Computer vision is a domain which deals with the goal of making technology as efficient as human vision. To achieve that goal, after decades of research, researchers have developed algorithms that are able to work efficiently on resource constrained hardware like mobile or embedded devices for computer vision applications. Due to their constant efforts, such devices have become capable for tasks like Image Classification, Object Detection, Object Recognition, Semantic Segmentation, and many other applications. Autonomous systems like self-driving cars, Drones and UAVs, are being successfully developed because of these advances in AI.
Deep Learning, a part of AI, is a specific domain of Machine Learning which focuses on developing algorithms for such applications. Deep Learning deals with tasks like extracting features from raw image data, replacing pipelines of specialized models with single end-to-end models, making models usable for multiple tasks with superior performance. A major focus is on techniques to detect and extract features which provide better context for inference about an image or video stream. A deep hierarchy of rich features can be learned and automatically extracted from images, provided by the multiple deep layers of CNN models.
CNNs are the backbone of Computer Vision. The reason that CNNs are the focus of attention for deep learning models is that they were specifically designed for image data. They are complicated but very effective in extracting features from an image or a video stream. After AlexNet won the ILSVRC in 2012, there was a drastic increase in research related with CNNs. Many state-of-the-art architectures like VGG Net, GoogleNet, ResNet, Inception-v4, Inception-Resnet-v2, ShuffleNet, Xception, MobileNet, MobileNetV2, SqueezeNet, SqueezeNext and many more were introduced. The trend behind the research depicts an increase in the number of layers of CNN to make them more efficient but with that, the size of the model increased as well. This problem was fixed with the advent of new algorithms which resulted in a decrease in model size.
As a result, today we have CNN models, which are implemented on mobile devices. These mobile models are compact and have low latency, which in turn reduces the computational cost of the embedded system. This thesis resembles similar idea, it proposes two new CNN architectures, A-MnasNet and R-MnasNet, which have been derived from MnasNet by Design Space Exploration. These architectures outperform MnasNet in terms of model size and accuracy. They have been trained and tested on CIFAR-10 dataset. Furthermore, they were implemented on NXP Bluebox 2.0, an autonomous driving platform, for Image Classification.
History
Degree Type
Master of Science in Electrical and Computer Engineering