File(s) under embargo

11

day(s)

until file(s) become available

Kernel Matrix Rank Structures with Applications

thesis
posted on 27.04.2022, 23:30 by Mikhail LepilovMikhail Lepilov

Many kernel matrices from differential equations or data science applications possess low or approximately low off-diagonal rank for certain key matrix subblocks; such matrices are referred to as rank-structured. Operations on rank-structured matrices like factorization and linear system solution can be greatly accelerated by converting them into hierarchical matrix forms, such as the hiearchically semiseparable (HSS) matrix form. The dominant cost of this conversion process, called HSS construction, is the low-rank approximation of certain matrix blocks. Low-rank approximation is also a required step in many other contexts throughout numerical linear algebra. In this work, a proxy point low-rank approximation method is detailed for general analytic kernel matrices, in both one and several dimensions. A new accuracy analysis for this approximation is also provided, as well as numerical evidence of its accuracy. The extension of this method to kernels in several dimensions is novel, and its new accuracy analysis makes it a convenient choice to use over existing proxy point methods. Finally, a new HSS construction algorithm using this method for certain Cauchy and Toeplitz matrices is given, which is asymptotically faster than existing methods. Numerical evidence for the accuracy and efficacy of the new construction algorithm is also provided.

History

Degree Type

Doctor of Philosophy

Department

Mathematics

Campus location

West Lafayette

Advisor/Supervisor/Committee Chair

Jianlin Xia

Additional Committee Member 2

Guang Lin

Additional Committee Member 3

Zhiqiang Cai

Additional Committee Member 4

Jie Shen