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2.17 Probability distribution function (pdf) of mean abundances of proteins identified
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ABSTRACT

Topological Data Analysis (TDA) with its roots embedded in the field of algebraic topol-

ogy has successfully found its applications in computational biology, drug discovery, machine

learning and in many diverse areas of science. One of its cornerstones, persistent homol-

ogy, captures topological features latent in the data. Recent progress in TDA allows us to

integrate these finer topological features into traditional machine learning and deep learn-

ing pipelines. However, the utilization of topological methods within a conventional deep

learning framework remains relatively uncharted. This thesis presents four scenarios where

computational topology tools are employed to advance machine learning.

The first one involves integrating persistent homology to explore high-dimensional cy-

tometry data. The second one incorporates Extended persistence in a supervised graph clas-

sification framework and demonstrates leveraging TDA in cases where data naturally aligns

with higher-order elements by extending graph neural networks to higher-order networks, ap-

plied specifically in non-manifold mesh classification. The third and fourth scenarios delve

into enhancing graph neural networks through multiparameter persistence.
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1. INTRODUCTION

Persistent homology is a mathematical technique in the field of algebraic topology used to

analyze the shape and structure of datasets, particularly in the context of topological data

analysis (TDA). It aims to extract and characterize the essential topological features that

persist across different spatial scales within a dataset. At its core, persistent homology iden-

tifies and quantifies the topological features, such as connected components, holes, loops,

and voids, present in a dataset. It does so by summarizing the evolution of these features

in a robust, scale-invariant manner through persistence diagrams as the dataset is progres-

sively filtered or transformed. Persistent homology has found diverse applications across

various fields such as medical imaging, material science, gene expression analysis, robotics,

image and signal processing, neuroscience due to its ability to capture topological features in

complex data [  1 – 10 ]. Consequently, progress has been made to include persistence diagrams

for learning tasks [ 11 – 17 ]. However, the exploration of Topological Data Analysis (TDA)

within the context of data naturally supported on higher-dimensional complexes, or the ac-

tive integration of multiparameter persistence in a deep learning pipeline, remains largely

unexplored. This dissertation aims to bridge the gap and delves into the realm of synergy

between computation topology and machine learning.

Topological signatures given by persistence are stable, global, and scale invariant and

show resilience to local perturbations [  18 ]. It is this property of persistent homology that

motivates us to use TDA in the analysis of high dimensional point cloud data coming from

cytometry experiments that is difficult to interpret manually. Persistent homology has been

applied to characterize shapes and shape-function relationships in a wide variety of biological

systems including skin pattern formation in zebra fish [  19 ], protein structure, gene expres-

sion [  4 ], and pattern of neuronal firing in mouse hippocampus [ 20 ]. TDA has additionally

previously been applied to identify immune parameters associated with transplant complica-

tions for patients undergoing allogeneic stem cell transplant using populations of immune cell

types assayed via mass cytometry [  21 ]. However, this work did not use persistent homology

or expression levels of proteins in their analysis, leaving the shape of cytometry data unchar-

acterized. Another work focuses on the use of TDA as a data reduction method for single-cell
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RNA sequencing data [ 22 ], but again does not attempt to characterize how topologies de-

rived from point clouds differ among disparate data sources such as healthy and diseased

individuals. We show empirically how TDA captures subtle topological features hidden in

data, especially if those features are further masked by data transforms or significant donor-

to-donor variations. Persistent homology identifies regions in cytometry datasets of varying

density and identifies protruded structures that distinguish patients infected with COVID-19

and healthy controls. Our analysis of the PCDs indeed shows that birth time of cycles for

the COVID-19 patient is much larger compared to that for the healthy individual indicating

the presence of larger length scales in the PCD which is consistent with the presence of an

‘elbow’ shape in the PCD for the patient.

In Chapter  3 , we delve into the integration of extended persistence into a supervised learn-

ing framework tailored for graph classification. Extended persistence, a technique derived

from topological data analysis, proves instrumental in extracting comprehensive multiscale

topological insights from a graph. This encompasses crucial information about connected

components and cycles, elegantly represented by persistence barcodes. The global topologi-

cal details, summarized by four types of bars and their corresponding cycle representatives

incorporated into the model through a readout function computed via extended persistence.

The entire model is end-to-end differentiable allowing us to learn graph filter functions but

capturing more information than previous approaches did [  14 ,  15 ].

On a parallel track, shape analysis emerges as a fundamental and formidable field with

applications in computer vision, computer graphics, and geometric modeling. Conventional

graph-based abstractions often fall short of capturing the intricate geometric and topological

characteristics inherent in complex shapes. Beyond the scope of extended persistence, the

chapter places a spotlight on Topological Deep Learning (TDL), a domain dedicated to de-

veloping deep learning models suited for data residing on topological domains like simplicial

complexes, cell complexes, and hypergraphs. These domains extend their applicability to

various scientific computations. In the realm of shape analysis, TDL presents an exciting

frontier for pushing the boundaries of mesh processing.

The real strength of TDL techniques lies in their ability to incorporate complex topolog-

ical relationships, allowing us to identify shape features that are not captured by traditional
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approaches. To further enhance the landscape, we introduce a novel architecture called the

Combinatorial Complex Isomorphism Network (CCIN), leveraging higher-order networks.

We demonstrate its efficacy on mesh-related tasks, with a special emphasis on the process-

ing of ‘non-manifold’ meshes. The experimental results on non-manifold meshes show the

effectiveness of CCIN, showcasing its high accuracy in handling these intricate structures.

In recent years, efforts have been made to successfully integrate persistent homology with

machine learning models [ 12 ,  14 ,  15 ,  23 – 35 ]. In practical scenarios, data frequently requires

a general bivariate filtration function X → R2 as opposed to a scalar function. The aim is to

capture its topological information through 2-parameter persistence modules. However, delv-

ing into the realm of 2-parameter persistence modules reveals a significantly more intricate

structure compared to their 1-parameter counterparts. In the 1-parameter case, the mod-

ules are completely characterized by what is called barcode or persistence diagram [ 36 ,  37 ].

Unfortunately, there is no such discrete complete invariant that can summarize 2-parameter

persistence modules completely [  38 ]. Given this limitation, building a useful vector rep-

resentation from multiparameter persistence modules while capturing as much topological

information as possible for machine learning models becomes an important but challeng-

ing problem. We propose to study 2-parameter persistence modules induced by bifiltration

functions in Chapter  4 . To incorporate these topological features revealed by the bifiltration

functions into machine learning models, We introduce Generalized Rank Invariant Landscape

(Gril), a new vector representation encoding richer information beyond fibered barcodes for

2-parameter persistence modules, based on the idea of generalized rank invariant [ 39 ] and its

computation by zigzag persistence [  40 ]. The construction of Gril can be viewed as a gener-

alization of persistence landscape [  16 ,  24 ], hence has more discriminating power. Moreover,

we propose an efficient algorithm to compute (Gril), demonstrate its use on synthetic and

benchmark graph datasets, and compare the results with previous vector representations of

1-parameter and 2-parameter persistence modules. Specifically, we present results indicating

that GNNs improve when augmented with Gril features for graph classification tasks.

Recently, There have been many works on vectorization of a 2-parameter persistence

module using incomplete invariants such as rank invariant or equivalently sliced barcodes,

multiparameter persistence images [  35 ], multiparameter persistence landscapes [  24 ], multi-
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parameter persistence kernel [  23 ], vectorization of signed barcodes [  41 ] or generalized rank

invariant [ 42 ]. The authors, in all these works, show that 2-parameter persistence meth-

ods perform better than 1-parameter persistence methods on many graph and time-series

datasets, suggesting that an R2-valued filter function, indeed, captures richer topological in-

formation than a scalar filter function. However, in all these works, the bifiltration function

is fixed a-priori. Similar to 1-parameter filtration learning, learning the filter function, rather

than it, can prove to be more informative and beneficial for the task at hand. In Chapter  5 

we make GRIL differentiable and leverage its power in an end-to-end pipeline to predict the

biological activity of synthesized drug molecules. Our differentiable framework allows us to

learn the bifiltration function in a data-driven fashion. We empirically demonstrate that

the learned function is more robust, emphasizing the necessity of a differentiable end-to-end

pipeline for 2-parameter persistence.

Several passages from these chapters are also drawn verbatim from [  42 ,  43 ].
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2. DETERMINING CLINICALLY RELEVANT FEATURES IN

CYTOMETRY DATA USING PERSISTENT HOMOLOGY

Cytometry data contain information about the abundance of proteins in single cells and

are widely used to determine mechanisms and biomarkers that underlie infectious diseases

and cancer. Recent advances in flow and mass cytometry techniques enable measurement of

abundances of over 40 proteins in a single cell [ 44 ,  45 ]. Thus, in the space spanned by protein

abundance values measured in cytometry experiments, a cytometry dataset is represented by

a point cloud composed of thousands of points where each point corresponds to a single cell.

Abundances of proteins or chemically modified forms (e.g., phosphorylated forms) of proteins

in single immune cells change due to infection of the host by pathogens (e.g., a virus) or due

to the presence of tumors which usually result in changes in the ‘shape’ of point cloud data

measured in cytometry experiments [  46 – 48 ]. Cytometry data analysis techniques commonly

rely on Boolean gating and calculation of relative proportions of resulting populations as a

method to compare datasets across control/healthy and experimental/diseased conditions.

In recent years, state-of-the-art analyses based on sophisticated machine learning algorithms

capable of mitigating batch effects, ad hoc gating assumptions, and donor-donor variability

have been developed [ 49 ,  50 ]. However, these methods are not designed to quantitatively

characterize shape features (e.g., connected clusters, cycles) in high dimensional cytometry

datasets that can contain valuable information regarding unique co-dependencies of specific

proteins in diseased individuals compared to healthy subjects.

Topological Data Analysis (TDA) aims to capture the underlying shape of a given dataset

by describing its topological properties. Unlike geometry, topological features (e.g., the hole

in a doughnut) are invariant under continuous deformation such as rotation, bending, twist-

ing but not tearing and gluing. One of the tools by which TDA describes topological features

latent in data is persistent homology [  51 ,  52 ]. For example, for a point cloud data, persistent

homology captures the birth and death of topological features (e.g., ‘holes’) in a dataset after

building a scaffold called a simplicial complex out of the input points. This exercise provides

details regarding topological features that ‘persist’ over a range of scale and thus contain

information regarding the shape topology at different length scales. Persistent homology
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has been applied to characterize shapes and shape-function relationships in a wide variety of

biological systems including skin pattern formation in zebra fish [ 19 ], protein structure, and

pattern of neuronal firing in mouse hippocampus [ 20 ]. TDA has additionally previously been

applied to identify immune parameters associated with transplant complications for patients

undergoing allogenic stem cell transplant using populations of immune cell types assayed via

mass cytometry [ 21 ]. However, this work did not use persistent homology or expression levels

of proteins in their analysis, leaving the shape of cytometry data uncharacterized. Another

work focuses on the use of TDA as a data reduction method for single-cell RNA sequencing

data [  22 ], but again do not attempt to characterize how topologies derived from point clouds

differ among disparate data sources such as healthy and diseased individuals.

The challenges of directly applying current persistence methodologies to cytometry data

to characterize distinguishing features between healthy and diseased states are the following:

1. Features that separate healthy from diseased state can pertain to the change in density

of points in a region in point cloud data - therefore, the information of local density

should be incorporated in persistent homology methods, in particular in the filtration

step that brings in sequentially the simplices connecting the points. In commonly used

Rips filtration [  53 ], the density of points is not included.

2. There can be shape changes giving a different length scale in the point cloud data,

such as formation of an elbow, in a diseased condition.

3. There can be systematic differences between healthy and diseased states across batch

effects and donor-donor variations. Topological features should capture these global

differences being oblivious to the local variations caused by measurement noise.

We address the above challenges by developing an appropriate filtration function to

compute persistence and applying the method to characterize distinguishing features of non-

naïve CD8+ T cells between healthy and SARS-CoV-2 infected patients.

Most of the materials in this chapter are based on [ 43 ].
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2.1 Background

Topological signatures given by persistence are stable, global, scale invariant and show

resilience to local perturbations [  18 ]. It is this property of persistent homology that motivates

us to use TDA in distinguishing clinically relevant features in flow cytometry data in COVID-

19 patients.

2.1.1 Persistent Homology:

Persistent homology builds on an algebraic structure called homology groups graded by

its dimension i and denoted by Hi . Intuitively, they describe the shape of the data by

‘connectivity’ at different levels. For example, H0 describes the number of connected com-

ponents, H1 describes the number of holes, and, H2 describes the number of enclosed voids

apparently present in the shape that the dataset represents. Three and higher dimensional

homology groups capture analogous higher (≥ 3) dimensional features. A point cloud data

(henceforth abbreviated as PCD) itself does not have much of a ‘connected structure’. So, a

scaffold called a simplicial complex is built on top of it. This simplicial complex, in general,

is made out of simplices of various dimensions such as vertices, edges, triangles, tetrahedra,

and other higher dimensional analogues. Given a growing sequence of such complexes called

filtrations, a persistence algorithm tracks information regarding the homology groups across

this sequence. In our case, these complexes can be restricted only to vertices and edges.

With the restriction that both vertices of an edge appear before the edge, we get a nested

sequence of graphs

G0 ⊂ G1 ⊂ G2 ⊂ . . . Gn

as the filtration. Fig  2.1 shows such a filtration.

2.1.2 Persistence Diagram:

Appearance (‘birth’) and disappearance (‘death’) of topological features, that is, cycles

whose classes constitute the homology groups, can be captured by persistence algorithms [  51 ,

 54 ]. These ‘birth’ and ‘death’ events are represented as points in the so-called persistence
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Figure 2.1. An example of filtration for a graph. The nested sequence of
graphs G0 ⊂ G1 ⊂ . . . G11 forms a filtration of the final graph G11. Each vertex
vi creates a new component in the nested sequence, and edges e0, e1, e2, e5 merge
two components whereas e4 creates a cycle (yellow).

diagram. If a topological feature is born at filtration step b and dies at step d, we represent

this by persistence pair (b, d) with persistence d− b. The pair (b, d) becomes a point in the

persistence diagram with the ‘birth’ as x-axis and ‘death’ as y-axis. This 2D plot summarizes

topological features latent in the data. In the example-filtration of Fig  2.1 , a new component

gets ‘born’ when a vertex vi appears in the filtration for the first time. When an edge is

introduced, one of the two things can happen–either two components are joined, or a cycle

is created. In the first case, a ‘death’ happens for 0-th homology group H0, and in the

second case, a ‘birth’ happens for the 1-st homology group H1. For example, when e0 comes

in the filtration (G6), it merges two components created by v0 and v1. By convention,

we choose to kill the component that got created later in the filtration and thus we let

the component created by v1 die. We obtain a persistence pairing (1, 6) since edge e0 at

filtration step 6 kills the component created by v1 at step 1. Similarly, we obtain pairs
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(2, 7), (4, 8), (5, 9), and (3, 11). These points, tracking the ‘birth’ and ‘death’ of components,

produce the persistence diagram for the 0-th homology group H0 and hence we refer to it

as the H0-persistence diagram. Note that the edge e4 creates a cycle (yellow) that never

dies. In such cases, i.e. when a topological feature never dies, we pair it with ∞. For the

edge e4, we obtain a persistence pair (10,∞). But, this feature concerns the 1-st homology

group H1 and thus it becomes a point in the persistence diagram for H1 which we refer to as

H1-persistence diagram. One way to leverage the above framework for studying a function

is to assign function values to vertices and edges and construct a filtration by ordering them

according to these assigned values. For such cases the persistence pairs take the form (b, d)

where b is the value at which a feature is born and d is the value at which it dies. The

function values that induce the filtration (Fig  2.2 ) are chosen to capture two features of the

input PCD–(i) the density variations, and (ii) the anisotropy of the features, that is, how

elongated it is in a certain direction, henceforth termed as length scale ‘of the feature’ or

collectively ‘of the data’. In particular, length scales refer to the prominence of protrusions

such as ‘elbows’ in COVID-19 data.

Below we briefly describe how we adapt the above persistence framework for analyz-

ing point cloud data (PCD) representing CD8+ T cells in SARS-CoV-2 infection. Details

regarding the approach are provided in Section  2.2 .

2.1.3 Computing persistent homology for cytometry datasets:

Our datasets consist of cytometry data for non-naïve CD8+ T cells. Given protein

expressions (real values) for d proteins in such a single cell, we can represent it as a d-

dimensional point in Rd. Considering a population of single cells, we get a point cloud (PCD)

in Rd. Now, we study the shape of this PCD using the persistence framework that we describe

above. We compute persistence diagrams for the PCDs generated with protein expressions

from different individuals and compare them. It turns out that, for computational purposes,

we need a limit on the dimension d for PCD which means we need to choose carefully

the proteins that differentiate effectively the subjects of our interest, namely the healthy

individuals, COVID-19 patients, and recovered patients. We typically choose 3 (sometimes
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2) protein expressions to generate the PCD and call it a PCD in the P1, P2, P3 space if it

is generated by proteins P1, P2, and P3 respectively.

Flow cytometry data for non-naïve CD8+ T cells in Mathew et al. [  46 ] show generation

of CD8+ T cells with larger abundances of the proteins CD38 and HLA-DR (CD38+HLA-

DR+ cells) for some COVID-19 patients, forming an ‘elbow’ in the two dimensional PCD

with CD38 and HLA-DR protein expressions (see  2.9 Fig). Moreover, there is an increase in

the local density of the points (or single CD8+ T cells) in the ‘elbow’ region. This suggests

that, to study the PCD generated by the protein expressions by persistence framework, we

need to choose a filtration that is able to capture such geometric shapes and variations in

the local density.

We briefly describe our choice of filtration by considering the example of a point cloud

P ⊂ R2 shown in Fig  2.2 . Mathematical and computational details regarding the filtration

are provided in the Section  2.2 . We build a filtration according to assigned values to the

vertices and edges of a graph connecting the input points. For a vertex p which is a point in

the input PCD P , we denote this value fv(p) (given by Eq  2.1 in Section  2.2 ). Similarly, we

denote the assigned value to an edge e as fe(e) (given by Eq  2.2 in Section  2.2 ); see Fig  2.2 .

The values satisfy the conditions that fv(p) < 0 and fe(e) ≥ 0; implications of this specific

choice will become clear in the next paragraph. It is noteworthy to mention that fv(p) is the

negative of distance-to-measure originally defined in [ 55 ] and later used in [ 56 ] for the PCD

case and captures the density distribution of points, whereas fe(e) captures the inter-point

distances between the points in the given point cloud.

The persistence algorithm processes each vertex and edge in the order of their appearance

in the filtration. We execute it using a threshold value λ from −∞ to ∞ and generate the

persistence diagram accordingly. Intuitively, as λ is increased from −∞ to ∞, vertices p for

which fv(p) ≤ λ and edges for which fe(e) ≤ λ appear in the filtration for a particular value

of λ (see Fig  2.2 ). Since fv(p) < 0 and fe(e) ≥ 0, all the vertices first appear as λ is increased

from −∞ to 0, and then edges start appearing as λ becomes positive. The birth-death events

for H0 and H1 constituting the persistence diagram (Fig  2.2 H) contain information about

the density and length scales present in the point-cloud. For example, the points showing

birth and death events for the H0-persistence diagram are more densely organized for the
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Figure 2.2. Illustration of persistence for a 2D point cloud data
(PCD). (A), (H) shows a 2D PCD example and its computed persistence
diagram. (B)-(G) shows important changes in topological feature as λ in-
creases from −∞ to ∞. (B) At λ = −1.06 an isolated point, v0 appears first.
Note that each isolated vertex creates a new component. (C) At λ = −0.52
points in the denser region appears in the filtration, introducing more compo-
nents. The indices of the vertices denote the order in which they appear in
the filtration. (D) At λ = −0.50, all vertices appear in the filtration. Note
that, the way we have chosen the filtration function f , vertices appear before
the edges since fv(v) is always negative. (E) At λ = 0.65, the first edge e1
appears merging two components. By persistence algorithm [ 51 ], we pair the
edge e1 with v9, since v9 appears later in the filtration. Corresponding to this,
we get a persistence pair (fv(v9), fe(e1)) = (−0.50, 0.65). (F) At λ = 0.84, the
green edge e2 appears and creates a cycle. Since there is no 2-simplex(triangle)
present, the cycle is never destroyed. In the persistence diagram we have this
pair as (fe(e3),∞) = (0.84,∞). (G) At λ = 2.07, the long edge e3 appears
joining v0 and v1, yielding a persistence pair (−1.06, 2.07).

single cell protein expression data from the healthy donor than the SARS-CoV-2 infected

patient in the HLA-DR - CD38 plane shown in  2.10 Fig. The denser organization of the

birth-death events in the persistence diagram indicates a more homogeneous distribution

of CD38 and HLA-DR proteins in the CD8+ T cells in healthy donors compared to that

in infected patients. Most of the CD8+ T cells in healthy controls have low amounts of

CD38 and HLA-DR abundances and few contain larger values of these proteins, indicating
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a greater degree of homogeneity. The birth-death events for H1 in the persistence diagram

( 2.10 Fig) in general contain information about the length scales of cyclic structures in

the point cloud. It also can capture protrusions like ‘elbows’ that we have in COVID-19

data. Our filtration allows only birth (and not death) of 1-cycles and therefore, a λ value

corresponding to the birth of a 1-cycle captures the length scale of the newly born cycle and

hence an ‘elbow’. Our analysis of the PCDs in Fig  2.10 D and  2.10 H indeed shows that λ

values for the birth of cycles for the COVID-19 patient is much larger compared to that for

the healthy individual indicating the presence of larger length scales in the PCD which is

consistent with the presence of an ‘elbow’ shape in the PCD for the patient.

2.2 Materials and methods

Figure 2.3. Flowchart of computation pipeline. The pipeline includes three
main stages, namely, (i) relevant feature selection, (ii) persistence computa-
tion, and (iii) comparison of persistence diagrams.

2.2.1 Relevant feature selection by the XGBoost classifier:

Let D =
{
c1, c2, . . . , cm

}
be the collection of m cytometry datasets. Each dataset, ci, can

be viewed as aMn×p matrix where n is the number of datapoints (cells) and p is the number

of proteins with which each ci is generated. We denote the collection of cytometry datasets of

healthy individuals as CH ⊂ D and similarly the set of individuals infected with SARS-CoV-2

as CP ⊂ D. We proceed to label the data in the following manner: If ci ∈ CH then we assign

the label +1 to each of the n datapoints, similarly we assign−1 if ci ∈ CP . Essentially, we now
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have a binary classification problem where our labeled dataset is D′ = ⋃
D = c1∪c2∪ . . .∪cj,

with labels defined as above. We solve this binary classification problem with XGBoost [  57 ],

a gradient boosted decision tree based classifier, and as a byproduct we get feature scores

that correspond directly to each feature’s importance in the classification. The higher the

score for a protein, the more important it is for the classifier’s decision. After our classifier

orders the proteins by their scores, we take first r proteins to construct the point-cloud

on which persistence diagrams are computed. We set r = 3 for all our analysis reported

here. We used data from 56 healthy individuals and 108 COVID-19 patients for our feature

selection.

The XGBoost classifier was implemented using the open-source python XGBoost pack-

age [  57 ]. The model was then trained and validated with K-fold cross-validation, with

K = 10. The average accuracy of the classifier was 92.14 ± 0.04%. The protein scores are

shown in Fig  2.4 .

2.2.2 Random subsampling of the datapoints:

Each PCD can be thought as a set of indexed points. These indices were first shuffled

randomly and then 20, 000 indices and hence respective points were sampled uniformly from

this shuffled set. The samples drawn from each PCD were further analyzed using persistent

homology. We discarded datasets that had less than 20, 000 data points. Among 55 healthy

individuals only 1 had less than 20, 000 data points. For the patient data, the number of

such datasets was 34.

2.2.3 Details of persistent homology computation:

As mentioned before (Section  2.3 ), computation of persistence diagrams needs a filtration.

We set the filtration induced by the function f = {fv, fe} where fv(p) computes an ‘average’
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Euclidean distance between the vertex p and its k neighbors according to Eq  2.1 and fe(e)

computes the length of the edge e according to Eq  2.2 .

fv(p) = −1
k

√√√√ k∑
i
‖p− qi‖2 , p ∈ P, and qi ∈ k-Nearest Neighbors of p. . (2.1)

The term ‖p − qi‖ in the above equation is the Euclidean distance between the vertices p

and qi. The function value fe(e) for an edge e = (p, q) is given by the Euclidean distance

between p and q. For the experiments, the number of nearest neighbors is fixed to k = 40.

fe(e) = ‖p− q‖ , ∀p, q ∈ P and p 6= q (2.2)

We begin by sampling every cytometry PCD ci and take n(= 20, 000) samples. We do

this to make ci uniform w.r.t. number of data points (single CD8+ T cells). We compute a

complete weighted graph G(V, E) with vertices in the sampled data. This complete graph

G is a key-step that enables us to compute the persistence diagram, Dgm(ci) of the dataset

ci, w.r.t. the filtration function f . We show the algorithm (Algorithm B in  2.2.4 Appendix)

that executes this step in detail in the supplementary material. Notice that the graph G is

weighted in the sense that each vertex v ∈ V and edge e ∈ E carries a weight of fv(v) and

fe(e) respectively. Observe that f : V ∪ E → R constitutes a valid filtration of G.

We compute persistence diagrams for each ci ∈ D according to Algorithm C in  2.2.4 

Appendix. The next step involves comparing the persistence diagrams. We do this by

computing the Wasserstein distance between persistence diagrams and plotting their distri-

butions. We take two persistence diagrams of randomly selected healthy individuals and

compute the Wasserstein distance between them with the help of Gudhi [  58 ,  59 ] and scikit-

learn Python library [  60 ]. Similarly, we compute Wasserstein distance between persistence

diagrams of a healthy and an infected individual (both are randomly drawn from the collec-

tion). We plot the resulting distances. We do this for 108 pairs to obtain two distributions.

Note that, results described in Section  2.3 still holds for 200 pairs (Fig  2.11 ). Intuitively, a

large Wasserstein distance between two persistence diagrams implies the datasets on which
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Algorithm A DisPers
Input: c: Cytometry dataset, k: Nearest neighbors to consider, n: Number of samples
Output: Dgm(c′): Persistence diagram of c′ sampled from cytometry data c

1: begin
2: Subsample c
3: c′ ← n samples from c
4: G← GEN-COMPLETE-GRAPH(c′, k)
5: Dgm(c′)← COMPUTE-PERSISTENCE(G)
6: return Dgm(c′)
7: end

they were constructed are structurally very different while a small distance implies they are

structurally similar.

2.2.4 Algorithms:

Since a graph is a 1-dimensional simplicial complex, for a graph with m edges and n

vertices, we can compute its 0-dim persistence in O(m log n) time with Kruskal like minimum

spanning tree algorithm [  51 ].

Algorithm B Gen-Complete-Graph
Input: c: Sampled cytometry data, k: Nearest neighbors to consider
Output: G(V, E): Complete Weighted Graph on c

1: procedure GEN-COMPLETE-GRAPH
2: G(V, E)← φ . V is the set of nodes and E is the set of edges of G
3: for all v ∈ c do
4: Compute v1, v2, . . . , vk, k-nearest neighbors of v

5: w(v)← − 1
k

√∑
i ‖v − vi‖2 . w(v) denotes vertex weight

6: V (G)← V (G) ⋃ (
v, w(v)

)
7: for all {u, v} ∈ c× c and u 6= v do
8: e← {u, v}
9: w(e)← ‖u− v‖ . w(e) denotes weight of the edge

10: E(G)← E(G) ⋃ (e, w(e))
11: return G(V, E)
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Algorithm  C shows the steps of Persistence computation. Consider a generic step when

an edge e ∈ G is introduced in the minimum spanning forest that joins two forests rooted

at nodes v0 and v1. For the new tree we will choose the root as node having smaller weight

and the edge e pairs with the node having larger weight. Essentially we are choosing to kill

the youngest connected component created by, with a little abuse of notation, the vertex

argmax(w(v0), w(v1)). We define persistence of the edge as

p(e) = w(e)−max{w(v0), w(v1)} (2.3)

It is important to point out that an edge may or may not necessarily kill a connected

component. If it does not kill a connected component it definitely creates a 1-cycle and we

pair the edge with a special vertex with w(v) =∞ and define pers(e) =∞.

Algorithm C Compute Persistence Diagram
Input: G(V, E): Complete weighted graph on sampled cytometry data c
Output: Dgm(c): Persistence Diagram

1: procedure COMPUTE-PERSISTENCE
2: E ′ ← Sort E in increasing order of w(e) with e ∈ E
3: P0 ← φ . P0 tracks 0-dim birth and death
4: P1 ← φ . P1 tracks 1-dim birth
5: for all e = (u, v) ∈ E ′ do
6: Root0 ← f ind(u)
7: Root1 ← f ind(v)
8: if Root0 6= Root1 then
9: birth← max{w(Root0), w(Root1)} . e kills youngest homology class

10: death← w(e)
11: pers(e)← death− birth
12: merge(Root0, Root1)
13: P0 ← P0 ∪ (birth, death)
14: else
15: P1 ← P1 ∪ (w(e),∞) . e is a creator and creates a 1-cycle
16: Dgm(c)← {P0, P1}
17: return Dgm(c)
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2.2.5 Statistical testing of difference in Wasserstein distance distributions:

2-sided KolmogorovSmirnov (KS) tests were performed on Wasserstein distances for pairs

of individuals to determine if they arise from the same or different probability distribution

functions [  61 ]. MATLAB’s subroutine kstest2 was used to determine p-values, where the null

hypothesis is that the Wasserstein distances from H×H comparisons and the experimental

condition (either H×P or H×R) arise from the same non-parametric distribution, and the

alternative hypothesis is that they come from different distributions. A p-value of ≤ 0.05

(or ≥ 0.05) indicates the support for the alternate hypothesis (i.e., data occur from different

distributions) is statistically significant (or not significant).

2.2.6 Computing quadratic form (QF) distance:

To measure the dissimilarity between a pair of Wasserstein distance distributions, quadratic

form (QF) distance was computed as proposed by Bernas et al. in [  62 ] (originally introduced

in [  63 ]). The QF distance was calculated using the formula

D2(h, f) = (h− f)T Ai
j(h− f) =

n∑
i=1

n∑
j=1

aij(hi − fi)(hj − fj) (2.4)

where f and h are two vectors that list counts corresponding to two histogram bin counts.

The quantities f and h can be normalised so that ∑
i fi = ∑

i hi = 1 when indexed by i.

In our case, Ai
j = [aij] and defined as aij = 1 −

√
(i−j)2

dmax
with dmax being maximum distance

between bins.

2.2.7 FlowSOM Analysis:

FlowSOM was performed on the entire non-naïve CD8+ dataset, and separately, the

non-naïve B cell dataset. Data was scaled with the transform asinh(x/150) before analysis.

See Code Availability for FlowSOM source code. Comparisons of relative cluster abundances

between healthy controls and COVID-19 patients were performed with a Wilcoxon rank sum

test. Subsequent persistent homology computation was performed on the selected clusters by

sampling 20, 000 cells from either the aggregated healthy control data or aggregated COVID-
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19 patient data. This sampling was repeated to form “synthetic" individual healthy control

or COVID-19 patient data. We cannot sample data from each individual, as was done in the

prior computations, because many individuals display too few cells in the selected clusters to

reliably sample 20, 000 cells. In the CD8+ T cell analysis, clusters #1 and #3 were chosen

for persistent homology calculations because they contain the most cells, and thus are most

likely to have cells in each sample and be unaffected by random sampling.

2.2.8 Flow cytometry data for healthy individuals and COVID-19 patients:

The data come from Mathew et al., 2020 [  46 ] and was retrieved from Cytobank. Mathew

et al. performed high-dimensional flow cytometry experiments using peripheral blood ob-

tained from 125 patients admitted to the hospital with COVID-19, 36 donors that recovered

from documented SARS-CoV-2 infection, and 60 healthy controls. Our analysis focuses

on the deposited data available at  https://premium.cytobank.org/cytobank/experiments/

308357 for non-naïve CD8+ T cells collected at the time of admission (and not any later

blood draws, such as at 7 days after admission). Please note that a Cytobank account is

currently required for data access. We removed forward- and side-scatter variables and other

non-protein measurements, resulting in 25 proteins included in our analysis.

2.3 Results

2.3.1 Application of persistence to healthy and patient data

Our aim is to find out systematic differences in topological features extracted from cytom-

etry data for healthy individuals and COVID-19 patients. Ideally one would like to compute

persistence diagrams for all 25 proteins that were measured in single CD8+ T cells, how-

ever, this task encounters two major problems. First, as we mentioned before taking the full

25 dimensional PCD introduces the curse of dimensionality [ 64 ] making it computationally

infeasible to produce the persistence diagrams. The second one is more subtle. In order to

measure how the density of data differs from a healthy to infected person in a quantitative

way, we need to ensure that the number of points in each PCD, to be analyzed by persistent

homology, is the same. Cytometry data usually contain different numbers of single cells in
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datasets obtained from different donors or replicates. To address the curse of dimensionality

we use a classifier (XGBoost [  57 ]) that distinguishes single CD8+ T cells in healthy donors

from those in COVID-19 patients and we choose the top r (taken to be 3) features (proteins)

that are deemed important by the classifier while classifying the data points (cells). This

reduces the dimension of the data from 25 to a much smaller value denoted r.

To address the second issue, we perform uniform random sampling on every r-dimensional

dataset and take equal number of samples from it. We then use the filtration defined in Eq  2.1 

and Eq  2.2 to construct persistence diagrams for each dataset. To quantify the structural

differences in the datasets as captured by the corresponding persistence diagrams, we com-

pute the Wasserstein distance [  59 ] between persistence diagrams from randomly selected

pairs of either two healthy donors (H×H) or a healthy donor and an infected patient (H×P)

and compute distributions of the Wasserstein distances for a large number of (H×H) and

(H×P) pairs. The comparison of these distributions via Kolmogorov-Smirnov (KS) tests

provides information regarding the systematic differences in shape features in the CD8+ T

cell cytometry data across healthy individuals and COVID-19 patients. The computational

pipeline is summarized in (Fig  2.3 ). Below we describe results from the application of our

computational pipeline to the CD8+ T cell cytometry data in Mathew et al. [  46 ]

2.3.2 A few protein expressions in CD8+ T cells separate healthy donors from
COVID-19 patients:

We use XGBoost [ 57 ], a decision tree based classifier, to rank order proteins for their

ability to distinguish CD8+ T cell point cloud data between healthy individuals and COVID-

19 patients. The average accuracy of the classifier is about 92%. The classifier returns a

feature score for each protein that characterizes its importance relative to other proteins in

distinguishing cells from healthy individuals and COVID-19 patients. Intuitively, feature

score is an indicator of the importance of a particular feature while classifying the data.

By ranking the proteins by their feature scores, we can reduce our further analysis to only

a subset of the most important proteins. Our analysis (Fig  2.4 ) shows that the top three

most important proteins to the XGBoost classifier are proteins T-bet, Eomes, and Ki-67.

T-bet induces gene expressions leading to an increase in cytotoxic functions of CD8+ T cells.
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CD8+ T cells with increased cytotoxic functions are known as ‘effector’ CD8+ T cells and

these cells show higher T-bet abundances. Conversely, Eomes induces gene expressions that

contribute towards increased life span and re-activation potential of CD8+ T cells to specific

antigens [ 65 ]. These long-lived T cells are known as ‘memory’ T cells which show increased

expressions of Eomes. Memory T cells provide key protection against re-exposure to the

same infection. Ki-67 is a marker for actively proliferating cells [  66 ]. Mathew et al. [  46 ]

identified Ki-67 as one marker that is upregulated (increased) in some COVID-19 patients.

These three proteins are most likely to distinguish CD8+ T cells in healthy donors from

those in patients. Further details regarding the application of the classifier are provided in

the Materials and Methods section (Section  2.2 ).

Figure 2.4. Rank ordering of proteins using a decision tree based classifier.
Shows rank ordering of proteins by descending values of feature importance
generated by the classifier XGBoost.
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2.3.3 Persistence diagrams distinguish structural features in CD8+ T cell data
occurring in healthy individuals and COVID-19 patients across batch ef-
fects and donor-donor variations:

We select the proteins T-bet, Eomes, and Ki-67 as relevant markers and compute the

persistence diagrams of the PCD given by them for each individual belonging to groups of

healthy donors, COVID-19 patients, and recovered patients. The persistence diagrams vary

from individual to individual in each group and between groups which could arise due to

batch effects in samples and/or donor-to-donor variations. To determine if there are sys-

tematic differences in persistence diagrams for individuals across the three groups (healthy,

patient, and recovered), we compute Wasserstein distance between persistence diagrams for

3 categories of pairings: 1) two healthy donors (H×H), 2) one healthy donor and one patient

(H×P), and 3) one healthy donor and one recovered individual (H×R). We compute dis-

tances for 100 randomly chosen pairs of individuals for each category of pairings. Wasserstein

distances of the persistence diagrams for 0-th and 1-st homology groups H0 and H1 respec-

tively are higher when comparing H×P pairs than when comparing H×H pairs (Fig  2.5 ). A

2-sided KS test showed that the Wasserstein distances for H×P and H×H belong to different

probability distribution functions (p� 0.01); see Fig  2.5 and also the description of this test

in Section  2.2 . This indicates that systematic geometric differences in the flow cytometry

PCD with T-bet, Eomes, and Ki-67 between individuals with and without COVID-19 are

not attributable to batch effects or donor-to-donor variations alone. Increasing the number

of randomly chosen pairs to 200 did not change this conclusion as Figs  2.5 and  2.11 illustrate.

The difference between H×H and H×R distributions of distances in the T-bet, Eomes, and

Ki-67 space are less prominent (  2.12 Fig). We further test if such systematic differences are

present for proteins that are at the bottom of the list in Fig  2.4 and find that the distributions

of Wasserstein distances for corresponding persistence diagrams overlap between the H×H

and H×P pairs (  2.13 Fig). This suggests that systematic differences in the geometry of the

PCD occur only for specific sets of proteins. Details regarding computation of persistence

diagrams and Wasserstein distances are given in Section  2.2 .

Next, we select a comparison pair that generates a large Wasserstein distance between

H1-persistence diagrams to further investigate what structural differences exist between the
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Figure 2.5. Distributions of Wasserstein distances between persistence
diagrams. (A) Shows distributions of Wasserstein distance between H0-
persistence diagrams for H×H (blue line) and H×P (orange line) pairs (p =
8.77× 10−15, QFD = 0.173). (B) Shows distributions of Wasserstein distance
between H1-persistence diagrams for H×H (blue line) and H×P (orange line)
for the same pairs in (A) (p = 3.04 × 10−14, QFD = 0.219). Persistence dia-
grams are calculated from point clouds in the T-bet, Eomes, and Ki-67 axes.
p-values are calculated from a 2-sided KS test.

datasets. We choose one pair of a healthy control and patient that generated a Wasserstein

distance of 4.0 × 106 units in their H0-persistence diagrams and 1.1 × 104 units in H1-

persistence diagrams. These two individual PCDs and their resulting persistence diagrams

are shown in Fig  2.6 .

A readily apparent difference between the resulting persistence diagrams is given by the

lower birth times in H1 of the COVID-19 patient compared to the healthy control (Fig  2.6 E

and  2.6 F). This result indicates that the length scale of the data is smaller in the COVID-

19 patient, which can be visually confirmed in the scatter plots of the data (Fig  2.6 A and

 2.6 B). Specifically, the single cell abundances of T-bet and Eomes in CD8+ T cells are clus-

tered significantly tighter around the origin for the COVID-19 patients than for the healthy

controls. Similar manual inspection of other H×P pairs that generate large Wasserstein

distances between their persistence diagrams confirms that this trend is not limited to this

pair alone.
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Figure 2.6. Differences in shape features in the 3D point cloud for CD8+
T cells in a H×P pair. CD8+ T cell point cloud for proteins Eomes, Ki-
67, and T-bet for (A) a healthy control and (B) a COVID-19 patient. (C)
Shows H0-persistence diagram for the healthy control in (A). (D) Shows the
H0-persistence diagram for the COVID-19 patient in (B). (E) H1-persistence
diagram for the healthy control in (A). (F) H1-persistence diagram for the
COVID-19 patient in (B).
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Additionally, the points in the H0-persistence diagram are spread out more widely for

the healthy control than the COVID-19 patient (Fig  2.6 C and  2.6 D). A wider distribution

of births and deaths in the 0-th homology H0 implies that there are regions of disparate

densities. This suggests that the densities in the protein expressions of T-bet and Eomes are

more homogeneous in the PCD in the COVID-19 patient than in the healthy control.

The structural change in the PCD for CD8+ T cells in the T-bet/Eomes plane that occurs

during COVID-19 infection implies that T-bet and Eomes expression should be downreg-

ulated (decreased) in non-naïve CD8+ T cells. This result is consistent with analysis of

clusters of CD8+ T cells by Mathew et al. [  46 ] via a software package FlowSOM [  67 ] that

shows that clusters high in T-bet and/or Eomes are downregulated in COVID-19 patients.

The relevance of the above proteins in distinguishing healthy controls from patients is fur-

ther demonstrated by the statistically significant differences (p-values � 10−8) in the mean

T-bet, Eomes, and Ki-67 abundances in the CD8+ T cells between the groups (  2.17 Fig).

However, the distributions of the mean abundances for the above proteins also showed re-

gions of overlap between healthy and patient populations (  2.17 Fig) indicating existence of

H ×P pairs with much smaller differences in the mean values between them than the popu-

lation averaged mean values of these proteins. Our method specifically identifies differences

in topological features in the shape of the PCD between a H × P pair which can be present

despite small differences in the mean values of specific proteins (e.g., T-bet). We further

investigated this point by analyzing correlations between the Wasserstein distance between

the persistence diagrams of H ×P pairs with the difference in the mean protein abundances

(Fig  2.18 A and  2.18 B) which showed moderate correlations (≤ 0.5). However, there are

several instances in which the Wasserstein distance captures differences in the shape of the

PCD via persistent homology even when the difference in mean protein abundance (e.g.,

mean T-bet abundance) is small (Fig  2.18 C- 2.18 F). This is due to changes in the shape

of the point-cloud that are not easily captured by summary statistics such as the mean.

Therefore, our analysis shows that healthy and COVID-19 pairs can be better separated by

our persistent homology analysis than by summary statistics measures in such cases. The

downregulation of T-bet and Eomes in response to viral infections is not well documented,
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as CD8+ T cells commonly differentiate into phenotypes with high T-bet, high Eomes, or

both in response to infections [ 65 ,  68 ].

We next explore the application of our approach to other datasets. We apply our method

to the single cell cytometry dataset in Mathew et al. [ 46 ] for B cells obtained from healthy

donors and COVID-19 patients. The B cells are major orchestrators of the humoral com-

ponent of adaptive immunity against infections. We compute persistence diagrams for the

proteins CXCR5, PD-1, and TCF-1, identified by XGBoost as the three most important

proteins for classifying healthy donors and patients. A chemokine receptor, CXCR5, is re-

sponsible for B cell trafficking and is found to be downregulated in B cells in COVID-19

patients [  46 ]. Both PD-1, a checkpoint inhibitory receptor [  69 ], and TCF-1, a transcription

factor important for T cell differentiation and effector functions [  70 ] are increased in B cells

in infected individuals (  2.19 Fig). Immunosuppressive effects of high PD-1 expression in B

cells have been reported earlier [  69 ]. We find that Wasserstein distances of the persistence

diagrams for both homology groups (H0 and H1) are significantly different (Fig  2.7 ) be-

tween the healthy donors and the patient population B cells. This demonstrates that our

approach is able to distinguish healthy individuals from patient populations using PCDs of

other immune cells. Furthermore, we find that the margin of separation, quantified by the

QF-distance (QFD), in these Wasserstein distances is smaller with B cells than the CD8+ T

cells. This implies that the structure of PCDs for CD8+ T cells differ more between healthy

controls and patients than that for the B cells. These findings may point to previously un-

characterized impact of PD-1 and TCF-1 on B cell function or phenotype in SARS-CoV-2

infection.

Distributions of mean PD-1 expression on B cells in COVID-19 patients is not largely

different than that of healthy controls (  2.19 B Fig). Therefore, we further analyzed how

the difference between mean PD-1 values and the differences in PCDs quantified by the

Wasserstein distances are related (Fig  2.20 A- 2.20 D). We found that unlike T-bet for CD8+ T

cells, mean PD-1 expression differences in B cells are not tightly correlated with Wasserstein

distances in healthy control-patient pairs (Fig  2.20 A- 2.20 B). We visualized the PCD in the

space of TCF-1, PD-1, and CXCR5 (Fig  2.20 E- 2.20 F) to gain further insights regarding

the differences in the shapes of the PCD in healthy control-patient pairs with similar mean
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Figure 2.7. Distributions of Wasserstein distances between persistence
diagrams for B cells. (A) Distributions of Wasserstein distance between
H0-persistence diagrams for H×H (blue line) and H×P (orange line) pairs
(p=6.28× 10−5, QFD=0.0300). (B) Distributions of Wasserstein distance be-
tween H1-persistence diagrams for H×H (blue line) and H×P (orange line) for
the same pairs in (A) (p=1.07 × 10−12, QFD=0.0946). Persistence diagrams
are calculated from point clouds in the CXCR5, PD-1, and TCF-1 axes. p-
values are calculated from a 2-sided KS test.

PD-1 expressions. The differences in the shape of the PCDs for these pairs can be largely

attributed to the higher expressions of TCF-1 in healthy controls (Fig  2.20 E- 2.20 F).

2.3.4 Comparison with Existing Methods:

To determine how our selection of filtration compares with an existing method, we com-

pare how our results might change if we use Rips filtration. In Rips filtration, simplices

appear when all of their edges appear in the filtration. The edges appear in non-decreasing

order of their lengths. We use the entire dataset as the PCD and generate persistence dia-

grams subsequently, using Rips filtration [ 51 ,  53 ,  71 ] rather than the filtration we use in our

approach. Note that in the standard Rips filtration, all vertices appear at the same instant

whereas in our case the vertices are ordered by Eq  2.1 . We then compute Wasserstein dis-

tances as done previously. We find that Rips filtration is also able to distinguish persistence

diagrams of healthy controls and patients, but the margin of separation is much lower, as
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evidenced by a higher p-value and lower QFD than our choice of filtration offers (  2.21 Fig).

This indicates that our method, which is designed to identify protrusions such as “elbows"

in the data, characterizes greater differences in CD8+ T cell protein expression structures

than existing methods such as Rips filtration.

We then compare our TDA approach with an existing algorithm FlowSOM [  67 ], widely

used for visualizing, clustering, and analyzing PCDs from cytometry experiments. FlowSOM

uses a self-organizing map algorithm for generating single cell subsets with unique marker

protein expressions. FlowSOM is capable of clustering similar cells together and offers a

robust way to determine which cellular subsets are differentially expressed between data

sources [  72 ]. We run a FlowSOM analysis and clustering on the CD8+ T cell data and

determine that 6 of the 15 clusters are differentially expressed between healthy controls and

COVID-19 patients ( 2.22 Fig).

We select one FlowSOM cluster which is differentially expressed (Cluster #3) and one

that is not differentially expressed (Cluster #1) between healthy donors and patients for

downstream analysis. Visual inspection of these clusters in the 3-dimensional space of T-

bet, Eomes, and Ki-67 shows that PCD structure may be different between healthy controls

and patients in Cluster #1 ( 2.22 C Fig). This is because proteins can co-vary in different

ways in healthy controls and patients, affecting topological features hidden in the PCD. We

then perform our persistent homology analysis to determine if the structure of PCDs for

proteins Eomes, Ki-67, and T-bet in subsets of single cells associated with these FlowSOM

clusters differ between healthy controls and patients. We find distributions of Wasserstein

distances between the persistence diagrams obtained for the above FlowSOM clusters are

significantly different (Figs  2.8 and  2.23 ).

Performing FlowSOM on B cells reveals 12 of the 15 clusters are differentially expressed

between healthy controls and COVID-19 patients ( 2.24 A- 2.24 B Fig). The three clusters

(Cluster #1, #2, and #14) that are not differentially expressed are all high in PD-1. Vi-

sualization of the PCDs for Cluster #2 and Cluster #4 shows that regions high in TCF-1

 2.24 C- 2.24 D Fig) distinguish the PCDs for the pairs. Thus, our method is able to identify

topological features hidden in the PCD that separate healthy controls from COVID-19 pa-
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tients in FlowSOM clusters, including clusters which are not differentially expressed between

these groups.

Figure 2.8. Distributions of Wasserstein distances between persistence di-
agrams from a FlowSOM cluster (Cluster #1) that is not differentially ex-
pressed between healthy controls and COVID-19 patients. (A) Distributions
of Wasserstein distance between H0-persistence diagrams for H×H (blue line)
and H×P (orange line) pairs (p=2.21 × 10−59, QFD=1.638) computed for
the PCD for Eomes, Ki-67, and T-bet for CD8+ T cells. (B) Distributions
of Wasserstein distance between H1-persistence diagrams for H×H (blue line)
and H×P (orange line) for the same pairs in (A) (p=2.21×10−59, QFD=1.903).

2.4 Discussions and conclusions

We develop a persistent homology based approach to determine topological features hid-

den in point cloud data representing single cell protein abundances measured in cytometry

data. In particular, we characterize the number of connected components or H0, and the

number of holes or H1 in our persistence calculations, and show that our approach is able to

determine systematic shape differences in the cytometry data for CD8+ T cells obtained from

healthy individuals and COVID-19 patients. Therefore, the approach is able to successfully

determine systematic shape differences that exist in the presence of batch effect noise and

donor-donor variations in the cytometry data. Furthermore, our approach does not use data

transformations (e.g., arc-sinh transformation) or any ad-hoc subtype gating to determine
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these systematic differences, thus we expect persistent homology based approaches will be

especially useful in identifying high-dimensional structural trends hidden in cytometry data.

We determine structural changes in T-bet and Eomes abundances in single CD8+ T

cells in COVID-19 patients that can be summarized as downregulation. This result is non-

intuitive as previous findings show that T-bet and Eomes protein abundances are highest in

effector CD8+ T cells, which are induced in response to acute infections, suggesting T-bet

and Eomes expressions should be upregulated [  65 ,  68 ]. The clinical implications of this re-

sult are unclear. Mathew et al. [  46 ] describe a immunophenotype in which Eomes+, T-bet+,

CD8+ T cells are more abundant in COVID-19 patients who respond poorly to Remdesevir

and NSAIDs, have high levels of IL-6, and have fewer eosinophils. Our analysis identifies that

this immunophenotype (i.e.,Eomes+, T-bet+, CD8+ T cells) is systematically less prevalent

in COVID-19 patients than in healthy controls. The ability of our approach to identify shape

features in single immune cell PCD without any ‘supervision’ (e.g., specific gating) of the

cytometry data shows that it can potentially determine more complicated immunologically

relevant shape features. Furthermore, our approach inferred finer geometric structures from

PCDs in B cells for proteins CRCX5, PD-1, and TCF-1 which helped distinguish COVID-19

patients from healthy individuals. These proteins are associated with cell migration, im-

munosuppression, and effector functions in lymphocytes and can potentially provide further

insights into B cell response in COVID-19.

We compare our approach with an existing algorithm FlowSOM which is widely used for

analyzing and visualizing multidimensional cytometry data. Our comparison reveals PCDs

for subtypes of CD8+ T cells in FlowSOM clusters that do not differentiate healthy controls

and COVID-19 patients contain topological features separating the above groups. Therefore,

detecting topological features hidden in the PCDs can provide important biological insights

regarding response of the lymphocytes in COVID-19.

Our approach integrates cellular comparisons with dataset comparisons. First, the clas-

sifier pools all data and determines which proteins are significant in discriminating whether

cells come from healthy controls or COVID-19 patients. In this way, the classifier identifies

a way to compare cellular phenotypes across experimental groups. Next, the computation of

Wasserstein distances for persistence diagrams compares individuals against each other, inte-
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grating cellular phenotypes with donor information (e.g., healthy and COVID-19 patients).

Thus, this approach allows us to automatically identify individuals that are associated with

distinguishing structural features in the point cloud data.

Currently, the limitations are mostly due to the curse of dimensionality that increases the

computational complexity. Since we are computing pairwise distances between datapoints

to obtain the persistence diagram (  2.2.4 Appendix), computation time increases as the di-

mension of data increases. Computational cluster resources that we use currently complete

all computations in about 20 minutes. This is comparable to other data science applications

using large datasets, but this approach can be a barrier to those without access or experience

with computational clusters. Additionally, it is unclear how additional dimensions impact

the statistical properties of the data and interpretability of the results. To expand into many

(i.e. 25) dimensions, computational interpretation and validation tools are necessary.

Available code:

Our current code is available at  https://github.com/soham0209/TopoCytometry  and will

be updated for ease-of-use and performance enhancements.
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2.5 Some additional results

Figure 2.9. Scatter plots demonstrating change in structure of cytometry
data. Transformed scatter plot for HLA-DR/CD38 axes for CD8+ T cell
PCD in a singular (A) healthy donor and (B) COVID-19 patient. This
plot demonstrates the ‘elbow’ found by the authors in [ 46 ]. The x-axis is
asinh(HLA-DR/200) and the y-axis is asinh(CD38/500)
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Figure 2.10. Persistence calculations and comparisons for HLA-DR/CD38
axes for CD8+ T cell PCDs shown in Mathew et. al.[ 46 ] (A) Point cloud
for individual healthy control in HLA-DR/CD38 expression levels. (B) Com-
plete persistence diagram for the healthy control shown in (A). Boxes indicate
zoomed regions for figures (C) and (D); (C) Zoomed in region from (B) of H0
persistence diagram. Box shows area of low density compared to patient per-
sistence diagram; (D) Zoomed in region from (B) of H1 persistence diagram;
(E)-(H) Same as (A)-(D), but for an individual COVID-19 patient. The box
in (G) is more densely populated than the identical box in (C).
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Figure 2.11. Distributions of Wasserstein distances between persistence di-
agrams calculated from 200 pairs of individuals. Distributions of Wasser-
stein distances between (A) H0-persistence diagrams (p = 6.75 × 10−20,
QFD=0.190) and (B) H1-persistence diagrams (p = 4.74×10−24, QFD=0.220)
for CD8+ T cells. Distances between pairs of healthy controls (H × H) and
pairs of a healthy control and a COVID-19 patient (H × P) are overlaid. Per-
sistence diagrams are calculated from point clouds in the T-bet, Eomes, and
Ki-67 axes. This figure plots distributions of 200 randomly selected pairs,
while Figure  2.5 plots distributions of 100 randomly selected pairs.
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Figure 2.12. Distributions of Wasserstein distances between persistence di-
agrams for healthy controls and recovered individuals calculated using 3 most
important proteins for XGBoost classification of CD8+ T cells from healthy
or infected individuals. Distributions of Wasserstein distances between (A)
H0-persistence diagrams (p = 0.131, QFD=0.005) and (B) H1-persistence di-
agrams (p = 0.344, QFD=0.001) for CD8+ T cells. Distances between pairs
of healthy controls (H × H) and pairs of a healthy control and a individual
that recovered from COVID-19 (H × R) are overlaid. Persistence diagrams
are calculated from point clouds in the T-bet, Eomes and Ki-67 axes. p-values
are calculated from a 2-sided KS test.
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Figure 2.13. Distributions of Wasserstein distances between persistence di-
agrams calculated using 3 least important proteins for XGBoost classification
of CD8+ T cells. Distributions of Wasserstein distances between (A) H0-
persistence diagrams (p = 2.75 × 10−8, QFD=0.051) and (B) H1-persistence
diagrams (p = 0.111, QFD=0.022) for CD8+ T cells. Distances between pairs
of healthy controls (H × H) and pairs of a healthy control and a COVID-19
patient (H × P) are overlaid. Persistence diagrams are calculated from point
clouds in the IgD, CD4 and CD20 axes. p-values are calculated from a 2-sided
KS test.
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Figure 2.14. Distributions of Wasserstein distances between persistence di-
agrams calculated using 2 most important proteins for XGBoost classifica-
tion of CD8+ T cells from healthy or infected individuals. Distributions of
Wasserstein distances between (A) H0-persistence diagrams (p = 6.31×10−19,
QFD=0.261) and (B) H1-persistence diagrams (p = 6.31×10−19, QFD=0.276)
for CD8+ T cells. Distances between pairs of healthy controls (H × H) and
pairs of a healthy control and a COVID-19 patient (H × P) are overlaid. Per-
sistence diagrams are calculated from point clouds in the T-bet and Eomes
axes. p-values are calculated from a 2-sided KS test.
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Figure 2.15. Distributions of Wasserstein distances between persistence di-
agrams calculated using 4 most important proteins for XGBoost classifica-
tion of CD8+ T cells from healthy or infected individuals. Distributions of
Wasserstein distances between (A) H0-persistence diagrams (p = 3.35×10−13,
QFD=0.267) and (B) H1-persistence diagrams (p = 3.04×10−14, QFD=0.265)
for CD8+ T cells. Distances between pairs of healthy controls (H × H) and
pairs of a healthy control and a COVID-19 patient (H × P) are overlaid. Per-
sistence diagrams are calculated from point clouds in the T-bet, Eomes, Tox
and TCF-1 axes. p-values are calculated from a 2-sided KS test.
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Figure 2.16. Distributions of Wasserstein distances between persistence dia-
grams calculated using 3 most important proteins for XGBoost classification of
recovered CD8+ T cells. Distributions of Wasserstein distances between (A)
H0-persistence diagrams (p = 0.908, QFD=0.002) and (B) H1-persistence di-
agrams (p = 0.994, QFD=0.001) for CD8+ T cell. Distances between pairs
of healthy controls (H × H) and pairs of a healthy control and a individual
that recovered from COVID-19 (H × R) are overlaid. Persistence diagrams are
calculated from point clouds in the CD45RA, Eomes and TCF-1 axes. These
3 proteins are the best distinguishing features for the XGBoost classifier to
distinguish cells from healthy controls from those from recovered individuals.
p-values are calculated from a 2-sided KS test.

Figure 2.17. Probability distribution function (pdf) of mean abundances of
proteins identified by XGBoost to be important to patient classification in
CD8+ T cells. PDFs for (A) T-bet, (B) Eomes, and (C) Ki-67 for CD8+ T
cell PCDs in each healthy control and COVID-19 patient shown using violin
plots. The thickness of the “violin" denotes the value of the pdf. Data distri-
butions are calculated from the mean protein abundances across all non-naïve
CD8+ T cells for each individual. Red dots represent the mean of the data,
and red lines represent the standard deviation.
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Figure 2.18. Demonstration of persistent homologys ability to capture more
information than change in magnitude of single protein measurements in CD8+
T cells. (A-B) Scatter plot showing the relationship between Wasserstein dis-
tance between H0 and H1 persistence diagrams and the difference in mean
T-bet abundance for CD8+ T cells for random pairs of healthy controls and
COVID-19 patients. Red circles highlight a pair of individuals that generated
a large Wasserstein distance despite a small difference in mean T-bet expres-
sions, which are further analyzed in (C-F). (C-D) Histograms showing the
T-bet expression of non-naïve CD8+ T cells for the healthy control (blue) and
COVID-19 patient (red) from the points circled above in (A-B). (E-F) Scatter
plots showing the T-bet, Eomes, and Ki-67 abundances for the healthy control
(blue) and COVID-19 patient (red) from the points circled in (A-B).
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Figure 2.19. Probability distribution function (pdf) of mean abundances of
proteins identified by XGBoost to be important to patient classification in B
cells. PDFs for (A) CXCR5, (B) PD-1, and (C) TCF-1 in B cells of each
healthy control and COVID-19 patient shown using violin plots. The thickness
of the “violin" denotes the value of the pdf. Data distributions are calculated
from the mean protein abundances across all B cells for each individual. Red
dots represent the mean of the data, and red lines represent the standard
deviation.
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Figure 2.20. Demonstration of persistent homologys ability to capture more
information than change in magnitude of single protein measurements in B
cells. (A-B) Scatter plot showing the relationship between Wasserstein dis-
tance between H0 and H1 persistence diagrams and the difference in mean
PD-1 abundance for B cells for random pairs of healthy controls and COVID-
19 patients. Red circles highlight a pair of individuals that generated a large
Wasserstein distance despite a small difference in mean PD-1 expressions,
which are further analyzed in (C-F). (C-D) Histograms showing the PD-1
expression of non-naïve B cells for the healthy control (blue) and COVID-19
patient (red) from the points circled above in (A-B). (E-F) Scatter plots show-
ing the CXCR5, PD-1, and TCF-1 abundances for the healthy control (blue)
and COVID-19 patient (red) from the points circled in (A-B). Protein expres-
sion axes in (C)-(F) are scaled to asinh(x/150), where x is the expression of
the given protein.
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Figure 2.21. Distributions of Wasserstein distances between persistence dia-
grams calculated using Rips filtration. (A) Shows distributions of Wasser-
stein distance between H0-persistence diagrams for H×H (blue line) and
H×P (orange line) pairs (p=1.20 × 10−4, QFD=0.0575) for CD8+ T cells.
(B) Shows distributions of Wasserstein distance between H1-persistence dia-
grams for H×H (blue line) and H×P (orange line) for the same pairs in (A)
(p=3.73× 10−3, QFD=0.0343).

63



Figure 2.22. Results of FlowSOM analysis for CD8+ T cells. (A) t-SNE
projection of protein expression data for CD8+ T cell PCD in Mathew et
al. Each point represents a cell with 25 protein expressions. Colors represent
15 clusters identified by FlowSOM. Cluster #1 and Cluster #3 are selected
for further topological analysis. (B) Heatmap showing scaled MFI for T-bet,
Eomes, and Ki-67 for each cluster. Each entry in the first three columns is
the MFI scaled by the average MFI of the column. The fourth column shows
p-values determining differential expression of the cluster between healthy con-
trols and COVID-19 patients. Note that Cluster #1 has p > 0.05 and Cluster
#3 has p < 0.05. (C-D) Scatter plots showing the T-bet, Eomes, and Ki-67
abundances for all healthy controls (blue) and COVID-19 patients (red) from
the cells in Cluster #1 (C) and Cluster #3 (D). Black circles in (C) indicate
regions of single cell protein expressions which contribute to the differences in
the PCD structure for the FlowSOM clusters. Axes are scaled to asinh(x/150),
where x is the expression of the given protein.
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Figure 2.23. Distributions of Wasserstein distances between persistence di-
agrams from a FlowSOM cluster (Cluster #3) that is differentially expressed
between healthy controls and COVID-19 patients. (A) Shows distributions
of Wasserstein distance between H0-persistence diagrams for H×H (blue line)
and H×P (orange line) pairs (p=2.20 × 10−59, QFD=1.604). (B) Shows dis-
tributions of Wasserstein distance between H1-persistence diagrams for H×H
(blue line) and H×P (orange line) for the same pairs in (A) (p=2.21× 10−59,
QFD=1.573).
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Figure 2.24. Results of FlowSOM analysis for B cells. (A) t-SNE projection
of protein expression data for B cell PCD in Mathew et al. Each point repre-
sents a cell with 25 protein expressions. Colors represent 15 clusters identified
by FlowSOM. Cluster #2 and Cluster #4 are selected for further topological
analysis. (B) Heatmap showing scaled MFI for CXCR5, PD-1, and TCF-1 for
each cluster. Each entry in the first three columns is the MFI scaled by the
average MFI of the column. The fourth column shows p-values determining
differential expression of the cluster between healthy controls and COVID-19
patients. Note that Cluster #2 has p > 0.05 and Cluster #4 has p < 0.05.
(C-D) Scatter plots showing the CXCR5, PD-1, and TCF-1 abundances for
all healthy controls (blue) and COVID-19 patients (red) from the cells in Clus-
ter #2 (C) and Cluster #4 (D). Axes are scaled to asinh(x/150), where x is
the expression of the given protein.
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3. LEARNING WITH TDA - DELVING DEEPER

Graph classification is an important task in machine learning. Applications range from

classifying social networks to chemical compounds. These applications require global as well

as local topological information of a graph to achieve high performance. Message passing

graph neural networks (GNNs) are an effective and popular method to achieve this task.

These existing methods crucially lack quantifiable information about the relative promi-

nence of cycles and connected component to make predictions. Extended persistence is an

unsupervised technique from topological data analysis that provides this information through

a generalization of hierarchical clustering on graphs. It obtains both 1- and 0-dimensional

multiscale global homological information.

Existing end-to-end filtration learning methods [  73 ,  74 ] that use persistent homology do

not compute extended persistence because of its high computational cost at scale. A general

matrix reduction approach [  75 ] has time complexity of O((n + m)ω) for graphs with n nodes

and m edges where ω is the exponent for matrix multiplication. We address this by improv-

ing upon the work of [ 76 ] and introducing a link-cut tree data structure and a parallelism

for computation. This allows for O(log n) update and query operations on a spanning forest

with n nodes. In addition to that in this chapter we focus on shape analysis, with an em-

phasis on non-manifold mesh classification. Shape analysis is a fundamental and challenging

field that plays a pivotal role in computer vision, computer graphics, and geometric mod-

eling. Understanding and processing the geometrical and topological properties of objects

or shapes are essential for a wide range of applications, such as object recognition, segmen-

tation, registration, and animation. The representation of shapes can vary, ranging from

traditional Euclidean models to more complex data structures like meshes and point clouds.

However, traditional methods based on graph-based abstractions may not fully capture the

rich geometric and topological characteristics of complex shapes.

Recently, topological deep learning (TDL) has emerged as a powerful approach to address

the limitations of conventional shape analysis techniques. TDL introduces a new paradigm

that leverages higher-order network domains, such as simplicial complexes, cell complexes,

and hypergraphs, to model and learn from shape data [  77 – 80 ]. These higher-order repre-
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sentations enable the extraction of more global and topological information, allowing for a

more expressive and flexible representation of shapes compared to graph-based methods.

In the context of shape analysis, TDL offers exciting opportunities to advance the state-

of-the-art in mesh processing. TDL techniques help to capture complex topological relation-

ships, enabling the discovery of novel shape features that were challenging to obtain with

traditional approaches. Most traditional approaches [ 81 – 83 ] also assume that meshes are

manifolds and use features that rely on the mesh being a manifold.

In this chapter,

1. We introduce extended persistence and its cycle representatives into the supervised

learning framework in an end-to-end differentiable manner, for graph classification.

2. For a graph with m edges and n vertices, we introduce the link-cut tree data structure

into the computation of extended persistence, resulting in an O(m log n) depth and

O(mn) work parallel algorithm, achieving more than 60x speedup over the state-of-

the-art for extended persistence computation, making extended persistence amenable

for machine learning tasks.

3. We first propose a new architecture Combinatorial Complex Isomorphism Network

(CCIN) which uses higher order networks [  84 ] and demonstrate its use on mesh-related

tasks, with a particular focus on “non-manifold” mesh classification. We use vertex,

edge and face features of the meshes which do not depend on mesh being a mani-

fold with the CCIN architecture to achieve comparable accuracy with state-of-the-art

models.

4. Further, we provide experimental results on non-manifold meshes which show that

CCIN along with these features also achieves high accuracy on non-manifold meshes.

3.1 Background on Extended Persistence

Original persistence algorithm, proposed by Edelsbrunner et al. in [ 85 ] recognizes the

loops in the graph as being persistent forever and the same thing happens for the origi-

nal connected components in the input graph. Furthermore, it fails to detect the upward
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Figure 3.1. Extended persistence diagram w.r.t. a vertex filter function
f on a graph. The sequence of sublevel and superlevel graphs shown on the
bottom of the figure. The corresponding bars are displayed under the sequence
- the black bar represents the connected component of the graph, the blue one
represents its upward branch, the red one represents its downward branch and
the green one represents its loop. The extended persistence diagram given by
the bars is shown on the top-right. Notice that all the bars are finite.

branching (with respect to f) since they do not create connected components when they

appear in the filtration. One can use special methods to handle the infinite intervals or

can simply ignore them losing topological information in the process [ 32 ,  73 ,  86 ,  87 ]. As

a remedy, Extended persistence(PHext) [  75 ] takes an extended filtration FfG
as input,

which is obtained by concatenating lower star filtration of the graph G and an upper star

filtration of the coned space of G induced by a vertex filtration function fG. Concatenation

here simply means concatenating two filtration sequences. More specifically, let α be an

additional vertex for the graph G. Define an extended function fG∪{α} whose value is equal

to fG on all vertices except α on which it has a value larger than any other vertices. The

cone of a vertex u is given by the edge (α, u) and the cone of an edge (u, v) is given by the

triangle (α, u, v). As a result, in extended persistence all 0- and 1-dimensional features die

(bars are finite; see [  75 ] for details). Four different persistence pairings or bars result from

PHext. The barcode Blow
0 results from the vertex-edge pairs within the lower filtration, the
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barcode Bup
0 results from the vertex-edge pairs within the upper filtration, the barcode Bext

0

results from the vertex-vertex pairs that represent the persistence of connected components

born in the lower filtration and die in the upper filtration, and the barcode Bext
1 results from

edge-edge pairs that represent the persistence of cycles that are born in the lower filtration

and die in the upper filtration. The barcodes Blow
0 , Bup

0 , and Bext
0 represent persistence in

the 0th homology H0. The barcode Bext
1 represents persistence in the 1st homology H1. In

the TDA literature, Blow
0 , Bup

0 , Bext
0 , and Bext

1 also go by the names of Ord0, Rel1, Ext0, Ext1

respectively.

{ }

{ }

{ LSTM}

Figure 3.2. The extended persistence architecture (bars+cycles) for graph
representation learning. The negative log likelihood (NLL) loss is used for
supervised classification. The yellow arrow denotes extended persistence com-
putation, which can compute both barcodes and cycle representatives.

3.2 Extended Persistence as Readout Layer

Our method as illustrated in Figure  3.2 introduces extended persistence as the readout

function for graph classification. In our method, an upper and lower filtration, represented

by a filtration function, coincides with a set of scalar vertex representations from standard

message passing GNNs. This filtration function is thus learnable by message passing graph

neural network (MPGNN) convolutional layers. Learning filtrations was originally intro-

duced in [  14 ] with standard persistence. In [  88 ], authors show that arbitrary cycle lengths

are hard to distinguish by both standard GNN readout functions as well as standard per-
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sistence due to the lack of explicitly tracking paths or cycles. Extended persistence, on

the other hand, explicitly computes learned displacements on cycles of some cycle basis as

determined by the filtration function as well as explicit cycle representatives.

We represent the map from graphs to learnable filtrations by any message passing GNN

layer such as GIN, GCN or GraphSAGE followed by a multi layer perceptron (MLP) as

a Jumping Knowledge (JK) [ 89 ] layer. The JK layer with concatenation is used since we

want to preserve the higher frequencies from the earlier layers [  90 ]. Our experiments demon-

strate that fewer MPGNN layers perform better than more MPGNN layers. This prevents

oversmoothing [ 91 ,  92 ], which is exacerbated by the necessity of scalar representations.

The readout function, the function that consolidates a filtration into a global graph

representation, is determined by computing four types of bars for the extended persistence

on the concatenation of the lower and upper filtrations followed by compositions with four

rational hat functions r̂ as used in [  14 ,  73 ,  74 ]. To each of the four types of bars in barcode

B, we apply the hat function r̂ to obtain a k-dimensional vector. The function r̂ is defined

as:

r̂(B) :=
∑

p∈B

1
1 + |p− ci|1

− 1
1 +

∣∣∣|ri| − |p− ci|1
∣∣∣


k

i=1

(3.1)

where ri ∈ R and ci ∈ R2 are learnable parameters.

The intent of Equation  3.1 is to have controlled gradients. It is derived from a monotonic

function, see [  73 ]. This representation is then passed through MLP layers followed by a

softmax to obtain prediction probability vector p̂G for each graph G. The negative log

likelihood loss from standard graph classification is then used on these vectors p̂G.

3.3 Efficient Computation of Extended Persistence

The computation for extended persistence can be reduced to applying a matrix reduction

algorithm to a coned matrix as detailed in [  51 ]. In [  76 ], this computation was found to be

equivalent to a graph algorithm, which we improve upon (See Algorithm  D ). We employ the

0-dimensional persistence algorithm, PH0, using the union find data structure in O(m log n)

time and O(n) memory for the upper and lower filtrations in lines 1 and 2. See Section  3.3.1 
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for a description of this algorithm. These two lines generate the vertex-edge pairs for Blow
0

and Bup
0 . We then measure the minimum lower filtration value and maximum upper filtration

value of each vertex in the union-find data structure found from the PH0 algorithm as in

lines 3 and 4 using the roots of the union-find data structure Uup formed by the algorithm.

These produce the vertex-vertex pairs in Bext
0 .

Algorithm D Efficient Computation of PHext

Input: G = (V, E), Flow: lower filtration function, Fup: upper filtration function
Output: Blow

0 ,Bup
0 ,Bext

0 ,Bext
1 , C: cycle reps.

1: Blow
0 , Elow

pos , Elow
neg , Ulow ← PH0(G, Flow, lower)

2: Bup
0 Eup

pos, Eup
neg, Uup ← PH0(G, Fup, upper)

3: roots← {Get_Union-Find_Roots(Uup, v), v ∈ V }
4: Bext

0 ← {min(roots[v]), max(roots[v]), v ∈ V }
5: T← {} empty link-cut tree; Bext

1 ← {{}}; C ← {} empty list of cycle representatives
/* Eup

neg is sorted by PH0 in decreasing order of Fup values (desc. filtr. values)*/
6: for e = (u, v) ∈ Eup

neg do
7: T← Link(T, e, {w}) /* w /∈ T, w = u or v∗/
8: /* Eup

pos is sorted by PH0 with respect to Fup (descending filtration values) */
9: for e = (u, v) ∈ Eup

pos do
10: lca← Lca(T, u, v) /*Get the least common ancestor of u and v to form a cycle*/
11: P1 ← ListRank(Path(u, lca)); P2 ← ListRank(Path(v, lca))
12: C ← C t {Fup(P1) t Fup(Reverse(P2))} /*Keep track of the scalar activations on

cycle*/
13: (u′, v′) ← ArgmaxReduceCycle(T, u, v, lca) /* Find max edge on cycle using

Flow*/
14: T1, T2 ← Cut(T,(u′, v′)); T← Link(T1,(u, v), T2)
15: Bext

1 ← Bext
1 ∪ {(Flow(u′, v′), Fup(u, v))}

16: return (Blow
0 ,Bup

0 ,Bext
0 ,Bext

1 , C)

For computing edge-edge pairs in Bext
1 with cycle representatives, we implement the

algorithm in [  76 ] with a link-cut tree data structure that facilitates deleting and inserting

edges in a spanning tree and employ a parallel algorithm to enumerate the edges in a cycle.

We collect the max spanning forest T of negative edges, edges that join components, from

the upper filtration by repeatedly applying the link operation n − 1 times in lines 6-8 in

decreasing order of Fup values and sort the list of the remaining positive edges, which create

cycles in line 9. Then, for each positive edge e = (u, v), in order of the upper filtration (line

10), we find the least common ancestor (lca) of u and v in the spanning forest T we are
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maintaining as in line 11. Next, we apply the parallel primitive [  93 ] of list ranking twice,

once on the path u to lca and the other on the path v to lca in line 12. List ranking allows a

list to populate an array in parallel in logarithmic time. The tensor concatenation of the two

arrays is appended to a list of cycle representatives as in line 13. This is so that the cycle

maintains order from u to v. We then apply an ArgMaxReduceCycle(T, u, v, lca) which

finds the edge having a maximum filtration value in the lower filtration on it over the cycle

formed by u, v and lca. We then cut the spanning forest at the edge (u′, v′), forming two

forests as in line 15. These two forests are then linked together at (u, v) as in line 15. The

bar (Flow(u′, v′), Fup(u, v)) is now found and added to the multiset Bext
1 . The final output of

the algorithm is four types of bars and a list of cycle representatives: ((Blow
0 ,Bup

0 ,Bext
0 ,Bext

1 ),

C).

3.3.1 The PH0 Algorithm

Algorithm  E is the union-find algorithm that computes 0 dimensional persistent homol-

ogy. It starts with n nodes, 0 edges, and a union-find data structure on n nodes. The

edges are sorted in ascending order if a lower filtration function is given. Otherwise, the

edges are sorted in descending order. It then proceeds to connect nearest neighbor clusters,

or connected components, in a sequential fashion by introducing edges in order one at a

time. Two connected components are nearest to each other if they have two nodes closer

to each other than any other pair of connected components. This is achieved by iterating

through the edges in sorted order and merging the connected components that they connect.

When given a lower filtration function, when a connected component merges with another

connected component, the connected component with the larger connected component root

value has its root filtration function value a birth time. This birth time is paired with the

current edge’s filtration value and form a birth death pair. The smaller of the two connected

component root values is used as birth time when an upper filtration function is given. The

two connected components are subsequently merged in a union-find data structure by the

Link operation.
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Algorithm E PH0 Algorithm
Input: G = (V, E), F : filtration function, order: flag to denote an upper or lower
filtration
Output: B0, Epos, Eneg, U : H0 bars, pos. edges, neg. edges, and union-find data struc-
ture

1: U ← V /* a union-find data structure populated by n unlinked nodes*/
2: B0 ← {} /*A multiset */
3: if order = lower then
4: SORTincr(E) /*increasing w.r.t. F;*/
5: else
6: SORTdecr(E) /*decreasing w.r.t F;*/
7: for e = (u, v) ∈ E do
8: rootu ← U.find(u)
9: rootv ← U.find(v)

10: if rootu = rootv then
11: Epos ← Epos ∪ {e}
12: else
13: Eneg ← Eneg ∪ {e}
14: if order = lower then
15: b← max(F (rootu), F (rootv)
16: else
17: b← min(F (rootu), F (rootv))
18: d← F (e)
19: B0 ← B0 ∪ {{(b, d)}}
20: U.link(rootu, rootv)
21: return (B0, Epos, Eneg, U)

3.4 Graph Classification Experiments

We perform experiments of our method on standard GNN datasets. We also perform

timing experiments for our extended persistence algorithm, showing impressive scaling. Fi-

nally, we investigate cases where experimentally our method distinguishes graphs that other

methods cannot, demonstrating how our method learns to surpass the WL[1] bound.
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3.4.1 Experimental Setup

We perform experiments on a 48 core Intel Xeon Gold CPU machine with 1 TB DRAM

equipped with a Quadro RTX 6000 NVIDIA GPU with 24 GB of GPU DRAM. For all

baseline comparisons, the hyperparameters were set to their repository’s standard values.

In particular, all training were stopped at 100 epochs using a learning rate of 0.01 with the

Adam [  94 ] optimizer. Vertex attributes were used along with vertex degree information as

initial vertex labels if offered by the dataset. We perform a fair performance evaluation by

performing standard 10-fold cross validation on our datasets. The lowest validation loss is

used to determined a test score on a test partition. An average±std. deviation test score

over all partitions determines the final evaluation score.

The specific layers of our architecture for the neural network for our filtration function

fG is given by one or two GIN convolutional layers, with the number of layers as determined

by an ablation study.

Table 3.1. Average accuracy ± std. dev. of our approach (GEFL) with and
without explicit cycle representations, Graph Filtration Learning (GFL), GIN,
GCN and TOGL and a readout ablation study on the four TUDatasets: DD,
PROTEINS, IMDB-MULTI and MUTAG. Numbers in bold are highest
in performance; bold-gray numbers show the second highest. The symbol −
denotes that the dataset was not compatible with software at the time.

Model DD PROTEINS IMDB-MULTI MUTAG
GFL 75.2 ± 3.5 73.0 ± 3.0 46.7 ± 5.0 87.2 ± 4.6

Ours+Bars 75.5 ± 2.9 74.9 ± 4.1 50.3 ± 4.7 88.3 ± 7.1
Ours+bars+cycles 75.9 ± 2.0 75.2 ± 4.1 51.0 ± 4.6 86.8 ± 7.1

GIN 72.6± 4.2 66.5 ± 3.8 49.8± 3.0 84.6± 7.9
GCN 72.7± 1.6 59.6± 0.2 50.0 ± 2.0 73.9± 9.3

TOGL 74.7 ± 2.4 66.5 ± 2.5 44.7 ± 6.5 -
Filt.+SUM 75.0 ± 3.2 73.5± 2.8 48.0 ± 2.9 86.7± 8.0
Filt.+MAX 67.6± 3.9 68.6± 4.3 45.5 ± 3.1 70.3± 5.4
Filt.+AVG 69.5± 2.9 67.2± 4.2 46.7 ± 3.8 81.4± 7.9
Filt.+SORT 76.9± 2.6 72.6 ± 4.6 49.0± 3.6 85.6± 9.2
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3.4.2 Performance on Real World and Synthetic Datasets

We perform experiments with the TUDatasets [ 95 ], a standard GNN benchmark. We

compare with WL[1] bounded GNNs (GIN, GCN) from the PyTorch Geometric [  96 ,  97 ]

benchmark baseline commonly used in practice. We also compare with existing topology

based methods TOGL [  74 ] and GFL [  14 ]. We also perform an ablation study on the readout

function, comparing extended persistence as the readout function with the SUM, AVERAGE,

MAX, SORT, and SET2SET [  98 ] readout functions. The hyper parameter k is set to the

10th percentile of all datasets when sorting for the top-k nodes activations. We do not

compare with [  99 ] since its code is not available online. The performance numbers are

listed in Table  3.1 . We are able to improve upon other approaches for almost all cases.

The real world datasets include DD, MUTAG, PROTEINS and IMDB-MULTI. DD,

PROTEINS, and MUTAG are molecular biology datasets, which emphasize cycles, while

IMDB-MULTI is a social network, which emphasize cliques and their connections. We

use accuracy as our performance score since it is the standard for the TU datasets. In this

thesis, we report experimental results that were performed by Soham Mukherjee. The full

experimental results are available in [  28 ].

3.5 Topological Deep Learning for Shape Classification

Topological Deep Learning (TDL) [  84 ] is an emerging field that extends the use of graphs,

encompassing concepts like simplicial complexes, cell complexes, and hypergraphs, to glean

more comprehensive information from data. Central to TDL are deep learning models tai-

lored to data residing on these diverse topological domains. By transcending the confines of

binary-relations-only graph abstractions, TDL enables the analysis of higher-order network

data, effectively capturing relationships among multiple entities.

Topological Neural Networks (TNNs) are deep learning architectures that extract knowl-

edge from data associated with topological domains such as simplicial/cell complexes and

hypergraphs. A TNN, like a GNN, is comprised of stacked layers that transform data into

a series of features. In this paper we define a new TNN on combinatorial complexes, a

topological domain introduced in [  84 ] that extends hypergraphs and cell complexes.
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The concept of Combinatorial Complexes (CCs) draws inspiration from various notions

in geometric topology [  100 – 102 ]. CCs offer a novel perspective that bridges the gap between

simplicial/cell complexes and hypergraphs, as discussed in [ 84 ]. In essence, CCs provide a

unified framework that captures the essential features of these structures while accommo-

dating their variations.

The motivation behind introducing CCs is to establish a more flexible and versatile

structure that can handle a wide range of complex relationships in data. While simplicial

complexes and cell complexes are well-suited for certain types of data, they may fall short

in representing relationships that are not strictly hierarchical or possess missing elements.

On the other hand, hypergraphs offer a more general representation, but they might lack

the hierarchical aspect of cell complexes. CCs, by encompassing these perspectives, create a

holistic framework that can capture both hierarchical and non-hierarchical relationships in

data.

We will give a brief introduction to Combinatorial Complex and Tensor Diagrams. We

refer the reader to [ 84 ] for a detailed description of these concepts.

3.5.1 Combinatorial Complexes

This section reviews combinatorial complexes (CCs) [  103 ], a class of topological domains

that generalizes graphs, simplicial complexes, cell complexes, and hypergraphs.

Combinatorial Complexes offer several structural advantages. They serve as a unifying

framework for higher-order networks, enabling the study and modeling of complex systems

within a common framework. This unification is valuable for understanding the relationships

between different types of higher-order networks, leading to insights into the underlying struc-

ture and behavior of complex systems. Furthermore, CCs provide flexibility in representing

higher-order structures and conducting fine-grained message passing, making them more

versatile than other higher-order networks and traditional graphs. This flexibility allows

for nuanced analysis of topological properties and facilitates message passing of topological

features in deep learning models, enhancing their applicability in various contexts.
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Additionally, CCs provide high level of flexibility modeling relations among relations. In

cases where constructing meaningful relations is challenging due to limited data support, CCs

can accommodate arbitrary set-type relations, removing constraints on permissible relations.

This flexibility is particularly advantageous in applications that require the consideration of

hierarchical relations among higher-order structures, enabling the simultaneous examination

of local and global features.

Definition 3.5.1 (CC). A combinatorial complex (CC) is a triple (V ,X , rk) consisting

of a set V, a subset X of P(V)\{∅}, and a function rk : X → N with the following properties:

1. For all v ∈ V, {s} ∈ X .

2. The function rk is order-preserving, meaning that if x, y ∈ X satisfy x ⊆ y, then

rk(x) ≤ rk(y).

Elements of V are referred to as vertices, elements of X are known as relations or cells,

and rk is denoted as the rank function of the CC.

In simpler terms, a CC can be thought of as a generalization of both simplicial complexes

and hypergraphs. It allows for missing elements within cells, offering greater flexibility than

traditional simplicial complexes. Moreover, CCs maintain the hierarchical nature of cell

complexes, providing a more structured representation compared to hypergraphs.

3.5.2 Incidence in a Combinatorial Complex (CC)

Definition 3.5.2 (Down/up-incidence neighborhood functions [  84 ]). Let (S,X , rk) be a

Combinatorial Complex (CC). Two cells, x and y in X , are called ‘incident’ if either x ( y

or y ( x. In particular, the “down-incidence neighborhood function” N↘(x) of a cell x ∈ X

is defined as the set:

N↘(x) = {y ∈ X | y ( x}

Similarly, the “up-incidence neighborhood function” N↗(x) of cell x is defined as the set:

N↗(x) = {y ∈ X | x ( y}
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Figure 3.3. A combinatorial complex CC. The 0 cells are denoted by Ci.
Higher order cells are represented by color schemes.

Definition 3.5.3 (k-down/up incidence neighborhood functions [ 84 ]). For any k ∈ N, the

“k-down incidence neighborhood function” N↘,k(x) of a cell x ∈ X is defined as the set:

N↘,k(x) = {y ∈ X | y ( x, and rk(y) = rk(x)− k}

The “k-up incidence neighborhood function” N↗,k(x) of cell x is defined as the set:

N↗,k(x) = {y ∈ X | y ( x, and rk(y) = rk(x) + k}

Definition 3.5.4 (Incidence matrix [ 84 ]). For any r, k ∈ Z≥0 with 0 ≤ r < k ≤ dim(X ), the

“(r, k)-incidence matrix” Br,k between X r and X k is defined as a binary matrix. The (i, j)-th

entry [Br,k]ij equals one if xr
i is incident to xk

j and zero otherwise.
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3.5.3 Adjacency in a Cell Complex (CC)

Definition 3.5.5 ((Co)adjacency neighborhood functions [  84 ]). Let (S,X , rk) be a Combi-

natorial Complex (CC). The “adjacency neighborhood function” Na(x) of a cell x ∈ X is

defined as the set of cells for which there exists another cell z ∈ X with rank rk(z) > rk(x)

such that both x and the other cell y are subsets of z:

Na(x) = {y ∈ X |rk(y) = rk(x) and ∃z ∈ X with

rk(z) > rk(x) such that x, y ( z}

The “coadjacency neighborhood function” Nco(x) of cell x is defined as the set of cells for

which there exists another cell z ∈ X with rank rk(z) < rk(x) such that both z is a proper

subset of x and z is a proper subset of y:

Nco(x) = {y ∈ X |rk(y) = rk(x) and ∃z ∈ X with

rk(z) < rk(x) such that z ( y and z ( x}

Here, a cell z that satisfies the conditions of either Na(x) or Nco(x) is referred to as a

“bridge cell.”

Definition 3.5.6 (k-(co)adjacency neighborhood functions [ 84 ]). For any k ∈ N, the “k-

adjacency neighborhood function” Na,k(x) of a cell x ∈ X is defined as the set of cells for

which there exists another cell z ∈ X with rank rk(z) = rk(x) + k such that both x and y are

subsets of z:

Na,k(x) = {y ∈ X |rk(y) = rk(x) and ∃z ∈ X with

rk(z) = rk(x) + k such that x, y ( z}
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Figure 3.4. Example boundary matrix defined over a CC.

The “k-coadjacency neighborhood function” Nco,k(x) of cell x is defined as the set of cells

for which there exists another cell z ∈ X with rank rk(z) = rk(x)− k such that z is a proper

subset of both y and x:

Nco,k(x) = {y ∈ X |rk(y) = rk(x) and ∃z ∈ X with

rk(z) = rk(x)− k such that z ( y and z ( x}

Definition 3.5.7 (Adjacency and Coadjacency matrices [ 84 ]). For any r ∈ Z≥0 and k ∈ Z>0

with 0 ≤ r < r + k ≤ dim(X ), the “(r, k)-adjacency matrix” Ar,k among the cells of X r with

respect to the cells of X k is defined as a binary matrix. The (i, j)-th entry [Ar,k]ij equals one

if xr
i is k-adjacent to xr

j and zero otherwise.

For any r ∈ Z≥0 and k ∈ N with 0 ≤ r−k < r ≤ dim(X ), the “(r, k)-coadjacency matrix”

coAr,k among the cells of X r with respect to the cells of X k is defined as a binary matrix.

The (i, j)-th entry [coAr,k]ij has a value of 1 if xr
i is k-coadjacent to xr

j and 0 otherwise.
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3.5.4 Tensor Diagrams

In contrast to traditional graphs, which primarily deal with signals associated with nodes

and edges, Topological Neural Networks (TNNs) encompass a more diverse set of signals,

including higher-order relationships. Consequently, when constructing a TNN that incorpo-

rates these higher-order signals, the process involves assembling a multitude of interconnected

sub-networks. This complexity arises from the need to account for a significant number of

cochains within the TNN structure.

To address this complexity and aid in the comprehension of TNN architectures, we in-

troduce the concept of tensor diagrams. Tensor diagrams serve as a visual and diagramatic

notation for representing TNNs. These diagrams provide a graphical abstraction that illus-

trates the flow of various signals on the complex. Specifically, a tensor diagram portrays a

TNN operating on a topological domain through the use of a directed graph. This directed

graph illustrates how the different elements within the TNN, such as nodes, edges and faces,

interact with each other to process the signals. In a tensor diagram, the signals follow a

directional flow, moving from source nodes to target nodes. This flow of signals mirrors the

propagation of information within the TNN.

Figure 3.5. Elementary tensor diagrams. (a) Tensor diagram of the push-
forward operator (b) Tensor diagram of the merge operator (c) Tensor diagram
of the split operator.
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3.6 Combinatorial Complex Isomorphism Networks (CCINs)

Combinatorial Complex Isomorphism Networks (CCINs) are constructed using a frame-

work based on three fundamental tensor diagrams: merge, split, and push-forward. These

tensor diagrams are the building blocks that enable the creation of CCINs for various appli-

cations.

To comprehend Combinatorial Complex Isomorphism Networks (CCINs), let’s delve into

three fundamental tensor operations: push-forward, merge nodes, and split nodes. These

operations serve as the foundational elements for constructing CCINs using tensor diagrams.

3.6.1 Push-Forward Operator

The core of CCINs lies in the push-forward operator, often represented by a map, denoted

as G : Ci → Cj. This operator is pivotal for transmitting information from one layer of the

network to the next. In simpler terms, it maps data from a lower-dimensional space to a

higher-dimensional space.

In tensor diagrams, the push-forward operation is depicted as an arrow connecting two

tensor spaces, illustrating the flow of information from input to output.

3.6.2 Merge Node

Consider situations where information originates from different sources or maps. The

merge node offers a means to amalgamate these sources into a unified output. For instance,

if we have two maps, G1 : Ci1 → Cj and G2 : Ci2 → Cj, we can merge their outputs into a

single output space.

In tensor diagrams, the merge node is represented by multiple arrows converging into a

single output space, symbolizing the fusion of information.
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3.6.3 Split Node

Conversely, the split node enables the division of a single source of information into

multiple paths. Suppose we have a map G1 : Cj → Ci1 and another map G2 : Cj → Ci2 ; a

split node will separate the input into two distinct streams based on these maps.

In tensor diagrams, a split node is depicted as a single input branching into multiple

paths, illustrating how data diverges.

3.6.4 Elementary Tensor Operations

Collectively, these three operationspush-forward, merge nodes, and split nodesare referred

to as elementary tensor operations. They serve as the fundamental tools for constructing

complex CCINs. Think of them as the building blocks of CCIN construction. By arranging

and connecting these operations, we can create intricate neural network architectures.

3.6.5 Flexibility in CCIN Design

What’s intriguing is that with just these three elementary tensor operations, we can

define a wide range of topological neural networks. For example, we can define convolutional

and attention-based CCINs by specifying the push-forward and merge operators. Beyond

these standard architectures, these operations offer limitless possibilities for creating novel

topological neural networks.

3.6.6 CCIN Architecture

In Figure  3.6 we demonstrate the design of CCIN schematically. Cell features of rank

0, 1 and 2 are passed through an attention layer first. Then we use merge node to merge

messages coming from 0 to 1 cells and 1 to 2 cells respectively. The merged signals are

then again merged through neighborhood matrices (BT
2 and A↓,2). The final classification is

obtained after a mean pooling layer and an MLP. Note that the message passing layer is a
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Figure 3.6. Tensor diagram of CCIN network. In the figure Br denotes
incidence matrix, BT

r denotes transpose of the incidence matrix, L↓,r = BrB
T
r

denotes rth down Laplacian matrix and A↓,r = D↓,r − L↓,r.

generalization of graph isomorphism network (GIN). Specifically, if a message m(r′→r)
y→x travels

from r′ cell x to r cell y through a neighborhood k of x denoted as Nk(x), then

m(r′→r)
y→x = MNk(x)

(
ht,(r)

x , ht,(r′)
y , Θt

)
(3.2)

In Equation  3.6.6 , ht,(r)
x , ht,(r′)

y are features and Θt are learnable parameters. MNk
are com-

monly used non-linearity composed with MLP. Then CCIN updates its node represntations

as

ht,(r)
x = MLP (t)

(
(1 + ε(t)) · ht−1,(r)

x + AGGNk∈N m(r′→r)
x

)
(3.3)

In Equation  3.6.6 , εt is a trainable parameter at layer t and AGG is commonly used per-

mutation invariant aggregate operation such as sum, max, mean etc.
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3.7 Experiments on Noisy and Non-manifold Dataset

We use the flexibility offered by CCINs on noisy meshes which may or may not be

manifolds. The existing approaches [  81 ,  82 ,  104 ] assume that meshes are manifolds and

derive mesh features based on this assumption. However, we use features that do not depend

on the ‘manifoldness’ of the mesh with CCIN architecture and obtain comparable results to

state-of-the-art models. To the best of our knowledge, this is one of the first works to deal

with non-manifold meshes. Further, we also present results on how well our model performs

in a transfer learning framework where the model is trained on manifold mesh data and is

evaluated on noisy test data which violates the manifold condition. We observe that the

model generalizes well.

We provide an overview of the datasets used followed by mesh classification results.

3.7.1 Datasets

For this chapter we use SHREC11 originally made available by [  82 ].

• SHREC11 Classification Dataset. SHREC 2011 [ 105 ] is a dataset containing 600

nonrigid deformed shapes from 30 categories, with 480 shapes in the training set and

120 in the test set. We use this dataset for mesh classification.

3.7.2 Results on Mesh Classification

Table 3.2. Mesh Classification Accuracies on SHREC-11 dataset. CCIN
denotes that the model used vertex, edge and face features.

Model Accuracy

HodgeNet 99.10
PD-MeshNet 99.70
MeshCNN 98.60

CCIN (Ours) 92.70
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In the previous section we introduced CCIN, a new architecture and message passing

scheme for combinatorial complexes. In this section, we demonstrate the use of this archi-

tecture on ‘non-manifold’ and noisy mesh classification.

We used SHREC-11 dataset which is a 30-class mesh dataset. On the vertices of these

meshes we consider the first 15 eigen values of the graph laplacian, vertex positions and

vertex normals as vertex features, edge length as edge feature and face angles, face normal

and face area as face features. The dataset is very small and has 16 training samples per

class. We augment the train data with 30 random rotations of each mesh. We report the

accuracy in Table  3.2 .

We note that the vertex, edge and face features we used do not depend on the fact that

the mesh is a manifold, e.g., each edge need not be shared only by two faces. We see that

the model achieves comparable performance to other state-of-the-art methods with these

features and the CCIN architecture. We perform a series of experiments to test our model

on non-manifold meshes and noisy meshes. Since this is one of the first works to deal with

non-manifold meshes, we provide a comparison of the performance of our model in different

noise ratio and non-manifold ratio settings. We report the results in  3.3 

Table 3.3. Mesh Classification Accuracies on noisy and non-manifold SHREC-11 dataset.

Noise ratio Non-manifold ratio CCIN Accuracy

0.01 0.01 84.17
0.01 0 85.83

0 0.001 92.50
0 0.005 84.17
0 0.01 84.17
0 0.05 80.00

In order to incorporate noise in the meshes, we select a percentage (denoted as noise

ratio) of vertices and perturb their positions by adding uniform noise. For making a mesh

non-manifold, we select a percentage of faces and at these faces, we create a new vertex and

a new face.
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Figure 3.7. Plot of accuracy vs non-manifold ratio.

In Figure  3.7 , we reported the test accuracy on noisy and non-manifold meshes when

the model is trained on noisy and non-manifold meshes. We perform another series of

experiments to test how well our model generalizes. We train the model on non-noisy and

manifold (clean) data and test it on noisy and non-manifold data to test if the learning can

be transferred. We report the results in Table  3.4 

Table 3.4. Mesh Classification Accuracies on noisy and non-manifold
SHREC-11 dataset. CCIN-V refers to the model which uses only vertex fea-
tures. CCIN-Mani denotes that the model is trained on clean (manifold) data
and inference is done on noisy and non-manifold data.

Model Noise ratio Non-manifold ratio Accuracy

CCIN-Mani 0.01 0.01 74.17
CCIN-Mani 0.01 0 90.83
CCIN-Mani 0 0.01 75.83
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3.8 Concluding remarks

In this chapter we introduced extended persistence into the supervised learning frame-

work, bringing in crucial global connected component and cycle measurement information

into the graph representations. We address a fundamental limitation of MPGNNs, which

is their inability to measure cycles lengths. Our method hinges on an efficient algorithm

for computing extended persistence. This is a parallel differentiable algorithm with an

O(m log n) depth O(mn) work complexity and scales impressively over the state-of-the-art.

The speed with which we can compute extended persistence makes it feasible for machine

learning. Furthermore, we have introduced a new architecture CCIN in the realm of TDL.

By performing a series of experiments we have shown its effectiveness on mesh-classification.

Although we have provided empirical results on non-manifold and noisy mesh processsing,

we would like to point out that our framework is general. We hope that this contribution in

the field of TDL will encourage further discussions to find applications in diverse fields, such

as protein-protein interaction networks or drug-protein interaction analyzing social networks,

communication patterns, or collaboration networks.

89



4. EXPLORING GRIL - EXPERIMENTATION AND

IMPLEMENTATION OF A 2-PARAMETER PERSISTENCE

BASED VECTORIZATION

Machine learning models such as Graph Neural Networks (GNNs) [ 106 – 109 ] are well-known

successful tools from the geometric deep learning community. Some recent research has indi-

cated that the representation power of such models can be augmented by infusing topological

information [  12 ,  15 ,  110 ,  111 ]. One way to do that is by applying persistent homology, which

is a powerful tool for characterizing the shape of data, rooted in the theory of algebraic

topology. It has spawned the flourishing area of Topological Data Analysis. The classical

persistent homology, also known as, 1-parameter persistence module, has attracted plenty of

attention from both theory and applications [  51 ,  112 – 114 ].

In essence, a 1-parameter persistence homology captures the evolution of some topological

information within a topological space X along an ascending filtration determined by a scalar

function X → R. It can be losslessly summarized by a complete discrete invariant such as a

persistence diagram, rank invariant or barcode. In recent years, many works have successfully

integrated persistence homology with machine learning models [  12 ,  14 ,  15 ,  23 – 35 ].

To further enhance the capacity of persistent homology, it is natural to consider a more

general multivariate filtration function X → Rd for d ≥ 2 in place of a real valued function,

and represent its topological information by multiparameter persistence modules. How-

ever, the structure of multiparameter persistence modules is much more complicated than

1-parameter persistence modules. In 1-parameter case, the modules are completely charac-

terized by what is called barcode or persistence diagram [ 36 ,  37 ]. Unfortunately, there is no

such discrete complete invariant which can summarize multiparameter persistence modules

completely [  38 ]. Given this limitation, building a useful vector representation from multi-

parameter persistence modules while capturing as much topological information as possible

for machine learning models becomes an important but challenging problem.

To address this challenge, different kinds of vector representations have been proposed

for 2-parameter persistence modules [ 23 ,  24 ,  35 ].

90



All these works are essentially based on the invariant called fibered (sliced) barcodes

[ 115 ].

However, such representations capture as much topological information as determined by

the well-known incomplete summary called rank invariant [ 38 ] which is equivalent to fibered

barcodes.

In this paper, we propose a new vector representation to extend its expressive power in

terms of capturing topological information from a 2-parameter persistence module:

• We introduce Generalized Rank Invariant Landscape (Gril), a new vector representa-

tion encoding richer information beyond fibered barcodes for 2-parameter persistence

modules, based on the idea of generalized rank invariant [ 39 ] and its computation by

zigzag persistence [ 40 ]. The construction of Gril can be viewed as a generalization of

persistence landscape [  16 ,  24 ], hence has more discriminating power.

• We show that this vector representation Gril is 1-Lipschitz stable and differentiable

with respect to the filtration function f , which allows one to build a topological rep-

resentation as a machine learning model.

• We propose an efficient algorithm to compute (Gril), demonstrate its use on synthetic

and benchmark graph datasets, and compare the results with previous vector represen-

tations of 1-parameter and 2-parameter persistence modules. Specifically, we present

results indicating that GNNs may improve when augmented with Gril features for

graph classification task.

4.1 Background

In this section, we start with an overview of single and multiparameter persistence mod-

ules followed by formal definitions of basic concepts. Then we provide a high-level idea of

how to construct our vector representation Gril. For a more comprehensive introduction

to persistence modules, we refer the interested readers to [  51 ,  112 – 114 ].

The standard pipeline of 1-parameter persistence module is as follows: Given a do-

main of interest X (e.g. a topological space, point cloud data, a graph, or a simplicial
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complex) with a scalar function f : X → R, one filters the domain X by the sublevel

sets Xα , {x ∈ X | f(x) ≤ α} along with a continuously increasing threshold α ∈ R.

The collection {Xα}, which is called a filtration, forms an increasing sequence of subspaces

∅ = X−∞ ⊆ Xα1 ⊆ · · · ⊆ X+∞ = X . Along with the filtration, topological features appear,

persist, and disappear over a collection of intervals. We consider pth homology groups Hp(−)

over a field, say Z2 , of the subspaces in this filtration, which results into a sequence of vec-

tor spaces. These vector spaces are connected by inclusion-induced linear maps forming an

algebraic structure 0 = Hp(X−∞)→ Hp(Xα1)→ · · · → Hp(X+∞). (see [  116 ]). This algebraic

structure, known as 1-parameter persistence module induced by f and denoted as M f , can be

uniquely decomposed into a collection of atomic modules called interval modules, which com-

pletely characterizes the topological features in regard to the three behaviors–appearance,

persistence, and disappearance of all p-dimensional cycles. This unique decomposition of a

1-parameter persistence module is commonly summarized as a complete discrete invariant,

persistence diagram [ 85 ] or barcode [ 117 ]. Figure  4.1 (left) shows a filtration of a simplicial

complex that induces a 1-parameter persistence module and its decomposition into bars.

1 2
3 4 ∞H0

H165

K1 K2 K3 K4 K5 K6

0 1 2

1

2

0

Figure 4.1. (left) 1-parameter filtration and bars; (right) a 2-parameter fil-
tration inducing a 2-parameter persistence module whose decomposition is not
shown.

Some problems in practice may demand tracking the topological information in a filtra-

tion that is not necessarily linear. For example, in [  118 ], 2-parameter persistence modules

are shown to be better for classifying hepatic lesions compared to 1-parameter persistence

modules. In [ 27 ,  119 ], a virtual screening system based on 2-parameter persistence modules

are shown to be effective for searching new candidate drugs. In such applications, instead of

studying a sequential filtration filtered by a scalar function, one may study a grid-filtration
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induced by a R2-valued bi-filtration function f : X → R2 with R2 equipped with partial

order u ≤ v : u1 ≤ v1, u2 ≤ v2; see Figure  4.1 (right) for an example of 2-parameter fil-

tration. Following a similar pipeline as the 1-parameter persistence module, one will get a

collection of vector spaces {M f
u}u∈R2 indexed by vectors u = (u1, u2) ∈ R2 and linear maps

{M f
u→v : M f

u → M f
v | u ≤ v ∈ R2} for all comparable u ≤ v. The entire structure M f , in

analogy to the 1-parameter case, is called a 2-parameter persistence module induced from f .

Unlike 1-parameter case, there is no complete discrete invariant like persistence diagrams

or barcodes that can losslessly summarize the whole structure of 2-parameter persistence

modules [  38 ]. A good non-complete invariant for 2-parameter persistence modules should

characterize many non-isomorphic topological features, ideally as many as possible. At the

same time, it should be stable with respect to small perturbations of filtration functions,

which guarantees its important properties of continuity and differentiability for machine

learning models. Therefore, building a good summary in general for 2-parameter persistence

modules which is also applicable to machine learning models is an important and challenging

problem.

We now formally define some of the concepts discussed above.

Definition 4.1.1 (Simplicial Complex). An abstract simplicial complex is a pair (V, Σ) where

V is a finite set and Σ is a collection of non-empty subsets of V such that if σ ∈ Σ and if

τ ⊆ σ then τ ∈ Σ. A topological space |(V, Σ)| can be associated with the simplicial complex

which can be defined using a bijection t : V → {1, 2, . . . , ‖V ‖} as the subspace of R‖V ‖ formed

by the union ⋃
σ∈Σ

h(σ), where h(σ) denotes the convex hull of the set {et(s)}s∈σ, where ei

denotes the standard basis vector in R‖V ‖.

Definition 4.1.2 (Simplicial Filtration). A d-parameter simplicial filtration over Rd for

some d ∈ Z+ is a collection of simplicial complexes {Xu}u∈Rd with inclusion maps Xu ↪−→ Xv

for u ≤ v, that is, u1 ≤ u2 and v1 ≤ v2 where u = (u1, u2) and v = (v1, v2). When d = 2, it

is also called bi-filtration,

Definition 4.1.3 (Persistence Module). A d-parameter Persistence Module is a collection

of vector spaces {Xu}u∈Rd indexed by Rd, together with a collection of linear maps {Mu→v :

Mu →Mv | u ≤ v ∈ Rd} such that Mv→w = Mv→w ◦Mu→v,∀u ≤ v ≤ w.
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Remark 4.1.1. In this paper, we study 1 and 2-parameter persistence modules for d = 1, 2.

Each Mu is the homology vector space of Xu in a simplicial (bi-)filtration. And each Mv→w

is the induced linear map from the inclusion Xu ↪→ Xv.

We now define the notion of an interval in R2. In the definition, we shall make use of

the standard partial order on R2, i.e., u ≤ v if u1 ≤ v1 and u2 ≤ v2 for u = (u1, u2) and

v = (v1, v2).

Definition 4.1.4 (Interval). A connected subset ∅ 6= I ⊆ R2 is an interval if ∀u ≤ v ≤

w, [u ∈ I, w ∈ I] =⇒ [v ∈ I].

We also give the definition of a zigzag filtration and the zigzag persistence module induced

by it as follows:

Definition 4.1.5 (Zigzag filtration). A zigzag filtration is a sequence of simplicial complexes

where both insertions and deletions of simplices are allowed, the possibility of which we

indicate with double arrows:

X0 ↔ X1 ↔ · · · ↔ Xn = X .

Applying homology functor on such a filtration we get a zigzag persistence module that is a

sequence of vector spaces connected either by forward or backward linear maps:

H∗(X0)↔ H∗(X1)↔ · · · ↔ H∗(Xn).

We end this section by providing an overview of some high-level ideas for constructing

our vector representation Gril.

Overview:

Our approach computes a landscape function over the 2-parameter domain and then

vectorizes it. At this high level, this is similar to the approach in [  24 ]. However, the
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landscape function we construct is much more general and thus potentially has the power

of capturing more topological information. In particular, we use the concept of generalized

rank invariant introduced in [  39 ], which indeed generalizes the traditional rank invariant used

in [ 24 ]. As opposed to simple rank invariant which is defined over rectangles, generalized

ranks are defined over their generalizations called intervals. We define it more formally in

section  4.2 below.

One difficulty facing the use of the generalized ranks in TDA was that its efficient com-

putation was not known. Recently, in [ 40 ], the authors showed that generalized ranks for

intervals in 2-parameter persistence modules can be obtained by considering a persistence

module supported on a linear poset induced by the boundary of the interval in question.

However, this linear poset is not totally ordered as in 1-parameter persistence, and thus

gives rise to what is called zigzag persistence [ 120 ] where the inclusions can both be in for-

ward and backward directions unlike traditional 1-parameter persistence where they are only

in forward directions; With this result, computing generalized ranks efficiently boils down to

computing zigzag persistence efficiently. For this purpose, we use a recently discovered fast

zigzag algorithm and its efficient implementation [  121 ] 

1
 .

Our method samples a subset of grid points from the 2-parameter grid spanned by a

given bi-filtration function, and computes the landscape function values (Definition  4.2.1 )

at those points based on generalized ranks. For this, the algorithm considers an expanding

sequence of intervals which we call worms centered at each point p and computes generalized

rank over them to determine the ‘width’ of the maximal worm sustaining a chosen rank.

This maximization is achieved by a binary search over the sequence of worms centering

p; section  4.3 describes this procedure. The widths, thus computed for each sample point,

constitute the landscape function values which become the basis for our vector representation.

4.2 Generalized Rank Invariant Landscape

In this section, we introduce Generalized Rank Invariant Landscape, abbreviated as Gril,

a stable and differentiable vector representation of 2-parameter persistence modules.
1

 ↑  https://github.com/taohou01/fzz 
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Let M = M f be a 2-parameter persistence module induced by a filtration function f .

The restriction of M to an interval I, denoted as M |I , is the collection of vector spaces

{Mu | u ∈ I} along with linear maps {Mu→v | u ≤ v ∈ I)}.

One can define the generalized rank of M |I as the rank of the canonical linear map from

limit lim←−−−M |I to colimit lim−−−→M |I of M |I :

rkM(I) , rank [ lim←−−−M |I → lim−−−→M |I ]

A formal explanation of limit and colimit is beyond the scope of this article; we refer read-

ers to [  122 ] for their definitions and also the construction of the canonical limit-to-colimit

map in category theory. Intuitively, rkM(I) captures the number of independent topolog-

ical features encoded in M with the support over the entire interval I. Specially, when

I = [u, v] , {w ∈ R2 | u ≤ w ≤ v} is a rectangle, lim←−−−M |I = Mu and lim−−−→M |I = Mv. Then

rkM(I) equals the traditional rank of the linear map Mu→v.

Remark 4.2.1. An interesting property of the generalized rank invariant is that its value

over a larger interval is less than or equal to its value over any interval contained inside the

larger interval. Formally, I ⊆ J =⇒ rkM(I) ≥ rkM(J). We implicitly use this monotone

property in the definition of Gril.

The basic idea of Gril is to consider a collection of generalized ranks {rkM(I)}I∈W over

some covering set W on R2, which is called a generalized rank invariant of M over W .

Let p
δ
, {w : ‖p−w‖∞ ≤ δ} be the δ-square centered at p with side 2δ.

For given p ∈ R2, ` ≥ 1, δ > 0, we define an `-worm p `

δ
to be the union over all δ-

squares q
δ

centered at some point q on the off-diagonal line segment p + α · (1,−1) with

|α| ≤ (`− 1)δ. See Figure  4.3 for an illustration.

Formally,

p `

δ
,

⋃
q=p+(α,−α)
|α|≤(l−1)δ

q
δ
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Simplicial Complex with filtration function:

f(v1) = (0, 1) f(v2) = (1, 0) f(e) = (2, 2)

Simplical filtration Persistence module

Compute max worms

for different (p, k, ℓ)

1

1

2

1

p3

p1 p2 p3
ℓ = 1, k = 1

ℓ = 2, k = 1

ℓ = 2, k = 2

ℓ = 3, k = 1
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δ
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∗ ∗

∗
∗
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∗ ∗
∗ ∗ ∗ ∗

∗

∗
∗

∗ ∗
∗ ∗
∗ ∗
∗ ∗

Figure 4.2. The construction starts from a simplicial complex with a bi-
filtration function as shown on the top left. The simplicial complex consists
of two vertices connected by one edge. Based on the bi-filtration, a simplicial
bi-filtration can be defined as shown on the bottom left. On the mid bottom, a
2-parameter persistence module is induced from the above simplicial filtration.
If we check the dimensions of the vector spaces on all points of the plane,
there are 1-dimensional vector spaces on red, blue and light purple regions.
On the L-shaped dark purple region, the vector spaces have dimension 2. For
this 2-parameter persistence module, we calculate λMf (p, k, `) for all tuples
(p, k, `) ∈ P×K×L to get our Gril vector representation. By Definition  4.2.1 

the value λMf (p, k, `) corresponds to the width of the maximal `-worm on
which the generalized rank is at least k. On the bottom right, the interval in
red is the maximal 2-worm for λMf (p1, k = 1, ` = 2). The green interval is the
maximal 2-worm for λMf (p2, k = 2, ` = 2). The yellow square is the maximal
1-worm for λMf (p3, k = 1, ` = 1), and the blue interval is the maximal 3-worm
for λMf (p3, k = 1, ` = 3). Finally, on the top right, we have our Gril vector
representation λMf which is a collection of vectors. Each vector corresponding
to a different ` and k consists of values as the width of maximal worms at each
center point p. As an example, the blue one on the last vector at position p3
has value δ which is the width of the blue worm.

We call p the center point and δ the width of the `-worm p `

δ
. As a special case, when

` = 1, p 1
δ

= p
δ

is just the δ-square with side 2δ.
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We choose W to be a set of Worms defined as follows:

W ,
{
W = p `

δ
| δ > 0, ` ≥ 1, p ∈ R2

}

p1 p2 p3
δ δ δ

p2 + (−δ, δ) p3 + (−δ, δ)

p3 + (δ,−δ)

p3 + (2δ,−2δ)

p3 + (−2δ, 2δ)

p2 + (δ,−δ)

1-worm

2-worm

3-worm

Figure 4.3. Examples of three `-worms with ` = 1, 2, 3.

Now we are ready to define the main construction in this paper which uses the monotone

property of generalized rank mentioned in Remark  4.2.1 .

Definition 4.2.1 (Generalized Rank Invariant Landscape (Gril)). For a persistence module

M , the Generalized Rank Invariant Landscape (Gril) of M is a function λM : R2 × N+ ×

N+ → R defined as

λM(p, k, `) , sup
δ≥0
{rkM( p `

δ
) ≥ k}. (4.1)

We can see from the definition that given a persistence module M , a point p, a rank k

and `, the value of Gril (λM(p, k, `)) is, in essence, the width δ of the "maximal" `-worm

W = p `

δ
centered at p such that the value of the generalized rank over W is greater than

or equal to k. See Figure  4.2 bottom right for some examples of maximal worms.

It turns out that, Gril as an invariant is equivalent to the generalized rank invariant

over W .

Proposition 4.2.1. Gril is equivalent to the generalized rank invariant over W. Here the

equivalence means bijective reconstruction from each other.

98



Proof. Constructing Gril from generalized rank invariant over W is immediate from the

definition of Gril.

On the other direction, for any p, δ, `, the generalized rank rkM( p `

δ
) can be reconstructed

by Gril as follows:

rkM( p `

δ
) = arg max

k
{λ(p, k, `) ≥ δ} (4.2)

It is not hard to check that, this construction, combined with the construction of persistence

landscape, gives a bijective mapping between generalized rank invariants overW and Grils.

See Figure  4.2 for an illustration of the overall pipeline of our construction of λM starting

from a filtration function on a simplicial complex. Figure  4.4 shows the discriminating power

of Gril where we see that Gril can differentiate between shapes that are topologically non-

equivalent.

4.3 Algorithm

We present our algorithm to compute Gril in this section.

In practice, we choose center points p from some finite subset P ⊂ R2, e.g. a finite

uniform grid in R2, and consider k ≤ K, ` ≤ L for some fixed K, L ∈ N+. Then, Gril

{λM(p, k, `)} can be viewed as a vector of dimension |P| ×K × L.

The high-level idea of the algorithm is as follows: Given a bi-filtration function f : X →

R2, for each triple (p, k, `) ∈ P ×K×L, we compute λMf (p, k, `) = supδ≥0{rkMf ( p `

δ
) ≥ k}.

In essence, we need to compute the maximum width over worms on which the generalized

rank is at least k. In order to find the value of this width, we use binary search. We compute

generalized rank rkMf
(

p `

δ

)
by applying the algorithm proposed in [ 40 ], which uses zigzag

persistence on a boundary path. This zigzag persistence is computed efficiently by a recent

algorithm proposed in [  121 ]. We denote the sub-routine to compute generalized rank over

a worm by ComputeRank in algorithm  F mentioned below. ComputeRank(f, I) takes

as input a bi-filtration function f and an interval I, and outputs generalized rank over that

interval. In order to use the algorithm proposed in [  40 ], the worms need to have their
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Figure 4.4. Gril as a topological discriminator: each row shows a point
cloud P , Gril value heatmap for ranks k = 1 and k = 2 in homology of
degree 1 named as λ1 and λ2 respectively. First Betti number (β1) of a circle
is 1 which is reflected in λ1 being non-zero. β1 for two circles is 2 which is
reflected in both λ1 and λ2 being non-zero. Similarly, β1 of a circle and disk
together is 1 which is reflected in λ1 being non-zero but λ2 being zero for this
point cloud.

boundaries aligned with a grid structure defined on the range of f . Thus, we normalize f

to be in the range [0, 1] × [0, 1], define a grid structure on [0, 1] × [0, 1] and discretize the

worms. Let Grid = {
(

m
M

, n
M

)
| m, n ∈ {0, 1, . . . , M}} for some M ∈ Z+. We denote the grid
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resolution as ρ , 1/M . We take the set of center points P ⊆ Grid as a uniform subgrid of

Grid. We consider the discrete worms for p ∈ P , δ = d · ρ, d ∈ Z≥0 as follows:

p̂
`

δ
,

⋃
q=p+(α,−α)
|α|≤(l−1)δ

q∈Grid

q
δ
. (4.3)

Essentially, a discrete `-worm p̂
`

δ
centered at p with width δ is the union of 2`− 1 squares

with width δ centered at p ± (cδ,−cδ) for c ∈ {0, 1, . . . , ` − 1} along with the intermediate

staircases between two consecutive squares of step-size equal to grid resolution (ρ). Figure

 4.5 (middle) shows the discretization of a 2-worm. This construction is sensitive to the grid

resolution.

Now all such discrete worms p̂ are intervals whose boundaries are aligned with the Grid.

We apply the procedure ComputeRank(f, I) to compute rkMf (I) for I = p̂
`

δ
. Denote

λ̂Mf (p, k, `) = sup
δ≥0
{rkMf ( p̂

`

δ
) ≥ k}. (4.4)

Remark 4.3.1. One can observe that

λMf (p, k, `) ≤ λ̂Mf (p, k, `) ≤ λMf (p, k, `) + ρ

Therefore, we compute λ̂ as an approximation of λ in practice.

The pseudo-code is given in Algorithm  F . The algorithm is described in detail in Ap-

pendix  4.4 .

Time complexity. Assuming a grid with t nodes and a bi-filtration of a complex with

n simplices on it, one can observe that each probe in the binary search takes O(nω) time

where ω < 2.37286 is the matrix multiplication exponent [  123 ]. This is because each probe

generates a zigzag filtration of length O(n) with O(n) simplices. Therefore, the binary search

takes O(nω log t) time giving a total time complexity of O(tnω log t)) that accounts for O(t)

worms.
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Figure 4.5. A 2-worm, discretized 2-worm and expanded discretized 2-worm;
ρ denotes grid resolution. The blue dotted lines show the intermediate staircase
with step-size ρ. The red dotted lines form parts of the squares with size d
which are replaced by the blue dotted lines in the worm. The last figure shows
the expanded 2-worm with red and blue dotted lines. The expanded 2-worm
has width d + ρ which is the one step expansion of the worm with width d.

Algorithm F ComputeGril
Input: f : Bi-filtration function, ` ≥ 0, k ≥ 1, p ∈ P ⊆ Grid, ρ: grid resolution
Output: λ̂(p, k, l): Gril value at a point p for fixed k and `
Initialize: dmin ← ρ, dmax ← 1, λ← 0
while dmin ≤ dmax do

d← (dmin + dmax)/2.
I ← p̂

`

d

r ← ComputeRank(f, I)
if r ≥ k then

λ← d
dmin ← d + ρ

else
dmax ← d− ρ

return λ

Speeding up the implementation. In implementation, we use some observations

that help run ComputeGril more efficiently in practice. When computing Gril for k =

1, 2, . . . , n, we use the monotone property described in Remark  4.2.1 to reduce the scope of

the binary search for successive values of k. For example, the value of Gril for k is always

greater than or equal to the value of Gril for k + 1. Thus, we can reduce the scope of the

binary search while computing for k + 1 by setting the maximum in the binary search to
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be the value of Gril at k. Further, we store the values of rank for a given width d while

computing the value of Gril for a k. This information can be reused in later computations.

For example, we store the values of generalized ranks of worms for different values of d at a

center point p during the binary search for, say k = k0. We use this information for successive

binary searches for all k > k0 and save on the zigzag persistence computation for those values

of d. While computing zigzag persistent, along with the barcode for 0th homology group,

the barcode for 1st homology group is also computed. We store this information and reuse it

while computing Gril values for 1st homology group. These observations reduce the total

number of zigzag persistence computations to a significant extent resulting in reducing the

total computational time.

4.4 Implementation details

In this section we describe the algorithm in detail. In practice, we are usually presented

with a piecewise linear (PL) approximation f̂ of a R2-valued function f on a discretized

domain such as a finite simplicial complex. The PL-approximation f̂ itself is R2-valued.

Discretizing the parameter space R2 by a grid, we consider a lower star bi-filtration of the

simplicial complex. Analogous to the 1-parameter case, a lower star bi-filtration is obtained

by assigning every simplex the maximum of the values over all of its vertices in each of

the two co-ordinates. With appropriate scaling, these (finite) values can be mapped to a

subset of points in a uniform finite grid over [0, 1] × [0, 1]. Observe that because of the

maximization of values over all vertices, we have the property that two simplices σ ⊆ τ

have values f̂(σ) ∈ R2 and f̂(τ) ∈ R2 where f̂(σ) ≤ f̂(τ). A partial order of the simplices

according to these values provide a bi-filtration over the grid [0, 1]× [0, 1].

Computing generalized ranks. We need to compute the generalized rank rkM( p̂
`

d
)

for every worm p̂
`

d
to decide whether to increase its width or not. We use a result of [  40 ]

to compute rkM( p̂
`

d
). It says that rkM( p̂

`

d
) can be computed by considering a zigzag

module and computing the number of full bars (bars that begin at the start of the zigzag

filtration and persist until the end of the filtration) in its decomposition. This zigzag module
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decomposition can be obtained by restricting the bi-filtration on the boundary of rkM( p̂
`

d
)

and using any of the zigzag persistence algorithms on the resulting zigzag filtration.

d
p

1
3

6 7

8 9

10
11

4
5 p

2

Figure 4.6. (Left) The figure shows the 2-worm centered at p with width
d. (Right) The highlighted part denotes the boundary cap of the worm. The
arrows in the figure denote the direction of arrows in the zigzag filtration.

Computing zigzag module decomposition. For a given d we do not construct p̂
`

d

explicitly. We store the coordinates where each horizontal and vertical line segment of the

`-worm intersect. Let us denote these points by ai. We consider the arrow between ai to ai+1,

where i ∈ [1, 4` + 2] and denote it by aiai+1. We find the simplices that project onto these

segments. We mark the simplices as ‘inserted’ or ‘deleted’ depending upon the direction of

the arrow (See Figure  4.7 ). Notice that since the coordinates of each ai is known we can

Figure 4.7. σ1 gets projected to the segment a3a4 and a4a5, whereas σ2 and
σ3 gets projected to the segment a5a6. During iteration σ1 gets inserted when
a3a4 segment is considered and gets deleted when a4a5 is considered.

efficiently find the projected simplices with vectorized operations available in PyTorch [ 97 ]
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or NumPy [ 124 ]. The resulting zigzag filtration can be decomposed using any of the zigzag

peersistence algorithm. We use the recently published efficient algorithm and its associated

software [  121 ] for computing zigzag persistence.

Computing the value of Gril using binary search. For a worm p̂
`

d
and a given k ≥ 1,

we apply binary search to compute the value of Gril.

Let us denote the grid resolution by ρ. We do the binary search for d in the range

[dmin, dmax] where dmin = ρ and dmax = 1. In each iteration, we compute rkM( p̂
`

d
) for

d = (dmin + dmax)/2 and check if rkM( p̂
`

d
) ≥ k. We increase the width of the worm by

updating

dmin to be d + ρ if rkM( p̂
`

d
) ≥ k. Otherwise, we decrease the width of the worm by

updating dmax to be d − ρ. The binary search stops and returns d when dmax < dmin. This

ensures that we have searched through all possible values of d for which rkM( p̂
`

d
) ≥ k and

returned the maximum of these values.

Since the above steps can be computed independently for each centre point p, we take

advantage of thread-level parallelism. We use OpenMP [ 125 ] to parallelize the computation.

Refer to Figure  4.6 for an illustration of the zigzag filtration along the boundary cap of a

2-worm.

4.5 Experiments

Our method Gril exploits generalized rank invariant whereas existing methods exploit

rank invariant which is equivalent to fibered barcode. Although both invariants are known to

be incomplete for multiparameter persistence as any other discrete invariant, the generalized

rank invariant is more informative in theory. Our experiments support this theoretical

hypothesis in practice to some extent as we obtain better accuracy for 13 out of 20 cases in

Table  4.1 in comparison to existing methods applying some form of fibered barcodes. We

perform experiments on synthetic graph benchmark datasets. On these datasets, we define a

bi-filtration and compute Gril values λ(p, k, `) for ` = 2 and for each k ∈ {1, 2, . . . , 5} where

p is chosen over a uniform subgrid. Some datasets require a finer resolution for capturing
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meaningful information while for others, finer resolutions capture redundant information and

a coarser resolution performs better. Therefore, we sample subgrids with different step-sizes

from the discretized grid described in section  4.3 and vary p over these subgrids.We first

describe an experiment on a synthetic data set and follow it with experiments on benchmark

graph data sets.

We perform a series of experiments on graph classification to test the proposed model. We

use standard datasets such as Proteins, Dhfr, Cox2, Imdb-Binary and Mutag [ 95 ].

A quantitative summary of these datasets is given in Section  4.6 .

4.5.1 Classifying Gril representations directly

We compare the performance of Gril with other models such as multiparameter persis-

tence landscapes (MP-L) [  24 ], multiparameter persistence images (MP-I) [  35 ], multiparam-

eter persistence kernel (MP-K) [ 23 ].

In [  35 ], the authors use the heat kernel signature (HKS) and Ricci curvature to form a

bi-filtration on the graph datasets. We also use the same bi-filtration and report the result

in Table  4.1 . We use XGBoost classifier [ 126 ] as done in [  35 ] for a fair comparison. We also

report the results of Gril with different classifiers in Table  4.8 . The reported accuracies

are averaged over 5 train/test splits of the datasets obtained with 5 stratified folds. The full

details of the experiments are given in Section  4.6 .

Table 4.1. Test accuracy of different models on graph datasets. The values
of the MP-I, MP-K, MP-L and P columns are as reported in [ 35 ]. P denotes
1-parameter persistence as reported in [ 35 ].

Dataset MP-I MP-K MP-L P Gril

Proteins 67.3 ± 3.5 67.5 ± 3.1 65.8 ± 3.3 65.4 ± 2.7 70.9 ± 3.1
Dhfr 80.2 ± 2.3 81.7 ± 1.9 79.5 ± 2.3 70.9 ± 3.1 77.6 ± 2.5
Cox2 77.9 ± 2.7 79.9 ± 1.8 79.0 ± 3.3 76.0 ± 4.1 79.8 ± 2.9

Mutag 85.6 ± 7.3 86.2 ± 2.6 85.7 ± 2.5 79.2 ± 7.7 87.8 ± 4.2
Imdb-Binary 71.1 ± 2.1 68.2 ± 1.2 71.2 ± 2.0 54.0 ± 1.9 65.2 ± 2.6

From Table  4.1 , we can see that the performance of Gril on Imdb-Binary is slightly

lower than the other methods. This is because the graphs in Imdb-Binary do not contain
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many cycles and hence, there is not enough information to capture in H1 (See Appendix  4.7 

for a visual interpretation). However, when there is information available, Gril captures it

better than the existing methods as can be seen from the accuracy values on other datasets.

4.5.2 Augmenting GNNs with Gril features

Experimental Setup:

In another set of experiments, we augment standard GNNs with Gril features and

compare the performance of the model with the existing ones. We use 3 layers of message-

passing with hidden dimensionality of 64. The latent node representations are passed through

a pooling layer and a two layer MLP to obtain the final classification. We use sum pooling

to maintain uniformity among experiments and we do not claim that this is the optimal

choice in any sense. For the GNN+Gril architectures, we concatenate H0 and H1 and pass

it through a 1-layer MLP. We concatenate the transformed Gril values with the graph-

level representations obtained from the pooling layer before passing through the final MLP

classifier.

Table 4.2. Performance comparison of baseline GNNs and GRIL augmented
GNNs on graph benchmark datasets.

Model Proteins Dhfr Cox2 Mutag Imdb-Binary
GCN 71.15± 2.31 78.70± 2.35 78.80± 2.13 88.26± 3.70 73.1± 2.20

GCN + GRIL 74.21± 2.08 75.66± 3.08 80.30± 1.57 88.80± 3.60 72.6± 1.46
GAT 67.66± 3.92 77.78± 4.50 79.45± 3.68 86.69± 6.36 74.90± 2.98

GAT + GRIL 71.60± 3.92 79.64± 6.29 80.52± 3.30 84.03± 7.85 71.60± 3.04
GIN 69.09± 3.77 79.77± 6.72 78.80± 4.88 83.97± 6.04 73.7± 3.34

GIN + GRIL 71.87± 3.22 78.46± 5.80 79.22± 4.89 89.32± 4.81 74.2± 2.82

Training and evaluation:

The models are trained for 100 epochs with Adam [ 94 ] as the optimizer. The initial

learning rate was set to be 10−2 halving every 20 epochs. No hyperparameter tuning and

early stopping was done. Though restrictive for practical scenarios, we follow earlier works
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Table 4.3. Performance comparison of baseline GNNs and GRIL augmented
GNNs on social network datasets without node attributes.

Model IMDB-BINARY IMDB-MULTI REDDIT-BINARY REDDIT-MULTI-5K
initial_node_features: deg(v) initial_node_features: uninformative

GIN 73.70± 3.34 49.60± 3.02 90.30± 1.30 53.77± 1.85
GIN + GRIL 74.20± 2.82 50.33± 2.58 87.35± 2.77 53.85± 2.60

(see [  127 ,  128 ] for more details). We report cross-validation accuracy averaged over 10 folds

of the model obtained in the final training epoch.

Results:

We can see from Table  4.2 that Gril captures topological information that the GNN

architectures are unable to capture and hence we see a clear increase in performance. However

this is not the case for social network datasets. For the experiments reported in table  4.3 

the node features are set as uninformative following the settings of [  109 ]. For the Imdb-

*, Reddit-Multi-5K datasets, the augmented Gril features improve the baseline GIN

accuracy. For the Reddit-Binary dataset, since the graphs are highly sparse Gril features

computed with HKS-RC bifiltration fails to capture important features and as a consequence,

the performance decreases.

4.6 Additional experiments

We performed a series of experiments on graph classification using Gril. We used

standard datasets with node features such as Proteins, Dhfr, Cox2, Mutag and Imdb-

Binary [ 95 ]. Description of the graph classification tasks is given in Table  4.4 .

The Heat Kernel Signature-Ricci Curvature bi-filtration, as done in [  35 ], values are

normalized so that they lie between 0 and 1. For the experiments reported in Section  4.5 ,

we fix the grid resolution ρ = 0.01. Thus, the square [0, 1]× [0, 1] has 100× 100 many grid

points. We sample a uniform subgrid of center points, p, out of these grid points. We fix

l = 2 for our experiments. We compute λ(p, k, `) where p varies over the sampled center
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Table 4.4. Description of Graph Datasets.

Dataset Num Graphs Num Classes Avg. No. Nodes Avg. No. Edges

Proteins 1113 2 39.06 72.82
Cox2 467 2 41.22 43.45
Dhfr 756 2 42.43 44.54

Mutag 188 2 17.93 19.79
Imdb-Binary 1000 2 19.77 96.53

points and k varies from 1 to 5. Each such computation is done for dimension 0 homology

(H0) and dimension 1 homology (H1). We use XGBoost [ 126 ] classifier for these experiments.

4.6.1 Ablation Studies:

We have performed experiments with different subgrid sizes and the results are reported

in Table  4.5 . The reported accuracies are averaged over 5 train/test splits of the datasets

obtained with 5 stratified folds. We can see from the table that for different datasets,

different subgrid sizes give the best results. This can be attributed to the fact that for

some datasets, topological information needs to be captured at a finer level while for other

datasets, capturing such finer details can be redundant.

Table 4.5. Test accuracies of Gril on subgrids of different sizes.

Grid Size 50× 50 25× 25 10× 10 5× 5

Proteins 70.8± 2.7 70.2± 1.8 69.8± 2.4 68.5± 2.6
Dhfr 77.6± 2.5 77.2± 3.4 77.5± 3.5 77.5± 3.5
Cox2 79.8± 3.0 78.9± 2.4 79.8± 2.9 78.9± 3.5

Mutag 87.3± 3.8 87.8± 4.2 87.8± 4.5 86.8± 3.3
Imdb-Binary 62.2± 4.3 65.2± 2.6 62.2± 2.3 63.5± 3.2

We report the computation times of Gril for these datasets in Table  4.6 . The values

denote the total computation time for all the center points on a 50 × 50 subgrid for a 2-

worm. The computations were done on a Intel(R) Xeon(R) Gold 6248R CPU machine and

the computation was carried out on 32 cores.
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Table 4.6. Computation times for Gril for each dataset with a 2-worm and
50× 50 subgrid.

Dataset Computation time

Proteins 6 hr 13 min 38 s
Dhfr 4 hr 15 min 54 s
Cox2 2 hr 44 min 23 s

Mutag 0 hr 56 min 48 s
Imdb-Binary 4 hr 03 min 35 s

In Table  4.7 , we show the performance of Gril with different grid resolutions (ρ) and `-

worms. For these experiments, we used a 50×50 subgrid for the center points. The reported

accuracies are averaged over 5 train/test splits of the datasets obtained with 5 stratified

folds. We test it on Mutag and Cox2 and we can see that for ρ = 0.01, we get the highest

accuracy of the model on both the datasets. We can see from the table that there is an

improvement in accuracy from ` = 1 to ` = 2. However, there is no significant improvement

from ` = 2 to ` = 3.

Table 4.7. Test accuracy for different grid resolutions and for `-worms with
different values of `.

Dataset ρ = 0.02 ρ = 0.01 ρ = 0.005 ` = 1 ` = 2 ` = 3

Mutag 86.3 ± 4.2 87.8 ± 4.5 85.2 ± 3.9 85.7 ± 4.2 87.8 ± 4.5 87.8 ± 3.9
Cox2 78.2 ± 1.7 79.8 ± 2.9 77.8 ± 1.4 79.3 ± 2.9 79.8 ± 2.9 78.9 ± 3.5

Table 4.8. Test accuracies of Gril using different classifiers.

Dataset SVM LR XGBoost 3-MLP

Proteins 73.3± 1.5 72.7± 2.6 70.9± 3.1 71.3± 2.1
Dhfr 61.7± 0.4 77.8± 1.9 77.6± 2.5 72.3± 4.3
Cox2 77.2± 0.8 78.5± 2.5 79.8± 2.9 77.0± 1.2

Mutag 80.0± 3.9 86.3± 3.8 87.8± 4.2 76.8± 9.1
Imdb-Binary 65.1± 3.6 63.2± 2.1 65.2± 2.6 61.2± 6.6
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In Table  4.8 , we report the performance of Gril on graph benchmark datasets with

different classifiers such as support vector machine (SVM) [ 129 ,  130 ], logistic regression

(LR) [  131 ], Multilayer Perceptron (3-MLP) implemented using scikit-learn [ 60 ] library. The

reported accuracies are averaged over 5 train/test splits of the datasets obtained with 5

stratified folds.

4.7 Visualization of Gril for graph datasets

The plot for first 5 Gril values are shown in Figure  4.8 . The figure contains landscape

values for 5 random graph samples of each dataset. In Figure  4.9 , we plot the first two eigen

vectors given by principal component analysis (PCA) of the computed Gril values for each

dataset. Plots for H0 and H1 are shown separately.

4.8 Concluding remarks

In this work, we propose Gril, a 2-parameter persistence vectorization based on gener-

alized rank invariant. Furthermore, we present an algorithm for computing Gril which is a

synergistic confluence of the recent developments in computing generalized rank invariant of

a 2-parameter module and an efficient algorithm for computing zigzag persistence. As a topo-

logical feature extractor, Gril performs better than Graph Convolutional Networks (GCNs)

and Graph Isomorphism Networks (GINs) on our synthetic dataset. It also performs better

than the existing multiparameter persistence methods on some graph benchmark datasets

while achieves comparable performance on others.

We believe that the additional topological information that a 2-parameter persistence

module encodes, as compared to a 1-parameter persistence module, can be leveraged to

learn better representations. Further directions of research include using Gril with GNNs

for filtration learning to learn more powerful representations. We expect that this work

motivates further research in this direction.
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Figure 4.8. Gril of 5 random graph samples of each dataset. Gril values
of H0 and H1 are shown separately columnwise.
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Figure 4.9. Plot of the first two eigen vectors given by PCA on the entire
dataset for H0 and H1 respectively.
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5. GRIL-D: A DIFFERENTIABLE 2-PARAMETER

PERSISTENCE LAYER FOR DRUG DISCOVERY

In chapter  4 we discussed Generalized Rank Invariant Landscape (Gril), a new vector

representation, and its effectiveness in capturing encoding richer information beyond fibered

barcodes for 2-parameter persistence modules. We showed this empirically by augmenting

the features extracted by Gril in a machine learning pipeline, specifically augmenting the

features extracted by Gril as an input to Graph Neural Networks (GNNs). In this chapter,

we propose a molecular fingerprint based on 2 parameter persistence, specifically Gril,

to predict the bio-activity of a synthesized drug. Contrary to previous multiparameter

approaches (such as ToDD [  27 ], PHoS [  119 ]) where the bi-filtration function is fixed, our

method is differentiable, meaning our multiparameter representations are learnt in a data-

driven way. We leverage this by proposing an end-to-end pipeline in conjunction with GNNs.

We first use graph isomorphism network (GIN) to obtain a bi-filtration function f and pass

it through the proposed Gril-D to obtain fingerprints of compounds as 2D matrices. Then,

we use an MLP layer to successfully predict the compounds that show bio-activity. We

also demonstrate the versatility of Gril fingerprints from a pre-trained neural network and

classifying with traditional ML algorithms such as XGBoost [  126 ], logistic regression [  131 ],

SVM [  130 ]. The key contributions of this chapter are:

• A differentiable 2-parameter persistence based molecular fingerprint.

• To the best of our knowledge, we introduced the first approach to actively integrate

2-parameter persistence within the realm of GNNs, where the bi-filtration function, f

is learnt.

• We perform extensive experiments in bio-activity prediction, showing that our method

outperforms the static multiparameter fingerprints, demonstrating the need for an

end-to-end pipeline.
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5.1 Related Works

5.1.1 Virtual Screening

Figure 5.1. General framework of our approach.

A crucial step of drug discovery involves identifying biologically active compounds that

can potentially be developed into drug candidates. To achieve this, researchers often turn

to computational methods for compound prioritization with desired properties. One widely

used approach for this purpose is virtual screening (VS), which can be categorized into two

major types: structure-based virtual screening (SBVS) and ligand-based virtual screening

(LBVS) [  132 ].

SBVS relies on the 3D structural information of both the compound (ligand) and the

target protein as a complex. This method requires a deep understanding of the target

protein’s 3D structure to explore how a compound can fit into its binding pocket effectively.

However, this level of detail makes SBVS computationally expensive [  133 – 135 ].

In contrast, LBVS methods take a different approach. They compare structural similari-

ties of a library of compounds with a known active ligand, assuming that similar compounds

are likely to exhibit similar biological activity. LBVS, unlike SBVS, solely uses ligand infor-

mation and aims to create effective fingerprints of the compounds using machine learning

(ML) tools to find similarities. As a result, LBVS can be more efficient, especially when

working with larger chemical datasets and when the structure of the target receptor is not

well understood [  136 ].
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Over the past three decades, various LBVS methods have emerged, employing different

approaches. These methods can be categorized into three classes based on the type of fin-

gerprints they generate: (i) 1D-Methods: Examples of 1D-methods include SMILES [  137 ]

and SMARTS [  138 ], which produce 1D-fingerprints. These methods compress compound

information into a vector representation. (ii) 2D-Methods: The realm of 2D methods

comprises of RASCAL [ 139 ], MOLPRINT2D [ 140 ], ECFP [  141 ], MACSS [  142 ], and Mor-

gan [ 143 ]. These methods use 2D-structure fingerprints and graph matching to assess struc-

tural similarities among compounds. (iii) 3D-Methods: On the 3D front, methods like

ROCS, USR, and PatchSurfer take into account the 3D structure of compounds and their

conformations, which includes the 3D position of the compound [ 144 – 149 ].

5.1.2 Multiparameter Persistence in Virtual Screening

Topology has found its way into the realm of medicinal chemistry, and we are not the pi-

oneers in this endeavor. Early on, persistent homology, a topological technique, was applied

to the field of protein docking [ 150 ]. This approach continues to be actively explored [ 151 –

 153 ], though the specific methods employed in those studies differ from our approach. More

recently, there have been efforts in structure-based screening that combine single-parameter

persistent homology with machine learning [  12 ,  14 ,  17 ,  28 ,  31 ,  154 ,  155 ]. In contrast to these

approaches, our method achieves state-of-the-art results in ligand-based screening without

the necessity of training a machine learning model. We accomplish this by employing multi-

parameter persistence, which allows us to not only capture essential molecular shape prop-

erties but also incorporate non-shape information, such as electrostatics, in a coherent and

effective manner.

In the ever-evolving landscape of medicinal chemistry, deep learning has gained atten-

tion [  156 ], and there have even been attempts to combine single-parameter persistent ho-

mology with deep learning in a docking-based approach [  26 ,  154 ].

However, the structure of multiparameter persistence modules is much more compli-

cated than 1-parameter persistence modules. In the 1-parameter case, the modules are

completely characterized by what is called barcode or persistence diagram [ 36 ,  37 ]. Unfor-
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tunately, there is no such discrete complete invariant that can summarize multiparameter

persistence modules completely [ 38 ]. Given this limitation, leveraging multiparameter per-

sistence in virtual screening becomes an important but challenging problem. To address

this challenge, different kinds of vector representations have been proposed for 2-parameter

persistence modules [  23 ,  24 ,  35 ]. However, multiparameter persistence in the domain of

drug-discovery remains largely unexplored barring PHoS [  119 ] and ToDD [  27 ]. In a dif-

ferent domain, multi-parameter persistent homology has also been employed for classifying

hepatic lesions in computed tomography images [  157 ]. This demonstrates the versatility of

topological methods in diverse scientific applications.

5.2 Multiparameter Persistence Based Fingerprinting

5.2.1 Overall Framework

While our approach is versatile and can be employed with different types of data, our

primary emphasis in this context is on graphs, with a specific focus on utilizing them for the

virtual screening of compounds. Our approach produces fingerprints of compounds based on

multiparameter persistence, to be specific, the differentiable variant of Gril which we call

Gril-D. The overall pipeline is explained in the following steps:

Step 1. Bi-filtrations: In all of the previous approaches that involve multiparameter

persistence for fingerprinting, the input bi-filtration is fixed a-priori. For example, in [  119 ]

authors employ Vietoris-Rips bi-filtration, and in [  27 ] authors use an ensemble of atomic

mass, partial charge, bond type, electron affinity, ionization energy to perform graph filtra-

tion. Owing to the theoretical development (Explained in Section  5.3 ) we employ a learnable

bi-filtration that is suitable for downstream tasks. Since we limit ourselves to graphs in this

paper, graph neural networks (GNNs) are a natural choice to obtain bi-filtrations. Careful

readers will note that through GNNs we obtain node embeddings and if we restrict the em-

beddings to R2 we obtain a vertex filter function, i.e. fv : V→ R2. We can interpolate fv in

a piecewise-constant fashion to obtain a valid bi-filtration function f .

Step 2. Differentiable GRIL fingerprints: Our method samples a subset of grid

points from the 2-parameter grid spanned by the bi-filtration function coming from GNN
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Figure 5.2. Architecture choice for bio-activity prediction. Notice that the
bi-filtration function f is learnt compared to the standard multiparameter
pipeline.

and computes the landscape function values (Definition  5.2.2 ) at those points based on

generalized ranks. For this, the algorithm considers an expanding sequence of intervals

which we call worms centered at each point p, and computes generalized rank over them to

determine the ‘width’ of the maximal worm sustaining a chosen rank. This maximization

is achieved by a binary search over the sequence of worms centering p. The widths, thus

computed for each sample point, constitute the landscape function values which become the

basis for our fingerprints. Note that the previous multiparameter signatures that have been

proposed to study compounds till now are variants of fibered or sliced barcodes based on

rank invariants, whereas the signatures used by us are based on generalized rank invariants,

which in theory is a stronger invariant and captures more information.

Step 3. Biologically active compound classification: The fingerprints are then

passed through a 3-layer MLP for final classification. Please see Section  5.5 for more details.
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5.2.2 Background and Definitions

In this subsection, we recall some definitions to prove the differentiability of the proposed

differentiable Gril layer.

Definition 5.2.1 ((discrete) `-worm, [  42 ]). Let p
δ

:= {w : |p−w|∞ ≤ δ} be the δ-square

centered at p with side 2δ. Given p ∈ R2, ` ≥ 1, δ > 0, we define an `-worm p `

δ
to be

the union over all δ-squares q
δ

centered at some point q on the off-diagonal line segment

p + α · (1,−1) with |α| = j · δ where j ∈ {1, . . . , `− 1}.

Definition 5.2.2 (Gril, [  42 ]). For a 2-parameter persistence module M , Generalized Rank

Invariant Landscape (Gril) is defined as a function λM : R2 × N+ × N+ → R given by

λM(p, k, `) := sup
δ≥0

{
rkM

(
p `

δ

)
≥ k

}

where rkM is the generalized rank invariant as defined in [ 39 ].

Proposition 5.2.1 ([ 42 ]). Gril is stable with respect to the input bi-filtration functions,

i.e., given f, g : X→ R2, then

|λMf (p, k, `)− λMg(p, k, `)| ≤ ‖f − g‖∞

for all p, k, `.

5.3 Differentiability

Consider a simplicial complex K with n simplices. Consider a bi-filtration function f

on K. Then, f can be viewed as a vector xf ∈ R2n. Let ΛMf

k,` denote the Gril vector in

Rc where c is the number of center points {pj}c
j=1 and fixed k, ` for the persistence module

induced by f . Here we state the main result (see Proposition  5.3.2 )) that will permit us to

use Gril in a differentiable framework. For the actual proof, we refer the readers to [  158 ].

Proposition 5.3.1 ([ 42 ]). G is Lipschitz continuous.

Corollary 5.3.1 ([ 42 ]). G is differentiable almost everywhere.
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Figure 5.3. Gradient assignment for the `-worm centred at point p. The
yellow and green lines in the figure are lower and upper boundaries of `-worm.
σ1 is a lower x constraining simplex and thus assigned a gradient of (−1, 0),
σ2 is an upper y constraining simplex with an assignment of (0, 1) and σ3 is
an upper x constraining simplex with gradient assigned as (1, 0).

Proposition 5.3.2. Given a bi-filtration function f which satisfies the generic condition,

k ∈ N, ` ∈ N. Let {pj}c
j=1 denote the center points of the worms and let {dj}c

j=1 denote the

corresponding Gril values. If there exists a unique constraining simplex σij for each worm

p `

dj
then G is differentiable and the derivative is given by


∂λk,`(p1)

∂σx
1

∂λk,`(p1)
∂σy

1

∂λk,`(p1)
∂σx

2

∂λk,`(p1)
∂σy

2
. . .

∂λk,`(p1)
∂σy

n

...
∂λk,`(pc)

∂σx
1

. . .
∂λk,`(pc)

∂σy
n


c×2n
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where,

∂λk,`(pj)
∂σx

i
=



−1, if i = ij and σij is lower x-constraining

+1, if i = ij and σij is upper x-constraining

0, otherwise

∂λk,`(pj)
∂σy

i
=



−1, if i = ij and σij is lower y-constraining

+1, if i = ij and σij is upper y-constraining

0, otherwise

5.4 Datasets

The data is extracted from the ChEMBL database [  159 ,  160 ]. Each of the datasets

contains SMILES encoding of a novel drug (compound) and activity pairs for a target of

interest. For example, the EGFR dataset contains all the molecules that have been tested

against epidermal growth factor receptor (EGFR) kinase and their measured bio-activity.

The bio-activity is measured by half maximal inhibitory concentration (IC50), which measures

qualitatively indicates how much a drug is needed, in vitro, to inhibit a particular process

by 50%. To facilitate the comparison of IC50 values it is common practice to convert it to

pIC50 = − log10(IC50), expressed in molar units. The threshold for activity cutoff pIC50 =

6.3 is used throughout the paper.

EGFR:

This dataset contains 4635 molecules reacted against epidermal growth factor receptor

(EGFR) kinase. The dataframe contains ChEMBL-ID, SMILES encoding of the correspond-

ing compound, and measured affinity (pIC50) value.
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ERRB2:

This dataset contains 1822 molecules reacted against Receptor protein-tyrosine kinase

erbB-2 (ERRB2). The dataframe contains ChEMBL-ID, SMILES encoding of the corre-

sponding compound, and measured affinity (pIC50) value.

The datasets are publicly available on the ChEMBL website and can be downloaded

following the tutorial mentioned in [ 161 ]. More details of these datasets are in Table  5.1 .

The SMILES encoding of the molecule is then converted to PyG [ 96 ] graph objects by

Molfeat [ 162 ]. During the conversion of molecules to graphs, Molfeat computes addi-

tional node features that are fed to the GNN to get the input bi-filtration function. The

computed 82 dimensional node features are (i) atom-one-hot, (ii) atom-degree-one-hot, (iii)

atom-implicit-valence-one-hot, (iv) atom-hybridization-one-hot, (v) atom-is-aromatic, (vi)

atom-formal-charge, (vii) atom-num-radical-electrons, (viii) atom-is-in-ring, (ix) atom-total-

num-H-one-hot, (x) atom-chiral-tag-one-hot and (xi) atom-is-chiral-center. This is the de-

fault setting of Molfeat and we do not claim, in any way, that these are the optimal node

features that are to be used.

Table 5.1. Details of the ChEMBL datasets. Note that compounds with
pIC50 >= 6.3 are considered active molecules.

Dataset Num Graphs Active Inactive Avg. Num Nodes Avg. Num Edges

EGFR 4635 2631 2004 28.97 31.73
ERRB2 1818 1140 678 33.33 36.70

CHEMBL1163125 2719 1507 1212 30.77 34.23
CHEMBL203 6816 4234 2582 31.88 34.98
CHEMBL2148 3200 2380 820 29.89 33.28
CHEMBL279 7461 5104 2357 31.82 35.11
CHEMBL2815 3143 2484 659 33.72 37.30
CHEMBL4005 4790 3195 1595 31.79 35.26
CHEMBL4282 3004 2112 892 33.81 37.69
CHEMBL4722 2565 1750 815 31.93 35.29
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5.5 Experiments

5.5.1 Setup

Since we want to test the discriminating power of the new topological fingerprints, we

restrict ourselves to the message passing layer to 1. Particularly we use graph isomorphism

network (GIN) with 1 hidden layer of dimension 64. For a graph G, the GIN layer gives us

a map from 82 dimensional node features to R2. We construct a valid bi-filtration function,

f , by extending those embeddings in a piecewise constant manner. To be specific, let fv

denote the map from node features to R2, i.e., fv : R82 → R2. Then for each edge (u, v) we

get f(u, v) = {max(fu1 , fv1), max(fu2 , fv2) }, thereby giving us a valid filtration function.

We get the Gril values w.r.t f and feed it to a 3-layer MLP for classification. For each of

the datasets, the train-val-test split is 70 − 10 − 20 % with the accuracies and ROC-AUC

reported averaged over 5 fold cross-validation. Each fold consists of 50 epochs and utmost

care was taken to reinitialize the model over the folds. The initial learning rate is set to be

1e−2 halved every 10 epoch. The optimizer used was Adam [  94 ].

5.5.2 Results

Figure 5.4. The figure compares the learnt bifiltration function with the
Heat-Kernel Signature-Ricci Curvature (HKS-RC) bifiltration on two random
graph instances (838 and 219) of Proteins dataset. In the first column, the
bifiltration function on the vertices of these graphs is plotted.
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We perform a series of experiments on the datasets mentioned in Section  5.4 and report

the results in Table  5.2 and Table  5.3 . In the first set of experiments, we compare GrilD

with (i) a standard GNN model, GIN, with sum-pooling as a representative, (ii) with GIN

and Gril as a readout layer. Note that for the results on GIN-Gril, Gril is used as a

passive readout layer, i.e., we obtained a bifiltration function from a pre-trained GIN (pre-

trained for graph classification on the same dataset) and computed Gril on it. We use

the same classifier (3-layer MLP) in all the cases. From Table  5.2 , it is clear that adding

topological information in an end-to-end learning framework appears to be beneficial for

bio-activity prediction on these datasets.

We plot the learnt bifiltration function and compare it with the Heat-Kernel Signature-

Ricci Curvature (HKS-RC) bifiltration function of two random graph instances from Pro-

teins dataset. We also plot the GrilD vectors for H0 and H1 and compare them with the

Gril vectors computed on the HKS-RC bifiltration function on these graphs. The figures

are shown in Figure  5.4 . It is clear from the figure that the model is learning a different

bifiltration function than the HKS-RC bifiltration and consequently, the Gril vectors in

these cases also look very different.

Table 5.2. Test ROC-AUC on ChEMBL datasets. GrilD performs better
than GIN with sum pooling and Gril with bifiltration obtained from pre-
trained GIN.

Dataset GIN GIN-GRIL GrilD

EGFR 55.60± 8.61 58.39± 2.51 62.83± 1.92
ERRB2 57.06± 8.58 61.28± 3.66 62.26± 4.43

CHEMBL1163125 58.48± 4.37 54.13± 1.09 68.67± 3.50
CHEMBL2148 52.88± 0.91 50.24± 0.18 53.63± 3.52
CHEMBL4005 55.90± 4.63 51.85± 3.55 57.20± 4.48

We perform a set of additional experiments where we classify Gril fingerprints obtained

from pre-trained neural network (See Table  5.4 and  5.5 ). We classify the obtained Gril

fingerprints with traditional linear classifiers, specifically with logistic regression (LR) and

support vector machines (SVM).
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Table 5.3. Test ROC-AUC scores on ChEMBL datasets. Augmenting GrilD
with ECFP, Morgan2, and Morgan3 fingerprints increases the classification
performance for most of the datasets.

Dataset ECFP ECFP+GrilD Morgan2 Morgan2+GrilD Morgan3 Morgan3+GrilD

EGFR 83.27± 1.10 83.40± 2.06 83.39± 1.23 83.39± 1.86 82.39± 1.35 82.88± 1.71
ERRB2 83.53± 1.31 84.29± 1.10 82.66± 1.45 84.29± 1.10 83.19± 1.26 83.26± 2.42

CHEMBL1163125 83.94± 1.23 84.74± 1.08 83.89± 1.40 84.77± 0.87 83.55± 1.20 83.57± 1.52
CHEMBL203 81.74± 0.90 82.17± 1.37 81.31± 1.10 82.17± 1.37 80.85± 1.32 81.03± 0.93
CHEMBL2148 73.96± 2.59 73.93± 3.49 75.18± 2.06 73.81± 3.64 72.79± 1.97 72.98± 2.18
CHEMBL279 76.72± 1.34 77.74± 1.05 76.90± 1.34 77.85± 1.03 76.76± 0.50 77.58± 0.78
CHEMBL2815 73.69± 1.53 74.64± 1.69 73.13± 1.62 74.58± 1.73 73.42± 0.56 74.51± 1.01
CHEMBL4005 80.45± 1.30 80.45± 1.40 79.88± 1.52 80.49± 1.31 79.95± 1.30 81.11± 0.86
CHEMBL4282 79.08± 2.75 78.39± 1.70 78.78± 2.76 78.44± 1.71 77.61± 2.37 78.32± 1.88
CHEMBL4722 78.05± 1.64 77.65± 1.87 77.96± 1.07 77.54± 2.03 78.76± 1.37 78.82± 1.57

Table 5.4. Experiments with Gril fingerprints obtained from pre-trained
neural network on the EGFR dataset.

Classifier Morgan2 Morgan2+GrilD Morgan3 Morgan3+GrilD ECFP ECFP+GrilD

LR 83.56 83.56 83.88 83.77 83.56 83.56
SVM 85.44 85.44 85.39 85.39 85.44 85.44

Table 5.5. Experiments with Gril fingerprints obtained from pre-trained
neural network on the ERRB2 dataset.

Classifier Morgan2 Morgan2+GrilD Morgan3 Morgan3+GrilD ECFP ECFP+GrilD

LR 87.26 87.26 87.67 87.67 87.26 87.26
SVM 87.67 87.53 88.08 88.08 87.67 87.53

Table 5.6. Accuracy of GrilD on benchmark graph datasets.

Dataset GrilD Gril MP-I MP-L MP-K P

MUTAG 85.59± 6.71 83.49± 3.64 74.99± 2.79 82.42± 3.72 79.27± 2.45 66.50± 0.87
PROTEINS 67.74± 2.27 66.31± 2.34 70.80± 3.09 70.80± 1.31 61.70± 2.98 59.57± 0.08

DHFR 67.06± 4.37 61.64± 1.66 60.98± 0.10 61.11± 0.25 60.98± 0.10 60.98± 0.10
COX2 78.59± 1.09 78.16± 0.41 78.16± 0.41 78.16± 0.41 78.16± 0.41 78.16± 0.41

IMDB-BINARY 58.70± 4.92 50.00± 0.00 56.60± 2.94 50.00± 0.00 50.30± 1.12 50.00± 0.00

GrilD can be used in a more general setting, for filtration learning on graph datasets.

We perform a set of experiments with benchmark graph datasets such as Mutag, Pro-

teins, Dhfr, Cox2 and compare them with existing multiparameter persistence methods.
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For a valid comparison, we used a 3-layer MLP as the classifier for all the multiparame-

ter signatures. We can see from Table  5.6 that learning the bifiltration function seems to

perform better than multiparameter persistence methods on popular choices of bifiltration

functions on most datasets. In fact, we can see from the table that GrilD performs better

than Gril, supporting our argument for an end-to-end learning framework.

5.6 Concluding remarks

In this chapter, we presented a topological molecular fingerprint derived from multi-

parameter persistence. To our knowledge, our approach represents the initial endeavor to

actively incorporate multiparameter persistent homology into the domain of bio-activity pre-

diction, introducing a unique category of molecular fingerprinting. Across all experiments,

our framework consistently outperforms the conventional static multiparameter-based fin-

gerprints. This highlights the necessity of employing an end-to-end differentiable pipeline

for such scenarios.
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6. CONCLUSIONS

In this dissertation, we have expanded upon the synergy of computational topology and

machine learning. In Chapter  2 , TDA helped to analyze cytometry data that is difficult

to interpret manually. We found out that a few protein expressions in CD8+ T cells sep-

arate healthy donors from COVID-19 patients. Furthermore, persistence diagrams help to

distinguish structural features in CD8+ T cell data occurring in healthy individuals and

COVID-19 patients. Next, in Chapter  3 we introduced Extended persistence in a suprevised

graph classification setting. Furthermore, we showed how we can leverage higher dimensional

simplices to enhance message passing. Defining higher order networks allowed us to process

noisy and non-manifold meshes that were not possible by traditional methods such as [  82 ,

 104 ]. Moreover, to ensure the applicability of our research in the field of machine learning, we

introduced a vector representation, denoted as Gril, designed specifically for 2-parameter

persistence modules. Gril surpasses previous constraints by capturing more intricate infor-

mation, offering a Lipschitz stable and differentiable representation concerning the filtration

function, f . Additionally, we developed an efficient algorithm for computing Gril, demon-

strating its practical application on synthetic and benchmark graph datasets. Initial findings

suggest that Graph Neural Networks (GNNs) enhanced with Gril features exhibit improved

performance in graph classification tasks. Lastly, in Chapter  5 we a introduce topological

molecular fingerprint derived from 2-parameter persistence. To our knowledge, our approach

represents the initial endeavor to actively incorporate multiparameter persistent homology

into the domain of bio-activity prediction, introducing a unique category of molecular fin-

gerprinting. We hope that this dissertation encourages future research work in the following

directions:

• We determine structural changes in T-bet and Eomes abundances in single CD8+ T

cells in COVID-19 patients that can be summarized as downregulation. This result is

non-intuitive as previous findings show that T-bet and Eomes protein abundances are

highest in effector CD8+ T cells, which are induced in response to acute infections,

suggesting T-bet and Eomes expressions should be upregulated [ 65 ,  68 ]. The clinical

implications of this result are unclear.
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• Applications of TDL in the field of drug discovery, and protein-protein interactions

remain uncharted. We believe TDL can provide an alternative approach to decipher

protein fingerprints described in [ 148 ,  149 ].

• Further experimentation with Gril, specifically extending its application to other

complex datasets and across different problem domains, may open up new avenues for

applying multiparameter persistence in machine learning.

• Studying Gril fingerprints obtained from a pre-trained neural network may provide

new avenues for the interpretability of deep learning.

In summary, this dissertation not only pushes the boundaries of single and multiparam-

eter persistence modules’ applications but also sets the stage for compelling future research

opportunities in the intersection of topological data analysis and machine learning.
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