Purdue University Graduate School
Browse

K-theory of certain additive categories associated with varieties

Download (584.85 kB)
thesis
posted on 2021-07-23, 19:46 authored by Harrison WongHarrison Wong
<div>Let <i>K<sub>0</sub></i>(Var<i><sub>k</sub></i>) be the Grothendieck group of varieties over a field <i>k</i>. We construct an exact category, denoted Add(Var<sub><i>k</i></sub>)<sub><i>S</i></sub>, such that there is a surjection <i>K<sub>0</sub></i>(Var<i>k</i>)→<i>K<sub>0</sub></i>(Add(Var<i><sub>k</sub></i>)<sub><i>S</i></sub>).If we consider only zero dimensional varieties, then this surjection is an isomorphism. Like <i>K<sub>0</sub></i>(Var<i><sub>k</sub></i>), the group K<sub><i>0</i></sub>(Add(Var<sub><i>k</i></sub>)<i><sub>S</sub></i>) is also generated by isomorphism classes of varieties,and we construct motivic measures on <i>K<sub>0</sub></i>(Add(Var<i><sub>k</sub></i>)<i><sub>S</sub></i>) including the Euler characteristic if <i>k</i>=<i>C</i>, and point counting measures and the zeta function if <i>k</i> is finite.<br></div>

History

Degree Type

  • Doctor of Philosophy

Department

  • Mathematics

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Deepam Patel

Additional Committee Member 2

Donu Arapura

Additional Committee Member 3

Kenji Matsuki

Additional Committee Member 4

Saugata Basu

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC