File(s) under embargo

29

day(s)

until file(s) become available

Multi-Resolution Data Fusion for Super Resolution of Microscopy Images

thesis
posted on 21.07.2021, 13:29 by Emma J Reid

Applications in materials and biological imaging are currently limited by the ability to collect high-resolution data over large areas in practical amounts of time. One possible solution to this problem is to collect low-resolution data and apply a super-resolution interpolation algorithm to produce a high-resolution image. However, state-of-the-art super-resolution algorithms are typically designed for natural images, require aligned pairing of high and low-resolution training data for optimal performance, and do not directly incorporate a data-fidelity mechanism.


We present a Multi-Resolution Data Fusion (MDF) algorithm for accurate interpolation of low-resolution SEM and TEM data by factors of 4x and 8x. This MDF interpolation algorithm achieves these high rates of interpolation by first learning an accurate prior model denoiser for the TEM sample from small quantities of unpaired high-resolution data and then balancing this learned denoiser with a novel mismatched proximal map that maintains fidelity to measured data. The method is based on Multi-Agent Consensus Equilibrium (MACE), a generalization of the Plug-and-Play method, and allows for interpolation at arbitrary resolutions without retraining. We present electron microscopy results at 4x and 8x super resolution that exhibit reduced artifacts relative to existing methods while maintaining fidelity to acquired data and accurately resolving sub-pixel-scale features.

Funding

FA8650-15- D-5405

CCF-1763896

History

Degree Type

Doctor of Philosophy

Department

Mathematics

Campus location

West Lafayette

Advisor/Supervisor/Committee Chair

Gregery Buzzard

Advisor/Supervisor/Committee co-chair

Charles Bouman

Additional Committee Member 2

Nung Kwan Yip

Additional Committee Member 3

Lawrence Drummy

Usage metrics

Licence

Exports