Purdue University Graduate School
Browse
- No file added yet -

Doctoral_Dissertaion_OmanshuThapliyal.pdf

Download (5.45 MB)
thesis
posted on 2023-03-10, 13:21 authored by Omanshu ThapliyalOmanshu Thapliyal

yberphysical systems (CPSs) are expected to operate in safety-critical scenarios, and are increasingly getting distributed and physically separated. CPSs are characterized by complex dynamical behavior arising from emergent inter-agent interactions, having discrete logic-based programs, data-driven methods employed in-the-loop, or by simply having highly nonlinear dynamics. Despite this, safety and security properties for CPSs need to be computed, often in real-time over analytically accurate solutions of the associated high dimensional partial differential equations (PDEs). In this dissertation, we investigate numerical approximation schemes to compute safety properties (or reachable sets) for CPSs with differing natures of complexities, without solving the associated PDEs. We solve for reachable sets for unknown dynamical systems with polynomial approximations. Similar approximation schemes can be extended to multi-agent systems and dynamical systems with neural-networks-in-the-loop. Such systems are increasingly applicable in real life instances, such as internet of things, urban air mobility, and data-driven controllers in-the-loop. We utilize the system's trajectory data to compute equivalent system models, and utilize the data-driven models to find approximate reachable sets using polytopic or interval approximations, thereby side stepping PDE solutions. We also investigate cyberphysical vulnerabilities in CPSs from emergent multi-agent behavior, and single agent interacting with multiple controllers via supervisory cyber layers. Each problem is accompanied with associated illustrative examples and numerical simulations. Finally, we present an extensive discussion of possible directions for future work, both, that result directly from the works presented in this dissertation, and those that stem from the assumptions that can be handled immediately.

History

Degree Type

  • Doctor of Philosophy

Department

  • Aeronautics and Astronautics

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Inseok Hwang

Advisor/Supervisor/Committee co-chair

Arthur Frazho

Additional Committee Member 2

Dengfeng Sun

Additional Committee Member 3

Shaoshuai Mou

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC