics could lead to a higher probability (lower

bound) of detecting a change point (matching intuition).

Theorem  5.3.1 and Theorem  5.3.2 cover all possible situations if all change points are

sufficiently separated. More specifically, consider any time step k∗ ≥ 2N − 1. If there is not

a change point over the past 2N time steps, Theorem  5.3.1 ensures that there will not be

a false alarm with high probability. If the current time step k∗ is a change point, Theorem

 5.3.2 ensures that Algorithm  5 will detect it, i.e., predict exactly one change point, within

N − 1 time steps, with high probability. Furthermore, the design of Algorithm  5 ensures

that the Algorithm will not flag any change point at k∗ + N − 1, k∗ + N, . . . , k∗ + 2N − 2,

if a change point was predicted at k∗, . . . , k∗ + N − 2 (note that the events {St = t}k∗+2N−2
t=k∗

are mutually exclusive, since it is necessary to have t − St−1 > 2N − 2 to set St = t from

Algorithm  5 ). These properties imply that all time steps are covered by either Theorem

 5.3.1 or Theorem  5.3.2 .

5.4 Numerical experiment

In this section, we provide some numerical examples of the online change point detection

algorithm. In general, a threshold that has non-asymptotic guarantees can be conservative

in practice. However, as we will see, even if we use the exact theoretical threshold, Algorithm

 5 can still achieve reasonably good performance, which indicates that the derived threshold

is not overly conservative in practice (and it does not require perfect knowledge of the

parameters at any time, unlike [ 80 ], [  83 ], [  84 ]).

The system we consider here is the linearized longitudinal dynamics of a UAV reported

in [ 87 ], where we set the sampling rate to be 0.1 seconds using zero-order hold. The system

has 5 states, representing inertial velocity components of the airframe projected onto a body
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frame axis, the pitch angle, the pitch angular rate, and the altitude. The input is the elevator

deflection. Assuming full state observation, the matrices Ak and Bk are given by

Ak =

0.9371 + ϵAk 0.068 −0.9507 −0.0367 0

−0.0085 0.2761 −0.0207 0.411 0

0.0035 −0.0164 0.9991 0.043 0

0.0548 −0.1914 −0.0253 0.0593 0

−0.0086 0.0726 −1.6984 −0.0146 1


,

Bk =[
0.361 + ϵBk −4.8436 −0.3888 −5.6967 0.0492

]′
,

where ϵAk and ϵBk are perturbations we added to to the system, and we set ϵAk = 0, −1, −1 for

0 ≤ k ≤ 2499, 2500 ≤ k ≤ 4999, and k ≥ 5000, respectively; ϵBk = 0, 2, 0 for 0 ≤ k ≤ 2499,

2500 ≤ k ≤ 4999, and k ≥ 5000, respectively. In other words, k1 = 2500 and k2 = 5000

are two change points. We set λ = σw = σu = 1, and x0 = 0. The parameters used in our

threshold value γk are assumed to be tight bounds for simplicity, i.e., bΘ = maxk≥0(∥Θk∥)

and bσw = σw. We performed experiments using N = 50, 150, 250, 350, 450, each with 10

independent runs, where the length of each experiment is set to 9000 steps. The bound on

false alarm probability is set to δ = 1000
exp

√
N

(as suggested in Remark  18 ).

In Figures  5.1 - 5.3 , we plot the average ∥Θ̂ref
k − Θ̂test

k ∥ versus γk for N = 50, 250, 450.

In Table  5.1 , we report the performance of the CPD algorithm. Here, AD1 refers to the

average detection time between k = 2500 and k = 4999, AD2 refers to the average detection

time between k = 5000 and k = 8999, MD1 refers to the number of experiments where

no detection was made between k = 2500 and k = 4999, and MD2 refers to the number

of experiments where no detection was made between k = 5000 and k = 8999. For all

experiments, none of them made a false alarm before k = 2500. Further, we can see that

as N increases, the probability of true detection in the long run increases (captured by a
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smaller misdetection rate). However, the corresponding delay also increases accordingly.

These empirical observations are consistent with our theoretical findings in Theorem  5.3.2 .

Table 5.1. Empirical Performance of Algorithm  5 Over 10 Independent Runs.
The bound on false alarm probability is set to δ = 1000

exp
√
N

.
N δ AD1 MD1 AD2 MD2
50 0.85 2550 9 N/A 10
150 4.8 × 10−3 2629.3 1 N/A 10
250 1.3 × 10−4 2685.8 0 5218.9 1
350 7.5 × 10−6 2701.2 0 5280.9 0
450 6.1 × 10−7 2755 0 5321.8 0

5.5 Chapter Summary

In this chapter, we studied online change point detection for linear dynamical systems,

where there are potentially multiple change points. Our analysis provides a data-dependent

dynamic threshold that allows the user to specify a desired upper bound of the false alarm

probability. We also provided a finite-sample lower bound on the probability of correctly

identifying the change point with some delay. Our analysis demonstrates the trade-off be-

tween detection accuracy and detection delay, and characterizes how frequently changes can

occur while still maintaining detection with a given probability. It is noted that our focus in

this chapter is on fully-observed systems, i.e., all system states can be perfectly measured. It

would be of interest to extend our analysis to partially-observed systems, where only a subset

of system states can be measured. Other promising directions for future work would be to

analyze different types of changes for dynamical systems, e.g., changes in noise distribution

or changes in models that are possibly state-dependent, and to consider nonlinear system

dynamics.

5.6 Proofs of Results

The following result is used to establish Lemma  22 .
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Figure 5.1. Online Change
Point Detection with N = 50.
The use of small N results in
a threshold that is too high
to flag change points, although
we see spikes in the test statis-
tics.

Figure 5.2. Online Change
Point Detection with N =
250. The threshold success-
fully captures the two change
points using a moderate N .

Figure 5.3. Online Change
Point Detection with N =
450. The threshold success-
fully captures the two change
points, but the use of a larger
N incurs higher delay.
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Lemma 26. [ 88 , Lemma 36] Let {zt}t≥0 be a sequence of random vectors that is adapted to

a filtration {Ft}t≥0, where zt ∈ Rd for all t ≥ 0. Suppose zt is conditionally Gaussian on

Ft−1 with E[ztz′
t|Ft−1] ⪰ σ2

zId for all t ≥ 1, where σz > 0. Then, for any fixed δ > 0 and any

T ≥ 200d log(12
δ

), the following inequality holds with probability at least 1 − δ:

T−1∑
t=0

ztz
′
t ⪰ (T − 1)σ2

z

40 Id.

5.6.1 Proof of Lemma  22 

Proof. We will only show the first inequality as the proof for the second one is almost the

same. Note that

Zref
k∗ (Zref

k∗ )′ =
k∗−N∑

t=k∗−2N+2
ztz

′
t.

Rename the sequences z̄t = zk∗−2N+2+t, ūt = uk∗−2N+2+t, w̄t = wk∗−2N+2+t, and Θ̄t =

Θk∗−2N+2+t for t ≥ 0. Define the filtration {Ft}t≥0, where Ft = σ(z̄0, z̄1, . . . , z̄t) for t ≥ 0.

Note that zt|Ft−1 is a Gaussian random vector for t ≥ 1, since

z̄t|Ft−1 =

Θ̄t−1z̄t−1|Ft−1

0

 +

w̄t−1|Ft−1

ūt|Ft−1

 .

From the above equality, we also have

E[z̄tz̄′
t|Ft−1] ⪰

σ2
wIn 0

0 σ2
uIp

 ⪰ σ2
minIn+p.

122



Consequently, after some algebraic manipulations, we can apply Lemma  26 to obtain with

probability at least 1 − δ̄

Zref
k (Zref

k )′ + λIn+p =
N−2∑
t=0

z̄tz̄
′
t + λIn+p

⪰ ((N − 2)σ2
min

40 + λ)In+p

⪰ Nσ2
min + 42λ

42 In+p,

when N ≥ max(42, 200(n + p) log(13
δ̄

)).

The result then follows by applying a union bound.

5.6.2 Proof of Lemma  23 

Proof. Recall that we have

∥Zref
k∗+N−2(Z

ref
k∗+N−2)′∥ = ∥

k∗−2∑
t=k∗−N

ztz
′
t∥, (5.26)

and

∥Ztest
k∗+N−2(Ztest

k∗+N−2)′∥ = ∥
k∗+N−2∑
t=k∗

ztz
′
t∥. (5.27)

We will only show the first inequality, as the second one is almost identical. From the Markov

inequality, we have with probability at least 1 − δ̄

∥Zref
k∗+N−2(Z

ref
k∗+N−2)′∥ ≤

E[∥ ∑k∗−2
t=k∗−N ztz

′
t∥]

δ̄
. (5.28)

Now we bound the term E[∥ ∑k∗−2
t=k∗−N ztz

′
t∥]. Since the term ztz

′
t has unit rank, we have

∥ztz
′
t∥ = tr(ztz′

t), and hence

E[∥
k∗−2∑

t=k∗−N
ztz

′
t∥] ≤

k∗−2∑
t=k∗−N

E[∥ztz
′
t∥] =

k∗−2∑
t=k∗−N

tr(E[ztz′
t]). (5.29)
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Note that for all t ≥ 0, from Assumption  6 , we have

tr(E[ztz′
t]) = tr

E[xtx′
t] 0

0 σ2
uIp

 ≤ β + σ2
up. (5.30)

Hence, we have with probability at least 1 − δ̄

∥Zref
k∗+N−2(Z

ref
k∗+N−2)′∥ ≤ (N − 1)(β + σ2

up)
δ̄

. (5.31)

Following a similar procedure for ( 5.27 ) and applying a union bound, we have the desired

result.
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6. LEARNING LINEARIZED MODELS FROM NONLINEAR

SYSTEMS WITH FINITE DATA

6.1 Introduction

 

8
 As indicated in above, system identification is an important problem in control theory

since a good model can facilitate model-based control design [ 90 ]. Although physical systems

are typically nonlinear, linear models are frequently used in practice due to their simplicity

[ 91 ], and their ability to approximate nonlinear systems around a given reference point.

Consequently, it is of interest to understand identification of appropriate linear models from

data generated by nonlinear systems. On the other hand, we note that when it comes to

finite sample analysis for linear system identification, almost all existing works that have

finite sample guarantees (including those in the previous chapters of this thesis) assume that

the underlying system is truly linear, except for [  92 ]. Furthermore, independent Gaussian

random inputs are typically applied to ensure persistent excitation.

The study on nonlinear system identification is less well-understood, in general, as com-

pared to the case for linear system identification. Recent works on finite sample analysis

for nonlinear system identification include [ 93 ]–[ 95 ]. It is worth noting that to obtain finite

sample guarantees, the existing works on nonlinear system identification typically require

that a certain model structure to be known in advance. However, when the specific model

structure is unknown, a reasonable alternative goal is to learn a linearized model from the

nonlinear system, due to the well-studied techniques on linear system control as discussed

above.

There is a branch of recent research that focuses on learning a linear system representation

that completely captures the behaviours of a nonlinear system using the Koopman Operator

[ 96 ]. This approach typically requires carefully selected basis functions (e.g., leveraging

neural networks [ 97 ]), and the analysis focuses on the noiseless setting. In contrast, our

focus in this work is to learn a linearized system model, in the sense that the linear model

captures the linear part of the nonlinear system after Taylor expansion, and to provide finite

sample guarantees when the system has noise.
8

 ↑ The material in this chapter was published at the 2023 Conference on Decision and Control [ 89 ].
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Most relevant to our work is the recent paper [ 92 ], which provides a finite sample error

bound for learning linear models from systems that have unmodeled dynamics that could

capture nonlinearities, using a single system trajectory. However, the method proposed in

[ 92 ] assumes the system is “well-behaved” by requiring the unmodeled dynamics/nonlinear

terms to be (globally) Lipschitz [ 98 ]. The method also requires the system to satisfy certain

additional properties to ensure consistent estimation, supposing the inputs are carefully

chosen. In contrast, we show in this work that one can learn a linearized system model from

a nonlinear system with arbitrarily small error without the Lipschitzness assumption, given

sufficiently many short trajectories, supposing that one has control over the initial conditions

of the experiments.

In summary, our contributions in this chapter are as follows.

• We provide a deterministic, multiple trajectories-based data acquisition algorithm that

ensures persistent excitation under the constraint of being close to the reference point.

Using this algorithm followed by a regularized least squares estimation algorithm, we

provide a finite sample error bound of the identified linearized dynamics of a nonlinear

system.

• Our bound shows that one can learn the linearized dynamics with arbitrarily small er-

ror, given sufficiently many experiments in the multiple trajectories setup, and demon-

strates a trade-off between the error due to noise and the error due to nonlinearity.

The bound further characterizes the benefits of using regularization. When the system

is perfectly linear, we show a learning rate that matches the existing results on learning

perfectly linear systems using random inputs.

• We provide numerical experiments to validate our results and insights, and show the

potential insufficiency of linear system identification using random inputs from a single

trajectory when nonlinearity does exist.

This chapter is organized as follows. Section  6.2 introduces the system identification

problem and the algorithms we use. In Section  6.3 , we present our theoretical results. We
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present numerical examples in in Section  6.4 to validate our results, and conclude in Section

 6.5 .

6.2 Problem Formulation and System Identification Algorithm

Consider the following discrete time nonlinear time invariant system

xk+1 = f(zk) + wk, (6.1)

where f : Rn+p → Rn, zk =
[
x′
k u′

k

]′

∈ Rn+p, xk ∈ Rn, uk ∈ Rp, and wk ∈ Rn. Here, xk, uk

and wk are the state, input, and process noise, respectively. The noise terms wk are assumed

to be independent sub-Gaussian random vectors with parameter σ2
w.

Note that sub-Gaussian distributions are commonly used to model noise processes [ 12 ].

In particular, every Gaussian random vector is sub-Gaussian.

Assume that for each component function of f , all second order partial derivatives exist

and are continuous on Rn+p. From Taylor’s theorem [ 99 ], system ( 6.1 ) using reference point

zk = 0 can be rewritten as

xk+1 = Axk + Buk + o + wk + rk, (6.2)

where A ∈ Rn×n, B ∈ Rn×p, are system matrices that capture the linear part of f(zk),

o = f(0) ∈ Rn, and rk = h(zk) ∈ Rn is a remainder vector that contains higher order terms

that are state/input dependent, where h : Rn+p → Rn. The above model is less studied in

the literature on finite sample analysis for system identification, and we will consider this

model in the sequel. Note that we assume o is possibly non-zero to capture scenarios where

the equilibrium points of the system are unknown. When the system is perfectly linear, we

have o = rk = 0, which is the commonly used model in the literature. In this chapter, we

assume that both the state xk and input uk can be perfectly measured. Suppose that we

can restart the system multiple times from an arbitrary initial state x0 using arbitrary input

u0, and obtain multiple length 1 trajectories (i.e., state-input pairs obtained by running the

system for a single time step, as will be explained next). Using superscript to denote the
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trajectory index, we denote the set of samples we have as {(xi1, xi0, ui0) : 1 ≤ i ≤ N}. Our

goal is to learn the linear approximation system matrices Θ ≜
[
A B o

]
∈ Rn×(n+p+1) in

system ( 6.2 ) from the set of samples available to us.

Our result will leverage the following mild assumption on the remainder vector rk = h(zk)

in system ( 6.2 ).

Assumption 7. Let ri,k denote the i-th component of rk. There exist c > 0 and β = β(c)

such that |ri,k| ≤ β∥zk∥2
1 for all i ∈ {1, . . . , n} and all zk ∈ Bn+p(0, c).

Remark 19. The above assumption is, in fact, a direct result of assuming that each com-

ponent function of the original nonlinear dynamics f has all second order partial derivatives

being continuous on Rn+p, due to Taylor’s theorem for multivariable functions from [ 100 ,

Corollary 1]. Intuitively, this assumption says that the higher order terms are dominated

by the second order terms, if the arguments of the function are sufficiently close to the

origin. Note that it does not require the function h to be Lipschitz (which is the assump-

tion used in [ 92 ]). As an example, consider a scalar system with the dynamics given by

f(zk) = xk + uk + x2
k + x3

k. Here rk = x2
k + x3

k satisfies Assumption  7 for c = 1 and β = 2

since |x2
k + x3

k| ≤ |x2
k| + |x3

k| ≤ 2|xk|2 ≤ 2∥zk∥2
1 for all zk ∈ B2(0, 1), but the corresponding

function h is not Lipschitz. In general, a larger c may lead to a larger β.

Let q > 0 be a (small) design parameter that constrains the magnitude of the initial

conditions z0, and N be the number of experiments to perform. We deploy a data collection

scheme specified in Algorithm  6 .
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Algorithm 6 Data Acquisition
Input Norm constraint parameter q > 0, number of experiments N > 0

1: Initialize s1 = 1

2: for i = 1, . . . , N do

3: if i mod (n + p) ̸= 0 then

4: Set zi0 = [ xi′
0 ui′

0 ]
′
= si × qen+p

i mod (n+p)

5: Collect xi1, where xi1 = Axi0 + Bui0 + wi
0 + o + ri0

6: Set si+1 = si

7: else

8: Set zi0 = [ xi′
0 ui′

0 ]
′
= si × qen+p

n+p

9: Collect xi1, where xi1 = Axi0 + Bui0 + wi
0 + o + ri0

10: Set si+1 = −si

11: end if

12: end for

13: Output {(xi1, xi0, ui0) : 1 ≤ i ≤ N}

Remark 20. Intuitively, we want the initial conditions to stay as close to the reference

point (in this case, the origin) as possible, to avoid excessive bias from the higher order

terms. Hence, the reason of using of multiple length 1 trajectories is to prevent the noise

from driving the system too far from the reference point, and amplifying the effects from rk.

The key idea of Algorithm  6 is to ensure persistent excitation (i.e., the smallest eigenvalue of

the sample covariance matrix becomes larger as one gets more data), subject to the constraint

on bounded distance to the origin (specified by q). Later on in our theoretical result, we will

demonstrate how q will affect the finite sample estimation error bound for learning Θ.

We establish some definitions now. Define the batch matrices

X =
[
x1

1 x2
1 · · · xN1

]
∈ Rn×N

W =
[
w1

0 w2
0 · · · wN

0

]
∈ Rn×N

R =
[
r1

0 r2
0 · · · rN0

]
∈ Rn×N .

(6.3)
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Let ẑi0 =
[
zi

′
0 1

]′

∈ Rn+p+1. Define the regressor matrix

Z =
[
ẑ1

0 ẑ2
0 · · · ẑN0

]
∈ R(n+p+1)×N . (6.4)

We have the following relationship

X = ΘZ + W + R. (6.5)

To learn the linear model Θ, we would like to solve the following regularized least squares

problem

min
Θ̃∈Rn×(n+p+1)

{∥X − Θ̃Z∥2
F + λ∥Θ̃∥2

F},

where λ ≥ 0 is a regularization parameter. The closed-form solution of the above problem

is given by

Θ̂ = XZ
′(ZZ ′ + λIn+p+1)−1, (6.6)

under the invertibility assumption [ 24 ]. The estimation error is then given by

∥Θ̂ − Θ∥ = ∥ − λΘ(ZZ ′ + λIn+p+1)−1

+ WZ ′(ZZ ′ + λIn+p+1)−1

+ RZ ′(ZZ ′ + λIn+p+1)−1∥.

(6.7)

For the ease of reference, the above steps are encapsulated in Algorithm  7 .

Algorithm 7 System Identification Using Multiple Length 1 Trajectories
Input Dataset {(xi1, xi0, ui0) : 1 ≤ i ≤ N}, regularization parameter λ ≥ 0

1: Construct the matrices X, Z. Compute Θ̂ = XZ ′(ZZ ′ + λIn+p+1)−1.

2: Extract the estimated system matrices A, B, o from the estimate Θ̂ =
[
Â B̂ ô

]
.

In the next section, we will provide a finite sample bound of the system identification

error ( 6.7 ) using Algorithm  6 and Algorithm  7 . The bound explicitly characterizes how the
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error depends on N , q, σw, λ, and other system parameters, and will provide guidance on

selecting q, λ.

6.3 Theoretical Analysis

To upper bound the system identification error in ( 6.7 ) with high probability, we bound

the terms ∥ − λΘ(ZZ ′ + λIn+p+1)−1∥, ∥WZ ′(ZZ ′ + λIn+p+1)−1/2∥, ∥(ZZ ′ + λIn+p+1)−1/2∥,

∥RZ ′(ZZ ′ + λIn+p+1)−1∥ separately. We provide some intermediate results first in Section

 6.3.1 . Our main result is presented in Section  6.3.2 .

6.3.1 Intermediate results

The following result shows the persistent excitation property of Algorithm  6 . Note that

the requirement on N ≥ 4(n + p) below is mainly used for numerical simplification.

Lemma 27. Suppose that Algorithm  6 is used to generate data. Let N ≥ 4(n + p). Then

we have the following inequalities

λmin(ZZ ′) ≥ N min{ q2

2(n + p) ,
1
2},

λmax(ZZ ′) ≤ N max{ 2q2

n + p
, 2}.
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Proof. To ease the notation, we write en+p
i as ei for i = 1, . . . , n + p in the sequel. We

focus on the lower bound first. Denote N1 = ⌊ N
2(n+p)⌋ × 2(n + p). Since the assumption

N ≥ 4(n + p) implies N1 ≥ 4(n + p), we have

ZZ ′ =
N∑
i=1

ẑi0ẑ
i′

0 ⪰
N1∑
i=1

ẑi0ẑ
i′

0

=

 N1−(n+p)+1∑
i=1,1+(n+p),1+2(n+p),...

sie1q

1

 [
(sie1q)′ 1

]

+

 N1−(n+p)+2∑
i=2,2+(n+p),2+2(n+p),...

sie2q

1

 [
(sie2q)′ 1

]
+ · · ·

+

 N1∑
i=n+p,n+p+(n+p),...

sien+pq

1

 [
(sien+pq)′ 1

]

=

M1 M2

M ′
2 M3

 ,

(6.8)

where M1 ∈ R(n+p)×(n+p), M2 ∈ R(n+p)×1, and M3 ∈ R1×1.

For the submatrix M1, we have

M1 =
n+p∑
j=1

N1
n+p∑
i=1

eje′
jq

2 =
n+p∑
j=1

N1

n + p
eje′

jq
2

= diag( N1

n + p
q2, · · · ,

N1

n + p
q2),

(6.9)

where we used the property that s2
i = 1 for all i, and the fact that N1 mod 2(n + p) = 0

For the submatrix M2, we have

M2 =
 N1−(n+p)+1∑
i=1,1+(n+p),1+2(n+p),...

sie1q

 + · · · +
 N1∑
i=n+p,n+p+(n+p),...

sien+pq


= 0 + 0 + . . . + 0 = 0,

(6.10)
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where we used the property that si = 1 if i ∈ {j(n + p) + 1, j(n + p) + 2, . . . , j(n + p) + (n +

p)|j is even} and si = −1 if i ∈ {j(n + p) + 1, j(n + p) + 2, . . . , j(n + p) + (n + p)|j is odd},

and the fact that N1 mod 2(n + p) = 0, i.e., the number of positive terms is exactly the same

as the number of negative terms for each summation.

Lastly, for the scalar matrix M3, we have

M3 =
N1∑
i=1

12 = N1. (6.11)

Combining ( 6.9 )-( 6.11 ), we have

λmin(ZZ ′) ≥ λmin


M1 M2

M ′
2 M3




= min{ N1

n + p
q2, N1}.

(6.12)

Using the property ⌊N
c

⌋c ≥ N − c for any c > 0, we have

N1 = ⌊ N

2(n + p)⌋ × 2(n + p) ≥ N − 2(n + p) ≥ N

2 , (6.13)

where the second inequality is due to our assumption that N ≥ 4(n + p).

Hence, the above inequality in conjunction with (  6.12 ) yields

λmin(ZZ ′) ≥ N min{ q2

2(n + p) ,
1
2}, (6.14)

which is of the desired form.

Next, we show the upper bound. Denoting N2 = ⌈ N
2(n+p)⌉ × 2(n + p), using N ≤ N2, we

have

ZZ ′ =
N∑
i=1

ẑi0ẑ
i′

0 ⪯
N2∑
i=1

ẑi0ẑ
i′

0 , (6.15)
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where ẑ1
0 , ẑ2

0 , . . . , ẑN2
0 are generated from Algorithm  6 with input parameter N2. Since N2 mod

2(n + p) = 0, we can follow a similar procedure as in the proof of the lower bound to obtain

λmax(ZZ ′) ≤ max{ N2

n + p
q2, N2}

≤ max{N + 2(n + p)
n + p

q2, N + 2(n + p)}

≤ N max{ 2q2

n + p
, 2},

(6.16)

where the second inequality is due to the relationship N2 ≤ N + 2(n + p), and the last

inequality is due to the assumption that N ≥ 4(n + p).

Leveraging Lemma  5 , we have the following result that upper bounds the contribution

from noise.

Lemma 28. Suppose that Algorithm  6 is used to generate data. Let N ≥ 4(n + p) and

q ≤
√

n + p. Then for any fixed δ ∈ (0, 1), we have with probability at least 1 − δ

∥WZ ′(ZZ ′ + λIn+p+1)−1/2∥ ≤ 3σw

√
log 9n

δ
+ (n + p + 1) log(1 + 4(n + p)

q2 + ζ
),

where ζ = 4λ(n+p)
N

.

Proof. Denoting V̄N = λIn+p+1 + ZZ ′, we have

∥WZ ′(ZZ ′ + λIn+p+1)−1/2∥ = ∥V̄
−1/2
N ZW ′∥.

Let V̂N = (λ + Nq2

2(n+p))In+p+1. When N ≥ 4(n + p) and q ≤
√

n + p, we can apply Lemma  27 

to get V̄N ⪰ V̂N . Since V̄N ⪰ V̂N ⇒ 2V̄N ⪰ V̄N + V̂N ⇒ V̄ −1
N ⪯ 2(V̄N + V̂N)−1, we can write

∥V̄
−1/2
N ZW ′∥ ≤

√
2∥(V̄N + V̂N)−1/2ZW ′∥

=
√

2∥(V̂N + λIn+p+1) +
N∑
i=1

ẑi0ẑ
i′

0 )−1/2(
N∑
i=1

ẑi0w
i′

0 )∥,

where the inequality is due to [ 101 , Lemma 10].
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Denote V = V̂N + λIn+p+1. Define the filtration {Ft}t≥0, where Ft = σ({ẑi+1
0 }ti=0 ∪

{wj
0}tj=1). Since the sequence of ẑi0 generated by Algorithm  6 is deterministic, and the noise

terms are independent, for any fixed δ ∈ (0, 1), we can apply Lemma  5 to obtain with

probability at least 1 − δ

√
2∥(V̄N + V̂N)−1/2ZW ′∥ ≤ 3σw

√
log 9n

δ
+ 1

2 log det((V + ZZ ′)V −1).

When q ≤
√

n + p, we can apply the upper bound in Lemma  27 to obtain

det((V + ZZ ′)V −1) = det(V + ZZ ′)
det(V )

≤
(2λ + Nq2

2(n+p) + ∥ZZ ′∥)n+p+1

(2λ + Nq2

2(n+p))n+p+1

≤ (1 + 2N

2λ + Nq2

2(n+p)

)n+p+1

= (1 + 4(n + p)
q2 + ζ

)n+p+1,

where we used the fact that the determinant is the product of eigenvalues. The result then

follows.

Next, we bound the contribution from the higher order terms.

Lemma 29. Suppose that Algorithm  6 is used to generate data. Let N ≥ 4(n + p) and

q ≤
√

n + p. Fix constants c and β that satisfy Assumption  7 , and denote γ = λ(n+p)
Nq2 . Then

if q < c, we have

∥RZ ′(ZZ ′ + λIn+p+1)−1∥ ≤
√

2β2(n2 + np)
1 + γ

q + 2(n + p)
√

λNnβ2q4

Nq2 + 2λ(n + p) . (6.17)

Proof. Note that

∥RZ ′(ZZ ′ + λIn+p+1)−1∥ ≤ ∥R∥∥Z ′(ZZ ′ + λIn+p+1)−1∥. (6.18)
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For the term ∥R∥, using Ri,j to denote its (i, j) entry, we have

∥R∥ ≤ ∥R∥F =

√√√√√ n∑
i=1

N∑
j=1

R2
i,j ≤

√
Nnβ2q4, (6.19)

where the second inequality is due to the fact that ∥zi0∥1 = q for all i = 1, . . . , N , the

assumption that q < c, and Assumption  7 .

For the term ∥Z ′(ZZ ′ + λIn+p+1)−1∥, we have

∥Z ′(ZZ ′ + λIn+p+1)−1∥ =
√

∥(ZZ ′ + λIn+p+1)−1ZZ ′(ZZ ′ + λIn+p+1)−1∥.

Note that
∥(ZZ ′ + λIn+p+1)−1ZZ ′(ZZ ′ + λIn+p+1)−1∥ =

∥(ZZ ′ + λIn+p+1)−1(ZZ ′ + λIn+p+1)(ZZ ′ + λIn+p+1)−1

− λ(ZZ ′ + λIn+p+1)−1(ZZ ′ + λIn+p+1)−1∥

≤ ∥(ZZ ′ + λIn+p+1)−1∥ + λ∥(ZZ ′ + λIn+p+1)−1∥2.

(6.20)

From Weyl’s inequality [ 102 ], we have

∥(ZZ ′ + λIn+p+1)−1∥ = 1
λmin(ZZ ′ + λIn+p+1)

≤ 1
λmin(ZZ ′) + λ

.

Using the above inequality and ( 6.20 ), since N ≥ 4(n + p) and q ≤
√

n + p, we can apply

Lemma  27 to get

∥Z ′(ZZ ′ + λIn+p+1)−1∥ ≤

√√√√ 2(n + p)
Nq2 + 2λ(n + p) + 2

√
λ(n + p)

Nq2 + 2λ(n + p) ,

where we used the relationship that
√

a + b ≤
√

a +
√

b for a, b ≥ 0.

Finally, combining the above inequality with ( 6.19 ), and after some algebraic manipula-

tions, we have the desired result.
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6.3.2 Main Result

Now we present our main result, a finite sample upper bound of the system identification

error ( 6.7 ).

Theorem 6.3.1. Suppose that Algorithm  6 is used to generate data. Let N ≥ 4(n + p)

and q ≤
√

n + p. Fix constants c, β that satisfy Assumption  7 , and a confidence parameter

δ ∈ (0, 1). Then if q < c, with probability at least 1 − δ, the estimation error of Algorithm  7 

satisfies

∥Θ̂ − Θ∥ ≤
5σw

√
log 9n

δ
+ (n + p + 1) log(1 + 4(n+p)

q2 )√
Nq2/(n + p) + λ︸ ︷︷ ︸
Error due to noise

+
√

2(n2 + np)
1 + γ

βq︸ ︷︷ ︸
Error due to nonlinearity

+ 2(n + p)(λ∥Θ∥ +
√

λNnβ2q4)
2λ(n + p) + Nq2︸ ︷︷ ︸

Error due to regularization

,

(6.21)

where γ = λ(n+p)
Nq2 .

Proof. Recall the estimation error in ( 6.7 ). We have

∥Θ̂ − Θ∥ ≤ λ∥Θ∥∥(ZZ ′ + λIn+p+1)−1∥ + ∥RZ ′(ZZ ′ + λIn+p+1)−1∥

+ ∥WZ ′(ZZ ′ + λIn+p+1)−1/2∥∥(ZZ ′ + λIn+p+1)−1/2∥.
(6.22)

Noting that
∥(ZZ ′ + λIn+p+1)−1/2∥ = 1√

λmin(ZZ ′ + λIn+p+1)

≤ 1√
λmin(ZZ ′) + λ

,
(6.23)

from Weyl’s inequality [ 102 ], the result directly follows from applying Lemma  27 , Lemma

 28 , and Lemma  29 after some algebraic manipulations.

Remark 21. Interpretation of Theorem  6.3.1 . Note that Theorem  6.3.1 holds irre-

spective of the spectral radius of the system matrix A, which captures a well known advantage
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of the multiple trajectories setup. Below we discuss other key insights provided by Theorem

 6.3.1 .

Trade-off between error due to noise and error due to nonlinearity: Suppose

that λ = 0 for now. When the system is perfectly linear, one has β = 0. Consequently, the

upper bound in Theorem  6.3.1 only contains the error due to noise, which goes to zero with

a rate of O( 1√
N

). This implies a consistent estimator of which the convergence rate matches

the results in the existing literature for learning perfectly linear system using random inputs

[ 12 ], [  13 ]. When there does exist nonlinearity, i.e., β > 0, one can observe that the error due

to nonlinearity can be made arbitrarily small by choosing a smaller q used in Algorithm  6 

(recall that q captures the magnitude of the initial conditions). On the other hand, a smaller q

would also make the denominator of the term capturing error due to noise small, thus leading

to a larger error due to noise. In other words, if one starts close enough to the reference

point (by setting q to be small), one would have less bias due to nonlinearity, at the cost of

having a smaller signal to noise ratio (thus a larger error due to noise). However, the error

due to noise can always be made almost zero by increasing the number of experiments N .

Consequently, if one can afford to generate a large amount of data, it is preferable to use a

small q due to the low bias introduced by the nonlinear terms, and the small error introduced

by the noise (which is due to the large amount of samples). These insights are different

from system identification for truly linear systems, where it is commonly believed that a

larger signal to noise ratio is always better. We will also illustrate these ideas empirically in

Section  6.4 .

Role of regularization: Suppose that N, q are fixed. As λ becomes larger, we can

observe that both the error due to noise and the error due to nonlinearity goes to zero, and

the error due to regularization converges to ∥Θ∥. This result implies that setting λ to be

relatively large can be helpful if σw is large (system is very noisy) or β is large (system has

strong nonlinearity), while ∥Θ∥ is small. However, the optimal λ can be hard to obtain if

(some upper bounds of) the parameters in ( 6.21 ) are unknown in advance. In practice, cross

validation techniques [ 27 ] are commonly used to select a good value of λ.

138



6.4 Numerical Examples

In this section, we provide simulated numerical examples to validate the insights for

system identification using Algorithm  6 and Algorithm  7 . We also compare the results against

the single trajectory setup, where the input is set to be independent zero mean Gaussian,

with slight adjustments to deal with the offset o in our setup ( 6.2 ), i.e., by appending ones

in the regressor matrix. More specifically, we still use Algorithm  7 in the single trajectory

setup, but the dataset is generated without restarting the system, see [  6 ], [ 12 ] for examples.

Such comparisons are made since Gaussian inputs are commonly used in the literature on

linear system identification [ 8 ], [ 13 ]. For simplicity, we set λ = 0 for all experiments. All

results are averaged over 10 independent experiments.

6.4.1 System with mild nonlinearity

In the first example, we investigate the performance of the system identification algo-

rithms under mild nonlinearity. The model we use here captures the dynamics of a nonlinear

pendulum. 

9
 The system states are the pendulum angle and its velocity, and the input is

the torque applied. We set the mass and length of the pendulum to be 1 kg and 1 meter,

respectively. After discretization using Euler’s method by setting the sampling time to be

0.05 seconds, the dynamics is given by

x1,k+1

x2,k+1

 =

 x1,k + 0.05x2,k

−0.49 sin(x1,k) + x2,k + 0.05uk

 + wk, (6.24)

where we set wk to be independent Gaussian random vectors with zero mean and covariance

matrix given by 0.25I2. The linearized system matrices around the origin are given by

A =

 1 0.05

−0.49 1

 , B =

 0

0.05

 , o =

0

0

 . (6.25)

9
 ↑ https://courses.engr.illinois.edu/ece486/fa2019/handbook/lec02.html
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We plot the system identification error using Algorithm  6 and Algorithm  7 versus the number

of experiments N for q = 1.2, 0.9, 0.6 in Fig.  6.1 . As can be observed, a smaller q could lead

to a larger error when N is small, due to a smaller signal to noise ratio. However, a smaller

q can eventually result in a smaller error when N is large enough due to less bias, which

confirms our observations in Theorem  6.3.1 .

In the single trajectory setup, we plot the error using i.i.d zero mean Gaussian inputs

with different variance σ2
u, where N here represents the number of samples used in the single

trajectory. A common heuristic is that one should apply small inputs to learn a good linear

approximation around a given reference point, i.e., the variance σ2
u should be small. However,

as shown in Fig.  6.2 , the error plateaus at around 0.6, even for small variance inputs. The

key reason is that the random input and process noise can always drive the system states to

undesired regions and excite the higher order terms, unless the input is carefully designed.

In fact, the paper [ 92 ] shows that random inputs in the single trajectory setup could result

in inconsistent estimation under certain conditions even for Lipschitz nonlinearity.

Figure 6.1. System identifi-
cation error using Algorithms

 6 - 7 with different q, mild non-
linearity

Figure 6.2. System identifi-
cation error using a single tra-
jectory with different σu, mild
nonlinearity
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6.4.2 System with strong nonlinearity

In the second example, we investigate the performance of the system identification al-

gorithms under strong nonlinearity (where the assumption of lipschitzness used in [ 92 ] no

longer holds). The virtual model we use here is given byx1,k+1

x2,k+1

 =

0.9 0.5

0 0.8


x1,k

x2,k

 +

1

1

 uk +

x3
1,k + x5

2,k

x1,kx2,k

 +

1

1

 + wk, (6.26)

where we again set wk to be independent Gaussian random vectors with zero mean and

covariance matrix given by 0.25I2.

Figure 6.3. System identifi-
cation error using Algorithms

 6 - 7 with different q, strong
nonlinearity

Again, we plot the system identification error using Algorithm  6 and Algorithm  7 versus

the number of experiments N for q = 0.6, 0.4, 0.2. As can be observed, similar trends still

hold, i.e., a smaller q results in a larger error when N is small, but is beneficial in the long

run, even for system with relatively strong nonlinearity.

In contrast, in the single trajectory setup, we applied i.i.d zero mean Gaussian inputs

with variance σ2
u = 0.12, 0.012, 0.0012. However, all of them fail to converge and result in

numerical issues since the noise and non-zero offset drive the system states to regions where

nonlinearity dominates.
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6.5 Conclusion and future work

In this chapter, we proposed system identification algorithms to learn the linearized

model of a system. Unlike existing works, we assume that the underlying dynamics could

be nonlinear. We presented a finite sample error bound of the algorithms, which shows that

one can learn the linearized dynamics with arbitrarily small error given sufficiently many

samples, and demonstrates a trade-off between the error due to noise and the error due to

nonlinearity. Our bound further characterizes the benefits of using regularization. As shown

in [ 103 ], initializing states at different locations might come at different costs. Consequently,

future work would focus on studying how to optimize the data collection procedure under

constraints on initial state/input.
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7. SUMMARY AND FUTURE WORK

In this thesis, we studied finite sample performance guarantees for learning the dynamics

of systems. In Chapter  2 , we studied system identification of a fully observed system,

when one has access to data generated from a “similar” system. Our result shows that

one can leverage the auxiliary data to reduce the error due to the noise, at the cost of

adding a bias that depends on the difference between the true and auxiliary systems. In

Chapter  3 , we studied the finite sample guarantees for learning a partially observed linear

autonomous system, under multiple trajectories of transient response of the system. We

proved a learning rate that is consistent with classical results, and extended the analysis to

the case where the initial state has possibly non-zero mean. In Chapter  4 , we proposed a

distributed online parameter estimation algorithm in a networked setting. We provided finite

time estimation error bounds, and showed that our results allow one to determine a time

at which the communication can be stopped (due to the costs associated with maintaining

communications), while meeting a desired estimation accuracy. In Chapter  5 , we studied

the online change points detection problem for linear dynamical systems. We proposed a

detection algorithm and a data-dependent detection rule that allows the user to achieve

a desired upper bound on the false alarm probability. We also provided a finite-sample-

based lower bound for the probability of making a true alarm with a certain delay. Finally,

in Chapter  6 , we made a step toward learning the dynamics of a nonlinear system. We

proposed a data-acquisition algorithm followed by a regularized least squares algorithm to

enable the identification of the linearized model of the nonlinear system. We also provided

a finite sample error bound, which demonstrates a trade-off between the error due to noise

and the error due to nonlinearity.

Finally, we describe some directions for future work.

7.1 Developing Lower Bounds for Learning from Similar Systems

One interesting direction to explore is the establishment of lower bounds for the weighted

least squares-based system identification technique discussed in Chapter  2 . These results

could help characterize the optimal performance achievable and potentially facilitate the
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development of improved estimators. Several potential approaches involve leveraging as-

sumptions, such as sparsity [ 20 ], or utilizing prior knowledge, such as a known auxiliary

system model.

7.2 Learning Controllers from Similar Systems

Our work in Chapter  2 studies the system identification problem for similar systems. We

are interested in exploring the possibility of integrating these techniques into control tasks.

For example, can we leverage pre-trained controllers designed for similar systems to enhance

the control of the target system?

7.3 Change Point Detection for Nonlinear Systems

Since many physical systems are nonlinear, developing change point detection algorithms

for nonlinear systems will be of great importance. One approach is to use a similar sliding

windows-based technique (as studied in Chapter  5 ), assuming that a certain model structure

is known. Nevertheless, an open question remains regarding the extent of guarantees that

can be provided in such cases.

7.4 Change Point Detection vs Sensor Fault Detection

Our techniques in Chapter  5 assume that all of the system states can be perfectly mea-

sured. However, in practice, it is typical that only a subset of the system states can be

observed (and the measurements are corrupted by noise). Our ongoing work leverages a

similar approach by estimating the Markov parameter matrix of the system in an online

manner. We are also interested in distinguishing between changes in system dynamics and

sensor faults.

7.5 Linear Control for Nonlinear Systems

An interesting and important question is to provide performance characterization of linear

control laws for nonlinear systems. In particular, since linearization around an equilibrium
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point is a commonly used technique in practice, we would like to understand how a controller

designed from an imperfect linearized model performs, when an upper bound on the error

of the learned model is available.

7.6 Federated Learning

Federated learning has been widely used in practice. We would like to explore if the

techniques we developed in Chapter  4 can be extended to the federated learning setup,

especially under heterogeneous data.

7.7 Real-World Problems

While our work is primarily theoretical, understanding how real world problems differ

from theories is crucial. Typically, the discrepancy between theory and practice comes at

the violation of assumptions. For example, the noise added to a system is not Gaussian,

which could break the guarantees one could provide. Consequently, it is always important

to study problems under general assumptions, e.g., sub-Gaussian noise instead of Gaussian

noise.
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