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ABSTRACT

The proliferation of digital data, driven by factors like social media, e-commerce, etc.,

has created an increasing demand for highly processed data at higher levels of fidelity, which

puts increasing demands on modern data processing systems. In the past, data processing

systems faced bottlenecks due to limited main memory availability. However, as main mem-

ory becomes more abundant, their optimization focus has shifted from disk I/O to optimized

computation through techniques like compilation. This dissertation addresses several critical

limitations within such compilation-based data processing systems.

In modern data analytics pipelines, combination of workloads from various paradigms,

such as traditional DBMS and Machine Learning, is common. These pipelines are typically

managed by specialized systems designed for specific workload types. While these specialized

systems optimize their individual performance, substantial performance loss occurs when

they are combined to handle mixed workloads. This loss is mainly due to overheads at

system boundaries, including data copying and format conversions, as well as the general

inability to perform cross-system optimizations.

This dissertation tackles this problem in two angles. First, it proposes an efficient post-

hoc integration of individual systems using generative programming via the construction

of common intermediate layers. This approach preserves the best-of-breed performance of

individual workloads while achieving state-of-the-art performance for combined workloads.

Second, we introduce a high-level query language capable of expressing various workload

types, acting as a general substrate to implement combined workloads. This allows the

generation of optimized code for end-to-end workloads through the construction of an inter-

mediate representation (IR).

The dissertation then shifts focus to data processing systems used for incremental view

maintenance (IVM). While existing IVM systems achieve high performance through compila-

tion and novel algorithms, they have limitations in handling specific query classes. Notably,

they are incapable of handling queries involving correlated nested aggregate subqueries. To

address this, our work proposes a novel indexing scheme based on a new data structure and a

corresponding set of algorithms that fully incrementalize such queries. This approach result
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in substantial asymptotic speedups and order-of-magnitude performance improvements for

workloads of practical importance.

Finally, the dissertation explores efficient and expressive fixed-point computations, with a

focus on Datalog–a language widely used for declarative program analysis. Although existing

Datalog engines rely on compilation and specialized code generation to achieve performance,

they lack the flexibility to support extensions required for complex program analysis. Our

work introduces a new Datalog engine built using generative programming techniques that

offers both flexibility and state-of-the-art performance through specialized code generation.
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1. INTRODUCTION

1.1 Problem statement

The widespread proliferation of the internet, driven by an array of factors such as social

media, news, human communication, e-commerce, and the growing prevalence of digital

content, has led to an unprecedented accumulation of data in various formats. This surge

has resulted in a tension between (A) increasingly huge volumes of data and (B) an increasing

demand for highly-processed data at increasing levels of fidelity (cleaned, linked, analyzed

and in various ways, fed through neural networks, etc.), which puts increasing demand on

data processing systems. For instance, consider an e-commerce website where the ability

to extract valuable insights and predictions regarding customer behavior, often through the

application of machine learning (ML) techniques, becomes of paramount importance as the

volume of accumulated customer transaction data continues to expand.

Historically, due to the limitations of main memory availability, only a fraction of the

data could be loaded into main memory for processing at any given time. This limitation

made data communication between persistent storage and memory a critical bottleneck in

most cases. Consequently, traditional optimization efforts predominantly revolved around

improving the efficiency of this data transfer.

However, in recent years, as main memory resources have become more abundant, mod-

ern systems are no longer constrained by disk I/O, thereby shifting the optimization focus

towards improving efficiency by reducing the actual number of instructions executed. This

entails a significant pivot towards optimizing computations themselves.

To this end, most state-of-the-art modern data processing systems employ a form of com-

pilation to generate specialized code tailored to specific use cases. This approach effectively

eliminates the overhead associated with interpretation. For instance, modern relational query

engines take SQL queries and compile them into specialized native code. This code contains

the specialized logic for query operators and incorporates intermediate data structures that

are fully specialized (e.g., hash tables specific for a given schema).

The use of compilation techniques extends beyond batch-processing systems or SQL-

based relational data processing. For example, DBToaster [ 1 ] executes SQL queries on data
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streams in the form of incremental view maintenance (IVM). It compiles these queries into

specialized update triggers, which are invoked as underlying relations change with the arrival

of new data.

Similarly, Souffle [  2 ], widely employed for declarative program analysis, compiles pro-

grams written in a different declarative language, Datalog. It adopts a similar approach of

generating specialized code. Additionally, ML compilers generate native code that incorpo-

rates potentially fused, specialized kernels. These kernels are constructed from optimized

computation graphs derived from high-level deferred APIs of ML frameworks and are con-

figured for the most optimal performance.

While these systems have demonstrated significantly improved performance compared

to their interpreted counterparts, there remain certain limitations and areas for further

improvement as discussed below.

• Efficient and Expressive Multi-Paradigm Workloads Specialized systems, such

as relational query compilers and ML compilers, have demonstrated exceptional per-

formance within their respective individual workloads. However, their performance de-

grades when these systems are integrated to handle real-world data analytics pipelines.

This degradation primarily stems from the overhead at system boundaries when data

is transferred from one system to another, along with the absence of comprehensive

cross-system, global optimizations. As a result, the challenge of efficiently managing

multi-paradigm workloads using compilation-based systems remains an open problem.

• Efficient and Expressive Incremental Updates Systems like DBToaster have

achieved state-of-the-art performance in incremental view maintenance for a broad

range of queries by employing higher-order delta queries and compilation techniques.

However, these approaches encounter limitations when dealing with specific classes of

queries. Specifically, in cases involving correlated nested aggregate subqueries, they

resort to naively re-evaluating the results from scratch, rather than performing incre-

mental updates. This fallback strategy is suboptimal, emphasizing the need for efficient

solutions in scenarios where full incrementalization is infeasible purely via higher order

deltas.
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• Efficient and Expressive Iterative Fixpoints While pure Datalog serves as a foun-

dation for declarative program analysis, its expressiveness is occasionally insufficient

for handling complex use cases. Consequently, prior works have introduced various

extensions, such as aggregates [  2 ], user-defined lattices [ 3 ], and SMT constraints [  4 ].

However, in many cases, the implementations of these extensions sacrifice efficiency in

favor of achieving greater expressivity. This trade-off can be attributed, in part, to

the limited flexibility of existing compiled Datalog engines. Consequently, there exists

a significant challenge in architecting extensible Datalog engines capable of accommo-

dating a wide array of extensions while maintaining optimal performance.

In this dissertation, we delve deeper into the aforementioned limitations and propose

novel solutions for each. We address the challenge of managing multi-paradigm workloads,

such as combined relational and ML processing, by doing an efficient post-hoc integration

of existing systems that are built using generative programming. This integration is facili-

tated through the creation of common intermediate layers, which ultimately compile multi-

paradigm workloads into a unified executable. Generative programming-based systems have

previously demonstrated considerable success in designing systems that achieve performance

levels comparable to highly-engineered counterparts with significantly less engineering effort.

In our work, we illustrate how the integration of such systems at a common intermediate layer

effectively handles mixed workloads that are encountered in practical scenarios, resulting in

state-of-the-art end-to-end performance.

To address the challenge of performing full incrementalization of complex queries con-

taining correlated nested aggregate sub queries, we propose a novel indexing scheme based

on a tree-based data structure. This approach is accompanied by a set of corresponding

algorithms that enable the full incrementalization of such queries. Our proposed method

is asymptotically faster than the current state-of-the-art and achieves order-of-magnitude

performance improvements in workloads of practical importance.

In our efforts to construct flexible and performant Datalog engines, we adopt an approach

rooted in generative programming. We draw inspiration from existing works on query compi-

lation and develop a Datalog compiler with engine logic implemented in a high-level language
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that resembles a textbook interpreter. To enhance flexibility in the frontend, we design an

embedding of Datalog in Scala, allowing us to leverage Scala’s infrastructure to add support

for various extensions with minimal effort.

Lastly, we tackle the challenge of managing efficient and expressive multi-paradigm work-

loads from a different angle. Instead of building common IRs across existing systems, we

introduce a high-level query language capable of expressing various types of workloads. This

query language serves as a common substrate for different kinds of workloads and enables

various optimizations and code generation through the construction of an IR.

The rest of this dissertation provides an elaborate discussion of the identified problems

and the proposed solutions.

1.2 Overview

The subsequent chapters of the dissertation delve into a comprehensive exploration of

each of the identified problems and present innovative solutions. Below is an overview of the

content in each chapter:

Efficient and Expressive Multi-Paradigm Workloads via Common IRs In Chap-

ter  2 , we introduce a mechanism for seamlessly integrating specialized systems to manage

multi-paradigm workloads. Our approach involves constructing common intermediate lay-

ers to facilitate the integration of a state-of-the-art query compiler and a machine learning

system. We demonstrate that this integrated approach achieves state-of-the-art end-to-end

performance for combined DB and ML workloads, while preserving the individual best-of-

breed performance of each system.

Efficient and Expressive Incremental Updates Chapter  3 presents a novel index-

ing scheme based on an innovative tree-based index structure. We focus on building in-

dexes for partial aggregate values and propose efficient algorithms for shifting ranges of

these partial aggregates. This approach enables efficient incrementalization of queries that

contain correlated nested aggregate subqueries, addressing limitations observed in previous

incrementalization techniques. The proposed method demonstrates significant performance

improvements for practical workloads.
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Efficient and Expressive Iterative Fixpoints In Chapter  4 , we introduce a new

Datalog engine developed using generative programming. Our Datalog engine achieves state-

of-the-art performance across a variety of workloads. Unlike existing compiled Datalog

engines, our system offers flexibility in the frontend through a Scala embedding and in the

backend by structuring the engine logic to resemble a textbook interpreter. Simultaneously,

it maintains the capability to achieve high performance through specialized code generation.

A New Query Language for Multi-Paradigm Workloads Chapter  5 introduces

a novel high-level query language capable of expressing a wide range of workload types,

including tensor computations and traditional DBMS operations like joins and aggregates.

We also design a novel intermediate representation that facilitates various optimizations and

the eventual generation of highly performant code.

The next several subsections provides a summary of each subsequent chapters.

1.2.1 Flern: Efficient Composition of Data Management and Machine Learning
Systems via Common Intermediate Layers

Modern data analytics workloads combine relational data processing with machine learn-

ing (ML). Most DBMS handle these workloads by offloading these ML operations to external

specialized ML systems. While both DBMS and ML systems go to great lengths to optimize

performance for their specific workloads, significant performance is lost when used in combi-

nation, due to data movement across system boundaries, conversions between incompatible

internal data formats, and the general inability to perform optimizations across systems.

A key idea to remove these bottlenecks is to integrate existing data manipulation systems

with ML systems by building a common intermediate layer (IR). Although this idea has been

explored before (Weld, Delite), previous such attempts require significant re-engineering of

prior systems and still fail to achieve best-of-breed performance for individual tasks (e.g.,

SQL, Deep Learning). Specifically, they rely on re-implementing existing systems using a

generic set of operators and fail to match best-of-breed individual performance due to the

inability to recover high-level optimizations from this generic IR through compiler analysis.

In Chapter  2 , we present Flern, the first intermediate-layer integration between DB and

ML systems that are best-of-breed individually (competitive with the best compiled query
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engines such as HyPer on a full relational benchmark TPC-H and competitive with Tensor-

Flow and PyTorch in state-of-the-art deep learning models e.g., DeepSpeech, SqueezeNet)

and also represents a new state-of-the-art for integration. A key realization is to architect

intermediate layers based on generative programming capabilities, which preserves high-level

contextual information for cross-optimizations and enables the construction of a variety of

complex structures and cross-system optimizations with minimal effort.

1.2.2 Efficient Incrementialization of Correlated Nested Aggregate Queries us-
ing Relative Partial Aggregate Indexes (RPAI)

Incrementalization of queries is imperative in cases where data arrives as streams and

output is latency-critical and/or desired before the full data has been received. Incremental

execution computes the output at a given time by reusing the previously computed outputs

or maintained views rather than re-evaluating the query from scratch. There are various

approaches to perform this incrementalization ranging from query-specific algorithms and

data structures (e.g., DYN, AJU) to general systems (e.g., DBToaster, Materialize).

DBToaster is a state-of-the-art system that comes with an appealing theoretical back-

ground based on the idea of applying Incremental View Maintenance (IVM) recursively,

maintaining a hierarchy of materialized views via delta queries. However, one key limita-

tion of this approach is its inability to efficiently incrementalize correlated nested-aggregate

queries due to an inefficient delta rule for such queries. Moreover, none of the other spe-

cialized approaches have shown efficient ways to optimize such queries either. Nonetheless,

these types of queries can be found in many real-world application domains (e.g., finance),

for which efficient incrementalization remains a crucial open problem.

In Chapter  3 , we propose an approach to incrementalize such queries based on a novel

tree-based index structure called Relative Partial Aggregate Indexes (RPAI). Our approach

is asymptotically faster than other systems and shows up to 1100× speedups in workloads

of practical importance.
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1.2.3 Flan: An Expressive and Efficient Datalog Compiler for Program Analysis

Datalog has gained prominence in program analysis due to its expressiveness and ease

of use. Its generic fixpoint resolution algorithm over relational domains simplifies the ex-

pression of many complex analyses. The performance and scalability issues of early Datalog

approaches have been addressed by tools such as Soufflé through specialized code generation.

Still, while pure Datalog is expressive enough to support a wide range of analyses, there is a

growing need for extensions to accommodate increasingly complex analyses. This has led to

the development of various extensions, such as Flix, Datafun, and Formulog, which enhance

Datalog with features like arbitrary lattices and SMT constraints.

Most of these extensions recognize the need for full interoperability between Datalog

and a full-fledged programming language, a functionality that high-performance systems

like Soufflé lack. Specifically, in most cases, they construct languages from scratch with

first-class Datalog support, allowing greater flexibility. However, this flexibility often comes

at the cost of performance due to the conflicting requirements of prioritizing modularity

and abstraction over efficiency. Consequently, achieving both flexibility and compilation to

highly-performant specialized code poses a significant challenge.

As presented in Chapter  4 , in our work, we reconcile the competing demands of ex-

pressiveness and performance with Flan, a Datalog compiler fully embedded in Scala that

leverages multi-stage programming to generate specialized code for enhanced performance.

Our approach combines the flexibility of Flix with Soufflé’s performance, offering seamless

integration with the host language that enables the addition of powerful extensions while

generating specialized code for the entire computation. Flan’s simple operator interface al-

lows the addition of an extensive set of features, including arbitrary aggregates, user-defined

functions, and lattices, with multiple execution strategies such as binary and multi-way joins,

supported by different indexing structures like specialized trees and hash tables, with mini-

mal effort. We evaluate our system on a variety of benchmarks and compare it to established

Datalog engines. Our results demonstrate competitive performance and achieves speedups

in the range of 1.4× to 12.5× compared to state-of-the-art systems for workloads of practical

importance.
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1.2.4 Rhyme: A Data-Centric Expressive Query Language for Nested Data
Structures

In Chapter  5 , we present Rhyme, an expressive language designed for high-level data

manipulation, with a primary focus on querying and transforming nested structures such as

JSON and tensors, while yielding nested structures as output. Rhyme draws inspiration from

a diverse range of declarative languages, including Datalog, JQ, JSONiq, Einstein summation

(Einsum), GraphQL, and more recent functional logic programming languages like Verse.

It has a syntax that closely resembles existing object notation, is compositional, and has

the ability to perform query optimization and code generation through the construction of

an intermediate representation (IR). Our IR comprises loop-free and branch-free code with

program structure implicitly captured via dependencies. To demonstrate Rhyme’s versatility,

we implement Rhyme in JavaScript (as an embedded DSL) and illustrate its application

across various domains, showcasing its ability to express common data manipulation queries,

tensor expressions (à la Einsum), and more.

1.3 Hypothesis

Our thesis hypothesis posits that the utilization of generative programming-based com-

pilation techniques, novel algorithms, and innovative query language designs results in sig-

nificantly enhanced performance across a diverse range of data processing systems.

1.4 Contributions

The key contributions of our work are as follows:

1. Efficient and Expressive Multi-Paradigm Workloads via Common IRs In

Chapter  2 , we present Flern, the first intermediate-layer integration between DB and

ML systems that are best-of-breed individually, and achieves state-of-the-art end-to-

end performance.
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(a) We analyze the limitations of existing approaches to build common intermediate

layers and discuss why generative programming is a better choice to integrate

systems efficiently with minimal re-engineering cost (Section  2.2 )

(b) We demonstrate how generative programming enables efficient post-hoc integra-

tion of prior systems by combining two state-of-the-art systems in DB and ML

domains. Specifically, we show how our generative approach can be used to elim-

inate overheads at systems boundaries and implement cross optimizations while

preserving the best-of-breed performance of individual systems (Section  2.3 )

(c) We present two sets of benchmarks where we first evaluate the performance impact

of each optimization, and secondly comparing the performance to state-of-the-

art baselines to show that the our approach (1) either outperforms or achieves

competitive results when used in isolated tasks (i.e., data manipulation and ML

independently) and (2) achieves state-of-the-art performance (showing up to order

of magnitude speedups) when used in combined tasks (Section  2.4 ).

2. Efficient and Expressive Incremental Updates In Chapter  3 , we present RPAI,

a novel tree based index structure with the associated algorithms for efficient incre-

mentalization of correlated nested-aggregate queries.

(a) We present a case study with two examples of nested aggregate queries and an-

alyze how existing approaches handle those queries. Then, we motivate our ap-

proach of using aggregate indexes (PAI Maps and RPAI Trees) and demonstrate

how such structures can improve the incrementalization (Section  3.3 ).

(b) We design an efficient tree-based data structure for RPAI and present algorithms

for the key operators with an analysis of their time complexity (Section  3.4 ).

(c) We present a novel general algorithm for incrementalizing correlated nested aggre-

gate queries, followed by further optimizations using PAI Maps and RPAI Trees.

Then, we discuss the limitations and overheads associated with our approach.

(Section  3.5 ).
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(d) We evaluate the performance of our algorithm against DBToaster, a state-of-the-

art system that supports incremental execution of SQL queries, and show that

our approach performs significantly better in real-world datasets in line with the

expected performance behaviors due to asymptotic speedups (Section  3.6 ).

3. Efficient and Expressive Iterative Fixpoints In Chapter  4 we present Flan, a

novel Datalog engine that is capable of handling various Datalog extensions while

having the ability to achieve performance via compilation.

(a) We elucidate the rationale behind our choice of employing generative program-

ming, specifically, LMS, as the basis for constructing Flan (Section  4.2 ).

(b) We review essential background and demonstrate the construction of a simple

Datalog interpreter from scratch in Scala (Section  4.3 ).

(c) We illustrate how to effortlessly transform the Datalog interpreter into a compiler

that generates fast, specialized code by utilizing LMS (Section  4.4.1 ). We demon-

strate the integration of various extensions such as constraints, UDFs, negations,

and aggregations through streamlined abstractions (Section  4.4.2 ). We highlight

Flan’s backend flexibility by adding support for multiple join evaluation strategies

and index structures (Sections  4.4.3 and  4.4.4 ).

(d) We showcase the Datalog compiler can be seamlessly embedded into a full pro-

gramming language, capitalizing on existing features of the language (e.g., type

system, abstractions) for enabling composable, polymorphic, higher-order Dat-

alog programs. Moreover, we demonstrate how this simplifies the process of

enriching Datalog with features such as user-defined lattices (Section  4.5 ).

(e) We compare our engine with state-of-the-art Datalog engines such as Soufflé,

Ascent, Crepe, and Flix across a diverse range of benchmarks. Flan consistently

delivers competitive or superior performance in each benchmark (Section  4.6 ).

4. A New Query Language for Multi-Paradigm Workloads In Chapter  5 , we

present Rhyme, a new query language capable of expressing a variety of data processing
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workload while having the ability to performance optimizations and code generation

via the construction of an IR.

(a) We introduce the syntax of Rhyme, showcasing the ability to express common

data manipulation operators such as selections, group-bys, joins, user-defined

functions (UDFs), and others (Section  5.2 ).

(b) We highlight the versatility of Rhyme across various use cases, including the

expression of visual elements in web applications (e.g., tables, charts using SVG),

declarative tensor computations (akin to Einsum), and alternative ‘pipe’ APIs

via metaprogramming (Section  5.3 ).

(c) We elucidate the process of lowering queries into an IR that features loop-free and

branch-free code, with dependencies implicitly representing the program struc-

ture. Then, we illustrate how this IR facilitates code generation by constructing

the optimal program structure from dependencies (Section  5.4 ).

(d) We evaluate the performance of Rhyme on several JSON analytics workloads to

demonstrate the effectiveness of our code generation approach (Section  5.5 ).

1.4.1 Publications

The content of the dissertation is based on the following papers:

• Efficient Incrementialization of Correlated Nested Aggregate Queries using Relative

Partial Aggregate Indexes (RPAI).

Supun Abeysinghe, Qiyang He, Tiark Rompf

Appeared in Proceedings of the 2022 International Conference on Management of Data

(SIGMOD 2022).

• Architecting Intermediate Layers for Efficient In-Database Machine Learning

Supun Abeysinghe, Fei Wang, Gregory Essertel, Tiark Rompf

Presented at the 7th Annual Symposium on Machine Programming (MAPS 2023).
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• Flan: An Expressive and Efficient Datalog Compiler for Program Analysis

Supun Abeysinghe, Anxhelo Xhebraj, Tiark Rompf

Will appear in Proceedings of the 51st ACM SIGPLAN Symposium on Principles of

Programming Languages (POPL 2024).

• Rhyme: A Data-Centric Expressive Query Language for Nested Data Structures

Supun Abeysinghe, Anxhelo Xhebraj, Tiark Rompf

Will appear in Proceedings of 26th International Symposium on Practical Aspects of

Declarative Languages (PADL 2024).
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2. ARCHITECTING INTERMEDIATE LAYERS FOR

EFFICIENT IN-DATABASE MACHINE LEARNING

Portions of this chapter have appeared in Architecting intermediate layers for efficient compo-

sition of data management and machine learning systems, arXiv preprint arXiv:2311.02781,

2023 [ 5 ].

2.1 Introduction

Today’s data analytics workloads often combine traditional relational processing with

modern machine learning (ML) operations. These two workload types are significantly dif-

ferent from each other and have different domain-specific properties that lead to the con-

struction of independent specialized systems (i.e., DBMS for relational processing and ML

frameworks for ML operations). These systems go to great lengths to optimize their work-

loads by taking domain-specific properties into account (e.g., query compilation, binding to

low-level specialized kernels).

However, when we combine these systems to build complex data analytics pipelines, the

end-to-end performance becomes suboptimal. This can be due to multiple reasons including

the general inability to perform global optimizations (i.e., across individual system bound-

aries) and data movement and conversion overheads present at the boundaries (e.g., due to

incompatible data formats). For example, a simple relational query that uses an ML model

as a function, constructed inside Postgres (using PyTorch for ML) can be more than 50x

slower than a manual hand-optimized program written for the same task.

In this work, we address the following problem. How to incorporate full ML capabilities

to existing DBMS while (1) eliminating expensive overheads at system boundaries when

external ML systems are used, (2) performing global optimizations on the entire computation

rather than treating ML computations as black boxes, (3) without re-engineering systems

from scratch.

One approach is to add support for ML computations inside DBMS by extending SQL

engines with new operators (e.g., user-defined functions, iterative computations, etc.) [ 6 – 11 ].
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However, these approaches have limited support for the types of models they can run and

do not support modern ML models (e.g., Transformers [ 12 ]). Moreover, the performance is

not on par with specialized ML systems (e.g., PyTorch, TensorFlow, etc.) mainly due to the

inability to incorporate domain-specific optimizations.

Another approach, specifically to alleviate the data copying overheads at system bound-

aries is introducing common low-level data layouts that can be used across multiple systems.

Potential candidates include NumPy arrays and Apache Arrow [  13 ]. However, such common

data formats typically do not directly support efficient data manipulation as required inter-

nally by some systems. Moreover, these common data formats have to be sufficiently generic,

therefore, yielding suboptimal performance compared to workload-specific, optimized data

layouts, and are thus not well suited as internal data formats, so in practice, format con-

version to and from interchange formats remains at system boundaries. Besides, even an

approach based on shared internal formats would not enable cross-optimization of compu-

tation, such as eliminating entire materialized data structures via operator fusion across

systems.

Another, more intrusive but also more powerful, approach is to build a common inter-

mediate layer across different systems. The intermediate layer must be sufficiently generic

to support all operations of disjoint systems. That is, it should support all SQL/DataFrame

operations (e.g., different types of joins, aggregation queries, etc.) and all deep learning

operators (e.g., automatic differentiation (AD), sophisticated recursive ML models, etc.).

This could be achieved by making a single IR that contains the union of SQL engines and

ML systems (e.g., TensorFlow [  14 ], PyTorch [  15 ]). However, in practice, such an approach

is extremely challenging to realize due to the need to implement a plethora of special cases,

and essentially rewriting multiple systems as a unified whole from ground up or subsume one

into the other which requires an incredible engineering effort to match existing capabilities

(i.e., need to implement a best-of-breed RDBMS and a best-of-breed tensor framework and

achieve end-to-end optimal performance).

Therefore, existing work that follows the idea of building common intermediate layers

[ 16 – 18 ] imposes a single, fixed intermediate layer as a one-size fits all consisting of a handful

of generic operators (e.g., map, reduce, etc.). While there is considerable flexibility for
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optimization, this generic IR lacks vital contextual information which makes it difficult

to recover low-level performance through compiler analysis. Moreover, all the high-level

operators (e.g., Joins, Tensor operations, etc.) of existing systems (or their front-ends)

should be re-implemented using these generic IR constructs which requires a significant

engineering effort and can be challenging for complex operators (for instance, in Section  2.2 ,

we investigate a Hash Join implementation of such a system and show how it differs from a

classic textbook implementation).

In this work, we explore the use of generative programming to architect such com-

mon intermediate layers to combine pre-existing systems. Generative programming has

demonstrated great effectiveness in architecting large-scale systems for individual workloads

with relatively smaller engineering effort compared to highly engineered counterparts, while

achieving competitive performance [ 19 ,  20 ]. This generative approach allows programmers to

develop their systems using a high-level language with user-friendly features (e.g., high-level

type system, high-level data structures, abstractions such as classes, interfaces, generics,

etc.) while achieving native performance by translating this high-level code to low-level na-

tive code (thus, generative) which does not contain any of the high-level abstractions, hence,

abstraction without regret [ 21 ].

Our approach based on generative programming differs from previous intermediate layer

integrations as we have different layers of abstractions that are responsible for specific op-

timizations (e.g., tensor transformations, specialized data structures, etc.) as opposed to

a fixed generic IR (Figure  2.1 ). A key realization of our work is, this ability to preserve

domain-specific abstractions and optimizations of individual systems and the ability to add

more cross optimizations using these abstractions is vital for building systems that are com-

petitive with specialized systems for individual workloads and also outperforming previous

integrations for combined workloads. Moreover, properties of generative programming such

as the ability to build high-level data structures, having programmatic control, etc., allows us

to eliminate overheads at system boundaries and implement key optimizations with minimal

effort.

We demonstrate our approach enables efficient post-hoc integration of specialized pre-

existing systems with smaller engineering effort. Specifically, we build Flern, a query compiler

33



that supports full ML capabilities, by doing an intermediate layer integration between a state-

of-the-art query compiler (Flare [ 19 ,  20 ]) and an ML framework (Lantern [  22 ,  23 ]) that are

developed based on the same generative programming technique called Lightweight Modular

Staging (LMS) [ 21 ]. Flern is the first system that is best-of-breed individually (competitive

with state-of-the-art in-memory SQL engines like HyPer [ 24 ] on full relational benchmarks

[ 20 ] e.g., TPC-H [ 25 ] and competitive with TensorFlow and PyTorch in sophisticated deep

learning models [  22 ] [ 23 ] e.g., DeepSpeech [  26 ], SqueezeNet [  27 ], Transformer [ 12 ]) and also

the new state-of-the-art for integration. Flern can be used as both a query compiler for

queries that combine relational processing with ML (i.e., in-Database ML) or to accelerate

end-to-end data science pipelines that consists of a data manipulation phase followed by ML

operations (e.g., Spark + PyTorch workload). For the later case, Flern supports widely used

high-level front ends (e.g., Pandas and PyTorch) using existing tools [  28 ], making it possible

to accelerate existing implementations with minimal code changes.

2.1.1 Contributions

The main intellectual contribution of this work is to analyze the limitations of existing

approaches to extend DBMS with ML capabilities (e.g., incorporating ML operators into

the relational model, introducing common data formats) and to present an approach to

tackle this problem of combining systems in general: architect systems based on generative

programming, so that they can be adapted more effectively and at a lower engineering cost.

We demonstrate that architecting intermediate layers based on generative programming that

preserves contextual information (as opposed to generic IR layers) is the key to build state-

of-the-art systems that handles combined DB and ML workloads.

Our specific contributions are summarized as follows:

• We analyze the limitations of existing approaches to build common intermediate lay-

ers and discuss why generative programming is a better choice to integrate systems

efficiently with minimal re-engineering cost (Section  2.2 )

• We demonstrate how generative programming enables efficient post-hoc integration

of prior systems by combining two state-of-the-art systems in DB and ML domains.
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Figure 2.1. Prior approaches map the user program directly into a single com-
mon generic IR. This IR lacks vital information to perform high-level global
optimizations, hence, becoming a bottleneck. In contrast, Flern consists of
multiple abstraction levels each responsible for optimizations at their corre-
sponding level with rich contextual information.

Specifically, we show how our generative approach can be used to eliminate overheads

at systems boundaries and implement cross optimizations while preserving the best-

of-breed performance of individual systems (Section  2.3 )

• We present two sets of benchmarks where we first evaluate the performance impact of

each optimization, and secondly comparing the performance to state-of-the-art base-

lines to show that the our approach (1) either outperforms or achieves competitive re-

sults when used in isolated tasks (i.e., data manipulation and ML independently) and

(2) achieves state-of-the-art performance (showing up to order of magnitude speedups)

when used in combined tasks (Section  2.4 ).

In Section  2.5 , we present an analysis of related work in this domain. Finally, in Section

 2.6 , we draw conclusions and discuss potential future research directions.
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2.2 Motivation

2.2.1 Why Intermediate Layer Integration?

Specialized ML systems employ different techniques to achieve good performance for ML

workloads. These include implementing operations using high-level abstractions (e.g., Ten-

sor) that make it relatively easy to add domain-specific optimizations (e.g., Tensor trans-

formations). Therefore, to match the performance of these specialized ML systems when

doing in-Database ML, the ability to incorporate these optimizations is crucial. This can be

challenging in cases where ML operations are added to DBMS using different abstractions

and mechanisms (e.g., extended SQL execution engines, user-defined functions, etc.) due to

the difficulty of translating existing optimizations strategies to the new setting.

Another approach is to integrate DBMS with an existing ML system that already contains

all the domain-specific optimizations, eliminating the need for significant re-engineering costs.

For example, PL/Python plugin allows functions to be written in Python inside PostgreSQL.

Therefore, any ML framework that has interfaces in Python (e.g., PyTorch, TensorFlow)

can be used inside the DB to implement ML operations. With this, the DBMS gets full

capabilities of fully-fledged ML systems to be used for combined relational and ML workloads.

However, one of the major drawbacks of this approach is the fact that both systems treat

the other system as a black-box, incurring data copying and format conversions at system

boundaries and preventing any cross-system optimizations.

Specifically, in the case of Postgres, first, the data needs to be moved from the DB to the

Python environment. Then, this data is converted into tensors, the data format supported by

PyTorch. Once the ML computation is completed, the resultant tensors should be converted

back to PL/Py objects that are then copied back to Postgre where they finally get converted

into the original record format. For example, when running a three-layer neural network

model on NYC-Taxi dataset  

1
 on this stack, the actual execution time of the ML computations

is around 6 seconds whereas the total time comes to 638 seconds, showing the magnitude of

these overheads (analyzed in Section  2.4.4 ).
1

 ↑  https://www.kaggle.com/c/nyc-taxi-trip-duration  
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To investigate whether we can eliminate or significantly reduce these overheads, we look

into query compilers [  19 ,  20 ,  24 ]. Query compilers accelerate the query execution time by

generating low-level code that is specialized to a given query. Generally, these systems con-

struct an intermediate representation (IR) for the input query, perform various optimizations

on the IR and generate code from this optimized IR. Then, this generated code is compiled

(by a general-purpose compiler) and executed to obtain the result. A key idea to eliminate

the aforementioned cross-system data movement overheads is to integrate systems at this IR

level. Specifically, lowering both DBMS (i.e., query compiler) and ML computations into a

single common IR such that global optimizations can be performed at the IR level, and data

movement and conversion overheads can be minimized by carefully analyzing the IR.

2.2.2 Why Generative Programming?

Delite [  18 ] and Weld [  16 ,  29 ] are two examples of prior systems that follow the approach

of building common IRs across multiple systems where they design the IR constructs to

support multiple front-end use cases. Both these approaches share the common characteristic

of having a fixed, generic intermediate layer which consists of a few generic operators that

the front-end should use to implement their functionality. This approach comes with great

flexibility. That is, any optimizations we add to this generic IR layer can be reused for any

of the front ends. However, in practice, this flexibility comes with a significant cost. First,

due to the generic nature of this IR, most of the contextual information from the high-level

abstractions (e.g., Tensor, DataFrame, etc.) is lost at the common IR level. For example, if

a 2D Tensor is transposed twice consecutively, it is relatively easy to figure out this results in

a no-op if we have access to contextual information about what the data is (i.e., a 2D Tensor)

rather than capturing this by performing compiler analysis on the looping structures of the

generic IR. Second, it can be challenging to implement some of the complex operators using

these minimal IR constructs due to the likelihood of implementations varying significantly

from the textbook implementations.

For instance, Weld defines a minimal IR that captures the structure of common data-

parallel algorithms, and a runtime API that lets disjoint libraries construct Weld IR frag-
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ments. The host libraries should completely re-implement their operators to emit the IR

fragments required for the operator logic. These emitted IR fragments are accumulated to a

single global IR by the backend. Then, the combined IR will go through multiple layers of

optimization and will generate optimized machine code (via LLVM [ 30 ]).

Figure  2.2 shows the implementation of the Join operator in Weld 

2
 [ 16 ]. The imple-

mentation differs significantly from textbook pseudo-code and contains a stringified code

template for the Join operator and the holes will be filled based on the function parameters.

Since this kind of template expansion is limited by the fact that the code is manipulated

as strings, it is impossible or challenging to utilize features of high-level programming lan-

guages such as type checking on these code templates, and generally harder to implement

and maintain. This typically results in systems that only support a certain set of cases

(e.g. only one type of joins, or limited ML ops, etc.) due to the required engineering effort

and other complexities. Therefore, even though there is potential for improvement in end-

to-end performance, these approaches either do not support or fail to achieve best-of-breed

performance for specific workloads in full benchmarks (e.g. full TPC-H).

In contrast, generative programming is fine-grained, supports lots of programmatic con-

trol, and can rely on rich contextual information. For instance, Lightweight Modular Staging

(LMS) [ 21 ] is a generative programming framework in Scala based on multi-stage program-

ming (staging, for short) [  31 ] and runtime code generation. Multi-stage programming is a

paradigm that allows developers to write generic programs using higher degrees of abstrac-

tions without incurring a runtime penalty [ 32 ]. The high-level idea behind staging is to delay

computations of certain operations to a later stage, generating code for such operations with

the information known in the current stage. Code snippet in Figure  2.4 shows LMS in action

for a small example. Observe that the implementation is similar to programming in a regular

language (i.e., does not use big chunks of stringified code templates).

LMS is type-driven and uses Rep types to indicate the values that are going to be

computed in the next stage, and hence, should be computed by the generated code (Rep

represents next-stage expressions). All the operations including language constructs (e.g.,

control flow) on normal non-Rep expressions (e.g., Int, String, etc.) are evaluated at stag-
2

 ↑ https://github.com/weld-project/weld
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1 def join(expr1, expr2, d1_keys, d2_keys, keys_type, d1_vals, df1_vals_ty
, d2_vals, df2_vals_ty):

2 weld_obj = WeldObject(encoder_, decoder_)
3

4 df1_var = weld_obj.update(expr1)
5 if isinstance(expr1, WeldObject):
6 df1_var = expr1.obj_id
7 weld_obj.dependencies[df1_var] = expr1
8 df2_var = weld_obj.update(expr2)
9 if isinstance(expr2, WeldObject):

10 df2_var = expr2.obj_id
11 weld_obj.dependencies[df2_var] = expr2
12 #Some String manipulations constructing holes of the template elided
13 weld_template = """
14 let df2_join_table = result(
15 for(
16 %(df2)s,
17 groupmerger[%(kty)s, %(df2ty)s],
18 b, i, e merge(b, {%(df2key)s, %(df2vals)s})
19 )
20 );
21 result(for(
22 %(df1)s,
23 appender,
24 b, i, e
25 for(
26 lookup(df2_join_table, %(df1key)s),
27 b,
28 b2, i2, e2 merge(b, {%(df1key)s, %(df1vals)s, %(df2vals2)s})
29 )
30 ))"""
31

32 weld_obj.weld_code = weld_template % {"df1":df1_var, "df1key":
d1_key_struct, "df1vals": d1_val_fields, "df2":df2_var, "kty":
keys_type, "df2ty":df2_vals_ty, "df2key":d2_key_struct, "df2vals":
d2_val_struct, "df2vals2":d2_val_fields2}

33

34 return weld_obj

Figure 2.2. Join Implementation of Weld (for accelerating Pandas). The
operators emit code for IR construction as blocks of strings. This kind of
manipulation of code in stringified form is generally error-prone, relatively
harder to maintain and implement.
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1 case class HashJoinOp(left: Op, right:Op)(/* elided */) extends Op {
2 // HashMap specialized for corresponding Schemas
3 val map = LinkedHashMap(keySchema, left.schema)
4 def exec(callback: Record => None) = {
5 // Store records from left operator tree in the HashMap
6 left.exec { tuple =>
7 map.update(leftHash(tuple), tuple)
8 }
9

10 // Retrive records from right subtree and join
11 right.exec { tuple =>
12 for (lTuple <- map(rightHash(rTuple)) if joinCond(lTuple, rTuple))
13 callback(lTuple ++ rTuple)
14 }
15 }
16 }

Figure 2.3. Hash-Join Implementation of Flare which is a query compiler
based on generative programming. The implementation contains the operator
logic implemented using a high-level programming language (Scala) as opposed
to emitting blocks of stringified code and has access to all the features of the
host language (e.g., type system, abstractions, etc.).

ing time whereas all Rep-typed expressions generate code. Figure  2.5 shows the generated

C code.

This example also shows a glimpse of one of many optimizations done in LMS. In

particular, because of common subexpression elimination, power values computed midway

(power(b, 3)) are reused. Another key observation is the original source code (in Scala)

is almost the same as a normal Scala code except for the type annotation which indicates

the variables that need to be staged. Generally, this pattern is true for most cases, that is,

a developer just needs to change the types of a normal Scala program to convert it into a

staged program.

Under the hood, LMS maintains an extensible graph-like IR to capture the constructs

and operations of the staged program. It comes with several optimizations at the IR level

(e.g., loop fusion, common sub-expression elimination, loop unrolling, function inlining, etc.)
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1 def power(b: Rep[Int], n: Int):Rep[Int] =
2 if (n == 0)
3 1
4 else if (n % 2 == 0)
5 power(b, n/2) * power(b, n/2)
6 else
7 b * power(b, n-1)
8

9 def main(args: Rep[Array[String]]) =
10 println(power(args(0).toInt, 7))

Figure 2.4. Implementing power function using LMS where the normaly
typed n is known at staging time and is evaluated while Rep-typed b generates
code. A key observation here is that the code is similar to implementing the
same function in regular programming.

1 int main(int argc, char** argv) = {
2 int x0 = atoi(argv[0]); // args(0).toInt
3 int x1 = x0 * (x0 * x0); // x1 = x0 ** 3
4 printf("%d\n", x0 * (x1 * x1));
5 // x0 * ((x0 ** 3)* (x0 ** 3)) = x0 ** 7
6 }

Figure 2.5. Code generated by LMS for the power function in Figure  2.4 .
Observe that the program is specialized to the specified n value.

and on top of that, library developers can write their domain-specific optimizations easily

due to the extensible nature of the IR [ 33 ]. In this context, we can think of LMS as enabling

us to use all of Scala as a macro language in building the intermediate layer. This makes

it efficient and easy to implement sophisticated data structures and algorithms required for

advanced data manipulations and supporting full deep learning capabilities.

Generally, generative programming can be viewed as template expansion in the limit,

where operators are primitive operations (e.g., arrays, pointers, etc.) instead of abstract

operators like OuterJoin, TableScan (in Spark [  34 ]), and the templating engine is a full

Turing-complete and expressive language. Prior work has demonstrated the effectiveness

of generative programming as a systems-building technique that dramatically simplifies the
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construction of high-performance systems that have a high degree of internal variability and

need specialization to achieve performance. Consider the case of databases and Flare’s [  20 ]

query engine. Systems like Oracle or PostgreSQL consist of 10M LOC, and e.g. PostgreSQL

has 7 BTree implementations and 10 page abstractions, each specialized differently for

performance [ 35 ]. But this level of specialization is still not sufficient for top-of-the-line

performance. HyPer [ 24 ] was the first system to use LLVM [  30 ] for custom query code

generation with 10x speedups, but with the drawback that each query operator needs to

manage basic blocks, virtual registers, etc. DBLAB [  36 ] is another system that used a

complicated stack of 5 different intermediate languages to achieve specialized index data

structures, for additional performance gains.

Generative programming based Flare/LB2 [  19 ,  20 ] achieves all that and more in 3000

lines of high-level Scala code that looks like a textbook implementation of relational alge-

bra. In other words, generative programming vastly increases the power of each LOC. For

example, Figure  2.3 shows the implementation of HashJoin operator in LB2. The imple-

mentation is equivalent to writing the hash join algorithm for a simple query interpreter

in a high-level programming language (Scala). The developer has full access to high-level

data structures (e.g. LinkedHashMap) specialized for the given schemas, abstractions (e.g.

Record), and the Scala type system as opposed to writing brittle stringified code templates.

In the case of composing such systems by constructing common IRs, these properties of

generative programming are useful for adapting system boundaries with minimal overhead

and implementing key global optimizations that span across system boundaries. We can

implement such optimizations using different levels of abstractions (see Figure  2.1 ) while

using a high-level programming language with full access to contextual information about

the high-level operators (i.e, cross optimizations can be written using high-level abstractions

like Tensor, DataFrame, etc.) as opposed to having to implement all global optimizations

on a generic IR. In Section  2.3 , we show how these properties of generative programming can

be leveraged to combine a generative programming based query compiler with a ML system

with minimal overheads at system boundaries and how we can implement cross system

operations and optimizations to achieve state-of-the-art performance in combined DB and

ML workloads.
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Figure 2.6. The overall architecture of Flern. The end users can use their
familiar Spark, Pandas, PyTorch, etc. APIs.

2.3 Flern Overview

In this section, we demonstrate how to leverage the benefits of generative programming

to combine two pre-existing, independently developed, systems for the domains of DB (re-

lational) and ML (tensor) workloads. Specifically, we build Flern, by combining Flare [  20 ],

a query compiler for SQL, and Lantern [  22 ,  23 ,  37 ], an ML framework, which are developed

based on the same generative programming approach, Lightweight Modular Staging (LMS)

[ 21 ] (Figure  2.6 ). These two systems support full functionality in their respective domains

(e.g., full SQL, support for any DL model) and achieve competitive performance with best-

of-breed individual systems. Figure  2.7 shows a code snippet of Flern where it is used to

accelerate a Spark query that uses an ML classifier.

Flare is built on top of LB2 [  19 ], a high-level query compiler developed using generative

programming techniques. LB2 implements relational operators in a way that is similar to
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a simple query interpreter and converts it to a query compiler using Futamura projections

and partial evaluation [  38 ]. Flare is used as an accelerator for Apache Spark [  39 ,  40 ] specif-

ically targeting scale-up execution. Flare operates on the optimized query plans generated

by Spark’s query optimizer (Catalyst [  34 ]) and performs query compilation and runtime

native code generation. Flare shows that Spark’s focus on individual query blocks (i.e. at

the granularity of operator pipelines) holds back performance due to added overheads at the

boundaries of queries and instead performs whole query compilation [  20 ]. This code genera-

tion strategy of Flare achieves orders of magnitude speedups over Spark and other RDBMS

and achieves competitive performance with state-of-the-art in-memory query compilers like

Hyper [  24 ] in full relational benchmarks (e.g., TPC-H).

Lantern [  22 ,  23 ,  37 ] is a differentiable programming framework that handles automatic

differentiation via delimited continuations [  41 ], and code generation via LMS [  21 ]. Delimited

continuations allow Lantern to support ML models with in-graph control-flows such as con-

ditionals, loops, and functions. LMS reifies the computation graph (after automatic differ-

entiation) for code generation that utilizes various BLAS and neural network kernel libraries

for multiple hardware platforms (such as CPU and GPU). Lantern performs competitively

with existing deep learning frameworks (e.g., PyTorch and TensorFlow) in state-of-the-art

deep learning models.

Flern can be mainly used in two use cases. First, it can be used inside a DB as a query

compiler for queries that combine relational processing with ML (or tensor) computations

(i.e., in-Database ML). For example, a query containing one or more pre-trained ML classi-

fiers as functions in a SQL query. Second, Flern can be used to accelerate end-to-end data

science pipelines that are built using data manipulation (e.g., Pandas [  42 ], Spark) and ML

frameworks (e.g., PyTorch, TensorFlow). Here, the ML system trains models by repeatedly

retrieving batches of data by querying the data manipulation system (or from a materialized

query output). In both cases, integration between DB and ML systems is needed and data

needs to be transferred from one system to the other.

Remember, our primary design goal is to extend DBMS with ML capabilities while incur-

ring minimal re-configuration to pre-existing systems that ensure the ability to retrain their

individual performance and improving combined performance. Flare and Lantern are two
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state-of-the-art systems in their respective workloads. Therefore, one can simply run these

two systems independently and transfer data between the two systems using a commonly

used data format like CSV (or a common intermediate exchange format like Arrow [  13 ]).

This would not require any substantial modifications to the two systems and can be achieved

by adding a CSV exporter and an importer in the respective system boundaries. This would

retain the performance of individual systems, however, incurs a significant overhead due to

the need for exporting the data in a chosen format, loading the data, parsing the loaded

data, etc (evaluated in Section  2.4.2 ). A simple improvement over this naive implementation

would be to use a binary format that can reduce the overhead associated with formatting the

data and parsing the loaded data, and communicating over memory (e.g., using pipes). Yet,

overheads remain due to communication over different runtime environments. Moreover, in

cases where we build complex relational queries mixed with tensor computations (e.g., ML

Classifiers as UDFs), this data movement may have to happen multiple times back and forth

and both systems should be modified carefully to handle such interactions with external

systems.

2.3.1 Adapting the Boundaries of Flare and Lantern

A crucial characteristic of these two systems is that they are based on the same gener-

ative programming approach (LMS). As we discussed in Section  2.2 , a key benefit of this

generative approach is that these high-performance systems are implemented using Scala,

which is a feature-rich high-level programming language. Therefore, we can simply combine

by importing them as Scala libraries which would give us access to functionalities of both

systems. However, rather than combining them using the traditional way of passing data

across functions of respective libraries which causes data movement and conversion over-

heads, we can bring the two systems to a common layer and build a single IR graph at

the LMS level. Specifically, we create a common layer that supports the union of operators

from both systems while ensuring to preserve all the transformation and optimizations of

individual workloads.
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1 // initialize spark context, data schemas, etc.
2 withSpark("flern-test") { spark =>
3 val dataDf =
4 spark.createDataFrame(/* data path, schema, etc.*/)
5

6 dataDf.createOrReplaceTempView("data")
7

8 // define ML model
9 case class Model() {

10 /* define the model (PyTorch style) */
11 }
12

13 val model = Model(/*load with pretrained weights*/)
14

15 def classifier(a: Value): FloatValue = {
16 val output = model.inference(a.toTensor())
17 FloatValue(output)
18 }
19

20 spark.udf.register("classifier", classifier)
21

22 val outputDf = spark.sql("select p, sum(classifier(xs)) from r")
23 outputDf.show()
24

25 }

Figure 2.7. Code snippet shows a case where Flern is used to accelerate a
Spark query that contains a user-defined ML UDF.

This is enabled by the fact that both systems are written in a modular fashion. Specifi-

cally, functionalities are encapsulated in Scala traits as modules and these relatively smaller

modules are aggregated using class compositions with mixins [ 43 ] to form the larger sys-

tem. For example, Flare defines CompileProject, CompileJoin, CompileAggregate, etc.

traits to handle the operator logic for Project, Join and Aggregate operations. Then these

smaller building blocks are combined into FlareOps. The design of Lantern follows a similar

approach. Therefore, the functionalities of the two systems can be combined by following
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a similar mechanism. Then, we configure the LMS backend such that a single IR graph is

constructed for operations of both workloads.

However, the two systems still use different high-level abstractions and are not aware

of the abstractions of the other system (e.g., Flare is not aware of Tensor, Lantern is not

aware of Record, Buffer, etc.). Hence, we need to do conversions between these high-

level abstractions at the system boundaries. Yet, unlike other systems, a key characteristic

of generative programming based code generation is that these high-level abstractions are

dissolved into native data structures in the generated code (e.g., Tensor and Buffer become

native C arrays in the generated code). Therefore, even though we do conversions between

these abstractions in the high-level code, these conversions can be done in the form of mere

variable assignments in the generated code, resulting in zero performance penalty at runtime.

Implementing these conversions is convenient due to the extensible nature of LMS [  21 ,

 33 ,  44 ]. For example, to convert a Buffer to a Tensor, we can define a toTensor method

that creates a new type of node (e.g., to-tensor) in the IR. Then, we need to implement the

code generation logic for this new node which would generate a simple variable assignment

instruction in the generated code. Alternatively, since both Buffer and Tensor are built

on top of the same lower-level abstraction (Rep[Array[T]]), the conversion can be done at

that level. For example, Figure  2.11 (Line 11) shows how the records are simply converted

to a tensor (which is also represented as an array) by doing a simple variable assignment.

Though this approach sounds relatively simple, this simple implementation eliminates

data movement and data conversion overheads at system boundaries which is a significant

bottleneck in existing tools and a challenging problem as identified in Section  2.1 . And most

importantly, we preserve the individual optimizations of respective systems, thus, individual

best-of-breed performance is maintained. Moreover, since we construct a single IR for the

entire program at the LMS level, all the optimizations at the IR level (e.g., Dead Code

Elimination (DCE), code motion, loop fusion, etc.) are performed globally. Plus, further

global optimizations are performed by the downstream general-purpose compilers (GCC or

LLVM) when compiling the generated code.

This not just eliminates the overheads at system boundaries but also opens up room for

more cross-system optimizations that would further enhance the performance. For example,
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we can avoid the materialization of large amounts of intermediate data produced by the data

processing systems (that gets fed to ML models) by fusing the data processing loops with ML

loops. In the following sections, we discuss several such key cross optimizations that improved

the end-to-end performance of Flern. A key characteristic of all these implementations is

that we can use high-level abstractions such as Tensor, Buffer, etc. to implement cross-

system operations and optimizations rather than relying on compiler analysis on a fixed,

generic IR layer (see Figure  2.1 ).

2.3.2 Optimizing GPU Data Movement

Typically, larger ML workloads are executed in GPUs due to their ability to perform

tensor computations efficiently compared to CPUs. Running ML computations in GPU

requires the host (i.e., CPU) to transfer the corresponding data (i.e., inputs and weights

of the models) to the GPU. In this section, we introduce two optimizations to improve the

efficiency of this data movement and show how we incorporated them into Flern.

Any memory allocations done by the host are pageable by default. However, GPUs

cannot directly access this pageable memory allocated by the host. Therefore, whenever

data needs to be moved from such a pageable host array, the GPU driver first allocates a

temporary page-locked (or “pinned”) host array. Then, data is copied to this newly allocated

pinned array before copying to the GPU memory. In Flern, since we are aware of which data

buffers need to be transferred to the GPU, we can eliminate this additional data copying by

directly allocating the corresponding data buffers (in data manipulation) in pinned memory

(e.g., using cudaHostAlloc).

We add this functionality to Flern by adding a new operator that can create a Buffer

with underlying data (i.e., the C array in the generated code) directly allocated in pinned

memory. Then, for any Buffer that we invoke toTensor() followed by a toGPU(), we

allocate the original buffer in pinned memory.

Allocation of host arrays in pinned memory makes it possible to move data asynchronously

to the GPU. Generally, when two independent systems (or naively integrated systems) are

used for data manipulation and machine learning, GPU sits idle until the data processing
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Figure 2.8. Overlapping host (CPU) to device (GPU) data copying with
data processing such that batches of necessary records are moved to the GPU
as they are produced

phase completes. A chief advantage of generating a single piece of code for the end-to-end

task is, we can fuse these host to device data copying operations with the data manipulation

operators. In that case, data can be moved to the GPU while the output (from data ma-

nipulation) is being produced. Here, we can use asynchronous memory copying mechanisms

(e.g., cudaMemCpyAsync) to overlap data copying with data processing (see Figure  2.8 ).

2.3.3 Running ML UDFs Efficiently

Generally, data processing systems do not have support for ML operators natively. There-

fore, whenever queries involving such ML computations need to be executed, ML library func-

tionalities are integrated as calls to external systems (e.g., PyTorch or TensorFlow classifier

in Spark). However, these external functions are opaque to the data management system,

making it difficult or impossible to optimize and add significant overheads in the form of

data serialization and invocation overhead (e.g., need to perform computations outside the

DBMS runtime) when crossing system boundaries.

With Flern, we have access to a set of fully-fledged ML operations inside the DBMS.

Therefore, Flern can run queries involving ML operations as internal functions. There

are multiple benefits of running ML computations internally instead of relying on external

systems. For example, these internal ML UDFs are transparent to optimizations, making

it easier to mix the UDF computations with the rest of the computations and perform

optimizations when generating code (e.g., inline the UDF invocation, code motion, etc.).

Moreover, this opens UDFs for further global optimizations from the downstream compilers
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1 def classifierUDF(a: Value) = {
2 val inputTensor = a.toTensor()
3 // run the pre-trained model
4 // (can do any arbitrary tensor computation here

)
5 val output = model(inputTensor)
6 output.toValue
7 }

Figure 2.9. An example end-user defined UDF that can be called from SQL.
Since we have a tight integration with the ML framework, we can perform any
arbitraty ML computations inside the UDF.

(e.g., GCC optimizations). Furthermore, since all execution happens in the same runtime,

the overhead of invoking the UDF becomes negligible.

Consider the following simple query with a UDF.

SELECT x, classifierUDF(y) FROM r;

Figure  2.9 shows how an end-user would define such a UDF in Flern (in Scala). The

end-user can write their UDFs as normal Scala functions that use functionalities from both

Flare (DB) and Lantern (ML). For example, in the below code snippet, the user defines a

UDF that runs a pre-trained model on an input value. The function signature should match

the number of arguments we pass to the UDF in the SQL query. Then, whenever the user

registers the UDF, it will be added to a map called udfMap.

We add this functionality to Flern by defining a new ScalaUDF operator that would

generate code to invoke UDFs as normal function calls (shown in Figure  2.10 ). Then, relevant

Flare methods are overridden to use the newly introduced UDF operator in cases where UDFs

are invoked. This method extracts the corresponding function for the UDF and invokes the

function with relevant parameters. The code generation for the function invocation is handled

by LMS under the hood. Figure  2.11 shows how the generated code would look like.

With this approach, one of the key impedance for performance is that the query execution

model used in Flare (i.e., a modified version of data-centric model [ 19 ]) operates on one

record at a time. This is not ideal for running relatively large UDFs since the performance
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1 override def compilerExpr(/* elided */) = {
2 case ScalaUDF(function, dataType, children, ...) =>
3 // extract the function from udfMap
4 val extractedFunc = udfMap(function)
5

6 // extract the UDF arguments
7 // (need to recursively call compilerExpr because the arguments can

be subqueries)
8 val values = children map { compileExpr(_)(rec:_*) }
9 // call the function

10 extractedFunc(values:_*)
11 case _ =>
12 super.compilerExpr(/* elided */)
13 }

Figure 2.10. Adding a new ScalaUDF operator that retrieves the correspond-
ing user-registered UDF and call it with the correct arguments.

can be dominated by the overheads of kernel launches. Therefore, we have introduced a

VectorizedUDF operator where the kernels are launched for batches of data instead of single

instances, amortizing the kernel launch overhead. The implementation follows a similar

approach as above, but rather than invoking the function on single Records of data, batches

of data are processed.

Using CPUs for running ML models as UDFs works well for smaller models. However,

most modern deep learning models (e.g., a transformer-based sentiment classifier for text

data) are too slow to run on just CPUs. Therefore, it is imperative to have support for run-

ning these UDFs in GPUs. We can add GPU support by simply running the VectorizedUDF

kernels using the Lantern GPU backend. However, this hinders the overall performance be-

cause the CPU data manipulation gets blocked until we retrieve the output for the current

batch. Moreover, each data processing thread would perform GPU kernel launches and data

transfers to/from the device independently and concurrently with other (CPU) threads, mak-

ing both data transferring and execution inefficient. To mitigate this problem, we introduced

a new thread pool (having one thread per GPU) that is separate from the data processing

51



1 /* select p, classifier(xs) from r; */
2 int main() {
3 struct r_record* data = /* load data */
4 long record_count = /* data count */
5

6 float *w1 = /* classifier weigths*/
7 float *b1 = /* classifier bias*/
8 float *w2 = /* classifier weigths*/
9

10 for(long i = 0; i < record_count; i++) {
11 float *tensor = data[i]->xs; // conversion
12 // ML Computation
13 float *y1 = gemm_kernel(tensor, w1, ...);
14 for(int j = 0; j < 4; j++) {
15 y1[j] += b1[j];
16 }
17 float *y2 = gemm_kernel(y1, w2, ...);
18 if (*y2 > 0.5) {
19 printf("%d true", data[i]->p);
20 } else {
21 printf("%d false", data[i]->p);
22 }
23 }
24 }

Figure 2.11. Generated code for a simple query that uses an ML classifier
(variables renamed, some parts elided to improve clarity). Here, xs is an
array of data and the classifier computes the output by doing two matrix
multiplications. This code looks exactly like a manually written version of the
query and performs the combined DB + ML workload in a single unit.

threads (see Figure  2.12 ). This will retrieve records as they are being produced and then

batch all the smaller transfers and kernel invocations together so that overhead is amortized.

2.3.4 Supporting other Popular Front Ends

For the case where we use Flern to accelerate existing end-to-end data science pipelines,

it is imperative to support widely used user-friendly front ends [  45 ] (e.g., Pandas, Spark,

PyTorch, TensorFlow, etc.). There are existing tools that perform language virtualization
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Figure 2.12. Adding a separate thread pool to run ML UDFs on GPU. These
threads retrieve records as they are produced, accumulate them and run on
the GPU while data processing is ongoing.

and source code transformations for Python. For instance, Snek-LMS [ 28 ] implements a

multi-stage programming framework similar to LMS for Python. This can be used to convert

Python code into an intermediate representation that then can be used to generate code in

a different language. Snek-LMS has shown that PyTorch code can be translated into an

S-Expression intermediate representation that gets translated into Lantern with minimal

modifications (e.g., adding annotations) to the original code.

We can extend the same idea for Flare and build a translator that generates Flare code

from a Python source. However, a better alternative approach is to use the existing front ends

of Spark. Spark currently supports multiple front-end APIs such as PySpark and Koalas

(a Pandas-like interface) which under the hood relies on the Catalyst optimizer to build

optimized query plans and core Spark backend (Scala) for query execution. Since Flare only

relies on optimized query plans built by Spark (see Figure  2.6 ), we can extract the query

plans generated by these high-level front ends and use Flare runtime for execution. With

Lantern and Flare having the support for popular Python ML and data manipulation APIs

respectively, Flern can accelerate end-to-end data science pipelines written using high-level

user-friendly APIs with minimal modifications to the original code.
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2.4 Experimental Evaluation

We evaluate the performance of Flern in two phases. First, we analyze the impact of the

main global optimizations we implemented in Section  2.3 such as minimizing data movement

overheads, efficiently running UDFs, and overlapping ML computations (e.g., GPU) with

data manipulations. Second, we compare the performance with existing systems. One of

the key differentiators of Flern compared to existing work is its ability to have competitive

performance with best-of-breed systems of individual workloads. Therefore, we first evaluate

the individual performance of Flern using a set of representative data manipulation and

machine learning benchmarks. In this analysis, we compare the performance with the state-

of-the-art systems for the specific workloads.

Subsequently, we analyze the performance of the combined tasks. This includes relational

queries that combine ML computations and end-to-end data science pipelines where data

manipulation is followed by ML. Here, we show that trivial integrations between workload-

specific libraries (e.g., Spark for data manipulation, PyTorch for deep learning) introduces

additional overheads and precludes potential global optimizations, making their end-to-end

performance suboptimal. Our main goal of the experiments section is to demonstrate Flern’s

ability to perform both types of workloads comprehensively and the ability to achieve state-

of-the-art performance in all cases.

2.4.1 Benchmark Environment

For CPU only workloads, we used a NUMA machine with 4 sockets, 24 Intel(R) Xeon(R)

Platinum 8168 cores per socket, and 750GB RAM per socket (3 TB total). For GPU enabled

workloads, we conducted experiments on a NUMA machine with 2 sockets, 12 Intel(R)

Xeon(R) Gold 6126 cores per socket, and 100GB RAM per socket (200 GB total), a GPU

cluster with four NVIDIA GeForce GTX 1080 Ti 11 GB GPUs. Both servers ran Ubuntu

18.04.4 LTS as the OS.

We use the following versions of libraries/frameworks in the experiments (and the re-

spective versions). Python 3.7.6, Pandas 1.0.3, PyTorch 1.5.0, TensorFlow 2.2.0, NumPy

1.18.1, Weld 0.4.0, Dask 2.15.0, CuDF 0.14, Spark 2.4.5, Postgres 12.8, and GCC 7.5.0.
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Each reported result is an average of five runs after removing the lowest and highest value.

Unless otherwise specified, all the tools are running in multi-threaded mode with the default

number of threads which in most cases equal to the number of logical cores in the system.

2.4.2 Effects of Key Optimizations

In this section we evaluate the performance impact of key optimization steps we imple-

mented. We used the NYC-Taxi dataset from Kaggle  

3
 where ML models are trained and

used to predict the duration of taxi trips given some information (e.g., pickup and drop off

locations, time of the day, etc.) about the trip. The ML model we used for this task is a

three layer fully connected neural network with ReLu activations [  46 ] between each layer.

First, we evaluate the impact of minimizing the data movement overhead at system

boundaries. Figure  2.13a shows the performance for three cases. One common approach to

combine systems is to dump the output from one system and read it from the other system.

Such a naive integration between Flare and Lantern using a standard data format (in this

case CSV) incurs a significant data movement overhead accounting for more than 80% of

the time. This is because, such formats are not optimized for data transferring, and hence,

both the writer and reader need to spend time formatting and parsing data respectively. An

improvement over this approach would be to use a binary format that is accepted by both

systems, speeding up the data movement time notably (around 4x). In Flern, since high-level

abstractions (e.g., Tensors, FlatBuffer) dissolves into native data structures (e.g., C Arrays)

in the generated code, we can bring the two systems into the same memory address space

and use shared data buffers to minimize any unnecessary data copying. This essentially

eliminates the data movement overhead between the systems, achieving more than a 6x

speedup over the naive integration.

In the next experiment, we evaluate the impact of improving the data movement from

CPU memory to GPU memory. Figure  2.13b shows the results for this experiment. The

first bar corresponds to the serial case where the data manipulation portion of the workload

is completed first and then the produced data is copied to the GPU afterward. In this par-
3

 ↑  https://www.kaggle.com/c/nyc-taxi-trip-duration  
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Figure 2.13. Performance impact of global optimizations; (a) using shared
data buffers to minimize data duplication (CPU), (b) using pinned memory
and performing asynchronous data movement to GPU (c) vectorizing the UDFs
(CPU) (d) running the UDFs asynchronous (in GPU)

ticular experiment, this data movement takes almost 30% of the end-to-end running time.

In the optimized implementation, data is moved (in batches) as the records are being pro-
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duced rather than waiting for the entire data manipulation phase to complete. This means,

data movement is overlapped with the data manipulation computations (see Figure  2.8 ).

Moreover, additional data copying is eliminated by allocating relevant buffers in page-locked

(i.e., pinned) memory (as discussed in Section  2.3.2 ). This overlapped memory transfers and

efficient copying reduces the end-to-end running time by 40%.

The next set of experiments evaluate the performance of running ML models (or any

tensor computations) as internal UDFs in Flern. Figure  2.13c shows the performance gains

of running UDFs in a vectorized manner as opposed to running them in an instance by

instance manner. The execution time for the vectorized version is more than 140x faster

than the serial version. This can be attributed to the fact that the kernel (in this case, cblas

kernels) launch overheads are amortized over the records in the batch in the vectorized case

whereas in the serial case, each record would incur that cost.

Figure  2.13d shows the execution time for running the same experiment on GPUs. We

omit the results for the single instance version because the performance is significantly worse

than the vectorized versions. The first bar in Figure  2.13d corresponds to the case where the

UDF call is blocking and invoked by each data processing thread independently. That is,

each thread invokes data transfers (between CPU and GPU) and all the kernel invocations

separately. This leads to a relatively larger number of smaller data transfers and kernel

invocations (due to limited GPU memory) adding up launching overheads. To mitigate this,

Flern adds a separate worker thread pool (see Figure  2.12 ) where all the data movement and

kernel invocations are handled collectively. In this setting, these separate ML threads can

move data and invoke kernels for large batches of data, minimizing the total kernel launch

overheads. This optimization shows a speedup of 5x over the previous case.

2.4.3 Evaluating Individual Workloads

In this section, we evaluate the performance of Flern in individual workloads. As we

discussed in Section  2.3 , Flern preserves all the optimizations of the individual systems. The

goal of the experiments in this section is to ensure that the best-of-breed performance of indi-

vidual workloads is maintained in the absence of interactions with other systems. In contrast,
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Figure 2.14. Performance comparison for individual workloads (a) ML (b)
DB. (a) Per epoch execution time for Transformer model [  12 ] on WMT’14
Machine Translation dataset [ 47 ] (b) Running Time (s) for executing multiple
(nested) join queries, followed by a group by and an aggregation (vertical axis
is in log-scale).

prior approaches that build common IRs across libraries fail to perform competitively for

individual workloads.

Data Manipulation

We evaluate the performance of data manipulation using the Favorita Dataset from

Kaggle  

4
 . The dataset consists of six tables representing information about sales of a retail

store. We perform a natural join across the six tables, followed by a group by and an

aggregation query. This benchmark covers a representative data manipulation workload

since we perform joins across large relations and performing aggregated queries on grouped

relations.

Figure  2.14b shows the results for this benchmark. Pandas is the go-to framework for

many data scientists [  45 ] due to its popularity and simple API. However, when used in

medium-scale workloads (>1GB), the performance of Pandas becomes relatively poor mainly

due to lack of multi-threaded execution, taking the longest time to complete the data ma-

nipulation query. Dask accelerates Pandas by operating on chunks of Pandas DataFrames
4

 ↑ https://www.kaggle.com/c/favorita-grocery-sales-forecasting

58



and executing them in parallel [ 48 ]. Though we see a performance gain over Pandas, the

execution time is still orders of magnitude higher than the state-of-the-art systems. We note

that Dask supports cluster execution and might see better speedups over Pandas in such

settings. Generally, these two approaches are limited by the fact that they are doing most

of their computations on the Python runtime.

Spark is the de facto standard for big data processing. However, Spark is known to

have sub-optimal performance when used in medium-sized workloads [  20 ] yielding lower

performance compared to CuDF and Flern. CuDF performs the entire computation on

GPUs with minimal CPU intervention. We note that we used Dask-CuDF to operate on

chunks of the dataset as operating on the full dataset is not possible due to limited GPU

memory. Dask-CuDF utilizes Dask’s task-scheduling to split the task into several smaller

sub-tasks that operate on portions of the data. We can observe that CuDF performs better

than Spark, however, has higher running time compared to Flern. This performance gap

can be caused by the data spilling (from GPU to CPU) occur due to limited GPU memory

and general differences of internal algorithms used in different platforms (e.g., Hash Join vs

Sort-merge Join). Comparing the performance of Spark and Flern, we can see that Flern’s

query compilation approach accelerates Spark workloads significantly. Flern achieves around

6x speedup (compared to Spark) for the larger workloads. The performance gain can be

attributed to the limitations of Spark’s query compilation strategy (e.g., granularity of code

generation) as discussed in Section  2.3 .

Machine Learning

In the previous section, we saw Flern significantly outperforms most of the widely used

libraries and systems in the data science community for data processing. In this section,

we evaluate the performance of Flern when running state-of-the-art deep learning models.

Specifically, we trained a transformer based machine translation model [  12 ] for WMT’14

Multimodal Translation dataset [  47 ]. The model uses 6 encoder and decoder layers, embed-

ding size of 256, and similar configurations to the original Transformer-base model [  12 ] and

parameters are updated using Adagrad optimizer.
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Figure  2.14a shows the per iteration running time for Flern compared against PyTorch.

The performance is almost equivalent due to the similarity of the internal CUDA kernels

used in both systems. A key result of this experiment is to show that Flern can run these

state-of-the-art deep learning models with competitive performance which prior work that

build common intermediate layer integrations [ 16 ,  49 ] has not demonstrated the ability to

support. Specifically, in their approaches, it is challenging to capture composite computa-

tions from a generic IR (e.g., Multi-head Attention) to map to off-the-shelf kernels (e.g.,

CuDNN multiHeadAttn).

2.4.4 Evaluating Combined Workloads

To assess the performance of Flern in combined workloads, we present three sets of

experiments. First, we run an enhanced UDF where a tensor computation is used inside the

UDF. Then, a second set of experiments where a complete ML model is used as a UDF and

run in CPU and GPU. Finally, an end-to-end pipeline where an ML model is trained using

the data queried via a relational query.

Enhanced UDFs

This section evaluates the performance of Flern compared to Weld which is a similar

system at a superficial level. We chose a benchmark from one of the openly available Weld

implementations where a scalar value (crime index) is computed by performing a dot product

of a selected set of columns (crime-related data) with a predefined constant vector (openly

available Weld implementation does not support the workloads in Section  2.4.4 and  5 ). This

benchmark demonstrates a use case where multiple libraries are used jointly. Specifically, in

the case of Weld, the data manipulation portion is handled by Grizzly (a Weld-based Pandas

accelerator), and the dot product is handled by Weld-NumPy. Similarly, Flern uses Lantern

to handle the dot product.

Figure  2.15a shows the end-to-end execution time including the time for data loading,

code generation, and compilation (for Weld and Flern). Most notably, the end-to-end time

for Weld is higher than Pandas. This is caused mainly by the fact that Weld relies on Pandas
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Figure 2.15. Execution time (s) for performing a dot product as UDF

to load the data and the time spent on marshaling (encoding) and demarshaling (decoding)

of data between the host language and the Weld runtime. Figure  2.15b shows the actual time

taken for running the generated code in Weld and Flern excluding data loading, and any

other communication overheads. The generated Weld code has gone through multiple passes

of optimization including loop fusion, vectorization, loop unrolling, etc. [  29 ] and LLVM level

optimizations. Similarly, generated Flern code has gone through optimizations at multiple

levels (domain specific optimizations, code specialization, low-level compiler optimizations,

etc.). The performance of the resultant Flern code has a speedup of 2.5x compared to Weld.

This implies that, though both systems build a common IR across systems and generate

low-level code, the approach taken for architecting such IRs has implications on the final

performance.

Running ML Classifiers as UDFs

In this section, we evaluate the performance of running ML classifiers as UDFs in rela-

tional queries. We compare the performance of Flern with Spark and Postgres with PyTorch

used as the ML framework for both cases. In the case of Spark, it uses Apache Arrow [ 13 ]

which is a common in-memory columnar data format to transfer data between JVM and
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1 SELECT
2 stars,
3 SUM(CASE WHEN sentiment < 0.5 THEN 1 ELSE 0 END) AS negative,
4 SUM(CASE WHEN sentiment >= 0.5 THEN 1 ELSE 0 END) AS positive
5 FROM
6 (SELECT stars, classifier(review) AS sentiment
7 FROM review NATURAL JOIN business)
8 GROUP BY stars

Figure 2.16. An SQL query that uses a pretrained Transformer model to
predict the sentiment of business reviews and summarize according to stars.

Python environments. Arrow reduces the cost of data serialization and movement, reducing

the overhead of communication across the system boundary. This approach is significantly

faster than the usual way of running the UDF as an external function on a per-record basis

and serializing/deserializing at system boundaries (we do not report the numbers for this

case). For Postres, we used PL/Python plugin and implemented the ML operations using

PyTorch. In this experiment, we use the same dataset and model as Section  2.4.2 for the CPU

case and run a Transformer based sentiment classifier on Yelp Reviews Dataset  

5
 (extracted

1 million reviews with their corresponding business information) for the GPU case (query

shown in Figure  2.16 ). Specifically, for the sentiment analysis case, we compute the aggre-

gated number of positive and negative reviews based on the star rating of restaurants (query

shown below). The sentiment classifier consists of word and positional embeddings [  12 ], 6

encoder layers, followed by a three-layer fully connected layer with ReLu [  46 ] activations.

Figure  2.17a shows execution time for the CPU case where Flern demonstrates speedups

over 50x against Postgres and around 12x over Spark. We did several follow-up micro-

benchmarks to figure out the reason behind this large speedup. For the Postgres+PT and

Spark+PT case, we ran the corresponding workloads on individual systems (i.e., Postgres,

Spark and PyTorch separately) to observe the magnitude of the overheads added due to the

integration (Figure  2.17a highlights the portion of time spent for actual computation). These

overheads mainly come in the form of data copying and format conversion overheads that
5

 ↑  https://www.yelp.com/dataset 
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Figure 2.17. Performance comparison for (a) Running a 3-layer Neural Net-
work (Regression) UDF on CPU (b) Running a Transformer-based Sentiment
Classifier UDF on GPU

occur at system boundaries. Specifically, for Spark, this includes the cost of converting Spark

DataFrames to Arrow, moving data from one execution environment to another, converting

Arrow data to Pandas DataFrames, etc. Similar data copying occurs in the Postgres case.

Such overheads accounts for more than 90% of the total execution time in both cases. Since

Flern generates a single piece of low-level code with the UDFs inlined and fused with the

data processing loops, none of these overheads exists. Moreover, these UDFs are transparent

to the compiler and go through further global optimizations.

Figure  2.17b shows the execution time for the GPU case. Interestingly, Postgres im-

plementation runs faster than Spark. This can be attributed to the fact that there is no

coordination between the Spark workers when performing computations on the GPU. That

is, each worker sends computations to the GPU independently which leads to a case where

each worker launches kernels for smaller batches of data (because of limited amount of GPU

memory) simultaneously. This leads to more kernel launches, more (smaller) data move-
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ments between host and device, hence, more launch overheads which becomes dominant. As

we also saw in our micro-benchmarks (in Section  2.4.2 ), this lack of coordination can sig-

nificantly hinder performance. In the case of Postgres, a single PyTorch worker is spawned

by the DB that handles all the computations in the GPU, minimizing such kernel launch

overheads. As discussed in Section  2.3.2 (Figure  2.12 ), Flern has a separate thread pool that

batches ML computations from data processing workers which minimizes the kernel launch

overheads. This, and the absence of system crossing overheads, makes Flern significantly

faster than the other two systems.

End-to-end Training

This section evaluates the performance for training an ML model on data extracted by a

relational query. We chose the Favorita dataset from Kaggle (same as Section  2.4.3 ) where

the task is to train a model to accurately predict the number of sales for a large grocery chain.

The same task has been used as an evaluation benchmark in prior related studies as well

[ 10 ,  50 ]. The dataset consists of multiple relations (tables) that include related information

such as daily oil price, information about items (e.g., whether the item was on promotion),

history of transactions, etc. Similar to [  50 ], we first perform a natural join between all the

relations and select all the numerical columns. Then we train a neural network, composed

of three layers with ReLU [ 46 ] activations in the first two layers. We compute the Mean

Squared Error (MSE) loss, compute the gradients with respect to loss, and use Stochastic

Gradient Descent (SGD) to optimize the model parameters. We run this benchmark on a

set of most widely used libraries and systems in the data science community.

Figure  2.18 summarizes the result for this benchmark. The performance of data ma-

nipulation follows a similar pattern to that of Section  2.4.3 and can be attributed to the

same limitations discussed. CuDF failed to complete the experiment due to suffering from

insufficient GPU memory. Since Flare performs runtime native code generation and executes

the generated code, there is no direct way of integrating Flare with a library like PyTorch.

Hence, data movement becomes a bottleneck in that scenario. Flern, which builds a com-

piled path for the end-to-end data science pipeline execution, performs best compared to all
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Figure 2.18. Running time (ms) for an end-to-end data science workload
consisting of querying a relational source and training a machine learning
model. Flern achieves a speed up of more than 13x and 3.2x over Pandas +
PyTorch and Flare + PyTorch respectively while supporting user friendly
APIs similar to Pandas + PyTorch

the other approaches. Flern achieves a speedup of over 13x compared to the initial Pandas

version and achieves around 3.2x speedup over a naive integration between Flare and Py-

Torch. This can be attributed to the zero-cost data sharing between the two systems and the

global optimizations enabled from having a single IR and a single generated code (evaluated

in Section  2.4.2 ).
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2.5 Related Work

Weld [  16 ,  29 ] is a common runtime specifically targeting data-intensive applications with

a main focus on physical data movement optimizations. Weld provides a common runtime

for multiple libraries (e.g., Pandas, NumPy) by exposing an API to build the IR (Weld

API). Delite [  18 ,  49 ] is a compiler framework for implementing embedded domain-specific

languages (DSLs). The Distributed Multiloop Language (DMLL) [  51 ] performs cross op-

timizations on data processing and machine learning operations. Although both systems

achieve good performance in combined workloads, their performance in individual workloads

is below state-of-the-art or they do not provide enough functionality to run full benchmark

suites like TPC-H [  25 ]. Moreover, they require building individual systems from scratch or

need significant modifications to existing systems. Split Annotations [ 52 ] identifies these

limitations and presents an approach that can combine existing systems without modifica-

tion. Specifically, they treat library functions as black boxes and adds a cross-function data

pipelining layer to minimize data movement overheads. However, this approach sacrifices

the benefits of building common IRs and performing code generation (e.g., cross-system op-

erator fusion). On the other hand, our approach requires no re-implementation of existing

operators and can introduce cross-system optimizations, attaining the best of both worlds.

There are several works that incorporate ML computations into DB systems to avoid

expensive data movement [  6 – 8 ,  11 ,  53 ]. MADLib [  11 ] and Bismarck [ 8 ] define ML compu-

tations as UDFs inside the DBMS. Factorized ML approaches perform ML computations on

multi-table data by pushing ML operations down through to the normalized relations, elim-

inating the need to materialize large join results [ 9 ,  10 ,  54 – 59 ]. However, these approaches

are algorithm specific and does not support the full spectrum of modern ML models (e.g.,

deep learning).

Specialized data manipulation frameworks such as Pandas [ 42 ], Pandas accelerators (e.g.,

Modin [ 60 ], Dask [ 48 ]), Spark [  34 ,  40 ], HyPer [  24 ], Flare [  20 ], etc. have to rely on external

systems to handle ML workloads. TensorFlow [  14 ] and PyTorch [  15 ] are by far the most

widely used deep learning frameworks. TensorFlow has its data loading API (tf.data)

which builds efficient data preprocessing pipelines. However, that lacks full SQL/DataFrame
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like (e.g., Joins, Aggregate queries) operations. Spark MLlib [  61 ] and FlinkML are machine

learning libraries specifically designed for Spark and Flink [ 62 ] respectively. They utilize the

data manipulation capabilities of Spark and Flink, however, they do not provide support

for deep learning. Therefore, the need for combining specialized systems for data processing

and machine learning remains essential.

2.6 Conclusions

In this chapter, we presented Flern, the first intermediate layer that achieves both best-of-

breed performances on individual tasks and best-of-breed performance on combined work-

loads. Flern tackles a pressing problem in the DBMS community: incorporating full ML

capabilities into DBMS efficiently. We demonstrated that our approach based on generative

programming to construct common intermediate layers enables efficient post-hoc integration

between existing systems without a significant re-engineering cost. We believe this chapter

provides a principled approach to attacking this problem in general: architect systems based

on generative programming so that they can be adapted more effectively and at a lower

engineering cost.
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3. EFFICIENT INCREMENTIALIZATION OF CORRELATED

NESTED AGGREGATE QUERIES USING RELATIVE

PARTIAL AGGREGATE INDEXES (RPAI)

Portions of this chapter have appeared in Efficient Incrementialization of Correlated Nested

Aggregate Queries using Relative Partial Aggregate Indexes (RPAI), in Proceedings of the

2022 International Conference on Management of Data (SIGMOD ’22), June 12-17, 2022,

Philadelphia, PA, USA [ 63 ].

3.1 Introduction

Many real-world systems perform analytical queries on continuously arriving streams of

data that result in dynamic datasets with high update rates. These types of workloads are

prevalent in many modern big data application domains including finance, social media, etc.,

and generally focus on extracting insights, trends, and anomalies from data streams [  64 ]. For

example, in algorithmic trading, such queries are performed on fast arriving streams of data

to compute key metrics that drive trading decisions [ 64 ].

This is generally done in the form of incremental processing where, given a query Q,

a database db, the task is to efficiently compute Q(db + ∆db) under updates ∆db using

Q(db) (i.e., the previous result) and any additionally maintained auxiliary data structures.

Incremental processing is not just useful for processing streams of data, but also in other use

cases such as, producing low-latency approximate results for batch queries by operating on

mini-batches of data [  65 ], and eager processing of queries (i.e., before all the data is ready)

to produce faster results with limited resources [  66 ], intermittent query processing [  67 ], etc.

Traditional relational databases (DBMS) perform this in the form of Incremental View

Maintenance (IVM) when maintaining materialized views. Specifically, users can materialize

query outputs (e.g., for faster retrieval) and the DBMS engine maintains these views under

updates to the underlying data sources by incrementally updating the view accordingly (via

delta queries). This is generally faster compared to evaluating the query from scratch on the

updated database. Although these traditional IVM techniques handle simple queries well,
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they fall back to re-computation for complex queries with nested and correlated subqueries

[ 1 ].

DBToaster [ 1 ,  64 ] is a state-of-the-art incremental query evaluation system that takes

this notion of delta queries and applies it recursively (i.e., delta of delta queries and so

on) so that the views are maintained by not just a single materialized structure, but a set

of auxiliary views corresponding to each level of the recursive delta query. This notion of

higher-order delta queries works well in practice and has shown significant performance gains

over commercial DBMS and Stream Processing systems [ 1 ].

However, this recursive approach is only effective for a class of queries that is guaranteed

to have delta queries simpler than the higher-level query (further discussed in Section  3.3.1 ).

Importantly, queries with nested aggregates do not satisfy this key property. Specifically, the

delta of such queries is simply running the query twice and computing Q(db + ∆db) − Q(db)

which is worse than simply re-evaluating the query [ 68 ]. Therefore, systems like DBToaster

fall back to re-computing for such queries. In Section  3.3.2 , we show that DBToaster takes

O(n2) time to maintain such a query under updates which is the same asymptotic time as

re-computation whereas we demonstrate the same can be done in O(log n) time by using an

additional index to maintain partial aggregates.

Follow-up work on DBToaster [  68 ] presented a technique called domain extraction for

specifically optimizing this re-evaluation strategy by narrowing down the iteration space.

However, this only works for cases where the nested aggregates are correlated to the outer

query on equality predicates. Even for the queries that use this technique, we show in

Section  3.3.1 that this approach yields sub-optimal asymptotic performance (e.g., takes O(n)

where O(1) is possible). Another line of related work focuses on building specialized data

structures and algorithms to efficiently incrementalize certain classes of queries (e.g., acyclic

conjunctive queries (CQ) with equalities [ 69 ] or inequalities [ 70 ], acyclic foreign key joins

[ 71 ] etc.). However, the presented specialized data structures either do not support or do

not efficiently handle nested aggregate queries.

In this work, we focus on improving the incrementalization efficiency of aggregate queries

containing nested aggregate subqueries in their predicates. First, we introduce a general

algorithm that is based on the idea of identifying and updating only the aggregate values
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affected by a tuple insertion (or deletion). This is done by analyzing the correlated columns of

inner queries and the corresponding uncorrelated columns used in the inner query predicates.

Second, we focus on a specific subset of queries that appear commonly in practice (especially

in finance-related use cases) and propose a way to further optimize them. Specifically, we

build additional index structures that are indexed by aggregate values such that a range of

aggregate values can be shifted efficiently, providing the ability to compute the final result

directly from these indexes. We observe that none of the existing data structures support the

required operations in a reasonable time, and hence, design a novel tree-based data structure

called relative partial aggregate index (RPAI) that stores aggregate values (i.e., keys) in a

parent-relative manner to enable range key shifting in logarithmic time. Our analysis shows

that the use of these aggregate indexes result in significant asymptotic speedups (e.g., O(n2)

to O(log n)) and up to 1100× speedups in workloads of practical importance.

3.2 Contributions

• We present a case study with two examples of nested aggregate queries and analyze how

existing approaches handle those queries. Then, we motivate our approach of using

aggregate indexes (PAI Maps and RPAI Trees) and demonstrate how such structures

can improve the incrementalization (Section  3.3 ).

• We design an efficient tree-based data structure for RPAI and present algorithms for

the key operators with an analysis of their time complexity (Section  3.4 ).

• We present a novel general algorithm for incrementalizing correlated nested aggregate

queries, followed by further optimizations using PAI Maps and RPAI Trees. Then, we

discuss the limitations and overheads associated with our approach. (Section  3.5 ).

• We evaluate the performance of our algorithm against DBToaster, a state-of-the-art

system that supports incremental execution of SQL queries, and show that our ap-

proach performs significantly better in real-world datasets in line with the expected

performance behaviors due to asymptotic speedups (Section  3.6 ).
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3.3 Incrementalization of Nested Aggregates

In this section, we consider two example nested aggregate queries of different forms and

explore how existing systems and approaches handle these queries. Then, we identify the key

limitations of these approaches, which motives the ideas presented in this work. Specifically,

we demonstrate how our approach can improve the efficiency of incrementalization of these

queries.

3.3.1 Nested Aggregate with Equality

Consider the query in Figure  3.1 that contains two nested-aggregate subqueries predicated

on equality conditions. This computes an aggregate of values that is responsible for a given

fraction (1
2 in this case) of all the records. Queries of this structure are commonly found in

many use cases [  64 ,  72 ].

Q = SELECT Sum(r.A * r.B) FROM R r
WHERE 
  0.5 * (SELECT Sum(r1.B) FROM R r1) =

      (SELECT Sum(r2.B) FROM R r2 WHERE r2.A = r.A)


lhs_sum

rhs_sum

Figure 3.1. Query containg nested-aggregate subqueries predicated on only
equality conditions.

The query operates on a single relation R(A, B) and consists of two nested aggregate

queries. The inner query on the left-hand side is not correlated with the outer query whereas

the right-hand sub-query is correlated implying that the corresponding aggregate value varies

for different records from the outer query.

Figure  3.2 ,  3.3 and  3.4 shows the code corresponding to different execution strategies for

the query in Figure  3.1 .
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1 R = []
2 def on_new_R(t: R):
3 R.append(t)
4 # re-evaluate from scratch
5 res = 0.0
6 for r in R:
7 # evaluate lhs nested aggregate (uncorrelated)
8 lhs_sum = 0.0
9 for r1 in R:

10 lhs_sum += r1.B
11 lhs_sum *= 0.5
12 # evaluate rhs nested aggregate (correlatead)
13 rhs_sum = 0.0
14 for r2 in R:
15 if r2.A = r.A:
16 rhs_sum += r2.B
17 # evaluate the predicate and update aggregate
18 if (lhs_sum == rhs_sum):
19 res += r.A * r.B

Figure 3.2. Naive Re-evaluation strategy for query in Figure  3.1 . Takes
O(|R|2) time (Section  3.3.1 )

Naive Re-evaluation Strategy

Figure  3.2 shows a naive re-evaluation computation of the given query in Python. The

code is self-explanatory and follows the same structure as the query (i.e., nested loops for

the subqueries). Notice that this computation happens every time R(A, B) gets updated

(i.e., tuple insertions, or deletions). That is, when updates to R is ∆R, Q(R + ∆R) is

evaluated from scratch irrespective of the fact that Q(R) was previously computed. Due to

the presence of nested loops, overall asymptotic time complexity of producing the final result

upon updates to R comes down to O(|R|2) where |R| is the number of tuples in R.
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1 # materialized views
2 map1 = {} # A -> sum(A * B)
3 map2 = 0.0 # -> sum(B)
4 map3 = {} # A -> sum(B)
5

6 def on_new_R(t: R):
7 res = 0.0
8 # update the maps
9 map1[t.A] += t.A * t.B * t.X

10 map2 += t.B * t.X
11 map3[t.A] += t.B * t.X
12

13 # compute lhs_sum
14 lhs_sum = 0.5 * map2
15 # find each rhs_sum
16 for a in map1:
17 rhs_sum = map3(a)
18 # evaluate the predicate and update aggregate
19 if lhs_sum == rhs_sum:
20 res += map1(a)
21 return res

Figure 3.3. Code geberated by DBToaster for the query in Figure  3.1 . Some
portion of the query is incrementalized over the naive approach in Figure  3.2 .
Takes O(|R|) time (Section  3.3.1 )

DBToaster Incremental Query Execution

As discussed in Section  3.1 , DBToaster falls back to recomputation due to the lack of

an efficient delta query for queries containing aggregate subqueries in the predicates. Figure

 3.3 shows the code generated by DBToaster for the query in Example  3.1 . We converted the

generated C++ code to Python to improve readability and combined the tuple addition and

deletion triggers into a single (equivalent) trigger to make the code more concise (t.X = 1

for insertions and t.X = −1 for deletions).

The code shows that even though it relies on re-evaluation for connecting the nested ag-

gregate with the outer query, other parts of the query are efficiently incrementalized (com-

pared to naively re-evaluating). For instance, the lhs_sum computation which required
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1 # materialized views
2 map1 = {} # A -> sum(A * B)
3 map2 = 0.0 # -> sum(B)
4 map3 = {} # A -> sum(B)
5

6 def on_new_R(t: R):
7 res = 0.0
8 # update the maps
9 map1[t.A] += t.A * t.B * t.X

10 map2 += t.B * t.X
11 map3[t.A] += t.B * t.X
12

13 # compute lhs_sum
14 lhs_sum = 0.5 * map2
15 # find each rhs_sum
16 for a in map1:
17 rhs_sum = map3(a)
18 # evaluate the predicate and update aggregate
19 if lhs_sum == rhs_sum:
20 res += map1(a)
21 return res

Figure 3.4. Code generated by our approach based on aggregate indexes for
the query in Figure  3.1 . This query is fully incremental and only takes O(1)
time (assuming (1) hash maps) (Section  3.3.1 )

iterating through all the records (line 8-11 in Figure  3.2 ), is now computed in constant time

by incrementally maintaining the sum of B values using map2. Since rhs_sum depends on

the r.A values from the outer query, map3 maintains the relevant sum(B) values for different

r.A values. Here, rather than re-evaluating all the rhs_sum values (lines 13-16 in Figure

 3.2 ), only the sum affected by the new tuple is updated. map1 maintains the sum(A ∗ B)

for each A value and is used to compute the final aggregate sum. Specifically, once lhs_sum

and rhs_sum are computed, the set of A values that satisfy the condition are found and the

corresponding sum(A ∗ B) values are summed up.
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Lines 9-11 in Figure 1b correspond to updating the maps based on the incoming tuple

and lines 16-20 show the computation of the final result. The overall time complexity of

maintaining the final result under updates to R is O(|R|).

Using Aggregate Indexes

A key observation at this point is that even though lhs_sum changes with incoming

tuples, the aggregate value remains a fixed value for all the outer tuples as lhs_sum is not

correlated to the outer query. Therefore, if we have an additional index that maps different

rhs_sum values to the corresponding final aggregate sums (in this case SUM(A * B)), we can

query that map using the current (updated) lhs_sum to compute the updated final result in

constant time. However, populating such an aggregate index naively by computing rhs_sum

for each tuple (using map3) would still leave the overall time complexity at O(|R|).

Now the key question is, rather than populating this aggregate index by iterating and

computing rhs_sum for all the tuples in R, is it possible to maintain it in less than O(|R|)

time. Observe that whenever a new tuple t arrives, three things change. First, the lhs_sum

gets incremented by t.B ∗ t.X which can be updated in constant time. Second, the new

record has a corresponding rhs_sum and that needs to be added to the aggrMap. This can

also be done in constant time by computing the rhs_sum using map3 as we saw before and

updating the corresponding entry in aggrMap.

Third, the addition of the new tuple to r2 (in the right subquery) will trigger a change

of rhs_sum values of all tuples having the same A value as t.A (because the condition

of the nested query predicate is r.A = r2.A). Therefore, all the tuples with the same A

value will have the same rhs_sum because the set of tuples responsible for their respective

rhs_sum are only the ones having the same A. That is, with the addition of t, the rhs_sum

corresponding to t.A gets incremented by t.B ∗ t.X and we need to update the aggrMap to

reflect this change. We can do this by moving the corresponding sum(A*B) from the old

rhs_sum key to rhs_sum + t.B ∗ t.X.

However, we cannot simply move the value for rhs_sum to rhs_sum+ t.B ∗ t.X because

there can be the same rhs_sum for different A values (i.e., different groups of tuples can
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have the same aggregate value). We can handle this by using map3 to move the respective

portion of the value from aggrMap[old_rhs_sum] (i.e., only sum(A ∗ B) of records having

t.A in A) to aggrMap[new_rhs_sum].

We call indexes of type aggrMap, Partial Aggregate Indexes (PAI) since they store ag-

gregates values as keys and map to aggregates. Figure  3.4 shows the implementation based

on the PAI Map based approach. The entire update routine only contains updates to hash

maps and does not require any form of iteration. Therefore, the query in Example  3.1 can

be incrementally maintained in O(1) time using our approach which is more efficient than

re-evaluation which takes O(|db|2) time, and DBToaster which takes O(|db|).

3.3.2 Nested Aggregate with Inequalities

In the previous example, we demonstrated how a query that has an O(|R|2) re-evaluating

cost and an O(|R|) incremental maintenance cost (in DBToaster) can be incrementalized in

O(1) time by using PAI Maps. The query consisted of just equality predicates, making

it possible to use hash maps to maintain the aggregate indexes under updates in constant

time. In this section, we consider a real-world query (Figure  3.5 ) of a similar structure having

inequality predicates.

SELECT
Sum(b.price * b.volume)

FROM
bids b

WHERE
0.75 * (SELECT Sum(b1.volume) FROM bids b1)
<
(SELECT Sum(b2.volume)

FROM bids b2 WHERE b2.price <= b.price)

Figure 3.5. The query computes the volume-weighted average price (VWAP)
over bids that is in the final quartile (i.e, more than 75%) of total stock volume
[ 64 ].

Example  3.5 is a query from the finance benchmark which is used in multiple other

related works [ 1 ,  64 ] to evaluate the performance of incrementalization. The query operates
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on traces of records from order books that contain information about bids and asks for

shares (or any other asset) in a financial market. These trades occur at rapid rates making

it extremely important to have fast refresh rates as the queries compute key metrics that

drive efficient algorithmic trading [ 64 ]. Moreover, the transactions in these financial markets

often contain updates or retractions of older transactions, requiring the incremental query

engines to maintain these queries incrementally under both insertions and deletions.

The bids relation consists of five attributes timestamp, id, broker_id, volume, price, plus

an additional attribute (bids.X) to distinguish between record deletion (-1) and insertion

(+1). Similar to Example  3.1 , this query contains two nested aggregate queries with one

of them being correlated to the outer query. The main difference is the use of inequality

predicates in the query.

Naive Re-evaluation Strategy

Figure  3.6 shows the code for a naive re-evaluation approach to compute the output of

this query. Here, the bids is updated as records arrive and the result is computed from

scratch by looping through the records while computing lhs_sum and rhs_sum using nested

loops. The overall asymptotic time complexity is O(|bids|2) where |bids| is the cardinality of

the bids relation at the given point.

DBToaster Incremental Query Execution

Figure  3.7 shows the code generated by DBToaster for the Example  3.5 query. DBToaster

creates a set of maps representing intermediate materialized views to incrementally maintain

the query. The two nested subqueries are fully incrementalized using two maps map2 (for

lhs_sum) and map3 (for rhs_sum). map1 maintains the sum of price * volume per each

price. This is useful when computing the final result as we need to accumulate price *

volume based on a set of price that satisfies the given conditions.

Similar to the previous example, DBToaster fails to incrementalize the computation of

the final result that requires finding records from the outer query that satisfy the query

conditions. Therefore, it falls back to computing the final result by iterating through records
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1 bids = []
2 def on_new_bids(t: record):
3 # update the base table
4 bids.addRecord(t)
5 # re-evaluate from scratch
6 res = 0.0
7 for b in bids:
8 # evaluate the lhs nested aggregate (uncorrelated)
9 lhs_sum = 0.0

10 for b1 in bids:
11 lhs_sum +=
12 b1.volume * b1.X
13 lhs_sum *= 0.75
14

15 # evaluate the rhs nested aggregate (correlated)
16 rhs_sum = 0.0
17 for b2 in bids:
18 if b2.price <= b.price:
19 rhs_sum +=
20 b2.volume * b2.X
21

22 # evaluate the predicate and update the aggregate
23 if (lhs_sum < rhs_sum):
24 res +=
25 b.price * b.volume * b.X

Figure 3.6. Naive Re-evaluation, Takes O(|bids|2) time (Section  3.3.2 )

which is essentially similar to the naive re-evaluation strategy in Figure  3.6 (Lines 16-20).

Hence, the asymptotic time complexity remains at the same level as naive re-evaluation, at

O(|bids|2).

Using Aggregate Indexes to Fully Incrementalize

To further incrementalize this query, we can follow a similar intuition to the previous

example where we introduced the use of PAI Maps to index the final aggregate sum using

rhs_sum as a key. Assuming such an index can be efficiently maintained, finding the final

aggregate can be done in linear time by iterating through rhs_sum keys that are greater
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1 map1 = {}
2 # price -> sum(price*volume)
3 map2 = 0.0
4 # sum(volume)
5 map3 = {}
6 # price -> sum(volume)
7

8 def on_new_bids(t: record):
9 # update the maps

10 map1[a.price] += t.X * t.price
11 * t.volume
12 map2 += t.X * t.volume
13 map3[a.price] += t.X
14 * t.volume
15 # evaluating correlated nested aggregate
16 for each outer distinct price
17 res = 0.0
18 for b_price in map1:
19 rhs_sum = 0.0
20 for b2_price in map1:
21 if b2_price <= b_price:
22 rhs_sum += map3[b2_price]
23 # evaluating condition
24 if 0.75 * map2 < rhs_sum:
25 res += map1[t.price]
26 return res

Figure 3.7. Code generated by DBToaster. Takes O(|bids|2) time (partially
incremental; Section  3.3.2 )

than lhs_sum and accumulating the corresponding sum(price * volume) values. For

that purpose, we can define a getSum(key) method for hash maps that finds the sum of

values having keys less than or equal to a given key by simply iterating over the keys. The

compute() method in Figure  3.8 (lines 23-27) shows how to use getSum to compute the

final result.

Now the question is: can we efficiently maintain the aggrIndex under updates? We can-

not simply follow the same approach as before to shift the aggregates as the predicate inside
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1 aggrIndex = {}
2 # <rhs_sum> --> sum(price * volume)
3 map2 = 0.0
4 # sum(volume)
5 map3 = {}
6 # price --> sum(volume)
7

8 def on_new_bids(t: record):
9 # rhs_sum for new record (before update)

10 rhs_sum = getSum(map3, t.price)
11 volume = map3[t.price]
12 # update the aggregate index
13 shiftKeys(aggrIndex, rhs_sum-volume,
14 t.X * t.volume)
15 # update the maps
16 map3[t.price] += t.volume*t.X
17 map2 += t.volume*t.X
18 aggrIndex[rhs_sum + t.X * t.volume]
19 += t.X * t.price * t.volume
20 #compute the output
21 return compute()
22

23 def compute():
24 lhs_sum = map2 * 0.75
25 res = getSum(aggrIndex, inf)
26 - getSum(aggrIndex, lhs_sum)
27 return res

Figure 3.8. Our approach based on aggregate indexes. Takes O(|bids|) &
O(log|bids|) (fully incremental; Section  3.3.2 )

the correlated nested subquery (i.e., b2.price <= b.price) is not an equality. Specifi-

cally, insertion (or deletion) of a new record t does not only increment (or decrement) the

rhs_sum of outer records having the same price as t.price but also the ones with price

> t.price. This update cannot be done by simply iterating over the price values since the

aggrIndex does not store the corresponding price values. For this, we can potentially use

an additional index that maps price to the corresponding rhs_sum value (similar to map1

in Figure  3.7 ).
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Alternatively, rather than relying on an additional index, we can exploit a key charac-

teristic of rhs_sum to do this mapping. Specifically, the rhs_sum will grow monotonically

in the order of increasing price values since rhs_sum for a given t.price is the sum of all

volume value of records having a smaller or equal price compared to t.price (based on

the correlated predicate). Therefore, when a new record arrives, we can first compute the

corresponding rhs_sum for that particular record (without considering the new record) and

then we know that every rhs_sum greater than or equal to that value must be incremented

by the new t.volume. For this, we can define a method shiftkeys(key, offset) that

will shift all the keys greater than the given key by the given offset.

Figure  3.8 shows the final code for this approach. We first compute the rhs_sum for the

new record using the getSum method (Line 10). Then, we shift all the keys (i.e., aggregate

values) that are greater than or equal to rhs_sum using shiftKeys (Line 13). Since we

defined shiftKeys to shift the keys that are strictly greater than a given key k, we pass

the immediate lesser key (i.e., rhs_sum - volume) to shift all qualifying keys including

rhs_sum (Lines 11-13).

Overall, the final code consists of a set of constant time hash map lookups, and linear

time getSum and shiftKeys method calls. Hence, the total time complexity is O(|bids|)

which is asymptotically faster than DBToaster and re-evaluation that took O(|bids|2). In the

next section, we design a new tree-based index structure called Relative Partial Aggregate

Indexes (RPAI) that can perform getSum and shiftKeys operators in logarithmic running

time, bringing the overall time complexity down to O(log|bids|).

3.4 Relative Partial Aggregate Indexes (RPAI)

In Section  3.3.2 , we saw how the use of PAI Maps that are indexed on aggregate values

can improve the incrementalization efficiency of nested aggregate queries. Specifically, for

queries with inequality correlated predicates, we identified getSum and shiftKeys as two

main operations and showed that PAI Maps can support those operations in linear time.

In this section, we design a tree-based data structure called the Relative Partial Aggregate

Index (RPAI) that can support both of these operations in logarithmic time. Our data
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structure needs to be a map (i.e., maintains key-value pairs with unique keys) and should

support getSum and shiftKeys in addition to the regular map operations (i.e., get and

put).

3.4.1 Optimizing getSum

Although hash maps support the regular map operations in constant time, getSum and

shiftKeys require iterating through all the keys in the map. Alternatively, tree-based data

structures are known to be efficient for operations similar to getSum. For instance, Segment

Trees [ 73 ] and Binary Indexed Trees (Fenwick Trees) [  74 ] can perform range sum queries in

logarithmic time which require finding the sum of all elements between two given indices.

We follow a similar intuition and augment a typical TreeMap data structure [  75 ] to

maintain the required information in the nodes of the tree. Specifically, we create a Binary

Search Tree (BST) indexed by the keys of the map and in each node, store the sum of

values of its subtree in addition to storing respective value. Now, we can perform getSum in

logarithmic time (assuming the tree is balanced) by recursively traversing the tree leveraging

the BST property and calling getSum recursively on the corresponding subtrees.

Algorithm  1 shows the pseudo-code for the implementation (note that we omitted null

checks and recursion base cases to make the code more concise).

Algorithm 1 Get Sum
Result: Sum of all the values having key ≤ k

1 def getSum(node, k):
2 # Rule 1
3 if (k < node.key):
4 return getSum(node.left, k)
5 # Rule 2
6 else if (k == node.key):
7 return node.value + getSum(node.left, k)
8 # Rule 3
9 else:

10 return node.left.sum + node.value
11 + getSum(node.right, k)
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Figure 3.9. An example run of the getSum(50). The red lines show the
traversal path, and the values in green color contributes to the final answer
which is 12+2+2. Each node shows <key, value> and the subtree sum.

Figure  3.9 shows an example run of the algorithm where it finds the sum of all values

having keys less than or equal to 50 (i.e., getSum(50)). Having access to subtree sums

avoids exhaustive iteration of nodes of subtrees that are known to have keys less than or

equal to the given key. For example, in Figure  3.9 , the algorithm avoids traversing the left

subtree of the root node by directly extracting the corresponding subtree sum. This enables

the algorithm to perform the complete getSum operation in logarithmic time.

3.4.2 Optimizing shiftKeys

shiftKeys(key, offset) shifts all the keys > key by the given offset (can be neg-

ative). Performing this operation on the tree-based data structure is not as trivial as PAI

Maps where we iterate through the keys and update the qualifying keys. The complexity

comes from the need to ensure that the BST property is intact whenever keys are updated.

For cases where offset > 0, we can simply update all qualifying keys since shiftkeys

shifts all the keys greater than key without the need for restructuring. That is, the resultant

tree (after updating) is guaranteed to satisfy the BST property because (1) for the keys that

get updated, they will be shifted by the same value, and (2) for the remaining keys, the set

of keys that got incremented were originally greater than them. For cases where offset
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Figure 3.10. Storing the keys of the nodes relative to the parent rather than
storing the raw key values. The actual key can be derived by summing up
the keys from the parent to the particular node. The figure shows the parent-
relative representation (right) for a given normal tree (left)

< 0, special care is needed as the tree structure may need to be changed after the update

(discussed in Section  3.4.2 ). Nonetheless, the overall asymptotic time complexity remains at

O(n) since it still needs to update all the nodes with satisfying keys.

Parent-Relative Keys

To improve the time complexity beyond O(n), we must design an approach that does not

require visiting each qualifying node to perform the update. For that, rather than simply

storing the respective key in the node, we can augment the tree structure so that each node

stores the key relative to its parent. Specifically, in this setting, the actual key of a node

will be the sum of keys along the path from root to the current node (see Figure  3.10 for

an example). With such a structure in place, changing the key of a node is equivalent to

updating the keys of the entire subtree rooted by that node (e.g., incrementing root key by

1 is equivalent to incrementing all keys by 1). Note that this changes the semantics of the

raw keys stored in the node, therefore, we need to update the operations (i.e. get, put, and

getSum) to take this change into account. Specifically, this is done by replacing the key in

any recursive call with (key - node.key) (similar to lines 3 and 10 in Algorithm  3 ).

For example, all the keys passed to the recursive calls in Algorithm  1 should be fixed

to handle the parent-relative keys. Specifically, instead of passing k, we should pass (k −
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Algorithm 2 Get Sum (Updated to handle parent-relative trees)
Result: Sum of all the values having key ≤ k

1 def getSum(node, k):
2 if (k < node.key):
3 return getSum(node.left, k - node.key)
4 else if (k == node.key):
5 return node.value + getSum(node.left, k - node.key)
6 else:
7 return node.left.sum + node.value
8 + getSum(node.right, k - node.key)

node.key) in Line 4,7, and 11. Other methods also follow a similar change to their corre-

sponding BST implementation.

shiftKeys for Positive Offsets

Now that we have a way to update the value of multiple nodes in constant time (ignoring

traversal time), we need to design an algorithm that performs shiftKeys better than O(n)

time. Since negative values can trigger changes in the tree structure which can be nontrivial

to handle, we will first look at the case where the given offset value is positive. Algorithm

 3 shows the implementation for the shiftKeys operator for that case (ignore minKey and

maxKey related operations, we will get back to them later). The algorithm relies on the basic

BST property. That is, if a node has a key greater than or equal to the given key, then that

node and all the keys on the right subtree need to be incremented with the given offset (lines

2-5). However, unlike a normal tree where we would traverse the entire subtree to update

the keys individually, we can simply update the key of the subtree root (line 4). This update

also indirectly shifts all the keys of the left subtree which has already shifted the qualifying

keys (because of the function call in line 3). Therefore, it is important to make sure that

this is corrected by updating the key of the left node (line 5).

Figure  3.11 shows an example run of the Algorithm  3 . Specifically, it runs getSum(k=9,

d=10) on the input tree where all keys strictly greater than 9 is shifted by 10. This example
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Algorithm 3 Shift Keys Operation (for d > 0)
Result: All the keys > k increased by d

1 def shiftKeys(node, k, d):
2 if (k < node.key):
3 node.left = shiftKeys(node.left, k - node.key, d)
4 node.key += d
5 node.left.key -= d
6

7 node.minKey -= d
8 node.maxKey -= d
9 else:

10 node.right = shiftKeys(node.right, k-node.key, d)
11 node.minKey = node.left.minKey + node.key
12 node.maxKey = node.right.maxKey + node.key
13 return node

demonstrates the benefit of storing keys relative to their parent. For instance, notice that

all keys on the right subtree of the node with key=13 are shifted without visiting any of

the nodes individually. The overall time complexity of this approach is O(log n) which is an

improvement over the complexity of the PAI Map data structure, O(n).

shiftKeys for Negative Offsets

As discussed before, handling the case where the offset is negative is tricky due to the

fact that the tree structure may have to change after shifting. For example, if the right child

of a node gets shifted by a large negative value such that it is no longer greater than the

parent, the resulting tree will not hold the BST property.

We follow a similar intuition to Algorithm  3 to come up with an algorithm for the negative

offset case. Specifically, we traverse down the tree and perform the key updates as before.

However, after every update, we explicitly check for the BST property and fix the tree if it

is violated. For that, in addition to the attributes we have discussed above, we maintain two

more attributes in each node. Those are minKey and maxKey which represent the minimum

and the maximum keys present in the subtree rooted by the corresponding node. Note that
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Figure 3.11. Example run of the Algorithm  3 which runs shiftKeys(k=9,
d=10) on the given graph. This increments all the keys > 9 by 10. Two
leftmost trees are not parent-relative trees and just shown for clarity.

these are based on the parent relative keys (not the actual keys). Although we do not use

these attributes when performing shiftKeys with positive offset values, we need to make

sure that we correctly maintain them during updates to the keys (Lines 7-8 and 12-13 in

Algorithm  3 ).

This information can be used to figure out whether the key update resulted in a violation

of the BST property. For example, when the recursive call of shiftKeys on the right

subtree of a particular node has returned, we can check whether the minKey of that subtree

is actually greater than the key of that node. If it turns out to be the case, then the BST

property is preserved and the algorithm can proceed as usual. However, if the minKey is

less than the key of the node, that means, the right subtree contains one or more keys that

are less than the parent key which violates the BST property. In such cases, we need to fix

the tree by explicitly restructuring nodes such that the nodes are in the correct places with

respect to the BST property. The same idea can be applied to the left subtree case as well.

Algorithm  4 shows the implementation for the shiftKeys with a negative offset value.

The code looks almost the same as the positive offset case except for the included checks to
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ensure the BST property is preserved (lines 8 and 12). The first case is when the current

node has a key greater than the given k. In that case, the current node and all the nodes in

the right subtree will get updated by the same offset value, hence, no violation arising from

the right side. However, the left subtree may contain one or more nodes that are less than

or equal to the given k, meaning their original keys remaining unchanged. Therefore, there

is a possibility that those unchanged nodes having a larger key compared to the subtree

root of which the key got decreased, violating the BST property. In our algorithm, this is

detected by checking the maxKey of the left subtree and calling fixTree if the BST property

is violated. The same intuition applies to the second case.

Algorithm  4 lines 18-25 shows the pseudo-code for the fixTree operator for fixing a

subtree having a left subtree that violates the BST property. First, the subtree branch

causing the violation of the BST property is removed from the original tree which results in

a proper BST. Then, we simply iterate through all the removed nodes and re-insert them

into the tree using the add operation. The semantics of add guarantees that the newly

inserted nodes will be put into correct locations. The implementation for the right-side case

follows the same idea.

Figure  3.12 shows how this algorithm works for an example input. We use actual keys in

the figure instead of the parent-relative values to improve clarity. In this example, we shift

the largest key of the tree by a large negative value so that the algorithm invokes fixTree

at each step of the way up. First, shiftKeys will recursively traverse the tree to identify

the keys that need to be shifted. Then, it shifts the key 5 and then returns back to key

19. Now, the right subtree contains a smaller key (i.e., 5 < 9) and hence, violates the BST

property at that node. Therefore, fixTreeFromRight is invoked where the right subtree (in

this case just 5) is removed and then re-inserted back to the tree. This continues to happen

until the root at which the resulting tree becomes correct.

In fact, this is the worst-case scenario for this algorithm. That is, this example requires

traversing to the leaf level of the tree and performs fixTree at every level. To analyze

the time complexity of the algorithm, we consider a tree with n nodes. Consider a similar

scenario as the above example. First, one node will be inserted into a tree with two nodes.
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Algorithm 4 Shift Keys Operation (for d < 0)
Result: All the keys > k shifted by d

1 def shiftKeys(node, k, d):
2 if (k < node.key):
3 node.left = shiftKeys(node.left, k - node.key, d)
4 node.key += d
5 node.left.key -= d
6 node.minKey -= d
7 node.maxKey -= d
8 if (node.key <= node.left.maxKey + node.key):
9 return fixTreeFromLeft(node)

10 else:
11 shiftKeys(node.right, k - node.key, d)
12 if (node.key >= node.right.minKey + node.key):
13 return fixTreeFromRight(node)
14 node.minKey = node.left.minKey + node.key
15 node.maxKey = node.right.maxKey + node.key
16 return node
17

18 def fixTreeFromLeft(tree):
19 leftSubtree = tree.left
20 tree.left = None
21 tree.minKey = tree.key
22 tree.sum -= leftSubtree.sum
23 for (key, value) in leftSubtree:
24 tree.add(key, value)
25 return tree

Then, three nodes will be inserted into a tree with four nodes and so on. Therefore, we can

derive the total time complexity as follows 

1
 (assuming balanced trees):

1 × log 2 + (1 + 2) × log 4 + (1 + 2 + 22) × log 8 + . . .

= Σlog n
i=1 (2i − 1) ∗ i = O(n log n)

1
 ↑ Summation was solved using https://www.wolframalpha.com/
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Therefore, the overall time complexity of shiftKeys comes to O(n log n) for the negative

offset case. This is not ideal since our PAI Map based approach can perform this operation

in O(n) time.

Special Case for shiftKeys with Negative Offsets

This worst-case time complexity is applicable for the general shiftKeys operation with

an arbitrary offset value. However, in our context, we use this data structure to index

aggregate values. For instance, in Example  3.5 , we index the rhs_sum which corresponds

to the summation of volume values of the bids relation. Moreover, we rely on shiftKeys

when these aggregate values change as a result of tuple insertion (positive offset) or deletion

(negative offset). A key realization is that, due to the monotonic nature of the aggregates,

deletion of a tuple can only make two aggregate values (i.e., keys in the index) equal in the

worst case. Therefore, we can simply extract the corresponding value and then delete the

duplicate node from the right subtree. This can be done using the delete operation in the

normal BST data structures that takes O(log n) time. Therefore, although the worst-case

time complexity of the general shiftKeys is O(n log n), in the context of applying that to

optimize nested aggregate queries, it becomes O(log n).

Therefore, there can only be one place where the BST property is getting violated, and

hence, fixTree gets called only once in such a scenario. Even in this case, the worst-case

time complexity of Algorithm  4 can be O(n log n). For example, if the value stored in the root

and the leftmost value in the right subtree becomes equal, fixTree will remove the whole

right subtree and re-insert all the nodes individually. This can lead to n
2 × log n

2 = O(n log n)

time.

However, rather than using fixTree in this case, we can simply extract the corresponding

value and then delete the duplicate node from the right subtree. This can be done using the

delete operation in the normal BST data structures that takes O(log n) time. Therefore,

although the worst-case time complexity of the general shiftKeys is O(n log n), in the

context of applying that to optimize nested aggregate queries, it becomes O(log n).
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Figure 3.12. Example run of the Algorithm  4 for shiftKeys(k=19, d=-
15) which represents the worst-case input. Actual keys are shown instead of
parent-relative values to improve clarity. Green node is the node that gets its
key shifted. Red nodes are places where fixTree is called for BST property
violation. In such cases, nodes in the blue background are removed and re-
inserted to the subtree in the green background.

Balanced Trees

Whenever tree-based data structures are used in practice, it is vital to make the trees

balanced to achieve good runtime performance (e.g., TreeMap implementation in Java uses

Red-Black Trees [  76 ]). Similarly, we implement a Left-Leaning Red-Black Tree [ 77 ] structure

and make the necessary changes to the relevant operations (e.g., rotations) to make sure our

added attributes (e.g., minKey, maxKey, sum) are maintained properly.

In summary, in this section, we have designed a new tree-based index structured called

Relative Partial Aggregate Index (RPAI) trees that supports all the required operations get,

put, add, getSum, and shiftKeys in logarithmic time. We note that we used binary trees

in our discussion and implementation, but the same principles would apply to B-trees [  78 ]

as well.
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3.5 Incrementalizing Algorithm and Implementation

In the previous section, we have introduced PAI Maps and RPAI Trees and demonstrated

how building such index structures on aggregates can improve the performance of correlated

nested aggregate queries. In this section, we generalize our approach and present algorithms

for incrementalizing different types of aggregate queries with correlated nested subqueries in

their join predicates.

3.5.1 Supported Queries

We specifically target aggregate queries that contain correlated or uncorrelated aggregate

subqueries in their join predicates. We construct a formal grammar (shown in Figure  3.13 )

to represent such queries in a concise manner instead of relying on the general relational

algebra which might make the representation more verbose.

AggrQ → Aggr[cols](AggrFunc, Relations, Predicates)
AggrQ → Aggr[cols](AggrFunc, Relations, Predicates)

AggrFunc → AggrFunc op AggrFunc

AggrFunc → (SUM |COUNT |AV ERAGE|MIN |MAX)f(cols)
Relations → Relation | Relation, Relation

Relation → Q | R

Predicates → Predicate | Predicate (AND|OR) Predicate
Predicate → V alue θ V alue

V alue → V alue op V alue
V alue → Const | Col | Aggr[](AggrFunc, Relations, Predicates)

θ → > | >= | < | <= | =
op → +| − | × |÷

Figure 3.13. Formal grammar representing the set of supported queries.

Any given query mainly contains four parts. First, there is a top-level aggregate function

that corresponds to the final aggregate value that needs to be computed. This can be any

arbitrary function that uses aggregates of any computations on columns (e.g., SUM(r.A) +
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COUNT(r.B)). Second, there is a set of relations (base tables or other subqueries) that are

joined in the query. Third, there is a set of predicates (that are connected by AND or OR).

Each predicate can contain nested aggregate queries, constant values, or columns from one

of the join relations. Finally, the query specifies a set of group-by columns for which the

final aggregate values need to be grouped. Shown below is the query in Example  3.5 .

q1 = Agg[](SUM(b.price × b.volume), (bids b), q2 < q3)

q2 = Agg[](SUM(b1.volume), (bids b1), ∅)

q3 = Agg[](SUM(b2.volume), (bids b2), b2.price ≤ b.price)

We also define a utility function free that finds all the columns that are referred within

q and that are not from relations used inside the query (freer represents the subset cor-

responding to relation r). That is, in the case of correlated subqueries, this will be the

set of correlated columns. Similarly, we define bound to retrieve the rest of the columns

used in predicates. For example, in the query above freebids(q1) = ∅, freebids(q3) =

{price}, boundbids(q1) = ∅, and boundbids(q3) = {price}. Then, we define another utility

extractPredV als function that extracts the predicate values, given a query. For example

extractPredV als(q1) = {q2, q3}.

We only focus on aggregate queries that may contain nested aggregate queries in their

join predicates since these are the type of queries other systems fail to handle efficiently (as

discussed in Section  3.1 ). For cases where such queries occur as subqueries of other larger

queries, our approach can be used incrementalize the respective portion whereas the rest of

the query can be handled by already existing approaches (e.g., DBToaster).

3.5.2 General Incrementalization Algorithm

We first look at a general incrementalization algorithm that works for arbitrary queries

and has better asymptotic runtime properties compared to existing approaches. In the

subsequent sections, we will look at several specific commonly occurring query patterns
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where we further optimize using PAI Maps and RPAI Trees. We will use the query in

Example  3.5 to illustrate each step.

Execution Model

We follow a similar approach to DBToaster for the query execution model. Specifically,

given a query and a set of base relations (i.e., data stream sources), we first identify a set

of maps that needs to be maintained to compute the final result incrementally. Then, we

construct update triggers for each relation that would maintain those maps upon new tuple

arrivals (or deletions). Whenever a new tuple arrives, the corresponding trigger will be called

and the final result is computed after updating the indexes (similar to Figure  3.4 and  3.8 ).

Initializing the required maps

Although we follow a similar execution model to that of DBToaster, we do not rely

on delta rules (that does not work for nested aggregates) to construct the required maps.

Instead, we come up with a new algorithm to find the required indexes for queries with

nested aggregates.

Our algorithm works on a simple intuition. For an aggregate query with correlated

subquery predicates, whenever a new tuple arrives, two things happen. First, if the base

relation corresponding to the new tuple is used in the outer query, then, there will be a new

tuple for the outer relation. Hence, the predicates must be evaluated for this new tuple and if

it satisfies the predicates, it should be considered in the final result. For instance, for VWAP

(Example  3.5 ) an insertion to bids will result in a new tuple for the outer bids b relation

for which the predicates must be evaluated. Second, the addition of this new tuple affects

the nested aggregate predicate values of other outer tuples, hence, affecting their predicate

evaluations. For example, in VWAP, insertion to bids will result in change of aggregate value

of the left-side (because of new tuple in b1) and the right-side (because of new tuple in b2).

Therefore, now for each tuple in the outer relation b, both sides of the predicate may have

been changed, hence, need to be reevaluated to construct the result.
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Algorithm 5 Identifying the required maps

1 def identifyMaps(Q):
2 freeIters = {} # all free cols used in predicates
3 freeAndBoundIters = {} # all free and bound
4 predFreeMaps = {} # maps for freeVar -> sum
5 predBoundMaps = {} # maps for boundVar -> sum
6 resMaps = {} # maps for freeAndBound -> finalRes
7

8 for Ri in Q.relations:
9 freeIters[Ri] = Set()

10 freeAndBoundIters[Ri] = bound(Q, Ri)
11

12 for Vi in extractPredVals(Q):
13 if (isCorrelatedAggr(Vi)):
14 for Ri in Q.relations:
15 freeIters[Ri].add(free(Vi, Ri))
16 # new Map for free(Vi, Ri) -> aggrSumVi
17 predFreeMaps[Vi][Ri] = new Map
18 # new Map for bound(Vi, Ri) -> aggrSumVi
19 predBoundMaps[Vi][Ri] = new Map
20

21 for Ri in Q.relations:
22 for finalRes in requiredFinalRes(Q, Ri):
23 # new Map for freeBound -> finalRes
24 resMaps[Ri][finalRes] = new Map

For any predicate value that is a constant or an uncorrelated nested aggregate, the value

will be fixed for all the tuples, hence, can be computed independently. For example, the

left side of the VWAP query will be a fixed value for all the outer tuples. Moreover, in

the case where the value simply refers to a computation of columns from the outer tables,

tuples from the outer relation would not have an impact on the other tuples. However, in the

other case, where the nested aggregate query is correlated to the outer query, the addition

of new tuples could change predicate evaluations of other outer tuples as well. We need to

maintain index structures to efficiently keep track of these changes and compute the result

without recomputing from scratch. Specifically, for each of the correlated nested aggregate

predicates, we create two separate maps that map to the nested aggregate value from free
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and bound columns separately. Moreover, we construct a set of indexes that maps from the

union of bound and free variables (off all predicate subqueries) to the final result aggregate.

In the subsequent subsections, we will see how these maps are used to compute the final

result. For any nested aggregate predicate value that contains multi-level nesting, we apply

this approach recursively and initialize the relevant maps.

Algorithm  5 shows how the required maps for a query are identified. Specifically, for

each of the correlated nested aggregate predicates, we create two separate maps that map

to the nested aggregate value from free and bound columns separately (Line 17 and 19).

Finally, we construct a set of indexes that maps from the union of bound and free variables

to the final result aggregate. Note that there can be multiple final result aggregates (Line

24) based on the query (e.g., SUM(a.price) + SUM(a.volume) would need to maintain

the two aggregates separately). In the following two subsections, we will see how some of

these maps act as auxiliary indexes to maintain several other maps that are used to compute

the final result. For any nested aggregate predicate value that contains multi-level nesting,

we apply this approach recursively.

Consider the VWAP query. The left side in the predicate is not a correlated query, there-

fore the aggregate value can be independently maintained (e.g., in variable lhs_sum). For

the right side aggregate subquery, both free and bound variables are the same {price}. There-

fore, we need to create two maps mapping price to the aggregate sum (e.g., freeMapRhs:

price → rhs_sum and boundMapRhs: price → rhs_sum). Finally, we need a map

that maps free ∪ bound to the final aggregate value (e.g., resMap: price → resSum).

These are shown in Figure  3.14 , lines 1-4. We will walk through the rest of the code and

observe how these maps are maintained and used in the next subsection.

Creating Update Triggers

Once the required maps are constructed, we need to generate triggers for each base

relation that maintain these maps under updates. Algorithm  6 shows how such a trigger is

created for relation Ri. First, we iterate through free and bound column values of all relations

except Ri. This is done because the predicate values (hence, the respective indexes) of all
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Algorithm 6 Creating the update triggers

1 def trigger_Ri(t):
2 for vR1 in freeAndBoundIters[R1]:
3 for vR2 in freeAndBoundIters[R2]:
4 # skip Ri
5 ....
6 for vRn in freeAndBoundIters[Rn]:
7 values = {vR1, vR2, .., vRn}
8 for Vi in extractPredValues(Q, Ri):
9 if (isCorrelatedAggr(Vi)):

10 # update the bound maps
11 predBoundMaps[Vi][Ri].add(t,
12 Vi.aggrSum(values, t))
13 # update affected aggr values
14 for key in predFreeMaps[Vi][Ri].get(values):
15 if Vi.evaluatePredicate(values, t, key):
16 predFreeMaps[Vi][Ri].add(values + key,
17 Vi.aggrSum(values, t, key))
18 # find the aggr value for the newTuple
19 if not predFreeMaps[Vi][Ri].exists(values + t):
20 aggr = 0.0
21 for key in predBoundMaps[Vi][Ri].get(values):
22 if Vi.evaluatePredicate(values, key, t):
23 aggr += Vi.aggrSum(values, key, t)
24 predFreeMaps[Vi][Ri].update(values + t, aggr)
25 # update the result maps
26 for reqRes in resMaps[Ri]:
27 resMaps[Ri][reqRes].add(values + t, compute(reqRes, t))
28

those relations only depend on the respective free and bound column values. Then, there

are mainly three maps that need to be updated.

First, the addition of a new tuple changes the bound maps of any predicate that has

columns from Ri as bound variables. Lines 8-11 show how this update is performed. Specifi-

cally, we iterate through all the predicate values that use columns from Ri and check whether

it is a correlated subquery. Note that this and other similar checks have to be done only once

(i.e., during trigger generation) as at runtime, the constructed triggers are specialized for a
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given query. Then, we retrieve the corresponding map and update the relevant entry. Here,

we directly pass t as a key to add and omit the code for extracting the correct key (i.e.,

values of bound columns in this case). For VWAP (Figure  3.14 ), boundMapRhs is updated

in line 9.

Second, we need to update the aggregate values (in free maps) that are affected by the

addition of the new tuple to the inner relations (shown in lines 14-17). We iterate through

the keys in the corresponding free map and evaluate the predicate for the new tuple. If it

satisfies the predicate, the aggregate value is affected, hence, the map is updated. Here, we

pass key and t for the values of free and bound columns respectively as we are updating

the change caused by the addition of the new tuple to the inner relation (i.e., bound). For

VWAP, this is done in lines 11-13 in Figure  3.14 .

Next, we need to compute the aggregate value for the new tuple in the outer relation.

This can be computed by iterating through the keys in the corresponding bound maps and

evaluating the predicate and accumulating the aggregate value (lines 19-24). Here, we should

pass key and t for the values of bound and free columns respectively (i.e., opposite to the

above case) because now we are computing the aggregate value for the new tuple in outer

relation (i.e., free in the context of subquery). Figure  3.14 lines 15-20 shows this for VWAP.

Finally, we need to update all the result maps corresponding to the relation Ri. This can

be done by simply iterating through all the result maps of Ri and updating the maps with

the corresponding value (Lines 28-30). Here, values + t refers to appending t to values.

For the VWAP query, this is done in line 22 in Figure  3.14 .

Computing the final result

After updating all the maps, the next step is to compute the final result using the

updated maps. For this, we iterate through all the free and bound column values for all the

relations and evaluate the query predicate. When evaluating the nested aggregate values,

we can directly use the free maps that we have created before to get the corresponding

aggregate value without doing any more computations. Then for keys that satisfy all the

query predicates, the corresponding results maps are queried to get the aggregate sum.
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1 lhs_sum = 0 # maintains lhs_sum
2 freeMapRhs = Map() # price -> rhs_sum
3 boundMapRhs = Map() # price -> Sum(volume)
4 resMap = Map() # price -> Sum(price * vol)
5 def on_new_bids(t):
6 # update lhs_sum
7 lhs_sum = 0.75 * t.X * t.volume
8 # update bound maps
9 boundMapsRhs.add(t, t.X*t.volume)

10 # update affected aggr values
11 for price in freeMapRhs:
12 if t.price <= price:
13 freeMapRhs.add(price, t.X*t.volume)
14 # find the aggr value for the new tuple
15 if not t.price in freeMapRhs:
16 aggr = 0.0
17 for price in boundMapRhs:
18 if price <= t.price:
19 aggr += boundMapRhs.get(price)
20 freeMapRhs.update(t.price, aggr)
21 # update resMap
22 resMap.add(t.price, t.X*t.price*t.volume)
23 # compute the result
24 res = 0.0
25 for price in resMap:
26 if lhs_sum < freeMapRhs.get(price):
27 res += resMaps.get(price)
28 return res

Figure 3.14. Code generated for incrementally computing the VWAP query
(Example  3.5 ) using the General Incrementalization Algorithm (Section  3.5.2 )

Figure  3.14 , lines 26-30 shows how the final result is computed for the VWAP query. The

overall time complexity of this approach is O(nk) where n is the cardinality of relations and k

is the number of relations in the query. In comparison, DBToaster can take up to O(nk ×nk)

for processing queries of this structure.
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Limitations

The algorithms discussed above assumes the aggregates functions are streamable [ 69 ].

That is, the aggregate values can be updated by having information about the current

aggregate and the new value (e.g., SUM, COUNT, AVERAGE, etc.). For other types of aggregates

(e.g., MIN/MAX), our approach of storing the aggregate would only work for insertion-only

updates. For deletions, we cannot recover the updated aggregate value for such aggregate

types since it is impossible to recover the new value with just the previous aggregate value.

One way to handle this is to keep a binary search tree of the data instead of storing just

the aggregate value. Now, for tuple deletions, we can simply remove the corresponding

value from the tree and retrieve the next maximum or minimum value in logarithmic time

(assuming balanced trees). However, it is not clear how this can be generalizable beyond

MIN/MAX to any arbitrary non-streamable monoid.

3.5.3 Partial Aggregate Index Optimization

The general algorithm above can improve incrementalization efficiency for a wide class of

aggregate queries that contain correlated nested aggregates as predicates. In this section, we

look at how we can further optimize certain classes of nested aggregate queries that appear

commonly in practice (e.g., computing useful metrics in algorithmic trading [ 64 ]) using PAI

Maps and RPAI Trees introduced in Section  3.4 . As discussed in Section  3.3 , a key idea

to improve the incrementalization efficiency of nested aggregate queries is to build indexes

that are indexed by aggregate values. Then, whenever a new tuple arrives, shift a single or

a range of aggregate values (i.e., keys in these trees) that are affected and then use these

updated indexes to compute the final result.
We do note that this approach only works for queries having a certain structure compared

to the general algorithm which works for any general query. The main requirement for this
approach to work efficiently is that the addition of a new tuple should only affect a single
aggregate value or a single range of aggregate values per aggregate index. Whenever a range
of aggregates needs to be shifted, we can use the shiftKeys method introduced in Section
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 3.4 . For a query that is operated on a single base table (or subquery) R1, it should have the
following structure to use aggregate indexes to improve the incrementalization.

AggrQ[cols](AggrFunc, R1, v1 θ q1)

Here, the AggrQ should be a streamable aggregate function, v1 is either a const or an AggrQ

with free(v1) = ∅ (hence, can be independently maintained), and q1 is an AggrQ. Note that

v1 and q1 can be on opposite sides as well. A key characteristic of this query is that, for

all the tuples from the outer relation, v1 will have the same value (because not correlated).

Therefore, if there is an aggregate index that maps the aggregate values of q1 to the aggregate

values required for the final query results, we can directly compute the query result. For

example, if θ was ‘=’, then we get the value of v1 and query the aggregate index with the

value of v1 to get the result. For other cases, we can use getSum method to find the final

aggregate values that are within the range implied by the predicate.

To maintain this aggregate index, the addition of a new tuple should change either a

single aggregate value or a range of aggregates. This happens if either q1 contains multiple

conjunctive equality predicates (results in a single point update) or q1 contains a single

inequality predicate (results in an update of range of aggregates). For example, in the

VWAP query (Example  3.5 ), predicate in the nested query is the inequality b2.price <=

b.price, meaning that whenever a new tuple arrives for b2, all the aggregates values that

have a price greater than the price of new tuple must be updated (by the same amount).
Shown below is the structure of queries with multiple relations that supports the aggre-

gate index optimization.

AggrQ[cols](AggrFunc, R1, . . . Rn, v1 θ qR1 . . . AND vn θ qRn)

Here, AggrFunc and v1, . . . vn has the same properties as before, and for qRi , it should be

correlated only on columns from Ri (i.e., free(qRi) ⊆ Ri.columns). Similar to the general

algorithm, we create free and bound maps for each of the correlated nested subqueries.

Moreover, we create aggregate indexes that maps aggregate values (i.e., qRi values) to the

required result sums.
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Algorithm 7 Creating the update triggers

1 def trigger_Ri(t):
2 tAggrVal = QRi.aggrVal(t)
3 if predicateType(QRi) == "=":
4 newAggr = boundMaps[Ri].get(t) + tAggrVal
5 affectedAggr = freeMaps[Ri].get(t)
6 # shift point aggregates
7 for reqSum in requiredSums(Q, Ri):
8 valToMove = resMaps[Ri].get(t)
9 aggrMaps[Ri].add(affectedAggr, -valToMove)

10 aggrMaps[Ri].add(affectedAggr+tAggrVal, valToMove)
11 aggrMaps[Ri].add(newAggrSum, reqSum(t))
12 resMaps[Ri].add(t, reqSum(t))
13

14 elif predicateType(QRi) == "<=":
15 newAggr = boundMaps[Ri].getSum(t)
16 affectedAggr = freeMaps[Ri].getSum(QRi.boundComp(t))
17 # shift all aggr >= affectedAggr
18 for reqSum in requiredSums(Q, Ri):
19 aggrMaps[reqSum].shiftKeysInclusive(
20 affectedAggr, reqSum(t))
21 aggrMaps[reqSum].update(newAggr, reqSum(t))
22 elif predicateType(QRi) == "<":
23 ...
24 ...
25 # update the rest of the maps
26 freeMaps[Ri].add(t, tAggrVal)
27 boundMaps[Ri].add(t, tAggrVal)

Algorithm  7 shows how the trigger is generated for relation Ri. The code generated for

each relation depends on the type of subquery predicates. The pseudocode only shows the

case for equality and ≤ case, and rest of the cases follow a similar strategy. The crux of the

algorithm is identifying the single aggregate value or range of aggregates that need to be

shifted and performing the update.
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Overhead of Identification

For our approach to be applied to a general incremental query processing setting, it is

imperative to be able to recognize the queries that our optimizations can be applied. Given a

query (or part of another query), we can first check whether the query computes an aggregate.

Then, we can make use of the helper functions free and bound to determine if our query

fits the structure for applying the aggregate index optimization. Therefore, identification

can be done as part of the query optimizer (e.g., pattern matching on the query tree) and

would have a similar overhead. Once the eligible queries have been selected, there is a cost

associated with creating the required maps and generating the triggers. Similar overheads

exist for other systems that follow a similar execution model. For example, identifying the

different predicates and their value types (e.g., Line 9-10 in Algorithm  6 ) is done in trigger

generation time and would not have an impact on the runtime performance. Overall these

initializations take a time linear to the size of the query (i.e., no exponential blowup).

Limitations

This approach only works for the queries that are in the structure mentioned above, and

cannot apply generally for other types of aggregate queries. Moreover, since this optimization

relies on indexing maps with aggregate values and shifting aggregate ranges, this only works

with aggregates like SUM, COUNT, and AVERAGE and cannot be used for MIN/MAX.

3.5.4 Prototype Implementation

We implement a prototype of our approach in a high-level programming language, Scala.

Scala’s features such as first-class functions, case classes, and pattern matching make the

implementation and management of the different types of trigger functions relatively conve-

nient. Moreover, using existing techniques like Multi-Stage Programming (MSP) [  33 ,  79 ,  80 ],

we can eradicate the overhead of using such high-level features by generating specialized na-

tive code. This approach generally achieves orders of magnitude performance improvements

[ 19 ,  20 ,  81 ]. However, this performance optimization is beyond the scope of this chapter, and
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Table 3.1. Queries used for evaluation with their corresponding optimizations
and asymptotic time complexity. GA - general algorithm, Aggr - aggregate
index optimzation

Query Optimizations DBToaster RPAI (Ours)

GA Aggr

MST, VWAP, NQ1 3 3 O(n2) O(log n)
PSP 3 3 O(n) O(log n)
SQ1, SQ2 3 7 O(n2) O(n)
NQ2 3 7 O(n3) O(n log n)
TPC-H Q17 3 3 O(n) O(log n)
TPC-H Q18 3 7 O(1) O(1)

hence, we only use the techniques presented in this chapter with the corresponding Scala

implementation for experiments in Section  3.6 .

Our implementation is done in the context of an in-memory incremental processing setting

where we assume there is sufficient memory to hold the indexes and any other data required.

We rely on the JVM for memory management. If this memory usage becomes a bottleneck,

we can use techniques like MSP to compile our program into a specialized low-level code

where we can rely on the operating system (i.e., paging) or custom memory management

mechanisms. Moreover, the ideas presented in this chapter are not limited to the context

of processing data streams but are generally applicable to any other incremental processing

use cases (e.g., IVM in DBMS, approximate query processing [ 65 ], etc.).

3.6 Experimental Evaluation

In the previous sections, we have demonstrated how to use RPAI Trees and PAI Maps to

achieve better asymptotic time complexities for queries with correlated nested aggregates. In

this section, we run several benchmarks and measure the actual execution time for workloads
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of practical importance to ensure that the expected performance characteristics are indeed

realized in practice.

3.6.1 Benchmark Environment

Data and Query Workload

There is no single established benchmark for evaluating the performance of correlated

nested aggregate queries specifically. Therefore, we use two existing datasets with the addi-

tion of synthetic queries for our evaluation. The first workload consists of running algorithmic

trading related queries on a stream of order book data (used in prior related work [  1 ]). There

are two types of order book entries; bids and asks each having timestamp, broker_id, price

and volume as their attributes. We evaluate the performance for MST, PSP, and VWAP

queries from the original benchmark and added SQ1, SQ2, NQ1, and NQ2 synthetic queries

to evaluate different types of correlated nested aggregate queries. The second workload is

using selected queries from the TPC-H benchmark adapted to an incremental processing

setting (similar to [ 1 ,  68 ]). We specifically focus on Q17 and Q18, which contain nested

aggregates.

one having a correlation with outer query. SQ1 and SQ2 are modified versions of the

VWAP query. SQ1 makes the uncorrelated subquery into a correlated one by adding a

predicate inside the nested subquery. SQ2 replaces the inequality inside the nested aggregate

from having the same column on both sides to having an arbitrary computation.. Nested1

and Nested2 are also modified versions of VWAP that replaces the nested aggregate with

another multi-nested aggregate query. Nested1’s correlation is always to the immediate outer

query whereas Nested2 is contains correlations to the outer-outer level.

System Environment

We run all our experiments on a NUMA machine with 4 sockets, 24 Intel(R) Xeon(R)

Platinum 8168 cores per socket, and 750GB RAM per socket (3 TB total) running Ubuntu

18.04.4 LTS. We use DBToaster 2.3 and use the generated Scala code in our experiments.

Our implementation uses Scala 2.10.4. All the experiments are single-threaded and run on
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Time (ms) Q17 Q17* Q18 MST PSP VWAP SQ1 SQ2 NQ1 NQ2

DBToaster 42864 1097090 42410 168520 88 888 3967 1265 2957 202544
RPAI 33066 35041 46417 70 32 34 379 140 129 610

Figure 3.15. Relative execution time for queries compared to DBToaster.
All queries except TPC-H Q18 have better performance.

a single-core. We use default JVM configurations for most cases except for TPC-H queries

where we increase the max heap size to per-socket memory.

3.6.2 Evaluating Incrementalizing Performance

Query Properties

Table  3.1 summarizes the specific optimizations we perform on each query and the time

complexity difference between our approach and DBToaster. MST and PSP are operating

on both asks and bids and perform a cross join with inequality predicates. MST has four

nested aggregates of which two are correlated. As DBToaster does not incrementalize corre-

lated nested aggregates, it needs to iterate through records from both relations to compute

those correlated subqueries. We incrementalize those queries using RPAI Maps. Therefore,

whenever a new record arrives, we can compute the corresponding aggregate value and shift

all the affected aggregate values in logarithmic time (as demonstrated in Section  3.5 ). PSP

is similar to MST but contains join predicates on a column (volume) instead of a correlated

nested aggregate. We follow a similar approach to incrementalize PSP in logarithmic time.
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Figure 3.16. Analyzing the scalability of our algorithm for different queries.
(d) contains results for both the uniform (default) and the non-uniform (aug-
mented) versions of the TPC-H datasets.

We saw VWAP in Example  3.5 . It contains two nested aggregates; one correlated with

the outer query. SQ1 and SQ2 are modified versions of the VWAP query. SQ1 makes the

uncorrelated subquery into a correlated one by adding a predicate inside the nested subquery.

With this modification, both sides of the predicate become variable for a given outer record.

Hence, the final result computation can no longer be done in logarithmic time using getSum

operator and has to rely on the general algorithm (hence, O(n))). SQ2 changes the right-
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Figure 3.17. The memory footprint (top), rate of processing records (middle),
and time (bottom) as incoming records get processed for MST query
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Figure 3.18. The memory footprint (top), rate of processing records (middle),
and time (bottom) as incoming records get processed for VWAP query
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Figure 3.19. The memory footprint (top), rate of processing records (middle),
and time (bottom) as incoming records get processed for NQ2 query

side inner predicate of VWAP to contain asymmetric computations in the two sides of the

inequality.

NQ1 and NQ2 are also modified versions of VWAP that replace the nested aggregate

with another multi-nested aggregate query. Specifically, NQ1 replaces the nested aggregate

in VWAP with another correlated nested aggregate query like VWAP (i.e., containing 2-level

nesting). NQ2 is similar but the replaced query also has a correlation to the outer query

(i.e., the lowest level is correlated to the outermost query). NQ1 is handled by computing

the delta of the new subquery independent of the outer query. Once we compute the delta,

the rest of the computation is the same as VWAP incrementalization. For NQ2, we have to

rely on the general algorithm for the outermost query. DBToaster uses three nested loops

whereas we incrementalize this query in O(n log n) time.

TPC-H Q17 and Q18 contain a single correlated and uncorrelated nested-aggregate re-

spectively. We can improve the efficiency of Q17 over DBToaster by using our approach.

However, since Q18 is uncorrelated, both our implementation and DBToaster fully incremen-
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talize the query, leaving the time complexity at the same level. We added Q18 to demonstrate

that our approach still achieves competitive performance for other types of aggregate queries.

Performance Analysis

Figure  3.15 shows the relative execution time for all queries. In this experiment, we run

all the queries on a trace of stream of the same size (10k records for finance queries, Scale

Factor 1 for Q17 and Q18). We observe that most queries show a significant speedup (up

to more than 1100 ×) which is in line with the expected performance gains due to lower

asymptotic time complexity. Our implementation has a similar performance to DBToaster

for Q17 and Q18. This can be partly attributed to the efficiency of specialized internal

data structures (e.g., specialized hash-maps) generated by DBToaster. Although it explains

the performance of Q18, it still cannot explain why DBToaster scales at a similar rate to

our implementation for different sizes of datasets for Q17, despite having a higher time

complexity (Figure  3.16d ). Consider Q17 shown in Figure  3.20 :

1 SELECT SUM(l.extendedprice) / 7.0 AS avg_yearly
2 FROM lineitem l, part p
3 WHERE p.partkey = l.partkey AND p.brand = 'Brand#23'
4 AND p.container = 'WRAP BOX'
5 AND l.quantity < (
6 SELECT 0.2 * AVG(l2.quantity) FROM lineitem l2
7 WHERE l2.partkey = p.partkey)

Figure 3.20. TPC-H Query 17

Our implementation incrementalizes this by maintaining an RPAI Tree (quantity →

avg_yearly) and the aggregate value of the nested aggregate query for each distinct partkey.

Whenever, a new lineitem arrives, we update the corresponding index and the aggregate

value, and compute the change to avg_yearly using getSum(rhs_sum).

In the case of DBToaster, whenever a new lineitem arrives, first it updates the nested-

aggregate sum (similar to us) and it loops over all the lineitems that have the same

partkey and evaluate the predicate and updates the avg_yeary change. However, rather

than iterating over all the line items with the same part key, they are only iterating over

110



line items with unique quantity values. This is done by a multi-level index that maintains

partial sums for each unique quantity per unique partkey for lineitem records (i.e.,

partkey → quantity → avg_yearly). This works well for datasets like TPC-H where

the data is uniformly distributed. Therefore, although the worst-case time complexity is

O(n), due to the uniformity of the data, the updates can be performed in a very small

fraction of the total records. We note that the amount of computation is still lower in our

implementation compared to this optimized strategy as our TreeMap also maintains unique

quantity values. To validate our hypothesis, we analyzed the behavior of DBToaster against

a skewed dataset. We augmented the TPC-H data generation framework to generate skewed

data. As expected, the performance gap grows from 1.3× to more than 30× (Q17* in Figure

 3.15 ). Therefore, although this is an extremely useful optimization for performing simple

nested aggregates on uniform datasets, it does not work well in other scenarios. Moreover,

it only works for nested subqueries correlated on equalities.

Figure  3.16 analyses the scalability of our approach over the stream trace size. The

workload for the first three queries (i.e, MST, SQ1, and NQ2) is selected from different

sizes of stream traces from the original finance dataset [  1 ]. For the last figure, we use the

TPC-H dataset of scale factors 0.1, 0.5, 1, 2, 5 (100MB, 500MB, 1GB, 2GB, and 5GB

respectively), both the uniform and the skewed version. In some cases, for smaller datasets

(up to 1k in finance, SF=1 in TPC-H), our approach performs competitively or worse than

both recomputation and DBToaster. This can be attributed to the fact that our approach

initializes more index structures and for smaller workloads, maintenance of these indexes can

outweigh the performance benefits. However, as the workload size increases, our approach

performs significantly better and scales well (as expected due to better asymptotic time

complexity).

Figures ?? shows how the runtime performance characteristics change as the stream

of data gets processed. Specifically, we analyze how the memory usage, rate of processing

records, and time varies over the number of records processed. The rate of processing records

generally drops over time as more data is manipulated in indexes and iteration spaces become

larger. We can see our implementation consistently has a better rate compared to DBToaster

due to being able to perform the updates efficiently. We can also observe that for some cases
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the memory usage contains spikes at regular intervals. These correspond to garbage collection

(GC) triggered by the Java Virtual Machine (JVM). This is also evident from the fact that

there is a decline in the rate of processing records at the same point in time. The memory

usage just after a GC run is closer to the starting memory in many cases, indicating that the

working set size does not grow notably over time. For all the queries, we can see that these

GC cycles happen more frequently in DBToaster compared to our implementation, implying

better allocation rates. We note that these behaviors may only be applicable for languages

like Scala where there is a managed runtime and may see different behavior for runtimes

with explicit memory management.

3.7 Related Work

Traditional Incremental View Maintenance (IVM) [  82 – 86 ] approaches deal with maintain-

ing materialized views on updates to underlying base tables. Generally, these approaches do

not focus on performing real-time analytics on fast data streams, and hence, are not opti-

mized for low latency. DBToaster [  1 ,  64 ,  68 ] applies the idea of IVM in a recursive manner

[ 87 ] to maintain a view using a hierarchy of materialized views. Some prior works present

algorithms and data structures for incrementalization of specific types of queries. DYN [  69 ]

and IDYN [  70 ,  88 ] are two approaches that focus on acyclic Conjunctive Queries (CQ) with

equality and inequality join predicates respectively and AJU [  71 ] focuses on acyclic foreign-

key joins. None of these approaches efficiently incrementalize queries with correlated nested

aggregate sub-queries when correlation removal [  89 ] is not possible.

Incremental query processing algorithms are used in many other use cases including

approximate query processing [ 65 ], progressive data warehouses [  90 ,  91 ] and intermittent

query processing [ 67 ]. Some works investigate how to balance the resource consumption for

view maintenance and latency [  66 ,  67 ,  92 – 94 ] and improve overall performance in multi-

query settings by sharing computations across concurrent queries [  92 ,  95 – 97 ]. However,

many of the incrementalization algorithms presented in these works either do not efficiently

incrementalize complex queries such as correlated nested aggregates or are restrictive due to

their application-specific requirements (e.g., produces approximate results, does not support
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tuple deletions, etc.). Therefore, such algorithms are not directly applicable to cases where

perfectly accurate results are needed to be produced as a stream. Since the algorithms

presented in this chapter are relatively general, we believe our approach can be applied in

these settings to improve their performance.

Stream processing systems [  62 ,  98 – 100 ] process data streams and incrementally maintain

the query outputs. These systems are mainly designed for queries with window semantics.

Naiad (Timely Dataflow [TD]) [  101 ], Differential Dataflow (DD) (build on top of TD) [ 102 ]

are two frameworks that allow scalable incremental computation. Materialize [  103 ] is an

IVM engine built on top of both TD and DD. We believe that the algorithms and the

data structures presented in this chapter can be implemented in those systems for efficient

incrementalization of nested aggregates.

TreeMap is a data structure found in the standard libraries of many programming lan-

guages [  75 ,  104 ], and of course, tree indexes are standard in any RDBMS [  78 ]. Fenwick Trees

[ 74 ] and Segment Trees [  73 ] are two tree-based data structures that support operations simi-

lar to getSum in logarithmic time. However, none of them have support for efficiently shifting

key ranges. To our knowledge, the data structure we proposed for RPAI Trees is the first to

support both getSum and key shifts (shiftKey) in logarithmic time.

3.8 Conclusions

We have introduced a novel algorithm and indexing structures called PAI Maps and RPAI

Trees for efficiently incrementalizing complex nested-aggregate queries with correlations. We

have presented a new data structure to realize these index structures efficiently and demon-

strated the performance gains in both asymptotic time complexity and actual execution

time. We believe the ideas presented in this chapter can be applied to other incremental

execution settings to improve the performance of these types of queries.
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4. FLAN: AN EXPRESSIVE AND EFFICIENT DATALOG

COMPILER FOR PROGRAM ANALYSIS

Portions of this chapter will appear in Flan: An Expressive and Efficient Datalog Com-

piler for Program Analysis, Proc. ACM Program. Lang. 8, POPL, Article 86 (January

2024) [ 105 ].

4.1 Introduction

Datalog has experienced a resurgence in popularity due to its high expressivity and ease

of use in various applications. Its simple and intuitive declarative nature makes it readily

applicable in a range of domains, including business analytics [ 106 ], graph analysis [  107 – 109 ],

declarative networking [  110 ], binary dissambly [  111 ], and declarative program analysis [ 2 ,

 112 – 116 ]. In particular, in the field of declarative program analysis, Datalog has proven to

be an invaluable tool for dealing with intricate analyses that would otherwise necessitate

thousands of lines of imperative code. Specifically, numerous program analysis problems

can be formulated as a form of fixed-point computations, which is precisely what Datalog is

designed to handle.

While declarative program analysis simplifies matters significantly, earlier approaches

utilizing Datalog were not as scalable and performant as their imperatively written counter-

parts. Datalog compilers [  2 ,  117 – 119 ] have been developed to close this performance gap by

generating specialized code for a given Datalog program. Among such Datalog compilers,

Soufflé [ 2 ] stands out as one of the most comprehensive systems with many person-years

of engineering investment, having numerous features such as fast parallel specialized data

structures [  120 – 122 ], automatic index selection [  123 ], join order optimization [  124 ], among

others.

Although Soufflé generates specialized code for a specific Datalog program leveraging the

idea of Futamura projections [  38 ] (resulting in impressive performance), their style of code

generation, as discussed in Section  4.2 , sacrifices some potential for specialization and, hence,

performance. Moreover, Soufflé exists largely as a monolithic, closed system. It accepts Dat-
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alog programs as input and produces specialized C++ code, which is then compiled into

an independent binary. However, as identified in previous research [  4 ,  117 ], many Datalog

programs, especially in the context of program analysis, do not exist in isolation, but rather

as components of larger programs written in more comprehensive programming languages.

While Soufflé offers mechanisms to interface with the generated binary, it suffers from the

two language problem where declarative analyses are written in a custom Datalog dialect

and further computations not supported by Soufflé must be written in other languages with

data stored in a common format. Moreover, this lack of interoperability with a host lan-

guage becomes a bottleneck when efforts are made to incorporate recently proposed Datalog

extensions like user-defined lattices [ 3 ,  117 ], SMT constraints [  4 ], etc.

At the opposite end of the spectrum, languages like Flix [  125 ] support first-class Datalog

constraints and seamless embedding of Datalog logic within a general-purpose host language.

This approach provides greater flexibility, allowing users to create modular Datalog programs

that can be composed in various ways depending on the specific task. Additionally, it

becomes feasible to enrich Datalog with features such as user-defined Lattices [  3 ], since the

end user can employ a full-fledged language to define these data structures and associated

operations. However, existing systems following this approach lack support for specialized

code generation (akin to Soufflé), resulting in significantly lower performance when compared.

In this work, we aim to bridge the gap in designing Datalog engines that are both flexible

(akin to Flix) and performant (akin to Soufflé). One might contend that this could be

achieved by augmenting the textual frontend of Soufflé-like systems with capabilities akin to

those of Flix. However, such an undertaking would be tantamount to constructing an entire

programming language from the ground up, complete with a comprehensive type system and

more. Additionally, significant effort would be necessary to expand the compiler backend in

order to accommodate these new features, owing to the intricacies inherent to the backend

engine.

In this chapter, we investigate if it is possible to architect a Datalog system with three

key characteristics: (1) generating fully specialized code, a critical factor for optimal perfor-

mance; (2) creating a flexible backend that can easily accommodate a variety of features and

evaluation strategies; (3) creating a flexible frontend capable of seamless interaction with a
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full-fledged programming language, potentially using its features to enrich the frontend with

various extensions.

In pursuing these objectives, we turned our focus towards established generative pro-

gramming tools such as Lightweight Modular Staging (LMS)/Scala [  21 ], BuildIt/C++ [  126 ],

and AutoGraph/Python [  127 ]. These tools have demonstrated success in constructing var-

ious high-performance systems with runtime code generation capabilities [ 19 ,  81 ,  127 – 130 ].

We selected LMS, one of the most well-established tools in this space, and used it to de-

velop Flan — a Datalog compiler fully embedded in Scala that is capable of producing fully

specialized code for any given Datalog program.

A key realization is that these tools (1) provide programmable, fine-grained code gener-

ation that allows full specialization of programs (2) facilitates seamless interoperability with

host languages (e.g., Scala) in the frontend. In Flan, we leverage this interoperability with

Scala to enrich our frontend with various features such as polymorphic rules, higher-order re-

lations [  131 ], user-defined lattices, and so on, by creating an embedding for Datalog in Scala

(Section  4.5 ). Flan’s implementation resembles a high-level Datalog interpreter implemented

using multiple high-level abstractions (Section  4.3 ), while, LMS effectively dismantles these

abstractions during code generation, thereby eliminating any related runtime costs. Flan’s

design features a streamlined operator interface which enables effortless support for a host of

features including user-defined aggregates, user-defined functions (UDFs), stratified negation,

and more (Section  4.4.2 ). Moreover, this allows support for multiple execution strategies,

such as multi-way and binary joins (Section  4.4.3 ), and different index structures like BTrees

and Hash indexes (Section  4.4.4 ), with minimal effort. While the rest of this chapter presents

the system implementation within the Scala/LMS context, we believe that the same can be

accomplished within other similar frameworks and languages like Python/AutoGraph and

C++/BuildIt (technically, any language with operator overloading).

Evaluation We evaluate the performance of Flan using a set of benchmarks commonly

employed in similar studies. Benchmarks include a relatively simple points-to analysis (for-

mulated as relations) on synthetic data, a comprehensive program analysis benchmark from

Doop [ 115 ] applied to a selection of DaCapo benchmark programs [ 132 ], and another involv-

ing lattice-based reasoning [ 117 ]. We compare against various established Datalog engines,
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including Soufflé, Crepe [  118 ], Ascent, and Flix. Flan consistently demonstrates competitive

performance in comparison to state-of-the-art systems, achieving speedups in the range of

1.4× to 12.5×.

Contributions

• We elucidate the rationale behind our choice of employing generative programming,

specifically, LMS, as the basis for constructing Flan (Section  4.2 ).

• We review essential background and demonstrate the construction of a simple Datalog

interpreter from scratch in Scala (Section  4.3 ).

• We illustrate how to effortlessly transform the Datalog interpreter into a compiler that

generates fast, specialized code by utilizing LMS (Section  4.4.1 ). We demonstrate the

integration of various extensions such as constraints, UDFs, negations, and aggrega-

tions through streamlined abstractions (Section  4.4.2 ). We highlight Flan’s backend

flexibility by adding support for multiple join evaluation strategies and index structures

(Sections  4.4.3 and  4.4.4 ).

• We showcase the Datalog compiler can be seamlessly embedded into a full program-

ming language, capitalizing on existing features of the language (e.g., type system,

abstractions) for enabling composable, polymorphic, higher-order Datalog programs.

Moreover, we demonstrate how this simplifies the process of enriching Datalog with

features such as user-defined lattices (Section  4.5 ).

• We compare our engine with state-of-the-art Datalog engines such as Soufflé, Ascent,

Crepe, and Flix across a diverse range of benchmarks. Flan consistently delivers com-

petitive or superior performance in each benchmark (Section  4.6 ).

In Section  4.7 , we examine the relevant literature, followed by drawing conclusions and

discussing potential future work in Section  4.8 .
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4.2 Why Generative Programming?

In the previous section, we outlined our goal of creating a Datalog engine that deliv-

ers performance on par with existing compilers through specialized code generation while

preserving the ability to extend both the frontend and backend. This section delves into

these concerns, articulating the potential of a generative programming-based approach to

effectively address these needs.

Specialization In the context of Datalog engines, specialization refers to the process of

generating specific code tailored for the semi-naive evaluation of rules of a given program.

There are various methods to achieve this specialization. Soufflé, a highly performant and

well-regarded Datalog compiler in the field of program analysis, employs template metapro-

gramming for this purpose. Consider the code generation logic for a simple fixpoint loop

operation. Figs.  4.1 and  4.2 present the corresponding logic in Soufflé and Flan, respectively.

Soufflé’s code generation is driven by an imperative IR derived from the given Datalog pro-

gram. Specifically, it involves concatenating a set of pre-written, operator-specific, stringified

code templates like the one in Fig.  4.1 .

Granularity of Specialization This approach indeed attains a level of specialization,

yet it leaves potential for additional specializationand thus, performanceunexploited. Specif-

ically, the translation happens at the granularity of the query operators (e.g., fixed points,

search, insert, etc.). Hence, a lot of abstractions (index structures, etc.) remain in the

generated code, which is harder for the downstream C/LLVM compilers to reason about.

There are several approaches to push this specialization further. One approach is to use

full progressive lowering using an extensive compiler with multiple IRs, as seen in tools like

DBLAB [ 36 ] or potential multiple MLIR dialects [  133 ]. However, this becomes only a partial

solution if we need easy extensibility, as adding features would require notable changes to this

IR, lowering passes, and so on. Alternatively, fine-grained programmable code generation

using tools like LMS (Scala), BuildIt (C++), or AutoGraph (Python) could be a preferable

choice.
2

 https://github.com/souffle-lang/souffle/blob/9aca1614a8865476abd681f17544dc9032dbb186/src/
synthesiser/Synthesiser.cpp#L557-L566  
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// codegen logic for Loop
void visit_(/* elided */) {
PRINT_BEGIN_COMMENT(out);
out << "iter = 0;\n";
out << "for(;;) {\n";
dispatch(loop.getBody(), out);
out << "iter++;\n";
out << "}\n";
out << "iter = 0;\n";
PRINT_END_COMMENT(out);

}

Figure 4.1. Code generation logic for fixed point loop in Soufflé. Uses non-
hygienic string code templates that are syntactically ill-formed.  

2
 

// next-stage variables
var iter = 0 // : Rep[Int]
var cond = ... // : Rep[Boolean]

// staged loop since next-stage cond
while (cond) {
/*
logic for loop body

*/
cond = /* update condition */
iter += 1

}

Figure 4.2. Flan’s fixed point loop code. Scala essentially serves as a macro
system, ensuring code generation is syntactically well-formed and hygienic.

Lightweight Modular Staging For instance, LMS provides a way of controling this

specialization through types. Specifically, LMS introduces the concept of Rep types, rep-

resenting computations that occur in the next stage and should, therefore, appear in the

generated code. Computations (including control flow, etc.) that take place on regular

types (e.g., Int, String, etc.) are evaluated at the current stage. Below, we present a

power function written in LMS (left) and the corresponding specialized code (generated in
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C) for power(b, 5) (right). Notice that b is a Rep-typed variable, indicating that it is a next

stage variable, and hence, any computations performed on b (in this case, multiplications)

should appear in the generated code.
// Scala LMS code
def power(b: Rep[Int], n: Int): Rep[Int] =
if (n == 0) 1
else b * power(b, n-1)

The Scala program on above is a program written using LMS’s Rep-types and LMS will

automatically partially evaluate the program with respect to the given value of n and produce

the residual program as shown below.
// Specialized code for power(b, 5)
// generated using LMS
int power5(int b) {
return b * b * b * b * b

}

LMS operates by evaluating the program as a standard program for regular-typed values,

while constructing a graph-like IR for operations involving Rep values [ 134 ]. This IR goes

through multiple optimizations like dead-code elimination (DCE), code motion, etc. [  33 ,  135 ]

and generates code in the target language.

This offers us a convenient means of controlling the level of specialization. For instance,

if we were to utilize an off-the-shelf hash table for implementing our hash-based indexes

needed for rule evaluation, we could employ Rep[HashMap[K,V]]. This implies that the

HashMap abstraction will be present in the generated code (e.g., HashMap from the standard

library). In fact, as discussed in Section  4.4.4 , we adopt this strategy to incorporate Soufflé’s

BTree index structure [  120 ] into Flan. However, if we had, instead, used a current stage

abstraction, e.g., a HashIndex that uses Rep[Array[V]] internally, then this abstraction

would not appear in the generated code. Instead, fully specialized versions of each method

invocation (insert, contain, etc.), that uses native arrays would be present in the final code.

In our experiments (Section  4.6.3 ), we discovered that such a fully-specialized index imple-

mentation can be an order of magnitude faster than a library-based, generic, off-the-shelf

implementation.
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Principled Code Generation Another advantage of using an existing tool like LMS

to perform runtime code generation is that the operator logic can be completely decoupled

from code generation, and implemented in a regular manner. For instance, as is well known,

relying on pre-written code templates (like in Fig.  4.1 ) tends to be brittle, as the developer

must manipulate these string fragments to produce the final code. These fragments pro-

vides no guarantee of syntactic well-formedness [  136 ] and hygiene [  137 ], leaving room for

inadvertent variable capturing and name conflicts (e.g., reusing the same name iter in an-

other template during dispatch call). Handling even minor syntactic details, such as curly

braces, requires specific consideration. While this may appear relatively tractable in a simple

setting, maintaining and coordinating such templates becomes increasingly intricate as the

number of templates grows and is fundamentaly at odds with extensibility. In contrast, a

key distinction in Flan’s case (Fig.  4.2 ) is the handling of variable scoping, typing, etc. by

the host language (Scala, in our case).

Flexibility All this results in an implementation that mirrors a relatively simple inter-

preter, constructed in a high-level language employing high-level abstractions, as exhibited

in Section  4.3 . This architecture becomes the key in achieving backend flexibility, given that

these high-level abstractions enable the creation of a streamlined operator interface that

is flexible enough to facilitate the addition of various features like user-defined aggregates,

functions, negations, constraints, and so on, (Section  4.4.2 ) alongside support for different

indexing structures (tree or hash-based; Section  4.4.4 ) and evaluation strategies (binary or

multi-way joins; Section  4.4.3 ).

While this approach gives us a flexible and efficient backend, the question of crafting

a flexible frontend remains. One possibility is to solely depend on a textual frontend and

incrementally add functionality/extensions as required. However, given the demand for full-

programming language like extensions, this would eventually result in an effort similar to

creating a new language from scratch. A key realization is that we can use the interoper-

ability with the host language of tools like LMS to our advantage. Building on this concept,

and inspired by lots of prior work on embedded logic DSLs, in Flan, we devised an embed-

ding for Datalog using standard Scala (Section  4.5 ). This utilization of Scala infrastructure

significantly reduces the necessary engineering effort. A key distinction between our embed-
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y := &x pointsTo(y, x) :− addressOf(y, x). (4.1)
y := z pointsTo(y, x) :− assign(y, z), pointsTo(z, x). (4.2)
y := *x pointsTo(y, w) :− load(y, x), pointsTo(x, z), pointsTo(z, w). (4.3)
*y := x pointsTo(z, w) :− store(y, x), pointsTo(y, z), pointsTo(x, w). (4.4)

Figure 4.3. Simplified points-to analysis rules written in Datalog (used as a
running example in Section  4.3 )

ding and previous work lies in our integration with code generation — thus becoming an

extensible, compiled embedded logic DSL. This strategy also reaps additional benefits, such

as utilizing Scala’s type system for automatic basic type checking, including appropriate use

of variables in custom aggregates, user-defined functions and rules, etc.

4.3 A Datalog Interpreter

An initial approach to developing a Datalog engine could involve converting a Datalog

program into a collection of relational queries to be run on an SQL query engine, as ex-

plored by Scholz et al. [ 138 ]. To implement the efficient semi-naive evaluation necessary for

Datalog, we would need to: (1) represent each relation as three corresponding tables: ‘base’,

‘delta’, and ‘next’ (2) establish an external driver loop to the query engine to enforce fixpoint

semantics and manage records across the sub-relations. However, such trivial implementa-

tions usually perform more poorly than systems specifically designed for Datalog [  2 ] unless

special care is taken [  139 ,  140 ]. The main challenge lies in creating and maintaining carefully

selected indices (e.g., moving tuples from next to delta, etc.), and avoiding redundant com-

putations arising from semi-naive evaluation. Nonetheless, it has been shown that building

an optimized SQL engine can be done in 500 Lines of Code (LOCs) [  81 ,  141 ]. Although

this engine cannot be repurposed directly due to the limitations mentioned, it prompts the

question: Can we adopt similar principles to develop an efficient Datalog interpreter?

In this work, we demonstrate that the answer is indeed yes! Inspired by Rompf and

Amin [  141 ]’s SQL engine, we will develop a succinct bottom-up Datalog interpreter in this
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c ∈ B, x ∈ Var, R ∈ Rel

t ::= c | x

a ::= R(t1, . . . , tn)

r ::= a :− a1, . . . , an

P ::= r1, . . . , rn

/* Auxiliary definitions for Relation */
case class Schema(fields: Seq[Field])
class Relation(val name: String, val schema: Schema)

/* AST definitions */
type BaseTy = Boolean Int String
enum Term:
case Const(v: BaseTy)
case Var(s: String)

case class Atom(relName: String, args: Seq[Term]):
def rel: Relation = ...

case class Rule(head: Atom, body: Seq[Atom])

type Program = Seq[Rule]

Figure 4.4. Formal syntax for Datalog programs (top) and corresponding
AST definition in Scala (bottom)

section, utilizing semi-naive evaluation as illustrated in standard database textbooks [  142 ,

Figure 3.6] [ 143 , Algorithm 13.1.2]. For the sake of brevity, our initial focus will be the pure

Datalog subset, excluding negations, aggregations, and other extensions. Nevertheless, the

integration of these features is fairly straightforward and will be discussed in Section  4.4.2 .

We will use Scala 3 syntax throughout the chapter.
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4.3.1 Datalog

A Datalog program consists of a set of clauses of the form a :− a1, a2, . . . , an. Each clause

is composed of a head atom a and body atoms ai, where each atom possesses an associated

arity n and a corresponding number of term arguments ti, denoted as R(t1, . . . , tm). A term

argument can be either a variable x or a constant c of a base type B. The head atom of

a rule defines facts of a relation while body atoms form a conjunctive query over multiple

relations constrained by a sequence of arguments. The predicate symbol R associated with

the atom is referred to as the relation. There are primarily two types of relations: Extensional

relations (EDB), the base relations that serve as the input and intensional relations (IDB),

intermediate or output relations derived by applying the rules in the Datalog program.

We show the formal syntax and Scala abstract syntax definition in Fig.  4.4 . The auxiliary

definition Relation holds metadata of relations. A relation’s facts are derived by the rules

in which the relation appears in the head atom. A relation has a schema that defines its arity

and the column names (Fields). The rel property performs name resolution and provides

the relation an atom refers to.

Consider a basic program analysis task formulated using Datalog shown in Fig.  4.3 [ 144 ].

Specifically, this is a simplified version for Andersen-style pointer analysis [ 145 ], which aims

to determine the objects a variable may potentially point to [  144 ]. This analysis involves

four EDB relations: AddressOf, PointsTo, Load and Store. We will use this as a running

example in the rest of Section  4.3 . The rules are reasonably clear and self-explanatory. For

instance, rule  4.1 indicates that if y holds the address of x (i.e., y := &x), then y points to

x.

The actual evaluation of the clauses relies on fixed-point semantics. In this process,

the rules are applied to facts, initially starting from EDBs and subsequently with IDBs as

they are derived, until the evaluation reaches a fixed point. This method is referred to

as naive evaluation. However, it is inefficient due to the presence of numerous redundant

computations. For instance, in rule  4.2 , any tuples of PointsTo found prior to the previous

iteration would not result in new tuples during the current iteration (since Assign is fixed).

Consequently, it is more efficient to operate only on the tuples discovered in the immediate
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1 /* Entry point of the interpreter */
2 def compute(prog: Program,
3 edbs: Map[Relation, Seq[Record]],
4 outputs: Seq[Relation]): Map[Relation, Array[Record]] =
5 // construct dependency graph of relations, find
6 // strongly-connected components, and topologicaly sort
7 val strata = stratify(prog)
8

9 // store: Stores tuples of relations
10 val store: Store = Store()
11 for ((rel, recs) <- edbs)
12 // Load EDB relation tuples into store
13 recs.foreach(store.insert(into=rel, _))
14

15 // Compute IDB by evaluating rules
16 for (rules <- strata)
17 eval(rules)(store)
18

19 // Collect outputs and return
20 outputs.map(rel => (rel, store.records(rel))).toMap
21

22 /* Evaluating rules of a stratum */
23 def eval(rules: Program)(store: Store): Unit =
24 // Relations of the stratum
25 val relations = rules.map(_.head.rel).toSet
26 // Split into simple and recursive, and add delta variants for

recursive
27 val (simpleRules, recursiveRules) = expandRules(rules)
28

29 // Evaluate simple (non-recursive) rules
30 for (rule <- simpleRules)
31 for (record <- evalRule(rule))
32 // Project join output and insert
33 store.insert(into=rule.head.rel, record)
34

35 // Evaluate recursive rules until fixed point
36 while store.hasNextIteration(relations) do
37 for (rule <- recursiveRules)
38 for (record <- evalRule(rule)(store))
39 // Project join output and insert
40 store.insert(into=rule.head.rel, record)

Figure 4.5. Main interpreter loop that drives rule evaluation. compute
partitions the relations and rules into strata, and call eval to evaluate each
stratum.
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pointsTo.next1(y, x) :− addressOf(y, x) (Rule  4.1 expansion)

pointsTo.∆i := pointsTo.nexti−1 − pointsToi−1

pointsToi := pointsToi−1 ∪ pointsTo.∆i

pointsTo.nexti(y, x) :− assign(y, z), pointsTo.∆i(z, x)
(Rule  4.2 expansion)

Figure 4.6. Rule expansion for rules  4.1 and  4.2 from Fig.  4.3 done by
expandRules (called in Fig.  4.5 L  27 ). The first rule’s expansion is simple and
can be evaluated only once outside the fixpoint loop while the second one is
recursive and is decomposed into a rule over delta relations.

previous iteration (referred to as the delta). This strategy of employing deltas for fixed-

point computation is known as semi-naive evaluation and is regarded as the state-of-the-art

evaluation algorithm for Datalog.

4.3.2 Stratification

We now proceed with the definition of the interpreter. The evaluation of a Datalog

program P can be decomposed into the evaluation of subprograms Pi where {P1, . . . , Pn}

is a partitioning (stratification) of the rules in P [ 143 ]. The partitioning is obtained by

computing the topological sort of the Strongly connected components (SCCs) of the (cyclic)

dependency graph defined by the head relation and body relations of each rule. Each SCC i

is a set of relations that are mutually recursive and Pi is defined as the set of rules defining

any relation in SCC i. For instance, for our running example, there would be five strata: one

for each EDB relation (addressOf, assign, load, and store) and another for the IDB relation

pointsTo. The last stratum contains all four rules. In Fig.  4.5 we show compute, which is

the entry point of our Datalog interpreter. First the program given as input is stratified

through stratify (L  7 ), then records for each EDB are loaded into a store (L  11 and  13 )

and finally the interpreter evaluates the rules for each stratum in the topological order.
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pointsTo(y, w) :− load(sym
y ,

ptr
x ), pointsTo(src

x ,
dst
z ), pointsTo(src

z ,
dst
w ).

1 for (x <- uniqueValues(of=ptr, from=load, having={}))
2 for (z <- uniqueValues(of=dst, from=pointsTo, having={src: x}))
3 for (w <- uniqueValues(of=dst, from=pointsTo, having={src: z}))
4 for (y <- uniqueValues(of=sym, from=load, having={ptr: x}))
5 yield (y, w)

Figure 4.7. Top: Datalog rule  4.3 from Fig.  4.3 with column names for each
relation shown on top of each variable. Bottom: Corresponding multi-way join
nested loop.

4.3.3 Stratum Evaluation

Typically, a stratum comprises multiple rules, and the interpreter’s core functionality lies

in how these rules are evaluated, which corresponds to eval in Fig.  4.5 . Stratum rules are

partitioned into simple and recursive rules. Simple rules are non-recursive rules, i.e., the

body does not mention any of the relations present in the current stratum, and therefore can

be computed immediately outside of the fixpoint computation. Recursive rules, by contrast,

need to be evaluated until a fixpoint is reached. The evaluation of a rule yields records that

can then be stored as shown in L  33 and  40 .

To implement semi-naive evaluation, recursive rules need to be expanded by expandRules

in L  27 into rules operating on three sub-relations: base, delta, and next. The base sub-

relation contains all records discovered prior to the current iteration, while the delta sub-

relation includes only the records found in the previous iteration. The next sub-relation holds

the records derived during the rule evaluations of the current iteration. Fig.  4.6 illustrates

expansions for rules  4.1 and  4.2 in the points-to program from Fig.  4.3 . For rule  4.1 , the

expandRules function results in one simple rule with only addressOf in the body, which

can be evaluated once outside the fixpoint loop. For rule  4.2 , it results in a rule with a join

between assign and the delta relation of pointsTo. The notation := represents table updates

performed by store.hasNextIteration(relations) (L  36 ), which computes the stable,

next, and delta relations for the new iteration, as shown by the set operations.
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1 /* body: remaining body, iters: remaining order,
2 env: current environment */
3 def multiWayJoin(body: Set[Atom], iters: Seq[JoinOperand],
4 env: Map[Var, Value])
5 (store: Store) = new:
6 def foreach(f: Map[Var, Value] => Unit): Unit =
7 iters match
8 case Seq(op, rest*) =>
9 // lookup bound fields

10 val (filter,missingFields) = lookup(op.atom,env)
11 // iterate variable
12 for (value <-store.uniqueValues(
13 of=op.field,from=op.atom.rel,filter))
14 val newEnv = env + (op.arg -> value)
15 // remaining: has unbound columns
16 // ready: all columns bound
17 val (readyIncl,remaining) =
18 body.partition(lookup(_,newEnv)._2.isEmpty)
19 val ready = readyIncl - op.atom
20 if (ready.forall(
21 a => store.contains(a.rel,lookup(a,newEnv)._1)))
22 // perform rest of join
23 multiWayJoin(remaining,rest,newEnv)(store).foreach(f)
24 case _ => f(env) // join completed
25

26 /* main entry-point for rule evaluation */
27 def evalRule(rule: Rule)(store: Store) = new:
28 def foreach(f: Record => Unit): Unit =
29 // compute the order to perform the join
30 val order = variableOrder(rule.body)
31 for (env <- multiWayJoin(rule.body.toSet, order, Map())(store))
32 // project to rule head
33 val (record, _) = lookup(rule.head, env)
34 f(record)

Figure 4.8. Code for evaluation of rules. First, the variable order is computed
(order), followed by the invocation of multiWayJoin that iterates through
variables in the specified order and produces the join output. Code in L  12 

highlighted in blue corresponds to the nested loops in Fig.  4.7 .
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4.3.4 Rule Evaluation

Next, we will explore the evaluation of rules. Broadly speaking, Datalog rule evaluation

strategies fall into two categories: binary joins and multi-way joins. While binary joins

typically involve iterating through entire tuples from relations, multi-way joins function at

the granularity of individual variables. Our full system, Flan is capable of accommodating

both strategies with only slight modifications to the core evaluation logic (discussed in Sec-

tion  4.4.3 ). For the sake of conciseness, this section will exclusively present and discuss the

code for a multi-way join strategy.

As an example, let’s consider rule  4.3 from Fig.  4.3 , which performs a join across three

relations predicated on the keys x and z (as depicted in Fig.  4.7 ). The bottom part of the

figure illustrates an analogous ‘for comprehension’ that emulates the logic of join evaluation.

uniqueValues yields the unique values of the field passed as argument to the parameter

‘of’ from relation ‘from’ where the remaining field are constrained by the ‘having’ record

(essentially a filter). For readers who are familiar with the Generic Join [ 146 ] algorithm,

this may look similar but without the intersections. We discuss how a similar notion to

intersections is achieved in this setting via explicit contains checks in Section  4.4.3 , but omit

it here for brevity.

For a given rule, the initial step involves computing the order in which variables (along

with their corresponding relations) should be iterated. Upon establishing this order, the

uniqueValues method can be invoked from the pertinent relations in the determined order,

as illustrated in Fig.  4.7 . It is important to note that while the sequence of iterating over

the variables does not influence the correctness of the computation, it can have a substantial

impact on the execution time of the query.

For completeness, the implementation for rule evaluation is shown in Fig.  4.8 . The entry

point is evalRule, which computes a variableOrder (L  30 ) and then calls multiWayJoin

which corresponds to the evaluation of the nested for loops generating the unique values for

each variable and introducing them in env. Specifically, L  12 - 23 of Fig.  4.8 corresponds to

evaluating the rule using a loop nest, such as Fig.  4.7 . The loop nest iterates over each join

variable, with relation lookups interspersed at appropriate places. multiWayJoin returns
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an object implementing foreach allowing to iterate over the joined records through a simple

for comprehension. Finally the loop body f is called with the projection of the environment

corresponding to the rule’s head record.

Close attention should be paid to the conditional present in L  21 : whenever the intro-

duction of a variable of the rule completes one of the rule’s body atoms, an contains check

takes place, essential to produce the correct output. For example if we had picked ptr from

load to yield the possible values of x and src from pointsTo for the values of z, then we must

also check that (x, z) is present in pointsTo as shown below.

for (x <- uniqueValues(of=ptr, from=load, having={}))
for (z <- uniqueValues(of=src, from=pointsTo, having={}))
if (pointsTo contains (x, z))
...

In Flan, we mimic the join order (computed by variableOrder) of left-associative bi-

nary joins with join variables iterated first. However it is straightforward to extend the

system to support other query plans based on user provided hints or heuristics like cardinal-

ity/selectivity estimation.

4.3.5 Record Store

The last key remaining piece is the Store which will store the records that are produced

during evaluation, ensure uniqueness of records, and enable fast retrieval of the unique values

present in a specific field of the relation. Its implementation is shown in Fig.  4.9 .

The records map contains the records of a given relation. The insert and contains

method allow to perform insertions of a record into a relation (Fig.  4.5 , L  13 ,  33 and  40 ) and

check the presence of a record in a relation (Fig.  4.8 , L  21 ), respectively. hasNextIteration

checks whether a fixpoint has been reached (Fig.  4.5 , L  36 ) and performs the := updates

shown in Fig.  4.6 . Finally uniqueValues iterates over the unique values of a column of

a relation on the specific subset of records satisfying the filter (having), as discussed in

Section  4.3.4 and shown in Fig.  4.8 , L  12 . The implementation of the Store presentend is

deliberately simple and inefficient. We defer the discussion of design decisions of the Store

to Section  4.4.4 . In particular, we introduce the notion of IndexedStores, which employs

130



case class Value(v: BaseTy)
case class Record(schema: Schema, values: Seq[Value])

class Store:
// records for each relation are maintained in Sets
val records =
mutable.Map().withDefault((_:Relation) => Set[Record]())

// inserting new records
def insert(into: Relation, record: Record): Unit =
records(into) = records(into) + record

// checks existance of records
def contains(rel: Relation, record: Record): Boolean =
records(rel) contains record

def hasNextIteration(relations: Set[Relation]): Boolean =
var updated = false
for (relation <- relations)
// Perform the updates shown in  Rule   4.2  expansion from F ig.  4.6 

records(relation.delta) =
records(relation.next) diff records(relation.base)

records(relation.base) =
records(relation.base) union records(relation.delta)

records(relation.next) = Set()
updated = records(relation.delta).nonEmpty

updated // returns whether a fixed point has been reached

def uniqueValues(of: Field, from: Relation,
having: Record): Iterable[Value] =

records(from).filter(
rec => rec(having.schema) == having.values).map(_(of))

Figure 4.9. Code for Store, which maintains tuples of relations and is used
throughout the evaluation.

various index structures such as trees or hash tables to execute the required operations

efficiently.

Combining all of these components results in a relatively simple Datalog interpreter.

Although easy to construct, its performance is significantly inferior to that of a compiled

131



engine generating specialized code. This is due to the substantial runtime interpretation

overhead, such as the overheads associated with high-level abstractions and using generic

data structures for indices. In Section  4.4 , we will explore how to transform this basic

interpreter into a compiler capable of producing efficient specialized code, requiring only

minimal modifications to the original code.

4.4 Flan: Datalog Compiler

4.4.1 Deriving a Datalog Compiler from the Interpreter

In Section  4.3 , we demonstrated how to construct a relatively simple Datalog interpreter

in Scala. In this section, we explore how to transform our slow interpreter into a compiler

that generates fast, specialized code with minimal modifications to the original interpreter.

We will employ the concept of partial evaluation and Futamura projections [ 38 ] to achieve

this goal.

Partial Evaluation The concept of partial evaluation [ 147 ] involves decomposing the

evaluation process into two or more stages, often based on the availability of inputs, with

each stage evaluated to generate a residual program that contains the logic for evaluating

the remaining stages. Consider our interpreter as an example: it accepts a Datalog program

and the actual input data (i.e., EDB) as inputs and produces an output.

output = interpreter(datalog_program, input)

In the context of program analysis, the same datalog_program implementing the anal-

ysis is applied to multiple different programs to be analyzed. Consequently, it is sensible to

divide the interpreter into two stages. Initially, we partially evaluate the Datalog interpreter

with respect to the given Datalog program, obtaining a staged interpreter specialized for that

specific analysis. This process is facilitated by a program specializer (or partial evaluator).

Ideally, the specialized code should eliminate any overheads associated with interpreting the

Datalog program while maintaining the ability to handle dynamic input EDBs.

specialized = specializer(datalog_interpreter, datalog_program)

output = specialized(input)
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The first Futamura projection [  38 ] states that executing the interpreter produces the

same output as evaluating the specialized (i.e., partially evaluated) code with the same

input. Furthermore, it states that this process of specialization is analogous to compilation.

In essence, the specialized code mentioned above would be equivalent to code generated

by a Datalog compiler.

One way to achieve this specialization is to create a custom program transformation

tailored to the use case (i.e., Datalog) that generates the required specialized code for

a given input Datalog program. However, this can result in a notable engineering effort as

it is essentially equivalent to writing a compiler from scratch. Instead, we can rely on an

existing generative programming framework like LMS to do this in a more principled manner

as discussed in Section  4.2 .

Our Approach using LMS As mentioned in Section  4.2 , LMS leverages a type-based

approach to facilitate this stage distinction and specialization. To achieve this, it introduces

the notion of Rep-types. Rep-typed variables (e.g., Rep[Int], Rep[Array[Long]], etc.)

designate them as next-stage values. Consequently, any operations conducted on these vari-

ables would appear in the generated code for next stage. In contrast, operations on variables

with regular types (e.g., Int, Array[Int], etc.) are executed in the current stage. LMS

takes regular Scala programs with Rep-type annotations as input, partially evaluates it using

the Scala runtime, and subsequently generates specialized C code for the residual program.

In Fig.  4.10 , we illustrate the modifications necessary to transform the interpreter, dis-

cussed in Section  4.3 , into a compiler using LMS. The segments of code that remain unal-

tered are depicted in gray. First, we should identify static data available at staging, or in

this case, code generation time. The primary available component is the Datalog program

which contains the relation definitions along with their corresponding schema, input/output

specifications, etc. Consequently, at staging time, we can compute the program’s strata,

topological order, recursive and non-recursive rules, join orders, and so on. Hence, in the

LMS-based staged interpreter, computations pertaining to these aspects are carried out at

staging time, leading to specialized code that eliminates any runtime overhead associated

with these operations.
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def stratify(prog: Program): Seq[Program] = ...
def compute(prog: Program,

edbs: Map[Relation, Seq[Record]],
outputs: Seq[Relation]): Map[Relation, RepBuffer] = ...

def eval(rules: Program)(store: Store): Unit = ...
def evalRule(rule: Rule)(store: Store) = ...
def multiWayJoin(body: Set[Atom], iters: Seq[JoinOperand], env: Map[Var,

Value])
(store: Store) = ...

case class Record(schema: Schema, values: Seq[Value])

case class Value(v: Rep[_])

class Store: // staged store implementation
val records =
mutable.Map().withDefault((_: Relation) => RepIndexedBuffer())

def insert(into: Relation, record: Record): Unit
def contains(rel: Relation, record: Record): Rep[Boolean]
def hasNextIteration(relations: Set[Relation]): Rep[Boolean]
def uniqueValues(of: Field, from: Relation, having: Record): RepBuffer

Figure 4.10. Deriving a compiler from the interpreter via mixed-stage Store.
Shown in gray are the previous definitions of the interpreter from Figs.  4.5 

and  4.8 which are left unchanged. The only changes needed are: (1) Value
s types are now Rep[_] instead of Scala base types, denoting second-stage
values (2) the store is updated to an implementation of a second-stage store
(we elide the implementation).

The sole piece of information not available at the staging time are the actual facts (i.e.,

records) of the EDB relations. Consequently, the values and data structures associated with

these should be marked as next-stage values (i.e., Rep types). In particular, we update

Value to contain Rep[_] values denoting next-stage values. This, along with other fixes

related to type errors that arise from this change, are sufficient to convert our interpreter

into a compiler that generates specialized code.

Finally we now need to use a staged version of Set[Record] in the records store

(Store in Section  4.3.5 , since now it contains next-stage values) and update its interface
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1 /* evaluate UDFs, aggregates and return result */
2 def evalArg(/* ... elided ... */): Value =
3 case v: Variable => env(v)
4 case Constant(v) => Value(v)
5 case UDFCall(str, args) => evalUdf(str, args)
6 case agg: Aggregator => evalAggr(agg)
7

8 /* evaluate all ready constraints and return whether all satisfied */
9 def evalReady(ready: Seq[Litereal],

10 env: Map[Variable, Value]): Rep[Boolean] =
11 ready.filter{case _: Assignment => false case _ => true}.forall{
12 case Negation(atom) => !store.contains(atom.rel, lookup(atom, env).

_1)
13 case a: Atom => store.contains(a.rel, lookup(a, env)._1)
14 case bc: BinaryConstraint => evalBinaryConstraint(bc, env) }
15

Figure 4.11. evalArg and evalReady used in Fig.  4.12 .

accordingly. For example, contains checks will now return Rep[Boolean] and be present

in the residual program. The concrete implementation of Set[Record] is done through

RepIndexedBuffer. We elide the implementation and defer a thorough discussion on im-

plementation considerations in Section  4.4.4 .

LMS readily offers staging support for most primitive operations involving Rep-typed

values. For instance, LMS provides out-of-the-box support for assignments, comparisons, and

other operations on primitive Rep[T] values. Additionally, language constructs such as if,

while, and for involving next-stage values are transformed into their staged counterparts

using macros [  134 ]. For example, when a Rep[Int] is compared with another next-stage

value or a regular integer, it results in a Rep[Boolean]. If a conditional depends on this

boolean value, the corresponding if block will be lifted into a staged if, which will ultimately

be included in the generated code.
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1 /* process any ready components before moving to next join step */
2 def processReady(remaining: Seq[Literal], env: Map[Variable, Value])
3 (f: (Seq[Literal], Map[Variable, Value]) => Unit)
4 (store: Store) =
5 // ready: components with all vars in env
6 val (ready, nextRemaining) =
7 remaining.partition(allVarsAvailable(_, env))
8

9 // assignments that will introduce vars to env
10 val readyAssignments =
11 ready.collect { case a: Assignment => a }
12

13 // process all ready constraints
14 if (evalReady(ready, env))
15 readyAssignments.headOption match
16 case Some(assign) =>
17 // process UDFs, aggregates, and put result into env, and repeat
18 val value = evalArg(assign.right, env)
19 processReady(nextRemaining ++
20 readyAssignments.tail, env + (assign.left -> value))(f)
21 case None =>
22 f(nextRemaining, env)
23

24 def join(/* elided */) = new:
25 def foreach(f: Map[Var, Value] => Unit): Unit =
26 processReady(body, env) { (remaining, newEnv) =>
27 // process any available UDFs, aggreagtes constraints, etc. prior to

join step
28 /* remain unchanged from Fig.  4.8 */
29 iters match
30 case Seq(op, rest*) => ...}

Figure 4.12. The required code updates in Flan to accommodate nega-
tions, constraints, UDFs, aggregates, etc. Components are processed in
processReady, which utilizes evalReady and evalArg (shown in Fig.  4.11 )
for evaluating negations and constraints, and for managing constants, UDFs,
and aggregates respectively.
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4.4.2 Beyond Pure Datalog

Up to this point, we have developed an interpreter that supports pure Datalog and

demonstrated how to transform it into a compiler that generates efficient specialized code.

However, pure Datalog is not adequate for most practical program analysis tasks. For

instance, the Doop analysis, one of the benchmarks we will examine in Section  4.6 , employs

various extensions such as stratified negation, aggregation, UDFs, constraints, and more.

In this section, we will discuss how to incorporate these features into our Datalog compiler.

Integrating these features is relatively straightforward because we can utilize high-level Scala

capabilities to implement them (as we saw in Section  4.3 ) without concern for code generation

or any runtime overhead associated with the abstractions.

Stratified Negation The concept of negation in Datalog serves to enforce that a given

relation does not contain a specific value. Consider the following example of a rule with

negation:

R(x, y) :- S(x, y), !T(x, y)

This rule states that we should insert all records from S that are not present in T to

R. To ensure safety and unique fixed-point semantics, negation must be stratified, which

means that negation can only be applied to a relation that appears in a previous stratum

(in the topological order) [ 148 ]. During rule evaluation, negations are translated into simple

contains checks. Specifically, when all variable bindings of a negated atom become available,

we can perform a contains operation using the relevant index.

Aggregations, UDFs, and Constraints The example shown below presents a simple

rule that incorporates a combination of features including aggregates, constraints, and User-

Defined Functions (UDFs). The rule aims to find the count of objects that a variable may

point to for variable names that match a given regex. Here, match is a UDF, count {

PointsTo(var, _)} is an aggregate, and match(..) = true is a constraint.

PointsToCount(var, p_count):-
Vars(var),
match("<some-regex>", var) = true,
p_count = count {PointsTo(var, _)},

137



The common trait in the evaluation of these extensions is that each component is pro-

cessed as soon as the required variables become available in the environment. Thus, all we

need to do is to modify the join logic to initially handle these ‘ready’ components before

proceeding with the remainder of the join. To keep the logic for evaluating these extensions

simple and general, we introduce the notion of rule canonicalization. Specifically, we rewrite

the rules so that atoms in their body contain only variables, while other argument types are

converted into variable assignments. Additionally, aggregates and UDF calls are hoisted into

assignment operations using new variables. Shown below is the canonicalized version of the

above query.
// canonicalized version of rule on left
PointsToCount(var, p_count):-
Vars(var),
#udf1 = true,
p_count = #aggr1,
#const1 := "<some-regex>",
#udf1 := match(#const1, var),
#agg1 := count {PointsTo(var, _)}

Figure  4.12 shows the updated join function that incorporates the processReady

method for handling the extensions. It takes as arguments the current environment and

the remaining body literals, partitioning them into two categories: ready, encompassing

literals with all necessary variables present in the environment, and nextRemaining, which

includes the rest. For instance, in the initial join call for the rule above, #const1 qualifies

as a ready literal as it doesn’t require any additional environment variables. The function

evalReady then executes any pending constraint checks (like negations, binary constraints),

and only if all constraints pass, the evaluation of the rest of the rule proceeds. Note that

evalReady yields a Rep[Boolean], indicating that constraint evaluation occurs in the next

stage and the logic will feature in the generated code.

We treat Assignments distinctively; they introduce variables into the environment that

could potentially render some remaining literals ‘ready’. Therefore, we process one Assign-

ment at a time, repeatedly employing the aforementioned process until all ‘ready’ components

have been handled. We omit the code for evaluating binary constraints (evalBinary-

Constraint) which simply looks at the constraint type and evaluate left and right hand
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side and compare based on the constraint. We also exclude the code for calling UDFs

(evalUDF), which simply retrieves the corresponding UDF from the UDF map (where user

can register their UDFs) and call it.

Flan fully supports user-defined aggregates. All users need to specify are an initial

value for the aggregate and an update function, having type (Value, Value) => Value.

The aggregate’s body is evaluated using the same join function, starting with an initial

environment where all free variables are bound by the corresponding outer variables. This

also allows arbitrary nesting of aggregates. For brevity, we have chosen to exclude the code

for evalAggr(agg) but it largely reuses already existing methods like variableOrder to

determine the join order for aggregate sub query, join to perform the join, and evalArg

for evaluating arguments (e.g., UDFs) used inside the sub query.

One significant advantage of maintaining high-level engine code in the interpreter style is

the relative ease of adding new features, as seen above. In contrast, other existing approaches

may necessitate more extensive modifications, such as augmenting their intermediate-level

IRs, adding logic to their code generators, and more. We evaluate this ease of implementation

in Section  4.6.2 .

Incorporating functionality in this manner not only simplifies the process but also au-

tomates certain optimizations that other engines perform as separate passes. For instance,

existing approaches rely on transformation passes on their imperative IR for optimizations

such as hoisting aggregates, hoisting if blocks (or predicate pushdown), and collapsing fil-

ters [ 2 ]. In contrast, our interpreter inherently integrates these optimizations by design. For

instance, aggregates, constraints, and UDFs are computed as soon as their variable bindings

become available, and execution is short-circuited as early as possible.

4.4.3 Join Strategies

We initially outlined the implementation of multi-way joins in Section  4.3.4 when we

introduced the code for our interpreter. In this section, we will delve further into the specifics,

illustrating how we can facilitate both binary and multi-way joins seamlessly. We evaluate

the performance of these strategies later in Section  4.6.3 .
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A core aspect of executing Datalog programs involves performing joins. Most existing

Datalog engines rely on relation-at-a-time joins [  2 ,  3 ,  119 ], which entail performing nested

loop joins by iterating tuples from different relations at each level. This approach is analo-

gous to binary joins in traditional relational database management systems (DBMS), with

the key difference being that intermediate relations are not materialized. However, as well

known in DBMS research [ 149 ], using this type of binary joins for multiple relations can

be asymptotically suboptimal in some cases. An alternative approach is to use variable-

at-a-time joins, which leads to a class of join algorithms called worst-case optimal joins

(WCOJ) [  109 ,  149 – 151 ]. In essence, the asymptotic complexity of these join algorithms are

bounded by the worst-case output size of the final result, as opposed to the worst-case size

of the intermediate results, as seen in binary joins.

The effectiveness of join strategies is influenced by several factors, including the cardi-

nalities of relations, join selectivity, etc. Given this, prominent DBMS engines offer a range

of join evaluation methods, using certain heuristics to select the most appropriate one [  152 ,

 153 ]. This underlines the necessity for Datalog engines to incorporate an array of built-in

join strategies. Bearing this in mind, we implemented both join types in Flan. Given the

abstractions previously defined, this addition was relatively simple.

We can make Flan seamlessly support both strategies by modifying a few interface APIs.

First, we need to update the uniqueValues(of: Field, from: Relation, filter:

Record) function to generate unique values across multiple columns simultaneously, rather

than one column at a time. We achieve this by changing the ‘of’ parameter’s type from

Field to Seq[Field]. Then, we update the variableOrder logic, which determines the

sequence in which variables should be evaluated for the join. For variable-at-a-time joins,

this yields a sequence of JoinOperands, each containing a variable and the related field

of atom used to enumerate the chosen variable’s values. To accommodate binary joins, we

merely need a variant of variableOrder that returns a sequence of JoinOperands, each

including an atom and all its associated fields necessary for iteration. This alteration implies

that, instead of iterating one field at a time, we would iterate all required fields from an atom

in a single join step. This enables the support of both join strategies, without any changes to

the rest of the system code. Specifically, we have defined a trait Strategy that comprises
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an abstract variableOrder method. Then, we provide two traitsMultiWayJoinStrategy

and BinaryJoinStrategythat can be seamlessly mixed-in as needed to activate the required

strategy.

Intersections This multi-way join evaluation strategy we saw in Section  4.3.4 closely

resembles the Generic Join algorithm [  150 ], with the notable exception of the use of ‘intersec-

tions’, which is crucial for achieving strong asymptotic guarantees and runtime performance.

In Generic Join, the set of iterated values for a variable is determined by intersecting the

sets of values from all relations containing that variable. We achieve a similar notion to

intersections by performing checks to determine whether an introduced variable is unifiable

in the rest of the rule body atoms, and short circuits the execution when it is not unifiable.

In essence, when a variable is introduced, we examine the other relations to determine if that

variable is present before proceeding with the remaining loop nest. We have incorporated

these checks in both binary and multi-way join strategies, and our experiments affirm that

their inclusion leads to noticeable runtime performance improvements.

Fused Traversals Variable-at-a-time iteration, as employed in multi-way joins, may

introduce suboptimal looping structures under certain conditions. Specifically, consider a

loop nest that consists of consecutive variable-iterating loops, where each of these loops

iterate over variables from the same relation without any constraint checks or intersections

between them. An example would be a simple rule like R(a, b) :− S(a, b, c), which leads

to a loop nest with two loops iterating over a and b, respectively. In such cases, the more

efficient approach is to utilize a ‘fused’ traversal that combines these two loops, enabling

iteration over both a and b with a single lookup. Our multi-way join strategy incorporates

this traversal fusion as a plan-level optimization.

4.4.4 Indices: BTree and Hash Indexes

In Section  4.3.5 , we constructed a generic implementation of Store without any indexing.

However, this approach is not practical as lookups (i.e., uniqueValues) and checks (i.e.,

contains) are performance critical operations during execution. Consequently, it is essential

to construct efficient indices to support these operations. There are several data structures
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at our disposal to build these indices. As discussed in prior work [  106 ,  150 – 152 ], an indexing

structure resembling a logical trie (each level representing a field) is necessary for variable-

at-a-time joins. This can be realized through the use of an actual trie [ 151 ], or by employing

alternative data structures such as hash tables [ 152 ] or trees that efficiently manage each

level of the trie.

BTrees Our Store abstraction is agnostic to the backend index data structure, allowing

us to select any suitable backend data structure as long as it supports the required operations.

Datalog compilers like Soufflé is already equipped with fast index structure implementations,

specifically tailored to Datalog, which have demonstrated impressive performance across a

broad spectrum of workloads [  120 ]. Hence, we have written a custom wrapper for Soufflé’s

BTree and integrated it into Flan to execute the lookups and checks efficiently. In this

instance, as the data structure abstraction appears in the generated code, we use type Rep

[SouffleBTree] for indices. It is important to note that this means the granularity of

specialization would not be pushed beyond the BTree abstraction in the generated code.

Although our initial tree-based index implementation yielded good performance, we

wanted to explore potential benefits of hash indexes due to their superior asymptotic perfor-

mance (constant versus logarithmic). Jordan et al. [ 121 ] has shown that Soufflé BTrees

consistently outperform standard library-based hash table indexes across diverse micro-

benchmarks and full program analysis benchmarks. We also experimented with using library-

based hash table implementations (using Rep[HashIndex[K,V]]), and observed similar

performance behaviors to what they have demonstrated. A key realization is that these

library-based data structures are overly generic (i.e., have room for more specialization),

which consequently lead to significant runtime overheads as evident from our experiments

in Section  4.6.3 .

Fully Specialized Indices An alternative approach to achieve full specialization is

to build our own data structures that operate directly on low-level Rep[T] values (e.g.,

Rep[Array[T]]), pushing the specialization granularity beyond the data structures like

HashIndex, BTree, etc. We can still utilize high-level Scala data structures for this imple-

mentation, but staging will automatically erase all abstractions and operations performed

on current stage values (i.e., non-Rep typed), resulting in the desired full specialization in
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the generated code. For instance, hash indices implemented in this way are transformed into

sets of native C arrays in the generated code, where all operations (e.g., lookups, inserts,

etc.) are inlined whenever they are invoked. This manner of generating fully-specialized code

offers more opportunities for additional optimizations (e.g., CSE, loop fusion, etc.) by down-

stream general-purpose compilers (e.g., gcc -O3) compared to having generic function calls

to perform the operations. Furthermore, this approach gives us greater control over the data

structure implementation, enabling us to fine-tune it for our specific use case. For instance,

instead of storing the actual full key of the filter, we can simply maintain an offset (i.e., tuple

id) to the central record buffer that stores all the records for a given relation, resulting in

memory savings (also useful in adding support for lattices as discussed in Section  4.5.2 ).

We implemented another performance-enhancement tweak, specifically aimed at optimiz-

ing the transfer of next tuples required upon conclusion of each fixed point iteration. The

most common approach is to first insert the tuples from next into the base relations, swap

next and delta, and clear next (for all indices) [ 2 ]. While this works well for tree-based

indices, whose size depends on the actual data stored, our initial experiments suggested that,

in some cases, it can result in poor performance for constant-size indices like hash indices,

whose size does not directly depend on the actual element count. Specifically, we would end

up clearing a large region of memory even if the previous iteration produced very few tuples.

For instance, after performing n fixed-point loops, there would be memset calls at the end

of each iteration (i.e., n sets of memset calls), regardless of how many next tuples were

produced in the prior iteration. In some cases, these calls can become a bottleneck. In our

hash indices, we have opted for a different approach, clearing the underlying data structures

only when they are nearly full, thus amortizing the cost of clearing the buffers.

Now the question is, if we do not clear the delta hash tables, how to retrieve the delta for

the current iteration (needed for semi-naive evaluation) because now the delta hash tables

contain delta tuples for multiple previous iterations. To address this, we store the fixed point

iteration number at which a given value was inserted within the hash index structure itself.

This allows us to store values for deltas of all iterations in the same index and recover the last

delta needed for semi-naive evaluation. Consequently, next simply becomes a watermark in

the relation’s record buffer, and we avoid clearing large memory regions that would consume a
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significant amount of time, particularly when there is a large number of fixed point iterations

where each iteration takes a smaller amount of time (i.e., produces very few next tuples).

As discussed in Section  4.6 , this finely-tuned, fully-specialized hash-based index demon-

strated impressive results, consistently outperforming the tree-based index structure men-

tioned above. Additionally, akin to our approach with join strategies, this is also implemented

in a ‘modular’ manner. We can easily incorporate the required index type by mixing-in the

corresponding trait (BTreeStore, HashStore), without necessitating modifications to any

other part of the codebase.

4.4.5 Identifying Required Indices

So far, we enriched Flan with prevalent Datalog extensions, demonstrated the ease of

implementing different join strategies, and explored multiple index structures. Yet, the

identification of necessary indexes for operations, a crucial element intersecting all these,

remains. Most existing systems execute this step by conducting an analysis pass on their

imperative IR [  2 ,  117 ,  123 ], but in our case, we do not construct such an IR.

One feasible approach is to simply create all possible indexes for all relations and rely on

the dead-code elimination (DCE) pass of LMS to discard any superfluous indexes in the final

generated code. This strategy would function as expected because the LMS IR meticulously

tracks the effects, thus enabling precise DCE for high-level data structures [  135 ]. However,

this approach may not be optimal since it looks at each operation locally, and does not

consider the possibility of index sharing, hence, not minimizing index creation globally.

Alternatively, we could implement custom logic that computes the necessary indices based

on the evaluation strategy. However, in this case, we would have to write this analysis

separately for each evaluation strategy and would need to modify it each time new features

(e.g., fused traversals as discussed in Section  4.4.3 ) are introduced, leading to a possible

increase in maintenance complexity.

In Flan, we opted for a different approach: we perform a ‘dummy’ evaluation pass of the

program using a DummyStore in place of the standard Store. The DummyStore mirrors the

Store’s API but, rather than performing actual evaluations, it tracks the types of operations
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performed on each relation. Further, we ensure it reifies, for instance, both branches of a

conditional, by creating dummy nodes in the IR (which don’t generate any code), and

returning next-stage values (e.g., Rep[Boolean] for contains).

The process of gathering required indices via dummy evaluation happens in two stages.

First, an instance of a DummyStore is created and the program is ‘evaluated’ using the

provided execution strategy. Although this uses the actual evaluation logic (i.e., core Flan

code), this is not an actual evaluation, instead, this only collects the required indices for each

relation. For example, when encountering a call to store.contains(R, record), it will

note the need for an index to facilitate a contains check on relation R for the fields record

.schema. Once this dummy evaluation completes, it will give us the set of required iter

indexes (to support faster uniqueValues) and check indexes (to support faster contains)

for each relation.

After recording the operations performed on each relation, we can then create the minimal

set of indexes required for these operations taking into account the possibility of index

sharing. Since this dummy evaluation pass simply ‘runs’ the program, it is adaptable to any

evaluation strategy, join strategy, and so forth, making it unaffected by changes in other

parts of the system.

4.4.6 Parallelization

We adopt an approach similar to Soufflé for parallelization [  120 ]. Specifically, we partition

the outermost loop and execute the remaining rule evaluation in parallel using pthreads.

However, when a new tuple is found, it is crucial to ensure that inserts occur in a thread-safe

manner. To achieve this, we augment our hash index implementation to support parallel

inserts by utilizing a series of locks, with each lock corresponding to a region of the hash

keys (similar to StripedHashSet described in [  154 ]). Alternatively, we can achieve thread

safety by relying on atomic operations, specifically, atomic fetch-add and compare-and-swap.

However, a comprehensive discussion of this implementation is beyond the scope of this

chapter and thus omitted. Furthermore, the experiments presented in Section  4.6 that involve

parallel execution report the performance for the aforementioned lock-based implementation.
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4.5 Cipolla: A Datalog Dialect as Embedded DSL in Scala

In Section  4.4 , we have presented the core of Flan, elucidating its ability to yield high

performance while offering a broad range of functionalities. Although the textual Datalog

frontend we employed (akin to Soufflé) facilitates the use across a variety of cases, as indi-

cated in Section  4.1 , certain use cases mandate seamless interoperability with a fully-fledged

programming language.

The declarative nature of Datalog and its fixpoint semantics make it ideal for writing

program analyses in a concise and clearer manner than writing them in a general-purpose

language. Moreover, when coupled with an efficient engine, these analysis can scale to

extremely large programs and be easily parallelized [  2 ,  115 ]. Nevertheless, a growing amount

of works [ 3 ,  4 ,  131 ,  139 ] is showing that it is possible use Datalog in a more diverse set of

analyses, when the language is extended with additional features. In particular, Madsen

et al. [ 3 ] have identified the lack of support for UDFs and lattices as significant obstacles

in applying Datalog to a wider range of dataflow analysis problems. Additionally, the lack

of integration with existing ecosystems complicates and renders interacting with Datalog

computations inefficient, necessitating serializing queries and input/output data back and

forth. To overcome these, they propose Flix, a full-fledged programming language with first-

class support for Datalog. Bembenek et al. [ 4 ] demonstrate that combining Datalog with

Satisfiability-Modulo Theory (SMT) solvers enables writing more advanced and optimized

SMT-based analyses. They propose Formulog, an extension of Datalog featuring a first-order

fragment of ML and support for SMT formulas.

On one side we have highly-optimized Datalog query engines, where extensions can only

be implemented by compiler writers. On the other, we move closer to general-purpose pro-

gramming languages featuring Datalog-like declarative subsets, which prioritize modularity

and abstraction at the expense of performance and require major engineering efforts to design

and develop.

In this section, we reconcile these requirements, by embedding Datalog rules into LMS

enabling abstraction without performance costs through linguistic reuse (technically, shal-
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low) of host language (Scala) features. We will use concrete examples that have motivated

the design of the Flix language [ 125 ] throughout the section.

4.5.1 Embedding in LMS Scala

One can use the interpreter/compiler presented in Section  4.4 as a separate process from

the main program. In this case, whenever the main program needs to evaluate a Datalog

query, it can invoke the Datalog compiler as an external solver, sending the program in

textual format along with the required data. The engine then compiles and evaluates the

query, producing the result and sending it back to the main program. But this has a lot of

overhead due to the repeated back and forth communication. Writing the main program in

LMS instead already gives us some benefits — evaluating a Datalog program can easily be

done by calling the staged version of compute from Fig.  4.5 as compute(parse(program),

edbs, outputs). Code producing edbs and postprocessing the outputs can be optimized

jointly with the staged interpreter code.

Yet, adding support for lattices and other extensions still requires designing additional

syntactic constructs and typing rules. Instead, in Flan, we delegate these responsibilities

to the host language, by providing an embedding of Datalog rules into Scala, similarly to

Scalogno [ 155 ]. Fig.  4.13a shows how we designed this Datalog embedding (named Cipolla)

in Scala that we use as a front end for Flan. An example Datalog program computing node

reachability, as expressed through this embedding, is shown in Fig.  4.13b . In this setup, rules

are formulated as functions wherein the arguments serve as the rule’s metavariables, and the

function bodies represent clauses. The rel combinator introduces relations of varying arities

(R1, R2, etc). For instance, in Fig.  4.13b L  7 , rel { (src: Id, dst: Id)... defines path

as a relation comprising two fields, src and dst. The argument function must produce

an atom (Atm). Atoms are formed by applying relations — binding the variables of the

defining relation to other relations (e.g., L  9 edge(src, dst)), or by the disjunction ( )

and conjunction (&&) of other atoms. These can also include constraints as specified by where

(examples involving such constraints are provided later). The exists function introduces

existential variables (variables that only appear on the right-hand side of a Datalog rule)

147



class Atm: // body of rules
def ( o: Atm): Atm = ...
def &&(o: Atm): Atm = ...
def where(cs: Constraints*): Atm = ...

type R1[T1] = Function1[T1, Atm]
type R2[T1, T2] = Function2[T1, T2, Atm]
// R3, R4, ...
// input relations
def input[T1: Typ, T2: Typ](fname: String): R2[T1, T2] = ...

// relations of different arities
def rel[T:Typ](f: T => Atm): R1[T] = ...
def rel[T1:Typ, T2:Typ](f: (T1, T2) => Atm): R2[T1, T2] = ...
... // other overloads
// introduction of vars
// (see Fig.  4.13b for an example)
def exists[T:Typ](f: T => Atm): Atm = ...
def exists[T1:Typ, T2:Typ](f: (T1, T2) => Atm): Atm = ...
... // other overloads

(a) Definitions for implementing Datalog-like declarative rules using standard Scala constructs.

1 .type Id
2

3 .decl edge(src: Id, dst: Id)
4 .input edge
5

6 .decl path(src: Id, dst: Id)
7 .output path
8

9 path(src, dst) :-
10 edge(src, dst).
11 path(src, dst) :-
12 path(src, node),
13 edge(node, dst).

type Id = Rep[Int]

def edge: R2[Id, Id] =
input("Edge.facts")

def path: R2[Id, Id] =
rel { (src: Id, dst: Id) =>
edge(src, dst)
exists { (node: Id) =>
edge(src, node) &&
path(node, dst)

}
}

(b) Expressing path Datalog program (left) in our Scala embedding (right)

Figure 4.13. The core of our embedded DSL in Scala for writing Datalog
programs, with (a) illustrating the definitions, and (b) displaying a sample
program.
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explicitly. Additionally, we employ a Typ typeclass to ensure that relations are only defined

for types supported by LMS’s Rep types. From this point forward, we omit this typeclass

constraint. We provide a query function that reifies the query into the AST format we used

earlier for our textual frontend (Fig.  4.4 ).
val reachable = query[Int, Int] { (src, dst) => reach.path(src, dst) }

This reification process is done by repurposing the LMS staging capabilities. Essentially,

we stage the program expressed in our embedding and construct the corresponding LMS IR.

However, instead of using LMS backend for code generation from this IR as we typically do,

we extract the LMS IR and transform it into our Datalog AST representation. Once the AST

is derived, the subsequent steps of the process follow the same as described in Section  4.4 .

Specifically, in the above code, query will carry out the fixpoint computation and produce a

second-stage buffer that can be used to print or further process the pairs of reachable nodes.

This embedding already allows us to reap multiple benefits from a developer experience

perspective. We inherently gain the perks of syntax highlighting, refactoring, and typing,

facilitated by the host language’s tooling. Scala’s type system automatically checks for ill-

typed variable bindings in atoms within the rules. Going a step further, we can reuse other

features of the host language such as case classes, pattern matching, polymorphism, and

abstract methods when defining our program, as we shall discuss below.

Polymorphism and Typeclasses The program below generalizes the path program

to work on any data-type T as long as a typeclass for Eq is available. Eq signifies that values

of type T should have an equality function enabling comparison with other T values, which

is essential for unification during rule evaluation. For example, PolyReachability[Int]

would give us an instance of reachability that operate on graphs with Int labeled edges.

Another key thing to note below is that the edge relation is left abstract such that users

can provide different facts produced by means other than loading from a file, e.g., result of

a different rule.
trait PolyReachability[T: Eq] extends DatalogModule:
def edge(src: T, dst: T): Atm
def path: R2[T, T] = rel { (src: T, dst: T) =>
edge(src, dst)
exists[T] { node =>
path(src, node) && edge(node, dst)

}
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}

We achieve the benefits of mixing declarative programming with conventional functional

programming as proposed by the Flix language [  125 ] leveraging host language abstractions.

Moreover, by using LMS’s Rep types we achieve ‘abstraction without regret’ [  21 ]: poly-

morphism and typeclasses are compiled away during staging and only code essential to the

computation is generated.

Higher-order Relations Moving forward, it becomes evident that the definition of

path is the transitive closure of edge. Therefore we can go ahead and rewrite our rules

in terms of other higher-order rules, similarly to how it can be done in Datafun [  131 ] and

Scalogno [ 155 ].
def compose[A, B, C](r: R2[A, B], t: R2[B, C]): R2[A, C] =
// Compose Rule: (simple join)
// R(a,c) :- r(a,b), t(b,c)
rel { (a: A, c: C) =>
exists[B] { b => r(a, b) && t(b, c) }

}
def transitive_closure[T](r: R2[T, T]): R2[T, T] =
// defines transitive closure using compose (above)
// tc(x, y) :- r(x, y)
// tc(x, y) :- r(x, b), tc(b, y)
rel { (x, y) =>
r(x, y)

compose(r, transitive_closure(r))(x, y)
}

def edge = ...
// path: transitive closure of edge
def path = transitive_closure(edge)

The compose method becomes a shorthand for joining two relations and transi-

tive_closure enables a more concise definition of path. Higher-order relations like the

ones above enables us to rewrite rule  4.2 from the points-to example as follows.
def pointsTo = rel { (x, y) =>
addressOf(x, y) /* rule ( 4.1 ) from Fig. ( 4.3 ) */
compose(assign, pointsTo)(x, y) /* rule ( 4.2 ) from Fig. ( 4.3 ),

which is a simple join */...
}

User-defined Functions Finally, we show how UDFs are integrated into the DSL. Given

that we reside within Scala, users can create their UDFs using familiar Scala syntax. The

following snippet shows an example where a UDF is used. Specifically, it shows a variant of

the previously discussed ‘path’ program, wherein the edge has an extra attribute - label.
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The UDF serves as a predicate constraint, determining whether a given edge, based on its

label, should be included in the path.
trait PolyReachability[T, L] extends DatalogModule:
def edge: R3[T, L, T]

// abstract declaration of the UDF
def pred: L => Rep[Boolean]

// path(src, dst) :- edge(src, dst, lab), pred(lab) = true
// path(src, dst) :- path(src, node), edge(node, lab, dst),
// pred(lab) = true
def path = rel { (src: T, dst: T) =>
exists[L] { lab => edge(src, lab, dst) where pred(lab)}
exists[T, L] { (node, lab) =>
path(src, node) && edge(node, lab, dst)
where pred(lab) }

}
val reach = new PolyReachability[Int]:
def edge = ...
def pred = (lab: Rep[Float]) => lab > 0.5 // UDF implementation

// query
val reachable: Buffer[Int] = query { (dst: Id) => reach.path(2, dst) }

Since the query performed looks for paths from a specific src (2 in this case), at staging

time, the concrete value of src will be used to generate the specialized code. Additionally the

predicate function is inlined in the fixpoint loop in the generated code, minimizing function

call overhead. As noted before, polymorphism is monomorphized during staging.

4.5.2 User-defined Lattices

With the aforementioned tight integration with the host language, adding extensions such

as user-defined lattices becomes trivial. Essentially, we can use regular Scala classes to define

lattices, regular Scala functions to define operations like least-upper bound for lattices, and

regular Scala functions to define any UDFs operating on lattices. We examine a relatively

simple example of using lattices alongside Datalog in Fig.  4.14 (left), which computes the

shortest path from a given source node to all other nodes in the graph (taken from Flix

documentation).

While it is possible to encode the same problem in regular Datalog (that uses the pow-

erset lattice) followed by an aggregation, this approach would be significantly slower, as it

computes all possible distance values for each pair rather than just the shortest distance.
4

 https://doc.flix.dev/lattice-semantics.html#using-lattice-semantics-to-compute-shortest-paths 
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1 type Node = Rep[Int]
2
3 /* '@udd' indicating a lattice value */
4 @udd
5 case class D(x: Rep[Int])
6
7 /* defines lub - used for updates */
8 val lat = new JoinLattice[D]:
9 def lub = udf { (x: D, y: D) =>

10 val D(n1) = x
11 val D(n2) = y
12 D(n1 min n2)
13 }
14 /* UDF on lattice values */
15 def add = udf { (x: D, y: D) =>
16 val D(n1) = x
17 val D(n2) = y
18 D(n1 + n2)
19 }
20
21 def edge =
22 input[Node, Rep[Int], Node]("Edge.facts")
23
24 def dist(src: Node): R2[Node, D] =
25 rel { (dst, d) =>
26 dist(src, D(0))
27 exists { (d1: D, d2: Rep[Int], x: Node) =>
28 dist(x, d1) && edge(x, d2, dst) where
29 (d `=` add(d1, D(d2)))
30 }
31 }

Figure 4.14. Code on the left demonstrates the implementation of the short-
est path using lattices and UDFs, identical to Flix. 

4
 Unlike Flix, however, we

generate highly specialized code that erases all high-level abstractions such as
case classes, pattern matching, extractors, etc. The generated code is shown
in Fig.  4.15 .

Instead, as demonstrated in Fig.  4.14 (left), we can encode this using a user-defined lattice

(L  4 ) that maintains only the shortest path observed so far (similar to Flix). Note the use of

@udd in L  4 , a macro we employ to track lattice types. Specifically, the value field of dist

will now be a lattice value, and instead of retaining all previously seen values, it will only

store the smallest value (defined using the lub function in L  8 ) observed so far for a given

‘to’ value. Flan backend is modified to handle lattice relations (i.e., ones having a @udd

typed column) separately, and to call the corresponding lub function whenever new tuples
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1 struct edge* edge_store = ...
2 /* index related data structures */
3 struct edge_ind* ind = ...
4 ...
5

6 // fixed point loop
7 bool changed = true;
8 while (changed) {
9 /* outer loops elided */

10 // x, d1, d2, to in context
11 // inlined udf
12 int value = d1 + d2;
13

14 // lattice update logic
15 int oldValue = ...; // retrieve
16

17 // inlined lub
18 // values are unboxed
19 int newValue = min(value, oldValue);
20

21 if (oldValue != newValue) {
22 // update the lattice ...
23 }
24 }

Figure 4.15. An excerpt of the generated code for Fig.  4.14 . Note that
variables have been renamed for improved clarity.

are discovered. Moreover, whenever a new tuple triggers an update, we maintain these in

our delta indices to facilitate semi-naive evaluation.

Fig.  4.14 (right) displays an excerpt from the code generated by Flan for this Datalog

program. A crucial observation is that none of the abstractions used in defining the pro-

gram on the left, such as case classes, object extractors, UDFs, and so on, are present in the

generated code. Instead, it consists solely of operations on low-level primitive data types,

native arrays, etc. ensuring that no runtime costs are incurred for the abstractions employed

when defining the Datalog program. In Section  4.6.5 , we evaluate the performance of pro-
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grams that use these user-defined lattices and observe that the code generated by Flan is

significantly faster compared to other existing systems.

In this example, we saw a scenario in which an unbounded lattice D is employed to

represent the shortest distance, with ⊥ implicitly signified by non-existence. However, there

are situations where bounded lattices with an explicit representation of > are necessary.

For instance, the strong-update program analysis benchmark [  156 ] used in Section  4.6.5 

makes use of the constant propagation lattice, encompassing ⊥, a constant, and >. In such

cases, one option for users is to define a member within the case class (which represents

the lattice) to indicate whether the current value is > or ⊥. This would translate to a C

struct representation in the generated code. Alternatively, users can use special values (e.g.,

INT_MAX for >) to represent these.

4.6 Experiments

In this section, we first evaluate the engineering effort associated with Flan and then

the performance of Flan in comparison to various state-of-the-art systems across a diverse

range of benchmarks. Our primary objective is to demonstrate that the use of staging for

transforming a high-level interpreter into a compiler successfully generates specialized code

that achieves competitive performance with other sophisticated Datalog compilers.

Our evaluation consists of three primary benchmarks. First, we select an existing simple

points-to analysis benchmark from Soufflé and use it to compare Flan against a variety

of other established systems. Next, we delve into a more comprehensive program analysis

benchmarks from the Doop framework [ 115 ]. Lastly, we explore a use case that combines

lattice semantics with Datalog and evaluate Flan’s performance against systems that support

lattices.

4.6.1 Environment

We conduct all our experiments on a NUMA machine featuring 4 sockets, each with

24 Intel(R) Xeon(R) Platinum 8168 cores and 750GB RAM per socket (3 TB in total),

running Ubuntu 18.04.4 LTS. For multi-threaded executions, we employ numactl to ensure
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that processes are allocated within the same NUMA node and utilize the nearest memory

regions. Each experiment is run five times, and we report the average across those five

runs. We did not observe any significant variance among each run for all systems, hence, we

omitted the error bars from the plots. For all experiments we have verified that all systems

produce the same result. We use the most recent releases of all baseline systems, specifically:

Soufflé 2.3, Ascent 0.5.0, Crepe 0.1.8, and Flix 0.35.

4.6.2 Engineering Effort

Since we consistently emphasize Flan’s implementation simplicity throughout this work,

we now try to evaluate this aspect of Flan. While it is very hard to quantify the engineering

effort scientifically, we have chosen lines of code (LOC) as a crude proxy for this evaluation.

The table below illustrates the additional LOC required for each extension. ‘Base’ refers

to the staged version of the interpreter initially introduced in Section  4.3 , plus parsing,

embedding (Section  4.5 ), other utilities like profiling (e.g., measuring per-rule time), logging,

output verification, etc.
Base +Features +Join Strategies +BTree +HashIndex Total

2197 +366 +130 +332 +1063 4088

The ‘+Features’ case encompasses the integration of user-defined aggregates, UDFs, nega-

tions, constraints, etc. The added code pertains to the canonicalization process discussed

in Section  4.4.2 , and the logic highlighted in Fig.  4.12 . This also includes the addition of

support for user-defined aggregates, a feature recently added to Soufflé. Implementing this

in Soufflé required over 1500 LOC modifications, impacting their declarative and imperative

IRs, core engine mechanics, and code synthesizer [ 157 ]. In constrast, we accomplished the

same functionality with fewer than 50 lines of high-level Scala code. It is important to note,

however, that this comparison is not rigorously precise, as LOC do not always accurately

reflect implementation complexities.

The ‘+Join Strategies’ denotes the addition of support for multi-way and binary joins,

achieved by creating two implementations of the trait Strategy with the variableOrder

overridden, as detailed in Section  4.4.3 . ‘+BTree’ and ‘+HashIndex’ refers to the LOC added
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to implement the respective index structures. As outlined in Section  4.4.4 , for BTree, we

simply created a wrapper around Soufflé’s B-trees, whereas for HashIndex, we developed our

own specialized version in Scala.

4.6.3 Simple Points-to Analysis

To evaluate performance relative to several other systems, we chose a relatively sim-

ple, openly available benchmark from Soufflé  

5
 that conducts a call-insensitive, field-sensitive

points-to analysis using Datalog on a provided synthetic dataset. This analysis includes

roughly 7,000 facts each in four EDB relations, two IDB relations, and five rules. We

re-implemented these benchmarks in Ascent and Crepe, whereas for Flan and Soufflé, we

directly input the corresponding Datalog file (Flan supports running Soufflé-style Datalog

files directly). It is worth noting that this benchmark does not incorporate any extensions

such as UDFs, aggregations, constraints, negations, or others.

Fig.  4.16 presents the benchmark results. Flan incorporates both binary and multi-

way joins, while the rest of the baselines employ solely binary joins. Soufflé utilizes tree-

based indices, which, compared to the hash-based indices used by all other systems, has

a higher asymptotic runtime leading to longer execution times. Despite Crepe’s use of

hash-based indices, it lags noticeably behind Soufflé due to its reliance on generic hash table

implementations, in contrast to Soufflé’s data structures tuned for Datalog. Although Ascent

generally uses binary joins, it employs a special optimization for certain rule types. This

optimization transforms the outermost join steps into a form identical to multi-way joins. For

instance, the performance-critical rules in this benchmark, which account for 53% and 44%

of total time, contain only two atoms in the body (each with two variables), and performs

a transitive closure. For these two rules, Ascent’s optimization results in a join strategy

identical to our multi-way joins, demonstrating a speedup of 3.25× over Soufflé.

The different execution strategies deployed in Flan showcase the distinct performance

characteristics of each. For both strategies, our specialized hash-index offers substantial

performance gains over their generic B-tree counterparts, yielding speedups of 17.5× and
5

 ↑  https://github.com/souffle-lang/benchmarks/tree/acd6b9ec5043109fc1e6674e759a86164634e70b/
benchmarks/pointsto 
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H: Hash Index, BT: B-Tree
B: Binary Join, MW: Multi-way Join

Time (s) Soufflé Crepe Ascent Flan
BT+B BT+MW H+B H+MW

PointsTo 527.50 606.64 147.16 401.45 1223.13 241.96 69.97
Speedup 1.00 0.87 3.58 1.31 0.43 2.18 7.54

Figure 4.16. Performance comparison between Flan (our system, with differ-
ent strategies) and various other Datalog compilers for a simple call-insensitive,
field-sensitive points-to analysis, for single-threaded execution.

1.66×. For this benchmark, multi-way joins perform significantly better than binary joins.

Upon closer inspection, we observed that the multi-way join strategy results in 23% fewer

lookups compared to the binary join strategy (3,914,693 vs 5,126,129) for the performance-

critical rules. Interestingly, the multi-way join case using B-trees notably underperforms

compared to its binary join counterpart. This is because, despite a smaller number of

lookups, the total cost of lookups is higher in the multi-way join case.

Although not shown in Fig.  4.16 , we experimented with a variant of our multi-way join

that used C++ standard library’s unordered maps. The result was an execution time of over

30 minutes, an order of magnitude slower than our specialized hash-indexes. This disparity

exemplifies the efficiency of having fully-specialized index implementations.
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B: Binary Join, MW: Multi-way Join
H: Hash Index

Flan (H+MW)
Flan (H+B)

Ascent
Souffle

Time (s) 1 2 4 8 16 32

Flan (H+MW) 69.97 54.27 31.29 19.48 11.67 8.92
Flan (H+B) 241.96 164.68 99.37 58.12 31.49 17.53
Ascent 147.16 95.78 49.93 23.65 12.56 8.88
Soufflé 522.18 356.55 183.87 93.04 46.93 26.51

Figure 4.17. Performance of parallel execution for the same benchmark in
Fig.  4.16 , comparing Soufflé and Flan (for binary and multi-way joins). The
lines represent the scaling of each system relative to its own single-threaded
performance.

Parallel Scaling Fig.  4.17 shows the results for parallel execution performance. For this,

we employed the same benchmark but varied the number of threads. Among prior systems,

only Soufflé, Ascent, and Flan support parallel execution. Flan consistently outperforms

Soufflé across all thread counts, achieving speedups ranging from 3× to 7.5× (compared

to Soufflé with the same number of threads). Moreover, Soufflé requires 8 to 16 threads

to match Flan’s single-threaded performance. In comparison to Ascent, Flan demonstrates

significantly better performance for up to 8 threads, achieving speedups of up to 2.1×, and

remains competitive in 16 and 32 threads cases.
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Souffle (1)
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Souffle (16)

Flan (H+B) (1)
Flan (H+B) (4)

Flan (H+B) (8)
Flan (H+B) (16)

Flan (H+MW) (1)
Flan (H+MW) (4)

Flan (H+MW) (8)
Flan (H+MW) (16)

Time (s) antlr jython bloat luindex chart lusearch eclipse pmd fop xalan hsqldb

Soufflé (1) 27.35 21.77 19.67 19.70 28.93 19.92 19.92 28.90 30.62 27.76 28.99
Flan (H+B) (1) 19.46 15.99 14.21 13.98 20.62 14.10 14.14 20.48 21.57 20.78 20.44
Flan (H+MW) (1) 19.95 16.38 14.59 14.40 21.17 14.51 14.45 20.92 22.06 21.00 21.01
Soufflé (4) 14.78 11.27 9.83 9.86 16.22 9.89 10.01 15.97 16.81 15.27 15.83
Flan (H+B) (4) 12.19 9.98 8.99 8.94 13.04 8.89 8.77 12.80 13.43 12.59 12.72
Flan (H+MW) (4) 12.38 10.16 9.10 9.00 13.25 9.05 8.97 13.34 13.70 12.91 12.98
Soufflé (8) 12.68 9.45 8.18 8.17 13.90 8.12 8.11 13.63 14.52 13.01 13.55
Flan (H+B) (8) 8.27 6.93 6.30 6.23 8.89 6.25 6.09 8.76 9.21 8.59 8.73
Flan (H+MW) (8) 8.45 6.98 6.24 6.17 8.96 6.21 6.20 8.91 9.28 8.72 8.91
Soufflé (16) 11.96 8.78 7.65 7.59 13.15 7.56 7.52 12.97 13.74 12.32 12.85
Flan (H+B) (16) 6.37 5.31 4.81 4.79 6.80 4.77 4.79 6.72 6.98 6.54 6.71
Flan (H+MW) (16) 6.48 5.39 4.88 4.85 6.98 4.87 4.75 6.80 7.24 6.64 6.75

Figure 4.18. Performance comparison of our system (Flan) with Soufflé for
the micro analysis variant of the Doop program analysis toolchain. The value
within parentheses indicates (index structure + join strategy), followed by the
number of threads used. The analysis is conducted on eleven programs from
the DaCapo benchmark suite. The table presents the execution times for each
scenario.

4.6.4 Doop: Points-to Analysis of Java Programs

We also investigated how each system’s performance scales in relation to its single-

threaded execution (depicted by a line graph in Fig.  4.17 ). All systems demonstrate good

scalability as the number of threads increases, with Soufflé scaling to 22.6×, Ascent to 16.5×,

and Flan reaching 13.8× (binary) and 7.8× (multi-way) at 32 threads. It is important to note

that despite Soufflé’s better scalability, it remains slower in absolute terms. Soufflé’s better

scalability can be attributed to their highly efficient concurrent index structures [  122 ] tailored

for Datalog. Moreover, as identified by McSherry et al. [ 158 ], systems with higher overall

overhead tend to scale better due to the parallelization of overheads, which is likely another

reason for Soufflé’s superior scaling. Ascent uses the data parallelism-library Rayon [  159 ] for

parallel execution, which uses a work stealing model. For index structures, Ascent uses the

DashMap library [  160 ], which is a highly-efficient concurrent hash table implementation in

Rust. This allows Ascent to scale well as the number of threads are increased. In contrast,

as discussed in Section  4.4.6 , Flan’s parallel data structures are currently based on relatively

simple lock-based segmented hash tables. We believe the performance scalability can be
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further improved by utilizing more advanced concurrent index structures as we discussed in

Section  4.4.6 .

In the previous section, we evaluated performance for a relatively simple points-to anal-

ysis benchmark. In this section, we examine a more comprehensive benchmark, specifically

choosing the micro analysis from the Doop program analysis benchmark suite. This analysis

consists of 389 relations (including 109 EDB relations) and 300 rules, employing various

Datalog extensions such as aggregation, negation, UDFs, and constraints. As done in prior

similar studies [  161 ,  162 ], we run this analysis on a selected set of programs from the Da-

Capo benchmark suite [ 132 ,  163 ]. Doop extracts the facts for the EDB relations used in the

analysis from these programs, which can then be used to perform the analysis using Datalog.

We evaluate the performance of Flan only against Soufflé, as none of the other systems

directly support the analysis logic emitted by Doop or the various extensions used in the

analysis logic. We evaluate both single-threaded performance and parallel performance,

running on 4, 8, and 16 threads. We observe similar performance traits to those of the

prior experiment. Both join variants of Flan utilizing specialized hash indices consistently

outperform Soufflé. In particular, binary joins demonstrate an average speedup of 1.45×

(across all cases) with a peak speedup of 1.97×. Meanwhile, multi-way joins show an average

speedup of 1.42× and achieve a maximum speedup of 1.91×. It is worth noting that the

binary join strategy in Flan differs slightly from Soufflé’s since we also perform intersections

to short-circuit the loop nest as early as possible (as discussed in Section  4.4.3 ). Although not

included, we also conducted benchmarks on a variant of binary joins that does not perform

these intersections, which resulted in an average speedup of 1.2× and a maximum speedup

of 1.6× compared to Soufflé.

4.6.5 Strong-Update Points-to Analysis using Lattice Semantics

In this section, we evaluate the performance of a program analysis benchmark employing

lattice semantics. More specifically, we selected the strong-update points-to analysis, as

introduced by Lhoták and Chung [  156 ], which combines elements of flow-insensitive and flow-

sensitive analysis. This is achieved by employing a singleton-set lattice to propagate singleton
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Ascent (1) 2.99 52.19 268.15
Flan (B) (1) 0.28 4.17 27.95
Flan (MW) (1) 0.35 6.17 42.36
Ascent (16) 0.85 11.84 59.66
Flan (B) (16) 0.20 1.89 9.14
Flan (MW) (16) 0.22 2.53 12.91

Figure 4.19. Performance evaluation for performing a strong-update analysis
(implemented using user-defined lattices) on three C programs. The left plot
shows the normalized execution time with respect to Ascent single-threaded
time. The table on the right presents the actual execution times for each case.

sets in a flow-sensitive manner. Our evaluation replicates the declarative implementation

outlined in the work by Madsen et al. [ 3 ] (Figure 4 in that paper), which was originally

implemented using Flix. We have re-implemented this analysis both in Flan and Ascent.

We evaluate the performance of this benchmark on three sample C programs each having

5k, 10k, and 15k instructions, from which input relations AddrOf, Copy, etc. are extracted.

Ascent has previously demonstrated speedups of several orders of magnitude compared to

Flix in similar benchmarks [  117 ]. Consequently, we omit the Flix numbers for this experi-

ment.
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Fig.  4.19 illustrates the performance of Flan compared to Ascent for this benchmark.

Specifically, it shows the normalized execution time with respect to Ascent’s single-threaded

execution time for both Flan and Ascent under single-threaded and 16-threaded execution

settings. As in previous experiments, we report Flan’s performance for both the multi-

way and binary join strategies. In single-threaded execution, Flan demonstrates significant

speedups, with the multi-way strategy achieving a maximum speedup of 8.5× and an average

speedup of 7.8×. The binary join strategy in Flan attains a maximum speedup of 12.5×

(average speedup of 11×) compared to the single-threaded performance of Ascent. When

scaling up to 16 threads, Flan maintains its superior performance, with the multi-way join

strategy delivering a maximum speedup of 4.7× (average speedup of 4.4×). Meanwhile, the

binary joins in Flan achieves a maximum speedup of 6.5× (average speedup of 5.7×) when

compared to their 16-threaded Ascent counterparts.

In this particular example, apart from the differences in join strategies as we discussed

in previous subsections, the other main difference between Ascent and Flan is the special-

ization granularity. Ascent enables specialization for compiling the given Datalog rules, but

any abstractions associated with defining lattices, UDFs, etc. will still be present in the gen-

erated code. Conversely, as seen in Fig.  4.14 , Flan fully specializes the program, including

any arbitrary programming logic surrounding the Datalog logic. In this case, this includes

abstractions related to user-defined lattices and the corresponding UDFs. As a result, the

generated code in Flan does not contain any of these abstractions or UDFs (inlined), thereby

eliminating any runtime cost associated with them.

The superior performance of Flan’s binary joins compared to multi-way joins in this

specific benchmark can be attributed to the higher selectivities of variable intersections. In

essence, this translates to a reduced amount of filtering or short-circuiting at each level within

the loop nest in the multi-way case. As a consequence, a higher number of total lookups is

conducted compared to the binary join case. It is important to note that this behavior can

be highly dependent on the specific program and input data.

In summary, in this section, we have observed that Flan achieves competitive perfor-

mance, and in some cases, significantly outperforms existing state-of-the-art systems across

various types of workloads. This validates our claim that staging can be utilized to transform
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a high-level Datalog interpreter into a compiler that generates specialized code that achieves

the same level of performance as other sophisticated Datalog compilers with only a fraction

of the engineering cost.

4.7 Related Work

Datalog for Program Analysis Datalog has been a popular choice for declarative

program analysis for quite some time [  112 – 115 ,  164 – 169 ]. bddbddb employs Binary Decision

Diagrams (BDDs) for evaluating Datalog rules; however, this representation is only effective

for specific problem structures, and its performance is highly dependent on variable ordering.

Soufflé [ 2 ] is a high-performance Datalog engine that synthesizes specialized C++ code for

a given Datalog program. As one of the most mature and widely used Datalog systems,

Soufflé offers a broad range of features, including specialized parallel data structures [  120 –

 122 ], provenance [  161 ], automatic index selection [ 123 ], incremental execution [  170 ], join

order optimization [ 124 ], and more. Owing to its maturity, Soufflé has been used not only in

popular program analysis toolchains like Doop [ 115 ,  144 ] but also in other domains such as

binary disassembly [  111 ] and decompilation of smart contracts [ 171 ]. However, as discussed

in Sections  4.1 and  4.2 , there are several limitations in Soufflé’s code generation approach.

RecStep [  140 ] is a Datalog engine built on top of the relational query engine QuickStep [  172 ]

and achieves competitive performance on diverse workloads including graph analytics and

program analysis. However, similar to Soufflé, it lacks an expressive front end.

Several recent works have followed in Soufflé’s footsteps in developing Datalog compilers.

Crepe [ 118 ] and Ascent [ 117 ] are Datalog compilers embedded in Rust using macros and

employing quasi-quotations for code generation of a given Datalog program. Eclair [  119 ] is

a Datalog compiler that translates Datalog programs into LLVM IR [  30 ]. However, all these

code generation approaches suffer from similar limitations to a certain degree as Soufflé

(e.g., having to manage virtual registers when generating LLVM IR, writing quoted code

fragments, as opposed to writing high-level interpreter-style code). Differential Datalog [  139 ]

(built atop Differential Dataflow [  102 ]) and IncA [  173 ] are Datalog engines that support

incremental execution. Notably, IncA is tailored towards program analysis and has support
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for lattices [ 174 ,  175 ]. Morever, IncA DSL has some superficial similarities to our Scala

embedded DSL. Flan currently lacks support for incremental execution, an avenue we plan

to explore in future work. Drawing upon previous work that maps e-matching [  176 ,  177 ]

into conjunctive queries [ 178 ], EggLog [  179 ,  180 ] unifies equality saturation with Datalog-

style fixed point computations by baking in the notion of equivalence into Datalog relations.

Exploring how to expand Flan to support equality saturation in a similar manner is an

interesting future research direction. Both Zhang et al. [ 178 ] and EggLog employ Generic

Joins [  146 ,  150 ], a type of multi-way join algorithm that dynamically picks the atom with

lowest cardinality for variable iteration which leads to worst-case optimal joins.

BYODS [  181 ], an extension to Ascent, offers a means to create user-defined data struc-

tures for storing relations which also capture properties (e.g., transitivity) of the relations.

They have demonstrated significant performance improvements for certain types of program

analyses using this approach. We believe that a similar notion can be realized in Flan in a

similar way since Flan programs are fully interoperable with Scala, enabling users to employ

Scala to define and integrate such custom data structures. However, it is important to note

that, we have not evaluated the plausibility or effectiveness of this approach in our current

work.

Datalog Extensions Pure Datalog is not sufficiently expressive to cover a wide variety

of declarative program analysis tasks, and many existing systems propose various extensions.

Flix [  3 ,  125 ] supports Datalog as first-class values in a relatively comprehensive program-

ming language and supports lattices beyond the powerset lattice, allowing more expressive

analysis like StrongUpdate [ 156 ] analysis and, IFDS and IDE algorithms [  182 ,  183 ]. Data-

fun [ 131 ,  184 ], another language that provides support for lattices also has the ability to

track monotonicity via types. Formulog [  4 ] extends Datalog with the ability to interact with

a functional programming language and the capability to use SMT constraints in rules, of-

floading them to a solver as necessary. These approaches greatly enhance Datalog’s power

and applicability across various domains. However, most of these systems do not leverage

techniques like specialized code generation, potentially sacrificing performance. We believe

that Flan-style compiler construction, closely resembling interpreters, would make it easier

for such extensions to achieve their optimal performance. Functional IncA [ 185 ] proposes the
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use of a functional programming with set-based fixpoint-semantics as a frontend for Datalog.

In this model, Datalog serves as an IR, with programs written in the functional language

translated into Datalog and resolved through pre-existing solvers. This approach contrasts

with Flan’s approach, where the ‘general-purpose’ aspect of the computation is processed us-

ing the (general-purpose) host language, with the Datalog solver being specifically employed

for fixed point computations.

Query Compilation Our work is primarily inspired by prior research in relational

query compilation. Earlier such approaches [ 186 ,  187 ] relied on operator templates (similar

to Soufflé) and generated code by concatenating these templates based on the query plan.

Hyper [  24 ], on the other hand, utilized the programmatic LLVM API [ 30 ], achieving signif-

icant performance gains but at the expense of a more low-level implementation. LB2 [ 19 ,

 20 ] (an extension of [  81 ,  141 ]) was based on generative programming [  21 ] and achieved the

same level of performance while keeping the operator interface simple. We draw inspiration

from these works and adapt the same ideas to Datalog-based program analysis.

4.8 Conclusion

We introduced Flan, a Datalog compiler constructed by partially evaluating a high-level

Datalog interpreter implemented in Scala. Utilizing the existing generative programming

framework, LMS, we generate fully specialized code, a feature that existing compilers lack,

but paramount to performance. Capitalizing on its seamless interoperability with Scala, we

constructed a flexible frontend that leverages Scala’s capabilities to add extensions. More-

over, we devised a streamlined operator interface that effortlessly facilitates a variety of

evaluation strategies and index structures.

One of the main limitations of Flan currently is we perform only very limited plan-level

optimizations based on very simple heuristics. For instance, variable ordering of multi-

way joins are currently derived from a left associative binary join plan based on the rule

specification and by default uses hash indices. Users do have the option to specify their

preferred join types and index types using global flags that applies these changes to all rule

evaluations. However, much more sophisticated analysis and query planning could be done,
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for example, to choose between multi-way and binary joins, and for picking good variable

orderings, or for picking tree-based or hash-based indices and so on at the granularity of

each rule. For instance, as demonstrated in our evaluation in Section  4.6 , the most effective

evaluation strategy (e.g., multi-way or binary joins), often varies from one benchmark to

another.

Flan achieves a commendable level of performance even in the absence of such clever query

planning. We believe that Flan could be coupled with any existing well-studied query plan-

ning approach (e.g., using cardinality estimates to pick the index and join types, etc.) [ 123 ,

 124 ] to improve performance further. Moreover, it is possible to add support for dynamic

optimizations (e.g., adaptive join order optimization) using techniques such as on-stack re-

placement as demonstrated in prior work [  188 ].

Another promising line of future work is on integrating SMT constraints into Flan in the

style of Formulog [  4 ] that would unlock a wider range of static analysis including symbolic

execution. Moreover, GenSym [  128 ,  189 ], a state-of-the-art symbolic execution engine built

using LMS, already equips LMS with functionalities to interface with SMT solvers. Con-

sequently, much of the essential infrastructure is already in place. This integration would

enable Flan to effectively function as a ‘compiled Formulog’ with minimal additional engi-

neering effort. We plan to explore the feasibility and the effectiveness of this approach in

our future work.
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5. RHYME: A DATA-CENTRIC EXPRESSIVE QUERY

LANGUAGE FOR NESTED DATA STRUCTURES

Portions of this chapter will appear in Rhyme: A Data-Centric Expressive Query Language

for Nested Data Structures in Proceedings of Practical Aspects of Declarative Languages 26th

International Symposium, PADL 2024, London, UK, January 15-16, 2024 [ 190 ].

5.1 Introduction

Declarative programming represents a paradigm in which users articulate what com-

putation needs to be performed, without the explicit specification of the procedural steps

required for its execution. Declarative programming languages find application across a di-

verse array of domains. Notable examples include SQL, employed for data querying and

manipulation, Datalog [  191 ], used for data querying as well as in domains like declarative

program analysis [  112 ,  113 ,  192 ] and binary decompilation [ddissam], Einstein notation (or

similar domain specific languages [ 193 ]) for expressing tensor computations mathematically,

and GraphQL [  194 ] for data querying within the context of web application front-ends, and

so on.

In practical scenarios where diverse paradigms of workloads are combined (e.g., data

frames + tensors), the necessity arises to employ multiple query languages in tandem. Each

of these languages interfaces with the respective engines tasked with handling individual

workloads. However, this approach is inherently inefficient, both from a performance per-

spective, due to the reliance on multiple isolated backends, and from a programmer produc-

tivity standpoint, as it necessitates learning and maintaining code written in multiple query

languages. In this work, we address this challenge by introducing a unified query language,

named Rhyme, that comprises a general substrate capable of accommodating a wide array

of different use cases.

Rhyme takes inspiration from many existing declarative languages including GraphQL,

JQ [  195 ], XQuery [  196 ], JSONPath [  197 ], Einstein notation, Datalog, recent functional logic

programming languages like Verse [  198 ], etc. Rhyme is designed to serve as an expressive lan-
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Meta
Programming

Rhyme
AST Rhyme IR Code

(JavaScript)
(JSON)

External toolsPipe API

Textual
API

JavaScript
(embedded DSL)

Extract dependencies Resolve looping structure

Create IR instructions

Figure 5.1. End-to-end workflow of Rhyme, with green markers indicating
various entry points leading to the common entry point, Rhyme AST. The
Rhyme AST can be constructed directly from external tools or via metapro-
gramming using different APIs. This AST serves as the basis for generating
an IR (with dependencies), driving subsequent code generation.

guage for high-level data manipulation, enabling the querying and transformation of nested

data structures (e.g., JSON, tensors) and producing nested structures as output. There are

several key defining characteristics of Rhyme. First, Rhyme adopts a query syntax that

closely mirrors existing object notation, meaning that queries are essentially expressed as

JSON objects. Second, Rhyme is designed in a way that permits query optimization and

code generation via the construction of an intermediate representation (IR). This IR con-

tains loop-free and branch-free code with dependencies that implicitly capture the program

structure. Third, Rhyme is compositional and easy to meta-program, recognizing that data

transformation queries are typically used as part of larger programs and are often generated

programmatically.

Fig.  5.1 provides an overview of the end-to-end workflow of Rhyme. The central point of

entry into this workflow is the Rhyme AST (Section  5.2.5 ). Notably, this AST is represented

in JSON format, hence serializable, enabling the ability to be exported/imported from var-

ious other environments. We implement Rhyme as an embedded DSL in JavaScript (JS),

which constructs the Rhyme AST from Rhyme queries. Additionally, alternative interfaces

can be used, such as pipes (Section  5.3.1 ), or entirely textual inputs that can be processed

by a parser to construct the same AST. Once the AST is constructed, it gets transformed

into Rhyme IR. During this transformation, declarative query operators are mapped to IR

instructions along with their dependencies. Subsequently, this IR is used to analyze the

looping structure and generate the final code.
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// input dataset
let data = [

{key: "A", val: 10},
{key: "B", val: 15},
{key: "A", val: 25}

]
// query
sum('data.*.val')
// AST constructed from the query:
{agg: 'sum', param: 'data.*.val'}
// result: 50

1 let tmp = {}
2 // ??= is assign if null operator
3 tmp[0] ??= 0
4 for (let star in data) {
5 tmp[0] += data[star]['val']
6 }
7 return tmp[0]

tmp[0] ??= 0

tmp[0] += inp['data'][*]['value']

data.*

generators Assignments

Figure 5.2. A query computing the sum of all values. Query expression
is shown in top left, the constructed IR is shown in bottom, and the final
generated code is shown in top right.

Figs.  5.2 to  5.4 shows this end-to-end workflow using several example queries. Specifically,

the query is shown on the left, alongside its AST representation, the IR in the center, and

the generated code on the right. While the comprehensive exploration of these components

will be the focus of subsequent sections in this chapter, we offer an introductory overview of

each element here.

Consider the query in Fig.  5.2 . In Rhyme, data.*.val is called a path expression, a no-

tation inspired by JSONPath [  197 ]. The * symbol serves as an iterator, facilitating iteration

through the val values, while the aggregator sum calculates the sum of these iterated values.

Rhyme’s IR (shown in the center) consists of two main types of operators. First, it has

generators (represented as rounded rectangles), which represents iterators that enumerate

a list of items (ultimately translated into loops in the generated code). In our example,
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// query
{

total: sum('data.*.val'),
'data.*.key': sum('data.*.val')

}
// AST constructed from the query:
{

total:
{agg: 'sum',
param: 'data.*.val'},

'data.*.key':
{agg: 'sum',
param: 'data.*.val'}

}
// result:
// { total: 50,
// 'A': 35,
// 'B': 15 }

1 let tmp = {}
2 tmp[0] ??= {}
3 tmp[0]['total'] ??= 0
4

5 for (let star in data) {
6 tmp[0]['total'] +=

data[star]['val']
7 tmp[0][data[star]['key']] ??= 0
8 tmp[0][data[star]['key']] +=

data[star]['val']
9 }

10 return tmp[0]

tmp[0] ??= 0

tmp[0]['total'] += data[*]['val']

data.*

tmp[0][data[*]['key'] ??= 0

tmp[0]['total'] ??= 0

tmp[0][data[*]['key'] +=
inp['data'][*]['value']

Figure 5.3. A query computing sum of all values (total) and sum per each
key. Query expression is shown in top left, the constructed IR is shown in
bottom, and the final generated code is shown in top right.

data.* is a generator, iterating values from the data object. Second, the IR has assignments

(represented as rectangles), comprising the computations required for executing the query.
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// query
{

'data.*A.key':
div(sum('data.*A.val'),

sum('data.*B.val'))
}
// AST constructed from the query:
{

'data.*.key': {
path: 'div',
param: [

{agg: 'sum',
param: 'data.*A.val'},
{agg: 'sum',
param: 'data.*B.val'}

]
}

}

// result:
// {'A': 0.7, 'B': 0.3}

1 let tmp = {}
2 tmp[1] ??= {}
3 tmp[2] ??= 0
4

5 // loop hoisted!
6 for (let starB in data) {
7 tmp[2] += data[starB]['val']
8 }
9

10 tmp[0] ??= {}
11 for (let starA in data) {
12 tmp[1][data[starA]['key']] ??= 0;
13 tmp[1][data[starA]['key']] +=

data[starA]['val']
14 tmp[0][data[starA]['key']] =

tmp[1][data[starA]['key']] /
tmp[2]

15 }
16 return tmp[0]

tmp[0] ??= {}

data.*A

data.*B

tmp[1] ??= {}

tmp[2] ??= {}

tmp[2] += data[*B]['val']

tmp[1][data[*A]['key']] ??= 0

tmp[1][data[*A]['key']] +=
data[*A]['value']

tmp[0][data[*A]['key']] =
tmp[1][data[*A]['key']] / tmp[2]

Figure 5.4. A query computing key-specific relative aggregate proportions.
Query expression is shown in top left, the constructed IR is shown in bottom,
and the final generated code is shown in top right.
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In the case of our first query, the initialization logic tmp[0] ??= 0 and the subsequent sum

computation tmp[0] += ... are assignments.

Notably, the IR operates without the need for explicit control flow constructs. Instead,

the program’s structure is implicitly inferred through dependencies. For our example query,

the assignment tmp[0] += ... has dependencies to both the initializer (because initialization

must come first) and the generator (because its operand is the iterated value). Additionally,

it is worth noting that computations are performed on temporary state variables (tmp[0]

in the first example). This approach, utilizing intermediate temporaries, draws inspiration

from works such as RPAI [  63 ] and DBToaster [  1 ]. These systems utilize such state variables

to maintain values for various sub-queries of the main query, which are then used to compute

the final result. Finally, the IR is translated into JS code (and compiled using eval()), taking

dependencies into account to extract the program structure and performing optimizations

as part of this transformation process.

Fig.  5.3 and Fig.  5.4 illustrate two additional queries executed on the same dataset.

Specifically, in Fig.  5.3 , we compute both the total sum of all values (similar to the query in

Fig.  5.2 ) and the sum of values per key, effectively a group-by sum operation. A key character-

istic of Rhyme lies in the contextual interpretation of expressions such as sum(data.*.val).

That is, the semantics of this expression differs depending on its context. This is simi-

lar to local unification semantics in Verse [  198 ]. For instance, when it is nested within

{data.*.key: ...}, the expression signifies a group-by sum operation. Conversely, if it is

not nested within an iterator (i.e., *), it calculates the aggregate over the entire set of values.

This distinction is exemplified in the query presented in Fig.  5.4 . Here, sum(data.*A.val) is

nested within {data.*A.key: ...}, signifying a group-by aggregate operation. Conversely,

sum(data.*B.val) computes a total aggregate, as it is not nested within a *B iterator.

Additionally, Fig.  5.4 also demonstrates an optimization that occurs at the IR level.

Specifically, even though the sum(data.*B.val) appears as a nested sub-query in the original

query, the Rhyme backend can determine that the generated *B can be hoisted out as a

separate loop by analyzing the IR dependencies. This is essentially similar to sub-query

hoisting that happens at the logical plan level in other traditional query optimizers.

172



These examples provide a broad overview of Rhyme’s functionalities and its syntactic

structure. In the subsequent sections of this chapter, we will delve deeper into the syntax

and capabilities of Rhyme and discuss the process of IR construction and code generation.

Moreover, the previous example queries focused on Rhyme’s capability to express analyt-

ical queries on JSON objects. However, Rhyme covers an even broader spectrum of use

cases, including the ability to express tensor computations and declaratively specify visual

components (e.g., tables, charts) of web applications.

Our specific contributions are as follows.

• We introduce the syntax of Rhyme, showcasing the ability to express common data

manipulation operators such as selections, group-bys, joins, user-defined functions

(UDFs), and others (Section  5.2 ).

• We highlight the versatility of Rhyme across various use cases, including the expression

of visual elements in web applications (e.g., tables, charts using SVG), declarative ten-

sor computations (akin to Einsum), and alternative ‘pipe’ APIs via metaprogramming

(Section  5.3 ).

• We elucidate the process of lowering queries into an IR that features loop-free and

branch-free code, with dependencies implicitly representing the program structure.

Then, we illustrate how this IR facilitates code generation by constructing the optimal

program structure from dependencies (Section  5.4 ).

• We evaluate the performance of Rhyme on several JSON analytics workloads to demon-

strate the effectiveness of our code generation approach (Section  5.5 ).

We discuss related work in Section  5.6 , followed by conclusions and potential future

research directions in Section  5.7 .

5.2 The Rhyme Query Language

In the previous section, we saw Rhyme in action for a set of relatively simple queries.

In this section, we will introduce the syntax of Rhyme, illustrating how it facilitates the
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Ident ::= [a-zA-Z_][a-zA-Z0-9_]*
Num ::= [0-9]+

Var ::= * Ident
ScalarOp ::= get | apply | plus | minus

| div | fdiv | times | mod
ReductionOp ::= sum | count | max | min

| first | last | array

Atom ::= Ident | Num | Var
Path ::= Atom ( . Atom )*
Expr ::= Path

| Expr ScalarOp Expr
| ReductionOp ( Expr )
| [ Expr ]
| { ( Path : Expr )* }

Query ::= Expr

Figure 5.5. Syntax for expressing Rhyme queries.

expression of common data manipulation operations like selections, aggregates, group-bys,

and so on. The formal grammar is shown in Fig.  5.5 . The rest of this section illustrates

how each of these components are used to express different kinds of queries. To improve

understanding, we will employ a running illustrative example dataset, as depicted below. The

dataset contains populations of several major cities, along with the respective country. Our

chosen dataset is deliberately kept simple, devoid of intricate nested structures. However,

Rhyme has the capacity to seamlessly query nested JSON data in the same way. We will

see such examples later in Section  5.3 .
let data = [
{country: "Japan", city: "Tokyo", population: 14},
{country: "China", city: "Beijing", population: 22},
{country: "France", city: "Paris", population: 3},
{country: "UK", city: "London", population: 9},
{country: "Japan", city: "Osaka", population: 3},
{country: "UK", city: "Birmingham", population: 2}

]

5.2.1 Basics

First we will look at how to perform several basic query operations on the aforementioned

dataset. For instance, if we want to select a particular key of the dataset at a given index,

we can use the following syntax.
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'data.2.country' // result: France
{first : 'data.0.country'} // result: {first: Japan}

Several key attributes of Rhyme can be observed from the aforementioned examples.

Here, the reference data refers to the dataset object, and can be simply indexed through in-

teger indices. Furthermore, specific keys can be selected by specifying the desired key names

(e.g., .country). Notably, Rhyme offers the convenience of the familiar JS-like syntax for

constructing structured output from extracted values, as exemplified in the second instance.

While this form of explicit indexing into the array can be useful for several use cases,

generally, queries involve some form of iterating over the dataset. Rhyme offers this capability

through the * operator, serving as an implicit iteration operator. Moreover, as we saw in

Fig.  5.4 , we can perform controlled iteration with multiple generator symbols (e.g., *A, *B,

etc.). In fact, these generator symbols behave like logic variables in Datalog, Prolog, and

other logic programming languages as we see in Section  5.3.2 . Below, we present three

example queries that leverage iterators and compute aggregates over the iterated values.
['data.*.city'] // result: [Tokyo, Beijing, ..., Birmingham]
sum('data.*.population') // result: 53
max('data.*.population') // result: 22

These queries are self-explanatory in nature. In the first example, we illustrate a scenario

where an array can be constructed from the values obtained through iteration, employing

the [...] syntax. Moreover, users can compute aggregates over the iterated values using the

relevant aggregate functions, such as sum, max, and so forth. As discussed previously, these

queries can be used as parts of object construction logic and combined flexibly, as shown

below.
{ total: sum('data.*.population'),

highest: max('data.*.population') }

// result:
// {total: 53, highest: 22}
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5.2.2 Group By

Another vital query operator, especially relevant to JSON-style objects, is the group-by

query. Rhyme offers an intuitive means of implicitly expressing group-bys. The following

query exemplifies this, grouping records based on the country attribute and subsequently

calculating the total population for each group:
{ 'data.*.country': sum('data.*.population') }
// result: {Japan: 17, China: 22, France: 3, UK: 11}

Here, specifying {data.*.country: ...} as the key implies that any iteration carried

out within this key utilizing the same iterator (*) is performed for records with each unique

value of country separately. The next example shows how to use this form of grouping to

compute aggregates at different levels. It computes the total population of all records, breaks

it down by country, and subsequently computes the population proportion of each city with

respect to total population:
let query = {

// total population
total: sum('data.*.population'),
'data.*.country': {
// population per country
total: sum('data.*.population'),
// population proportion (per each city)
'data.*.city': div(sum('data.*.population'),

sum('data.*A.population'))}
}
// result: {total: 53.
// Japan: {total: 17, Tokyo: 0.26, Osaka: 0.06},
// ...}

In the given query, the sum('data.*.population') at each query level computes distinct

results: total population, total population per country, and population per city, respectively.

If we had multiple population values for a given city (e.g., county data), then the last

aggregation would compute the per city sum. Since the sum('data.*A.population') is not

nested within a *A key, it performs a total aggregation, which sums all the population values.

It is worth noting that our implementation employs calls like div for some operators since
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it functions as an embedded DSL in JS. In a textual frontend, the query could appear even

more concise, using standard operators like / for division.

5.2.3 Join

Joins are another fundamental operator in data querying. To illustrate how joins work in

Rhyme, consider the following new dataset named other, which includes information about

the region to which each country belongs:
let other = [

{country: "Japan", region: "Asia"},
{country: "China", region: "Asia"},
{country: "France", region: "Europe"},
{country: "UK", region: "Europe"},

]

Now, consider a scenario where we aim to compute aggregate population values based

on regions. For this, we must perform a join between our original data and this new other

object to acquire the corresponding region for each country. The following Rhyme query

illustrates how this is expressed.
// create a mapping of country -> region
let countryToRegion = {

'other.*O.country': 'other.*O.region'
}
// Note - Use of "-" and keyval is because JS enforces
// JSON keys to be strings and our key is a var
let query = {

'-': keyval(get(countryToRegion, 'data.*.country'), {
total: sum('data.*.population')

'data.*.country' : sum('data.*.population')
})

}
// result: {Asia: {total:39, Japan:17, China:22},
// Europe: {total:14, France:3, UK:11}}

Here, we use a distinct query (countryToRegion) to retrieve the corresponding region for

a given country. The main query conducts a group-by based on the region (retrieved using

get) first, followed by another group-by based on country, ultimately computing the desired

aggregates. We use '-' in our implementation due to JS’s requirement that JSON keys be
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represented as strings. Consequently, specifying get(countryToRegion, 'data.*.country')

as the key directly is not possible. Hence, we introduce keyval(<key>, <value>) as a

workaround that allows arbitrary arguments to be used as a key. It is worth noting that in

a textual frontend, such workarounds would not be necessary.

5.2.4 User-defined Functions

Rhyme allows using user-defined functions (UDFs) written in JS seamlessly with the

queries. Consider a simple query where we want to obtain the percentage population per

each country from our dataset.
let udf = {

// computes the percentage (and format)
formatPercent: v => (v*100).toFixed(2) + "%"

}
let query = {

'data.*.country':
apply(udf.formatPercent, div(sum('data.*.population'),

sum('data.*A.population')))
}
// result: {Japan: 32.05%, China: 41.50%, France: 5.66%, UK: 20.75%}

We have defined the UDF formatPercent that, given a proportion value, computes the

percentage and adds a % sign at the end. We can then use apply in the query to call this

UDF to convert the proportions to percentages.

5.2.5 Rhyme AST

As we saw in Fig.  5.1 , all the queries above construct a Rhyme AST representation which

serves as the basis for the dependency analysis and IR construction. This AST representa-

tion is in JSON format, and closely mirrors the query JSON structure. The difference is, all

the calls to reducers like sum, count, etc. and other operations like plus, minus, etc. will be

translated to explicit objects components with agg (or path) and the corresponding argu-

ments. agg is for reducers (which are stateful), and path is for operations simply performs

a lookup and some computation. For instance, Fig.  5.4 (left) shows how sum is translated to

agg and param, and div is translated to path and param.
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This AST representation serves as the entry point for our compiler backend, and gets

translated into an IR, as elucidated in Section  5.4 . Moreover, as depicted in Fig.  5.1 , the

creation of this AST is not limited to the aforementioned JS embedding. Instead, it can be

constructed using different APIs, (e.g., Fluent API introduced in Section  5.3.1 ), or a textual

frontend with a parser, and so on.

5.3 Case Studies

5.3.1 Fluent API

Rhyme’s query frontend (JSON) we saw in Section  5.2 describes the query using the

structure of the computed result. However, sometimes, it is more natural to start from

the structure of the input, and specify a sequence of transformation steps. Given that our

frontend is embedded in JS, we can use metaprogramming to layer a LINQ-style [ 199 ] pipeline

API on top.

To illustrate the advantages of such an interface, consider a simple task borrowed from

Advent of Code 2022 [  200 ]. The task involves processing a sequence of values partitioned into

chunks, each containing multiple values. The objective is to calculate the sum of values for

each chunk and subsequently identify the maximum sum among those computed. To begin,

let us examine how the Rhyme query appears when utilizing the familiar JSON-style API

for data parsing and computation. First, we define several user-defined functions (UDFs) to

assist with data parsing. The role of each UDF is simple and self-explanatory.
let input = '100,200,300400500,600700,800,9001000' // sample input
// some UDFs for parsing the data
let udf = {

'splitPipe' : x => x.split(''),
'splitComma': x => x.split(','),
'toNum' : x => Number(x)

}

Shown below is the Rhyme query responsible for executing the required computation,

with comments provided alongside to elucidate each section of the query (numbered for

clarity):
let query = max(get({
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// 5. find maximum among group sums
'*chunk': sum(
// 4. group-by chunk and compute sum
apply('udf.toNum',

// 3. convert each string number to a number object
get(apply('udf.splitComma',
// 2. split by comma to get numbers of each chunk
// 1. split into chunks
get(apply('udf.splitPipe', '.input'), '*chunk')),
'*line')))

},'*'))

Function apply() is used to apply UDFs to arguments; get(), when used with an un-

bounded generator symbol (e.g., *chunk), binds the iterator to the object in the first argu-

ment. For example, in Line 5, get(..., '*chunk') binds the iterator *chunk to the result of

splitting the output by the pipe symbol. While this approach works as intended and yields

the correct results, for these kinds of workloads, it is more natural to think starting from

the input instead of the output structure. In such cases, Rhyme’s ‘fluent’ interface offers an

alternative way to express this query concisely as shown below.
let query =

pipe('.input')
// 1. split into chunks (and bind to *chunk)
.map('udf.splitPipe').get('*chunk')
// 2. split by comma to get numbers of each chunk
.map('udf.splitComma').get('*line')
// 3. convert each string number to a number object
.map('udf.toNum')
// 4. group-by chunk and compute sum
.sum().group('*chunk').get('*')
// 5. find maximum among group sums
.max()

Here, we specify the query as a sequence of transformation steps on the input. This

high-level fluent API essentially functions as a metaprogramming layer that generates an

equivalent Rhyme AST as before. The pipe() function creates a Pipe object equipped with

methods sum, max, and so on, all of which return a Pipe. The map() function, similar to

apply() mentioned earlier, is employed to apply a UDF, and group() is used to perform a

group-by (i.e., e.group(x) is {x : e}).
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5.3.2 Tensor Expressions

Rhyme provides an elegant framework for expressing tensor computations, drawing in-

spiration from the Einstein summation (Einsum) notation frequently employed in tensor

frameworks and Einops [ 201 ]. The Einsum notation offers a concise means of articulating

tensor computations. For instance, ik, kj → ij specifies a standard matrix product that takes

two two-dimensional tensors (i.e., matrices A and B), and yields a third tensor (say C), as

the result, computed as Cij = ∑
k Aik ×Bkj. Likewise, complex tensor computations involving

multiple n-dimensional tensors can be specified using such declarative expressions.

Rhyme provides a similar way to express tensor computations in a declarative fashion. To

perform tensor computations, we rely on using the notion of unbounded iterators in Rhyme.

Specifically, in prior cases, we explicitly specified the data source from which we iterate, as

seen in constructs like data.*A. However, if instead we only specify the iterator as the key,

Rhyme’s backend automatically determines the appropriate data source by examining the

query body. For instance, when we have a query like {*i: sum(times(A.*i, B.*i))}, the

backend selects either A or B as the data source for iteration. Subsequently, the generated

code ensures that the iterated values exist in both A and B. This concept essentially parallels

the notion of unification in logic programming, and more specifically narrowing in functional

logic programming[ 198 ,  202 ].

To demonstrate how tensor computations are expressed in Rhyme, let’s consider some

examples. While Rhyme accommodates tensors in various nested formats, for the sake

of simplicity, we will consider a scenario where we represent tensors using JS Arrays, as

illustrated below:
let A = [[1, 2], [3, 4]]; let B = [[1, 2, 3], [4, 5, 6]]

Shown below are a set of example tensor computations expressed in Rhyme. Einsum no-

tation counterparts (which closely mirrors Rhyme query structure) are shown in parentheses

for each example.

One benefit of having a unified query language for both data manipulation and tensor

computations is the ability to handle combined workloads efficiently. To illustrate this,

consider a simplified version of computing a city’s ‘crime index’ (taken from [ 16 ]). We first

181



// tensor transpose (ij->ji)
{'*j': {'*i': 'B.*i.*j'}}
// sum of all elements (ij->)
sum('B.*i.*j')
// column sum (ij->j)
{'*j': sum('B.*i.*j')}
// row sum (ij->i)
{'*i': sum('B.*i.*j')}
// dot product (vector-vector)

(i,i->)
sum(times('vecA.*i', 'vecB.*i'))

// matrix multiplication (ik,kj->ij)
{'*i': {'*j': sum(
times('A.*i.*k', 'B.*k.*j')) }}

// Hadamard product (ij,ij->ij)
{'*i': {'*j': times('A.*i.*j',

'B.*i.*j') }}
// general tensor contraction (n-d

Tensors)
// e.g., pqrs,tuqvr->pstuv
{'*p':{'*s':{'*t':{'*u':{'*v':sum(
times('T1.*p.*q.*r.*s',
'T2.*t.*u.*q.*v.*r')) }}}}}

select a set of features of cities (e.g., population, adult population and number of robberies),

followed by a dot product with a predefined weight vector.
let cityVec = { 'data.*.city':

['data.*.pop', 'data.*.adultPop', 'data.*.numRobs'] }
let weightVec = [1.0, 1.0, -2000.0] // weight of each feature
let crimeIndex = { // dot product

'data.*.city': sum(times(
'weightVec.*i',
get(get(cityVec, 'data.*.city'), '*i')))

} // computes the crime index for each city

We can specify both the data manipulation component (i.e., the projection) and the

tensor computation (i.e., dot product) within the same query language, and we generate a

unified code for the combined task. While we kept the example simple for brevity, this has

the potential to optimize practical intricate workloads that combine data processing with

tensor computations.

5.3.3 Declarative Visualizations

Since Rhyme is embedded within JS, we can extend its capabilities by introducing a means

to declaratively specify the visual components of websites using a similar structural approach.

This allows the seamless integration of data querying logic with the corresponding data
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visualization logic, such as creating tables. This is enabled by a special key called '$display'.

To illustrate this, consider the following example query, alongside its corresponding output:

{
'$display': 'table' // display data in a table
rows: [0], cols: [1], // row:data index, col:keys
data: [
{region:"Asia",city:"Beijing",

"population":{'$display':"bar",value:40}},
{region:"Asia",city:"Tokyo",

"population":{'$display':"bar",value:70}}
]

}

The query above produces the visualization shown on the right. Specifically, it declar-

atively specifies to display a table that has data as the underlying data. This data can be

some raw JSON or another Rhyme query. Notice that we can mix, and manipulate these

components as valid values inside Rhyme queries, and compose them as necessary. For in-

stance, the progress bars are manipulated as values in the query. These visualizations can

take various forms, including standard DOM elements like h1, p, or high-level components

like table, bar, select, and more, as well as SVG objects.

To exemplify the practical utility of this approach, consider a scenario involving the vi-

sualization of data related to mobile phone supplier warehouses. Imagine the raw data is

represented as an array of JSON objects, each featuring attributes such as warehouse, prod-

uct, model, and quantity. Before delving into the main query, shown below is a helper query.

This auxiliary query calculates the sum of quantities, generates a formatted percentage total,

and presents this information as a progress bar displaying the corresponding percentage.
let computeEntry = {

'Quantity': sum('data.*.quantity'),
'Percent': apply('udf.formatPercent',
div(sum('data.*.quantity'),sum('data.*B.quantity'))),

'Bar Chart': {
'$display': 'bar',
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value: apply('udf.percent', div(sum('data.*.quantity'),
sum('data.*B.quantity')))

}
}

As previously discussed, the semantics of these aggregations varies depending on the

calling context. For instance, when invoked within the context of {'data.*.warehouse':

...}, the aggregates computed on * iterators are grouped based on the warehouse attribute.

Below, we present a query that leverages the above sub query and visualizes our data in a

pivot table. This query performs aggregations at multiple levels and displays each level of

aggregate in a single table as shown on the right. Naturally, this repeated structure could

be abstracted further into a single operation such as rollup('data.*', [model, product,

warehouse], computeEntry).

We can similarly use Rhyme to visualize data in different types of charts using SVG

graphics. Regarding how this visualizations are handled in the backend, we start by building

the necessary helper functions to create these components (tables, bars, etc.) program-

matically. Then, the backend is augmented to use these functions whenever a '$display'

is encountered. Our ultimate goal of these kinds of integrations is to enable users to use

Rhyme to build interactive dashboards and CRUD applications directly from a single query.

5.4 IR and Code Generation

Up to this point, we have provided an introduction to the syntax of Rhyme and explored

its versatility across various domains. In Fig.  5.1 and Figs.  5.2 to  5.4 , we gained a preliminary

understanding of how Rhyme queries are transformed into an IR, which subsequently serves

as the basis for generating optimized code. In this section, we will delve into a detailed

discussion of the IR structure and the code generation process.

5.4.1 IR Structure

As discussed in Section  5.1 (Figs.  5.2 to  5.4 ), the IR structure of Rhyme consists of

two primary types of instructions: generators and assignments. Generators correspond to

iterators responsible for enumerating input or intermediate nested objects, and these gen-
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let query = {
'$display': 'table',
...
data: { Total: {
props: computeEntry, // total aggregate
children: {'data.*.warehouse': {

props: computeEntry, // warehouse-level aggr
children: 'data.*.product': {
props: computeEntry, // product-level aggr
children: {

'data.*.model': // model-level aggr
computeEntry

}
...

}

erators are transformed into loops in the generated code. Assignments, on the other hand,

encompass any form of computation that updates or initializes an intermediate or output

state.

Rhyme queries inherently exhibit nested iterating structures that could be simply trans-

lated into a series of nested loop structures in the generated code. However, performing this

transformation naively and enforcing the ‘program structure’ implied by the user query would

lead to missed optimization opportunities like hoisting computations and loops that are in-

dependent of outer loops, common sub-query/expression elimination, and more. Therefore,

rather than naively transforming queries and directly imposing the program structure, we
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extract a set of generators, iterators, and their dependencies during IR construction. While

the IR does not explicitly capture the program structure, the optimal program structure can

be derived from an analysis of these dependencies.

5.4.2 Constructing the IR

The dependency structure is relatively straightforward. As demonstrated in the generated

code snippet in Figs.  5.2 to  5.4 , we utilize objects such as tmp[0], tmp[1], and so on, to

maintain intermediate results required for computing the final query result. Assignment

operators have these temporaries as operands, creating data dependencies in the process.

Generators can also iterate values from these temporaries, and in such cases, we introduce

similar dependencies for the generators. Similarly, when a generator symbol is used in an

assignment or another generator, a dependency is added. To illustrate how dependencies are

created, consider the following assignment instruction extracted from Line  14 in Fig.  5.4 :
11 tmp[0][data[starA]['key']] = tmp[1][data[starA]['key']] / tmp[2]

This instruction relies on tmp[0], tmp[1], and tmp[2] as operands. As a result, this

instruction is associated with the last (write) operations of all three temporaries as depen-

dencies, as depicted in the IR visualization presented in Fig.  5.4 . Furthermore, since it

employs the *A iterator, it also exhibits a dependency on the corresponding generator.

The final missing piece in our lowering process is determining the appropriate IR instruc-

tion from our query AST. This is done distinctly for reduction operators (those with a key

in the AST) and other operators (those with a path in the AST). For reduction operators,

which require the management of state, we introduce stateful temporary variables indexed

by the current grouping path. In this context, ‘path’ refers to the pertinent ‘parent’ group-

ing keys within the query nest. In contrast, other types of operators are simpler to handle.

We retrieve the operands and subsequently create an instruction that performs the desired

computation. For example, for plus, we retrieve the left and right operands and create a

binary operation utilizing the + operator.
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5.4.3 Code Generation

Once the IR is constructed for a query, the next step is to generate the final code taking

into account the instruction dependencies. Specifically, it entails determining where to insert

loops, how to nest loops within one another, where to place assignment instructions, and so

on. We will use the query from Fig.  5.4 as a running example for this section.

The first step is computing two auxiliary relations: tmpInsideLoop and tmpAfterTmp.

These relations track which temporaries should be scheduled inside particular loops and

which temporaries should be scheduled after certain other temporaries. This can be done by

analyzing assignment to assignment dependencies and generator to assignment dependencies.

The next step involves computing the relation tmpAfterLoop based on the two relations

computed above. Specifically, if we determined that a temp variable t2 should be scheduled

after another temp variable t1 (i.e., tmpAfterTmp[t2][t1]), which resides inside a loop l

(with the condition that t2 itself is not within loop l), then this implies that t2 should be

scheduled after the loop l. For instance, in our sample query, tmp[0] should be scheduled

after *A.

Subsequently, as the final analysis step before code generation, we determine loopAfter-

Loop and loopInsideLoop. These essentially help identify how the loops should be scheduled.

In particular, if we ascertain that a given temp t should be scheduled inside both loops l1

and l2, it implies that l1 and l2 should belong to the same loop nest. Conversely, if we

determined that for a particular temp t, it resides within loop l2, and we also know that

t should be scheduled after another loop l1, then this indicates that the loop l2 should be

scheduled after l1 (provided they are not part of the same loop nest).

Once the analysis steps are completed, we proceed with the code generation process. Our

approach to code generation draws inspiration from the IR scheduling algorithm utilized in

Lightweight Modular Staging (LMS) [  80 ,  135 ]. In particular, we schedule generators and

assignments in an ‘outside-in’ fashion, commencing with the outer loops before progressing

to the inner ones.

Since we did not have program control structures enforced from the front end, this code

scheduling mechanism freely schedules assignments and generators in an optimal manner.
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For instance, any generator that does not have dependencies to the ‘outer query’ would be

hoisted and scheduled as a separate query instead of repeating the computation multiple

times inside a nested loop.

5.5 Experiments

In this section, we conduct a performance evaluation of our current Rhyme implemen-

tation, comparing it against two established JSON processing systems: JQ [  195 ] and Rum-

ble [  203 ], the latter of which utilizes Spark for distributed processing. We acknowledge

that systems like Rumble are primarily designed for large-scale, cluster execution and may

not exhibit optimal performance in a single-node, single-threaded context. Nevertheless, we

consider it a valuable baseline for comparison.

5.5.1 Experimental Setup

We run three queries on a simple synthetic dataset comprising 1 million records of JSON

objects. Each object in the dataset contains two string keys, key1 and key2, as well as an

integer value. The first query calculates the sum of all values, the second query performs

an aggregate sum after grouping by the key1, and the third query computes a two-level

aggregate using key1, then key2.

We run all the experiments using a single thread, on a NUMA machine with 4 sockets, 24

Intel(R) Xeon(R) Platinum 8168 cores per socket, and 750GB RAM per socket (3 TB total)

running Ubuntu 18.04.4 LTS. We have used JQ v1.6, Rumble v1.21.0, and Node v18.18.0

(for running our JS code). All experiments are run five times, reporting the mean execution

time.

5.5.2 Results

Across the three queries, Rhyme demonstrates the best performance. This can be at-

tributed to its ability to generate optimized JS code tailored to a specific query, which

significantly reduces overhead compared to the general execution engines employed by sys-

188



Q1 Q2 Q3
0

2

4

6

8

10

12

14

Ru
nn

in
g 

Ti
m

e 
(s

)

JQ
Rumble
Rhyme (ours)

Figure 5.6. Running time (left) for JQ, Rumble, and Rhyme for three different queries

tems like Rumble. JQ performs the worst, as it lacks any form of ‘query planning’ and

executes queries naively without optimizations such as loop fusion.

While these results highlight the potential performance gains achievable through Rhyme’s

code generation capabilities, it is important to note that this benchmark does not provide

a comprehensive analysis that contains the full spectrum of representative cases in JSON

analytics. Such a comprehensive evaluation is deferred to future research.

5.6 Related Work

There are several query languages designed for working with semi-structured data like

JSON, each with its own focus and strengths. JSONiq [  204 ,  205 ] is a notable query lan-

guage explicitly tailored for JSON data, borrowing most of its syntax from XQuery [ 196 ]

(e.g., FLWOR expressions). Zorba [ 206 ] and RumbleDB [ 203 ] are examples of engines that

support JSONiq, with RumbleDB using Spark [  39 ] as a backend, leveraging the scalability

of Spark for execution. AsterixDB, designed for semi-structured data, employs AQL [  207 ]

and SQL++ [  208 ] as its query languages. GraphQL [ 194 ], on the other hand, is widely used

in web application development for querying data from backend services. Most of these lan-

guages are specifically targeted towards large-scale JSON analytics workloads and are not

expressive enough to support cases like the ones in Sections  5.3.1 to  5.3.3 . While we take

inspiration from these languages for the design of the language, Rhyme is designed to handle
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various forms of nested data (e.g., tensors), and it offers support for efficient code generation

and optimizations through its IR.

Rhyme’s path expressions are inspired by JSONPath [  197 ] (a descendent of XPath). Al-

though not discussed extensively in this chapter, it is possible to extend Rhyme to support

the full set of JSONPath operators, which include conditions, recursion, etc. Rhyme also bor-

rows many ideas from functional logic programming languages like Verse [  198 ], Curry [ 202 ],

miniKanren [  209 ] and Scalogno [  155 ], and adapts them into a new data-centric declarative

language.

5.7 Conclusions and Future Work

In this chapter, we introduced Rhyme, a new query language tailored for high-level data

manipulation. We illustrated how Rhyme’s design facilitates query optimization and code

generation through the construction of an IR. This IR comprises loop-free branch-free code,

with program structure implicitly captured by dependencies. Throughout the chapter, we

demonstrated the versatility of Rhyme by showcasing its applicability in expressive data ma-

nipulations, tensor computations, manipulation of visual aspects, and so on in a declarative

manner. It is worth noting that Rhyme is still in its early developmental stages, and we are

excited about exploring various avenues of interesting future work.

Incrementality While not extensively covered in this chapter, the concept of utilizing

intermediate temporaries within the generated code is inspired by prior works in incremental

execution, such as DBToaster [ 1 ] and RPAI [ 63 ]. An immediate focus of our future work

involves introducing support for incremental execution. Notably, our generated code is

inherently designed to be ‘incremental-friendly’. This implies that we have the capability

to generate code akin to update triggers, which are invoked whenever a modification is made

to the dataset. Specifically, instead of dense loops used in the current version, update triggers

generate ‘sparse’ loops in the sense that they iterate only over the deltas.

Another dimension of incrementality involves managing query changes. This entails find-

ing ways to accommodate changes in queries while maximizing the utilization of previously
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computed temporaries and sharing state across multiple queries. Such an approach will be

useful in interactive applications, where users can dynamically modify their queries.

Performance While the ability to generate JS for browser-based execution is undeniably

valuable, there are specific scenarios where optimizing performance becomes paramount. In

such cases, the generation of low-level, specialized C code becomes imperative to eliminate

any potential overhead associated with managed runtimes. A substantial body of prior

research has already demonstrated the efficacy of such compilation mechanisms [  19 ,  20 ,  81 ,

 210 ]. Furthermore, it is feasible to leverage existing compiler infrastructures such as LMS [  80 ]

or MLIR [  133 ] for streamlined handling of tasks like IR construction, dependency analysis,

and the eventual generation of highly specialized low-level code.
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6. CONCLUSION

This dissertation explored challenges in modern compilation-based data processing systems.

Specifically, it identified several competing demands resulting from changes in hardware, the

accumulation of large volumes of diverse data, the need for near-real-time data processing,

and the expanding scope of data analytics beyond traditional relational processing and more

into workloads that combine multiple paradigms.

This dissertation first tackled the challenge of multi-paradigm workloads from two angles.

Firstly, it proposed an efficient post-hoc integration of individual systems using generative

programming via the construction of common intermediate layers. This approach preserved

the best-of-breed performance of individual workloads while achieving state-of-the-art perfor-

mance for combined workloads. Secondly, it introduced a high-level query language capable

of expressing various workload types, acting as a general substrate to implement combined

workloads. This allowed the generation of optimized code for end-to-end workloads through

the construction of an intermediate representation (IR).

The dissertation then shifted its focus to data processing systems used for incremental

view maintenance (IVM). While existing IVM systems achieved high performance through

compilation and novel algorithms, they had limitations in handling specific query classes.

Notably, they were incapable of handling queries involving correlated nested aggregate sub-

queries. To address this, it proposed a novel indexing scheme based on a new data structure

and a corresponding set of algorithms that fully incrementalized such queries. This approach

resulted in substantial asymptotic speedups and order-of-magnitude performance improve-

ments for workloads of practical importance.

Finally, the dissertation explored efficient and expressive fixed-point computations, with

a focus on Datalog—a language widely used for declarative program analysis. Although

existing Datalog engines relied on compilation and specialized code generation to achieve

performance, they lacked the flexibility to support extensions required for complex program

analysis. This dissertation introduced a new Datalog engine built using generative pro-

gramming techniques that offered both flexibility and state-of-the-art performance through

specialized code generation.
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