Purdue University Graduate School
Pradeep_Thesis_Defense_Document_Aug_19th.pdf (7.42 MB)

Generative Adversarial Networks for Lupus Diagnostics

Download (7.42 MB)
posted on 2019-10-16, 18:43 authored by Pradeep PeriasamyPradeep Periasamy
The recent boom of Machine Learning Network Architectures like Generative Adversarial Networks (GAN), Deep Convolution Generative Adversarial Networks (DCGAN), Self Attention Generative Adversarial Networks (SAGAN), Context Conditional Generative Adversarial Networks (CCGAN) and the development of high-performance computing for big data analysis has the potential to be highly beneficial in many domains and fittingly in the early detection of chronic diseases. The clinical heterogeneity of one such chronic auto-immune disease like Systemic Lupus Erythematosus (SLE), also known as Lupus, makes it difficult for medical diagnostics. One major concern is a limited dataset that is available for diagnostics. In this research, we demonstrate the application of Generative Adversarial Networks for data augmentation and improving the error rates of Convolution Neural Networks (CNN). Limited Lupus dataset of 30 typical ’butterfly rash’ images is used as a model to decrease the error rates of a widely accepted CNN architecture like Le-Net. For the Lupus dataset, it can be seen that there is a 73.22% decrease in the error rates of Le-Net. Therefore such an approach can be extended to most recent Neural Network classifiers like ResNet. Additionally, a human perceptual study reveals that the artificial images generated from CCGAN are preferred to closely resemble real Lupus images over the artificial images generated from SAGAN and DCGAN by 45 Amazon MTurk participants. These participants are identified as ’healthcare professionals’ in the Amazon MTurk platform. This research aims to help reduce the time in detection and treatment of Lupus which usually takes 6 to 9 months from its onset.


Degree Type

  • Master of Science


  • Computer Graphics Technology

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Dr. Vetria L Byrd

Additional Committee Member 2

Dr. Tim McGraw

Additional Committee Member 3

Dr. Yingjie Chen

Additional Committee Member 4

Dr. Paul Parsons