Mobile devices have become increasingly ubiquitous as they serve many important functions in our daily lives. However, there is not much research on remote threats to the battery and power systems of these mobile devices. The consequences of a successful attack on the power system of a mobile device can range from being a general nuisance, financial harm, to loss of life if emergency communications were interrupted. Despite the relative abundance of work on implementing chemical and physical safety systems for battery cells and power systems, remote cyber threats against a mobile battery system have not been as well studied. This work created a framework aimed at auditing the power systems of mobile devices and validated the framework by implementing it in a case study on an Android device. The framework applied software auditing techniques to both the power system and operating system of a mobile device in a case study to discover possible vulnerabilities which could be used to exploit the power system. Lessons learned from the case study are then used to improve, revise, and discuss the limitations of the framework when put in practice. The effectiveness of the proposed framework was discovered to be limited by the availability of appropriate tools to conduct vulnerability assessments.